
Secrecy for Mobile Implementations of
Security Protocols

Pablo Giambiagi

A Dissertation submitted to
the Royal Institute of Technology

in partial fulfillment of the requirements for
the Degree of Licentiate of Technology

October 2001

Department of Microelectronics
and Information Technology
The Royal Institute of Technology

KTH Electrum 229
SE-16440 Kista, Sweden

TRITA-IT AVH 01:05
ISSN 1403-5286
ISRN KTH/IT/AVH-01/05--SE

Swedish Institute
of Computer Science

Box 1263
SE-164 29 Kista, Sweden

SICS Tech. Report T2001:19
ISSN 1100-3154
ISRN SICS-T--2001/19-SE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation for the Degree of Licentiate of Technology
presented at the Royal Institute of Technology in 2001.

ABSTRACT

Giambiagi, P. 2001: Secrecy for Mobile Implementations of Security Protocols.
TRITA-IT AVH 01:05, Department of Microelectronics and Information Technology,
Stockholm.ISSN 1403-5286.

Mobile code technology offers interesting possibilities to the practitioner, but also
raises strong concerns about security. One aspect of security is secrecy, the preserva-
tion of confidential information. This thesis investigates the modelling, specification
and verification of secrecy in mobile applications which access and transmit confiden-
tial information through a possibly compromised medium (e.g. the Internet). These
applications can be expected to communicate secret information using a security proto-
col, a mechanism to guarantee that the transmitted data does not reach unauthorized
entities.
The central idea is therefore to relate the secrecy properties of the application to those
of the protocol it implements, through the definition of a “confidential protocol imple-
mentation” relation. The argument takes an indirect form, showing that a confidential
implementation transmits secret data only in the ways indicated by the protocol.
We define the implementation relation using labelled transition semantics, bisimu-
lations and relabelling functions. To justify its technical definition, we relate this
property to a notion of noninterference for nondeterministic systems derived from Co-
hen’s definition of Selective Independency. We also provide simple and local conditions
that greatly simplify its verification, and report on our experiments on an architecture
showing how the proposed formulations could be used in practice to enforce secrecy
of mobile code.

Pablo Giambiagi, Department of Microelectronics and Information Technology,
Royal Institute of Technology, KTH Electrum 229, SE-16440 Kista, Sweden,
E-mail: pgiamb@it.kth.se

Acknowledgements

Several people have contributed to this thesis. My supervisor, Professor Mads
Dam, has been a constant source of guidance and support, specially at those
hard times when my own confidence seemed to fail me. We made the initial
developments of this thesis during 1998, together with John Mullins whose un-
compromising attitude towards research has taught me many good lessons. Jan
Cederquist, who joined the team in 1999, helped change the direction of this
work, in my opinion, for the better.

Most of the activities reported here were done within the PROMODIS
project funded by the Swedish National Board for Industrial and Technical
Development (NUTEK). In the context of this project, I was very fortunate
to meet David Sands, and his students Andrei Sabelfeld and Johan Agat from
CTH. They have influenced me in many positive ways: Among other things
Johan pointed me to the work by Cohen, Dave participated at different stages
of this thesis as my opponent, and Andrei managed to answer my questions in
the few moments he was not writing papers at full speed.

My colleagues at SICS and at KTH/IMIT have also contributed a great deal.
I certainly know that Dr. Lars-Åke Fredlund will make an excellent supervisor if
he ever gives it half the energy he dedicated to comment and correct my drafts.
This thesis is hopefully more entertaining, more daring and less badly written
thanks to his well-intentioned criticisms. Andrés Martinelli helped also with
proof-reading most parts of this thesis. My secondary advisor, Joachim Parrow,
showed me the intricacies of the π-calculus and was always at hand with a good
piece of advice. For more philosophical discussions I turned to José Luis Vivas
and Babak Sadighi, who provided a good counterpoint to technicalities.

Writing a thesis soon becomes a full-time job, and the extra dedication we
put in it finally affects our relations outside the office. The emotional support
received from my great buddy Andrés and my beloved Elaine is simple incom-
mensurable.

I want to thank you all.

The final stages of this work were funded under project SPC 01-4025 of the
European Office of Aerospace Research and Development (EOARD).

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Background . 2
1.2 Secrecy for Mobile Code . 5
1.3 Thesis Overview . 6
1.4 Contributions . 8

2 Related Work 11
2.1 Confidentiality for Computer Systems 11

2.1.1 Access Control Models . 11
2.1.2 Information Flow Models 12

2.2 Confidentiality for Security Protocols 15
2.2.1 Formal Models . 16
2.2.2 Computational Models . 17

2.3 Programming-Language Confidentiality 20
2.4 Relations between Secrecy Models 22
2.5 Mobile Code Security . 22

3 A Model for Cryptographic Processes 25
3.1 Security Process Algebra . 26

3.1.1 The Purchasing Applet Examples 32
3.1.2 The Wide-Mouthed Frog Protocol Example 36

3.2 Annotations for Tracking Direct Dependencies 39
3.2.1 Annotated Purchasing Applet Examples 43
3.2.2 Annotated Wide-Mouthed Frog Protocol Example 44

3.3 Annotations are Conservative . 44

4 Confidential Protocol Implementation 49
4.1 Secrets and Confidentiality Policies 51
4.2 Towards a Notion of Confidential Implementation 55

v

vi CONTENTS

4.3 Conditional Process Relabelling 57
4.4 Admissibility . 60

4.4.1 Verifying Admissibility . 61

5 Controlled Information Flow 67
5.1 Cohen’s Selective Independency 68

5.1.1 Separation of Variety . 70
5.2 Selective Independency for a-SecPA 71

5.2.1 History Indistinguishability 72
5.2.2 ∆-Bisimilarity . 73
5.2.3 Selective Independency 76

5.3 Admissibility as ∆-Bisimulations 78
5.4 Admissibility vs. Selective Independency 82

6 Experimentation: An Architecture for Confidentiality 87
6.1 Requirements . 88
6.2 A PCC Architecture for Confidentiality 89
6.3 Experiments . 91

6.3.1 Modeling the Java Virtual Machine 92
6.3.2 The Prototype . 94
6.3.3 Some Conclusions on the Experiments 98

7 Conclusions and Future Work 101
7.1 Future Work . 103

A Proofs 115
A.1 Proofs for Chapter 4 . 115
A.2 Proofs for Chapter 5 . 116

List of Tables

3.1 The Wide-Mouthed Frog Protocol 36
3.2 A SecPA implementation of the server in the Wide-Mouthed Frog

protocol. 37

4.1 Control flow for Wide-Mouthed Frog server implementation . . . 63

6.1 Partial pseudo-code for the purchasing applet 92
6.2 Virtual instructions and corresponding events in the model of

Section 3.1.1 . 94

vii

List of Figures

3.1 Wide-Mouthed Frog Server Implementation 38
3.2 Annotated Wide-Mouthed Frog Server Implementation 45

6.1 A Proof-Carrying Code Architecture for Confidentiality 90
6.2 Proof-Carrying Code Assembler 95
6.3 Proof-Carrying Code Checker . 97

viii

Chapter 1

Introduction

Confidentiality is that part of computer security concerned with the flow of in-
formation from secret sources to unauthorized observers, as well as the capacity
of these observers to extract useful knowledge from the information.

The study of secrecy, as confidentiality is also called, touches upon many
aspects of computer systems: from the construction of secure operating systems
and the verification of programs, to the design of communication protocols.
The first two are strongly related: The definitions given in the context of secure
operating systems serve as semantical justification for the syntactical methods
used to enforce secrecy in programs. However, with a few exceptions, the study
of secrecy of systems and programs has been independent of the work on design
and analysis of security protocols.

In recent years, the development of the communication infrastructure has
resulted in an increased interest in mobile code applications, motivated by the
flexibility and functionality that these applications offer. The advantages come
at a price, though, as mobile programs are supposed to manipulate and commu-
nicate security-critical information. This raises natural concerns over the secrecy
properties of both the security protocols chosen and their implementations.

It can therefore be argued that the task of providing secrecy for mobile code
calls for a combination of the approaches to confidentiality mentioned above, i.e.
for both systems security and protocol analysis. To make this clearer, consider
the following two scenarios:

• A user accesses a commercial web site, browses through the goods offered,
and chooses what to buy. He then downloads a program from the merchant
to perform an on-line payment using his credit card. The merchant “tells”
the user that the code employs a secure e-commerce protocol, accepted by
the corresponding credit card company, and which is supposed to preserve
the confidentiality of the credit card information.

• In order to cast their votes at national elections, citizens are allowed to
download programs that implement the voting protocol chosen by the

1

2 1. INTRODUCTION

state. A number of different institutions are interested in developing and
providing their own implementations, among them political parties inter-
ested in helping their members with the task.

Besides illustrating the interesting functionality provided by mobile code
applications, these scenarios involve programs with access to confidential infor-
mation (i.e. the credit card and the ballot data) that has to be communicated
using a security protocol (i.e. the e-commerce and the voting protocols). Even
if it is known that each protocol has previously been verified, that the code
provider (merchant, political party, etc.) is trusted, and that a cryptographic
certificate prevents anyone from tampering with the code on the way to the
user’s computer, how can the user be sure that the downloaded code actually
preserves the confidentiality properties of the protocol? There is, of course, the
risk that the code might actually be a Trojan Horse, a program that once put
in contact with confidential information will leak it to unauthorized observers.
For example, the user of the on-line payment program does not want the credit
card’s Personal Identification Number (PIN) to be leaked to anyone but the
bank that issued the card, while the voter does not want anyone else to know
who he voted for.

A solution that could help the user assess the confidentiality of downloaded
code requires attention to a wide range of issues, ranging from basic princi-
ples (how is confidentiality specified, modelled, and verified), implementation
aspects (how are the basic principles mapped to actual code, how are confiden-
tiality properties processed by the participating entities), to usability aspects
(how can the confidentiality properties be presented to users to empower them
to make informed decisions). This thesis addresses mainly the first issue, that
of specifying, modelling, and verifying the confidentiality properties of mobile
implementations of security protocols. In other words, it presents a notion of
protocol implementation that offers flexibility to the implementor and guaran-
tees the preservation of the confidentiality properties of the protocol. As such,
this thesis stands on and combines previous work on system security and pro-
tocol analysis.

1.1 Background

In all approaches to confidentiality there is always a partition of users (of a
computer system) or principals (participating in a protocol) made to differen-
tiate access rights to data. When general computer systems are considered, it
is traditional to assume a Multi-Level Security (MLS) scheme where each ob-
ject and subject in the system is assigned a level in a security hierarchy. It
is also customary to talk about only two levels: High (or Secret) and Low (or
Public), as this is not conceptually different from the general case. Naturally,
low-level users and programs are not authorized to access high-level data. Sim-
ilarly, in protocol analysis it is common to identify trusted principals trying to

1.1. BACKGROUND 3

communicate secret information, and attackers (or spies) trying to get hold of
it.

In spite of these similarities, there exist two markedly different ways to inter-
pret confidentiality, or more precisely, its absence. Wittbold and Johnson called
them methodological views in [WJ90]. In the first one, the “eavesdropping” or
“wiretapping” view, there are low-level users (or programs) in a system, or at-
tackers of a protocol, which are trying to get access to confidential information
by simply interacting with the system and/or with other principals, and try-
ing to deduce confidential information using clever mechanisms. In contrast, in
the “transmission” view there are malicious processes or users with access to
high-level data that attempt to transmit it to low-level users or unauthorized
observers. These are usually called Trojan Horses, programs aimed at using
a system as a communication channel, conveying information originating from
confidential sources to low-level destinations.

Another important dimension along which we can place the different ap-
proaches to confidentiality concerns the emphasis put on the ability of low-level
users or attackers to extract useful information out of their observations. As
an example, we consider a simple process that inputs secret a m and outputs it
encrypted with a shared key k:

HI

LOW
m

{m}k

What information about m can a low-level user obtain out of observing {m}k?
In principle, if the encryption mechanism were “perfect”, no information about
m could be recovered from {m}k without knowing the key k. However, we know
from Information Theory that such a perfect encryption mechanism can hardly
be useful1. In fact, practical cryptosystems are not information-theoretically
perfect, and instead base their strength on the computational difficulty of ex-
tracting any information content out of ciphertexts like {m}k. Of course, if the
observer knows the key k and has access to the decryption mechanism, it can
recover m.

In general, some approaches aim at cancelling all kind of secret information
flow, while others admit flows but limit the observation power of observers.
In the following we examine briefly standard techniques for ensuring confiden-
tiality, and explain the shortcomings of these techniques. In Section 1.3 we
present a solution to the problem of ensuring confidentiality of data for mobile
applications.

Confidentiality for Computer Systems

Much of the work in this area has been focused on the design and verification of
trusted computing bases (TCB), that is the central components of an operating

1Informally, a perfect encryption scheme needs keys as big as the messages to encrypt.

4 1. INTRODUCTION

system responsible for, among other tasks, enforcing the separation of users, files
and data into security levels. Since the designer of an operating system cannot
predict the functionality of every possible Trojan Horse, such a system should
be built so that any Trojan Horse is rendered innocuous. This corresponds
naturally to the “transmission” view.

A Trojan Horse can always exploit any unintended communication channel
established by the execution of the system to transmit information to low-level
users. Such a channel is usually called a covert channel. As an example con-
sider a high-level bounded buffer. Suppose that low-level users are allowed to
write to the buffer, but not to read from it. Furthermore, assume that in this
implementation, whenever a low-level user tries to write to a full buffer, the
system responds with an error message. This is a covert channel. A Trojan
Horse with access rights over the buffer, can fill and empty it at will. To exploit
this channel, a low-level user might try to write to the buffer at regular inter-
val. Just before each access, the Trojan Horse either fills or empties the buffer,
transmitting a bit of information to the low-level user at a time.

A quite popular approach to system confidentiality has therefore been to try
to cancel out all flow of information from High to Low. This is the domain of
properties like Noninterference [GM82, GM84a], Nondeducibility [Sut86] and p-
Restrictiveness [Gra90], among many others which attempt to apply information
theory to increasingly richer models of computation.

There are situations however where the noninterference approach is not ap-
propriate and it is necessary to allow the declassification of High data by au-
thorized entities. This is the objective of Intransitive Noninterference [Rus92,
RG99]. Furthermore, it is generally accepted that covert channels are unavoid-
able in realistic applications. If noninterference properties cannot be verified,
then an alternative would be to measure and bound the information that can
flow through a covert channel. Initially, researchers considered this measure to
be channel capacity, an information theoretic concept [Mil87]. However, chan-
nel capacity takes an asymptotic view, which does not characterize well the
concrete amount of information that can be leaked during a limited amount of
time [MK94].

At the level of programming languages there is also a long tradition of work
on confidentiality. Here security has usually taken the form of independence
of low-level outputs from high-level inputs. Starting from the work by Den-
ning [Den76, DD77], through its semantical justification and encodings in the
form of type systems [VSI96], to the plugging of probabilistic covert channels in
multi-threaded languages [SS00], the stress has been put on restricting the flow
of information, not on controlling it.

Confidentiality for Security Protocols

Security protocols, especially if they rely on cryptography, are usually analysed
assuming that the only threat comes from external attackers, and not from
the legal users of the protocol. Such an assumption clearly corresponds to the

1.2. SECRECY FOR MOBILE CODE 5

“eavesdropping” view. Moreover, since perfect encryption schemes are hardly of
use in real situations, there is normally flow of secret information from the prin-
cipals taking part in a protocol and any possible attacker. Instead of attempting
to cancel out those flows, the idea is to estimate the amount of information that
an attacker can extract from them. In the example above, if the attacker ob-
serves {m}k then it neither knows the key k, nor can it learn anything about m
without considerable effort.

There are basically two approaches to the problem of estimating the knowl-
edge of the attacker. The formal approach abstracts cryptographic functions,
instead of modelling them in detail. Usual models derive from Dolev and Yao’s
perfect cryptography assumption2, which has very concrete implications to the
information an attacker can extract from a ciphertext [DY83]. For example, if
the attacker does not have access to the complete decryption key k, then it is able
to extract absolutely no information about m by simply observing {m}k. The
Dolev-Yao model greatly simplifies the analysis of protocols. On the other side,
in the computational approach attackers have complexity bounded resources and
cryptographic operations are modelled in full detail (although the model relies
on ad-hoc assumptions like the existence of one-way functions, i.e. a function f
such that a resource-limited attacker cannot recover x from f(x)).

While the formal approach has been quite successful in the construction of
automatic and semi-automatic tools to discover buggy protocols, the computa-
tional approach provides more convincing results on the properties of protocols
when real cryptographic operations are considered. Recent work indicates that,
in certain circumstances, the perfect cryptography assumption can actually be
implemented, thus justifying some of the common abstractions in the formal
approach [AR00, AJ01].

1.2 Secrecy for Mobile Code

The voting and e-commerce scenarios discussed at the beginning of the intro-
duction exemplify the kind of applications we are interested in. They are un-
trusted implementations of security protocols. As such, they have access to
secret (high-level) data and are supposed to engage in communications through
a compromised medium resulting in flows of information to eventual attackers.

Each piece of mobile code can be seen as a small system. Consequently,
their secrecy properties could perhaps be modelled and verified using some of
the methods mentioned in Section 1.1. However, a quick inspection of the as-
sumptions and modelling requirements of those methods casts strong doubts
on such a possibility. First, the kind of applications we consider do establish
flows of information, thus excluding noninterference techniques that try to can-
cel them altogether. Second, there is no clearly identifiable entity in charge of
declassifying information (other than the mobile code itself), so intransitive non-
interference approaches seem inappropriate. Finally, for most protocols any pos-

2Not to be confused with the notion of perfect encryption.

6 1. INTRODUCTION

sible implementation would establish communication channels from high-level
sources to low-level observers that could encode high amounts of information
in an easy to decode way. As an example, consider the e-commerce scenario.
Normally a protocol would protect the user’s PIN, but disregard the protection
of the 1-bit datum of whether a transaction is successful or not. In such a case,
a user can choose to initiate a transaction with a correct PIN to transmit a one,
and with any other PIN to transmit a zero.

The example also illustrates another point: protocols are assumed to be cor-
rect from the point of view of secrecy and within the “eavesdropping” method-
ological view. The latter means that the verification of the protocol assumes that
the communication channels established by the protocol itself are not abused.
The example shows how this assumption could be violated.

Another alternative would be to apply the same model and verification pro-
cedure to the code as is applied to the protocol specification. However, this
is difficult. First, protocol implementations are several orders of magnitude
more complex than the protocols they implement. Consequently, it is not to
be expected that one could apply protocol analysis techniques to analyze code.
Second, protocols involve two or more principals, but an implementation corre-
sponds to just one them. Moreover, protocols stipulate what happens if every-
thing goes well, but not necessarily what to do when, for example, a challenge
does not get the expected response.

1.3 Thesis Overview

This thesis suggests a solution to the problem of modelling, specifying and ver-
ifying secrecy of mobile implementations of security protocols. The proposed
solution takes the form of a confidential protocol implementation relation, link-
ing the secrecy properties of code to those of the protocol it implements.

The implementation relation reflects the mixed nature of the problem, com-
bining techniques and methodological views of confidentiality for both operating
systems and protocols (c.f. Section 1.1). The definitions have the flavor of in-
formation flow properties, but in the context of the “eavesdropping” view (as
it corresponds to the study of protocols) which means that there are stringent
assumptions on the normal behavior of high-level users.

Before presenting the solution, we need to establish a model of computation
that is both simple and rich enough to represent mobile implementations of
security protocols. Although a labelled transition system semantics would suf-
fice, the presentation takes a process algebraic form, hopefully making it more
compact, and at the same time easier to understand and to adapt to different
settings. For this purpose, Chapter 3 introduces a simple process algebra, an ex-
tension of value-passing CCS [Mil89] with cryptographic operators that is used
to describe some simple but interesting examples.

The Multi-Level Security schema, so frequently used in information flow
characterizations of confidentiality, is replaced in our work by a more fine-

1.3. THESIS OVERVIEW 7

grained labelling system. First, the channels through which secret data is input
into the system are clearly identified. For the encrypter example of Section 1.1,
we can identify entry channels for messages m and keys k:

in

outkey

m

{m : in}k:keyk

As soon as a value enters the system through one of the identified channels,
it is annotated with a reference to its origin (e.g. m : in, and k : key). This
annotation is used to track the evolution of secret data through computation,
permitting the correct identification of outputs. In the example above, the
annotated output reflects both the origin of data, and the operations used to
compute its value. This is also explained in Chapter 3.

In general, protocols are given operational descriptions, determining the or-
der and format of messages to be exchanged by the participating agents. From
the point of view of an attacker that can store and replay messages, their or-
dering plays a small role. More important are, instead, the format of messages
and the conditions under which they are emitted. It is therefore convenient to
consider protocol specifications that highlight the latter, and hide unnecessary
details. Since the interest is on the confidentiality properties guaranteed by
the protocol, we call such an abstract view a confidentiality policy. This policy
indicates which expressions can be constructed of secret inputs, and when it is
admissible to output them. To continue with the simple example above, say
that the encrypter is only allowed to output an input message m when properly
encrypted by a key k. Then the policy can be written as:

out !{m}k ← in(m) ∧ key(k)

Chapter 4 formalizes the notion of confidentiality policy and provides the
definition of the confidential protocol implementation relation. Admissibility,
as this relation is called, implies that the behaviors of the implementation are
indistinguishable for any attacker when secret inputs are permuted and admissi-
ble outputs are abstracted away. Technically, admissibility is defined in terms of
bisimulation relations, much inspired by the treatment of secrecy in the the spi-
calculus [AG98a]. This gives a nice, compact definition that is complemented
with a result reducing its verification to a set of local conditions (this type of
result is usually called an unwinding theorem in the literature).

Every time a confidentiality property is proposed, it is of great importance
to determine how it compares to other, previous definitions. This issue is ex-
plored in Chapter 5. First, the notion of Selective Independency [Coh77, Coh78]
is generalized from its original presentation over a functional execution model,
to a nondeterministic setting. The resulting definition resembles that of Nond-
educibility on Strategies [WJ90], but based on the idea of indistinguishability
under permutations of input data. Then, admissibility is reduced to Selective

8 1. INTRODUCTION

Independency of an appropriately altered system, thus giving a concrete char-
acterization of the proposed confidentiality implementation relation.

All considered, the solution exhibits a number of interesting features over
other alternatives considered in Section 1.2: Firstly, the efforts and results of
protocol analysis are immediately reinvested. Secondly, by relating to a confi-
dentiality policy, an implementor in not unduly constrained in the techniques
used to implement the protocol. Thirdly, the existence of a simple local verifi-
cation technique (unwinding theorem) and the link to Selective Independency
suggests that programming-language security methods could also be applied to
verify admissibility.

The remainder of the thesis is organized as follows: Chapter 2 reviews work
on confidentiality at the level of complex systems, programming languages and
protocol specifications. It also touches upon models of cryptographic security.
Chapter 6 comments on our experiments with confidentiality of Java applets,
covering several issues beyond the modeling of confidentiality. Finally, Chapter 7
presents some conclusions and discusses future work.

1.4 Contributions

Initial developments regarding the concept of admissible information flow was
reported at the 13th IEEE Computer Security Foundations Workshop, in a pa-
per co-authored with Mads Dam [DG00]. By means of a running example (a
purchasing applet), the paper introduces a much earlier version of the admissi-
bility property and goes on to informally discuss its motivations and practical
application.

The main contributions in this thesis are:

• An extension of value-passing CCS with operators for cryptography, called
SecPA, that allows for the encoding of the mobile code applications men-
tioned in this introduction.

• An annotation of processes in this algebra to help correlate changes in
input with changes in output.

• A formal definition of the notion of admissible information flow (Admissi-
bility) over the annotated process algebra based on a bisimulation relation
between processes.

• A relation between Admissibility and a notion of confidentiality for reac-
tive systems based on Cohen’s notion of Selective Independency.

• A proof technique that suggests the possibility of using static analysis
techniques to enforce Admissibility (unwinding theorem) even for pro-
grams that exhibit branching of control flow over secret data (provided
the branching condition is admissible).

1.4. CONTRIBUTIONS 9

• An architecture showing how Admissibility can be used in practice to
ensure confidentiality aspects of mobile code. This reports on our expe-
riences with Java, web browsers and proof-carrying code, and addresses
subtleties in the definition of an adequate user interface.

Which of the above are my own contributions? Most of them, although with
some exceptions: The idea of expressing a confidentiality property by means
of bisimulations and relabellings, as well as the architecture of Chapter 6 were
developed in collaboration with Mads Dam and John Mullins, at the Royal In-
stitute of Technology (KTH) and the Swedish Institute of Computer Science
(SICS). The coding of the experiment was done in collaboration with two un-
dergraduate students at KTH. Jan Cederquist and I wrote an extended abstract
(presented at the IEEE Symposium on Logic in Computer Science 2000 [CG00])
with some initial ideas on relating the specification of the set of relabellings to
the specification of the protocol. However, those ideas have been totally re-
worked in this thesis. Finally, a more restricted version of Theorem 4.15 ap-
peared in a much simpler setting and without proof in [DG00].

Chapter 2

Related Work

The modelling, specification and verification of secrecy of mobile implemen-
tations of security protocols requires and involves models and methods from
different related areas. These areas include, in first place, the study of the gen-
eral confidentiality principles for computer systems. Since we are interested in
programs implementing protocols, it is important to understand the particu-
lar characteristics of protocol confidentiality, as well as programming-language
methods for enforcing secrecy. We also pay attention to the points of contact
between these areas, since they help us understand them all better. This chap-
ter concludes with some references to the broad range of work on ensuring wide
security properties for mobile code.

2.1 Confidentiality for Computer Systems

In computer systems, confidentiality goes hand in hand with authorization.
Information is allowed to flow only to those objects and subjects that are au-
thorized to access it. Consequently, the first attempts at the design of a secure
operating system paid particular attention to access control mechanisms.

2.1.1 Access Control Models

An access control model is a mechanism for enforcing confidentiality. John
McLean gives a very lucid description of these models in [McL94], which started
with the work of Lampson, Graham and Denning at the beginning of the 70’s.
Essentially, access control models are states machines whose states are triples
(S, O, M). The first component, S, identifies a set of subjects (e.g. programs),
while O represents a set of objects (e.g. files). The access rights that subject s ∈
S has over object o ∈ O are recorded by M(s,o). States are changed by requests
for altering M (e.g. by creating/deleting subjects/objects, and adding/deleting
access rights).

11

12 2. RELATED WORK

The first question that arises is that of determining, for a given initial state
q0, and access right a, whether there is a run of the system starting from q0

where a is assigned to a pair (s, o) that initially did not have this access right.
Harrison, Russo and Ullman (together with others working on related models)
characterized the complexity of this question for different variants of their HRU
access control model. In general, the problem is undecidable.

Initial work on access control models did not consider the problem of Trojan
Horses. These are programs that perform operations that their users are nor-
mally not aware of, like distributing access rights to files owned by them. This
problem has motivated the distinction between Discretionary Access Control
(DAC) and Mandatory Access Control (MAC) policies. The essential difference
being that a MAC policy restricts how users can pass rights to other users,
whereas DAC does not.

Bell and La Padula produced the best known access control model for han-
dling MAC policies [BL76]. It uses the same state machine model as above, but
transitions are not allowed to modify the sets S and O. Bell and La Padula
fixed the set of access rights to {read, write, append, execute}. They also intro-
duced a fixed Multi-Level System (MLS) which comprises a lattice of security
levels L and a function f : S ∪O → L assigning levels to subjects and objects.
A state of the system is secure if no subject can read objects above its level,
nor write to an object with lower clearance. A system is then secure if every
reachable state is secure. A main result, known as the Basic Security Theorem,
links this state-based characterization of security to an equivalent transition-
based description, giving an easy way to implement the model (usually through
a reference monitor that checks all accesses at runtime).

Covert Channels

The problem with access control models is that, although intuitive, they lack a
precise semantics, in the sense that the identification of subjects and objects,
and their mapping to access rights is left to the implementor. Choosing these
elements is an extremely difficult task if one wants the model to prevent all
possible channels from higher to lower security levels. It is normally the case
that, after mapping the model’s primitives to the computer system, the imple-
mentor still needs to study and estimate the capacity of the remaining channels.
These channels are usually called covert channels and are normally divided into
storage and timing channels, although the distinction between them is rather
diffuse in some cases. Other classifications divide channels into noise and noise-
less channels, the latter exploiting knowledge on the probabilistic distribution
of the transmitted values.

2.1.2 Information Flow Models

Information flow theories, initially intended to explain covert channels in im-
plementations of access control models, constitute an important step towards

2.1. CONFIDENTIALITY FOR COMPUTER SYSTEMS 13

giving an extensional characterization of what a confidentiality property is. The
intention behind most information flow models is to guarantee that what is done
by users of a higher level modifies the behavior of lower level users in no possible
way.

Noninterference

The first models addressed sequential programs and aimed at determining the
flow of information from initial to end values of variables. Jones and Lipton
defined what they called a surveillance set mechanism, a way of accumulating
the variables upon which another one depends [JL75]. Cohen gave a semantical
characterization of independency and was one of the first to relate to information
theory [Coh78, Coh77]. His security condition, i.e. that a secure program must
not convey variety of high-level inputs to variety of low level results, constitutes
the starting point for a critical analysis of the main concepts presented in this
thesis (see Chapter 5).

Feiertag, Levitt and Robinson moved on to consider deterministic systems
in [FLR77], leading to the definition of Noninterference by Goguen and Mese-
guer, where the idea is to make sure that high level behaviour does not interfere
with the observations of low level users [GM82]. In [GM84a], the same authors
provided “unwinding theorems” giving sufficient conditions for noninterference
in the form of invariant properties; and in [McL92], McLean suggested more
direct proofs over system specifications given as trace sets.

In the nondeterministic case, the situation is far from clear. Sutherland first
proposed Nondeducibility on Inputs [Sut86], which turns out not to be compo-
sitional and overlooks feedbacks, i.e. the possibility that a Trojan Horse leaks
information by adapting the high level inputs it feeds to the system according to
the low level outputs the system produces. The compositionality problem was
solved by McCullough’s Restrictiveness [McC88, McC87, McC90]; and the feed-
back problem by Wittbold and Johnson’s Nondeducibility on Strategies [WJ90].

All of these are called possibilistic properties, as they do not consider both
Trojan Horses that modify the probabilistic behavior of the system and low level
observers able to detect changes in the associated probabilistic distributions.
Most possibilistic properties are not preserved by the traditional characteriza-
tion of system refinement as trace inclusion: an implementation can resolve
the nondeterminism in an insecure way. Consequently, some researchers have
suggested that the nondeterminism in a specification should be taken to mean
underspecification, and that its implementations have to eliminate all nonde-
terminism of this kind [Ros95, J0̈1]. Mantel has defined a set of refinement
operators that preserve several possibilistic properties and that use knowledge
about their proofs over the specification [Man01] (this work also contains a
thorough list of references on the refinement problem).

The possibilistic definitions of confidentiality are unable to detect the kind of
covert channels that can be established by an attacker able to alter and measure
variations in probabilistic behavior [WJ90]. Several probabilistic models have

14 2. RELATED WORK

been suggested: p-Restrictiveness [Gra90], Flow Model [McL90], and Applied
Flow Model [Gra92]. The need to quantify over all probabilistic distributions of
environment behavior makes the verification of these properties unwieldy. For
that reason, Gray and Syverson proposed an epistemic logic with modalities
for time, knowledge and probability to reason about probabilistic noninterfer-
ence [SG95].

Another deficiency of possibilistic secrecy properties concerns their treat-
ment of time. In most cases, time is just modelled as the causal succession of
events, which lacks the details necessary to detect timing covert channels. All
the same, it is expected that the ideas of probabilistic noninterference could be
seamlessly carried to richer models of timed computation. In Section 2.3 we
consider some research on eliminating timing channels from programs.

As the last paragraph suggested, the models used to represent computational
behavior are of extreme importance in the definition of security properties. For
example, initial presentations of information flow properties made use of ad-
hoc models, not making clear their implications. Later approaches use labelled
transition systems and process algebraic terminology.

Moskowitz and Costich recasted some possibilistic information flow prop-
erties in terms of automata, without considering branching structure and ter-
mination [MC92]. Mantel has devised a kit to express and compare different
trace-based possibilistic information flow properties [Man00].

Using a labelled transition semantics, Focardi and Gorrieri were able to
present different properties and compare them under a unifying model. Se-
curity Process Algebra (SPA) is a version of Milner’s CCS [Mil89] extended
with the hiding operator of CSP (“/”), and where input and output actions
are further divided into high-level (ActH) and low-level (ActL). Focardi and
Gorrieri presented Non Deducibility on Compositions (NDC) as “probably the
most meaningful security property in a process algebraic setting” [FG95, p. 20].
A process E satisfies NDC if and only if E/ ActH ≈T E\ ActH , where ≈T is
trace equivalence.

The same authors have proposed using other notions of equivalence in their
definitions of confidentiality, arguing that trace equivalence (which is not dead-
lock sensitive) is too weak. Ryan and Schneider [RS99] have noted that “the
notion of noninterference depends ultimately on our notions of process equiv-
alence,” and have studied definitions of noninterference for CSP. Abadi and
Gordon, initially in the context of protocol analysis and spi-calculus [AG98b],
have suggested a bisimulation-based model of secrecy [AG98a]. Lowe analyzed
several shortcomings of previous definitions of information flow, and suggested
a new definition over a model of CSP that discriminates more behaviours than
the standard ones [Low99].

Covert Channel Analysis

Most noninterference properties try to cancel all covert channels. However, it is
widely accepted that these properties are overrestrictive and that, in practice,

2.2. CONFIDENTIALITY FOR SECURITY PROTOCOLS 15

covert channels are unavoidable. The alternative is to analyze and measure the
covert channels present in an existing system.

In [Mil99], J. Millen gives a general account of the last two decades of covert
channel analysis. He divides the subject into methods to: model, identify,
measure and mitigate covert channels.

Several of the methods used to identify covert channels stemmed from the
work on information flow, among them tools like: the MITRE flow analyzer,
the Gypsy Flow Analyzer (part of the Gypsy Verification Environment), EHDM
(which uses the SRI model, conceptually similar to Bell-La Padula’s), FDM/-
MLS and FDM/SRM. Most of these tools analyze formal specifications, rather
than code. For example, FDM/MLS and EHDM analyze specifications written
in Ina Flo and Revised Special, respectively.

Once covert channels are identified, they are measured. Some are considered
innocuous because, for example, they transfer information from a user back to
the same user, or because their capacity is low enough. Millen showed that
for deterministic systems, noninterference implies that the system, when viewed
as a channel, has zero capacity [Mil87]. He even suggested how to measure
the capacity of an interfering system. Although most of the methods relate to
information theory, Moskowitz and Kang have pointed out that channel capacity
is not the right way to go about measuring covert channels [MK94]. A channel
that transmits a bit at times 1, 2, 4, . . . , 2n, . . . has capacity zero, but can leak
a considerable amount of information in the short term.

Finally, the effect of those covert channels which are considered to be harm-
ful can be mitigated in different ways: (1) modifying the system so that these
channels are eliminated, (2) delimiting their bandwidth by deliberately intro-
ducing noise and delays (e.g. “fuzzy time”), and/or (3) auditing the channel, so
as to discourage their use.

Intransitive Noninterference

Looking back at the two scenarios presented in the introduction, it may seem
that information flow properties are not appropriate to handle downgrading.
In an MLS system, encrypting a high-level value (thus reclassifying its as low-
level) constitutes a clear violation of information flow. Intransitive noninterfer-
ence [Rus92, RG99], where selected subjects are given the ability to downgrade
information, is not satisfactory as it does not control what is downgraded in this
way. Admissibility, described in this thesis, proposes a solution to this problem.
In connection with this, Ryan and Schneider have recently presented a general-
ization of noninterference in the context of CSP to handle downgrading [RS99].

2.2 Confidentiality for Security Protocols

The particular features of security protocols, in particular their reliance on
cryptographic operations to achieve secrecy, integrity and authentication, have

16 2. RELATED WORK

kept them apart from the theories of confidentiality for computer systems. It is
convenient to take a look at the diverse methods used to analyse these protocols.

In general, the methodological approach corresponds to the “eavesdropping”
view, as described in the introduction. The idea is to model the capacity of the
adversary to extract useful information by tampering with the public commu-
nication channels employed by the protocol participants.

Research in this area can be divided into two main groups. Section 2.4 lists
some attempts trying to relate them.

2.2.1 Formal Models

These approaches find their common denominator in the work of Dolev and
Yao [DY83], which makes two fundamental assumptions:

1. Nondeterministic adversary: An adversary may attempt any possible at-
tack, it is in control of the communication network, and it is able to spy,
kill and fake messages. A protocol is considered secure if no possible in-
terleaving of actions results in a security breach.

2. Perfect cryptography: Cryptographic operations are seen as functions on
a space of symbolic (formal) expressions. Their security properties are
also modelled formally. For example, an attacker that did not have access
to a key cannot obtain any information from a ciphertext.

Formal approaches include specialized logics, special-purpose tools for cryp-
tographic protocol analysis, model-checking and theorem proving. They all aim
at designing some high level language where security systems can be both ex-
pressed and analyzed formally.

Most of the achievements of these methods reside in finding deficiencies in
protocols, even automatically. They treat systems of increasing complexity and
provide high-level reasoning. They have also permitted the extraction of general
principles for the construction of new protocols. On the down side, they cannot
give a totally convincing argument for protocol correctness. Protocols can be
verified using these approaches, but still contain security holes (which lie outside
the assumptions in the Dolev-Yao model).

Millen’s Interrogator and Meadows’s NRL Protocol Analyzer (NPA) were
among the first tools to exploit these ideas. They would describe the protocol
as a set of Horn clauses and then search backwards for contradiction starting
from possible errors.

Kemmerer used Ina Jo (see previous section) to model cryptographic proto-
cols in a conventional specification language, thus establishing an early link to
the work on security of computer systems.

More recent uses of model checkers include: CSP/FDR [Low96] and Murϕ
([MMS97]). In principle, model checkers can only be used to detect confiden-
tiality breaches in protocols, not to prove them correct. The reason being the

2.2. CONFIDENTIALITY FOR SECURITY PROTOCOLS 17

need to consider, in principle, an unbounded number of participants and pro-
tocol runs, as well as infinite data and message spaces. In order to improve
on the generality of the results obtainable with model checking tools, current
research is devoted at finding appropriate lower bounds for all the aspects men-
tioned above. The work on data independence by Roscoe and Lazic [Ros98]
constitutes a good example of this.

Paulson’s Inductive Method [Pau98a] relies on theorem proving to handle
an unbounded number of participants and an unlimited message space. Con-
fidentiality, like in the previous approaches, is described as a safety property,
usually stating that the intruder never learns a specific value. Paulson’s method
consists in proving that this property is satisfied by all reachable states. The
work on Strand Spaces [FHG98] is closely related to that of Paulson’s: A strand
is a sequence of events representing either the execution of a legitimate agent
or else of the attacker. A strand space is a collection of strands together with
a graph structure reflecting causality between events in the strands. Proofs of
confidentiality in the framework of strand spaces rely on some sort of inductive
principle over the graph structure. Millen and Ruess [MR00] have recently im-
proved this approach, by identifying and proving protocol-independent results.
Using their techniques, the proofs of secrecy of some protocols become simple
enough so as to be carried out manually. The strand space model is also used
by the Athena tool [Son99].

Focardi et al. have used NDC to express authentication [DFG99], non-
repudiation [FM99a], and secrecy [FGM00], even in the presence of crypto-
graphic operators. Their tool, CoSeC [FG97], is based on CryptoSPA (an exten-
sion of SPA with cryptographic operators and deduction rules à la Dolev-Yao),
and can be used to verify protocols using NDC based properties.

Abadi and Gordon’s work on the spi-calculus [AG98b] uses a more stringent
notion of secrecy, related to the work on information flow models. Suppose that
the protocol is represented as the parameterized process P (x). Then, secrecy
of x means that P (M) and P (N) are equivalent, for all possible values M and
N for x. Equivalence is testing bisimulation, modified to handle cryptographic
operations.

The work on SPA and spi calculus, has shown a connection between confi-
dentiality for protocols, and confidentiality for secure systems. Both employ a
stronger notion of secrecy than that in previous approaches. Contrary to SPA,
there is no need to represent the intruder explicitly in the spi calculus.

2.2.2 Computational Models

There are other ways of modelling the adversary of a security protocol. Shannon
applied information theory to analyze the case of an adversary with unlimited
computational resources. For this reason, this model is usually called uncondi-
tional security. In the case of encryption, where unconditional security is called
perfect secrecy, there are two main results: First, that for symmetric-key encryp-
tion the key must have as many bits as the entropy of all messages to transmit.

18 2. RELATED WORK

An example of such a system is the one-time pad. Second, that public-key
encryption cannot be unconditionally secure: a computationally-unbounded
adversary can encrypt one plaintext after the other with the public key, till it
finds the one that produces the right ciphertext.

Complexity-Theoretic Security

Modern security drops the assumption of an all-powerful adversary, and moves
to consider whether there is a feasible attack on a system, instead of whether
there is a possible one. Most of the approaches belonging to this group consider
adversaries which have complexity bounded resources. These approaches also
present the following common basic structure:

1. A definition of the computational power of observation of any adversary,
and

2. a notion of what is distinguishable and what is not distinguishable by any
such adversary

The complexity of an attacker is usually measured relative to a security pa-
rameter k, fixed at the time the cryptographic system is set up. For example,
k is commonly linked to the size of keys in an encryption scheme. It is usual,
though not essential, to model adversaries by probabilistic polynomial-time Tur-
ing Machines. It is possible to use other conventions, as long as the notions of
efficient and feasible computation are sufficiently robust and rich.

For each value of the security parameter k, we can consider the capacity of
an adversary (computing on time polynomial over k) to distinguish two proba-
bility distributions. A set of probability distributions (one for each value of the
security parameter) is called an ensemble.

Given X = {Xn} and Y = {Yn}, two probability ensembles, such that Xn,
Yn range over strings of length n, the advantage of adversary A is defined as

dA(n) ∆= |Pr(A(Xn) = 1)− Pr(A(Yn) = 1)|

The advantage indicates the ability of A to distinguish the two ensembles. If
dA(n) is negligibly small for each value of n and for every possible computation-
ally bounded adversary A, then X and Y are computationally indistinguishable
(A function ν is negligible if for every constant c ≥ 0 there exists an integer kc

such that ν(k) < k−c, ∀k ≥ kc).
In complexity-theoretic security, cryptographic methods are designed taking

the weakest assumptions on the adversary. Their effectiveness is assessed using
asymptotic analysis (running time as a function of the security parameter k)
and worst-case analysis. The results in this area establish the plausibility or not
of attacks.

At first sight, these analysis seem to be merely qualitative, and the evalu-
ation of its results requires special care. However, this needs not be the case,

2.2. CONFIDENTIALITY FOR SECURITY PROTOCOLS 19

as the following section shows. Complexity-theoretic models provide a clear
set of mathematical principles against which more practical approaches can be
compared [MvOV97, p. 43].

Provable Security

A cryptographic method is said to be provably secure if the difficulty of de-
feating it can be shown to be essentially that of solving a well-known and sup-
posedly difficult problem (typically a number-theoretic problem such as integer
factorization or the computation of discrete logarithms). This is a reductionist
approach [GM84b] which presents similarities with the reduction methods used
Complexity Theory. Most proofs provide a precise construction of the breaking
adversary for the simpler primitives, starting from an adversary that can break
the protocol. Once instantiated for any desired value of the security parameter,
a concrete estimate of the difficulty of breaking the protocol can be obtained
relative to the difficulty of breaking its primitive components.

The problem with Provable Security is that the functions that are taken as
primitive tend to be as hard to implement as the functions that are derived
from them. The protocols that result are usually considered inefficient. For
example, it is known that pseudo random functions can be constructed using
more primitive one-way functions like RSA, but in practice this is hardly done
this way.

Practical security: the Random-Oracle Model

One of the objectives of modern cryptography is to develop a basic toolset of
cryptographic primitives which would allow the development of more complex
and elaborate algorithms. At the center of all of them lies the notion of a one-
way function (OWF): A function that is “easy” to compute but infeasible to
invert. OWFs provide the basis for good encryption techniques. OWFs with
trapdoors provide the foundations for public-key cryptography.

However, OWFs are perhaps too low-level to construct effective high-level
algorithms. In practice, several very efficient cryptographic algorithms in use
today have been designed starting from the assumption that certain block ci-
phers are secure (while, in most cases, this claim has never been proved). What
is then a good theoretical model of the security of a block cipher?

The Random-Oracle Model [BR93] combines complexity-theoretic and prov-
able security for the analysis of practical protocols, including those using block
ciphers. The idea is to consider an idealized version of the protocol where
the intervening parties have access to a common random function. Of course,
the idealized protocol is far from realizable, as random functions are far too
big to store. Using provable security arguments, it is then possible to esti-
mate the security of the protocol w.r.t. the security of the implementation of a
pseudorandom function. By complex-theoretic methods, it is then possible to
approximate the maximum advantage a feasible (i.e. computationally bounded)

20 2. RELATED WORK

adversary can achieve over the pseudorandom function. Putting both results
together, an estimation of the security of the real protocol is obtained.

In the case of block ciphers, these are a fixed-key permutation functions,
which can be modelled as families of finite pseudo-random functions {FK},
indexed by small keys. It is known that these functions can be obtained from
pseudo-random number generators, which, in turn, have been proved to exist
if there exist OWFs. If K is shared between principals A and B, and we use
FK in place of a random function f in some scheme designed in the Random-
Oracle Model, then the resulting scheme is still secure as long as the adversary
is computationally bounded.

2.3 Programming-Language Confidentiality

Access control models are usually implemented by means of a reference monitor
whose function is to check, at runtime, that every access request complies to
a security policy. In practice, however, access control models are incapable of
eradicating all covert channels. Dorothy and Peter Denning were the among the
first to suggest program analysis techniques to eliminate insecure information
flows [DD77]. Their analysis uses a MLS lattice [Den76], and makes sure that
the security level of each variable always dominates that of the data that is
assigned to it. At the time it was published, the analysis lacked a formal proof
of soundness.

Andrews and Reitman proposed a data flow analysis that superimposes a
set of variables and their updates onto the program to analyze [AR80]. For
each variable x in the original program, the analysis uses a variable x to record
its security class. Furthermore, two extra variables keep track of indirect de-
pendencies within and between statements in sequential programs, as well as
dependencies through process synchronization in parallel programs. An ax-
iomatic semantics of the resulting program is used to state confidentiality, and
a simplified deductive logic (concerning only class variables) is proposed to ver-
ify them. Neither in this case have the authors provided a proof of soundness
relating the logic to the semantics.

Cohen studied dependencies in a functional execution model from an infor-
mation theory perspective [Coh77]. From this semantical characterization of
security, he derived a set of proof rules to verify the absence of information
paths in simple sequential programs [Coh78].

Mizuno and Schmidt’s verification method takes the form of an abstract in-
terpretation defined over the denotational semantics of a procedural language.
It consists of a compile-time analysis, that addresses intraprocedural flows, and
a link-time analysis, that considers interprocedural flows. The abstract inter-
pretation is proved correct with respect to an instrumented semantics where
every value is annotated with its security class.

Volpano, Smith and Irvine were arguably the first to give a proof of soundness
of Denning’s analysis using a standard (i.e. not instrumented) semantics [VSI96].

2.3. PROGRAMMING-LANGUAGE CONFIDENTIALITY 21

This analysis takes the form of a type system reflecting the security levels of
variables in simple imperative programs. In later instances, Volpano and Smith
have extended their analysis to cope with thread synchronization [SV98], prob-
abilistic schedulers [VS98a] and limited downgrading [VS00, Vol00].

Since then, several researchers have designed type systems for confidential-
ity. In the SLam calculus, Heintze and Riecke define and prove soundness of a
type system for a kind of λ-calculus that expresses both access control and infor-
mation flow [HR98]. Myers and Liskov proposed a quite fine-grained labelling
system that records the owners of the data contributing to each value, as well
as the readers these owners are willing to give access to. Although this takes
the form of combined static and dynamic type systems, these authors have not
provided formal proofs of soundness of these systems [ML98, Mye99]. Abadi
also proposed a type system to guarantee secrecy of security protocols written
in the spi-calculus [Aba97].

With a few exceptions, notably Cohen’s work, most initial approaches to
programming-language confidentiality had a syntactic nature, mainly taking the
form of control flow analyses and type systems. This is now changing. For exam-
ple, Leino and Joshi suggested a semantical characterization of secure programs
which is general enough to be applied over different semantic formalisms [LJ00].
In their examples, they use relational semantics and a Hoare-logic to simplify
the verification task. As a limitation, their equational characterization assumes
a functional view of programs, where high-level data cannot be modified by the
environment during execution.

Sabelfeld and Sands’ denotational semantics-based characterization of non-
interference can express both Cohen’s and Joshi and Leino’s definitions [SS99].
These ideas were later carried over to unlabelled probabilistic transition systems.
Using these systems as semantical basis, they defined scheduler-independent
confidentiality properties for a multithreaded programming language [SS00].
This language is extended with synchronization primitives in [Sab01].

Agat enriched the operational semantics of a simple imperative programming
language to reflect the timing behavior of programs and thus study their timing
covert channels. His approach is exceptional in that it not only detects this kind
of covert channels, but also indicates how to modify a program to achieve timed
noninterference [Aga00].

So far, all work cited refer to models that express and verify confidentiality
properties of general programs. For programs implementing security protocols,
there is not much previous work that the author knows of besides that of El
Kadhi. He devised an abstract interpretation analysis of protocol implementa-
tions [Kad01, BK01] that estimates the attacker’s knowledge using Bolignano’s
instantiation of the Dolev-Yao assumptions [Bol97]. El Kadhi’s analysis does
relate the properties of the code to the properties of the protocol. Instead,
confidentiality properties are verified analyzing only the code.

22 2. RELATED WORK

2.4 Relations between Secrecy Models

The effort put into using standard languages together with their semantical
models to recast and compare previous approaches to confidentiality is beginning
to pay off. Not only have they proved useful to compare different pieces of work
within each of the research areas described in the previous three sections, but
also are they hinting towards connections between these areas.

Lincoln et al. [LMMS99] have given a process algebraic model of Provable
Security. In this model, the security of a process (that represents a protocol
implementation) is related to that of an idealized version of the protocol using
complexity-theoretic arguments. Pfitzmann, Schunter and Waidner [PSW00]
have studied these ideas (that they identify as the simulatability approach) and
their relation to formal models (see Section 2.2.1). Similarly, Abadi and Ro-
gaway have investigated the relation between formal and computational mod-
els [AR00]. Their results give a semantical justification of some of the Dolev-Yao
assumptions, in particular those concerning the abstraction of cryptographic
operations and of values (e.g. nonces and keys). A good by-product is the dis-
covery of extra restrictions on the formal models that help clarify their meaning.
Abadi and Jürjens have extended these results to whole processes, although the
modelling language used is not standard [AJ01].

While the previous references illustrate a currently growing interest to com-
bine and relate the different models of confidentiality for security protocols, they
also point towards a convergence with programming-language techniques. This
is so because some of the formalisms used to model protocols can also be used
to give semantics to programming languages.

Finally, there is a strong connection between programming-language confi-
dentiality and information flow models. In general, the language-based methods
try to realize in practice concepts and models derived from information flow
theories. As we have seen, the connection between theory and practice has not
always been formally pursued. However, recent work in the semantical founda-
tions of program security has facilitated the study of its relation to information
flow models [MS01].

2.5 Mobile Code Security

In the context of mobile code, new general security issues arise in connection
to the risk of exposing local systems to untrusted foreign code [Che98, VS98b,
Dea97]. The success of Java has stirred interest in formalizations of its Bytecode
Verifier, a part of the Java Virtual Machine which uses static (data flow) analysis
techniques to enforce type safety [FM99b, Qia99, SA98, Gol97, BS98, JMT97].
How to extend the verification of JVM and other mobile code to these domains
is a matter of current research. Some techniques point at developing rich type
systems at the level of assembly code that can be used to easily verify that
the code abides to certain resource usage policies [SMH00, MWCG98]. Others

2.5. MOBILE CODE SECURITY 23

propose combinations of runtime checks and static type systems to enforce safety
properties on the mobile code [Koz99]. The idea of Proof-Carrying Code is,
instead, to place the verification burden on the code producer, and in principle
can handle more than just safety properties [Nec97, NL98b, NL98a]. In fact,
these are only a few samples of a research area currently experiencing furious
activity.

Chapter 3

A Model for Cryptographic
Processes

A good model simplifies the analysis, but it never abstracts away crucial features
from the object of study. Good models also provide generality, with the hope
that results should carry over to other, slightly different settings.

In this chapter we model, at a quite high level of abstraction, the kind of
applications we are interested in. They consist of down-loadable programs that
implement cryptographic protocols (thus they should have access to various
cryptographic primitives), and that probably interact with the host where they
execute by invoking various local procedures.

To model the execution of our applications, we use labelled transition sys-
tems; to represent them compactly, a simple process algebra. There are several
advantages in this approach: Labelled transition systems constitute a common
semantical basis for describing an operational semantics and have thus been ap-
plied to a number of different programming languages and paradigms. They can
model concurrent processes together with diverse synchronization mechanisms,
all at a convenient level of abstraction. Moreover, the simplicity of the model
helps identify precisely what can be observed of a system, a quality that has been
appreciated in previous formal models for security. Finally, labelled transition
systems can be extended quite easily in various directions, to include more in-
formation about the execution of a system, like probabilistic distributions and
time. Regarding the use of a process algebra, this is not new either: several
research efforts have taken that direction before (e.g. [FG95, AG98b, RS99]).

In the first section of this chapter, we present a simple process algebra, an
extension of Milner’s Calculus of Communicating Systems (CCS) with cryp-
tographic operations, much inspired by work on the spi-calculus [AG98b] and
CryptoSPA [FGM00]. Two peculiarities set our approach apart, though. First,
we introduce a prefix operator for invoking local functions so that we avoid
modelling them in the algebra. Second, not only is the evaluation of data kept

25

26 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

at a rather symbolic level, but also the structure of values is enriched to reflect
the history of operations performed to produce them. The latter is specially
important to be able to track and identify correct leaks of information.

After illustrating our process algebraic model with the aid of some examples,
we extend it with annotations, where secret values are identified and tracked.
This gives further precision to determine (see the next chapter) whether a pro-
cess respects a confidentiality property. The chapter concludes by relating the
annotated and non-annotated algebras.

3.1 Security Process Algebra

Starting in this chapter and onto the next one, the concept of secret plays
a central role in our modelling decisions. In general, a secret is a piece of
information. Shannon defined information as “that which reduces uncertainty.”
The generality of this definition indeed suggests that a secret can take many
forms. In this work, we pay special attention to secret data, where data can be
understood as “material units of information about a portion of the real world
that can be processed by explicit procedures and maintains its characteristics
during repeated use” (Krippendorff, Principia Cybernetica Project).

A computer system operates on data values. We are interested in systems
that input secret data, e.g. a credit card number, and then modify their output
and behavior according to its value. How can we identify a secret value as it is
processed by a system? At the moment of input, it seems easy to identify secret
data. However, in most other occasions this is not that obvious. As an example,
suppose that variable x is known to contain a secret even number. Then, the
value that results from evaluating x mod 2 does not contain any information,
as knowing it does not reduce any uncertainty. Although x represents a secret
value, x mod 2 does not. Most approaches to confidentiality would start by
assigning a high security level to x and then just do the same for x mod 2, which
is a safe loss of precision (cf. [DD77, VSI96, SS01]). On the other side, it is clear
that knowing how a value was constructed from input values (in the example,
by computing a remainder upon division by 2) represents an important step
towards identifying secret data. The values we consider in our process algebra
reflect therefore their construction.

Expressions and Values Let x range over a set of variables, and k over a
set of constants, like integers and booleans. The set of expressions is then given
by the following grammar.

(Expr) e ::= x | k | (e1, . . . , en) | {e1}e2 | {|e1 |}e2 | πi(e)

If n = 0 in (e1, . . . , en) the resulting expression is a constant usually called
unit. The expression {e1}e2 indicates the encryption of e1 with key e2, while
{|e1 |}e2 indicates decryption. Finally, πi(e) indicates the projection of the i-
th coordinate of e. The choice of operators is deliberately limited, for they

3.1. SECURITY PROCESS ALGEBRA 27

represent primitive operations in our language for processes. These limitations
will be dropped later, by means of the use of local functions.

A value, ranged over by v, is a ground expression (i.e. an expression without
variables). We call Val the set of values obtained by choosing a certain fixed set
of constants.

Boolean expressions, ranged over by b, are used to describe branching con-
ditions:

(BoolExpr) b ::= x | true | false | e1 ≤ e2 | e1 = e2 | ¬b | b1 ∨ b2

We can now proceed to describe the syntax and semantics of our process
algebra, which we call SecPA (to avoid confusion with Focardi and Gorrieri’s
SPA), as an extension of Milner’s value-passing CCS. Of course, we replace
Milner’s set of values V with our Val.

Syntax Given a set Ch of channel names, ranged over by c, SecPA process
terms are given by the grammar:

P,Q ::= 0 nil
τ.P internal action
c!e.P output e on channel c
c?x.P input from channel c
x := c(e).P call to local function c∑

i∈I Pi a summation, I an indexing set
P |Q parallel composition
P\L restriction, L ⊆ Ch
P/L hiding, L ⊆ Ch
if b then P conditional, b a boolean expression
let (x1, . . . , xn) = e in P tuple matching
case e1 of {x}e2 in P shared-key decryption
C(e1, . . . , en) constant of arity n

For each constant C with arity n there is a defining equation

C(x1, . . . , xn) ∆= P

where the right-hand side P may contain no free value variables except those
listed to the left, i.e. x1, . . . , xn (all distinct variables).

We have drawn inspiration from SPA [FG95] to include the hiding operator
from CSP, and from the spi-calculus in the case of the let and case constructs.
A let process is used to deconstruct a tuple, while a case is used to decrypt an
encrypted value.

28 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

Local Function Calls SecPA contains an operator not present in either SPA
nor the spi-calculus: the local function call prefix. It represents a simple search-
and-load operation. For example, we can write k := key(p), where k is the key
associated to principal p, to model the fetching of keys from a local key-store. In
a way, this operator represents an atomic combination of an input and an output
prefix. Local function calls are meant to abstract away services provided by the
trusted computing base (TCB). This is particularly important for analysis, since
the TCB would normally consist of a quite considerable amount of code, most
in the form of library methods whose properties can be studied independently
of code downloaded from untrusted sources.

Decryption SecPA represents the operation of decrypting a ciphertext by
means of the case construct. This is the way decryption is modelled in the
spi-calculus. The spi-calculus is a version of the π-calculus extended with a
richer name structure (which includes domains for keys, plaintext and cipher-
text) and a special syntactic construction to handle decryption. The authors
have argued that the syntactical approach is simpler and more effective than a
direct encoding (of keys and encrypted data) using only the primitives in the
π-calculus [AG98b, Appendix A]. However, this issue is still in discussion.

For the processes we are interested in modelling there is no need for the power
of the restriction operator. At the same time, we have found it convenient
to keep channel names separated from data. For the sake of simplicity, we
discarded using the π-calculus or any other calculus of mobility. In view of
which, we did not have to choose whether to encode encrypted data or represent
it syntactically. We faced another choice instead: whether to use the case
construct, or to use the {| |} expression. That is, since our expressions already
contained an operator for decryption, why then introduce a syntactic construct
for decryption?

The reason is mainly aesthetic. Any decent encryption scheme should in-
troduce enough redundancy in its ciphertexts so that attempting a decryption
with a wrong key results in some kind of error notification. If we wanted to
represent decryption with an expression, we would have been forced to encode
the redundancy, or at least the error detection mechanism. That would have
unnecessarily obfuscated our examples.

Finally, it should be said that we could have modelled decryption as a lo-
cal function call, e.g. as x := dec(e1, e2). This would have made decryption
observable (unless we hid channel dec), which in some contexts might even be
desirable (for example, if the timing behavior of the cryptographic function can
be exploited to establish a covert channel [Koc96]). However, this would suffer
from the same problems as the approach based on decryption expressions.

Public-Key Encryption In [AG98b, Chapter 7], Abadi and Gordon show
how to add hashing functions, public-key encryption and digital signatures to
their calculus. The same can be done here. In the case of public-key encryption,

3.1. SECURITY PROCESS ALGEBRA 29

we need to assume the existence of a function over the domain of keys that given
a public key x returns its private counter-part x−1. We can then add to the
process definition

P,Q ::= . . .

[(e1, e2) �dec x]P public-key decryption

this time inspired by the notation in CryptoSPA [FGM00] (in the spi-calculus,
the suggested notation is “case e1 of {|x |}e−

2
in P ’ which is confusing because

e−2 represents the private key used to encrypt x, while what is needed for de-
cryption is e+

2 , the public key). Other notations are possible. We could have
use, for example, “case x of {|e1 |}e2 in P” or “let x = {|e1 |}e2 in P”, but this
is just a matter of taste. �

Transitional Semantics The semantics of SecPA is given in terms of la-
belled transition systems in the standard way: states are process terms, and the
transition relation is defined as the smallest relation satisfying the rules below.

In

c?x.P
c?v−−→ P [v/x]

Fun

x := c(v1).P
v2 := c(v1)−−−−−−−−→ P [v2/x]

Out

c!v.P
c!v−−→ P

Tau

τ.P
τ−→ P

Com1
P

α−→ P ′

P |Q α−→ P ′ |Q

Com2
Q

α−→ Q′

P |Q α−→ P |Q′
Com3

P
c!v−−→ P ′ Q

c?v−−→ Q′

P |Q τ−→ P ′ |Q′

Rest
P

α−→ P ′

P\L α−→ P ′\L
(subj (α) ∈ L) Cond

P
α−→ P ′

if b then P
α−→ P ′

(b = true)

Hid1
P

α−→ P ′

P/L
α−→ P ′/L

(subj (α) ∈ L) Hid2
P

α−→ P ′

P/L
τ−→ P ′/L

(subj (α) ∈ L)

Let
P [π1(v)/x1, . . . , πn(v)/xn]

α−→ P ′

let (x1, . . . , xn) = v in P
α−→ P ′

(∃v1, . . . vn : v = (v1, . . . , vn))

Case
P [{|v1 |}v2/x]

α−→ P ′

case v1 of {x}v2 in P
α−→ P ′

(∃v : v1 = {v}v2) Sumj

Pj
α−→ P ′

j∑
i Pi

α−→ P ′
j

30 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

Def
P [ẽ/x̃]

α−→ P ′

C(e1, . . . , en)
α−→ P ′

(C(x1, . . . , xn) ∆= P)

As usual, the subject of a non-silent action α, written subj (α), is the channel
actually used in the communication. The equality, =, is semantical and thus
presupposes an evaluation of the terms under comparison. How this term evalu-
ation is done is not important here, although it is expected to satisfy properties
like π1(v1, v2) = v1 and more or less precisely reflect the concrete cryptographic
functions in use. For example, in the case of RSA, it is expected to verify
{|{v1}v−1

2
|}v2 = v1.

For completeness, we give the rule for public-key decryption:

PK-Dec
P [{|v1 |}v2/x]

α−→ P ′

[(v1, v2) �dec x]P
α−→ P ′

(∃v : v1 = {v}v−1
2

)

The choice of an appropriate model is a delicate one. Besides handling
cryptographic primitives, local function calls and values, it must permit the
encoding of our applications of interest.

As a little warm-up, consider a very simple protocol: in each run of the pro-
tocol, a value x is to be read from channel in, and then transmitted, encrypted
with secret key k, along channel out. It is understood that the confidentiality
of x is to be preserved even when the protocol admits that the output might
depend on the input. This is perfectly ok. For example, under the assumption
of perfect cryptography, an observer of channel out cannot discover which value
was actually input, provided that it is not able to decrypt {x}k.

The formalization of this requirement will be discussed in the next chapter.
For the moment, we take a look at three different possible implementations of
our simple protocol. We are only interested in showing how these examples
can be encoded in SecPA, and what their semantics are. The analysis of each
example will be done somewhat later.

Example 3.1 (Encrypter) Our first implementation follows the protocol to
the letter. As expected, it reads a value from input channel in, and transmits
it encrypted with secret key k along channel out, before restarting. Taking the
encryption key as a parameter, we can write this as a SecPA process:

s(k) ∆= in?x. out !{x}k. s(k)

The labelled transition system induced by its semantics is schematically depicted
by the following figure:

3.1. SECURITY PROCESS ALGEBRA 31

in?v

s0(k) s(k) s1(k)

out !{v}k in?w

out !{w}k

where the arrow head indicates initial states (one for each value of k), and where
we have decided to represent the input of only two different values, v and w.

Example 3.2 (Bad Encrypters) Forgetting for a moment that we are deal-
ing with a very trivial protocol, suppose that two code providers offer imple-
mentations r(k), resp. t(k). Each provider promisses that their code correctly
implements our naive protocol. For our part, we are not really interested in
whether their codes fully implement the protocol. We want instead to know that
the confidentiality properties of the protocol are at least preserved. Take a look
at the two pieces of code now:

Bad Encrypter #1: r(k) ∆= in?x. out !{x}k. if x = v then out !{x}k. 0

The associated labelled transition system is again depicted schematically, by
considering only two distinct values:

out !{v}k

r1(k) r3(k) r5(k)

r2(k) r4(k)

r(k)

in?w

in?v

out !{w}k

out !{v}k

This process encrypts its input before transmitting it, but an observer can learn
whether the input was v by counting the number of output messages.

Bad Encrypter #2: t(k) ∆= in?x. out !{x}k′ . t(k)

with associated labelled transition system:

in?v

t1(k) t(k) t2(k)

out !{v}k′

out !{w}k′

in?w

32 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

This process changes to a different encryption key k′, which is another simple
way of defeating confidentiality (specially if the key k′ is known to the observer
of channel out).

These examples, though very simple, should have given an idea of how we
plan to use SecPA, and at the same time, which kind of problems we try to
avoid with our techniques.

The following two sections illustrate the use of SecPA with more elaborate
and somewhat more realistic examples, and with more complex protocols.

3.1.1 The Purchasing Applet Examples

We recall one of the scenarios from the introduction (see p. 1), a piece of code
(applet) that is downloaded to make a payment through the Internet. The
protocol we want this applet to implement is a variant of the 1-Key-Protocol
(1KP), an electronic payment protocol [BGH+95].

The 1KP protocol involves three players: A Customer, a Merchant and an
Acquirer. The Customer possesses a credit card and a PIN, with which it places
an order to the Merchant. The Acquirer is a front-end to the existing credit card
clearing/authorization network, that receives payments records from merchants
and responds by either accepting or rejecting the request.

The purchasing applet in our scenario implements the Customer’s side of the
1KP protocol, which we have lightly simplified in order to keep the presentation
at a reasonable level of detail.

According to the protocol, the applet should request from the customer,
among other information:

1. the name acq of the Acquirer,

2. ordering information order (item, price agreed, delivery, date and time,
etc.), and

3. accounting information acc (account number, expiry date, PIN code), in-
tended for Acquirer.

Then the applet should consult the TCB for the public key K of the Acquirer
and send the order together with a purchase slip to the Merchant:

(acq , order , {order , acc}K)

The Merchant passes the slip {order , acc}K to the Acquirer who can then val-
idate the purchase. The Acquirer returns a notification to the Merchant indi-
cating whether the purchase was cleared. If cleared, the Merchant passes the
goods together with an invoice to the Customer.

The remainder of this section is dedicated to illustrate various possible im-
plementations of the purchasing applet and their encoding in SecPA. In doing

3.1. SECURITY PROCESS ALGEBRA 33

so, we deliberately adopt a very lax notion of implementation. Since proto-
col descriptions leave usually plenty of room for the implementor to fill in (an
important feature), in a vast medium like the Internet we cannot simply pre-
tend that the implementor abides to the limitations of any refinement based
methodology. Moreover, it is well-known that most confidentiality properties
are not preserved by refinement; which means that even if the implementor had
derived the code from an appropriately formalized specification of the proto-
col, that alone would not suffice to guarantee confidentiality. In Chapter 4 we
address the issue of how to specify the confidentiality requirements behind an
informal protocol description and what it means that the protocol fulfills those
requirements.

We assume that the applet is given the Acquirer’s name through channel acq,
the Customer’s account info through channel acc, and the details of a particular
buying order through channel order. We interpret { } as public-key encryption,
and use the local function PubKey() to recover the public key associated to a
given principal.

Example 3.3 (Straightforward implementation) A simple and direct im-
plementation of the Purchasing Applet. It waits for the user to provide acquirer’s
name, order and account information, then it recovers the acquirer’s public key,
and finally sends everything to the merchant with the expected format.

PA1
∆= acq?x. order?y. acc?z. k := pubKey(x).merchant !(x, y, {(y, z)}k).PA1

Example 3.4 (Key validation) Since the Acquirer’s id and public key are not
confidential, we do not want to restrict what an implementation does with them,
as long as they are not used to encode secret information. As an example, the
applet might communicate the id and the public key of the Acquirer to the Mer-
chant, and only proceed if the merchant validates the key as effectively belonging
to the Acquirer. In such a way, the Merchant avoids starting to process an order
that later will be rejected by the Acquirer.

PA2
∆= acq?x. order?y. acc?z. k := pubKey(x).

merchant !(x, k).merchant?ok .

(PA2 + if ok = true then merchant !(x, y, {(y, z)}k).PA2)

Example 3.5 (Wallet) A slight variation over Example 3.3 with two parallel
subprocesses, one in charge of obtaining the Acquirer’s data and Customer’s

34 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

account number, the other in charge of processing orders.

PA3
∆= (Wallet |Buyer)\{c}

Wallet ∆= acq?x. acc?z. k := pubKey(x).Wallet(x, z, k)

Wallet(x0, z0, k0)
∆= (acq?x. acc?z. k := pubKey(x).Wallet(x, z, k))

| (c!(x0, z0, k0).Wallet(x0, z0, k0))

Buyer ∆= order?y. c?u.

let (x, z, k) = u in merchant !(x, y, {(y, z)}k).Buyer

Notice how channel c, which is used for internal communication between Wallet
and Buyer, is protected by restriction.

Example 3.6 (Wallet2) A more realistic implementation of a wallet-based ap-
plet would take the wallet as a service provided by the trusted computing base.

PA4
∆= order?y. u := wallet(). let (x, z, k) = u in merchant !(x, y, {(y, z)}k).PA4

The resulting code is, obviously, very similar to that of Buyer in Example 3.5.
However, notice that here there is no counterpart to the restriction of channel
wallet.

The implementations of the purchasing applet in the examples so far seem
well-intentioned. That need not be always the case. A malicious code provider
could resort to a number of tricks to get hold of the Customer’s account number
(PIN). If the whole or part of the PIN can be deduced by an observer without
access to the Acquirer’s private key, then we say that there is an insecure in-
formation flow (or leak). There are several classifications of leaks, which are
more or less comprehensive, with more or less intersection between the different
classes. In [SS00], insecure flows are classified into direct, indirect, termination
behavior, probabilistic, and externally and internally observable timing flows.

Example 3.7 (Direct Leak) A very simple way for a malicious applet to leak
the user’s account info would be to encode it as part of the order.

MA1
∆= acq?x. order?y. acc?z. k := pubKey(x).merchant !(x, z, {(y, z)}k).MA1

Notice that the account number, z, appears in the second component of the
triple sent to the merchant. The order is expected in this place.

How could this be an implementation of the purchasing applet? As it was
indicated above, the protocol implementor is free to decide on the format to
encode the order before it is sent to the Merchant. A format always represents
certain amount of redundancy which can, in some cases, be manipulated to
encode at least part of the account number.

3.1. SECURITY PROCESS ALGEBRA 35

Example 3.8 (Indirect leak) In this case, the implementation simply per-
forms an extra, visible operation depending on the Customer’s account number.

MA2
∆= acq?x. order?y. acc?z. k := pubKey(MerchantId).

merchant !(x, y, {(y, z)}k). (MA2 + if acc = v then out !1.MA2)

Example 3.9 (Termination behavior) This applet might look buggy to an
innocent user: it seems to crash sometimes.

MA3
∆= acq?x. order?y. acc?z.

k := pubKey(MerchantId).merchant !(x, y, {(y, z)}k).
(if acc = v then MA3) + (if acc = v then 0)

Indeed, the example should be more detailed to demonstrate how the account
number could be leaked bit by bit in several attempts at using the applet. What
is needed is the ability to test a different bit of the account number on each run
of the applet.

Example 3.10 (Externally observable timing leak) This is similar to Ex-
ample 3.8, but the observer must measure the time between observable actions
to learn something about the Customer’s account number.

MA4
∆= acq?x. order?y. acc?z. k := pubKey(MerchantId).

(if acc = v then merchant !(x, y, {(y, z)}k).MA4)
+(if acc = v then τ.merchant !(x, y, {(y, z)}k).MA4)

Internally observable timing flow is a kind of probabilistic leak. A richer
language and semantical model is needed if we want to express and study prob-
abilistic flows. This is a constant in the modelling and treatment of confiden-
tiality. The stronger the power of observation of an attacker, the finer the model
that is needed to prevent useful leaks.

The classification of insecure flows does not pretend to be complete. How-
ever, since it appeared in a context of non-interference, it is not concerned with
situations where some dependency is allowed between secret and non secret
data (as is the case with our purchasing applet, which establishes a dependency
between the account number acc and the purchase slip {order , acc}K). The
following example shows that special attention has to be paid to identifying
dependencies if we are to allow some of them:

Example 3.11 (Wrong encryption key) By using a key different than the
acquirer’s public-key, the merchant might be able to decrypt more than what it
is allowed to.

MA5
∆= acq?x. order?y. acc?z. k := pubKey(MerchantId).

merchant !(x, y, {(y, z)}k).MA5

36 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

3.1.2 The Wide-Mouthed Frog Protocol Example

While the previous section has dealt with a few different implementations of the
purchasing applet, 1KP is in fact a very simple protocol. Although still simple
in general terms, the Wide-Mouthed Frog protocol presents further challenges
including: nonce generation, (shared-key) decryption, a longer round of mes-
sages, and challenge-response authentication. In this section, we show how a
reasonable implementation of the WMF protocol can be encoded in SecPA.

The Protocol The Wide-Mouthed Frog Protocol allows two principals, A
and B, establish a session key KAB in order to communicate securely. Principal
A (resp. B) shares key KAS (resp. KBS) with server S. The original version of
this protocol [BAN89] uses timestamps as protection against replay attacks. The
version considered here (Table 3.1) is taken from [AG98b], where timestamps are
replaced with nonce handshakes. Note that server S and principal B generate

Message 1 A→ S : A on cS

Message 2 S → A : NS on cA

Message 3 A→ S : A, {A,A, B, KAB , NS}KAS
on cS

Message 4 S → B : ∗ on cB

Message 5 B → S : NB on cS

Message 6 S → B : {S, A,B,KAB , NB}KBS
on cB

Message 7 A→ B : A, {M}KAB
on cB

Table 3.1: The Wide-Mouthed Frog Protocol

nonces NS and NB , respectively and once for each session, while principal A
generates the session key KAB . Channel names have been chosen to reflect the
intended recipients of the messages they carry.

The above presentation of the protocol follows a descriptive style that is both
compact and informal (as well as a popular one in the literature). Languages
like the spi-calculus have been proposed to formalize and analyze cryptographic
protocols. The situation with SecPA is similar, but while the spi-calculus aims
at analyzing the protocol as a whole, for properties like authentication and
secrecy, we are (initially) only interested in modelling realistic implementations
of the individual agents participating in the protocol.

A Server Implementation Consider the server in the Wide-Mouthed Frog
Protocol: to implement it, one needs to take into account the server’s availability
under multiple requests from different principals, the generation of channels to
attend each request, the generation of nonces, a special treatment for flawed
messages, decryption, timeouts, etc.

3.1. SECURITY PROCESS ALGEBRA 37

A question appears naturally:

How can one be confident that an implementation does not introduce
insecure flows that a careful design of the protocol specification has
already eliminated?

This example illustrates, through this and the coming chapters, our approach
to an answer. For the moment, we need an implementation.

We propose a simple implementation of the server that handles a request at
a time. To model timeouts and inputs of the wrong type we let the server abort
the processing of a request and start processing the next one, which we encode
using the choice operator (+). Expressions like (S + let . . .) could of course be
simplified by modifying the semantics of the let operator, but we have opted to
keep the semantics of our language at a reasonable level of complexity for the
sake of presentation.

Table 3.2 lists the code of the resulting SecPA process. The atypical inden-

S
∆= cS?xA. (1)

NS := nonce(). (2)
out !(xA, NS). (3)

(S+ cS?x. (4)
(S+ kA := key(xA). (5)
(S+ let (x′

A, xcipher) = x in (6)
if x′

A = xA then (7)
case xcipher of {y}kA

in (8)
let (yA, zA, xB , xkey , xnonce) = y in (9)

if (yA = xA ∧ zA = xA ∧ xnonce = NS) then (10)
out !(xB , ∗). (11)

(S+ cS?ynonce . (12)
(S+ kB := key(xB). (13)

out !(xB , {′s′, xA, xB , xkey , ynonce}kB
). S))))) (14)

Table 3.2: A SecPA implementation of the server in the Wide-Mouthed Frog
protocol.

tation is meant to help the reader follow the main flow of control, regardless
of the possible session restarts embodied by the S summands. The nonce NS

is generated by invoking local function nonce() (line 2). All output messages
go through channel out , where the first component of the message indicates its
destination (lines 3, 11 and 14). Like in the Purchasing Applet example (Sec-
tion 3.1.1), we assume the existence of a local function key(e) for recovering

38 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

c1
S?v′

1

k1 := key(v1)

S3

c1
S?v′

1

S2

S1

c1
S?v1

S

c1
S?v′

1

S6

S4

S8

v2 := nonce()

out !(u1, ∗) S5

S7

out !(v1, v2)

u2 = π4({|π2(v3) |}k1)

out !(u1, {′s′, v1, u1, u2, v4}k2)

u1 = π3({|π2(v3) |}k1)

k2 := key(u1)

c3
S?v4

c1
S?v′

1
c2

S?v3

c1
S?v′

1

Figure 3.1: Wide-Mouthed Frog Server Implementation

from a local store the shared key associated with a given principal e (lines 5 and
13). If the local store contains no shared key for e, the input statement is not
executed and the only enabled action aborts the session and restarts the server.

Figure 3.1 reflects, in a schematic way, the transitions that process S can per-
form. Each input transition summarizes all possible inputs by assigning them a
name in the picture (eg. v1, v2, etc.). The arrows into state S represent restarts
of the protocol, renewing the assignment of values to the names above. All tran-

sitions are unconditionally enabled, except S5
out !(u1, ∗)−−−−−−−−→ S6. This transition is

only enabled if there exist values x and y such that v3 = (v1, {v1, v1, x, y, v2}k1).
According to the definition given in the figure, u1 gets the value of x while u2

that of y. Value u1 corresponds to the identity of principal B in the protocol
description, and u2 corresponds to the session key KAB .

Confidentiality and the WMF protocol The Wide-Mouthed Frog pro-
tocol was designed to let two principals securely exchange a new session key,
using a server to authenticate themselves. The authentication mechanism relies
on the confidentiality of the keys that each principal shares with the server, as
well as the unguessability of nonces. In this thesis, we consider only the first

3.2. ANNOTATIONS FOR TRACKING DIRECT DEPENDENCIES 39

item, i.e. confidentiality, and note that the quality of nonces has to be verified
using some orthogonal techniques.

The confidentiality of the session key, namely xkey , is guaranteed by the
protocol itself. Although the server is allowed to learn the exact value of xkey ,
it can only downgrade information about the shared key in certain admissible
ways. These indicate, among others, how the session key should be decrypted
and encrypted using session keys kA and kB .

We can consider a cryptographic protocol as setting a limit to the amount of
information that can be downgraded about each of its local inputs. Character-
izing them is a complex task that goes beyond a listing of all outputs that are
admissible. To take an example from the Wide-Mouthed Frog protocol, notice
that an observer might be able to learn from any implementation whether x is
a pair (cf. line 6 in Table 3.2) and whether its second component is encrypted
by the key shared between A and the server (line 8).

3.2 Annotations for Tracking Direct Dependen-
cies

Each of the examples presented so far contain information flows and depen-
dencies that the protocol they implement has deemed admissible. This section
deals with the problem of identifying those dependencies with enough precision
so that a program that exhibits them is not rejected as insecure, and the insecure
flows of a program do not get confused with secure ones.

In SecPA, values have enough structure so that for each of them we know
how it has been constructed from initial values. It certainly helps, but it is
not sufficient. In Example 3.7, the value transmitted to the Merchant and
which exhibits an inadmissible dependency on the account number, has the
same structure as the corresponding value in PA1, which is ok. We naturally
want to tell one from the other.

The key observation is that the structure of values in SecPA has not enough
information. The solution is to annotate values with their origin, i.e. the name
of the channel though which they have entered the system. We start from
SecPA and extend its semantics to adequately mantain the annotations through
execution. What we obtain is just the semantical counterpart of what in practice
would be achieved by means of a data flow analysis.

While reading the rest of this chapter, bear in mind that it is just meant
to build up some terminology and machinery with which to express the main
results in the following chapter.

Annotated Expressions and Annotated Values We revise the develop-
ment of SecPA in the previous sections. The first step is to introduce annotations
into the value structure. An annotated value w1 : c() indicates that w (probably

40 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

also annotated) was input through channel c. Similarly, w1 : f(w2) shows that
w1 was input as a result of local function call f(w2).

(a-Expr) ε ::= x | k | (ε1, . . . , εn) | {ε1}ε2 | {|ε1 |}ε2 | πi(ε) | ε1 : c(ε2)
(a-Val) w ::= k | (w1, . . . , wn) | {w1}w2 | {|w1 |}w2 | πi(w) | w1 : c(w2)

where c ∈ Ch is a channel name and n ≥ 0. The expression ε : c() will be noted
ε : c. Analogously, w : c() will be written w : c.

Syntax The syntax of process terms in a-SecPA (annotated Security Process
Algebra) is like that of SecPA, extended with shielded processes:

P,Q ::= . . .

D � P (shielded process over D ⊆ Ch, P unshielded)

In a-SecPA we substitute annotated expressions ε and annotated boolean
expressions θ for resp. expressions and boolean expressions.

For reasons that are discussed in the following chapter, there is no need to
register the origin of every value, but only of those that are input through a
restricted set of channels D. We call � the shield operator. The purpose of
shielding a process under D is just to indicate which values to annotate.

Note that since every expression is indeed an annotated expression, every
SecPA process is also an (unshielded) a-SecPA process.

Semantics The semantics of a-SecPA takes care of expression annotations to
keep track of their origins. We use →a to identify the new transitions. Since
most of the rules are directly obtained from the semantics of SecPA, we show
here only those that require some extra care, together with the rules for the new
shielded process construct.

The most important transition rules for a shielded process concern input.
A process D � P can only input values that have no annotations. However, it
annotates every value input from a channel in D with its origin. This annotation
is propagated by the transition relation →a within the shielded process.

a-Shld1
P

c?(v : c)−−−−−−→a Q

D � P
c?v−−→a D � Q

(c ∈ D)

a-Shld2
P

(v : c(w)) := c(w)−−−−−−−−−−−−−→a Q

D � P
v := c(w)−−−−−−−→a D � Q

(c ∈ D)

a-Shld3
P

α−→a Q

D � P
α−→a D � Q

(c /∈ D and (α = c?w or α = w1 := c(w2))

3.2. ANNOTATIONS FOR TRACKING DIRECT DEPENDENCIES 41

The shield is permeable from the inside out, so that any output carries with
it all accumulated annotations.

a-Shld4
P

α−→a Q

D � P
α−→a D � Q

(α = τ or α is an output action)

For the Let, Case and Cond rules, only the side conditions need to be
changed to erase all annotations before evaluation. The following function erases
the annotations from an annotated expression ε yielding a simple expression e.

[[x]] = x

[[k]] = k

[[(ε1, . . . , εn)]] = ([[ε1]], . . . , [[εn]])
[[{ε1}ε2]] = {[[ε1]]}[[ε2]]
[[{|ε1 |}ε2]] = {| [[ε1]] |}[[ε2]]
[[πi(ε)]] = πi([[ε]])
[[ε1 : c(ε2)]] = [[ε1]]

After extending this definition over annotated boolean expressions in the
obvious way, we can now write all the updated rules:

a-Let
P [π1(w)/x1, . . . , πn(w)/xn]

α−→a P ′

let (x1, . . . , xn) = w in P
α−→a P ′

(∃v1, . . . vn : [[w]] = (v1, . . . , vn))

a-Case
P [{|w1 |}w2/x]

α−→a P ′

case w1 of {x}w2 in P
α−→a P ′

(∃v : [[w1]] = {v}[[w2]])

a-Cond
P

α−→a P ′

if θ then P
α−→a P ′

([[θ]] = true)

Let us take a look at the “encrypter” examples (3.1 and 3.2). In each case,
secret values are input through channel in. The intention is that those values
can only leave the process through channel out and encrypted with the right
key k.

Consider first process s(k) where we take care of dependencies for values
input through channel in. This is done by shielding the process under {in}.
Here is a possible partial execution of s(k):

42 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

{in} � s(k)
in?v−−−→a {in} � out !{v: in}k. s(k)

out !{v: in}k−−−−−−−−−→a {in} � s(k)

We have thus managed to track the evolution of values input through channel
in, but we should also take care of the key. There in no information in the last
transition linking the key used in the expression {v: in}k with the parameter
of the process. To do so, we add a local function call that fetches the actual
parameter, like in S

∆= k := key(). s(k), and shield the resulting process under
D

∆= {in, key}:

D � S
k := key()−−−−−−−−→a D � s(k: key)

in?v−−−→a D � out !{v: in}k:key . s(k: key)

out !{v: in}k:key−−−−−−−−−−−→a D � s(k: key)

We apply the same ideas to the bad encrypters in Example 3.2 similarly
modified to recover the encryption key in first place (i.e., R

∆= k := key(). r(k)
and T

∆= k := key(). t(k)). We start with T :

D � T
k := key()−−−−−−−−→a D � t(k: key)

in?u−−−→a D � out !{u: in}k′ . t(k: key)

out !{u: in}k′
−−−−−−−−−→a D � t(k: key)

Now, the annotations in the last transition tell us that the output does not
have the form we expect from the description of the protocol (see p. 3.1). In
other words, T might not preserve the confidentiality properties of the protocol.

However, the situation is not that clear with R:

D � R
k := key()−−−−−−−−→a D � r(k: key)

in?u−−−→a D � out !{u: in}k:key .

if (u: in) = v then out !{v: in}k:key . 0

out !{u: in}k:key−−−−−−−−−−−−→a D � if (u: in) = v then out !{v: in}k:key . 0

3.2. ANNOTATIONS FOR TRACKING DIRECT DEPENDENCIES 43

Since [[u: in]] = u, if u = v then there are no more enabled transitions.
However, if u = v then the system can perform:

D � if (u: in) = v then out !{v: in}k:key . 0
out !{u: in}k:key−−−−−−−−−−−−→a D � 0

In both situations, the annotations in the outputs do not allow us to rule out
process R as a bad encrypter. The reason is that annotations take only care of
direct dependencies, but process R establishes an indirect dependency between
its input and the quantity of outputs. Treating this kind of dependency requires
extra machinery and is the subject of Chapter 4.

3.2.1 Annotated Purchasing Applet Examples

All of the Purchasing Applet examples represent different implementations of
a very simple protocol. Our intention is to find a way to test whether any of
those implementations preserves the confidentiality of the Customer’s account
information. In all examples, the account number is obtained from channel acc.
We therefore shield some of the implementations of the purchasing applet under
D = {acc}.
Example 3.12 (Straightforward implementation) We consider PA1, as
in example 3.3, shielded under D. The following is a possible trace of a sin-
gle loop iteration of this applet.

D � PA1

acq?v1−−−−−→a D �

(
order?y. acc?z. k := pubKey(v1).
merchant !(v1, y, {y, z}k).PA1

)

order?v2−−−−−−→a D �

(
acc?z. k := pubKey(v1).
merchant !(v1, v2, {v2, z}k).PA1

)

acc?v3−−−−−→a D �

(
k := pubKey(v1).
merchant !(v1, v2, {v2, v3: acc}k).PA1

)

k1 := pubKey(v1)−−−−−−−−−−−−−→aD � (merchant !(v1, v2, {v2, v3: acc}k1)PA1)

merchant !(v1, v2, {v2, v3: acc}k1)−−−−−−−−−−−−−−−−−−−−−−−−−→a D � PA1

Examples 3.4 and 3.5 are similar in the sense that the annotations in the
only output transition coincide with the annotations in the previous example.

44 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

Example 3.13 Example 3.7 illustrated a direct leak of the user account infor-
mation. This is also evident in the annotations of the shielded process:

D � MA1 →∗
a

merchant !(v1, v3: acc, {v2, v3: acc}k1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→a D � MA1

Example 3.14 Example 3.11 showed another way of leaking the user account
information, this time by using a different public key for encryption. However,
in this case, this is not obvious from a simple observation of the annotated
actions of the shielded process:

D � MA5 →∗
a

merchant !(v1, v2, {v2, v3: acc}k1)−−−−−−−−−−−−−−−−−−−−−−−−−→a D � MA5

We could fix this problem using the shield D′ ∆= {acc, acq , pubKey} to obtain:

D′ � MA5 →∗
a

merchant !(v1 : acq , v2, {v2, v3: acc}k1:pubKey(MerchantId))−−−→a D′ � MA5

Now it is evident that the output is not the desired one. With D′ as the shield,
an output exhibiting dependencies of the account number should have the form:

merchant !(v1 : acq , v2, {v2, v3: acc}k1:pubKey(v1:acq))

However, it is not really necessary to use a bigger set than D as the shield.
The same mechanisms used to detect indirect dependencies can be used to detect
the insecure flow in Example 3.11. Those mechanisms include their own tracking
of data, introducing some redundancy that can be exploited to keep the smaller
shield (see Chapter 4).

3.2.2 Annotated Wide-Mouthed Frog Protocol Example

As discussed before, to guarantee the admissible treatment of shared and session
keys in the Wide-Mouthed Frog protocol, it suffices to control the uses of the
shared keys. This is achieved by shielding S under channel key. Figure 3.2
represents the executions of D � S where D = {key}.

3.3 Annotations are Conservative

The introduction of a-SecPA would not be complete if we did not state how
its semantics compares against the semantics of SecPA. The main result of this
section states that, in passing from SecPA to a-SecPA, we do not loose behaviors.
This can be interpreted as giving more evidence to support what was hinted by
the examples of Section 3.2, i.e. that we can analyse the properties of a SecPA
process by first converting it into a a-SecPA process.

3.3. ANNOTATIONS ARE CONSERVATIVE 45

S4

cS?v3

S3

cS?v′
1

S2

v2 := nonce()

D � S

S7

S8

cS?v′
1

cS?v4
cS?v′

1 cS?v′
1

out !(w1, ∗)

S6

k1 := key(v1)

S1

cS?v1

out !(v1, v2)

cS?v′
1

w1 = π3({|π2(v3) |}k1:key(v1)) w2 = π4({|π2(v3) |}k1:key(v1))

k2 := key(w1)

out !(w1, {′s′, v1, w1, w2, v4}k2:key(w1))

S5

Figure 3.2: Annotated Wide-Mouthed Frog Server Implementation

We start by relating process terms in a-SecPA to process terms in SecPA
using the function erase: a-SecPA → SecPA that eliminates the annotations
from the expressions contained in an a-SecPA process.

The definition is given over the structure of process terms:

erase(0) = 0
erase(τ.P) = τ.erase(P)
erase(c!ε.P) = c![[ε]].erase(P)
erase(c?x.P) = c?x.erase(P)
erase(x := c(ε).P) = x := c([[ε]]).erase(P)
erase(

∑
i∈I Pi) =

∑
i∈I erase(Pi)

erase(P |Q) = erase(P) | erase(Q)
erase(P\L) = erase(P)\L
erase(P/L) = erase(P)/L

erase(if θ then P) = if [[θ]] then erase(P)
erase(let (x1, . . . , xn) = ε in P) = let (x1, . . . , xn) = [[ε]] in erase(P)

46 3. A MODEL FOR CRYPTOGRAPHIC PROCESSES

erase(case ε1 of {x}ε2 in P) = case [[ε1]] of {x}[[ε2]] in erase(P)
erase(C(ε1, . . . , εn)) = C([[ε1]], . . . , [[εn]])
erase(D � P) = erase(P)

It is easy to verify how [[·]] and erase(·) commute with variable substitutions:

Lemma 3.15 Given annotated expressions εi, annotated boolean expression θ
and a-SecPA process P, we have:

1. [[ε1[ε2/x]]] = [[ε1]][[[ε2]]/x]

2. [[θ[ε/x]]] = [[θ]][[[ε]]/x]

3. erase(P [ε/x]) = erase(P)[[[ε]]/x]

A bit to the side, we extend the definition of [[·]] over a-Act. It helps keep
the notation simple:

[[τ]] = τ

[[c!w]] = c![[w]]
[[c?w]] = c?[[w]]
[[w1 := c(w2)]] = [[w1]] := c([[w2]])

The following two results show that erase(·) and [[·]] define a morphism from
the semantics of a-SecPA into the semantics of SecPA. In other words, every
trace of an a-SecPA process can be purged of annotations to obtain a trace in
SecPA.

Lemma 3.16 Let P be a process term in a-SecPA, and α an action in a-Act.
Then erase(P) is a process term in SecPA and [[α]] is an action in Act. More-
over, for all SecPA process Q, erase(Q) = Q.

Proposition 3.17 Let P and Q be process terms in a-SecPA and α in a-Act

such that P
α−→a Q. Then erase(P)

[[α]]−−→ erase(Q) in SecPA.

The following proposition establishes a corresponding dual relation, when
considering processes in a-SecPA that do not contain shields.

Proposition 3.18 Let P be a process term of a-SecPA without shields. For all

Q′ in SecPA, β ∈ Act such that erase(P)
β−→ Q′,

• if β = c!v or β = τ then there are α ∈ a-Act and Q in a-SecPA s.t.

P
α−→a Q, Q′ = erase(Q) and [[α]] = β.

3.3. ANNOTATIONS ARE CONSERVATIVE 47

• if β = c?v then for all w ∈ a-Val s.t. [[w]] = v, there is Q in a-SecPA s.t.

P
c?w−−−→a Q and Q′ = erase(Q).

• if β = (v1 := c(v2)) then for all w1 ∈ a-Val s.t. [[w1]] = v1, there are

Q in a-SecPA and w2 ∈ a-Val s.t. P
w1 := c(w2)−−−−−−−−−→a Q, [[w2]] = v2 and

Q′ = erase(Q).

Corollary 3.19 Given P a process in a-SecPA without shields, Q′ in SecPA

and β ∈ Act satisfying erase(P)
β−→ Q′, there are α ∈ a-Act and Q in a-SecPA

s.t. P
α−→a Q, Q′ = erase(Q) and [[α]] = β.

Using the second part of Lemma 3.16, the following corollary shows that a
process in SecPA does not loose traces when considered as a process in a-SecPA.

Corollary 3.20 Let P be a process term in SecPA. If P
β1−→ P1

β2−→ . . .
βn−−→ Pn

then there are α1,. . . ,αn ∈ a-Act, and P̄1,. . . ,P̄n in a-SecPA such that P
α1−−→a

P̄1
α2−−→a . . .

αn−−→a P̄n where [[αi]] = βi and erase(P̄i) = Pi, for 1 ≤ i ≤ n.

In all our examples, we have been interested in the shielded process D � P
where, initially, P is a process in SecPA. In those cases, we can be very precise
when comparing traces of P in SecPA with traces of D � P in a-SecPA.

Corollary 3.21 Let P be a process term in SecPA and D a set of channels.

If P
β1−→ P1

β2−→ . . .
βn−−→ Pn then there are α1,. . . ,αn, and P̄1,. . . ,P̄n such that

D � P
α1−−→a P̄1

α2−−→a . . .
αn−−→a P̄n, and for all 1 ≤ i ≤ n:

• erase(P̄i) = Pi

• if βi = τ then αi = βi

• if βi = c!v, then αi = c!w, [[w]] = v

• if βi = c?v, then αi = β1

• if βi = v1 := c(v2), then αi = v1 := c(w2), [[w2]] = v2

• for every subexpression w′ : d(w′′) of αi, w′ is a value and d ∈ D

Chapter 4

Confidential Protocol
Implementation

The formal languages of the previous chapter allowed us to express and discuss
quite a few implementations of different (simple) cryptographic protocols. From
the discussions, we can draw two main conclusions: First, that practice demands
a very flexible notion of implementation. Second, since any notion of implemen-
tation is intimately related to the concept of specification, it is fundamental to
understand how a protocol represents such a specification.

Being more concrete, we want to define “confidential protocol implemen-
tation”, which means that we have to extract from a protocol some sort of
confidentiality policy, a high-level overall plan covering the amount and quality
of information that each observer of the protocol is allowed to infer. Given that
it is probably very difficult to capture such a loose mixture of information and
knowledge restrictions, we take an indirect approach. The idea is to understand
a protocol as defining the dependencies that any confidential implementation
may at most establish between secret data and observable behavior. This set
of dependencies constitutes the confidentiality policy associated to the proto-
col. Moreover, we assume that the protocol has been verified separately, to
prove that its set of dependencies actually implies the desired confidentiality
properties.

A policy should specify very precisely the dependencies that are considered
admissible, without otherwise placing excessive requirements on the implemen-
tation relation. If the policy were smaller (i.e. admitted less dependencies), then
most realistic and safe implementations of the protocol would be rejected. If
it were bigger (i.e. admitted more dependencies than the protocol), programs
with insecure flows may be considered to implement the protocol.

Although this might sound simple enough, it is definitely not so. Again, the
concept of secret plays a central role. For the Purchasing Applet examples, if
we chose to consider the account number as the only secret, we would open up

49

50 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

the door to implementations that leak the key, which in turn lets an observer
get to the account number. Fortunately, we can rely on the analysis of the
protocol. Any such analysis must necessarily identify the initial knowledge of
the attacker. Whatever is not known by the attacker, might be safely assumed
to be a secret. In principle the protocol analysis indicates what the secrets are.

We can now give the intuition behind our notion of confidential protocol
implementation. A program confidentially implements a protocol if its own
set of secret dependencies is bounded by the confidentiality policy associated
to the protocol. It all then reduces to the ability to collect the dependencies
established by a program. But, how does one go about determining the set of
dependencies? Naturally, the usual noninterference models, where dependencies
on secrets (high-level data) are prohibited, are of little help. The language of
Chapter 3 lets us express our implementations, where it is possible to deter-
mine direct dependencies on secrets with the aid of the annotations in a-SecPA.
However, as it was noticed in the cases of encrypter R (p. 42) and Example 3.14
(with D = {acc}), this does not suffice. Indeed, the annotations in a-SecPA
were never meant to cope with all dependencies. They are just a piece of a
mechanism to track strong dependencies [Coh78] between secret inputs and be-
haviors.

Cohen defined strong dependencies in the context of state transformers as
a relation between initial and end values of program variables. Obviously, the
approach does not apply directly to our SecPA processes, which are indeed
reactive systems where the concept of variable is more diffuse. Instead, our
intention is to capture dependencies by correlating changes in system behav-
ior with changes in input. For the purchasing applet example, changes in the
confidential parameter, say z, received as part of a message

acc?z (4.1)

should give rise to “proportional” changes in applet output messages

merchant !(x, y, {(y, z)}k) (4.2)

but affect applet behavior in no other way. To make this idea precise the
following ingredients are needed:

1. a notion of behavior equivalence, and

2. a mechanism to model changes in values and their effects, as changes in
actions.

Several equivalences have been considered in the information flow theory litera-
ture, including trace equivalence [GM82, GM84a], failures equivalence [RG99],
and bisimulation equivalence [FG95]. The work reported here is to a large ex-
tent independent of the specific choice of equivalence, so it suffices for now to
just assume the existence of some equivalence relation on states, ∼, reflecting
the idea of behavior identity, or indistinguishability by an external observer.

4.1. SECRETS AND CONFIDENTIALITY POLICIES 51

To model action changes we use the notion of a relabelling as a mapping
permuting actions. Relabellings are used to enforce the correlation between
received and transmitted values required for confidentiality. This justifies our
presentation of a-SecPA, as the definition of a relabelling is made possible by
the extra information included in annotated actions and values.

This chapter proceeds as follows: First, we make precise the notion of con-
fidentiality policy (an intensional specification of a secrecy specification) and
produce policies for our examples from Chapter 3. Then, we use the encrypter
examples to motivate our use of relabelling functions to detect dependencies
outside the policy. In third place, we show how to associate a set of relabelling
functions to a policy, which lets us define the desired implementation relation,
Admissibility. We conclude by applying the resulting definition to some exam-
ples which hint on an efficient method to verify it. The following chapter studies
the relationship between admissibility and Cohen’s work on confidentiality.

4.1 Secrets and Confidentiality Policies

A secret is a piece of data, a value. As such, it must either be present within
the system before execution starts, or be input as the system executes.

In our model, secrets enter a system only by being input (if, like in the
encrypter examples, a certain secret value resides within the system before it
starts executing, we introduce an initial input to avoid having to treat this
case separately). A credit card number provided by the user enters the system
through an appropriately labelled entry channel. In other words, we characterize
data by the channels used to input it. If the channel is considered to be a secret
channel, then the input value is taken to be a secret. This, of course, requires the
channel to be a trusted one. In other words, that the attacker cannot observe
and/or meddle with the data carried by it. For example, the credit card number
mentioned above is assumed to be provided by the local trusted computing base
(TCB) through a channel that is not observable (even indirectly) by the attacker.

Besides secrets, we also consider critical inputs, values that are used to
identify admissible dependencies. For example, in the case of the purchasing
applets, the key used to encrypt the user’s credit number is a critical value, for
only if the right key is used the dependency is admissible.

Let E indicate the set of channels through which secrets can enter the system;
and C those channels whose inputs are not secrets themselves (E ∩ C = ∅) but
would be used to identify admissible outputs carrying partial secret information.

If P
c(v1)?v2−−−−−−→ Q and c ∈ E , then v2 is a secret whose evolution throughout

Q’s behavior we should track in order to identify the outputs that depend upon
it. Direct dependencies will be tracked using the annotations of Chapter 3, while
indirect dependencies will be controlled by applying the techniques described in
the following sections.

Having identified secrets and critical inputs, we are now in a position to de-

52 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

fine confidentiality policies that describe what information (dependent on those
secrets) can be downgraded, on which channel and when. This will constitute
a high-level description of the property to achieve by means of relabelling sets
and process equivalences.

Definition 4.1 (Confidentiality Policy) A confidentiality policy is a triple
(E , C,A). The sets E and C are as described above and A is an indexed set of
clauses of the form

j : c!e← c1(e1)(x1) ∧ . . . ∧ cn(en)(xn) ∧ b

where j ∈ J is an index identifying the clause, e ∈ Expr, b ∈ BoolExpr, and
for all 1 ≤ i ≤ n, ci ∈ E ∪ C, ei ∈ Expr and variables in ei do not belong to
{xi, . . . , xn}.

The restriction on the variables appearing in each ei lets us annotate those
that correspond to secret inputs. To make this explicit, we define a function
Ann:Expr → a-Expr for each clause in A

Ann(x) =

{
xi : ci(Ann(ei)) if x = xi and ci ∈ E
x otherwise

Ann(k) = k

Ann(e1, . . . , en) = (Ann(e1), . . . ,Ann(en))
Ann({e1}e2) = {Ann(e1)}Ann(e2))
Ann(pi(e)) = pi(Ann(e))

Then for each ei appearing in a clause of A, we have that Ann(ei) is an expres-
sion where all variables appearing in it are annotated.

Intuitively, a clause in the policy declares an output matching c!e (similarly,
a function call of the form v := c(e)) to be admissible if the conditions to the
right of the arrow are satisfied. Conjuncts of the form ci(ei)(xi) are satisfied if
variable xi matches the last input from channel ci(ei). As before, conjuncts of
the form c()(x) will be written c(x). Finally, the boolean expression b represents
an extra condition by establishing a relation between the values input through
the different channels.

More formally, let a context s be a partial mapping assigning values to
channels. We call Context ∆= [Ch → a-Val→ Val] the set of all possible contexts.
The square brackets indicate that a Context is a partial function; intuitively, it
records the context in which an output takes place, by listing the last input
received over each channel. The second parameter, an annotated action, is
used to cope with return values from function calls. Local function names are
considered to be channels. Note that we only need the value of a context over
channels in E ∪C, but including all other channels causes no harm and simplifies
some definitions.

Given a context, we decide whether a particular output taking place in that
context is admitted by the policy.

4.1. SECRETS AND CONFIDENTIALITY POLICIES 53

Definition 4.2 (Admissible Output) Let α be an annotated action of the
form c!w or w′ := c(w). A confidentiality policy (E , C,A) admits annotated
action α in context s iff either

• no channel annotation in w belongs to E (that is, the output does not
depend directly on any secret entry), or

• there is a clause j : c!e ← c1(e1)(x1) ∧ . . . ∧ cn(en)(xn) ∧ b in A and
a substitution σ assigning values to variables, such that: Ann(e)σ = w,
s(ci(Ann(ei)σ)) = xiσ, for every 1 ≤ i ≤ n, and bσ = true.

In this situation, we write (E , C,A), s �j α ok. By dropping the index, like in
(E , C,A), s � α ok, we indicate the existence of an appropriate index j such that
the assertions above hold.

Notice that we have defined this property over annotated actions. If we
had limited ourselves to actions without annotations, first there would be no
information to determine whether an output depends on secrets. Furthermore,
even if we had just added a single bit annotation to identify values depending
on secrets, there would be a high risk of confusing an inadmissible output with
an admissible one (cf. Example 3.7). We will return to this issue after the
introduction of relabelling functions.

The notation for confidentiality policies leaves implicit a very important
feature: While a given policy indicates which outputs and local function calls
are considered admissible, it also restricts the information an observer can learn
from any of them. If (E , C,A), s � c!w ok holds because of clause j : c!e ←
c1(e1)(x1) ∧ . . . ∧ cn(en)(xn) ∧ b in A, an observation of c![[w]] can only convey
to an observer the knowledge of the occurrence of all needed inputs plus the
existence of a substitution σ satisfying condition b. This strong restriction on
information flow will be enforced by deriving an appropriate set of relabellings
for each confidentiality policy.

Lemma 4.3 Let (E , C,A), s � α ok where α = o!w or α = (v := o(w)). If
v0 : c(w0) is a subterm of w and c ∈ E, then s(c(w0)) = v0.

Proof. See Appendix A.

We conclude this section by providing confidentiality policies for the three
main examples introduced in Chapter 3.

Example 4.4 (Confidentiality Policy for the Encrypter)
Clearly, the secret to protect is input through channel in, but we should protect
also the access to the shared keys stored at the encrypter process. The latter
corresponds to channel key, and therefore E = {in, key}. There are no critical
outputs needed to characterize admissible outputs: C = ∅. Finally, the set A
contains the single clause:

0 : out !{x}k ← in(x) ∧ key(k)

54 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

which states that the only output allowed to depend on secrets input through E
is obtained by encrypting in’s input with key’s input.

Example 4.5 (Confidentiality Policy for the Purchasing Applets)
We are mainly interested in protecting the confidentiality of the user account in-
formation and then E = {acc}. However, we have noticed before that, to protect
the account number, we also need to make sure that the right public-key is used
to encrypt the sensitive outputs of the applet. Therefore, C = {acq , pubKey}.
The set A contains the single clause:

0 : merchant !(x, y, {(y, z)}k)← acq(x) ∧ acc(z) ∧ pubKey(x)(k)

Notice how variable y is not bound to the right of the clause, reflecting the
fact that we do not put any requirement on the format of the order beyond the
restriction that it should not be used to encode secret information.

Example 4.6 (Confidentiality Policy for the WMF protocol)
As noted in Section 3.1.2, the confidentiality of the session key xkey is guar-
anteed by the protocol. This is true provided that (among other things) the
confidentiality of the keys shared by the server with the participating principals
is preserved. That is, we should keep a tight control over accesses to the key
store, and therefore E = {key}.

The server is allowed to establish a dependency between the value of the
session key and its own behavior. However, this can only occur under some
restricted circumstances. For example, the server should have previously received
a 5-tuple (with the nonce NS as its fifth coordinate) encrypted under xA’s shared
key. This implies that the channel associated to the nonce generation function
is to be considered critical: C = {nonce}.

Of the three outputs that the server is expected to perform according to the
specification of the Wide-Mouthed Frog protocol (Table 3.1), only those corre-
sponding to messages 4 and 6 are allowed to leak partial information about inputs
from E. In both cases, the identity of the receiver (i.e. B) is obtained from Mes-
sage 3 using key KAS. Message 6 also requires key KBS. However these are
not the only outputs that the server can only construct if it knows the identity
of B. Clearly, we should also consider the function call used to determine B’s
shared key (Table 3.2, row 13). The corresponding clauses in the confidentiality
policy are:

0 : out !(π3({|x |}kA
), ∗) ← nonce(NS) ∧ key(xA)(kA)

∧ {|x |}kA
= (xA, xA, xB , xkey , NS)

1 : key !π3({|x |}kA
) ← nonce(NS) ∧ key(xA)(kA)

∧ {|x |}kA
= (xA, xA, xB , xkey , NS)

2 : out !(π3({|x |}kA
), {′s′, xA, π3({|x |}kA

), π4({|x |}kA
), ynonce}kB

)←
nonce(NS) ∧ key(xA)(kA) ∧ key(pi3({|x |}kA

))(kB)
∧ {|x |}kA

= (xA, xA, xB , xkey , NS)

4.2. TOWARDS A NOTION OF CONFIDENTIAL IMPLEMENTATION 55

4.2 Towards a Notion of Confidential Implemen-
tation

We illustrate the approach in the context of the Encrypter systems (Exam-
ples 3.1 and 3.2). For the time being, we will prioritize simplicity over formality
in order to give a flavor of the approach and its difficulties.

Process Relabelling In CCS, a process P can be relabelled under a rela-
belling function f rendering a new process P [f] whose semantics is given by the
following rule:

P
α−→ Q

P [f]
f(α)−−−→ Q[f]

where f is required to satisfy f(τ) = τ and f(α) = f(α) for every action α.
We extend this definition to SecPA, but we treat value-passing actions slightly

differently from the way they are treated in value-passing CCS : A relabelling
function f :Act→ Act is requested to satisfy:

• Channels should be respected: For every channel c and every value v,
there is a value v′ such that f(c?v) = c?v′ and f(c!v) = c!v′,

As an example in the context of the Encrypter systems (Ex. 3.1 and 3.2),
consider any relabelling f : Act→ Act satisfying

f(in?v) = in?w
f(in?w) = in?v
f(out!{v}k) = out!{w}k′

f(out!{w}k) = out!{v}k′

f(α) = α, for all other actions.

where k and k′ are some fixed key values.
Notice how f permutes all inputs, but only the outputs that any good im-

plementation of an Encrypter is expected to perform.

Example 4.7 (Relabelled systems)

Encrypter: For process s(k′) of Example 3.1, we get the following transition
system for s(k′)[f]

s1(k′)[f]

out !{w}k in?v

out !{v}kin?w

s0(k′)[f] s(k′)[f]

56 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

Bad Encrypter #1: For r(k′) of Example 3.2, the relabelled transition system
r(k′)[f] is

r3(k′)[f]r1(k′)[f]

in?v

in?w

out !{w}k out !{w}k

r(k′)[f]

r4(k′)[f]r2(k′)[f]

r5(k′)[f]

out !{v}k

Bad Encrypter #2: When t(k′) is defined as in Example 3.2, the relabelled
transition system t(k′)[f] is

t2(k′)[f]

out !{v}k

in?v

in?w

out !{w}k

t1(k′)[f] t(k′)[f]

An approach to confidentiality Each Encrypter system can be compared
against its corresponding relabelled version using some behavior equivalence. If
we use strong equivalence, we obtain:

Encrypter: s(k′)[f] ∼ s(k)
Bad Encrypter #1: r(k′)[f] ∼ r(k)
Bad Encrypter #2: t(k′)[f] ∼ t(k)

We can see that relabelling f , which intuitively permutes all inputs and only
admissible outputs, lets us detect the presence of inadmissible information flows
in both Bad Encrypter examples.

The proposal is therefore to cast confidentiality as invariance, up to state
equivalence, under a set F of relabellings.

The difficulties Realizing this approach presents both conceptual and tech-
nical difficulties. The former include the identification of what information
is actually protected (i.e., what the secrets are, see Section 4.1) and what is
achieved by using a given relabelling set F (i.e., what confidentiality property
it represents, see Chapter 5).

4.3. CONDITIONAL PROCESS RELABELLING 57

From a technical point of view, our preliminary definition of a relabelling
function needs to be extended to cope with more elaborate systems and confi-
dentiality requirements (like those posed by the Wide-Mouthed Frog protocol
in Section 3.1.2). The fundamental observation is that, if a relabelling permutes
an output value, then the way this value is permuted depends on the permu-
tation of the input values used to construct it. We work with a-SecPA since,
in this calculus, the information needed to define such a relabelling is stored in
the value annotations themselves. The results by the end of Chapter 3, linking
the semantics of a-SecPA to that of SecPA, justify this decision. Defining the
set of relabelling functions F so that is represents a given confidentiality policy
is also a delicate matter.

The rest of this chapter is dedicated to solving the technical difficulties listed
above, defining our notion of confidential protocol implementation and illustrat-
ing with examples.

4.3 Conditional Process Relabelling

We aim at modelling a confidentiality policy as a property of processes with an
associated verification technique. As a first step, we consider general relabelling
functions whose definition depends on the history of inputs. We also consider
the application of these relabellings to processes in a-SecPA.

In the previous section, we applied a relabelling to all three encrypter ex-
amples, written in SecPA. The intention was to make a point about the use of
relabellings to restrict admissible information flow, and therefore the machinery
was kept to a necessary minimum. Providing a general enough definition poses
three main requirements over a relabelling. Firstly, when a relabelling permutes
an input to another value, it should keep that permutation and apply it every
time that input value forms part of an output. Secondly, a relabelling should
not map an admissible output into an inadmissible one. Finally, a relabelling
function might depend on what inputs have been performed in the past, and
relations between them (just like in the clauses of the confidentiality policy).

The first requirement is met by resorting to a-SecPA. In this language, every
output value is annotated with the inputs it depends on. It is then easy to make
sure that a relabelling permutes values in a consistent way, by associating it to
a single secret permuter:

Definition 4.8 (Secret Permuter) Given a set E of secret input channels, a

58 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

secret permuter is a function g: a-Val→ a-Val which satisfies g−1 = g and

g(k) = k

g(w1, . . . , wn) = (g(w1), . . . , g(wn))
g({w1}w2) = {g(w1)}g(w2)

g(pi(w)) = pi(g(w))

g(w1 : c(w2)) =

⎧⎪⎨
⎪⎩

v : c(g(w2)) for some value v, if c ∈ E and
w1 is a value

g(w1) : c(g(w2)) otherwise

A secret permuter g preserves the annotations in an annotated value ex-
pression. It only permutes values that do not contain annotations and have
been input through channels in E . Observe that the definition implies that for
every value v and every parameterized channel c(w), there is a value v′ such
that g(v : c(w)) = v′ : c(g(w)). Moreover, when w = (), g(v : c) = v′ : c. This
property will prove important in the permutation of inputs of a shielded process
(see Section 3.2).

Our second requirement for the definition of relabelling concerns the preser-
vation of admissible outputs (see Definition 4.2).

Definition 4.9 (Secret Permuter that Preserves Admissible Outputs)
Given a confidentiality policy (E , C,A) and a secret permuter g, then g is said
to preserve admissible outputs if

(E , C,A), s �j c!w ok⇔ (E , C,A), g(s) �j c!g(w) ok

and

(E , C,A), s �j w1 := c(w2) ok⇔ (E , C,A), g(s) �j w1 := c(g(w2)) ok

The permuted context g(s) is defined by

g(s)(c(w)) = [[g(s(c(w′)) : c(w′))]]

where w′ = g(w).

The third requirement placed upon a general definition of relabelling func-
tion is that this function should depend on the evolution of the system to be
relabelled. We abstract that evolution by means of a labelled transition system
R = (Context , a-Act,→, s0) where:

• each state is a context,

• the initial state, s0, is the empty map in Context, and

4.3. CONDITIONAL PROCESS RELABELLING 59

• the transition relation .→ ⊆ Context × a-Act×Context is given by the
rules:

s
τ−→ s s

c?w−−−→ s[c() �→ [[w]]]

s
c!w−−→ s s

w1 := c(w2)−−−−−−−−−→ s[c(w2) �→ [[w1]]]

The notation s[c(w) �→ v] indicates the standard redefinition of mapping
s over c(w) so that

s[c(w) �→ v](c′(w′)) =

{
v c = c′, w = w′

s(c′(w′)) otherwise
.

The idea is to define a relabelling to consist of a pair (R, f) where R is
the labelled transition system defined above and f :Context × a-Act → a-Act
permutes actions depending on the current state (i.e., context) of R. Since R is
fixed, we should identify a relabelling by simply showing its f function.

We can now combine the two solutions by limiting our interest to relabellings
defined in terms of secret permuters and a confidentiality policy:

Definition 4.10 (Conditional Relabelling) Let (E , C,A) be a confidential-
ity property and g a secret permuter that preserves admissible outputs. We
define a conditional relabelling fg:Context× a-Act→ a-Act:

fg(s, τ) = τ

fg(s, c?w) = c?w′ where w′ : c = g(w : c)

fg(s, w1 := c(w2)) =

{
w′

1 := c(g(w2)) if (E , C,A), s � w1 := c(w2) ok

w′
1 := c(w2) otherwise

where w′
1 : c(g(w2)) = g(w1 : c(w2))

fg(s, c!w) =

{
c!g(w) if (E , C,A), s � c!w ok

c!w otherwise

We conclude the section by adding a conditional relabelling operator to a-
SecPA. The semantics of this operator will use R to keep track of the inputs
performed by the process. It will then apply f to relabel the current input.

Proposition 4.11 Let (E , C,A) be a confidentiality policy and g a secret per-
muter that preserves admissible outputs. Then, for all action α ∈ a-SecPA and
all context s,

fg(g(s), fg(s, α)) = α

Proof. The proof is done by a simple case analysis over the definition of fg,
using that g−1 = g.

Lemma 4.12 If s
α−→ s′ then g(s)

fg(s, α)−−−−−−→ g(s′)

60 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

Proof. See Appendix A.

Definition 4.13 (Conditionally relabelled process) Given an a-SecPA
process P0 and a conditional relabelling f , P0[s0 � f] is a conditionally relabelled
process whose semantics is given by the following rule:

P
α−→a P ′ s

α−→ s′

P [s � f]
f(s, α)−−−−−→a P ′[s′ � f]

4.4 Admissibility

In the previous section, we introduced all the machinery needed to formalize
the ideas sketched in the introduction to this chapter. Here we define when a
SecPA process satisfies a confidentiality policy.

Definition 4.14 (Admissibility) A SecPA process P is called admissible w.r.t.
confidentiality policy (E , C,A) if

E � P ∼ (E � P)[s0 � fg]

for every possible conditional relabelling fg.

Consider our straightforward implementation of a purchasing applet (Exam-
ple 3.3). To ease our manipulation of the reachable states of process E � PA1,
where E = {acc}, we adopt the following abbreviations:

p0
∆= E � PA1

p1(x) ∆= E �

(
order?y. acc?z. k := pubKey(x).
merchant !(x, y, {y, z}k).PA1

)

p2(x, y) ∆= E �

(
acc?z. k := pubKey(x).
merchant !(x, y, {y, z}k).PA1

)

p3(x, y, z) ∆= E �

(
k := pubKey(x).
merchant !(x, y, {y, z: acc}k).PA1

)

p4(x, y, z, k) ∆= E � (merchant !(x, y, {y, z: acc}k).PA1)

From Example 3.12, we know that

p0
acq?v1−−−−−→a p1(v1)

order?v2−−−−−−→a p2(v1, v2)
acc?v3−−−−−→a p3(v1, v2, v3)

k1 := pubKey(v1)−−−−−−−−−−−−−→a p4(v1, v2, v3, k1)
merchant !(v1, v2, {v2, v3: acc}k1)−−−−−−−−−−−−−−−−−−−−−−−−−→a p0

4.4. ADMISSIBILITY 61

Now, we show that PA1 is an admissible process w.r.t. to the confidentiality
policy as given in Example 4.5. We need to establish that, for every possible
secret permuter g,

p0 ∼ p0[s0 � fg]

Consider therefore, for each secret permuter g, the relation

Rg
∆= {(p0, p0[s0 � fg]), (p1(v1), p1(v1)[s1 � fg]),

(p2(v1, v2), p2(v1, v2)[s2 � fg]),
(p3(v1, v2, v3), p3(v1, v2, v

′
3)[s3 � fg]),

(p4(v1, v2, v3, k1), p4(v1, v2, v
′
3, k1)[s4 � fg]) |

s1 = s0[acq �→ v1], s2 = s1[order �→ v2], s3 = s2[acc �→ v′3],
s4 = s3[pubKey(v1) �→ k1], v′3 : acc = g(v3 : acc)}

Take any such secret permuter g and let v′3 : acc = g(v3 : acc). Observe that
the relabelled system p0[s0 � fg] then exhibits the following trace:

p0[s0 � fg]
acq?v1−−−−−→a p1(v1)[s1 � fg]

order?v2−−−−−−→a p2(v1, v2)[s2 � fg]

fg(s2, acc?v′3)−−−−−−−−−−→a p3(v1, v2, v
′
3)[s3 � fg]

k1 := pubKey(v1)−−−−−−−−−−−−−→a p4(v1, v2, v
′
3, k1)[s4 � fg]

fg(s4,merchant !(v1, v2, {v2, v
′
3: acc}k1))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→a p0[s4 � fg]

Since fg(s2, acc?v′3) = acc?v3, we have

p2(v1, v2)[s2 � fg]
acc?v3−−−−−→a p3(v1, v2, v

′
3)[s3 � fg]

and, because (E , C,A), s4 � merchant !(v1, v2, {v2, v
′
3: acc}k1) ok (using A as

given in Example 4.5), we have

p4(v1, v2, v
′
3, k1)[s4 � fg]

merchant !(v1, v2, {v2, v3: acc}k1)−−−−−−−−−−−−−−−−−−−−−−−−−→a p0[s4 � fg]

These observations cover most of the cases in checking that R is a bisimulation
relation. It only remains to verify that p0 R p0[s4 � fg]. But this is immediate
from the observation that p0[s4 � fg] ∼ p0[s0 � fg], since the values of s4 over
E ∪ C will be replaced by new ones before they can be used to decide whether
an output is admissible in the future behaviors of p0[s4 � fg].

4.4.1 Verifying Admissibility

We can draw some conclusions from the way the example has been analyzed in
the previous section. A first observation is that, by giving the abbreviations pi

62 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

(i = 1 . . . 4), we have actually identified and separated control (i.e. the index i)
from data (i.e. the parameters of each pi) much like as if we were dealing with
an imperative program. A second, very important observation is that the flow
of control is not altered by the relabelling. For example, if

p2(v1, v2)
β−→a p3(v1, v2, v3)

then

p2(v1, v2)[s2 � fg]
β−→a p3(v1, v2, v

′
3)[s3 � fg],

which holds only if there is α such that p2(v1, v2)
α−→a p3(v1, v2, v

′
3) and β =

fg(s2, α).
If fact, it is possible to generalize this procedure to other processes, and thus

simplify the verification of our confidentiality property. The following theorem
states this result:

Theorem 4.15 Let (E , C,A) be a confidentiality property. Given p ∈ SecPA,
assume there is a partial function p () :N × Context → a-SecPA satisfying:

P1) (E � p) = p0(s0),

P2) if pi(s)
α−→a p′ then ∃j. p′ = pj(s′) where s

α−→ s′, and

P3) if pi(s)
α−→a pj(s′) then pi(g(s))

fg(s, α)−−−−−−→a pj(g(s′)), for all secret per-
muter g that preserves admissible outputs.

Then process p is admissible w.r.t. (E , C,A).

Although we have basically all the elements to give a proof of this statement,
this will wait till next chapter, where the machinery developed there will help
us produce a rather simple proof (see Section 5.3). This theorem represents a
considerable simplification over the direct proof strategy. The specific definition
and check of a bisimulation relation is replaced by simple and local conditions
which ensure the bisimulation property of some fixed relation.

It is important to notice that Theorem 4.15 can be applied even in cases
when the program exhibits branching of control flow based on secret data. This
works, of course, provided that the branching is admissible, as described by the
confidentiality policy.

As an example, we prove that the server implementation of the Wide-
Mouthed Frog protocol of Section 3.1.2 (Table 3.2) is indeed admissible w.r.t.
the confidentiality policy given in Example 4.6.

To start with, we define p () :N × Context → a-SecPA taking Figure 3.2 as
a guide, so that to each state Si in the figure we associate an a-SecPA process
pi(si) with an appropriate Context si. There is only one variant though: Since
a context keeps only the last input from each channel, and we have to compare

4.4. ADMISSIBILITY 63

p0(s)
∆= E � c1

S?xA.p1(s0[c1
S �→ xA])

p1(s)
∆= E � NS := nonce().p2(s[nonce() �→ NS])

p2(s)
∆= E � out !(s(c1

S), s(nonce())).p3(s)

p3(s)
∆= E � (p0(s) + c2

S?x.p4(s[c2
S �→ x]))

p4(s)
∆= E � (p0(s) + kA := key(s(c1

S)).p5(s[key(s(c1
S)) �→ kA]))

p5(s)
∆= E �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0(s) + let (x′
A, xcipher) = s(c2

S) in

if x′
A = s(c1

S) then

case xcipher of {y}s(key(s(c1
S))):key(s(c1

S)) in

let (yA, zA, xB , xkey , xnonce) = y in

if (yA = s(c1
S) ∧ zA = s(c1

S)∧
xnonce = s(nonce())

then

out !(xB , ∗).p6(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p6(s)
∆= E � (p0(s) + c3

S?ynonce .p7(s[c3
S �→ ynonce]))

p7(s)
∆= E � (p0(s) + kb := key(w1).p8(s[key(w1) �→ kB]))

p8(s)
∆= E � out !(w1, {′s′, s(c1

S), w1, w2, s(c3
S)}s(key(w1)):key(w1)).p0(s)

Table 4.1: Control flow for Wide-Mouthed Frog server implementation

different inputs from channel cS , we identify each different usage of the channel
with a superscript, like in c1

S . The result appears in Table 4.1, where we have
adopted the following abbreviations

w1 = π3({|π2(s(c2
S)) |}s(key(s(c1

S))):key(s(c1
S)))

w2 = π4({|π2(s(c2
S)) |}s(key(s(c1

S))):key(s(c1
S)))

Furthermore, we take pi(s) as defined only if s contains all the mappings that
appear on the definition of pi(s); and, for pi(s) with i = 6, 7, 8, we also require
the existence of values v and v′ such that

π1(s(c2
S)) = s(c1

S) (4.3)

and
{|π2(s(c2

S)) |}s(key(s(c1
S))) = (s(c1

S), s(c1
S), v, v′, s(nonce())) (4.4)

(Note that the annotation of channels ci
S does not affect the confidential-

ity policy, since cS /∈ E ∪ C. Therefore, if the program in Table 4.1 results
admissible, so is the program in Table 3.2).

A simple inspection of the definition of p0, . . . , p8 shows that the require-
ments P1) and P2) of Theorem 4.15 are verified. Notice as well that p0(s) is

64 4. CONFIDENTIAL PROTOCOL IMPLEMENTATION

defined in terms of s0, and not of s, reflecting the fact that the server resets
itself before each run.

In order to apply Theorem 4.15, we need to verify requirement P3). If α
contains no reference to E (i.e., if α contains no annotation from E = {key}),
then fg(s, α) = α. In such cases, it is easy to check that if pi(s)

α−→a pj(s′) then

pi(g(s))
α−→a pj(g(s′)).

The case of inputs from channels in E is also quite easy to verify. For
example, consider

p4(s)
k1 := key(s(c1

S))−−−−−−−−−−−−→a p5(s[key(s(c1
S)) �→ k1])

If g(k1 : key(s(c1
S))) = k′

1 : key(g(s(c1
S))), then

fg(s, k1 := key(s(c1
S))) = (k′

1 := key(g(s(c1
S)))) = (k′

1 := key(g(s)(c1
S)))

so that

p4(g(s))
k′
1 := key(g(s)(c1

S))−−−−−−−−−−−−−−−→a p5(g(s[key(s(c1
S)) �→ k1]))

since g(s)[key(g(s)(c1
S)) �→ k′

1]) = g(s[key(s(c1
S)) �→ k1])

More interesting are the cases of outputs and function calls that depend on
secret data. Consider first the transition

p5(s)
out !(w1, ∗)−−−−−−−−→a p6(s)

We can deduce that

w1 = π3({|π2(s(c2
S)) |}s(key(s(c1

S))):key(s(c1
S))) (4.5)

and that there should exist values v and v′ so that equations (4.3) and (4.4) are
satisfied. (By the way, this shows that the requirements placed on the definition
of p6, p7 and p8 are fulfilled every time these states are reachable).

The confidentiality policy for the WMF server (Example 4.6) includes the
clause

0 : out !(π3({|x |}kA
), ∗) ← nonce(NS) ∧ key(xA)(kA)

∧ {|x |}kA
= (xA, xA, xB , xkey , NS)

To see that this clause makes (E , C,A), s � out !(w, ∗) ok, let σ be the following
substitution:

σ(xA) = s(c1
S) σ(NS) = s(nonce())

σ(kA) = s(key(s(c1
S)) σ(x) = π2(s(c2

S))
σ(xB) = v σ(xkey) = v′

4.4. ADMISSIBILITY 65

Then the requirements on the righthand side of the clause hold because of (4.4).
Applying σ to the annotated expression on the lefthand side and by means of
(4.5):

Ann((π3({|x |}kA
), ∗))σ = (π3({|x |}kA:key(xA)), ∗)σ = (w1, ∗)

The secret permuter g is supposed to preserve admissible outputs. There-
fore, if s′ = g(s), we know that (E , C,A), s′ � fg(s, out !(w1, ∗)) ok, and since
out !(w1, ∗) is admissible over s, we get

(E , C,A), s′ � out !(g(w1), ∗) ok (4.6)

From (4.5),

g(w1) = π3({|π2(s(c2
S)) |}g(s(key(s(c1

S))):key(s(c1
S))))

Since c1
S , c2

S /∈ E , we know that s(c1
S) = s′(c1

S) and s(c2
S) = s′(c2

S). Applying the
definition of g (see Def. 4.9), g(s(key(s(c1

S))) : key(s(c1
S))) = s′(key(s′(c1

S))) :
key(s′(c1

S)). Then

g(w1) = π3({|π2(s′(c2
S)) |}s′(key(s′(c1

S))):key(s′(c1
S)))

From (4.6), there are values u and u′ such that

{|π2(s′(c2
S)) |}s′(key(s′(c1

S))) = (s′(c1
S), s′(c1

S), u, u′, s′(nonce()))

and from here we can conclude that

p5(s′)
out !(g(w1), ∗)−−−−−−−−−−→a p6(s′)

which shows that P3) holds for p5(s)
out !(w1, ∗)−−−−−−−−→a p6(s). Even though we

have worked out the details for this transition, it is easy to notice that most
of what we did here can be extended to any admissible transition provided it
can be expressed, as it is the case of w1, as a function of Context. If we write
w1(s), then what we have done is simply to verify that g(w1(s)) = w1(g(s)) and

that, for all context s s.t. (E , C,A), s � out !(w1(s), ∗) ok, p5(s)
out !(w1(s), ∗)−−−−−−−−−−→a

p6(s). If then we match this with the fact that for each reachable p5(s) we have
(E , C,A), s � out !(w1(s), ∗) ok, we have verified P3) for this particular case.

With these same ideas, the remaining two transition schemas involving out-
puts of secrets,

p7(s)
k2 := key(w1)−−−−−−−−−−→a p8(s[key(w1) �→ k2])

and

p8(s)
out !(w1, {′s′, s(c1

S), w1, w2, s(c3
S)}s(key(w1)):key(w1))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→a p0(s)

are proved to respect property P3) using the remaining two clauses of A.
Having verified that P3) holds for all cases, we can apply Theorem 4.15 and

conclude that our server implementation of the WMF protocol is admissible.

Chapter 5

Controlled Information
Flow

Technically, a process is admissible with respect to a confidentiality policy if
it is invariant under a set of relabellings extracted from the policy. However,
admissibility has been so far proposed as the definition of a confidential protocol
implementation relation. It has also been said that the dependencies on secrets
established by an admissible process are bounded by the policy. What are the
reasons that justify these assertions?

To explain the confidentiality implications of admissibility, we need to un-
derstand what a dependency is. In the late 1970’s, Ellis Cohen presented an
information theoretic model of secrecy for programs taking the form of state
transformers. In this model, a program is considered as a set of communication
channels transmitting information from initial to final states. In information
theoretic terms, there is information transmission if variety of initial values is
conveyed to variety of end values. According to Cohen, a program establishes
a strong dependency from a set of variables (at the initial state) to a variable
(at the final state), if the corresponding communication channel has non-zero
capacity.

As Cohen pointed out in the concluding notes of [Coh78], the definition
of strong dependency represents a purely quantitative measure of information
transmission. He added: “Except for very simple sorts of data, a strict infor-
mation theoretic measure may not be appropriate; all bits are not equal. For
example, the high order bits of a variable containing salary information is likely
to be more valuable than the low order bits, and a suitable measure might be
weighted accordingly.” Our definition of confidentiality policy defines a quali-
tative measure of information flow. By characterizing (in an intensional way)
the communication channels with non-zero capacity, we can actually consider a
policy as a bound on the dependencies that a program is allowed to establish.

In this chapter, after reviewing Cohen’s model, we translate it from the world

67

68 5. CONTROLLED INFORMATION FLOW

of state transformers to the world of reactive processes written in a-SecPA. We
then introduce a method that purges an a-SecPA process from the dependencies
in a policy. If the remaining system still transmits secret information (in the in-
formation theoretic sense), then the system cannot be considered a confidential
implementation. The chapter concludes by showing that an admissible system
transmits no information about secrets once deprived from all admissible depen-
dencies (i.e. the dependencies admitted by the confidentiality policy). From this
we conclude that admissibility provides a reasonable definition for the desired
confidential implementation relation.

5.1 Cohen’s Selective Independency

Cohen gave one of the first formalizations of security as lack of information flow
at the level of programming languages. He studied under which conditions there
is no information flow from a set of variables E to variable v by means of the
execution of program P . If variety in the original values of E is not conveyed to
variety in the final values of v, then there is no information flow from E to v.
This he called Strong Independency.

E �P
ϕ v

∆= ∀σ, σ′. σ =¬E σ′ ∧ ϕ(σ) ∧ ϕ(σ′)⇒ P (σ).v = P (σ′).v (5.1)

where σ, σ′ ∈ St (the set of all states), and ϕ is a state predicate used to
select the states of interest. The expression σ =S σ′ means “equality over S”
and is defined as ∀v ∈ S. σ.v = σ′.v. In this context, the complement of variable
set S is written ¬S, so that σ =¬S σ′ denotes ∀v ∈ S. σ.v = σ′.v.

Cohen also considered a relaxation of this property, called Selective Indepen-
dency which can be used to accommodate partial dependencies. The idea is to
use a set of state selectors {ϕi} to restrict variety of inputs to within each ϕi.

From [Coh78], v is selectively independent of E over p w.r.t. {ϕi} if

1. {ϕi} is a “cover”, i.e. ∀σ ∈ St . ∃i. ϕi(σ),

2. ∀i, σ, σ′. σ =E σ′ ⇒ ϕi(σ) = ϕi(σ′), and

3. ∀i. E �p
ϕi

v.

Although equation (5.1), strong independency, describes the lack of in-
formation flow between variables in a program, it does not really consider
leaks through variety in nontermination and probabilistic behavior. Sands and
Sabelfeld have given a clear account of these issues, while retaining the con-
nection to Cohen’s definitions. Basically, they have expressed Selective Inde-
pendency as partial equivalence relation (PER) types which keep control of the
termination properties of the programs [SS99].

There are two directions in which one might need to extend the definition
of Selective Independency. Firstly, instead of taking the program to be a state
transformer, one might want to consider reactive systems. Secondly, the model

5.1. COHEN’S SELECTIVE INDEPENDENCY 69

could be extended to cope with the particular kind of dependencies established
by the use of cryptographic operations (e.g. the dependency between a plaintext
m and its corresponding ciphertext {m}k under symmetric key k).

However, before we do so, it is convenient to rephrase Cohen’s definition
of Selective Independency replacing the set of state selectors {ϕi} by a single
equivalence relation ∆ over states. This ∆ must satisfy a few extra requirements
if it is to correspond to a set {ϕi}. In first place, it is only interesting to compare
the effect of a program on pairs of initial states that differ only in the value of
secret variables, i.e. ∆ ⊆ =¬E . Now, according to the second item in Cohen’s
definition of Selective Independency, each ϕi depends strictly on the value of
secret variables. In terms of relation ∆ this means that if the same permutation
is applied to the values of non-secret variables in a pair of related states p ∆ q
then the resulting permuted states p′ and q′ are also related, i.e. p′ ∆ q′. This
is formalized in the following definition:

Definition 5.1 Given a set of variables E, a relation ∆ over states is called
E-strict if

((=E ; ∆; =E) ∩ =¬E) ⊆ ∆ ⊆ =¬E

where “;” indicates usual relational composition.

We can now give an alternative definition of Selective Independency, using
E-strict equivalence relations:

Definition 5.2 (Selective Independency for State Transformers) Let
E
be a set of variables and let ∆ be an E-strict equivalence relation. Then v is
selectively independent of variable set E over program p w.r.t. ∆, noted E �

p
∆ v,

iff
∀σ, σ′. σ∆σ′ ⇒ p(σ).v = p(σ′).v (5.2)

The following lemma and its corollaries establish the connection between this
and Cohen’s definition of Selective Independency. Essentially, both definitions
are equivalent.

Lemma 5.3 Given ∆, {ϕi} and E such that

(A.1) ∀i, σ, σ′. σ =E σ′ ⇒ ϕi(σ) = ϕi(σ′)
(A.2) ∆ ⊆ St × St is the transitive closure of

∆1
∆= {(σ, σ′) | ∃i. ϕi(σ) ∧ ϕi(σ′) ∧ σ =¬E σ′}

then, E �
p
∆ v iff v is selectively independent of E over p w.r.t. {ϕi}.

Proof. See Appendix A.

Corollary 5.4 If ∆ ⊆ St × St is an E-strict equivalence relation, then there is
a family of state selectors {ϕi} such that E �

p
∆ v iff v is selectively independent

of E over p w.r.t. {ϕi}.

70 5. CONTROLLED INFORMATION FLOW

Proof. Given ∆, let {Ωi} be its set of equivalence classes. Then, define {ϕi} so
that for each i, ϕi(σ) iff ∃δ =E σ . δ ∈ Ωi.

To see that the resulting family {ϕi} satisfies (A.2) it suffices to show that
∆1 coincides with ∆:

σ∆1σ
′ ⇔ ∃i. ϕi(σ) ∧ ϕi(σ′) ∧ σ =¬E σ′

⇔ ∃i, δ, δ′. σ =E δ ∧ δ, δ′ ∈ Ωi ∧ σ′ =E δ′ ∧ σ =¬E σ′

⇔ σ(=E ; ∆; =E)σ′ ∧ σ =¬E σ′

⇒ σ∆σ′ (since ∆ is E-strict)

For the other direction, take σ∆σ′. Since ∆ ⊆=¬E , it must be the case that
σ, σ′ ∈ Ωi, for some i, and that σ =¬E σ′. Therefore, we have ϕi(σ) ∧ ϕi(σ′) ∧
σ =¬E σ′ so that σ∆1σ

′.
The definition of {ϕi} satisfies (A.1): take i, σ and σ′ s.t. σ =E σ′ and ϕi(σ).

Then, there is δ such that δ =E σ and δ ∈ Ωi. Therefore σ′ =E δ, which implies
ϕi(σ′).

Corollary 5.5 If {ϕi} satisfies (A.1), then there exists ∆ ⊆ St × St such that
E �

p
∆ v iff v is selectively independent of E over p w.r.t. {ϕi}.

Proof. Simply use (A.2) as the definition of ∆.

Note that there are obvious connections between this and the PER approach
of Sands and Sabelfeld. Indeed, we could have given these definitions, with sim-
ilar results using partial equivalence relations. The reason why it was requested
that ∆ be reflexive is that it results in simpler proofs for the lemma and corol-
laries above.

5.1.1 Separation of Variety

Cohen [Coh78] established conditions under which a strong independency prop-
erty can be verified by dividing the set of possible inputs into smaller subsets
and proving strong independency within each of them. We restate the theorem
here:

Proposition 5.6 (Cohen’s Separation of Variety) If

• ∀σ.ϕ(σ)⇒ ∃i. ϕi(σ) (i.e. {ϕi} is a cover of ϕ), and

• (E-independency) ∀i, σ, σ′. (σ =¬E σ′ ∧ ϕ(σ) ∧ ϕ(σ′)⇒ ϕi(σ) = ϕi(σ′))

then
∀i. E �p

ϕi
v implies E �p

ϕ v

When the intention is to prove Selective Independency, the following theorem
suggests a similar separation of variety. This result is of fundamental importance
to generalize the definition of Selective Independency to a-SecPA processes.

5.2. SELECTIVE INDEPENDENCY FOR A-SECPA 71

Proposition 5.7 Let E be a set of variables and ∆ an E-strict equivalence
relation. Then, E �

p
∆ v iff there exists a family {∆i} of symmetric relations in

St × St that satisfies:

(1) ∆ = (
⋃

i ∆i)∗, and

(2) ∀i, σ, σ′. σ ∆i σ′ ⇒ p(σ).v = p(σ′).v

Proof.

⇒) Take {∆} as the family.

⇐) According to Definition 5.2, we just need to prove ∀σ, σ′. σ∆σ′ ⇒ p(σ).v =
p(σ′).v.

The proof resembles that of (5.2) in Lemma 5.3. Let σ∆σ′. Assume
σ = σ′, otherwise the desired result is immediate. By assumption (1),
there exist σ1, . . . , σn and i1, . . . , in−1 such that σ = σ1, σ′ = σn and
∀1 ≤ j < n. σj ∆ij

σj+1.

By applying assumption (2), we get p(σj).v = p(σj+1).v, for each j. The
result follows then by transitivity of equality.

5.2 Selective Independency for a-SecPA

Cohen’s definition of Selective Independency is supported on four pillars: (1) a
view of a process as a communication channel, (2) a criterion to decide when
two inputs to this channel coincide on everything but the secrets (=¬E), (3)
an assumption on the behavior of the environment (E-strictness), and (4) a
criterion to identify equivalent outputs from the channel.

Consider the first element: A state transformer can easily be viewed as
a memory-less channel communicating data from initial into end states. By
contrast, the characterization of the communication channels provided by a
reactive (a-SecPA) process is quite a subtle matter. Indeed, it represents an
open problem. The concepts of information theory have only been extended to
specific cases of networks of channels (see chapter 14 of [CT91] for an overview).
Moreover, most accounts of confidentiality for computer systems abstract the
difficulties away more or less explicitly.

While realizing that the problem is still in need of a satisfactory solution,
the approach adopted here is to consider each process at each execution point as
a communication channel. This channel inputs a history of execution (a trace)
and returns the set of possible ways in which the execution could be continued.
The process can decide when to accept inputs, but the actual input value is
chosen by the environment. In fact, this approach presents similarities to that
behind the definition of Nondeducibility on Compositions [FG95], where high
level values (i.e. secrets) are fed into the system by another process (sometimes
called “strategy”).

72 5. CONTROLLED INFORMATION FLOW

In the following sections we analyze the remaining three elements that are
necessary to define Selective Independency over a-SecPA processes. Before we
proceed, it is appropriate to fix some notation: A trace σ in a-SecPA is simply
a sequence α1α2 . . . αn, with n ≥ 0 and αi ∈ a-Act for all 1 ≤ i ≤ n. We use
Tr to denote the set of a-SecPA traces, and λ for the empty trace. By σi we
denote the projection of the i-th element of a trace σ, and by len(σ) its length.

5.2.1 History Indistinguishability

In the original definition of strong independency, the relation =¬E identifies two
states which differ only on the values of secrets. In a way, two states related by
=¬E are indistinguishable by an observer that initially does not know any secret
values. When considering the information flow model for a-SecPA, as sketched in
the previous section, it is important to notice that each communication channel
takes traces as input. In other words, in adapting the definition of Selective
Independency to reactive systems, it is necessary to define when two traces are
indistinguishable for the attacker.

Consider first two annotated actions α and β. When are they indistinguish-
able? There are four kinds of actions: silent, input, output and function call.
We assume that the attacker can recognize the kind of each action, so α and
β need to be of the same kind. In the case of output actions, we assume that
everything is observable, both the channel and the value, and the same can be
said of the actual parameter in a function call (see end of this section).

We can formalize the discussion so far by defining when two annotated ac-
tions are output equivalent: α ≈ β iff

α = τ ⇔ β = τ

α = c!w1 ⇔ β = c!w1

α = c?w1 ⇔ β = c?w′
1

α = (w1 := c(w2)) ⇔ β = (w′
1 := c(w2))

Note that we have also assumed that the attacker can observe the channel of an
input action, but not necessarily the value. If the input channel does not belong
to E (the set of secret input channels), we can safely assume that the attacker
can also observe the input value. If the channel is indeed a secret channel, then
it cannot observe anything but the channel name.

We can now define =¬E , keeping the notation from the previous section to
stress the parallelism between the definitions.

Definition 5.8 (Trace indistinguishability) Two traces σ and σ′ are (ob-
server) indistinguishable, written σ =¬E σ′, when for all 1 ≤ i ≤ len(σ), σi ≈ σ′

i

and for all c ∈ E,
σi = c?w1 ∨ σi = (w1 := c(w2))⇒ σ′

i = σi

Note that =¬E is an equivalence.

5.2. SELECTIVE INDEPENDENCY FOR A-SECPA 73

On local function calls To conclude, we comment on the reasons behind
the decision to make local function calls (i.e. calls to the TCB) visible to the
attacker.

In principle, it is up to the code verifier to decide whether an output channel
or a function call should be hidden. If there is a need to control the way local
files are affected and local functions are invoked, they will probably not be
hidden. On the other side, if the TCB can guarantee that no information is
leaked as a result of those outputs or function calls, then they can safely be
hidden. However, this last requirement is not easy to fulfill. For example, an
attacker could be able to measure the time it takes for the TCB to execute a
local function. Since this time may depend on the value of the actual parameter,
the attacker would then be able to acquire some knowledge about it. By keeping
the function call visible, such an information flow is detected. If, moreover, the
amount of information thus leaked is acceptable, such a function call can be
included in the policy. In this way, other (ab)uses of the TCB function are
prevented.

5.2.2 ∆-Bisimilarity

In Cohen’s definition of Selective Independency, the absence of variety at the
output side of the communication channel (represented by the state transformer)
is measured by comparing values for identity. In converting the definition to
reactive systems, we can no longer use identity to compare the output of our
communication channels. Indeed, the output is nothing less than a set of be-
haviors. This, in turn, suggests the use of some sort of behavioral equivalence.
However, there is another ingredient to care about: the permutation of secrets
continues in the future.

To see this more clearly, suppose that p ∈ a-SecPA can execute two histories
σ, σ′ ∈ Tr that differ only on secrets, i.e. σ =¬E σ′, so that:

p
σ−→a q1 and p

σ′
−→a q2

If we require q1 ∼ q2 where ∼ is some usual behavioral equivalence (say, strong
equivalence), we would be ignoring the fact that the environments of q1 and q2

are different (since they have provided different secrets in σ than in σ′).
The difference in the environments can be represented by a relation over

traces that not only reflects the permutation of secrets in σ and σ′, but also
relates possible continuations of them. We can then define a behavioral relation
between processes (provided with their history) that is parameterized by this
trace relation. The flavor of the definition is that of a normal bisimulation
relation.

Definition 5.9 (∆-bisimulation) Let ∆ ⊆ Tr ×Tr be a relation over traces.
Then, a relation R over a-SecPA×Tr is a ∆-bisimulation iff for any pairs (q, σ)
and (t, σ′) such that (q, σ) R (t, σ′),

74 5. CONTROLLED INFORMATION FLOW

• if q
α−→a q′ then there are t′ ∈ a-SecPA and β ∈ a-Act such that σα ∆ σ′β,

t
β−→a t′ and (q′, σα) R (t′, σ′β), and

• if t
β−→a t′ then there are q′ ∈ a-SecPA and α ∈ a-Act such that σα ∆ σ′β,

q
α−→a q′ and (q′, σα) R (t′, σ′β).

In the usual way, we adapt the definition into a relation between processes:

Definition 5.10 (∆-bisimilarity) Given ∆ ⊆ Tr × Tr, two processes p, q ∈
a-SecPA are ∆-bisimilar if there exists a ∆-bisimulation R such that

(p, λ) R (q, λ)

In this case, we write p ∼∆ q.

Properties One nice feature of ∆-bisimilarity is that it inherits several im-
portant properties from ∆. In the remainder of this subsection we explore these
properties, which include reflexivity, symmetry and transitivity. We conclude
with a result that characterizes ∆-bisimulation.

Proposition 5.11 If p ∼∆ q then q ∼∆−1 p where ∆−1 is the relation satisfying
σ′∆−1σ iff σ∆σ′ (i.e. (∼∆)−1 = ∼∆−1).

Proof. Let R be a ∆-bisimulation relation such that (p, λ) R (q, λ). Then, R−1

is a ∆−1-bisimulation relation satisfying (q, λ) R−1 (p, λ).

Corollary 5.12 If ∆ is a symmetric relation, then so is ∼∆.

Let ∆1; ∆2 be the composition relation satisfying σ ∆1; ∆2 σ′ iff there is
γ such that σ ∆1 γ and γ ∆2 σ′. The following proposition tells us how to
compose ∆-bisimilarities, a fundamental result in relating Admissibility with
Selective Independency (Section 5.4).

Proposition 5.13 If p ∼∆1 q and q ∼∆2 r then p ∼∆1;∆2 r (i.e. ∼∆1 ;∼∆2 ⊆
∼∆1;∆2).

Proof. Let Ri be a ∆i-bisimulation for each i = 1, 2 such that (p, λ) R1 (q, λ)
and (q, λ) R2 (r, λ). To show that p ∼∆1;∆2 r, define R

∆= R1; R2. The relation
immediately satisfies (p, λ) R (r, λ).

Take any (s0, σ0) R (s2, σ2). Therefore ∃(s1, σ1) s.t. (s0, σ0) R1 (s1, σ1) and

(s1, σ1) R2 (s2, σ2). Suppose s0
α0−−→a s′0. First, since R1 is a ∆1-bisimulation,

there are α1 and s′1 such that

s1
α1−−→a s′1 and (s′0, σ0α0) R1 (s′1, σ1α1)

5.2. SELECTIVE INDEPENDENCY FOR A-SECPA 75

Then, since (s1, σ1) R2 (s2, σ2) and R2 is a ∆2-bisimulation, there are α2 and
s′2 such that

s2
α2−−→a s′2 and (s′1, σ1α1) R2 (s′2, σ2α2)

We can thus conclude that there exist α2 and s′2 such that s2
α2−−→a s′2 and

(s′0, σoα0) R (s′2, σ2α2).
The remaining case is analogous.

Suppose R is a ∆1-bisimulation. If ∆1 ⊆ ∆2, then it is clear that R is also
a ∆2-bisimulation. This leads to the following proposition:

Proposition 5.14 If ∆1 ⊆ ∆2 and p ∼∆1 q then p ∼∆2 q (i.e. ∆1 ⊆ ∆2 ⇒
∼∆1 ⊆ ∼∆2).

Corollary 5.15 If ∆ is a transitive relation, then so is ∼∆.

Proof. By Proposition 5.13, ∼∆;∼∆ ⊆ ∼∆;∆. Since ∆ is transitive, ∆; ∆ ⊆ ∆.
Therefore, using Proposition 5.14, ∼∆;∼∆ ⊆ ∼∆.

A binary relation is said to be a partial equivalence (PER) if it is symmetric
and transitive. Together, Corollaries 5.12 and 5.15 show that∼∆ is a PER if so is
∆. Moreover, since ∼id coincides with ∼ (i.e. strong bisimulation equivalence),
Proposition 5.14 proves that if ∆ is reflexive, then ∼∆ is reflexive as well.

It is possible to characterize the ∆-bisimulations that make two processes
∆-bisimilar. In particular, the domain and range of ∆ must cover the traces of
the two bisimilar processes, as Corollary 5.17 shows.

Lemma 5.16 Let R be a ∆-bisimulation relation and (p, λ)R(q, λ). If p
σ−→a p′

and σ = λ then there exist q′, σ′ such that q
σ′
−→a q′, σ∆σ′ and (p′, σ)R(q′, σ′).

Proof. By induction on the length of σ.

Base case: σ = α

Since p
α−→a p′ and (p, λ) R (q, λ), there are q′ and β such that q

β−→a q′,
α ∆ β and (p′, α) R (q′, β). The result follows taking σ′ = β.

Inductive case: Let p
σ−→a p0

α−→a p′ and lenght(σ) > 0. By inductive

hypothesis, ∃q0, σ
′. q

σ′
−→a q0 ∧ σ ∆ σ′ ∧ (p0, σ) R (q0, σ

′). Now,

since p0
α−→a p′, there are q′ and β such that q0

β−→a q′, σα ∆ σ′β and
(p′, σα) R (q′, σ′β).

Corollary 5.17 Let Tr(p) ∆= {σ|p σ−→a} be the set of traces of process p. If
p ∼∆ q then Tr(p) ⊆ Dom(∆) (and Tr(q) ⊆ Rng(∆)).

76 5. CONTROLLED INFORMATION FLOW

5.2.3 Selective Independency

One important element required in translating the definition of Selective Inde-
pendency into a-SecPA concerns the identification of equivalent outputs from
the communication channels identified by our information flow model. The in-
tuition behind the definition of ∆-bisimilarity, provided ∆ ⊆ =¬E\id , is that
p ∼∆ p should amount to checking that variety of inputs is not conveyed into
variety of outputs, from the standpoint of the observer. However, this is not
really true, as the following example illustrates:

Let

p
∆= a?x. ((if (x = 0 ∨ x = 1) then o!0) + (if (x = 2 ∨ x = 3) then o!1))

If E = {a}, and the only values that can be input on channel a are 0, 1, 2, 3, then
the associated labelled transition system given by the operational semantics of
process p is:

��������p1
o!0 �� ��������p5

��������p2
o!0 �� ��������p6

��������p

a?0

��������������� a?1

������������

a?2

������������

a?3

���
��

��
��

��
��

��

��������p3
o!1 �� ��������p7

��������p4
o!1 �� ��������p8

It is clear that process p leaks partial information about its secret input. This
is so, as the process establishes a correlation between outputs and secret inputs.

Now, if we take ∆ to be exactly =¬E\id , then p ∼∆ p holds by means of the
following ∆-bisimulation:

R
∆= {((p, λ), (p, λ)), ((p1, a?0), (p2, a?1)), ((p5, a?0; o!0), (p6, a?1; 0!0)),

((p3, a?2), (p4, a?3)), ((p7, a?2; o!1), (p8, a?3; 0!1)), . . .}

where the dots represent all other pairs that are symmetric to the listed ones.
What went wrong? Although ∆ relates traces where secret inputs are per-

muted in all possible ways, the definition of ∼∆ contains an existential quan-
tification that permits the choice of an appropriate permutation in each case.

In this way, the transition p
a?0−−→a p1 is simulated by p

a?1−−→a p2, thus avoiding
the comparison of different outputs.

If the definition of ∆-bisimulation were modified to use universal quantifi-

cation (over β, see Definition 5.9), then p
a?0−−→a p0 would have to be simulated

5.2. SELECTIVE INDEPENDENCY FOR A-SECPA 77

by, among others, p
a?2−−→a p3. But this would come at a very high cost. Most

of the key properties of ∆-bisimilarity would be lost. We take a different road.
Noticing that the problem could be avoided by reducing the variety tolerated
by ∆, we require ∆ to be a “trace permuter” (the definition follows). The full
range of variety is then recovered by defining Selective Independency in a way
inspired by Proposition 5.7 (Separation of Variety).

Definition 5.18 A relation ∆ ⊆ Tr × Tr is functional iff

∀σ, γ, γ′ ∈ Tr . σ∆γ ∧ σ∆γ′ ⇒ γ = γ′

Definition 5.19 A relation ∆ ⊆ Tr × Tr is a trace permuter if both ∆ and
∆−1 are functional.

Observe that the class of trace permuters is closed under composition.

By now, we have almost all the elements needed to provide a definition
of Selective Independency for a-SecPA processes. The last element missing is
an appropriate notion of E-strictness. From a technical point of view, we just
need to define when two traces contain the same secrets (i.e. =E), and then
reuse Definition 5.1. However, what is the intuition behind E-strictness in the
context of reactive systems? Again, we draw inspiration from the definition of
Nondeducibility on Compositions. A strategy is a process which feeds in only
high-level data (i.e. secrets) into a system, and the way this data is fed does not
prevent the system from engaging in any other low-level actions. Two traces
coincide on secrets if they contain the same secret inputs, in the same order and
regardless of any other actions. In the tradition of information flow definitions,
we use a purge function to define =E :

Given a set of secret channels E , let purge:Tr → Tr be defined as:

purge(τ) ∆= τ

purge(ασ) ∆=

{
α purge(σ) if (α = c?v or α = (v := c(w))) and α ∈ E
purge(σ) otherwise

Two traces contain the same secrets if their images under purge(·) are equal:

σ =E σ′ iff purge(σ) = purge(σ′)

As for state transformers, E-strictness is defined in terms of =E and =¬E (cf.
Def. 5.1). A relation ∆ is E-strict if

((=E ; ∆; =E) ∩ =¬E) ⊆ ∆ ⊆ =¬E

With all the necessary elements at hand, it is now easy to provide a definition
of Selective Independency for a-SecPA, using Definition 5.2 as a model with a
flavor of Separation of Variety (cf. Prop. 5.7).

78 5. CONTROLLED INFORMATION FLOW

Definition 5.20 (Selective Independency for a-SecPA) Let E be a set of
channels, and ∆ an E-strict equivalence relation over traces.

The behavior of program p is selectively independent of set of channels E
w.r.t. ∆, noted E �

p
∆, iff there is a family of symmetric trace permuters {∆i}

such that ∆ = (
⋃

i ∆i)∗ and ∀i. p ∼∆i p.

Going back to the example at the beginning of this section, consider the
following relation over traces:

∆1
∆= ∆0

1 ∪ {(α; o!z, β; o!z) | z ∈ {0, 1}, α ∆0
1 β}

where ∆0
1

∆= {(a?0, a?2), (a?2, a?0), (a?1, a?1), (a?3, a?3)}.
Note that ∆1 is a symmetric trace permuter satisfying ∆1 ⊆ =¬E , and that

=¬E is (trivially) an E-strict equivalence. It is also easy to check that p ∼∆1 p.
Moreover, no matter how =¬E is decomposed as the transitive closure of the
union of trace permuters, there will always be at least a trace permuter ∆i

making p ∼∆i
p. As we wanted, p does not happen to be selectively independent

of {a} w.r.t. =¬E .

5.3 Admissibility as ∆-Bisimulations

While admissibility is defined in terms of relabelling functions and strong bisim-
ulation, Selective Independency heavily relies on ∆-bisimulation. By choosing
the ∆ relation appropriately, all these concepts can be shown to be strongly
related. As a result, we can give a simple proof to Theorem 4.15 (which was
already used by the end of Chapter 4 to show the admissibility of the proposed
implementation of the Wide-Mouthed Frog protocol). Finally, we show how the
connection can also be exploited to identify inadmissible processes, something
we illustrate on some “malicious” Purchasing Applet examples.

To begin with, notice that there is a natural way to define a relation over
traces that mimics the effect of repeatedly applying a relabelling.

Definition 5.21 Let (E , C,A) be a confidentiality property and g a secret per-
muter that preserves admissible outputs. Then, ∆g is the smallest relation over
traces satisfying:

• λ ∆g λ, and

• if σ ∆g σ′ and s0
σ−→ s then ∀α ∈ a-Act. σα ∆g σ′fg(s, α)

Our first result indicates how pairs of traces related by ∆g bring about
related contexts.

Proposition 5.22 If σ ∆g σ′ and s0
σ−→ s then s0

σ′
−→ g(s).

5.3. ADMISSIBILITY AS ∆-BISIMULATIONS 79

Proof. Direct by induction on the length of σ, applying Lemma 4.12.

In the previous section it was noticed that ∼∆ needs a trace permuter in
order to make full sense. This is actually the case with ∆g:

Proposition 5.23 The relation ∆g is symmetric.

Proof. See Appendix A.

Observation 5.24 The relation ∆g is a trace permuter.

We are now in a position to relate ∆g-bisimulation with the kind of basic
propositions appearing in the definition of admissibility:

Proposition 5.25 For all p ∈ a-SecPA, p ∼∆g p⇔ p ∼ p[s0 � fg]

Proof.

⇒) Let R be a ∆g-bisimulation s.t. (p, λ) R (q, λ). Let T be the binary
relation uniquely determined by: r T q[s � fg] iff there are σ and σ′ such

that s0
σ−→ s and (q, σ) R (r, σ′).

We show that T is a bisimulation relation and that p T p[s0 � fg]. The

latter is immediate from our definition since s0
λ−→ s0 and (p, λ) R (p, λ).

In what follows, assume that r T q[s � fg].

– If r
β−→a r′, then by definition of ∆g-bisimulation, there are α and q′

satisfying (1) q
α−→a q′, (2) σα ∆g σ′β, and (3) (q′, σα) R (r′, σ′β).

First, from (2), s0
σ−→ s and the definition of ∆g, it follows that

(4) β = fg(s, α). Then, if we call s′ the unique context satisfying

(5) s
α−→ s′, we can combine (1), (4) and (5) using the definition of

relabelled processes (Def. 4.13), and conclude that

q[s � fg]
β−→a q′[s′ � fg]

Finally, from (3) and s0
σα−−→ s′, r′ T q′[s′ � fg].

– If q[s � fg]
β−→a q′[s′ � fg], the definition of relabelled processes

(Def. 4.13) allows us to infer that there is an α satisfying (1) q
α−→a q′,

(2) s
α−→ s′ and (3) β = fg(s, α). From (1) and the definition of R,

there are β′ and r′ such that (4) r
β′
−→a r′, (5) σα ∆g σ′β′ and (6)

80 5. CONTROLLED INFORMATION FLOW

(q′, σα) R (r′, σ′β′). From the definition of ∆g and (5), we get that
β′ = fg(s, α), which implies β = β′. Finally, from (2) and (6), we
obtain r′ T q′[s′ � fg].

⇐) Let T be a bisimulation relation such that p T p[s0 � fg]. Let R be the
binary relation uniquely determined by: (q, σ) R (r, σ′) iff σ ∆g σ′ and

r T q[s � fg] where s0
σ−→ s.

We show that R is a ∆g-bisimulation relation and that (p, λ) R (p, λ).

The latter is immediate from our definition since s0
λ−→ s0, p T p[s0 � fg]

and λ ∆g λ.

In what follows, assume that (q, σ) R (r, σ′).

– If q
α−→a q′, then (1) q[s � fg]

β−→a q′[s′ � fg] where (2) s
α−→ s′ and

(3) β = fg(s, α). Since T is a bisimulation relation, there is r′ such

that (4) r
β−→a r′ and (5) r′ T q′[s′ � fg]. Using the definition of ∆g,

(3) and the assumption, we obtain (6) σα ∆g σ′β. Finally, from (2),
(5) and (6), (q′, σα) R (r′, σ′β).

– Suppose r
β−→a r′. Since T is a bisimulation relation, there are q′

and s′ such that (1) q[s � fg]
β−→a q′[s′ � fg] and (2) r′ T q′[s′ � fg].

From (1), there must be an α satisfying q
α−→a q′, (3) s

α−→ s′

and (4) β = fg(s, α). In turn, (4) and the assumptions imply that
(5) σα ∆g σ′β. Putting together (2), (3) and (5), it follows that
(q′, σα) R (r′, σ′β).

Verification of Admissibility As a first consequence of the previous result,
we can give a simple proof of Theorem 4.15. This theorem, presented in Sec-
tion 4.4.1, localizes the verification of admissibility (provided that the states of
the process to be verified can be given a uniform characterization).

Theorem 4.15 Let (E , C,A) be a confidentiality property. Given p ∈ SecPA,
assume there is a partial function p () :N × Context → a-SecPA satisfying:

P1) (E � p) = p0(s0),

P2) if pi(s)
α−→a p′ then ∃j. p′ = pj(s′) where s

α−→ s′, and

P3) if pi(s)
α−→a pj(s′) then pi(g(s))

fg(s, α)−−−−−−→a pj(g(s′)), for all secret per-
muter g that preserves admissible outputs.

Then process p is admissible w.r.t. (E , C,A).

5.3. ADMISSIBILITY AS ∆-BISIMULATIONS 81

Proof. Because of Proposition 5.25, we just have to show that p0(s0) ∼∆g

p0(s0) for any secret permuter g.
Define

R
∆= {((pi(s), σ), (pi(t), σ′)) | i ∈ N , σ ∆g σ′, p0(s0)

σ−→a pi(s), s0
σ−→ s,

p0(s0)
σ′
−→a pi(t), s0

σ′
−→ t}

To see that (p0(s0), λ) R (p0(s0), λ), note that λ ∆g λ, p0(s0)
λ−→a p0(s0)

and s0
λ−→ s0. In what remains, assume (pi(s), σ) R (pi(t), σ′). Since ∆g is

symmetric (Prop. 5.23), R is symmetric too. Therefore, it suffices to consider

the case pi(s)
α−→a p′. By P2), there is j such that p′ = pj(s′) where s

α−→ s′,
and by Proposition 5.22, t = g(s). Let β = fg(s, α) so that σα ∆g σ′β. Applying

P3), we get pi(g(s))
β−→a pj(g(s′)). In other words, pi(t)

β−→a pj(g(s′)). Finally,
it is easy to check that (pj(s′), σα) R (pj(g(s′)), σ′β).

The Malicious Applets are not Admissible Proposition 5.25 can also be
used to identify inadmissible processes. We take a look back at Examples 3.7
and 3.11, two implementations of the purchasing applet idea that leak informa-
tion about the account number (as input from channel acc).

Consider first the process MA1 (from Example 3.7). If it were admissible,
then we would have (E � MA1) ∼ (E � MA1)[s0 � fg]. Because of Proposi-
tion 5.25, this would imply that (E � MA1) ∼∆g

(E � MA1).
Let

σ
∆= acq?v1 ; order?v2 ; acc?v3 ; k1 := pubKey(v1)

and
σ′ ∆= acq?v1 ; order?v2 ; acc?v′3 ; k1 := pubKey(v1)

where (v′3 : acc) = g(v3 : acc). Note that σ ∆g σ′.

Now, suppose there exists a ∆g-bisimulation R to verify this. Then, it must
be the case that

(E � merchant !(v1, v3 : acc, {(v2, v3 : acc)}k1).MA1, σ)
R

(E � merchant !(v1, v
′
3 : acc, {(v2, v

′
3 : acc)}k1).MA1, σ

′)

However, there is no possible Context s such that

(E , C,A), s � merchant !(v1, v3 : acc, {(v2, v3 : acc)}k1) ok

82 5. CONTROLLED INFORMATION FLOW

and therefore σ ; merchant !(v1, v3 : acc, {(v2, v3 : acc)}k1) can only be related
by ∆g to σ′ ; merchant !(v1, v3 : acc, {(v2, v3 : acc)}k1). Since

E � merchant !(v1, v
′
3 : acc, {(v2, v

′
3 : acc)}k1).MA1

cannot perform the output

merchant !(v1, v3 : acc, {(v2, v3 : acc)}k1)

we conclude that R is cannot be a ∆g-bisimulation and, therefore, that MA1 is
not admissible w.r.t. to our policy.

The case of MA2 is analogous. Suppose σ ∆g σ′ with

σ
∆= acq?v1 ; order?v2 ; acc?v3 ; k1 := pubKey(MerchantId)

and
σ′ ∆= acq?v1 ; order?v2 ; acc?v′3 ; k1 := pubKey(MerchantId)

where (v′3 : acc) = g(v3 : acc).

If there were a ∆g-bisimulation R verifying (E � MA2) ∼∆g (E � MA2), then it
should be the case that

(E � merchant !(v1, v3 : acc, {(v2, v3 : acc)}k1).MA2, σ)
R

(E � merchant !(v1, v
′
3 : acc, {(v2, v

′
3 : acc)}k1).MA2, σ

′)

Now, if s0
σ−→ s, then s does not define a mapping over pubKey(v1) if this is

different from k1. Then it is not the case that

(E , C,A), s � merchant !(v1, v3 : acc, {(v2, v3 : acc)}k1) ok,

and the analysis continues just like in the case of MA1.

5.4 Admissibility vs. Selective Independency

The previous section has shown that there is a common language underlying
both the definitions of Admissibility and Selective Independency. The com-
bination of strong equivalence and relabellings in Admissibility is comparable
to ∆-bisimilarities as they appear in Selective Independency. In spite of the
similar bases, these properties have notably different purposes. While Selective
Independency pursues the cancellation of all output variety under a restricted
variety of inputs, Admissibility aims at controlling the flows of information in
an application.

5.4. ADMISSIBILITY VS. SELECTIVE INDEPENDENCY 83

In this section we establish a connection between both properties by essen-
tially associating a selectively independent process to an admissible one. Given
an a-SecPA process p and a confidentiality policy (E , C,A) we can construct a
process q satisfying the following requirement: its behaviors “mimic” those of
p but, on admissible outputs, it never sends out the actual secret inputs. The
way p and q are related gives a quite thorough characterization of Admissibility.

Extended Annotated Values We extend the set of annotated values with
a new, distinguished value vd for each channel d ∈ Ch. The set of extended
annotated values is thus defined as e-Val ∆= a-Val

⋃
+ {vd | d ∈ Ch}, where

⋃
+

indicates disjoint union. We extend, in a similar fashion, the set of annotated
actions that are constructed from e-Val, and call the resulting set e-Act.

Given an element of a-Act, we can abstract it into an action where each
value input from secret channel c ∈ E is replaced by vc. We formalize this idea
by means of the abstraction function abs: a-Act→ e-Act:

abs(k) = k

abs(w1, . . . , wn) = (abs(w1), . . . , abs(wn))
abs({w1}w2) = {abs(w1)}abs(w2)

abs(pi(w)) = pi(abs(w))

abs(w1 : c(w2)) =

{
vc : c(abs(w2)) if c ∈ E and w1 is a value
abs(w1) : c(abs(w2)) otherwise

In the same way we have associated a relabelling function fg to a secret
permuter g, we can associate a relabelling φ:Context × a-Act → e-Act to the
abstraction function relabelling φ:

φ(s, α) =

⎧⎪⎨
⎪⎩

o ! abs(w) if (E , C,A), s � α ok, and α = o ! w
v := c(abs(w)) if (E , C,A), s � α ok, and α = (v := c(w))
α otherwise

Abstracted Processes The abstraction function, when immersed in rela-
belling φ, gives us a simple way of defining a process that abstracts p in the
desired way. Define:

q
∆= p[s0 � φ]

Intuitively, if q does not leak any information about the secrets it inputs,
then p leaks them at most through admissible outputs. More formally, we show
that if p is admissible w.r.t. some policy, then its associated abstracted process
q is selectively independent w.r.t. some equivalence relation Γ associated with
the policy.

Definition 5.26 Let (E , C,A) be a confidentiality property. Then, Π is the
smallest relation over traces satisfying:

84 5. CONTROLLED INFORMATION FLOW

• λ Π λ, and

• if σ Π σ′ and s0
σ−→ s then ∀α ∈ a-Act. σα Π σ′φ(s, α)

Observation 5.27 Since it is defined in terms of function φ, Π is a functional
relation. Moreover, since φ is injective in its second argument (Lemma A.2),
Π−1 is functional too. Finally, this implies Π; Π−1 = ida-Act∗ because Π is total
over a-Act∗.

The most important property of Π is that, no matter what the confidentiality
policy is, it is always the case that p and q are Π-bisimilar, as the following
proposition shows:

Proposition 5.28 Let p be an a-SecPA process, then p ∼Π p[s0 � φ].

Proof. Let R
∆= {((q, σ), (q[s � φ], σ′)) | p σ−→a q ∧ s0

σ−→ s ∧ σ Π σ′}. We
will show that R is a Π-bisimulation s.t. (p, λ) R (p[s0 � φ], λ).

First, note that p
λ−→a p, s0

λ−→ s0 and λ Π λ, so that (p, λ) R (p[s0 � φ], λ).

Suppose then that (q, σ) R (q[s � φ], σ′). If q
α−→a q′, then q[s � φ]

β−→a

q′[s′ � φ] where s
α−→ s′ and (1) β = φ(s, α). From (1), σα Π σ′β and, therefore,

(q′, σα) R (q′[s′ � φ], σ′β).

If, on the other side, q[s � φ]
β−→a q′[s′ � φ], then there must exist an α

such that q
α−→a q′, s

α−→ s′ and β = φ(s, α). The rest is similar to the previous
case.

The importance of the previous result becomes evident when combined with
the compositional properties of ∆-bisimilarity:

Corollary 5.29 Let (E , C,A) be a confidentiality policy and g a secret permuter
that preserves admissible outputs. Moreover, let p be an a-SecPA process and
let q be p[s0 � φ]. Then, p ∼ p[s0 � fg] iff q ∼(Π−1;∆g;Π) q.

Proof. From the proposition, we know that p ∼Π q, and using Proposition 5.11
that q ∼Π−1 p. From Proposition 5.25, p ∼ p[s0 � fg] iff p ∼∆g

p. If p ∼∆g

p, by the compositionality of ∆-bisimilarities (Prop. 5.13), q ∼(Π−1;∆g;Π) q.
Composing again, p ∼(Π;Π−1;∆g;Π;Π−1) p. Since Π; Π−1 = ida-Act∗ (Obs. 5.27),
p ∼∆g

p.

By means of Corollary 5.29, if p is admissible, q does not convey variety of
input (restricted by Π−1; ∆g; Π) into variety of behavior. However, even if each
Π−1; ∆g; Π is a symmetric trace permuter (see Lemma A.4), we cannot directly
apply the definition of Selective Independency. The reason is mainly technical:

5.4. ADMISSIBILITY VS. SELECTIVE INDEPENDENCY 85

Let G be the set of secret permuters that preserve admissible outputs. Then,
the relation (

⋃
g∈G(Π−1; ∆g; Π))∗ is not E-strict.

To circumvent this difficulty, define

Γg
∆= (=E ; Π−1; ∆g; Π; =E)∩ =¬E

and, consequently, call Γ the reflexive transitive closure of their union, i.e.

Γ ∆= (
⋃
g∈G

Γg)∗

That is all we need. Indeed, the following proposition shows that it makes
sense to ask whether E �

q
Γ when p is admissible.

Proposition 5.30 For all g ∈ G, Γg is a symmetric trace permuter satisfying
Π−1; ∆g; Π ⊆ Γg. Moreover, the resulting Γ is an E-strict equivalence relation.

Proof. See Appendix A.

The main result of this chapter can now be stated and proved. If a process is
admissible, abstracting its admissible outputs renders it selectively independent
w.r.t. an E-strict trace relation.

Proposition 5.31 Let (E , C,A) be a confidentiality policy and p a SecPA pro-
cess. Let φ be the abstraction relabelling associated with the policy and let
q

∆= (E � p)[s0 � φ].
If p is admissible w.r.t. (E , C,A) then E �

q
Γ.

Proof. By p’s admissibility, E � p ∼ (E � p)[s0 � fg] for all secret permuters
g ∈ G. By Corollary 5.29, q ∼(Π−1;∆g;Π) q. Since Π−1; ∆gΠ ⊆ Γg (Prop. 5.30),
by Proposition 5.14 we conclude that q ∼Γg

q for all g ∈ G. By the definition
of Selective Independency (Def. 5.20), E �

q
Γ.

We conclude by observing that the permutation of secret inputs indicated by
Γ is precisely defined by G, the set of secret permuters that is derived from the
confidentiality policy. In other words, an admissible process does not convey any
variety of secret input (as indicated by the confidentiality policy) but through
concrete admissible outputs. Not only does this characterize admissibility, but
hopefully justifies it, thus answering the question posed at the beginning of this
chapter.

Chapter 6

Experimentation: An
Architecture for
Confidentiality

The definition of confidential protocol implementation constitutes a theoretical
incursion into the problem of making sure that a piece of downloaded code pre-
serves the confidentiality properties of a given protocol. Rather unsurprisingly,
the concepts developed so far have necessarily dealt with abstract models, cer-
tainly quite far from providing a practical answer to the problem above. It is
evident that a comprehensive solution demands that a number of concrete issues
be addressed. These include, for example, the construction of an appropriate
annotated semantics for the concrete programming language to use, the correct
identification of interfaces, the specification of confidentiality properties, the as-
signment of meaning to these properties, and the actual verification mechanism.
Criteria like performance, and ease of use and of deployment, are all imperative.

The agenda is certainly quite challenging, and many issues remain still open
to be able to give a comprehensive solution. However, in this chapter, we
investigate a possible path towards carrying admissibility into practice. This
path takes the form of a confidentiality architecture. As usual, an architecture
shows how different components interact in order to complete a task, which in
this case aims at providing confidentiality guarantees to users of mobile code.

We first study the context of application trying to derive minimum require-
ments for the architecture. Taking those requirements, we then suggest a candi-
date architecture. Finally, we report on some experiments, draw conclusions on
the applicability of the proposed architecture, and identify some open problems.

87

88 6. EXPERIMENTATION: AN ARCHITECTURE FOR CONFIDENTIALITY

6.1 Requirements

Among other features, an architecture serves practitioners in structuring and
applying abstract concepts. It can be seen, therefore, as a middle point between
a theory and its application. We are interested in an architecture suggesting
how to apply the ideas around admissibility.

Our architecture has to cope with code, supposedly implementing crypto-
graphic protocols, as well as with confidentiality policies. It also has to define
the rôles of the various participants, like the code producer, the issuer of the
policy, and the user (code consumer). For the sake of illustration, assume that
the code corresponds to applets written in Java/JVM. Each applet is requested
to comply with an admissibility property. Each admissibility property is asso-
ciated with a confidentiality policy.

There are three main aspects to consider: The formal modelling process, the
enforcement of admissibility, and the management of confidentiality policies. In
each case, we discuss the requirements that they put on the architecture.

Semantics In order to apply admissibility to JVM applets, we need to give
them an annotated semantics, as in Chapter 3. This, in turn, calls for a concrete
identification of input and output channels. That is, the architecture should
identify sources of secret data. This is not as easy as it may originally seem,
specially if the source of the secret is the user himself (e.g. in the Purchasing
Applet example, the user provides the secret account number). The architecture
should therefore make provisions for the correct identification of channels even
in specific cases.

Enforcement of Admissibility The architecture should not describe the ac-
tual mechanism used to verify admissibility, but it may well identify the agent(s)
responsible of performing the verification, and suggest a procedure. Moreover,
since the code consumer does not necessarily trust the code producer, the ar-
chitecture should clearly identify which parts are trustable and which are not.

With respect to the verification procedure, it is worth considering whether
the current mechanisms provided by the Java Runtime Environment could be
adapted to such a task. The mechanism are two: A Bytecode Verifier, which
performs a series of program analyses on the code –at loading time– to make
sure that, when executed, it will not violate certain (fixed) safety restrictions;
and a Security Manager, in charge of enforcing access control at runtime. Since
admissibility is a property of sets of behaviors, it cannot be checked dynamically.
This excludes the Security Manager. On the other hand, the Bytecode Verifier
could be considered as a possibility only if we could reshape the verification of
admissibility as a static analysis.

An alternative is to use a mechanism based on Proof-Carrying Code [NL98b]:
PCC was originally designed to certify safety properties of untrusted code.

6.2. A PCC ARCHITECTURE FOR CONFIDENTIALITY 89

These properties include, among others, memory safety, type safety and confor-
mance to resource usage bounds. The fundamental idea behind PCC consists in
attaching to the code an easily checkable proof of compliance to a safety policy.
This policy is expected to have been agreed upon, by both the receiver and the
sender, before the transmission of the code.

Policies An architecture for admissibility properties should also address the
generation and transmission of confidentiality policies. Contrary to the safety
properties considered by Necula and Lee, our policies are highly application
dependent. Therefore, we must not assume that the user can easily determine
which policy to use, before the actual application is considered.

Moreover, we cannot assume in general that the user is able to interpret the
meaning of any given policy. Therefore, the architecture should make provisions
for some sort of policy advisor in charge of assisting the user on the interpreta-
tion of policies. This interpretation includes the association of the policy to a
protocol, a task that, in some cases, could be handed over to an authentication
authority.

In a way, a policy assumes that the user is part of the TCB. For example, if
a user is requested to enter an address, it is expected the data provided does not
correspond to an account number, or anything else but the address itself. We
could say that the confidentiality properties embodied by a policy depend upon
the correct behavior of the user. Since this behavior cannot be constrained,
we can only expect to inform the user correctly on which behavior is actually
expected. In the case of the purchasing applet example, the user has to be
informed of the text field where to feed in the account number. The fact that
this text field might appear in a window next to a tag saying “User PIN number
input” does not really identify the channel. The successful application of our
confidentiality policy for the purchasing applet depends on the ability of the
policy advisor to inform the user.

6.2 A PCC Architecture for Confidentiality

We propose an architecture based on Proof-Carrying Code, with confidentiality
policies as specifications of admissibility. The use of PCC serves two purposes:
it lets us experiment with this technology in the context of confidentiality prop-
erties (instead of the more traditional safety ones), and it frees us from the need
of automatizing the verification of admissibility. Even if there were such an
automatic mechanism, we could embed it in our PCC architecture (as part of a
certifying compiler), thus showing the flexibility of this proposal.

Instead of using PCC information as a code filter, weeding out from execution
those applets that fail some statically determined property we use successful
PCC checks to support a security assistant which will let applet users inquire
about its security properties, such as the destination of data which is input into
the different fields.

90 6. EXPERIMENTATION: AN ARCHITECTURE FOR CONFIDENTIALITY

User Query

Classfile

JVM

Extended

Policy Info

Specification

Bytecode

Scan Bcode and generate

Classfile
Disassemble Extended

(Bcode)

context of AT

Prove Spec in the

Security Assistant

Bytecode

applet theory (AT) Generate Specification

Classfile
Assemble Extended

Scan Bcode and generate

Execute Bytecode

(Bcode)

Validated Spec

Spec

AdmissibilityAT

proof (PRF)
Specification

context of AT

Verify that PRF
proves Spec in the

JVM theory

theory

AT

Spec
theory

Admissibility

JVM theory

proof (PRF)

applet theory (AT)

Figure 6.1: A Proof-Carrying Code Architecture for Confidentiality

6.3. EXPERIMENTS 91

Figure 6.1 shows the different elements of the architecture, distinguishing
between trusted and untrusted components. The code producer, who is not
trusted, is responsible for providing a proof that the applet satisfies a specifi-
cation (a confidentiality policy), and for putting all components together into
an extended applet (classfile). The user’s trusted system can extract the differ-
ent elements from this extended classfile, verify the proof of the property and
initialize the security assistant.

The architecture assumes that all participants share some common knowl-
edge, although it does not assume that this is necessarily used in a correct way.
For example, it is important that the proof producer and the proof verifier map
the actual applet code to the same formal language, and with identical results
(represented in the graph by AT, Applet Theory). To do so, it is convenient
that both share the same “theory” about the abstract machine (JVM Theory).
However, the translation of the applet into AT done by the code producer is not
trusted by the code consumer, who performs its own conversion. At both sides,
the meaning of confidentiality policies is derived from an Admissibility Theory
which reflects the definitions of Chapter 4.

Although it is the responsibility of the code producer to provide the extended
classfile, the task can easily be delegated to third parties. For example, the
actual proof could be performed by another person or system, or by a certifying
compiler. Even the specification could be obtained from other sources. For
example, a certification authority could be responsible for associating a policy
to a protocol, which in the case of the purchasing applet could give the user
evidence that the policy corresponds to the protocol requested by the acquirer
bank or the credit card issuer.

In practice, a specification consists of a confidentiality policy and a set of
channel identifications. In the case of the purchasing applet, it is necessary
to identify entry points for acquirers and account numbers, which is why the
Applet Theory is needed for the full specification.

The security assistant is responsible for informing the user on the result of
the verification process, and of which channels should receive each piece of secret
data. As written above, the fact that a text field appears on a window labelled
“User PIN number input” cannot be trusted. The security assistant fills in the
gap by telling the user whether what the label says is true. Finally, if the policy
has been signed by an authentication authority, the assistant is responsible for
verifying the signature.

6.3 Experiments

We report here on a few experiments done to test the proposed PCC architec-
ture. The idea was to evaluate the difficulties in carrying the suggestions of the
architecture into practice.

92 6. EXPERIMENTATION: AN ARCHITECTURE FOR CONFIDENTIALITY

if (button ‘‘Submit form’’ was pressed) { (1)

get acq from applet window; (2)

get K, the Acquirer’s public key from local keystore; (3)

get order from applet window; (4)

get acc from applet window; (5)

enc = encrypt (order, acc) with K; (6)

data = convert (acq, order, enc) to proper type for output; (7)

create Socket connection with Merchant; (8)

get OutputStream associated with Socket; (9)

write data to OutputStream; (10)

close Socket; (11)

}

Table 6.1: Partial pseudo-code for the purchasing applet

6.3.1 Modeling the Java Virtual Machine

When applying the architecture, one of the most important decisions to make
concerns the semantics of the language of interest. Not only should this seman-
tics be of formal nature, but it should permit the kinds of analyses done over the
annotated semantics of Chapter 3. In the case of JVM code, the former amounts
to identifying states and labelled transition systems among them. While this
is rather straightforward, providing the annotations is perhaps more difficult.
Data has to be tracked as it is stored in objects of the most varied types, and
subject to modifications by a full range of methods.

How to give a process algebraic semantics to an object-oriented language is
still a matter of dispute among researchers. We have chosen instead a more
traditional approach to operational semantics. For example, the representation
of states actually follows that of the states in the JVM. Although there is only
space for an informal presentation here, we take a quick look at the representa-
tion of states and transitions.

States are made up of the following three components:

1. A Classfile Area containing a definition for each class, its constant pool,
fields and method codes.

2. A Heap containing a representation for each object or array.

3. A Frame stack for each running thread where each frame identifies the
current executing method, the class it belongs to, the current value of the
program counter, the values of local variables, and the operand stack.

To illustrate how the transitions of this state transition system are defined,
consider a possible implementation of the purchasing applet: Table 6.1 delin-
eates the part responsible for the applet side of the protocol where, for the sake
of presentation, we have replaced the original JVM instructions by a less de-
tailed and, hopefully, easier to read pseudo-code. Each step involves a mix of
primitive JVM instructions and library method calls. The library methods are

6.3. EXPERIMENTS 93

implemented, in turn, by other methods and instructions, native or in bytecode
form, belonging to JVM or the local operating system. Since our task is to
analyze the confidentiality property of that part of the code which is mobile,
it is natural to draw the trust borderline at the level of library method calls.
Thus each library method invocation will, in the model, give rise to a “virtual
instruction”, a labelled transition representing the effect of the corresponding
library method call. Two sorts of effects are involved. The effect on the exter-
nal world (socket creation, input and output) is captured by transition labels
(i.e., actions, that in this case correspond to local function calls in a-SecPA),
and the effect on applet execution is captured by replacing the library objects
by object “stubs” which maintain the required data structures. For example,
a java.net.Socket stub contains a field of class java.net.InetAddress to
keep track of the internet address the socket instance is connected to. Virtual
instructions which have no externally observable effect are regarded as internal
and labelled τ . To avoid indeterminate states we assume that the applet has
passed the bytecode verifier and all library methods are well-behaved, so that
each instruction has a well defined successor state.

For instance, step 2, Table 6.1, is the input event acq?x in the model of
Section 3.1.1. An object of class NamedTextField is used to identify the en-
try point of each datum. Class NamedTextField, defined as a subclass of
java.awt.TextField, associates a name to a textfield object. As an example,
the name of the textfield intended for account number input may be, simply,
“account number.” Reading a string from a NamedTextField object is modelled
as a virtual instruction labelled GETTEXT textfield string. This string is al-
located in the heap and annotated with the name of the textfield, i.e. “account
number.”

Similarly, in step 3, a keystore containing name-key pairs is accessed us-
ing some local method. This is represented as a virtual instruction labelled
GETKEY principal key, with key the principal’s key. Clearly, this transition
corresponds to event k := pubKey(x) in the model of Section 3.1.1.

Steps 7, 8 and 9 can be modelled as virtual instructions, but here we have
assumed that they do not involve any observable communication. Therefore,
they are labelled with the silent action. On the other hand, step 8, socket cre-
ation, and step 11, socket closure, are clearly observable, so they are abstracted
by appropriately labelled virtual instructions: MAKESOCKET ipaddr portno and
CLOSE socket.

Step 10 is associated with virtual instruction WRITE dest st, and corre-
sponds to the purchase order event merchant !(x, y, {(y, z)}k) in the model of
Chapter 3. While the destination of the message (dest) can directly be recov-
ered from the OutputStream object to which the method is applied, determining
the value of st is more involved. The reason is that st should support a symbolic
representation of data, sufficient to recover the values of acq, order, acc and K,
as well as the operations performed on them to obtain the actual value which
is transmitted to dest. This is done by annotating, in the model, every byte
array in the heap, and extending the transitions that correspond to conversions

94 6. EXPERIMENTATION: AN ARCHITECTURE FOR CONFIDENTIALITY

Step Virtual instruction label Events in model

2 GETTEXT textfield string acq?x
3 GETKEY principal key k := pubKey(x)
4 GETTEXT textfield string order?y
5 GETTEXT textfield string acc?z
6 τ -
7 τ -
8 MAKESOCKET ipaddr portno -
9 τ -
10 WRITE dest st merchant !(x, y, {(y, z)}k)
11 CLOSE socket -

Table 6.2: Virtual instructions and corresponding events in the model of Sec-
tion 3.1.1

from string, concatenation (pairing) and encryption so that the annotation is
updated accordingly.

Table 6.2 contains a list of the virtual instructions used in each step of the
pseudo-code, together with a reference to the corresponding event, if any, in the
model of Section 3.1.1.

6.3.2 The Prototype

Once an appropriate semantics is chosen, we can proceed to implement the dif-
ferent components of the architecture (i.e. the square boxes in Figure 6.1). In
fact, we have implemented an experimental platform for proof-carrying JVM
applets based on Sun’s Java Plug-in running inside Netscape Navigator 4.5.
This platform permits us to experiment with concrete applets, equipped with
proofs and specifications in the form of admissibility predicates. Proofs and
specifications are produced using the Isabelle theorem prover [Pau98b], based
on earlier work by Pusch [Pus98]. The Isabelle formalization uses the ideas
of Section 6.3.1 and Chapter 4 rather directly. The formalization presents no
essential problems. However, we have not been interested in any performance
optimizations. Arriving at a good structure of the JVM specification and the
proof which permits the checking speeds required for real applications will prob-
ably require a complete redesign of the prototype. For this reason we do not
regard it very meaningful to report on performance aspects at this stage, but
refer instead to the work of Necula and Lee (cf. [NL98b, NL98a]) which has
gone some way to indicate the practical realizability of the general PCC scheme.

PCC Data Assembly The code producer is responsible for assembling an
extended classfile, which is just a standard Java classfile containing specific at-
tributes for the specification and proof of each applet. A Java program loads an
applet generated by javac, the Java Compiler and converts it into the Applet

6.3. EXPERIMENTS 95

context of AT

proof (PRF)

AT + Spec

Prove Spec in the

Specification

JVM theory Admissibility
theory

JVM class file
(Bcode)

(Bcode + Spec + PRF)
Extended JVM class file

ClassLoader

applet theory (AT) &
applet specification (Spec)

Assemble

extended bytecode

Scan Bcode and generate

Figure 6.2: Proof-Carrying Code Assembler

Theory, an Isabelle theory representing the code. This is handed to the Isabelle
theorem prover together with the admissibility specification. The proof script
obtained is assembled into the applet, with the code and the specification to
obtain a classfile that can be transmitted to the code consumer. The procedure
is summarized in Fig. 6.2. Note that the prototype takes specifications to be
properties in a format understandable to the theorem prover. This is, of course,
too simple. For example, regarding the naming of textfields, we have put this
information in the applet itself (using objects of class NamedTextField, instead
of the standard TextField). A more general solution would separate the code
from the channel naming conventions required for the adequate interpretation
of the policy. Finally, the specifications in the prototype are not signed by any
certification authority.

Enforcement of Admissibility The extended classfile, which otherwise re-
mains completely readable to the standard implementation of the Java Virtual

96 6. EXPERIMENTATION: AN ARCHITECTURE FOR CONFIDENTIALITY

Machine, allows a slightly modified virtual machine perform extra tests on the
untrusted code to reduce the risks associated with its execution. Besides exe-
cuting the applet, this machine is required to:

• Download a web page with a reference to an extended class file to be
executed at the browser site,

• verify the specifications (and their proofs) provided together with the class
file,

• decide whether to run the downloaded code or not, and

• provide the user of the browser with information flow security data ex-
tracted from the specifications which had been successfully verified.

In view of this, the user side of the prototype consists of:

1. A Java-enabled web browser capable of downloading web pages and provid-
ing the necessary environment for the execution of embedded Java applets,

2. a theorem checker able to verify the proofs provided by the code producer,
and

3. a modified Java Runtime Environment capable of handling extended class
files, invoking the theorem checker, keeping track of the security specifi-
cations and providing this information to the user of the browser.

This part of the prototype, with its three subcomponents, is depicted in Fig-
ure 6.3. The rest of the section describes these components and their interplay
in more detail.

The Web Browser Component

For the prototype, we used Netscape 4.5 as browser to access applets on the
internet. Besides being able to execute Java applets, nice feature of this browser
is that it can be configured to employ Sun’s Java Plug-in. This means that
HTML files can be slightly modified to instruct Netscape to run a plug-in acting
as an interface with the Java Runtime Environment (JRE). The modification of
the HTML file amounts to replacing the usual APPLET tags with EMBED tags
referring to objects of mime type “application/x-java-applet;version=1.1.2”.

The Theorem Checker Component

Although in a realistic situation the theorem checker would probably be tailored
to check a particular kind of proofs (for performance reasons), we have taken a
simpler and more direct path: We used the same Isabelle theorem prover em-
ployed to do the actual proofs. In fact, given that we have decided to represent
the proofs as Isabelle scripts, this was an obvious choice.

6.3. EXPERIMENTS 97

ok/nok

Check that PRF

in the context of AT

AT + Spec + PRF

JVM theory

Admissibility
theory

Keep track of
proved SPECs

Cope with

Extended
JVM class file

(Code + Spec + PRF)

and assist user
with admissibility

instead of
Run extended JRE 1.1

Netscape’s JVM

HTML file with
embedded Java object

extended JVM
class file

Extract

Code +Spec +PRF
and generate AT

is a proof of Spec

Figure 6.3: Proof-Carrying Code Checker

Notice that even though the proof producer needs and uses all three items
input to the theorem checker, none can be trusted by the applet consumer.
Therefore, local (trusted) versions of the JVM semantics, the Admissibility the-
ory and the Applet Theory (AT) have to be used. Of all, the first two can be
kept in local storage. The Applet Theory, instead, depends on the actual code
of the applet and has to be generated on the fly (see next component) upon
reception of the applet.

The Extended Java Runtime Environment Component

In the prototype, the JRE was modified to fulfill three tasks: The disassembly of
extended class files, the interface with the theorem checker, and the assistance
of the user.

The first task requires the introduction of a wedge into the loading process
of the JRE. The code for each class in Java is loaded into the JVM by a Class
Loader. Since class loaders have the responsibility to determine when a class can
be added to the running Java environment, they were the natural candidates
to make the connection with the two added modules (see below) responsible for
implementing the PCC concept.

There are two varieties of class loaders: Primordial Class Loaders and Class
Loader objects [MF99]. The first load system classes from the local file sys-
tem. Since these classes are local, they are trusted and they contain no PCC
extensions. The second, Class Loader objects, load all other classes, which are
untrusted by default, and thus may indeed contain PCC extensions.

Every class loader object is necessarily an instance of a subclass of Class-
Loader. Method defineClass of class java.lang.ClassLoader, which is final

98 6. EXPERIMENTATION: AN ARCHITECTURE FOR CONFIDENTIALITY

and thus not possible to override, has to be invoked before any loaded class
can be used. Precisely because of this, we have placed a link to our checking
methods inside the defineClass method. This let us guarantee1 that no class
load will avoid the checks which are mandated by our PCC architecture.

As a result of these changes, whenever a class file containing PCC extensions
is loaded, the Isabelle Manager module (see Figure 6.3) is invoked to extract
the code, the specification (Spec) and the proof (PRF). The code is then auto-
matically translated into a theory file (Applet Theory) written in terms under-
standable to the theorem checker (Isabelle). This translation takes into account
the definition of the semantics of JVM in Isabelle and has to be done by a local
component to maintain confidence in it and avoid malicious JVM code to pass
the PCC tests by providing a translation into a fake Applet Theory.

After this, the Isabelle Manager starts the Isabelle theorem prover (if it was
not already running) and instructs it to check that PRF is a correct proof of
Spec in the context of the Applet Theory.

The PCC Manager module takes care of specifications with a correct proof.
Once the proof of a specification is found to be valid, this module parses and
stores the specification. Subsequently, it remains in charge of assisting users,
informing them of the admissibility property satisfied by the applet and the cor-
rect use of channels (including fields meant for secret input). In our prototype,
a query can be performed on every input field on the applet window. In each
case, if there is an admissibility property recorded for the applet, the parsed
relabelling function contains information about the intended destination of the
value input at the selected field. In the case of the Purchasing Applet example,
this lets the PCC Manager tell the user that the credit card number information
will only be sent out encrypted using the Acquirer’s public key.

6.3.3 Some Conclusions on the Experiments

The road from theory to practice is usually a long one. Our experiments should
then be taken basically as the source of inspiration they have been, more than
as a thorough solution to the problems motivating our research. We can say
though that there is some potential in the PCC architecture presented here.
A realistic application would require the development of an infrastructure for
producing, certifying and distributing confidentiality policies. Automatic proof
methods, compact proofs and quick and efficient proof verification procedures
would also be needed. Furthermore, even if our early experiments have indi-
cated that the suggested form of user support is both natural and helpful, it is
clear that it would not scale well to complex confidentiality specifications. In
those cases, one could consider an alternative assistant that would rely on an
external authority to certify a high-level, human-readable description of the con-
fidentiality property accompanying the applet. This authority would not have

1This can be guaranteed for as long as no hole in the standard JRE is exploited to defeat
Java’s normal security mechanisms.

6.3. EXPERIMENTS 99

to certify the code itself, but just a description of the guarantees implied by the
admissibility property. More work is needed, though, to determine what forms
assistant output should take once we begin to address more complex applets
and protocols.

The experiments have been extremely helpful in identifying some “problems”
introduced by our way of expressing confidentiality. The need to correctly name
input channels whose data is provided by a human user was not apparent at the
beginning. Moreover, it was noticed that the design of an annotated semantics
presents several yet unmatched challenges in the case of a real and complex
programming language like Java.

Chapter 7

Conclusions and Future
Work

The study and enforcement of secrecy properties of code is a complex matter.
For years, researchers have proposed models and solutions only to find them
faulty shortly after. In several cases, the faults were found by slightly shifting
the perspective of study. In this respect, this thesis is probably no exception.
The good news is that most of the attempts at taming confidentiality have
helped advance our understanding of the subject.

In this context, the importance of finding semantical foundations for the pro-
posed methods cannot be underestimated. As a matter of fact, these foundations
provide a solid background against which the appropriateness and correctness
of these methods can be measured. The problem of modelling, specifying and
verifying secrecy of mobile implementations of security protocols, demands a
semantical characterization of secrecy in the presence of admitted information
flows. When a piece of code implements a security protocol, it is expected to
have access to secret data. The code has then the possibility of leaking the
secret information directly or indirectly by exploiting the freedom given by the
protocol specification. This situation does not really correspond to the “trans-
mission” view in Wittbold and Johnson’s terminology (see the discussion in the
introduction). The purpose there is to design systems without covert channels,
making it impossible for any Trojan Horse to leak information. It neither cor-
responds to the “eavesdropping” view, which is the approach taken to analyze
the protocol and where the only attacker is assumed to be outside the system.
The approach taken here is to relate the confidentiality properties of an imple-
mentation to those of the protocol, thus avoiding the need of applying at the
code level the techniques that are usually applied at the level of the protocol. In
order to do so, a number of features were described and small problems solved
throughout this thesis.

In first place, we presented a language that is rich enough to be able to encode

101

102 7. CONCLUSIONS AND FUTURE WORK

implementations of various interesting protocols and simple enough to allow for
a clear and manageable treatment. The choice of SecPA seems convenient from
different points of view: its semantics is relatively close to the semantic model
used to model confidentiality properties (i.e. labelled transition systems), and its
standard features, derived from CCS and other process algebras which represent
cryptographic operations explicitly, have been studied profusely.

A security protocol was taken as the measure of the amount and quality
of information that an implementation is allowed to leak. Our confidentiality
policies therefore extract and isolate that information contained in the protocol.
Moreover, their compact representation makes them suitable for transmission
and manipulation.

The definition of the desired confidentiality property demanded the use of a
non-standard, extended semantics (a-SecPA) for the implementation language.
Although it is an “instrumented semantics”, we have avoided the problems of
other, previous semantics of this sort by providing results relating the extended
semantics to a more standard one (Section 3.3). In general, the semantics of
a program represents an abstraction of its execution on a real machine. Con-
sequently, we cannot pretend to exclude all possible attacks, for there can al-
ways be attacks that exploit features abstracted away in our models. Two such
features, not present in our extended semantics, are time and probabilistic be-
haviour, but there are others too. Some timed and probabilistic attacks can
nevertheless be prevented using our definition of Admissibility (c.f. next sec-
tion).

Once the extended semantic was defined, we could provide a confidential
protocol implementation relation (i.e. Admissibility) between the confidential-
ity properties of the implementation and the policy. This relation was defined in
terms of well-understood mechanisms, like strong bisimulation and relabelling
functions. The use of bisimulation equivalences had previously been advocated
in the definition of several secrecy properties, for computer systems, program-
ming languages and protocols; while relabellings provide a twist to purge func-
tions and permutation of initial states. Although we have preferred strong
bisimulation equivalence, the definition of Admissibility is independent of this
choice. However, strong equivalence has the advantages that it has a simple
theory, its verification techniques have been studied extensively, and it implies
most other reasonable equivalences, including observational ones. By relying
on the protocol analysis phase, that determines the implications of the policy,
there is no strong need to consider an observational equivalence that assumes
computationally-bounded observers.

That Admissibility, a property defined using strong bisimulation equivalence
and relabelling functions over an instrumented semantics, relates the secrecy of
an implementation to a policy is a strong claim that needs justification. The
strategy adopted in this thesis was to show that an admissible process, when
deprived of all admissible outputs, leaks no secret information. The last item
demanded a variation of noninterference for nondeterministic systems where
the only thing to protect was high-level values, and no high-level behaviors

7.1. FUTURE WORK 103

(reflecting the differences between the “transmission” problem and the problem
addressed here). The resulting definition of Selective Independency is by itself
interesting and deserves further study.

Admissibility, like other information flow properties, has a coinductive def-
inition. To complicate matters further, it uses universal quantification over an
infinite set of conditional relabelling functions. Fortunately, it also has an un-
winding theorem, a result giving sufficient conditions and reducing the proof of
admissibility to a set of local verifications (Theorem 4.15). Although this result
is of extreme importance for the derivation of program analysis techniques, Ad-
missibility is just a piece in a much bigger puzzle. Indeed, the enforcement of
confidentiality in the scenarios considered in the introduction involves a whole
infrastructure, with features ranging from the protocol production and analy-
sis, their confidentiality policies, production, transmission and consumption of
code, its verification, user interface issues, etc., some of which were considered
and discussed in the Proof-Carrying Code architecture of Chapter 6.

7.1 Future Work

The study of confidentiality is presently going through a fascinating period
where different theories and approaches seem to converge, giving us a complex
and elaborate picture of the field. Although in this thesis we have barely touched
upon a small area, many questions remain unanswered, motivating a number of
possible continuations to this work.

Standard semantical models and languages have helped to understand better
the essence of confidentiality properties. While we have used them in this thesis,
there is still place for more standardization. For example, it might be worth
exploring replacing SecPA with languages like spi-calculus or the recent applied-
pi calculus [AF01].

Regarding the confidentiality policies defined in this work, we have assumed
it to be relatively easy to extract them from the protocols. However, this need
not be so when considering elaborate protocol suites. That is, there is a need to
further study how policies relate to protocols: could policies be automatically
extracted from protocols?

It is now commonly regarded that an information flow property should not
disregard flows originating from timed or probabilistic behaviors. In either case,
the underlying semantical model must be enriched with the corresponding infor-
mation (time and probabilities) before the property can properly be stated. It
would be interesting to investigate how a property like admissibility could scale
to those models. All the same, in the current definition, strong bisimulation
might be too stringent but it is able to detect those timing channels that do not
exploit variations in the execution times of library functions (e.g. encryption).
If a program contains a function call that depends on a secret value and that
is not admitted by the policy, then the program does not satisfy Admissibil-
ity. Therefore, the variations in execution time of a program can only depend

104 7. CONCLUSIONS AND FUTURE WORK

on secrets if admitted by the policy, which means that an admissible imple-
mentation preserves the timed confidentiality properties of the protocol when
analyzed together with the particular implementation of the functions (some-
thing already considered in computational models for cryptographic protocols,
see Section 2.2.2).

The definition of Selective Independency for a-SecPA processes (Section 5.2)
extends Cohen’s definition to nondeterministic processes. In the context of this
thesis, it was required to permute secret data while otherwise preserving high-
level actions, a feature not present in most information flow properties within
the “transmission” view. However, in Selective Independency, the definition
of E-strictness models our assumptions about the behavior of high-level users.
Understanding the definition of E-strictness could help understand the relation
between Selective Independency and more established notions of information
flow.

Concurrently with the effort to achieve a better understanding of the de-
fined notions of confidential protocol implementation, more work is needed to
determine the practical significance of the proposed technology. In the context
of EOARD Project SPC 01-4025 we plan to develop program analysis tech-
niques to verify admissibility properties over a range of languages of increasing
complexity. We also plan to experiment with an architecture similar to that
described in Chapter 6, but instead relying on program analysis.

Bibliography

[Aba97] M. Abadi. Secrecy by typing in security protocols. In M. Abadi
and T. Ito, editors, Proceedings of the Third International Sympo-
sium on Theoretical Aspects of Computer Software, volume 1281 of
LNCS, pages 611–638, Sendai, Japan, 1997. Springer.

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and se-
cure communication. In Proceedings of the 28th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 104–115, London, UK, January 2001.

[AG98a] M. Abadi and A. D. Gordon. A bisimulation method for cryp-
tographic protocols. Nordic Journal of Computing, 5(4):267–303,
1998.

[AG98b] M. Abadi and A. D. Gordon. A calculus for cryptographic proto-
cols: The Spi Calculus. Technical Report SRC-149, Digital Systems
Research Center, January 1998.

[Aga00] J. Agat. Transforming out timing leaks. In Proceedings of the
27th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 40–53, Boston, MA,
January 2000. ACM.

[AJ01] M. Abadi and J. Jürjens. Formal eavesdropping and its computa-
tional interpretation. In Fourth International Symposium on Theo-
retical Aspects of Computer Software (TACS2001), LNCS, Sendai,
Japan, October 29–31 2001. Tohoku University, Springer. To ap-
pear.

[AR80] Andrews and Reitman. An axiomatic approach to information flow
in programs. ACM Transactions on Programming Languages and
Systems, 2(1):56–76, 1980.

[AR00] M. Abadi and P. Rogaway. Reconciling two views of cryptogra-
phy (the computational soundness of formal encryption). In J. van

105

106 BIBLIOGRAPHY

Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, and T. Ito, edi-
tors, Proc. of the Int. Conf. IFIP TCS 2000, volume 1872 of LNCS,
pages 3–22. Springer, August 2000.

[BAN89] M. Burrows, M. Abadi, and R. M. Needham. A logic of authen-
tication. In Proceedings of the Royal Society of London A, pages
426:233–271, 1989.

[BGH+95] M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk,
M. Steiner, G. Tsudik, and M. Waidner. iKP – a family of se-
cure electronic payment protocols. In First USENIX Workshop on
Electronic Commerce, May 1995.

[BK01] P. Boury and N. El Kadhi. Static analysis of java cryptographic
applets. In ECOOP2001 Workshop on Java Formal Verification,
Budapest, June 2001.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer systems: Unified
exposition and MULTICS interpretation. Technical Report MTR-
2997, Mitre Corp., Bedford, Mass., USA, June 1976.

[Bol97] D. Bolignano. Towards a mechanization of cryptographic protocol
verification. In 9th International Conference on Computer Aided
Verification, number 1254 in LNCS, pages 131–142, Berlin, 1997.
Springer.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. In Proceedings of the
First Annual Conference on Computer and Communications Secu-
rity. ACM, 1993.

[BS98] E. Börger and W. Schulte. A modular design for the Java Virtual
Machine architecture. In E. Börger, editor, Architecture Design and
Validation Methods. Springer, December 1998.

[CG00] J. Cederquist and P. Giambiagi. Implementations that preserve
confidentiality. Extended Abstract at the IEEE Symposium on
Logic in Computer Science, June 2000.

[Che98] David M. Chess. Security issues in mobile code systems. In Gio-
vanni Vigna, editor, Mobile Agents and Security, volume 1419 of
LNCS, pages 1–14. Springer, 1998.

[Coh77] E. S. Cohen. Information transmission in computational systems.
ACM SIGOPS Operating Systems Review, 11(5):133–139, 1977.

[Coh78] E. S. Cohen. Information transmission in sequential programs. In
R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, edi-
tors, Foundations of Secure Computation, pages 297–335. Academic
Press, 1978.

BIBLIOGRAPHY 107

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory.
Wiley series in telecommunication. John Wiley & Sons, Inc., 1991.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504–
513, July 1977.

[Dea97] D. Dean. Secure mobile code: Where do we go from here? In
DARPA Workshop on Foundations for Secure Mobile Code, Mon-
terrey, CA, USA, March 1997.

[Den76] D. E. Denning. A lattice model of secure information flow. Com-
munications of the ACM, 19(5):236–243, 1976.

[DFG99] A. Durante, R. Focardi, and R. Gorrieri. CVS: A compiler for the
analysis of cryptographic protocols. In Proceedings of 12th IEEE
Computer Security Foundations Workshop, pages 203–212, Mor-
dano, Italy, June 1999. IEEE.

[DG00] M. Dam and P. Giambiagi. Confidentiality for mobile code: The
case of a simple payment protocol. In Proceedings of 13th IEEE
Computer Security Foundations Workshop, pages 233–244, Cam-
bridge, England, July 2000. IEEE.

[DY83] D. Dolev and A. C. Yao. On the security of public key proto-
cols. IEEE Transactions on Information Theory, IT-29(2):198–208,
March 1983.

[FG95] R. Focardi and R. Gorrieri. A classification of security properties for
process algebras. Journal of Computer Security, 3(1):5–33, 1995.

[FG97] R. Focardi and R. Gorrieri. The compositional security checker:
a tool for the verification of information flow security properties.
IEEE Transaction on Software Engineering, 23(9):550–571, 1997.

[FGM00] R. Focardi, R. Gorrieri, and F. Martinelli. Secrecy in security pro-
tocols as noninterference. In S. Schneider and P. Ryan, editors,
Proceedings of DERA/RHUL Workshop on Secure Architectures
and Information Flow, volume 32 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2000.

[FHG98] F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman. Strand
spaces: Why is a security protocol correct? In Proceedings of the
1998 IEEE Symposium on Security and Privacy, pages 160–171,
Oakland, CA, May 1998.

[FLR77] R. Feiertag, K. Levitt, and L. Robinson. Proving multi-level secu-
rity of system design. ACM Operating Systems Review, 11(5):57–65,
November 1977.

108 BIBLIOGRAPHY

[FM99a] R. Focardi and F. Martinelli. A uniform approach for the definition
of security properties. In J. Wing, J. Woodcock, and J. Davies, edi-
tors, FM’99, Vol. I, volume 1708 of LNCS, pages 794–813. Springer,
1999.

[FM99b] Stephen N. Freund and John C. Mitchell. A formal framework for
the Java Bytecode language and verifier. In Proceedings of the ACM
Conference on Object-Oriented Programming: Systems, Languages
and Applications (OOPSLA’99), November 1999.

[GM82] J.A. Goguen and J. Meseguer. Security policies and security mod-
els. In Proceedings of the 1982 IEEE Symposium on Security and
Privacy, pages 11–20, Oakland, CA, 1982.

[GM84a] J.A. Goguen and J. Meseguer. Inference control and unwinding. In
Proceedings of the 1984 IEEE Symposium on Security and Privacy,
pages 75–86, Oakland, CA, April 1984.

[GM84b] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28:270–299, April 1984.

[Gol97] A. Goldberg. A specification of Java loading and bytecode verifi-
cation. Technical report, Kestrel Institute, Palo Alto, CA, 1997.

[Gra90] J. W. Gray, III. Probabilistic interference. In Proceedings of the
1990 IEEE Symposium on Security and Privacy, pages 170–179,
Oakland, CA, May 1990.

[Gra92] J. W. Gray, III. Toward a mathematical foundation for information
flow security. Journal of Computer Security, 1:255–294, 1992.

[HR98] N. Heintze and J. G. Riecke. The SLam Calculus: Programming
with secrecy and integrity. In Proceedings of the 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), pages 365–377, San Diego, CA, January
1998. ACM.

[J0̈1] J. Jürjens. Secrecy-preserving refinement. In Formal Methods Eu-
rope (FME’01), LNCS. Springer, March 2001.

[JL75] A. K. Jones and R. J. Lipton. The enforcement of security policies
for computation. In Proceedings of the 5th Symposium on Operating
Systems Principles, pages 197–206, November 1975.

[JMT97] T. Jensen, D. Le Métayer, and T. Thorn. Security and dynamic
class loading in Java: A formalisation. Technical Report 1137,
IRISA, Rennes Cedex, France, October 1997.

BIBLIOGRAPHY 109

[Kad01] N. El Kadhi. Automatic verification of confidentiality properties
of cryptographic program. Networking and Information Systems
Journal, 6, 2001. To appear.

[Koc96] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, Advances in
Cryptology – CRYPTO’96, volume 1109 of LNCS, pages 104–113.
Springer, 1996.

[Koz99] Dexter Kozen. Language-based security. In M. Kutylowski, L. Pa-
cholski, and T. Wierzbicki, editors, Proceedings of Conf. Mathemat-
ical Foundations of Computer Science (MFCS’99), volume 1672 of
LNCS, pages 284–298. Springer, September 1999.

[LJ00] K. R. M. Leino and R. Joshi. A semantic approach to secure infor-
mation flow. Science of Computer Programming, 37(1–3):113–138,
May 2000.

[LMMS99] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. Prob-
abilistic polynomial-time equivalence and security protocols. In
FM’99 World Congress On Formal Methods in the Development of
Computing Systems, Toulouse, France, 1999.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In Margaria and Steffen, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume
1055 of LNCS, pages 147–166. Springer, 1996. Also in Software
Concepts and Tools, 17:93-102, 1996.

[Low99] G. Lowe. Defining information flow. Technical Report TR1999/3,
Department of Mathematics and Computer Science. University of
Leicester, 1999.

[Man00] H. Mantel. Possibilistic definitions of security – an assembly kit
–. In Proceedings of 13th IEEE Computer Security Foundations
Workshop, pages 185–199, Cambridge, England, July 2000. IEEE.

[Man01] H. Mantel. Preserving information flow properties under refine-
ment. In Proceedings of the 2001 IEEE Symposium on Security
and Privacy, pages 78–91, Oakland, CA, May 2001.

[MC92] I. S. Moskowitz and O. L. Costich. A classical automata approach
to noninterference type problems. In Proceedings of 5th IEEE Com-
puter Security Foundations Workshop, Franconia, New Hampshire,
1992.

[McC87] D. McCullough. Specifications for multi-level security and hook-up
property. In Proceedings of the 1987 IEEE Symposium on Security
and Privacy, pages 161–166, Oakland, CA, April 1987.

110 BIBLIOGRAPHY

[McC88] D. McCullough. Noninterference and the composability of security
properties. In Proceedings of the 1988 IEEE Symposium on Security
and Privacy, pages 177–186, Oakland, CA, May 1988.

[McC90] D. McCullough. A hookup theorem for multilevel security. IEEE
Transaction on Software Engineering, 16(6):563–568, 1990.

[McL90] J. McLean. Security models and information flow. In Proceedings of
the 1990 IEEE Symposium on Security and Privacy, pages 180–187,
Oakland, CA, May 1990.

[McL92] J. McLean. Proving noninterference and functional correctness us-
ing traces. Journal of Computer Security, 1, 1992.

[McL94] J. McLean. Security models. In J. Marciniak, editor, Encyclopedia
of Software Engineering, pages 1136–1145. John Wyley & Sons,
1994.

[MF99] Gary McGraw and Ed Felten. Securing Java. John Wiley & Sons,
Inc., 1999.

[Mil87] J. K. Millen. Covert channel capacity. In Proceedings of the 1987
IEEE Symposium on Security and Privacy, pages 60–66, Oakland,
CA, April 1987.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall,
1989.

[Mil99] J. Millen. 20 years of covert channel modelling and analysis. In
Proceedings of the 1999 IEEE Symposium on Security and Privacy,
pages 113–114, Oakland, CA, May 1999.

[MK94] I. S. Moskowitz and M. H. Kang. Covert channels – Here to stay?
In Proceedings of COMPASS’94, Gaithersburg, MD, pages 235–243.
IEEE Press, 1994.

[ML98] A. C. Myers and B. Liskov. Complete, safe information flow with
decentralized labels. In Proceedings of the 1998 IEEE Symposium
on Security and Privacy, pages 186–197, Oakland, CA, May 1998.

[MMS97] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryp-
tographic protocols using Murϕ. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 141–153, Oakland, CA,
May 1997.

[MR00] J. Millen and H. Ruess. Protocol-independent secrecy. In Pro-
ceedings of the 2000 IEEE Symposium on Security and Privacy,
Oakland, CA, May 2000.

BIBLIOGRAPHY 111

[MS01] H. Mantel and A. Sabelfeld. A generic approach to the security
of multi-threaded programs. In Proceedings of 14th IEEE Com-
puter Security Foundations Workshop, pages 126–142, Nova Scotia,
Canada, June 2001. IEEE.

[MvOV97] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook
of Applied Cryptography. Series on Discrete Mathematics and its
applications. CRC Press LLC, 1997.

[MWCG98] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system
f to typed assembly language. In Proceedings of the 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), pages 85–97, San Diego, CA, January
1998. ACM.

[Mye99] A. C. Myers. JFlow: Practical mostly-static information flow con-
trol. In Proceedings of the 26th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL),
pages 228–241, San Antonio, TX, January 1999. ACM.

[Nec97] George C. Necula. Proof-Carrying Code. In Proceedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 106–119, Paris, France,
January 1997. ACM.

[NL98a] George C. Necula and Peter Lee. Efficient representation and
validation of proofs. In Proceedings of the Annual Symposium
on Logic in Computer Science (LICS), Indianapolis, U.S.A., June
1998. IEEE, Computer Society Press.

[NL98b] George C. Necula and Peter Lee. Safe, untrusted agents using
Proof-Carrying Code. In Giovanni Vigna, editor, Mobile Agents
and Security, volume 1419 of LNCS, pages 61–91. Springer, 1998.

[Pau98a] L. C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6:85–128, 1998.

[Pau98b] L. C. Paulson. Introduction to Isabelle. Technical report, Computer
Laboratory, University of Cambridge, 1998.

[PSW00] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic secu-
rity of reactive systems (extended abstract). In S. Schneider and
P. Ryan, editors, Proceedings of DERA/RHUL Workshop on Se-
cure Architectures and Information Flow, volume 32 of Electronic
Notes in Theoretical Computer Science. Elsevier, April 2000.

[Pus98] Cornelia Pusch. Formalizing the Java Virtual Machine in Is-
abelle/HOL. Technical Report TUM-I9816, Institut für Informatik,
Technische Universität München, 1998.

112 BIBLIOGRAPHY

[Qia99] Zhenyu Qian. A formal specification of Java(tm) Virtual Machine
instructions for objects, methods and subroutines. In Jim Alves-
Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of
LNCS. Springer, 1999.

[RG99] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninter-
ference? In Proceedings of 12th IEEE Computer Security Founda-
tions Workshop, pages 228–238, Mordano, Italy, June 1999. IEEE.

[Ros95] A. W. Roscoe. CSP and determinism in security modelling. In
Proceedings of the 1995 IEEE Symposium on Security and Privacy,
pages 114–127, May 1995.

[Ros98] A. W. Roscoe. Proving security protocols with model checkers
by data independence techniques. In Proceedings of 11th IEEE
Computer Security Foundations Workshop, Rockport, MA, June
1998.

[RS99] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-
interference. In Proceedings of 12th IEEE Computer Security Foun-
dations Workshop, pages 214–227, Mordano, Italy, June 1999.
IEEE.

[Rus92] J. Rushby. Noninterference, transitivity, and channel-control secu-
rity policies. Technical Report CSL-92-2, Stanford Research Insti-
tute, 1992.

[SA98] Raymie Stata and Martin Abadi. A type system for Java Bytecode
subroutines. In Proceedings of the 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL), pages 149–160, San Diego, CA, January 1998. ACM.

[Sab01] A. Sabelfeld. The impact of synchronisation on secure information
flow. In Proceedings of the Andrei Ershov 4th International Con-
ference on Perspectives of System Informatics, LNCS, Novosibirsk,
July 2001. Springer.

[SG95] P. Syverson and J. Gray, III. The epistemic representation of infor-
mation flow security in probabilistic systems. In Proceedings of 8th
IEEE Computer Security Foundations Workshop, pages 152–166,
Kenmare, Ireland, 1995.

[SMH00] F. B. Schneider, G. Morrisett, and R. Harper. A language-based
approach to security. In Reinhard Wilhelm, editor, Informatics
– 10 Years Back, 10 Years Ahead. Conference on the Occasion of
Dagstuhl’s 10th Anniversary., volume 2000 of LNCS, pages 86–101,
Saarbrücken, Germany, August 2000. Springer.

BIBLIOGRAPHY 113

[Son99] D. Song. Athena: A new efficient automatic checker for security
protocol analysis. In Proceedings of 12th IEEE Computer Security
Foundations Workshop, Mordano, Italy, June 1999. IEEE.

[SS99] A. Sabelfeld and D. Sands. A PER model of secure information
flow in sequential programs. In Proceedings of the 8th European
Symposium on Programming, volume 1576 of LNCS, pages 40–58,
Amsterdam, March 1999. Springer.

[SS00] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-
threaded programs. In Proceedings of 13th IEEE Computer Security
Foundations Workshop, Cambridge, England, July 2000. IEEE.

[SS01] A. Sabelfeld and D. Sands. A PER model of secure information flow
in sequential programs. Higher-Order and Symbolic Computation,
14(1), 2001. Extended version of [SS99].

[Sut86] D. Sutherland. A model of information. In Proceedings of the 1986
IEEE Symposium on Security and Privacy, pages 11–20, Oakland,
CA, 1986.

[SV98] G. Smith and D. Volpano. Secure information flow in a multi-
threaded imperative language. In Proceedings of the 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), pages 355–364, San Diego, CA, January
1998. ACM.

[Vol00] D. Volpano. Secure introduction of one-way functions. In Pro-
ceedings of 13th IEEE Computer Security Foundations Workshop,
pages 246–254, Cambridge, England, July 2000. IEEE.

[VS98a] D. Volpano and G. Smith. Probabilistic noninterference in a con-
current language. In Proceedings of 11th IEEE Computer Security
Foundations Workshop, pages 34–43, Rockport, MA, June 1998.

[VS98b] Dennis Volpano and Geoffrey Smith. Language issues in mobile
program security. In Giovanni Vigna, editor, Mobile Agents and
Security, volume 1419 of LNCS, pages 25–43. Springer, 1998.

[VS00] D. Volpano and G. Smith. Verifying secrets and relative secrecy.
In Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), pages
268–276, Boston, MA, January 2000. ACM.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167–187,
1996.

114 BIBLIOGRAPHY

[WJ90] J. T. Wittbold and M. D. Johnson. Information flow in nondeter-
ministic systems. In Proceedings of the 1990 IEEE Symposium on
Security and Privacy, pages 140–161, Oakland, CA, May 1990.

Appendix A

Proofs

A.1 Proofs for Chapter 4

Lemma 4.3 Let (E , C,A), s � α ok where α = o!w or α = (v := o(w)). If
v0 : c(w0) is a subterm of w and c ∈ E, then s(c(w0)) = v0.

Proof. Since c ∈ E and (E , C,A), s � α ok, there must be a clause c!e ←
c1(e1)(x1) ∧ . . . ∧ cn(en)(xn) ∧ b in the policy deeming α admissible by means
of substitution σ. We know then that Ann(e)σ = w and that, for every i,
s(ci(Ann(ei)σ)) = xiσ.

That v0 : c(w0) is a subterm of w can easily be expressed by requiring the
existence of an a-Expr ρ containing a single occurrence of a distinct variable,
say y, such that ρ[v0 : c(w0)/y] = w. By the observations above, we have
ρ[v0 : c(w0)/y] = Ann(e)σ.

We need now to prove the following auxiliary statement:

(1) If ρ[v0 : c(w0)/y] = Ann(e)σ then there is a ρ′ ∈ a-Expr such that ρ = ρ′σ
and Ann(e) = ρ′[xi : ci(Ann(ei))/y] for some i s.t. ci = c.

If (1) holds, then
ρ[v0 : c(w0)/y] = Ann(e)σ = (ρ′[xi : ci(Ann(ei))/y])σ

= (ρ′σ)[xiσ : ci(Ann(ei)σ)/y]
= ρ[xiσ : ci(Ann(ei)σ)/y]

Therefore v0 = xiσ and w0 = Ann(ei)σ, from which we conclude s(c(w0)) =
s(c(Ann(ei)σ)) = xiσ = v0.

Assertion (1) can be proved by induction on the structure of expression e.
Most other cases being direct, we consider the case e = x: Since v0 : c(w0) is
assumed to be a subterm of Ann(e)σ, we can deduce that there is an i such that
ci = c, and Ann(e)σ = xiσ : ci(Ann(ei)σ) = v0 : c(w0). Therefore, ρ must be
y. Finally, ρ′ = y makes (1) hold.

115

116 A. PROOFS

Lemma 4.12 If s
α−→ s′ then g(s)

fg(s, α)−−−−−−→ g(s′)

Proof. If α is τ or an output, then s = s′ and fg(s, α) is not an input. Therefore,

g(s)
fg(s, α)−−−−−−→ g(s), and the results follows immediately.

Assume first α = (w1 := c(w2)), which implies s′ = s[c(w2) �→ [[w1]]]. From
definition 4.10, there are annotated values w′

1 and w′
2 such that fg(s, α) = (w′

1 :=
c(w′

2)) and w′
1 : c(w′

2) = g(w1 : c(w2)). From definition 4.8, w′
2 = g(w2). Then,

our transition relation between contexts renders:

g(s)
fg(s, α)−−−−−−→ g(s)[c(g(w2)) �→ [[w′

1]]]

We should prove then that g(s)[c(g(w2)) �→ [[w′
1]]] and g(s′) are equal contexts.

We apply both over d(w). Note that g(s′)(d(w)) = [[g(s′(d(w′)) : d(w′))]] where
w′ = g(w).

• Case d(w) = c(g(w2)):

g(s)[c(g(w2)) �→ [[w′
1]]](d(w)) = [[w′

1]] = [[w′
1 : c(w′

2)]]
= [[g(w1 : c(w2))]]
= [[g(s′(c(w2)) : c(w2))]]
= g(s′)(d(w))

• Case d(w) = c(g(w2))

g(s)[c(g(w2)) �→ [[w′
1]]](d(w)) = g(s)(d(w))

= [[g(s(d(g(w))) : d(g(w)))]]
= [[g(s′(d(g(w))) : d(g(w)))]]
= g(s′)(d(w))

A.2 Proofs for Chapter 5

Lemma 5.3 Given ∆, {ϕi} and E such that

(A.1) ∀i, σ, σ′. σ =E σ′ ⇒ ϕi(σ) = ϕi(σ′)
(A.2) ∆ ⊆ St × St is the transitive closure of

∆1
∆= {(σ, σ′) | ∃i. ϕi(σ) ∧ ϕi(σ′) ∧ σ =¬E σ′}

then, E �
p
∆ v iff v is selectively independent of E over p w.r.t. {ϕi}.

Proof.

⇒) We have to prove (1) that {ϕi} is a cover, and (2) ∀i. E �p
ϕi

v.

A.2. PROOFS FOR CHAPTER 5 117

For (1), take any σ ∈ St . The definition of E �
p
∆ v indicates that ∆ is an

equivalence relation, and therefore σ∆σ. Assumption (A.2) implies the
existence of a chain σ∆1σ1 . . . σn∆1σ. Finally, from σ∆1σ1, there is at
least an index i such that ϕi(σ).

For (2), take i, σ and σ′ s.t. σ =¬E σ′ ∧ ϕi(σ) ∧ ϕi(σ′). By (A.2), σ∆σ′

and the result follows from E �
p
∆ v.

⇐) We have to prove that ∆ is an E-strict equivalence relation, as well as
equation (5.2).

Symmetry and transitivity of ∆ follow immediately from (A.2). To see
that it is reflexive, take any σ ∈ St . From the definition of Cohen’s
selective independency, {ϕi} is a cover, and therefore there is an index i
s.t. ϕi(σ). Finally, from (A.2), σ∆1σ, which in turn implies σ∆σ.

For (5.2), let σ∆σ′. From (A.2), there is a chain σ1∆1 . . .∆1σn, where
σ1 = σ and σn = σ′. Moreover, for each consecutive pair (σi, σi+1),
we know that σi =¬E σi+1 and that there is ji such that ϕij

(σi) and
ϕij

(σi+1). In other words, we can apply the definition of Cohen’s selective
independency to each consecutive pair in the chain and obtain: ∀1 ≤ i <
n. p(σi).v = p(σi+1).v. Equation (5.2) follows immediately.

To see that ∆ is E-strict, let δ(=E ; ∆; =E)δ′ and δ =¬E δ′. Then, there
must exist two states σ and σ′ such that δ =E σ, σ∆σ′ and σ′ =E δ′.
Like in the previous paragraph, there is a chain σ = σ1∆1 . . .∆1σn = σ′.
From (A.2), for each 1 ≤ j < n there is an index ij such that ϕij

(σj) and
ϕij (σj+1).

Define

σ′
j .v =

{
σj .v if v ∈ E
δ.v otherwise

so that σ′
j =E σj and σ′

j =¬E δ. The former implies ϕij (σ
′
j) as well as

ϕij
(σ′

j+1) (using (A.1)); and the latter, that σ′
j =¬E σ′

j+1, δ = σ′
1 and

δ′ = σ′
n. We can then apply (A.2) to each consecutive pair to obtain

δ ∆1 σ′
2∆1 . . . δ′, which clearly implies δ ∆ δ′, as wanted.

We also have to check that ∆ ⊆ =¬E , but this follows directly from ∆1 ⊆
=¬E and that =¬E is an equivalence.

Proposition 5.23 The relation ∆g is symmetric.

Proof. Suppose σ ∆g σ′. We prove by induction on the length of σ that σ′ ∆g σ.

Base case: σ = λ. Then σ′ must be λ too, and the results follows trivially.

Inductive case: Suppose σ = σ0α, then by the definition of ∆g, σ′ = σ′
0β for

some σ′
0 and β. Moreover, σ0 ∆g σ′

0 and β = fg(s, α) where s0
σ0−→ s. By

118 A. PROOFS

the inductive hypothesis, σ′
0 ∆g σ0. According to Proposition 5.22, s0

σ′
0−→

g(s). Then, using Proposition 4.11, fg(g(s), β) = fg(g(s), fg(s, α)) = α,
which implies that σ′

0β ∆g σ0α (i.e. σ′ ∆g σ).

We give first conditions under which the abstraction function abs results
injective.

Lemma A.1 If (E , C,A), s � o!w0 ok, (E , C,A), s � o!w1 ok and abs(w0) =
abs(w1) then w0 = w1.

Proof. Define a function κ: e-Val× Context → a-Val as

κ(k, s) = k

κ((w1, . . . , wn), s) = (κ(w1, s), . . . , κ(wn, s))
κ({w1}w2 , s) = {κ(w1, s)}κ(w2,s)

κ(pi(w), s) = pi(κ(w, s))

κ(w1 : c(w2), s) =

{
s(c(κ(w2, s))) : c(κ(w2, s)) if w1 = vc

κ(w1, s) : c(κ(w2, s)) otherwise

To prove the lemma, it suffices to verify the following: if (E , C,A), s � o!w0 ok
then κ(abs(w1), s) = w1 when w1 is a subterm of w0.

The proof is by induction on the structure of w1. The main case to consider
is when w1 = v : c(w2) and c ∈ E . Then abs(w1) = vc : c(abs(w2)) so that
κ(abs(w1), s) = κ(vc : c(abs(w2)), s) = s(c(κ(abs(w2), s))) : c(κ(abs(w2), s)).
By the inductive hypothesis, this is equal to s(c(w2)) : c(w2). The result follows
from Lemma 4.3.

Lemma A.2 φ is injective on its second argument.

Proof. Suppose s is a Context, and α and β are actions in a-Act such that
φ(s, α) = φ(s, β). We want to show that α = β.

• Case (E , C,A), s � α ok, and α = o ! w:

By the definition of φ, φ(s, α) = φ(s, β) = o!abs(w). Then, either (1)
β = o!w′, abs(w) = abs(w′) and (E , C,A), s � β ok, or (2) β = o!abs(w)
and (E , C,A), s � β ok.

In (1), by Lemma A.1, w = w′, and therefore α = β. In (2), since
β ∈ a-Act, abs(w) = w which implies β = o!w = α.

• Case (E , C,A), s � α ok, and α = (v := c(w)):

Very similar to the previous case. It uses a version of Lemma A.1 slightly
adapted to function calls (v := c(w)).

• All other cases:

If neither α nor β falls in any of the cases above, then α = φ(s, α) =
φ(s, β) = β.

A.2. PROOFS FOR CHAPTER 5 119

Lemma A.3 Let (E , C,A) be a confidentiality policy, abs the associated abstrac-
tion function, g a secret permuter, and w ∈ a-Val. Then, abs(w) = abs(g(w)).

Proof. By induction on the structure of w.

Lemma A.4 The relation Π−1; ∆g; Π is a symmetric trace permuter and a
subset of =¬E .

Proof. From Observation 5.27 and the fact that the class of trace permuters is
closed under composition, we conclude that Π−1; ∆g; Π is a trace permuter.
That it is symmetric is immediate from (Π−1; ∆g; Π)−1 = Π−1; ∆−1

g ; Π =
Π−1; ∆g; Π (cf. Prop. 5.23).

Now assume that σ Π−1 δ ∆g δ′ Π σ′. We prove, by induction on the length
of σ, that σ =¬E σ′.

• Base case: If len(σ) = 0, then σ = λ. Then δ = λ by the definition of
Π and similarly δ′ = σ′ = λ. Since λ =¬E λ, we have established the base
case.

• Inductive case: Suppose σ = σ0α and that the result holds for len(σ0).
By the definition of Π, there must be δ0 and β such that δ = δ0β, σ0Π−1δ0

and α = φ(s, β) where s0
δ0−→ s. By the definition of ∆g, there must be

δ′0 and β′ such that δ′ = δ′0β
′, δ0∆gδ

′
0 and β′ = fg(s, β). Again, by the

definition of Π, there must be σ′
0 and α′ such that σ′ = σ′

0α
′, δ′0Πσ′ and

α′ = φ(s′, β′) where s0
δ′0−→ s′. Notice that, by Proposition 5.22, s′ = g(s).

Therefore, we should compare φ(s, β) (i.e. α) against φ(s′, fg(s, β)) (i.e
α′).

1. If (E , C,A), s � β ok and β = o!w:
φ(s′, fg(s, β)) = φ(s′, o!g(w)) = o!abs(g(w)), using that g preserves
admissible outputs (c.f. Def. 4.9). By Lemma A.3, this is equal to
o!abs(w), i.e. φ(s, β).

2. If (E , C,A), s � β ok and β = (v := c(w)):
Let v′ be such that v′ : c(g(w)) = g(v : c(w)). Then, φ(s′, fg(s, β)) =
φ(s′, v′ : c(g(w))) = v′ := c(abs(g(w))), using that g preserves ad-
missible outputs (c.f. Def. 4.

