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Abstract

A semantic model of computer systems is compositional if it adequately represents the
behavior of the modeled systems in a context of other systems. A compositional model is
thus a good basis for specifying and reasoning about systems in a modular fashion. I/O-
automata is a class of communicating systems which can represent several types of asyn-
chronously communicating systems, such as message-passing distributed systems, systems
with broadcast communication, and systems with shared variables. In contrast to many
other classes of communicating systems (e.g. in CCS or CSP), semantic models based only
on traces (sequences of communication events) can in a compositional way represent safety,
liveness and many other properties of I/O-automata. In this paper, we investigate which
semantic models of I/O-automata are compositional, and which are not. The investigation
is confined to models based on traces. We study a number of trace-based semantical models
of I/O-automata, which differ in their capability to represent safety, liveness, termination,
and divergence properties. The defined models can be naturally ordered into a hierarchy,
according to how much information they convey about the modeled systems. The main con-
tribution of the paper is an investigation of whether there are other compositional models
between adjacent compositional models in our hierarchy. Surprisingly enough, we can prove
that for several pairs of adjacent models in the hierarchy, the gap between the two models
contains no other compositional model. For instance, the nonexistence of a compositional
model in the gap between a model that represents safety properties and a model that repre-
sents liveness properties means that liveness properties cannot be only partially represented,
if compositionality is desired. We indicate how our results can be applied to derive results
about full abstraction.
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1 Introduction

Semantical models of communicating systems has been a topic of intensive study in the last years
(e.g. [BHR84, Hoa85, Mil89, dNH84, OH86]). A purpose of that study is a better understanding
of how to describe and reason about the behavior of communicating systems, e.g. in methods
for specification and verification. A semantic model should abstract from the internal activity
of a system, describing only its externally observable behavior. It should also be compositional,
meaning that the denotation of a composed system can be obtained using only the denotations
of its components. In other words, a compositional model must adequatly represent a system’s
interaction with its environment. A compositional semantic model is a good basis for modular
specification and reasoning about communicating systems. Indeed, several compositional proof
systems have been proposed (where the proof of a composed system can be split into proofs of
its components), based on compositional semantic models (e.g. [BM85, Jon85, MC81, NDGOS86,
Zwi89)).

This paper is concerned with semantic models of a class of communicating systems, called
I/0-automata by Lynch and Tuttle [LT87] and called I/O-systems by Stark [Sta84] and in
our earlier work [Jon85, Jon87, Jon90]. I/O-automata can represent several types of systems
with asynchronous communication such as message-passing distributed systems, systems with
broadcast communication, and systems with shared variables. I/O-automata communicate
through synchronous events, as in CCS and CSP [Mil89, Hoa85], but the occurrence of an event
is controlled by at most one of the participating components. Thus asynchronous communication
is represented as a special case of synchronous communication. For example, the event of sending
a message into an unbounded channel is a synchronous event which involves the sender and the
channel, but which is controlled only by the sender; the event of writing into a shared variable
of another system involves both the writing system and the system owning the variable, but
which is controlled only by the writer. For I/O-automata, semantic models based only on traces
(sequences of communication events) can adequately represent safety, liveness and many other
properties in a compositional way [Mis84, Jon85]. This is in contrast with the situation for CCS
and CSP where the possibility of communication deadlocks makes the inclusion of refusals or
ready-sets necessary [BHR84, NDGO86, dNH84, OH86).

This paper aims at investigating which semantic models of I/O-automata are compositional and
which models are not. We confine the investigation to models based on traces. Different kinds of
traces can, depending on their precise definition, represent safety properties, liveness properties,
and properties of termination and divergence. For instance, safety properties can be modeled
by prefix-closed sets of finite traces, whereas liveness properties can be modeled by (possibly
infinite) traces of completed executions of a system. We can thus define a number of trace-
based models of I/0-automata, which can or cannot represent safety, liveness, termination, or
divergence. For a particular problem at hand, where some of these properties are important, one
can then recommend a suitable model. Some of the models defined in this way are compositional,
and some are not. The compositional models can be naturally ordered in a hierarchy, according
to how much information they provide about the modeled systems. We say that a model 2 is
more informative than a model 1 if the denotation of any system in model 1 can be obtained
from its denotation in model 2.

The models that we define are of course not the only trace-based models of I/O-automata.
One can for instance define other kinds of traces, or mix different kinds of traces in a model.
One could imagine that such models could be useful for reasoning about systems in particular
applications. Above, we have motivated the importance of compositionality for a model. We
shall therefore investigate whether there are any compositional models that lie in the “gap”



between two adjacent models in our hierarchy. Interestingly enough, we shall find that in many
such gaps there are no compositional models of I/0-automata. Assume for example that model
1 represents safety properties, and that model 2 represents safety and liveness properties. In
our hierarchy, model 2 is more informative than model 1, and the models are adjacent models
in our hierarchy. It turns out that there is no compositional model in the gap between these two
models. The nonexistence of a compositional model between model 1 and model 2 means that
liveness properties cannot be represented in strictly less detail than they are in model 2, without
sacrificing compositionality. We use the term "minimal proper inclusion” for such empty gaps.
We establish several such “minimal proper inclusions” between trace models of I/O-automata.

Our hierarchy, together with the minimal proper inclusions, gives a partial but nevertheless
rather informative picture of which compositional trace-based models of 1/0-automata exist.
It can therefore guide the search for a suitable model for a particular problem at hand. One
could for instance be interested in reasoning about deadlock properties (as in [Ora89]) or about
certain types of progress properties (as e.g. in [MCS82]).

Our hierarchy can also be used to derive results about full abstraction for semantic models.
Assume that model 1 represent properties of systems that are relevant for a particular problem
at hand. Intuitively, a model 2 is fully abstract with respect to a model 1 if model 2 has
added precisely enough information to model 1 for attaining compositionality. Thus, model] 2
combines in an optimal way the abstraction from irrelevant detail provided by model 1 and the
requirement of compositionality. Given a non-compositional model somewhere in our hierarchy,
one can obtain a fully abstract model by going up in the hierarchy to the closest compositional
model.

In the next section, we present I/O-automata and the operations composition and abstraction.
In Section 3 we present the general framework for relating models, define our models of I/0-
automata, and prove that they are compositional. Section 4 is the main section of the paper,
where we relate the models in a hierarchy and investigate the gaps between adjacent models. In
Section 5 we indicate how our hierarchy can be applied to obtain results about full abstraction.
Section 6 contains conclusions, comparison with related work, and directions for further research.
Proofs of some theorems are collected in the appendix.

2 I/O-automata

I/O-automata is a class of labeled transition systems, which satisfy certain restrictions. Labeled
transition systems is well-established as a basic semantic description of computing systems (see
e.g. Plotkin [Plo81], Manna and Pnueli [MP81], Milner [Mil89]).

We assume the existence of a set of communication events, which does not include the silent event
7. These are intended to represent observable interactions, e.g. the transmission of messages,
between components of a system or between the system and its environment.

Definition 2.1 An I/O-automaton is a tuple (I,0,5,5% T, F), where

I is a set of communication events, called input events.
O is a set of communication events, called output events, which is disjoint from I.
S is a set of states.

S0 C S is a nonempty set of initial states of the system,



T CSx(ITuOU{r})x S is a set of labeled transitions. A labeled transition (s1,€,82) €T
is denoted by s; — sq, where s1,52 € S and e € (JUO U {1}),

F C P(T) is a finite collection of fairness sets. Each fairness set is subset of T,
which in addition satisfies

1. For each state s € § and input event e € I there is a state s’ € § such that s—+s' € T
2

9. No fairness set F' € F contains any transition s — s’ for which e € I. 0

Intuitively, input events are communication events that are controlled by the environment,
whereas output events are controlled by the system. The input events can e.g. represent
transmissions of messages from the environment to the system, and output events can represent
transmissions of messages by the system itself, both between components of the system and to
its environment. The behavior of an I/O-automaton is determined by its states, and how the
state may change in transitions. Simultaneously with a transition, a communication event may
occur, or else the transition is labeled with the silent event 7. The fairness sets give conditions
for when and how a sequence of transitions must be continued. Intuitively, each fairness set
is a set of transitions which must not be neglected indefinitely in an execution of the system.
For instance, a fairness set could represent the transitions controlled by a certain processor of
a system, which will continue executing as long as it is not blocked.

The two requirements on I/O-automata formalize the assumption that an I/O-automaton does
not control the occurrence of input events: input events can occur at any state (requirement 1),
and the system cannot guarantee their eventual occurrence in an execution (requirement 2).

A transition s — s is called an input transition, output transition, or silent transition, depend-
ing on whether e is an input event, an output event, or the silent event 7. A transition s — s’
is enabled in the state s. A fairness set F is enabled in s if a transition in F is enabled in s.

Definition 2.2 Let A be the I/O-automaton (I, 0, 5, 5°, T, F). A computation of A is a finite
or infinite sequence of transitions

1 2 n n+1
U B AN L

which starts in an initial state s® € S° and satisfies

1. if the sequence is infinite, then for each fairness set F' € F, if F' is enabled in all but finitely
many states of the sequence, then the sequence contains infinitely many occurrences of
transitions in F', and

2. if the sequence is finite, then no fairness set F' € F is enabled in the last state.

A partial computation of A is a finite sequence of transitions which starts in an initial state
0 0
s? e S°. O

Intuitively, a computation is a finite or infinite sequence of transitions, which starts in an initial
state and satisfies the conditions imposed by the fairness sets. The fairness used here is often
referred to as weak fairness or justice [LAJ81, Fra86]. We could also have allowed the inclusion
of strong fairness in the definition, but that would not affect the results in this paper. Note that
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a computation can be finite although some non-input transitions, which are not in any fairness
set, are enabled in its last state. This situation can be avoided by requiring that each output
and internal transition must be in some fairness set. Such a requirement is not related to the
results of this paper, so we do not consider it.

Example 2.3 We define an I/O-automaton which represents a simple FIFO buffer, which
receives messages from a channel in and transmits them onto channel out in the same order.
We assume that the messages belong to a set M. The reception of a message m € M on in is
a communication event denoted by in(m). The transmission of a message m € M over out is
denoted by out(m). The buffer is represented by the I/O-automaton (I,0,8,5%T,F), where

I = {in(m) | m € M}.

O = {out(m) | m e M}.

S = M*,
59 = {()}, the empty sequence,

T contains, for each state s € S and message m € M, the transitions (we use e to denote
concatenation)

in(m out(m
s-(—>)sem and mes ——£—+)3 ,

F = {F}, where F the set of transitions in T labeled by an event of form out(m) for some
méEM.

Intuitively, a state of the I/O-automaton represents the sequence of messages that have been
received on in, but not yet transmitted on out. Initially, the state is the empty sequence.

A transition of form s"—i(—@ s o m represents the reception of the message m on channel in

and causes m to be appended to the state. A transition of form 505@3) s e m represents the
transmission of the message m on channel out and causes m to be removed from the state,
provided that m is the first message of the state. The fairness set contains all transitions in
which a message is transmitted over out. This implies that each message in the buffer will
eventually be transmitted on out. To verify that (1,0, 5, 50,7, F) is indeed an I/O-automaton,
we check the two conditions in Definition 2.1

1. Since for each state s and m € M there is a a transition of form s in(m) s e m, we conclude

that the first condition is satisfied.

9. The fairness set F does not contain any transition labeled by some in(m) for m inM.

We next define the following operations on I/O-automata:

e The composition of the I/O-automata Ay, ..., Ax, denoted by Ayl - - || Ak, yields an I/O-
automaton in which A4,..., Ax are components.

o The abstraction of a set E of output events of a system A, denoted by A\ E, yields an
I/O-automaton for which the events in E are unobservable to the environment.



Definition 2.4 The I/0O-automata A; = (Ii,Oi,Si,S?,Ti,fi) fori = 1,...,k are compatible
if 0; N O; = O whenever ¢ # j. If A, ..., Ay, are compatible, then their composition, denoted
Aq|| - -+ ||Ak, is the I/O-automaton A = (I,0, S, S0, T, F), where

0

k
_U1 O;, i.e., the union of the sets of output events of the components,
1=

k
.Ul I; — O, i.e., the set of input events which are not output events,
=

I

S = 81 x---%X 58y, ie., the cartesian product of the sets of states of the components. A state
s € S is a k-tuple, denoted as s = (s1,. .., sg) where s; € 5,

50 =89 x ... x 8P,

T contains

1. all transitions of form (sy, ..., k) —{s1,...,s'k) such that for some i the transition

8; — s} is in T;, and s; = s for j # 1, and
2. all transitions of form (sy,...,sk) —+(8'1,...,8's) with e # T where s; Zsste Ty if
e€ (L;U0;) and s; = s if e & (I; U 0;),

F is obtained as follows: for each fairness set F; € F;, there is a fairness set I' € F consisting
of all transitions (s, ...,sk) —+(8'1,...,8's) € T such that s; —~+ s\ € F;and e € ([;UO;),

and all transitions (s1,...,sk) —(8'1,...,8's) € T such that s; s eF,. O
Intuitively, the state of A = A;||---||4x is a tuple, whose components are the states of the
systems Ai,...,Az. The transitions of A describe how this state changes. A transition of A

corresponds to either (1) a transition of a component A; with a silent event, which does not
affect other components and is performed in isolation, or (2) a transition with a communication
event, which affects all components that can perform this communication event, corresponding
to a synchronous communication involving the concerned components. Note that each commu-
nication event is an output event of at most one component, and is hence controlled by at most
one component. This follows from the requirement that A,..., A be compatible. The fairness
sets of A represent sets of transitions that must not be neglected indefinitely in a computation.
Fach fairness set of some A; is therefore mapped in a natural way onto a fairness set of A.

Definition 2.5 Let A = (1,0,5,5%7T,F) be an I/O-automaton, and let E C O be a set of
output events of A. The abstraction of E in A, denoted A\ E, is the tuple

A\E=(I,(O—E),S,SO,T\E,.F\E> )

where T\ E and F \ E are obtained from T and F by changing all labels of transitions, which
arein FE, tor. 0

Intuitively, the effect of the abstraction operation is that the occurrence of a set of commu-
nication events can no longer be observed by the environment. Formally, we achieve this by
replacing abstracted events by the silent event 7. For the results of this paper, it is sufficient
to define the abstraction operation with respect to output events. We can then abstract events
that are used for communication between components, since these correspond to output events.
Abstraction of input events can be emulated by a combination of the composition and abstrac-
tion operation: first the input events are transformed into output events by composition with
another I/O-automaton which has as output events the events that are to be abstracted away,
then the events can be abstracted away as in Definition 2.5.



Example 2.6 As an example, consider the FIFO buffer defined in Example 2.3. Let Buf;
be the buffer in Example 2.3 with the channel name in replaced by link and let Buf; be the
buffer in Example 2.3 with the channel name out replaced by link. The parallel composition
Bufi||Buf, is the I/O-automaton (I,0, S, 5% T, F), where

I = {in(m)|m e M}.

O = {out(m)|me M} U = {link(m)|m € M}.
S = M*x M*,
5% = {({), ()}, the pair with empty sequences,

T contains, for each state (s1,s2) € S and message m € M, the transitions (we use e to
denote concatenation)

(31,32)i§(—"f>)(31,(529m)) , (51,(529m))Ii'll—‘(f:)((mosl),sz) , ((mosl),sz)oL(m)(sl,sz),

F = {F}, where F the set of transitions in T labeled by an event of form out(m) or out(m)
for some m € M.

Intuitively, a state of Buf,||Buf, is a pair of sequences of messages, one for each component
of the composition. A transition labeled in(m) represent the reception of message m to the
component Buf,, a transition labeled link(m) represent the transfer of message m from Buf;
to Bufi, and a transition labeled out(m) represent the transmission of message m from Buf;.
O

The following proposition establishes that the operations on I/O-automata defined above are
well-defined.

Proposition 2.7

o If the I/O-automata Ay, ..., Ay are compatible, then their composition Aql] .. .||Ak is an
I/0-automaton.

o If E is a set of output events of the I/O-automaton A, then the abstraction A\ E is an
I/0-automaton.

Proof: A simple check. 0O

3 Compositional Models of I/O-automata

In this section, we present the traces models of I/O-automata that will be studied in the paper,
and prove that they are all compositional.



Definition 3.1 A model [-] (of I/O-automata) is a mapping that maps I/0-automata to some
set. A model [] is compositional with respect to a certain set of (partial) operations O P if for
each (partial) operation op € O P there is a (partial) operation opm such that [op(A1,- -, Ax)] =
opm([A1],- -+, [Ax]) for any Ay, ..., Ag such that op(Ay,.. ., Ay) is defined. In the following,
OP will consist of the composition operation, and the abstraction operations for any set E of
communication events. 0

Examples of rather uninteresting compositional models is the (uninformative) model that maps
all I/0-automata to the same denotation, and the model which maps any I/0-automaton to
itself.

We shall define the semantic models of I/O-automata that will be studied in this paper. These
models are all based on traces. We therefore begin by defining several different kinds of traces.

Definition 3.2 Let A be the I/O-automaton (I,0, 8, 5% T, F).

A (completed) trace of A is the (finite or infinite) sequence of communication events (i.e.,
non-t events) in a computation of A.

A partial trace of A is the (finite) sequence of communication events in a partial compu-
tation of A.

(<]

A terminated trace of A is the sequence of communication events in a finite computation
of A.

[

A divergent trace of A is a finite sequence of communication events which occurs in an
infinite computation of A.

Define I(A) = I, O(A) = O, and E(A) = I(A)U O(A). Define P(A) as the the set of partial
traces, T(A) as the set of traces, Q(A) as the set of terminated traces, and D(A) as the set of
divergent traces of A. 0

We will often refer to completed traces simply as traces. Intuitively, partial traces represent
observations that can be made after an arbitrary finite time during a computation, whereas
traces can only be observed after a completed computation, i.e., after an infinite stretch of time
has passed. In order to observe terminated or divergent traces, one must also be able to observe
when no more 7-transition of the system will occur. This can be done, e.g. by assuming a
lamp which indicates when the system will not perform any more 7-transitions before the next
communication event.

Example 3.3 As an example, consider the unbounded FIFO buffer of Example 2.3. A partial
trace of the buffer is a finite sequence ¢ of communication events such that for any prefix ¢’ of ¢,
the sequence of messages output in ¢’ is a prefix of the sequence of messages input in t/. A trace
of the buffer is a (finite or infinite) sequence  of communication events such that all prefixes
of ¢ are partial traces of the buffer, and such that the sequence of messages output in ¢ is the
same as the sequence of messages input in t. A terminated trace of the buffer is a trace of the
buffer which is finite. There are no divergent traces of the buffer. However, suppose that the
buffer in addition contains an internal clock, which indefinitely performs internal events that
do not affect the external behavior. In this case all finite traces are divergent, and there are no
terminated traces. ]



We now define a number of models of I/O-automata. In each of the models, the denotation of
an I/O-automaton is a tuple which contains the sets I(A) and O(A) together with a certain
choice of the different kinds of trace-sets. The sets I(A) and O(A) are always included, since
they are necessary for determining which operations are applicable to an I/O-automaton. The
model []g is defined by letting the denotation [A]g of A be the tuple (I(A4),O0(A)). Other
models are defined by using combinations of the subscripts P, T, @, and D to indicate which
kinds of traces are included in the denotation of an I/O-automaton, in addition to the input
and output events. For instance, the model [-]p is defined by letting the denotation [A]p of A
be the tuple (I(A),0(A), P(A)). The model [A]rq is defined by letting the denotation [A]rq
of A be the tuple (I(A),0(A),T(A),Q(A)), etc.

The model [-]p with partial traces is similar to models defined in e.g. [BM85, MC81, Zwi89)],
whereas model [-]7 with traces is similar to models defined in e.g. [Jon85, Mis84, LT87]. The
model [-]pg is studied in [Ora89].

Let us introduce some notation. For a sequence g of communication events, and a set E of
communication events let q[g denote the restriction of ¢ to the set F, let ¢ \ E denotes the
subsequence communication events of ¢ that are not in E, let E* (E“) denote the set of finite
(infinite) sequences of events in F, and let Et= E*UEv.

Theorem 3.4 The models [-]g, [1p, [1rq, ['Ir; [-l7o, ['rD, [lreD, and [-]q, are composi-
tional. O

Proof Sketch: We shall prove that [A;]}...||Ax] can be defined in terms of [A1],...,[Ax] and
that [A \ E] can be defined in terms of [A]. Let Ay, ..., A) be compatible I/O-automata, and

let A be their composition A;|...||Ax. Then we have that I(A) = '@1I(Ai) — O(A) and that
f 3t

O(A) = .EleO(A,-). Furthermore, we have

P(A) = {t € (E(A) : (Vi) t[man€ P(A)}
T(A) = {t € (E(A)' : (Vi) t[pane T(4:))
Q(A) = {t € (E(A))* : (Vi) t[pay€ Q(A)}
D(A) = {t e (E(A)" : (31) [t[pun€ D(A) A (Vi#1) teuye (T(4;)UD(47))]}

For the abstraction operation, assume that A is an I/O-automaton, and E is a subset of O(A).
Then, if we let = stand for either I, O, P, @, T, we have that Z(A\E) = Z(A)\E. Furthermore,
we have

D(A\E)=D(A)\E U {t e T(A)\ E : tis infinite and ¢\ E is finite}

It follows that for the models of the theorem, [A4]] . . .|| Ax] can be defined in terms of [A4], ..., [Ax]
and that [A \ E] can be defined in terms of [A], since each kind of traces kan be composed
separately except that divergent traces require information about (completed) traces. A proof

that the composition operations are correct is given in the appendix. Similar proofs can also
be found in e.g. [Sta84, Jon87, LT87, Jon85]. O



Theorem 3.5 The models [-]p, [-]pp, [-lop, and [-]pgp are not compositional. m|

Proof Sketch: The reason why these models are not compositional is that in order to obtain
the divergent traces of an I/O-automaton A \ E, one must in some cases know all traces of A.
Consider the I/O-automata A; and A, where [A;]7 = (0, {e}, {e}!) and [As]r = (0, {e},{e}"),
i.e., the difference between the I/O-automata is that A; can perform an infinite sequence of €’s
which A, cannot. Now, () will be a divergent trace of A; \ {e} but not of A, \ {e}. However,
Ay and A, have the same denotations in all the models [-]p, [-]rp, [-]lop, and [-]pgp. Hence
these models are not compositional under the abstraction operation. m]

4 Comparison Between Models of I/O-automata

In this section, we state the main results of the paper. We relate the compositional models
that were defined in Section 3. We also investigate the gaps between adjacent models in the
hierarchy, and check whether or not there are any compositional models in those gaps. This
section contains several results, some of which require rather long proofs. We therefore first in
Section 4.1 present the results without proofs. The proofs are thereafter contained in subsequent
sections, each containing one or a number of related proofs.

4.1 Overview of Main Results

This section contains an overview of the results in Section 4. We first define the comparison of
models according to how much information they convey about I/0-automata.

Definition 4.1 A model [-]; (of I/O-automata) contains less information than another model
[-]2, denoted [-]1 C [-I2, if [A]2 = [B]: implies [A]x = [B]: for all I/O-automata A, B. We use
[-]: = [ ]2 to denote that [-]1 C []2 T []1, and use [-]; C [-]2 to denote that [-]: C [-]2 & []1.
O

Intuitively, [-]; contains less information than [-]; if the denotation [A] of an I/O-automaton A
contains enough information to find the denotation [A];. We observe that [-]J; T [-]2 if and only
if both [-]; C []2 and there are I/O-automata C, D such that [C]z # [D]2 and [C]y = [D]s.
In the remainder of this section, we shal for given models [-]; and [-]2 be concerned with finding
the compositional models [-] such that [-J; C [-] C [-]z. In many cases there are no such models,
and we provide a separate definition for that case.

Definition 4.2 If []; and [-]z are models (of I/O-automata) such that [-J; T [-]2, then the
relation [-]; C [-]2, is a minimal proper inclusion if there is no compositional model [-] such
that [-J1 C [-] C [-]2- O

As an example, we shall later prove that the relation [-]p T [-]r is a minimal proper inclusion.
The nonexistence of a compositional model between the model [-]p which represents safety
properties, and the model [-Jr which represents both safety and liveness properties means that
liveness properties cannot be represented in strictly less detail than they are in the model [-],
without sacrificing compositionality.
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We now summarize the main results of this paper.

Overview of Results: The compositional models of Section 3 can be ordered, according to
how much information they contain, into the hierarchy of Figure 1. With relation to Figure 1,

[-lrop
AN

[lre [lrp

[z
Figure 1: Relation between the models

the main results of the paper are the following

1. The compositional models defined in Section 3 have relationships shown in Figure 1.

2. The relations [-]Jg C [lo, [1e C [1p, [-1e C [z, [l T [lrg, and []7 C []7q are
minimal proper inclusions.

3. There is exactly one model [-] which satisfies [-]g C [-] C [-]pg, and exactly one model
[-] which satisfies [-]po T ['] C [-Ire-

4. There are many models [-] which satisty [-]Jr C [-] C [-]zp- O

We have not investigated the relations [-Jzp C [-Jrgp and [-Jrg C [-Jrob-

Overview of Proofs: The first claim, that the relationships exist as in Figure 1, can be
proven in a straightforward manner, using the obvious mappings between the models. In the
remainder of Section 4, we will separate the proofs regarding the different inclusions into several
subsections.

The proof that a certain proper inclusion is minimal requires in general a separate proof for
each pair of models. Intuitively, the main part of a proof that [-J; T [-], is minimal consists
in showing that if a model [-] with [-Js © [-] E [-]> can distinguish between two given 1/0-
automata which are not distinguised by [-];, then one can build a context ®[-] which forces [-]
to distinguish between two arbitrary I/0-automata that are distinguished by [-J2. On can then
conclude that [-] & [-]2. It is convenient to state a general lemma, which will be used in the
conclusion of most proofs.
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Lemma 4.3 Let []; and [-]; be models of I/O-automata with [-]1 C []2. Let h be a mapping
from I/O-automata to I/0-automata such that [R(C)]2 = [A(D)]2 whenever [Ch=[Ph If
for any I/O-automata A, B,C such that [A]; = [B]: and [A]> # [B]: there is a context (]
such that either

[®(A]o=[C]: and  [2[B]]: = [A(C)]:

or vice versa (i.e., [8[A]]z = [A(C)]2 and [®[B]]z = [C]2 ), then [-]1 C []2 is a minimal proper
inclusion. 0

Intuitively, the function » maps all I/O-automata with the same denotation in [-]; to an I/0-
automaton with the same constant denotation in the model [-],. If a model [-] distinguishes
between two I/O-automata with the same denotation in [-];, then there must be an I/0-
automaton C such that [C] # [R(C)]. The conditions of the lemma imply that if [C] # [~(C)]
and [] is compositional then for arbitrary A and B with [A], # [B]2 we can conclude [4] # [B]-

Proof: Assume that there exists a model [-] such that [-]; C [-] T [-]2. We shall prove that in
fact [-J1 & [-]- By [] © []2 there are I/O-automata A, B such that
[A]=[B] and [Al:#[B]

By the conditions of the lemma there is a context ®[-], such that [®[A]], = [C]2 and [®[B]]2
[A(C)]2 (the vice versa case is handled analogously). If [-] is compositional, we get by [A] = [B]
that [®[A]] = [®[B]]. This together with the conditions

[®[A]l = [Cl.  and  [2[Bl]2 = [A(C)]:

and [-] C [-]2 gives that
[C] = [2[A]l = [2[B]] = [A(C)] -

Since this holds for arbitrary C and since [h(C)] = [R(D)] whenever [C]i = [D]: we conclude
that [C] = [D] whenever [C]; = [D]s, i.e., that [-]: = []. 0

The remainder of Section 4 is organized as follows. In Section 4.2 we prove that the proper
inclusion [Jz T [-]p is minimal, in Section 4.3 we prove that [-]p C []r is minimal, in
Section 4.4 we prove that the proper inclusions [z C [lg, [']F C [lg, and [-]7 C [-]7¢ are
minimal, in Section 4.5 we consider the inclusions [-Jo T [-]pq and [-]pg C []rq, and finally
in Section 4.6 we present some compositional models between [-]J7 and [-]rp.

4.2 Proof that [-]g C [-]p is minimal

The central ingredient in the proof that [-]z T [-]p is minimal is the construction in the following
lemma. For disjoint sets I and O of communication events, let ALL(I, O) be the I/O-automaton
which has input events I, output events O, and can perform any sequence of communication
events in I U O. Formally, ALL(I,0) is the I/O-automaton (1,0, {sau},{sau},T,®) which has
a single state sy, no fairness sets, and where T contains the transition sgy — Sqy for each

ee (IUO0).

Lemma 4.4 Let A, B, and C be I/O-automata for which [A]g = [B]g. If there is a finite
sequence of events t € E(A)* such that t ¢ P(A) but t € P(B), then there is a context (-]
such that [®[A]]lp = [Clp and [®[B]]p = [ALL(I(C), 0(C))]p. O
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Proof: To begin with, we shall assume that the sets E(A) and E(C) are disjoint. In the proof,
we construct an I/O-automaton N, such that the conclusion of the lemma is satisfied by the
context ®[] = (-||N)\ E(A). The idea of the construction is the following. The I/O-automaton
N communicates both via the set of events E(A) of A, and the events E(C) of C. The I/O-
automaton N communicates with the component that fills the hole of the context (in this case
A or B), and records the sequence of communication events exchanged with A or B. Initially,
N imitates the behavior of C with regard to the events in E(C). However, if the sequence of
events exchanged with the component that fills the hole in the context becomes ¢, then NV can
start to behave like ALL(I(C),0(C)).

A more detailed description of N can be given as the I/O-automaton (I, 0, S, 5°, T, F), where

I = I(C)UO(A),
0 = O(C)U I(A),

S is the set of pairs (t4,sc) such that t4 is a finite sequence of events in E(A) and s¢ is a state
of C, and the distinguished state sq;.

50 is the set of states ({),s2) such that s is an initial state of C,
T is the set of transitions that are of one of the following forms:
(1) (ta,sc) ~25(taoea,sc) where ey € E(A) is a communication event exchanged with
the I/O-automaton in the hole,
(2) (ta,s0) <% (ta, sg) where sg —<» si; is a transition of C,
(3) (t,8c) — Saui, where t is the partial trace that distinguishes A and B,
(4) squ 29, g4y for any eg € E(C),

F =90.

To see that ®[] really satisfies the conditions of the lemma, note that N can do any sequence
of events that C' can. Furthermore, N can imitate ALL(I(C),0(C)) in the case that the I/O-
automaton that fills the hole in the context performs the partial trace t. Thus, ®[-] can emulate
any partial computation of C regardless of which I/O-automaton fills the hole. Also, [ B]
can perform any partial trace of ALL(I(C),0(C)) in a partial computation in which B has
performed ¢. The conclusion of the lemma follows.

In the case where the sets E(A) and E(C) are not disjoint, we find two new sets of input and
output events that are disjoint from E(A) and E(C), and repeat the construction of the lemma
twice. O

Theorem 4.5 The relation [-]g C [-]p is a minimal proper inclusion. O

Proof: The theorem follows from Lemma 4.4 and Lemma 4.3, using h(C) = ALL(I(C),0(C)),
and the observation that whenever [A]g = [B]r and [A]p # [B]p there is a finite sequence of
events t € (E(A))* such that ¢ ¢ P(A) but t € P(B) or vice versa. 0
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4.3 Proof that []p C [-]r is minimal

The central ingredient in the proof that [-]p C [-]7 is minimal is the construction in the following
lemma.

For a set P of finite sequences, let [P] be the set containing P and in addition all infinite
sequences ¢ for which all finite prefixes of ¢ are in P. For an I/O-automaton A, let CHAOS(A)
be an I/0-automaton for which T(CHAOS(A)) = [P(A)]. Intuitively, CHAOS(A) is an 1/0-
automaton which has the same partial traces as A but can terminate after any partial trace,
and also extend any chain of partial traces to an infinite trace. Formally, CHAOS(A) can be
represented by the I/O-automaton (I(A), O(A), P(A),{()},T,0) where T contains the transition
t —+1ee whenever t e e € P(A).

Lemma 4.6 Let A, B, and C be I/O-automata such that [A]lp = [B]p. Assume that there is
a finite or infinite sequence of events t € E(A)! such that ¢t ¢ T(A) but ¢t € T(B). Then there
is a context ®[] such that [®[A]]r = [C]r and [®[B]]r = [CHAOS(C)]r. ]

Proof: To begin with, we shall assume that the sets E(A) and E(C) are disjoint. In the proof,
we construct an I/O-automaton N, such that the conclusion of the lemma is satisfied by the
context ®[-] = (:||N)\ E(A).

The idea of the construction is the following. The system N communicates both via the set
of events E(A) of A, and the events E(C) of C. The system N records the sequence that has
occurred on E(A), and can behave both like C' and like CHAOS(C) on E(C). The sequence
that has occurred on E(A) decides whether N should behave like C' or like CHAOS(C) on E(C).
The intention is that N shall behave like CHAOS(C) if and only if the sequence of events on
E(A) in the completed computation is .

In the beginning, N behaves like CHAOS(C'), and continues as long as the sequence of events
on E(A) is a prefix of {. Thereafter N switches to C if is seems likely that the sequence of
events during the completed computation will not become ¢. This can occur if (1) the sequence
of events on E(A) is no longer a prefix of ¢, or (2) the sequence of events on E(A) remains the
same proper prefix of t. To cover case (1), N switches to C' if an event occurs which makes the
sequence on E(A) no longer a prefix of t. To cover case (2), we introduce fairness sets which
imply that N switches to C if the sequence on E(A) stays a proper prefix of ¢ indefinitely.

More precisely, the I/O-automaton N is defined as the tuple (I, 0,5, 50, T, F), where

I =0(A)UI(C)
0 = I(A)U0(C)

§ contains (1) all states of C' and (2) all tuples of the form (t4,%c) where {4 is a sequence
in (E(A))* and ¢ € P(C),

5O = {0 M}
T is the set of transitions that are of one of the following forms:

(1) (ta,tc) <2(ta e ea,tc) where e4 € E(A) is a communication event exchanged with
the I/0-automaton in the hole of the context,

(2) (ta,tc) ff—»f(t,q,tg o ec) where tc e eq € P(C),
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(3) (ta,tc) — sc where s¢ is a state of C' which can occur at the end of some partial
computation with t¢ as sequence of communication events,

(4) sg -+ si; whenever sg — sy is a transition of C,

F = {Feven, Fodds Fother } U Fc, Where Feyer is the set of transitions of form (3) in which ¢4
is a proper prefix of ¢ with even length, Fy4q is the set of transitions of form (3) in which
t4 is a proper prefix of ¢ with odd length, Fosher is the set of transitions of form (3) in
which t4 is not a prefix of ¢, and F¢ are the fairness sets of C, applied to the transitions
of form (4) that are transitions of C.

We must verify that N is indeed an I/O-automaton. Requirement (1) in definition 2.1 follows
from the fact that an input event can always be added to (E(A))* and that C is an I/0-
automaton. The requirements on F follow directly from the definition of F.

The conclusion of the lemma follows from the definition of N. If ¢ € T(C) we can for any
D construct a computation of ®[D] with trace ¢ by first performing a transition of form (3),
whereafter ®[D] behaves like C. If t € [P(C)] we can for any D with ¢ € T(D) construct a
computation of ®[D] with trace ¢ by simultaneously performing the sequence ¢ on the events
E(D) and performing the required sequence of transitions of form (2). Note that neither of the
fairness sets Feyen, Fodd, OT Foiher is continuously enabled in such a computation.

Next, consider a computation of ®[D] for an arbitrary D. If a transition of form (3) is performed,
then the trace of the computation will be a trace of C, since N behaves as C after the transition
of form (3). If no transition of form (3) is performed, then due to the fairness sets the sequence
performed on E(A) must be ¢. In this case any trace of the computation is possible.

The conclusion is that the sequence of events on E(C) in a computation of ®[D] can be any
trace in 7(C) and can be any trace in [P(C)] iff ¢ is a trace of D. The conclusion of the lemma
follows.

The case in which the sets I(A), O(A), I(C), and O(C) are not pairwise disjoint is treated in
the same way as in the proof of Lemma 4.4. O

Theorem 4.7 The relation [-]p C [-]r is a minimal proper inclusion. O

Proof: The theorem follows from Lemma 4.6 and Lemma 4.3, using ~(C) = CHAOS(C) and
the observation that whenever [A]p = [B]p and [A]r # [B]r there is a finite or infinite
sequence of events t € (E(A))! such that ¢t ¢ T(A) but t € T(B) or vice versa. 0

4.4 Proof that [Jz C []o, []r T [lrg, and [-]r T [-Jr¢ are minimal proper
inclusions

The proofs that [-Jz C [lo, []p T [-lrg, and [-]z T [-]Jr@ are minimal proper inclusions all
use the same context. We therefore first present a lemma which presents this contexts and its
essential properties.

Let I and O be disjoint sets of communication events, and let ¢ € (I U O)* be a finite sequence
of communication events in TUQ. Let CLOCK (%) be an I/O-automaton with input events I
and output events O which in parallel performs internal events. The internal events are stopped
only if the sequence of events in I and O is t. The internal events are again resumed is the
sequence of events on I and O are extended beyond t.
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A more detailed description of CLOCK j o(t) can be given as the I/O-automaton (I, 0, S, S°, T, F),
where

S is the set of finite sequences of events in I U O,
5 = ()7
T contains the transitions

(1) ta—~2t40ey for each eq € (JUO) and each t4 € S, and
(2) ta ——st4, for each t4 # 1,

F = {F}, where F contains all transitions of form (2).

Lemma 4.8 Let A and C be I/0O-automata. Let ®¢,[-] be the context C||((-]| CLOCKg.) 1((t)\
E(-)). Then the I/O-automaton ®¢;[A] = C||((A||CLOCK o(4),1(4)(t))\ E(A)) has the following

properties.

(1) E(8c4A)) = B(C), P(3c4[A)) = P(C), and T(c,[A]) = T(C),
(2) ift € Q(A) then Q(,[A]) =,
(3) ift € Q(A) then Q(Bc,[A]) = Q(C),

O

Proof: Property (1) follows by observing that ®¢;[A] is the parallel composition of C' and
an I/0-automaton without communication events (since the events E(A) are abstracted away).
Property (2) follows by the observation that if ¢ ¢ Q(A) then A||CLOCK o(4y,1(4)(t) will perform
infinitely many internal events in any computation. Property (3) follows by the observation that
if t € Q(A) then there is a computation of A||CLOCKg(4),1(4)(t) with trace ¢ where both A
and CLOCK(4),1(4)(t) perform only finitely many internal events. In parallel with such a
computation, C can perform any of its terminated computations. 0

Using Lemma 4.8, we can now prove that [-]g C [-]o, [-]p C [-1pg, and [-]7 C [-]7¢ are minimal
proper inclusions. Let TAUS be the I/0-automaton without communication events which in
each computation performs an infinite sequence of internal events. TAUS can be constructed
with a single state, a single transition labeled by 7 and a fairness set containing that transition.
For an I/0-automaton A, let DIV(A) = A||TAUS, i.e., DIV(A) is an I/O-automaton which has
the same traces as A and no terminated traces. We have [DIV(A)]rq = (I(A),O0(A),T(A),0).

Theorem 4.9 The relation [-]g C [-]o is a minimal proper inclusion. O

Proof: Assume that A and B satisfy [A]g = [B]r and [A4]g # [B]g. Without loss of
generality, we can then assume that there is a finite sequence of events t € (E(A))* such that
t ¢ Q(A) but t € Q(B). Let C be an arbitrary I/0-automaton. For the context ®¢ 4[] of
Lemma 4.8 we then have [®¢[A]]o = [DIV(C)]o and [®c.[B]]e = [C]g. The theorem now
follows from Lemma 4.3, using h(C) = DIV(C). D
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Theorem 4.10 The relation [-]p C [-]pg is a minimal proper inclusion. O

Proof: Analogous to the proof of Theorem 4.9, using [-]p instead of [-]g, and using [-]rq
instead of [-]o. 0

Theorem 4.11 The relation [-J7 C [-]Tg is a minimal proper inclusion. D

Proof: Analogous to the proof of Theorem 4.9 using [-]r instead of [-]g, and using [-]7q
instead of [-]o. 0

4.5 On the proper inclusions [-]g C [-]pg and [-]pg T [-]re

As stated in Section 4.1, the proper inclusions [-Jg C [-]pq and [-]pg C [-]7¢ are not minimal.
In this section, we shall show that there is exactly one compositional model between [-]o and
[-1po which we denote [-]g;p @, and exactly one compositional model between [-lpg and [-]7o
which we denote [-]p/r ¢-

e The model []g/p o is defined by letting the denotation [A]g/p ¢ of an I/0-automaton
A be [A]g if Q(A) = 0 and be [A]pg if Q(A) # 0.

o The model [-]p/7 ¢ is defined by letting the denotation [A]p/7 ¢ of an I/O-automaton A
be IIA]]PQ if Q(A) = @ and be [[A]]TQ if Q(A) # (2)

Intuitively, the model [-]g/p ¢ is identical to the model [-]pg, except for those I/O-automata
which have no terminated traces. For I/O-automata with no terminated traces [-]g/p ¢ is
identical to [-]g. Similarly, the model [-]p/7 ¢ is identical to the model [-lrq, except for those
I/0-automata which have no terminated traces where [-]p/r ¢ is identical to [-]pg. The intu-
itive reason why [-]g/p ¢ is compositional is that the class of I/O-automata with no terminated
traces is closed under the operations composition and abstraction. If one argument of an oper-
ation has no terminated traces, then [-]g/p ¢ gives less information about that argument. But
this does not matter, since also the result of the operation has no terminated traces. The model
[-1p/7 ¢ is compositional for the same intuitive reason. We state this in the following theorem.

Theorem 4.12 []g C [lg/p ¢ T [lre and [lpq T [lp/r @ C [lrg. Furthermore, the
models []g/p ¢ and [-]p/T ¢ are compositional.

Proof: The first claim follows immediately from the definitions of [-]g/p ¢ and [-]p/T @-
We shall prove that the composition and abstraction operations can be defined in the model
[1g/p o- HQ(A;) # Ofori=1,...,kthen [Ai]|---||Ac] /P @ can be obtained from [A;]] - - | Ax]Po
which can be obtained from [A;]pg,...,[Ak]pg since [-]pg is compositional. Since in this
case [Ai]g/p g and [Ai]pg coincide, we conclude that [Ay||---||Ak]E/p @ can be obtained
from [Ai]lg/p @,----[AklE/p @- Similarly, if Q(A4) # 0 then [A\ E]g/p ¢ can be obtained
from [A]pg which coincides with [A]g/p . If Q(A;) = 0 for some ¢ between 1 and k
then Q(Ai]|---||Ax) = 0. Hence, we only need the denotations [A]g,...,[Ar]q to obtain
[A1]l - || Akl g/p q- Similarly, if Q(A) = 0 then Q(A\ E) = 0 and hence [A\ E]g/p ¢ can be
obtained from [A]g. The proof that [-]p/r ¢ is compositional is analogous. O

The following two lemmas provide the basis for proving that [-]z/p ¢ is the only composi-
tional model between [-]o and [-]Jpg. Let TAUS be the I/O-automaton without commu-
nication events which in each computation performs an infinite sequence of internal events.
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We thus have [TAUS]pg = (0,0,{()},0) and [TAUS]rq = (0,0,{()},0). Let ALLI(C) =
ALL(I(C),0(C)). Let ALL2(C) be an I/O-automaton, which nondeterministically either be-
haves like ALL1(C)||TAUS or like C. The denotation of ALLI(C)||TAUS in the model [-]pg
is (I(C),0(C),(E(C))*,0). Thus the denotation [ALL2(C)]pq is (I(C), 0(C), (E(C))*, Q(C))
since it is the union of the denotations of ALLI(C)||TAUS and of C.

Lemma 4.13 Let A, B, and C be I/O-automata such that [A]g = [B]o and Q(A) # 0.
Assume that there is a finite sequence of events t € E(A)* such that t ¢ P(A) but t € P(B).
Then there is a context ®[-] such that [®[A]llpg = [Clpg and [®[B]lpg = [(ALL2(C)]pq. O

Proof: Assume that F(A) and E(C) are disjoint. Let N be the I/O-automaton in the con-
text ({|N)\ E(A) in the proof of Lemma 4.4. Let TERM(A) be an I/O-automaton with
I(TERM(A)) = O(A) and O(TERM(A)) = I(A) and Q(TERM(A)) N Q(A) # 0. Thus
TERM(A) communicates with A and (TERM(A)||A) \ E(A) has () as a terminated trace.
Let M be an I/O-automaton which nondeterministically behaves either like N||TAUS or like
like C||TERM(A). We claim that the context ®[-] = (:||M)\ E(A) satisfies the conditions of
the lemma. By Lemma 4.4, noting that the inclusion of TAUS removes all terminated traces,

[(NITAUS||A)\ E(A)]pq = (I(C),0(C), P(C),0)  and
[(N|TAUS||B) \ E(A)lpq = (I(C),0(C), P(ALL2(C)),0) .

Since (TERM(A)||]A)\ E(A) has () as a terminated trace, and only () as a partial trace, we get
[(CIITERM(A)|A)\ E(A)]pq = (I(C),0(C), P(C),Q(C))  and
[(CIITERM(A)||B) \ E(A)]lpq = (I(C),0(C), P(C),Q(C))

We conclude that

[(MIA)\ E(A)]pq = (I(C),0(C), P(C),Q(C))  and
[(M||B)\ E(A)]pq = (I(C),0(C), P(ALL2(C)), Q(C))

which gives the conclusion of the lemma.

The case in which the sets E(A) and E(C) are not disjoint is treated in the same way as in the
proof of Lemma 4.4. 0

Lemma 4.14 Let A, B, and C be I/0O-automata such that [A]g = [B]g and Q(A) = Q(B) =
Q(C) = 0. Assume that there is a finite sequence of events t € E(A)* such that t ¢ P(A)
but t € P(B). Then there is a context ®[-], such that [®[A]]pg = [Clpg and [®[B]]lpg =
[(ALL2(C)lro- o

Proof: The same as the proof of Lemma 4.4. Note that when the context is applied to either
A or B then the result has no terminated traces, since A and B have no terminated traces. [J

Theorem 4.15 If the model [-] is compositional and satisfies [-]g T [-] T [-]pg then

[[1=1z/pq- ]
Proof: First consider the I/O-automata which have at least one terminated trace. Lemma 4.13
and Lemma 4.3 using h(C') = ALL2(C) show that for these I/O-automata there is no compo-
sitional model [-] which satisfies [-]Jg C [-] C [-]pg. Using Lemma 4.14, we can prove the same
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if we only consider I/O-automata with no terminated traces. Consequently, any compositional
model [-] of I/O-automata which satisfies [-Jg C [-] C [-]pg must combine one of [-]g or [-]pg
for I/O-automata with some terminated traces with one of [-]g or [-]pg for I/O-automata with
no terminated traces. There are two such combinations apart from the models [-Jo and [-]pg,
and it is easy to check that [-]g/p ¢ is the only of these which is compositional. |

The following two lemmas provide the basis for proving that [-]p/7 ¢ is the only compositional
model between [-]pg and [-]Jrg. Let CHAOS2(C) be an I/0-automaton, which nondeterminis-
tically either behaves like CHAOS(C)||TAUS or like C. The denotation of CHAOS(C)||TAUS
in the model [-Jrg is (I(C),0(C),[P(C)],0). Thus the denotation of CHAOS2(C) in the
model [-]rq is obtained as the union of the denotations of CHAOS(C)||TAUS and of C and is

(I(€),0(C), [P(C)],Q(C))-

Lemma 4.16 Let A, B, and C be I/0-automata such that [A]lpg = [Blpg and Q(A4) # 0.
Assume that there is a finite or infinite sequence of events t € E(A)! such that t ¢ T(A)
but t € T(B). Then there is a context ®[], such that [®[Allrg = [C]rq and [®[Bl]rg =
[(CHAOS2(C)]7q. O

Proof: Analogous to the proof of Lemma 4.13, using CHAOS2(C') instead of ALL2(C'), and
using the I/O-automaton N from Lemma 4.6. 0

Lemma 4.17 Let A, B, and C be I/O-automata such that [A]lpg = [B]lpg and Q(A) =
Q(C) = 0. Assume that there is a finite or infinite sequence of events t € E(A)! such that
t & T(A) but t € T(B). Then there is a context ®[-], such that [®[A]]lrg = [Clrg and
[2[B]]rq = [(CHAOS2(C)]rq- O

Proof: The same as the proof of Lemma 4.6. Note that when the context is applied to either
A or B then the result has no terminated traces, since A and B have no terminated traces. O

Theorem 4.18 If the model [-] is compositional and satisfies [-]pg T [-] C [-]rg then [-]
[lp/T - O

Proof: Analogous to the proof of Theorem 4.15. ]

4.6 On the Proper Inclusion [-J7 C []rp

Regarding divergence, the relation [-Jr T [-]rp is, as stated in Section 4.1, not minimal. In
fact, there are several compositional models between [-J7 and [-Jrp. We have not been able
to characterize fully the models between [-]r and [-]7p. In this section, we will present a few
compositional models between [-]r and [-Jrp. For one of these models, called [-]r7, the relation
[-Jr © [-]zr is 2 minimal proper inclusion.

Let A be an I/0-automaton. An environment of A is an I/O-automaton H with I(H) = O(A)
and O(H) = I(A). For an I/O-automaton A, define I5(A) to be the set of finite sequences
t in T'(A) for which there is an environment H of A such that each computation of H||A is
finite and ¢ € T(H||A). Intuitively, if ¢ € 15(A) then A can perform the trace ¢t. Furthermore,

the environment of A can enforce that the resulting computation terminates whenever the
partial trace is still a prefix of ¢. Define the model [-]71 by [A]rr = (I(A4),0(A4),T(A),I5(A)).
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Intuitively, [A]rs gives information about which traces can be reached in a finite computation
where the environment can at any point enforce termination.

As an example, consider the unbounded FIFO buffer of Example 2.3. Let BUFy;, be the
FIFO buffer of Example 2.3 with the difference that there is a partial trace t4;, of the buffer
such that when the sequence of communication events in a computation is #4;, then BUFy;,
can nondeterministically decide either to continue to behave like a normal buffer or to start
outputting an infinite sequence of messages regardless of future input. Intuitively, the trace 14;,
could be thought of as representing conditions under which the buffer may possibly malfunction
and start producing messages continuously. Let ¢’ be the shortest prefix of ¢4, that contains
the same sequence of input events as tg;,. Then IS(BUFy;,) is the set of traces that do not
have t' as a prefix. To see why, note that if ¢ is not a prefix of the current partial trace,
than the environment can always enforce that the resulting computation be finite by ceasing to
supply BUFy;, with input messages. After having output all received messages, BUFy;,, will
terminate. However, if ¢’ is the current partial trace, then BUFy;, can extend the partial trace
to tg;, by producing more output and thereafter cause an infinite computation.

Theorem 4.19 [-]r T [-]zr C [']rp- O

Proof: The first relation is obvious. To check the second we verify that [-J7; can be obtained
from [-]Jrp. Given the denotation [A]rp, we can for each environment H of A check whether
H||A has no infinite or divergent traces. Thus we can check whether ¢ € I§(A) by checking
whether there is such a H with ¢ € T(H||A). Consequently, [-]rs is uniquely determined by

[1rp. m
Theorem 4.20 The model [-]T1 is compositional. O
Proof: Assume that Aq,..., Ay are compatible I/O-automata and A = A|| - -||Ax. We claim

that ¢ € I5(A) if and only if there is an environment H of A such that all traces u of H||A
satisfy

(Vi) [ufmane 15(4)]
and t € T(H||A). The “if” direction is immediate, since no computations with trace in I.5(A;)
are divergent or infinite. To check the “only if”, assume that ¢t € I5(A), i.e., there is an
environment H for A such that all traces of H||A are finite and ¢ € T(H||A). We then note

that H; = H||A4]| - - - ||Ai=1]|Ait1]] - - - |]Ax is an environment for A; such that all computations
of H;||A; are finite. This means that all traces u of H||A satisfy u[g4,)€ I5(A;). One can
analogously prove that also the abstraction operation can be defined. 0

Lemma 4.21 Let A, B, and C be I/0O-automata such that [A]r = [B]r. Assume that there
is a finite sequence of events t € E(A)! such that t ¢ IS(A) butt € IS(B). Then there is a
context ®[-], such that [®[A]]r = [DIV(C)]r and [®[B]]r = [C]r. O

Proof: Let H be an environment for B such that all computations of H||B are finite and
t € T(H||B). We claim that the lemma is satisfied by the context ®[-]C||((-||H)\ E(A)). To
see the claim, note first that a computation of ®[B] is infinite if and only if the corresponding
computation of C is infinite, since (B||H) \ E(A) will always perform a finite computation.
Then note that ®[A] has a divergent computation for each finite trace of C, since (A||H)\ E(A)
can perform an infinite sequence of internal transitions (otherwise we would have t € I5(A))
regardless of the behavior of C. 0
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Theorem 4.22 The relation [-]7 C [-]rr is a minimal proper inclusion. O

Proof: Follows from Lemma 4.21 and Lemma 4.3 using h(C') = DIV(C). 0

In this section, we shall also define another compositional model between [-]r and [-]rp, to
show that there is more than one such compositional model. Define S(A) to be the set of finite
sequences t in P(A) for which there is an environment H of A such that t € P(H||A) and
each computation of H||A, whose trace has ¢ as a prefix, is finite. Intuitively, if ¢ € S(A) then
the environment A can enforce that the resulting computation terminates if the computation
has reached a point where the sequence of events has become ¢ (we have used the letter S
to stand for “Stoppable” traces). Note that, in contrast with sequences in I5(A), it may be
the case that computations with traces that are prefixes of ¢ can be divergent without the
environment being able to enforce a finite computation. Define the model [-]Jrsp by [A]rsp =
(I(4), 0(A), T(A), 5(A), 5(A) N D(A)).

Theorem 4.23 [-Jr C [-lrsp C []rp- 0
Proof: Analogous with the proof of Theorem 4.19. ]
Theorem 4.24 The model [-]rsp is compositional. O
Proof: Similar to the proof of Theorem 4.20. Cl

5 Applications to Full Abstraction Results

Full abstraction is an important property of models, which means that a model in an optimal
way combines abstraction from irrelevant detail with compositionality. Intuitively, a model 2 is
fully abstract with respect to a model 1 if model 2 has added precisely enough information to
model 1 for attaining compositionality. In this section, we indicate how our hierarchy can be
applied to obtain results about full abstraction. The main idea is that given a non-compositional
model in our hierarchy, one can obtain a fully abstract model by going up in the hierarchy until
reaching a compositional model.

We begin with some standard definitions.

Definition 5.1 Let [-]p and [-]o be two models (of I/O-automata). The model [-]p is said to
be fully abstract with respect to the model [-]o if [-]Jo C [-]p and for any compositional model
[-] it is the case that [-Jo C [-] implies [-]p C [-].

Intuitively, [-]p is the minimal compositional model which contains at least as much informa-
tion as [-Jo. The following proposition shows that a fully abstract model always exists and
characterizes a fully abstract model.

Proposition 5.2 Let [-]Jo be a model. There is a unique model (up to =) [-]p which is fully
abstract with respect to [-]Jo. The model [-]p is characterized by

for all A; and A; [Ai]p = [A2]p <= (V contexts ®[-]) [®[A1]]o = [[@[Ag]]]o]
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Proof: We shall show that [-]p exists and satisfies the characterization. This will imply
uniqueness of [-Jp. If [-]Jp is compositional and [-]Jo C [-]p then the implication [Ai]p =
[A2]p = (VO[)[[®[A1]]o = [®[A2]]o] holds for all Ay, A;. We thus have a restriction on
which I/O-automata can be identified by [-]p. The minimal model satisfying these restrictions
is the model defined by the characterization of the proposition. We must only check that this
model is compositional. But compositionality follows from the observation that for a given
context o]

[Ai]p = [A2]p = (ve[])[e[Aillo = [®[A:]]o] =
(Ve[-DI[2[2o[A1]llo = [#[®o[Az]]]0] = [[®o[A1]]p = [2o[4:]lp]

0O

Proposition 5.3 Assume that [-]; C [-]2, and that there is no compositional model [-] with
[T C I [ 2. If[-]2 is compositional then [-]2 is fully abstract with respect to [-];.

Proof: Follows from the existence and uniqueness of the fully abstract model: if [-]; is not
fully abstract with respect to [-]; then there is a model [-] with [-]: C [-] C [-]2. 0

Proposition 5.4 Assume that []p is fully abstract with respect to [-]o, that [-]p is fully
abstract with respect to [-],, and that [-Jo C [-]- Then []p C [-]p.

Proof: Let A; and Ay be arbitrary I/O-automata. By Proposition 5.2 and [Jo C [Jo. we

have
[A1lp = [A2]p == (ve[D[2[A]lo = [®[42]]o =
(ve[-)[e[A]]o = [2[A4:]]o = [Ai]p = [A2]p

which implies [-]p C []p- O

Using the two last propositions, we can now apply the hierarchy to obtain various full abstraction
results. We shall illustrate this by one particular such result.

Let C be a computation of the I/O-automaton A. Define the counter mapping of C as a mapping
m from I(A)U O(A) to natural numbers or co which for each communication event e gives the
number of occurrences of e in that computation. Let M(A) be the set of counter mappings of
computations of A. Define the counter model [-]ar of I/O-automata by letting the denotation
[A]as be the tuple (I(A),O(A), M(A)). The counter model is related to the history model
of dataflow networks, which was originally defined by Kahn [Kah74]. For nondeterministic
dataflow networks, the model [-] is fully abstract with respect to the history model [Jon89).
Several other works present related full abstraction results [RT89, Kok87, Rus89]. We shall now
show that for I/O-automata, we can prove an analogous result for the counter model as a direct
application of the hierarchy in Figure 1 and the previous propositions.

Let [-]p be a sought model which is fully abstract with respect to [-Jas. Let e be a communication
event. Let [-],, be a model such that [A],, in addition to I(A) and O(A) gives the possible
numbers of occurrences of e in partial computations of A. Thus, [-], relates to [-]as in an
analogous way as [-]p relates to [-]z. Clearly [-]g C [-]m C [-]p and [-]m T [-]as C [-]7 whence
by Propositions 5.3 and 5.4 and Theorem 4.5 we get [-]p C [-Jp C [-]7. Since [Jar Z [-]p
we even get [-]p C [Jp C [Jr- Now the fact that [-]p C [-]Jr is a minimal proper inclusion
(Theorem 4.7) implies that [-Jp = [-]r.
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6 Conclusions

We have presented a variety of compositional models for I/O-automata. All our models are based
on various forms of traces. For different applications, one may want to use different models. We
have organized our models into a hierarchy where the more complex and informative models
are higher up in the hierarchy. The main contribution of the paper is to investigate parts of our
hierarchy which is between the models that we have defined. Interestingly enough, it turns out
that in many cases the part of the hierarchy which is between two adjacent models does not
contain any compositional model.

Our work shows is that the requirement of compositionality for a model can impose rather strong
constraints. In the framework which we have considered the concepts of safety as represented by
prefix-closed sets of finite traces, liveness as represented by completed traces, and termination
as represented by terminated traces, represent “indivisible units of description”, in the sense
that there is no model which can describe a part of the information provided by e.g. the some
of terminated traces, in a compositional way. For divergence, the situation is more complicated.
It is here interesting to note that the concept of divergence is problematic also in the work on
semantics for CSP and CCS, and many solutions for the treatment of divergence have been
proposed (e.g. [BR85, Wal88]).

Our work can also be applied to derive results about full abstraction for semantic models.
Assuming a model which represents properties that are relevant for a particular problem at
hand, one can obtain a fully abstract model by going upwards in the hierarchy until one reaches
a compositional model.

In this paper, we have used a set-theoretical definition of I/0-automata, which allows I/O-
automata with uncomputable sets of states and transitions. The results that only involve
finite traces (i.e., the results that concern only partial traces and terminated traces) can be
accommodated to suit a definition of I/O-automata which requires the sets of states, transitions,
etc. to be computable. However, for the results about models that represent liveness and fairness
we do not know how to restrict the results to “computable” I/O-automata. This is partly due
to the fact that the concepts of fairness and liveness are in some respects uncomputable.

Our results about absence of compositional models are stated for the class of I/O-automata
without any further restrictions. In many applications, e.g. to asynchronously communicating
systems, one considers I/O-automata which satisfy some extra restrictions. One such extra
restriction could be that an input event must not immediately affect the entire behavior of
the I/O-automaton, but that input events can e.g. enable or disable output events only after
some delay. In the paper [JK91] with Joost Kok, we investigate whether our results still hold
for nondeterministic dataflow networks. Qur preliminary investigations show that most results
about the absence of compositional models for I/O-automata indeed carry over to dataflow
networks.

Hierarchies of semantic models of communicating systems have also been defined and studied by
Olderog and Hoare [OH86], by Reed and Roscoe [Ree90, RR86, RR88], and by van Glabbeek
and Vaandrager [vGV87]. These works develop semantic models for communicating systems
and organize them into some form of hierarchy. In contrast to our work, the above works do
not prove the absence of compositional models in the hierarchy.

Olderog and Hoare [OHB86] develop several semantic models for CSP where communication
is synchronous. The semantics of a process is defined as a set of observations (our traces
correspond to such observations). Several models are defined, depending on how detailed the
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observations are. Reed and Roscoe [Ree90] present a rather elaborate hierarchy of models for
timed CSP. The models differ in whether they represent timing or deadlock information and in
their relation to the concept of stability. One purpose of the hierarchy of Reed and Roscoe is
to be able to reason about a particular problem (e.g. verifying a property of a system) in the
model which represents only the information relevant for that problem. Projection mappings
between the models then allow to translate the results to other models in the hierarchy. It would
be interesting to see whether gaps between models in these hierarchies for CSP are empty of
models with desirable properties or not. Van Glabbeek and Vaandrager [vGV87] study several
models of Petri nets, based on bisimulation. One purpose is to study the relation between true
concurrency and interleaving models.
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A Proofs of some Theorems

Proof of Theorem 3.4

Let A = [A4]]...||Ax]. We shall prove that

P(A) = {t € (E(A))" : (V1) t[pay€ P(Ai)}
T(A)={te (BE(A)' + (Vi) t[ga)€ T(A:)}
Q(A) = {t e (E(A))" : (Vi) t[pa)€ Q(A)}
D(A) = {t € (E(4))* : (39) [t[pun€ D(A:) A (V§i#1) t[pu,) € (T(A;)UD(4;)]}.

We first prove that if a trace t is in the set on the left-hand side, then ¢ is in the set on the
right-hand side of each equality. Consider a finite or infinite sequence

1 2 n n41
C = P, et

of transitions of A where s° is an initial state of A. Let C; be the projection of C onto A;. More
precisely, C; is obtained by replacing each transition

n
(5”_11, . .,s""lk) —-e—'r(snl,. oy 8"k

in C by s*! ——e—:s? if e® € (I(A)U O(A)), by 71 -Ts s if s771 15 57 is a transition of A;,
and otherwise by s?. By Definition 2.4 the result is a sequence of transitions of A;. Thus if C
is a partial computation of A then C; is a partial computation of A;. Let t be the sequence of
communication events in C and let ¢; be the sequence of communication events in C;. It follows
that ¢; = t[p(4,). Furthemore, #; is a partial trace if ¢ is a partial trace.

We claim that C; is a computation of A; if C is a computation of A. We must then check that the
fairness requirements of A; are satisfied in C;. So assume that a fairness set F; of A; is enabled
continuously in C;. The fairness set F; induces a fairness set F' of A according to Definition 2.4.
By condition 2 of Definition 2.1 any transition s; —— s; in F; is labelled either by 7 or by an
output event of 4;. Thus, whenever a transition in F; is enabled in C; a corresponding transition
in F will be enabled in the corresponding state of C, since by condition 1 of Definition 2.1 there
is always a transition of A which is projected onto s; — s}. It follows that F is continuously
enabled in C. Therefore, a transition from F will be performed in C, hence some transition from
F; will eventually be performed in C;. Thus C; satisfies the fairness requirements of A;, and
hence t; = t[g(4,) is a trace of A; if ¢ is a trace of 4. If C is finite, then C; is of course also finite.
Hence t; is a terminated trace if ¢ is. Assume finally that ¢ and hence C is divergent. Then #; is
certainly finite, and one of Cy,...,Cr must be infinite and divergent.

We next prove that if a trace ¢ is in the set on the right-hand side, then ¢ is in the set on the
left-hand side of each equality. Assume that there is a sequence ¢ such that for each 7, the
sequence t; = t[E( A;) 18 the sequence of events in a computation or partial computation C; of

A;. fg=-¢e' €? €® ... then ¢; is a subsequence e €' ¢* ... of q. Then C; can be written as
0 €i1‘ 1 ei2 etm m eim41
Vi Y

where each 7™ is a sequence of T-transitions of A;.

27



. g T ..
Define an extension of a T-transition s; — s, of A; to be a transition
T '
(815 vy SiyennySk) —(81, .0y Shyenny Sk)

of A, which keeps all components except s; unchanged. The term eztension is extended to
sequences of r-transitions of A; in the natural way.

For each n = 0,1,2..., construct the sequence y" of transitions of A by creating an extension
of each 4/ for which n + 1 is equal to 4m41, and then (if there are several such extensions)
concatenating these extensions. The first state of y**! is obtained from the last state of v
by performing the transition between the last state of y"*! and the first state of ¥* whenever
n + 1 is equal to ¢,,4+1, otherwise by preserving the last state of 7{”“. The first state of 4°
should consist of the initial states of each 7). We can now conclude from Definition 2.4 that

1

e 2 n en+1
._._..) 7

0 e "
__.)...____)7 — %"

C=9v 1

is a sequence of transitions of A Thus ¢ is a partial trace if each ¢; is a partial trace.

We claim that C is a computation of A if C; is a computation of A; for each 7. We need to
consider the fairness sets of A. Assume that a fairness set F of A is continuously enabled beyond
some point in C. There is a F; such that F' is obtained from the fairness set F; of A;. It follows
that F; is continuously enabled in C;. Hence some transition from F; must be performed in C;,
hence a transition from F is performed in C. Hence t is a trace if each t; is a trace. Since C
is finite if each C; is finite, we conclude that ¢ is a terminated trace if each t; is a terminated
trace. Assume finally, that one C; is infinite and all ¢; are finite. Then ¢ is finite, and C is finite,
whence t is a divergent trace.

The rules for the abstraction operation are immediate from Definition 2.5. ]
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