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Abstract. The research goal is to develop a large-scale agent-based simulation 
environment to support implementations of Internet simulation applications. The 
Small Worlds (SW) graphs are used to model Web sites and social networks of 
Internet users. Each vertex represents the identity of a simple agent. In order to cope 
with scalability issues, we have to consider distributed parallel processing. The 
focus of this paper is to present two parallel-distributed algorithms for the 
construction of a particular type of SW graph called � -model. The first algorithm 
serializes the graph construction, while the second constructs the graph in parallel. 

Introduction 

The idea of small worlds (SW) is based on a phenomenon, which formalizes the anecdotal 
notion that "you are only ever six 'degrees of separation' away from anybody else on the 
planet." In this paper, the � -model of SW graphs is going to be described but other graphs 
are out of the scope. For more information about SW graphs we refer to [6].  

 
The � –model graph is used to model the social network of Internet users where each 
vertex represents a user and the neighbors of this vertex represent his friends. Each vertex 
in the graph represents a simple agent [1]. Those agents are used to implement behavior 
models that simulate emerging phenomena on the Internet. The sequential agent-based 
simulation environment can be found in [2]. Also, one of the implemented behavior 
models can be reviewed in [5]. The parallel environment is under publication [3]. 
 
The platform is a rack-mounted 16-nodes in a chassis.  Each node has: an AMD Athlon 
(1900+) processor on a Gigabyte 7VTXH+ motherboard, which contains half Gigabyte 
DDR memory. All the nodes are running Linux and having the same installation. The 
implementation language is Mozart [4]. The next section (2) introduces the � -model. The 
motivations of implementing the parallel-distributed graph, approaches and problem are 
described in section (3). In section (4), the methodology of distributed graphs verification 
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Id Neighbors 
1 2, 3, 5, 6 
2 1, 3, 4, 6 
3 1, 2, 4, 5 
4 2, 3, 5, 6 
5 3, 4, 6, 1 
6 1, 2, 4, 5 

 

is described. In section (5) the first effort of partitioning the vertexes using a serialized 
algorithm is described. In section (6), an algorithm for parallel construction of the graph is 
described.    

�
 -model of SW graph 

If u and w are vertexes of a graph G, then an edge of the form (u, w) is said to join or 
connect u and w. An adjacency list is used to represent the graph. The adjacency list 
contains all vertexes of the graph and next to each vertex is all the vertexes adjacent to it, 
is called neighbors. A graph in which all vertexes have precisely the same number of 
edges (k) is called k-regular or just regular. Examples are demonstrated in Fig. 1. 
 
 
 
 
 

 
 

Fig 1.:  Regular graph representations: (a) N=6, k=4 and (b) N=6, k=2 

In � -model, the first step is to construct a regular graph. So any vertex v (1 ≤ v ≤ N) is 
joined to its neighbors, ui and wi, as specified by: ui  =( v – 1 -  i + N)  (mod N) + 1, AND 
wi = (v – 1 +  i)  (mod N) + 1. Where 1 �  i �  k/2, and it is generally assumed that k �  2.  
 
The construction of SW graph passes in two phases. The first is the construction of a 
regular graph. The second is graph rewiring. Rewiring is done for a number of vertexes 
selected randomly using probability � . It is accomplished by deleting an edge, and 
inserting a newly randomly generated edge. The new edge can be the deleted edge but 
never any existing one. A refinement of the algorithm is to store only the rewired vertexes 
because neighbors can be easily computed using the vertex id and the value of k. 
Consequently, the algorithm complexity is O(K*N* Beta). 

The motivation, approaches and Problems  

The motivation of this work is to construct SW graphs with very large number of vertexes, 
on the scale of 1,000,000. We have used distributed parallel processing to cope with 
scalability issues. There are two approaches. The first is to serialize the rewiring, which 
does not need to modify the algorithm of the sequential one. The second is to rewire the 
graph in parallel, which needs to modify the rewiring algorithm. Implementation wise, the 

Id Neighbors 
1 2, 6 
2 1, 3 
3 2, 4 
4 3, 5 
5 4, 6 
6 5, 1 

 

(a) (b) 
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challenge is to have an efficient messages passing between partitions on the scale of k/2 * 
�  * N * (P-1)/P, where P is number of partitions, and (P-1)/P is the probability to cross the 
process boundary, e.g., 10/2 * 0.2 * 1000000* 9/10 = 900000 messages.  
 
Algorithm analysis reveals two problems. Consider the regular graph shown in Fig. 1. (b). 
If the vertexes 1, and 4 are going to be rewired concurrently, the edges (1, 2) and (4, 5) 
will be deleted. The possible edges to insert are: vertex -1 = (1, 2), (1, 3), (1,4), (1, 5); and 
vertex-4 = (4, 5), (4, 6), (1, 4), (2, 4). The edge (1, 4) can be added by both processes. This 
creates a graph with a number of edges less than the sequential one (problem 1). Also, 
using the same regular graph, consider vertexes 3 and 4. The rewiring of 3 may delete the 
edge (3, 4). This means that while rewiring the vertex 4 in sequence the edge (3, 4) will be 
considered as one of the possible edges to insert, but this is not the case in parallel 
rewiring (problem 2). 

Distributed graphs verification 

The graphs are verified by: (1) checking that the graph is correctly connected, i.e., for all 
graph vertexes, if vertex w is a neighbor of u, then u must be a member in neighbors of w, 
(2) counting the total number of edges, which should not change after rewiring, and (3) 
statistically, comparing graphs that are constructed sequentially with ones that are 
distributed using the minimum and maximum degree of vertexes; this is needed because 
rewiring changes a regular graph to an irregular graph. The results reveal that there is no 
significant difference between them. It should be remarked that random number generator 
initialization is a key factor to get correct distributed graphs. Initially, we missed this, 
which leads to graphs with higher maximum value.  

Distributed serialized 
�

-model of SW graph 

A graph G is partitioned into P partitions with equal size S. The vertexes of the P 
partitions are: 1 to S, S+1 to 2S, ... and (P-1)*S+1 to P*S. The rewiring is then started in 
each partition process. Unlike the sequential algorithm, this requires cooperation among 
processes, which takes the form of remote calls. The parallelization strategy is based on: 
1) Detecting the calls that need to cross the process boundary, 2) Collecting those calls in 
a list, 3) Partitioning the list into sub-lists such that each sub-list contains calls to one 
process, and 4) Parallel processing of those sub-lists using remote procedure calls (RPC). 
 
This strategy has dual benefits: first, minimizing physical messages sent (RPCs), and 
second, minimizing thread creation and management. The total number of physical 
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messages is k/2*P*(P-1). There is only one thread per process that handles the intra-
partition rewiring and another thread that handles the inter-partition rewiring.  
 
The rewiring loop is synchronized so that the first loop iteration starts by rewiring the first 
partition meanwhile; the execution of all other partitions is suspended. Generally, in the 
same loop iteration, partition (x+1) is suspended; until the rewiring of partition (x) is 
completed (1 �  x < P). The synchronization data structure is constructed from unbound 
variables that are organized in tuples. The number of tuples equals the number of 
partitions (P). The arity of the tuple equals k div 2. 
 
The last part is the edge rewiring code, Fig. 2, which is modified so that procedure calls 
that need to cross the process boundary are handled using the parallelization strategy. In 
this way, the distributed rewiring behaves exactly similar to the sequential one. Notice 
that the time complexity is the same as the sequential algorithm. 
 
The experimental study shows that this approach gives the required scalability. On the 
scale of 2000000 vertexes, there is no plenty on performance. It even performs slightly 
better. Statistically, this slight improvement is insignificant. Using efficiently hardware 
resources may explain these results.  
 
proc {RewireEdge Id Index} 
   OldNeighbor = (Id + Index) mod N 
   Neighbors = {Subtract {GetNeighbors Id} OldNeighbor} 
   NewNeighbor = {GenerateRandomNeighbor Id Neighbors} in 
   if OldNeighbor \= NewNeighbor then 
     {RemoveNeighbor Id OldNeighbor} 
     {PutNeighbor Id NewNeighbor} 
     {RemoveNeighbor OldNeighbor Id} 
     {PutNeighbor NewNeighbor Id} 
   end 
end 

Fig. 2. : Edge rewiring over distributed partition 

Parallel-distributed algorithm 

It differs from the serialized algorithm only in synchronization. All RPCs are invoked 
after the rewiring loop is terminated. This means the number of physical messages, 
directly generated from rewiring, is only P*(P-1). The edge rewiring is the same, Fig. 2, 
but new procedures for adding and removing edges need to be added to handle the two 
problems that lead to incorrect graphs, which are described above (section 3).  
 
The first new procedure is called PutNewNeighbor/2 (Fig. 3). The existence of w in 
neighbors of u and the condition w < u detects the first problem and generating a new 
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edge corrects it. Using the same example described in section 4, adding the vertex 1 to the 
adjacency list of vertex 4 can be detected because the edge already exists and 1 < 4. So, 
selecting an edge from the possible ones and adding it, is exactly what will happen in the 
sequential rewiring. Notice that a new edge may cross the process boundary. 

 
proc {PutNewNeighbor U W} 
 if {AlreadyNeighbor U W} then {PutNeighbor U {GenrateNeighbor U}} 
 else {PutNeighbor U W} end 
end 

Fig. 3. : Adding new neighbor in parallel rewiring 

The second new procedure is called RemoveOldNeighbor/2 (Fig. 4). If u has been 
rewired AND w<u AND u-w� k/2 detects the second problem. The solution is based on 
selecting randomly one vertex (v) from newly added neighbors. Removing w and v from 
the neighbors of u, prepares for a state that is identical to the sequential rewiring. Now the 
value of a randomly generated vertex, z, will determine the next actions. If z=w, we need 
to correct the edges, else just remove w from the neighbors of u. To correct the edges: 
delete edge (u, v) and keep the edge (u, w).  

 
proc {RemoveOldNeighbor U W} 
 if {Problem2Exist U W} then 
   V = {SelectRandom {NewlyAdded U}} in 
   {RemoveNeighbor U W}  {RemoveNeighbor U V}   
   local Z = {GenerateRandomNeighbor U} in 
       if Z == W then {PutNeighbor U W} 
       else {PutNeighbor U V} end 
   end 
end 

Fig. 4. : Removing old neighbor in parallel rewiring 

The time complexity is the same as the previous algorithms. The results of an 
experimental study of performance in relation to the number of vertexes and the number 
of machines are depicted in the graph of Fig. 5. The performance is measured in seconds. 
The values shown are the mean values obtained from at least 10 experiments. An 
experiment is terminated, if it exceeds 300 seconds. The results prove that the developed 
parallel algorithm gives a reasonable speed up. It also shows that increasing the number of 
vertexes can be efficiently handled by increasing the number of machines. 

Conclusion 

The � -model of SW graph could be constructed in parallel while distributed in different 
machines, using two approaches. The first serializes the rewiring, while the second is fully 
parallel. The key factor is an efficient parallelization technique to cope with the heavy 
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messages load. The parallel implementation gives a very good speed up. The 
parallelization strategy is based on minimizing the overhead of the number of physical 
messages sent between processes, and second, minimizing the thread creation and 
management overhead. A detailed version of this paper can be found at 
www.sics.se/~mahmoud/ICities/papers/ParallelDistributedSmallWorldGraph.pdf. 

Performance Study
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Fig. 5. Performance in relation to the number of vertexes and the number of machines 
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