
CICLOPS 2001

Finite Domain Constraints in SICStus Prolog

Mats Carlsson

Swedish Institute of Computer Science

matsc@sics.se

http://www.sics.se/~matsc



CICLOPS 2001

Outline of the Talk

• The SICStus library(clpfd) Package
– built-in primitives
– implementation architecture
– indexicals
– global constraints

• Host Language Support
• Internal Representation

– domain variables
– propagation queues

• Stateful Constraints
– unification and co-references
– optimizations

• Debugging
• Conclusion



CICLOPS 2001

CLP over Finite Domains

• Constraint store
– X ⊆ D, D ⊆ Z

• Terms
– integers (can be <0)
– variables ranging over finite domains

• Constraints
– linear arithmetic constraints
– combinatorial constraints
– reified constraints: p(x1,…,xn) ⇔ b
– propositional combinations of reified constraints
– user-defined constraints



CICLOPS 2001

Built-in Constraints

element/3

case/[3,4]

all_different/[1,2]

assignment/[2,3]

circuit/[1,2]

cumulative/[4,5]

serialized/[2,3]

disjoint1/[1,2]

disjoint2/[1,2]

cumulatives/[2,3]

global_cardinality/2

count/4

scalar_product/4

sum/3

knapsack/3

X in Domain, X in_set Set

X #= Y, X #\= Y

X #< Y, X #=< Y

X #>= Y, X #> Y

#\ C

C #/\ D

C #\/ D

C #=> D

C #<=> D

C #<=> B



CICLOPS 2001

Built-in Search

• indomain(Var)

• labeling(Options,Vars)

• minimize(Goal,Var)

• maximize(Goal,Var)

Labeling options

• leftmost | min | max | ff 
| ffc | variable(Sel)

• enum | step | bisect | up 
| down | value(Enum)

• discrepancy(D)

• all | minimize(Var) | 
maximize(Var)



CICLOPS 2001

Implementation Architecture

• A scheduler for indexicals and global constraints

• Support for reified constraints

• User-defined indexicals for fine-tuned propagation within a general 

framework

• Global constraints use specialized filtering algorithms

• Custom designed suspension mechanism

• Support for stateful constraints



CICLOPS 2001

Indexicals

• Given a constraint C(X1,…,Xn), for each Xi, write a rule Xj in Rj that 
computes the feasible values of Xi in terms of {dom(Xi) | i≠j}.

– [VSD92] P. Van Hentenryck, V. Saraswat, Y. Deville.  Constraint processing 
in cc(FD), 1992. Draft.

• Example: X = Y + C, domain consistent version.
eqcd(X,Y,C) +:

X in dom(Y)+C,

Y in dom(X)-C.

• Example: X = Y + C, interval consistent version.
eqcd(X,Y,C) +:

X in min(Y)+C..max(Y)+C,

Y in min(X)+C..max(X)-C.



CICLOPS 2001

Indexicals: Pros and Cons

• Feasibility demonstrated by D. Diaz: clp(FD), GNU Prolog

• Other implementations by G. Sidebottom, H. Lock, H. Vandecasteele, B. 

Carlson, ...

• A RISC approach to constraint solving

• Reactive functional rules executed by a specialized virtual machine

• A language for fine-tuned propagation in a general framework

• A language for entailment detection and hence reification

• Drawbacks:
– low granularity
– local effect
– fixed arity



CICLOPS 2001

Indexicals: Definitions

• RS denotes the range expression R evaluated in the constraint store S

• S’ is an extension of S iff

• R is monotone in S iff for every extension S’ of S,

• R is anti-monotone in S iff for every extension S’ of S,

SS XdomXdomX )()(: ' ⊆∀

SS RR ⊆'

'SS RR ⊆



CICLOPS 2001

Indexicals: Syntax of   X in R

Range expressions
R ::= T..T | R/\R | R\/R | \R | R+T | R-T | R mod T | {T,…,T} 

| dom(X)

Term expressions
T ::= T+T | T-T | T*T | T/>T | T</T | T mod T | min(X) | 

max(X) | card(X) | X | N

N ::= integer | inf | sup

Monotonicity
Indexicals for constraint solving must be monotone
Indexicals for entailment detection must be anti-monotone



CICLOPS 2001

Indexicals for Reification

• Example: X = Y + C.

?- eqcd(X,Y,5) <=> B.

eqcd(X,Y,C) +: % positive constraint solving

X in dom(Y)+C,

Y in dom(X)-C.

eqcd(X,Y,C) -: % negative constraint solving

X in \{Y+C},

Y in \{X-C}.

eqcd(X,Y,C) +? % entailment detection

X in {Y+C}.

eqcd(X,Y,C) -? % disentailment detection

X in \dom(Y)+C.



CICLOPS 2001

Indexicals: Implementation

• Compiled to (bytecode,symbol table).

• Indexical syntax intercepted by user:term_expansion/2

user:term_expansion((Head+:Body), Expansion) :-

functor(Head, N, A),

Expansion = [:- clpfd:’$fd_install’(N/A, 1, Info)],

compile(Head, Body, Info).

• Executed by a simple stack-based VM.
• eqcd/3 gets defined as a Prolog predicate

– the WAM escapes to a solver entrypoint



CICLOPS 2001

The Global Constraints API

• fd_global(+C,+S,+V)

– Posts a global constraint C with initial state S; V tells how to suspend on 

variables by means of a list of

dom(X), min(X), max(X), minmax(X), val(X)

• clpfd:dispatch_global(+C,+S0,-S,-A) User defined.

– Entrypoint for the filtering algorithm of global constraint C with state S0, 

producing a new state S and solver requests A (entailed, disentailed, prune, 

…).

• fd_min(?X,-Min), fd_max(?X,-Max), ...

– Unifies Min (Max) with the current lower (upper) bound of X.

• FD set ADT

– Comes with all the necessary operations.



CICLOPS 2001

x � y ⇔ b as a Global Constraint

le_iff(X,Y,B) :-

B in 0..1,

fd_global(le(X,Y,B), [], [minmax(X),minmax(Y),val(B)]).

:- multifile clpfd:dispatch_global/4.

clpfd:dispatch_global(le(X,Y,B), [], [], Actions) :-

( var(B)

-> (   fd_max(X,Xmax), fd_min(Y,Ymin), Xmax =< Ymin

->  Actions = [exit,B=1] % entailed, B=1

-> (   fd_max(Y,Ymax), fd_min(X,Xmin), Xmin > Ymax

->  Actions = [exit,B=0] % entailed, B=0

;   Actions = [] % not entailed, no pruning

)

; B=:=0

-> Actions = [exit,call(X#>Y)] % rewrite to X#>Y

; Actions = [exit,call(X#=<Y)] % rewrite to X#=<Y

).



CICLOPS 2001

Outline of the Talk

• The SICStus library(clpfd) Package
– built-in primitives
– implementation architecture
– indexicals
– global constraints

• Host Language Support
• Internal Representation

– domain variables
– propagation queues

• Stateful Constraints
– unification and co-references
– optimizations

• Debugging
• Conclusion



CICLOPS 2001

Generic Support

• Backtracking, trailing
– Provides search, automatic memory reclamation, state restoration, do-on-

backtracking

• Meta-calls, encapsulated computations
– Enables meta-constraints

• cardinality-path [Beldiceanu&Carlsson, ICLP2001]
• Satisfiability Sum [Régin et al., CP2001]

• Term Expansion: user:term_expansion/2
– Recognizes and translates indexical “clauses”

• Goal Expansion: user:goal_expansion/3
– Provides macro-expansion
– Recognizes and translates arithmetic constraints

• X #= Y, X #>= Y, etc.

– Recognizes and translates propositional constraints
• P #/\ Q, P #\/ Q, etc.



CICLOPS 2001

Support Targeted for CLP

• Attributed Variables provide the link from unification to solvers, and 
allow solvers to store data on variables.

– C. Holzbaur. Specification of Constraint Based Inference Mechanism 
through Extended Unification. PhD thesis, U. of Vienna, 1990.

– Unification hooks
– Top-level loop hooks

:- attribute fd_attribute(_,_).

?- get_atts(X, fd_attribute(DomMut,SuspMut)).

?- put_atts(X, fd_attribute(DomMut,SuspMut)).

verify_attributes(Var, Term, Goals) :- ...



CICLOPS 2001

Support Targeted for CLP

• Mutable Terms provide backtrackable assignment (value-trailing).
– N. Beldiceanu, A. Aggoun. Time Stamps Techniques for the Trailed Data in 

CLP Systems. Actes du Séminaire 1990 - Programmation en Logique, 
Tregastel, France.

– Only for Prolog terms, not arbitrary memory locations
– Coarse trailing [Choi, Henz and Ng, CP2001]

’$mutable’(Term,Timestamp)

create_mutable(+Term,+Mutable)

get_mutable(+Term,+Mutable)

update_mutable(+Term,+Mutable)



CICLOPS 2001

Outline of the Talk

• The SICStus library(clpfd) Package
– built-in primitives
– implementation architecture
– indexicals
– global constraints

• Host Language Support
• Internal Representation

– domain variables
– propagation queues

• Stateful Constraints
– unification and co-references
– optimizations

• Debugging
• Conclusion



CICLOPS 2001

Domain representation

• Options:
– interval+bit array [CHIP compiler, clp(FD), GNU Prolog, CHOCO, Mozart]
– array of integers [CHIP compiler]
– list of intervals [ECLiPSe, SICStus,CHOCO,Mozart,MROPE,Figaro]
– interval trees [CHOCO]
– interval only [interval solvers, CHIP compiler]
– interval + list of holes [?]

• Pros (assuming M intervals)
– operations O(M) in the worst case
– implementation straightforward
– Prolog representation straightforward
– scalable

• Cons
– performs poorly on N Queens



CICLOPS 2001

Domain Variables

Suspended Prolog goals

Value cell

clpfd attribute:
domain mutable
suspension mutable
name

more attributes ...

dom(Size,Min,Max,Set)

lists(Dom,Min,Max,
Minmax,Val)

List of intervals

List of indexicals and globals



CICLOPS 2001

Propagation Queues

• Queues of constraints, not variables
– The KISS principle
– One indexical queue (greater priority)
– One global constraint queue (lesser priority)

• Enqueued test in O(1) time
– using a mutable term

• No extra information stored with queue elements
– which variables were pruned
– why they were pruned
– their previous domains

• Historically, difference lists were being passed around
• Now using dedicated buffers

– modest performance gains
– needs garbage collector services



CICLOPS 2001

Outline of the Talk

• The SICStus library(clpfd) Package
– built-in primitives
– implementation architecture
– indexicals
– global constraints

• Host Language Support
• Internal Representation

– domain variables
– propagation queues

• Stateful Constraints
– unification and co-references
– optimizations

• Debugging
• Conclusion



CICLOPS 2001

Stateful Constraints

• clpfd:dispatch_global(+Ctr,+S0,-S,-A) User defined.
– Entrypoint for the filtering algorithm of global constraint Ctr with state S0, 

producing a new state S and solver requests A.

– Does not say which domain variables were pruned.

– Provides for state as a Prolog term.  However, most built-in constraints are 

written in C � costly conversion to C data each time Ctr wakes up.

• Persistent state in C, requiring:
– deallocation guaranteed on backtracking or determinate entailment

– global term references
term

term

term

Persistent
state

Prolog
stack



CICLOPS 2001

Support for Stateful Constraints

• Global term references

– explicitly allocated and deallocated

– requires garbage collector support

– dangling pointer hazard if used generally

• Deallocation guaranteed

– on backtracking

– on determinate entailment

– both the memory block and the global term references



CICLOPS 2001

Domain Variables in the Persistent State

• For each domain variable, we store
– one term reference to the variable itself
– one term reference to the attribute term

• Why?
– Look up attribute term once only
– Retain access to attribute even if the variable is ground

var1 attr1

var2 attr2

Prolog
stack

Persistent
state



CICLOPS 2001

Pruning in Global Constraints

clpfd:dispatch_global(+C,+S0,-S,-A)

where A is a list of:

X in Domain, X in_set Set, X=Int, call(Goal), exit,fail

• Direct pruning inside filtering algorithm is not allowed.
• Three-phase pruning scheme:

1. At entry, make local “copies” of the domain variables.
2. The algorithm works with the local “copies”.
3. At exit, results are posted by computing A.



CICLOPS 2001

Handling Unification and Co-References

• Variable-variable unifications require:
– forwarding one attribute to another
– forming intersection of domains
– forming union of suspensions
– waking up relevant constraints
– marking relevant constraints as having co-references
– in C: dereferencing attributes as well as variables

Persistent
state

var1 attr1

var2 attr2

Prolog
stack



CICLOPS 2001

Filtering Algorithms and Co-References

• Each filtering algorithms is assumed to reach a fixpoint if no domain 
variable occurs more than once.

– The constraint normally does not wake itself up.

• If there are co-references, the solver will repeat the filtering algorithm 
until no more pruning.

– The constraint wakes itself up.
– domain variables occurring more than once initially
– co-references introduced by unification



CICLOPS 2001

Generic Optimization: Sources & Targets

• A target object is subject to pruning or check
• A source object can lead to some pruning or check
• Inactive objects can be ignored
• Speedup > 2.5 observed for non-overlapping rectangles

ground

Nonground,
bounding boxes



CICLOPS 2001

Generic Optimization: Incrementality

• If the current store in an extension of the previous one, then
– ground/source/inactive objects stay so

• Otherwise,
– recompute (part of) the persistent state

• If no choicepoints younger than the posting time of the constraint
– ground/source/inactive objects stay so forever

• Detecting the incremental case:
– timestamps: T1 in C, T2 in a mutable term, T1 := T2 := T2+1 at exit
– the current store is an extension of the previous one if T1=T2 at entry

T2

Prolog
stack

Persistent
state

T1



CICLOPS 2001

Outline of the Talk

• The SICStus library(clpfd) Package
– built-in primitives
– implementation architecture
– indexicals
– global constraints

• Host Language Support
• Internal Representation

– domain variables
– propagation queues

• Stateful Constraints
– unification and co-references
– optimizations

• Debugging
• Conclusion



CICLOPS 2001

A Finite Domain Constraint Tracer

• Provides:
– tracing of selected constraints
– naming of domain variables
– Prolog debugger extensions (naming variables, displaying annotated goals)

• Default appearance (customizable):

scalar_product([0,1,2,3],[1,<list_2>,<list_3>,<list_4>],#=,4)

list_2 = 1..3

list_3 = 0..2 -> 0..1

list_4 = 0..1

• Comes with SICStus Prolog 3.9



CICLOPS 2001

Towards Better Debugging Tools

• Starting point: fine-grained execution trace
– the DiSCiPl experience

• Drawbacks:
– rough explanations (unary constraints)
– flat sequence of low-level events
– static information missing

• the constraints themselves
• the way constraints are woken
• what kind of pruning constraints do
• what kind of consistency the constraints achieve
• what type of filtering algorithms they use

– no means of considering subparts of global constraints to improve 
explanations

• specific necessary conditions
• specific methods used
• implied constraints



CICLOPS 2001

Prerequisites for Better Debuggers

• Static information about constraints
– the way they are woken
– what kind of pruning they do
– what kind of consistency they achieve
– details about the filtering algorithms they use

• Status information
– status of constraints

• e.g. suspended, entailed, failed

– status of variables
• e.g. infinite domain, finite domain, interval, ground

• Trace information
– the events that occur during execution
– explanations for these events
– structured



CICLOPS 2001

Towards Better Explanations

• Challenges:
– record multiple explanations for each value removal compactly
– give explanations in terms of non-unary constraints
– give explanations in terms of objects of the applications

“To fix this failure, you should modify the origin attribute of at least 3 
tasks out of this set of 5 tasks.”

• Uses:
– non-chronological backtracking
– focused explanations to the user
– propose which constraints to relax to fix a failure
– propose which constraints to relax or enforce in over-constrained problems



CICLOPS 2001

Conclusion: what’s crucial for a good CLP(FD) system

• Generic host language support
– attributed variables, mutables, term and goal expansion

• A good foreign language interface
• Support for persistent foreign language state

– do-on-backtracking, persistent term references

• Good debugging facilities
• Nicolas Beldiceanu

• The full story at:

http://www.sics.se/sicstus


