-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Swedish Institute of Computer Science Publications Database

Parallel Distributed Algorithms of the B-model of the
Small World Graphs

Mahmoud Rafea, Konstantin Popov, Per Brand, Fredrik Hamdseif Haridi

SICS, Box 1263, SE-16429 Kista, Sweden {seif, fredrikh, perbiesd, mahmoud}@sics.se

Abstract. The research goal is to develop a large-scale ageatthsimulation

environment to support implementations of Internet simulatjgplications. The

Small Worlds (SW) graphs are used to model Web sitessacidl networks of
Internet users. Each vertex represents the identity off@esmgent. In order to cope
with scalability issues, we have to consider distributedllghrprocessing. The
focus of this paper is to present two parallel-distributégbradhms for the

construction of a particular type of SW graph calechodel. The first algorithm
serializes the graph construction, while the second cotsthegraph in parallel.

Introduction

The idea of small worlds (SW) is based on a phenomenuich formalizes the anecdotal

notion that "you are only ever six 'degrees of separatiway from anybody else on the

planet." In this paper, tiigmodel of SW graphs is going to be described but othehgrap
are out of the scope. For more information about S\Wigrave refer to [6].

The p—model graph is used to model the social network of Intarsers where each
vertex represents a user and the neighbors of this weqieasent his friends. Each vertex
in the graph represents a simple agent [1]. Those sigeatused to implement behavior
models that simulate emerging phenomena on the IntéFhet sequential agent-based
simulation environment can be found in [2]. Also, orfethtee implemented behavior
models can be reviewed in [5]. The parallel environmeahder publication [3].

The platform is a rack-mounted 16-nodes in a chassish E@ade has: an AMD Athlon
(1900+) processor on a Gigabyte 7VTXH+ motherboard, whattains half Gigabyte
DDR memory. All the nodes are running Linux and having #raesinstallation. The
implementation language is Mozart [4]. The next sectionn{dduces th@-model. The
motivations of implementing the parallel-distributed gragbproaches and problem are
described in section (3). In section (4), the methagolaf distributed graphs verification

1 This work has been done within thGities project, funded by European Commission (Future and
Emerging Technologies, IST-1999-11337).

https://core.ac.uk/display/11434170?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is described. In section (5) the first effort of paotitng the vertexes using a serialized
algorithm is described. In section (6), an algorithnpfarallel construction of the graph is
described.

B -model of SW graph

If u and w are vertexes of a graph G, then an edge dbthe (u, w) is said to join or
connect u and w. An adjacency list is used to represengridiph. The adjacency list
contains all vertexes of the graph and next to eadewés all the vertexes adjacent to it,
is called neighbors. A graph in which all vertexeseharecisely the same number of
edges (K) is called k-regular or just regular. Examples arem&nated irFig. 1.

(a) Id Neighbors (b) Id Neighbors
1 2,3,5,6 1 2,6
2 1,3,4,6 2 1,3
3 1,2,4,5 3 2,4
4 2,3,5,6 4 3,5
5 3,4,6,1 5 4,6
6 1,2,4,5 6 51

Fig 1.: Regular graph representations: (a) N=6, k=4 and (b) k=5,

In B-model, the first step is to construct a regular grapharg/ vertex v (X v< N) is
joined to its neighbors,; and w, as specified by:ju=(v—1- i+ N) (mod N) + 1, AND
w; = (v—1+ i) (mod N) + 1. Where<li < k/2, and it is generally assumed that R.

The construction of SW graph passes in two phasesfifghds the construction of a
regular graph. The second is graph rewiring. Rewiring iedor a number of vertexes
selected randomly using probabilifyy It is accomplished by deleting an edge, and
inserting a newly randomly generated edge. The new edgbecéime deleted edge but
never any existing one. A refinement of the algorithtoistore only the rewired vertexes
because neighbors can be easily computed using the vertardi the value of k.
Consequently, the algorithm complexity is O(K*N* Beta).

The motivation, approaches and Problems

The motivation of this work is to construct SW graplith very large number of vertexes,
on the scale of 1,000,000. We have used distributed paratleégzing to cope with
scalability issues. There are two approaches. Theiditgt serialize the rewiring, which
does not need to modify the algorithm of the sequential ®he second is to rewire the
graph in parallel, which needs to modify the rewiring atgm. Implementation wise, the

challenge is to have an efficient messages passing@&etpartitions on the scale of k/2 *
B * N * (P-1)/P, where P is number of partitions, and (f213 the probability to cross the
process boundary, e.g., 10/2 * 0.2 * 1000000* 9/10 = 900000 messages.

Algorithm analysis reveals two problems. Consider #wlar graph shown iRig. 1. (b).

If the vertexes 1, and 4 are going to be rewired conclyrehe edges (1, 2) and (4, 5)
will be deleted. The possible edges to insert are: wette (1, 2), (1, 3), (1,4), (1, 5); and
vertex-4 = (4, 5), (4, 6), (1, 4), (2, 4). The edge (1, 4) eaaduled by both processes. This
creates a graph with a number of edges less thasetiiential one (problem 1). Also,
using the same regular graph, consider vertexes 3 anc4eidring of 3 may delete the
edge (3, 4). This means that while rewiring the vertexsegquence the edge (3, 4) will be
considered as one of the possible edges to insert, buistimist the case in parallel
rewiring (problem 2).

Distributed graphs verification

The graphs are verified by: (1) checking that the graptoirectly connected, i.e., for all
graph vertexes, if vertex w is a neighbor of u, thenustrbe a member in neighbors of w,
(2) counting the total number of edges, which should not chafigerewiring, and (3)
statistically, comparing graphs that are constructed séigllg with ones that are
distributed using the minimum and maximum degree of vertelissjst needed because
rewiring changes a regular graph to an irregular grabh.results reveal that there is no
significant difference between them. It should beadmd that random number generator
initialization is a key factor to get correct distridtgraphs. Initially, we missed this,
which leads to graphs with higher maximum value.

Distributed serialized p-model of SW graph

A graph G is partitioned into P partitions with equalesiS. The vertexes of the P
partitions are: 1 to S, S+1 to 2S, ... and (P-1)*S+1*& Fhe rewiring is then started in
each partition process. Unlike the sequential algorithis, requires cooperation among
processes, which takes the form of remote calls.pHnallelization strategy is based on:
1) Detecting the calls that need to cross the processiboyr) Collecting those calls in
a list, 3) Partitioning the list into sub-lists suchttleach sub-list contains calls to one
process, and 4) Parallel processing of those suhubstg remote procedure calls (RPC).

This strategy has dual benefits: first, minimizing pbgbkimessages sent (RPCs), and
second, minimizing thread creation and management. The rtotaber of physical

messages is k/2*P*(P-1). There is only one thread per prdb@s handles the intra-
partition rewiring and another thread that handles the-padition rewiring.

The rewiring loop is synchronized so that the first liiepation starts by rewiring the first
partition meanwhile; the execution of all other pasti is suspended. Generally, in the
same loop iteration, partition (x+1) is suspended; untilréweiring of partition (x) is
completed (1< x < P). The synchronization data structure is congdufrom unbound
variables that are organized in tuples. The number of duptpials the number of
partitions (P). The arity of the tuple equals k div 2.

The last part is the edge rewiring coéfgg. 2, which is modified so that procedure calls
that need to cross the process boundary are handled usipgrtilelization strategy. In
this way, the distributed rewiring behaves exactly simib the sequential one. Notice
that the time complexity is the same as the sequedgatithm.

The experimental study shows that this approach givesetiigred scalability. On the
scale of 2000000 vertexes, there is no plenty on performtneeen performs slightly
better. Statistically, this slight improvement isigmsficant. Using efficiently hardware
resources may explain these results.

proc {Rew reEdge Id I ndex}
A dNei ghbor = (Id + Index) nmod N
Nei ghbors = {Subtract {CGet Neighbors Id} O dNei ghbor}
NewNei ghbor = {Gener at eRandonNei ghbor |d Nei ghbors} in
i f O dNei ghbor \ = NewNei ghbor then
{RenmoveNei ghbor 1d O dNei ghbor}
{Put Nei ghbor 1 d NewNei ghbor}
{ RenmoveNei ghbor 4 dNei ghbor | d}
{ Put Nei ghbor NewNei ghbor | d}
end
end

Fig. 2. : Edge rewiring over distributed partition

Parallel-distributed algorithm

It differs from the serialized algorithm only in synchization. All RPCs are invoked
after the rewiring loop is terminated. This means thenlwer of physical messages,
directly generated from rewiring, is only P*(P-1). The edgeiring is the samerig. 2,
but new procedures for adding and removing edges need to betaduadle the two
problems that lead to incorrect graphs, which areritestabove (section 3).

The first new procedure is calléit NewNei ghbor /2 (Fig. 3). The existence of w in
neighbors of u and the condition w < u detects the fireblem and generating a new

edge corrects it. Using the same example described inrsdctadding the vertex 1 to the
adjacency list of vertex 4 can be detected because the leelgdyaexists and 1 < 4. So,
selecting an edge from the possible ones and addingeiatdly what will happen in the
sequential rewiring. Notice that a new edge may crosprieess boundary.

proc {Put NewNei ghbor U W
if {AlreadyNei ghbor UW then {Put Nei ghbor U {GenrateNei ghbor U}}
el se {PutNei ghbor U W end

end

Fig. 3. : Adding new neighbor in parallel rewiring

The second new procedure is calRehoved dNei ghbor /2 (Fig. 4). If u has been
rewired AND w<u AND u-wk/2 detects the second problem. The solution is based on
selecting randomly one vertex (v) from newly added naghlRemoving w and v from
the neighbors of u, prepares for a state that is idgntiche sequential rewiring. Now the
value of a randomly generated vertex, z, will determieeniixt actions. If z=w, we need

to correct the edges, else just remove w from thehbeig of u. To correct the edges:
delete edge (u, v) and keep the edge (u, w).

proc {Renoved dNei ghbor U W
if {ProblenkExist UW then
V = {Sel ect Random { New yAdded U}} in
{RenmoveNei ghbor U W {RenoveNei ghbor U V}
local Z = {Generat eRandomNei ghbor U} in
if Z == Wthen {Put Nei ghbor U W
el se {Put Nei ghbor U V} end
end
end

Fig. 4. : Removing old neighbor in parallel rewiring

The time complexity is the same as the previous algosiththe results of an
experimental study of performance in relation to the numbeetéxes and the number
of machines are depicted in the graplFigf. 5. The performance is measured in seconds.
The values shown are the mean values obtained frofeaat 10 experiments. An
experiment is terminated, if it exceeds 300 seconds. Thaggsole that the developed
parallel algorithm gives a reasonable speed up. It alsgssthat increasing the number of
vertexes can be efficiently handled by increasing the euwmfimachines.

Conclusion

The B-model of SW graph could be constructed in parallel whilgidiged in different
machines, using two approaches. The first serialimesawiring, while the second is fully
parallel. The key factor is an efficient parallelipatitechnique to cope with the heavy

messages load. The parallel implementation gives a wgeyd speed up. The
parallelization strategy is based on minimizing the ozadhof the number of physical
messages sent between processes, and second, minitfigingpread creation and
management overhead. A detailed version of this paper loan found at
www.sics.se/~mahmoud/ICities/papers/ParallelDistributealSuoridGraph. pdf.

Performance Study

1000
3 —~ 180000
5 ~=- 1800000
: \
& 100 A\ 2400000
° 3000000
.E —- 3600000
- — —- 4200000
S 10 — ||~ 4800000
§ — 5400000
x : 6000000
L

1 \ T T T

1 2 3 4 5 6 8 10 12 15
Number of Machines

Fig. 5. Performance in relation to the number of vertexestia@aumber of machines

References

1. Epstein, Joshua M. and Axtell, Robert, 1996, “Growing ardifisbcieties: social science from
the bottom up”, The MIT Press, Cambridge, Massachu$eBs| 0-262-05053-6.

2. Mahmoud Rafea, Fredrik Holmgren, Konstantin Popov, SeifidiaStelios Lelis, Petros
Kavassalis, Jakka Sairamesh, 2002, “Application Architectof The Internet Simulation
Model: Web Word Of Mouth (WoM)”, IASTED International Condgice on Modelling and
Simulation (MS2002), May 13-15, 2002, Marina del Rey, USA.

3. Mahmoud Rafea, Konstantin Popov, Fredrik Holmgren, SeifidiaStelios Lelis, Petros
Kavassalis, and Jakka Sairamesh, "large scale agesd-sa&sulation environment”, submitted
to Jouranl of Systems Analysis Modelling Simulation.

4. Mozart Consortium, 1999, “The Mozart programming systelwgilable athttp://www.mozart-
oz.org/

5. Stelios Lelis, Petros Kavassalis, Jakka Sairameslii, Hridi, Fredrik Holmgren, Mahmoud
Rafea, & Antonis Hatistamatiou, 2001, " Regularities in Fwmation and Evolution of
Information Cities", The Second Kyoto Meeting on DigiGities, October19-20,2001 Kyoto
Research Park, Kyoto, JAPAN.

6. Watts, Duncan J., 1999, “Small worlds: the dynamics of aedsv between order and
randomness”, Princeton University Press, New Jersey, [EB8IL-00541-9.

