Effect Inference for Deterministic Parallelism

Karl-Filip Faxén
Swedish Institute of Computer Science
kff@sics.se

April 10, 2008

SICS Technical Report T2008:08, ISSN 1100-3154

Abstract

In this report we sketch a polymorphic type and effect
inference system for ensuring deterministic execution
of parallel programs containing shared mutable state.
It differs from that of Gifford and Lucassen in be-
ing based on Hindley Milner polymorphism and in
formalizing the operational semantics of parallel and
sequential computation.

Keywords: Effect inference, type inference, paral-
lel execution, operational semantics, side effects,
polymorphism

1 Introduction

With the advent of multicore processors, all program-
ming is parallel programming. The standard way to
meet this requirement is to use a conventional imper-
ative sequential language extended with some form of
support for parallelism, ranging from a pure library
solution like pthreads over annotations like OpenMP
to language extensions such as those in Cilk [2]. In
each case, the parallel activities share state and ac-
cesses to that state need to be explicitly synchronized
to avoid race conditions.

In general, this will lead to a semantics that is not
confluent, that is, different evaluation orders can give
different results. This parallels the situation when
writing explicitly parallel code in real languages; pro-
grams are nondeterministic in general, and unless

great care is taken some of the possible behaviors are
undesirable, crashing or deadlocking the program or,
even worse, making it behave subtly different from
its specification.

Hence confluence, or determinacy, is a desirable
property. One alternative is to use languages where
programs are confluent by construction, for instance
functional languages. There are however limita-
tions to the applicability of this approach; convert-
ing legacy code to a functional language is often pro-
hibitively expensive, and they also have performance
and resource control problems.

This paper follows the approach pioneered by Lu-
cassen and Gifford [6] by presenting a different ap-
proach, staying within the imperative world of pro-
gramming with side effects, but using a type system
for taming these and ensure confluence. In this pa-
per we present a type and effect inference system for a
simple lambda calculus with explicit parallelism and
side effecting operations. We believe that the ideas
carry over to more conventional languages; in recent
years innovations in type systems have been added
to conventional base languages, for instance in Cy-
clone [4] and Pizza [8]. Indeed, templates in C++
and generics in Java are also examples.

2 The Language

We use a call-by-value lambda calculus extended with
updatable references. The syntax is given in Figure 1.

e € Expr — x| Ave|e e
| cleilea | let z=e; in eg
v € Value — Azelalc
EcEvalCtx — Oe|lvO]|letz=0ine
| OelelO
¢ € Const — new |get |set|rec|()|1]...

Figure 1: The language

The operator new allocates a new reference cell and
initializes it to the value of its argument while get
and set denote dereference and update of reference
cells, respectively. The syntax also contains parallel
compositions of the form e;|es where the expressions
are evaluated in parallel for their side effects. Let
expressions provide a means of sequencing; we will
use eq;es as a shorthand for let x=e; in e where x
is not free in es.

The semantics, given in figure 2, is a small step
operational semantics defined using evaluation con-
texts. It consists of rules for proving that a config-
uration H,e, where H is a heap mapping addresses
to values, rewrites in one step to H', ¢’. Expressions
are extended with addresses, ranged over by a, which
must be bound by the heap. The [join] rule provides
synchronization at the completion of evaluation of a
parallel composition while the fact that the branches
can not be reduced until the whole expression is to be
reduced provides synchronization of the start. Thus
the parallelism in the language follows the fork/join
model.

An evaluation context E is an “expression with a
hole”; it contains exactly one occurrence of the sym-
bol O, and for any expression e, Ele] is E with O
replaced by e. The hole in an evaluation context
marks the immediate subexpression within which the
next reduction step should be taken. For example,
when reducing an application, the function part is
reduced first as indicated by the evaluation context
[0 e. When the function is a value, the argument is
reduced (v O). In contrast, either branch in a parallel
composition can be reduced (replacing e|d with v|OJ

H, (\x.e) v— H, [x < v]e app
H, 00 — H, () join

H, let z=vine— H, [zt —v]e let
H, newv — Hla— 0], a new

H, get a — H, H(a) get

H, set av— Hlaw v] set

H, rec \x.e — [z < rec Az.ele rec
H, e— H ¢ ctx

o, Ele] — I, E[¢]

Figure 2: Operational semantics

would force sequential left to right evaluation).

2.1 Confluence

The combination of parallelism and side effects make
the semantics non confluent, as demonstrated by the
example in figure 3 where the normal form of an ex-
pression depends on which of the branches is evalu-
ated first. After the first rewrite steps, either the left
branch is reduced first (middle section in the figure),
yielding 2 as normal form, or the right branch can be
reduced first (last part) resulting in 1.

The lack of confluence of the evaluation relation is
easy to fix by choosing the above mentioned sequen-
tial semantics for parallel composition. This yields
a semantics where every reducible term has a single
redex. We formalize this as a sequential evaluation
relation —g.

Definition 1 (Sequential evaluation) We define
the sequential evaluation relation —g wusing the
derivation rules for the evaluation relation — in fig-
ure 2 with the difference that the alternative e|O in

|, let c =new O in (set c 1|set ¢ 2); get c

— [ap — 0], let c =ap in (set c 1|set ¢ 2); get ¢
— [ap — 0], (set ag 1|set ag 2); get ag

— [ag — 1], (()|set ag 2); get ag

— fao — 2, (0I0); get ao

— [ao — 2], (()); get ao

— [ap — 2], get ao

— [ag— 2], 2

— [ap — 2], (set ag 1|()); get ag

— fao — 1], (010); get a0

— [ao — 1], (()); get ao

— [ag — 1], get ag

— lag— 1], 1

Figure 3: An example illustrating lack of confluence

the definition of evaluation context is replaced by v|O
so that the left branch is always evaluated first.

The point of the sequential evaluation relation is
that it is confluent, even deterministic. To state the
lemma we need to define configurations that are es-
sentially the same.

Definition 2 Two configurations are a-equivalent,
written Hy,e1 = Hs, e, if they are equivalent up to
renaming of addresses.

Note that = is an equivalence relation. In partic-
ular, any configuration is a-equivalent to itself. Our
confluence lemma states that sequential evaluation
preserves a-equivalence.

Lemma 1 If Hy,e; —gs Hj,e} and Hay,es —g

Hl, e, and Hy,e; = Ha,eq, then Hi, e} ~ Hj, €}.

Proof: By induction on e;. Omitted. g
As a simple corollary, the lemma holds for arbitrary
finite sequences of reduction steps.

3 Type system

The system presented here is essentially that of ML
[7]; we have a call-by-value lambda calculus with up-

a|T7pr|m = m|refpr

T € Type —

k € Effect — n|Rp|Wp|K1UKa|e€

p € Region —

o € Scheme — Vayn.® =1

® € Constraint — k1|ka | p1|p2 | @1 A Do | tt

a € TyVar, n € EffVar, v € RgnVar, T € TypeName

Figure 4: Types in the system

datable references and let-polymorphism. Side effects
are captured in the type system using effects, which
keep track of the fact that evaluation of an expression
might read or write values to the heap. The typing
rule for parallel composition checks that the effects of
the parallel branches are compatible: If one of them
writes a heap location, the other does not access it.
To distinguish different heap locations we use regions
which represent sets of heap locations and we give
rules for proving that two regions are disjoint.

We present the syntax of types in our system in
Figure 4. A (monomorphic) type is either a type
variable «, a data type T instantiated with types,

Dy NPy - Py PROJ
P+ pilpe
_ WWwW
W pr|Wp2
P+ pilpe
_ RW
= Wpi|Rp2
P |‘Rp1|Rp2 RR
(I)I—Ii1|l€3 q"‘/ﬁg‘/ﬁg DIST

[oN (/il U K2)|H3

Figure 5: Constraint entailment

regions and effects or a function type 7 — 7 from
types 71 to 7o with latent effect k. The latent effect
of a function type is the effect of calling the function,
that is, the effect of the function body. An effect is
either an effect variable 7, a read effect R p, a write
effect Wp or a combined effect k1 Uks. In this system,
regions are only region variables ~.

Effects and regions are used to build constraints
which give the requirements for a parallel composi-
tion to be safe. The compatibility constraint i |ko is
satisfied if no region that occurs in a write effect in
one of the x; occurs in any effect in the other. This
can be reduced to pairwise disjointness constraints
p1|p2 on the regions involved. These are satisfied if
the regions are distinct region variables. We also have
conjunction of constraints; ®1 A ®5 is satisfied if &4
and ®, are satisfied. We treat A as associative and
commutative, that is (@1 A P2) APg = @1 A (Pa A P3)
and @1 AN (I)Q = (I)Q /\(I)l.

Figure 5 formalizes this intuition by defining an
entailment relation between constraints. Some con-
straints are always satisfied; for instance two reads
never conflict, which is the motivation for the rule
[RR] which allows to prove for instance tt - R p1|R p2
for any regions p; and po(tt is the always satisfied
constraint which can be seen as an empty conjunc-
tion). For other constraints, satisfaction depends

€
Fnew:7 —refpr

I—get:reprET
Wp
=0
Frec: (1 57) 57
F0:0

F1:Int

Fset:refpr 57

Figure 7: Types of the builtin operations

on the parts. For instance, the conflict constraint
W p1|R p2 is satisfied if the disjointness constraint p1|ps
is satisfied (rule [RW]). A constraint also entails its
parts (the [PROJ] rule, where the simple formulation
relies on the associativity and commutativity of A).
Note that there is no rule for entailing disjointness
constraints except by projection. The idea is that
p1|p2 is satisfied if p; and po are distinct region vari-
ables, but if a rule to that effect is included, we would
lose the property that entailment is closed under sub-
stitution. For example, we would have tt F ulv but
substituting u for v would yield u|u which is not en-
tailed by tt.

A type scheme o of the form Vayn.® = 7 rep-
resents all substitution instances 67 such that 69 is

The inference rules presented in figure 6 allows to
prove typing judgments of the form A, ® + e : c&x
where A gives (polymorphic) types to the free vari-
ables of e, o is its (polymorphic) type and « is the
effect of evaluating e. Figure 7 gives the typing rules
for constants. Unsurprisingly, these do not depend on
the typing assumptions for the variables, and they are
also independent of the constraints. Since constants
are not evaluated, they have no side effects, but get
and set have latent effects (in fact, all effects in the
system come ultimately from these).

Figure 8 gives an example of how the type system
captures aliasing constraints in the types. Here is a
function taking two reference cells as arguments and
writing integers into them in parallel. This is only
confluent if the cells are different, which is captured

Alz)=0
APFx:o&e

ADPFer:m = mo&ry A PF ey m&ko
A,@Fel 6227’2&%UK)1U/€2

Az — 1], @ ¢ e: &k
A ®F dze: T = mo&e

Fe:T
A PFc: T&e

APl e :okry Alx— o], PF es: T&Ko
A, & let z=e1 in ey : 7&K1 U Ko

APl e : &k A DPEes: V&ka DF Ki|ke

A, D F eles:)&k U kg

A Fv:t&s @, y,qNv(A k) =0
A Qv (Vayn.® = 7)&k

A, ®Fe: (Yayn.® =)&k 0 =[T/a,p/7,k/T)

A PNOD Fe: Or&kk

VAR

APP

ABS

CON

LET

PAR

GEN

INST

Figure 6: The dependence type system

in the constraint u|v in the type scheme. This easy
way of summarizing information about procedures is
one of the major appeals of using type inference as a
framework for what is traditionally done with more
ad-hoc techniques.

3.1 Soundness

In this section we deal with the correctness of the
type system. Does it achieve what we advertise? Are
well typed programs guaranteed to be confluent? We
will approach this question in several steps. First,
we will prove that evaluation preserves typing; this is
known as a subject reduction lemma. To be able to
do this, we extend the type system to type the con-
figurations that occur in the operational semantics.
These differ from expressions in that they extend the
expression syntax with addresses (ranged over by a)
and heaps that bind the addresses. We do this in a
way that makes the expression typing agree with the
configuration typing when applied to a configuration
with an empty heap an an expression not containing
addresses.

Next, we prove that if a configuration is typable
then it is either a value or it can be rewritten using
some rule in the operational semantics; a progress
lemma. This is the classical soundness result for the
kind of small step rewrite semantics we use.

Then we come to the result that is at the heart of
our system. Recall that the language we have defined
in section 2 is not confluent in general. That is, de-
pending on the interleaving of the reduction steps in
the two parts of a parallel composition, an expression
can reduce to different values. We now claim that if
a parallel composition is well-typed, the interleaving
of evaluation steps can be changed without affecting
the result. This means that all interleavings give the
same result, establishing confluence since the rest of
the semantics is confluent.

The following definition extends type inference
from expressions to stores (heaps).

Definition 3 (Store typing) We extend typing as-
sumptions A to map addresses to types of the form
refy7 and we write ® - H : A if for every address

a in the domain of A, A(a) = ref vy for some yand
T such that A, ® + H(a) : T&e.

Now that we can do type inference for heaps and
expressions, we can infer types for configurations.

Definition 4 (Configuration typing) If A, ® +
e: 7&Kk and ® F H : A we say that the configuration
H,e has type T and effect k under the assumptions
A, ®, written A, o+ H,e: 7&kK.

Most polymorphic type systems have some form
of substitution lemma since it underlies the proof
of soundness for generalization/instantiation. The
lemma states that if a particular derivation can be
made, then any substitution instance of the deriva-
tion is also legal.

Lemma 2 (Substitution) If A, ® + e : &k, then
for any substitution 6, 0A,00 + e : O7&0k.

Finally we arrive at the subject reduction lemma.

Lemma 3 (Subject reduction) If A, & + H,e :
7&K and H,e — H',e' then there is an A’ DO A
(possibly extending A with a new address) such that
Ao+ H e T&k.

Proof: Omitted. g

The next step in our correctness arguments is the
progress lemma, stating that in a well typed configu-
ration, the expression is either a value (in which case
evaluation has terminated) or another evaluation step
can be taken.

7&K then

/

Lemma 4 (Progress) If .A,® + H,e :
either e is a value or there is a configuration H', e
such that Hye — H', €.

Proof: Omitted. (|

We finally arrive at the main semantic equivalence
theorem, which states that if a well typed configu-
ration is rewritten in a finite number of steps to a
value, then that configuration may be rewritten to
an equivalent value using the sequential evaluation
relation.

WulUWov ()

Ax.\y.(set x 1|set y 2) : Vu v.(u[v) = ref uInt = refvInt = —

Figure 8: Aliasing constraints in types

Theorem 1 (Confluence) If A,® + H,e : 7&k,
® is satisfiable and H,e —* Hy,vy then there are
Hy,vo such that He —§ Ha,vs and Hy,vi =~
HQ,UQ.

Proof: Omitted. 0

4 Related work

Gifford and Lucassen [6] pioneered the use of effect
inference for ensuring confluence of parallel programs
containing shared mutable state. Subsequently, Jou-
velot and Gifford gave a type inference algorithm, but
only for an effect system without regions [5].

Our approach is somewhat similar in spirit to auto-
matic parallelization since the confluent semantics of
well typed programs in fact coincides with a purely
sequential semantics [3, 1]. The difference is that
parallelism is explicit in our model, and we think
that this is essential in the long run. Clearly, par-
allel programs do not just happen. On the contrary,
parallelism must be designed into the program just
like type correctness is designed into a program in
a strongly typed language. We regard an unsafe ex-
plicit parallel construct as an error in the program
whereas in automatic parallelization the correspond-
ing situation, a construct meant to be parallelizable
but which is not, silently yields degraded perfor-
mance.

5 Future work

This paper is based on a very simple type system. To
achieve better precision, there are other type systems
that could be used. In particular more powerful forms
of polymorphism allows the typing of more programs,
as does the use of intersection types.

The present work also considers each heap cell as
a unit; the entire cell is read or written. This is too
coarse for many array intensive programs; in general
accesses to different elements of an array needs to be
disambiguated. To formalize this, it seems suitable to
use dependent types, a discipline where types can be
indexed by values. In this case it appears promising
to have indexed regions. For such regions, read and
write effects on the same regions would not conflict if
their indices could be proved to be always different.
We believe that such a type system could be checked
using techniques very similar to those already used
in automatically parallelizing compilers.

References

[1] Matthew J. Bridges, Neil Vachharajani, Yun
Zhang, Thomas Jablin, and David I. August. Re-
visiting the sequential programming model for the
multicore era. IEFEE Micro, January 2008.

[2] Matteo Frigo, Charles E. Leiserson, and Keith H.
Randall. The implementation of the Cilk-5 multi-
threaded language. In SIGPLAN Conference on
Programming Language Design and Implementa-
tion, pages 212-223, 1998.

[3] Mary W. Hall, Saman P. Amarasinghe, Brian R.
Murphy, Shih-Wei Liao, and Monica S. Lam.
Interprocedural parallelization analysis in suif.
ACM Trans. Program. Lang. Syst., 27(4):662—
731, 2005.

[4] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, Michael W. Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect
of c. In ATEC ’02: Proceedings of the General
Track of the annual conference on USENIX An-

nual Technical Conference, pages 275—288, Berke-
ley, CA, USA, 2002. USENIX Association.

Pierre Jouvelot and David Gifford. Algebraic
reconstruction of types and effects. In POPL
'91: Proceedings of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of program-
ming languages, pages 303-310, New York, NY,
USA, 1991. ACM.

J. M. Lucassen and D. K. Gifford. Polymor-
phic effect systems. In POPL ’88: Proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 47—
57, New York, NY, USA, 1988. ACM.

Robin Milner, Mads Tofte, Robert Harper, and
David B. MacQueen. The Definition of Standard
ML, (Revised). MIT Press, 1997.

Martin Odersky and Philip Wadler. Pizza into
Java: translating theory into practice. In POPL
'97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of program-
ming languages, pages 146-159, New York, NY,
USA, 1997. ACM.

