
Internal Design of the Distribution Subsystem (DSS)
Erik Klintskog

April 28, 2005

Swedish Institute of Computer Science, Kista, Sweden

SICS Technical Report T2004:15
ISSN 1100-3154

ISRN:SICS-T–2004/15-SE

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3
1.1 How To Read This Document . 3
1.2 Outline . 4

2 The Distribtion Subsystem 4
2.1 The Library . 4
2.2 The DSS Object . 5

3 The Messaging Layer Library 5
3.1 The Messaging Layer Interface . 6
3.2 Messaging . 7
3.3 Sharing Buffers With DMSL . 9
3.4 Marshaling Data as Late as Possible 9
3.5 Failure Model . 10
3.6 Automatic Resource Management 11

4 The Abstract Entity Layer 11
4.1 The Program System Term Container 13
4.2 An Abstract Representation of Threads 13
4.3 The Abstract Operations . 14
4.4 Resolving Programming System Level Operations 14
4.5 Transferring State . 16
4.6 Constructing, Exporting, Importing and Deleting Abstract Entities . . 17

4.6.1 Creating an Abstract Entity 17
4.6.2 Exporting an Abstract Entity 17
4.6.3 Importing an Abstract Entity 18
4.6.4 Removing an Abstract Entity 18

5 Components of the Coordination Network 19
5.1 The Coordination Network . 20

5.1.1 The Coordinator . 20
5.1.2 The Proxy Object . 20
5.1.3 Inter Coordination Network Communication 21

5.2 Sub-protocol Interaction . 21
5.2.1 Reference Sub-protocol . 22
5.2.2 Consistency Sub-protocol 23
5.2.3 Coordination Sub-protocol 24
5.2.4 Calculating Root Status of a Proxy 24
5.2.5 Marshaling and Unmarshaling a Proxy 25

5.3 Handling Node Failures . 26
5.3.1 Reporting Failures . 26
5.3.2 Classifying Failures . 26

5.4 Interaction Between the Proxy and the Abstract Entity 27

6 Concluding Remarks 28

2

1 Introduction

This document describes the implementation of the Distribution Subsysten(DSS). The
DSS provides distribution support for programming systems and is intended to be
used as a middleware when creating distributed programming languge implementa-
tion. and providing distribution support on data structure level. The implementation of
the generic interface is descried, together with a description of the customizable distri-
bution strategy framework of DSS. The descriptions are on the level of C++ classes.

The DSS provides a generic service for programming systems, the middleware is
designed to provide distribution support to programming systems of many differentr
programming paradigms. The middleware has been succefully coupled to program-
ming systems of the object oriented, the functional and the declarative-concurent pro-
gramming paradigms. The design goal of DSS is reflected in the generic and expressive
interface provided towards a programming system. The interface is expressive in that
it allows for close integration with programming system constructs and it captures the
behavior of the programming system. The interface is generic since it does not assume
on a particular implementation of the programming system. The implementation of the
interface towards a programming system is presented in the report.

The distribution service provided by DSS for programming systems is efficient
and allows for a high degree of customization. Distribution support is on the level
of programming system data structures, called language entities. A language entity
is provided distribution support by a distribution strategy. The implementation of the
distribution strategies is presented in the report.

1.1 How To Read This Document

The description of the DSS found in this report is on a detailed level and knowledge
about the concepts behind the DSS are assumed. This document describes how the
concepts of the DSS are implemented. It is assumed that the reader has some under-
standing of the DSS. This document is a complement to previously published material
where conceptual descriptions of the DSS can be found. The published papers are:

� The DSS, a Middleware Library for Efficient and Transparent Distribution of
Language Entities
The paper describes the API and the associated semantic model provided by the
DSS. The internal structure of the DSS is also briefly described on a conceptual
level.

� The Design and Evaluation of a Middleware Library for Distribution of Lan-
guage Entities
The paper presents the DSS from another perspective than paper 1. The focus is
on the performance evaluation, it is shown that the modular design did not intro-
duce any notable performance penalties and that the correct choice of distribution
support os the key to efficient distributed applications.

� A Peer-to-Peer Approach to Enhance Middleware Connectivity
The paper describes the structure of the messaging layer of the DSS. The com-
ponent based design enables simple customization of connection establishment
strategies. This is illustrated by the use of a simple P2P algorithm (Gnutella-
like) to find suitable route between processes even when direct connections are
hindered by firewalls, NATs, etc.

3

The DSS is implemented in C++, thus knowledge of C++ and object oriented tech-
niques are assumed. The internals of the DSS are described on the level of the classes
implementing the different concepts. For the sake of simplicity, focus is on the meth-
ods which implement the interfaces between different classes. Auxiliary and private
methods are not described. Furthermore, some of the classes implement different ser-
vices. In such case, parts of the class definition are introduced where the functionality
is described. Below is an example of how the methods of the Example Class class
are introduced.
c l a s s Example Clas s
p u b l i c :

vo id example method 1 () ;�

Above is the introduction of example method 1 and the method is further de-
scribed here: “The example method 1 is called ...”.
c l a s s Example Clas s
p u b l i c :

vo id example method 2 () ;

�

In another context of the text is a second method of the Example Class class
is introduced together with a description: “The example method 2 is”. Note that
both methods belong to the same class, but for the sake of convenience they have been
introduced at different location in the report.

1.2 Outline

The next section, Section 2 describes the layout of the DSS. Section 3 describes the
messaging layer of the DSS. Section 4 describes the abstract entity interface and the
interfaces required by a programming system. Section 5 describes the coordination
layer that implements the coordination protocols that realizes the shared data structure
service of the DSS.

2 The Distribtion Subsystem

Internally the DSS is hierarchically divided into three layers. The topmost layer, the
abstract entity layer, provides a generic shared data service. The middle layer, the
coordination layer, implements the protocols necessary for the shared data service.
The bottommost layer, the messaging layer, implements the communication primitives
for the coordination layer. The messaging layer is provided as a standalone component
that can be used outside the scope of the DSS.

Figure 1 depicts a programming system connected to a DSS instance. The figure
shows a schematic picture of the internal layers of the DSS as well as the glue layer of
the programming system. Furthermore, the key components for realizing transparent
distribution of data structures are depicted.

2.1 The Library

The DSS is implemented in C++ and for downloaded from http://dss.sics.se,
and compiled using gcc 3.2 under Linux. The DSS is a passive component that reacts
to external events, i.e. I/O activity and operations on shared data structures. Moreover,

4

DSite

DSite

DSite

Thread Mediator

Thread Data Structure

Entity Mediator PST Container

Operation

Dispatcher

KBR Table

Coordinator Table

Proxy Table

Coordinator

Kbr Instance

Message container

Abstract Entity

Proxy

Abstract Thread

DSS

Programming System

Glue Layer

Messaging Layer

Coordination Layer

Abstract Entity Layer

Figure 1: The figure depicts a programming system connected to the DSS. The internal
structuring of the DSS and the programming system are shown, as well as the key
components of both systems.

the DSS is non-blocking, a thread that invokes a DSS routine will not be directly sus-
pended. Instead, suspension of threads is delegated to the programming system. To
simplify the design of DSS, the DSS is not thread safe.

2.2 The DSS Object

In order to simplify integration of a programming system and the DSS, the DSS is
represented as a class. The callback interface required by the programming system
(implemented by the glue) is also represented by a class. Thus, the box denoted DSS
in Figure 1 is one object, that acts as a factory for the global threads and abstract
entities. Representing the DSS as an object serves as an effective encapsulation of
DSS internals. Furthermore, this allows instantiating of the DSS on demand. The DSS
is instantiated first when a distributed programming system actively participating in a
distributed computation.

3 The Messaging Layer Library

The purpose of DSS Messaging Layer(DMSL) is to provide an efficient point to point
communication service that hides the details of the underlying network. Central in
DMSL is the representation of a process in the form of a first class object, called a
DSite. References to DSite objects can be passed between processes. Reception of
a DSite reference results in the construction of a local DSite object at the receiving
process. The existence of a DSite allows for seamless communication with the process
the DSite represents1.

1given that a connection can be established.

5

Connection
Component

Communication
Component

Application

MsgnLayer class

AppMslClbkInterface

Messaging Layer

Figure 2: The structural layout of the DSS Messaging Layer (DMSL) library. The
library provides communication service to an application. The interface between the
messaging layer and the application is in the form of classes, depicted by the dashed
boxes. Internally, the DMSL makes use of two replaceable components for the tasks of
connection maintenance, and interprocess communication (IO).

Obviously, the underlying network can not be completely abstracted away since
process termination and network perturbations can prohibit communication between
two processes. Failures detected by the DMSL is categorized according to an abstract
model and reported to a higher level, that is the application that make use of DMSL.
In the case of the DSS middleware, the application is the coordination layer of DSS.
However, as long as possible DMSL will try to deliver messages to remote processes.

The DMSL is designed to be extendable with respect to connection management
and low-level I/O-handling. From the highest level of abstraction, the messaging layer
makes use of two replaceable components (see Figure 2). The I/O service provides a
low-level channel service, similar to a socket interface. This efficiently abstracts away
operating system dependant properties of the communication. The communication ser-
vice realizes connection establishment to other nodes and connection monitoring. Thus,
it is the communication service that detects and classifies failures2.

Similarly to the DSS the DMSL is represented as an object (see section 2.2) in-
tended to be coupled to an application. The DMSL connected to an application is de-
picted in Figure 2. The application is supposed to implement a callback class, in order
for the DMSL to communicate with the application. Examples of DMSL to applica-
tion communication are received messages and detected remote process failures. The
DMSL, apart from being the messaging layer of the DSS, is available as a standalone
component that can be used as a messaging middleware.

This section describes the interface to the DMSL and the exposed classes. The
DMSL is described as a black-box, the internals of the layer is not revealed.

3.1 The Messaging Layer Interface

The key component in the DSS Messaging Layer (DMSL) is the DSite, a first class
process representation. The DSite is exposed outside of the DMSL and provides an
abstraction of the process it represents. A DSite is primary used as a channel to the
process it represents. Moreover, DSite objects can be passed by reference between
different DMSL instances. All processes running DMSL instances which are known to
the messaging layer are represented by a DSite object. In adition, the DMSL holds one
DSite object that represents its own process.

2Lifting out functionality from the core of the system into customizable modules increases the applica-
bility of the DMSL. Since failure detection is strongly correlated to application specifics, failure detection
strategies that works for one application can make another application not work at all.

6

c l a s s DSi te �
p u b l i c :

v i r t u a l vo id m marsha lDSi t e (D s s W r i t e B u f f e r �) = 0 ;
v i r t u a l boo l m sendMsg (MsgConta ine r �) = 0 ;
v i r t u a l D S i t e S t a t e m g e t F a u l t S t a t e () cons t = 0 ;
v i r t u a l vo id m mark () = 0 ;�

;

Above is the class definition of the DSite object. The messaging service provided
by the m sendMsg is asynchronous, FIFO and reliable. Details regarding connection
establishment, temporal loss of connectivity, and resend of lost messages are not ex-
posed. Instead, problems that are impossible to hide, longer loss of connectivity and
loss of the destination process are reported as a failure. However, a DSite tries to deliver
messages until the target node is lost.

A process can only construct a DSite object from a proper DSite object description.
Such a description for a given DSite can only be created by a DMSL process that holds
an instance of the particular DSite. Process communication requires a DSite object that
represents the process, thus, a DSite reference has a capability-like property. DSite
objects are instantiated from serialized descriptions. Below is the definition of the
messaging layer class:
c l a s s MsgnLayer �
p r i v a t e :

m s l i n t e r n a l : : MsgnLayerEnv � a mslEnv ;
p u b l i c : // ������������������������������������� D S i t e s , m a r s h a l i n g and i d e n t i t i e s

DSi t e � a myDSite ;
DSi t e � m unmarsha lDSi t e (DssReadBuf fe r � buf) ;
MsgConta ine r � c rea t eAppSendMsgConta ine r () ;
vo id m gcResources () ;�

There exists one DSite object instance for every known/referred DMSL process.
Consequently, comparing two DSite references for equality is done by checking for
pointer equivalence. The DMSL is responsible for removing DSite objects that are not
used, implemented by a mark and sweep mechanism. The m gcResources method
schedules any non marked DSite for removal (see Section 3.6).

Figure 3 depicts the interaction between the DMSL and an application. DSML
provides an interface for unserializing DSite objects that takes a serialized description
of a DSite object return a pointer to a proper DSite object. A DSite object exposes an
interface over which messages can be sent, the status of the process is returned, and a
serialized representation can be retrieved. Communication with the application from
the messaging layer is realized by the application callback interface that the application
implements. Reception of messages and state (failure) of DSites is reported over this
interface:
c l a s s AppMslClbkIn te r f ace�
p u b l i c :

v i r t u a l vo id m messageRece ived (MsgConta ine r � cons t msgC ,
DSi t e � cons t s e n d e r) = 0 ;

v i r t u a l vo id m sta t eChange (DSi t e � , cons t D S i t e S t a t e &) = 0 ;
v i r t u a l vo id m unsen tMessages (DSi t e � s , MsgConta ine r � msgs) = 0 ;
v i r t u a l E x t D a t a C o n t a i n e r I n t e r f a c e � m c r e a t e E x t D a t a C o n t a i n e r (BYTE) = 0 ;�

;

3.2 Messaging

A DSite delivers messages in the form of message containers. A message container is
first created at the sender process and filled with information. The DMSL transports
the container to the target process in a serialized format. At the target process, the
serialized message is turned into a message container again. The received message
conatainer is passed to the application. Marshaling and unmarshaling of a message
containers contents is local to the DMSL instances at the orgin and target processes
and not exposed to the application level.

7

Application

Messaging Layer

message received
status changed

unmarshal dsite
send message

get status

marshal

DSite DSite

Application Callback

Figure 3: The interface between an application and the DMSL. DSite objects are used
for communicating with and reasoning about processes. Messages received are passed
to the application over the application callback interface, the DSite representing the
sending process are passed as an argument.

The message container implements a queue of abstract items. Data is written to a
message container item by item, and read from the container in the same order. The
message container can transport sets of items of different types. This allows a message
container to be passed between different layers of an application, where each layer can
add items to the message container, without any global knowledge of message layout.
Naturally, at the receiving process the message must be passed to the same layers as at
the sending process, but in the reverse order. In addition, each layer at the receiving
process must read every item inserted by the same type of layer at the sending process.
c l a s s MsgConta ine r �
p u b l i c :

v i r t u a l vo id pushDSi t eVa l (DSi t e �) = 0 ;
v i r t u a l vo id p u s h I n t V a l (cons t i n t &) = 0 ;
v i r t u a l vo id pushADC (E x t D a t a C o n t a i n e r I n t e r f a c e �) = 0 ;
v i r t u a l vo id pushMsgC (MsgConta ine r �) = 0 ;

v i r t u a l DSi te � popDSi t eVa l () = 0 ;
v i r t u a l i n t p o p I n t V a l () = 0 ;
v i r t u a l E x t D a t a C o n t a i n e r I n t e r f a c e � popADC () = 0 ;
v i r t u a l MsgConta ine r � popMsgC () = 0 ;

v i r t u a l boo l m isEmpty () cons t = 0 ;�
;

The message container, the interface is depicted above, can transfer four types of
data items. (1) DSite references, (2) integer values, (3) other message containers, (4)
opaque data. For example, in the case of the DSS, the internal consistency protocols
are completely realized using 1 and 2. The opaque data type, represented by an in-
stance of the DataContainerInterface class, is used to transfer programming
system specific data that cannot be expressed in the predefined types (this is explained
in Section 3.4).

Figure 4 depicts messaging using the DMSL. The message is created at application
level and passed to the DSite that represents the target process (1). The message is
transferred over the network (2). At the receiving process, process B, the message is
delivered to the callback interface. Furthermore, the loop-back property of the DSite
is also depicted. A message sent at process A to the DSite that represents process A
(4) results in a callback (5) similar to if a message had been received from a remote
process. In both cases the messages are passed to the DSites and received over the
application callback interface in the format of message containers.

8

ApplicationApplication

Messaging Layer

Application Callback

Messaging Layer

Application Callback

Process A Process B

transfer message(2)

message received (3)

send(1)send(4)receive(5)

DSite − A DSite − B DSite − A

Figure 4: The figure depicts communication within one process and between two pro-
cesses. The DSite representing the local processes is from application level no different
from a DSite representing a remote process.

3.3 Sharing Buffers With DMSL

Access to memory buffers allocated by DMSL is provided in the form of buffer inter-
faces. The buffer size is fixed and buffers are either of read type, or of write type. The
interface is shown here:
c l a s s W r i t e B u f f e r �

v i r t u a l vo id w r i t e T o B u f f e r (cons t BYTE � p t r , s i z e t w r i t e) = 0 ;
v i r t u a l i n t a v a i l a b l e S p a c e () cons t = 0 ;
v i r t u a l vo id pu tByte (cons t BYTE &) = 0 ;�

c l a s s ReadBuf fe r �
v i r t u a l i n t a v a i l a b l e D a t a () cons t = 0 ;
v i r t u a l vo id r eadFromBuf fe r (BYTE � p t r , s i z e t wanted) = 0 ;
v i r t u a l cons t BYTE g e t B y t e () = 0 ;�

3.4 Marshaling Data as Late as Possible

DMSL only provides asynchronous messaging. Limitations in the capacity in the un-
derlying I/O facility can make it impossible to transfer the DMSL level messages to
remote processes in the same pace as messages are created at Application level. Mes-
sages are sent only when the DMSL is get access to the I/O. According to the design
of the DMSL, access to I/O is defined by the communication component, see Figure 2.

The DMLS uses a marshaling technique called late marshaling. That is, messages
are serialized first when the communication medium can transfer the message. Thus,
queued messages in the DMSL are stored as message containers. This is in difference
to the commonly used technique, called early marshaling, where a message is passed
from application to messaging in a serialized format.

Late marshaling generally uses less buffer space than early marshaling. For exam-
ple, the memory footprint of a serialized representation of a data structure is commonly
larger than the structured format. Furthermore, if the same data is sent multiple times,
an early marshaling schema will allocate unnecessary buffer space for each instance of
the same data item.

However, late marshaling requires knowledge of how to serialize sent messages in-
side the messaging layer. This breaks the interface boundary between the DMSL and

9

an application. The DMSL uses an object oriented approach, the message is supposed
to know how to serialize its contents. This is true for the DSites, the integer values
and the message containers stored as items in a message container. However, noth-
ing is known, at the level of the messaging layer, about the opaque data structures.
Opaque data structures are actually instances of the DataContainerinterface
class. Thus, a container does not only store the data to be sent, but also a description
of how to serialize the data. The interface, depicted below, requires implementation of
methods for marshaling and unmarshaling.

c l a s s D a t a C o n t a i n e r I n t e r f a c e �
p u b l i c :

v i r t u a l BYTE ge tType () = 0 ;
v i r t u a l boo l marsha l (W r i t e B u f f e r � bb , DSi t e � d e s t i n a t i o n) = 0 ;
v i r t u a l boo l unmarsha l (ReadBuf fe r � bb , DSi t e � s o u r c e) = 0 ;
v i r t u a l vo id d i s p o s e () = 0 ;
v i r t u a l vo id r e s e t M a r s h a l i n g () = 0 ;�

;

When marshaling a data container,the marshal interface is called with a write buffer
and the destination DSite as argument. The latter can be used for marshaling format op-
timizations. The constant size of the WriteBuffer sometimes requires the contents
of a container to be split into sub-parts. Thus, the container is required to be able to
interrupt its marshaling (and return false). It will later be called to continue marshaling
when more space is available in the buffer. Consequently, the unmarshaling interface
of a container must be able to express that it has received a fragment of the complete
description (and then return false).

The DMSL supports multiple types of application level DataContainerIn-
terface instances. Each type is identified by a unique byte, returned by the get-
Type method. At the receiving process, the type of the container is used to instantiate
a container of the right type. The DMSL transports the type and asks the application to
instantiate a container.

A message container and its contents are first reclaimed when the message has been
successfully delivered. This is automatically taken care of for the internal data struc-
tures (DSite, integer, and other message containers), but must be handled explicitly for
the opaque DataContainer. The DataContainer exposes a dispose interface,
called when the contents have been successfully transferred. Thus, it is the DMSL that
controls the destruction of sent data containers.

3.5 Failure Model

The DMSL classifies the status of a known remote process in one of three states:

No problem. The process is reachable; messages can be sent to and received from the
process.

Permanently lost. The process will never be reachable. No messages can be sent to
and no messages will be received from the process.

Temporary Lost. The process is unreachable, but it is not possible to correctly clas-
sify this as a permanent property. However, the lost status can go away and the
DSite changes into the no problem state, or, the process can be detected as lost,
and the DSite changes into the permanently lost state.

The state of a DSite object can alter over time to reflect the status of the process it
represent. The possible transitions are depicted in Figure 5.

10

No Problem

Permanently Lost

Temporary Lost
Unmarshal

Unmarshal

Detecting connectivity

Connection lost

process halted process halted

Figure 5: The figure depicts the possible transition between the different states a DSite
can be in. Note that an unmarshaled DSite has either no problem or permanent problem
status.

It is the connection module that detects and defines when a DSite should do a state
transition. Correctly defining permanently lost is known to be hard and for some types
of distributed systems impossible. However, it is sometimes possible for a process
to learn that a process on the same LAN has terminated. Because of the problem to
correctly detect that a process has terminated, halted processes are commonly defined
as being temporary lost. In difference to temporary lost that is local to a DSite at
one process, permanent lost is a global property. No process can communicate with
a process that has halted. Thus, permanently lost information about a DSite is slowly
spread among DMSL using a diffusion scheme.

Messages queued for delivery over a DSite that is defined as being permanently
lost will never be delivered. The messages are handed back to the application for
destruction over the m unsentMessages method of the
AppMslClbkInterface class.

How to detect and classify the different fault states for a given process is different
from application to application. To enable simple customization of failure classification
the task is lifted out into the connection component (see Figure 2).

3.6 Automatic Resource Management

The DSite realizes a seamless communication channel to the process it represents
(modulo failure). This requires connection establishment, detection of lost connec-
tion, reconnection at connection loss, and resending of lost messages. The DMSL
closes unused connections in order to minimize the inherent cost (in memory buffers,
potential file-descriptors, and control messages) of keeping a connection open.

Opening of connections and maintaining connectivity is driven by the existence
of messages to deliver. Closing of connections and reclamation of DSite objects is
governed by a mark and sweep garbage collection scheme. The set of locally existing
DSite objects are swept by invocing the m gcResource method of the DMSL that
schedules wvery unmarked DSite for removal. The DSite object provides an interface
for marking application usage of the object. A mark of a DSite object lasts until the
next sweep, when the mark is removed. Marking a DSite object multiple times will
result in just one mark.

4 The Abstract Entity Layer

The abstract entity layer provides a programming system independent interface that
models the entities required for providing transparent distribution on programming sys-

11

���������������������
���������������������
���������������������
���������������������

abstract entity

Mediator

Programming System

Abstract Entity Layer

GLUE

Instance

mutable

Messaging Layer

ProxyCoordination Layer

Figure 6: The three item stack of a shared data structure instance. The Instance im-
plements the programming system interface while the proxy implements distributed
coordination between all instances that represents a distributed data structure. The ab-
stract entity is the interface between the DSS and programming system items (proxy
and instance).

tem level. The prime component of the abstract entity layer is the abstract entity.
An abstract entity provides a uniform interface to a large number of eligible proto-

cols. It exposes an interface that allows for access of distributed data structure through
a notion of abstract operations. Internally, the abstract entity translates the abstract
operation into a protocol operation on the consistency sub-protocol of the proxy the
abstract entity is connected to. Furthermore, the abstract entity acts as an interface of
the consistency sub-protocol for interacting with the entity instance.

The protocol that ensures a given consistency model for the shared entity is exe-
cuted over a coordination network. Membership in such a network is represented by
the proxy. The proxy use the messaging layer for its communication, and it uses the
abstract entity to interact with the programming system data structure. The true nature
of the programming system is hidden from the proxy behind abstract representations.
This includes abstract representations of data structures (abstract entity), threads, oper-
ations and operation results.

An instance of a distributed data structure is represented by three entities, the pro-
gramming system level data structure, the abstract entity and the proxy (see Figure 6).
The figure also depicts the layout of the data structure instance. A mediator interface
allows the abstract entity to communicate with the instance. How the Mediator inter-
face is connected to the Instance is not specified and is part of the glue that connects
the DSS to a programming system. The glue is explicitly depicted by the grey box in
the figure.

Three different types of abstract entities are supported by the DSS: mutable, im-
mutable and transient abstract entities. Each abstract entity type is represented by a
class. This section describes the classes and interfaces of the abstract entity layer.

12

resumeRemoteAns

resumeDoLocal

dispose

Global Thread

AbstractThread

Programming System

Distribution Subsystem

Thread

Thread Mediator

Figure 7: A programming system level thread made global. The thread is associated
with a global thread id that is used to identify the thread when passed between different
processes. Thus, one logical thread is potentially represented by multiple programming
system threads located at different machines. The figure depicts the interfaces exposed
by the DSS and required by the programming system (over the callback class).

4.1 The Program System Term Container

The abstract entity interaface requires transfeing of programming system data. Three
types of information are transferred: (i) description of an operation on a programming
system data structure, (ii) description of the current state of a data structure, (iii)the re-
sults of performing a remote operation. Programming system level information trans-
ferred by the DSS is transported in the form of Programming System Term Containers
(PSTC). The PSTC is a direct mapping of the DataContainerInterface from
the DMSL (see section 3.4) and is an interface for the programming system to imple-
ment.

c l a s s PSTC �
p u b l i c :

v i r t u a l boo l unmarsha l (ReadBuf fe r �) = 0 ;
v i r t u a l boo l marsha l (W r i t e B u f f e r �) = 0 ;
v i r t u a l vo id r e s e t M a r s h a l i n g () = 0 ;
v i r t u a l vo id d i s p o s e () = 0 ;�

;

Similarly to the DataContainerInterface the marshaling method must be
able to suspend itself in the case of insuficint buffer space. For various reasons a partly
marshaled message cab be resent. For that reason the PSTC is required to implement
the resetMarshaling interface. The programming system is required to imple-
ment a method to create a new PSTC, used when unmarshaling a received message.

Internally, the DSS makes use of multiple instance of the DataContainerIn-
terface. The PSTC is one of the instances, dedicated to transport programming
system level data.

4.2 An Abstract Representation of Threads

Interaction with an abstract entity is based on the notion of logical threads (just thread
for short). It is a thread that performs an abstract operation. It is a thread that the
abstract entity suspends and later resumes. However, the DSS has no knowledge of a
programming system level thread, in some cases it does not even exists a programming
system notion of a thread. For the reason of portability the DSS works on an abstract
representation of a thread. Every programming system level thread that interacts with
shared data structures must have a DSS representation in the form of a global thread
instance. The association is bi-directional, thus a global thread is associated with the
programming system thread, see Figure 7.

The global thread is used to preserve the logical identification of a thread which
performs a remote operation. When doing a remote call, a new thread instance will be

13

created at the programming system level. The new instance is represented by a global
thread with the same identity as the global thread of the initiating programming system
level thread, depicted in Figure 8.

4.3 The Abstract Operations

The semantics of an operation on a shared data structure is not known at the level of
the DSS. Nor is the layout or structure of an operation understood. In order to bridge
the gap between the DSS and a programming system operations are translated into ab-
stract operations. An abstract operation should express the same (on an abstract level)
semantics as the original programming system level operation. It is the responsibility
of the programming system (the glue) to translate operations to appropriate abstract
operations.

An abstract operation takes as argument the identity of the thread that executes
the language operation and a description of the operation on the data structure. The
thread identity is in the form of a global thread. The return value from the abstract
operation tells the calling thread how to continue, either perform the operation on the
entity instance, or suspend. If the calling thread is asked to suspend, it will later be
resumed and either passed the result of the language operation or asked to perform the
operation locally. An example of the abstract operation write of the mutable abstract
entity is shown below. The method returns true if the calling thread can perform the
operation on the data structure instance, else the thread is suspended:

bool a b s t r a c t O p e r a t i o n W r i t e (DssThreadId � i d ,
P s t O u t C o n t a i n e r I n t e r f a c e �	� & p s t o u t) ;

An abstract operation can be executed locally, without interaction with other pro-
cesses. Thus, no operation description is passed over the network. The DSS intention-
ally optimizes this case, and defers creation of the PSTC until an abstract operation
call returns. Thus, a PSTS is only created if explicitly needed. The PSTC argument is
passed as a reference to a pointer, initialized to NULL. When the call returns, the value
of the pstout indicates whether a PSTC is required or not. Only if the pstout points
to an address, a PSTC should be constructed and assigned the pstout.

4.4 Resolving Programming System Level Operations

For an abstract operation which results in remote execution the original operation must
be transported to the remote process. Thus, the operation must be packed into a PSTC
that is passed over the network. At the process where the operation is to be resolved, the
callback interface for the shared data structure is called by the abstract entity. A call-
back is passed the global id of the calling thread, a unique operation id, the operation
in the form of a PSTC, and a pointer to a possible answer. The DSS has automati-
cally created the global thread identity, but no programming system level thread is yet
associated with it. The write callback for the mutable abstract entity is shown here:
c l a s s Mutab leCa l lback �

bool c a l l b a c k W r i t e (DssThreadId � i d o f c a l l i n g t h r e a d ,
D s s O p e r a t i o n I d � o p e r a t i o n i d ,
P s t I n C o n t a i n e r I n t e r f a c e � o p e r a t i o n ,
P s t O u t C o n t a i n e r I n t e r f a c e � & p o s s i b l e a n s w e r) ;

�
;

The DSS is single threaded, thus in order to not block further execution, a callback
must return as fast as possible. The interface allows for either spawning a thread to
resolve the operation (the usual case when doing an RMI) or perform the operation

14

Data structure

Abstract Entity

Data structure

Abstract EntityAbstract Thread

global thread − A

Abstract Thread

global thread − A

Process − 1
Process − 2

DSS

PS

op(1)

suspend(3) abstract operation(2)

send(4)

resume(10) opDone(8)

7

create(6)

callback(5)

Thread 1 Thread 2

result(9)

Figure 8: Resolution of a remote operation initiated at
������������� and executed on

������������� . The remote operation is described on the level of data structures, threads
and abstract entities. ������������� initiates the remote operation by performing an op-
eration on the data structure instance. The remote call results in creating a thread at

������������� that executes the operation. Note that !���������"� has the same global thread
as !�������#� � . Thus, conceptually the two thread instances represent the same logical
thread.

immediately (an optimization used when the operation is native in respect of the pro-
gramming system, a typical example would be access of an array). Whether the opera-
tion is resolved immediately or not is reflected by the return value (true indicates that
the operation is completed). If the operation is completed, the possible answer
pointer refers a PSTC containing the result of the operation.

The DssOperation object is used to identify a non immediate operation and is
unique for each callback. Upon completion, the result is passed back to the abstract
entity over the remoteInitatedOperationCompleted interface (se below).
The method takes as argument a PSTC containing the result of the operation and the
DssOperation that identifies the operation.
c l a s s A b s t r a c t E n t i t y �

vo id r e m o t e I n i t a t e d O p e r a t i o n C o m p l e t e d (D s s O p e r a t i o n I d � i d ,
P s t O u t C o n t a i n e r I n t e r f a c e � r e s u l t) ;�

Figure 8 depicts, on a conceptual level, how a remote operation is resolved. First,
 !��������� � , located at
����������� � performs an operation on a shared data structure (1).
Since the data structure is attached to an abstract entity, the operation cannot be re-
solved by the data structure. Instead the operation is translated into the appropriate
abstract operation, that is performed on the abstract entity (2). The original operation
on the data structre is passed as as argument to the abstract operation. The consistency
protocol of the abstract entity suspends the calling thread (3) and sends the operation to
the remote
�����$������� (4). The message contains the global thread identity of the calling
thread, and a description of the programming system level operation (as a PSTC).

Upon receiving the message, the abstract entity of
�����������%� is asked to resolve
the operation (5). The operation is non immediate, in order to not monopolize the
DSS, a dedicated program system thread is created (6) to execute the operation. The
thread is initiated with the operation to execute, a reference to the programming system
level data structure and the operation id. When the operation on the data structure is
finished (7), the operation-id is used to pass the result back to the abstract entity (8).

15

Data structure

Abstract Entity

Data structure

Abstract Entity

global thread − A

Process − 1
Process − 2

DSS

PS

abstract operation(2)

op(1)

suspend(3)

send(4)

retreiveState(5)PSTC(6)

install(8)resume(9)

pass(7)

Abstract Thread

Thread 1

Figure 9: The figure depicts transfer of the state description from
����������� � to
����������� �
in order to let a thread perform a local operation. When the thread at
�����$����� � executes
the operation on the data structure instance, the instance is in an incomplete state, i.e.
skeleton. By transferring a state description from
�����$������� , the data structture instance
is made complete, and the thread can perform the operation locally.

The consistency protocol passes the result over the network back to
������������� (9). At

������������� the suspended thread is resumed, and handed the result of the operation (10).

4.5 Transferring State

Apart from expressing remote operations the abstract entity allows for local access.
This is possible even if the data structure instance is in an inconsistent state when
invoked. Local access is provided transferring a correct state description to, and mak-
ing the local instance conform to the correct state. Naturally, the calling thread must
be suspended while the state is transferred. Thus an abstract entity requires the abil-
ity to transfer the description of a shared data structure’s complete state. The re-
treiveRepresentation method is used to retrieve a PSTC containing the state
description, while the installRepresentation is used to install the state to an
existing entity instance.
c l a s s Mutab leCa l lback �

P s t O u t C o n t a i n e r I n t e r f a c e � r e t r i e v e R e p r e s e n t a t i o n () ;
vo id i n s t a l l R e p r e s e n t a t i o n (P s t I n C o n t a i n e r I n t e r f a c e �) ;�

Note that a state description is not nessesary a incomplete description of the data
structure (see Section4.6). A state descritpion is required to contain enough informa-
tion that a local instance of the same data structure type can be turned into the same
state as the instance the description was retrieved from.

In contrast to a remote operation, the act of moving a state description is not related
to a programming system level thread. Thus, no thread identity is passed over the
network. Since the operation will be executed at the process where it was initiated, nor
is the programming system level operation passed.

The interaction between two data structure instances, located at two different pro-
cesses (process 1 and 2), when the consistency protocol moves the state is depicted in
Figure 9. The first three steps are similar to the interaction when passing an opera-
tion (see Section 4.4). Instead of sending the operation to
������������� , the abstract entity
sends a request to
������������� asking to transfer the state from
������������� to
�����$������� (4).
The abstract entity is asked by the protocol to retrieve a state description (5). The state

16

description is passed to the abstract entity in a PSTC (6) and passed back to
�����$����� �
(7). At
����������� � , the state description is installed in the local data structure instance
(8), the suspended thread is resumed (9) and allowed to access the data structure in-
stance locally.

4.6 Constructing, Exporting, Importing and Deleting Abstract En-
tities

A data structure is either local, it can only be accessed from one process, or it is dis-
tributed, it can be accessed simultaneously from multiple processes. The transition of
a data structure from being local to being distributed is called globalization, and the
transition from distributed to local is called localization. A distributed data structure
is associated with an abstract entity. Thus, globalization is when a data structure is
associated with an abstract entity. Localization is when a data structure is no longer
connected to an abstract entity.

Globalization is initiated from programming system level and can be initiated at
any point in time. Naturally, a data structure must be globalized when a reference is
passed to a remote site in order to create a distributed data structure, and not a replica of
the data structure at the remote process. Localization, i.e. removing the abstract entity
from a data structure, should not be performed without permission from the abstract
entity. Removing an abstract entity without permission is equal to creating a local
uncoordinated replica of a shared data structure.

4.6.1 Creating an Abstract Entity

Interfaces for creating new abstract entities are provided by the DSS class. The inter-
face takes as argument the choice of consistency-, reference-, and coordination sub-
protocol and returns a new abstract entity instance initialized with the chosen sub-
protocols. The sub-protocols define the functionality of the proxy and are explained
in detail in Section 5. Below is the method of the DSS object that creates a mutable
abstract entity.

c l a s s DSS Object �
M u t a b l e A b s t r a c t E n t i t y �
m c r e a t e M u t a b l e A b s t r a c t E n t i t y (cons t Cons i s t encySP & c n s t ,

cons t CoordSP& crd ,
cons t Refe renceSP & r e f) ;�

The returned abstract entity is not connected to any data structure. For the data
structure to be properly globalized, the abstract entity must be associated with the data
structure. For the reason of portability, the abstract entity does only communicate with
an instance of the Mediator class:
c l a s s A b s t r a c t E n t i t y �

vo id a s s i g n M e d i a t o r (M e d i a t o r I n t e r f a c e � m e d i a t o r) ;�
;

4.6.2 Exporting an Abstract Entity

A reference to a globalized data structure is passed over the network in three sub-parts.
First, a programming system level proxy description of the data structure, second, an
abstract entity description, and finally a possible programming system level state de-
scription. The abstract entity provides an interface for marshaling a description into a
WriteBuffer. The method takes as argument the target buffer and returns a boolean
value, telling whether a state description should be appended or not.

17

c l a s s A b s t r a c t E n t i t y �
bool marsha l (D s s W r i t e B u f fe r � buf) = 0 ;�

;

Note that the default is to transport programming system level proxy descriptions,
and only if the abstract entity decides must a complete description be transported.

4.6.3 Importing an Abstract Entity

After a reference to a globalized data structure is passed from one process, the sender,
to another process, the receiver, there exists an instance of the data structure in the
address space of the receiving process. If an instance of the distributed data struc-
ture did exist in the receiving process address space, no new instance will be created.
instead the existing instance will be returned, indicated by the return value of the un-
marshalProxy method, true indicates that the abstract entity (and thus the entity
instance) already existed.

c l a s s DSS Object �
bool unmarsha lP roxy (A b s t r a c t E n t i t y � &proxy ,

ReadBuf fe r � cons t buf ,
A b s t r a c t E n t i ty Na m e& cm ,
bool& t r a i l i n g d e s c r i p t i o n) ;�

;

The definition of the unmarshalProxymethod is depicted above. The call takes
a ReadBuffer as argument which should contain the serialized representation of the
abstract entity. The type of abstract entity is returned over the cm argument, the actual
abstract entity is returned over the proxy argument. The trailing description
argument returns whether a complete description follows or not (similarly to the Ab-
stractEntity::marshalmethod).

When the unmarshalProxy method returns an already existing abstract entity,
no data structure instance should be constructed at the programming system level. In-
stead should the data structure instance already associated with the abstract entity be
used. The abstract entity provides an interface which returns the Mediator the abstract
entity points to:
c l a s s A b s t r a c t E n t i t y �

M e d i a t o r I n t e r f a c e � a c c e s s M e d i a t o r ()�

4.6.4 Removing an Abstract Entity

The presence of a data structure instance at a process indicates that the distributed
data structure is referred from the process. If no reference exists to the data structure
instance, it should be removed. However, each coordination network potentially main-
tains a distributed garbage collection algorithm. Thus, a data structure instance and its
associated abstract entity cannot be removed without interaction with the DSS.

enum DSS GC �
DSS GC NONE ,
DSS GC WEAK ,
DSS GC PRIMARY,
DSS GC LOCALIZE�

;

c l a s s A b s t r a c t E n t i t y �
v i r t u a l DSS GC getDssDGCStatus () ;
v i r t u a l vo id c l e a r W e a k S t a t u s () ;�

;

In order to remove an abstract entity or a data structure instance (this includes the
abstract entity), the operation must be permitted by the abstract entity. The abstract

18

entity has a root status that tells the relationship between the abstract entity and the
data structure instance. An abstract entity is in one out of four states. First, none, the
entity instance can safely be removed. Second, weak, the state of the instance is of
importance for the consistency of the shared data structure and the instance cannot be
removed. However, the weak status of the instance can be removed. Third, primary,
the instance cannot be removed since it is used to uphold the consistency of the dis-
tributed entity. Last, localize, the abstract entity can be removed, and the instance can
be made a local data structure.

The clearWeakStatus method is used to initiate clearing of the weak status.
The proxy will then try to remove, if possible, the information that makes it a root. If
removed, the abstract entity will have root status none. The abstract entity does not
signal the glue when the weak status is removed. The programming system is assumed
to periodically ask the abstract entity about its current state.

Deleting an abstract entity that reports primary or weak root status will prevent
further access to the shared data structure the abstract entity controls, i.e. no proxy can
access the shared data structure. Removing an abstract entity in the none root status
and allowing further access to the local instance is similar to making an un-coordinated,
local copy of the shared data structure.

5 Components of the Coordination Network

Each distributed data structure is controled by a consistency protocol, called a distribu-
tion strategy. Every node that holds a reference to a distributed data structure maintains
an abstract entity, and executes the associated distribution strategy. The nodes that exe-
cutes a particular distribution strategy, forms a virtual network, called the coordination
network. The coordination network consist out of a set of proxies and a coordinator.
Each proxy is associated with one of the abstract entity instances that represents the
distributed data structure. The coordinator is similar to the home in a home-based pro-
tocol. It is assigned arbitrating tasks, suchs as keeping network references to where the
current state of a mobile object is currently located.

The entity consistency protocol executed over the coordination network is divided
in three sub-protocols. Each sub-protocol type is represented as a component. Sub-
protocol instances of the three different types can be freely combined to form cus-
tomized consistency protocols. The consistency sub-protocol realizes access of a dis-
tributed data structure. The reference sub-protocol is responsible for detecting when
the coordination network can be dismantled. The coordination sub-protocol imple-
ments a home-based communications infrastructure over the coordination network, i.e.
a communication service that allows a proxy to send a message to its coordinator.

Every sub-protocol is realized by two types of instances. First, a home-instance,
located at the coordinator. Second, a remote-instance, an instance is located at each
proxy. Communication is contained to the sub-protocol type, no messages are sent
between different sub-protocols of a coordination network, thus the coordination sub-
protocol does not send a message to the consistency sub-protocol. This allows the
sub-protocols to privately define their own message types and message formats. Con-
sequently, adding a new instance of a sub-protocol type to the DSS only requires ex-
tending the sub-protocol creation primitives, which is a minor change to the system.

19

Coordination SP

Consistency subprotoco reference subprotocol

C
oo

rd
in

at
or

 T
ab

le

Coordination Layer

Messaging Layer

Coordinator

Stationary

Mobile State FWRC

Figure 10: The layout of the coordinator, its internals and the coordinator table. Locally
at each process there exists a coordination table that is, given an coordination network
identity, used to find a coordinator. Internally, the coordinator is represented by three
objects that implement the three sub-protocols. This coordinator is configured with
a stationary coordination sub-protocol, a mobile-state consistency sub-protocol, and a
weighted reference counting reference sub-protocol.

5.1 The Coordination Network

The coordination network has one purpose, to maintain consistent access to a shared
data structure. Here the components of the coordination network are introduced.

5.1.1 The Coordinator

The coordinator is created at the process where the coordination network is initialized.
Depending on the type of coordination sub-protocol, the coordinator is either fixed to
its creation process or can move between processes. Disregarding how the coordinator
behaves, it is of outmost importance that the proxies can find the coordinator.

A coordinator is represented by a coordinator instance object. Internally, the coor-
dinator is represented by three different objects, one for each sub-protocol (see Figure
10).

5.1.2 The Proxy Object

In order to get access to a consistency protocol, a proxy object is required. The proxy
object is logically located in the coordination layer of the DSS and connected to an
abstract entity. Internally, the proxy is represented as a set of objects. The conceptual
proxy object, the instance referred by the abstract entity, is the same as the coordination
sub-protocol object. The other two sub-protocols, for reference and for consistency, are
represented as separate objects, referred to by the coordination object. The layout of
the proxy is depicted in Figure 11.

In order to join a corodination network a proper proxy is required. A proxy can
only be created from a serialized representation. For a given coordination network,
only proxies of the coordination network can produce proper serialized representation.

At any single process, there can at most be one proxy-instance per coordination
network. This is automatically controlled by the Proxy table, depicted in Figure 11).
Reception of a proxy description will either result in creation of a new proxy or the use
of an already existing proxy. A proxy description contains information that in some
cases is state-full in the meaning that it cannot just be thrown away without loosing

20

Coordination SP

Consistency subprotoco reference subprotocol

Mobile State FWRC

Stationary

abstract entity
mutable

Pr
ox

y
T

ab
le

Messaging Layer

Proxy

Abstract Entity Layer

Coordination Layer

Figure 11: The layout of a proxy instance. The proxy is member of a coordination
network is configured with a stationary coordination sub-protocol, a mobile-state con-
sistency sub-protocol and uses fractional weighted reference counting as garbage col-
lecting algorithm. This is shown by the specialization of the different sub-protocol
objects.

data necessary for the correctness of some of the coordination network sub-protocols3.
Internally, if an serialized description of an already existing proxy is received, the re-
ceived information is desterilized by the existing proxy. This is called a merge.

5.1.3 Inter Coordination Network Communication

Every coordination network has a globally unique name. The name is used for ad-
dressing components and for avoiding duplication of proxies. When a process receives
a serialized representation of a proxy it first unmarshal the name of the coordination
network (found first in the serialized representation). The name is used to check if an
instance already exists or not. If an instance exists, the instance is asked to discard the
serialized representation.

The coordination layer maintains two tables, one for proxies and one for coordina-
tors. The tables, depicted on the left in Figure 10 called Coordinator Table and on the
left in Figure 11 and called Proxy Table, allows for mapping globally unique names to
coordinators and proxies respectively.

A message sent within a coordination network is addressed to a proxy or a coor-
dinator at a particular process. Upon reception of the message, the message is passed
from the messaging layer to the dispatcher. The dispatcher reads the message type and
the target address and hands the message to the target proxy or coordinator.

The destination type is further refined and tells the type of the sender. The resulting
four message types are proxy-to-proxy, proxy-to-coordinator, coordinator-to-proxyand
coordinator-to-coordinator. The information regarding the sender type is used if the
target does not exist at the process. In such case, the message is passed back to the
sender process and handed the proxy or coordinator that sent the message. Since the
sender type is explicitly known, the message body does not have to be interpreted.

5.2 Sub-protocol Interaction

In order to cater for code reuse and simple customization, the coordination network is
implemented by three sub-protocols. Each sub-protocol is realized by two components,
a remote instance present at each proxy, and a home instance locate at the coordinator.

3This is especially true for distributed garbage collection algorithms, a lost message can prevent the
coordination network from ever dismantling itself, even when no remote references exists.

21

Abstract Entity

Non−functional
interaction

Coordination Subprotocol

Reference Subprotocol Consistency Subprotocol

Messages
functional
interaction

Figure 12: On the level of interfaces the proxy is different from the coordinator in
that it communicates with the abstract entity. This figure depicts the interaction re-
garding operation resolving betwen the coordination sub-protocol and the abstract en-
tity. The coordination sub-protocol exposes an interface that allows for control of the
coordination-network (e.g. explicit migration of the coordinator).

Each component of the sub-protocols is represented by an abstract class. The different
sub-protocols interact internally over well defined interafces. Moreover, the remote-
instances of the different sub-protocols interact with the abstract entity, depicted in
Figure 12.

5.2.1 Reference Sub-protocol

The purpose of the reference sub-protocol is to detect when there is just one proxy, and
thus the coordination network can be dismantled resulting in localization of the data
structure instance. The purpose of the home-instance is to detect when the number of
remote-instance reaches zero. Note that both created instances and instances travelling
the network in the form of serialized representations must be taken into consideration.
The home-instance prevents dismantling of the coordination network as long as the
number of remote-instance is non-zero, i.e. the home-instance is a root for garbage
collection. For the reason of simplicity, the home-instance is passive; the root status
must be retrieved from it. The interface of the home-instance is shown below:

c l a s s Refe renceSP home �
v i r t u a l vo id m msgRecevied (MsgConta ine r � msg , DSi t e � from) = 0 ;
v i r t u a l boo l m isRoot () = 0 ;
v i r t u a l vo id m makeGCpreps () = 0 ;

/ / Only used by a Proxy c o o l o c a t e d wi th a c o o r d i n a t o r
v i r t u a l vo id m g e t R e f e r e n c e I n f o (M a r s h a l B u f f e r �) ;
v i r t u a l vo id m mergeRefe rence In fo (Unmarsha lBuf fe r �) ;�

;

c l a s s Refe renceSP remote �
v i r t u a l vo id m g e t R e f e r e n c e I n f o (M a r s h a l B u f f e r �) ;
v i r t u a l vo id m mergeRefe rence In fo (Unmarsha lBuf fe r �) ;

/ / c o n t r o l i n t e r f a c e
v i r t u a l vo id m msgRecevied (MsgConta ine r � msg , DSi t e � s e n d e r) = 0 ;
v i r t u a l vo id m makeGCpreps () = 0 ;

v i r t u a l boo l m isRoot () = 0 ;
v i r t u a l vo id m m a k e P e r s i s t e n t () = 0 ;
v i r t u a l boo l m drop () = 0 ;�

The common property of the eligible distributed garbage collection algorithms is
that they can tell whether the number of outstanding references is zero or more. This
puts an requirement on a proxy that is collocated with the coordinator. If it would retain
a remote instance, the coordination network would never be dismantled. To avoid this
deadlock, the proxy collocated with the coordinator share the home-instance of the
reference sub-protocol with the coordinator. Consequently, it has no remote-instance,
and is not accounted for when it comes to the distributed garbage collection (see Figure

22

Abstract Entity

Non−functional
interaction

Consistency SubprotocolReference SubprotocolConsistency Subprotocol

Coordination Subprotocol Coordination Subprotocol functional
interaction

Coordinator Proxy

Figure 13: A proxy that is collocated with the coordinator of the coordination network
both belongs to share reference sub-protocol instance. The sub-protocol is belongs to
the coordinator, thus the bidirectional arrow between the coordination sub-protocol of
the coordinator.

13).
A reference to a proxy passed over the network is attached a remote-instance de-

scription, retrieved using the m getReferenceInfo method. Similarly to replica-
tion of proxies, reception of a description will either result in creation of a new instance
or merge of the received information into an existing instance. The later is realized over
using the m mergeRefenceInfomethod.

At creation of a coordination network, there are no remote proxies and thus the
coordination network is subject to be dismantled (if the reference sub-protocol can
detect this). However, as mentioned above, the remote instance of the reference sub-
protocol is passive. Eventual dismantling is initiated from the programming system
level (see Section 5.2.4).

5.2.2 Consistency Sub-protocol

The consistency sub-protocol has two roles. Primary, it is responsible for maintaining
consistency invocations of the different local data structure instances that represents
the distributed data structure. This is realized by interaction with the abstract entity the
proxy is connected to, described in detail in Section 5.4. The relationship between the
consistency sub-protocol and the abstract entity is depicted by the arrow that connects
the two components in Figure 11. Moreover, it implements interfaces for interacting
with the coordination sub-protocol.

The home instance implements an interface for receiving messages, and an inter-
face for migrating the home instance. The later method is used when the coordinator is
migrated4. At migration, the state of the home instance should be packed in the Msg-
Container msg. At the process to which the coordinator moves, the home instance will
be recreated using the information packed in the msg. The interface is depicted below:
c l a s s Cons i s t encySP home �

v i r t u a l vo id m msgReceived (MsgConta ine r � msg , D s i t e � s e n d e r) = 0 ;
v i r t u a l vo id m migra t e (MsgConta ine r � msg) ;�

;

The interface required for the remote instance is more extensive. Similarly to the
remote instance, the remote instance must be able to receive messages. A consistency
sub-protocol remote instance can be a root for the local garbage collection (see Section
5.2.4) The m isWeakRoot interface returns potential weak root status. The remote
instance should try to remove any weak status if the m clearWeakRoot method is
called.

4Migration of the coordinator is initiated and controlled by the coordination sub-protocol

23

When a reference to a proxy is marshaled, the consistency sub-protocol is asked to
add information to the serialized representation by the marshal protocol info
method. The consistency sub-protocol defines what type of proxy that should be mar-
shaled. The return value from the marshal method tells whether a complete description
of the associated programming system data strutcure should be marshaled, or if just a
proxy description should be marshaled.
c l a s s C o n s i s t e n c y S P r e m o t e �

v i r t u a l vo id m msgReceived (MsgConta ine r � msg , D s i t e � s e n d e r) = 0 ;
v i r t u a l boo l m isWeakRoot () = 0 ;
v i r t u a l vo id m clearWeakRoot () = 0 ;
v i r t u a l boo l m a r s h a l p r o t o c o l i n f o (D s s W r i t e B u f f e r � buf , DSi t e �) = 0 ;
v i r t u a l boo l d i s p o s e p r o t o c o l i n f o (DssReadBuf fe r � buf) = 0 :�

;

5.2.3 Coordination Sub-protocol

The coordination sub-protocol provides the messaging service for the reference and
consistency sub-protocols. Furthermore, the remote instance exposes an interface to-
wards the abstract entity that allows for instrumentation the coordination network, de-
picted by the non-functional interface arrow in Figure 12. Similarly to the other sub-
protocols the coordination sub-protocol is defined as an interface that can be instan-
tiated to implement new behaviors. The natural examples are stationary and mobile
coordination sub-protocols, both currently supported by the DSS.

A messaging interface is provided for the reference and the consistency sub-protocols.
A message is typed with the destination, proxy or coordinator, and the sub-protocol
type. As can be seen in the class definition below, m createProxyConsMsg creates
a consistency sub-protocol message addressed to a proxy, and m createCoordRefMsg
creates a reference sub-protocol message addressed to a coordinator.

c l a s s Coord ina t ionSP home �
v i r t u a l boo l m sendToProxy (DSi t e � d e s t , MsgConta ine r � msg) = 0 ;

/ / Only f o r t h e Cons i s t encySP
v i r t u a l : : MsgConta ine r � m createProxyConsMsg () = 0 ;

/ / Only f o r t h e Refe renceSP
v i r t u a l : : MsgConta ine r � m crea t eProxyRefMsg () = 0 ;�

;

c l a s s C o o r d i n a t i o n S P r e m o t e �
v i r t u a l boo l m sendToCoord ina to r (: : MsgConta ine r � msg) = 0 ;
v i r t u a l boo l m sendToProxy (DSi t e � d e s t , : : MsgConta ine r � msg) ;

/ / Only f o r t h e Cons i s t encySP
v i r t u a l MsgConta ine r � m createCoordConsMsg () ;
v i r t u a l MsgConta ine r � m createProxyConsMsg () ;

/ / Only f o r t h e Refe renceSP
v i r t u a l MsgConta ine r � m createCoordRefMsg () ;
v i r t u a l MsgConta ine r � m crea t eProxyRefMsg () ;�

;

The m sendToProxy passes message msg to a proxy at process dest. Since
there is only one coordinator in the coordination network, the m sendToCoordinator
method takes no explicit destination.

5.2.4 Calculating Root Status of a Proxy

The root status of an abstract entity (see Section 4.6.4) is calculated by the proxy the
abstract entity is connected to. If the proxy is collocated with the coordinator, the proxy
will ask the coordinator for its root status. Otherwise, the root status of a proxy is re-
solved by the coordination sub-protocol. The root status of a particular proxy considers
the status, first of the reference sub-protocol, second the coordination sub-protocol and

24

finally the consistency sub-protocol. Below is an example of how the garbage collec-
tion status is calculated for the proxy of the stationary coordination strategy:

DSS GC
P r o x y S t a t i o n a r y : : getDssDGCStatus () �

i f (a man = = NULL) �
i f (a r e f e r e n c e S P &(' m isRoot ()) re turn DSS GC PRIMARY;
i f (a c o n s i s t e n c y S P &(' isWeakRoot ()) re turn DSS GC WEAK;
re turn DSS GC NONE;�

re turn a man&!' m getDssDGCStatus () ;�

As can be seen above, a proxy collocated with the coordinator asks the coordinator
for root status. A proxy that is not collocated with the coordinator checks the reference
and consistency sub-protocols for their root status. If none of the two sub-protocols
have any root status, the proxy has root status none.

Localization, for the stationary coordination sub-protocol, can only happen to the
proxy that is collocated with the coordinator. Below is the code for calculating the root
status of the stationary coordinator. Note that if the reference sub-protocol is not a root,
the coordination network is subject to localizion.

DSS GC
C o o r d i n a t o r S t a t i o n a r y : : m getDssDGCStatus () �

i f (a homeRef&!' m isRoot ()) re turn DSS GC PRIMARY;
re turn DSS GC LOCALIZE ;�

5.2.5 Marshaling and Unmarshaling a Proxy

The proxy provides an interface for writing a marshaled representation of itself to a
buffer. The DSS implements routines to construct a proxy from a marshaled descrip-
tion.

The marshaling representation of a proxy contains enough information, in a serial-
ized format, to create and instantiate a proxy at another process. Instantiate includes
connecting the proxy to the coordination network and make it functional, i.e. make all
sub-protocols able to execute their protocols. The code below depicts marshaling on a
somewhat conceptual level. In reality the marshaling is more complicated because of
buffer space saving optimizations:
vo id marsha lP roxy (Proxy � pReadBuf fe r � buf) �

m a r s h a l N e t I d e n t i t y (p&(' m g e t N e t I d e n t i t y () , bu f) ;
m a r s h a l I n t e g e r (p&!' m getCoord ina t ionSP Type ()) ;
m a r s h a l I n t e g e r (p&!' m getRefe renceSP Type) ;
m a r s h a l I n t e g e r (p&!' m getCons i s t encySP Type) ;
p&(' m a s r h a l S u b P r o t o c o l s (buf) ;�

The sub-protocol types are expressed using numbers. Sub-protocol information
is serialized, and is at the receiving process unmarshaled by an instance of the same
sub-protocol type.

Creating a Proxy from a marshaled description is the inverse of creating a mar-
shaled representation. The code for unmarshaling of a proxy is shown below:
Proxy � unmarsha lP roxy (ReadBuf fe r � buf) �

N e t I d e n t i t y n i = u n m a r s h a l N e t I d e n t i t y (buf) ;
Coord ina t ionSP Type c o o r d t = u n m a r s h a l I n t e g e r (buf) ;
Refe renceSP Type r e f t = u n m a r s h a l I n t e g e r (buf) ;
Cons i s t encySP Type cons t = u n m a r s h a l I n t e g e r (buf) ;

/ / r e t u r n s NULL i f no proxy e x i s t s .
Proxy p = proxyTab le&(' f i n d P r o x y (n i) ;
i f (p = = NULL) �

/ / While i n s t a n t i a t i n g t h e d i f f e r e n t sub & p r o t o c o l s t h e
/ / sub & p r o t o c o l s can r e a d unmarsha l i n f o r m a t i o n from t h e b u f f e r .
p = c r e a t e P r o x y (n i , coord , r e f t , cons t , bu f) ;�

e l s e �
/ / The sub & s t r a t e g i e s unmarsha l s t h e i n f o r m a t i o n found i n t h e
/ / b u f f e r , and i f n e s s e s a r y make use of i t .
p&(' d i s c a r d I n f o r m a t i o n (buf) ;�

re turn p ;�

25

Note that if a proxy registered under the received global identity exists, that in-
stance is used and no new instance is created. The existing instance is responsible
for reading the marshaled data that describes the sub-protocols. This allows the sub-
protocol instances to make use of information found in the marshaled description of
the sub-protocol component. For example, a marshaled representation of the refer-
ence sub-protocol can contain information with token status. Furthermore, in the case
of the mobile-coordinator coordination sub-protocol the marshaled instance is used to
distribute knowledge of the current coordination location.

5.3 Handling Node Failures

Node and link failures to the nodes of the coordination network will potentially affect
its functionality. In the worst case, the coordinator is lost, or information critical to the
consistency sub-protocol is lost. In both cases the coordination network is unable to
provide services. The coordination framework reports failures to higher levels, i.e. the
abstract entity.

Consequently, failure recovery is not required of the sub-protocol instances. In-
stead, a sub-protocol is required to deduce if a node failure, temporary or permanent,
affects the functionality of the sub-protocol.

5.3.1 Reporting Failures

Failures to the coordination network are reported to the abstract entity that in turn
reports the failures to the programming system. The coordination sub-protocol imple-
ments an interface that returns the current fault state, experienced by the proxy:
c l a s s Coord ina t ionSP Remote �

v i r t u a l F a u l t S t a t e g e t F a u l t S t a t e () ;�

A fault state describes if the coordination network provides its service or not:
enum F a u l t S t a t e �

FS NONE ,
FS TEMP ,
FS PERM�

;

The status of a coordination network is described using the same model as remote
nodes (see Section 3.5). FS NONE indicates that the proxy functions normally. A
coordination network that has experienced a fatal error is in the state FS PERM. A
proxy that reports FS TEMP cannot provide service, however, the problem can go away,
thus the proxy then becomes FS NONE.

5.3.2 Classifying Failures

The messaging layer detects and classifies failures. A state change to a DSite is re-
ported to the coordination layer. In the coordination layer, every proxy and coordinator
is informed about the changed state. It is then the task of the proxies and coordinators to
deduce if the state change of the particular DSite affects their functionality. Internally,
both the coordination sub-protocol and the consistency sub-protocol can be affected.
Thus both sub-protocols require implementation of the m siteStateChangemethod.
Below is remote-instance interface of the coordination sub-strategy depicted:
c l a s s C o o r d i n a t i o n S P r e m o t e �

vo id m s i t e S t a t e C h a n g e (DSi t e � s , cons t D S i t e S t a t e & s t a t e)

26

The coordination sub-protocol is responsible for implementing the fault reporting
interface. Thus, it is responsible for calculating the complete fault state for the coordi-
nation network.
vo id
C o o r d i n a t i o n S P R e m o t e S t a t i o n a r y : : m s i t e S t a t e C h a n g e (DSi t e � s i t e ,

cons t D S i t e S t a t e & s t a t e)�
F a u l S t a t e f s = FS NONE;

/ / i s t h e a f f e c t e d s i t e e q u a l t o t h e c o o r d i n a t o r l o c a t i o n
i f (s = = m ge tGUIdSi t e ()) �

swi tch (s t a t e) �
case DSite OK :

f s = FS NONE
break ;

case DSite TMP :
f s = FS TEMP
break ;

case DSite PRM :
f s = FS PERM) ;
break ;��

f s = max (f s , a c o n s P r o t &(' s i t e S t a t e C h a n g e d (s , s t a t e)) ;
s e t F a u l t S t a t e (f s) ;
a A b s E n t I n t e r f a c e&!' r e p o r t F a u l t S t a t e (f s) ;�

Above is the code for the m siteStateChange method of the stationary coor-
dination sub-protocol. Note that the fault status from the consistency sub-protocol is
merged with the fault status of the coordination network.

5.4 Interaction Between the Proxy and the Abstract Entity

The functional interaction with an abstract entity and a data structure instance is di-
rected to the consistency sub-protocol of the proxy. The abstract entity merely acts as
an interface between the data structure instance and the proxy.

The interface provided by the abstract entity to the consistency protocol is shown
below. Note that the callback method is used for all abstract operations. The performed
abstract operation is passed as an argument.
c l a s s A b s t r a c t E n t i t y �

v i r t u a l boo l c a l l b a c k (i n t a b s t r a c t o p e r a t i o n ,
DssThreadId � i d o f c a l l i n g t h r e a d ,
D s s O p e r a t i o n I d � o p e r a t i o n i d ,
P s t I n C o n t a i n e r I n t e r f a c e � o p e r a t i o n ,
P s t O u t C o n t a i n e r I n t e r f a c e � & p o s s i b l e a n s w e r) ;

v i r t u a l P s t O u t C o n t a i n e r I n t e r f a c e � r e t r i e v e S t a t e () = 0 ;
v i r t u a l vo id i n s t a l l S t a t e (P s t I n C o n t a i n e r I n t e r f a c e � b u i l d e r) = 0 ;�

The consistency sub-protocol must implement the two operations handling contin-
uous operations management. Furthermore, it must implement at least one method that
allows for interaction with the protocol. Below is a interface provided by the consis-
tency sub-protocol towards the abstract entity . Note that the type of abstract operation
is passed as an argument to the operation. Multiple abstract operations can be mapped
to the same operation.
c l a s s Cons i s t encySP Remote �
p u b l i c :

OpRetVal) OP ' (i n t a b s t r a c t o p e r a t i o n ,
Globa lThread � cons t ,
P s t O u t C o n t a i n e r I n t e r f a c e �!� &);

vo id
r e m o t e I n i t a t e d O p e r a t i o n C o m p l e t e d (D s s O p e r a t i o n I d � opId ,

P s t O u t C o n t a i n e r I n t e r f a c e � p s t O u t) ;
vo id l o c a l I n i t a t e d O p e r a t i o n C o m p l e t e d () ;�

27

6 Concluding Remarks

This description of the DSS focuses on key concepts in order to help understanding
how the middlewre is actually implemented. This document together with the material
published in various conferences about the DSS should give a complete (or near to com-
plete) picture of the DSS. We believe it will server as a useful resource of information
for a system integrator that uses the DSS library to create a distributed programming
system.

The code-base that makes up the DSS has mainly been developed by Erik Klintskog,
Zacharias El Banna with help from Per Sahlin, and Valentin Messaros. Some inheri-
tance on the level of ideas can be traced back to the distribution support for the Mozart
system developed by Erik Klintskog, Per Brand, Anna Neiderud, Andreas Sundström
and Konstantin Popov. This document would never have been possible without the
joint effort invested by the persons mentioned above in design and development of the
two systems, DSS and Mozart.

28

