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Abstract

This thesis discusses and addresses some of the difficulties associated with
practical machine learning and data analysis. Introducing data driven meth-
ods in e. g. industrial and business applications can lead to large gains in
productivity and efficiency, but the cost and complexity are often overwhelm-
ing. Creating machine learning applications in practise often involves a large
amount of manual labour, which often needs to be performed by an experi-
enced analyst without significant experience with the application area. We
will here discuss some of the hurdles faced in a typical analysis project and
suggest measures and methods to simplify the process.

One of the most important issues when applying machine learning meth-
ods to complex data, such as e. g. industrial applications, is that the processes
generating the data are modelled in an appropriate way. Relevant aspects
have to be formalised and represented in a way that allow us to perform
our calculations in an efficient manner. We present a statistical modelling
framework, Hierarchical Graph Mixtures, based on a combination of graphi-
cal models and mixture models. It allows us to create consistent, expressive
statistical models that simplify the modelling of complex systems. Using a
Bayesian approach, we allow for encoding of prior knowledge and make the
models applicable in situations when relatively little data are available.

Detecting structures in data, such as clusters and dependency structure,
is very important both for understanding an application area and for speci-
fying the structure of e. g. a hierarchical graph mixture. We will discuss how
this structure can be extracted for sequential data. By using the inherent de-
pendency structure of sequential data we construct an information theoretical
measure of correlation that does not suffer from the problems most common
correlation measures have with this type of data.

In many diagnosis situations it is desirable to perform a classification in
an iterative and interactive manner. The matter is often complicated by very
limited amounts of knowledge and examples when a new system to be diag-
nosed is initially brought into use. We describe how to create an incremental
classification system based on a statistical model that is trained from empiri-
cal data, and show how the limited available background information can still
be used initially for a functioning diagnosis system.

To minimise the effort with which results are achieved within data anal-
ysis projects, we need to address not only the models used, but also the
methodology and applications that can help simplify the process. We present
a methodology for data preparation and a software library intended for rapid
analysis, prototyping, and deployment.

Finally, we will study a few example applications, presenting tasks within
classification, prediction and anomaly detection. The examples include de-
mand prediction for supply chain management, approximating complex simu-
lators for increased speed in parameter optimisation, and fraud detection and
classification within a media-on-demand system.
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Chapter 1

Introduction

1.1 Understanding and Modelling Complex Systems

The availability of fast and reliable digital computers has lead to significant new
possibilities to understand complex systems, such as biochemical processes, sophis-
ticated industrial production facilities and financial markets. The patterns arising
in any such system are generally a consequence of structured hierarchical processes,
such as the physical processes in a production plant. Finding this structure can
lead to increased knowledge about the system and the possibility of creating, among
other things, better control and decision support systems.

Here, we will concern ourselves with the study of such complex systems through
examples. From historical data we can estimate and model the processes in the
system at a level of abstraction that, although not able to provide a complete un-
derstanding of the inner workings, is detailed enough to provide useful information
about dependencies and interconnections at a higher level. This, in turn, can allow
us to e. g. classify new patterns or predict the future behaviour of the system.

The focus of this work is on artificial systems, or more specifically, man-made
industrial and financial systems. However, the methods described are by no means
limited to this areas and can be applied to a wide variety of both natural and
artificial systems.

1.2 Data Analysis and Machine Learning

During the last decades, there has been an incredible growth in our capabilities of
generating and storing data. In general, there is a competitive edge in being able to
properly use the abundance of data that is being collected in industry and society
today. Efficient analysis of collected data can provide significant increases in pro-
ductivity through better business and production process understanding and highly
useful applications for e. g. decision support, surveillance and diagnosis [Gillblad
et al., 2003].
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The purpose of data analysis is to extract answers and useful patterns such as
regularities and rules in data. These patterns can then be exploited in making
predictions, diagnoses, classifications etc. Typical examples of working industrial
and commercial applications are

• Virtual sensors, i. e. an indirect measurement of values computed from values
that are easier to access.

• Predictive maintenance and weak point analysis through e. g. maintenance
and warranty databases.

• Incremental step-wise diagnosis of equipment such as car engines or process
plants.

• Intelligent alarm filtering and prioritisation of information to operators of
complex systems.

• Fraud and fault detection in e. g. data communication systems and eBusiness.

• Sales and demand prediction, e. g. in power grids or retail.

• Speed-up through model approximation in control systems, e. g. replacing a
slower simulator with a faster learning system approximation.

• Clustering and classification of customers, e. g. for targeted pricing and adver-
tising, and identification of churners, i. e. customers likely to change provider.

With all data analysis and machine learning related applications running within
industry, government, and homes, it is very hard to argue that the fields have not
produced successful real world applications. However, there is still a definite gap
between the development of advanced data analysis and machine learning tech-
niques and their deployment in actual applications. There are several reasons for
this.

Adapting and applying theoretical machine learning models to practical prob-
lems can be very difficult. Although it is often possible to achieve fair performance
with a standard model formulation, we usually need a quite high degree of speciali-
sation to achieve good performance and to satisfy constraints on e. g. computational
complexity. Even if this is not necessary in certain situations, we usually still have
to at least specify some model parameters or structure.

Understanding and preparing data for testing, validation and the actual appli-
cation can be immensely time consuming. The data analyst trying to understand
the data and the problem to be modelled is often not an expert in the application
area, making acquisition of expert knowledge an important and time consuming
task. Real-world data are also often notoriously dirty. It contains encoding er-
rors (e. g. from errors during manual input) and ambiguities, severe levels of noise
and outliers, and large numbers of irrelevant or redundant attributes. All of this
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may cause severe problems in the modelling phase, and rectifying these problems
is usually a very laborious task.

Deployment of data analysis or machine learning methods is difficult, and in-
volves more than just developing a working model for e. g. prediction or classifi-
cation. Creating interfaces for accessing data and user interaction is often much
more labour intense than the actual model development, demanding a high level of
commitment and belief that the system will perform as expected during its imple-
mentation.

1.3 Research Questions

In this thesis we will try to come to terms with some of these problems, and to
at least in part bridge the gap between learning systems and their applications.
We will introduce a flexible statistical modelling framework where detailed, robust
models can easily be specified, reducing the complexity of the model specification
phase.

To further reduce the need of manual modelling, we will discuss methods for
learning the model structure automatically from data. The problem of data prepa-
ration and understanding will also be investigated, and a practical work flow and
tools to support it are described. This will then be extended into modelling and
validation, describing the implementation of a modelling library and interactive
data analysis tool.

We will also discuss a number of practical applications of machine learning, such
as demand prediction, anomaly detection and incremental diagnosis.

1.4 Overview of the Thesis

Chapter 2 gives an introduction to machine learning, data analysis and related
issues. A number of common methods are described briefly, along with a description
of their relative advantages and shortcomings in different situations. By no means
a complete reference, it is intended to introduce the reader to common terminology
and serve as an introductory overview of available methods.

In chapter 3, Hierarchical Graph Mixtures (HGMs) are introduced. They pro-
vide a flexible and efficient framework for statistical machine learning suitable for
a large number of real-world applications. The framework generalises descriptions
of distributions so we can, for example, define a mixture where each component is
described by a separate graph. The factors of this graph can in turn be described
by mixtures, and so on.

Chapter 4 discusses how to discover and describe structure in data, such as
correlations and clusters. This is important not only to gain an understanding of
an application area through data, but also for efficient statistical modelling through
e. g. Hierarchical Graph Mixtures. Here, an entropy based measure of association
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between time series is described, which can be used to find the edges of a graphical
model.

Using the HGM framework, chapter 5 describes an incremental diagnosis system,
useful when information relevant to the diagnosis has to be acquired at a cost. The
statistical model used and related calculations is presented along with results on
various artificial and real-world data sets.

Even though flexible and effective models are vital for successful implementa-
tions of machine learning, they are by no means the only necessary component for
creating applications of data driven methods. Chapter 6 discusses how to create
efficient tools to enable rapid analysis of data in conjunction with the development
of data driven, machine learning based applications. Methodology and implemen-
tation issues are discussed in more detail for the data preparation and modelling
phases. An overview of an extensive example implementation covering a large num-
ber of data analysis aspects is also provided.

In chapter 7, a number of examples of machine learning and data analysis ap-
plications are presented along with brief problem descriptions and test results. The
examples include demand prediction for supply chain management, future state
prediction of complex industrial processes, and fraud detection within a telecom-
munication network. Although these examples do not provide a complete overview
of data analysis applications, they serve as case studies of practical applications in
which the methods presented in earlier chapters are applied and refined.

Finally, chapter 8 provides a discussion on the results in this thesis and provides
directions for future research. These research directions are found both in the
development of better data-driven algorithms, and in more practical matters such
as how to facilitate rapid development and deployment of these methods.

1.5 Contributions

We introduce a statistical framework, Hierarchical Graph Mixtures, for efficient
data-driven modelling of complex systems. We show that it is possible to construct
arbitrary, hierarchical combinations of mixture models and graphical models. This
is done by expressing a number of operations on graphical models and mixture
models in such a way that it does not matter how the sub-distributions, i. e. the
component densities in the case of mixture models and factors in the case of graph-
ical models, are represented as long as they provide the same operations. This has
to our knowledge never been shown before. As we discuss in chapter 3, this in turn
allows us to create flexible and expressive statistical models that are often very
computationally efficient compared to more common graphical model formulations
using belief propagation.

We also introduce a framework for encoding previous knowledge, apart from
what is allowed by specifying the structure of the Hierarchical Graph Mixture,
based on Bayesian statistics. By noting that conjugate prior distributions used
in the framework can be expressed on a parametric form similar to the posterior
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distribution, we introduce a separate hierarchy for expressing previous knowledge or
assumptions without introducing additional parameterisations or operations. The
practical use of this is exemplified in chapter 5, where we create an incremental
diagnosis system that both needs to incorporate previous knowledge and adapt to
new data.

In chapter 4, we introduce a novel measure of correlation for sequential data
that does not suffer from problems that other correlation measures show in this
context. When creating correlograms from complex time series, actual correlations
are drowned out by noise and slow moving trends in data, making it impossible
to accurately determine delays between correlations in variables and to find the
multiple correlation peaks that control loops and feedback in the system introduce.
From the basic statement that we are dealing with sequential data we derive a new,
much more sensitive and accurate measure of the dependencies in time series.

In chapter 5, we present a new approach to creating an incremental diagnosis sys-
tem, addressing a number of critical practical concerns that have never before been
consistently addressed together. The system is based on the Hierarchical Graph
Mixtures of chapter 3, and makes use of both the possibility to create hierarchi-
cal combinations of graphs and mixtures, and the possibility to encode previous
knowledge into priors hierarchically. By creating what essentially is a mixture of
mixtures of graphical models, we introduce a model with low computational com-
plexity suitable for interactive use while still performing very well on real-world
data.

We show how previous knowledge encoded into prototypical data, a process that
can make use of already available FMEA (Failure Mode and Effects Analysis) or
fault diagrams, can be used in a statistical diagnosis model through careful Bayesian
estimation using a sequence of priors. We also show that we can manage user errors
by detecting inconsistencies in the input or answer sequence. How this can also be
used to increase diagnosis performance is also demonstrated.

In chapter 6, we introduce a new methodological approach to data preparation
that does not suffer from the limitations of earlier proposals when it comes to
processing industrial data. We show how the methodology can be reduced to a
small set of primitive operations, which allows us to introduce the concept of a
“scripting language” that can manage the iterative nature of the process. We
also show how both the data preparation and management operations as well as
a complete modelling environment based on the Hierarchical Graph Mixtures can
be implemented into a fast and portable library for the creation and deployment of
applications. Coupled to this, we demonstrate a high-level interactive environment
where these applications can be easily created.

In chapter 7, we present a number of practical applications of the methods
discussed earlier. Among other examples, we describe an approach to demand
prediction based on Bayesian statistics where we show that, by modelling the ap-
plication appropriately, we can provide both good predictions and future demand
and the uncertainty of the prediction. We also discuss how to perform future state
prediction in complex system with learning systems, with the objective to replace a
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complex simulator used by an optimiser to provide optimal production parameters.
By using properties of the process itself and the cost function, we can reduce the
problem to a one of manageable complexity. The applications provide examples
both of graphical models, mixture models, Bayesian statistics, and combinations
thereof, as well as pre-processing of data.



Chapter 2

Data Analysis and Machine

Learning

2.1 Practical Data Analysis

Data analysis, in the sense that we will use the term here, is the process of finding
useful answers from and patterns in data. These patterns may be used for e. g.
classification, prediction, and detecting anomalies, or simply to better understand
the processes from which the data were extracted. In practise we often do not
have any real control over what data are collected. There is often little room
for experiment design and selection of measurements that could be useful for the
intended application. We have to work with whatever data are already available.

Fortunately, what data are already available is nowadays often quite a lot. Com-
panies often store details on all business transactions indefinitely, and an industrial
process may contain several thousands of sensors whose values are stored at least
every minute. This gives us the opportunity to use these data to understand the
processes and to create new data-driven applications that might not have been pos-
sible just a decade ago. However, the data sets are often huge and not structured
in a way suitable for finding the patterns that are relevant for a certain application.
In a sense, there is a gap between the generation of these massive amounts of data
and the understanding of them.

By focusing on extracting knowledge and creating applications by analysing data
already present in databases, we are essentially performing what is often referred
to as knowledge discovery and data mining.

2.2 Machine Learning

To put it simply, one can say that machine learning is concerned with how to
construct algorithms and computer programs that automatically improve with ex-
perience. We will however not be concerned with the deeper philosophical questions

7
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here, such as what learning and knowledge actually are and whether they can be
interpreted as computation or not. Instead, we will tie machine learning to perfor-
mance rather than knowledge and the improvement of this performance rather than
learning. These are a more objective kind of definitions, and we can test learning by
observing a behaviour and comparing it to past behaviours. The field of machine
learning draws on concepts from a wide variety of fields, such as philosophy, biology,
traditional AI, cognitive science, statistics, information theory, control theory and
signal processing. This varied background has resulted in a vast array of methods,
although their differences quite often are skin-deep and a result of differences in
notation and domain.

Here we will briefly present a few of the most important approaches and discuss
their advantages, drawbacks and differences. For a more complete description, see
e. g. [Russel and Norvig, 1995; Langley, 1996; Mitchell, 1997].

Issues and Terminology in Machine Learning

More formally, machine learning operates in two different types of spaces: A space
X , consisting of data points, and space Θ, consisting of possible machine learning
models. Based on a training set {x(γ)}Nγ=1 ⊂ X , machine learning algorithms select
a model θ ∈ Θ, where Θ is the space of all possible models in a selected model
family. Learning here corresponds to selecting suitable values for the parameters θ
in a machine learning model from the training set. How this selection is performed
and what criteria is used to evaluate different models varies from case to case.

We have here made a distinction between supervised and unsupervised learning.
In the former case, data are divided into inputs X and targets (or outputs) Y . The
targets represent a function of the inputs. Supervised learning basically amounts
to fitting a pre-defined function family to a given training set {(x(γ), y(γ))}Nγ=1 ⊂
X × Y , i. e. we want to find a function y = f(x; θ) where θ ∈ Θ. Prediction and
classification are common applications for supervised learning algorithms.

In unsupervised learning, data are presented in an undivided form as just a set of
examples {x(γ)}Nγ=1 ⊂ X . The learning algorithm is then expected to uncover some
structure in these data, perhaps just to memorise and be able to recall examples in
the future, or to extract underlying features and patterns in the data set. Clustering
data into a set of regions where examples could be considered to be “similar” by
some measure is a typical application of unsupervised learning.

The type of parameterisation Θ and estimation procedure specifies how the
model will generalise, i. e. how it will respond to examples not seen in the training
data set. The generalisation performance is affected by the implicit assumptions
the model makes about the parameter space Θ and data space X or X × Y . The
performance of the model, that is how close the models output or target variables
are to the true values, is tested on a validation or test data set that should be
different from the training data. This is done in order to evaluate the generalisation
performance of the model, giving us an indication of how it would perform in
practise.



2.2. MACHINE LEARNING 9

Common Tasks in Machine Learning

Although we have already touched upon some of them, let us have a closer look
at some of the most common tasks within machine learning. These tasks usually
involve either predicting unknown or future attribute values based on other, known
attributes in a pattern, or describing data in a human-interpretable or otherwise
useful form.

Classification In this context, classification is the process of finding what class an
example belongs to given the known values in the example [Hand, 1981; McLachlan,
1992]. In other words, it deals with learning a function that maps an example into
a discrete set of pre-defined categories or classes. A wide range of tasks from many
areas can be posed as classification problems, such as determining whether or not
a client is credit worthy based on their financial history, or diagnosing a patient
based on the symptoms. Other examples include classifying the cause of equipment
malfunction, character recognition, and identification of items of interest in large
databases. Automated classification is one of the most common applications of
machine learning.

All deterministic classifiers divide the input space by a number of decision sur-
faces. They represent the decision boundaries between the different classes, and
each resulting compartment in input space is associated with one class. The possi-
ble shapes of these decision surfaces vary with the classifier method. The perhaps
most commonly applied shape is that of a hyperplane, which is the resulting decision
surface for all linear methods.

Similar to classification, categorisation tries to assign class labels to examples
where the exact type and number of categories are not known, which is directly
related to clustering described below.

Regression and prediction Where classification uses a function that maps to
a finite, discrete set, regression uses a function that maps an example to a real-
valued prediction variable. As with classification, machine learning applications of
regression and prediction are plentiful and well studied. They include time series
prediction, where e. g. the future value of a stock is predicted based on its previous
values; customer demand prediction based on historical sales and advertising expen-
diture [Gillblad and Holst, 2004b]; and predicting the future state of a production
process [Gillblad et al., 2005]. Other examples could be estimating the amount of
a drug necessary to cure a patient based on measurable symptoms or the number
of accidents on a road given its properties.

Anomaly Detection Anomaly detection can be defined as the separation of
an often inhomogeneous minority of data, with characteristics that are difficult
to describe, from a more regular majority of data by studying and characterising
this majority. This can be done in a model based manner, where e. g. a phys-
ical model or simulator is used as a comparison to detect anomalous situations
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(e. g. [Crowe, 1996; Venkatasubramanian et al., 2003]), but also with a data-driven,
machine learning approach, where a model representing normal situations is con-
structed from (normal) data and large deviations from this model is considered
anomalous [Eskin, 2000; Lee and Xiang, 2001]. Closely related to this approach,
deviation detection [Basseville and Nikiforov, 1993] focuses on detecting the most
significant changes in data compared to previously measured values, regardless of
whether this is to be considered normal or not.

Structure Description Finding and describing the properties and structure of
a data set can give important insight into the processes generating the data and ex-
plain phenomena that are not yet understood. One of the most common structure
description tasks is clustering [Duda and Hart, 1973; Jain and Dubes, 1988; McLach-
lan and Basford, 1988]. It tries to identify a finite set of categories or clusters that
divide and describe the data set in a meaningful way. The clusters may be mutu-
ally exclusive, have a graded representation where a sample may belong in part to
several clusters, or even have a more complex hierarchical structure.

Dependency derivation consists of finding a model that explains statistically
significant dependencies between attributes in the data [Ziarko, 1991]. The resulting
structure is highly useful for both for understanding the data and application area
as well as for efficient modelling of data. For example, graphical models (see section
2.2) can make direct use of this dependency structure to efficiently represent the
joint distribution of the data. In interactive and exploratory data analysis the
quantitative level of the dependency structure, i. e. to what degree the attributes
are dependent on each other or the strength of the correlations, is also highly useful.

Often used in exploratory data analysis and report generation, summarisation
[Piatetsky-Shapiro and Matheus, 1992] of data involves creating compact descrip-
tors for a data set for human interpretation. These can range from simple de-
scriptive statistics such as measuring the mean and variance of attributes to more
complex visualisation techniques.

Instance-Based Learning

One of the conceptually most straightforward approaches to machine learning is
to simply store all encountered training data. When a new sample is presented,
classification or prediction is performed by looking up the samples most similar to
the presented one in the stored examples in order to assign values to the target vari-
ables. This is the foundation of instance-based learning [Aha et al., 1991], which
includes techniques such as nearest neighbour methods, locally weighted regres-
sion and case based methods. The approach often requires very little work during
training, since the processing is delayed until a new sample arrives and the most
similar of the stored samples have to be found. Because of this delayed processing,
instance-based methods are sometimes also referred to as “lazy” learning methods.

The most basic instance-based learner is the Nearest Neighbour algorithm [Cover
and Hart, 1967]. This uses the most similar sample in the stored data set to predict
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Figure 2.1: Examples of machine learning applications. All plots show the sepal
length and width of plants from the one classical test data bases for machine learn-
ing, the Iris Plants Database [Fisher, 1936; D.J. Newman and Merz, 1998]. The
upper left graph shows an example of a decision line between the Setosa class and
the two other classes in the database, Versicolour and Virginica. The top right
graph displays a simple linear regression line between length and width, which is
rather flat due to the lack of correlation between length and width. The lower left
graph shows a simple clustering of the data set into three clusters. The lower right
graph shows an example of a simple anomaly detector, where the darkness and
size of each data point represents how far from normal it is considered to be by a
mixture of Gaussians (see chapter 3 for a closer description).

the target values. Since this procedure often is sensitive to noise and often does
not generalise very well, it is usually extended to use the k nearest samples instead.
This is referred to as a k-Nearest Neighbour method. The target values are usually
combined using the most common value among the nearest samples in the case of
discrete attributes, and the mean value in the case of continuous attributes. A
natural refinement to the algorithm is to weigh the contribution of each sample by
the distance, letting closer neighbours contribute more to the result [Dudani, 1976].
Using this approach, k can even be set to be the number of patterns in the stored
data, i. e. all the stored patterns contribute to the result.
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Common for all instance-based algorithms is that they require a metric on the
sample space, typically chosen to be the Euclidean distance for continuous at-
tributes and a Hamming distance, i. e. the number of differing attributes, for dis-
crete attributes. In practise, the input attributes are usually not of the same or
perhaps even comparable scale. The attributes are therefore often scaled or nor-
malised to make them comparable.

A more complex, symbolic representation can also be used for the samples, which
means that the methods used to find similar samples are also more elaborate. This
is done in Case-based reasoning [Aamodt and Plaza, 1992]. Case-based reasoning
does not assume a Euclidean space over the samples, but instead logical descriptions
of the samples are typically used.

The main advantage of instance-based methods is that they can use local repre-
sentations for complicated target functions, constructing a different approximation
for each new classification or prediction. On the other hand, the most noticeable
disadvantage of the approach is the high cost of classifying new instances. The
methods may also show a high sensitivity to excess inputs, i. e. only a subset of the
inputs is actually relevant to the target values, compared to other machine learn-
ing methods. The distance between neighbours is easily dominated by irrelevant
attributes not contributing to the classification.

Logical Inference

One of the earliest approaches to machine learning, and for a long time the domi-
nant theme within Artificial Intelligence, is to treat knowledge as relations between
logical variables. Representing a problem within logical variables is straightforward
if the measured attributes are binary or nominal, but requires some choice of rep-
resentation if the attributes are numerical. The variables must be encoded with
suitable predicates, such as treating a variable as “true” if it falls within a certain
interval and “false” otherwise.

In some cases, logical inference systems can also be extended to deal with un-
certainties in data, e. g. by the use of fuzzy logic [Zadeh, 1965]. While in normal,
Boolean logic, everything is expressed in binary terms of true or false, fuzzy logic
allows for representations of varying degrees of truth.

It is possible to learn logical representations directly from examples using e. g. a
Decision Tree [Quinlan, 1983]. Decision trees are one of the most widely used rep-
resentations for logical inference, and is capable of learning disjunctive expressions
while being robust to noisy data. Decision trees classify instances by propagating
them from the root down to some leaf node which provides the classification. Each
node in the tree tests one predicate on one attribute, and the subtree is selected
accordingly.

Finding a decision tree representation from data is typically done by a greedy
search through the space of all possible decision trees. Each attribute is evaluated
to determine how well it classifies the examples. The best attribute is chosen as
a test at the root node, and a descendant of this node is created for each possible
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outcome of the attribute. The process is then repeated for each descendant node
using the training data associated with it, until all or most training examples belong
to one class, at which point a leaf node is created.

Two commonly used variants of this basic approach are the ID3 algorithm
[Quinlan, 1986] and the C4.5 algorithm [Quinlan, 1993]. While rather straightfor-
ward extensions to these algorithms make it possible to incorporate e. g. continuous-
valued input attributes and training examples with missing attribute values, more
substantial extensions are necessary to learning target functions with continuous
values, and the application of decision trees in this setting is less common.

Note that the methods mentioned above usually use predicates that depend
on only one attribute. More complex predicates that depend on more than one
attribute can be used, but representation and learning becomes more difficult
[Breiman et al., 1984].

Artificial Neural Networks

The field of Artificial Neural Networks (see e. g. [Minsky and Papert, 1969; Kosko,
1993; Haykin, 1994]) includes a number of algorithms with quite different abilities,
but they all share one basic property: The calculations are performed by a number
of smaller computational units, connected by weighted links through which activa-
tion values are transmitted. The computation done by these units is usually rather
simple, and may typically amount to summing the activation received on the input
connections and then passing it through a transfer function. The transfer function
is usually monotonous, non-linear and with a well defined output range, limiting
the output of the unit.

When a neural network is used e. g. for prediction or classification, an input
pattern is typically presented to a set of input units. These input units then propa-
gate their resulting activation through the network as specified by the connections,
until it arrives at a set of output units, whose outputs are interpreted as the net-
works prediction or classification. Training the network amounts to estimating the
weights of the connections so that they minimise the error of the outputs.

Artificial neural networks are partly inspired by observations from biological
systems, where neurons build intricate webs of connections. The simple computa-
tional unit in an Artificial neural network would then correspond to the neuron,
and the weighted links their interconnections. However, although the algorithms
discussed here follow this principle, they are only loosely based on biology and are
in fact known to be inconsistent with actual neural systems.

The perhaps most popular and widely used neural network architecture is the
Multi-Layer Perceptron. It is organised in layers of units, the activation propagating
from the units in the input layer, through any number of hidden layers until it
reaches the output layer. A network operating in this way, i. e. the activation
propagates in one direction only, is usually referred to as a feed-forward network.
The multi-layer perceptron can be trained in a number of different ways, but the
most common method is probably the first training algorithm that was described
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for the architecture, the back-propagation algorithm [Rumelhart et al., 1986]. It is a
gradient descent algorithm, attempting to minimise the squared error between the
network output values and the true values for these outputs.

This kind of neural network is well suited to handle data that contain noise and
errors, but may require a substantial amount of time to train. The evaluation of the
learnt network however is usually very fast, and neural networks can perform very
well in many practical problems. However, the opportunity to understand why the
network performs well is unfortunately limited, as the learnt weights are usually
difficult to interpret for humans.

By introducing a feedback loop, i. e. connections that feed the output of units in
one layer back into the units of the same or a previous layer, we can create a network
with quite different abilities compared to the feed-forward network discussed above.
This type of network is usually referred to as a recurrent neural network. The
recurrent network is typically not used by sending a pattern from the input units
to the output units and make direct use of their output values, but rather by letting
the signals cycle round the network until the activity stabilises.

An example of a recurrent neural network is the Hopfield network [Hopfield,
1982], a fully connected feedback network where the weights usually are constrained
to be symmetric, i. e. the weight from neuron i to neuron j is the same as from j to
i. This type of network has mainly two applications; as an associative memory and
to solve optimisation problems. A Hopfield network is characterised by its energy
function, which is a scalar function from the activity in the network. The energy
function defines an energy landscape, in which the activity pattern strives to find
a local minimum during the recall phase. These local minima constitute stable
patterns of activity.

A related group of neural networks are the competitive neural networks, such as
Learning Vector Quantization [Kohonen, 1990] and Self-Organizing Maps [Kohonen,
1982, 1989]. The units react in relation to how close they can be considered to
be to an input pattern, and compete for activation. Usually the networks use a
winner-takes-all strategy, the most active unit suppressing all other units. The
units in the network can be considered to represent prototypical input patterns,
making the approach somewhat similar to the instance based methods discussed
earlier. Training the networks amounts to iteratively adapting the prototypical
units towards the patterns that they respond to.

Evolutionary Computation

The term evolutionary computation is usually used to describe methods that use
concepts working on populations to perform guided search within a well defined
domain. In practise, the field is mainly concerned with combinatorial optimisation
problems, and to a lesser degree self-organisation.

Optimisation related evolutionary computing can roughly be divided into evo-
lutionary algorithms and swarm intelligence [Beni and Wang, 1989]. Swarm in-
telligence concerns itself with decentralised self-organising systems consisting of
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populations of simple agents, where local interactions lead to the emergence of an
organised global behaviour. This can be observed in nature in e. g. bird flocks and
ant colonies. The algorithms are typically used to find approximate solutions to
combinatorial optimisation problems.

This is true also for evolutionary algorithms, a large and varied field drawing
inspiration mainly from concepts within evolution theory, such as mutation, recom-
bination, reproduction and natural selection. As an example, genetic algorithms
provide an approach to learning based on simulated evolution. Solution hypothesis
are encoded as strings of numbers, usually binary, and their interpretation depends
on a chosen encoding of the problem domain. A population of such strings is then
evolved through mutating and combining a subset of the strings before selecting a
subset of them according to some measure of fitness.

Similarly, genetic programming [Cramer, 1985; Koza, 1992] is a method to auto-
matically find computer programs that performs a user-defined task well, and can
be viewed as a variant of genetic algorithms where the individuals in the popula-
tion are computer programs rather than bit strings (or where these strings indeed
represent computer programs).

As the generation of new programs through genetic programming is very com-
puter intensive, applications have quite often involved solving relative simple prob-
lems. However, with the increase in computing power, applications have become
more sophisticated and their output can now rival programs by humans, e. g. in
certain applications of sorting. Still, choosing what functional primitives to include
in the search may be very difficult.

Statistical Methods for Machine Learning

Probabilistic methods have consistently gained ground within the learning systems
community. They are widely considered to be one of the most promising founda-
tions for practical machine learning, and both methods and applications are rapidly
emerging. Here, we will instead mention some of the more common statistical meth-
ods and briefly discuss the basic assumptions behind them.

In essence, statistical methods represent data as the outcomes of a set of random
variables, and tries to model the probability distribution over these variables. His-
torical data is used to estimate the probability distribution, in order to e. g. draw
conclusions about the processes that generated the data or classify incomplete ex-
amples.

When it comes to how the probability distributions are represented, a distinction
is often made between parametric and non-parametric models. In a parametric
model, the general form and structure is already known, and only a relatively small
number of parameters controlling the specific shape of the distribution are estimated
from data. This could be e. g. the mean and variance of a Gaussian distribution or
the shape and scale parameters of the gamma distribution.

In contrast, non-parametric methods try to impose very few restrictions on
the shape of the distribution. The term non-parametric does not mean that the
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methods completely lack parameters, but rather that the number and nature of the
parameters, which may in fact be very high, are flexible and depend on the data.
The Parzen or kernel density estimator is an example of a non-parametric method
[Parzen, 1962]. Here, the distribution of the data is approximated by placing a
kernel density function, typically a Gaussian with fixed covariance matrix, over
each sample and adding them together. This makes it possible to extrapolate the
density to the entire domain. Classification of new sample points can be performed
by calculating the response from each kernel function and adding the response levels
by class. This is then normalised and interpreted as the probability distribution over
the class for the new sample. Similarly, prediction can be performed by calculating a
weighted mean of the training samples based on their responses. The method works
in the same way as a nearest neighbour model using a function of the distance for
weighting all neighbours, which means that it also suffers from the same problems
with excess input attributes and classification complexity.

A related model that perhaps is best described as semi-parametric is the Mixture
Model [McLachlan and Basford, 1988]. The Mixture Model addresses the problem
of representing a complex distribution by representing it through a finite, weighted
sum of simpler distributions. There are different ways to fit the parameters of the
sub-distributions and their weights in the sum to a set of data. One common method
is the Expectation Maximisation algorithm [Dempster et al., 1977]. This is an
iterative method which alternately estimates the probability of each training sample
coming from each sub-distribution, and the parameters for each sub-distribution
from the samples given these probabilities.

A different approach is used by the Naive Bayesian Classifier [Good, 1950]. The
underlying assumption of this model is that all input attributes are independent,
or to be precise, conditionally independent given the class. This leads to a simple
representation of the complete distribution, which basically can be written as a
product over the marginal distributions of the attributes, including the class. Since
a complete representation of the distribution over the domain would have vastly
more parameters than all these marginal distributions together, stable estimation
from data becomes much more tractable and the of overfitting is reduced. Although
the independence assumption used may seem to simplistic at first, Naive Bayesian
classifiers often perform surprisingly well in complex real-world situations [Hand
and Yu, 2001].

Hidden Markov Models [Baum, 1997; Rabiner, 1989], or HMM for short, is
an popular tool in sequence analysis. A HMM represents a stochastic process
generated by an underlying Markov chain that is observed through a distribution
of the possible output states. In the discrete case, a HMM is characterised by a
set of states and an output symbol alphabet. Each state is described by an output
symbol distribution and a state transition probability distribution. The stochastic
process generates a sequence of output symbols by emitting an output according to
the current state output distribution, and then continuing to another state using the
transition probability distribution. The activity of the source is observed indirectly
through the sequence of output symbols, and therefore the states are said to be
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hidden. Given a sequence of output symbols, it is possible to make inferences
about the HMM structure and probability distributions.

In essence, both Naive Bayes and Hidden Markov Models can be viewed as spe-
cial cases of Graphical Models (see e. g. [Cowell et al., 1999] for an introduction).
These models exploit the fact that the joint distribution of a number of attributes
often can be decomposed into a number of locally interacting factors. These factors
can be viewed as a directed or undirected graph, hence the naming. Nodes repre-
sent attributes and arcs dependencies, or more precisely, the lack of arcs represent
conditional independencies between variables. Decomposing the joint distribution
in this way roughly serves the same purpose as in mixture models, i. e. to sim-
plify the representation and estimation of the distribution. Examples of graphical
models include Factor Graphs [Kschischang et al., 2001], Markov Random Fields
[Kindermann and Snell, 1980], and Bayesian Belief Networks [Pearl, 1988].

The Bayesian belief network uses a directed graph to represent the conditional
independencies between the attributes. The nodes in the graph can be both di-
rectly observable in data or hidden, allowing representation of e. g. attributes that
have significant impact on the model but that cannot be measured. The distribu-
tions associated with these variables are usually estimated through variants of the
expectation maximisation algorithm. To calculate the marginal distributions of
attributes in the network given known values of some of the attributes, the belief
propagation algorithm is typically used. This is a message passing algorithm that
leads to exact results in acyclic graphs, but it can perhaps surprisingly also be used
to arrive at good approximate results for graphs that contain cycles. This is usually
referred to as loopy belief propagation.

Although the graphical structure in many cases can be at least partially esti-
mated from data, it is perhaps most often constructed manually, trying to encode
e. g. known physical properties of a process. Bayesian Belief Networks therefore rest
in between learning systems and knowledge based methods, and are highly suitable
to problems were there is a large base of available knowledge and a relative lack of
useful training examples compared to the complexity of the data.

Other Methods

There is a very large number of methods available within machine learning, and we
will by no means try to cover the complete field here. However, there is a couple
of methods not discussed in the earlier sections that deserve a mention.

Reinforcement learning is an approach to performing learning in an environment
that can be explored, and that accommodates delayed or indirect feedback to an
autonomous agent [Barto et al., 1983; Sutton, 1984]. The agent senses and acts in its
environment in an effort to learn efficient strategies to achieve a set of defined goals.
The approach is related to supervised learning in that it has a trainer, that may
provide positive or negative feedback to indicate how desirable the state resulting
of an agent’s action is.

However, the feedback signal only indicates how good or bad the state was, and
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the agent does not receive any information on the correct action as in supervised
learning. The goal of the agent is to learn to select those actions that maximise
some function of the reward, e. g. the average or sum, over time. This is useful in
e. g. robotics, software agents and when learning to play a game where it is only
possible to know whether a whole sequence of moves were good or bad.

The Support Vector Machine [Schölkopf, 1997; Burgess, 1998] is a learning al-
gorithm for classification and regression with its roots in statistical learning theory
[Vapnik, 1995]. The basic idea of a Support Vector Machine classifier is to map
training data non-linearly to a high dimensional feature space, and try to create a
separating hyperplane there. The plane is positioned to maximise the minimum
distance to any training data point, which is solved like an optimisation problem.

To perform support vector regression, a desired accuracy has to be specified be-
forehand. The support vector machine then tries to fit a “tube” formed by the space
between two hyperplanes, of a width corresponding to this accuracy to the training
data. The support vector machine does provide a separating hyperplane that is in
a sense optimal. However, it is not necessarily obvious how the transformation into
high dimensional space should be selected.

By combining several simpler models, it may be possible to arrive at a bet-
ter classifier or predictor. This is done in e. g. bagging, or bootstrap aggregating
[Breiman, 1994]. The bagging algorithm creates replicate training sets by sampling
with replacement from the total training set, and each classifier is estimated on
one of these data sets separately. Classification or prediction is then performed by
voting or averaging amongst the models respectively, reducing the expected value
of the mean square error.

Boosting is another general method for improving the accuracy of any given
learning algorithm, and the most common variant is known as AdaBoost [Freund
and Schapire, 1997]. This algorithm maintains a weight for each instance in the
training data set, and the higher the weight the more the instance influences the
classifier learnt. At each trial, the vector of weights is adjusted to reflect the
performance of the corresponding classifier, and the weight of misclassified instances
is increased. Boosting often produces classifiers that are significantly more correct
than one single classifier estimated from the same data.

Other Issues Within Machine Learning

A common problem for all machine learning methods is how to validate that the
model will perform well on yet unseen data, and how to measure this performance.
In general, machine learning methods have a tendency of over fitting to the examples
used for training, leading to a decreased ability to generalise. A very detailed
model fitted very closely to the training examples may perform very badly on new
examples presented to the model. The tendency to over fit to training data usually
increases with the number of free parameters in the model, leading to the fact that
rather simple models often are preferable for very complex data or where there is
a relative lack of training data. This is related to what is often called the curse of
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dimensionality [Bellman, 1961], referring to the fact that when the number of input
dimensions increase, the number of possible input vectors increase exponentially.

Dividing the data into a separate training set and a test set, where model
performance is evaluated on the test set, may lead to a good estimation of general-
isation performance if the data are homogeneous and plentiful. However, to make
better use of data and get a better estimate of generalisation performance, cross-
validation [Stone, 1974] can be used. The data set is partitioned into a number of
smaller pieces, and the model is estimated and evaluated several times. Each time,
one partition is removed from the data set. The model is then estimated on the re-
maining parts and evaluated on the extracted part. The average performance over
all parts represents a good approximation of the generalisation performance of the
model. When using k data partitions, the procedure is usually referred to as k-fold
cross-validation. In the limit case of using as many partitions as there are examples
in the data set, the procedure is usually called leave-one-out cross-validation. This
is also often the preferable method of evaluating generalisation performance if the
time training the model as many times as there are examples in the data set is not
prohibitive.

What performance measures to use for evaluating a models generalisation capa-
bilities is of course highly dependent on the intended application. In classification,
the most widely used measure is the error rate, or the fraction of misclassifications
made by the classifier. However, this does not tell us much about how informa-
tive the classifier is. A classifier that always outputs the same class would have a
low error rate if this class is indeed the most common one. It is however usually
of limited use in practise. A more suitable measure than the error rate could be
the mutual information (see chapter 4) between the true class and the classifiers
output, or the use of ROC (Reciever Operating Chacteristic) curves (plotting the
number of true positives against the number of false positives in a sample). There
may also be different costs associated with misclassification for the different classes,
in which case the measure needs to take that into account. For numeric prediction,
the mean-squared error, correlation coefficient or relative squared error are common
measures of performance, but usually none of them alone give a good picture of the
performance of the predictor.

All machine learning methods make some kind of assumptions about the at-
tribute space and the regularities in it in order to be able to generalise at all. Quite
common is the assumption that nearby patterns in the sample space belong to the
same class or are associated to similar real-valued outputs. This means, however,
that how we choose to represent the patterns to the model is crucial for how well
it will perform [Simon, 1986]. How to choose this representation in practise is still
very much an exploratory task for the analyst. Although there are approaches to
help automate the process, in general the search space of tractable data transforma-
tions is vast, meaning that the time complexity of finding suitable transformations
is too high for any practical purposes.

The theoretical characterisation of the difficulty of different types of machine
learning problems and the capabilities and limitations of machine learning methods
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is dealt with within computational learning theory. It tries to answer questions such
as under what conditions a certain algorithm will be able to learn successfully and
under what conditions are learning at all possible. For an introduction to the field,
see e. g. [Anthony and Biggs, 1992].

2.3 Related Fields

As it is described earlier, we here use the term data analysis in a rather wide sense.
This is to some degree also true of our use of the term machine learning, and
although there are differences, there are a number of related research fields that
could be described in much the same way as we have done above. The difference
between these fields often lie more in the type of application area or techniques
used than in the ultimate goal of the processes that they describe.

Using similar methods to statistical data analysis, exploratory data analysis is an
approach to analysing data that relies heavily on user interaction and visualisation
[Tukey, 1977]. In practise, visualisation plays a very important role in most data
analysis projects, regardless of approach or methods used.

As discussed earlier, Data Mining and Knowledge Discovery in Databases (KDD)
[Fayyad et al., 1996b; Frawley et al., 1992] are highly related to the concepts of data
analysis outlined above, and some of the introductory texts to the field do indeed
read much like descriptions of applied machine learning [Witten and Frank, 1999].
However, the goal of data mining can be expressed shortly as extracting knowledge
from data in the context of large databases. As a consequence, the field also con-
cerns itself with issues in database theory, knowledge acquisition, visualisation and
descriptions of the whole analysis process. These questions are of a more practical
nature and are largely overlooked in the field of machine learning, however critical
they may be for the effective deployment of the methods.

Directly related to data analysis, data fusion [Waltz and Llinas, 1990; Hall and
Llinas, 1997] tries to combine data from multiple sensors and associated databases
in an effort to maximise the useful information content. The data and knowledge
is often multimodal, representing sensory data streams, images, textual situation
descriptions etc. This is combined into one coherent view of a situation e. g. for
decision making or classification. With applications such as pattern recognition and
tracking, it is closely related to the concepts of data analysis and machine learning as
described earlier. Typical application areas of data fusion include military, robotics,
and medicine.



Chapter 3

Hierarchical Graph Mixtures

3.1 Introduction

An important issue when applying learning systems to complex data, e. g. in ad-
vanced industrial applications, is that the system generating the data is modelled
in an appropriate way. This means that the relevant aspects of the system have
to be formalised and efficiently represented in the computer in a way that makes
it possible to perform calculations on. We could do this by constructing physical
models or simulators of some detail, but this might require quite an effort. If we
instead choose to work on a higher level of abstraction where we do not manually
model all relations in the system, and estimate some or all of the parameters of the
model from historical data, we can reduce this effort significantly. Therefore, ma-
chine learning approaches becomes attractive. In this context, statistical learning
methods have consistently gained ground within the machine learning community
as very flexible tools for practical application development.

Two very commonly used examples of statistical machine learning models are
graphical models and finite mixture models. In this chapter, we will introduce a
framework, the Hierarchical Graph Mixtures, or HGMs for short, that allows us to
use hierarchical combinations of these models. Through this, we can express a wide
variety of statistical models within a simple, consistent framework [Gillblad and
Holst, 2004a].

We describe how to construct arbitrary, hierarchical combinations of mixture
models and graphical models. This is possible through expressing a number of oper-
ations on finite mixture models and graphical models, such as calculating marginal
and conditional distributions, in such a way that they are independent of the actual
parameterisation of their sub-distributions. That is, as long as the sub-distributions
(the component densities in the case of mixture models and factors in the case of
graphical models) provide the same set of operations, it does not matter how these
sub-distributions are represented. This allows us to create flexible and expressive
statistical models, that we will see can be very computationally efficient compared to

21
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more common graphical model formulations using belief propagation for inference.
We will discuss the basic concepts and methodology involved, why this formulation
provides additional modelling flexibility and simplicity, and give a few examples of
how a number of common statistical methods can be described within the model.

We describe how to estimate the parameters of these models from data, given
that we know the overall model structure. That is, whether we are considering a
mixture of graphical models or a graph of mixture models etc. is assumed to be
known. We are also not considering estimation of the number of components in a
mixture or the graphical structure of a graph model, other than the generation of
trees.

We also introduce a framework for encoding background knowledge, from e. g.
experts in the area or available fault diagrams, based on Bayesian statistics. By
noting that the conjugate prior distributions used in the framework can be expressed
on a similar parametric form as the posterior distributions, we introduce a separate
hierarchy for expressing background knowledge or assumptions without introducing
additional parameterisations or operations. A good example of the practical use of
this in combination with a hierarchy of graphs and mixtures can be found in chapter
5, where we create an incremental diagnosis system that both needs to incorporate
previous knowledge and adapt to new data.

In this chapter, we will start by decribing some related work, followed by an
introduction to statistical machine learning, mixture models, and graphical models
in sections 3.3, 3.4, and 3.5 respectively. For readers already familiar with statistical
machine learning and the concepts of mixture and graphical models, these sections
are most likely not critical to the understanding of the following sections.

We then propose a way of combining graphical models and mixture models that
allows us to create arbitrary hierarchical combinations of the two in section 3.6. In
the following sections 3.7 and 3.8 we provide expressions necessary in this context
for two leaf distributions, discrete and Gaussian, as well as a few examples of how
some common statistical models and specific applications can be formulated within
this general framework.

In section 3.9 we will describe the second part of the hierarchical framework,
namely that of Bayesian parameter estimation and hierarchical priors. We first
provide a brief introduction to Bayesian statistics, before going into the details
on how we can assign priors hierarchically. Finally, we provide some concluding
remarks and practical considerations.

3.2 Related Work

Most of the models related to the framework we present here have been suggested
in order to manage multimodal data, in the sense that data represent samples
from a number of distinct and different models. In relation to statistical models,
this issue has been studied for both classification and density estimation tasks
for some time. In the seminal work by Chow and Liu [Chow and Liu, 1968], a
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classification method based on fitting a separate tree to the observed variables for
each class is proposed. New data points are classified by simply choosing the class
that has the maximum class-conditional probability under the corresponding tree
model. In a similar approach, Friedman et al. starts with Naïve Bayesian classifiers
instead of trees, and then consider additional dependencies between input attributes
[Friedman et al., 1997]. By then allowing for different dependency patterns for each
class, their model is identical to Chow and Liu’s proposition.

One extension to this model is to not directly identify the mixture component
label with the class label, but to treat the class label as any other input variable.
The mixture component variable remains hidden, leading to the use of one mixture
model for each class and a more discriminative approach to classification. This is
done in the Mixtures of Trees (MT) model [Meila and Jordan, 2000], showing good
results on a number of data sets. In another generalization of the Chow and Liu
algorithm, [Bach and Jordan, 2001] describe a methodology that utilises mixtures
of thin junction trees. These thin junction trees allow more than two nodes, as
used in normal trees, in each clique, while maintaining a structure in which exact
inference is tractable.

In a density estimation or clustering setting, The Auto-Class model [Cheeseman
and Stutz, 1996] uses a mixture of factorial distributions (a product of factors each
of which depends on only one variable), often produces very good results on real
data. Also related to density estimation, in [Thiesson et al., 1997] the authors study
learning simple Gaussian belief networks, superimposed with a mixture model to
account for remaining dependencies. An EM parameter search is combined with a
search for Bayesian belief models to find the parameters and structure of the model
[Thiesson and C. Meek, 1999].

All the examples above are similar in the respect that they in essence specify
one mixture layer of graphical models. Here, we will focus on building models with
multiple levels in the hierarchy, such as mixtures of graphical models containing
mixtures and so on, as this can greatly reduce the number of free parameters
needed to efficiently model an application area. Most of the models discussed above
also focus on only one type of variables, such as discrete variables for Mixtures of
Trees and continuous (Gaussian) variables in [Thiesson et al., 1997]. Auto-Class
is a notable exception, as it uses products of discrete and Gaussian distributions
in order to accept both discrete and continuous attributes. By introducing the
possibility of using mixtures of continuous variables with little restriction in our
models, we have the ability to effectively model data containing both discrete and
continuous attributes, including joint distributions between the two.

It is possible to extend the notion of a mixture model by allowing the mixing
coefficients themselves to be a functions of the input variables. These functions are
then usually referred to as gating functions, the component densities as experts,
and the complete model as a mixture of experts [Jacobs et al., 1991]. The gating
functions divide the input space into a number of regions, each represented by
a different “expert” component density. Although this is already a very useful
model, we can achieve even further flexibility by using a multilevel gating function
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to give a hierarchical mixtures of experts [Jordan and Jacobs, 1994]. This model
uses a mixture distribution in which each component density is itself a mixture
distribution, possibly extending through several hierarchical layers. A Bayesian
treatment of this model can be found in [Bishop and Svensen, 2003]. Within a
neural network setting, the issue of multimodal data has also been studied in a
manner similar to mixtures of experts in mixture density networks [Williams, 1996].

Similarly, in [Titsias and Likas, 2002], the authors use a three-level hierarchical
mixture for classification, in which it is assumed that data is generated by a finite
number of sources and in each source there is a number of class-labelled sources. It
can be considered to be a special case of a mixture of experts classifier, but is also
very similar to what we would refer to as an unsupervised mixture of supervised
mixture models within our HGM framework.

Although many proposed mixtures of experts structures, such as the one above,
are very similar to what we will be able to express using the models presented here,
we will not allow the component label distribution to be a function of the input
variables. This does put some constraints on the type of models we can express,
but by being able to create arbitrary combinations of both graphical models and
mixtures there is a wide variety of models that are equally difficult to express with
a hierarchical mixture of experts. To some degree, the models presented here and
hierarchical mixtures of experts are complementary approaches with similar aims,
but the combination of them will not be further treated here.

The use of mixtures as factors in graphical models, as opposed to the use of
graphs within mixtures as discussed above, is unusual. However, in [Sudderth
et al., 2003], mixtures of Gaussians are being used as factors in a graphical model
to overcome the problem of inference intractability when continuous, non-Gaussian
variables are being used within belief propagation. The model has been successfully
applied to e. g. visual tracking tasks [Sudderth et al., 2004] and node localisation in
sensor networks [Ihler et al., 2005].

A similar approach could easily be taken in the models we present here, the
main difference being that we propose the use of several hierarchical levels of mix-
tures and graphs. We also try to avoid using Belief propagation explicitly in our
models, as the number of component densities may grow exponentially when we re-
peatedly multiply mixtures models during the propagation. Avoiding this is made
significantly easier due to the fact that we use mixtures rather than hidden nodes
in our models. The use of mixtures make it easier to construct models for which
propagation is not necessary for inference.

3.3 Statistical Methods

As we have already mentioned, there exists a vast variety of probabilistic methods
in use today within a machine learning context. Still, it is perhaps not apparent at
first glance why probabilistic models are needed within this area. Given a number
of measurements, a classifier outputs a decision on e. g. whether or not a customers
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credit application should be approved. It may not be obvious where the stochastic
variables are in this situation, but rather the problem looks like one of function
approximation: We need to determine the functional expression that calculates the
class based on the inputs. Of course, this is not far from the truth. Probabilistic
models do represent such a functional expression, expressed by operations on dis-
tribution functions. However, probabilistic models allow us to represent and reason
about uncertainties in data in a very natural way.

So, let us now have a look at how some common machine learning tasks can
be expressed within a statistical framework. Let us first consider the pattern
classification problem. Assume that we can represent and calculate the proba-
bility distribution over a variable of interest y given a number of known variables
x = {x1, x2, . . . , xn} as P (y|x). To perform a classification we find the class c ∈ y
with the highest probability P (y|x),

ch = argmax
c∈y

P (y = c|x) (3.1)

This classification gives the smallest possible probability of error. Similarly, if we
are predicting a real value and P (y|x) is a continuous distribution, we can calculate
the expected value vh of y given x,

vh = Ey[P (y|x)] =
∫

y

yP (y|x)dy (3.2)

This prediction gives the smallest possible expected squared error. However, in
some cases this value may fall between several peaks in the conditional density,
where the calculated expected value actually has a very low probability density.
This means that it may still be in those cases more useful to compute the value vh
for which the density is the highest instead,

vh = argmax
v∈y

P (yv = v|x) (3.3)

Finally, if we want to detect anomalous behaviour using a statistical model M
estimated from mainly normal data, we can determine whether the probability of
a certain pattern given a model M is lower than a certain threshold κ,

P (x|M) < κ (3.4)

All patterns with a probability below κ are considered anomalous. κ may depend on
the model and is selected so that a pattern generated by the model has a sufficiently
small probability of being labelled as anomalous.

Note that all variables x = {x1, x2, . . . , xn} in the problems described above
could either be observed in data, in which case we have a supervised learning
problem, or hidden (non-observable), in which case we have an (at least partly)
unsupervised learning problem.
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Most of the problems discussed above are similar in the sense that they all
rely on the calculation of marginal (e. g. P (x) =

∫

y P (x, y)) and conditional (e. g.

P (y|x)) distributions of a more complicated joint distribution. Here, we will often
talk about these operations as probabilistic inference. Basically, if we have the joint
distribution P (x) over x = {x1, x2, . . . , xn}, xA ⊂ x, and xB ⊂ x, any operation
P (xA|xB) or decision based thereof will be referred to as probabilistic inference.
This means that the classification, prediction, and anomaly detection scenarios
discussed above all rely on similar kinds of probabilistic inference, and can to a
degree be treated similarly.

So, given that we can describe the joint distributions of our variables of interest
and perform calculations on them, we can perform a number of common machine
learning tasks. However, a brute force approach to describing these distributions is
usually computationally infeasible. Consider describing the joint distribution of ten
variables, each with ten outcomes. If we represent this directly by the probability
of each combination of outcomes, we need 1010 parameters. From noting that
adding another variable with ten outcomes means that we need ten times more
parameters, we can conclude that this approach scales very badly. Apart from
the fact that this direct approach is unsuitable from a computational standpoint,
if we want to reliably estimate the probabilities from data, we are going to need
unrealistically large data sets.

It is obvious that we need to simplify our representation of the joint distribution
somewhat in practise. One very common approach is to assume that all attributes
x are independent given the class attribute y, and use Bayes rule to rewrite the
conditional distribution we are interested in as

P (y|x) =
P (y)P (x|y)

P (x)
∝ P (y)P (x|y) = P (y)

n
∏

i=1

P (xi|y) (3.5)

The distributions for each attribute given a specific class, P (xi|y), is significantly
easier to represent and estimate than in the brute force approach. The method
based on this independence assumption is usually referred to as a naïve Bayesian
classifier [Good, 1950], and often generates very good results on a wide variety of
data in spite of the rather restrictive independence assumption not being completely
fulfilled [Hand and Yu, 2001].

We will now have a look at a couple of more general approaches to describe
complex joint distributions, mixture models and graphical models.

3.4 An Introduction to Mixture Models

Finite mixtures of distributions, or mixture models [McLachlan and Basford, 1988;
McLachlan and Peel, 2000], have proved to be a very flexible approach to statisti-
cal modelling. In essence, a finite mixture model is a way to describe a complex
distribution by a weighted sum of simpler distributions. A mixture model can be
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written as

P (x) =
n
∑

i=1

P (vi)P (x|vi) =
n
∑

i=1

πifi(x, θi) (3.6)

where πi are the mixture proportions, fi(x, θi) the component distributions, and
θi are the component specific parameters. A finite mixture is typically used to
model data that is assumed to have arisen from one of n distinct groups. The
group associated with a sample is either observable in the data or hidden, and the
number of components n may be unknown.

One of the most commonly used forms of component distributions are Gaussians
or normal distributions, which can be both univariate and multivariate (see section
3.7 for a closer description). Figure 3.1 shows an example of a mixture of four
univariate Gaussians, all with different means, variances and corresponding mixing
proportions.

Figure 3.1: An example of a mixture of four Gaussian (normal) distributions. The
black line represents the total mixture density, while the grey lines show the indi-
vidual component densities.

Mixture models have been used for a wide range of applications [Titterington
et al., 1985] for quite some time. Already in the late 19th century, Pearson esti-
mated the parameters of a mixture of two univariate Gaussian distributions using
a method of moments [Pearson, 1894]. Today, with advances in methodology and
computational resources, Bayesian or maximum likelihood methods are normally
used for parameter estimation. We will return to parameter estimation shortly, but
we will first introduce another useful interpretation of the mixture model.

In the missing data interpretation of the mixture model, each observation x(γ)

is assumed to arise from a specific but unknown component z(γ) of the mixture.
We will refer to z(γ) as the component-label of γ. The mixture can be written
in terms of these missing data, with z(1), z(2), . . . , z(n) assumed to be realisations
of independent and identically distributed discrete random variables z1, z2, . . . , zn
with the probability mass function

P (z(γ) = i|π,θ) = πi (γ = 1, . . . , n; i = 1, . . . , k) (3.7)
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If x(1),x(2), . . . ,x(n) are assumed to be independent observations given zγ ,

P (x(γ)|zγ = i,π,θ) = fi(x(γ); θi) (3.8)

Marginalising out the missing data z1, . . . , zn gives us the model

P (x(γ)|π,θ) =
k
∑

i=1

P (zγ = i|π,θ)P (x(γ)|zγ = i,π,θ)

=
k
∑

i=1

πifi(x(γ), θi) (3.9)

When there is a real and useful interpretation of the components of the mixture
model, inferring the distribution over z itself may be of interest. This can be
calculated through the proportionality

P (zγ = i|x(γ),π,θ) ∝ P (zγ = i|π,θ)P (x(γ)|zγ = i,π,θ)

∝ πifi(x(γ), θi) (3.10)

which gives the normalised expression

P (zγ = i|x(γ),π,θ) =
πifi(x(γ), θi)

∑k
l=1 πlfl(x

(γ), θl)
(3.11)

Even when there is no useful interpretation of the components of the mixture model,
which may very well be the case if it is purely used to approximate a complex
density, this formulation is still useful for notation and computation purposes.

Estimating the parameters of a mixture model can be done in several ways.
If the component assignments can be observed in data, the estimation procedure
can be reduced to estimating each component distribution from the samples that
are labelled accordingly. The component distribution z itself can also be estimated
from the observed component labels. However, if the component assignment cannot
be observed in data, the procedure becomes somewhat more complicated.

The perhaps most common method for estimating the parameters in a mixture
model where the component assignments cannot be observed in data is based on
maximum likelihood principles. It is an iterative method usually referred to as
Expectation Maximisation [Dempster et al., 1977], or EM for short. It strives to
maximise the likelihood of the model, i. e. the probability of the training data D
given the parameters of the model M , P (D|M). Generally, we assume that all
samples are independent and identically distributed, meaning that the probability
of getting all data samples is simply the product of the probability of each individual
sample. The expression we want to maximise therefore becomes

P (D|θ) =
∏

γ

P (x(γ)|θ) (3.12)
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where x(γ) are samples of the training data set. The Expectation Maximisation
algorithm maximises this expression by iterating a component probability calcula-
tion step with an estimation step. First, the algorithm is initialised by setting the
parameters of all component distribution to different values, usually randomised in
a way that is suitable for the domain and type of parameterisations. Then equation
3.11 is used to calculate how much each sample belongs to each component, given
the initial parameters. This is referred to as the expectation step. Thereafter, the
parameters of each component distribution are estimated where each sample of the
data set is weighed by the probability of the sample being generated by the com-
ponent, as calculated in the expectation step. This procedure is referred to as the
maximisation step. These steps are repeated until all parameters have converged.

Instead of initialising the parameters of the model to random values, it is com-
mon to initialise the component distributions by estimating them from a randomly
selected subset of the data [Holst, 1997]. This saves us from describing suitable
domains for each parameter to randomise, and allows us to describe and imple-
ment the complete algorithm without knowing the actual parameterisations of the
component distributions. This is, as we will see further on, a very useful property.

Although the convergence may be quite slow, it can be proven that the param-
eters will converge eventually to a local maximum [Dempster et al., 1977]. There
have been a number of methods proposed to make finding the actual global maxi-
mum more likely, and to speed up the convergence of the procedure [Louis, 1982].
These may be highly usable in situations where models need to be repeatedly re-
estimated, but will not be further treated here.

Mixture models are related to and can in some cases represent a number of other
common methods within machine learning. One rather obvious similarity is that
to radial basis function neural networks, which are at least partially represented by
a sum of localised functions, very similar to the representation of mixture models.
With a number of components localised at different places in the input space, the
mixture model can also be used to provide a soft interval coding not too different
from fuzzy sets [Zadeh, 1965]. All data points will have a probability of being
generated by each component, analogous to the degree of fuzzy membership.

Also, if we allow one component in a mixture for each data point in the training
data set, and assign each component equal probability, we have a Parzen density es-
timator [Parzen, 1962]. The Parzen density estimator commonly assumes Gaussian
component distributions with a fixed, pre-assigned variance, which in turn makes
it similar to instance based methods using Gaussian, or for that matter any kernel
function, when calculating distances between patterns. This similarity will be used
and further explained in chapter 5.

3.5 An Introduction to Graphical Models

Another approach to describing complex distributions is through graphical models.
Somewhat simplified, a graphical model represents dependencies among random
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variables as a graph, in which nodes represent variables and edges dependency
relations. Let us now have a brief look at a few common types of these models.

Types of Graphical Models

Let us start with the perhaps most common graphical model, the Bayesian network
[Pearl, 1988]. The Bayesian network can be described as a directed acyclic graph,
where the nodes represent variables and the directed edges represent statistical
dependence relations (see figure 3.2 for a simple example). The variables may both
be observed through measurements or not, and in the latter case we would refer to
the variable as hidden or latent. The joint probability distribution over the random
variables x = x1, x2, . . . , xN can be written as

P (x) =
N
∏

k=1

P (xk|wk) (3.13)

wherewk are the parents of xk, i. e. the variables that have directed edges connected
to xk. This expression is derived from the defining property of a Bayesian network,
which is that each variable xk is conditionally independent of any combination of
its nondescendats nk given its parents. More formally, we can write this as

P (xk|wk,u) = P (xk|wk) ∀ u ⊆ nk (3.14)

The nondescendants nk are all variables that are not descendants of xk, i. e. vari-
ables that are not its children, its children’s cilhdren and so on. In a sense, the
Bayesian network can be thought of as a generalisation of a Markov chain, where
each variable xk+1 is assumed to depend only on its immediate predecessor xk,

P (x) = P (x1)P (x2|x1)P (x3|x2)P (x4|x3) . . . (3.15)

To fully specify a Bayesian network, it is necessary to specify for each variable xk
the probability distribution for xk conditional on its parents wk, P (xk|wk). These
distributions may have any form, but are usually assumed to be either discrete
or Gaussian, since this simplifies calculations. Sometimes all the parameters of
these distributions are known, but usually, they have to be estimated from data.
This is rather straightforward if there are no latent variables. If latent variables
are present, estimation becomes rather more complicated. A common approach to
estimation in this situation is to use the expectation maximisation algorithm, in a
similar manner as for the mixture models we discussed earlier.

A Markov Random Field (MRF) is an undirected graphical model which is
defined by a local Markov property saying that, given its neighbours, a variable is
independent of all other variables in the graph. If we let li define the neighbours
of variable xi, we can write this as

P (xi|x \ xi) = P (xi|li) (3.16)
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where x \ xi denotes all variables in x except xi. The joint distribution over all
variables in a MRF can be written as a product of clique potentials, where a clique
is a fully connected subgraph such that for every two vertices in the subgraph, there
exists an edge connecting the two. The clique potential is then a function over the
variables of this clique. Although the clique potentials may have a probabilistic
interpretation, such as marginals over the included variables included in the clique,
they are generally not restricted to this. If there are M cliques, the distribution
can be written as

P (x) =
1
Z

M
∏

m=1

ψm(xm) (3.17)

where ψj(xj) is the potential for the clique j. Z is a normalising constant specific
for the each MRF, where

Z =
∑

x∈x

M
∏

m=1

ψm(xm) (3.18)

A MRF can express some dependencies that a Bayesian network cannot, such as
some cyclic dependencies, but it is still not possible to express all factorisations of
the probability density. See e. g. [Smyth et al., 1997] for examples of what depen-
dency structures that can be expressed by directed graphical models but not by
undirected graphical models and vice versa.

A more general type of graphical model which can represent a larger number
of factorisations is the factor graph. A factor graph explicitly indicates how a
joint distribution function factors into a product of functions of a smaller subset of
variables. We write the probability distributions over a set of variables x as

P (x) =
1
Z

M
∏

m=1

fm(xm) (3.19)

where Z is a normalising constant, just as in a Markov random field. xm is the
set of variables that a local function fm(xm) depends on. These local functions
may be marginal or conditional distributions, or potentials as in a Markov random
field. A factor graph is described by a bipartite graph, i. e. a graph with two kinds
of vertices where edges can only connect vertices of different type. One set of
vertices represent the variables x, while another set represents the local functions
f1(x1), f2(x2), . . . , fM (xM ). In figure 3.2, one directed and one undirected graph
are shown together with examples of their representation as a factor graph. The
round nodes represent variables and the square nodes the factors.

A factor graph may have directed edges to indicate conditional dependence
similar to a Bayesian network. Factor graphs are more general compared to both
Bayesian networks and Markov random fields in terms of expressing factorisations
of the complete joint distribution.
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Figure 3.2: Different types of graphical models. The upper left graph shows a
simple directed Bayesian network, with a factor graph representation of the same
graph directly below. The upper right graph shows a markov random field, again
with a factor graph representation below.

Inference in Graphical Models

Exact inference in a graphical model is usually performed using message passing
algorithms, where simple messages are passed locally along the edges of the graph.
They were first described for singly connected models [Pearl, 1986, 1988; Spiegel-
halter, 1986; Lauritzen and Spiegelhalter, 1988], and are commonly referred to as
the (generalised) forward-backward algorithm. This algorithm can be relaxed some-
what to cover a large number of graphical models into the sum-product algorithm,
which we will have a look at here. It is in itself a special case of the generalised
distributive law [Aji and McEliece, 2000], a general message passing algorithm of
which a large number of common algorithms are special cases.

First, let us assume that we can write the distribution as a product of M
factors as in equation 3.19. We can now view the sum-product algorithm as that
it re-expresses the factorisation of equation 3.19 as another function with M + N
factors,

P (x) =
M
∏

m=1

φm(xm)
N
∏

n=1

ψn(xn) (3.20)
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where each factor φ(xm) is associated with one factor node and each factor ψ(xn) is
associated with one variable node. Initially, we set φ(xm) = fm(xm) and ψ(xn) = 1.
We then update the factorisation according to

ψn(xn) =
∏

m∈Sfn

µm→n(xn) (3.21)

φm(xm) =
fm(xm)

∏

n∈Svm
µm→n(xn)

(3.22)

where Sfn is the set of factors in which variable n participates and Svm the set of
variables in factor m. Each message µm→n is calculated using

µm→n =
∑

xm\n



φm(xm)
∏

n′∈Svm

ψn′(xn′ )



 (3.23)

where xm\n is the set of all variables in xm with xn excluded. In essence, equation
3.23 refers to a factor to variable message, while equation 3.21 refers to a variable
to factor message. Messages are created in accordance with the above rules only if
all the messages on which it depends are present. If the graph does not contain any
loops, the expressions will converge after a number of steps equal to the diameter of
the graph. When the graph does contain loops, the algorithm does not necessarily
converge, and does not in general produce the correct marginal function. However,
this type of loopy belief propagation is still of very great practical importance, as
for many graphs it converges to usable approximations of the marginals relatively
quickly.

It is worth noticing that in general, exact inference in multiple connected net-
works is NP-hard [Cooper, 1990]. In fact, even approximate inference to a certain
precision in these networks is NP-hard [Dagum, 1993]. As exact inference can be
difficult, it is often necessary to resort to approximate methods, such as a Monte
Carlo approach. If we can draw random numbers for the unobserved variables u
from the conditional distribution given the observed variables v, P (u|v), then the
relative frequencies of these random numbers can be used to approximate the dis-
tribution. Generating random numbers is relatively easy from a Bayesian network,
as its lack of cycles mean that it is always possible to form an ancestral ordering
xπ(1), xπ(2), . . . , xπ(N) of the variables, where xπ(i) is a permutation map such that
the descendants of each variable come later in the ordering. Thus, as long as a
value for xk can be drawn according to P (xk|wk), we can simply perform random
number generation for each variable using the ancestral ordering until the whole
vector x has been drawn. In our brute force approach to Monte Carlo inference,
we generate a large number of complete random vectors this way and compile a
histogram over the variables u. Unfortunately, the number of samples that we need
to generate to arrive at a decent approximation of the distribution is, except for
some unrealistically simple graphs, very large. Also, for many types of graphs, this
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type of ancestral simulation is not possible, and the generation of each sample may
be very time consuming.

In these cases, a Markov chain Monte Carlo (MCMC) method is often used.
Given a number of known values v, we can construct a temporal sequence u1,u2, . . .
of the unknown variable values u whose stationary distribution is equal to P (u|v).
By collecting the values in the sequence, we can find an approximation of the
actual distribution e. g. through a histogram. Although it is desirable to run the
simulation until we have reached the point where the stationary distribution can be
considered to be sufficiently stable, it is more common to accept an approximation
by terminating the calculation earlier so that computation time is kept reasonable.

As an example, we can take a simple MCMC algorithm, the Gibbs sampler.
In this, only one variable ui ∈ u is changed between successive states us−1 and
us. The assumption is that although the full distribution P (x) is intractable to
calculate, the univariate conditional distributions P (xi|{xj}Nj=1,j 6=i) are not, as e. g.
in a Bayesian network. Thus, if at state s we have decided to modify xi ∈ u, we
draw a random value according to

P (xi|{xj = xs−1
j }

N
j=1,j 6=i) (3.24)

which often can be acquired with relative ease. However, although benefitting from
the fact that there are no adjustable parameters, Gibbs sampling suffers from the
fact that the space is explored through a slow random walk. This also applies to
similar approaches, such as the Metropolis method [Metropolis et al., 1953] and, to
some degree, slice sampling (see e. g. [Neal, 1993; Frey, 1997] for closer descriptions).

Another important approximate inference method is variational inference. In
contrast to Monte Carlo models, it does not use a stochastic sampling approach,
but rather tries to approximate a marginal of interest with a simpler model that
approximates the actual marginal sufficiently well. If we have a set of known vari-
ables v, unknown variables of interest u, and want to find P (u|v), we introduce a
new distribution Q(u|v) that approximates P (u|v). We adjust the parameters of
Q(u|v) to minimize the distance, usually taken as the Kullback-Leibler divergence,
between the actual distribution and its approximation. This can be performed
through a gradient search, such as conjugate gradient [Hestenes and Stiefel, 1952].
After this, Q(u|v) is used as a computationally more tractable approximation of
P (u|v).

The form of the approximating distribution is usually chosen to be relatively
simple, but naturally has a large effect on both the quality of the inference and
the computational complexity. The choice of distance measure also depends on
the problem, but can be crucial for the quality of the results. For a more detailed
introduction to variational methods, see e. g. [Jordan et al., 1999; Jaakkola, 2000].
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3.6 Hierarchical Graph Mixtures

Let us now turn our attention to how we can combine mixture models and graph
models into Hierarchical Graph Mixtures, in which we represent probability distribu-
tions by hierarchical combinations of graphs and mixture models. The key objective
of these Hierarchical Graph Mixtures is naturally the same as both that of graph
models and mixture models themselves: We want to effectively describe a complex
probability distribution over a number of attributes. To quickly recapitulate earlier
descriptions, in a mixture model, this is performed by representing this complex
distribution as a sum of simpler distributions, and in a graph model as a product
expansion consisting of joint distributions for some variables, assuming conditional
independence between the rest. The benefits of combining these models relates
to increased expressive power and ease of implementation while at the same time
reducing the number of parameters.

The difference in approach towards describing the complete distribution makes
the mixture model and graph model natural complements. In general, we could say
that a mixture model groups samples, with the intention to simplify the description
of the complete distribution, while graph models group combinations of attributes
(see figure 3.3). If we are able to combine mixture models and graph models hierar-
chically, without limitation to the number of levels in this hierarchy, we have a very
powerful modelling framework potentially capable of expressing very complicated
distributions in a structured manner.

The method of combining graphs and mixtures allows us to easily and intuitively
describe a large number of useful statistical models. Models such as mixtures of
trees can easily be expressed and extended upon, as well as a wide variety of both
similar and very different models.

Another important benefit is found in the implementation of the modelling
framework. Since both the graph model and mixture model, our only higher order
components, can be expressed independently of the parameterisation of the compo-
nent distributions, more explicitly the component distributions of a mixture model
and the factors of a graph model, implementation of a general and extensible sys-
tem becomes relatively straightforward. Extending this system simply becomes a
matter of implementing new basic distributions.

However, the perhaps most important aspect of the framework is that it allows
us to easily express a phenomenon common in data extracted from complex sys-
tems, in that we can use different dependency structures for different clusters in
data. Figure 3.4 shows a very simple example where in one cluster in data a certain
graphical representation is suitable, and in another cluster another representation
is more suitable. This differs in objective from modeling the actual (causal) rela-
tions in data. Instead, the aim of the exercise is, to be blunt, not to model the
world perfectly, which would include finding the true causal dependencies between
variables, but to model data and the dependencies that we can measure reliably. In
this situation, being able to use a mixture of graphical structures allows for more
efficient representations.
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x1 x2 x3 x4 . . .

γ1 · · · · · · ·

γ2 · · · · · · ·

γ3 · · · · · · ·

γ4 · · · · · · ·

γ5 · · · · · · ·
...

...
...

...
...

. . .

Figure 3.3: A simplified view of the complementary nature of mixture models and
graph models. The columns x1, x2, . . . represent attributes, while the rows γ1, γ2, . . .
represent samples. The graph model simplifies the distribution by grouping at-
tributes, e. g. {x1, x2} and {x2, x3}, and the mixture model by grouping samples,
{γ1, γ2} etc. By building hierarchical models, we can construct arbitrary groups of
attributes and samples.

In practise, this type of situation with different dependence structures for differ-
ent modes arise in real data e. g. for chemical production plants. Here, a chemical
is often produced using different cost functions at different times. These differ-
ent cost functions impose very different targets for the control system, effectively
changing dependencies between measured attributes drastically. This is effectively
modeled as a mixture of several different graphical structures. Although modelling
the complete set of causal dependencies in one graph may be theoretically possi-
ble, the added complexity of doing so is often prohibitive, or will give degraded
performance.

Using Mixture Models with Graphical Models

In the general graphical model setting, a mixture model is often described as a
graph with a hidden node representing the mixture component label. Thus, it
may not be directly apparent why introducing mixture models separately is useful.
There are, however, a number of motivations to do this.

One important motivation for combining mixture models and graphical models
is the opportunity to use, hierarchically, different graphical structures for different
clusters in data. These hierarchies can be difficult to formulate and implement if
we want to strictly use the graph model formulation. Introducing mixture models
also allows us to write many models without using hidden nodes. Using e. g. a
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Mixture

a

b c

a

b c

Figure 3.4: Using mixtures of graphical models, we can use different graph models
for different clusters in data. Here two different graphs represent the dependencies
in two different clusters. In the first, attributes a and c are conditionally indepen-
dant given b, and in the second attribute b is independant of a and c. Creating
a mixture of these graphical models allows for efficient representation of the joint
distribution.

mixture of graphical structures instead of a hidden node within a network makes it
easier to calculate marginals without resorting to Belief propagation, resulting in
computationally more efficient models.

Mixture models also allow us to easily model joint distributions of e. g. discrete
and continuous attributes, which are quite common when modelling real world
data. These joint distributions are easily expressed as a mixture in which the
discrete variables express the component label distribution, while the corresponding
components are e. g. Gaussian distributions over the continuous variables.

Similarly, mixtures also allow us to easily express more complex factors within
our graphical models. For example, compared to using Gaussians to describe the
factors in a graphical model, the use of mixtures of Gaussians allow us to express
much more complex, multimodal factor distributions without severily increasing
model complexity.

Basic and Necessary Operations

A useful property, shared between both mixture models and graph models, is that
most important operations can be expressed independently of the parameterisations
of the sub-distributions that comprise them, i. e. the factors of a graph model and
the component distributions of a mixture model. This includes estimation and
calculation of marginals and conditionals. This relative independence of the sub-
distributions make it possible to construct hierarchical combinations of these two
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models without sacrificing functionality, e. g. graphs over mixtures and mixtures of
graphs but also more elaborate variants like mixtures of graphs over mixtures.

Let us now go through the operations we would like to be able to perform on
our distributions. Going back to section 3.3, it is apparent that we want to be able
to calculate conditional distributions so that we are able to perform prediction and
classification tasks. That is, we want to be able to calculate the distribution over
one or several attributes given that we know the joint distribution and the values
of a subset of the other attributes. Although not always trivial, calculation of
conditionals turn out to be relatively straightforward in both mixtures and graphs.

Second, we would also like to be able to calculate marginal distributons, in order
to study the distribution of a subset of the attributes given the joint distribution
when we do not know the values of the rest of the attributes. This does not
necessarily pose any real problems either for the mixture or the graph model.

Finally, to be useful in our data driven approach, there must be a way to esti-
mate the parameters of a HGM from data, so that we then can use the estimated
parameters to make statistical predictions. Naturally, there are several different
levels of estimation to be considered, e. g. whether the graph structure of a graph
model or the number of components in a mixture model should be estimated or
considered given beforehand. We will focus on estimation of the distributions with
a given graph structure and known number of components in the mixtures, but
the models described are by no means limited to this scenario (see chapter 4 for a
further discussion).

As we will see, though, the operations above are not quite sufficient in them-
selves. The mixture model and graph model each demands one additional operation
of its components if we want to be able to perform the operations discussed above.
The estimation and calculation of conditional distributions of mixture models de-
mand that we are able to calculate the probability density for a certain sample. Also,
calculation of marginals and conditionals in a graph model require that we are able
to multiply different distributions over the same attributes. Note that here, by
multiplication of distributions we refer to the combined operation of actually mul-
tiplying the distributions and then normalising the result.

Finite Mixture Models

We will start by generalising the notion of a mixture model that we introduced in
section 3.4 somewhat to allow the component-label distribution z to be multivariate.
This is important for consistency of the framework, and for the ability to describe
joint distributions between e. g. several discrete and continuous attributes.

Assume that we have a multi-variate random variable y over the set of observed
variables Sy = {y1, y2, . . . , yn}, and a multi-variate discrete distribution z over
the set of variables Sz = {z1, z2, . . . , zm} with number of possible outcomes of the
marginals k1, k2, . . . , km. The random variable y can be of any form, continuous
or discrete, and represents the complex distribution we would like to describe by a
sum of simpler distributions. The component-label variable z, on the other hand,



3.6. HIERARCHICAL GRAPH MIXTURES 39

must be a discrete variable. The probabilities of each individual outcome in z
represent the weights in the weighted sum. The variables z1, z2, . . . , zm can each
be either observable in data or not, and in the latter case we will refer to the
variable as hidden. To make notation easier, when we write a sum using index
i ∈ Sz or similar, we will assume the sum to be over all indexes i = i1, i2, . . . , im
belonging to the m dimensional discrete distribution containing the variables Sz,
∑

i∈Sz
. . . =

∑k1

i1

∑k2

i2
. . .
∑km

im
.

The basic definition of a finite mixture model over the random variables y and
z can be written in shorthand as

f(y, z) =
∑

i∈Sz

πifi(y|θi) (3.25)

where f(y, z) is the modelled density, fi(y) the component densities, θi the pa-
rameters for the component densities and πi nonnegative quantities that sum to
one and describe the mixing proportions or weights of the components. The mixing
proportions can be viewed as individual probabilities of the outcomes of the general
discrete distribution z, and the total number of component densities amounts to
the product of the number of outcomes in this discrete distribution,

∏m
i=1 ki. In

this context, it is easier to interpret the mixture model based on the missing data
interpretation discussed in section 3.4, where each observation is assumed to arise
from a specific component z.

In most descriptions of mixture models, the component label distribution z is
uni-variate, i. e. m = 1 with k1 number of components, and is considered hidden.
We will need this more general description though when we do general combinations
of variables in graph models.

Supervised Mixture Models

Here we will make a distinction between supervised and unsupervised mixture mod-
els. In a supervised mixture model, the outcomes of the discrete distribution z
are known from data, while they in the unsupervised model are hidden. We can
of course also construct combinations of these two extremes, where some of the
variables in the component label distribution are unknown and some not. We will
refer to these models as partially supervised, and while their estimation will not
be explicitly described here the formulations for the supervised and unsupervised
models can be easily generalised to this case.

Estimation of a supervised mixture model simply amounts to estimating the
component densities fi(y|θi) on data points in which the outcome of the component
label variable z has the corresponding outcome zi. Such a mixture model always has
the same number of component densities as there are outcomes in the component
label variable. There is no restriction on the dimensionality of the discrete variable
z. The mixture model just need to have the same number of component densities
as the total number of outcomes in z, i. e. in the worst case the product of the
number of outcomes of all marginals.
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The supervised mixture model comes in naturally in many kinds of modelling.
For example, it is a convenient way to represent joint distributions of continuous
and discrete variables. The component densities in this case are representations of
joint distributions of the continuous attributes, and the mixing proportions describe
the joint distribution of the discrete variables.

Unsupervised Mixture Models and the EM Algorithm

In the unsupervised mixture model we are left with the problem of estimating
both the mixing proportion distribution z and the parameters of the individual
components. As there is no closed form solution, this is usually performed using the
Expectation Maximisation (EM) algorithm [Dempster et al., 1977; McLachlan and
Peel, 2000], trying to maximise the likelihood of the parameters, i. e. the probability
of data given the model, P (D|M). The EM algorithm is an iterative method
consisting of two steps: The expectation step, where the probability of each sample
(y(γ), z(γ)) belonging to each component distribution given its parameters fi(y|θi)
is calculated, and the maximisation step, where new parameter settings for all
components and the mixing proportion distribution z are estimated according to
the probability of each sample belonging to each of the components. The probability
of a sample (y(γ), z(γ)) being generated by component density vi where z(γ) is
unknown is given by

P (vi|y
(γ)) =

πifi(y(γ)|θi)
∑

j∈Sz
πjfj(y(γ)|θj)

(3.26)

As we discussed earlier, the initialisation of the algorithm is often performed
by randomising the parameters of the component distributions and then starting
iterating at the expectation step. This is not a particularly good solution in this
case, since we want the estimation procedure to be independent of the parameteri-
sation of the component distributions. Instead, we can initialise the procedure by
randomising how much each sample belongs to each component, and then starting
the iteration at the maximisation step. By doing this, we can perform estimation
of the mixture model regardless of the type and parameterisation of the component
densities. See Appendix A for proof that this holds for relevant distributions.

Marginals, Conditionals and Multiplication of Mixtures

Calculating the marginal and the conditional of a mixture might result in either a
discrete distribution, a distribution of the same type as the component distributions
or a new mixture model. For the sake of clarity, we will describe all three cases for
both the marginal and the conditional.

Let SAy and SBy be disjoint complementary subsets of Sy, SAy ⊂ Sy, SBy ⊂
Sy, SAy ∩ S

B
y = ∅, and Sy = SAy ∪ S

B
y . Similarly, let SAz and SBz be disjoint

complementary subsets of Sz. Also assume that we want to calculate the marginal
for variables in SAy and SAz . Calculation of the marginal involves integrating or



3.6. HIERARCHICAL GRAPH MIXTURES 41

summing over all variables in SBy and SBz . Now, let us start with calculating the
marginal of a mixture model for two special cases. First, if we are calculating the
marginal only of attributes in Sz, i. e. SAy = ∅, the expressions simply become

f(SAz ) = P (zA = i) =
∑

j∈SBz

πi,j (3.27)

which is the marginal of the discrete distribution. If on the other hand SAz is
empty, i. e. the marginal is calculated over only a subset of the variables in Sy, the
expression becomes

f(SAy ) =
∑

i∈SBz
πi

∫

SBy

fi(SAy , S
B
y |θi) (3.28)

The result can be viewed as a new mixture with the same number of components
as the original mixture, with one major difference: the outcomes of the compo-
nent label distribution of the resulting mixture, although with exactly the same
distribution as in Sz, can no longer be considered to correspond to any observable
attributes in data. They must therefore now be viewed as hidden. Finally, the
general expression for the marginal of a mixture model over the variables SAy and
SAz can be written as

f(SAy , S
A
z ) =

∑

i∈SAz

(

∑

k∈SBz
πi,k

)





∑

j∈SBz

πi,j
∑

l∈SBz
πi,l

∫

SBy

fi,j(SAy , S
B
y |θi)



 (3.29)

Comparing this expression with (3.25), we can see that it represents a mixture
of mixture models, i. e. a new mixture model with mixture models as component
distributions. The component densities of its mixture components correspond to
the marginals fi(SAy ) of the component densities in the original mixture, and the
integral over SBy represents the calculation of these marginals. Note that the same
situation that occurs in equation 3.28, i. e. that we have to regard a set of discrete
variables as hidden in the resulting model, may also occur in the general expres-
sion. All variables that no longer correspond to an observable attribute must be
considered unknown in the resulting mixture model. This is also the reason why
the result is a mixture of mixture models: The variables that used to be considered
known must now be represented as a mixture.

Now, let us consider the conditional of a mixture model given the values of
variables SBy and SBz . If we know the outcomes of all discrete variables, i. e. SAz = ∅,
this conditional is simply

f(SAy |S
B
y , S

B
z ) = fi(SAy |S

B
y , θi) (3.30)

where i represents the outcome given by the known discrete variables and
fi(SAy |S

B
y , θi) the conditional of the corresponding component distribution. The
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result is on the form of this component distribution, and not a new mixture model.
If SAy = ∅, all component distribution variables are known, we calculate the condi-
tional using P (y|x) ∝ P (y)P (x|y) and normalising,

f(SAz |S
B
y , S

B
z ) = P (zA = i|zB,yB) =

πi,jfi,j(SBy |θi,j)
∑

k∈SAz
πk,jfk,j(SBy |θk,j)

(3.31)

where j is the known outcome in SBz . This is simply a discrete distribution over
the variables in SAz , weighted by the probability of the component distributions.
The general expression for the conditional of a mixture model given the values of
variables SBy and SBz can then be written as

f(SAy , S
A
z |S

B
y , S

B
z ) =

∑

i∈SAz

πi,j

∫

SAy
fi,j(SAy , S

B
y |θi,j)

∑

k∈SAz
πk,j

∫

SAy
fk,j(SAy , SBy |θk,j)

fi,j(SAy |S
B
y , θi,j)

(3.32)
where j represents the known outcome in SBz . The result is interpreted as a new
mixture model, where the component densities are the conditionals of the original
component densities, fi,j(SAy |S

B
y , θi,j), for which the corresponding discrete vari-

ables are still unknown. The expression for the component probabilities is in fact
simply the conditional of the discrete distribution compensated with the likelihoods
of the components densities, and is normalised to produce a valid distribution.

Finally we will consider the multiplication operation, required by the graph
models as we will see later. Let Szh represent the set of hidden component variables
and Sz \ Szh the component variables we can observe in data. Multiplying two
mixture models f1(Sy, Sz) and f2(Sy, Sz) results in

f1(Sy, Sz) · f2(Sy, Sz) =
∑

i∈Sz\Szh

π1
iπ

2
i

∑

k∈Sz
π1

kπ
2
k

f1
i (Sy|θ1

i )f2
i (Sy|θ2

i ) +

∑

j∈Szh

∑

j′∈Szh

π1
jπ

2
j′

∑

k∈Sz
π1

kπ
2
k

f1
j (Sy|θ1

j )f2
j′(Sy|θ

2
j′)

(3.33)

which is a new mixture model. Studying this expression, we can see that multi-
plying mixtures can potentially cause some complexity problems. If the mixtures
multiplied have h1 and h2 number of outcomes of the hidden variables in total,
then the new mixture will have h1 · h2 number of outcomes in total for the hidden
variables. This might be cause for concern, since the dimensionality and complexity
of the mixtures may get out of hand in more complex models.

Also, it is worth noting that a mixture model can in fact also easily be mul-
tiplied with a distribution that is not a mixture itself simply by multiplying this
distribution with all the component distributions.
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Graph Models

Let us now come back to graphical models. Graph models are used to compactly
represent a joint probability distribution, using a graph structure to represent de-
pendencies between variables. As before, a node in the graph usually represents a
random variable. The arcs represent dependencies, or perhaps clearer, the lack of
arcs represent conditional independence assumptions.

We have earlier made a distinction between directed and undirected graph mod-
els. In directed graph models, an arc implies a causal relationship. For example,
an arc from a to b could be said to represent that “a causes b”. Here we will focus
on undirected hypergraphs [Geman and Geman, 1984; Buntine, 1996]. This is not
as much of a restriction as it first might seem, since directed models with some
limitations can be re-written as undirected graph models. From our highly data
driven viewpoint, it may be even less of a restriction, since it is not necessarily very
well defined what is meant by causal connections between random variables. All
we can measure in a simple manner is correlation.

The undirected graph also describes how the included variables depend on each
other: each node in the graph represents one variable, and each edge represents a
dependency between two attributes. In general a hyper graph is required, which can
contain edges that can each connect three or more nodes, thus representing higher
order dependencies between the corresponding attributes.

The Graph Model and its Estimation

Let x be a multivariate random variable over the set of variables Sx =
{x1, x2, . . . , xn}. Then the probability density function for the graph model over
the random variable x can be written as

f(x) =
∏

i

Ψ(ui) (3.34)

where Ψ(ui) are factors, or joint probability distributions, over the variables Ui ⊂
Sx. Each variable Ui represents a set of variables that are dependent by their joint
distribution, and does not keep track of any causal direction.

In this description, we will allow hyper-arcs that have a common set of nodes in
the graph, provided that there is a separate arc connecting exactly these common
nodes. The complete definition of the factors Ψ is then

Ψ(ui) =
P (ui)

∏

Uj⊂Ui
Ψ(uj)

(3.35)

where the product is taken over all “sub-arcs” to the hyper-arc Ui, and a sub-arc
is required for every common set of nodes between two hyper-arcs. Note that here
the primary attributes xi are included among the Ui, although they are not strictly
considered as “arcs” in the graph. This means that i ranges from 1 to n+m here,
where m is the number of complex factors incorporating more than one variable.
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One interpretation of equation 3.35 is that for each direct dependency between a set
of variables there is a factor Ψ(Uk) which will adjust the probability by multiplying
with the joint distribution and dividing by the “previous” product expansion for
that distribution.

If the graph structure is known, i. e. we have completely specified the sets Ui
in the graph, estimation is simply a matter of estimating every sub-distribution
Ψ represented in the graph. For some operations though, all marginals over all
sub-distributions in the graph must be the same. If this cannot be guaranteed,
we may get inconsistent results when calculating conditionals and marginals of the
graph model. The problem typically arises if one variable is used in several mixture
representations, or if one variable is part of several factors and Bayesian parameter
estimates are used (see section 3.9).

a b

c

d

e a b

c

d

e

Figure 3.5: A directed dependency graph and its corresponding non-directed hyper-
graph.

As an example of how to write the probability distribution in a graph, consider
figure 3.5. Starting with the directed graph, we sort the attributes into the chain
rule for probabilities but keep only the direct dependencies according to the graph:

P (x) = P (a)P (b|a)P (c|b)P (d|b)P (e|cd)

Then, write the conditional probabilities as fractions:

P (x) = P (a)
P (ab)
P (a)

P (bc)
P (b)

P (bd)
P (b)

P (cde)
P (cd)

By noting the independencies between branches we can rewrite the expression to

P (x) = P (a)P (b)P (c)P (d)P (e)
(

P (ab)
P (a)P (b)

)(

P (bc)
P (b)P (c)

)(

P (bd)
P (b)P (d)

)

·

·

(

P (ce)
P (c)P (e)

)(

P (de)
P (d)P (e)

)(

P (cde)P (c)P (d)P (e)
P (cd)P (ce)P (de)

)

The result is now on the form of equation 3.34 and 3.35. It contains all first order
factors as well as additional factors to compensate for the dependencies among the
attributes.
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Marginals, Conditionals and Multiplication of Graphs

The result of calculating the marginal and the conditional of a graph model is gen-
erally a new graph model over the attributes in interest. Similar to the description
of the mixture model, let SAx and SBx be disjoint complementary subsets of Sx,
SAx ⊂ Sx, SBx ⊂ Sx, SAx ∩ S

B
x = ∅, and Sx = SAx ∪ S

B
x . Then the marginal over the

variables SAx and SBx of a graph model can be written as

f(SAx ) =
∏

i:Ui⊂SAx

Ψ(ui) (3.36)

This should be interpreted as the product of all factors Ui that are composed of a
subset of the variables in SAx . The expression can be seen as a new graph model
over the attributes SAx . Formally, we may have to add arcs to the graph model if
the resulting marginal consists of several sub-graphs that are not connected.

The conditional of a graph model given the values of the variables in SBx is given
by

f(SAx |S
B
x ) =

∏

i

Ψ(ui|SBx ) (3.37)

The interpretation of this rather simplified notation is that all probabilities in the
expression for Ψ are conditioned on SBx . If all variables in Ψ are known, i. e. they
are all in SBx , then Ψ becomes constant and disappears from the expression. If
no variables in Ψ are known from SBx then Ψ is left unchanged. We can interpret
equation 3.37 as a new graph model on the form of equation 3.34.

Multiplying two graph models g1(Sx) and g2(Sx) can be expressed as

g1(Sx) · g2(Sx) =
∏

i

Ψ1(ui) ·Ψ
2(ui) (3.38)

The result is a new graph, where all probabilities in the expressions for Ψ1 are mul-
tiplied with the corresponding probability in the expression for Ψ2, where Ψ1 and
Ψ2 are the factors in graph g1(Sx) and g2(Sx) respectively. The graph structures
must be the same for both graphs for this expression to be valid, and it relies on the
assumption that all corresponding sub-distributions can be multiplied themselves.

Modelling Considerations and Exact Calculation of Expressions

The graph modelling technique described is very similar to that used in Bayesian
belief networks [Pearl, 1988], but the way it is used here is slightly different. In
Bayesian belief networks the output, i. e. the variable to be predicted, is part of
the graph. However, in many modelling situations, especially when the graph
structure is automatically generated from data, the output attributes w can be
kept “outside” of the graph, in the sense that all probabilities are conditional on
the output variable w. In our experience, it is often computationally advantageous
to keep the output variables outside the graph in this manner, since there is then
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no need to propagate distributions through the graph. It is also likely to be more
robust, since distributions are calculated in “parallel” rather than in “series”, and
thus noise will cancel out rather than accumulate.

Also, note that we have here only been concerned with exact calculation of the
expressions for marginals and conditionals. For very complex models and Bayesian
approaches approximate calculation might become appealing or necessary, e. g. by
sampling (Monte Carlo and Markov Chain Monte Carlo) methods [W. R. Gilks and
Spiegelhalter, 1995], loopy belief propagation [Weiss, 2000] or variational methods
[Jordan, 1999]. However, these methods will not be further treated in this text.

Combining Graph Models and Finite Mixtures

As we have seen, both graph models and general mixture models can be formu-
lated in such a way that the most common operations are independent of the
sub-distributions. This holds if both the graph model, the mixture model and all
other distributions used provide a few standard operations. These operations are
estimation, calculation of marginals and conditionals, calculation of the likelihood
of a sample and multiplication of distributions. The need to calculate the likeli-
hood of a sample arises is the estimation procedure used for mixture models, and
the calculation of conditionals in graph models require us to be able to multiply
distributions.

Let us now introduce some notation to easily describe these models and op-
erations. We will refer to a general Hierarchical Graph Mixture, i. e. either
a graph, a mixture or a simple distribution, over the variables {x1, x2, . . . , xn}
as H(x1, x2, . . . , xn). A specific mixture model with component densities
H1, H2, . . . , Hm will be written as M(H1, H2, . . . , Hm;Sz, Shz ), where Sz is the set
of observed discrete variables and Shz are the hidden discrete variables. Similarly,
we will describe a graph model by all its factors, G(H1, H2, . . . , Hk) (see equation
3.34). Note that one factor may be the marginal of another. We do not need to
state the resulting multiplicity for each of these factors, since this is implied by the
complete set of factors.

The marginal over the attributes x1, . . . , xn of a model H will be expressed as
marg(H ; {x1, . . . , xn}), and the conditional of H given the values of these variables
as (H | {x1, . . . , xn}). Multiplying two models H1 and H2 will simply be expressed
as H1 · H2, and the probability of the sample x being drawn from model H as
¶(x|H). Now we can write the expressions for marginals and conditionals of a
mixture model M and graph model G in simplified form as

marg(M(H1, . . . , Hn);x) = M ′′(M ′1(marg(H1;x), . . . ,marg(Hn;x)),

. . . ,

M ′k(marg(H1;x), . . . ,marg(Hn;x))) (3.39)

(M(H1, . . . , Hn) | x) = M ′((H1 | x), . . . , (Hn | x)) (3.40)

marg(G(H1, . . . , Hn);x) = G′(marg(H1;x), . . . ,marg(Hn;x)) (3.41)
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(G(H1, . . . , Hn) | x) = G′((H1 | x), . . . , (Hn | x)) (3.42)

These expressions correspond directly to the ones described earlier in this paper.
The marginal of a mixture M is a new mixture M ′′ of k mixtures, where k is the
total number of outcomes of the discrete variables in M ′. The conditional of a
mixture is a new mixture, and both the marginal and conditional of a graph model
is a new graph.

3.7 Leaf Distributions

All hierarchies of graph models and mixture models will eventually terminate in
leaf distributions, i. e. densities that are not expressed in terms of sub-distributions.
Examples of these distributions are the discrete distribution and Gaussian distribu-
tions. In fact, we could model many situations to arbitrary precision using only
these two leaf distributions with the help of mixture models. Unfortunately, this
might require stable estimation of a very large number of mixture components,
something that we most often do not have enough data to perform. Still, we will
only mention discrete and Gaussian distributions here.

All leaf distributions must provide the same necessary operations as the mixture
and graph model. For completeness, we will list how to perform these operations
on the discrete and Gaussian distributions here.

The Discrete Distribution

Calculating marginals and distributions for a multivariate discrete distribution is
very straightforward. For the following calculations, let us assume that the n-
dimensional distribution is parameterised by the probabilities P (x = i) = P (x1 =
i1, x2 = i2, . . . , xn = in) = pi, arranged in a hypercube of the same dimensionality
as x.

The Marginal Distribution

Calculating the marginal distribution simply amounts to summing over all variables
that we are not interested in. If we let P (xa,xb) be the joint distribution of the
sets of variables xa and xb, the marginal over xa is simply calculated by summing
over all variables in xb as

P (xa = ia) =
∑

ib∈xb

P (xa = ia,xb = ib) (3.43)

That is, we calculate each parameter of the resulting distribution by summing
over all probabilities which correspond to the certain outcome the parameter is
representing.
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The Conditional Distribution

If, as above, P (xa,xb) is the joint distribution of xa and xb, the parameters of the
conditional distribution P (xa|xb) are

P (xa = ia|xb = ib) =
P (xa = ia,xb = ib)

P (xa = ia)
(3.44)

If the outcome ib is known, the resulting distribution over xa then is

P (xa = ia)|ib =
P (xa = ia,xb = ib)

∑

ia∈xa
P (xa = ia,xb = ib)

(3.45)

This corresponds to finding the subcube of P (xa,xb) for which xb = ib and nor-
malising the result.

Multiplying Discrete Distributions

If we let x1 and x2 represent two different distributions over the variables x, the
product of the distributions P (x)∗ can be written as

P (x = i)∗ =
P (x1 = i)P (x2 = i)

∑

i∈x P (x1 = i)P (x2 = i)
(3.46)

In practise, we just need multiply the distributions parameter wise, and calculate
a normalising constant for the resulting distribution.

The Gaussian Distribution

The Gaussian distribution is a continuous function that, due to its many convenient
properties, is very commonly used description of a distribution. Statisticians and
mathematicians usually refer to it as the multivariate normal distribution, while the
name Gaussian is perhaps more used by physicists (although this will not stop us
from consequently referring to it as a Gaussian distribution throughout this text).
Gaussians are often used to describe random variates with unknown distributions,
which actually is not as dangerous as it may sound initially. The central limit
theorem states that the mean of any set of variates with any distribution having a
finite mean and variance tends to the normal distribution. This means that many
common attributes roughly follow Gaussian distributions. Still, one should proceed
with caution when invoking Gaussian distributions, as there of course are many
situations where they simply are not applicable.

The multivariate Gaussian is characterised by its mean value vector µ and
covariance matrix Σ, and its probability density function is given by

f(x;µ,Σ) =
1

√

(2π)d |Σ|
exp

(

−
1
2

(x− µ)TΣ−1(x− µ)
)

(3.47)
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The distribution function is sometimes written as N (µ,Σ) for short (where N
referers to the normal distribution). To make notation easier, let us partition the
state space into two parts, xa ∈ ℜk×1 and xb ∈ ℜl×1, where

x =
(

xa
xb

)

, µ =
(

µa
µb

)

, Σ =
(

Σaa Σab
Σba Σbb

)

(3.48)

Now we can write the probability density function as

f(x;µ,Σ) =
1

√

(2π)d |Σ|
exp

(

−
1
2

(

xa − µa
xb − µb

)T(
Σaa Σab
Σba Σbb

)−1(
xa − µa
xb − µb

)

)

(3.49)
a useful form when we want to express the marginal and conditional of a multivariate
Gaussian.

The Marginal Distribution

To calculate the marginal distribution f(xa) from the joint distribution f(xa,xb)
we can use that

f(xa,xb) ∼ N (µ,Σ)

∼ N

((

µa
µb

)

,

(

Σaa Σab
Σba Σbb

))

and thus

f(xa) =
1

√

(2π)k |Σaa|
exp

(

−
1
2

(xa − µa)
TΣ−1

aa (xa − µa)
)

(3.50)

The Conditional Distribution

The conditional distribution, a function of both xs and xb, is again a Gaussian
distribution, and can be written as

f(xa|xb) = Ca|b exp
(

−
1
2

(xa − µa|b)Σ|Σbb(xa − µa|b)
)

(3.51)

where the adjusted mean µa|b is expressed as

µa|b = µa + ΣabΣ
−1
bb (xb − µb) (3.52)

The term Σ|Σbb , the covariance matrix of the resulting distribution, is the Schur
decomposition of Σ with respect to Σbb,

Σ|Σbb = Σaa − ΣabΣ−1
bb Σba (3.53)

and the normalisation constant Ca|b is given by

Ca|b =
1

√

(2π)k
∣

∣Σ|Σbb
∣

∣

(3.54)

where k is the dimensionality of the resulting distribution.
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Multiplying Gaussian Distributions

When Gaussians multiply, precisions add. Multiplying n Gaussians with means
µ1, . . . ,µn and covariance matrices Σ1, . . . ,Σn results in a Gaussian distribution
with

µ =

(

n
∑

i=1

Σ−1
i

)−1




n
∑

j=1

Σ−1
i µj



 (3.55)

Σ =

(

n
∑

i=1

Σ−1
i

)−1

(3.56)

where µ and Σ are the parameters of the resulting distribution and Σ−1
i the inverse

of the covariance matrix.

3.8 Examples of Models

Here we will present a few examples of common statistical models formulated as
Hierarchical Graph Mixtures and discuss a few issues related to the construction
of HGMs, as well as examples of the practical use of the framework. Some of the
examples are very simple, but serve to provide a basic understanding to how the
models are formulated.

Naive Bayes

Assume that we want to predict the distribution of a variable y, given the values of
a set of variables x = {x1, x2, . . . , xn}. One straightforward way of modelling this
situation is to assume that y depends on all variables in x, but that all variables
in x are conditionally independent given y as shown in figure 3.6. This is usually
referred to as a naive Bayesian model, and the complete distribution of y given x
can be expressed as a product of the distributions of the individual variables, or
P (y|x) ∝ P (y)P (x|y) = P (y)

∏n
i=1 P (xi|y).

x1 x2 x3 . . . xn

y

Figure 3.6: The naive Bayes model.

There are two ways of expressing the naive Bayes model with
HGMs. The first is by using a graph model which we can write as
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G(H(x1, y), H(x2, y), . . . , H(xn, y), H(y)). We can leave out the factors rep-
resenting H(xi) in the graph since we do not intend to calculate the marginal or
conditional for these variables. The probability density function can be written as
P (x, y) =

∏n
i=1 P (xi, y)/P (y)n−1.

The second way of expressing the naive Bayes model is by a mixture,
M(H1(x), . . . , Hk(x); {y}, {∅}). All component densities in the mixture are prod-
uct models, expressed as graphs without dependencies between the attributes,
Hi = G(H(x1), . . . , H(xn)). In this formulation y needs to be a discrete vari-
able with a finite number of outcomes since we have limited ourselves to this kind
of mixture here. The number of outcomes in y is assumed to be k, and therefore
we have k component densities in the mixture.

The fact that we can formulate the naive Bayes model both as a graph and a
mixture points to the overlap between these two formulations. Returning to figure
3.3, it is apparent that by using one or several variables to label samples we can
actually use the factors in a graph model to group samples, much like a mixture
model. The opposite is of course also true, that by using labelled samples a mixture
model can group attributes in a way that is similar to a graph model. This does
not, however, mean that it is straightforward to implement a mixture of graphical
models with different graphical structures directly within a graph. Including an
attribute that labels samples according to cluster to replicate the functionality of a
mixture model within a graph is possible but not in general desirable. If we do this,
we will have to represent every dependency from every cluster within the graph,
leading to very complex graphical structures.

Quadratic Classifiers

A quadratic classifier finds a quadratic discrimination function between classes,
such as a parabola, a circle, or an ellipse in feature space. An example is
the Gaussian density based quadratic classifier, which estimates one Gaussian
distribution for each individual class. This can be expressed as a HGM as
M(H1(x), . . . , Hk(x); {y}, {∅}), where x = {x1, . . . , xn} are the input variables,
y is the class label with k different classes, and H1, . . . , Hk are Gaussian distribu-
tions over all input variables x.

Comparing this with the mixture model formulation of the naive Bayes classifier
above, we can see that the expressions are very similar. The difference between
the two models is the independence assumption made in the naive Bayes model,
where all input attributes are assumed to be conditionally independent given the
output. This quadratic classifier is also very similar to a linear classifier based
on Gaussian densities. The difference is that the quadratic classifier calculates
covariance matrices for each individual class, instead of assuming equal covariance
matrices for all classes as the linear classifier.
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Markov Models and Markov Random Fields

A Markov model is often used to describe sequential data, in which we can make the
assumption that an attributes value at one specific position depends directly only on
the values of the attribute in the n earlier positions. For example, if n is 1, the value
of the attribute only depends on its previous value and we refer to its description
as a first order Markov model. The probability for a sequence of length N can then
be written as P (x) = P (xN | xN−1)P (xN−1 | xN−2) . . . P (x2 | x1)P (x1). A graph
representation of the model is shown on the left in figure 3.7.

A Markov Random Field can be seen as a generalisation to two or more dimen-
sions of the Markov model, useful e. g. for modelling contextual or spatial depen-
dencies. The assumptions are very similar to the one dimensional case, although
we might now have to consider several versions of the neighbourhood system, i. e.
how the sites are related to one another. A Markov Random Field with a simple
first order neighbourhood is shown on the right in figure 3.7.

x1x2x3. . .xn y1 y2 y3

y4

y5

Figure 3.7: A Markov model of order n and a Markov random field with a first-order
neighbourhood system.

The general Markov model can easily be described as a HGM, similar to
G(H(x1, . . . , xn), . . . , H(x1, x2), . . . , H(x1)), or easier in the case of a first order
Markov model as G(H(x1, x2), H(x1), H(x2)). The Markov Random Field shown
in figure 3.7 is similarly expressed as G(H(y2, y1), . . . , H(y2, y5), H(y2)). Because
of the close relationship between Markov Random Fields and the undirected graph
models we use here, the Markov models are directly expressed as graphs. The
component distributions of these graphs can be both mixtures and other graphs,
allowing us to express more complicated variants of these simple Markov models,
as well as constructing graphs or mixture models of the Markov models themselves.
The latter approach is related, but not equivalent to Hidden Markov Models.

Probabilistic Dependency Trees

An effective way of approximating complex multivariate distributions is by using
dependency trees, i. e. directed graph models where only second order distributions
are used [Chow and Liu, 1968]. An optimal dependency tree representation, in



3.8. EXAMPLES OF MODELS 53

the sense that it maximises the likelihood function, can be easily generated using
a greedy algorithm. The algorithm calculates the pairwise mutual information
between all variables, and sorts the results in descending order. It then creates a
tree by adding a branch between the attributes in the sorted mutual information list
as long as this does not introduce a cycle, beginning with the strongest dependency
in the list and continuing until all variables are included in the tree.

M(G1, G2; y)

x1

x2

x3 x4

x2

x1 x3

x4

Figure 3.8: A simple example of a mixture of dependency trees. The mixture M
contains two graph models G1 and G2. These graph models corresponds to the two
outcomes of the discrete variable y, which can be either hidden or observed from
data.

The resulting tree can easily be re-written to the undirected graph models de-
scribed here, which means that we can create mixtures and graphs over such de-
pendency trees. The fact that we can now create mixture models over dependency
trees means that we can represent a complex distribution with different trees in
different parts of feature space, or with different trees depending on the outcome of
a discrete variable observable in data. These trees can be automatically generated
using the algorithm described above, both if the discrete variable is hidden or not,
and allows us to express a complex distribution in a very efficient way. Simply put,
we can create mixtures with completely different graph structures for each outcome
of an attribute, something that is difficult in e. g. Bayesian Belief Networks. The
same structure also allow us to represent many of the models mentioned in section
3.2, such as [Friedman et al., 1997] and [Meila and Jordan, 2000].

Example of a Complex Model Structure

Above, mixtures of graphs have been exemplified. As an example of a more com-
plex model structure, let us consider a data fusion problem involving classification
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based on three different modes of data; e. g. image, sound, and sensor measure-
ments, which involves graphs of both mixtures and further graphs. We consider
the measurements from these different modes to be independent given the class, a
simplification that should in many cases hold relatively well in practise.

Thus, a suitable form of the model structure is, as shown in figure 3.9, a su-
pervised mixture of graphical models, with one graphical model for each class.
These graphs are in turn simple products of mixture models, with one mixture
model for each mode of data. The mixtures consist of a number of graphical mod-
els, e. g. trees as generated as above, to compensate for clusters and dependencies
within each mode of data. These graphs in turn would then consist of e. g. discrete
distributions, Gaussian distributions, supervised mixtures for factors containing
both continuous and discrete attributes, and possible mixtures of Gaussians to
represent more complicated continuous marginals.

Graph

Class Mixture

... ...

Figure 3.9: A classification model for multi-modal data. A supervised mixture
consisting of one graphical model for each class is used for classification. These
graphical models are simple products of models for each mode, which are drawn
as three rectangles in the figure. Each of these graphical models is then specified
as a mixture of graphical models, illustrated in the figure with two, five, and three
circles respectively.

Let us denote the class y, and the variables within the three modes image,
sound, and other measurements xi, xs, and xm respectively. We can then write
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the top levels of the model using our shorthand notation as

M(G(M(G1(xi1), . . . ; {∅}, {zi}),

M(G1(xs1), . . . ; {∅}, {zs}),

M(G1(xm1 ), . . . ; {∅}, {zm})), . . . ; {y}, {∅})

Using this model structure, we arrive at a model with a much lower complexity
compared to using a single graphical model over all attributes in all modes of data.
In the case of figure 3.9, the number of parameters would be in the order of 2+5+3,
compared to a single graphical models 2 · 5 · 3.

A Practical Example

A practical example of where these hierarchical graph mixture models have been
used is for the hot steel mill Outokumpu Stainless AB in Avesta. The task was to
identify which steel coils are at risk of getting surface damages (or “slivers”). There
were about 270 attributes to consider, some continuous valued and some discrete.

Furthermore, it turned out that different steel types were significantly differently
sensitive for slivers. To effectively model the data, we had to use multiple layers in
the hierarchical graph model: we built a mixture with one model for non-sliver cases
and one model for sliver cases; within each of them we built a mixture model over
each of eight different steel types; within each of these we modelled the data over the
270 attributes with a graph model; and finally, in the graph model we sometimes
had to make a joint model over one continuous and one discrete attribute, which
was again realized as a mixture (see figure 3.10). If we refer to the input attributes
as x, the steel type as yt, and whether or not a sample has slivers as ys, in shorthand
notation the top levels of the model become

M(M(G1(x), . . . , G8(x); {yt}, {∅}),

M(G1(x), . . . , G8(x); {yt}, {∅}); {ys}, {∅})

In effect we had a mixture model of mixture models of graphs of mixture models.
Each graph was built as a dependency tree, as described in section 3.8. This
seemingly complicated model manages to 10-fold the accuracy when picking out
which steel coils were at risk of getting slivers.

3.9 Encoding Prior Knowledge and Robust Parameter

Estimation

When fitting complex models with many free parameters to limited amounts of data,
the result is usually a model that performs very well on the data on which it was
estimated from, but performs poorly when applied to previously unseen patterns.
This phenomenon is known as over-fitting: adapting too much to the training
data set on the expense of generalisation performance. To counter this within our
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Sliver

Steel Type Steel Type

g1
1 g1

2
. . . g1

8 g2
1 g2

2
. . . g2

8

No Yes

Figure 3.10: The model used for sliver risk identification. The rectangular boxes
represent mixture models, and gij individual graph models with different depen-
dency structures. Note that some of the attributes in these graph models are
themselves represented as mixtures.

statistical models, we can sometimes use simpler models that do not suffer as much
from over-fitting. However, these may lack some of the expressive capabilities of
more flexible models, compromising performance and practical usefulness. A more
suitable approach might be to try to account for the uncertainty implied by the
small data sets, and perhaps incorporate previous knowledge or hypothesis in the
analysis. Here, we will use Bayesian statistics do just that.

We will also use these Bayesian estimates to introduce another type of hierarchy
into the framework, not relating to how the problem is parameterised but rather
how the parameters are estimated. We show that parameters can be estimated
hierarchically, starting with a prior belief in what the distribution looks like and
then modifying this belief based on observed data. The resulting distribution can
then again be used to represent a prior belief which in turn is modified on another
set of data, and so on. But before we go into the details, let us start with an
introduction to Bayesian statistics.

A Brief Introduction to Bayesian Statistics

Mathematical statistics use two major paradigms. The first is the conventional, or
frequentist paradigm. This considers probabilities as property of nature, which can
be measured by repeating an experiment sufficiently many times for the required
accuracy.

The second paradigm, Bayesian statistics, is based on an interpretation of prob-
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abilities as rational, conditional measures of uncertainty, given the accepted as-
sumptions and available information. This closely resembles the interpretation of
the word “probability” in ordinary language, but differs from the frequentist view.
In Bayesian statistics, a probability is always a function of at least two arguments,
the event E whose uncertainty is being measured, and the conditions C under which
the event is observed, which can be written as P (E|C). In a typical application, we
are interested in the probability of an event E given known data D, assumptions
A, and other relevant knowledge K, as P (E|D,A,K).

The main consequence of treating probability as a general measure of uncer-
tainty is that we need to describe all uncertain parameters in a problem as prob-
ability distributions. All unknown parameters in probability models must have a
probability distribution that describes what we know about their values. Parame-
ters are thus treated as random variables, not to describe their variability but to
express the uncertainty about their true values.

Now, let us see what this means in practise if we want to estimate the parameters
of a probability distribution. Let us first start with a brief look at how this is
performed classically through the Maximum Likelihood method. In this, we would
like to find the values of the parameters M that maximise the probability of the
data D, i. e. P (D|M), where our “event” is the model M and we only rely mainly
on known data D. In contrast, the Bayesian approach to parameter estimation
aims not to maximise the probability of the data that we already have, but rather
the probability of the parameters given the data, P (M |D).

The relation between the two approaches becomes clearer if we note that

P (M |D) ∝ P (D|M)P (M) (3.57)

The distribution P (M) in this expression is usually referred to as the prior proba-
bility of the model, or what we know or assume about the world before we have seen
the data D, and P (M |D) is the posterior probability, or what we believe after we
have observed the data. The posterior distribution can then be used as a prior for a
new data set generated by the same underlying process. As we can see, the relation
between the classical way of parameter estimation and the Bayesian approach is
essentially the prior distribution P (M), expressing what we know or believe about
the parameters before observing the data.

An Example of Bayesian Parameter Estimation

Consider estimating the probability of heads of a possibly unbalanced coin by toss-
ing it a number of times and keeping track of the results. If we call our param-
eter, the probability of heads p, then the probability of getting cH heads out of
c = cH + cT tosses is

P (D|M) = P (cH |p) =
(

c

cH

)

pcH (1 − p)cT (3.58)
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If we want to find the maximum likelihood estimate, we differentiate this expression
with respect to p to find its maximum,

d

dp
P (cH |p) =

(

c

cH

)

cHp
cH−1(1− p)cT −

(

c

cH

)

cT p
cH (1− p)cT−1

= (cH(1− p)− cT p)
(

c

cH

)

pcH−1(1 − p)cT−1 (3.59)

Equating with zero and ignoring the uninteresting solutions p = 0 and 1 − p = 0
gives us

cH(1− p) = cT p⇒ p̂ =
cH

cH + cT
=
cH
c

(3.60)

This is the maximum likelihood estimate of the parameter p of a Bernoulli
distributed variable. This works quite well when we have lots of data, in this
particular case meaning large numbers of recorded results of tossing the particular
coin. However, for small sample sizes, the estimate might produce strange results.
For example, if we make only two tosses of a balanced coin that both turn out to
be tails, a not particularly unlikely result, our estimate of the probability of heads
would be 0. As we in practise often want to be able to perform further statistical
calculations based on our estimated parameters, and also be able to base them
on sometimes very scarce data, this type of parameter estimation is simply not
suitable.

Let us now consider a Bayesian approach. Consulting equation 3.57 indicates
that we first need to specify a prior distribution P (M) over p. If we assume that we
do not know anything about the distribution over p beforehand, and that all values
are equally likely, the prior distribution can simply be reduced to P (M) = P (p) = 1.
The posterior distribution then becomes

P (M |D) = P (p|cH , cT ) ∝
(

c

cH

)

pcH (1− p)cT (3.61)

Although this looks like a binomial distribution, this is not quite the case. It should
rather be interpreted as the distribution for the parameter p. As the expression is a
proportion rather than an equality, it also needs to be normalised over all possible
values of p to find the actual distribution. Integrating the right hand side, leaving
out the actual calculations, gives us that

∫ 1

0

pcH (1− p)cT dp =
cH !cT !

(cH + cT + 1)!
(3.62)

which in turn gives us the distribution for p as

P (p|cH , cT ) =
(cH + cT + 1)!

cH !cT !
pcH (1− p)cT (3.63)
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which is in fact a Beta distribution with the parameters cT + 1 and cH + 1. We are
now not interested in the value of p which maximises this expression, but rather
the expected value of p,

p̂ = E[p] =
∫

pP (p|cH , cT )dp (3.64)

=
(cH + cT + 1)!

cH !cT !

∫ 1

0

pcH+1(1− p)cT dp

=
(cH + cT + 1)!

cH !cT !
(cH + 1)!cT !

(cH + cT + 2)!

=
cH + 1

cH + cT + 2
=
cH + 1
c+ 2

For large sample sizes, this estimate will converge to the same result as the maxi-
mum likelihood estimate of equation 3.60, but for small samples it will tend towards
1/2. This is more in line with the intuitive way of estimating the parameter, where
we do not blindly trust the available data if the sample size is small. Also note
that for many applications of Bayesian methodology we do not necessarily want to
calculate the expected value of the parameter, but rather use the distribution of
p to answer the questions that are relevant for the application. Also note that we
can also get to an estimate of the uncertainty of our parameter of estimation e. g.
by calculating the variance of the distribution.

In most scenarios, the prior used above is a bit over simplified. The more
common general form

P (p) ∝ pα−1(1− p)α−1 (3.65)

instead gives us an estimate of p, based on calculations similar as those above, as

p̂ =
cH + α

c+ 2α
(3.66)

If we are not being very strict, the parameter α can be thought of how much weight
we put on the prior compared to the data. A common value of the parameter would
be one, but a larger α may also be suitable, e. g. if data is very noisy.

Bayesian Parameter Estimation in Hierarchical Graph Mixtures

Now, equation 3.66 holds for a binary variable, but within the framework of hier-
archical graph mixtures we would rather be interested in an expression for discrete
distributions of N outcomes. Using a prior distribution on the form

P (p) =
N
∏

i=1

pα−1
i (3.67)

makes the posterior distribution of the parameters p a multi-Beta distribution,

P (p|c) =
Γ(c+Nα)
∏

i Γ(ci + α)

∏

i

pci+α−1
i (3.68)
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Finding the expected values of the parameters p is slightly involved, but the result
is

p̂i = E[pi] =
ci + α

c+Nα
(3.69)

This expression is now directly usable for all estimations involving discrete distribu-
tions within our framework. If we now look at equation 3.67, it is apparent that it
is possible to specify the prior distribution on the same parametric form as another
discrete distribution plus a weight parameter α. If we assume that this “prior” has
parameters ppi , we can write the expected value of our parameters p̂i as

p̂i =
ci + αppi
c+ α

(3.70)

Let us now consider the case of continuous random variables represented by
Gaussian distributions. The maximum likelihood estimates of the mean vector and
covariance matrix of a multivariate Gaussian distribution are

µ0 =
1
c

c
∑

j=1

xj (3.71)

Σ0 =
1
c

c
∑

j=1

(xj − µ0)(xj − µ0)T (3.72)

where xj are samples from a data set of size c. If we want to make a Bayesian
parameter estimation, we would start with the conjugate prior distribution (a prior
distribution which results in a posterior from the same family) of the multivariate
Gaussian distribution with unknown mean and covariance matrix, the Wishart-
Gaussian distribution:

P (m, Q|µ∗,Σ∗, α) ∝|Q|(a−d−1)/2 exp
(

−
1
2

tr(αQΣ∗)
)

exp
(

−
1
2

tr(αQ(µ∗ −m)(µ∗ −m)T
)

(3.73)

This is a joint density over the mean m, and the inverse of the covariance matrix,
Q. The expectation ofm is µ∗, while the expectation of Q is Σ∗−1. If we calculate
the posterior distribution over the mean and covariance, we find that it is itself a
Wishart-Gaussian distribution, with the new parameters µ, Σ, and β,

β = c+ α (3.74)

µ =
cµ0 + αµ∗

c+ α
(3.75)

Σ =
cΣ0 + αΣ∗ + cα

c+α(µ0 + αµ∗)(µ0 + αµ∗)T

c+ α
(3.76)
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where c is the number of samples in the data set. The derivations of these expres-
sions are somewhat lengthy but can be found in [Keehn, 1965; Holst, 1997]. We
can interpret these expressions as that it is possible to find the Bayesian estimates
of the parameters by combining maximum likelihood estimates µ0 and Σ0 with a
weighted “prior” estimate µ∗ and Σ∗, corresponding to α samples.

Hierarchical Priors

Consider again expressions 3.70, 3.75 and 3.76. All these estimates are on a form
that, in a loose sense, combines a maximum likelihood estimate with a prior belief
expressed on the same parametric form. The significance of the prior is in all these
cases specified by a parameter α, which can roughly be interpreted as how many
data points our prior belief represents. For example, we can specify the prior of a
Gaussian as another Gaussian along with a parameter specifying the relative weight
of the prior. This allows us to easily represent and specify priors hierarchically,
where one estimated distribution is used as prior for estimating another distribution,
for both Gaussians and discrete distributions. An illustration of this procedure can
be seen in figure 3.9.

Similarly, we can specify the prior of a graph model by specifying the prior, or
hierarchy of priors, for each factor Ψ(ui) individually. Estimation of the graphical
model then becomes a matter of estimating each factor individually as described
before, regardless of whether this distribution is Gaussian, discrete, or a mixture.

We can use the same approach for mixture models, where we specify priors
individually for each component. However, in a mixture we also need to specify the
prior for the mixture proportions. As this is a discrete distribution, we can do this
in the same manner as for all other discrete distributions. That is, for a mixture
we specify one hierarchy of priors for the mixture proportions, and one hierarchy
of priors for each component.

Note that this approach is not a completely Bayesian, as this would require
us to integrate over all parameters of the complete model. This may however be
prohibitively computationally expensive, since we in the general case will have to
resort to e. g. Monte Carlo methods to calculate these integrals. Although the
suggested approach of performing Bayesian parameter estimation component-wise
may fail to faithfully describe the true posterior distribution, it does provide for easy
encoding of prior knowledge and a much more robust way of estimating parameters,
allowing us to reliably use much smaller data sets than otherwise possible.

3.10 Conclusions

Using the expressions described earlier, we can estimate the parameters, calculate
conditionals, and find marginals for both graph models and mixture models inde-
pendent of their component distributions. The only requirement on the component
distributions is that a rather small set of operations can be performed on them.
Since both the mixture model and the graph model fulfil this requirement, they
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P0(x)

D1, α1

P1(x)

D2, α1

P2(x)

Pn(x)

...

Figure 3.11: Hierarchical priors. To estimate the parameters of the distribution
of interest, in this case Pn(x), we first encode our prior knowledge in distribution
Pn(x). If we do not have any particular prior information, we may e. g. choose this
in the discrete case as equally distributed. We then use this distribution, our prior
weight α1 and data set D1 to estimate the parameters of distribution P1(x), which
in turn is used to estimate P2(x) using data set D2 etc.

can both be used as component distributions in both graphs and mixtures them-
selves. This allows us to create hierarchical combinations of the two models, such
as graphs of mixtures of graphs and so on.

Using this, we can use different dependency structures for different clusters in
data. This makes it possible to effectively model common penomena in complex in-
dustrial systems. The fact that we can easily create hierarchies of prior distributions
also allows us to encode both prior knowlede and use different types of data sets
for estimation, an example of which can be found in chapter 5, where we combine
prototypical and case data for diagnosis.

The implementation of this modelling framework becomes, if not simple, at least
very straightforward. General expressions are provided for the most important
operations on the only two higher order models, i. e. the mixture model and the
graph model. A complete system naturally includes some simpler distributions that
do not consist of a number of component distributions, e. g. discrete distributions
and Gaussian distributions exemplified here, to serve as the basic building blocks
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when we construct hierarchies of mixtures and graph models. Again, implementing
necessary functionality for these distributions does not in general pose any practical
problem. We have implemented and tested the modelling framework on a wide
range of data analysis problems, and have found it to be a powerful tool for practical
statistical modelling.

The Hierarchical Graph Mixture modelling framework provides a simple and
consistent way of describing a wide variety of statistical models. The implementa-
tion is straightforward, and provides a very flexible yet simple modelling tool for a
wide variety of tasks.

Appendix A: Estimating the Parameters of Unsupervised

Mixture Models

Let us now find the maximum likelihood estimates of the parameters, i. e. the
parameters that maximise P (D|M), for a mixture model. The derivations are
not really complicated, and the main part of them can be found on some form in
most introductory texts on mixture models and Expectation Maximisation. We
include them as they are useful for understanding how mixtures can be estimated
independently of the parameterisations of the component distributions.

Firts, we assume that all N samples y(γ) of data set D are independently iden-
tically distributed, meaning that we the expression we would like to maximise is

P (D|θ) =
∏

γ

P (yγ |θ) (3.77)

where θ denotes the parameters of model M . As this expression is difficult to
differentiate, let us instead maximise the logarithm of this expression for a mixture,

logP (D|θ) =
∑

γ

logP (yγ |θ) =
∑

γ

log
∑

i∈Sz

πifi(y(γ); θi) (3.78)

Now, us find the source proportions πi that maximise this expression. They are
a little tricky since the likelihood has to be maximized under the constraint that
∑

i∈Sz
πi = 1. This can be performed by introducing a Lagrange multiplier λ and

instead maximizing the expression

∑

γ

log
∑

i∈Sz

πifi(y(γ); θi) + λ

(

∑

i∈Sz

πi − 1

)

(3.79)

When the constraint is satisfied the second term is zero, so if we can find a λ for
which the constraint is satisfied at the global maximum, this will also be a maximum
for the original problem. Equating the partial derivative of the above expression to
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zero gives us

0 =
∂

∂πi

∑

γ

log
∑

j∈Sz

πjfj(y(γ); θj) + λ





∑

j∈Sz

πj − 1





=
∑

γ

fi(y(γ); θi)
∑

j∈Sz
πjfj(y(γ); θj)

+ λ

=
∑

γ

(

πifi(y(γ); θi)
∑

j∈Sz
πjfj(y(γ); θj)

)

1
πi

+ λ

=
∑

γ

P (vi|y
(γ))

1
πi

+ λ ⇒

−λπi =
∑

γ

P (vi|y
(γ)) (3.80)

Inserting the λ for which the constraint is satisfied, i. e. −λ = N , gives us

πi =

∑

γ P (vi|y(γ))

N
(3.81)

Thus, the parameters πi can be estimated independently from the type of compo-
nent distribusions used in the mixture.

To maximize the likelihood with respect to the parameters θi of a component
distribution fi, it i useful to rewrite the derivative as

0 =
∂

∂θi

∑

γ

log
∑

j∈Sz

πjfj(y(γ); θj)

=
∑

γ

πi
∂
∂θi

fj(y(γ); θj)
∑

j∈Sz
πjfj(y(γ))

=
∑

γ

(

πifi(y(γ); θi)
∑

j∈Sz
πjfj(y(γ); θj)

)

∂
∂θi

fi(y(γ); θi)

fi(y(γ); θi)

=
∑

γ

P (vi|y
(γ))

∂

∂θi

log fi(y(γ); θi) (3.82)

This equation suggests that the parameters of the component distributions can be
found by using whatever expression that maximises its parameters given the data
but where each sample is weighted by how much it belongs to a certain component.
As, if we have more components than one, it is impossible to calculate these weights
without knowing the parameters of the component distributions, we have to iterate
these calculations within the Expectation Maximisation algorithm.

Although it is relatively easy to show that this weighted estimation does indeed
hold for e. g. Gaussian and discrete distributions [Holst, 1997; McLachlan and Peel,
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2000], we will not include these calculations here. If our component distributions
are mixtures, estimation becomes no more difficult than the estimation of a single
mixture model, as a mixture of mixture models is indeed again just a mixture.
Instead, let us now turn to the second important distribution form apart from
mixtures in our framework, the graphical model.

If we use a graphical model as the component distribution fi(y(γ); θi), the above
expression can be written as

0 =
∑

γ

P (vi|y
(γ))

∂

∂θi

log fi(y(γ); θi)

=
∑

γ

P (vi|y
(γ))

∂

∂θi

log
∏

i

Ψ(ui)

=
∑

i

(

∑

γ

P (vi|y
(γ))

∂

∂θi

log Ψ(ui)

)

(3.83)

One solution to the above expression can then be found through finding the pa-
rameters for which

0 =
∑

γ

P (vi|y
(γ))

∂

∂θi

log Ψ(ui) (3.84)

for all factors Ψ(ui). Now, this expression is again on the same form as equation
3.82. As we have already noted, this means that we can use weighted estimation
for finding the parameters of Ψ(ui), at least in the case of Gaussians and discrete
distributions. Thus, it follows that estimating the parameters of a graphical model
can be performed in the same manner, estimating each factor separately using
a weight that determines how much the graphical model belongs to the sample.
In other words, we can perform the parameter estimation of our mixture model
independent of the specific parameterisation of the graphical model.
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Chapter 4

Structure Learning

4.1 Approaches to Structure Learning

Learning the statistical structure of a process that generates data, expressed by e. g.
descriptions of dependencies between attributes or clusters in data, is highly useful
both for understanding and answering questions about the underlying generating
process, and for automatically specifying the structure of a statistical model such
as the Hierarchical Graph Mixtures.

When trying to automatically find the structure specification for a statistical
model, there are several possible approaches:

• Using external measures and methods that do not depend on the type of
model or the application, such as determining the dependency structure using
common correlation measures.

• Choosing the model structure based on the performance of the model in the
intended application, such as choosing the dependency structure of a graphical
model based on its prediction or classification performance on a test data set.

• Not firmly specifying the structure at all, and instead sample from many or
all possible model structures using e. g. a Markov Chain Monte Carlo method.

Here, we will focus on deriving the dependency structure of a data set through
external measures for sequential data. There are several ways of determining corre-
lation between series, most of them suffering from specific problems when applied to
real-world data. We will introduce a new measure of interdependency for sequential
data that does not suffer from many of the issues regular correlations suffer from
within this context, that also allow us to determine the most significant delays be-
tween the correlations. This measure of pairwise dependency can then be used to
create a graphical representation, e. g. using Chow and Liu’s algorithm (see section
3.8).

67



68 CHAPTER 4. STRUCTURE LEARNING

4.2 Dependency Derivation

Finding dependencies and the creation of dependency graphs from data can in-
crease the understanding of the system significantly. It is also a common step
for the creation of graphical models, who rely on this information for partitioning
the joint distribution of the attributes into simpler factors. We will here discuss
how to measure these dependencies, without considering the details or estimated
generalisation performance of a model based on them.

Correlation Measures

Correlation between attributes can be measured in a number of different ways,
the perhaps most commonly used being Pearson’s correlation coefficient and the
covariance. In particular, the correlation coefficient can be written as

ρ =

∑

i (xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(4.1)

where xi and yi denote samples of X and Y respectively and x̄ and ȳ denotes the
mean of the variables. It is essentially the covariance between X and Y , normalised
to the region −1 to 1, and measures the amount and direction of linear dependence
between X and Y . This is a very useful, robust measure that often gives a good
indication about the dependency structure of the sequences. If, for some reason,
we can be sure that there are only linear dependencies and independent samples in
the data, it is also an optimal measure. When non-linear dependencies are present
or samples are not independent, as in a time series, the measure might be fooled
into either giving a low value of the correlation for two highly correlated variables,
or to significantly overestimate the actual correlation.

The measure only calculates the linear correlation, which means that it might
not detect obvious dependencies simply because they do not point in the same
direction for all values. A typical example is a number of data points positioned
on a circle. The points x and y coordinates are clearly dependent on each other,
but the correlation coefficient is zero. The measure also only works for continuous
data, and will not provide any useful information when measuring the correlation
between nominal attributes.

Another problem with these measures is that there is no natural generalisation
for measuring correlation between multivariate distributions. The use of informa-
tion theory [Ash, 1967; Cover and Thomas, 1991], or more specifically the concept
of mutual information, can provide a solution [Li, 1990].

Entropy and Mutual Information

Before introducing the mutual information and the mutual information rate, we
will give a brief review of some of the basic concepts of information theory. The
entropy of a stochastic variable [Shannon, 1948, 1951], which can be thought of as
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a measure of the amount of uncertainty or the mean information from the variable,
is defined as

H(X) = −
∑

x∈X

P (x) logP (x) (4.2)

h(X) = −
∫

S

f(x) log f(x)dx (4.3)

in the discrete and continuous case respectively. In the discrete case, X denotes the
possible outcomes of the variable, and in the continuous case S denotes the support
set of the stochastic variable. The joint entropy H(X,Y ) of a pair of stochastic
variables is defined, here just in the discrete case as the continous case is very
similar, as

H(X,Y ) = −
∑

x∈X

∑

y∈Y

P (x, y) logP (x, y) (4.4)

and the conditional entropy H(Y |X) as

H(Y |X) = −
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x) (4.5)

Both the joint and conditional entropy described above can be extended to more
than two variables in a straightforward manner.

If two variables X and Y are independent, H(X,Y ) = H(X) + H(Y ). If the
variables are not independent, H(X) + H(Y ) will be larger than H(X,Y ), that
is some of the information in H(X,Y ) is included in both the marginal entropies.
This common information is called the mutual information, I(X ;Y ). It can also be
thought of as the reduction in the uncertainty in one variable due to the knowledge
of the other, or more formally

I(X ;Y ) =H(Y )−H(Y |X) = H(X)−H(X |Y ) =

H(X) +H(Y )−H(X,Y ) (4.6)

The mutual information is symmetrical and is always larger than or equal to
zero, with equality only if X and Y are independent. The mutual information can
also be written more briefly, here in both the discrete and the continuous case, as

I(X ;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(4.7)

I(X ;Y ) =
∫

f(x, y) log
f(x, y)
f(x)f(y)

dxdy (4.8)

which follows directly from equation 4.6. The expressions in equation 4.7 and
4.8 makes the connection to the Kullback-Leibler distance [Kullback, 1959] clearly
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visible. The Kullback-Leibler distance D(f ‖ g) measures the distance between two
probability mass functions and is defined as

D(f ‖ g) =
∫

f log
f

g
(4.9)

The mutual information can therefore be interpreted as the Kullback-Leibler dis-
tance between the joint distribution f(x, y) and the product of the marginal distribu-
tions f(x), f(y). Informally, it is the distance between representing the two vari-
ables together in a joint distribution and representing them as independent.

Mutual information can also be viewed as a measure of the dependence between
two variables. If the variables are independent, the mutual information between
them will be zero. If they are strongly dependent, the mutual information will
be large. Other interpretations of the mutual information could be the reduction
of uncertainty of one variable due to the knowledge of the second, or the stored
information in one variable about another. Mutual information is a general corre-
lation measure and can be generalised to all kinds of probability distributions. It
is also, given an appropriate model of the distributions, able to detect non-linear
dependencies between variables.

To be able to calculate the mutual information, we have to know both the
variables marginal distributions and their joint distribution. In the case of for
example binary variables and linear correlation, there are straightforward methods
of estimating these distributions, but in the general case we first need a basic
assumption of what the distribution will look like. If we assume a too complex
model, where each data point essentially has to be considered on its own, we run
the risk of overfitting the model so that all variables always look highly correlated.
If we on the other hand assume a simple model such that all data are normal
distributed, we cannot detect anything but the linear part of the correlation. We
have mainly tried two models of the distributions, normal distributions (Gaussians)
and binning the data using a 2-dimensional grid.

If each measured variable is quantised into discrete values, or bins, it is very
simple to calculate the mutual information between one variable and another using
equation 4.7. Each marginal is discretised, and the joint distribution is modelled by
the grid resulting from the two marginal distribution models. Then histograms are
constructed from the data using this discretisation and from these the probabilities
are estimated. In our tests, we use the Bayesian parameter estimate described
in equation 3.70. Here, ci represents the number of data points in a bin. The
parameters α and ppi where set to 1 and the 1/M respectively, where M is the total
number of bins used.

The number of discrete values in the grid is critical. Choosing a too fine grid
with more bins than data points results in a mutual information of the logarithm
of the number of data points. If too few intervals are chosen, again only the linear
part of the correlation, and hardly that, will show.

The method of discretisation used also has a great impact on the results. The
perhaps most straightforward approach is to find the maximum and minimum value
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of the attribute in the data and then evenly divide this range into a number of
bins. However, this results in a rather unstable measure, in the sense that it is very
sensitive to noise and outliers in data. The distributions being modelled are often
both non-symmetric and multi-modal, and have a few outliers that lie far from the
rest of the data points. This has the effect that most bins will have a probability
close to zero, and the effective resolution of the grid is greatly reduced. Also, using
the measure over different periods of time in the series, where different outliers give
different maximum and minimum values, will give very different results.

A better way to quantise the variables range is to use histogram equalisation.
When discretizising the marginal distributions, the limits between bins are set so
that all bins contain the same number of data points. This gives us a much more
stable measure. It is less sensitive to both skewness and outliers and the resulting
grid uses the highest resolution in the areas where there are most data points.

Another common simplifying assumption about the distributions is that they
are Gaussian. This results in a measure where a linear correlation is assumed,
and it is only possible to detect linear correlations in the data. To derive an
expression for the mutual information between Gaussian variables, we can start
from an expression of the entropy for a Gaussian distribution. The entropy of an
n-dimensional Gaussian distribution can be written as

h(X1, X2, . . . , Xn) =
1
2

log(2πe)n|C| (4.10)

where |C| denotes the determinant of the covariance matrix. Using equation 4.6 and
4.10, it is easy to calculate the mutual information for Gaussian distributions. When
calculating the mutual information under these assumptions, the only parameters
needed are the means and variances of the two variables and the covariance between
them, all easily estimated from data.

Naturally, there is a very close relation between the mutual information based on
Gaussian distributions and the common linear correlation. The mutual information
can be written as

I(X ;Y ) =
− log(1− ρ2)

2
(4.11)

Thus, the mutual information is in this case just a scaling of the absolute value of
the correlation coefficient to a range between zero and infinity. Note however that
we no longer have any notion of direction in the correlation measure.

The measures described above are general correlation measures. If we are work-
ing with sequential data, the correlation is usually measured as a function of the
time shift between the series. This can then be plotted as a correllogram for visual
inspection or used for automatic generation of dependency graphs.

The Mutual Information Rate

Let us now have a look at how we can extend the notion of mutual information to
efficiently find dependencies between time series. Time series are sequential data;
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data that evolve in some random but prescribed manner. Simply from the statement
that we are dealing with time series, we can make some very reasonable assumptions
about the dependency structure of the data. This basic consideration can be used
to construct a correlation measure specific for sequential data, unlike the general
measures described in section 4.2 [Gillblad and Holst, 2001]. The resulting measure
is a more sensitive and accurate measure of the dependencies in time series.

To construct such a measure, we will start from, loosely speaking, an expression
for the uncertainty of a sequence which corresponds to the entropy of a single
variable. If we have a sequence of n random variables, this uncertainty can be
defined as how the entropy of the sequence grows with n. This is called the entropy
rate Hr(X) of the process X , and can be defined in two ways,

Hr(X) = lim
n→∞

1
n
H(X1, X2, . . . , Xn) (4.12)

Hr(X) = lim
n→∞

H(Xn|Xn−1, Xn−2, . . . , X1) (4.13)

The definitions in 4.12 and 4.13 correspond to two different notions of the entropy
rate. The first is the per symbol entropy of the n random variables, and the second
is the conditional entropy of the last variable given the past. The two notions are
equal in the limit if the process is stationary. Although the first is perhaps more
common, here we will use the second notion since it will make the derivations more
natural. The final results are the same for both expressions.

Based on the entropy rate, we can construct a measure of the mutual information
rate. It can be defined as

Ir(X ;Y ) = lim
n→∞

I(Xn|Xn−1, . . . , X1;Yn|Yn−1, . . . , Y1) (4.14)

corresponding to the second notion of entropy rate defined in equation 4.13. This
can be seen as a measure of the total dependence, or the total amount of information
in common, between sequence X and Y. To relate it to the entropy rate, we can
also write the mutual information rate as

Ir(X ;Y ) = Hr(X) +Hr(Y )−Hr(X,Y ) (4.15)

This can be derived directly from equation 4.14 using expression 4.13. Informally,
it can be understood by considering the entropy rate of a sequence as analogous to
the entropy of a stochastic variable and then applying equation 4.6.

Now we have a mutual information rate expressed in the entropy rates of the
two sequences. This way, the mutual information rate measures the complete de-
pendence between the sequences. In the limit, the shift between the sequences is
irrelevant. Working with finite sequences though, the entropy rate of equation 4.12
or 4.13 is impossible to estimate perfectly, since the distributions used in the calcu-
lations contain infinitely many variables. When we restrict ourselves to the use a
finite number of variables, the shift inevitably becomes important. Also, for some
applications, we would actually like to have a localised measure that measures the
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direct dependence between one sequence and the other with a specific shift between
them.

We can make a reasonable estimate using a Markov assumption, i. e. we assume
that the process has a limited memory so that the value of a variable is dependent
only on the closest earlier values. A first order Markov assumption, or assuming
that the value of the process only depends on the previous value, can be written as

P (Xn|Xn−1, Xn−2, . . . , X1) = P (Xn|Xn−1) (4.16)

This is a very reasonable assumption for many processes, at least as an approxi-
mation. A second order or higher Markov assumption can of course also be made,
but the amount of data required to estimate the joint distributions will increase
significantly.

When we make the Markov assumption, we also have to take into account the
shift of the sequences. If we denote this shift d, using a first order Markov assump-
tion and assuming stationary sequences, the mutual information rate Ir(X ;Y ; d),
can be simplified to entropies of joint distributions as

Ir(X ;Y ; d) = H(Xn|Xn−1) +H(Yn|Yn−1)−

H(Xn, Yn−d|Xn−1, Yn−d−1)

= H(Xn, Xn−1)−H(Xn) +H(Yn, Yn−1)−H(Yn)−

H(Xn, Yn−d, Xn−1, Yn−d−1) +H(Xn, Yn−d) (4.17)

using equation 4.16, H(Xn−1) = H(Xn) and the fact that H(X |Y ) = H(X,Y ) −
H(Y ) [Cover and Thomas, 1991]. The largest joint distribution that needs to be
estimated contains four variables, which can be rather difficult depending on the
model of the distribution used. Making a second order Markov assumption leads to
a largest distribution of six variables, a third order assumption eight variables and
so on, which might make them very difficult to reliably estimate from reasonable
amounts of data.

To increase our understanding of this approximation of the mutual information
rate, we can rewrite the expression in equation 4.17 to a sum of separate informa-
tions between distributions that are not conditional as

Ir(X ;Y ; d) = I(Xn, Yn−d;Xn−1, Yn−d−1) + I(Xn;Yn−d)−

I(Xn;Xn−1)− I(Yn;Yn−1) (4.18)

Thus the mutual information rate can be interpreted as the information between
(Xn, Yn−d) and (Xn−1, Yn−d−1) plus the information in Xn about Yn−d, then sub-
tracting both the information in Xn about Xn−1 and in Yn about Yn−1. The
second term of the expression, I(Xn;Yn−d), is the normal mutual information mea-
sure. When both sequences X and Y are completely memoryless, the information
rate reduces to the mutual information. The last two subtractive terms have a noise
reducing property when plotting the correllogram, subtracting each series own in-
formation rate, and the first term adds an estimate of the joint information rate of
the sequences.
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Once again, like in section 4.2, the distributions can be modelled by discretis-
ing the values using a multi-dimensional grid. First each marginal is discretised,
and then two and four dimensional grids are constructed for the joint distributions
based on these marginal grids. With this method, using M bins on the marginal
distributions leads to M4 bins when estimating the joint distribution of four vari-
ables. Using a second order Markov assumption, this estimation requires M6 bins.
Therefore, a first order Markov assumption is necessary, except perhaps when there
is an extremely large amount of available data. Still, the value of M needs to be
kept low to keep the number of bins in the joint distributions as low as possible.
This might in turn result in a measure with too low resolution on the marginal
distributions to be able to detect the dependencies in the data at the same time
as the joint distributions suffer from random effects due to too few available data
points.

Instead of using bins, Gaussian distributions can be used, resulting in a linear
measure tailored for time series. All entropies are calculated using equation 4.10,
and the distributions themselves are easily estimated from data. This is a much
more robust measure; it requires much less data to estimate these Gaussians reliably
than the use of a grid. The drawback is of course that still essentially only linear
dependencies can be discovered.

All in all, the mutual information rate is a sound and relatively easily calculated
measure of dependence in a series. It usually produces significantly better results
than the general measures of section 4.2, since it takes the sequential structure
of the data into account. The main drawback is that it needs more data to be
estimated reliably. The Markov assumption also introduces another consideration.
Dependencies that are visible at several shifts between the sequences will be handled
correctly if this spread of the dependence is dependent on the Markov properties
of the series. If the sequences on the other hand interact at two or more speeds
this will not be considered and only the strongest correlation will show. However,
in practise this may often be sufficient.

Test Results

The described correlation measures have been tested on both synthetic test data
and real data from mainly two different process industries, a paper mill and a
chemical production plant.

Results on Synthetic Data

Synthetic data were generated for testing purposes and to illustrate the effects of
the different models. The process generation model is depicted in figure 4.1, where
x(n) and y(n) are random time series generated independently from each other.
From x(n), two new time series are generated, one that is delayed 17 time steps
and multiplied by a factor of 2, and one that is delayed 4 time steps and multiplied
with a factor of 5. The sum of these series as well as y(n) multiplied by the factor
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5 is the output of the model, called z(n). The original series x(n) can then be
compared to the output series z(n), trying to detect the correlations. Using this
model, z(n) is clearly correlated with x(n) at both time delay 4 and 17, the second
correlation being somewhat weaker than the first. y(n) represents additive noise to
the output signal.

x(n)

z−17

z−4

y(n)

z(n)
2.0

5.0
5.0

Figure 4.1: The model generating the synthetic data.

The top left diagram in figure 4.2 depicts the correllograms generated by the lin-
ear mutual information, i. e. using the mutual information with Gaussian distribu-
tions. The x-axis represents the delay between the series and the y-axis the degree
of correlation. A thin line in the centre of the diagram shows delay 0. The diagram
clearly shows a peak, although not very distinct, at delay 4. This corresponds well
to the process generation model. However, the other delay in the model of 17 does
not show up as a peak in the diagram. Using the linear version of the mutual infor-
mation rate, the second peak is clearly detectable. This is shown in the top right
of figure 4.2. In comparison, the mutual information rate produces a much sharper
and more exact diagram than the mutual information, showing distinct peaks at
both delay 4 and delay 17, the peak at seventeen being lower than the peak at 4.
Looking at the process generation, this is what we would expect the correlation
measure to produce.

In the lower two diagrams of figure 4.2 the correllograms from the binned version
of the mutual information and the mutual information rate are shown. In both
cases, 20 bins were used on the marginals. The binned mutual information looks
much the same as the linear mutual information, not detecting the second, weaker
correlation at delay 17. The binned mutual information rate detects both peaks,
although not very clearly. There is a large amount of noise and artifacts present,
resulting from the binning of data. It is not very surprising, however, that the linear
version of the measure performs better here since there are only linear dependencies
present in the data.

The generated series x(n) and y(n) are both first order Markov processes. Since
the mutual information rate measure used here is based on a first order Markov
assumption, a good result using the mutual information rate on these series is not
that surprising. The improvement using the mutual information rate instead of the
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Max: 0.563097, delay 4
0.61940

0.0
-20 20Attrs 1 & 2

Max: 0.300849, delay 4
0.33093

0.0
-20 20Attrs 1 & 2

Max: 0.510929, delay 4
0.56202

0.0
-20 20Attrs 1 & 2

Max: 0.0471683, delay 4
0.05188

0.0
-20 20Attrs 1 & 2

Figure 4.2: Results on synthetic data.

mutual information would probably be lower if the processes were of higher order.

Results on Industrial Process Data

The measures presented here have all been used on several real data sets, mainly
from a paper mill and a chemical plant. Here we will present a couple of examples,
both taken from the chemical plant application. Only the linear versions of the
measures are shown since they proved to be more useful than the binned versions.
The names of the attributes were given as short abbreviations to not be directly
recognisable, where an X means a measured variable, C a controlled variable and
Y a significant output variable. The delay is measured in minutes.

The top left diagram of figure 4.3 shows the linear correlation between the mea-
sured variable X3 and the controlled variable C63. It is an example of a well
behaved, linear correlation with a short and reasonable time delay. The correl-
logram shows just one clear peak at delay −5, indicating that this probably is a
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real correlation between the attributes and not produced by artifacts in the data.
The mutual information rate correllogram for the same attributes in the top right
diagram of figure 4.3 shows the same behaviour. It is a bit more peaky and shows
much lower correlation, but the peak is at almost the same place, delay −6, as in
the mutual information correllogram.

Max: 3.30524, delay -5
3.63576

0.0
-400 400Attrs 4 & 78

Max: 0.0829472, delay -6
0.09124

0.0
-400 400Attrs 4 & 78

Max: 0.138324, delay -400
0.15215

0.0
-400 400Attrs 80 & 61

Max: 0.0326926, delay 2
0.03596

0.0
-400 400Attrs 80 & 61

Figure 4.3: Results on chemical plant data.

In the lower left diagram of figure 4.3 the linear mutual information between at-
tribute X48 and Y is shown. The correllogram is very smooth, although somewhat
low, but the measure is obviously fooled by some general trend in the data since
it is constantly increasing with decreasing values of the delay. The maximum is at
−400, simply because that is the chosen plot range, and is a too long delay to be
considered reasonable in this case. The mutual information rate on the other hand,
shown in the lower right diagram of figure 4.3, shows a clear peak at delay 2. That
is a plausible value of the delay between the sequences, although the value of the
correlation is rather low. The information rate diagram is not at all as smooth as
the mutual information, showing several small spikes which are very likely effects
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of noise and oddities in the data.
Generally, the relationship between the mutual information and the mutual

information rate is the same as in these two examples. The information rate diagram
shows less correlation, is more peaky and also more sensitive to noise than the
mutual information.

Conclusions and Practical Considerations

Both the mutual information and the mutual information rate suffer from a ten-
dency to be fooled by random effects in sequential data, the information rate some-
what less so than the mutual information. One useful quality though is that the
measures are not always fooled by the same behaviour in data, which makes reliable
dependency derivation easier.

As discussed earlier, one difference between the histogram model and the linear
model (using Gaussian distributions) is that the histogram model can potentially
find non-linear relations which the linear model cannot find. On the other hand,
the histogram model is more complex and therefore more sensitive to noise and
random fluctuations. The linear model on its side is sensitive to extreme values in
a way that the histogram is not. If one of the series has a highest peak somewhere
and the other series also has an extreme value at some point, selecting a delay
that aligns those extreme values will give a strong peak in the correllogram, almost
regardless of how the series behaves relative to each other at other times. This is
a problem both for the mutual information and the mutual information rate. It
introduces a risk that the wrong delay between the series is selected due to purely
random extreme values, and of course that the correlation might seem stronger than
it actually is. Because of this both kind of diagrams could be used and a feature
should hopefully give some evidence in both of them if it is significant.

A similar trade-off exist between the mutual information diagrams and those
showing the mutual information rate. Using mutual information or the normal
correlation coefficient between time series tends to give a too high value of the
correlation. This happens because that if the time series moves slowly enough, the
relation between the series at one point in time is likely to be maintained for several
time steps. This means that pure random coincidences between the series gets mul-
tiplied with a factor depending on how slow the series are, making that correlation
seem more significant than it is. The mutual information rate on the other hand,
which only considers the new information in every step, correctly compensates for
that effect but instead requires a more complicated model to estimate, which makes
it more sensitive to noise.

In practise it turns out that the diagrams using histograms have quite little
interesting variation, whereas the linear diagrams show more features, some of
which are clearly anomalous. As expected, the diagrams with information rates
show much lower levels of correlations and more emphasised peaks, i. e. not so
smeared out over several different delays, but also more noise in the form of random
spikes in the correllogram.
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All in all it seems that the linear information rate is the one that gives the most
reliable indications of correlations between the time series. However, due to the
different trade-offs, a general rule is that a feature, a peak, should appear using at
least two of the methods to be considered significant.

4.3 A Note on Learning Graphical Structure from Data

Learning the graphical structure from data is one of the fundamental tasks for data-
driven graphical modeling. However, as the number of possible network structures is
exponential in the number of attributes, finding the correct structure is NP-hard.
Several approaches have been proposed, usually based on some kind of heuristic
search through the space of possible graphs. Many of these methods are quite
complex and difficult to implement, but if we are only interested in a suitable
description of the joint distribution and not an explicitly correct description of
causal or correlational relationships, rather simple solutions can work quite well in
practise.

As we have already briefly touched upon in chapter 3, such a simple method is
the greedy generation of a probabilistic dependency tree [Chow and Liu, 1968]. If
we start by finding all pairwise correlations as described earlier in this chapter, we
can find a suitable tree structure by sorting the dependencies according to strength,
and then adding one dependency at a time, starting with the strongest one. If the
addition of a dependency to the graph generates a cycle, we skip this edge and
proceed with the next dependency.

The result is a graph that often describes the joint distribution rather well. If
we combine this with a mixture model, and generate one tree for each component
in the mixture, we often end up with a rather good model, capturing most impor-
tant features of the joint distribution. The mixture may be unsupervised, or, as
is commonly the case in practical applications, supervised, where the component
indicator class typically is a specified mode of production, product type etc. . This
is the standard modeling assumption for many scenarios where we have applied the
HGMs of chapter 3.

If we want to learn causal networks, useful for describing the actual causal rela-
tionships in data, the situation is a litte more difficult. Pearl [Pearl, 2000] provides
algorithms that potentially can find such a structure, but their comutational com-
plexity makes them very difficult to use in practise. An alternative could be to use
an ordering-based search through all possible combinations of causal dependencies
[Teyssier and Koller, 2005; Friedman and Koller, 2003], where we assume an initial
ancestral ordering of the attributes which we then modify according to the fitness
of the best possible causal network that fits this ordering. Finding this network
given an ordering is considerably less computationally demanding than without,
and the search therefore becomes of reasonable complexity.

Although finding the causal dependencies of real-world industrial data would
be highly useful in order to understand the processes generating the data, the size
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and complexity of the data sets are currently prohibitive for these methods, and
remains an important area of future research.

4.4 A Note on Finding the Number of Components in a

Finite Mixture Model

Assessing the number of components, or order, of a finite mixture model is an
important problem that is yet to be completely resolved. If the components are to
be interpreted as meaningful clusters in data, assessing the number of components,
or clusters, is obviously important. When using a mixture model purely for density
estimation, without regard to possible interpretations of the components, assessing
the order of the model is still important for regularisation purposes to assure proper
generalisation perfomance of the model. The problem is very relevant to automatic
generation of the structure of the Hierarchical Graph Mixtures discussed in chapter
3, but as it is outside the scope of this text we will here only give a brief introduction
to the problem.

One straightforward approach is to estimate the number of modes of a distri-
bution [Hartigan and Mohanty, 1992; Fisher et al., 1994]. Visualisation methods,
such as the modified percentile plot [Fowlkes, 1979], can also be used to help the
user identify a suitable number of components. However, the components of the
mixture have to be well separated in the data to be detectable with these methods.
This is somewhat problematic, as a mixture distribution can be unimodal if the
components are not far enough apart.

A somewhat more direct approach would be to compare the likelihood of a num-
ber of proposed models given the data. For example, we can perform a hypothesis
test, using the likelihood ratio between two models with different numbers of com-
ponents as a test statistic [Duraurajan and Kale, 1979; Polymenis and Titterington,
1999].

Another useful approach is to assess the order of a mixture by comparing the
likelihood of models penalised with the number of parameters of the model. In
practise, this amounts to finding the model for which the penalised log-likelihood
lp is minimised, where

lp = log(P (D|M)) + fp(M) (4.19)

P (D|M) represents the likelihood of the data D given the model M , and fp(M)
the penalty for model complexity. Commonly, two forms are used for fp(M). The
first is Akaike’s information criteron (AIC) [Akaike, 1974], where fp(M) is equal
to the number of free parameters of the model. However, the use of this measure
has a tendency to overestimate the correct number of components. Therefore, the
Bayesian information criterion [Schwartz, 1978] is perhaps more commonly used.
It is similar to the AIC, but multiplies the penalty term fp(M) used in the AIC by
the logarithm of the number of examples we calculate the log-likelihood from. This
increases the penalty term, and models of lower complexity tend to be selected.
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Although these methods can be useful in some modelling situations, how to
hierarchically determine the presence of a mixture and its correct number of com-
ponents in a HGM setting remains an area for future research.





Chapter 5

Incremental Diagnosis

5.1 Introduction

In many diagnosis situations it is desirable to perform a classification in an iterative
and interactive manner. All relevant information may not be available initially but
some of it must be acquired manually or at a cost. The matter is often complicated
by very limited amounts of knowledge and examples when a new system to be di-
agnosed is initially brought into use. Other complicating factors include that many
errors arise because of misuse or wrongly setup equipment, and incorrect answers
and inputs to the diagnosis system. Here, we will describe a novel incremental
classification system based on a statistical model that is trained from empirical
data, and show how the limited available background information can still be used
initially for a functioning diagnosis system [Gillblad and Holst, 2006; Gillblad et al.,
2006].

5.2 Practical Diagnosis Problems

Real world diagnosis is often complicated by the fact that all relevant information is
not directly available. In many diagnosis situations it is impossible or inconvenient
to find all feature values to a classifier before being able to make a classification,
and we would therefore like the classifier to act as an interactive decision support
system that will guide the user to a useful diagnosis.

A typical example of this could be the diagnosis of faults in a vehicle that needs
servicing. The mechanics usually need to check parts and subsystems until the
cause of a malfunction is discovered. This procedure is often very time consuming,
involving inspection of parts and systems that can be difficult to get at and to
evaluate. It may also require much experience and training to know what to look
for. The scenario is similar in e. g. many cases of medical diagnosis, where some
information, perhaps the results of certain lab tests, must be acquired manually at
a cost that can be measured in both monetary terms and in terms of a patient’s

83
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well-being.
To deal with these issues, we have constructed an incremental diagnosis system

that is trained from empirical data. During a diagnosis session it evaluates the
available information, calculates what additional information that would be most
helpful for the diagnose, and asks the user to acquire that information. The process
is repeated until a reliable diagnose is obtained. This system both significantly
speeds up the diagnosis and represents knowledge of best practice in a structured
manner. Since knowledge about how to perform efficient diagnostics of this kind of
systems often is acquired in time by people working with it, the diagnose system is
potentially very helpful for preserving diagnostics capabilities in spite of personell
turnover and to increase the diagnostic capabilities of novice users [Martinez-Bejar
et al., 1999].

We will here present a system for incremental diagnosis where the issues above
are addressed. It was originally created for diagnosis of faults in a variety of tech-
nical equipment used by the armed forces.

Practical Incremental Diagnosis

Using computers to support the diagnostic process is one of the classical applications
of artificial intelligence. The methods developed so far are usually expert-systems
related and rule-based [Heckerman et al., 1992a; Veneris et al., 2002], neural net-
work related [Holst and Lansner, 1993; Stensmo, 1995; Wichert, 2005], or based on
probabilistic methods [Heckerman et al., 1992b; Kappen et al., 2001; PROMEDAS,
2002]. The rule-based systems are in essence implementations of diagnostic proto-
cols, specified in a large part manually through expert knowledge and to a lesser
degree by learning from examples.

The approach works well in many diagnostic situations, especially in areas where
expert knowledge is easily extracted and where the system does not need to adapt
to new classification examples. However, rule based systems often suffer from a very
rigid decision structure, where questions have to be asked in a certain order reflect-
ing the internal representation. This might be very problematic in practise, where
the order of which data can be retrieved is often arbitrary. Rule-based systems also
suffer from the complexity of the rules that need to be implemented, resulting in a
high number of conditions that need to be described, and from problems in dealing
with uncertain sources of evidence. These issues can be solved, at least to a certain
degree, by basing the diagnosis system on a probabilistic model.

Creating a useful probabilistic diagnosis system may not be overly complicated,
but there are a few considerations and requirements worth keeping in mind. First,
while being robust to erroneous and uncertain inputs, it is important that the
number of questions necessary to reach a classification is minimised. In practise,
this demand must usually be formulated somewhat differently in that we actually
want to minimise the total cost of acquiring the information necessary to reach a
classification, not just the number of questions.

No matter what methods are used in the diagnosis system, we have to decide
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whether to base the system on available expert knowledge, on examples from earlier
diagnosis situations using a more data-driven approach, or on both. If we want to
be able to update the system as new examples are classified, a data-driven approach
is preferable. However, as we mentioned earlier, quite often there are no examples
of earlier diagnoses available when a new system is taken into use. This means that
we have no choice but to try to incorporate some expert knowledge into the system
so that it is at least somewhat useful at its introduction.

Although it is quite possible to encode expert knowledge into the structure of a
probabilistic model, such as a Bayesian Belief network [Pearl, 1988; Jensen, 1996],
we will use a slightly different approach by representing this expert knowledge as a
special form of examples. We will refer to a regular example of a diagnosis, i. e. the
known features and the correct diagnose from a practical diagnosis situation, as a
case. The special form of examples for representing expert knowledge, prototypes,
can be seen as generalisations from typical cases [Schmidt and Gierl, 1997]. Each
prototype represents a typical input vector for a certain diagnose. A number of
prototypes can be used to efficiently encode prior knowledge about a system. How-
ever, as cases and prototypes do have rather different interpretations, the diagnostic
system must be able to account for this difference.

The approach also allows us to let the diagnostic system act as a persistent
repository of knowledge that can continuously incorporate information from new
classification cases, which may be difficult in rule-based systems. As the system
gathers more information, some of the acquired cases may also be generalised by an
expert into prototypical data, which could be highly beneficial for both classification
performance and system understanding.

Another very practical requirement on the diagnostic system is that the proba-
bilistic model in many cases must be able to handle both continuous and discrete
inputs. This complicates matters somewhat, as we will see in later in the descrip-
tion of the models, especially if there are constraints on the time the system can
use to calculate which unknown attribute to ask a question on. We also have to
consider the fact that some attributes are grouped, in the sense that they are all
acquired at the same time, by the same measurement. This complicates question
generation somewhat, but can be taken care of within the model.

5.3 Probabilistic Methods for Incremental Diagnosis

As an alternative to rigid decision tree models for incremental diagnosis, we can
use a probabilistic model [Stensmo et al., 1991; Wiegerinck et al., 1999; Kappen
et al., 2001]. Instead of modelling the decision tree directly, we model the relations
between input data and the diagnosis by describing them in a probability model.
Let us start again from the Naïve Bayesian classifier described in chapter 3. The
probability of a class Z, where each class represents a certain diagnose, given a set
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of inputs X = X1, X2, . . . , Xn can be written as

p(Z|X) =
p(Z)p(X|Z)

p(X)
(5.1)

where p(X) fills the role of a normalization constant. Depending on the form of
the conditional distributions, estimation of these distributions and calculation of
the above expression can be very difficult in practise. A very common simplifying
assumption is to assume conditional independence between all input attributes X
given the class attribute Z. The complete distribution can then be described as a
product of the probabilities of the individual attributes,

p(Z|X) ∝ p(Z)p(X|Z) = p(Z)
n
∏

i=1

p(Xi|Z) (5.2)

The distribution for each attribute given a specific class, P (Xi|Z) is significantly
easier to estimate, due to the relatively low number of free parameters. This model
is usually referred to as a Naïve Bayesian classifier [Good, 1950]. It often gives
surprisingly good classification results although the independence assumption is
usually not fulfilled, and by its simplicity it is very suitable as a starting point for
statistical incremental diagnosis systems.

Creating an incremental diagnosis system based on a statistical model such as
the Naïve Bayesian Classifier is relatively straightforward. Essentially, we would like
to perform three operations on the model. The first is to find the class distribution if
we know the values of a number of input attributes. This being an inherent property
of a classification model, we will assume we can perform this. Second, we would
like to calculate how much each unknown input attribute is likely to contribute
to the classification given a number of known attributes. Finally, we would also
like to be able to estimate how much each known input attribute contributed to a
classification to provide feedback to the user. First, let us have a look at how this
can be formulated without considering the details of the statistical model.

We will approach the incremental diagnosis problem as the task of reducing
the uncertainty of the diagnosis. To determine the probable impact of gaining
information about a currently unknown attribute, we can calculate the expected
reduction in entropy in the class distribution if we learn the value of the attribute.
This is a rather common approach, used e. g. in [Kappen, 2002] and [Rish et al.,
2005] and is the traditional approach used within our research group. If Z is the
class distribution, x = {X1 = x1, . . . , Xn = xn} the already known input attributes,
and Y ∈X the unknown attribute we want to calculate the impact of, we can write
this entropy gain GH(Y ) as

GH(Y ) = H(Z|x)− EY [H(Z|x, Y )] (5.3)

where H(X) denotes the entropy [Shannon, 1948] of a stochastic variable X and
EY the expectation with regards to Y . This expression is guaranteed to be equal
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to or larger than zero since conditioning on the average reduces entropy. If the
unknown attribute Y is discrete, the expression becomes

GH(Y ) = H(Z|x)−
∑

yj∈Y

p(Y = yj |x)H(Z|x, Y = yj) (5.4)

There is no requirement that Y must be discrete. However, calculation of the ex-
pectation in equation 5.3 may require numerical calculation of a rather complicated
integral. The expression can in some situations be estimated with limited compu-
tational effort. If not, as long we can draw random numbers from p(Y |x), we can
always resort to calculating the expression through using a Monte-Carlo approach,
where we draw N samples yi from p(Y |x) and approximate the entropy gain by

GH(Y ) = H(Z|x)−

∑N
j=1 p(Y = yj |x)H(Z|x, Y = yj)

∑N
j=0 p(Y = yj |x)

(5.5)

This expression usually converges quite fast, but may still require prohibitively
extensive computational resources. Also note that for none of these expressions
there is in fact any restriction on the class attribute Z to be discrete as long as we
are able to effectively calculate the entropy of the distribution.

Accounting for the costs associated with performing the queries is very straight-
forward as long as they are all measured at the same scale. If the cost of acquiring
an unknown attribute is C(Y ), we can calculate the cost weighted entropy gain
GHC as

GHC = GH(Y )/C(Y ) (5.6)

This can then be used to rank which attributes to query instead of the entropy
gain. The expression is similar, but not equal to what is often referred to as the
value of information, usually defined as the expected reduction in cost compared
with making a diagnose without the information [Howard, 1966].

Also note that in practical applications we may need to consider attributes to be
grouped, in the sense that their values are acquired together. As an example, this
could be a number of values that are provided by a time-consuming lab test. In this
case, the cost of acquiring all these values must be weighed against the expected
reduction in entropy of acquiring all the attributes,

GH(Y ) = H(Z|x)− EY [H(Z|x,Y )] (5.7)

where Y represents these grouped unknown attributes. Calculation of this expres-
sion may however be very time consuming in the case Y contains many attributes,
as we need to evaluate the expectation over all combinations of outcomes of the
variables in Y .

To provide an estimate for the explanation value of a certain known attribute,
i. e. how much knowing the value of this attribute contributes to the classification,
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we can calculate the difference in entropy of the posterior for class Z when the
attribute is known and when it is not. If Y is the attribute we would like to
calculate the explanation value for and X all other known attributes, we define
this explanation value EH(Y ) as

EH(Y ) = H(Z|x)−H(Z|x, Y ) (5.8)

This expression does not however reflect the contribution to the classification of a
certain attribute if there are dependencies between input attributes.

The user may also want to know how much each known attribute contributed
to the certainty of the class having a specific outcome. This can be approximated
as

Ep(Y ) = |p(Z = z|x)− p(Z = z|x, Y )| (5.9)

that is the absolute value of the change in probability of class z knowing attribute
Y or not.

It is worth noting that although the above expressions are conceptually simple,
their computation can get intractable for some statistical models [Kappen, 2002].

5.4 Incremental Diagnosis with Limited Historical Data

Let us now construct a statistical model for incremental diagnosis that can effec-
tively make use of limited historical data. Although using a statistical model, we
are here going to take an approach that is not that different from an instance
based learner, where each new pattern is compared to all examples in the avail-
able historical data to find the most similar ones [Cover, 1968]. Assuming a clear
distinction between prototypical and case data, the former describing a typical,
distilled instance of a class, and the latter an example of a diagnostic case, we let
each prototype form the basis of a component in a mixture [McLachlan and Peel,
2000], a weighted sum, of Naive Bayes classifiers. That is, if there are m prototypes
in the data, we create a mixture of m simpler classifiers, whose classifications are
then combined (see figure 5.1). This also allows us to effectively describe classes
that manifest themselves in rather different manners in data, as long as there are
available prototypes that describe these different situations.

This structure can easily be described as a hierarchical graph model (see chapter
3), represented as a mixture of mixtures of graphical models. More formally, if
X = X1, . . . , Xn denote the input attributes, the posterior class distribution of Z
can be written as

p(Z|X) ∝
∑

z∈Z

p(Z = z)
∑

k∈Pz

(

πz,k

n
∏

i=1

pz,k(Xi|Z = z)

)

(5.10)

where Pz is the set of prototypes that are labelled with class z, and πz,k denotes
the mixing proportion corresponding to prototype k for class z. To arrive at the
actual distribution p(Z|X), we only need to normalise over Z in equation 5.10.
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Class

Prototypes Prototypes

p1 p2 p3 . . .

. . . . . .

x1 x2 x3 x1 x2 x3 x1 x2 x3

Figure 5.1: An overview of the model structure. Each class is associated with a
number of prototypes, p1, p2, . . .. The prototypes all use the same input attributes
x1, x2, . . ., each prototype corresponding to a single prototypical entry in the his-
torical data.

Equation 5.10 relates to four distributions. First, P (Z|X), the posterior class
distribution conditioned on X and the prototype and case data. Secondly, P (Z =
z), the class distribution conditioned on prototype and case data. Furthermore,
πz,k is an assumed distribution over prototypes k belonging to class z, and finally
pz,k(Xi|Z = z) is the distribution of Xi for prototype k of class z and again con-
ditional on prototype and case data. A simplistic attitude to handling equation
5.10 is to estimate the quantities of the right hand side of 5.10 from prototype
and case data and to plug the estimates into equation 5.10. A more principled
approach is to make a Bayesian inference of the class distribution, which leads to
a posterior distribution for the class distribution. Since the class distribution will
ultimately be used for expected utility decision making, all probabilities should
be estimated using means over the posterior. For estimates of 5.10, this means
that the right hand side quantities are plugged in to give the mean estimate of
P (Z|X). For the discrete distributions (all distributions on the right hand side
of 5.10 except pz,k(Xi|Z = z) for continuous attributes Xi) the mean estimator is
the Laplace estimator. Laplace’s estimator is used to get the mean estimate of a
discrete probability distribution from occurrence counts and a uniform prior over
the set Ld = {x :

∑

j xj = 1, xi ≥ 0, i = 1, . . . , d} of possible discrete probabilities.
The estimator for xi with counts ni is xi = ni+1

n+d , i. e. the estimate is the relative
frequency after adding one to each occurrance count.

For the case of a continuous attribute, we will assume that the conditional
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distribution pz,k(Xi|Z = z) is Gaussian,

pz,k(Xi|Z = z) =
1

√

(2π)Σi
exp

(

−
(xi − µi)2

2Σi

)

(5.11)

where µ is the mean and Σ the variance of the distribution. We will here take
the standard estimates of mean and covariance and plug into the density function
formula for the normal distribution. Technically, the mean estimator in this case is
not a normal but a t-distribution [Gelman et al., 2003], since we average over a long
tailed distribution for σ2. However, for reasonably large samples, the difference is
small. Also, we will assume that we in practise usually will have an estimate of the
variance or the range of a variable based on domain knowledge. Note that setting
an estimated distribution to a normal distribution also means that an outlier can
dominate the naïve Bayes classification (because of the exponential decay of the
likelihood), so it is important to detect outliers and handle them appropriately.

Note that the use of Gaussian distributions can be avoided by discretising the
continuous attributes, which could be beneficial for computational complexity as
evaluating expression 5.3 is easier for discrete attributes. If an attribute is known to
operate within certain distinct regions, e. g. a temperature that can be considered
low, normal, or high, discretising it to these classes might be useful.

Let us now have a closer look at the parameter estimates. We start with the
mixing proportions πz,k. These essentially represent the relative importance of each
prototype within a class, where

∑

k∈Pz
πz,k = 1. They are set manually, and should

roughly correspond to the proportion of actual diagnosis cases that the prototype
usually represents within the class. Lack of knowledge of this corresponds to a zero
sample and with Laplace’s estimator a uniform distribution.

To arrive at an effective estimation procedure for the prior class distribution
p(Z) and the conditional attribute distributions pz,k(Xi|Z = z), we are going to
use a Bayesian approach as decribed above. We will however not present complete
derivations of the expressions used here, but would like to refer the reader to section
3.9. To be able to properly incorporate the prototypical data with the actual
cases, we are going to use a hierarchy of priors that will be estimated in turn
before we arrive at the final distribution. First, we will assume a non-informative
uniform prior, that is used to estimate a distribution from the prototype data.
This distribution in turn will, in a sense, be used as a prior for the estimation of
the actual distribution. Let us start with describing how this is performed for the
discrete distributions p(Z) and pz,k(Xi|Z = z).

In the case of the discrete class distribution Z, the parameter pz representing
the probability of each outcome z can be estimated through

pz =
ccz + η

(

cpz+θ
Cp+θ|Z|

)

Cc + η
(5.12)

where cpz and ccz are the number of outcomes z in the prototype and case data
respectively, and Cp and Cc the total number of examples in each of these data sets.
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|Z| denotes the total number of outcomes in Z. The parameter η represents how
much trust we put in the prior distribution estimated from the prototypes, while θ
can be interpreted as a kind of smoothing parameter for the prior distribution.

To be able to properly incorporate the prototypical data with the actual cases,
each conditional pk,z(Xi|Z = z) for a certain class and prototype is estimated from
corresponding cases using a prior distribution, in turn estimated from the specific
prototype. This estimation from a specific prototype uses a prior estimated from
all prototypical data, which in turn uses a non-informative uniform prior. Let us
walk through these estimations step by step, starting with the estimation of a prior
distribution based on all prototypes.

In the case pk,z(Xi|Z = z) is discrete, the parameter ppx representing the prob-
ability of each outcome X is estimated through

ppx =
cpx + 1
Cp + |X |

(5.13)

where cpx are the number of outcomes x in the data, Cp the total number of proto-
types, and |X | the number of outcomes in X . In the continuous case, we estimate
the parameters of a Gaussian as

µp =
∑

γ∈Dp

x(γ)/Cp (5.14)

Σp =
∑

γ∈Dp

(x(γ) − µp)2/(Cp − 1) (5.15)

where Dp represents the set of prototypes and x(γ) one prototype value.
Now, before we incorporate the case data, we will estimate the distribution

p0
z,k(Xi|Z = z), which represents the final parameter estimation in case there is no

case data available, and otherwise forms the basis of the parameter estimation from
case data. In the discrete case the parameter p0

x is estimated as

p0
x =

vkx + ppx/|Dp|

1 + 1/|Dp|
(5.16)

where vkx is an indicator variable that is one if the outcome is equal to x and zero
otherwise, and |Dp| the number of prototypes in the data. In the continuous case,
the parameters are estimated as

µ0 =
xk + µp/|Dp|

1 + 1/|Dp|
(5.17)

Σ0 = Σp (5.18)

where xk represents the value of X in prototype k. The mean of the distributions
varies with the prototype, while the variance is the same for all of them.
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To make efficient use of the case data, we want to use it for estimation in such
a way that each prototype distribution is updated in proportion to how likely it is
that each specific case was generated from it. In detail, the importance of each case
for a certain prototype k is weighted by the probability that the case was generated
from it by calculating the likelihood that each case was generated from prototype
k and normalising over the patterns within the class,

p(k|x) =
πk
∏n
i=1 pz,k(xi|Z = z)

∑

j πj
∏n
i=1 pz,k(xj |Z = z)

(5.19)

where x denotes a case pattern. The procedure can be viewed as performing one
step of the Expectation Maximisation algorithm for the mixture. The final expres-
sions for the parameters for a certain prototype k in the discrete case then become

px =

∑

γ∈Dc
p(k|x(γ))v(γ)

x + ψp0
x

∑

γ∈Dc
p(k|x(γ)) + ψ

(5.20)

where v(γ)
x is an indicator variable that is one if X = x and zero otherwise. Dc

denotes the set of cases and x(γ) case γ in this set. In the continuous case, the
parameters are estimated through

ck =
∑

γ∈Dc

p(k|x(γ)) (5.21)

µc =

∑

γ∈Dc
p(k|x(γ))x(γ)

ck
(5.22)

Σc =

∑

γ∈Dc
p(k|x(γ))(x(γ) − µc)2

ck
(5.23)

µ =
ckµ

c + ψµp

ck + ψ
(5.24)

Σ =
ckΣc + ψΣp + ckψ

ck+ψ (µc − µp)2

ck + α
(5.25)

where x(γ) is case value γ, and µ and Σ the final parameter estimates. In both the
discrete and continuous case, the parameter ψ represents how much trust we put
in the prototypes compared to the cases and can be expected to be set to different
values for different applications.

In summary, the estimations above follow a Bayesian scheme, but some approx-
imations were made that can lead to under-estimating the uncertainty.

Calculating the entropy gain as given by expression 5.3 and 5.4 is straightfor-
ward, as p(Y = yj|X) can be directly calculated from

p(Y |X) ∝
∑

z∈Z

p(Z = z|X)
∑

k∈Pz

πkpk(Z)pk(Y |Z) (5.26)
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where p(Z|X) is calculated from equation 5.10 using the known input attributes.
If there are continuous attributes represented by Gaussians present, the situation
is a little different, as we have to integrate over the attribute in question instead
of calculating the sum in equation 5.4. This can be solved by using a Monte-Carlo
approach, where a number of samples are generated from p(Y = yj |X) and used
to calculate the expectation. Another solution that produces very accurate results
is to sample a number of points from each prototype model, e. g. at equal intervals
up to a number of standard deviations from the mean.

Experiments

To evaluate the performance of the model, we have used one synthetical and several
real data sets containing both discrete and continuous attributes. Models were
estimated from data, and tested using noisy versions of correct input patterns,
both to evaluate the diagnostic performance and to find appropriate values for the
significance parameters between prototypes and cases.

When a diagnosis is performed, unknown attributes are incrementally set based
on the largest entropy gain. Thus, unknown attributes are set in the order in
which their contribution to the final hypothesis is maximised. The order in which
different attributes are set depends mainly on the significance ψ between prototypes
and cases. In addition, the significance η of the class distribution may also influence
the importance of specific attributes. Often only a few significant attributes need
to be known in order to obtain a final hypothesis, while remaining attributes are
redundant in the current context.

While attributes are not necessarily set strictly based on the entropy gain in
a real-world diagnosis scenario, since other factors may influence the choice of at-
tribute to set for the user, for testing purposes we will assume that they are. Also,
in a real world diagnosis scenario it is not necessarily important to determine at
what exact point in the answering sequence we should claim that we have a valid
hypothesis about the class. The user can usually determine this reliably just by
looking at a presentation of the class distribution, which also provides information
on uncertainty and alternative hypothesis. However, being able to signal to the
user that we have a valid hypothesis is naturally useful, and for testing absolutely
necessary as we need to be able to automatically decide when we have a relevant
classification.

A natural way of determining when we have reached a hypothesis is to see if
one class has significantly higher probability than the other classes. Unfortunately,
it is by no means easy to give a general expression for what constitutes a “signifi-
cantly higher” probability. The measure is also flawed in that it in practise often is
impossible to find one class with significantly higher probability, e. g. if two classes
are expressed in almost exactly the same way in the data. Instead, we can rely
on the calculated entropy gain for the unknown attributes. To reduce the number
of attributes that do not significantly contribute to the actual hypothesis, we have
introduced a thresholding parameter ξ. When the entropy gain for all unknown
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attributes is smaller than ξ, the hypothesis is considered final. This is an unbiased
measure of the validity of the hypothesis that does not suffer from the problems
discussed above.

In order to test the general performance of our model, we have performed several
series of experiments using data sets that contain discrete or continuous attributes.
In all of the experiments, we have measured the number of questions needed to
achieve a final hypothesis and the number of correctly diagnosed samples. In order
to reduce computational demands, the results of the diagnostic performance are
based on the average of no more than 10 runs to obtain statistical significance in
all of the experiments. Further, in some cases two (or more) classes in the datasets
contain nearly similar sets of known attributes, leading to ambiguous diagnoses. In
order to avoid such diagnoses, we allowed for the diagnostic model to use a first
and second trial, in which the first and second diagnoses of highest confidence were
tested against the target diagnosis.

Experiments on Discrete Datasets

We have here tested the diagnostic performance of our model when varying ξ, ψ
and η. For this purpose, three original datasets with discrete attributes were used.
The first dataset contains 32 classes of animals described by a total of 82 attributes.
The second dataset contains 31 classes of common mechanical faults that appears
in military terrain vehicles, described by 39 attributes. The third dataset contains
18 classes of common mechanical faults that appears in military tanks, described
by 83 attributes. While the first data set is artificial, the other data sets represent
real data on which the model will be used in practise.

These original datasets are completely clean, in the sense that they do not
contain any unknown attributes, or, as the data from a testing viewpoint also must
be interpreted as the true solutions, any incorrect attributes. In order to evaluate
our complete diagnostic model, synthetic prototypes and cases were extracted from
the original datasets. Prototypes and cases are here defined to contain both known
and unknown values. In addition, cases can also contain incorrect attribute values.

For each class, two prototypical samples were extracted directly from the origi-
nal datasets. Based on the complementary prior for each attribute, the value was
set as unknown or to the correct known value. The prototypes were then used
in the diagnostic model to create five synthetic cases for each class. Based on
the largest entropy gain, specific attributes were set using known values from the
original dataset. As mentioned earlier, cases can contain incorrect attribute val-
ues. Therefore, noise was introduced through setting 20% of randomly selected
attributes in each case to be set to a random value based on the prior for the
specific attribute.

Initially, two series of baseline experiments for each dataset were performed
while varying ξ. In both experiments, each one of the datasets were used as proto-
types. In the first series of experiments, the same dataset was used to directly set
the attribute values without noise. In the second series of experiments, a subset of
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the attributes (20%) were randomly selected to contain noise as described, while
remaining attribute values were set directly from the original dataset.

ξ Correct (%)
Trial #1

Correct (%)
Trial #2

Known
attributes

Without noise

4.7 × 100 3.13 3.13 0
4.7 × 10−1 100.00 0.00 5.03
4.7 × 10−2 100.00 0.00 5.69
4.7 × 10−3 100.00 0.00 6.34

4.7 × 10−4 100.00 0.00 7.19
4.7 × 10−5 100.00 0.00 7.91
4.7 × 10−6 100.00 0.00 8.66

With 20% noise

4.7 × 100 3.13 3.13 0
4.7 × 10−1 56.56 8.75 5.08
4.7 × 10−2 95.00 1.88 8.50
4.7 × 10−3 96.25 1.56 9.96

4.7 × 10−4 97.50 0.94 10.69
4.7 × 10−5 98.44 1.25 13.03
4.7 × 10−6 99.06 0.94 13.81

Table 5.1: The animal dataset. The table shows the diagnostic performance
achieved in one of two trials and the number of attributes needed to obtain a
final hypothesis when varying ξ.

When performing diagnoses in which all necessary attribute values are correct,
we observe from the results in table 5.1–5.3 that the number of attributes needed
to achieve a correct diagnosis is close to log2 n, where n is the total number of
attributes in the dataset. When 20% noise is used, we observe that ξ can be used
to improve the diagnostic performance on the first trial. Thus, the need for explicit
inconsistency checks for incorrect attribute values is reduced, since our diagnostic
model is able to find the correct diagnosis, using only a few more known attributes.
Further, if the diagnostic model is allowed to use a second trial, we observe that
it is possible to achieve a diagnostic performance of more than 95% in all of the
baseline experiments.

Similar to the baseline experiments, two additional series of experiments for
each one of the datasets were performed using extracted prototypes and cases. In
these experiments, diagnoses were performed when varying the parameters ψ and η
while keeping ξ = 4.7×10−5 fixed. In figure 5.2–5.4, the diagnostic performance on
each dataset and the number of known attributes needed for a final hypothesis is
shown. We observe that the significance of prototypes in general needs to be large
in order to obtain a diagnostic performance closer to the baseline experiments.
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ξ Correct (%)
Trial #1

Correct (%)
Trial #2

Known
attributes

Without noise

4.7 × 100 5.56 5.56 0.00
4.7 × 10−1 100.00 0.0 4.28
4.7 × 10−2 100.00 0.0 5.17
4.7 × 10−3 100.00 0.0 6.11
4.7 × 10−4 100.00 0.0 7.39
4.7 × 10−5 100.00 0.0 8.17
4.7 × 10−6 100.00 0.0 9.39

With 20% noise

4.7 × 100 5.56 5.56 0.00
4.7 × 10−1 65.56 7.22 4.28
4.7 × 10−2 93.33 2.78 7.46
4.7 × 10−3 97.78 1.11 8.89

4.7 × 10−4 98.33 1.11 10.46
4.7 × 10−5 99.44 0.56 11.39
4.7 × 10−6 98.33 1.11 12.90

Table 5.2: The tank dataset. The table shows the diagnostic performance achieved in
one of two trials and the number of attributes needed to obtain a final hypothesis when
varying ξ.

Further, we observe that the number of known attributes needed to obtain a final
hypothesis decreases when indicate that the number of known attributes needed to
obtain a final hypothesis decreases when ψ is large. Since all classes are uniformly
distributed, the overall diagnostic performance does not change significantly when
η is varied.

Experiments on Continuous data

We have also performed experiments using a dataset that contains both continuous
and discrete attributes. Samples in the dataset were extracted from the evaporation
stage of a paper mill. The dataset contains 11 classes with 6 samples each, specified
by 106 continuous attributes and 4 discrete attributes. Since prototypical samples
were unavailable, we used a synthetic set of prototypical samples with all attribute
values set to unknown, while using the whole dataset as cases in the model. A
fixed subset of the dataset was used to set attribute values when diagnostics was
performed.

Three series of experiments were performed in which we varied ψ and η. Since
the classes are uniformly distributed we did not perform any experiments varying
ξ. In the first series of experiments, the attribute values were set directly without
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ξ Correct (%)
Trial #1

Correct (%)
Trial #2

Known
attributes

Without noise

4.7 × 100 3.23 3.23 0.0
4.7 × 10−1 87.10 12.90 4.81
4.7 × 10−2 87.10 12.90 5.55
4.7 × 10−3 87.10 12.90 6.10
4.7 × 10−4 87.10 12.90 7.58
4.7 × 10−5 87.10 12.90 8.39
4.7 × 10−6 87.10 12.90 9.81

With 20% noise

4.7 × 100 3.23 3.23 0.0
4.7 × 10−1 62.58 15.16 5.67
4.7 × 10−2 75.48 14.19 7.72
4.7 × 10−3 80.32 13.23 8.42

4.7 × 10−4 78.07 15.48 10.64
4.7 × 10−5 79.03 17.74 11.95
4.7 × 10−6 80.97 14.84 13.77

Table 5.3: Terrain vehicle dataset. The table shows the diagnostic performance achieved
in one of two trials and the number of attributes needed to obtain a final hypothesis when
varying ξ.

induced noise. In the two remaining series of experiments, we used two different
approaches to induce 20% noise in order to investigate how noise-sensitive the
model is when using continuous data. Thus, in the second series of experiments,
the probability of noise was based on a Gaussian prior distribution estimated from
each attribute, calculated from the sample mean and standard deviation measured
within each class. In the third series of experiments, the Gaussian prior for each
attribute was estimated from the sample mean and standard deviation, measured
on the whole dataset.

We observe from the first series of experiments that the diagnostic performance
mainly is dependent on the value of ψ (figure 5.5a). Naturally a small value on
ψ leads to a higher classification rate since the model is based only on real cases.
We observe that the total average classification rate can be improved combining
the result of two trials (figure 5.5a, b). In figure 5.5b the classification rates varies
compared to the results in figure 5.5b. It is likely that the classification rates in
the second trial is more susceptible to the parameter settings and possibly to the
Monte-Carlo sampling step that is performed on continuous data. Further, our
results indicate that the number of steps needed for a final hypothesis depends
more on ψ than on η, specifically when ψ is very large or very small. For an
average of 4.76 known attributes (taken over all classes and 10 runs) we obtain a
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Figure 5.2: Diagnostic performance on the animal dataset when varying η and ψ.
The figure shows a) the classification rate on the first trial, b) the classification rate
on the first trial with 20% noise, c) the combined classification rate for two trials,
d) the combined classification rate for two trials with 20% noise, e) the number of
known attributes needed for a final hypothesis and f) the same as in e) but with
20% noise.

classification rate of 100% using η = 0.01 and ψ = 0.001, compared to 13.3 known
attributes using ψ = 10−5 (figure 5.5a,c). However, when ψ is set to a fixed medium
value, we observe that the model produces nearly the same classification rate using
fewer steps when increasing η (figure 5.5c). In this case increasing the value on
ψ reduces the separability between classes. In effect, the significance of varying η
is increased, such that it affects only the number of known attributes needed for
a final hypothesis but not necessarily the classification rate. However, this only
applies as long as ψ is set to a medium value. When ψ is sufficiently large the final
hypotheses starts to repeatedly indicate only a limited (and possibly fixed) subset
of the classes which reduces the classification rate and the significance of η. In this
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Figure 5.3: Diagnostic performance on the terrain vehicle dataset when varying η
and ψ. The figure shows a) the classification rate on the first trial, b) the classifi-
cation rate on the first trial with 20% noise, c) the combined classification rate for
two trials, d) the combined classification rate for two trials with 20% noise, e) the
number of known attributes needed for a final hypothesis and f) the same as in e)
but with 20% noise.

case, for instance, the final hypotheses indicate only one certain class when ψ is
sufficiently large, regardless the value of η. Conversely, when ψ is set to a very
small value, class separability is increased and the significance of η is reduced.

In the second series of experiments, we observe that the diagnostic performance
slightly decreases compared to the first series of experiments (figure 5.6a, b). Our
results indicate that by inducing noise based on the prior Gaussian distribution for
each attribute within each class, we can obtain satisfactory performance if ψ is set
low. In the third series of experiments, we observe that the diagnostic performance
is less robust to noise (figure 5.7a, b), compared to the results in the second series of
experiments. For example, the number of correct diagnoses is 70.91% compared to
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Figure 5.4: Diagnostic performance on the tank dataset when varying η and ψ.
The figure shows a) the classification rate on the first trial, b) the classification rate
on the first trial with 20% noise, c) the combined classification rate for two trials,
d) the combined classification rate for two trials with 20% noise, e) the number of
known attributes needed for a final hypothesis and f) the same as in e) but with
20% noise.

100% in the second series of experiments when ψ = 10−5 and η = 10−5 . Further,
we observe that the number of known attributes needed for a final hypothesis varies
depending on how noise is induced (figure 5.5c, 5.6c and 5.7c).

Obtained classification rates indicate that the model is more sensitive when
noise, based on the Gaussian prior distribution for each attribute estimated over
the whole dataset, is induced. It should be noted that the attribute values have a
large variance between different classes which therefore causes a lower diagnostic
performance when noise is induced this way. We therefore conclude that the model
is more robust for inexact attribute values as long as the values are set within the
prior distribution of the class.
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Figure 5.5: Diagnostic performance without noise on the evaporation dataset when
varying η and ψ. The figure shows a) the classification rate on the first trial, b) the
combined classification rate for two trials and c) the number of known attributes
needed for a final hypothesis.

5.5 Anomalies, Inconsistencies, and Settings

In practise, incremental diagnosis poses a few more problems than those we have
discussed so far. The perhaps primary one relates to the fact that users do make
mistakes or acquire the wrong information. We must expect erroneous values as
inputs to the classifier. However, in an interactive system we have a chance to
counter these errors as it is possible to ask the user to specify a doubtful attribute
again. This reduces the risk that the diagnosis will be wrong or uncertain, and
increases the fault-tolerance of the system.

Basically, what we need is a mechanism for detecting inconsistencies in the
attribute values, which in this context means combinations of inputs which are
very unlikely (but not necessarily impossible). In essence, we would like to check
if any of the known input values are very unlikely given everything else we know
about the situation. This can be directly formulated as calculating the likelihood
that the conditional distribution of each attribute y given all other known attributes
x generated the specific outcome,

λym = p(Y = y|x,M) (5.27)

where x = X1 = x1, . . . , Xn = xn are the known attributes and M the model
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Figure 5.6: Diagnostic performance on the evaporation dataset for varying η and
ψ, with 20% noise based on the prior distribution for each attribute within each
class. The figure shows a) the classification rate on the first trial, b) the combined
classification rate for two trials and c) the number of known attributes needed for
a final hypothesis.

parameters. In our case, the expression above can be written as

λym =
∑

z∈Z

p(z|x)
∑

k∈Pz

(

πz,k

n
∏

i=1

pz,k(Y = y|Z = z)

)

(5.28)

where p(z|x) is calculated from equation 5.10. To find a suitable limit κm on λym
for when to alert the user, we just need to define below what level of probability
a value should be considered a possible inconsistency. The exact value certainly
depends on the type of application, but we have consistently been using κm = 0.05
throughout our tests with good results.

A related problem occurs if we would like to be able not only to adapt the model
to new cases, but, if the current input vector is inconsistent with the current model,
suggest to the user that a new prototype should be created based on these inputs.
Generally, we would like to decide whether or not the current input vector of known
attributes should be regarded as normal or not given the current model. This can
be done by calculating the likelihood λp that this input vector was generated by
the model, or

λp = p(x|M) (5.29)
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Figure 5.7: Diagnostic performance on the evaporation dataset for varying η and
ψ, with 20% noise based on the prior distribution for each attribute over the whole
dataset. The figure shows a) the classification rate on the first trial, b) the combined
classification rate for two trials and c) the number of known attributes needed for
a final hypothesis.

where x = X1 = x1, . . . , Xn = xn are the known attributes and M the model
parameters, and can in our case be found directly from equation 5.10.

As we can see, calculating the likelihood of a pattern is straightforward, but
below what level of likelihood should we start considering the pattern to be suffi-
ciently abnormal? Again, let us start with the whole input vector. Assuming all
prototypes should be interpreted as normal, a reasonable limit on the likelihood
κp can be estimated as a fraction τp of the minimum of the likelihoods that each
prototype was generated by the model,

κp = τp min
i
p(xi|M) (5.30)

where xi are the attribute values of prototype i that are known in the current input
pattern. A suitable value of τp then depends on how early we would like to trigger
an inconsistency warning.

A problem that relates to the inconsistency checking described above is that
of managing settings and prerequisites for a system. A system to be diagnosed
often requires a number of prerequisites to be able to diagnose a class at all. A
very simple example of this could be the requirement of having the ignition on
in a car to be able to diagnose a fault in its electrical system. Most of the time,
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these requirements are much more complicated than this, and to enumerate all
combinations of settings that constitute a possible user error is impossible simply
because the vast majority of settings are incorrect. Only a few combinations are
in fact valid settings. If this is the case, it is not practical to formulate this as a
diagnosis problem, as we cannot easily find representative examples of all types of
errors.

Instead, let us consider the possibility of specifying all combinations that repre-
sent correct settings. If this is indeed possible, as it often is in practical applications,
we can estimate a statistical model based on data that representing different kinds
of correct prerequisites. We can then detect anomalies in the input vector by esti-
mating the likelihood of a new pattern being generated by the model in the exact
same manner as for detecting inconsistencies in expression 5.29.

Although used differently, the demands on the model used for this type of
anomaly detection are very similar to those of the classification model we have
used for diagnosis. We would like to combine prior system knowledge, which can
be expressed as prototypical data, with actual usage cases in order to adapt the
model to current circumstances. We will therefore here use exactly the same kind
of model, the difference being that the classes will not represent a certain kind of
condition to be diagnosed, but rather a certain kind of scenario for which the set-
tings are valid. As before, one class or scenario can have many typical expressions,
and thus many prototypes.

This allows us to calculate reasonable limits for when the likelihood of a cer-
tain pattern should be considered abnormal just like we did when we needed to
detect inconsistencies through equation 5.30. If a pattern of settings is considered
abnormal, we can naturally also use expression 5.27 to determine which settings
attributes are most likely to be wrong.

Just like the diagnosis situation, we may not actually know all relevant in-
formation initially. We would therefore potentially like to perform the anomaly
detection incrementally. However, calculating and presenting the expected reduc-
tion in entropy in the class distribution for each unknown attribute provides little
information. We do not want to determine what class (condition) the pattern in-
dicates, but rather to determine whether the pattern seems to belong to any of the
classes at all. Therefore, we would like to rank our unknown attributes according
to the expected reduction in likelihood to the whole pattern if we learn the value of
one attribute Y ,

GL(Y ) = p(x|M)− EY [p(x, Y |M)] (5.31)

where X are the already known attributes, and EY the expectation according to
Y . If Y is discrete, this can be written as

GL(Y ) = p(x|M)−
∑

yj∈Y

p(Y = yj|x)p(x, Y = yj) (5.32)

As before, there is no requirement that Y must be discrete, but the calculation of
the expectation in equation 5.31 may be complicated if it is not. The expected
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reductions in likelihoods are presented to the user, who inputs new information
accordingly.

This allows us to efficiently perform incremental anomaly detection, but there
are certain practical limits to what we can detect. Without other attributes than
those representing the settings or prerequisites, it is impossible for us to qualita-
tively separate two correct settings from each other. The specified settings may
be acceptable, but unsuitable for the specific kind of diagnose we would like to
perform. Introducing input attributes that in some way represent what kind of
diagnosis the user wants to perform could provide a solution, as would the possi-
bility of the user actually specifying the class attribute of the model, representing
the current diagnosis scenario. Note also that if this class is unknown, propagating
its conditional distribution to the actual diagnosis model could improve diagnosis
performance since it provides an idea of what the current scenario is. This of course
depends on the availability of specified scenario attributes in the training data for
the diagnosis model.

Experiments

We have investigated the diagnostic performance when using inconsistency checks
on all the discrete datasets and on the continuous dataset. For this purpose, we
performed two series of experiments in which the degree of noise was gradually
increased.

In the first series of experiments, we measured the diagnostic performance with-
out using inconsistency checks to obtain baseline performance. The baseline results
were the compared to the diagnostic performance in the second series of experi-
ments in which inconsistency checking was used. In both series of experiments the
noise level was set to 20%, 35% and 50%. All of the experiments on both types
of datasets were repeated 10 times in order to obtain statistical significance on the
diagnostic performance.

Discrete datasets

In the discrete case, we performed experiments using only prototypes in the model.
Noise was induced by setting a random selection of attributes to the incorrect value
based on the prior taken over the whole dataset, as described. The likelihood
limit for all attributes in the discrete case was set to κm = e−3. The prototype
significance was set fixed to ψ = 1.0 while the thresholding parameter varied as
ξ = {4.7× 10−6, . . . , 4.7 × 10−1}.

We observe that the diagnostic performance improves by the use of inconsistency
checking (figure 5.8–5.10). For example, the percentage of correctly diagnosed sam-
ples on the terrain-vehicle dataset increases by 9.03 percentage points for 50% noise
compared to the corresponding baseline result when ξ = 4.7e−6 (table 5.5). In ta-
ble 5.4–5.6, we observe that the number of anomaly checks in general matches the
number of incorrect attribute values. In addition, our results indicate the number



106 CHAPTER 5. INCREMENTAL DIAGNOSIS

of known attributes needed to obtain a final hypothesis (including the ’extra’ in-
consistency questions) can be reduced, compared to when not using inconsistency
checking (figure 5.8–5.10).
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Figure 5.8: Diagnostic performance on the animal dataset using inconsistency
checking for varying ψ and ξ: a,c,e) the total diagnostic performance from one
trial: b,d,f) the number of known attributes needed for a final hypothesis.

The Continuous Dataset

In the continuous case, the samples in the dataset were used as cases in the model,
whereas a fixed subset of samples was used to set attribute values, as earlier de-
scribed. Noise was induced based on the Gaussian prior estimated from the sample
mean and standard deviation of each attribute taken over the whole dataset.

Setting an inconsistency limit κm for an attribute is more complicated in the
continuous case compared to the discrete case. For a discrete distribution, we can
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Figure 5.9: Diagnostic performance on the terrain vehicle dataset using inconsis-
tency checking for varying ψ and ξ: a,c,e) the total diagnostic performance from
one trial: b,d,f) the number of known attributes needed for a final hypothesis.

easily find the actual probability of a certain outcome. In the continuous case, we
can find the probability density at a certain value. However, this is not a proper
probability, as it in a sense depends on the scale of the attribute, possibly assuming
values larger than one. What we can do, however, is to find the value of the
probability density for which a certain fraction of the total density is below, and
use this as our threshold. If we can find this value, we only need to decide which
fraction to consider anomolous, similar to the discrete case.

Here, we will set the limit κm on the probability density individually for each
continuous attribute to the probability density for which a certain fraction of the
total probability mass is lower in the Gaussian prior estimated from the complete
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Figure 5.10: Diagnostic performance on the tank dataset using inconsistency check-
ing for varying ψ and ξ: a,c,e) the total diagnostic performance from one trial: b,d,f)
the number of known attributes needed for a final hypothesis.

set of samples. This can be calculated from

κm =
e−erf−1(c−1)2

√

2πσ2
m

(5.33)

where σ2
m is the estimated variance of attribute m, c the desired fraction, and

erf−1 is the inverse error function. This will hopefully provide us with a rough
approximatition of an appropriate value for the limit, but not necessarily a very
good one.

Ultimately, we would like to set the limit based on the conditional distribution
of the attribute given the already known values, as the scale of this distribution
might change drastically when further attributes become known. However, as this
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Noise
(%)

Correct (%)
Trial #1

Known
attributes

Incorrect
attributes

Anomaly
checks

Without anomaly checking

20 98.75 14.04 1.23 0
35 94.06 20.64 2.59 0
50 80.62 29.23 4.71 0

With anomaly checking

20 99.06 10.67 0.91 1.31
35 98.44 13.09 1.78 2.49
50 93.44 16.69 3.16 4.13

Table 5.4: Diagnostic performance on the animal dataset for ψ = 1.0 and ξ =
4.7× 10−6 when using inconsistency checks.

Noise
(%)

Correct (%)
Trial #1

Known
attributes

Incorrect
attributes

Anomaly
checks

Without anomaly checking

20 80.65 14.27 1.09 0
35 70.00 17.61 2.13 0
50 49.03 21.98 3.45 0

With anomaly checking

20 82.26 11.34 0.88 1.20
35 71.61 12.99 1.77 2.20
50 58.06 15.53 2.91 3.01

Table 5.5: Diagnostic performance on the terrain vehicle dataset for ψ = 1.0 and
ξ = 4.7× 10−6 when using inconsistency checks.

distribution is expressed as a mixture of Gaussians, calculating the proper value of
the limit analytically becomes impossible. Therefore, we will settle for the approx-
imation described above in our tests.

In the tests, the inconsistency limit κm was based on a fraction c = e−3 ≈ 0.05
of the probability density function for each continuous attribute. For the discrete
attributes the inconsistency limit was strictly set to e−3. Thus, the inconsistency
limit varied between different attributes. Here, the prototype significance was set
to ψ = 10−5 and the thresholding parameter to ξ = 10−5.

We observe that the diagnostic performance on continuous data can be improved
by the use of inconsistency checking. For example, we see that the diagnostic
performance improves 13.64 percentage points when 20% noise is induced compared
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Noise
(%)

Correct (%)
Trial #1

Known
attributes

Incorrect
attributes

Anomaly
checks

Without anomaly checking

20 97.78 13.48 1.19 0
35 93.33 17.61 2.44 0
50 81.67 27.47 4.97 0

With anomaly checking

20 98.33 10.92 0.97 1.16
35 93.89 13.37 2.07 2.45
50 90.56 15.96 2.97 3.32

Table 5.6: Diagnostic performance on the tank dataset for ψ = 1.0 and ξ = 4.7 ×
10−6 when using inconsistency checks.

Noise
(%)

Correct (%)
Trial #1

Known
attributes

Incorrect
attributes

Anomaly
checks

Without anomaly checking

20 65.45 10.39 2.15 0
35 49.09 8.41 2.95 0
50 36.36 7.36 3.69 0

With anomaly checking

20 79.09 10.13 2.06 1.03
35 63.64 8.96 3.03 1.10
50 40.00 6.60 3.26 1.15

Table 5.7: Diagnostic performance on the evaporation dataset for ψ = 10−5 and
ξ = 10−5 when using inconsistency checks.

to the baseline experiments (table 5.7). However, the number of questions needed
to obtain a final hypothesis does not seem to be significantly affected in general. We
also observe that the number of anomaly checks does not fully match the number
of incorrect attributes as well as in the discrete case. This is partly due to the
fact that detecting inconsistencies in the continuous case is a more delicate matter
than in the discrete case, and partly that the continuous data set contain more
ambiguities than the tested discrete data sets.

Since we have observed that the average percentage of correctly diagnosed sam-
ples may vary about 5% between different runs of the experiments, further repe-
titions of the experiments may be needed in order to obtain statistically reliable
results. Observations during the experiments also indicate that the inconsistency
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limits may have to be re-calculated using another value on κm when the degree
of noise is changed. In spite of this, our results indicate that our approach of
inconsistency checking could be used to obtain higher diagnostic performance on
continuous data.

5.6 Corrective Measures

After an incremental diagnosis session has been taken as far as practically possible,
we often would like to propose a suitable corrective measure to the user, a way to
manage the diagnosed problem. This can be rather simple, as one diagnose often
corresponds directly to one corrective measure: For one diagnosed problem, there is
only one solution. As long as there is a description of the corrective measure asso-
ciated with each possible diagnosis in the database, suggesting corrective measures
is trivial.

If this is not the case, as e. g. in many situations within medical diagnosis, we can
still provide the user with valuable information by presenting similar earlier case
descriptions which can suggest a suitable treatment. What constitutes a similar
case though is not necessarily obvious, but we can at least differentiate between a
number of general alternatives.

Ultimately, we would like to find cases that are likely to have similar correc-
tive measures. Unless the diagnosis corresponds directly to a corrective measure
as discussed earlier, we will assume that we do not have sufficient information to
determine this in the database. A good approximation of this, which is indeed often
the correct one if a diagnosis are directly connected to a corrective measure, is to
determine how similar two cases are by determining how similar their class distribu-
tions are given the known inputs. This can be done by calculating the Kullback
Leibler distance [Kullback and Leibler, 1951] between the class distributions,

D(p1||p
i
2) =

∑

z∈Z

p1(z) log
p1(z)
pi2(z)

(5.34)

where p1(z) denotes the class distribution of the current diagnosis and p2(z) the
class distribution of the i:th case, using the same known input variables as for
the current diagnosis. Although the measure is highly useful for ranking cases by
similarity to the current diagnosis, it is relatively safe to assume that distances
closer to or above log |Z|, where |Z| denotes the number of outcomes in Z, show
that the two distributions have very little similarity and can safely be assumed not
to be related.

It is not unlikely that each of the prototypes of the database can be associated
with a distinct corrective measure, even if the class itself cannot. In this situation,
and indeed many others were knowing what prototype corresponds the best to the
current diagnose situation can be beneficial to the user, we can for the model used
easily calculate the probability distribution over the prototypes given the known
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inputs as

p(k|x) =
∑

z∈Z

p(Z = z)πz,k
n
∏

i=1

pz,k(xi|Z = z) (5.35)

This allows us to present the user the prototypes the current inputs are most
likely to be drawn from, along with the probability. It can only point to relevant
prototypes while ignoring other data in the form of cases, but the computational
complexity is significantly lower than calculating the distance in class distribution
as above for each available case. If suitable, though, we can always calculate the
distance to each case through an expression similar to equation 5.34, but using the
prototype distribution instead of the class distribution.

Lastly, there is always an opportunity to calculate the similarity between cases
by determining the distance in input space between two patterns. Here, however,
our statistical model is of limited assistance when defining a suitable distance mea-
sure, and we refer the reader to the case based reasoning literature instead.

5.7 Designing Incremental Diagnosis Systems

Let us now review and summarise the methods discussed earlier by describing a
more complete and practically useful incremental diagnosis system. In a wider
setting, we would like to not only offer a diagnosis, but also suggest corrective
action based on this diagnosis and collect information from new diagnostics cases.
Figure 5.11 shows a simplified view of the complete process.

First, diagnosis is performed incrementally until we have arrived at an accept-
able hypothesis. This can be determined by the system as in the experiments of
section 5.4, or by the user. The diagnostic procedure basically involves two par-
allel tasks: one to perform the actual diagnosis and one to determine whether the
prerequisites for performing this diagnosis are fulfilled or not.

In the diagnostics case, the user first enters new information based on the pre-
sented entropy gains. The known input attributes are then checked for inconsis-
tencies as described in section 5.5, and these inconsistencies signalled to the user.
If relevant for the specific application, the prerequisites or settings are checked so
that they are likely to be correct. If not, information about what settings that are
most probably incorrectly set should be shown to the user. If the values of the
settings must be acquired at a cost, the user could be re-directed to perform this
anomaly detection incrementally, as discussed in section 5.5.

After verifying the settings, a new classification is performed where the entropy
gain is calculated for the unknown attributes and the conditional class distribution
presented to the user. If we by now have arrived at an acceptable hypothesis, we
can move on to assist the user in finding suitable corrective measures.

As we have described earlier, suggesting corrective measures is often rather
straightforward as there is only one or a few suitable actions to take for a certain
diagnose. However, if this is not the case, we can assist the user by finding the
relevant prototypical and case data as in section 5.6.
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Figure 5.11: A simplified view of the complete diagnostics process.

Finally, we usually want the system to adapt to new cases. Before entering the
case into the database and adapting the model to it, the case should be validated by
the user so that the diagnosis specified is actually the correct one in order to avoid
reinforcement of erroneous classifications by the model. If the actual diagnosis is
new and not represented in earlier data, the case should instead be refined into a
new prototype to give the system an opportunity to perform a correct classification
in the future. A new prototype should potentially also be suggested if the case seem
to represent a new representation of the class that is very dissimilar from earlier
examples. This can be done by using the methods described in section 5.6.

The user interface to the diagnosis system should reflect the possibility of an-
swering questions in any order or at any point changing the answer of an earlier
question. This is a significant leap in flexibility compared to many expert system
approaches, and to design an interface that only allows the user to answer the
currently most important question as in a traditional system defeats some of the
advantages of the approach. Therefore, it is more beneficial to e. g. present a list
of unknown attributes, ordered by their respective entropy gain, that can be set in
arbitrary order along with earlier set attributes.

Figure 5.12 shows an early prototype interface intended for use in the field
by armed forces to diagnose technical equipment. It allows for selecting different
types of technical equipment, and through that change the current database for the
statistical model. The diagnosis can be focused on certain sections of the equipment,
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selected in a tree structure at the top of the application. The table to the left shows
all possible questions and their current entropy is gain shown as a bar in the table.
The top right table shows all possible diagnosis, sorted in descending order by their
current probability which is also shown as a bar in the table. The frames below
show instructions on how to repair the selected condition and what resources are
necessary for the operation, and on the bottom of the window there is a button
which adds the current case to the database.

This interface is likely to change, but can still serve as a useful example of what
an interface to the diagnosis system may look like.

Figure 5.12: A prototype interface for diagnosing technical materiel in the armed
forces.

5.8 Discussion

We have shown a flexible, robust and efficient incremental diagnosis system trained
from empirical data. Since the system can make use of both expert knowledge and
examples of actual diagnosis cases, it provides a powerful alternative to rule based
systems. Also, because the presented statistical model does not work with explicit
rules, it does not have the same problem as rule based systems with inconsistencies
in the data. Exceptions and ambiguities are handled in a natural way.

A highly desirable feature of the system for practical use is the fact that ques-
tions can be answered in arbitrary order. It is possible to avoid answering a certain
question, answering another one instead, or even change a previous reply at any
point. Initially providing some information also makes the diagnosis start from
there, without having to traverse questions in a predefined order. This is highly



5.8. DISCUSSION 115

usable if there e. g. are some automatic readings available or some system checks
have already been performed.

Also, in spite of not using a rule based approach, we can still get simple expla-
nations from the system, in terms of the primary causes for the systems’ conclusion.
Since it is difficult to build user confidence without providing explanations of the
diagnosis systems conclusions, this property is critical in practical use. The fact
that the system at every point provides a distribution over the classes also helps
build user confidence and makes the diagnosis task easier.

Inconsistencies in the inputs can be reliably detected, giving the user an op-
portunity to correct faulty inputs to the system. The same mechanisms can also
be used to determine whether the prerequisites to performing the classification are
fulfilled or not. This also makes it possible to identify user errors, something that
is indeed very common in practical situations.

Being somewhat similar to an instance based learner, the model does suffer
from some of the same type of problems. Most importantly, as the number of
prototypes increase in the system, so does the complexity of performing classifi-
cation and by consequence the complexity of calculating the information gain for
unknown attributes. This effect is not necessarily present in other models such
as just using one naive Bayesian classifier, for which the classification complexity
would remain constant with the number of prototypes. However, adding new cases
to the database, which in time most likely would constitute the bulk of the historical
data, imposes no increase in computational complexity.

The fact that the system can both easily learn from each new diagnosed case
and determine whether the case may be a suitable candidate for refinement into a
prototype, are also very important in many situations. The properties of the diag-
nosed system is usually not completely known when it is taken into use, making the
possibility of collecting and incorporating new information continuously absolutely
crucial. This way, the diagnosis system also provides a means for structuring and
storing knowledge that might otherwise be lost with the departure of an experienced
operator.

Future work includes testing the system on more practical cases to determining
the performance of the model. These practical experiences would hopefully also
allow us to deduct heuristics for adjusting the balance of significance between pro-
totypical data and actual case data so that the system works well in all applications.

Acknowledgements

The author would like to thank the Swedish procurement agency, FMV, for provid-
ing insight and understanding on how to perform and support diagnosis of technical
systems. We would also like to thank Palmarium AB for their work on the user
interfaces to the diagnosis system for the Swedish armed forces. This work derives
from and is inspired by the work on incremental diagnosis performed within the
SANS/CBN group at KTH by, among others, Anders Lansner and Anders Holst.





Chapter 6

Creating Applications for Practical

Data Analysis

6.1 Introduction

In this chapter, we will discuss how to create machine learning and data analysis
applications in practise. We introduce a new methodological approach to data
preparation that does not suffer from the limitations of earlier proposals when it
comes to processing industrial data. We show how the methodology can be reduced
to a small set of primitive operations, which allow us to introduce the concept of
a “scripting language” that can manage the iterative nature of the process. We
also show how both the data preparation and management operations as well as
a complete modelling environment based on the Hierarchical Graph Mixtures can
be implemented into a fast and portable library for the creation and deployment of
applications. Coupled to this, we demonstrate a high-level interactive environment
where these applications can be easily created.

6.2 The Data Analysis Process

Although differing in goals, challenges and approaches, most data analysis projects
follow a common general process consisting of problem specification, data prepara-
tion, modelling, and perhaps deployment into existing systems. It is tempting to
consider the modelling phase, where specific models of data are chosen and spec-
ified, as the most important and time consuming part of a project. However, the
success of the project in practise depends to a perhaps higher degree on the under-
standing and detailed specification of the problem along with the preparation and
representation of data.

To help data analysis projects succeed and to minimise the effort with which the
results are achieved, we therefore need to address the whole data analysis process.
There is not only a need of better data analysis or machine learning algorithms, but
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also of better methodology, common practise, and tools. Naturally, it is difficult to
produce consistent methodologies for procedures that may be very different from
one case to the next, but it still serves a number of purposes. First, the findings
can be used to determine common practise and guidelines for data analysis tasks.
Hopefully these guidelines can serve as a structured approach to at least a majority
of common analysis tasks, but will at the very least be useful as a collection of
advice regarding methods and common pitfalls. Second, and more important, is
the fact that studying the data analysis work-flow and creating methodologies for
it is absolutely vital if we want to create tools that support the analysis process.

For the sake of the discussion, let us divide the whole data analysis process into
five main phases: Problem Understanding, Data Preparation, Modelling, Validation,
and Deployment (see figure 6.1). These phases are somewhat overlapping and the
whole process usually contains some degree of iteration, but let us start with an
overview of each phase in turn.

Problem
Understanding

Data
Preparation

Modelling Validation Deployment

Figure 6.1: A simplified overview of the data analysis process.

Problem Understanding The first part of any data analysis task involves get-
ting acquainted with the problem and the application area. The analyst quite often
has no previous experience with the area, something that can make it very difficult
to fully comprehend the problem and what is actually needed in terms of data and
algorithms to solve it. The problem specification can also be rather vague, perhaps
formulated as a need to understand why a certain phenomenon, which in itself can
be described in very loose terms, manifests itself.

The work of the analyst during this phase is therefore dominated by under-
standing the specifics of the application area and formulating the problem in a
more tangible form. This formulation usually recalls a machine learning or data
analysis task such as prediction, clustering, or dependency derivation. It is of course
difficult to predict all steps that need to be taken during analysis and modelling, but
a good understanding of the ultimate goal of the exercise, even though it may turn
out to be impossible to achieve, is very important as this influences all consecutive
steps of the process.

When the application area and problem are at least to some degree understood,
suitable data need to be located and extracted. In practise there is often not that
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much choice at this stage: One or a few databases are available, and additional
data are very difficult to extract. If data supporting the intended application or
problem formulation cannot be found in the already available databases it is simply
not possible to come up with a solution. It is not uncommon that a data analysis
project ends at this early stage because of lack of data, although it is much more
common that this happens later on in the project when this becomes more apparent.

Supporting this first stage of data analysis with tools is difficult due to the fun-
damental requirement, at least in the foreseeable future, on a very high degree of
human participation. It may be possible to create efficient protocols and method-
ologies that can speed up the process considerably, but this is very much out of the
scope of this text. We will therefore focus very little of our effort to speed up the
data analysis process with respect to this initial phase.

Data Preparation Once the possible data sources have been identified and rel-
evant data extracted, the data needs to be prepared and structured to fit the needs
of the subsequent analysis and modelling. The available data sets rarely have a
structure suitable for these tasks, as it usually was not collected with these ap-
plications in mind. On top of that, the data from real-world databases are often
notoriously dirty. It usually contains high degrees of noise, coding artifacts, missing
data and redundant or irrelevant attributes, all of which needs to be dealt with in
order to progress with the actual analysis and modelling of the data.

This phase of the analysis project is often very time consuming and involves
a high degree of exploratory work. The analyst is usually not too familiar with
how the data are represented and structured, and a lot of time can be spent ini-
tially on visualising and understanding the collected data. After this, the data
needs to be cleaned from errors, different data bases need to be merged, and then
transformed into suitable data sets for analysis and validation. The process usually
requires interaction from experts that can answer questions about how the data
were generated and represented in the data bases.

Although this process is exploratory by nature, it can be structured in such a
way that it becomes more efficient and possible to support by appropriate tools. In
section 6.3 we will discuss how this can be done in practise and present a structured
approach to the data preparation phase.

Modelling The modelling phase mainly revolves around finding suitable parame-
terisations for the models we want to estimate from data. This can be very difficult
or impossible for some applications, but is often surprisingly straightforward in
many practical cases once the original data have been transformed in a suitable
way. However, whether this transformation is regarded to be a part of the mod-
elling or the earlier preparation phase is of course just a matter of semantics.

The procedure of finding a suitable parameterisation is highly dependant on
the type or family of models used. For example, specifying the number of hidden
layers and number of units in a neural network trained with back-propagation is
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very different from specifying the graphical structure of a Bayesian belief network.
Still, given a family of parameterisations, a lot can usually be done to simplify the
procedure of specifying parameters in the model e. g. through appropriate visuali-
sation.

Validation The validation phase is concerned with evaluating the performance
of the created models, such as the estimated generalisation error of a predictor or
a classifier, or the validity of a detected dependency or cluster. It is by nature
highly connected to the modelling phase, since a multitude of models or hypotheses
usually are evaluated and modified iteratively during a project. It is here given
the status of a separate entity in the work-flow largely because of its importance:
without proper and rigorous validation, we cannot be sure that the application is
likely to perform well in practise or that the conclusions we have drawn based on
available data have any real significance.

Although there are several useful methods for estimating generalisation perfor-
mance and hypothesis validity originating in e. g. statistics and machine learning,
proper validation is still often very difficult in practise. Data often contain de-
pendencies, e. g. temporal, that mean that the instances in the data cannot be
considered to be independent. Care has to be taken to assure that what we actu-
ally do estimate is the proper generalisation performance, and not the performance
on something that closely resemble the training data.

Deployment When a model has been validated and can be expected to perform
well in practise, it can finally be developed into the intended application. This can
mean the creation of a separate software application or integration into a larger
framework, such as a company’s production environment. Naturally, not all results
of a data analysis project can or are intended to be used this way. They may mainly
provide increased understanding about the processes generating the data and the
data itself, e. g. by confirming or refuting hypothesis about the data, rather than
providing e. g. a prediction or classification that can be used as new data arrive or
the situation changes.

Deployment can easily become the most time consuming part of a data analysis
project. Not only must the chosen model and perhaps estimation procedures be
correctly implemented, but the same applies to the data preparation and trans-
formation procedures that the model relies on. The procedure can be simplified
greatly by providing the opportunity to export programs on some form from the
data analysis and modelling tools used to arrive at the final model. However, this
relies on the possibility to specify standard interfaces for interacting with such an
exported component.
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6.3 Data Preparation and Understanding

Data available for analysis is often stored in a wide variety of formats and in several
different repositories, and efficient methodologies and tools for data preparation and
merging are critical. Experience shows that data analysis projects often spend the
major part of their effort on these tasks, leaving little room for model development
and generating applications. In this section we will try to identify and classify the
needs and individual steps in data preparation. The focus is on industrial data,
but the methods should be applicable to most areas without major changes.

We will here suggest a methodology for data preparation suited for industrial
data, based on experiences from analysing data in e. g. the pulp and paper industry,
chemical production and steel manufacturing. In particular, the methodology takes
into account the iterative nature of the data preparation process and attempts to
structure and trace the alternating steps of data preparation and analysis.

Based on the methodology, a small set of generic operations is identified such
that all transformations in data preparation are special cases of these operations.
Finally, a proof of concept data preparation system implementing the proposed
operations and a scripting facility to support the iterations in the methodology is
presented along with a discussion of necessary and desirable properties of such a
tool [Gillblad et al., 2005b, 2005a].

Introduction

Data analysis and data mining are traditionally used to extract answers and useful
patterns from large amounts of data. In classical statistics, much of the effort goes
into deciding what data are necessary, and into designing ways to collect that data.
Data mining and knowledge discovery are different in that the analysis has to work
with whatever data is available. These data will have been collected for various
other purposes and are unlikely to fit the new needs perfectly. Data bases need to
be merged, using different formats and ways of identifying items, where special and
missing values will most certainly have been encoded differently.

The problem can become even harder when working with data gathered from
industrial production. Such data are generally a mixture of logs from sensors, op-
erations, events and transactions. Several completely different data sources, modes
and encodings are not uncommon, making preparation and preprocessing of data
essential before an often quite complex merging operation can be performed. Sen-
sor data will reflect that sensors drift or deteriorate and are eventually replaced or
serviced, often at irregular intervals. Anomalies showing in one part of the process
may often be due to problems in earlier process steps for which data are sometimes
not even available. Still, data analysis is often critical, e. g. when trying to increase
the efficiency of the production process or finding explanations for the origin of
phenomena that are not completely understood.

Data analysis uses an abundance of methods and techniques, but common to all
is the need for relevant and well structured data. In practise, many data analysis
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projects will spend most of their time collecting, sampling, correcting and compil-
ing data. This is even more pronounced when working with data from industrial
processes. The quality of the subsequent analysis is also highly dependent on the
preparation of data and how the merging of the data sources is performed.

Background and Related Work

Data preparation usually refers to the complete process of constructing well struc-
tured data sets for modelling. This includes identification and acquisition of relevant
data; cleaning data from noise, errors and outliers; re-sampling, transposition and
other transformations; dimensionality or volume reduction; and merging several
data sets into one. All these operations are normally performed in an exploratory
and iterative manner. The complete process would benefit greatly from a more
structured approach, taking particularities of the application area into account.

Several attempts have been made to describe the entire knowledge discovery
and data analysis process [Fayyad et al., 1996a; Clifton and Thuraisingham, 2001].
Of these, the CRISP-DM (CRoss-Industry Standard Process for Data Mining)
[Reinartz et al., 1998] initiative is perhaps the best known among recent propos-
als. Other examples include SEMMA, a methodology proposed by SAS Institute
Inc. for use with their commercial analysis software [SAS Institute Inc., 1998], and
the guidance for performing data mining given in textbooks such as [Adriaans and
Zantinge, 1996; Berry and Linoff, 1997]. Most of these process models have roughly
the same scope, covering the entire process from problem understanding to model
deployment, through steps such as data preparation, modelling and evaluation.
The methodology proposed here instead focuses on and details the early parts of
the process, referred to in CRISP-DM as data understanding and data preparation.
The guidelines given in [Reinartz et al., 1998] for this phase are sensible and well
chosen but are described on a level too general to be directly applicable in practise,
at least for the specific task of preparing industrial data.

There have also been some more detailed descriptions of data preparation (e. g.
[Pyle, 1999; Reinartz et al., 1998; Lawrence, 1991]) that provide a good understand-
ing of the problem and deliver plenty of tips and descriptions of common practise.
However, there is still a lack of a more practical guide to what steps should be
performed and when, or how to create an application that supports these steps.
These descriptions are generally more focused on corporate databases and business
related data than on industrial applications 1.

More recent work also advocate the need for efficient data preparation. Zhang
and Yang [Zhang et al., 2003] sum up future directions of data preparation as the
construction of interactive and integrated data mining environments, establishing
data preparation theories and creating efficient algorithms and systems for single
and multiple data sources.

1Pyle [Pyle, 1999] e. g. clearly states that the book deals with corporate databases, while
CRISP-DM [Reinartz et al., 1998] hints at its business orientation by referring to the first stage
of the data mining process as “Business Understanding”.
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The methodology that is discussed here takes this further with a focus on indus-
trial data, basic methodology and the generic operations supporting the method-
ology. As far as we know, this is the first attempt to do so. We also emphasise
the need for means to document, revoke, and reconstruct a sequence of steps in the
data preparation process, and stress the importance of repair and interpretation,
effective type analysis, and merging.

A Methodology for Data Preparation

The different tasks in the preparation of data generally include a number of steps,
some of which may have to be iterated several times. It is very common that
the need to refine the result of an earlier step becomes apparent only after the
completion of a later step, and data preparation is often revisited quite far into the
analysis and modelling process. The same applies to early representation choices
that turn out to be inappropriate, and late introduction of innovative recoding that
simplify the modelling and analysis.

To handle these problems, the methodology includes a number of distinct oper-
ations and explicit iterations. The methodology is intended to provide a structured
context to support the data preparation process, and an overview is shown in figure
6.2. This section describes each step and indicates under what circumstances it will
be necessary to back-track to an earlier step.

Problem Classification

Problem classification includes identification and classification of the type of data
analysis task. As discussed before, typical tasks include error or anomaly detection;
fault diagnosis, state classification or prediction; and proposing corrective actions
for errors. The type of data analysis task entails different choices in encodings and
models which will be relevant to later steps. It is usually highly beneficial to have as
good an understanding as possible of the problem at this early stage, as this allows
for better initial decisions on type determination and representation, reducing the
risk of having to revisit and reformulate earlier steps of the process.

Selection of Data Sources

The collection of data typically involves extracting information from several data
bases with different representations and sample rates. Common sources are logs
for individual or related groups of sensors, target and measured values for certain
parameters related to the type of product produced, and various quality measures.
These sources are typically very heterogeneous and need to be individually pre-
processed before being merged into a single data source on which the analysis task
can be performed. Naturally, the availability and choice of data determine the type
of analysis that will later be possible.
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Figure 6.2: Methodology overview.
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Identification of Target Parameters

For many, although not all data analysis tasks, it is necessary to find a subset of the
parameters which uniquely identify the situations or conditions that the analysis
should recognise or predict using the remaining parameters. These are the target
parameters for which we seek an explanation, prediction, classification or cause. If
it is possible to identify them at this stage we will benefit from better knowledge
of what parameters are important and of suitable transformations.

Unit Standardisation in Each Data Source

The standardisation of units in all data sources is necessary to have comparable
ranges of values for related parameters in the final merged data set. Usually this
is done by a straightforward mapping of values in one unit into another, such as
mapping imperial units to metric if both are present in the data set, but often the
need to do so is discovered only comparatively late in the process. Because later
steps such as anomaly detection and repair may depend on the choices made here,
it is still placed early in the data preparation process. Although important for some
models, transformations such as normalisation and whitening are however usually
not necessary at this stage.

Determination of Case Identifier

When several data sources have to be merged, it is often necessary to choose and
sometimes (re)construct a parameter in each data source that uniquely identifies
each case or item in the final analysis. This may have to be done in different ways
for each data source and may not generate unique entries in every source.

Type analysis of each data source

Analysis of the type, range and format of data represented in each parameter is
an often surprisingly difficult problem that will have a significant impact on the
result of the later preparation, modelling and analysis steps. For example, the
representation and limitations of models of data are often very different depending
on whether parameters are continuous or discrete, and results are highly dependent
on correct estimates of parameter ranges or domains. Correct type analysis is
therefore a very important step in the data preparation process.

Ideally, an expert with insight into how the data bases were constructed should
be consulted when selecting the most suitable type and range of each parameter.
In practise this is seldom feasible, since the experts rarely have the necessary time
to spare and the number of parameters selected initially can be very large. For this
reason it is desirable to simplify and speed up the type analysis step by making it
at least semi-automatic.

Type analysis may also be complicated by the occurrence of damaged or missing
data, or the use of ad-hoc encodings. A common example of this is the encoding of
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missing data by using a particular value outside (or even worse, inside) the normal
range of the parameter, e. g. string or characters in data that normally consist of
integers, or specific values such as -9999 or 0. This entails that the result of the
type analysis step is not only a unique type and range for each parameter, but also
input to the repair and recoding step described below. Type analysis involves:

1. Identification of the representation and actual range or domain of each pa-
rameter in every data source.

2. Application of some heuristic method to decide if a particular parameter seems
to represent samples from a discrete or continuous domain. The heuristic
analysis should preferably not only result in a type classification for each
parameter, but also give the grounds for this classification. This allows the
user to catch type errors at an early stage.

3. Inspection and evaluation of the results.

4. Manual correction of the results and descriptions from the heuristic method
using common sense and/or expert knowledge, rudimentary interpretation
and possibly classification and encoding of text parameters as e. g. discrete or
continuous data and missing values. This step should also include annotation
of data that, by the use of expert knowledge, describes both valid parameter
ranges and domains and unit/dimension where applicable. This information
is highly valuable in later modelling and anomaly detection steps.

The result of the manual correction must again be evaluated, perhaps again using
heuristics for automatic type identification, and the procedure iterated until the
result is satisfactory.

Repair and Recoding of Each Data Source

The visualisation and inspection of the result of the type analysis generally reveal
deficiencies and anomalies in the data that need to be rectified before data prepara-
tion and analysis can proceed. This situation is especially pronounced in industrial
applications where data often consist of samples of sensor readings which quite fre-
quently drift or report anomalous values, combined with e. g. transmission errors
and erroneous manual entries of laboratory measurements and error reports.

Parameters may also be correlated in such a way that the fact that an entry
for a particular parameter is missing or is out of range means that values for a
subset of the other parameters are useless or should be interpreted in a different
way. The detection of such cases generally requires knowledge of the processes
involved and/or of idiosyncrasies in the data collection routines. It is also common
that the analysis has to proceed quite far before any such anomalies are detected.
The repair and recoding step may thus have to be revisited several times, possibly
unexpectedly late in the modelling and analysis process.
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Methods for automatic detection of possible errors and data cleaning are also
highly useful here. Typically, some typographical errors such as misspellings or
misplaced decimal points can be comparatively easily detected (see e. g. [Lee et al.,
1999]). If proper operating ranges for parameters have been defined during type
analysis, values that fall outside of these can also be found easily. In fact, some
errors can be detected just based on the type of the parameter: if a temperature
reading shows a value below zero Kelvin, something must be wrong. In process
industry data, data reconciliation by e. g. mass and energy balancing may also be
useful to detect errors.

In most cases, the repair and interpretation step involves:

1. Reconstruction of obviously damaged parameter data in several data sources.
A simple example could be identifying a missing product number from a
specified batch, when all product numbers in a batch are identical.

2. Identification, classification and possibly recoding of process states that give
rise to missing and deviant data in several data sources. The representa-
tion of missing or irrelevant data should also be taken care of in this step.
Not only recoding of parameters, but also introduction of derived parameters
should preferably be performed at this point, especially if these parameters
are necessary for a later merge operation.

3. Visualisation and validation of repaired data.

All of these steps may have to be iterated and revisited several times.

Selection of Parameters and Entries in Each Data Source

This step is really a refinement of the choices made in the selection of data sources.
The reason to introduce a specific step to revise the choices is that we are, after
the type analysis and repair steps, in a better position to assess the quality and
usefulness of the data. We may also want to revise or refine the choices made in a
first iteration of this step based on results from several steps of preliminary analysis
of e. g. correlations between parameters in the data, or exclude subsets of entries
identified as anomalies. Obviously, the criteria for selecting entries differ from those
used for selecting parameters:

1. Detection of anomalies and artifacts in the data. Automatic or semi-automatic
methods for the early detection of anomalies would be highly desirable, but
that represents a non-trivial data analysis problem in itself and is out of the
scope of this text. See e. g. [Barnett and Lewis, 1994; Aggarwal and Yu,
2001; Eskin, 2000] for an introduction and further references.

2. Selection of entries. This generally involves exclusion of entries for which
information on the target parameters is missing; filtering of damaged param-
eters and other artifacts that have not been possible to correct in the repair
and recoding step.
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3. Redundancy detection and collection of expert knowledge relevant to parame-
ter selection. This includes correlation analysis, cluster detection and several
other techniques (see e. g. [Duda and Hart, 1973; Liu and Motoda, 1998; Jain
and Zongker, 1997]).

4. Selection of parameters. This is most often based on the result of the type
analysis and preliminary structure detection but may also rely on expert
knowledge. Different levels of such knowledge should be considered, from
naive interpretation of parameter names in the original data sources to more
or less complete knowledge of the physical, chemical, economical and social
factors involved in the studied process and their representation in the data.

During selection, we might also consider sampling data to reduce the size of the
data set. Sampling theory is well described (e. g. [Cochran, 1977]) and critical in
many data analysis tasks. For industrial data however this is rarely an issue, due
to the practical difficulties in acquiring enough data even for a representative view
of all aspects of the process.

Merging of Several Data Sources

Merging of data from several data sources is in many cases the single most complex
step in the preparation of data. In addition, since data is often given in the form
of time series with different sampling rates, there is an obvious need to be able to
reliably re-sample the data using e. g. interpolation, aggregation, integration and
related techniques.

Many problems with data in individual data sources become obvious only when
merging several data sources into one. Since the merge itself generally is quite a
time consuming and error prone operation, it is desirable that the way that the
merge is computed is very precisely specified and, most importantly, that it is
reproducible in the (very common) case that some earlier data preparation steps
have to be revisited.

Common merge problems include cases where one or more data sources contain
time series of measurements, possibly with different sampling rates, corresponding
to a single entry in another data source. In such cases it is usually necessary to fold
(transpose) the time series into a set of additional parameters for the single entry,
possibly re-sampling, integrating and transforming the data in the time series into
a more compact representation, or one believed to be more relevant to the analysis
task at hand.

It should be noted that such transformations can easily reduce but also bring out
correlations that otherwise could be very difficult to detect by automatic methods.
Choices of this kind are really part of the modelling phase, and the correct decisions
should be based on thorough knowledge of the problem, on the analysis task at hand
and on a fair bit of experimentation with alternative representations and models.

Differences and errors in textual representations of identifiers can also cause
severe problems while merging. Although such problems are often solvable by
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defining two corresponding sets of regular expressions for matching, more elaborate
methods might have to be applied [Hernandez and Stolfo, 1997].

Final Selection of Entries and Parameters

At this point, after merging several data sources, it is usually a good idea to revisit
the data selection stage, but now for the complete data set. Quite often, a merge
operation introduces redundancy in both parameters and entries, and structure
that was not visible before the merge (since the data sets were not complete) is
now detectable.

The final selection of entries and parameters has the same structure as the
one performed for each data source, but some correlations (or lack thereof) may be
difficult to detect before the data sources have been merged. Once the usefulness or
uselessness of certain subsets of data has been determined, the selection can either
be done for each data source or directly in the merged data. The methodology
outlined in figure 6.2 singles out the second alternative, but going back to the
selection step for each data source instead might make sense if the merge operation
is simplified by a refined selection on the individual data sources.

Data Partitioning

At this stage it is suitable to, if appropriate, partition data into training (estima-
tion), validation, and testing data sets for the modelling phase. This partitioning
is not necessarily easily made in industrial process data, due to the fact that the
production process usually moves quite slowly through a huge state space. The dif-
ferent data sets may have to be separated in time by weeks, or even months, to be
useful for estimating a model’s actual predictive capabilities. However, estimating
the necessary partitioning reliably is difficult, and this step might require a high
degree of trial and error.

Modelling

As already pointed out, it is not easy to draw a clear line of where data preparation
ends and modelling begins. In fact, we have already touched upon procedures that
might be referred to as modelling in earlier steps, perhaps most notably in case
and parameter selection, as determining dependencies and finding clusters rely on
assumptions and parameterisations of data that are in effect models themselves. For
the current discussion it is sufficient to note that at this stage it is often suitable to
perform another kind of preparatory modelling: introducing derived parameters,
or features.

By features we mean new parameters that can, often quite easily, be calculated
from other parameters in data. Features may have been introduced earlier to be
able to merge data sets with no simple parameter overlap. The reason to introduce
them in this step is slightly different in that it is here primarily a mean to insert
expert knowledge into the data. For example, the temperature over gas volume
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quotient may very well contain predictive information, and is easily calculated if
we know both the volume and temperature. The reason to introduce this feature
into the data set is that it represents useful knowledge: although we already know
the parameters from which it is calculated, a particular analysis method might not
easily find this relation by itself.

In industrial data, common features include everything from simple functions
such as durations between time points to complex and area specific correlations, as
well as recoding of data in orthogonal bases using e. g. principal component analysis
(PCA) [Jolliffe, 1986] or calculating spectral properties using Fourier or wavelet
transforms [Daubechies, 1990]. What kind of derived parameters that are useful
for a certain application is often very difficult to know beforehand. Cataloguing
common useful features for a variety of problems and industrial areas would be
an interesting research problem in itself. Feature construction and selection, both
automatic and manual, are difficult problems, but an introduction to some useful
methods can be found in e. g. [Liu and Motoda, 1998; Jain and Zongker, 1997].

Generic Operations and Transforms

The methodology outlined in the previous section specifies what needs to be done
to the data in order to prepare it for modelling and analysis, and proposes an
order in which to perform the preparation steps. What remains to describe is
how to perform the necessary preparations. For this purpose we have identified a
small set of generic operations, with a focus on data transformation, of which all
data preparation tasks outlined above are special cases. These operations can be
composed into a reproducible sequence of transforms, thereby making it possible to
move back and forth between the preparation steps in a controlled manner.

The set of operations is for practical purposes complete, and although it is
deliberately small, we have allowed for some overlap in the functionality of the
operations. This implies that a given data preparation task may be accomplished
in several ways.

The aim is that, using the generic operations, it should be comparatively quick
and easy to get data into a state where anomalies and deficiencies can be subjected
to a preliminary analysis. It should then be possible to iteratively devise means
to correct and compensate for these anomalies and deficiencies by reiterating and
modifying the operations already used, and introducing new operations at the most
suitable point in the process. An overview of the generic operations is provided in
table 6.1.

Note that we have listed no supporting operations for problem classification,
selection of data sources and identification of target parameters apart from vi-
sualisation tools since these steps by their nature require manual inspection and
decisions.
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Preparation step Operation Description

Visualisation and inspection inspect Inspect data

plot Plot / visualise data

Type analysis and data loading guess Guess parameter types

sample Load sample of data source

read Load complete data

Repair and recoding replace Replace entries

derive Compute derived parameter

match Match parameters

Selection select Select entries and parameters

Merging merge Re-sample and merge data sets

Table 6.1: Overview of generic operations and transforms

Visualisation, Inspection and Other Supporting Operations

Although not described as a separate step in the methodology, visualisation (used
here to describe graphical presentation of data) and inspection (used here for view-
ing data in a textual format) routines are implicitly used by many of the other
steps for exploration and verification of results. In fact, throughout the whole data
preparation process, visualisation and inspection of both type information and the
data itself is essential (see e. g. [Fayyad et al., 2001]), not only for discovering struc-
ture and dependencies in data, but also to get a more basic understanding of what
the attributes represent and on what form. Although visualisation has not been the
main focus of our work, a number of operations and application properties that are
useful for data preparation have been identified. For very large data sets it can be
a good idea to base initial visualisation and inspection on a sample of the complete
data.

An effective tool should include at least mechanisms to inspect the type de-
rived for each parameter in the data, and be able to describe and visualise the
distribution of both continuous and discrete parameters. Apart from calculating
common descriptive statistics measuring e. g. the central tendency and dispersion,
this includes inspection of the number and distribution of cases for discrete param-
eters as well as e. g. histograms or dot plots [Tukey and Tukey, 1990] for continuous
parameters.

Visualisations, or plots, are very useful for determining the nature of the rela-
tions in the data and finding potential clusters. Examples of useful visualisations are
scatter plots in several dimensions [Swayne et al., 1998], parallel coordinates plots,
and simple series plots, possibly combined with correllograms for time dependent
data.

Common for all types of visualisations during data preparation is that they
should support identification of anomalous data entries and verifying type infor-
mation. For example, a discrete variable mistakenly represented as continuous can
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usually easily be identified in a scatter plot, as can potential outliers. Other impor-
tant properties of the graphics system are interactivity and consistency. Graphics
should directly reflect changes to the data or its representation, making it easier
for the user to explore the data and explain phenomena in it. Changes made in one
visualisation should be noticeable in others that represent the same data.

Visualisation and inspection can be viewed as operations that provide infor-
mation on useful instantiations of data transformation primitives such as replace,
derive and select. This is also true for anomaly detection and structure analysis;
these tasks could also be viewed as generic operations on the same level as visuali-
sation and inspection. Detecting anomalies and structure in data are discussed in
somewhat more detail in chapter 4.

Type Analysis and Data Loading

As discussed in the methodology, type analysis is important for understanding,
modelling and error correction of the data. Also, just reading data into a database
and storing it efficiently generally require some rudimentary form of interpretation.
Since data analysis frequently deals with very large amounts of data it may not be
feasible to store e. g. numbers and enumerated types as strings. For these reasons we
need a mechanism to specify and preferably also at least semi-automatically derive,
or guess, parameter types from the data. We also need mechanisms for modifying
this type information by explicit specification when necessary. Specification and
derivation of field types need to be done for several data sources and there is a need
for a mechanism to uniquely refer to the results of such a read operation. This
gives us that a generic read operation should support

• Sufficiently general input formats, e. g. typical export formats of common
database systems and spread sheets.

• The ability to guess the type of each parameter using a suitable heuristic, and
then modifying this guess according to a manually generated specification.

• A mechanism to extract only a sample of a given data source. This is for
practical reasons, as experimenting on complete data sets throughout the
whole data preparation process might be too computationally demanding.

These mechanisms can be conveniently provided by parameterising a single read
operation for each data source.

Repair, Recoding and Derivation

There is frequently a need to transform data into another unit or representation. We
may also wish to modify a determined type into another one: a discrete parameter
into a continuous, a string into an enumerated type or a date etc. This is sometimes
most conveniently done by replacing the original value by a value computed from
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the old by a function, possibly also using values of other parameters as input.
Such a mechanism can also be used to discretise a continuous parameter, replacing
certain ranges of parameter values with a uniform representation of the fact that
the value is missing, or to repair, reconstruct or re-sample data. This operation,
replace, should

• Use a single transformation function that returns values in accordance with
a single resultant type.

• Let the transformation function inspect any number of parameter values in
addition to the one being replaced.

Some but not all data analysis methods are capable of automatically detecting
correlations between clusters of parameters. However, in many cases it is as already
argued useful to introduce derived parameters (features) from ones already present
in the data. We wish to allow the analyst the choice of which path to take and
therefore provide a mechanism to manually add derived parameters. The primitive
operation used to do this, derive, should

• Return for each entry in the input data a derived value as a function of a
fixed selection of parameters in the old data.

• Return data conforming to a predetermined type, but allow for handling of
anomalies in input types.

A special case of replacement and derivation in the above sense is where the input
fields contain data that need to be discretised or classified. One very convenient way
to do this is to specify each class as a regular expression that can be matched to the
original data. For this reason we propose a specialised form of the derive operation,
match, which takes a finite list of regular expressions and returns a discrete value
corresponding to an enumerated type with as many cases as the number of regular
expressions given. Each regular expression corresponds to one discrete class of the
original data.

Selection of Entries and Parameters in a Single Data Source

Frequently the data sources contain redundant or irrelevant parameters, and entries
that for some reason or other are not usable. Since this may not be obvious initially
it is very useful to be able to select subsets of the data in a traceable and retractable
way. Selections of parameters can generally be done using only indexes or parameter
names while selection of entries may depend on the actual values in subsets of fields
in each entry. The primitive operation select allows us to do simultaneous selections
of parameters and entries by specifying a list of names or indexes of the parameters
to be selected and a boolean filter function used to select entries from the input
data.
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Merging Data

One of the most complex operations in data preparation is the merging of several
data sources. It would be almost impossible to provide high level primitives cap-
turing all possible merge and re-sample needs. For this reason we have chosen to
specify a very general mechanism for merging data sources, that for non trivial
cases will require programming of functional parameters. It appears, however, to
be possible to generalise and with time build up a library of working solutions as
generic merge functions or subroutines. For the majority of merge tasks, we have
made the assumption that

• A merge is always done between exactly two data sources. If more than two
sources need to be merged this will have to be done by a sequence of merges2.

• The entries in the merged data source will always consist of data derivable
from exactly one entry in the first input data source and a number of matching
entries in the second3.

• The match should be (efficiently) computable by comparing a specified num-
ber of parameter pairs, each pair consisting of a parameter from each input
data source.

• For each entry in the first input data source a specified number of derived
entries will be computed from the matching entries in the second.

These assumptions allow us to partition the computation of the merge into two
steps:

1. Computation of a number of matching entries in the second input data source
for each entry in the first input data source. This can be done in a completely
general way, using a functional parameter to specify the match criterion.

2. Computation of each derived entry by a supplied merge function from the one
entry in the first input data source and the corresponding match of entries in
the second. Several types of common merge functions have been identified,
such as interpolation, gradients and derivatives.

In short, a primitive merge operation should take as input exactly two data sources,
a matching specification and a merge function, and produce a single data source as
output.

2In cases where we wish to re-sample parameters in a single source, we can either use the
derive operation or produce a new data source that can be merged with the original one in the
manner described here.

3This assumption may seem overly restrictive but for all cases we have so far encountered, in-
troducing a derived parameter in one or (rarely) both data sources have allowed us to conveniently
use a merge operation with this type of restriction.
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Implementation of a Tool for Data Preparation

The general, primitive operations presented in the previous section could be imple-
mented in many different ways. Several of the operations are similar to those in
data base languages such as SQL [Date and Darwen, 1987], and if it is the case that
the data sources are available as tables in a relational data base the implementation
of some of the primitives would be trivial. SQL is, however, in its standard form
unsuitable for e. g. advanced forms of merging.

Another common way to execute the primitive operations is to use text pro-
cessing tools such as sed, awk and perl. Using such tools generally involves a
significant amount of programming, and the programs developed may not always
be as reusable as could be desired. A system with better integrated transformation
primitives, using a higher level of abstraction would be preferable.

To support the methodology in section 6.3 an interactive tool for data prepara-
tion has been implemented. This tool is based on a previously developed general
analysis environment, gmdl ([Gillblad et al., 2004]), which will be discussed in some
more detail in section 6.5. The tool is intended as a framework for data preparation,
suitable for both interactive and batch oriented use, facilitating all common prepa-
ration tasks. Procedures for cleaning, transformation, selection and integration are
provided, implementing the general operations discussed in section 6.3.

The implementation is directly related to, but takes a different direction than
[Sattler and Schallehn, 2001], which uses an extension of SQL to provide an envi-
ronment that supports more general data preparation tasks such as data filtering,
reduction and cleaning. [Sattler and Schallehn, 2001] makes use of an imperative
language, while we propose a functional approach that better suits the use of generic
operations, an approach that hopefully will be more general and allow for faster
prototyping.

Requirements Specification

A tool for data preparation, analysis and modelling should be designed to fulfil
a number of criteria. While keeping the interface simple, it should be possible
to handle a large variety of problems by keeping it extensible and adaptable. A
general data preparation system must also be fully programmable by the user.
Almost all data preparation tasks differ slightly from each other, and while some
subtleties might be possible to handle in a system that cannot be fully programmed
or extended, it is bound to one day run into a task that cannot be handled within
such a system.

As discussed throughout this section, data preparation is a highly iterative pro-
cess and it must be possible to go back and change previous decisions at any step of
the process. Hence, a very important requirement is that a support tool should con-
tain mechanisms for documenting each step of the data preparation process in such
a way that the process can be easily re-traced and re-run with changed operations.

In addition to the mechanisms dedicated to the data preparation, the implemen-
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tation should contain facilities for data abstraction, type management and consis-
tent representation and transparent handling of missing values. It should provide a
mechanism to refer to the parameters that is independent of the order in which the
parameters were given in the data source and allow free naming and index insertion
of derived fields. Preferably, values of derived fields should also be computed dy-
namically and on demand, so that modification of input data automatically results
in re-computation of the derived fields whenever their values are requested. These
facilities are provided automatically by the gmdl environment on which the data
preparation routines are based.

Design Choices

In the underlying analysis environment, data are abstracted to a set of entries
(rows), each consisting of a set of parameters (columns), the intersection of an entry
and a parameter being referred to as a field. Each parameter has an associated type,
used to interpret and encode all the fields of that parameter. The set of types is
currently limited to: continuous (real), discrete (integer), symbol (enum), date,
time and string (uncoded) although additional annotations of each parameter are
provided to encode additional type information such as unit, dimension etc.

Data are represented in essentially two main ways in the library. The user does
not have to differentiate between them, but the concept is still relevant for this
discussion. It can either be stored explicitly, to provide efficient storage of and
access to static data, or as virtual data providing a facility to derive new parame-
ters from existing data using a filter construct. This provision is used extensively
in the implementation of the data preparation primitives to allow a type of lazy
computation of derived parameters and transforms. This also gives us very fast
execution of a sequence of operations and inspection of subsets of the data before
committing the data to disk.

Most of the data preparation operations described below take an arbitrary data
object as input and return a virtual data object as result. This makes the operations
clean in the sense that the original data are always unchanged. For most operations
it also makes the transformation very fast. However, accessing the data in the
resulting virtual data object may be slow. For this reason an explicit check point
mechanism has also been implemented that will transform the virtual data object
to a storage data object and optionally write a representation of it to disk. This
means that during the incremental construction of a script to specify a sequence of
transformations of the original data, the result of stable parts of the script may be
committed to disk. The parts of the script that generate the check point files are
then re-executed only when really necessary. The scripting mechanism includes a
script compiler and a top level interpreter, which handles the check point mechanism
and provides abstractions of the primitive operations as commands where the input
and output data objects are implicit.

In the following subsections the elements of the implementation most important
to data preparation are briefly described and exemplified. The examples are taken
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from a real case of error detection in steel manufacturing (see [Holst and Kreuger,
2004]). This pilot case was first prepared using e. g. emacs, sed and awk, and then
reconstructed using the methods and tools described in this section. Apart from
the time spent on understanding the application area, the time invested in the first
iteration of data preparation for this test case was still comparable to the total time
taken to both implement the support tool and preparing the data using the new
tool.

Scripting and Maintenance Functions

The functions define-script, script-read, script-check and script-write are used
to specify a sequence of data transformations as a script, for I/O and for convenience
during the iterative development of the final version of the script. Example 6.3
illustrates one typical use of these functions.

(define-script (example-1 SaveName)

(script-read ’(((int (0 . 999)) (0 . 3))

(string 4 5 6)))

<command 1>

<command 2>

(script-check)

<command 3>

...

(script-write SaveName))

;;; (example-1 "<file spec>" "<destination path>") ; Call script

Figure 6.3: Example of script I/O functionality.

Example 6.3 defines a script which takes as an argument a file name used to
store the result of executing the script. When called it takes in addition and as its
first argument an input file specification which is implicit within in the script but
passed on to the script-read command. script-read should always occur first in
the script and will generate the initial data object operated on by the remaining
commands in the script.

The script-read command will analyse the file indicated by <file spec> and
generate a tentative typing of all the parameters in the file, modify the typing as
specified by its first argument and store the typing information to disk. The type
specification in this case indicates that the parameters here given as 0 through 3

should be interpreted as integers in the range 0..999 and the parameters 4, 5 and 6

as strings of characters. This result is stored to disk as a type file associated with
the data file indicated by <file spec>. If the script is rerun, the typing will not be
performed again unless forced by adding an additional argument to script-read.
Instead the type-file is used to read in the data.
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If the first argument supplied to the script is a sample specification, the sample
will be generated and stored to disk. Using either the sample or the original data
file the script-read command will then generate and pass a storage data object to
<command 1>, which will in turn pass its own result as a data object to <command 2>

and so on.
The result of executing <command 2> will be saved as a check point file before

being passed to <command 3> unless the check-point already exists, in which case
neither the script-read nor the following commands up to the script-check will be
executed at all. Instead the check point file will be used and the result of reading
it will be passed to <command 3>.

The script returns the result of its last command, in this case a write command
with the obvious semantics.

Data Transformations

Example 6.4 below illustrates a range of simple transformations.

(define-script (script-name SaveName)

...

(data-replace (replace-filter >= 0)

’(cont (0 . 2000)) ’(8))

(data-derive (access -)

’(int (0 . 172800) "ct0-ch") ’(71 29))

(data-match 85

’(disc ("No" "hasp.*680" "hasp.*750") "HT"))

(data-select (lambda (entry) #t)

’(2 3 4 (8 . 12) 14 (16 . 19) 21 23))

...)

Figure 6.4: A range of simple transformations.

data-replace returns a virtual data object in which the values of all fields for a
given set of parameters have been mapped to new values of a corresponding new
field type. A transform function given as an argument should take three arguments:
the original data object, an entry and a parameter. In example 6.4, the command
replaces all values below zero in the parameter 8 with the dedicated symbol for
missing values (#?) and restricts the type of the parameters to be in the range
between 0 and 2000.

The data-derive command returns a virtual data object to which a new param-
eter of a given type has been added. The values of the fields in the new parameter
are derived by a supplied transformation function that is applied to the original
data object, an entry and a list of the parameters. In the example, a new param-
eter named ct0-ch is added, with a continuous type with a range between 0 and
172800 computed as the difference of the values of parameters 71 and 29.
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data-match adds a new parameter, HT, classifying the string values in parameter
85 as one of three values depending on the result of a match with the regular
expressions /hasp.*680/ and /hasp.*750/, defaulting to No if no match is found.

The data-select command, finally, selects a subset of parameters. data-select

always returns a virtual data object where only the parameters given and entries
that passes a given test function remains. The test function provided in example
6.4 selects the given parameters and leaves all entries of the input data object in
the output data object.

As discussed in section 6.3, merge is one of the most complex operations in data
preparation. Therefore, the data-merge command is defined as a general function
that in all but trivial cases will require programming of functional parameters.

data-merge merges data from two data-sources, db0 and db1. This is done
by adding one or more parameters derived from db1 to a new virtual data object
initially identical to db0. First, a match is generated. The match consists of the
entries in db1 that match each entry in db0 for each of the parameter pairs given.

The remaining arguments specify how to derive additional parameters. For each
parameter specified in db1, a fixed number n of new parameters will be derived from
the match. A supplied value function computes the value of each new field of a type
computed by a corresponding type function. The value function should take four
arguments: the data object; a list of entries, which represents the indexes in db1

matched to the current entry in db0; a parameter in db1; and an integer between 0

and n-1. This is typically used to sample or enumerate fields in consecutive entries
in db1 to create several new fields in the resulting data object. As an example, to
transpose the vector of values of a field in several matched entries into a number of
new fields, the following value function could be used:

(lambda (db1 entries param i) (db1 (list-ref entries i) param)

The next argument is a type function is useful for deriving the new field format as
a function of the format of the parameter from which its value is derived. To use
a unique version of the original parameter name one could e. g. use the following
type function:

(lambda (param i type dom name)

(list type dom (format #f "~a-~a" name i)))

A small number of useful and convenient merge value functions and utilities are
provided by the scripting module. Example 6.5 illustrates the use of data-merge.

The data object produced by the prefix is merged with a data object produced
by the script scrpt1 called with the source file <source 1> matching entries for
parameters 0 and 1 in both sources. In this case the match is assumed to con-
tain exactly one entry from <source 1>, the value of which is appended to the
primary data object obtained from <source 0> with the same parameter name as
in <source 1> but with a continuous type with a range between 0 and 100. Exactly
one new parameter for each parameter between 2 and 29 in <source 1> is generated.
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(define-script (scrpt1 Src1 Src2)

...

;; Merge source 1

(data-merge (scrpt1 ’,Src1) ; Merge subscript 1

’((0 . 0)(1 . 1)) ; Match parameters

(lambda (d rws c i) ; Value function

(d (list-ref rws i) c))

(lambda (c i tp dmn nm) ; Type function

‘(cont (0 . 100) ,nm))

1 ’((2 . 29))) ; No. of samples & source fields

;; Merge source 2

(data-merge (scpt2 ’,Src2) ; Merge subscript 2

’((0 . 0)(1 . 1)) ; Match parameters

(lambda (d rws c i) ; Value function

(if (null? rws) "No" "Yes"))

(lambda (c i tp dmn nm) ; Type function

’(disc ("No" "Yes") "Sliver"))

1 ’(0)) ; No. of samples & source fields

...)

;;; (scrpt "<source 0>" "<source 1>" "<source 2>"); Call script

Figure 6.5: Merging two data sources.

The result of this operation is then merged with a data object generated by
the scrpt2 called with <source 2>, using the same matching parameters, but now
adding a boolean parameter depending on if the match is empty or not.

resample is a generic sampling utility function for data-merge that iterates over
the supplied entries and applies a given binary operator to a given parameter s of
each consecutive entry and a supplied value l until it becomes true. It then applies
a supplied interpolation function to the resulting entries and parameters.

Typically this is used to search the values of a particular parameter s for a
value that exceeds the value l. The sample function typically interpolates between
values of the fields in a given set of parameters for the current and the previous
entries using e. g. linear interpolation, gradient, derivatives or splines. Two common
sample functions are currently implemented as library routines: interpolate that
returns an interpolated value of one parameter at which another parameter would
take a given value and gradient that returns a gradient of one parameter at which
another parameter would take a given value. Example 6.6 shows the use of resample,
interpolate, and gradient.

This example illustrates a more complex merge operation with two distinct
types of sampling of the data in the secondary data object. In both cases a fixed
number of samples (12) are computed from a variable number of matched entries in
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(define-script (scrpt Src1)

...

(data-merge (frnc ’,Src1) ; Merge subscript

’((0 . 0)(1 . 1)) ; Match parameters

(lambda (d rws c i) ; Value function 1

(resample d rws 5 >= (* (++ i) 100)

interpolate c 5))

(lambda (c i tp dmn nm) ; Type function 1

‘(,tp ,dmn ,(format #f "~a at ~a°C" nm (* (++ i) 100))))

12 ’(3 4 (6 . 14)) ; No. of samples & source fields

(lambda (d rws c i); Value function 2

(resample d rws 5 >= (* (++ i) 100) gradient c 3))

(lambda (c i tp dmn nm) ; Type function 2

‘(cont ,(if (= c 4) ’(0 . 300) ’(0 . 30))

,(format #f "~a incr/min at ~a°C" nm (* (++ i) 100))))

12 ’(4 5 7 8 9 12 13 14)) ; No. of samples & source fields

...)

Figure 6.6: A more complex merge of data sources.

the secondary object. Both use the library procedure resample but with different
sample functions (interpolate and gradient). Most of the data for which the
gradient data are computed is also sampled by interpolation.

Summary and Concluding Remarks

In this section, we have discussed a methodology for data preparation of complex,
noisy data from multiple data sources and shown how the methodology can be
supported by a small set of high level and generic operations. By constructing a
tool implementing the generic operations we have suggested how the operations can
be put into practical use for the preparation of industrial data, prior to modelling
and analysis.

Although data preparation and merging is exploratory by nature, the process
can benefit greatly from the structured approach suggested in the methodology.
Being able to restart the sequence of operations at any point is a major advantage
whenever the need to modify, add or delete individual transformation operations
is detected later in the preparation or modelling process. This is, as we have
already stressed, a very common situation. The implemented tool combines the
set of primitives with a scripting facility and checkpoint mechanism as described in
section 6.3, making each step in the process of data preparation self documenting,
revocable, reproducible and generally much more efficient in terms of time invested.
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Although the primitive operations are derived from the methodology, the method-
ology itself could be used without the proposed primitives, e. g. in the context of an
SQL data base or when using tools such as sed, awk or perl. However, we argue that
a dedicated implementation of this particular set of primitives is an efficient way
to reduce the traditionally considerable time spent on data preparation, especially
for the analysis of industrial data. The time spent on the preparation phase was
reduced by orders of magnitude for our pilot case, and we firmly believe that this
will be typical also for future applications. Also, the importance of efficient, semi-
automatic type analysis should not be underestimated, as this is usually a difficult
problem.

As for future developments, the methodology and implementation will be ap-
plied to other case studies, and based on such results, possibly refined. Different
types of automatic or semi-automatic techniques for detection of anomalies and
correlations would also clearly facilitate the data preparation process, and could
additionally be of use in the modelling steps following the data preparation. For
example, extending the use of the type analysis and annotation of parameters with
range, domain and unit information would be highly beneficial.

To be truly useful for the general analyst, the implementation of the merge
operation requires a library of common merge and interpolation subroutines. Some
examples of such library routines were given in section 6.3. Further application
of the implementation is expected to result in a larger set of useful such routines
being identified. Similarly, a set of useful features for different types of industrial
applications should also be identified, along with guidelines of when they are usable.

6.4 Modelling and Validation

Although by no means less important than data preparation, it is very difficult
to provide a modelling and validation methodology applicable to a multitude of
machine learning models and applications. Suitable approaches to modelling can
differ greatly between different types of machine learning algorithms, as the model
structure and parameters usually are very different. A usable methodology for
applying the hierarchical graph mixtures described earlier would of course be highly
desirable and possible to study, but this is unfortunately outside the scope of this
thesis and must be considered to be future work.

Validation suffers from a similar problem in that it is often difficult to find a
usable validation scheme that provides a good estimate of generalisation perfor-
mance in practise, where available data are often limited or sampled from a limited
subset of the total state space. A good understanding of the application area is
often a necessity when evaluating models. For data that at least approximately
fulfil a number of validation requirements that are often taken for granted, such
as samples being independent and a non-biased sample set, there are a number of
useful approaches already discussed in chapter 1, but we would like to refer the
reader to the standard machine learning and statistical literature for a thorough
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discussion of the subject (see e. g. [Mitchell, 1997; Witten and Frank, 1999]).

6.5 Tools for Data Preparation and Modelling

Introduction

To support the data analysis and modelling process, we have constructed a set
of tools and libraries that are intended to address a number of rather different
needs of a complete data analysis environment (see figure 6.7 for an overview).
For many applications, especially within real-time systems, speed and efficiency are
very important. The models and data transformations that form the foundation of
the result of the whole analysis process should also be easy to incorporate into new
or existing applications.

For these reasons, the foundation of the environment is an efficient low-level
C++ library, without any external dependencies in the form of additional libraries.
This makes it easier to create specialised applications based on the library and
to embed it into other software frameworks. This library, which we will refer to
as mdl (or model description library), mainly provides functionality for managing
and transforming data, creating and estimating various models, validation, and
exporting the results.

questy

gmdl

mdl

Graphical analysis environment

Interactive analysis environment

Low-level C++ library

Figure 6.7: An overview the implemented analysis tools.

The gmdl (or general modelling language) environment builds on the mdl library
to provide an interactive, programmable, and easy to use data analysis framework.
It is in essence an extension to the SCHEME programming language, and intends
to provide for simple and efficient data transformation and rapid model prototyping
and testing. All of the functionality of the mdl library is provided but in a much
more accessible form.
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Based on this interactive analysis environment is questy, an experimental graph-
ical user interface that tries to support the data analysis process in an intuitive way.
It is by no means a complete analysis workbench, but serves as a suggestion to how
such an application could be constructed.

In this section we will give a brief overview of each of these libraries and appli-
cations.

A Low-Level Library for Data Analysis and Modelling

The focus of the low level mdl library is to provide a framework for resource inten-
sive tasks within machine learning and data analysis. The library is intended to be
portable and, to as large degree as possible, self contained, i. e. without dependen-
cies to other libraries.

A basic requirement for the library is a consistent representation of data for all
models and transformations. In mdl this data object is represented as a table, with
a number of attributes or fields for each outcome. Most commonly, each instance in
the table would be associated with an integer value specifying the “row number”,
but it is perfectly possible to use multi-dimensional indexing of the data object, e. g.
for representing the levels of red, green, and blue in a two-dimensional image. In
this case, the data could be accessed through a vector of integers of dimension two,
specifying the position of the pixel in the image. Different cuts and views of any
multi-dimensional data object can be accessed without using additional memory.

The data object provides a small set of access and modification methods to keep
the interface simple. Representation wise, the data object is an ordered collection
of attribute objects, representing the columns of the table. The attribute objects
can be of several different types. The base class is abstract, and provides a com-
mon interface for specialisations that e. g. provide efficient storage of data or lazy
evaluation of transformation functions. The latter is performed through a filter
object, which contains references to one or more other attributes. These attributes
are then used as input to a transformation function as specified in the classes that
inherit from the filter class. The relations between the base classes is shown in
6.8. Also note that it is possible for attributes to contain references to other data
objects, allowing for more flexible and efficient storage.

As we in many situations need to know on what format the data is stored, e. g.
if an attribute is discrete or continuous, each data object is associated with a data
format. Aside from storing some meta data common for the whole data object,
the data format is represented as an array of field formats. The field formats can
be accessed trough their position in the vector, or, if the order of fields is not
important, through the name of the field. All attribute objects are associated with
a field format.

The field format objects can be of several different types, most notably con-
tinuous, discrete, integer, string, and data object formats. These formats store
information about e. g. field names, ranges in the case of continuous and integer
data, and number of and names of the outcomes of a discrete format. The formats
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also specify if the values stored are scalars or arrays, and, in the case of the latter,
the expected dimensionality of these arrays.

Both data formats and field formats use copy on write semantics. The objects
only store a pointer to the actual object representation, meaning that format copy-
ing or comparison is a mostly a matter of pointer assignment or comparison. Only
when an object that is referenced multiple times is modified, memory is allocated,
copied and modified.

There are several methods available for guessing the formats of data files and
modifying these. Formats also provide means for converting between a textual
external representation and the internal representation, which brings us to how we
store and communicate data between procedures in the library.

Since we cannot assume that we will know all formats of data, model specifica-
tions etc. at compile time if we want to build a dynamic or interactive system with
the library, we also need to be able to perform dynamic typing of data. This is done
in the library through the dtype (dynamic type). This is a discriminated type that
can contain values of different types, indifferent to interpretation while preserving
type information. A dtype can be assigned any copy constructable objects, storing
objects smaller than a specified size directly within the dtype object itself, while
larger objects are stored as a pointer to an object. The type of value contained can
be tested with

dtype_is<typename>(const dtype& value)

and the value converted to the correct type using

dtype_cast<typename>(const dtype& value)}.

The library provides appropriate type definitions for all primitive types, such as
continuous, integer and discrete data. The library also provide for consistent man-
agement of unknown values. Any primitive type or dtype can be tested for con-
taining an unknown value using the procedure is_unknown(...), returning true if
the value is unknown and false otherwise. All procedures within the library are
implemented to accept possible unknown values.

All models of data in mdl inherit from a basic model object (see figure 6.9).
The base class keeps track of what attributes in a data set it is supposed to operate
on, and, if appropriate, an associated data format specifying the domain on which
the model is valid. All models inheriting from this base class must provide two
methods: estimate, for estimating the parameters of the model from a data object,
and predict_values, that should fill in the unknown values of an input vector as
good as possible given the model parameters and the known values. This model
object does not provide any separation between input and output attributes. If such
a separation is appropriate or necessary, e. g. for a feed-forward neural network, the
class must inherit from the io_model specialisation that provides such a separation.
Also note that many models in the library are in fact hierarchical, i. e. composites
of (possibly) simpler models such as ensemble models and models providing access
to boosting and bagging algorithms.
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Data

Attribute
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Filter

Data Format

Field Format

1+

1

Figure 6.8: A somewhat simplified overview of data management related compo-
nents.

A significant specialisation of the model class is the distribution, used as a base
class for all multivariate distributions within the library. It extends the model with
a number of necessary methods: predict_distribution, which calculates the condi-
tional distribution over the unknown values in the input vector given the known
values; marginal, returning the marginal distribution over the specified fields; and
probability, returning the probability (or probability density) at the position spec-
ified in the input vector. These three methods allows us to perform most com-
mon operations on statistical models. The library provides representations for
both simple parameterisations such as Gaussian (normal) distributions, general dis-
crete distributions, and Poisson distributions; as well as more complex distributions
such as graphical models and mixture models. The models available in the library
also provides methods for calculating the entropy and Kullback-Leibler divergence,
which e. g. allows for the construction of more complex information measures.

As there are standard interfaces for estimating models from data and perform-
ing classification and prediction, it is also possible to construct general validation
routines. The mdl library provides routines for several kinds of cross-validation,
where the results are calculated according to a wide variety of measures that can
be inspected by the user.

In general, most resources in the library such as data objects, models and
distributions, are managed through reference counting. All of these objects in-
herit from a basic mdl_reference_counted class that keep track of the number of
references to an object, which is released when this counter arrives at zero. It
provides reference and release methods to increase and decrease the counter re-
spectively. The whole library is implemented using reference counting, as it is a
relatively fast and portable approach to resource management. However, since it
does increase implementation complexity somewhat and does not allow for circular
data structures, a garbage collector can optionally be used, reducing the reference
and release operations used in the library to null operations.
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Model

I/O Model

ANN, SVM, ...

Distribution

Graphical Model, Mixture Model, ...

Figure 6.9: An overview of the model definition hierarchy.

Although an integral part of exploratory data analysis and model development,
the library does not provide any visualisation functionality. As graphics and graph-
ical user interfaces are highly dependent on the platform, it is very difficult to
provide a portable implementation. However, the system does provide extensive
facilities e. g. for descriptive statistics and hypothesis testing that do not require
any graphical presentation.

Examples

Although it is easier to use the gmdl environment for most modelling purposes,
there may be situations where it is more appropriate to use the low-level library
directly. An example of this is the creation of specialised embedded applications.
Therefore, let us have a look at two simple examples of using the low-level mdl
library. The examples do not actually reflect typical use in the sense that they
perform tasks that they are highly specialised, not taking any user input and using
hard coded transformations and assumptions about data. The library interfaces are
somewhat more suitable for slightly more complex applications, but the examples
should still be easy enough to follow.

The code in figure 6.10 shows a manual specification of a data format, reading
data from file, and using a nearest neighbour model to predict the unknown values
of an example pattern. First, we specify the two outcomes foo and bar of a discrete
attribute. We construct an array holding the field formats that we want to use for
our data description, consisting of four continuous fields, one discrete field with the
outcomes mentioned above, and one integer field. Using this field format array, we
construct a data format, which in turn is used when creating a data object that we
read from the file “datafile.dat”.

We then specify the fields over which we want to construct a model, and create
a k-nearest neighbour model with k set to 10. The model is estimated from the
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char* field5_outcomes[2] = { "foo", "bar" };

field_format fformats[6] =

{ continuous_format(), continuous_format(),

continuous_format(), continuous_format(),

discrete_format(2, field5_outcomes),

integer_format() };

data_format dformat(fformats, 6);

data_object data(dformat, "datafile.dat");

int model_fields[5] = { 0, 1, 2, 4, 5 };

k_nearest_neighbour knn_model(10, 5, dformat, model_fields);

knn_model.estimate(&data);

dtype data_vec[6] =

{ continuous(0.32), unknown(),

continuous(0.83), unknown(),

unknown(), integer(4) };

knn_model.predict_vals(data_vec);

printf("The predicted values are \%g and \%d\n",

dtype_cast<continuous>(data_vec[1]),

dtype_cast<discrete>(data_vec[4]));

Figure 6.10: A simple example of using the mdl library.

data we read earlier, and can now be used for prediction. Learning the nearest
neighbour model does not need to amount to much more than storing a reference
to the training data, but here it will estimate normalising factors for all fields and
set up the distance measure to reflect that we have a mix of continuous, discrete,
and integer attributes.

Finally, we specify a data vector containing unknown values that we want to
predict. The known values are explicitly cast to their correct types so that we
can be sure there are no type errors. When the model then is used to predict the
unknown values, it overwrites the unknown values with all the values it can predict,
and finally these values are printed on screen.

In our second example, shown in figure 6.11 and 6.12, we will perform somewhat
more complicated operations. The code shown is a slight simplification of the actual
code used for testing anomaly detection performance for the network intrusion
problem discussed in 7.5.

The main part of the code, shown in 6.11, starts by reading an already created
data format from the file “netdata.form”, and then using this to create two data ob-
jects, containing data for estimation and evaluation, read from “netdata_estimation.dat”
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data_format dformat("netdata.form");

data_object estimation(dformat, "netdata_estimation.dat"),

evaluation(dformat, "netdata_evaluation.dat");

transform_data(estimation), transform_data(evaluation);

attribute* res_attrs[2] = {

evaluation.get_attribute(12),

new_storage_attribute(continuous_format(),

evaluation.entries()) };

data_object result(res_attrs, 2);

int model_attributes[4] = { 5, 6, 7, 8 };

distribution* components[5];

for(int i = 0; i < 5; i++)

components[i] =

delayed_release(new gaussian(4, dformat, model_attributes));

mixture_model mixture(5, components);

mixture.estimate_prior(&estimation);

mixture.estimate(&estimation);

dtype values[evaluation.fields()];

for(int i = 0; i < evaluation.entries(); i++) {

mixture.fill_vals(values, &evaluation, i);

dtype v = mixture.log_probability(values);

result.set_entry(1, i, v);

}

Figure 6.11: A more complex example of using the mdl library.

and “netdata_evaluation.dat” respectively. These data sets are then transformed
using the function shown in 6.12.

The transformation function operates on two attributes, 7 and 8, both trans-
formed in the same manner. First, we add a constant one to the attribute by setting
the attribute used in the dataset to a filter that performs this operation, using the
original attribute as its input. We then proceed with adding a filter that takes the
logarithm of all values. Indeed, the constant added before is simply to avoid taking
the logarithm of 0 as the values stored in these attributes represent a transmission
rate, ranging from zero to very large numbers. The logarithmic scaling is however
not quite enough to clearly separate interesting clusters in data, which is why we
also add a filter that takes the logarithmic value to the power of three, a parameter
that was deemed suitable through manual inspection of data.

When the input data sets have been transformed, we start preparing a data
object in which we can store the result of our experiment. This data set will
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void transform_data(data_object& data) {

for(int i = 7; i <= 8; i++) {

data.set_attribute(i,

delayed_release(new add_filter(data.get_attribute(i), 1.0)));

data.set_attribute(i,

delayed_release(new log_filter(data.get_attribute(i))));

data.set_attribute(i,

delayed_release(new power_filter(data.get_attribute(i), 3.0)));

}

}

Figure 6.12: A more complex example of using the mdl library.

contain two attributes: one that contains the available classification of the type
of network traffic and one where we store our estimation of how “normal” each
pattern is. We create an array of two attributes, the first is selected directly from
our evaluation data set and contains the traffic classification, and the second is a
new attribute where we can store values, using a continuous format (and thus also a
storage model that is efficient for this type of data) and allocating enough space to
store the same number of values as there are entries in the evaluation data object.
We then create a data object using these attributes. Note that no data are copied
in the process, and that the first attribute in the new data object simply refers to
the same attribute as the last attribute of the evaluation data, a useful property
since in reality these data sets are quite large. Also note that the rather clumsy
notation using the function delayed_release is due to resource management: the
delayed_release function simply reduces the reference count of the newly allocated
object, but puts an eventual delete operation on hold until the next time release
is called. If we did not perform this operation here, the objects would never get
deleted as they would assume one reference to many. This problem simply goes
away if a garbage collector is used, simplifying notation and making the programs
less error prone.

We then move on to create a model, in this case a mixture of Gaussian distribu-
tions. We specify what inputs to use for the model, which in this case is only a small
subset, four attributes, of the available attributes, since the rest of the attributes
are either redundant or unimportant for the application. An array of distributions
containing different Gaussian distributions is specified, and a mixture model using
these distributions is created. We then estimate the prior of the mixture model
based on the estimation data set before finally estimating the mixture using the
default estimation procedure, in this case a standard EM algorithm. Using a prior
reflecting the complete estimation data set for all the component distributions is
useful for regularisation of the model.
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We calculate how “normal” a pattern is by finding the (logarithm of the) likeli-
hood of a pattern being generated by the model for each pattern in the evaluation
set. This is performed by creating a value vector of the correct size that for each
instance in the data set is filled with the information relevant to the model, and
then calculating the log-likelihood of these values. This is then stored directly in
the result data set.

These are relatively simple examples that do not convey all aspects of the sys-
tem, but could easily be used as starting points for writing more complex applica-
tions with the library.

Related Work

There are quite a few libraries available for machine learning related tasks, all
with different areas of focus. The Weka library [Witten and Frank, 2005] has a
structure somewhat similar to the mdl library, but is implemented in Java and
provides visualisation routines as well as graphical user interfaces to the library.
It is highly focused on standard machine learning methods and algorithms, on
a level of abstraction that does not necessarily lend itself to the construction of
application specific specialised models. Although the library is very extensive and
efficient for exploring standard methods, it is perhaps less suitable for creating
tailored, embeddable applications.

Another machine learning library that has reached a relatively high level of
maturity is Torch [Collobert et al., 2002]. Similar to mdl, the library is written
in C++, but while mdl makes extensive use of more advanced features of the
language, Torch deliberately uses only a very limited subset. Partly therefore, data
management and representation are more limited in Torch compared to mdl. Torch
does have a very strong focus on the machine learning algorithms, gradient descent
related methods in particular, with a conceptual separation between the model
parameterisation and the algorithm used for estimation. Although this may provide
additional flexibility in some cases, the need for this separation may be limited in
a library intended for creating machine learning applications and unnecessarily
complicates most modelling situations.

An Interactive Environment for Data Analysis

A data analysis and modelling system should be designed to fulfil a number of
criteria, sometimes in conflict with each other. For example, we want to provide
both a simple interface and being able to handle a large variety of problems. We
also want the system to be extensible and adaptable, while maintaining a simple
model abstraction so that a problem can be described in a consistent manner. By
removing weaknesses and restrictions of the system itself, in the way models, data
and other functionality are being described, we can form an efficient and practical
modelling environment that will support most data analysis tasks. The system
we will describe here, gmdl, uses general abstractions of models and data and a
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relatively small number of primitives and procedures to provide a flexible data
analysis and modelling environment.

Another important requirement is that the system should be interactive and
support fast prototyping with incremental changes. This implies that a program-
ming language suitable for interpreted use should be chosen for the implementation.
This narrows down the scope of possible language families somewhat, but although
we would like to use a relatively modern, sound and preferably functional language,
we also want to steer clear of languages that strictly use lazy evaluation and in-
stead allow for side effects. Side effects come at a cost, but they make it easier to
build a data analysis environment where efficiency in evaluation and memory usage
is important. Lazy languages do have problems with liberal stack usage in Data
Mining applications [Clare and King, 2003].

Based on this rationale, gmdl is based on the SCHEME programming language
[Kelsey et al., 1998], which is both simple, expressive and flexible enough to support
most major programming paradigms. Unlike many data analysis systems in use
today, this means that gmdl provides a sensible programming environment. gmdl
is also intended to be interactive to as large an extent as possible. Data analysis
is exploratory by nature, and this should be factored into and encouraged by the
system. This might sometimes come into conflict with the need for efficiency in
large calculations, but this conflict can, as we will see, be avoided by careful system
design.

Redundant functionality has been avoided as far as possible in the design of
gmdl. This will hopefully make the system more intuitive as a whole, but might
deter some first time users since basic functionality might actually seem to be
missing. With a basic understanding of the gmdl system and the usual work flow,
this will hopefully not be a problem.

The procedures and types available in gmdl for modelling and analysis largely
reflect those of the mdl library. There is a special model type, with procedures
similar to those of the mdl library associated with it, although in a format that
is more suitable to SCHEME. Specialised model objects represent distributions,
ensemble models, principal component analysis models, and so on. Data sets are
represented in a data set type, reflecting all the functionality of the underlying
library but in a vastly more accessible way, along with procedures for interaction
with standard data types such as vectors and lists. Format specification is simple
and easily managed, due to the copy on write semantics employed.

Different types of data, such as continuous, integer, and string, are associated
with and represented by built in data types such as real and integer numbers.
One additional primitive type has been introduced, representing unknown values
and written as #?, similar to the representations of the boolean values true (#t)
and false (#f). We will here use a couple of examples to try to convey how the
environment is used. For a thorough description of the language, please refer to
[Gillblad et al., 2004]
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Examples

As we have already discussed a few examples related to data transformation and
preparation in section 6.3, we will here discuss a couple of examples, one simple
and one more complicated, related to modelling.

(define format (dformat (fformat-disc 3)

(fformat-cont)

(fformat-cont)))

(define data (make-data "datafile.data" format))

(define model

(ada-boost

(repeat 5 (nearest-neighbour ’(0 1 2) format

:k 5 :normalize #t

:distance-weighted #f))

’(0) :algorithm ’ada-boost-M1 :break-on-error #t))

(define res (model-cross-validate! model data ’(0)))

(test-results-write (car res) "test-results.txt")

(model-estimate! model data)

(model-predict model (make-entry format 1 0.5 2 0.3))

Figure 6.13: A basic example of using gmdl for model generation, testing and
application.

Example 6.13 shows the construction, estimation and validation of a simple
machine learning model. It starts by specifying a data format with three fields; one
discrete field with three outcomes and two continuous fields. Data are then read
from the file datafile.data assuming this format. We then move on to specify a
model, which in this case is an ensemble model consisting of 5 k-nearest neighbour
models. The nearest neighbour models use data fields 0 to 2, assuming the format
we specified earlier. The optional keywords in the model specification mean that
we want to use the five nearest neighbours for prediction and classification, that the
attributes should be normalised before distances are calculated and that we do not
want to weigh the influence of an instance with its distance to the current pattern.

The ensemble model used uses the ada-boost algorithm for estimation, where
attribute 0 is used to calculate the classification errors. Optional parameters spec-
ified with keywords set the specific ada-boost algorithm to be ada-boost M1, and
specify that we do not want to stop estimating sub-models when the error is suf-
ficiently small but rather use all five k-nearest neighbour models provided. The
performance of the model is then estimated through leave-one-out cross validation
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over the data set we specified earlier, calculating a large number of performance
measures that are then written to the file test-results.txt. The following com-
mands then estimate the model using the complete data set, and then uses the
model to predict the class when the continuous attributes are set to 0.5 and 0.3.

(define form (make-dformat "qrdata.format"))

(define pdata (make-data "prototypes.data" form))

(define cdata (make-data "cases.data" form))

(define class-field 0)

(define input-fields (diff (all-fields pdata) (list class-field)))

(define qrmodel

(supervised-mixture-model

class-field

(count class 0 (fformat-outcomes (dformat-ref form class-field))

(let ((class-data

(data-select pdata ’...

(data-field-match pdata class-field class))))

(mixture-model

(map

(lambda (entry)

(let ((prototype (data-select class-data

’... (list entry))))

(graph-model

(map

(lambda (field)

(if (fformat-disc? (dformat-ref form field))

(disc-distr

(list field) prototype

:prior (disc-distr (list field) prototype

:prior ’uniform))

(gaussian

(list field) prototype

:prior (gaussian (list field) prototype

:prior ’uniform))))

input-fields))))

(all-entries class-data))

:estimation-type ’graded-supervised)))

:estimate cdata

:class-prior (disc-distr (list class-field) pdata

:prior ’uniform)))

Figure 6.14: A more complex example of using the gmdl for creating statistical
models.
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In our second example, we will have a look at something a bit more complicated.
Figure 6.14 shows the complete code for specifying and estimating the rather com-
plex model used in chapter 5 to perform incremental diagnosis. Again, we start
out by specifying formats and data sets. The format is read from file, and is then
used when reading both the prototypical data and the case data used to estimate
the model. We also specify which field we would like to use as the class field in the
diagnosis, and specify the inputs to be used to predict this class as all fields in the
format except for the class field.

The model is then specified as a supervised mixture model, where the first
argument denotes the field used for specifying the mixture component and the
second argument is a list of component distributions, calculated by a rather complex
procedure that we will describe shortly. The optional keywords specify that the
whole model, including component distributions, will be estimated from case data.
The class (or component) prior is specified as a discrete distribution estimated from
prototype data, which in turn uses a uniform prior.

The component distributions of the supervised mixture model are generated
through the count expression, which iterates the subsequent expression a number
of times equal to the number of outcomes in the class variable, binding the value
class to the number of the current iteration starting at 0. The returned values for
all iterations are returned as a list, representing the component distributions for the
supervised mixture. Each of these components is specified as a mixture model, with
the same number of components as there are prototypes for the certain class, found
through the data-select procedure. The estimation procedure for the mixture
is set to an algorithm using one step of the EM algorithm that uses the actual
component distributions as starting points, i. e. no randomisation is performed
initially.

Each of these mixture components is in turn specified as a graphical model con-
taining one distribution for each input attribute, i. e. essentially a product model.
If a certain attribute is discrete, we generate a discrete distribution estimated from
a specific prototype, and setting the prior distribution for all further estimations
to one again estimated from the specific prototype, using a uniform prior. If the
attribute is not discrete, we instead assume a Gaussian distribution estimated in a
similar manner to the discrete distribution.

Although the created model is highly specialised, designed to manage specific
problems that occur in the incremental diagnosis case we describe in chapter 5, its
expression is still relatively simple in the modelling language. The complexity of
the expression comes from very specific assumptions on what data we want to use
to estimate certain parts of the model and the use of several hierarchies of Bayesian
prior distributions, all of which must be explicitly specified.
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A Graphical Environment for Data Exploration and Model
Generation

Based on the methodology and libraries we have discussed earlier, we have con-
structed an experimental graphical interface for data analysis and creating machine
learning applications. The interface runs within, and can therefore be used in con-
junction with gmdl. It mainly acts as a graphical shell to gmdl to simplify the
creation and deployment of machine learning models.

Figure 6.15: Importing data and type analysis.

The interface is divided into a number of sections: import, filter, analyse, merge,
model, validation, and export. The first four sections, shown in figures 6.15 to
6.18, roughly correspond to the type analysis, repair and recoding, selection and
merge phases of data preparation described earlier, but adapted to fit a graphical
application. In the import section, the user can import one or several data sets to
work with. If the types and format of the data is not known, the application will
perform an automatic type analysis and present the result to the user, showing an
overview of the types of all fields of a data set to the left and providing detailed
information for one field at a time to the right. The data of currently selected field
is plotted using the current interpretation of the data to allow the user to assess
whether the type is the correct one or not. The types of the fields can be edited
freely by the user, allowing the user to test and change the interpretation of the
data.

When the types seem to be accurate, the filter section provides an opportunity to
visualise and transform the data one field at a time. The data for the selected field
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Figure 6.16: Filtering and transformation.

is presented as a series plot suitable for the data type, a histogram, and a collection
of descriptive statistics. A collection of common filter functions is available, and
the result of applying the transformation can either be derived into a new attribute
of the data set, or replace the current one. All transformations that have been
performed are listed in editable format to the left, and can be undone, redone, or
reordered.

In the analyse section, data is visualised and manipulated not one field at a
time, but rather multiple fields to detect correlations, clusters, possibly redundant
attributes etc. The visualisations are divided into two categories: pairwise plots,
displayed in the upper right of the section, and multiple field plots, displayed in the
lower right. A number of different plots are available, and any plot can be shown
in a separate window if necessary as well as written to file in a number of common
formats. Data can be transformed and attributes and instances can be selected
in the lower right section. As in the filter section, all transforms are listed to the
upper left.

The merge section is highly simplified in this version, and basically just provides
the user with the ability to select two data sets in the left part of the window, and to
the right selecting a pre-defined function for merging the two data sets. The set of
available merge functions is limited to a number of straightforward transformations
and re-sampling functions, but will hopefully be extended in the future.

The modelling section, as shown in figure 6.19, contains facilities for creating
statistical models using hierarchical graph mixtures. The model is specified in the
left part of the window, while a plot to the right shows a graphical representation of



158
CHAPTER 6. CREATING APPLICATIONS FOR PRACTICAL DATA

ANALYSIS

Figure 6.17: Analysis and selection.

the currently selected model. First, we select if the problem is supervised, as in pre-
diction and classification, or unsupervised, as in anomaly detection. We then decide
if we would like to model clusters in the data, either in a supervised fashion were
one or several attributes in data specify the cluster, or in an unsupervised fashion
in which case the a mixture model estimated through Expectation Maximisation
will be used.

After this, we specify what type of graphical model we would like to use for
each cluster (or for the whole model, if clustering is not selected). The application
provides a choice between Naïve Bayes, using the same or separate graphs for
each cluster or class, and a quadratic classifier. If separate or the same graph
is selected, graphs are generated by calculating pairwise dependencies between all
attributes and generating a tree in a greedy manner. The application automatically
chooses distribution parameterisations that are suitable for all necessary factors in
the graphs.

In the following validation section, shown in figure 6.20, the type of validation
scheme can be specified in the leftmost part of the window while test results are
shown in the rightmost part. Testing can be performed on a separate data set,
or using cross validation. The cross validation procedure can be selected to either
n-fold or leave-one-out cross validation. The results are shown in text in the upper
right, displaying a multitude of performance measures suitable for the problem and
model type, while both the model predictions and the true result can be examined
in a scatter plot below.

The final section of the program allows the user to export transformed data
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Figure 6.18: Merging data sets.

sets, transformation descriptions, store models, and generate simple applications
to perform either a relevant data transformation or a classification, prediction etc.
The generated applications can be interacted with either through text from file
(standard input and output), or by interprocess communication.

6.6 Conclusions

As developing practical machine learning applications becomes more common, method-
ology increases in importance. The rather high-level, general descriptions of the
process that we have presented helps, but it can only take us so far. Develop-
ing data-driven applications is very area dependant, and ideally there should be
methodology available for each typical application area, or, at the very least a class
of application areas such as process industry or discrete production. This is however
way beyond the scope of this text, and is left for future research.

Something that can still help the process significantly is readily available tools
and applications for interactive data preparation and modelling suitable for the
specific application area. We have here described an example of how to implement
such a tool set, allowing for fast specification of data transformation and modelling,
but in many situations a tool set that is only usable for this type of interactive data
analysis is not enough. An example of this could be an application where the system
needs to be fully automatic and data driven, independent of an operator.

Although not necessarily the highest priority while constructing and evaluating
solutions, a fast implementation is in fact crucial in many practical situations.
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Figure 6.19: Statistical modelling.

A user will only accept a small delay in e. g. an interactive diagnosis application
before it is regarded as sluggish and unresponsive. A statistical model used to
calculate a number of derived values by an optimiser might need to be very fast if
we want to arrive at an acceptable solution while it is still valid and usable. This
requirement unfortunately rules out most high level languages for implementation
of the resource intensive procedures, making their implementation somewhat more
difficult. However, when a library of these procedures is implemented and available,
accessing them from a high level language allows for simple and fast modelling for
the specific application.

It must also be possible to deploy the developed models and data transforma-
tions as stand-alone applications or embedded within other systems with relative
ease. As it is very difficult to know exactly what systems we would like to interface
with in the future and how, it is not possible or perhaps even desirable to construct
a large number of interfacing possibilities for a number of standard machine learn-
ing applications. Instead, we have opted to create a more self-contained system
that can be accessed through a very simple API, intended for rapid construction of
specialised applications.
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Figure 6.20: Model validation.





Chapter 7

Example Applications

7.1 Examples of Practical Data Analysis

In this chapter we will present a few examples of practical data analysis describe
the problems and pitfalls of the application area. The descriptions also serve as
examples of practical use of the theoretical models and methodologies presented in
earlier chapters, although in all fairness, the experiences from these applications
also represent a major influence on both the models and the methodologies. Below
is a brief description of the applications we will present.

Sales Prediction Predicting customer demand, manifested as future sales, is an
important task for supply chain optimisation. The ability to predict future sales can
be used to do more efficient resource allocation and planning, avoiding large stocks
and long delays in delivery. Sales prediction is inherently difficult, and can benefit
greatly from including other information than historical sales data [Gillblad and
Holst, 2002, 2004b]. This application is an example of a fully Bayesian approach
to prediction.

Emulating Process Simulators Next, we will explore the possibility of replac-
ing a process simulator with a learning system. This is motivated in the presented
test case setting by a need to speed up a simulator that is to be used in conjunction
with an optimisation algorithm to find near optimal process parameters [Gillblad
et al., 2005]. The presented solution illustrates the importance of suitable data
pre-processing and preparation, and compares simple mixtures of graphs to other
machine learning approaches.

Prediction of Alloy Parameters The foundry industry today uses software
tools for metallurgical process control to achieve less casting defects, a high yield and
reduced costs. Using parameters from such a tool that performs thermal analysis,
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it is potentially possible to predict properties such as chemical composition and
final quality of the alloy [Gillblad and Rögnvaldsson, 2002].

Fraud Detection in an IP Network Media-on-Demand networks that provide
e. g. movies and television downloads for paying customers are becoming increas-
ingly common. However, these services may invite morally non-scrupulous peo-
ple to take advantage of the system for their own fraudulent purposes. We will
study a couple of approaches for automatic detection of such fraudulent behaviour
[Jacobsson et al., 2002]. Both solutions make use of finite mixture models as dis-
cussed in chapter 3.

7.2 Sales Prediction for Supply Chains

Introduction

An important component of a supply chain management system is the ability to pre-
dict the flow of products through the network and to use this information to avoid
large stocks or delays in delivery. While such a tool can potentially be constructed
in many ways, the central issue is to predict the future sales of the products. Sales
prediction is usually a difficult task, where there might be severe problems find-
ing relevant historical sales data to base a prediction on. Therefore, the use of all
relevant information in addition to the historical sales records becomes important.
There are several factors that may affect the sales. Most notable are sales activ-
ities, advertisements, campaigns and brand awareness of the customers, but also
weather, trends, and the emergence of competing products may have a substantial
impact. Some of these are very difficult to encode for the use in a prediction system,
but others, like brand awareness, marketing investments and sales activities have
a clear and direct impact on the future sales while being possible to represent in
a reasonable way. Here, some aspects of the forecasting module of the DAMAS-
COS [Ferreira et al., 2000, 2003] suite is presented, which tries to incorporate this
information in the predictions while giving the user information that makes prac-
tical usage of the prediction easier. Some important general considerations of sales
prediction for supply chain management are also discussed, and some methods for
sales prediction are presented briefly.

DAMASCOS is a R&D project supported by the EC, and aims at supporting
optimisation and improved information flow in the supply chain. The DAMAS-
COS software contains modules for sales management, distribution and logistics,
supply chain coordination, integration and forecasting. The forecasting module
of the DAMASCOS suite, D3S2 (Demand Driven Decision Support System), is a
configurable forecasting engine that is integrated with the rest of the DAMASCOS
software.
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Sales Prediction for Supply Chain Management

Sales Prediction for Decision Support

Sales predictions will most likely be used by sales managers, sales agents, marketing
managers and the persons responsible for production planning. A sales manager
can use the predictions to get an indication of whether or not the sales target is
going to be achieved in order to increase or redirect the sales efforts if needed. The
sales agents can use the predictions to e. g. promise better delivery times on some
products. A marketing manager will be able to use the predictions to early see the
effects of marketing strategies and to get an early warning if a change in strategy or
additional marketing investments are needed to meet the goals set by the company.
The sales prediction is also very useful for the persons responsible for production
planning, since capacity can be reserved at the suppliers at an early stage, raw
materials can be ordered earlier than otherwise and production scheduled longer in
advance.

The sales predictions from the D3S2 module are intended to be used to support
manual decisions. In general, sales predictions should not be used in automatic
decision processes because of the inherent uncertainty in any prediction method.
Only a human operator can decide whether a prediction is plausible or not since
it is impossible to encode and use all background information within a prediction
system. This means that the design of the module was targeted towards creating a
system that delivers as rich and accurate information as possible to its users, both
regarding the actual predictions and what they are based on.

In discussions and market surveys, many people express scepticism about sales
prediction, comparing it to stock market prediction and questioning whether it is at
all possible. Although this is a sound reaction, it builds on the misconceptions that
sales prediction generally faces the same problems as prediction of the highly volatile
stock market, and that the prediction should provide a highly accurate number of
future sold goods instead of being a useful tool that can give an indication of what
to expect. This means that a sales prediction module must try to give the user
a feel for when to trust the prediction as well as tools that enable full use of this
prediction.

Looking at a prediction alone, without any further information, it is very difficult
for the user to determine how reliable that prediction is. If an important decision
is to be taken partially based on that sales prediction it is necessary to know the
accuracy. Therefore, the D3S2 module provides not only the predicted value but
also an uncertainty measure to give the user an indication of the expected prediction
error.

To further make it easier for the user, the module will provide a short explana-
tion of what the sales prediction is based on and how it has been calculated. If the
historical data used to make the prediction would differ greatly from the situation
at hand, the user can choose to disregard a prediction that looks good otherwise.
The explanation could also help the user decide whether or not to trust the predic-
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tion when something out of the ordinary has occurred. Both this explanation and
the uncertainty measure are included to increase the users trust in the prediction,
and to give a more transparent feel to the module. The user should not be left
thinking of the prediction as a black box whose inner workings are concealed, since
this greatly reduces the usefulness of the prediction. Also, whenever possible a plot
showing the development of the prediction in time as more data becomes available
will be presented to the user so that the relevance of the prediction can be more
easily evaluated.

Important Considerations

Historical sales data are usually quite noisy and may not be very representative
for a company’s current and future sales. A prediction model should take this into
account, regarding recent sales and marketing events more relevant than older ones,
while using as much expert knowledge as possible. The number of parameters in
the model must also be kept to a minimum, giving a less accurate prediction on
the historical data used for estimating the model but providing for much better
generalisation and predictions of future sales.

Additionally, in many cases the rapid changes of a companies range of products
gives a need for a human operator to specify relationships to earlier products to
make it possible for the prediction to use historical data. When a new article is
introduced, the prediction module will benefit from knowledge about what older
articles it resembles, i. e. what older articles to extract data from and use as the
basis for the prediction. The D3S2 module deals with this problem by grouping
all articles into categories and segments. This grouping is made by the user when
entering a new item into the database. Categories and segments can be overlapping,
and a prediction can be made on all articles, a category, a segment or a combination
thereof. No predictions are made on a single article. The user can of course reserve a
special category or segment for one article only, but must be aware of the statistical
implications of doing so. If the article has been produced and sold for a long time
with a decent volume, though, the module will probably have enough historical
data to do a reasonable prediction.

Integrating the Customer Demand in the Prediction

Integrating customer demand in the sales prediction can greatly improve the pre-
diction results. Reliable estimation of customer demand is not very easy though.
A simple approximation used by a number of media analysis companies is to use
the media investments made by the company, which can be viewed as an indicator
of future customer demand since all marketing investments generally increase the
awareness of the brand. Media investments can be acquired directly from the mar-
keting department of the company. To find the impact of these marketing activities,
a method called brand tracking can be used. The tracking continuously measures
for example advertising awareness and considered brand amongst customers using
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telephone interviews with a statistically representative set of people, who answers
questions about what brands they have noticed advertising for lately and which
trademarks they prefer. If tracking data is available, it is a more reliable indicator
of customer demand. It should then be used instead of media investments in the
prediction, but both tracking data and media investments can be integrated in the
same way in the prediction. Unfortunately, tracking data is not available in many
small and medium sized enterprises.

It is very difficult to separate advertising or brand awareness effects on certain
articles or groups of articles. The customer demand data must therefore be viewed
as having a general impact of the future sales of a brand. In the D3S2 module,
customer demand data are used together with historical sales data to estimate the
general trend of all sales of a company or brand. This general trend is then used
as a basis for all predictions by the module.

The D3S2 Forecasting Module

D3S2 in the DAMASCOS Suite

The D3S2 module is a configurable forecast engine that runs on a centrally located
server, most likely at the principal producers headquarter. This forecast engine
responds to all prediction requests from all modules within the DAMASCOS suite,
making the prediction functionality available to all users of the system without the
need to locally store and update the large amount of data used to calculate the
prediction. Since prediction is used in several other modules in the DAMASCOS
suite, modules often used by different kinds of users, all interaction with the D3S2
module is made through those other modules so that the prediction system is well
integrated into the users normal work tool.

Access to constantly updated data is very important to the prediction module,
especially when doing short-term predictions. In the DAMASCOS suite, all orders
are entered into the SALSA module. All new sales and marketing data that become
available are provided without delay by the SALSA module to D3S2. This of course
includes new orders and marketing investments, but also information about planned
sales activities, start and end dates for sales campaigns and brand tracking results.
New orders and sales campaign information are automatically sent to D3S2 as
soon they are entered into the SALSA module. Marketing investments and brand
tracking results on the other hand are usually kept in a separate system at the
company, but the SALSA module will provide interfaces for entering these data as
well, not making use of it itself but directly passing it on to the D3S2 module. This
design keeps system maintenance costs low, since all users essentially only interact
with the SALSA module and there is no need to keep the database of the prediction
module up to date separately.
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Sales Predictions and the General Trend

Very generalised, two distinct scenarios exist for how customer orders are collected.
One is the sales campaign scenario, in which sales agents visit a predefined number
of potential customers during a sales campaign with a defined start- and end date.
The other is the continuous order scenario, in which orders arrive continuously
at varying rate, either through agents visiting customers to collect orders or from
customers that approach the company directly. Many companies operate with a
mix of these scenarios. The D3S2 module handles both scenarios, using suitable
prediction methods for each case.

Due to the need to use expert knowledge in the sales prediction, the prediction
models can be expected to be fairly specialised for each type of company. Below two
examples of simple but effective methods for sales prediction are explained briefly.
The methods were mainly developed for the pilots industries of the DAMASCOS
project; ATECA, an Italian clothes manufacturer that works mostly with season
based sales and KYAIA, a Portuguese shoe manufacturer who only uses the con-
tinuous order scenario. Although developed for these companies, the methods can
be expected to be applicable to all companies operating in a similar way.

Predicting the general trend forms the basis for both season based and contin-
uous order prediction in the D3S2 module. Loosely speaking, the general trend
is modelled using linear methods incorporating the sales dependency on time and
the media investments or brand awareness at that time. Media investments and
brand awareness usually have a time-aggregated effect on the sales, i. e. media in-
vestments in several weeks usually have larger impact than an investment in just
one of those weeks. Therefore, the media investments and brand awareness at a
certain point in time are represented as the sum over the last previous weeks with
an exponentially decaying weight, lowering the significance of the media investment
or brand awareness with time.

Season Based Sales Prediction

To predict how many items that will be sold at the end of the sales campaign when
the campaign has just started is obviously very difficult. Many or most of the
articles sold during the current campaign might not have been available in the last
sales campaign, and most articles that could be bought during the last campaign
might be discontinued. Strictly speaking, there is a good chance that we have no
relevant statistical information to base our prediction on if we cannot in some way
make the approximation that the sales of the current seasons articles will behave
like previous seasons articles. A reasonable prediction of the sales, perhaps even
the best one, would actually be the last seasons total sales, with compensation for
the long term trend. To make a prediction of the sales near the end of a campaign
is of course much simpler, since most of the orders will already have been placed
by that time.

In some cases, though, we have information that will make the predictions much
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Figure 7.1: Weekly sales during seven seasons, from spring 1997 to spring 2000.

easier. Since there often is a well-defined sales plan, we know how many customers
the sales agents will visit. That means, in practise, that we actually know with
a rather high certainty how many orders we will get in total during the season,
since the mean number of orders from each client is very stable over the years.
This information will help us to construct a simple but effective model to handle
predictions in the season-based case. Note that the assumption that we fairly well
know the total number of orders beforehand is not valid in all season based sales
scenarios. It requires that the company operates like the pilot ATECA, with a
pre-defined sales plan that is not adjusted too much during the campaign and a
customer base that does not show a very erratic behaviour when it comes to the
numbers of orders placed. It is likely though that many companies, at least in the
clothing business, fit these basic assumptions.

Let us have a closer look at data to explain the situation further. Figure 7.1
show (anonymized) total sales of ATECA on a weekly basis. At first there does
not seem to be many invariants in the data. The total sales of each season vary
significantly, as do the total number of visited customers and number of orders.
The distribution of sales within a season also varies, further complicating matters.
However, at a closer inspection, the order size distribution remains rather stable
between seasons. Let us now use this fact for our prediction model.

The prediction model itself can be very simple. At a certain point of time
t in a campaign, we know the number of orders so far, Nt, and the number of
items sold so far, St. The prediction should be a sum of the orders we have got
so far and the expected sales for the remaining period. Since we assume that we
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Figure 7.2: A smoothed histogram of order sizes.

know the total number of orders, we know how many orders that will come in
during the rest of the sales campaign, Nr = Ntot −Nt. This can be used to easily
predict the future sales. From the earlier orders, we can estimate a probability
distribution over the size of each order, x. Knowing the number of remaining orders,
we can estimate the probability distribution of the total remaining sales by simply
adding Nr distributions over the size of each order, P (x), together. Now when
we have an estimate of the distribution of the remaining orders, we can calculate
the expectation and standard deviation of that distribution. These are our sales
prediction and uncertainty measure, respectively.

So how do we find the order size distribution P (x)? The actual order size
distribution can usually be expected to describe a distribution from the exponential
family, most likely the gamma distribution. A Gaussian distribution would also be
a reasonable fit, since it is approximately symmetric. In fact, the choice between a
gamma and a Gaussian distribution is not critical. The attributes of the resulting
distribution we are interested in are the expectation and the variance, and the same
expressions for summing the distributions are valid both for the gamma and the
Gaussian distribution.

Figure 7.2 shows a smoothed histogram of the order sizes. If we ignore the fact
that it is truncated at zero, it does in fact look reasonable Gaussian distributed.
The tail is somewhat heavier than in a Gaussian, but for this application the ap-
proximation should be sufficient.

Here we will use simple Bayesian techniques [Cox, 1946; Jaynes, 1986] to make
an estimation of the parameters in the distribution, i. e. the expectation and the
variance. To start with, we could assume that we more or less know nothing about
the initial distributions of the parameters. The assumption that we know nothing
at all about the values of the mean and variance of the order size distribution is of
course the most careful one; not assuming the data to have any special character-
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istics at all. But the fact is, that most of the time we have historical data available
that give us valuable prior knowledge about the distribution.

We can use a simple prior information reasoning to find expressions for the
expected mean and variance that includes prior information. Let us calculate a
prior mean and variance, µp and σ2

p, simply by using the maximum likelihood
estimation of the mean and variance of the previous corresponding season adjusted
with the general trend. If we then estimate the mean and variance in the data
we have so far in the current season, µt and σ2

t , we can write the new mean and
variance estimates as

µx =
αµp +Ntµt
α+Nt

(7.1)

σ2
x =

ασ2
p + Ntσ

2
t

α+ Nt
(7.2)

where α denotes a constant that is the weight of the prior. If α = 1, then the prior
is weighted as one of the data observations, if α = 2 it counts as two observations
and so on (see section 3.9 for a further explanation of these expressions). Using
these estimates the prediction becomes less sensitive to uncommonly large or small
orders early in the season. At the end of the season on the other hand, the number
of orders Nt is usually much larger than α, so the prior will have little or no effect
on the final prediction.

Note that here, the previous corresponding season of for example spring 2000
would be spring 1999, and for winter 1998 it would be winter 1997. The reason
for using only the previous corresponding season in the calculations is partly due
to changes in available articles and therefore order distribution from year to year,
making the previous season more important than earlier seasons, and partly due
to the fact that the order distribution usually is quite different between winter and
spring seasons.

Now when we have reasonable estimates of µx and σ2
x, we can simply write the

total sales prediction Sp at time t as Sp = St+Nrµx. This prediction model may be
simple, but it deals with the fact that we do not have statistical data for all articles
sold during the season and is relatively robust to all the noise that is present in the
sales data.

However, the prediction model described above has two major flaws. First, it
does not provide a reasonable expression of the variance in many situations. Second,
it does not explicitly consider time passed since the start of the campaign. This
leads to strange effects in the prediction if the sales goals are not exactly met, and
the prediction keeps insisting on a higher or lower prediction, with low variance,
until the absolute last day of the sales campaign.

To counter this problem, we can extend the model somewhat. We will start
by considering the fact that the number of orders varies with how many retailers
the company visits from season to season. If we assume that each retailer has a
probability q to place an order, we can write the total sales as

Stot = µx · n = µx · R · q (7.3)
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where R is the total number of retailers the company visits, µx the mean order
size, and n the number of expected orders of the season. This divides the problem
into two parts, the random order size which has a relatively invariant distribution
between seasons, and the number of orders, which depends directly on how many
retailers are visited. Assuming that the probability of a retailer placing an order is
stable over the seasons, we can estimate q from previous seasons as

q = np/Rp (7.4)

where np is the number of actual orders placed during earlier seasons and Rp the
total number of retailers visited during the same period. We can now calculate the
expected number of remaining sales of a season and the expected variance using

E[Sr] =
∑

n

∫

µr

µrn · P (µr)P (n)dµr (7.5)

E[S2
r ] =

∑

n

∫

µr

µr
2n2 · P (µr)P (n)dµr (7.6)

V ar[Sr ] = E[S2
r ]− E[Sr]2 (7.7)

where Sr is the remaining sales, n the remaining number of orders, and µr the
mean of the remaining orders.

To calculate these expressions, we are going to need to specify the distributions
over the order size P (x) and the number of orders placed during the season, P (n).
Let us start with the distribution over x. Previously, we assumed this distribution
to be Gaussian. We will continue to use this assumption, meaning that the mean µx
and variance σ2

x of the order size distribution can be estimated as before in equation
7.1 and 7.2. However, what we actually need is P (µr), i. e. the distribution of the
mean value of the remaining orders of the season. This distribution is also Gaussian
with the same mean µx, but with a variance that is n times less, or

P (µr) =
1

√

2πσ2
x/n

exp
(

−
(µr − µx)2

2σ2
x/n

)

(7.8)

Note that this distribution depends on n, which we need to take into account when
we calculate the expectations of equation 7.5 and 7.6.

Let us now turn our attention to the distribution over the remaining orders n
of the season. If we knew exactly how many orders we would get during the season
this would be trivial, but the number of orders can in fact vary around the expected
Rq, and as we get further into the season we can get a better estimation of how
many orders we can actually expect. Assume that p, a number between 0 and 1, is
the fraction of the season that has passed so far. Denote the number of orders that
we have gotten so far as Nt, and the number of orders arriving during the rest of the
season as n. There are three possible outcomes for each of the R possible orders.
An order has either been placed already, i. e. is amongst the Nt orders before p; it
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will be placed during the rest of the period, i. e. it is part of n; or it will not be
placed at all.

We are interested in knowing the probability that n orders will be placed during
the rest of the period, given that Nt orders have been placed already. This becomes
a binomial distribution, where we distribute R − Nt orders over the order being
placed during the rest of the period or not being placed at all, with probabilities
q(1− p)/(1− qp) and (1− q)/(1− qp) respectively,

P (n) =
(

R −Nt
n

)(

q − pq

1− pq

)n( 1− q
1− pq

)R−Nt−n

(7.9)

If we now perform the integration in equations 7.5 and 7.6 we get

E[Sr] =µx(R−Nt)
(

q(1 − p)
1− pq

)

(7.10)

V ar[Sr] =(R−Nt)
(

q(1− p)
1− pq

)(

σ2
x + µ2

x

(

1− q
1− pq

))

(7.11)

These expressions can now be directly used to provide a sales prediction and an
estimate of its variance.

This model is more complicated; at least the derivation of it, but it counters
most of the problems encountered with the simplistic model and predictions are
still easily and very quickly calculated. This is the model actually used in the D3S2
module for season based sales prediction.

Continuous Order Prediction

In the continuous case there is no fixed target for the prediction as in the season-
based case. There is no sales campaign that we can predict the total number of
orders for. Instead, the user must select a period of interest for which he or she
wants a prediction of the sales. To be able to deal with arbitrary prediction periods
the model must be very flexible, but the task is much simplified if we can build
a reasonable model of the process that results in sales orders at the company. To
avoid over fitting problems, this model should have a rather low number of free
parameters.

Using the assumption that the sales follow a long-term trend with seasonal
variations, which is valid for a wide range of companies, we can construct a simple
model for the behaviour of this kind of sales data. The first step is to automatically
find the base frequency and phase of the seasonal variations, parameters that are
already known in the season based case. Then we must find and model the shape
and dynamics of this seasonal variation, using as few parameters as possible to
make the model more stable.

In the simplest version, the complete model consists of a base level of sales, the
general trend, with an added sinusoidal component representing the basic seasonal
variation. There is a very straightforward method of finding the characteristics of
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the sine wave. By using the discrete Fourier transform, we can transform the sales
from the time domain to the frequency domain. Then we can find the strongest low
frequency in the data, which probably represents the basic seasonal behaviour we
are looking for. The DFT also gives us the phase for all frequencies. In the D3S2
module, the DFT is calculated with the fast Fourier transform, FFT [Brigham and
Morrow, 1967] to increase performance. Using the FFT, finding the frequency of
the seasonal variations in these relatively small data sets is very fast.

The seasonal trends cannot be expected to be perfectly sinusoidal. We can get
a better waveform by using more frequencies, i. e. not only using one sine curve
but two or more. In fact, if we use all frequencies in the DFT we can of course
reconstruct the data perfectly. This is not what we want, however. The reason is
that the reconstruction is periodic. If we use all frequencies to reproduce the data,
the time period 0 to N , where N is the number of data points, will be perfectly
reproduced but the period N + 1 to 2N will also be an exact copy of the first N
weeks. Using this for predictions will simply produce the wrong results. A good
compromise is to use only the strongest frequency detected and multiples of that.
This means that we can use e. g. frequency 8, 16, 24 and so on. Using only multiples
of the base frequency will give us a somewhat shaped waveform that is periodic
in the base frequency, which is exactly what we want. When more complicated
waveforms are necessary to make an accurate prediction, we can benefit from the
fact that sales are strictly positive and that we might be able to represent the
shape of the seasonal variation as a mixture of Gaussians, positioned using the EM
algorithm (see chapter 3).

When we have found the waveform, we need to find its amplitude. Most likely,
this amplitude will follow the general trend of the data quite closely, so the best
approach is to use a normalised seasonal component that is scaled with the general
trend. The resulting model then consists of a base level, the general trend, with
an additive waveform. This waveform is found using the DFT and possibly EM,
and its amplitude is modulated by a line that also follows the seasonal trend.
The model expresses sales as a function of time and media investments or brand
tracking. Extrapolating this function into the future, the actual prediction for a
specific period of time is calculated as the sum of sales given by the function during
that time. This model will produce predictions that are correct on average. This
means that a request for a prediction of the sales during only one week or perhaps
even one day will usually be off by a relatively large amount, while the variance of
the prediction is reduced if it is for a larger time interval.

Test Results

Figure 7.3 shows the prediction results for the spring 2000 season on one particular
category of goods, in this case a certain type of pants. The x-axis shows time in
days, while the y-axis shows the number of units sold, scaled for anonymization
purposes. The graphs depict the development of the prediction over the complete
sales campaign, the horizontal line showing the actual total number of orders at
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Figure 7.3: Prediction results for the spring 2000 collection.

the end of the campaign. The prediction is plotted for each day, based on the order
put so far in the campaign, together with the upper and lower expected prediction
error. We can see that the prediction starts out a bit optimistic, predicting total
sales quite a lot higher than the correct value. This is because the prediction is
in the beginning is only based on the previous corresponding seasons, i. e. spring
1999, results. When orders start coming in that reflect the current situation, the
prediction adapts rather quickly and the expected margin of error shrinks rapidly.
By the time a decision is usually made about reserving capacity in factories, about
5 to 7 weeks into the sales campaign, the prediction is already rather close to the
true value. The prediction continues to change in time, dropping slightly to reflect
the fact that a number of orders arrive unusually late in the campaign, and finally
settles on the correct value when the campaign is over.

The predictions are in general quite useful from rather early on in the sales
campaign. Table 7.1 shows the prediction results for a number of seasons at the
time of capacity reservation. The errors are expressed as a percentage, where e. g.
ten percent error means that the system predicted ten percent higher sales at the
en of the sales campaign than the correct value. The errors for spring and winter
1997 are quite high due to the fact that there were no earlier corresponding seasons
in the data to base the prior distributions on, and the predictions in these cases
are only based on orders arrived until that point in the season. The tendency to
overestimate the final sales is due to one very large client that puts in large orders
at the beginning of the seasons, leading to this slightly over optimistic behaviour of
the model. In the other seasons, where prior information is available, this tendency



176 CHAPTER 7. EXAMPLE APPLICATIONS

Season Error (%)
Spring 1997 21.2
Winter 1997 30.0
Spring 1998 3.9
Winter 1998 7.8
Spring 1999 -3.3
Winter 1999 13.5
Spring 2000 6.1

Table 7.1: Results from predicting the total sales of a season at the time of main
resource allocation.

is much less pronounced. In general, the sales estimates produced by the model
are certainly close enough to the correct value to be highly usable from both a
marketing and production planning point of view.

In figure 7.4, the results of a weekly continuous order prediction during one year
is shown. The model is estimated on data up until the year shown, and the models
sales prediction for each week is shown along the actual sales of the same week.
The model was in this case estimated and tested on sales data from a collection of
different types of shoes.

Although orders can arrive at any time, the very strong seasonal effect is clearly
visible in the diagram. It is also clear that the error of the predicted sales of a
specific week can be relatively high, although it can be reduced greatly by selecting
a prediction period longer than one week. Still, the results are such that they
provide important information to production planning.

Table 7.2 shows the correlation coefficient between the predicted sales and the
actual sales, estimated as before on a few different categories. It is clear that the
best prediction on average is performed for all categories together, when the impor-
tance of random fluctuations of sales in these categories are reduced. Separating on
categories reduces prediction performance, and the level of performance actually fol-
lows the size of these categories, the smallest category performing worst. Selecting
subsets of these categories is possible, but usually reduces prediction performance
to a level where the predicted values cannot be used for planning purposes.

Example Interface

In figure 7.5, an example of an interface to the prediction module is shown. This
interface is not integrated with the rest of the DAMASCOS suite, but provides a
stand alone interface for those situations where the complete system is not available
or necessary. In the top section, information about sales, media investments and
seasons are selected and loaded. The module will make do without information
on media investments, but without relevant sales data predictions are of course
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Figure 7.4: The actual and predicted total sales during one year on a weekly basis.

Category ρ
All 0.86
Casual 0.76
Fashion 0.77
Sports 0.79

Table 7.2: Correlation, measured using Pearson’s correlation coefficient ρ, between
actual sales and predicted sales in the continuous scenario divided on categories.

impossible.
The middle section allows the user to select the type of prediction to be per-

formed, the segment and category, the target period, and the prediction period.
The target period can be set to a certain season, or, in the case of continuous order
predictions, an arbitrary time period. The prediction period specifies for which
dates the prediction should be calculated, and one prediction for the sales of the
target period will be produced using sales information up until each of the dates
in this period. This provides the user with the opportunity to visualise how the
prediction changes as more data becomes available.

The lower section shows the prediction results of the prediction period as both
a graph and in textual format. A comments section provides the user with some
information about the assumptions and data used for the predictions.
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Figure 7.5: A stand-alone interface to the prediction module.

Conclusions

With the increasing demand for both short delivery times and less production for
stock, sales forecasting for supply chain management will become more and more
important. The work with the D3S2 module within the DAMASCOS suite has
shown that by using all available information, it is possible to perform accurate
sales forecasting and to provide information to the user that makes the forecasting
a very usable tool that fits well into the normal work flow.

7.3 Emulating Process Simulators with Learning Systems

In the process industries there is often a need to find optimal production parameters,
for example to reduce energy costs or to improve quality or production speed. Many
of the parameter settings are scheduled some time in advance, e. g. to produce
necessary amounts of different product qualities. A parameter schedule that is
sufficiently near optimal as evaluated by a cost function can possibly be found
using an optimiser that iteratively tests different scenarios in e. g. a first principles
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simulator, i. e. a simulator that tries to mimic the physical properties of the process,
gradually converging to an optimal solution. An initial state for the simulator
must be retrieved from the actual process, and the final scheme is suggested to the
operators as an effective way to control the real process.

Unfortunately, although the simulator in question is faster than real time, it
might still not be fast enough. The number of iterations that is required for the
optimisation might easily stretch into the thousands, meaning that even a relatively
fast simulator cannot be used to reach a conclusion before the optimisation horizon
is well over. If this is the case, some way to speed up the simulations is critical.

Learning Systems and Simulators

Let us consider two fundamentally different ways to model process behaviour. One
is to build a first principles simulator of some sophistication. It has to consider
how e. g. flows, temperatures, pressures, concentrations, etc. varies as material
flows through components. The other approach is to approximate the input-output
mapping in the process with some mathematical function, without considering the
actual physical path. This is essentially what is done by a learning system, in which
at least a subset of the parameters are estimated from examples.

If we want to replace the simulator with a learning system we have a choice of
either modelling the actual outputs of the simulator, i. e. training the system to
map simulator inputs to corresponding outputs, or to associate simulator states to
corresponding objective function values. The latter approach is very elegant and
could probably yield very good results, but it is highly dependant on the specific
outline of the objective function. In our test case it was not possible to try this
direct modelling of the objective function, since all data necessary was not available.
Instead, the first approach of mapping simulator inputs, consisting of a description
of the initial state and a proposed schedule, to corresponding outputs was used.

We also have to make a choice of either using real process data, or to generate
data with the simulator. There are benefits and drawbacks with both approaches,
but using a simulator is actually very attractive mainly because of two reasons.
First, most simulators are not only free of random measuring noise and drifting
sensors, they also lack the stochastic nature of real data in the sense that we do not
need several samples from identical input states to reliably estimate the mapping.
Second, and perhaps more importantly, is the fact that real processes are kept
within only a fraction of the total state space by the operators, following best
practises known to produce good results. Most states are simply worthless from
the process point of view. Nevertheless, the learning system does not know that
these states are worthless unless the training data contain examples showing this,
and will probably not produce very realistic results when the optimising algorithm
moves out of the region covered by training data.

With a simulator we can cover a larger part of the state space in a controlled
manner, but the actual generation of this training data now becomes somewhat of a
problem. At first, this might seem like an ideal case: We should be able to generate
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Figure 7.6: A highly simplified overview of the refiner line connected to PM6.

arbitrary amounts of relatively noise free data. Unfortunately, disregarding the
effects of finite precision calculations and time resolution in the simulator, there
is still one problem remaining: Having a large amount of training data is still
effectively useless if it does not reflect the data the learning system will encounter in
use. When generating data, we would like to cover as much as possible of all possibly
relevant states of the process. Fortunately, this can be rather straightforward using
e. g. a statistical modelling approach, as we will describe later for the test case.

The Paper Mill Test Case

A simulator of a part of the system at the Jämsänkoski paper mill in Finland was
used to test the approach. In the Jämsänkoski mill, thermo mechanical pulp refiners
are used to grind wood chips, resulting in pulp that is fed to a number of production
lines through a complex system of tanks and filters. There are two separate refiner
lines, each consisting of five refiners, and three paper machines, PM4–6. Refiner line
one is connected through two production lines to PM4 and PM5, while the second
refiner line is only connected to PM6. The second refiner line and production line
is largely representative for the whole system and was chosen for the test case.
The state of the system is mainly represented by a number of tank levels, and the
external control parameters by production rates, refiner schedules and production
quality schedules. A simplified overview of the system is shown in figure 7.6.

The cost function for the optimisation problem is constructed so that electric-
ity costs for running the refiners are minimised while maintaining consistency of
schedules and tank levels. It can be expressed as

Ctot = CE + CC + C∆tot + |V∆| (7.12)

where Ctot represents the total cost, CE the cost of electricity, CC and C∆tot con-
sistency terms related to the refiner and set points schedules, and V∆ the difference
between desired and actual tank levels at the end of a schedule. For a further
explanation of these terms, see [Gillblad et al., 2005].



7.3. EMULATING PROCESS SIMULATORS WITH LEARNING SYSTEMS181

To generate training and validation data from the simulator, we modelled the
joint distribution of the “normal” conditions over all inputs to the simulator, and
then sampled random input values from this distribution. By “normal” states, we
refer not only to the states and conditions the process normally encounters in daily
use, but rather conditions that do not produce obviously faulty or unacceptable
behaviour. This might seem complicated at first, but there are reasonable assump-
tions that simplify the procedure considerably. As a first approach, we can consider
all inputs to be independent. This means that the joint multivariate distribution
is simply the product of all marginal distributions. We only have to describe these
marginal distributions over each variable, which simplifies the task significantly.
Common parameterisations such as uniform distributions, normal distributions etc.
were used, preferably making as few assumptions about the variable and its range
as possible. When we e. g. from explicit constraints know that two or more variables
are dependant, we model these using a joint distribution over these variables.

For the external control variables the situation is a little bit more difficult,
since we need to generate a time series that to at least some degree reflects a real
control sequence in the plant. We model these control sequences using Markov
processes, each with transfer probabilities that will generate a series with about
the same rate of change and mean value as the real control sequences. Great care
was taken to assure that the statistical model and its parameters reflected actual
plant operations. In total, around ten million samples were generated, representing
about six years of operations.

Test Results

A natural approach to emulate the simulator with a learning system is by step-
by-step recursive prediction. However, initial test results using this approach were
not encouraging. The state space is large and complex, making the error in the
prediction add up quickly and diverging from the true trajectory.

Fortunately, we can actually re-write the data into a form that does not in-
volve time directly. From the cost function we know that we are not interested in
intermediate tank levels, but only the final levels at the end of the optimisation
horizon. However, we do not want to overflow or underflow any tanks during the
time interval, as this disturbs the process and does not produce optimal quality.
We also know that apart from the internal control loops, all parameter changes in
the process are scheduled. This allows us to re-code the data as events, where an
event occurs at every change of one of the scheduled external control parameters,
i. e. one data point describing the momentary state is generated for each external
change to the control parameters. If we assume that the process stays in one state,
i. e. that flows or levels are stable or at least monotonous during the whole event
or after a shorter stabilisation period, it should be possible to predict the difference
in tank levels at the end of an event from initial levels, flows, quality and perhaps
event length.

The previously generated raw data was transformed to this event form and
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Events
MLP k-NN NB

Tank σ ρ RMS ρ RMS ρ RMS
2 22.5 0.50 20.3 0.59 18.2 0.52 19.3

3 16.0 0.70 11.7 0.63 12.4 0.71 11.2

4 15.9 0.48 16.0 0.64 12.1 0.57 13.2

5 14.9 0.34 14.0 0.35 14.0 0.35 13.9

6 15.8 0.61 12.8 0.55 13.2 0.55 13.2

7 22.0 0.54 18.7 0.57 18.0 0.47 19.3

8 19.4 0.69 14.1 0.75 12.7 0.54 16.4

Table 7.3: Results from predicting the difference in tank levels on event data. σ
denotes the standard deviation of the data, and results are displayed using both the
correlation coefficient (ρ) and the root mean square error (RMS) for the multi-layer
perceptron (MLP), k-Nearest Neighbour (k-NN), and Naïve Bayes (NB) models.

three types of learning systems were tested: A Multi-Layer Perceptron trained
with backward error propagation in batch mode using sigmoid activation functions
[Rumelhart et al., 1986], a k-Nearest Neighbour model using a euclidean distance
measure on normalised inputs [Cover, 1968], and a mixture [McLachlan and Peel,
2000] of Naïve Bayes models [Good, 1950], one for each production quality and all
using normal distributions for all attributes. One separate model was constructed
for each tank. The parameters of each model were chosen experimentally to values
producing good results on a separate validation data set. These data were also used
to perform backwards selection of the input attributes for each model, resulting in
4 to 10 used inputs out of 10 available depending on model and tank. Testing was
performed by predicting the difference in a tanks level at the end of an event from
the initial level in the beginning of the event on a test data set separate from the
training and validation set. The results can be found in table 7.3. For a detailed
description of the models used and the results, see [Gillblad et al., 2005].

The different models’ performances are reasonably similar, but not particularly
good. Although there might be a reasonable correlation coefficient in some cases,
the square errors are still much too high for the predictions to be seen as very useful.
Also note that for optimisation horizons consisting of more than one event, which
usually would be the case, these errors will accumulate and make the predictions
unusable. Since all three types of models perform similarly, we can conclude that
the problem probably is ill posed.

So why does it actually go wrong? A closer look at data reveals a likely reason
for the poor performance, so let us study an example. Figure 7.7 shows that the
tank levels behave very nicely during the first part of the event. Then, one tank
overflows and the regulatory systems in the simulator change behaviour. The tank
volumes start to oscillate and behave in an unstable manner, the overflow affecting
almost the entire tank system. These oscillations in the tank levels are very difficult
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Figure 7.7: An example of the characteristic oscillations of tank levels.

for a learning system to predict, since it in essence has to learn how to predict the
phase, frequency and shape of these oscillations. However, we can now actually try
to use this observation to change the representation of the problem in a manner
that would make it easier for a learning system to solve.

Overflows or underflows are not desired from the cost functions perspective,
which means that we have an opportunity to restrict the state space we train the
learning system on to data when this does not occur. The model would of course
only be valid when there are no overflows or underflows, but since we in practise
predict a derivative for the tank levels we can easily estimate whether we would
have an overflow or not in any of the tanks during the event. We transformed the
data as earlier, but with the exception that an overflow or an underflow of any
tank also constitutes the end of an event, although not the start of a new since the
process then is in an unstable state. The models used in testing is as before, and
the results can be seen in table 7.4. An improvement of the results compared to
earlier tests was observed, but some tank levels are still very difficult to predict.
The main storage line of tanks 2, 3 and 4 show decent results on the test data
set, but the tanks with a direct connection to the paper mill (5 and 6) are very
difficult to predict accurately. The differences in these tanks are actually usually
zero, only occasionally changing drastically when a control loop needs to use these
tanks for temporary storage. Predicting when and to what degree this happens is
very difficult.

The differences between the different models performance are again not that
high. Usable predictions could possibly be made for the tanks in the main line
and some tanks used for temporary storage. However, if the exact levels of the
tanks connected more directly to the process itself are necessary, then there is a
question of whether the predictions produced by the models are good enough. The
correlation coefficient is definitely very low, but the tanks do not usually fluctuate
much, meaning that the mean absolute error of the predictions still could be kept
rather low.
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Monotonous Events
MLP k-NN NB

Tank σ ρ RMS ρ RMS ρ RMS
2 37.8 0.89 33.3 0.89 17.4 0.71 26.6

3 7.5 0.82 5.18 0.81 4.85 0.84 4.29

4 16.4 0.77 12.5 0.72 12.4 0.53 15.5

5 15.6 0.44 6.66 0.44 15.1 0.33 15.9

6 14.2 0.59 8.13 0.57 11.9 0.51 12.8

7 21.2 0.63 12.8 0.58 16.5 0.44 18.3

8 20.1 0.76 14.9 0.72 14.5 0.51 17.9

Table 7.4: Results from predicting the difference in tank levels on the monotonous
event data. As in table 7.3, σ denotes the standard deviation of the data, and
results are displayed using both the correlation coefficient (ρ) and the root mean
square error (RMS) for the multi-layer perceptron (MLP), k-Nearest Neighbour
(k-NN), and Naïve Bayes (NB) models.

Conclusions

The idea of replacing a slow simulator with a faster learning system is certainly
attractive. The neural network and Naïve Bayes models are at least 100 to 1000
times faster than the simulator in the test case. However, as the results showed,
it is by no means an easy process and not necessarily an effective solution. The
generation and representation of data require quite a lot of work, which might easily
make it more effective to develop a simpler, faster simulator instead.

It can also be argued that learning systems often are not a suitable solution for
approximating a process simulator. The reason is that most “real” processes are
described by a system of non-linear differential equations. Such systems will display
chaotic behaviour, i. e. small changes in input data are quickly amplified, and lose
correlation with the input. The time horizon for accurately predicting the output
from input data is likely about as short as the time span within which the non-
linear differential equations can be approximated by linear differential equations.
However, this might not be a problem if we are not interested in the actual output
values after a longer time period, but rather a mean value over a certain time or
similar.

Even if we need these actual output values, it might still be possible to re-
formulate the problem so that it is solvable. It might potentially also be possible to
divide the simulator into smaller parts and replacing some or all of these parts with
fast learning systems, overcoming the problem of non-linearity for these systems.
This division will, unfortunately, require a substantial amount of expert knowledge,
as there is no reliable way to perform the division automatically today. Method
development might need to get further before we can expect the learning system
simulator replacement to become directly viable as an alternative in the general
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case.

7.4 Prediction of Alloy Parameters

Thermal analysis studies the solidification from liquid metal into solid iron or an
alloy. It is based on recording temperatures at certain time intervals during the
solidification progress, and from them constructing a cooling curve. The cooling
curve is essentially a plot of the temperature of the metal as a function of time.

By thermal analysis of a sample from the furnace, it is possible to extract
information that can be used to predict properties of the alloy produced by the
contents of the furnace. In the thermal analysis, a sample from the furnace is cooled
and the cooling curve is recorded. Several parameters can then be extracted from
the curve, describing important properties of the cooling process. The parameters
include, among other things, plateau temperatures and cooling rates in the different
states. Using this, information about when different state transitions occur in the
furnace can be extracted, which in turn gives an opportunity to predict properties
such as chemical composition and final quality of the alloy.

Predicting properties of the final alloy from a sample taken from the furnace is
an important task. The ability to make such predictions reliably could potentially
help in the reduction of scrap material and defects in the foundry. We have studied
the problem on two separate data sets. The focus of the work presented here is on
predicting and understanding one of these properties, the oxygen content.

The Thermal Analysis Data

The available data set consists of measurements from two different places in the
process, furnace data and ladle data. The furnace data set contain 45 samples, and
the ladle data 46 samples. The data sets have been treated as completely separate.
Although both data sets contain roughly the same attributes, they must be regarded
as behaving significantly different from each other. There are six different kinds of
measurements in both data sets:

1. Grey unioculated

2. 12mm cup

3. Grey inoculated

4. Tellurium cup

5. Second grey unioculated

6. Second 12mm cup

The first and second 12mm cups and the first and second grey unioculated
measurements are duplicate samples, and should be highly correlated. All of the
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Name Explanation
TL Liquidus temperature in the cooling curve
TES Start eutectic cooling
dT/dTES Cooling rate at the start of eutectic solidification
TE Low Lower eutectic temperature
TE High Upper eutectic temperature
R Recalescence
Max Rate Max R rate
T1 Temperature 1
T2 Temperature 2
T3 Temperature 3
TL Plata Liquidus temperature plateau (Only in ladle data)
dT/dtTS Cooling rate at the solidus temperature
TS Solidus temperature
GRF2 Grafite factor 2

Table 7.5: The attributes included in all measurements except the tellurium cup.

Name Explanation
TL Liquidus temperature in the cooling curve
TES Eutectic temperature

Table 7.6: The attributes included in the tellurium cup.

different kinds of measurements except the tellurium cup include the attributes
listed in table 7.5 along with short explanations of some of them. The tellurium
cup measurements contain just 2 attributes. These attributes are listed in table
7.5. All the attributes are continuous.

The data also contain thirty attributes that might be interesting to predict.
All the these possible output attributes are continuous, and describe for example
chemical composition and hardness. However, the most important output attribute
to predict is the oxygen content.

Oxygen Content Prediction using a Mixture Model

One natural approach to predict a continuous parameter, in this case the oxygen
content, is to create a mixture of Gaussians over the whole input space and the
output space. The mixture model parameters, such as the means and the covari-
ance matrices of the Gaussians are estimated from the training data set, using for
example expectation maximisation (EM). The marginal of the output space given
an input pattern can then be calculated. When we know the marginal distribution
of the output variables, the expectation or the maximum of this distribution can be
used as a prediction, depending on whether we want to minimise the mean square
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error or the absolute error.
The performance of a mixture model over all input attributes and the output

attribute were tested. All the tests used the furnace data set, and all possible input
attributes were used, a total of 68. The number of available training samples were
44. The expectation of the resulting marginal distribution for a test pattern was
used as the prediction. Table 7.7 a and b show the test results, table a showing the
results when the model was tested on training data and table b with leave one out
cross-validation. With leave one out cross-validation, a model is estimated from
all entries in the data except one, which the model is tested on. This is done for
all patterns in the data set. The first column in the tables shows the number of
Gaussians used in the mixture. The second column the resulting root mean square
error (RMS), and the third and fourth column show the fraction of patterns that
are within one and three standard deviations of the predicted pattern. The third
and fourth column can be viewed as a measure of how many of the predictions that
are, in one sense, reasonable. The standard deviation of the oxygen content is 0.26.

The results are reasonably good, both on training and test data. The mean
square error is rather low, at least for some of the tested models. It is obvious
from the test results that while using only one Gaussian, the mean square error is
rather high. On the other hand, for the results with cross validation, the number
of patters within one standard deviation is high, suggesting that a simple linear
predictor might be sufficient to produce good results if this is considered to be the
most important property. Increasing the number of Gaussians though leads to lower
mean square errors, and the number of predictions that fall within three standard
deviations rise up to 100%, although the number of patterns within one standard
deviation is lower. This probably makes for a more practically useful prediction.

Note that the results both on the training set and with cross-validation are not
completely consistent, in the respect that the quality of the results do not follow the
number of Gaussians in a very organised way. This is due to random effects. When
generating the prediction model, the initial model that is trained is generated at
random with some considerations to the data.

Dependency Structure Analysis

To gain insight and knowledge of a data set, a dependency structure analysis can be
very useful. The dependency graph will show the dependencies between attributes,
and what attributes that affect the prediction the most. Even if not used for
predictions or some other application, the creation of a dependency graph can still
be very valuable for getting a feel for the relationships in the data.

When constructing the dependency graph, we need to keep in mind what we
want to use it for. By calculating all pairwise correlations between attributes and
then showing the strongest ones in a dependency graph, we might get useful infor-
mation about the general dependency structure and what attributes that might be
redundant. On the other hand, dependencies that might be interesting for a certain
task might not be visible using this approach. Often the strongest dependencies
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a) Training and testing on all data
Gaussians RMS σ 2σ

1 0.35 70.5% 88.6%
2 0.20 77.2% 100.0%
3 0.23 86.4% 100.0%
4 0.20 77.2% 100.0%
5 0.17 86.4% 100.0%
6 0.14 88.6% 100.0%
7 0.18 77.2% 100.0%
8 0.51 81.8% 100.0%

b) Leave one out cross-validation
Gaussians RMS σ 2σ

1 0.57 77.2% 84.1%
2 0.35 52.2% 95.5%
3 0.32 59.1% 95.5%
4 0.40 86.4% 95.5%
5 0.32 65.9% 95.5%
6 0.30 50.0% 97.7%
7 0.26 61.4% 100.0%
8 0.27 61.4% 100.0%

Table 7.7: Oxygen content prediction results on furnace data. RMS denotes the
root mean square error, σ the fraction of which the true result is within one standard
deviation and 2σ within 2 standard deviations.

in data are between similar input attributes, not between input attributes and the
output attribute we are interested in. If we want to visualise the dependencies to
a specific output attribute, we must use another approach.

The dependency graph in figure 7.8 was generated keeping the relevant output
attribute, the oxygen content, in mind. All pairwise linear correlations, i. e. the
correlation coefficients, between attributes in the ladle data were calculated. Then
the strongest correlations between input attributes and the oxygen content were
selected, as well as all the stronger correlations between these input attributes. All
other correlations were discarded. The graph in the figure was then generated by
running a greedy tree construction algorithm on the selected dependencies. The
attributes in the graph are denoted with the attribute name and a number in
parenthesis describing from what kind of measurement the attribute belongs to (see
section 7.4). When studying figure 7.8, keep in mind that the oxygen content has a
strong correlation to all the input attributes in the graph. The tree structure shown
is most of all an aid to understand the relationship between the input variables.

Two general observations can be made by examining figure 7.8. First, most
input attributes shown belong to either Grey unioculated or Second grey uniocu-
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Figure 7.8: Dependency graph for the ladle data

lated. This means that these measurements might contain more useful information
about the oxygen content than the other measurements. To be fair though, the grey
inoculated is also rather common while the tellurium cup and 12mm cup are barely
represented. Second, most attributes are temperatures or the maximum or mini-
mum value of temperatures. This is perhaps not surprising since most of the inputs
in fact represent different temperatures, but for example TEHigh and TELow are
clearly over represented, indicating that these attributes might be important for
the oxygen content.

Also note that after the tree generation, the oxygen content ended up as a leaf,
with only one connection. This is a result of the fact that the dependencies between
the input attributes are generally stronger than to the oxygen content.

On the whole, though, the dependency graph must be looked upon with some
scepticism. The number of examples are low, only 44, while at the same time the
data must be considered to be fairly noisy. This means that reliable correlation
estimation is difficult, and is also the reason why the simple correlation coefficient
was used instead of some more advanced measure more prone to suffer from the low
number of available examples. Also, the tree generation algorithm used is sensitive
to random effects and noise in the correlation estimations, but it still provides useful
information as a suggestion of what the actual dependency structure looks like.

Conclusions

The predictions produced by the very straightforward method of using a Gaussian
mixture model over the whole input and output space are promising. The results
are reasonably good, and there is probably room for significant improvement using
similar but more specialised models. The data set is very small, though, and it is
hard to tell whether this data set correctly reflects all the properties of the data.
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7.5 Fraud Detection in a Media-on-Demand System

Problem Description

The Swedish telecommunications company TeliaSonera has been performing field
tests on a prototype Media-on-Demand (MoD) system for distributing movies and
television programmes in an IP network. Content can be distributed to the user at
any time, a long as a corresponding payment has been registered. As many other
digital media distribution systems, it is naturally subjected to fraudulent behaviour
from people wanting to take advantage of the system for their own purposes. There
is of course a very large number of possible frauds that the system could be subjected
to, but for practical purposes a smaller number of well known frauds that are feasible
in terms of detectability were selected to be studied in detail. These fraud types
are

Illegal redistribution A user downloads movies or other material (in a legal or
illegal way) and later redistributes them to other users.

Excess download A user has tampered with the billing system, making it possible
to download movies or TV without paying for the service.

Subscription fraud A user registers himself under false identity and manages to
use the services of the media-on-demand system without paying for them.

In addition to detecting these frauds, there is an interest in detecting new fraud
types. This might be performed by detecting behaviours deviating from normal
behaviour, i. e. modelling the normal behaviour of the system and perform anomaly
detection.

Fraud Indicators

There is a number of possible indicators for the three main kinds of frauds being
studied. If the ratio between downloaded and uploaded data volumes is suspiciously
high in general, this may be an indicator that the user redistributes movies. If the
user is uploading a lot of data at the same time as he/she is downloading a live
event, this is an even stronger indicator. If the user is spending a lot of money on an
unreasonable number of movies, it is reasonable to believe that the user might be
financing this by selling them. Since the redistribution is more likely to be focused
on a specific service, an abnormal increase in usage of a service together with an
increased traffic is considered as an indicator. If the received and transmitted data
are of the same kind (e. g. by showing similar statistics or burst patterns), this may
indicate redistribution fraud.

Similarly, if more data are transmitted than the user is billed for, excess down-
load is probably in progress; alternatively, a billing system error has appeared.
Finally, if a new user deviates substantially from the average new user and uses
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services for an excessive amount it may be an indicator that the user ID is used by
someone who will not pay for the services.

Not all of the indicators above are directly supported by the available data, but
the extraction and interpretation of such indicators belongs to the task that should
be solved by the learning system.

The Available Data Sets

As there was limited amounts of real test data available, a simulator in which
thousands of users can be simulated in a controlled manner was constructed. Data
generated from this simulator was used in conjunction with the real pilot test data
to further evaluate the fraud detection mechanisms.

To test the fraud detectors, 518 simulated users for training of which 18 are
fraudulent (6 of each fraud type) were created. The same number of users is used
for the test set. The simulator was run for 6 months of simulated time, and the
fraudulent users where programmed to behave as normal users until they start
their fraudulent behaviour some time during the 3 first months. As the simulator
does not log when a user turns fraudulent, the problem was in practise reduced to
classifying a user as fraudulent or not in this data set.

Supervised and Unsupervised Fraud Detection

Fraud detection can be performed in two fundamentally different ways. Either the
fraud types are known, and data classified into fraudulent, perhaps with a fraud
type tag, or non fraudulent is available. It is then at least hypothetically possible
to construct a classifier that will classify new data patterns into fraudulent or non
fraudulent, perhaps even with a very simple set of rules specified by someone who
knows how these frauds are usually committed. The other possibility is that there
is no knowledge about what fraudulent behaviour may look like, or perhaps that we
want to be able to detect new types of frauds. This makes the task much harder,
since we cannot extract any information on what the frauds might look like from
data. Instead, we have to try to build a model of normal, non fraudulent behaviour.
When new data patterns deviate significantly from this model, we can classify it as
a possible fraud.

In the first scenario, where we have labelled data available for training of a
learning system, we can use a supervised learning algorithm to construct our clas-
sifier. Supervised learning is only possible when labelled data are available. When
this is not the case, we have to rely on unsupervised learning, i. e. there are no
labelled examples to be learned by the system. This is the situation in the second
scenario, where we just want to build a general model of the data that represents
normal behaviour. The second scenario can be regarded as generally more difficult
and sensitive to the choice of model. On the other hand it is, if it is performing
with sufficient precision, perhaps even more useful to a company than a normal
classifier trained on labelled data.
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The supervised training method uses a mixture of Gaussians, with one Gaussian
for each fraud type. The model is trained by estimating each Gaussians parameters
on the corresponding data, i. e. the Gaussian that represents fraud type one is
estimated from all data categorised as fraud type one, the Gaussian that represents
fraud type two is estimated from all data belonging to fraud two and so on. When
a classification is made, the input pattern is presented to each Gaussian. The
corresponding fraud type of the Gaussian with the highest likelihood for the pattern
is the classification result.

In the unsupervised case, a mixture of Gaussians is trained on non fraudulent
data by the Expectation Maximisation algorithm. The resulting distribution is an
estimate of the real distribution of non fraudulent data. If a new pattern has a very
low likelihood of being drawn from this distribution, it can be considered to be a
possible fraud or at least deviant behaviour.

The Data Used to Train the Models

The pilot test data set did contain frauds, but without any good indication of when
and by whom the frauds were committed. The data were therefore labelled for all
users and time steps using a simple scheme based on hints given about when the
different frauds took place. The data were labelled as

1. Inactive

2. Active

3. Redistribution

4. Excess download

5. Subscription fraud

Patterns were only labelled as frauds at the time they could be considered to
be committed, resulting in a rather low number of fraudulent patterns. This and
the fact that each type of fraud is committed only by one user makes it impossible
to divide the data set into one training set and one testing set for cross validation.
One separate data set was constructed though for training of the unsupervised
model. This data set contains every second day from all users, with all fraudulent
behaviour filtered out.

Not all available data were used for training the models. Only order requests,
delivery notification, billing notification, downloaded bytes and uploaded bytes were
used, both on pilot test data and on simulated data. In both cases, the uploaded
and downloaded bytes were also transformed by the logarithm to the power of three
to compensate for dynamics in the data.

In the simulated data case, the amount of data was simply too large to train
the models in a reasonable amount of time. Therefore, a subset of the users in
the training set were selected for the training data. This subset includes all six
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Excess Subscription

Inactive Active Redistr. download fraud

Inactive 23292 1995 0 0 0

Active 81 28730 5 0 0

Redistribution 0 0 153 0 0

Excess download 0 0 0 4 0

Subscription fraud 0 0 0 0 2

Table 7.8: Supervised prediction results on pilot test data

fraudulent users of each fraud type and 18 randomly selected normal users, i. e. the
training data set consists of 18 fraudulent users and the same number of normal
users. For the unsupervised training, only the non-fraudulent users were used.

Results on Pilot Test Data with Supervised Models

A mixture model was trained supervised over all pilot test data as described above.
The model was then tested on the same data set, with the results shown in table
7.8. The rows of the table show the classification made by the model, the columns
the true value, and the each value show the number of patterns that fall into that
category. Thus, if the prediction was perfect, all values except the diagonal would
be zero. From the table we can see that the classifier sometimes confuses active and
inactive behaviour. This is not much of a problem in this experiment though, since
both types are non-fraudulent. The classifications of subscription frauds and excess
download are without errors. Some slight mistakes are made for the redistribution
fraud, classifying redistribution as normal active behaviour.

Results on Pilot Test Data with Unsupervised Models

The unsupervised model contained three Gaussians and was trained on every second
day of data from all users, with all fraudulent examples removed from the training
data set. The reason for training on every second day of data was to test if the
model could generalise the information about the normal distribution to the whole
data set. The model was then tested on the complete data set, with the results
shown in figure 7.9. The upper plot shows the log likelihood of each pattern, while
the lower shows the fraud type. The plots show that fraud types 3 and 4 (excess
download and subscription fraud) causes significantly lower log likelihood than the
non-fraudulent patterns. Redistribution fraud on the other hand does not show
any lower log likelihood and could not be detected by the system. This is probably
not a problem with the model, but rather a problem with the labelling of the data.
The patterns marked as redistribution fraud are based on very basic assumptions
that might very well prove to be wrong. In fact, later information suggested that
there were probably no real redistribution fraud in the used data set at all.
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Figure 7.9: Log likelihood and fraud class type for pilot test data

Results on Simulated Data with Supervised Models

A mixture model was trained as described above on the reduced data set. The
classification is made for each time step, not one general classification for one user.
The results of the classifications are shown in table 7.9. The layout of the table is
the same as for table 7.8, except that the active and inactive classes in table 7.8
have been joined to one no fraud class.

If we assume that a user is fraudulent if he or she has been classified as hav-
ing fraudulent behaviour at any point in time, we can translate the classification
per time step to a classification per user. We can then calculate sensitivity and
specificity, as described earlier, for all types of fraud. The result is shown in table
7.10.

The table does not show any results for the excess download fraud. It turned
out after the experiments that in the test set, all data labelled as excess download
frauds were incorrectly labelled and should really belong to the illegal redistribution
fraud. The results in table 7.10 compensates for this.

Results on Simulated Data with Unsupervised Models

The unsupervised model again contained three Gaussians and was trained on the
selected normal users. The model was tested on the whole data sset and the results
are shown in figure 7.10. As before, the upper plot shows the log likelihood and the
lower plot the fraud type, here denoted 1 for no fraud and 2 to 4 for the different
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Re- Excess Subscription

No fraud distribution download fraud

No fraud 2310670 0 105 56

Redistribution 694 584 2 0

Excess download 0 0 0 0

Subscription fraud 21 0 0 22

Table 7.9: Supervised prediction results on simulated test data

Sensitivity Specificity

No fraud 0.96 1.0

Redistribution 1.0 1.0

Subscription fraud 1.0 0.24

Table 7.10: Supervised prediction results on simulated test data, as sensitivity and
specificity.
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Figure 7.10: Log likelihood and fraud class type for simulated test data

fraud types. All fraud types show significantly lower log likelihood in the model.
The model also produces some dips in the log likelihood even when there is no
fraud, but they are smaller than the ones produced by fraudulent behaviour. This
has one exception though. In the beginning of the last quarter of the data there
is one large dip in the log likelihood, but the pattern is not labelled as fraudulent.
The reason is that at that time, the user is billed for a movie that has not been
ordered or delivered. This makes the pattern stand out from normal behaviour,
although it is not the customer that behaves differently but the movie provider.
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Conclusions

After all experiments were completed, the apparent failure of the model to sepa-
rate between Excess download and Illegal redistribution was considered somewhat
strange, since there is very little similarity between those two fraud types. This lead
to some investigation into the cause of the problem, during which it was discovered
that all cases labelled as Excess download actually were generated as Illegal redis-
tribution in the simulator. In the light of these facts, all results are very promising.
The fact that some of the data was simulated may be cause for concern, but it
is important to remember that real data would most certainly contain the same
characteristics as the simulated data.



Chapter 8

Discussion

8.1 Machine Learning and Data Analysis in Practise

After applying several machine learning and data analysis methods to practical
problems, often with the direct intent of creating a working application of some
sort, we can come to a few general conclusions. They have been stated repeatedly
before, both in this thesis and other texts, but their importance should not be
underestimated.

The first is that in all data analysis projects data collection, preprocessing, and
getting to know the application area and what the problem really is about, almost
always take a huge and by far the largest effort. It is also an iterative process that
must be repeated a few times before it, hopefully, gets right. Some of the things
that often go wrong are related the available data itself. There can e. g. be too few
effective data samples, or the data have been selected in an unfortunate way. After
a few iterations of studying and acquiring new data sets, it may also suddenly turn
out that the initial formulation of the problem is not a good one, and that it has
to be reformulated.

Another general conclusion is that, once these initial obstacles have been over-
come, the exact choice of which learning system to use is often not that important,
as many methods perform roughly the same. The hardest part is the preprocessing
and representation, and once data have been turned into something reasonable, it
may suffice with rather simple methods to solve the actual task. This also means
that it often turns out that once the preprocessing is done, the results of a sim-
ple linear model was close to those of the non-linear models. This is true partly
because, with the limited amounts of independent data that we frequently have to
make do with, the number of free parameters has to be kept low.

Finally, the perhaps most important issue is the fact that in practise, each
application is unique. New applications often, due to specifics in the application or
available data, require specialised solutions and model formulations. This has direct
consequences on the possibility to evaluate a certain solution, as the exact problem
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formulation never or seldom has been approached earlier. To a certain degree we
have to rely on a different evaluation criterion, namely whether the solution is
“good enough” to provide performance or financial gains of some sort within its
application. If so, our proposed solution has value.

8.2 The Applicability of Data-Driven Methods

Highly data-driven systems are desirable for a number of reasons in many practical
applications, often because they potentially can deliver a useful application with a
limited investment in describing and understanding the system that generates the
data. Unfortunately, this advantage is at the same time often the main drawback
when using data-driven systems: The dependency on relevant historical data.

This historical data are vital for model construction and validation. However,
the available data are often very scarce, making validation in particular a very deli-
cate process. Data usually also contains large amounts of noise, effectively reducing
the number of useful data points available. These problems are common and can
sometimes be dealt with using specialised models with relatively few parameters.
This approach can unfortunately not help us in another relatively common scenario,
where there is absolutely no relevant historical available examples.

This is not quite as uncommon as it may first appear. Quite often, there is a
desire to e. g. predict or classify parameters relating to a newly designed system
that has not yet been taken in use. There is no data relating to it available, and
collecting it might not be straightforward. The completely data-driven approach
is not useful here, but we would still like to create a model that is useful from the
start and that adapts to data as it becomes available.

This means that in practise, there is a need for hybrid data-driven and knowledge
based models. By this, we refer to models that are constructed based on available
knowledge about a system, e. g. through studying its physical properties, but that
will still adapt to data when it arrives. These models can potentially be constructed
in a number of ways. Bayesian belief networks and other graphical models provide
us with the opportunity to encode previous knowledge into the graphical structure
of the model, while the parameters of the distributions are free to adapt to incoming
data. Bayesian statistics also provide a framework for expressing a previous belief
of the properties of a system that is then modified as more data arrives.

Previous knowledge about a system can also be used to construct prototypical
data, i. e. data that represents not just an outcome, but a typical expression of
e. g. a certain class. These prototypes can be constructed using known physical
properties of the system, available diagnosing diagrams or similar, and then be
used for the estimation of a data driven model as in chapter 5. However, the
prototypical data does have a slightly different interpretation than ordinary case
data, and this should be taken in account when constructing model.

All in all, the creation of hybrid knowledge based and data-driven models, per-
haps rather expressed as the incorporation of as much previous knowledge about
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a system as possible into the data-driven models, is very important for practical
applications. The common lack of relevant data can hardly be solved in any other
practical way.

8.3 Extending the Use of Machine Learning and Data

Analysis

First, we probably need to accept the fact that for the foreseeable future, most
machine learning applications are going to be highly customised for a specific task
and application. The day when we can describe to a computer in relatively vague
and simple terms what we would like it to perform, leaving the machine to decide
how and what data to collect, how to transform it in a suitable way and then learn
from it is unfortunately still far away. Therefore, we need to concentrate our efforts
not only on creating better learning algorithms but also on supporting the rather
tedious task of developing machine learning models for practical use.

In practise, this mainly means suitable methodologies for data transformation
and model development, and practically usable tools. We also need to find methods
or guidelines for model validation, so that we do not over estimate the actual
generalisation performance.

Perhaps somewhat counterintuitive considering our discussion in the section
above, is that more effective data driven methods are critical, as this would make
model development significantly less labour intense. There may not be enough in-
formation available in data for a completely data driven system, but what structure
there is we should be able to find and make use of. This includes efficient methods
for finding potential clusters and the dependency structure in the data, but also,
if possible, the causal directions. Knowing these, we can both create more efficient
models and significantly increase our understanding of the system generating the
data.

8.4 Final Conclusions

Modern systems, whether it is a communication network, an industrial plant, or
even our future homes, are growing extremely complex. There are many potential
sources of both faults and disturbances but also gains, often unanticipated during
the system design, although the effects of these problems or potentials can be very
complex and difficult to recognize or diagnose. In addition, the quality, perfor-
mance, and environmental demands on how systems should be run are increasing,
while disturbances are becoming extremely costly due to just-in-time operations
and the degree to which modern society relies on the function of its complex sys-
tems. Robustness is rapidly becoming a critical issue in the operation of complex
systems.

To gain this robustness, we need e. g. systems that autonomously detect devi-
ations from normal behaviour and diagnose and point to the cause of the problem
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so that appropriate action can be taken. These tasks, and others, can be solved
in natural ways by learning systems. As we can now often access large amounts of
data produced by these systems, we also have an opportunity to increase our under-
standing of them through efficient analysis of these data. Together, this makes the
potential impact of machine learning and data analysis in modern systems huge.
Creating algorithms and methods for practical applications should therefore remain
a worthwhile exercise for the foreseeable future.
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