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Abstract

As the next step towards a computer architecture for parallel execution of logic
programs we have implemented four refinements of the basic storage model for
OR-Parallelism and gathered data about their performance on two types of shared
memory architectures, with and without local memories. The results show how
the different properties of the implementations influence performance, and
indicate that the implementations using hashing techniques (hash windows) will
perform best, especially on systems with a global storage and caches. We rise
the question of the usefulness of the simulation technique as a tool in developing
new computer architectures. Our answer is that simulations can not give the
ultimate answers to the design questions, but if only the judiciosly chosen parts
of the machine are simulated on a detailed level, then the obtained results can give
a very good guidance in making design choices.

Keywords: logic programming, OR-parallel execution, performance evaluation, computer
architecture, simulation, benchmark.



List of Contents

1. Introduction
2. Process Model of Execution and Basic Storage Model
3. Multiprocessor Organizations
4. Storage Implementations
4.1 Straightforward
4.2 Directory Trees
4.3 Hashing on Contexts
4.4 Hashing on Variables
5. Programs
6. Performance Evaluation
6.1 Straightforward
6.2 Directory Trees
6.3 Hashing on Contexts
6.4 Hashing on Variables
6.5 Comparison of Implementations
7. Conclusions
Acknowledgements
References



1. Introduction

The designers of sequential computers for traditional languages like Fortran, Pascal, C, or even
Lisp or Prolog, can rely on many years of experience in programming in such languages and on
many measurements characterizing their performance, [1,2,3]. The situation is different in the
design of parallel systems. There is very little data to rely on [4,5], and for a language like
PROLOG there is virtually no data.

We are considering setting up an OR-parallel Prolog system on a parallel computer.
OR-parallelism enables alternative solutions to a query to be found in parallel. One of the important
differences between a sequential implementation of Prolog (depth-first with backtracking) and an
OR-parallel one, is that in the latter there are several sets of bindings existing at the same time.
Thus, a major implementation problem is to find a storage organization, which would replace the
very efficient one used in today"s systems [6] .

In this paper we present performance results for several storage structures on two shared
memory architectures. The storage implementations range from a simple one, just providing
separate logical address spaces for different branches in a search tree, to one using hashing
techniques for accessing variables. Our results show, among other things, that the careful choice of
implementation can yield many-fold difference in speed. They also show how the presence of a
storage hierarchy changes performance of the different implementations.

The current work has been preceded by an investigation of the dynamic behavior of Prolog
programs [7]. That investigation has helped us to choose a set of benchmark programs and
provided us with some clues for understanding the obtained results. The work presented here can
also be seen as a continuation of the work of Crammond [8], though it has been conducted
independently. Crammond investigated three unrelated storage models in an implementation
independent manner. We start from the storage model presented in [9] and proceed with several
implementation oriented refinements.

The rest of this paper is organized as follows. In section 2 the basic process and storage
models are shortly described. In section 3 the considered architectures are introduced. In section 4
the storage implementations are described. In section 5 the benchmark programs are shown. In
section 6 the results are presented and discussed. Finally, in section 7 we give some conclusions,
and outline our future work.

2. Process Model of Execution and the Basic Storage Model

Or-parallel execution of a program can be seen as a parallel traversal of the program's search tree by
a set of processes. A node in a tree represents the state of a process. The state consists of a goal-list
and a binding environment. Execution is initiated in the root of a tree by creating a process to
execute the top-level query. A top-level query consists of one or more goals in a conjunction.

Execution in the root proceeds by choosing the first goal in the process goal-list and creating a child
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process for each clause with the name of the head matching that of the current goal. The parent
process terminates. Each child process executes unification. In the course of unification the new
variable bindings are added to the environment of the process. If the unification fails the branch is
terminated. If it succeeds, the goals in the body (if any) are preappended to the current goal list. If
the goal list is empty the branch is ready and can provide a result, otherwise execution proceeds as
described for the root.

The binding environment of a process consists of contexts (activation records) for storing
values of variables. A new context is created each time a clause is invoked. Our measurements have
been done on an implementation using structure-sharing. In a structure-shared implementation the
value of a bound variable consists of a pair of pointers, a pointer to the static representation of the
term to which the variable is bound, and a pointer to the context in which the term is interpreted. An
unbound variable is represented by the value UNBOUND.

The binding environment of a process is the process logical address space, which is separated
from the address spaces of other processes. In [9] we have proposed a storage structure which
ensures that each process has a separate logical address space, but allows sharing of some contexts.
The storage in the proposed model consists of directories and contexts. A directory contains
references to contexts. The binding environment of a process is represented by a directory and the
contexts referred from it. Variables in the environment of a process are accessed via a unique name,
a triple: <directory address, context offset, variable offset>. The directory address is the address to
the base of a directory, the context offset is the offset from the directory base to the entry where the
context address is placed, and the variable offset is the offset from the context base to the entry
where the variable value is placed.

When a context is created on invocation of a clause, all its entries are initialized to NULL and
its address is placed in the process directory. When a process creates two or more children
processes, each process gets a new directory. Each new directory is created in the following way.
Each context in the old directory is investigated. If a context does not contain unbound values, we
say it is committed, the reference to it is placed in the new directory at the same offset as in the old
one. If the context contains unbound variables, we say it is uncommitted, a copy of the context is
made, and a reference to the copy is placed in the new directory at the same offset as in the old one.
In this way each process gets private copies of uncommitted contexts, which ensures separation of
address spaces, and all processes share committed contexts, which is possible because of the single

assignment property of logic programming languages.
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Figure 1.

Two snapshots of the storage content. In the first (before) there is one process, p1. The
binding environment of pl is represented by its directory, containing two entries, and
the contexts 10 and 11 referred from entries 0 and 1, respectively. The context 10 is
uncommitted, since it contains an unbound value UNB. The context 11 is committed. In
the second snapshot (after) there are two processes, p2 and p3, which are children of
pl. The binding environment of p2 is represented by its directory, and the contexts 11,
12, and 13. The binding environment of p3 is represented by its directory and the
contexts 11, 14, and 15. The context 11 is shared between the environments. The
contexts 12 and 14 have been created from the uncommitted context 10, and finally the
contexts 13 and 15 have been created for the clauses invoked by pl and p2. The
variable which has been unbound in the environment of p1 (in the context 10), is bound
to constants C and D in the environments of p2 and p3 in the contexts 12 and 14.

3. Multiprocessor Organizations

Implementation of logic programming systems on multiprocessor computers requires architectures
supporting a global address space. A global address space can be provided on many multiprocessor
organizations. We have estimated performance of our storage implementations on two contrasting
structures characterized by Halstead in [10]: the "dance hall" model where a network connects
processors to memory modules, and the "myriaprocessor” model, which features a myriad of
nodes, each having processing and memory components, connected to each other in some
topology. We assume that in either case the network is a simple shared bus. The memory modules
of the dance hall configuration form a pool of globally shared memory, we think of a
myriaprocessor as having a global shared memory distributed among the memories of various
nodes. We assume, for simplicity, that the systems have no storage hierarchy. The "dance hall" and
the "myriaprocessor" models are the extrems of a spectrum of existing architectures. Approximative
examples of dance hall machines include NYU Ultracomputer [11], Multimax [12], and
Balance8000 [13], examples of myriaprocessors include Cm* [5], RP3[14], and the BBN Butterfly
machine [15].
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Figure 2.
Multiprocessor organizations.

To simplify of our investigation we make the following assumptions about the systems. First,
a system consists of many processors (between 16 and 64) and the load is distributed equally
among the processors, this assumption is important for definitions of locality in the next section.
Second, a processor has a support for computing a hash address (a hash function) as fast as it
produces an ordinary memory address, but has no special support for accessing the hash addressed
objects in the memory. Third, accesses to the static data, and accesses to and processing of the
instructions take the same time in both types of systems. Finally, the load distribution takes no time.

We define performance in a dance hall system as the number of accesses to the dynamic data,
and in a myriaprocessor system as the sum of the numbers of local and non-local access to the
dynamic data weighted by the factors specified below. We assume that initializations, and read and
write operations on a word of storage take the same amount of time.

We use the storage access time in a dance hall system as the unit of time, and assume that in a
myriaprocessor it takes 0.3 unit to access on-node storage (local access), and 1.3 unit to access
remote storage (non-local access). The figures describe the ratio in a MC68020 system using the
VMEbus [16, 17], for the Concert system described by Halstead et al. [18] the numbers are 0.5
unit, and 1.5 unit, respectively. The figures are realistic assuming there is no bus or memory
contention.

4. Storage Implementations

We have implemented four refinements of the basic storage model described in Section 2. The first
one is a straightforward implementation of the basic model. In the second we introduce trees of
directories and fetching of contexts on demand. In the third we limit the size of directories and
introduce hashed access to contexts. In the fourth we do not use contexts explicitly, and instead
apply hash addressing directly to variables. We try different copying strategies on all the
implementations, and different sizes of hash windows on the last two.

All the refinements have been implemented on a simulator [19] of the OR-Parallel token
machine written in Simula67, running on a VAX750.



4.1 Straightforward

The structure of a directory is:

size size - number of entries
u_size u_size - number of used entries

entries entry - address to a context or NULL

and of a context:

[num I num u | values I

num - number of values
num_u - number of unbound values
value - a pair of pointers or NULL

Initially a directory consisting of N (N=10) entries initialized to NULL is created for the root
process. When a process creates children processes, each process, except one, gets a new directory
as described in section 2, the last child inherits the parent's directory. When a new context is created
all its values are initialized to NULL and its address is placed in the next free directory entry,
possibly after a new directory has been created. If there are no free entries, a new directory with the
size equal to the size of the current directory plus N is created, the entries in the current directories
are copied to the new directory, and the new directory becomes current. Variables are accessed as in
the basic storage model (section 2).

We propose two copying strategies: delayed copying of contexts, and copying of contexts on
read. The delayed copying is used to avoid making local copies of contexts which are never used,
and copying on read to increase locality. Delayed copying means that instead of copying an
uncommitted context when new directories are created, a reference to the current copy is placed in
all created directories, and the new copies are done when, and if, the content of the context is to be
changed. Copying on read means that we make a local copy of a context not only on write but also
on read. The distinction between committed and uncommitted context is relevant for delayed
copying, but not for copy-on-read. Instead it must be known if a context is local (i.e. has been
copied) to the local directory or not. The meaning of the num_u field in contexts is changed to
indicate locality.We use all combinations of delayed copying/no delayed copying with copying on
read/no copying on read. For each combination we count the total number of storage accesses, the
numbers of local and remote accesses, and the number of initializations.

The following accesses are considered local: an initialization, an access to the current directory
of a process, and an access to a context created in, or copied to, the current directory. This
definition of locality, and also the definitions for the following implementations, are applicable to a
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myriaprocessor with one process per processor. It is a reasonable approximation, if there are many
processors, and the load is equally distributed among the processors. The definition is pessimistic,
because in practice there will be more than one process per processing element.

4.2 Directory Trees

The main source of inefficiency in the straightforward implementation is the overhead for creating
new directories. We propose the following remedy. When a process is created, an empty directory
with a pointer to the parent directory is created, and the contexts in the ancestor directories are
fetched to the current directory when needed. In the directory trees implementation we make a
tradeoff between faster creation of processes and more complex variable access. This
implementation model has been first specified in [9].

The structure of a context is unchanged. The structure of a directory is modified by adding the

parent field:
parent parent - pointer to the parent directory
size size - number of entries
u_size u_size - number of used entries
entries entry - address to a context or NULL

Some of the operations have been modified. When a child process is created, a directory with
the same size as that of the current one is allocated, gets the address to the parent's directory and
becomes current for the child process. Differently than in the previous implementation, the last, or
the only, child does not inherit the parent's directory, because it is shared by all children. The new
directory is empty, i.e. all its entries are initialized to NULL. When a new context is created it is
initialized and its address is placed in the current directory. The access to variables becomes more
complex. In order to read or write the value of a variable, we have first to find out if the context of
the variable is directly accessible from the current directory. If it is, the value can be accessed in the
usual manner. Otherwise the tree of directories must be searched. The search begins with the
parent, and proceeds until the context is found. On a read operation the address of the accessed
context is placed in the current directory, and on a write operation a local copy of the context is
done.

As before we use the copying on read strategy. We also propose that when the directory for a
child process is allocated, it gets the reference of the most recently created context in the parent's
directory. We call this strategy the local context strategy. It is a meaningful strategy, because the
contexts for the current clause and the clause invoking it are nearly always necessary for unification,
and should be easily accessible. As before we use all combinations of the strategies, and collect the
same data, plus the number of directory initializations.



4.3 Hashing on Contexts

In the directory tree implementation we reserve room in each directory for the references to all
contexts in the binding environment of a process. It does not only make the process creation time
consuming, but is also unnecessary because not all contexts are used. We propose using directories
with a fixed size together with hash addressing of contexts. This time, we trade initialization time
and memory space against more complex addressing. As a side effect of the decreased memory
consumption, the total efficiency of the system will increase, because less time will be used for the
garbage collection.

The u_size field is no longer needed in directories. Directories have room for a fixed number
of entries, we call that part of a directory the hash window. Each entry points to a list of one or
more contexts, a collision list. The structure of contexts is changed. Fields are added for identifying
contexts and for resolution of collisions:

context offset values next

context_offset - id of the context
value - a pair of pointers or NULL

next - pointer to the next context in a collision list or NULL

The address to the directory entry of a context equals: directory address + (context offset
modulo size of the hash window). To access the value of a variable, first the collision list for the
context of the variable is inspected, and in case the context is not found, the directory tree is
searched. The other operations are the same as in the directory trees implementation, with the
modification for hash addressing. As in the previous implementation, the directories are not
inherited. That means that a hash window is created each time a clause is invoked, even if it is the
only clause in a predicate. That has an interesting side-effect: the windows will not become
overcrowded on recursive invocations of deterministic predicates. This scheme could be improved
by creating a new window not on every invocation of a deterministic predicate, but only if the
current window is too full.

As before we use all combinations of copying on read strategy and local contexts strategy. The
combinations are investigated for the hash windows with sizes 2, 4, and 8. When the local contexts
are used they are not accessed by hashing, we think it is a mistake to do so, because it increases the
addressing overhead for all contexts. We collect the same type of data as before, plus the number of
hashed accesses to the local and non-local hash windows, and the number of collisions. A collision
occurs when the looked up context is not first in its collision list.



4.4 Hashing on Variables

The last optimization is based on the observation that not all variables in each context are used by
each process. We propose a scheme where the values of variables are stored directly in directories,
there are no contexts, and the hash addressing is used to access variables. This time we trade the
copying time of contexts for even more complex variable access.

The structure of a directory is unchanged, but the content of entries is different. An entry
contains a value frame consisting of the value of a variable and the fields needed for identifying the
variable and for resolution of collisions:

context offset variable offset value next

<context offset, variable offset> - id of a variable
value - a pair of pointers or NULL
next - pointer to the next frame in a collision list or NULL

The value frame in a directory entry is the head of a collision list consisting of one or more value
frames.

The address of a variable equals directory address + ((context offset*C + variable offset)
modulo size of the hash window), where C is a prime number. To access a variable, first its
collision list is inspected, and in case its value is not found the directory tree is searched. Notice that
the tree need only be searched in case of read accesses, on write access the value is simply added to
the collision list for the variable. When a clause is invoked no context is created, but instead value
frames for the variables in the clause are placed in the local hash window with values initialized to
NULL.

We use the same strategies as before, namely all combinations of local context and copying on
read, with the following modifications: copying on read means copying a variable frame, and
window sizes are 4, 8, and 16. When the local context strategy is used a context is created in the
current directory on a clause invocation, and when a child process is created it gets the reference to
the most recently created context in the parent's directory. The values in the local contexts are not
accessed by hashing. For each access it is first decided if the value is in the local context or not. If it
is, it is looked up directly. Otherwise the hashing procedure described above is applied. The same
type of data is collected as in the previous implementation. When we count the number of directory
initializations, we assume that it is enough to initialize one word per directory entry.

5. Programs

In order to investigate performance of the described implementations we use a very small
benchmark consisting of three programs: permute, map, and queens. The programs has been
chosen from the set of about 20 programs used in an investigation of the dynamic program behavior
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[7]. We could neither use larger programs nor more programs, because of the prohibitive execution
times of our simulator. Notice that the names starting with a lower case letter denote variables and

predicates, while names starting with an upper case letter denote constants and data structures.

Permute:
p() <- perm(ulist,olist).
perm({],{]).
perm(x,[ulv]) <- del(u,x,z),perm(z,v).
del(x,[x]yl,y).
del(x,[y|z].lylw]) <- del(x,z,w).

is run with the list ulist consisting of 3, 4, 5, and 6 elements for all implementations and strategies,

and of 8 for some.

Map:
/>
The program defines the relation color(Map,Colors),
between a map and a list of colors, which is true if Map is legally colored using Colors.
*/

p() <- test(map1).
test{map1) <- map(mapl), colors(colorslist), color_map(map1,colorsist).

map( [Country(A,a,{b,c,d]),
Country(B,b,[a,c,e]),
Country(C,c,[a,b,d,e,f]),
Country(D,d,[a,c,f]),
Country(E,e,[b,c,f]),
Country(F,f,[c,d,e]) ])

/*two, one or no countries are colored initially*/

<- a = Red, b = Blue.

/* here is the program proper */

color_map([},_).

color_map([country|map],colorslst) <-
color_country(country,colorsist),
color_map(map,colorsist).

color_country(Country(_,c,adjacentCs),colorslst) <-
remove(c,colorslst,colorsist1),
subset(adjacentCs,colorslist1).

/* and here some utilities*/

subset({],_).

subset([c|cs],colorslst) <-
remove(c,colorslist, ),
subset(cs,colorslst).

remove(c,[c|cs],cs).
remove(c,{c1|cs],[ct|cs1]) <-
remove(c,cs,cs1).

colors([Red,Green,Blue, White]).
11



is run with two, one or no countries colored from the beginning. The program is due to Ehud
Shapiro.
Queens:

query() <- queens(conf).
queens(conf) <- goodboard(conf).

goodboard([}).
goodboard([x|y]) <- goodboard(y), nocollision(x,y).

nocollision(x,[]).
nocollision(x,[y1]ly2]) <- notoppose(x,y1), nocollision(x,y2).

notoppose(P(x1,y1), P(x2,y2)) <- gen{yl), gen(y2),
yt /=y2, y1 - y2 /=x1 - x2, y1 - y2 /= x2 - x1.

gen(1).
gen(2).
gen(3).
gen(4).
/*facts below are used when there are more than 4 queens*/
gen(5).
/*facts below are used when there are more than 5 queens*/
gen(8).
/*facts below are used when there are more than 6 queens*/
gen(7).
gen(8).

is run with the list conf consisting of 4, 5, and 6 elements for all implementations and strategies,
and of 8 elements for some. An element in the list conf denotes the position of a queen. Calculating
the depth for N-Queens (Table XII) we were also counting the calls to "/=".

6. Performance Evaluation

We first evaluate each implementation separately, and then compare them with each other. We show
how the different strategies influence the speed and how locality pays off in myriaprocessor
systems. Because of lack of space we do not show the complete results for all examples. They are
presented in [19]. Performance for the two types of architectures is defined in section 3.

In the tables below, we use the following abbreviations. "delay"” stands for "delayed copying

of contexts", "copy" stands for "copying on read", and "local context" stands for "local contexts
used".

6.1 Straightforward

In the dance hall type of systems there are no local memories, and the best performance is achieved
when the total number of memory accesses is minimized, it is for strategies requiring the least

copying. For all the examples the combination of delayed copying with no copying on read
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performs best, and no delayed copying with copying on read worst, The ratio between the best and
the worst grows with the size of the input structure up to 6. Table I shows the ratios between the
total numbers of storage accesses for each combination of strategies (relative performance). The
number of storage accesses is of course different for other examples, but the ratios are similar.

TABLEI
PERFORMANCE OF THE DANCE HALL, QUEENS
number of queens 4 5 6
no delay, no copy 1.00 1.00 1.00
no delay, copy 2.63 3.22 3.75
delay, no copy 0.65 0.62 0.62
delay, copy 1.07 1.02 0.96

For the myriaprocessor organization, the relations between the figures for the combinations of
the strategies are similar. With the chosen relation between access times to local and remote
memories the execution times for all implementations are shorter than on the dance hall
organization. The improvements are proportional to the locality. Table II shows the ratios between
the execution times for the different combinations, the locality, and the execution times relative to
the times on the dance hall organization, for the queens program with 6 queens.

TABLE II
PERFORMANCE OF THE MYRIAPROCESSOR, 6 QUEENS
ratio locality time
no delay, no copy 1.00 0.39 0.91
no delay, copy 3.33 0.50 0.80
delay, no copy 043 0.66 0.64
delay, copy 0.70 0.63 0.66

The rest of the examples show somewhat better locality and performance improvement.

6.2 Directory Trees

In this implementation the good locality becomes important even on the dance hall organization,
because having local access to contexts decreases the search overhead. For the queens and permute
programs the best performance is shown by the combination of the local context strategy and no
copying on read strategy. For the map program the best is the combination of the local contexts and
copying on read. The differences between the combinations of the strategies are quite small. It can
be explained by the fact that though making a local copy of a context decreases the time for the
following accesses, it costs extra storage accesses to copy a context. Table III shows the relative
performance (the ratios between the total numbers of storage accesses for each combination of
strategies) on the dance hall organization for the queens program.
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TABLE I
PERFORMANCE ON THE DANCE HALL, QUEENS

number of queens 4 5 6

no local context, no copy 1.00 1.00 1.00
no local context, copy 149 1.44 1.37
local context, no copy 0.91 0.92 0.93
local context, copy 1.17 1.13 1.08

An interesting figure in this implementation is the high number of storage accesses used for
initialization of directories. The number varies between 20% and 30% of all accesses. It can be
compared to, approximately, 1% of accesses used for initialization of contexts. It also means that
we can improve performance significantly by reducing the number of directory initializations.

For the myriaprocessor organization locality becomes even more important because it takes
less time to access a local memory. Table IV shows the performance on the myriaprocessor
organization for 6 queens.

TABLEIV
PERFORMANCE ON THE MYRIAPROCESSOR, 6 QUEENS
ratio locality time
no local context, no copy 1.00 0.53 0.77
no local context, copy 1.17 0.65 0.65
local context, no copy 0.84 0.61 0.69
local context, copy 0.84 0.70 0.60

The figures for the other examples are similar.

6.3 Hashing on Contexts

In this implementation we introduce hash windows and try all combinations of local context strategy
and copying on read strategy for the window sizes: 2, 4, and 8.

Performance improves slowly with the growing size of windows, but only for some
combinations of strategies. For small windows (2) it is favorable to have local contexts and use no
copying on read. It can be explained by the fact that the presence of local contexts decreases the
number of hashed accesses and the number of collisions, and also using copying on read decreases
number of collisions. For large windows (8), where the number of collisions is smaller, it is not
even favorable to have local contexts. Table V shows the relative performance and the percent of
collisions (in parenthesis) for the queens program, and Table VI the hit ratio, or the number of
hashed accesses to the local contexts.
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TABLE V
PERFORMANCE AND COLLISIONS ON THE DANCE HALL, QUEENS

number of queens 4 5 6

hash window 2:

no local context, no copy 1.00 25) 1.00 (31) 1.00 (36)
no local context, copy 1.46 (40) 1.39 (45) 1.32 (49)
local context, no copy 099 4 1.00 (1) 1.00 (3)
local context, copy 1.22 (36) 1.14 (41) 1.07 (43)
hash window 4:
no local context, no copy 0.95 (10) 0.94 (18) 0.93 (18)
no local context, copy 142 (27) 1.35(35) 1.28 (38)
local context, no copy 1.01 ©) 1.02 (D) 1.02 (3)
local context, copy 1.23 24) 1.1537) 1.08 (38)
hash window 8:
no local context, no copy 0.99 (6) 0.95 (10) 0.92 (8)
no local context, copy 1.46 (22) 1.37 (28) 1.29 (29)
local context, no copy 1.07 (0) 1.07 (7) 1.06 (1)
local context, copy 1.29 (22) 1.19 (33) 1.11 (28)
TABLE VI
HIT RATIO, QUEENS

number of queens 4 5 6

no local context, no copy 0.38 0.28 0.22

no local context, copy 0.63 0.57 0.52

local context, no copy 0.20 0.13 0.10

local context, copy 0.47 0.40 0.34

Another interesting figure is the number of initializations, this number grows with the size of
windows from about 3% to 10% of all accesses. Even in the worst case it is only 20% of the
number of initializations in the previous model.

We shall now take a closer look at how the choice of a strategy changes the performance.
When a hash window grows, the number of collisions decreases and the number of initializations
increases. When copying on read is used the hit ratio is good, but the number of collisions is high.
When local contexts are used the hit ratio is very bad, but there are very few collisions. On the other
hand the total number of hashed accesses decreases, because many variable accesses go to the local
contexts. The different factors have counteracting influence on the performance, and this is why the
differences between the different combinations of strategies are quite small.

For the myriaprocessor organizations the factors increasing locality become more important
and outweigh losses caused by additional copying and conflicts. Table VII shows the performance
on the myriaprocessor organization, locality, and the execution times relative to the times on the
dance hall organization. The figures are similar for the other examples, though having local contexts
is not as advantageous. It is worth noticing that very bad locality gives poorer performance on the
myriaprocessor organization than on the dance hall organization.
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TABLE VII. PERFORMANCE ON THE MYRIAPROCESSOR, 6 QUEENS

ratio locality time

hash window 2:
no local context, no copy 1.00 0.29 1.01
no local context, copy 1.01 0.53 0.77
local context, no copy 0.90 0.38 091
local context, copy 0.77 0.57 0.73

hash window 4:
no local context, no copy 0.89 0.33 0.97
no local context, copy 0.95 0.55 0.75
local context, no copy 0.90 0.40 0.90
local context, copy 0.77 0.58 0.71

hash window 8:
no local context, no copy 0.83 0.38 0.91
no local context, copy 0.91 0.58 0.71
local context, no copy 0.91 043 0.87
local context, copy 0.76 0.61 0.69

6.4 Hashing on Variables

In this implementation we try all combinations of local context strategy and copying on read strategy
for different sizes of hash windows. This time the windows contain values of variables, and for this
reason they are larger than before. The window sizes are: 4, 8, and 16.

The performance in this implementation is nearly independent of the window size, because
when the window size grows the number of collisions decreases, but the number of initializations
increases. Having local contexts is good, because it decreases the number of hashed variable
access. It is more important than in the previous implementation, because hashed accesses to
variables require more storage accesses than hashed accesses to contexts. Copying on read is
advantageous, except for permute. Table VIII shows the relative performance and the percent of
collisions (in parenthesis) for the queens program, and Table IX number of hashed accesses to the

local variables.
TABLE VIII
PERFORMANCE AND COLLISIONS ON THE DANCE HALL, QUEENS

number of queens 4 5 6

hash window 4:

no local context, no copy 1.00 (44) 1.00 47) 1.00 (49)
no local context, copy 1.10 (59) 0.99 (63) 0.91 (66)
local context, no copy 0.69 (5) 0.66 (2) 0.65 (2)
local context, copy 0.73 (38) 0.65 (39) 0.58 (44)
hash window 8:
no local context, no copy 0.87 (31) 0.84 (33) 0.82 (34)
no local context, copy 0.96 (49) 0.84 (52) 0.75 (54
local context, no copy 0.72 (0 0.69 (1) 0.68 (2)
local context, copy 0.75 (29) 0.65 (30) 0.58 (33)
hash window 16:
no local context, no copy 0.87 (21) 0.80 (21) 0.76 (21)
no local context, copy 0.94 (39) 0.80 (39) 0.70 (41)
local context, no copy 0.80 (O) 0.76 (1) 0.73 )
local context, copy 0.81 (22) 0.70 (21) 0.62 (22)
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TABLE IX
HIT RATIO, QUEENS

number of queens 4 5 6

no local context, no copy 0.35 0.27 0.22
no local context, copy 0.52 0.48 045
local context, no copy 0.19 0.12 0.09
local context, copy 0.39 0.33 0.28

Because of the larger window sizes the maximal number of initializations is doubled compared
to the previous implementation, and goes up to 20% of all storage accesses.

For the myriaprocessor organization the picture of performance changes in the similar way as
before, and the locality gets more important. Besides, having larger windows becomes more
advantageous. It can be explained by the fact that initializations, which are always local, take
relatively less time. Table X shows the performance figures on the myriaprocessor organization, the
locality, and the execution times relative to the times on the dance hall organization. The figures are
similar for the other examples. What the table does not show is that for all programs we use, the
locality decreases slowly with the growing size of the input structure.

TABLE X
PERFORMANCE ON THE MYRIAPROCESSOR, 6 QUEENS
ratio locality time
hash window 4:
no local context, no copy 1.00 0.22 1.08
no local context, copy 0.75 041 0.89
local context, no copy 0.56 0.37 0.93
local context, copy 0.42 0.52 0.78
hash window 8:
no local context, no copy 0.77 0.28 1.02
no local context, copy 0.56 049 0.81
local context, no copy 0.56 0.40 0.90
local context, copy 0.40 0.57 0.73
hash window 16:
no local context, no copy 0.65 0.38 0.92
no local context, copy 0.46 0.59 0.71
local context, no copy 0.57 0.45 0.85
local context, copy 0.38 0.63 0.66

6.5 Comparison of Implementations

The performance of an implementation depends strongly on the executed program. What surprised

us, was the very good performance of the straight forward implementation with delayed copying of

contexts and no copying on read, especially for the permute program. Also worth noticing is the

poor performance of the directory trees implementation. Figures 3, 4 and 5 show the relative

performance on the dance hall organization for the best combination of strategies for each
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implementation. The results are incomplete because of the prohibitive simulation times for the
permute program for a list of length 8, and for the queens program for 8 queens.
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1 - straight forward, delay, no copy

2 - directory tree, local, no copy

3 - hashing on contexts, no local, no copy, hash window 8
4 - hashing on variables, local, no copy, hash window 4

FIGURE 3. COMPARISON OF IMPLEMENTATIONS ON THE DANCE HALL, PERMUTE
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1 - straight forward, delay, copy
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3 - hashing on contexts , no local context, copy, hash window 8
4 - hashing on variables, local context, no copy, hash window 16

FIGURE 4. COMPARISON OF IMPLEMENTATIONS ON THE DANCE HALL, MAP
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2 - directory tree, local context, no copy

3 - hashing on contexts , no local context, no copy, hash window 8
4 - hashing on variables, local context, copy, hash window 4

FIGURE 5. COMPARISON OF IMPLEMENTATIONS ON THE DANCE HALL, QUEENS

Implementations which perform well on the dance hall organization perform even better on the
myriaprocessor organization. The improvement is proportional to the degree of locality. For the
permute example the straight forward implementation is again superior, except for the list of length
8 when hashing on variables performs nearly as good. The tables comparing the performance of the
implementations on a myriaprocessor are presented in [19].

It might seem surprising that the hashing implementations do not perform better in relation to
the other ones. This fact can be explained by the design trade-offs. We have started with the
straightforward implementation where a directory is scanned and plenty of contexts are copied on
each process creation. We could improve the performance of this implementation by introducing
delayed copying of contexts, without any penalty. Going over to the directory trees implementation
the process creation is simplified by creating empty directories, but the directory entries must still be
initialized. Besides, accesses to variables often require search of a directory tree. By introducing
hashing on contexts we get constant overhead on process creation, because the directories (hash
windows) have fixed size. Unfortunately using hashing makes access to variables even more
complicated. Collision lists must be searched and contexts must be identified. Finally, introducing
hashing on variables minimizes the amount of unnecessary copying, but the price is the need for
variable identification, which is slightly more complicated than the identification of contexts. Table
XTI summarizes the important properties of each implementation.
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TABLE XI
COMPARISON OF IMPLEMENTATIONS, TRADE-OFFS

IMPLEMENTATION  STRENGTH WEAKNESS
Straightforward Simple variable access. Overhead on process creation grows
, Selective copying of contexts. with depth.
Directory tree Simpler process creation. Overhead on process creation grows
Selective copying of contexts. with depth.
Search of a directory tree on variable
access.
Hashing on contexts Constant overhead on process Search of a collision list and a directory
creation. ) tree on variable access.
Selective copying of contexts. Complex context identification.

Hashing on variables Constant overhead on process creation.  Search of a collision list and a directory
Selective copying of variables. tree on variable access.
Complex variable identification.

To understand the difference in performance between the programs, and to be able to draw
some more general conclusions, we have to know how the different properties of the programs
influence performance. We could think about the following dynamic and static properties: depth of
the search tree, degree of parallelism, distance (e.g. in number of calls) between branching points,
size of contexts, number of contexts used between branching points, number of variables used in
each context, number of times the instance of a variable is used. We shall discuss only two extreme
implementations. The relative performance of the straightforward implementation should be good
when the search tree is shallow (cheap process creation), distance between branching point is large
(the same directory is used under several unifications), many variables in the same context are used
(smaller copying overhead per variable), and finally when contexts are small (small copying
overhead). On the other hand the implementation using hashing on variables should perform well
compared to other implementations when the search tree is deep, there is much parallelism (many
branching points), contexts are large, and finally, few values are used in each context and each
value is used several times. The discussion could be summarized by saying that the more complex
implementations will perform relatively better on more complex programs running on large data
structures. Table XII shows values for some of the named factors. The content of the table and the
previous data confirm that the performance is strongly dependent on the depth of the search tree,
and also on the degree of parallelism. It does not say anything about the importance of the context
size and the number of accesses to the same context, because the mean size of contexts and the
mean number of accesses to the same context vary very little.
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TABLE XTI
PROPERTIES OF PROGRAMS

DEPTH DEGREE OF MEAN CONTEXT MEAN NUMBER

PARALLELISM SIZE OF ACCESSES
Permute 3 10 8 3 3
4 14 24 3 3
5 20 85 3 3
6 27 381 3 3
8 44 12800 3 3
Map 2 99 37 3 3
1 104 106 3 3
0 14 425 3 3
Queens 4 52 12 3 2
5 81 48 3 2
6 118 196 4 2
8 213 3380 4 2

The presented comparison asks for some qualifications. Earlier in this paper we have named
two doubtful choices we have made: mixed addressing when local contexts are used in the hashing
on contexts implementation, and creation of a new directory (hash window) even on invocations of
deterministic predicates in both hashing implementations. Especially changing the second decision,
as suggested in Section 4.3, would change the results in favor of the hashing implementations.
There is another, more important fabtor, which could change the results. In most sequential
implementations of Prolog the indexing technique is used in order to avoid creation of unnecessary
backtracking points and unifications. In parallel implementations indexing will be even more
important because it will prevent relatively expensive creation of processes, which will surely
terminate during the first unification. For example, in the permute program two processes are
created for each invocation of the perm predicate, whereas if indexing were used only one would be
created. Results from our earlier investigation [7] show that up to 90% of all branches can be
eliminated by indexing. Introducing indexing would favor the straightforward implementation most,
because of the high price of process creation.

There are many other improvements of technical and logical nature which could be
incorporated in an implementation. We have kept our implementations as simple as possible, and
have concentrated on the most important factors, in order to be able to interpret the results of the

simulations.
7. Conclusions

We have presented simulation results for four implementations of the basic storage model for
OR-Parallelism. The results show how the different factors influence performance of the
implementations. On the basis of the obtained results we claim that the implementation using
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hashing on variables would perform best for the "real life" large programs. Our results confirm
findings of Crammond [8] who has investigated a hashing implementation which is quite similar to
ours.

Performance figures for the myriaprocessor organization show (under our assumptions) that a
system of this type would run about 20-30% faster than a system of the dance hall type, with most
of the implementations. Those figures could be used to predict performance of a system with a
global storage and caches. In such a system the data classified as local (directories and some
contexts) could be held in caches. This would favor the hashing implementations, where the sets of
local data, defined as the content of the local hash windows, are quite small. Recall that the size of
the largest hash windows is 16, and even if the "real life" programs would require larger windows,
still several windows for each branch could be stored in a cache.

We have assumed that a processor has no support for hashing (for accessing the hash
addressed objects in the memory), except for computing of hash functions. That means that, in the
best case, hashed access to a variable would require two storage accesses more than an ordinary
access. Our assumption is very pessimistic, because a processor could be equipped with a better
support for hashed accesses (for instance overlapping between identifying elements and searching
the collision list).

We expect that on systems with a global storage, caches, and more support for hashed
accesses the hashing implementations (especially hashing on variables) would beat the other
implementations much more clearly than in our simulation.

The work presented in this paper, and also other reported simulations of computational models
and computer architectures [8, 20, 21, 22] raise the question of the usefulness of the simulation
technique as a tool in developing new computer architectures. Can we really make architectural
choices on the basis of simulation results? The reasons for our doubts are the limited size and
number of the programs, which can be executed on the simulated machines, the level of detail of the
simulations, and also some of the assumptions, e.g. no memory and bus contention. Qur answer is
that simulations can not give the ultimate answers to the design questions, but if only the judiciously
chosen parts of the machine are simulated on a detailed level, then the obtained results can give a
very good guidance in making design choices. Another question open to debate is whether an
OR-parallel machine buys anything in terms of performance and complexity over a purely sequential
machine. The overhead and added complexity of exploiting OR-parallelism are substantial.

Our next step towards the computer architecture for parallel execution of logic programs is the
implementation of an OR-Parallel Prolog system on one of the several commercial multiprocessor
systems with shared memory, which have appeared on the market lately, for example Multimax
[12], Balance [13], or Butterfly [15]. Our Prolog system will contain most of the built-in functions
found in the sequential implementations of Prolog, and also facilities for controlling parallelism,
which would replace ordering of clauses and the cut primitive used in ordinary Prolog. The facilities
for controlling execution will be even more important in parallel systems, than they are in sequential
ones.
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