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Abstract

A locomotive assignment is one of the subproblems in railway schedul-
ing domain. In this report present general mathematical model of
this specific subproblem and describe how methods known from other
problems domain like traveling salesman problem, operation research
and constraint programming can be used to solve it. We concentrate
especially on method known as k—interchange for traveling salesman
problem with time windows and give an outline how it can be adopted
to locomotive assignment problem. Further, while turning from one
trip to another a locomotive must often be reallocated from one sta-
tion to another. This can be performed in two ways. A locomotive can
be driven from one place to another not performing any specific trip
and exclusively using track resource, i.e. performs so called deadhead
transport, or can be attached to any other transport and passively
drown to another station, i.e. perform so called passive transport.
Because the cost of passive transport is much lower then cost of a
deadhead it is advantageous to, if possible, replace any deadhead by
passive transport. In this report we describe a method of convert-
ing deadheads into passive transports, describe conversion algorithm,
its implementation and report computational result of the algorithm.
Finally, we give directions for future research in locomotive planning
problem domain.
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Chapter 1

Introduction

1.1 Railway planning problem

Since the dawn of industrial revolution railway traffic has played an impor-
tant roll in development of steel and coal industry. With time railway also
became a means of long distance cargo and passenger transportation. De-
spite hard competition from car and air traffic railroad remains an important
factor in world transportation system. Today railroad is considered as more
safe, environmentally more advantageous and cheaper than many other kinds
of transports.

Planning problems have always been of great interest to railroad compa-
nies. Increasing railroad traffic have imposed need for better distribution of
resources like locomotives and tracks and yielded improved safety. On the
other hand, increasing competition between operators and competition from
road and air traffic have given railroad planning problems an economical
dimension, it creates a demand on performing transportation tasks in the
most economic and energy efficient way.

The railway planning problem belongs to class of more complex and hard
to model problems. Scholtz in [Sch00] and authors of [Bus97] determine four
subdomains of the railway planning problem in following way:

e train scheduling

e rolling stock scheduling
e personnel scheduling

e rescheduling

Train scheduling is the core of the railway scheduling problem. It is
scheduling of the trains with periodical and non periodical departure, fixing
the time schedule and assuring adequate resource allocation for scheduled
trips, like track allocation, locomotive allocation and so on. Except resource



limit train scheduling is also the subject to some safety restriction like e.g.
keeping necessary distance between two trains, exclusive allocation of specific
tracks and others.

Rolling stock scheduling concerns allocating locomotives and assigning
them to specific trains. This problem is the main subject of this rapport.

Personnel scheduling is the assignment of drivers, service staff and train
personnel. In this scheduling domain one can recognize some subdomains.
For example service personell responsible for maintaining locomotives is sub-
ject to other constraints than locomotive drivers or train staff. Scheduling
personell is also subject to legal restrictions as well as union agreements
which has to be taken into consideration.

Rescheduling is operative decision making about adjusting the schedule
to a new situation caused by for example delay of a train or damage of track
network. A planner must often make very fast decision about how the train
is going to be rescheduled and this time limit make impossible to perform
complete re-optimization of the schedule.

1.2 TUFF project

TUFF, an acronym for Tagutveckling for framtiden (eng. Train Planning for
the Future), is a project run in cooperation between Statens Jarnvigar,(eng.
Swedish Railway, abbrev. SJ ) / Green Cargo AB and The Decision Support
for Planning and Scheduling group of the Intelligent System Laboratory at
the Swedish Institute of Computer Science (abbrev. SICS). The main pur-
pose of the TUFF project is to investigate in which way information technol-
ogy and computer science can make the train planning process more effective.
The problem domain is specially defined for freight transport planning and
is funded by SJ/Green Cargo.

Research of the problem resulted up to now among others in tuff-3,
a prototype computer program for train planning. The program uses con-
straint programming technology and is implemented in Mozart and SICStus
Prolog.

The TUFF architecture is agent based and consist of number of indepen-
dent agents, like the train scheduler and vehicle routers, cooperating through
a coordinator agent as in figure 1.1. In addition to this, the program has
a graphical user interface (GUI) which enables communication between the
TUFF system and the user. The GUI is connected to the coordinator agent
so a user can communicate with the coordinator through it. Requests ex-
pressed by the user are propagated through the coordinator to the agents
involved in specific operations. The feedback from a specific agent is returned
to the coordinator using predefined protocol. Necessary data resources are
stored in a network database (Nets in figure ??), describing the railroad net,
and so called Tripsets, which are a specification of the trains.
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Figure 1.1: TUFF system architecture

The GUI makes it possible to define parameters for the plan. It is also
used to display scheduling results in form of a Gantt diagram and track
allocation diagrams. The figure 1.2 gives an example of a solution for a
locomotive assignemnet problem displayed in the form of a Gantt diagram,
where Y—axis represents resources, i.e. the locomotives in the assignement
and X—axis is a time axis. The rectangles in the diagram represent tasks/trips
performed by a given locomotive during given time period.
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Figure 1.2: Locomotive allocation vizualized as a Gantt diagram



1.3 Goals

The goal of this report is to present a general mathematical model for loco-
motive assignment problem, refer some optimization methods used to solve
problems in similar domains and investigate if those methods can be adopted
to the locomotive assignment problem domain.

Work reported here was done during six months at the Swedish Institute
of Computer Science.

1.4 Structure of this report

This report describes some chosen methods of dealing with the planning
problems in startegic decision making domain, especially locomotive assign-
ment problem. The report is based on research at Swedish Insitute of Com-
puter Science in Kista, Sweden.

In chapter 2 a mathematical foundation and present a general model for
locomotive assignment problem is described.

Chapter 3 presents some approaches and methods known in operations
research, computer science and other disciplines which we consider useful in
combination with our approach.

Next chapter, 4, describes the general optimization algorithm for mini-
mizing assignment cost. The algorithm takes as an input a set of locomotive
and the trips assigned to them generated by TUFF system in its newest
version. It is necessary to stress that the presented algorithm is only an
outline of the method. There is too many question marks which must be
solved before this part can be implemented and integrated with the system.

In chapter 5 concentrates on the special subproblem in locomotive as-
signment problem which deals with a conversion from so called deadhead
transports, i.e. transports where an locomotive is driven from one station
to another without servicing any trip, to passive transports, i.e. a transport
where locomotive is reallocated from one station to another using a trans-
port which serves some trip. It describes how this mechanism can be used to
minimize costs of locomotive assignments, present an algorithm to solve this,
describe our implementation of the algorithm and present computational re-
sults of our implementation.

The last chapter, 6 describes direction in which research on locomotive
assignment problem could be proceeded.



Chapter 2

Problem description and
mathematical foundation

In this chapter we are going to give an overview of the locomotive assignment
problem and describe a mathematical model of the problem.

2.1 Basic definitions

In this section we will give some basic definitions needed later for creating a
mathematical model for the locomotive assignment problem.

Definition 2.1.1 (Railway network) Railway network Gy is an undirected
multigraph Gy = {S, E} where S is a set of vertices representing stations of
the network S = {s1,82...,8,} and E is set of edges E = {e1,e9,...,e,}
representing track segments between stations.

We use a multigraph to represent the railway network because there can be
more than one track segment connecting s; with s;, which is often the case
in real world.

Every track segment has its length and a capacity which is a maximum
velocity on the track and weight. Every station has its capacity,which rep-
resents e.g. maximum number of trains allowed at the station at the same
time.

In the rest of this report we use the term track graph as a synonym of
railway network.

Trains traversing given railway networks are modeled as trips. Gener-
ally, trips are represented by unique identifiers Id, the route r which a given
trip follows, a vehicle resource requirement, like locomotive type, location
resource requirement and speed parameters used to determine traversal du-
ration [Kre01|.

Further, we define task and its synonym term transport in following way:



Definition 2.1.2 (Task/Transport) A task/transport is a traversal of a
track by individual trip.

The result of assigning values to the time points and durations associated
with every transport is a schedule.

Given those basic definitions we can define planning problem in following
way:

Definition 2.1.3 (Planning problem) Given set of trips P = {p1,p2, ... ,Pn}
and the trackgraph Gy find o schedule for all trips p € P.

There is some restriction which must be taken into consideration when
solving planning problem. One of most important is a exclusivity of track
allocation. This constraint can be expressed in following way

Definition 2.1.4 (Exclusivity of track allocation constraint) Given seg-
ment of the track t; € Gy can be used by one and only one trip p; € T in
gien time 0;.

The other constraints is a safety distance constraint also called headway
constraint.

Definition 2.1.5 (Headway constraint) For two trips p; and p; traveling
in the same direction and using the same track, if trip p; starts at time t;
then p; can start earliest at time t; = t; + ¢ where ¢ is a minimum time
constant.

Given those basic definitions we will define in next section locomotive
assignment problem.

2.2 Locomotive assignment problem
We define locomotive assignment problem in following way:

Definition 2.2.1 (Locomotive assignment) Given track graph G with
a set of stations S and set of track segments E such that Gy, = {S, E}, a set
of trips P = {p1,p2,...,pn} and a set of locomotives L of suitable types T
assign locomotive of suitable type to every trip in such way that assignment
fulfill time and space continuity constraints.

Time and space continuity constraints used in 2.2.1 are defined as follows:

Definition 2.2.2 (Time and space continuity constraints) Let [; € L
be a locomotive of type 7; € T and p; € P a trip departing from station
s; € S at the time dep;, [; can be assigned to p; if it is at s; at the time dep;.



Assigning locomotive to the trips can be seen as a operation of mapping
elements of set L onto elements of set P. To a locomotive I; € L one or
more p € P can be assigned . In any case [; needs to turn from p; to p;y1.
The turn is an operation of docking locomotive [; from the transport p; to
the transport p; . Because of the time and space continuity constraints it is
sometimes necessary to reallocate [; from station s; to s;, both {s;,s;} € S.
The reallocation must be performed in such a way that the time continuity
constraints holds, i.e. we must assure that if we turn [; from p; to p; where
Pi = {Sst(i)» Send(i)» 4€Pi, ravi}, Sg(i), Send(iy € S denoting start and end
station for p; respectively, dep; departure time for p; and trav; traversal
time or duration of p;, and pj = {S(j), Send(j), depj, trav;}, then if we use
d; ; for the turn time from ¢ to 7,

dep; + trav; + d; j = dep;

and reallocation itself must start and end in time interval between arr; =
dep; +trav; and dep;. In other words the time used for possible reallocation
of a locomotive is 0 < d; ; < dep; — arr;. For difference between turn time
and reallocation time we will generally use the term waiting time.

A reallocation of the locomotive from one station two another can be
performed in two ways. A locomotive can be driven from s; to s; without
performing any task, or it can be, if possible, attached to a transport per-
formed from s; to s; if such attachment is allowed. We will call the first type
of reallocation a deadhead transport or shortly a deadhead, whereas we will
use term passive transport for the other one.

There is a large difference in the cost between these two ways of reallo-
cating a locomotive. We simplify here the cost relation between transport
servicing trips, passive transports and deadheads in following way: if the cost
for trip t; between stations s; and so is equal to ¢ then a passive transport
performed on exactly the same track in exactly the same conditions between
s1 and s9 costs 2 * ¢ and a deadhead costs equals 4 * c.

It is easy to see that a great deal of cost optimization can be performed
by replacing deadheads by passive transports or eliminating deadheads in
favor of transports servicing trips. We should also mention that cost for
setting one locomotive into operation is very high so even if some deadheads
may be very expensive it is more advantageous to use a deadhead to turn
from one trip to another rather than using new locomotive to service given
trip.

Generally, locomotive assignment problem should be optimized with re-
spect to following parameters:

e minimum number of used locomotives
e minimum cost of turns

where minimum cost of turns can be constrained by



e minimum total deadhead cost
e minimum total cost for passive transports

Note that we omit the cost for waiting time here. We assume that cost
for waiting time is constant and minimizing waiting time for one turn of
locomotive [; must increase the waiting time for some other turn for ;. With
such assumptions minimizing cost for waiting time locally for p; will not
minimize the global cost for /;’s waiting time nor will it have any influence
on the overall cost for using [;. In reality the cost function for waiting time
is more complex.

2.3 Mathematical model

Given definitions from the previous sections we can now define our mathe-
matical model for locomotive assignment problem.

This model follows a general model given in [Dro97] for locomotive as-
signment. Some small differences between our model and the one presented
in [Dro97] will be explained in section 2.4.

Let Z denote the set of tasks (trips), I the possible turns between the
given trips and T the set of locomotive types. If © € Z and j € Z then
(i,7) € K if and only if at least one locomotive type can do task j after task
1 without any intermediate tasks.

The subsets 7/ C Z and K’ C K denote the special cases of turns and
tasks which are crossing chosen timeline which we will call a period border.
This part of the objective function counts the number of locomotives used
for servicing all trips.The required number of locomotives for specific trip
1 is denoted as r; and maximal number of passive locomotives as pt;. For
detailed discussion of this special cases of transports and formalism for cyclic
time see [Kre| and [Aro01].

The optimization model contains some decision variables: $fz n (ij) € K,
t € T denotes the number of locomotive of type ¢ connecting from task 4
to 5. The number of active locomotives of type ¢ on task i is denoted y!
and number of passive locomotives as z!. All these variables has a cost cfz.j)
associated with them, which is a cost of connecting one locomotive of type
t from the task i to j. Further constants d! and e! are the costs of running
locomotive of type ¢ on task i actively and passively respective. Cost of using
locomotive of type t is denoted as g;.

With those definitions the optimization problem can be stated as follows:

man[ Z z] + Z dtyz +ezzz +gt( Z $Ezg) + Zyzt +zzt)]

LeT (ij)ex €T (ij)eK’ e’



s.t.
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(4) x3;), v and z} are non — negative integers

The first term of objective function counts the costs of connections used
in the solution. The second and third terms count the costs of active and
passive transportsrespectively. The last term summarize total number of
locomotives used in the solution and multiply them by by the constant cost
of given locomotive type.

Constraint (1) states that number of active locomotives assigned to the
task ¢ must be exactly the number of locomotives needed i.e. if the some
task demands 2 active locomotives instead of 1 then 2 active locomotives
must be used. In practice number of active locomotives used on the task
vary between 1 and 2.

Constraint (2) limits number of passive transports. It states that number
of passive locomotives on the task ¢ must be lower or equal maximum number
of passive locomotives allowed for given In practice it is often determined by
type of transport and type of used active locomotive.

Constraint (3) requires that number of locomotives of type ¢ connecting to
the task ¢ is identical with number locomotives actually assigned to the task.
It is also called conservation constrain because it maintain basic property of
task (7). This number must be the number of the locomotives connecting
from the task.

Finally, last constraint states that solution of the problem must be non—
negative and must contains property of integer solution.

2.4 Representation

It is commonly known that a visualization of given problem and its solution
has great influence on the use of methods for solving it. The way in which a
problem and its solution are visualized influences created model of a problem
and the set of tools available for given model.

When thinking about a train schedule its natural to visualize it in form of
a Gantt diagram, where axes of the diagram represent time and single loco-
motives. A train schedule is then represented as a rectangle which stretches
from the departure time at the start station for a trip to an arrival time
at the end station. Such train/transport is ordered to locomotive servicing



represented trip.

Optimizing such model reminds of a problem of non-overlapping poly-
top fitting i n—dimensional space, here limited to rectangle fitting in 2—
dimensional plane.

The idea of global geometrical constraint for rectangle fitting in the plane
was originally developed by CHIP system developers as diff2 constraint
[Sim95]. There was some work done with adopting this ideas into the train
scheduling problem domain in [Sch00], but the model still suffer of an inef-
ficient propagation.

In our model we are going to represent a schedule by a set of locomotive
circuits. A locomotive circuit is a weighted, directed, finite graph Gy =
{V,E} where vertices V represents tasks performed by a locomotive and
edges F represents turns between the tasks. A locomotive task occurs when
a locomotive serve any trip p. A turn is a reallocating a locomotive L from
trip p; to trip pi41.

One locomotive circuit can be served by several locomotives.Although in
reality there exists several types of locomotives we assume that the type of
the locomotive used in one circuit must be uniform. The set of the circuits
can be served by several different types of locomotives.

pl pl
dhl 320
p5 c = 320 p5
p2 p2
dh2 480
c = 480
p4 p3 p4 p3

Figure 2.1: The representation of the locomotive circuit. The left figure
shows representation used in [Dro97|. The arrow represents direction of the
turns. Orthogonal line indicates period frame for the circuit. Note that in
this representation deadheads are explicitely represented as trips(vertices).
The right figure shows representation of the locomotive circuit used in our
model. Cost of the deadhead ¢ is included in the cost of the turn between
two trips.

In [Dro97| all the deadheads are explicit represented as separate trips /
transports. The consequence of such representation is that a locomotive may
not be reallocated from one station to another while turning between two
trips. If such reallocation is necessary than a new transport has to be created.
The optimization process is then to remove all those special transports, if
such removal is possible.

In such model every special transport is represented as a vertex of a lo-
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comotive circuit. In contrary, in our representation is such special transport
counted into cost for a turn between two trips. This allows straightforward
implementation of the optimization methods known from e.g. traveling sales-
man problem domain, especially methods based on exchanging edges with
high cost with those with lower cost (see chapter 3). Figure 2.1 illustrates
difference between both representations.

11



Chapter 3

Methods

3.1 Local search for standard traveling salesman
problem

The standard traveling saleman problem (TSP) can be defined as follow:

Definition 3.1.1 (Standard TSP) Given finite set V' of vertices and dis-
tance t; ; for each pair of vertices 1,5 € V find a tour with minimal total
length, where tour is a closed path that visits each vertezx exactly once.[Sav85]

There are additional assumption made for instance of TSP known as stan-
dard TSP. The distance matrix in standard TSP is symmetric and it satisfies
triangle inequality.

We will describe below local optimization methods for standard TSP
known as k — interchange. The k—interchange method is a substitution of
k-links(arcs) of the tour with another set of k links. This method was first
introduced by Croes for k = 2 in [Cro58| and Lin for k¥ = 3 in |Lin65].

A tour is said to be k — optimal if its not possible to obtain of a tour of
shorter length by replacing k of its links by another set of k links. There is
infinite number of possible £ which can be taken into consideration, never-
theless the computing effort raises very rapidly with k so the most common
cases are k = 2 and £k = 3. We will try to illustrate here those methods
and explain in following sections how the idea of k-interchange can be used
in TSP with time window constraints and later how this method can be
incorporated in optimizing locomotive circuits.

Given a TSP tour, k-2 interchange tries to substitute two links (¢,7 + 1)
and (7,7 + 1) with two other links, in our case (i,7) and (1 + 1,7 + 1), as
illustrated in figure 3.1. Let ¢ be a cost of the path between two nodes. If
condition

Cii+1 + Cjj+1 > Cij+ Ciy15+1 (3.1)

holds, then k-2 results in local tour improvement.

12



The total number of possible 2-interchanges is equal the number of sub-
sets of two links from the set of n links, i.e. (”;1) , which implies time
complexity of O(n?).

i i+1 i i+1
j+1 j j+1 j

Figure 3.1: 2-interchange

Notice that 2—-interchange reverse path (i41,...,7). The effort of check-
ing if 2-interchange results in any local improvement is reduced here by the
fact that distance matrix for such standard problem is symmetric.

The idea can be easily extended to case of £ = 3. But in case of k = 3 it
is a triplet of links which are replaced. Figure 3.2 shows one of eight possible
3-interchanges. Because computation complexity of verifying 3-interchange

i i
k+1 k+1
i+l i+l
k k
3 3
j+1 j+1

Figure 3.2: One of possible £ — 3 interchanges

raises rapidly if the number of vertices increases there was made some effort
to improve 3—interchange by different means. A new way of dealing with
high complexity was given in [Or,76]. In proposed method only a subset
of possible 3—interchanges is taken into consideration. This procedure apply
interchanges which would result in one, two or tree consecutive vertices being
inserted between two other vertices. Figure 3.3 show how Or—interchange is
carried out. In this example consecutive vertices 4,74 1,4+ 3 are reallocated
and inserted between j and j + 1. One of the advantages of Or method over
3-interchange is its computational complexity. While verifying 3—optimality
yields O(n?), time complexity for Or method is O(n?).

13



Figure 3.3: An Or-interchange

The idea of k—interchange for standard TSP was succesfully adopted for
domain of asymetric TSP’s by [Kan80|. The main difference between method
described in [Kan80] and k—interchange method for symmetric TSP is that in
optimizing an asymmetric problem no tour segment can be reversed. They
are instead reordered if and only if there is an interchange which results in
lowering the cost of the tour, i.e. if equation 3.1 holds.

This method was also succesfully extended for iterated search by [Mar92].
For more informtion on this method and review of other optimization meth-
ods for asymmetric TSP see [Cir].

3.2 Optimizing TSP with time windows using k—
interchange

Local search for standard traveling salesman problem with the time windows
(TSPTW) extends standard TSP by introducing for every vertex i a time
window , denoted [e;,l;] where e; is a earliest possible time of service at ¢
and [; is a latest possible service time at .

When dealing with TSPTW authors make usually following assumptions.
A service time at any vertex is equal to 0, latest possible service time at 4 is
a strict constraint, which, if violated, make tour unfeasible. Earliest service
time constraint at ¢ is not a strict constraint, arriving at ¢ earlier then e;
does not lead to infeasibility, but merely introduces waiting time at i. We
are going to give our interpretation of those constraints in section 4.3 when
describing using k-interchange for optimizing locomotive circuits.

Optimizing TSPTW strongly depend on the definition of the objective
function. We are going to use here definitions from [Sav85|. The rest of
this section presents algorithm explicitly described in [Sav85] if not stated
otherwise.

[Sav85]| states that local improvement of the tour is both feasible and
profitable if and only if following conditions are satisfied:

14



1. the time spent on actual traveling is minimized
2. the completion time of the tour is minimized

The first objective can be formalized as

N-1
min { Z tiir1+ tN,l} (3.2)

i=1

where #; ;41 is a traveling time between two vertices and #y; is a finishing
tour from vertex N to the vertex which starts whole tour.

With this objective a k-interchange operation is feasible and profitable
if and only if a cost of the travel, i.e. actual travel time is reduced, which
follows from condition for interchange in equation 3.1

tij+ tiv1j+1 < liit1 + 141 (3.3)

and when the new tour is feasible.

Feasibility of a new tour are expressed in following way. Let 7,7,k be a
vertices of the tour, D; maximum departure time at 7, W; the waiting time
at ¢, t; j traversal time between ¢ and j and /; the latest departure time at 4.
The new tour is feasible if and only if

J
i<k<jiDP=Di+tij+ Y Wy +tp1p) <l (3.4)
p=k+1

and

J
J<k<N:DP* =D;+t;+ Z (W + tp—1p)
p=i+2
k—1
+ WIS+t g+ > (W +tppr) <l
p=j+1

(3.5)

Equation 3.4 states that new departure time at k, which is equal to de-
parture time at ¢ plus traversal time between ¢ and j, and sum of all new
waiting times on all newly inserted vertices between ¢ and j and traver-
sal time between them must be lower or equal latest departure time at k.
Equation 3.5 states this for £ being second link of k—-interchange.

The second objective of the problem is minimizing completion time of
the tour. From the assumption about no service time at vertices follows
that minimizing cost/length of the tour shifts departure time at the vertices.
Thus the second objective can be expressed as follows:

minDy +tn1 (3.6)

15



which states that aim of optimization is to decrease departure time and
traveling time from last visited vertex to vertex there tour starts. Objective
implies decreasing arrival time at 7 + 1

A < A (3.7)
and carrying out whole or part of the gain to the vertex which finishes tour
j+1<k<N:Dg>e (3.8)
Also reversed path of the tour must be feasible
J
J<k<iiDittig+ D Wy ttp1p) <l (3.9)
p=k+1

If any of constraints 3.7, 3.8 or 3.9 is violated then tour is not considered to
be feasible.

The main problem with carrying out such optimization is time complexity
connected with feasibility check for all the vertices of the new path. Straight-
forward implementation implies time complexity O(N) for each vertex. This
implies that verification of 2-optimality will run in O(N?3). To decrease this
time [Sav85| propose lexicographic search strategy reducing feasibility check
to O(1) for every 2-interchange. Using this strategy one choses the links
(7,74 1) in order they appear in the current tour starting with (1,2). First a
link (7,7 4 1) is fixed. Then links (4,5 + 1) equal to (i + 2,7 4+ 3) are chosen
followed by (i + 3,7 +4),...,(N — 1, N). This specific order implies that
after considering all possible interchanges for link (i,%+ 1) one can use gath-
ered information to compute length and check feasibility for the path from
(i+1,...,9).

2 2 4 2 4

Figure 3.4: The lexicographic search strategy

Performing interchange on link (4,7 + 1) the path (j — 1,...,4) of pre-
viously considered interchange is expanded by link (4,7 — 1), which usually
results in change of the departure time at 7 — 1 and possibly on all the other
vertices on the path (5 —1,...,7 4+ 1). If we define

SHIFTU) = pUIt) g0 — plin 1) (3.10)
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and PFSUJ+D  possible forward shift in time of the departure time at j

causing no violation of the time window constraints along the path (j,...,i+
1) as
- iy
PFS(J’]+1) = mz’nngkg I, — (D§]’]+1) + Z tp,p-i-l) (3.11)
p=k

then expanding path (5 — 1,...,7 4+ 1) with the link (j — 1,7) is feasible if
and only if N o
SHIFTUIT) < ppgli=1i) (3.12)

For prove of this theorem see [Sav85].

Although this method is applied on TSPTW with symmetric distance
matrix the lexicographic search strategy can be also applied on TSPTW for
asymmetric problems.

3.3 Constraint programming

Constraint programming (CP) is a software technology which lately was
successfully applied in solving many combinatorial problems like traveling
salesman problem or job shop scheduling and other scheduling problems. In
this section we will give short presentation of CP.

One can describe constraint using informal language as a relation between
several unknowns, i.e. variables, where every variable is taking value in given
domain (|Bar|). The idea of constraint programming is thus to solve problems
by stating constraints ( condition, properties) which must be satisfied by
solution. This leads to idea formulated as Constraint Satisfaction Problem
(CSP).

A CSP consist of tree parts:

1. A finite set of variables
2. A domain associated with each variable
3. A set of constraints restricting the value that any variable can take

Solving CSP is assigning value for each variable in such a way that no con-
straint (condition) is violated and value of variable lies within its domain.
Formally, the domain of variable is defined as follows:

Definition 3.3.1 (Domain) The domain of the variable is the set of values
that may be assigned to the variable. D, denotes the domain for variable x.

Assigning value to each variable is called a labeling and assignment itself
a label.
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Definition 3.3.2 (Label) A label is a pair of variable and the value. It
represents the assignment of that value to the variable. A label which as-
signs the value v to the variable x 1s denoted < x,v >. This assignment s
meaningful if v is in the domain of x.

To one value can be assigned one or more values. Such assignment is
called compound label.

Definition 3.3.3 (Compaund label) A compound label is the simultane-
ous assignment of values to a set of variables. The compound label of as-
SIgNING V1,02, ..., Uy 10 T1,T9, ..., Ty is denoted by (< z1,v1 >, < x9,v9 >
sy < Ty Uy >

Given those definitions we can define a constraint in following way:

Definition 3.3.4 (Constraint) A constraint on a set of variables is con-
ceptually a set of compound labels for the variable in the problem. A con-
straint on the set of variables S is denoted Cs.

Finally, we define Constraint Satisfaction Problem as:

Definition 3.3.5 (Constraint Satisfaction Problem) A CSP is a triple
(Z,D,C) where Z is a finite set of variables {x1,xa,...,x,}, D is a function
which maps every object in Z into a set of objects of arbitrary type and C' is
a finite set of constraints on a subset of variables in Z.

Solving of CSP is carried out by two methods: problem reduction and
search. The idea of problem reduction is to make the problem smaller by
reducing domain of variables. Reduction is made by constraint propagation.
Those are basically two types of constraint propagation: domain propagation
and interval propagation. To see the difference between those two consider
following example:

Assume that there exists a CSP with variables X and Y and domains
D, ={1,2,...,10} and D, = {1,2,...,7}. The constraint of variables is
Cpy : 2X =Y. Using domain propagation narrows domain as much as
possible so the domains will become

D, =1{1,2,3}
and
D, ={2,4,6}
, whereas interval propagation will limit only bounds of domain and produce
D, = {17 2, 3}
and
Dy = {27 47 6}
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A propagation itself is an incomplete method, most often it must be
combined with some search strategy. There is several search strategies which
can be applied to solve CSP. Backtracking is one of the most simple but
frequently used techniques.

Basic idea of backtracking is to try to assign a value to the variable. The
generic backtracking algorithm works in following way:

Algorithm 1 Simple backtracking
1: repeat
2:  choose a variable in CSP
3: repeat

4: choose value in domain of this variable. Check if it satisfies con-
straints.

5 until value is found or there is no more values which can be assigned

6:  if value found then

7 go to 1

8 else

9 go to last assigned variable and change its value. Go to 2.

10: end if
11: until solution is found or all combination of labels have been examined
and failed

While searching for a solution of CSP it is important what kind of search
strategy is used while looking for variable to be labeled. There is some search
strategies which could be used to find such variable and to label it with
specific value. A naive search strategy chooses the first variable in arbitrary
ordering of variables and label it with lowest possible value in domain. This
method is implemented in SICStus prolog as labeling option called leftmost.

Another approach is trying to find a variable which is most likely to fail.
This method aims at recognizing propagation dead—ends as soon as possible
and thereby reduce computation costs. The easiest way to determine which
variable is most likely to fail is to determine the size of variables domains
another to test which of variable with smallest domain has most constraints
suspended on it. Both strategies are implemented in SICStus as ff respective
ffc [SICO00].

Combining labeling with backtracking reduces necessary number of back-
tracks and limit a search space of the problem.

3.4 Optimizing: branch—and-bound algorithm

There is several methods for optimizing TSPTW and derived problems in
terms of minimizing cost of solution. The usual method for optimizing com-
binatorial problems is branch—and-bound algorithm. Note that the predicate
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minimize/2 in clpfd solver implemented in SICStus prolog are implemented
as branch-and-bound[SIC00|.

The way in which generic branch-and-bound algorithm works can be
describe in following way. Let S be a set of feasible solutions to integer
programming problem L. The algorithm divides feasible set S into a set
of subsets {S?: 1 =1,...,k} and then solves the problem over each of the
subsets. The division is frequently done recursively as shown in tree in figure

: -
Gy (g

G G

Figure 3.5: Branching feasible set S into subproblems S} and Ss. S is also
partitioned into S3 and Sj.

The subproblems are created by adding linear constraints to the problem,
after solving linear programming relaxation of the problem and computing
lower bound for it. The obvious way to do it is to take § = S' U S? with
S'=Sn{z € Rt :bx<dy} and S? = SN{z € R} : dv > dy + 1}, where
(d,dy) € Z"H!

Carried to the extreme, division can be viewed as total enumeration of the
elements in S.Suppose that S has been divided into subsets {S', ..., S¥}. If
we can establish that no further division of S? is necessary, then enumeration
tree can be pruned at the node corresponding to S°.

After partitioning of feasible set, assuming that we have an algorithm
which computes a lower bound b(S;) to the optimal cost for subproblem S;,
where

. ’
b(S;) < min ¢x

During evaluation process some upper bound U corresponding to cost
of certain feasible solutions will be set and maintained during the further
evaluation. If the lower bound b(S;) corresponding to particular subproblem
S; satisfies b(S;) > U then the best feasible solution so far is an optimal
solution for S; and subproblem S; does not to be considered further. If this
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condition is fulfilled for all subproblems then optimal solution for S is found
and algorithm terminates.

Algorithm 2 Generic branch—-and-bound
1: Select an active subproblem S;
2: if S; is infeasible then
3:  delete S;
else
compute b(.S;)
if b(S;) > U then
delete S;
else
obtain optimal solution for S; or break it into subproblems and add
them to list of active subproblems
10:  end if
11: end if

As we can see branch—and-bound is very general optimization method.
Its performance greatly depends on strategies used while choosing and branch-
ing active problem as well as on way of computing lower bound. While
implementing this algorithm in constraint programming languages its usual
to combine algorithm with some labeling strategies. More about how this
strategies can cooperate during optimization process see 5.6.7

3.5 Related work

Traveling salesman problem is a problem with one of the largest bibliography.
We can refer here to [Low85| for problem history and bibliography.

Although insertion heuristics for TSP is outside the scoop of this report
we need to mention worst case analysis of insertion heuristics in [Ros77]| and
the work of Christofides presented in [Chr76].

The k—interchange as an improvement method for TSP was originally
introduced in [Cro58| for & = 2 and [Lin65| for £ = 3. Since then there
was several papers written on this subject, which examine different issues
related to application of this method. It is worth to mention generalization
of this method in [Lin73] and report of worst—case behavior in [Pap78]. The
effective implementation of this method was described in [Hal00].

The extensive description of methods related to asymmetric TSP was
given in |Cir|]. The referred paper confirm among others the results of
TSP heuristic described in [Zha93]. It also gives a review of k-interchange
methods applied on asymmetric TSP. The paper also report results of k-
interchange adopted to asymmetric TSP by Kanellakis and Papadimitriou
and presented in [Kan80], as well as the results of iterated local search de-
scribed in [Mar92| and the local search and k-interchange particular im-
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proved by dynamic programming approach (see [Sim96] for local search in
general and [Glo96| for case of 4-interchange).

The traveling salesman problem and related vehicle routing and schedul-
ing problems with the time window constraints were presented in the work
of Salomon [Sal83], [Sal87] and [Des92]. The worst—case performance for
different heuristics was referred in [Sal86].

The idea presented in [Sav85| was later developed in [Kin85|.

From the literature about constraint programming we need to mention
[Tsa93] and [Stu98| as well as introduction to CP in [Bar]|.

Using of constraint programming for solving scheduling problems and
TSP’s with time windows was a subject of [Pes98],|Cas97],[Kil00]| and others.

Finally, the branch—-and-bound algorithm is described in most of the
books about linear programming and optimization. Using branch—and-—
bound to solve TSP and scheduling problems is referred in, among others,
|Cir| and [Sig00]. We also need to mention [Har80|, where different search
strategies using branch—and-bound algorithm are described.
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Chapter 4

Four steps optimization

4.1 Introduction

In this chapter we are going to present an outline of the method for optimiz-
ing a locomotive assignment problem. A starting point of this algorithm is a
input from existing TUFF system. The TUFF system generates an initial
feasible solution which is a set of locomotive circuits.

The ambition of this algorithm is to keep basic properties of initial so-
lution like maximum number of locomotives used and an improved cost of
initial solution. There is two possible strategies which can be used while
optimizing a set of locomotive circuits. All circuits can be merged into a
‘grand tour’, then the k—interchange is applied on single cyclic linear graph
serviced by a number of locomotives or it can be applied on set of disjointed
graphs.

Both strategies have their benefits and drawbacks. Merging of all circuits
in one grand tour makes very hard to maintain the basic features of the orig-
inal set of circuit which is overall the cost for all circuits and the number of
used locomotives. On the other hand it gives a benefit of applying lexico-
graphic search strategy during optimization process and makes application
of k—interchange more straightforward.

Performing interchange operation on an originally disjoint set of circuits
maintain the original features of initial solution but introduce new ’free pa-
rameters’ during optimization process, i.e. the strategy of choosing which
circuit from original set is going to be chosen for searching for proper inter-
change.

Consequently, depending on the chosen strategy in algorithm, i.e. de-
pending on if it is going to be applied on grand tour or if its going to be
applied on a set of disjointed circuits, there are two possible way of imple-
menting presented algorithm. In this chapter we are going to show how those
operations can be used depending on the chosen strategy.
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Algorithm 3 The ’grand tour’ optimization
Require: initial solution: set of feasible locomotive circuits G,
Require: trackgraph Gy
1: Merge circuits into the grand tour
2: Optimize using k—interchange
3: Disjoint ’the grand tour’ into set of separate circuits if the sum of cost
for disjointed circuits is lower then overall cost for the grand tour’.
4: Convert deadheads into passive transports

Algorithm 4 Optimizing a set of disjoint graphs

Require: initial solution: set of feasible locomotive circuits G,
Require: trackgraph Gy
1: for all locomotive circuits lc € G, do
2: if a sum of cost for I¢; € G and lc; € G, is higher then cost for
merged lc; and lc; then

3: merge lc; and [c;

4: end if

5: end for

6: Optimize using k—interchange on disjoint graphs

7. for all Resulting circuits do

8 if a cost for circuits can be reduced by disjoint operation then
9: disjoint circuit

10:  end if

11: end for

12: Convert deadheads into passive transports
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4.2 Merging graphs

Depending on the chosen approach the merging operation can be defined
in two possible way. If we choose to apply the merge operation as a way
of dealing with basic difference between traveling salesman problem and
locomotive assignment problem, i.e. to treat multi—actor problem, which is
the nature of locomotive assignment problem, as single-actor problem, the
TSP.

Let G = {g1,...,9n} be a set of n locomotive circuits, and g¢; =
{pir,---,pi, } and g; = {pj,,...,pj, } two locomotive circuits in G, where
Di;» Pz, and pj;,pj,., are the arbitrary consecutive trips in [¢; respective g;.

Given those definitions the merging for a ’grand tour’ can be defined as
follows:

Definition 4.2.1 (Merging for a grand tour) Given a set of n locomo-
tive circuits with the uniform cycle time merge them into one graph by gener-
ating turns between an arbitrary py,,, of some graph g1 and an arbitrary p;,
of some graph go and deleting turn between p;, of every g; € Gr and p;, ., .
Close graph by generating turn between py,,, and pi;.

Merging circuits into a grand tour removes an earlier time specification
for the trips in the merged graph. If the cycleTime is the total time necessary
to service all trips in a given circuit and perform all the turns between all
the trips in the circuit then a new time specification is adjusted by adding
to the original time the index 7 of the merged graph g; € G, multiply with
the cycleTime. All the time specification for the new merged graph relates
to the time specification of arbitrary p;,. This operation of recomputing
time specification for all the trips in the merged graph is performed mainly
to maintain precedence relation between the trips inside the new merged
circuit and does not have any practical impact on the optimization process.

In most of the cases such an operation will result in a circuit with overall
cost greater then overall cost of original set of circuits, because it will be
necessary to introduce deadheads transport between the arbitrary trips in
two merged circuits.We would like to assume that any deadhead which is
introduced by merging graphs will be removed or its cost will be reduced
during further optimization, but proving this assumption we will leave for
future work.

On the other hand we can choose a merging strategy which will minimize
the necessity of introducing new deadhead transports. Merging graphs can
be implemented using an insertion heuristics which minimizes number of
the necessary deadheads. The strategy in such approach is to look at all
links where one original period frame starts and next period frame begin
and calculate the cost of inserting given circuit into circuit already merged.
The cost of such insertion is computed by calculating the cost for deadheads
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which will be generated if the insertion would take place and additional
period frames which would have to be generated to perform such insertion.
The cost for the additional period frames is a cost of additional locomotives
which would have to be used to service such circuit. All possible insertion
are sorted by their cost and cheapest one is chosen.

There is some other possible strategies which could be designed having
in mind step 2 and 3 of algorithm. As we know that for example step 3 will
split merged graph on to expensive links we can maintain during merging
some expensive deadheads on the turns where period frame start and choose
to perform k—interchange in phase 3 only on links not marked as start of
period frame, or perform it in way which assure that splitting operation will
be performed on them.

Yet another strategy is to maintain array of circuits which were merged
using different insertion approaches and having different overall cost. Such
strategy allows to use optimization techniques known from research in field of
genetic algorithms. With well defined heuristics for mutation and cross over
between different individuals/merged graphs in population array combined
with k—interchange method could, despite probably high time complexity,
results in interesting solutions

In any case, this part of algorithm demands further research.

In the other approach, when we choose to run the algorithm on the set
of disjointed graphs, merging operation can be seen as optimization step.

Definition 4.2.2 (Merging as an optimization step) Given the set of
locomotive circuits G, = {g1,...,gn} if there exists two such circuits g;, g; €
G with arbitrary consecutive turns p;,,pi,,., € g; and pj;,pj,., € gj, that the
cost of turns pi;,pi;., plus pj,,pj.., 18 higher then p;._ ., pj, plus pj._..,pi; ,
the number of locomotives which could service such circle is equal to or lower
then the sum of the locomotives servicing g; and g; and the departure time
windows for all the trips in circuits g; and g; will not be violated, merge both
circuits by generating turns p;,,,,pj; and pj,..,p;; and delete turns p;;,pi;.,,
and pj;, Pj, -

The basic mechanism of this operation is the same as in k—interchange.
If there exists two links which can be replaced by two other links such that
equation 3.1 holds and all time constraints are satisfied then merging op-
eration can be performed. Moreover, let n(g) be a number of locomotives
servicing circuit g, if equation

n(gmerged) < n(gz) + ’I’L(g]) (41)

holds then merging graph operation will result in total cost improvement.

The merging operation can be performed in recursive way. New merged
circuits can be merged with another circuit if the conditions described above
are fulfilled.
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Figure 4.1: An example of merging operation as an optimization step. The
circuits for locomotives L1 and L2 are merged and the turns p6 — pl and
pl2 — p7 are deleted and replaced by turns with lower cost. The new circuit
is serviced by two locomotives. Cursive fonts indicates start and end station
for given trip.

The feasibility check while merging can be performed in two steps. The
first step is checking for the trivial case. If

depTime(p;;) + duration(p;;) + turnTime(p;;, pj,. )

. . (4.2)
< depTime(pji+1) + ct
and
depTime(pj,) + duration(p;,) + turnTime(pj;, pj,,,) (4.3)
< depTime(pj,.., )modct '
where
depTime(p) is the departure time of the trip p

turnTime(p;,p;) is the time necessary for the turn from turn p; to p;
inclusive time for necessary deadheads
ct is the original cycle time

then interchange is feasible and there is no need to adjust departure time
windows for all trips. Otherwise checking if interchange is feasible must be
performed iterative for all trips in merged circle.
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4.3 Local optimization

In this section we are going to present variant of k—interchange which can be
applied as local optimization method for improving locomotive assignment.
generally, the operation of local optimization can be defined as follows:

Definition 4.3.1 Improve the locomotive assignment by exchanging turns
(iy...,i+1) and (j—1,7) by an array of consecutive turns (k,k+1,...,k+n)
if the cost for the relinked tour is lower than the tour cost before relinking.

Condition for exchange is the same as expressed in [Sav85] and referred
in equation 3.1. Nevertheless, instead of applying arbitrary 2-interchange
we allow here to exchange one link by array of links i.e. one link can be
interchange with one or more consecutive links. This method can be seen as
a variant of Or—interchange with this difference that it does not limit number
of consecutive links to 3 but allow any number of consecutive links if and
only if sum of the costs connected with those links is lower then sum of costs
for deleted links.

Cii+l T Cjj—1 > Z Ch k+1 (4.4)

i+1<k<j—2

Local improvement of the tour can be performed if and only if it reduces total
cost of the tour and is feasible with respect to time. Recall from 2.4 that
a locomotive circuit is a closed, directed, weighted graph with set of nodes
representing trips and edges representing turns between trips. Recall also
that circuit represents a trips which are going to be performed periodically,
i.e. after accomplishing whole tour a new tour is started. The new tour has
the same attributes as departure times and other like previous tour. That
means that local improvement of the tour will always result in diminishing
the cost if the total time of accomplishing new tour expressed in terms of
number of original period frames in the tour is the same like number of
period frames before interchange operation was applied.

If exchange of links results in a new tour such that if a turn of time length
greater or equal original period frame and costs which can be distributed over
neighbor period frames then such frame can be removed from the tour. This
means in practice that if original number of locomotives servicing given tour
was l,;¢ then number of locomotives servicing new tour lye, = lo;q — 1 which
has great influence on overall cost of the tour.

On the other hand, while checking for the feasibility of interchange we
need to check that number of locomotives used for servicing given tour will
not increase. This information will be maintained using defined defined in
section 3.2 terms SHIFT and PFS. If condition 3.12 does not hold then
new period frame must be introduced and the new number of locomotives is
higher then original.
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The optimization method described above can be also used with the other
approach where all operations are applied on set of disjointed graphs. In this
case an array of links which can be inserted between two vertices can consist
of an array of consecutive links from the same or some other circuit. When
some exchange was performed we must also check if any of the inserted links
can be exchanged with some other links from other graphs in set. If the
order in which graphs were optimized is arbitrary then we must also check if
some links in newly optimized circuit can be exchanged with some links in
other graphs. The idea of applying k-interchange on set of disjointed circuits
using arbitrary order is illustrated in Appendix A.

Although this operation seems to find k—optimal solution it has a time
complexity O(n*) where n is a number of turns in the set of the locomotive
circuits. This complexity includes check for time feasibility for exchange.

4.4 Disjointing graphs

K—interchange applied on the 'grand tour’ results in the situation where all
the locomotives are used to run all specified trips. Even if such solution
is k—optimal from the point of view of the 'grand tour’ it can still be opti-
mized by removing some unnecessary expensive links. Recall, that we deal
here with the situation where servicing the tour is distributed over several
"agents’/’travelers’. Having this is mind we can divide the k-optimized grand
tour into the set of separate circuits so that instead of servicing all the trips
in the tour, an actor services only a subset of the all trips. This operation
is formally equivalent with disjointing a grand tour into the set of separate
circuits.

To perform disjoint operation we will use the same k—interchange method
as described in [Cro58| and [Lin73]. In this case we use 2—interchange where
original links with given cost are replaced by two other links with lower
cost, but instead of keeping unity of original circuit we transform it in two
separate circuits. This idea is illustrated in figure 4.2. This operation can

i i+1 i i+1

j+2 1+Q

j+1 i j+1 j
Figure 4.2: Disjointing graphs using k-interchange
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be performed independently of chosen approach. In any case if operation
is applied on a graph in a way where time feasibility for both separated
graphs is not violated and equation 3.1 holds then disjointing operation then
it follows that sum of used locomotives in both disjointed circuits is lower or
equal then number of locomotives in circuit before disjoint and this operation
is a optimization step.

4.5 Converting deadheads to passive transports

The last operation in our four step algorithm is to diminish overall cost for
the set of circuits by converting possible deadheads into passive transports.
We have chosen this operation to be a final step of the algorithm for follow-
ing reasons. The first reason is based on assumption that the overall gain
from performing k-interchange operation is higher than the gain achived
from converting the deadheads to the passive transports. The deadhead to
passive conversion is seen here as a additional operation reducing the overall
cost for the set of locomotive circuits, not as an opearation which find the
overall cost which is optimal. On the other hand, performing conversion to
passive transport in the same time k—interchange is performed could open
new possibility of relinking locomotive circuits which could result in opening
new possibility for cost optimization. Although this possibility is quite fas-
cinating we leave it outside a scoop of this report as possible area for future
works.

Another reason for performing this conversion at the end of algorithm is
an impact it has at internal representation of the circuits. As we mentioned
in chapter 2 we represent set of locomotive circuits as a set of finite, directed
weighted graphs with nodes representing trips and edges representing turns
between trips for a specified locomotives. We described also that both nodes
and edges of circuits have some sets of attributes connected to them. When
conversion between deadheads and passive transports is performed initial
attributes of graph loses its meaning. A turn between the consecutive trips
p; and p;41 formerly represented by an edge in circuit will be converted
into combination: deadhead to trip used for conversion, passive transport,
deadhead to start station of p;yi, or using graph representation: an edge,
followed by vertex, followed by another edge. This means that cost of turn
between p; and p; 41 is distributed on three different elements. This would
demand re—defining in which way optimization using interchange operation
should be performed and would mean additional constraints which imply
additional computing effort.

In the next chapter we are going to explain how to perform deadhead to
passive transport conversion and describe implementation of this operation.
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Chapter 5

Converting deadheads to
passive transports

5.1 Background

Trying to find locomotive circuits with the optimal or near optimal costs
often results in circuits with necessary so called deadhead transports i.e.
transports where some locomotive is reallocated from one place to another
without doing any specific trip.

In real life there is two ways in which such reallocation can be performed.
One, most obvious is to drive a locomotive from one station to another, the
other is to attach a locomotive to the train performing an active trip and let
it follow this trip. This of course assumes that there is such trip to which
specific deadhead can be attached. This type of reallocating locomotive,
there a locomotive passively follow active trip is called passive transport
(see definitions in section 5.2).

There is several advantages of passive transports over deadheads. One
of the main advantages is that passive transport is generally 50% cheaper
then deadhead which can make significant difference when a locomotive is
allocated over long distance. Another significant advantage of passive trans-
port over deadhead is that it does not demand exclusive allocation of track
resource. Passive transport uses track resource allocated exclusively for the
active trip to which it is attached.

In this chapter we will try to design an algorithm which convert dead-
heads to passive transports. We will refer to problem domain as pt—problem
and to algorithm as pt—conversion algorithm. In the next section we give
mathematical formulation of the problem with consideration to real-world
constraints.
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5.2 Mathematical foundation

Pt—problem can be defined as follows:

Definition 5.2.1 (Pt—problem) Given the trackgraph G; and the set of
locomotive circuits G with their tripsets minimize cost for the set by con-
verting deadheads to passive transports.

We define terms ’deadhead’ and ’passive transport’ used in 5.2.1 in fol-
lowing way:

Definition 5.2.2 (Deadhead transport) A deadhead is reallocating a lo-
comotive from one station to another with exclusive allocation of track re-
source and without servicing any specific trip.

Definition 5.2.3 (Passive transport) A passive transport is a reallocat-
ing a locomotive from one station to another by attaching it to the transport
servicing a specific trip.

Given those basic definitions we can define conversion from the deadhead
to passive transport. We will call it for deadhead to passive conversion.

Definition 5.2.4 (Deadhead to passive conversion) Let L; be a loco-
motive with the circuit Circg; and consecutive trips t;,t;41 € Clircg,, with
a deadhead between t; and t; 1. Then let L; be a locomotive with the circuit
Circe; and a trip t; € Circg;. If L; can be reallocated from end station
of t; to start station of t;, attached to transport serving t; and then reallo-
cated from end station of t; to start station of t;11 such operation is called
pl—conversion.

The utility of deadhead to passive conversion can be formalized in terms
of a cost function. Let ¢4 be a deadhead cost and c,; cost for the passive
transport. Conversion of any deadhead ¢ with cost ¢4, into passive transport
can be described as

Cd; = Cd; + Cpt + Ca, (5.1)

there
Cd;» Cdy, 2 0

Note that in our definition conversion can only be performed by other
active transport. We do not consider in our definition using one deadhead to
piggy—back another deadhead as deadhead to passive conversion. We leave
this problem for future consideration.

Deadhead to passive conversion can be carried out until cheapest con-
version is found, although, if applied consecutively on the set of deadheads
it will result in locally cheapest conversion. Fixing a conversion for a dead-
head will, in most cases, have influence on departure time windows for other
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Figure 5.1: Deadhead in turn from p; and p;11 is converted to passive trans-
port using a trip p;.

trips in the locomotive circuit containing given deadhead. Moreover, it will
influence time window for the active trip used in conversion and all trips in
its locomotive circuit. For detailed discussion of those issues see section 5.5.

We will call such result for local pt—optimality which we define in follow-
ing way:

Definition 5.2.5 (Local pt—optimality) A set of locomotive circuits is
said to be locally pt—optimal if and only if there is not any deadhead transport
which can be converted to passive transport minimizing overall cost for set of
circuits.

Ideally, the deadhead to passive conversion would be performed in the
way which would minimize overall cost for a set of locomotive circuits. It
means that while performing conversion we would not choose a cheapest
alternative for a deadhead we are going to fix but compare every possible
conversion with all the other possible conversions for every deadhead. Car-
rying out optimization in such way will rapidly increase the computational
cost of the conversion (see section 5.3).

The conversions optimality is measured with respect to an initial set of
circuits. The deadhead to passive conversion does not minimize overall cost
for a set of circuits, it may still be a possibility to minimize cost of the initial
solution or result of the conversion by eliminating e.g. some deadheads.

The deadhead to passive conversion in turn try to convert all the possible
deadheads even those which could be removed in the earlier optimization
step, before conversion.

The deadhead to passive conversion is not reversible, i.e. if some dead-
heads were converted to the passive transports, then there is no possibility
to eliminate converted deadhead by replacing it by any active transport or
replacing any remaining deadhead transport by an active one. This is due to
the change of the topology of the graph representing the locomotive circuit
containing converted deadhead (see section 4.5).
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While performing deadhead to passive conversion we must take into con-
sideration some of the real world constraints.

1. A deadhead can be converted into a passive transport if a part or a
whole of deadhead path covers a whole path of some active transport.
In other words, a deadhead can be attached and detached from some
transport only on the start respective end station of an active transport
servicing given trip.

2. A deadhead can use one and only one active transport. In real life
deadhead to passive conversion demanding more then one active trip
is extremely rarely performed. This is because service time connected
with detaching locomotive from one train, reallocating it on another
track and attaching to another active trip is to expensive and demands
to much time comparatively to the cost of the deadhead.

3. A deadhead does not initially have to be in active transports start
station. One deadhead can be converted to a combined deadhead —
passive transport.

4. A deadhead does not have to have same end station like active trans-
port. A deadhead can be converted to a combined passive transport —
deadhead.

5. Condition 3 and 4. A deadhead can be converted to a combined dead-
head — passive transport — deadhead.

6. The conversions 3,4 and 5 may be performed if and only if they do not
violate time windows for any trip in any of the locomotive circuits.

7. The conversions 3,4 and 5 may be performed if and only if the over-
all cost for servicing the set of locomotive circuits after deadhead to
passive conversion is lower then initial cost for servicing the set of
locomotive circuits.

8. One active transports can not have more then one locomotive following
passively. Some of the trips does not allow passive transports.

Given those basic definition and assumptions we can formalize our algo-
rithm in form of objective function. Let K denote turn between two trips,
z(;jy number of locomotives turning from one trip to another and c(;;) a cost
connected with performing such turn, then:
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Given an assumption of a constant cost for a waiting time ( see section
2.2) a cost of turn can be expanded according to definition 5.1 as:

Cig) = diag) + Plg) (5.3)

where d(;;) is a sum of the costs for performing deadhead transports while
turning from 7 to j and pi(;;) is a cost of a passive transport in a turn (7).
According to this expansion the objective function can be rewritten to:

5.3 Conversion algorithm

In this section we are going to present a deadhead to passive conversion
algorithm. The aim of this algorithm is to reduce overall cost for a set of
locomotive circuits according to objective function given in equation 5.4.

Algorithm 5 Deadhead to passive conversion

Require: track graph G; = {Station, Track}
Require: set of feasible locomotive circuits G,

1: for all deadheads d € Gy, do

2:  compute time window T'Wy (section 5.3.1).

3:  create a set of stations SS such that s € 5SS — ca 0,0, + Cptapear < Cds
where cq,,,,, . 18 a cost for new deadhead to the station s, cp, .., i a
cost for passive transport from s to the station where next trip starts
and cq is a current cost of deadhead (section 5.3.2).

4:  create list of transports C'T" which can be used for conversion of d to
passive transport such that
t € CT — startStationy € SS A depTime; < depTimenepirrip N
Cdgrares T Cpt + €4 < ¢q (section 5.3.3).

end _pt,next

5:  for all candidates ¢t € CT do

6: compute cost for using ¢t to convert d into a passive transport.

7. end for

8:  sort all ¢t € CT according to their cost in ascending order (section
5.4).

9: end for

10: sort all deadheads according to the size of their candidate list C'T" in
ascending order (section 5.4).

11: reduce the overall cost for Gj. by finding a feasible conversion of all
d € (). into the passive transports. Start a search choosing the best
possible conversion for a deadhead d with lowest number of candidates
ct € CTy (section 5.4).
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This algorithm is designed to find a feasible deadhead to passive transport
conversions for a set of deadheads. Computing a time window for a given
deadhead is performed in constant time O(1). The set of stations for a given
deadhead demands checking for every station s € S relation between cost of
a deadhead and distance to s. If |S| is a number of stations in S then this
step performs in O(|S]). Performing next step requires checking for every
trip if it starts and ends in a station s, € S5 and if has its departure time
within time window for a deadhead. If |P| is a number of all trips then
this step performs in time O(|P|). All those steps are performed for every
deadhead i.e. it performs in time O(|D|) where |D| is a number of deadheads
d € Gie.

Reducing of the overall cost is implemented using branch—and—bound
algorithm. The reduction can be carried out to the point where the overall
costs for the set of circuits is minimimal. Below we discuss the execution
time complexity for such reduction where we use naive search strategy, i.e.
where the candidates in candidate list for every deadhead are not sorted
according to their costs and the set of deadheads is not ordered according to
the number of candidates in their candidate list.

Let |D| be a number of all deadheads, ¢; a list of candidates for given
deadhead d; € D and

|D|

M=1{]¢l
7=1

then in worst case algorithm must search over (‘1\[/)[‘) times which gives time
complexity O(2/P*M).

If the goal of conversion is defined as reducing the overall cost for the
set of circuits by finding any feasible set of conversions then the conversion
can be carried out in a lexicographic order which yields a polynomial worst
execution time complexity O(|D|* M).

The strategy of ordering the candidate transports which can be used for
converting given deadhead and ordering the set of deadheads according to
the number of such candidate transports in their candidate lists, described
in steps 8 and 10 of the algorithm 5 and this of choosing the best possible
conversion for a given deadhead gives possibility of finding a locally optimal
conversion cheaper than a solution found using a naive search strategy.

5.3.1 Computing time window for deadhead

A deadhead d can start from its departure station sq,,, ., earliest at the time
equal the time of earliest arrival of previous trip at s4_,,,,. The latest possible
departure time can be computed by substracting from the departure time
for next trip, which starts at station spe;; a time which is necessary for
traversing distance from sgq,,,,, t0 Spest- If the departure time is expressed
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by departure time window then the latest possible departure from sq,,, .,
is defined as latest possible departure from s,.;; minus time necessary for
traversing distance from sq,,,., t0 Spegt-

This step will limit the search space for trips which can be used in con-
verting a deadhead to a passive transport to those trips which starts and
ends in a deadheads time window.

5.3.2 Creating set of stations

The aim of this step is to create set of stations which can be taken into
consideration when searching for trips which can be used for converting a
deadhead into a passive transport. This poses a restriction on the search
space by defining stations where such a trip must start.

From the general cost relation passive transport — deadhead we can define
a set of trip—start stations Sy as subset of all stations such that cost for
deadhead to s € Sy plus cost of passive transport from s to the station
where next trip starts is lower then cost for initial deadhead:

s € SO = Cdstart,s + cpts,nezt < Cdstart,ne:ct (55)

5.3.3 Creating transport candidate list

The aim of this step is for every deadhead d € G with the time window
TW, and the set of candidate stations S create list of active trips CandList
which may be used to convert deadhead d to passive transport.

Creating candidate list for deadhead i is subject to following constraints:

at € CandList —
atgtart €S A
atond € S A (5.6)
Cd; + Cpt + Cap, < C4; N
depTimeg € TWy

there atsqrr and ate,q are start respective end stations for active trip, C' is
a cost of transport, depT'ime,; is departure time for the trip and T'Wyy, is
departure time window for the deadhead.

The first two constraints in this conjunction state that for every active
trip in the deadheads list of possible candidates for use in conversion it must
start and end in one of the stations in the station candidate set. As we
mentioned in 5.3.2 set of candidate stations S is created in such way that
cost of deadhead from original deadheads start station to s € S plus cost of
the passive transport which goes from s using shortest path to station there
next trip starts is lower than the cost of the original deadhead. This equation
can be rewritten as a cost of a deadhead to s € S and then a passive transport

37



from s to the start station for the next trip must be greater then the cost
of the original deadhead. From this follows that if the end station of the
passive transport is not an element of the set of the candidate station then
the cost of the deadhead from the end station of the passive transport to the
start station of the next trip is greater than the cost of the original deadhead
and the active trip which such features is not a candidate for conversion.

Additional constraint cd; +cprtcg, < cq; limits further the list of possible
candidates which can be used in conversion. It states that if the cost of the
deadhead to the start station of an active trip together with the cost of the
passive transport from to its end station and the deadhead from the end
station to the start station for the next trip must be lower than the cost of
the original deadhead.

The last part of equation states that the active trip which is used in
converting a deadhead to a passive transport must have a departure time
within a time window for a given deadhead.

5.4 Searching for conversion

5.4.1 Background

Dealing with scheduling optimization generally imposes on any optimization
algorithm the necessity to deal with the time feasibility. If any task #; put
the exclusive lock on the resource/machine in the time when it is performed
and ?; may not be preempted then next task ¢;;; can not be started until ¢;
is finished and an exclusive lock on a resource/machine ceases.

Parallel with the passive transport problem is apparent here: if the lo-
comotive is reallocated from one station to another then it can start next
trip. To start any trip a locomotive must obviously fulfill constraints of being
available at the station where a trip is going to start at the departure time
of the trip.

When the timetable for the locomotive circuits is fixed then the feasibility
check with respect to time is simple. If we know that next departure is going
to be done in time 7T then start time for the deadhead + time necessary
for passive transport must be earlier /lower then departure time for the next
trip. We know also that if the conversion demands an initial deadhead from
the start station of the original deadhead to the station where an active
trip used for conversion starts then start time for such deadhead + traversal
time must be lower or equal to the departure time of the active trip!'.If any
of those rules are violated then timetable for the trips is violated and such
conversion is unfeasible with respect to time.

On the other hand, if the departure time for active trip and departure
time for the next trip are not violated then, out of transitivity rule, departure

! Actually, departure time for deadhead is always defined as time window
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times for the trips after active trip and departure times for trips after next
trip will not be violated. Such features of a schedule with fixed timetable
make possible to use local search methods when searching for feasible conver-
sion of a deadhead to a passive transport. The only time feasibility check we
need to do is performed on defined deadhead/candidate passive transport.

When it comes to schedules where departure times are defined in terms of
time windows using local search methods seems much more difficult. Check-
ing a feasibility of conversion with respect to the time must be defined in
terms of time interval. Because size of the departure time windows for the
single trips in circuits differs then it is not enough to check if conversion
performed on one deadhead does not violate departure time window for the
trip which follows deadhead. Even if simple conversion may be feasible with
respect to time it may limit departure time window for the next trip in such
way that it would be impossible to some of the trips which follows them.
We must also take into consideration that one locomotive circuit can have
more then one passive transports. Performing local time feasibility check
and accepting one of the conversions may cause other candidate conversions
unfeasible. On the other hand, using any active transport in conversion may
limit its departure time window in the way that it violates feasibility of the
active trip circuit or the feasibility of other circuits which interact with active
trip circuit in converting some other deadhead.

In any case performing deadhead to passive conversion to minimize over-
all cost for a set of locomotive circuits impose on the algorithm necessity
to know global relations between trips, deadheads and circuits, otherwise it
carries a risk of finding only locally optimal solution.

5.4.2 Converting schedule with fixed timetable

The aim of this section is to present an algorithm for deadhead to passive
transport conversion for the fixed timetable. The aim of the algorithm is to
perform such conversion in globally optimal way. Note that this is a method
alternative to this described in [Dro97].

Through the previous steps of conversion algorithm there was created set
of candidate deadheads D = {dy,ds,...,d,} where every deadhead d; € D
has a list of candidate transports which could be used in conversion. Dead-
head d; is constraint with the time window in which it must be reallocated
from end station of the previous trip s.,4(,) to the station where the next
trip of locomotive with d; is going to service sg(p41) - This time window in
case of fixed time table has a lower bound equal arrival time at at s () and
upper bound is the time when p + 1 starts minus time necessary to traverse
distance between Sepq(p) and Sg(py1)- We assume here that velocity at which
such allocation occur is constant. Further, we assume that velocity of any
kind of transport i.e. active transport servicing trip, deadhead transport
and passive transport is equal. The traversal time used in computing upper
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bound of time window of d; is a traversal time from se,q(p) t0 Ss4(p41) USing
shortest path between those two stations.

Because of the constant velocity assumption and shortest path assump-
tion we know that if there exists such active transport p; which starts at the
station seq(p) and ends at the station s, 1) but outside the range of time
window interval for d; then such conversion will be unfeasible because it will
violate departure time for p 4 1.

Fixed time table imply that checking feasibility for departure time con-
straint can be performed locally. It implies that if pt—conversion of d; is
feasible with respect to departure time constraint for p + 1 then feasibility
for all circuits is maintain. On the other hand, if departure time of p + 1 is
violated then whole conversion is unfeasible.

Given these assumptions we can perform our conversion locally. Nev-
ertheless, because of our pt—optimality definition we can not perform our
conversion on only one deadhead at the time. The reason for this is as fol-
low. Assume that there exists a deadhead d; € D with a list of candidate
transport which could be used in pt—conversion Cy, = {c1,c¢2,...,¢,}. Fur-
ther, assume that there exists another deadhead d; € D with the candidate
list Cy; = {c1,¢2,..., ¢}, and that some ¢; € Cy, is equal some ¢; € Cy;. In
other words we have a situation where two deadheads can use the same ac-
tive transport for pt—conversion, which violates constraints stating that one
active transport can be used for conversion of one and only one deadhead to
passive transport. If we try to convert one deadhead at the time, then we
can not be sure that our conversion will be pt—optimal.

In our algorithm we use a simple divide and conquer method to divide
search space and limit searching for conversion only to those deadheads which
are absolutely necessary to take into consideration.

Choosing deadheads which will be in the set of deadheads for local con-
version has to fulfill following condition.

Let D be a set of all deadheads and d; € D where d; has a candidate list
Cg;- Then let L C D, where L denotes candidates for local conversion and
d; € L be a candidate deadhead for local conversion with the candidate list
Cy; -

VdiED,VdjEL (HC (CECdi/\CECd]. —>diEL)) (57)

Deadheads which undergone local pt—conversion are removed from the
set of candidates for conversion

Dypew = D — L. (5.8)

and
Vd; € L,3c; € Cdi — Vdj € Dyew, E|Cj e Cdj A # Cj (5.9)

In other words there not exists any deadhead d; € Dy, which have in
its candidate list a candidate used by any d; chosen for local conversion.
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The set of deadheads for local conversion is then passed to constraint
solver and optimized using minimizing constraint and branch—and-bound
search. More about constraint solver in section 5.6

5.5 Conversion with departure time windows

As we mentioned in 5.4.2 deadhead to passive transport conversion performed
on timetable with fixed departure time can be performed locally. Subdividing
of search space for optimization follow the rule 5.7. This rule will not apply
to timetable where departure time is defined in terms of time window. The
reason for it is that constraining time window for departure for p;; will have
an influence on the departure time window for p; 2 and all consecutive trips
up to some p, with unchanged departure time window. It will also effect a
time window of an active trip used to convert given deadhead to a passive
transport and time windows with precedence constraint.

Moreover there exists a possibility that some of the trips in the circuit
containing converted deadhead will later be used as a candidate for conver-
sion for some other deadhead, say dj,, in another circuit, say C7p, . In this case
checking for feasibility while converting d; would constrain time windows for
d, € Cp, and all the trips in C,. This dependency would in turn make it
necessary for checking feasibility of conversion with all other circuits with
wich (', interact.

Although it is possible to limit such conversion space into some more
or less local subspaces which would include all the circuits which interact
during the conversion we assume that such method on one hand would in-
crease computational complexity, on the other hand it is often the case that
such multiple bindings between different circuits would result in a subspace
equal a total search space. The experience with goods example supports this
assumption (see chapter 5.7).

Therefore we decided to implement in case of timetable with time win-
dows a global conversion which operates on whole conversion search space.

5.6 Implementation

5.6.1 General issues

In this section we are going to describe our implementation of deadhead to
passive transport conversion algorithm for the case where departure times
for the trips specified by time windows. We have chosen to implement this
algorithm using SICStus prolog version 3.8.4. The code should run also on
later versions of SICStus.

Algorithm takes as an input initial solution from the trip scheduler, which
is of form
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solution(Solution)
where Solution is a list of locomotive turns of form
[LocomotiveId, [List0fTurns]]

and List0fTurns is a list of locomotive turns performed by the locomotive
LocomotiveId. Each turn in List0fTurns has the format

[TurnFromTrip,TurnToTrip, Cost]

where TurnFromTrip and TurnToTrip are trip id’s occurring in trip specifi-
cation.

The list of turns for the different locomotives does not have to have an
uniform length. The time for accomplishing any circuit can be different and
can even span over several cycle times which means that such circuit is in
practice serviced by several locomotives . In such cases the LocomotiveId
represents in fact more than one locomotive (see section 77).

Specific trips are given using the predicate

trip(TripId,StartStation,EndStation,DepartureTW,DepTime)

where TripId is a unique trip id. Specifying TripId follows general rules
in TUFF where every trip has a unique number. The trips are numbered
as a serie of integers {1,2,...,4,i + 1,...,n}. This implementation of the
conversion algorithm is heavily dependent on the fact that trips are num-
bered in increasing order. StartStation is a station where the trip starts
and EndStation is a station where the trip ends. If G; = {S,E} both
StartStation and EndStation must be in S. DepartureTW specifies de-
parture time window parameters defined as DepTWStart..DepTWEnd, i.e. its
lower and upper bound. DepTime specifies the fixed departure time used in
Solution?.

As we can notice we do not specify arrival time at end station nor the
path (route) of the trip in our input into algorithm. This simplification is
due to assumption that a locomotive attached on an active trip must follow
this active trip from its start to the end station. We assume in our implemen-
tation that trip p; from sg to s, can be performed using the shortest path
from sz to s.. How the shortest path between two station is computed see
5.6.3 which also specifies how traversal costs between stations are measured.

The second input parameter to the algorithm is a trackgraph G; = {S, E'}
where S is a set of stations/vertices and F are edges between s;,s; € S, i.e.
single tracks between stations. G; is specified as database of tracks using
predicate

In fact this parameter is unnecessary and will be soon removed. In TUFF system
departure time window used in trips specifies departure interval in terms of Solution
and used ’fixed departure time’ is set to the lower bound of departure time window, i.e.
DepTWStart
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track(FromStation,ToStation,Cost)

The edges between stations are not symmetrical, i.e. the cost of traversing
edge from s; to s; is not the same as the cost of traversing edge from s; to
si- Assuming that all locomotives are of uniform type we do not maintain
information about the cost for traversing a given edge for different locomotive
types. The cost for traversing an edge between to stations is in our model a
function of the traversal time. As we assume that all the locomotives used
in the solution are of uniform type the cost used here is equal to the time
necessary for traversing the given edge.

We also need to mention that despite different length the time resolution
can be arbitrary but it must be uniform in the whole problem for trips, turns
and costs for traversing distance between two stations.

In our implementation we choose to read all these parameters from a
separate prolog file.

5.6.2 Cyclic time

As mentioned in 5.6.1 we deal here with a set of trips performed periodically
in a given time period. We also mentioned in the section above that the
length of the circuits contained in a given set does not have to have to be
uniform but can span over one or more cycle times. It means in practice that
a locomotive with given LocomotiveId which has its List0fTurns spanning
over given cycle time ct represents in reality more then one actual locomotive.
The number of actual locomotives x; which given LocomotiveId represents
is given by

. {lt/ct if 1t mod ct = 0 (5.10)

It/et +1 iflt mod ct > 0

where [t is a arrival time at the station specified as destination of last trip
in the List0fTurns and / is an integer division.
The the cycle time is stored using the predicate

cycleTime (CT)

where CT is the given cycle time in the resolution used in trips, turns and
cost for traversing the edges of the trackgraph.

This possibility of creating locomotive circuits that can span over sev-
eral cyclic time periods influence the computation of for example a list of
candidate transports for a given deadhead. The time window for given dead-
head d; expressed by TWy, = [tw_ startg,,tw_endy,] is actually defined by
TWy, = [tw_startg,modCT,tw _endy,modCT] where CT is the cycle time
and tw_starty, and tw_endy, are the lower and the upper bounds of the
time window for deadhead d;.
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5.6.3 Creating the distance matrix

Computing a deadhead to passive transport conversion demands a matrix
with the distances between the stations in which the given deadhead is reallo-
cated. This matrix is computed from the given track graph G;. To compute
matrix we use Dijkstra’s algorithm run all-to-all.

Recall from the previous section that we deal here with a graph where dis-
tances between vertices are not symmetrical, i.e. distances;, s * distancesi, 8i)
thus the algorithm run in time complexity O(|S|®) where |S| is a number of
vertices/stations in the graph.

Although right now computation of the distance matrix is done in run—
time it is much more advantageous to use the already existing distance ma-
trix, created earlier off-line. This would remarkable diminish the run—time
of the algorithm.

Created distance matrix is stored in the prolog database using the direc-
tive

assertz(distance(From,To,Distance))
and is accessed with
distance(From,To,Distance)

The distance database is used during the whole conversion and flushed when
conversion is finished using directive

abolish(distance,3)

5.6.4 Computing time windows for the deadheads

As we mentioned in 2.2 the cost of a turn between two trips consist basically
of the cost for the waiting time and the cost for the deadhead from end
station of the first trip to start station of the next trip. Assuming that the
cost for the waiting time is linear then it can not be optimized: decreasing
the waiting time in one turn must increase the waiting time for some other
turn in the same circuit. Therefore the waiting time parameter may be
completely omitted.

Because the cost of the waiting time can not be optimize we omit it in our
specification of the cost for the given turn. Thus if any turn has a cost greater
then zero it means that such turn containes a deadhead. This information is
read from the initial solution, given as an input to the conversion algorithm.

Knowing that it is necessary to perform deadhead transports between
trip p; and p;11 we compute the time window for this deadhead by picking
information about p; and p;41 from the trip database and information about
the traversal time of p; and the traversal time from the end station of p;
to the start station of p;y;. The deadhead’s time window is computed as
described in 5.3.1. This computation is implemented in the procedure
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makeDHTW (FromTurn,ToTurn,MaxTW,ActualTW)

5.6.5 Creating the set of candidate stations

The set of candidate stations is created using the predicate
createStationCircle(Turn,StationCircle)

where Turn is a list [FromTrip,ToTrip,Cost], i.e. the same format as
Solution’s TurnList. After computing the start station of the deadhead
a circle including all stations that can be searched for the transports which
can be used for conversion is computed. Computing set of such stations fol-
lows the rules in equation 5.5. In the set of candidate stations are included
all stations lying in the cost range

dt x4+ df x2 < Cost

where dt is the cost,’distance’ from the start station of a deadhead to the
given station and df is the cost,’distance’ from the station to the start station
of the next trip following the deadhead. In other words, we assume that if
there is an active transport which can be used in the conversion and is going
directly from the computed station to the station where next trip starts
it will be cheaper to reallocate the given locomotive to this station as a
deadhead and then use an active transport from this station to transport
the locomotive. Computing the set of candidate stations is performed using
distance/3 database.

5.6.6 Creating the list of candidate transports

Given a deadhead, its departure time window and the set of candidate sta-
tions, a list of active transports which may be used in the conversion of this
deadhead is computed according to equation 5.6. Computing the candidate
transport list is done with the predicate

makeCandidatelList( CurrentStation,Destination,ActualTW,
AllStations,StationCircle,CandidatelList)

where

CurrentStation 1is the station where deadhead starts

Destination is the start station for trip following deadhead
ActualTW is the departure time window for the deadhead
AllStations is the set of candidate stations. This list is used for

checking if the end station of any candidate trip lies
in cost range.

StationCircle is the set of candidate stations and is
initially equal the A11Stations. This list
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is parsed while searching for trips starting in
s € StationClircle
CandidateList  list of trips that can be used during the conversion.

Predicate uses

mod_compare (TWTStart,TWTEnd ,EarliestTime,LatestTime)

where
TWTStart is the lower bound for the candidate transport departure time
window
TWTEnd is the upper bound for the candidate transport departure time
window

EarliestTime is the lower bound of the departure time window
for given deadhead

LatestTime is the upper bound of the departure time window
for the given deadhead

which checks if the departure time window for the given candidate trans-
port lies in the range of the deadhead’s departure time window using modulo
operation. The mod_compare/4 take into consideration cyclic time.

5.6.7 Final conversion

Given all deadheads with their departure time windows and list of candidate
transports the search for conversion is performed. Our search implements
search for conversion where the departure time for the trips is specified as
the time windows. Search is performed globally on all deadheads (see section
5.4). This part of the program is implemented using the constraint solver
for finite domains (clpfd) included in SICStus prolog. Search for conversion
is called with predicate

run_search(List,Result)
where List is a list of deadheads with the following format:
[LocomotiveId,TurnFrom,TurnTo,Cost,TimeWindow,CandidateList]
where

LocomotiveId  is the unique number for the locomotive performing the given deadhead

TurnFrom is the trip id the locomotive is turning from

TurnTo is the trip id the locomotive is turning to

Cost is the initial cost of the deadhead

TimeWindow is the deadhead’s departure time window from the end station of

TurnFrom. TimeWindow is specified as the interval
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EarlierstDepartureTime. .LatestDepartureTime
CandidatelList is a list of active transport which can be used for converting
deadhead into passive transport.

and Result is the converted list of deadhead.

As we mention in section 5.4 there is some constraints which should be
fulfilled while searching for a proper conversion. All these constraints are
posted before the actual search starts.

Feasibility of a conversion with respect to time data is performed in two
steps. First by posting constraints and data essential for such control, second,
by performing actual feasibility check during the search for a conversion.

To properly perform the feasibility check for conversion we post con-
straints for all the trips and circuits, which contains data about their de-
parture time windows, travel times and actual number of locomotives used
in the circuits. To do this we need to expand the information contained in
solution(Solution) with the actual number of locomotives used in every
locomotive circuit in Solution. This information is obtained by the predi-
cate

nof_engines(Circuits,OrigEngines)

where Circuits is the initial solution containing all circuits (equivalent with
Solution) and OrigEngines is a list containing the number of locomotives
used in each circuit. Then all trips and circuits are posted in

init_circuits(Circuits,DepDoms)
which in turn calls
post_trips(FirstTrip,LastTrip,DepDoms)
where

FirstTrip is the unique number of the first trip
LastTrip is the unique number of the last trip
DepDoms is the list of posted departure domains for all trips

This implementation is heavily dependent on the standard way of assign-
ing unique ids to the trips , where trips ids are serie of consecutive integers
{1,...,4,i+1,...,n}.

The list DepDoms is created when the departure time interval for every
trip is accessed by the call to trip/5 database. Then the departure times
are converted using the uniform cycle time by the modulo operation. Each
departure time domain is then posted as

Dep in (DepStart..DepEnd)
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where DepStart and DepEnd are the lower and upper bound of the depar-
ture time window for the given trip after applying the modulo operation as
described above, or as a disjunctive domain

Dep in ((0..DepEnd)\/(DepStart..CT))

if the trip crosses the specified cycle time.

All the circuits are posted with constraint that the actual number of loco-
motives used in converted circuit may not be higher then the actual number
of locomotives in the original circuit. The time windows constraints posted
here will be necessary to check if conversion of the deadhead is feasible with
respect to the time. These constraints will be later used by fd_contained.

The deadhead’s domain is posted using predicate

create_domain(List,CurrentDomain,DHId,Domain)
where

List is the list of deadheads which are to be converted
CurrentDomain is the domain of variables already posted
(used for tail recursion)
DHId is the unique id for original deadhead
Domain is the complete domain of posted variables.
The return variable for tail recursive create_domain/4.

The Domain is a list of posted deadheads. The value of every variable
in Domain consist of the list of the active transports which can be used to
convert the given deadhead into the passive transport, which are represented
by id’s of the trips they service, and the special value which is the deadheads
temporary generated id. The value of variable is expressed as a disjunction
of the terms. The unique id of the deadhead garantee termination of the
program: if none of the active transports can be used to convert the deadhead
into the passive transport then the variable representing the given deadhead
takes the value of the deadheads id.

Every candidate transport for a deadhead has a cost associated with
it. This cost is posted with a relation list created for every deadhead. To
create this relation the predicate relation(?X,+MAPLIST,?Y) from SICS-
tus prolog is used, where X and Y are integers or domain variables and
MAPLIST is a list of INTEGER-CONSTANTRANGE pairs, where an integer key
occurs uniquely ( see [SIC00]). Every deadhead has a map list which con-
tains pairs Candidate-Cost where Candidate is an active transport which
can be used for converting the deadhead to passive transport or the origi-
nal deadhead and the Cost is a cost for converting the transport using this
Candidate. This relation is posted inside the predicate sum_cost/6.
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sum_cost/6 is also used to post some other constraints which will be
used for checking time feasibility of the conversion.

Search strategy

Converting the set of deadheads into the passive transports demands a very
high comutational costs. . Finding globally optimal solution for a problem
with many deadheads having large candidate lists can take unproportionally
long time. Because of that we decided to implement search for finding a
solution with cost lower or t worst equal initial solution to the initial solution.

To perform the search we use the generic SICStus predicate labeling(:0PTIONS,
+VARIABLES) where

OPTIONS is a list of search options
VARIABLES is a list of domain variables or integers

Because we do not do a complete search for an optimal solution it is
important to find one as profitable as possible. To do this we decided to
use a greedy strategy while searching for a solution, i.e. we label a domain
variable with the candidate with lowest conversion cost thus maximizing the
gain. Choosing of value which is going to be assigned to on variable is done
with the option value(enumerator) (see SICStus manual [SIC00]), where
enumerator is a predicate called as enumerator (X,REST,BB)

X is the domain variable

REST is the list of variables which needs labeling, except X

BB is a bound called by the auxiliary process apply_bound
to ensure that branch—and-bound works correctly

In our implementation enumerate/3 finds cheapest candidate transport
by reading costs/1 attributes of domain variable posted earlier in sum_cost/6,which
equals the list used in relation/3 described earlier.

labeling/2 supports several options for choosing domain variable strat-
egy. In our implementation we choose to use the first fail strategy (£f option
in SICStus). First fail chooses those variables with the smallest domain. If
there exists several variables with the same domain size the leftmost variable
is chosen.

The strategy of choosing variable can be improved by using the option
variable (SEL), where SEL is a predicate to select the next variable. In this
way we could find the best possible domain to be label in given phase of
labeling. We leave this option to be implemented in the future.
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Checking for time feasibility

While searching for a solution labeling/2 checks if a given fulfill time feasi-
bility constraint. This check is performed using earlier posted constraints
for the trips and circuits time windows as well as constraints posted in
sum_cost/6. The departure time window constraints for the given candi-
date are accessed using predicate

element (H1, [DHDom|DepDoms], CandDepDom)

where
H1 is a given candidate for conversion
DepDoms is the departure time windows for all trips
DHDom is the departure time window for the original deadhead

CandDepDom is the departure time window for the choosen candidate

The departure time window for the candidate is then checked using

fd_contained/3 against the deadhead’s time window. fd_contained checks

if the given conversion will result in a transport which can start inside dead-
head’s time window and will be finished before next trip will start.

5.7 Computational results

The results presented here comes from our implementation of deadhead to
passive transport conversion algorithm using SICStus prolog described in
5.6. Test was run on Digital HiNote with 266 MHz processor.

Specification for trips, tracks and solution was filtered out of original
output from TUFF system and stored in appropriate files. Referring com-
putational result we are going to concentrate on the last part of algorithm
where we search for solution because it is the part which has greatest execu-
tion time complexity.

We start with the file specifying 68 trips and solution distributed on 4
locomotive circuits using totally 15 locomotives. The first part of algorithm
finds 28 different deadheads which are possible to convert to passive trans-
ports. The number of candidates trips which can be used for conversion vary
from 1 to 30. First we try to minimize conversion running algorithm using
minimize/2 with labeling/2 search function using first fail strategy. We
use greedy approach to bound branched domain space.

A time to perform those 28 deadheads is 19726 minutes, i.e.328 hours
and 46 minutes which multiplied with 4 which is a cost for a deadhead per
time entity gives a cost of 78904.

The first solution is found very quickly, it takes less then 1 second. Its
costs is 37280 which divided by constant cost for a deadhead gives 9320
minutes ,i.e. 155 hours and 20 minutes. This is a cost improvement equal
173 hours and 46 minutes. In this solution 19 deadheads were replaced by
passive transports and 9 kept their original deadheads.
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Algorithm find next solutions but the time of finding better then previous
solution is growing. After 52 minutes solution with the cost 34064 which is
8516 minutes, i.e. 141 hours and 56 minutes, which is 13 hours and 24
minutes better then first solution found. In this solution there is, like in
first one, 19 deadheads replaced by passive transports and 9 which kept
original deadheads. Because program has not terminated during long time
we decided to finish it.

The main conclusion of running algorithm with minimizing function on
this specification is that even if there are considerable gains which comes out
running branch—and-bound algorithm on this specification it is not compa-
rable with computational cost. The computational cost which follows is a
result of general complexity of the problem.

Its worthwhile to notice that all 28 deadheads depend strongly on each
other so dividing search space according method described in 5.4.2 results in
all deadheads clustered together.

The next test specification we used is one with 211 trips and initial
solution distributed on 4 locomotive circuits serviced by 114 locomotives.
Algorithm finds 29 deadheads which can be converted to passive transports.
The total cost of those deadheads is 9376, which gives 2344 minutes in the
time cost. In this case the first conversion found is optimal. Time used to
find solution is less then 1 second. The cost after conversion is 8290, which
gives 2072 minutes. Conversion results in total cost improvement equal 272
minutes, i.e. 4 hours and 32 minutes. In this solution there is only 14
deadheads which were converted. 15 of original deadheads were preserved.

Finding the optimal conversion in this example is due to the configuration
of the problem. First, the cost of the deadheads in this example seems to
be much smaller then the deadhead cost in the previous one. Also the span
between the cheapest and the most expensive conversion. The total number
of the candidates in candidate list for every deadhead is 397 in previous
example and only 213 in this one, which is quite big difference if we recall
exponential time complexity for minimizing function (see 5.3). Note that
when we run the last example we need only 4 backtracks to find an optimal
solution in the last example and 45 just find a first feasible solution in the
first one.

The greedy heuristics described in section 5.3 also contributes to speeding
up the execution of the program. The same optimization of the second
example run without this heuristic demands longer time to find an optimal
solution. Although a solution is found within reasonable time.

Without ordering candidates the algorithm performs 37 backtracks and
makes 98213 resumptions comparatively to 4 backtracks and 19006 resump-
tion when greedy heuristics is used.
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Chapter 6

Conclusions and future work

The railway scheduling and routing is a very complex problem. The math-
ematical model, especially the new representation of the locomotive assign-
ment where the cost for the deadhead is the part of the cost for a turn, is a
one of the contributions presented in this work.

Although it is of little practical interest to find globally optimal deadhead
to passive transport conversion solution to given conversion experiments and
test show that there is a lot to gain running conversion algorithm longer
then to first feasible solution. Right now the gain of such optimization is not
comparable with regarded computation time. To improve it its necessary
to find better conversion heuristics which limits conversion search space and
speed up computation. One of such heuristics can be defined in strategy of
choosing most profitable domain variable for labeling.

Another interesting problem for future works is to find a new represen-
tation of the problem which would allow to search for possible deadhead
conversions while optimizing tours by exchanging links representing tours in
circuits. It is possible that such approach would open new possibility for
relinking circuits which would diminish overall cost of solution.

The four step optimization algorithm presented in chapter 4 is only an
outline of a method which demands a lot of improvement to function prop-
erly. E.g. it is necessary to define strategies and approaches which could be
used in optimization steps. It is open question if there is for example the
method which would guarantee that all deadheads inserted during merging
circuits will be removed during further step of optimization or which guaran-
tee that overall cost for given set of circuits after performing algorithm will
be equal or lower then original cost then such method should be defined.

Notice also that four step algorithm is heavily bounded to k-interchange
method. It is proved that this method has exponential execution time com-
plexity and is very expensive when it comes to computational costs. K-
interchange is not scalable method either. Execution time grows with num-
ber of specified trips. It would be interesting to look at some other algorithms
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known from traveling salesman problem domain and see if they can be ex-
tended on locomotive assignment problem with time windows. From this
domain Zhang algorithm referred in [Cir|, even if its not a local optimization
method, seems specially interesting. Even other methods like e.g. genetic
algorithm and SAT should be investigated.

Despite this, we consider the contributions made in this work in the
field of applying k-interchange to reduce the cost for the locomotive assign-
ment as quite valuable. Especially the method of disjointing graphs using
k—interchange seems to be important for the problem and even in the other
assignments domains.
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Appendix A

Interchange on set of circuits

Given a track graph in figure A.1 and trip specification of table A.1 there
was generated a locomotive assignement for 4 locomotives.

F

Figure A.1: A railway network

trip | start, end location | departure time window
[ A-F 8-10
D2 A-F 8-10
p3 E-F 12-15
D4 F-B 8-10
D5 F—-A 12-18
D6 B-D 12-15
D7 B—-FE 8-24

Table A.1: Trip specification
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Figure A.2: Initial solution. Cost of the turn is mesured in time of necessary
deadhead.
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Figure A.3: The first intechange between L1 and L2,coiq = 6 > Cpew = 4
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Figure A.4: All locomotive circuits after inserting trips p7 between p5 and
pl in ciruit for L1. Although cost for new links alone is higher then cost
for old links, this interchange diminishes number of necessary locomotives,
which diminishes overall cost for whole set of circuits
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Figure A.5: Possible interchange between L3 and L1. Dotted lines indicates
old links.
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Figure A.6: Final solution
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