SICS/R-89/8905B

The Programming Language GCLA:
A Definitional Approach to Logic Programming

by
Martin Aronsson Lars-Henrik Eriksson
Anette Géaredal Lars Hallnds Peter Olin

SICS research report
R89005B
ISSN 0283-3638

SICS/R-89/8905B

The Programming Language GCLA —
a Definitional Approach to Logic Programming

Martin Aronsson Lars-Henrik Eriksson Anette Garedal*
Lars Hallnas! Peter Olin

November 20, 1989

Swedish Institute of Computer Science (SICS)
Box 1263, S-164 28 Kista, SWEDEN
Phone: +46 8 752 15 00
Telefax: +46 8 751 72 30
E-mail: martin@sics.se

Abstract

We present a logic programming language, GCLA ! (Generalized
horn Clause LAnguage), that is based on a generalization of Prolog.
This generalization is unusual in that it takes a quite different view
of the meaning of a logic program — a “definitional” view rather than
the traditional logical view. ,

GCLA has a number of noteworthy properties, for instance hypo-
thetical and non-monotonic reasoning. This makes implementation
of reasoning in knowledge-based systems more direct in GCLA than
in Prolog. GCLA is also general enough to incorporate functional
programming as a special case.

GCLA and its syntax and semantics are described. The use of
various language constructs are illustrated with several examples.

* Anette Giredal’s present address is: SEB Data, Sergels Torg 2, S-106 40 STOCK-
HOLM, SWEDEN.

tLars Hallnas’ present address is: Department of Computer Sciences, Chalmers Uni-
versity of Technology, S-412 96 GOTEBORG, SWEDEN.

1To be pronounced “Gisela”.

1 Introduction

Programming languages today could be divided into three different cate-
gories: imperative languages (such as C, Pascal etc.), functional languages
(ML, Miranda etc.) and logic languages (Prolog etc). In the first category
execution of a program leaves the computer (i.e. the memory) in a certain
state giving the value of the execution. In the second category an execution
of a program amounts to evaluating an expression to a canonical value which
is the result of the execution. Executing a logic program means constructing
a substitution (“binding” variables to certain values) such that a certain goal
is true according to the program under the given substitution.

During the past years logic programming has proved a good framework
for writing programs with high expressive power while still providing the
ability to execute programs efficiently. The key to this combination is the
Prolog language, which uses definite Horn clauses as programs, and reso-
lution as computation rule. Extensions to Prolog have been proposed by
several authors, e.g. Gabbay [5], Miller [11] and Naish [12], most extending
the language to larger subsets of logic. In contrast, we propose the language
of generalized Horn clauses (GCLA) as a “non-logical” extension to Prolog.
Generalized Horn clauses are a generalization of definite Horn clauses, not
within the traditional logical framework, but rather within the framework of
partial inductive definitions described by Hallnds and Schroeder-Heister [3],
[7], [8], using a more primitive proof-theoretic view of Horn clause program-
ming. As a programming language, GCLA is best regarded as belonging to
the group of logic programming languages, but with some properties usually
found among functional languages.

The use of (ordinary) inductive definitions in logic programming has been
proposed earlier by Hagiya and Sakurai [6]. In contrast to our work, they
did not use inductive definitions as the basis for a programming language,
but rather as a logic for reasoning about Prolog programs. 2

Partial inductive definitions gives a definitional framework which, in a
sense, is of a more primitive and general nature than a standard logical
framework. In GCLA, a program is not looked upon as a set of true facts and
implications from which conclusions are drawn using a computation rule, but
rather as a definition of rules determining the possible inferences. One could
say that in GCLA the program forms the “system’s mind”, meaning that the
inference rules of the “logic” are given by the program. This contrasts with
Prolog where the inference rule is given a priori and the program is executed
within this given framework.

To execute the program, we pose a query to the program by presenting a
goal G and ask whether there is a substitution ¢ such that Go holds according
to the logic defined by the program. As we pose a query to the program the
system tries to construct a deduction showing that Go holds in the given
logic.

2Those familiar with the theory of inductive definitions may note that the main the-
oretical difference between ordinary and partial inductive definitions is that the operator
associated with a partial inductive definition is not necessarily monotone (see [7]).

GCLA’s generalization of Horn clause programming includes hypothet-
ical and non-monotonic reasoning as integral parts. This makes it easy to
handle hypothetical queries, negation and Al techniques like non-monotonic
reasoning, simulation and planning, in a natural way. GCLA can be given a
query which includes assumptions, or queries can be made where GCLA is
asked what assumptions must be made to make a goal true.

Example 1

To illustrate these basic properties of the language, let us consider an ex-
ample: Assume we are going to construct a system for the diagnostics of
infectious diseases. A formalization of general knowledge in this domain will
be the base of our program. We could write a program which defines different

infectious diseases by listing typical symptoms. Part of the code® could look
like:

disease(cold) :- symptom(cough),temp(normal).
disease(pneumonia) :-
symptom(persistent_cough),
symptom(chill),
temp (high) .

The expression C : —A, B should be read as “if A and B hold, then C will
hold by definition.”

A goal consists of two parts: one conclusion and a number of assumptions.
When posing a query to the program we are intuitively asking whether the
conclusion follows from the assumptions in the given program. If there are
no assumptions, we are simply asking if the conclusion is true according to
our program. A typical situation here is when we have some symptoms and
want to ask about a possible diagnosis. In this case we could pose a query
like

symptom(cough) ,temp(normal) |- disease(X).

to the program. A F B should be read “B follows from A”, so the given
expression would when interpreted as a query mean that we are asking for a
value of X such that the conclusion under this substitution will follow from the
assumptions, i.e. what possible infectious disease has as typical symptoms
coughing and normal temperature. In this case the system would respond
with X=cold.

We might also be in a situation where we do not have complete knowledge
of the symptoms and want to get some clues for further investigations.

symptom(chill) ,symptom(persistent_cough),temp(X) |-
disease(Y).

3To make this program run under an actual GCLA interpreter, the predicates temp
and symptom, must be declared “total” in the sense of section 3.5

Here the system would respond with X=high,Y=pneumonia.

A special feature of logic programming languages is the fact that there
can be several correct answers to a posed query. This means that if we are
interested in answer substitutions other than the first, backtracking will give
us those when requested. For instance, assume that we want to list the
typical symptoms of a given infectious disease. This could be done by posing
the following query:

disease(pneumonia) |- X.

The first (trivial) answer would be X=disease(pneumonia), as the assump-
tion follows trivially from itself. The interesting answers follows, first
X=symptom(persistent_cough), then X=symptom(chill), and finally
X=temp (high).

Example 2

Tt is important to understand that there is an essential conceptual difference
between assumptions in a hypothetical query and adding new definitional
clauses to the program. The program itself is a definition, it presents a world
so to speak. Adding new clauses to such a definition could mean that we
change the given world, on the other hand when we assume something to
hold according to a given definition this does not mean that we are thereby
changing the definition. Let us consider a simple example to illustrate this
point:

cold_weather :- snow.

So we have a world in which snow by definition gives cold weather. Thus
assuming cold weather, there must be snow (as there is no other possible
cause for the cold weather than snow). But if we changed the world to one
where cold weather also holds unconditionally

cold_weather.
cold_weather :- snow.

it would no longer be possible to derive that it must be snowing in the new
world (since the weather now is cold without the explicit cause of snow).

Using the def construct described in the next example, local additions of
clauses to the program can be done as the program is running. Such addi-
tions would change the “world” and, as the present example shows, makes it
possible to directly perform non-monotonic reasoning with GCLA.

Example 3

Now assume we would like to think of a certain program as describing general
properties of a family of worlds. When posing queries to the program we add

4

local information that specializes the query to a specific world in the given
family.
Suppose the following clause was added to the program of example 1.

antibiotic(penicillin) :-
disease(pneumonia),
(exception(penicillin) -> false).

The construction exception(penicillin) -> false, meaning “falsity fol-
lows from exception(penicillin)”,i.e. “exception(penicillin) is false”
is the way of expressing negation in GCLA *.

This clause gives part of a definition of what type of antibiotic should
be given to a patient. The clause says that if someone is suffering from
pneumonia and there is no exception concerning penicillin noted, then he
should be given penicillin as treatment. We could use this definition, and
locally add a list of exceptions:

def (exception(penicillin) ,disease(pneumonia)) |-
antibiotic(X).

The def construct means that exception(penicillin) is added to the pro-
gram as a fact during evaluation of the query

disease(pneumonia) |- antibiotic(X).

to which the system would respond with no. If we instead had posed the
following query

exception(penicillin),disease(pneumonia) |-
antibiotic(X).

the first answer would have been X=penicillin, which would be incorrect.

When using def we reason on basis of the fact that there is an exception
noted. In the second case we assume that there is an exception in the given
world. Since the negation construct exception(penicillin) -> false is
true whenever exception(penicillin) is undefined, simply assuming the
exception will not make the negation false, as it is still not defined by the
program.

In cases like Example 1 where we are simply trying to show that things
are true it is possible to represent known facts as assumptions in a query.

This situation illustrates rather well what it means to say that a pro-
gram in GCLA is a definition rather than a set of formulas in a globally
defined logic. The meaning of “follows from” (F) in a query will depend on
the particular program you pose the query to. As a programming language

4“Falsity” could be any symbol that is not defined in the given program. This particular
example will behave like negation as failure in Prolog, but is really just an instance of the
general scheme for evaluating hypothetical queries.

5

GCLA is in a sense more primitive than conventional logic programming. It
gives a framework for writing definitions of a certain sort just as a functional
language like ML gives a framework for writing function definitions.

These examples show that GCLA holds promise to be a suitable language
for building expert systems. For instance, in a rule based system implemented
in GCLA, the rules would actually form the logic with which GCLA would
reason. In queries to the expert system assumptions about the domain can be
given, and this makes it possible to ask hypothetical queries, do simulations,
etc.

Planning problems like the blocks world can also be expressed in GCLA.
The rules for how and when a block can be moved are given as a program.
Given a query with an initial state and some actions, the resulting state
can be derived. If given two states, a plan containing actions necessary for
reaching the second from the first can be generated. This is possible with-
out writing any additional program or interpreter for running the different
kinds of queries. The general execution mechanism of GCLA supports the
expression of these queries from the beginning.

It also turns out that functional programs can be expressed in GCLA.
Thus GCLA integrates logic and functional programming in a single frame-
work. The equations defining pure functional programs are written as Horn
clauses and used as the GCLA program, making the GCLA system perform
execution steps corresponding to reductions of a functional expression. To
find the value of an expression, the expression is assumed and the system is
asked what conclusion can be drawn from it. During execution, the expres-
sion is successively reduced until the answer has been found.

To demonstrate the feasibility of GCLA, a number of interpreters have
been implemented [1], and an abstract machine has been designed. The
abstract machine, called GAM (GCLA Abstract Machine) [2], is developed
from the WAM [14]. However, a number of instructions in GAM have differ-
ent definitions than in WAM, and there is also a number of new instructions.
A compiler for translating GCLA programs into GAM instructions is under
construction, and an emulator for GAM has been written. This experimen-
tal work suggests that GCLA programs can be run efficiently. Preliminary
results show that when definite Horn clause (pure Prolog) programs are run
using GCLA, the loss of efficiency caused by the greater generality of GAM
amounts to a 50% increase in run time compared to a WAM implementation

of Prolog.

We will in the following sections give an overview of the basic architecture
of the programming language GCLA and give examples of different applica-
tions. The language description will thus be largely informal. All in all, this
is not a manual for the language, but a description of the basic architecture
of GCLA together with some illustrative examples.

2 Syntax

Syntactically GCLA is very similar to Prolog. A clause is written as
H: —[Gl,...,Gn],Bl,...,Bm

where H is called the head and Bi,..., By, the body, and each B; is called
a condition. [Gi,...,Gh] is called the guard. Just as in Prolog, the head
and the conditions consists of a predicate symbol applied to some number of
terms. We say that this clause defines H. Again, as in Prolog, the : — sign
can be omitted if the body is empty.

Tn addition, a condition can be hypothetical, i.e. of the form (4, ..., A, —
C) where the A;:s and C' are themselves conditions, called assumptions and
conclusion, respectively. Although such a condition is closely related to log-
ical implication (as its syntax suggests) it does not, in general, have the
meaning of implication.

The purpose of the guard is to determine the applicability of a clause
according to meta-logical criteria. Each Gj is a call to a built-in predicate,
such as var, nonvar etc®. If the guards are not all true when a clause is to
be used, the clause is ignored. Such calls can not be inserted in the body as
in Prolog, since the semantics of GCLA do not permit the body to be read
simply a sequence of procedure calls. An empty sequence of guards ([]), can
be omitted.

A goal is also different from Prolog’s goals since GCLA permits hypo-
thetical queries. A goal comprises, analogue to conditions, assumptions and

a conclusion and is written as Ay, ..., A, = C. This should be read C follows
from Ay, ..., A, according to the program. A general term for the construc-
tion Ai,..., A, F C is a sequent. In this article (but not in programs), we

use the symbols ' and A among the assumptions to represent zero, one, or
several unspecified assumptions.

3 Semantics

3.1 Introduction

A (pure) Prolog program is executed by repeatedly applying the resolution
rule to the current goal and some clause from the program. During execu-
tion a variable substitution is constructed, so that the initial goal, with the
constructed substitution applied, is a logical consequence of the program.
Similarly, during GCLA execution, a substitution is constructed so that
the initial goal, with the constructed substitution applied, holds according to
the program in the calculus of partial inductive definitions. Generally, this
answer substitution is the desired result when executing a GCLA program.

The process of constructing the substitutions is considerably more com-
plicated in the GCLA case than in the Prolog case. To explain the semantics

5Actually, in the current implementation, guards are just Prolog goals.

of GCLA, we will begin by explaining what it means for a goal to hold ac-
cording to a program in the calculus of partial inductive definitions. Under-
standing GCLA in this “static” way corresponds roughly to understanding
the declarative semantics of a Prolog program.

Once this is understood, the “dynamic” aspects of GCLA semantics, i.e.
what actually happens during execution of a GCLA program can be ex-
plained. These aspects can be compared with the procedural semantics of
Prolog.

Even though the role of the logical variable is essentially the same in
GCLA and in Prolog, its meaning is quite different. In Prolog, variables in
clauses correspond to universally quantified variables in logic and variables
in goals correspond to existentially quantified variables in logic. The theory
of partial inductive definitions does not have the concept of a variable, so in
GCLA variables have no such logical meaning. Instead, they are best seen
as a meta-logical device.

In a clause, such as p(X) :-¢(X), the variables stand for arbitrary ground
terms. In other words, the declarative meaning of a clause is the same as
the set of clauses obtained by substituting every possible ground term (of
the Herbrand universe) for the variables in the clause. Clauses containing
variables are to be regarded as a shorthand notation for such sets of ground
clauses.

In a goal with variables, e.g. I p(X), the variables are placeholders that
will be substituted by some terms (“bound”) during execution. The case
where execution succeeds without any term being substituted for a variable,
should be interpreted in such a way that the goal holds when any ground
term is substituted for the variable in question.

In Prolog, this meta-logical reading of variables coincides with the logi-
cal reading — the “Lifting lemma” in Lloyd [10] is an example of this. In
GCLA, however, there is no logical reading in the traditional sense. This
interpretation of variables in GCLA is the key to the connection between the
declarative and operational semantics of GCLA and must be kept in mind.

For a more complete and detailed treatment of the semantics of general-
ized Horn clauses, see Hallnés and Schroeder-Heister [8].

3.2 Declarative semantics

The declarative semantics of GCLA are precisely those of the partial induc-
tive definitions by Hallnas [3],[7].

The declarative semantics will be given as a number of inference rules
and an axiom schema. Here we will regard the assumptions of a sequent
as forming a set. Thus we assume no particular order among assumptions,
and assumptions may be duplicated freely. This is in contrast to the oper-
ational semantics where the order of assumptions reflect the order in which
different parts of the program will be executed. Another difference from the
operational semantics is that the def and rem constructs, being essentially
operational in nature, are not described.

The proper inference rules are divided into two groups. The first two deal
with the meaning of hypothetical conditions (“arrow rules”), the second two
deal with the inferences determined by the program (“program rules”).

3.2.1 The axiom schema

The axiom schema is

r,crC

i.e. something always holds if it is assumed. A sequent of this form is usually
called an initial sequent.

3.2.2 Arrow rules
LA, ..., A C
't A,...,A, —C

THA, .. TFA, T,CHC
T,(A,..., A, = C)F C

These rules give the semantics of the arrow. The first rule, arrow-right,
states that a hypothetical condition Ay, ..., Ay — C holdsif C holds with the
additional assumptions Aj,...,A,. The second rule, arrow-left, states that
a hypothetical assumption can be replaced by its conclusion, if the premises
of the hypothetical assumptions all hold.

These rules are structurally identical to the rules for implication in the
ordinary sequent calculus of logic. Again, it must be emphasized that the
arrow does not in general have the same meaning as logical implication.
Depending on the form of the program, it might, or it might not. For details
see Hallnas [3] or [7].

3.2.3 Program rules

The two program rules define what it means for a goal to hold “according to
a program”. Since the exact form of the inference rules depend on what the
program is, we are justified in saying that the program actually defines the
“logic” used to derive the goal.

re-c¢; ... T'kCy
r=c
where the clause C : —=C4,...,Cy is in the program.
D, Ay, A, FC o0 T Ak, ey Apny, HC7
,CrC
where the C : —Aj, ..., A, are all clauses in the program with head C.

The first rule, program-right, simply states that if there is a clause
C :—C4,...,C, defining C, then C holds according to the program if each
C; holds according to the program. The rule can be understood as simply

replacing C with the conditions of its definition. It is essentially the ground
form of the SLD-resolution rule used in Prolog.

The second rule, program-left, is more complicated. It is also the most
important rule, in the sense that most of the additional power of GCLA over
Prolog comes from this rule.

Suppose we want to show that C' holds under some assumptions, includ-
ing C. Since we assume that C holds, we must also assume that there is
some clause C : —As, ..., A, defining C, where all the conditions A; hold —
since nothing can hold without being defined. Thus it would be permissible
for us to try to show that C’ holds under the assumptions A;. In a sense, we
have replaced the assumption C by its definition.

The situation is more tricky when there is more than one way for C to
be defined, i.e. more than one clause has C' as its head. In that case the
body conditions need hold in only one of the clauses. Since we do not know
which clause this is, we must try to show that C’ holds using the body of
each clause defining C. We have now replaced C by each possible definition.
This is very similar to the situation in logic where we must show both A+ C

and B F C to show that AV B+ C.

A special case is where C is not defined by any clause at all. In this case
C' can never hold, so it is absurd to assume it. In this case the inference rule
gets no premises, so its conclusion holds immediately by contradiction. This
case is essentially the negation by failure rule in Prolog.

From these rules the important difference between assumptions and pro-
gram in GCLA are obvious. The program determines the exact form of
inference rules, assumptions do not. While assumptions are facts that we
assume to hold, clauses are really not facts at all, but relations between
facts.

3.2.4 Examples

Consider the following program P.

a :- a.
b(1) :- a.
b(Z) :- c.

We will give a derivation to show that a — b(1) holds according to the
program P. This derivation starts with an axiom, then uses the program-
right rule, and finally the arrow-right rule.

ata
a b b(1)
Fa— b(1)
To show that {X/1} is a correct answer substitution for the goal b(X) |-a,
we give a derivation of b(1) F a.

10

ala cta
b(1) F a

The sequent a - a is an axiom. The inference step without premises is
an instance of the program-left rule. Since c is not defined in the program,
the sequent ¢ F a holds according to this rule without any premises.

Here the last step uses the program-left rule. To motivate it, consider
that the clause b(Z) :- ¢, should be read as the set of clauses formed by all
possible instantiations of Z by a ground term. Thus b(1) in the goal occurs
in the head of exactly two clauses, the second clause of the program, and the
instance of the third clause where 1 is substituted for Z. The inference has
two premises, each with assumptions coming from the body of one of these
two clauses.

3.3 Operational semantics

The operational semantics will also be described as a series of inference rules.
The main difference from the inference rules above is that the present rules
work on contezts, consisting of an ordered set (list) of sequents, a substitu-
tion and a program. By using a list of sequents, it is possible to write the
rules with only one premise, making the inference rules correspond to state

transitions®.

The inclusion of a substitution in the context makes it explicit how an
answer substitution is constructed as the program executes. Likewise, the ex-
plicit inclusion of a program permits definition of the def and rem constructs
that manipulates the running program.

To execute a program, we start with a context consisting of a list contain-
ing the goal only, an empty substitution, and the program itself. Inference
rules are then applied successively in a backward (goal-oriented) fashion,
each time giving a new context. As execution proceeds, substitutions will be
accumulated in the context. Provided the program does not loop, we will
eventually obtain an “initial context” with an empty list of sequents. As this
means there are no more subgoals, the execution stops. The substitution in
this initial context is the desired answer substitution. In other words, the se-
quent resulting from applying this substitution to the original goal will hold
according to the program in the declarative semantics.

Contexts will be written as

S (6,P)

where ¥ is a list of sequents, 8 is a substitution and P the current program.
Lists of sequents will be built up using the . (dot) operator, the empty list
will be denoted by 0

6The reason we write the rules as inference rules rather than state transitions is to
maintain the similarity with the inference rules of the declarative semantics

11

Sequents will be written as in the previous section. This time, however,
the assumptions of a sequent are assumed to be ordered, and can not be
duplicated freely.

Our notation for substitutions will be the usual one. A substitution is a
set of bindings {x1/t1,...,Tn/tn} where each z; is a variable and each t; is a
term. If E is some expression and ¢ a substitution then Eo is the expression
obtained from E by simultaneously substituting each occurrence in E of
every x; by the corresponding ;. o is the composition of the substitutions
0 and o, i.e. (Ef)o = E(00). As usual, mgu(A, B) denotes the most general
unifier of A and B.

A guard is interpreted as a built-in propositional function. So if G is a
guard and o a substitution we assume it is defined what it means for Go to
be true.

3.3.1 Initial context

The initial contezts are the axioms of the operational semantics. They all
have an empty set of sequents, so no inference rules are applicable to them,

o (6,P)
for any ¢ and P.
3.3.2 Initial sequent
Yo (6o, P)
(C,TFC.E (6, P)

where o is a mgu of C and C".
This rule corresponds to the case where a subgoal is an initial sequent.

3.3.3 Arrow rules

(A, ..., AT FC).E (0, P)
TFA,..., A= C)5 (0,P)

(TFA). ... (OFA).(CTFC)E (6,P)
(A1, A, = C),TF O E @, P)

3.3.4 Program rules

(To + Ayo).(ToF Apo).Xo (6o, P)

(TFC.E (0, P)
where C : —[Gy,...,Gn], A1,..., A is a clause in P, ¢ is an mgu of C and
C' and Gqo,...,Gyo are all true.

(A1ry- s A, TEC). oo (Ao, Ay THC).S)0 (0
(CTFCH.S {

12

where o is a C-sufficient substitution as explained below, and the clauses
C;i : =[Gy -y Gimi)s Airy -« -5 Ain; are all clauses in P such that Cio = Co
and Gi10,...,Gim,o are all true.

The algorithm used by GCLA to compute a C-sufficient substitution is
as follows:

Let Cy,...,Cy be a permutation of the heads of all program clauses in P
and let (0.0 if it exist
' /CCI={7ngu , if it exists
mgw'(C, C) 0 otherwise

Then define

Op = m
Ompr = Ommgt'(Com,Crmy)
o = 0Op

Note that this algorithm considers all clause heads of the program. Those
clauses that are not applicable for the rule is rejected by the condition Cio =
Co above.

In order for the last rule to be a correct implementation of the program-
left rule of the declarative semantics, an additional condition must be im-
posed. This condition requires that none of the clause bodies, A;y, ..., A,
contain variables that do not also occur in the corresponding clause head,
C,. This condition is similar to the condition on negation as failure in Prolog
that negative goals are all ground when invoked.

It would be possible to avoid this restriction by introducing explicit quan-
tification. Another alternative could be to omit the check altogether, leaving
it to the programmer to ensure that no new variables are introduced by some
application of the last rule or that any variables introduced will behave as
the programmer intends.

The operational semantics of the program-left rule are incomplete in the
sense that there are cases where GCLA is unable to find substitutions that
would make the goal hold according to the program, given the declarative
semantics.

The soundness of the rules of the operational semantics in implementing
the declarative semantics is proved by Hallnés and Schroeder-Heister in [8].

3.3.5 Examples

We will repeat the examples of the last section, this time using the rules of
the operational semantics.

Recall that P was the following program

a = a.
b(1) :- a.
b(Z) :- c.
To solve the goal |- a->b(1) we obtain the following derivation:

13

0, P)
(aF a).0 (0, P)
(aF5(1)).0 (0,P)
Fa—=bD)0 07P)

The goal b(X) |-a may be solved in the following manner.

) ({X/1,Z/1}, P)
(cta)l ({X/1,Z]/1}, P)
(aFa).(cka).d ({X/1,Z/1}, P)
(o(X) Fa)d (0, P)

The bottommost step (the one executed first), is an instance of the
program-left inference rule, with {X/1,Z/1} as a b(X)-sufficient substitu-
tion. In the uppermost step (the one executed last), also an instance of the
program-left rule, there is no c-sufficient substitution (since there is no clause
defining c), so the set of clauses selected is empty.

The initial context at the top of the derivation has the substitution

{X/1,Z/1}, which is an answer substitution for the goal. (In fact {X/1}
is a sufficient answer substitution, since Z does not occur in the goal.)

3.8.6 Def and rem rules

We will now give the rules defining the def and rem operations mentioned
in example 3 of the introduction. The intentions of these operations are to
make local modifications to the program by adding or removing clauses.

The construction def(K,C) executes the condition €' in a context where
the clause K has been added to the program. Similarly, the construction
rem(K,C) executes the condition C in a context where the clause K has
been removed.

(THC).E (0,P U{K})

TF def(K,C)) = 0, P)
(C,T+C").D (,PU{K})
(@ef(K,C),TF O = 0, P)

(T'+C).2 (0, P\ {K})

(TFrem(K,C)).% (6, P)
(C,TFC").E 6,P\ {K})
(rem(K,C),TF C').% (0, P)

When removing clauses using the rem rules, clauses will be considered
equal if they are variable renaming variants of each other.

Note that the def rules are written so that not only the sequent containing
the def, but also the sequents in ¥ are executed in a context where the clause
K has been added. The alternative formulation, where only the sequent

14

containing def is executed in a context where K has been added, would also
be possible and, perhaps, more natural. However, the present rules reflect

how GCLA is currently defined.

3.3.7 Contraction

In the declarative semantics, assumptions could be duplicated freely. To re-
duce the search space of a GCLA implementation, this is not permitted in the
operational semantics. Once an assumption has been used, it is not available
any more. Sometimes there is a need to duplicate assumptions (commonly
called “contraction” in logic). To permit this the special contr construct is
used. Writing conir(N,C) as an assumption, permits the condition C to
be used as an assumption N times. As a conclusion, the construction is
equivalent to simply writing C.

(THC).Z (0, P)
(T F contr(N,C)).X (0, P)
for any N.
(THC).XZ (6, P)
(contr(0,C), T+ C").% (0, P)
(C,contr(N —1,C), T+ C').5 (6, P)
(contr(N,C),I' C").2 (0, P)
where N > 0.

3.4 Control issues

When attempting to show that a certain sequent holds, it is, in general,
possible to use different inference rules, or to use one inference rule in different
ways. These alternatives introduce nondeterminism in programs in a similar
way as in Prolog.

By default, program clauses are ordered top down. Sequents, and as-
sumptions within sequents, are ordered from left to right. Whenever different
clauses, sequents or assumptions are applicable, the topmost /leftmost will be
used first. As in Prolog, a choice point is made, so that the next one will be
tried, should computation fail and backtrack.

Likewise, the inference rules are ordered so that the initial sequent rule
is tried first, then the arrow-right or program-right rule (depending on the
form of the condition to the right of the turnstile), and finally the arrow-left
or program-left rules.

This standard left-to-right order might not only be inefficient, but might
also cause some programs to loop. A basic problem is how to determine and
specify an execution order that is suitable for a particular program. GCLA
currently provides some simple primitives to change the selection order [1].

15

We are presently working on a more flexible method to provide control in-
formation. The basic idea is to separate the control structure from the actual
program, using special control clauses (“operators”) to guide the execution
of the program.

One particular control primitive needs to be mentioned, since it is used
by most examples. Often it is desired that the program says nothing about
whether a term holds or is absurd. Simply not defining the term in the
program is not sufficient, as it implies that the term is absurd. Instead a
clause of the form

P - P-

is used. Now p is defined, so it cannot be absurd. On the other hand, a
circular definition such as this gives no information that can be used to show
that the term holds, so the desired effect is reached. Unfortunately, a clause
such as this will cause a depth-first interpreter, such as the current GCLA
interpreter, to loop.

Instead, a control primitive is used to declare p “total””. The effect is
exactly as if the clause above was included in the program, but the interpreter
will not loop.

4 Applications and examples
Throughout this section, we assume that all programs include the clauses
X=X.

P;Q :
P.

- P.
;Q - Q.
and(P,Q) :- P,Q.
not(X) :- X -> false.

The first clause defines simple equality. The next two clauses define dis-
junction, and the fourth conjunction. This is all just as in Prolog. The final
clause defines negation (to be explained shortly).

Although all programs will run on a GCLA system as they stand, addi-
tional control information is needed for efficient execution and/or to avoid
duplication of answers. We omit this here, as it would obscure the examples
and since the control primitives themselves are an active research topic and
subject to major revision.

"The terminology is due to [7].

16

4.1 Negation

The following program illustrates the use of negation in GCLA. This example
also shows that GCLA in many cases permits constructive negation.

elephant(clyde) .
elephant(fido).
elephant(P) :- albino_elephant(P).

albino_elephant (karo) .
grey(P) :- elephant(P), (albino_elephant (P) -> false).

The first two clauses state that Clyde and Fido are elephants. The third
clause states that all albino elephants are elephants. In the fourth clause
Karo is defined to be an albino elephant.

What constitutes a grey object in this universe? It should be an elephant
that is not an albino elephant, i.e. an object such that assuming it leads to
a contradiction. The construction albino_elephant(P) -> false expresses
this. The symbol false is simply some symbol that is never defined. The
clause defining not in the beginning of this section is a general case of this
construction.

Some examples: The goal |- grey(E) has the two answer substitutions
E=clyde and E=fido.

The goal |- not(grey(E)) has the single answer substitution E=karo.

Finally, the goal |- not(not(grey(P)) has the two answer substitutions
E=clyde and E=fido.

4.2 A simple expert system

A knowledge based system is a system which bases its reasoning on domain
knowledge to find solutions to specific problems in a domain. Character-
istic of such domains is that the reasoning in the domain cannot easily be
formulated as algorithms. Rather the knowledge used in the reasoning is rep-
resented as rules, frames, semantic nets, etc. When it comes to implementing
such a system many languages have been used; expert system shells, Al lan-
guages (e.g. OPS5, Prolog and Lisp) and traditional programming languages.
For further reading on this subject see for instance the bhook by Hayes-Roth
et.al. [9].

A common problem with shells is their rigidity; if the domain doesn’t
fit perfectly within the limitations of the shell there is no way to make it
fit except modifying the domain. A common limitation is that the shell
only provides one inference rule, and that it doesn’t allow definitions of new
inference rules.

Compared to Prolog, GCLA is better suited for implementation of ex-
pert systems since in Prolog you are required to write a meta-interpreter to

17

handle different inference rules, while in GCLA many of these rules are easily
expressed in the language itself.

We will illustrate how GCLA can be used to implement a small expert
system for the classification of mushrooms, and we will also show how to
ask hypothetical and ordinary questions. The expert system is formulated
in ordinary if-then rules forming the logic in which GCLA reasons. The way
we formulate our queries determines how GCLA interprets and computes the
answers.

The knowledge of mushrooms is expressed as rules where each known
mushroom is described in terms of different characteristics. For each class of
mushrooms, certain characteristics should be included. These characteristics
are represented as c(attribute,value).

The strategy for how to classify is given as definitions of those character-
istics. A mushroom is classified in one of the following classes: agaric if it
has disks, bolete if it has reeds. The strategy is expressed as follows:

mushroom(X) : -
bolete(X);
agaric(X).

agaric(X):- bolete(X):-
c(underneath_hat,disks), c(underneath_hat,reed),
type_of_agaric(X). type_of_bolete(X).

To find out of what type a particular mushroom is, for example an agaric,
we have to examine the mushrooms listed as agaric. The characteristics of
the mushroom to be classified must correspond to the characteristics in the
rule describing a specific agaric.

type_of _agaric(amanita_virosa):-
c(colour_of_spores,white),
c(colour_of_hat,white),
(c(form_of_hat ,bellshaped) ;
c(form_of_hat,eggshaped)),
c(colour_of_disks,white),
c(characteristics_of_foot,sock),
c(characteristics_of_foot,scaly),
c(smell,musty),
c(taste,first_mild_then_harsh).

type_of_agaric(agaricus_arvensis):-
c(colour_of_spores,black),
(c(colour_of_hat,white);
c(colour_of_hat,yellow_white);
c(colour_of_hat,yellow)),
(c(form_of_hat,bellshaped) ;
c(form_of_hat,spread);

18

c(form_of_hat,vault);
c(form_of_hat,hemispherical)),
(c(colour_of_disks,grey);
c(colour_of_disks,red);
c(colour_of_disks,brown)),
c(characteristics_of_foot,ring),
c(smell,anise),

c(habitat ,meadow_ground/groves) .

Additionally, the predicate c, must be declared “total” in the sense of
section 3.5.

Among the queries that can be asked in the expert system example, some
concerns characteristics of a mushroom. E.g. what does an Amanita Virosa
look like? What is the difference between two mushrooms? Which are the
similarities between two mushrooms? Etc.

If we want to know what kind of mushroom a set of characteristics de-
scribe, we can assume them, posing the hypothetical query

c(colour_of_spores,black), c(colour_of_hat,white),
c(form_of_hat,spread), c(colour_of_disks,red),
c(characteristics_of_foot,ring), c(smell,anise),
c(habitat ,meadow_ground/groves), c(underneath_hat,disks)
|- mushroom(X).

to which the system would respond with X=agaricus_arvensis.
Another example is the query

mushroom(agaricus_arvensis) |- c(4,V).

which would be read as “what characteristics hold if Agaricus Arvensis is
a mushroom?” The first answer substitution would be A=underneath_hat,
V=disks).

A and V are instantiated to the first characteristic that describes the Agar-
icus Arvensis. Here we ask about the knowledge concerning a specific mush-
room and not about a specific instance in the program database. The answer
to the query is found by examining the rule describing that mushroom. This
is what makes GCLA special, the ability to ask this kind of queries with-
out having to write a meta-interpreter to handle them. If we want all the
characteristics, we can ask for the rest of the solutions by making use of
backtracking, the next solution is:

A = colour_of_spores, V = black

and so on.

This could of course also be done in Prolog, but then we would have to
write a new piece of code for each query.

Other hypothetical queries: What does an Agaricus Arvensis and an
Amanita Virosa have in common, i.e. which characteristics are the same for
both Agaricus Arvensis and Amanita Virosa?

19

|- and((mushroom(agaricus_arvensis) -> c(4,V)),
(mushroom(amanita_virosa) -> c(A,V))).

A = underneath_hat, V = disks

This gives the first characteristics common to the two mushrooms.

What is the difference between an Agaricus Arvensis and Amanita Virosa,
i.e. which characteristics separate Agaricus Arvensis and Amanita Virosa?

|- and((mushroom(agaricus_arvensis) -> c(A,V1)),
and ((mushroom(amanita_virosa) -> c(4,V2)),
not (V1=V2))).

A = colour_of_spores,
V1 = black
V2 = white

backtracking yields further differences.

The queries above are hypothetical in the sense that the assumptions for
which the conclusion should hold are given in the query itself.

4.3 Functional programming

It also turns out that functional programs can be executed in the frame-
work of GCLA. Thus GCLA integrates logic and functional programming
in a single framework. The equations defining pure functional programs are
written as generalized Horn clauses and used as the GCLA program, making
the GCLA system perform execution steps corresponding to reductions of a
functional expression. To evaluate an expression, we use the expression as
an assumption when asking the system what conclusions can be drawn from
it. During execution, the expression is successively reduced until the answer
has been found.

Let’s take the add-program below as an example. It defines addition of
two natural numbers expressed with the successor function. The first two
clauses define the function, and the third defines a substitution schema for
substituting the first argument into something else, if at all possible. The
clause defining s is also a substitution schema for reducing the argument of
the successor function.

add(0,X) :- X.
add(s(Y),X) :- s(add(Y,X)).
add(Y,X) :- [Y \= s(),Y \=0],((Y -> Z) -> add(Z,X)).

s(X) = (X =>Y) => s(¥)).
The constant 0 should be declared “total”. Additional control informa-

tion would be needed to avoid looping search branches if this program is run
on an actual GCLA system.

20

Suppose now that we want to evaluate add(s(0),s(0)). The initial
goal is to assume the expression, and to put a variable (the result of the
calculation) to the right of the turnstile; step 1 in the trace below illustrates
this.

add(s(0),s(0)) |- X

s(add(0,s(0))) |- X

(add(0,s(0)) -> Z) -> s(Z) |- X

|- add(0,s(0)) -> Z and s(Z) |- X
add(0,s(0)) [-Z and s(Z) |-X
s(0) |- 2 and s(Z) |- X

s(s(0)) |- X

~N O O W N

Step 2 and 3 simply expands the assumption using program-left. In step
4 arrow-left splits the goal into two subgoals. Step 5 uses arrow-right on the
left subgoal. In step 6 and 7 initial-sequent is used to give the desired answer
X=s(s(0)).

This deduction illustrates eager evaluation. If we instead use initial-
sequent in step 2 we will get lazy evaluation. So by simply rearranging the
order in which the operations are tried we can determine if lazy or eager
evaluation should be used.

4.4 Planning

In planning the main goal is to find a sequence of actions that leads to
a desired state. There are many different approaches to how this can be
done and how to recover from an unsuccessful path during plan generation.
Our approach has been to use the strength of GCLA’s different deduction
strategies to investigate in what ways plans can be generated by proofs.

Planning can be illustrated with the blocks world example. In the blocks
world we have a table and three blocks, A, B and C. The blocks world
program is centered around the definition of rules. An action is performed
if it is possible in the current state. The program consists of the actions
applicable in the domain. Below is a definition of the program and the initial
state of the world (see Fig. 1). The initial state is

Figure 1: Initial state in Blocks world.

21

on(a,b). on(b,c). table(c). clear(a).
and an action is defined as

action(E,sit(S)) :- possible(E) -> perform(E,sit(8)).
action(E,action(X,8)) :-
((action(X,s) -> sit(¥)) -> action(E,sit(¥Y))).

Here we use the functional programming techniques of the previous sec-
tion. The second clause of action is a substitution schema.

The three actions are defined as possible-perform pairs. Recall that
rem(A,B) means that we remove A from the program when executing B.

¥ STACK moves a block from the table to the top of a stack.

possible(stack(X,Y)) 1= perform(stack(X,Y) ,sit(8)) -
table(X), ren(table(X),
clear(X), rem(clear(Y),
clear(Y), def (on(X,Y),sit(s(8))))).
not(X = Y).

Y UNSTACK moves a block from the top of a stack to the table.

possible (unstack(X,Y)):- perform(unstack(X,Y) ,sit(8)):-
on(X,Y), rem(on(X,Y),
clear(X). def (table(X),

def (clear(Y),sit(s(S))))).

Y MOVE moves a block from one stack to another.

possible(move(X,Y,Z)) 1= perform(move(X,Y,Z) ,8it(8)) -
on(X,Y), rem(on(X,Y),
clear(X), rem(clear(Z),
clear(Z), def (clear(Y),
not(X = Z). def (on(X,Z),sit(s(8)))))).

In addition, the predicate sit must be declared “total”.

To generate a plan for how to reach the state where C is on top of B (see
Fig. 2) , we ask the following question, “is there a plan with three actions
that leads to the state where C is on top of B?”

action(X, action(Y, action(Z, sit(0)))) |- on(c,b).

In this goal, the assumption is a functional expression with undetermined
actions (the variables) that is evaluated to the desired state. During this
process, the actions are instantiated. sit(0) is a representation of the initial
state of the program.

Evaluation of the goal results in the answer substitution

X = stack(c,b)
Y = unstack(b,c),
Z = unstack(a,b),

22

Figure 2: One goal state in the Blocks world example.

Backtracking produces another solution:

X = stack(c,b)
Y = move(b,c,a),
Z = unstack(a,b),

This example illustrates how GCLA can be used in implementing STRIPS-
like planning [13].

4.5 Simulation

Simulation of a task or an action means showing what happens in a real world
situation without actually performing the task. Here we look at simulations
in the context of proofs. This can be illustrated by using the same example
as above, the blocks world. In GCLA we achieve the effect of simulation by
posing a certain kind of questions to the program. In contrast to the planning
example, the actions are instantiated and we ask about the conclusion. In
the planning example the actions were uninstantiated, meaning unknown,
and in the question we gave the conclusion, with instantiated arguments,
that we wanted to achieve.

A question concerning the state of the world after the occurrence of some
actions, i.e. simulating some actions and see the effect. “If we move A from
B to the table, and we move B from C to A, what is standing on what?” We
assume that the same initial state as in the planning example (see Fig. 1).
Posing the query

action(move(b,c,a),action(unstack(a,b),sit(0)))
|- and(sit(s(s(0))), on(X,Y)).

to the system gives the answer substitution X=b,Y=a.

It should be noted that a query with simply on(X,Y) as conclusion could
give bindings for X and Y in any situation encountered by the program, not
just the situation after performing the two actions. In particular, the initial
state where A is on B could give an answer. To ensure that we get bindings
concerning the situation after the two actions only, we require that the second
situation, expressed by the term sit(s(s(0))) holds, thus the conclnsion of
the query is a conjunction of these two terms.

23

When comparing the planning example to the simulation example, GCLA’s
strength lies in the fact that the same program (definitions) can be used for
two different tasks; planning and simulation. The difference is how the ques-
tions are instantiated, the instantiation patterns.

5 Conclusions and future work

In conclusion, we have found that several important techniques can be imple-
mented in a natural way using GCLA. However, for certain applications it is
necessary to reduce the search space in order to gain sufficient efficiency. We
are working on general control primitives to achieve this, and expect GCLA
to become an elegant language combining expressiveness with efficiency.

An implementation of GCLA, written in SICStus/Quintus Prolog is avail-
able from SICS [1].

We are investigating further various aspects of GCLA. Among these are
the ability to execute functional programs and the suitability of GCLA for
parallel execution and partial evaluation. Of particular importance is gaining
experience with developing production size programs in GCLA.

On the theoretical side, work has been done on using GCLA-like for-
malisms as type systems for functional programs [4] and as a basis for a
framework for formal program development (program calculi) [3].

References

[1] M. Aronsson. The GCLA User’s Manual. Technical Report
SICS T89012, Swedish Institute of Computer Science, 1989.

[2] M. Aronsson. The Instruction Set for the GCLA Abstract Machine.
Research Report SICS R89002, Swedish Institute of Computer Science,
1989.

[3] L.-H. Eriksson and L. Halln&s. A Programming Calculus Based on Par-
tial Inductive Definitions. Research Report SICS R88013, Swedish In-
stitute of Computer Science, 1988.

[4] D. Fredholm and S. Serafimovski. Partial Inductive Definitions as Type
Systems for A-terms. Master’s thesis, Department of Mathematics, Uni-
versity of Stockholm, 1988. Unpublished.

[5] D.M. Gabbay and U. Reyle. N-PROLOG: An Extension of Prolog with
Hypothetical Implications: 1. Journal of Logic Programming, 1(4), 1984.

[6] M. Hagiya and T. Sakurai. Foundation of Logic Programming Based on
Inductive Definition. New Generation Computing, 2(1):59-77, 1984.

[7] L. Hallnas. Partial Inductive Definitions. In A. Avron et.al., editor,
Workshop on General Logic, Report ECS-LFCS-88-52. Department of

24

Computer Science, University of Edinburgh, 1987. Also published as
Research Report SICS R86005C by the Swedish Institute of Computer
Science, 1988. A revised version to appear in Theoretical Computer
Science.

L. Hallnds and P. Schroeder-Heister. A Proof-Theoretic Approach to
Logic Programming. I. Generalized Horn Clauses. Research Report
SICS R88005, Swedish Institute of Computer Science, 1987.

F. Hayes-Roth, D.A. Waterman, and D.B. Lenat. Building Fzpert Sys-
tems. Addison-Wesley Publishing Company Inc., 1983.

J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

D. Miller. A Theory of Modules for Logic Programming. In Proceedings
of the 1986 Symposium on Logic Programming. IEEE Computer Society
Press, 1986.

L. Naish. Negation and Quantifiers in NU-Prolog. In Proceedings of the
Third International Conference on Logic Programming, pages 624-634,
Berlin, 1986. Springer Verlag.

N.J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1982.

D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note
309, SRI International, October 1983.

