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This thesis investigates how abstractions can be used to improve performance in a
railroad scheduling system that uses constraint programming. The idea behind
abstractions is to solve a large problem in smaller parts and extract information from
these parts. That information can then be used when solving the entire problem.

Two different types of abstractions are introduced: Relations and Net abstractions.
The use of relations builds orders between trips or parts of trips. These orders can be
used to reduce the search necessary to find a solution to the scheduling problem.
When using net abstraction, the problem is solved in an abstract search space, where it
is easier to solve. The solution computed in the abstract search space is then used to
reduce search when solving the problem in the original space.

It is shown that these two types of abstraction can improve performance in problems
with various settings. Relations can successfully be used in problems that have few
solutions and are hard to solve. Net abstraction on the other hand works best for
problems with many valid solutions.
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This section gives a brief introduction to the report. The goals of the thesis and an
outline of the following chapters are presented.

The aim of this thesis is to investigate and implement abstraction methods in a
railroad scheduling system. The system, TUFF (TågplaneUtveckling För Framtiden –
Train planning development for the future) features the following functionality:

• Train scheduling
• Vehicle routing
• Personnel scheduling

 ��������	
��
��� is the process of determining departure and arrival times for each
train. For the convenience of passengers, passenger trains often have periodic
timetables, whereas freight transports are schedule according to the customers’
demands. TUFF uses technology from the field of Constraint Programming to perform
train scheduling.

 �
	��

�������� determines how locomotives and cars are assigned to trains, that is,
which locomotive and which cars should form a certain train on the trip from a station
to another.

 �
�����

���	
��
��� determines how to assign drivers and other personnel to a train.
In this process, it is necessary to take into account things like breaks, costs for
overtime, etc. The mechanisms for personnel scheduling are currently being
developed in TUFF.

 TUFF is more thoroughly described in Section 5 The TUFF system.

 ���������

 More precisely, the goals of this thesis were to:

• Investigate how relations between trips and parts of trips (slots) may be used in the
train scheduler of TUFF.

• Implement relations and evaluate if the use of relations can improve performance
and/or reduce memory consumption.

• Design, implement and evaluate functionality for net abstraction in the train
scheduler. A net abstraction is to take a set of tracks, paths and trips, and
transform them to a more abstract level, with fewer details.

������
���	��
�
�	��	���


Section 2 Mathematical foundations presents the mathematics necessary for this work.

Section 3 Constraint programming gives an introduction to constraint programming. It
has no intention of being a complete description. Instead, its purpose is to give the
basic understanding of constraint programming necessary for this work.
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In Section 4 Fundamentals of abstraction, a background to the concept of abstraction
is presented. Abstractions have been studied in AI for some time, and some of the
results and definitions of that research are presented in this section.

Section 5 The TUFF system describes the techniques used in TUFF more thoroughly.

In Section 6 Abstractions in TUFF, the abstractions that have been designed and
implemented are presented, and in Section 7 Tests and results, they are evaluated.

Section 8 Conclusions and future work, summarizes the thesis, and presents future
work that is not covered by this thesis.

In the appendixes test examples and a definition of a script language, TUFFScript can
be found. The script language is a tool for combining abstraction methods. However,
implementation of TUFFScript is beyond the scope of this thesis.
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This section introduces the mathematical definitions needed for this work. These are
standard definitions, which can be found in any textbook on discrete mathematics. See
for instance [PY73].

Let � be a set with N elements. Let the elements be T1, T2, … TN, which can be
thought of as departure or arrival times. If there is no order between any of the times,
i.e. there is no order between Ti and Tj for any i and j, then � can be represented by

� = {T1, T2, … TN}

To be able to state properties of a set, a few further definitions are needed.
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This work deals with sets where some of the elements – but not all – are ordered. It is
therefor necessary to introduce the partly ordered set (poset):
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Most interesting when considering this work is a special case of posets, chains.
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A notation for sets of chains will also be needed. Let � be a set containing the chains
 �	and  �.  �	is < T1, T2, T3> and  � is <T4, T5>. The notation

� = { �,	 �} = {<T1, T2, T3>, <T4, T5>}

states that in the set �, there is an order between T1, T2 and T3. There is also an order
between T4 and T5, but there is no order between any of the elements in  � and the
elements in  �.
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In some cases, all elements in a set will be ordered. The set is then called a ����

�
���
�
���
�. The representation of such a set � with three elements TA, TB and TC will
be � = {<TA, TB, TC>}. The definition of totally ordered set is from [Col99].
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Furthermore, there is a need to investigate the structure of a set. An interesting
structure is the 
�����
.
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Since one of the goals of this work is to speed up the scheduling process, some
knowledge of how this process works is necessary. The train scheduler uses
techniques from the domain of Constraint Programming (CP). This section gives an
introduction to the concept of CP. It is by no means intended to cover all issues dealt
with in CP, but merely to give the basic understanding of CP necessary for this work.
It relies heavily on [Tsa93] and [SS99].

��������������	�
�

A Constraint Satisfaction Problem (CSP) consists of three parts:

1. A finite set of variables

2. A domain associated with each variable

3. A set of constraints restricting the values that the variables can take
simultaneously.

When solving a CSP, the task is to assign values to all variables in such a way that no
constraint is violated, and the value for each variable is within the domain of the
variable.

=��$�

�&����#
���$��
�$��
�
This is a classical example of a CSP. The story goes that a boy was out on a journey,
and ran out of money. He then sent his parents a postcard, with the equation

S E N D
+ M O R E
--------------------------------------
M O N E Y

The parents now had to solve this equation to find out how much more money the boy
needed. Each of the variables (D, E, M, N, O, R, S, Y) should have a value between
one and nine, and no two variables should have the same value.

It is easily shown that this problem is a CSP. The three parts are:

1. The finite set of variables is {D E M N O R S Y}.

2. The domain is the same for all variables: 0 ≤  x ≤  9, where x is the variable.

3. The constraint is that no two variables can take the same value simultaneously.
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In Section 3.6 Constraint programming in Mozart/Oz, it is shown how this problem is
solved with CP in Mozart/Oz.

������������	�����
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This section gives a more formal description of a CSP. It does by no means try to
cover the entire field of descriptions in CSPs. Instead, its purpose is to present the
definitions necessary for this brief introduction.
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The values in a domain do not have to be restricted to numbers. In some problems, it
may be convenient to use other types of values. Consider for instance a coloring
problem, where a number of countries on a map should be colored. No two
neighboring countries should have the same color. In such a problem, it is natural to
use colors instead of numbers in the domains.
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A constraint can be seen as a set that contains all legal compound labels for the
variables in the CSP. However, in practice constraints can be equalities, inequalities,
or other types of relations. Regardless of how the constraint is represented, the
constraint represents a number of legal compound labels for the problem variables.
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When solving a CSP there are two categories of methods: ��� 

$��
��������and
#
���	� The type of problem at hand determines which category and method that is
most feasible. The best solving method is usually not a single one of these methods.
Instead, the most efficient way of solving a CSP is often to combine the two
techniques. Which the optimal solution method is also depends on whether one or all
solutions are required.

��#� ����	���	���
���

The idea of problem reduction is to make the problem smaller by reducing the
domains of the variables. The CSP is then hopefully easier to solve or recognize as
insolvable. Problem reduction alone does not normally solve a CSP. However, when it
is combined with Search, it can reduce the effort necessary to solve the CSP.

Problem reduction is made by constraint propagation, which is a way to limit the
domains of the variables of the CSP. There are two types of propagation: ��$���
������������and ���
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��������������Consider an example:
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Normally interval propagation is used, because of its lower computational cost.

In most problems, it is not optimal to perform a complete problem reduction, since it
is expensive. Instead, it is usually preferable to do some reduction, and then use
Search methods to solve the CSP.

��$��	����

A lot of research effort has been made to find good search strategies for various
problems, and there are various techniques in the literature. This section tries to give
some insight and basic understanding in concept of search in CSPs. For a more
extensive overview of search techniques, see [Tsa93].

�� �!�"��#����#
��

A simple but widely used technique for search is ��$�

� ��D����D���� The idea is to
consider one variable at a time, and try to assign a value to that variable. The
algorithm is simply as follows:

1. Pick one of the variables in the CSP.

2. Choose a value, which is in the domain for this variable. Check if this value
satisfies the constraints. If it does, go to step 1 and pick another variable. If it does
not, choose another value.

3. If there are no values that satisfies the constraints for a variable, go back to the
variable that was assigned a value last. Change the value of that variable, and try
again to assign the current variable a value.

4. This continues until a solution has been found or all the combinations of labels
have been examined and failed. Figure 3.1 shows the idea of backtracking.
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Pick a variable X

fails

succeeds

All
variables
labelled?

Backtrack to the 
last variable, 
and let it be X.
Fail if nowhere to
backtrack to.

Yes

No

Done

Given a problem

Try to choose a value for X
that is in the domain of X 
and satisfies the constraints
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�

The basic algorithm for backtracking above is normally combined with problem
reduction to improve efficiency. This means that in step 2, after a value has been
chosen for a variable and it has been checked that the value satisfies the constraints,
problem reduction is performed. An attempt is made to reduce the domains of all
variables. If a domain of a variable is reduced, some other variable may be affected by
this reduction and the domain of that variable may also be reduced.

�� �$�%����
��

A question that arises is how to choose the variable that should be labeled and how to
label the variables in such a way that backtracking is avoided? There are a number of
approaches to this problem. Some possible strategies for choosing which variable to
label are:

• �4�	�����	�5��5��6� Choose the first variable in an arbitrary ordering of the
variables. This strategy performs very poorly as a general method.

• %���5	���7	�5��5��6�	Choose the variable that is most likely to fail. This strategy
aims at recognizing dead-ends as soon as possible, and thereby reduce the amount
of computation. One simple way of determining which variable is most likely to
fail is to compare the size of the domains of the variables. This approach is used in
the constraint programming language CHIP with impressive results [Tsa93].

• #�����7	8��54	���������	This strategy can be used in CSPs where some
variables are constrained by more variables than others. The idea is to first choose
the variable that is constrained by the largest number of other variables. Since the
last variables to be labeled are those that affect the smallest number of other
variables, the chances of avoiding backtracking are good.
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Once a variable has been chosen, it must be determined what value to assign to that
variable. There are also in this case a number of standard techniques. A simple
approach is to label the variable with the lowest, highest or middle value in its
domain. Another technique is to decrease the size of the variable’s domain instead of
assigning it a value. In this case, the new domain of the variable is set to the lower or
upper half of the original domain. This may reduce the number of backtracks
necessary.

�� ����������	����	

The search space is the space of all combinations of compound labels and unlabeled
variables. Different search strategies give different search spaces. The backtracking
algorithm searches the space of all compound labels. This makes the search space
look like in Figure 3.2.

pick y pick zpick x

x=a

x=b x=c

x=d y=e

y=f

y=g z=p z=q

pick z

pick y

pick x

pick x

pick x

pick x

pick x

pick y

pick y

pick y
pick y

pick y

pick y

pick z

pick z

pick z

pick z

pick z

pick z
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The search space is highly dependent on the order in which the variables are labeled.
If the CSP from Figure 3.2a is taken as example, then either x, y or z can be labeled
first. If the variables are labeled in the order (x,y,z), the search space will look like in
Figure 3.2b. However, if they are labeled in the order (z,y,x), the search space looks
different. This search space can be seen in Figure 3.2c.
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x=a x=b x=c x=d

y=e y=g

y=
f y=e y=g

y=
f y=e y=g

y=
f y=e y=g

y=
f

z=

p q p q p q p q p q p q p q p q p q p q p q p q
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z=p z=q

y=e y=f y=g

x=

a b c d a b c d a b c d a b c d a b c d a b c d

y=e y=f y=g
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When determining how to approach a certain CSP, it is necessary to get some
structured overview of the problem. The properties listed below provide a great help
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in this process. Based on these properties, specialized search techniques have been
developed that solve CSPs more efficiently.

The properties that have to be considered are:

• �4�	��9�	��	54�	����:4	�;�:�	��	����5�.
As can be seen when comparing Figure 3.2.b and 3.2.c, the number of nodes in the
search tree depends on the order in which the variables are labeled. However, the
number of leaves in the tree, i.e. the number of nodes at the bottom of the tree, is
always the same. The number of leaves for a CSP with the variables

Z={X1, X2, ..., XN} is 
����

���< *...**
21

= .

This is also the term that dominates the size of the entire search tree. The size of
the entire tree, counted in number of nodes, is [Tsa93]:

)*...*(1
1

1 �
�

�

�

�
��G ∑

=

+=

• �4�	��;54	��	54�	5���	��	�����.
When the order in which the variables are labeled is fixed, as in Figure 3.2b and
3.2c, the depth of the search tree is equal to the number of variables. If no order is
specified, as in Figure 3.2a, the depth is two times the number of variables.

• �
35����	���	����7��
As can be seen when comparing Figure 3.2a, 3.2b and 3.2c, the subtrees are
similar regardless of how variables are ordered. This fact can be exploited to
construct more efficient search algorithms. For instance, learning algorithms can
be created.

�� � �����
�
���	������������������������
��

In most cases, it is more effective to combine search and problem reduction than to try
to use only one of these methods. The more compound labels that are removed using
problem reduction, the fewer backtracks will be done during the search. However, it is
normally not effective to perform a complete problem reduction. The computational
cost increases as the number of values that are possible to remove decreases. An
approximate relation between search and problem reduction can be seen in Figure 3.3.
As can be seen in the figure, it is often important to find a balance between the two
methods to be able to minimize the computational cost.
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This section presents a program written in Mozart/Oz solving the CSP introduced in
Example 3.1, “Send More Money”.

The program uses one variable for each letter. This means that there are eight
variables. The search mechanism uses the first-fail method described above. For this
problem, there are three constraints created:

1. There may be no leading zeros, i.e. S and M must not be zero.

2. Two variables must not have the same value.

3. The following sum must be correct:

S E N D
+        M      O       R       E_

M O N E Y
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The program listing (from [Ss99]) is:

proc {Money Root}
S E N D M O R Y
in

Root = sol(s:S e:E n:N d:D m:M o:O r:R y:Y) % 1
Root ::: 0#9 % 2
{FD.distinct Root} % 3
S \=: 0 % 4
M \=: 0
1000*S + 100*E + 10*N + D % 5
+    1000*M + 100*O + 10*R + E
=: 10000*M + 1000*O + 100*N + 10*E + Y
{FD.distribute ff Root} % 6

end

The commented lines are:

%1:  These are the labels and variables in the problem.

%2:  Specifies that all values must be between zero and nine.

%3:  All values must be distinct. This means that no two values may be equal. The
line implements constraint 2 above.

%4:  # and : must not be equal to zero. These lines implement constraint 1.

%5:  The sum must be correct. This is constraint 3.

%6:  This line tells the system to start solving the problem, using the first-fail
method described above.

Since there are 8 variables and each variable has a domain of 10 values, there are 108

possible leaves in the search tree. This means that a completely naive algorithm, that
investigates all possible combinations of labels, would have to do a lot of work to find
the solution. Problem reduction combined with the first-fail principle, on the other
hand, manages to solve the problem creating only the small search tree showed below
in Figure 3.4.



15

Sol(d:[2#8] e:[4#7] m:1 n:[5#8] o:0 r:[2#8] s:9 y:[2#8])

Sol(d:[2#8] e:[5#7] m:1 n:[6#8] o:0 r:[2#8] s:9 y:[2#8])

Sol(d:7 e:5 m:1 n:6 o:0 r:8 s:9 y:2) Sol(d:[2#8] e:[6#7] m:1 n:[7#8] o:0 r:[2#8] s:9 y:[2#8])
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� ��������� is the process of taking a problem from its original problem space to some
simpler, abstract space. The idea is that it should be easier to solve the problem in the
abstract space, and that the abstract solution should be used when solving the original
problem. This often reduces the effort to solve the original problem.

In the area of artificial intelligence, AI, abstraction has been thoroughly studied. A
large number of problem-solving systems that use the idea of abstraction have been
implemented and studied. Examples of such systems, presented in [Yan97], are GPS,
ABSTRIPS, LAWLY, NOAH, NONLIN, MOLGEN, SOAR, SIPE and ABTWEAK.

In this work, an attempt is made to use the ideas of abstraction for scheduling
problems instead of AI problems, �
���������� 

$�. The scheduling problem and the
planning problem are somewhat different.

In scheduling, the task is to allocate the resources necessary for some action. This
must be done in such a way that the result is a valid schedule. Additionally, it might
be desirable to achieve a schedule for which some cost function is minimized.

In planning, there are normally specifications for the effect that an action has to the
outside world. This outside world is modeled by the use of states, and each action
changes the state of the outside world. There may be preconditions specifying that a
certain action may only be performed from certain states.

This section gives a brief description of what has been done in the field of abstraction
in AI. In AI, the problems to be solved are often referred to as �
���. Therefor, the
term �
�� will be in this section.

#������
���
������	������	�

There are several approaches when creating an abstraction. A common way is to use
an � ����������	�
����	�. Such a hierarchy reaches from the original �����
�
 plan,
possibly through several intermediate levels of abstract plans, to the most abstract
plan. This creates an abstraction hierarchy, which may look as in Figure 4.1 (from
[Yan97]). The figure shows that on the highest, most abstract level, the plan to solve
is relatively small, whereas on the concrete level, the plan is large.
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The process of obtaining a solution is to

• Solve the plan on the highest, most abstract level

• �
���
 it to account for the missing components when taking it to the next, lower
level (for a further discussion of refinement, see below), and

• Iterate until the concrete level is reached.

An example of the use of abstraction hierarchies is a simple routing problem:
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Example 4.1 shows an example of a situation where all steps are ordered. Each step
has to be either before or after every other step. Situations like this, where all steps are
ordered with respect to every other step, are called ����
����
��.

An example of a situation where there is no total order is found in example 4.2. Here,
there is an order between a step and some, but not all, of the other states. Such a
situation is called a ������
����
�.
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When the decision has been made to use a hierarchical abstraction model, there are
several approaches to how to build this model. This section presents a short overview
of various abstraction methods. Further details can be found in [Kno94].

&�$�!���������	�����
��

If State abstraction is used, a hierarchy of abstraction spaces is introduced. For each
abstract level, the plan is somewhat simpler than on the previous, more concrete level,
as in Figure 4.1 above. The problem is first solved in the most abstract space. It is then
refined at successively more detailed levels. The solution from a more abstract level
can be used when solving a plan on a more concrete level.

&�$�$�)�	��������������	

An alternative approach which, is quite similar to state abstraction, is to use abstract
operators. As before, an abstraction hierarchy is introduced. On each level there are a
number of operators – rather few on the most abstract level, and considerably more on
the concrete level. For each hierarchical step, the number of operators and the detail of
each operator are increased.

It should be noted that the difference between abstract operators and state abstraction
is small. In fact, as shown in [Kno94], abstract operators can be used to implements
state abstraction.

The routing situation in Example 4.1 above shows the use of abstract operators.

&�$�����������������	

When the concepts of state abstraction and abstract operators are combined, the result
is macro operators. The idea is to combine several operators into a macro operator. A
number of such macro operators together form a $�������� 

$�����
, and the
abstraction hierarchy is built of a number of such spaces. Once the problem has been
solved in a macro problem space, the concrete problem is solved, since a macro
operator encapsulates the effect of several operators.
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Does the existence of a solution to a plan on some level guarantee the existence of a
solution at some other hierarchical level? [Yan97] defines two properties that deal
with this issue: Upward solution property and Downward solution property.

&���!�*�+����	����
����������'

Consider an abstraction hierarchy, where there are one or more abstract plans PA and
one concrete plan PC. If the existence of a solution to a concrete plan PC implies the
existence of a solution to an abstract plan PA,	then the hierarchy satisfies the ��+���
��
����������
���.

In the definition of the upward solution property, the levels are numbered from 0, as
the concrete level, up to N, which is the most abstract level, as shown in Figure 4.2.
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If an abstraction hierarchy fulfills the upward solution property, and there is no
solution for a problem at an abstract level, there is no solution at any lower level
either. In such cases, a top-bottom approach is a good way to traverse the hierarchy. If
there is no solution at a certain abstract level, then there is no need to continue the
search at lower levels. It can be stated that there is no solution simply by solving an
abstract level plan.

&���$�,�+�+����	����
����������'

If a hierarchical structure fulfills the condition that whenever there is a solution on an
abstract level, there exists a solution at the concrete level, then the hierarchical
structure fulfills the ��+�+������
����������
���.
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If this property is fulfilled, and there exists a solution at any abstract level, then there
exists a solution at the concrete level. That is, as soon as a solution is found on an
abstract level, the downward solution property guarantees that there is a solution to
the concrete plan. In addition it follows from this property that if there is no solution
at the concrete level, there are no solutions at any higher level either.

#�#�)	
��	�	�
��	
����

The upward- and downward solution properties deal with the existence of solutions in
a useful way. But they do not say anything about the exact relationship between two
solutions at different levels. No matter which abstraction method is used; when an
abstract plan is taken to a lower level, it must be extended by additional steps.
This extension is called �
���
$
�� and can be done in several different ways.

Below two different types of refinement are discussed: 5��+���2�	������"�����
2���
�
�
���
$
�� and  ��D+���2�	������"�������
����
���
���
$
��� A property of the
refinement, $����������
���
$
��, is then presented.

&�&�!�-��+���.���
�
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The idea behind forward-chaining, total order refinement is to introduce gaps when
taking a plan from a higher level down to a lower, more concrete level. When the plan
is refined at the lower level, every gap is filled with new steps.
Figure 4.2 (from [Yan97]) shows an example of how gaps are introduced and filled
with additional steps as a plan is taken to a lower level.

Initial Step 1 Goal

Step 2

!!!

Plan at an abstract level

Gap 1 Gap 2

Step 1Initial

!!!

Goal

Step 2

Step 2Step 1Initial Goal

2.1 2.2 !!!1.1 1.2

Plan at a more concrete level
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The gaps are filled using a length-first method starting from the Initial<state at the left
and advancing towards the Goal-state at the right. In the construction of state 1.1, the
preconditions that must be considered are specified in the Initial-state.
When advancing to state 1.2, the preconditions are obtained by applying the plan
<Initial => 1.1>. For step j, the preconditions are obtained by applying
<Initial => 1.1 => ... => j-1>.

This process continues until all gaps have been filled with new steps, and the Goal-
state is reached.

&�&�$�"��#+���.���
�
��������
�����������

������

For partially ordered plans, the approach is somewhat different. Assume there is a
partially ordered abstract plan P. When taking P to a lower abstraction level, each step
is replaced by its corresponding step on the lower level. An abstract step may have
several corresponding steps on the next lower level. If this is the case, one of these
steps is chosen, and the others are saved. If the plan is impossible to solve, it is then
possible to go back and check if one of the saved steps work.

The refinement process is then to plan the lower level in such a way that the
preconditions of each step are fulfilled.

Figure 4.3 shows the process of backward-chaining, partial order refinement.
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A refinement that preserves the order between all steps calculated on a higher
abstraction level, and where no steps from the abstract plan are deleted or moved is
called a $����������
���
$
��. When using a monotonic refinement, a plan will never
decrease in size when it is taken from one level to a lower, more concrete level.

Example 4.1 above (on page 17) fulfills the monotonic refinement property.
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In order to make the TUFF system familiar to railroad planners, most of the terms are
originally railroad terms. However, sometimes a term has been used to denote several
different things. In these cases, to avoid ambiguity, a new term has been introduced in
the system.

The terms used in the system are explained in text, and also presented graphically
below.

�5�5��� A station is a location where trains may be turned or shifted to a new
track. In addition, stations are the only places where a train may
overtake another train.

����8�6 Headway is the minimum time period between two trains going in the
same direction on a track, i.e. the safety distance in time.

���:= A track is the physical connection between two locations. Once a train
has started on a track, there is no way of turning back until the end of
the track is reached.
Tracks may be double tracks or single tracks. If the track is a double
track, the different directions of the track have individual ids (and can
be considered two different tracks). If there for instance are two double
track between A and B with ids T1 and T2, then T1 will go from A to B
and T2 from B to A.


�54 A path is an ordered series of tracks connecting a start and an end
station. For instance, the path between Stockholm and Gothenburg may
be
(���-> ���-> ���… ��), where �	 are tracks.

���; A trip is a train traversing a path with pre-defined arrival and departure
times. These times may also be intervals.

�7�5 A slot is the minimal part of a trip. Several slots, placed in order, form
a trip. Each slot represents the traversal of a track and the stop at a
station. For instance, a trip departing from Stockholm at 12.04 towards
Gothenburg may be (#��-> #��-> #��… #�), where #	 are slots.
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���;��5 A tripset is a set of trips and corresponding slots. It is used as problem
specification to the schedulers of the TUFF system. The result of a
scheduling is also stored in a tripset.
Tripsets are the basic building blocks in the TUFF system. They are
modeled as single assignment structures, i.e. once a tripset has been
instantiated, it can not be changed. All operations in the system are
done on tripsets.

��5 A net is built from locations, tracks and paths. It determines how these
elements are connected.

These definitions are perhaps easiest to understand through examples. Figure 5.1
illustrates the concepts of locations, tracks and paths, and Figure 5.2 the relations
between slots, trips and tracks.

 

Location C

Location A

Location B

Track T1

Track T2Track T3

5����
�(��������D�"�
����������������	�������D��������������$������	� 
�+

�

��������������
��������-�



25

Stockholm

Gothenburg

Trip 1 Trip 2 Trip 3

Departing
13.08

Departing
14.08

Departing
15.08

Slot11 Slot19 Slot42

5����
�(���������"��
�����������D���#
�
��
�����������
��
��	
���$
�����D� 
�+

���+�

����������=��	�������������������
�
��
��
������	
��
����
������
+��������
��	�����"
�
�	���	��	
�����
��
������D�����	
���$
�

$���+�	������
	�
��	��
�+,��

TUFF has an agent-based architecture, which consists of a number of independent
agents: A coordinator, a train scheduler, a vehicle router and (in a near future) a
personnel scheduler.  In addition to these vital parts, a Graphical User Interface (GUI)
is used for communication between the TUFF system and the user. Data necessary for
the system is stored in Nets and Tripsets. The relations between the components can
be seen in Figure 5.3.

A ��������	
��

� creates timetables, a �
	��

�����
� assigns cars and locomotives to
trains, and a �
�����

���	
��

� assigns personnel to trains. See Section 1
Introduction for a brief description of the various types of planning mechanisms
necessary in a railroad planning system.
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The application uses two different languages: Prolog, a constraint logic programming
language, which is used for calculation and constraint programming, and Mozart/Oz, a
high-level language used for graphics and communication between agents.

The entire application is controlled through the GUI, which is connected to the
coordinator. A user can give orders to the coordinator via the GUI. These orders are
then propagated to the agent involved in the operation. If the agent is in need of
further information, it asks the coordinator, using one of the pre-defined protocols for
questions. When the agent has finished its task, it returns the solution to the
coordinator, which may present the result graphically to the user.
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The objective of the coordinator is – as the name implies – to coordinate all activities
in the system. The responsibilities for the coordinator are:

• Handling input and output to/from the user. The coordinator is the only
component connected to the GUI, and is therefor responsible for the management
of all user requests.

• Propagating user orders to the train scheduler, the vehicle router and the personnel
scheduler.

• Keeping a database of all Tripsets generated by the system.
• Responding to requests from the train scheduler agent, the vehicle router agent and

the personnel scheduler agent. These requests may be to get a specific Tripset, or
to get information about the Net.

 �$�$��������
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The train scheduler is divided in two parts:

One part written in Mozart/Oz. This part handles the communication with the
coordinator and with the Prolog part, but does very little about the scheduling. Hardly
anything is stored in the scheduler itself – all necessary information must be retrieved
from the coordinator by using various method calls. Some of the data must then be
converted before it can be passed on to the Prolog part of the scheduler. Sending all
information as text strings solves the differences in representation in Mozart/Oz
compared to Prolog.

The Prolog part is the one that does the actual work. It uses constraint programming
techniques to calculate the schedule. See Section 3 Constraint programming for
further information about constraint programming.

Based on the information it gets from the Mozart/Oz scheduler, the Prolog scheduler
tries to calculate a valid schedule. The data sent is:

• A number of specifications for 5��;�! In each specification, a departure time and an
arrival time are specified. The paths for the trips are specified as well as all tracks
the trip traverses on its way. For each trip a number of locomotive types are
allowed. The total time for a trip and the total waiting time at stations are also
limited.

• The necessary resources. This includes all �5�5���� involved in the trips. Each
station has an id, a minimum turn time - which determines the time it takes to turn
a train - and a number of tracks.
In addition, all 5��:=�	traversed by the trips are sent together with a specification
of the time period when a trip traverses the track, and the direction the track is
traversed in. Each track has a headway, which determines the minimum safety
time distance.
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• Optionally, ��7�5���� can be sent. These relations state that there should be a
specific order between the arrival/departure of two trips or two slots, possibly with
some offset. In the case of trips, the following may be specified: ‘The train from
Stockholm to Gothenburg (with trip id X) should arrive 5 minutes before the train
from Gothenburg to Karlskrona departs’. The vehicle router may produce relations
when creating a vehicle route. These relations can then be used in the train
scheduler, and thus be used to create a complete schedule, involving both a train
schedule and a vehicle route. See Section 6.6 Creating relations for further
information about relations.

All these restrictions are used to create constraints. The resulting problem is then a
constraint satisfaction problem (CSP). CSPs can be solved by using subroutines in
Prolog. The generated solution is guaranteed to be valid. Alternatively, no solution is
found.

When a train schedule has been calculated, a textual representation of the schedule is
sent back to the Mozart/Oz part of the train scheduler. There a new Tripset containing
the solution is created. The Tripset is sent back to the coordinator and stored in a
database.

 �$����������
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The structure of the vehicle router is similar to that of the train scheduler. It consists
of a part written in Mozart/Oz, and a part written in Prolog.

The Mozart/Oz part handles communication between the coordinator and the Prolog
part. Data is retrieved from the coordinator and sent in a text string representation to
Prolog. When the result is returned from the Prolog part, it is transformed to a format
meaningful to the coordinator. Some effort is also made to create relations between
the trips involved in the solution. The handling of these relations is presented in
Section 5.2.2 The train scheduler above.

The Prolog part does the actual calculation of the vehicle router. In the current version
of the system, a variation of the insertion heuristic is used. A heuristic is an attempt to
use trial-and-error in an intelligent way for solving large problems. The insertion
heuristic is the best known heuristic for this type of problems [Sol87]. It produces a
valid but not optimal result. However, the worst-case performance is very poor
[Sol86]. Nevertheless, the system currently used by the Swedish Railway (SJ), uses
similar techniques [DHKK97].

 �$�&�����/*0

A Graphical User Interface is used to handle all communication with the user. The
GUI can be seen in Figure 5.5 (from [Mar00]). Through the GUI, the user may choose
a tripset to schedule. He or she may also choose whether data from previous
scheduling should be used.

When a scheduling is finished, it is possible to have the result presented graphically.
For a vehicle route, the entire result is presented in the same window. For a train
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schedule, it is possible to choose a part of the path that should be presented. It is then
shown in a separate window.

5����
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�1���	���
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�����J55�

The GUI also does some fault handling to prevent illegal requests to reach the
coordinator. When an error occurs, a message containing the problem is presented to
the user, who may adjust the input to get a proper result.
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The main goal of this work is to investigate how abstractions can be used in TUFF.
There are several reasons to introduce abstractions. AI research has shown that
abstractions may drastically speed up the scheduling process [HMZM96] [HPZM96].
In addition, the notion of abstractions provides a more flexible way of representing
data. Abstractions can for instance be used when combining a solution and a problem.
The important parts of the solution can be extracted, and then the solution and the
problem combined.

In this section, the various abstraction methods that have been implemented are
discussed. The testing process of these abstractions and the testing results can be
found in Section 7 Tests and results.

%������
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Given a scheduling problem in the railroad domain, there are several ways of
abstracting it. Whether a method yields a good result or not is highly dependent of the
nature of the problem. In most cases, it is necessary to examine several methods
before the optimal method is found.

Some of the abstraction and concretion methods that may be usable are:

• ��7���5���� Assume there is a scheduling problem with departure times and
arrival times. Let these times be fixed times or time intervals. If a departure or
arrival time is an interval, enlarge the interval. If the time is fixed let it become an
interval. The times have then been relaxed.

• �5����54������	The opposite of relaxation, i.e. intervals are narrowed and fixed
times are left unchanged.

• ��5	�3�5��:5���� Given a number of slots and trips in a tripset, create new slots
such that each new slot corresponds to one or more of the previous slots. The
result is a tripset with a reduced number of slots, and less details than the original.

• ��5	���������5� When net abstraction has been used on a tripset, net refinement
can be used to take the tripset back to its original state. Each slot in the abstract
tripset is replace by the corresponding original slots. Information from the abstract
slot is transferred to the original slots.

•  ���5���	��7�5����� From a solution to a scheduling problem, relations between
trips and/or slots can be computed. These relations can then be added to a relaxed
version of the solution. To create and add relations is actually to make a problem
more concrete rather than more abstract, but it may be used for abstraction if it is
combined with relaxation.
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These methods will be defined and more thoroughly described in the following
sections. It should be noted that the presented abstractions are local for a tripset. This
means that when an abstraction is performed on one tripset, no other tripsets will be
affected. The methods that have been implemented and tested in this work are
Relaxation, Net abstraction, Net refinement and Creating relations.

%���)	��-�
���

Relaxation is to enlarge the domains for departure and arrival times. The domain of
the traversal time as well as the waiting time at a station may also be enlarged.

A formal definition of relaxation (from [Kre00]) is:

�
���������,����If ρ 	is an relaxation operator it must satisfy:

1. ρ (Tripseti)  =   < ρ (Trips(Tripseti)), ρ (Rels(Tripseti)) >
ρ (Trips (Tripseti))  =  { ρ (Tripik)}, �D ≤≤1  where � is the number of trips in
Tripseti and
Trips(Tripseti) is an operator which extracts all trips from Tripseti,
Rels(Tripseti) is an operator which extracts all relations from Tripseti.

2. ρ (Rels(Tripseti)) ⊆  Rels(Tripseti)

3. ρ (Tripj)  =			>	Idj, ρ (Depj), ρ (Travj), ρ (Arrj), ρ (Turnj),
< ρ (Slotjk) ... ρ (Slotjn)>>, �D ≤≤1 , where n is the number of slots in Tripj.
Dep, Trav, Arr and Turn represent the intervals of departure, traversal, arrival and
turn time respecitvly.

4. For each trip 6 in Tripseti: Depij ⊆ ρ (Depij), Travij ⊆ ρ (Travij), Arrij ⊆ ρ (Arrij),
Turnij ⊆ ρ (Turnij).

5. For each slot D�in each trip 6 in Tripseti: Depijk ⊆ ρ (Depijk), Travijk ⊆ ρ (Travijk),
Arrijk ⊆ ρ (Arrijk), Turnijk ⊆ ρ (Turnijk)

When a tripset in TUFF is relaxed, the domains of the departure time, arrival time,
traversal time and turn time of all or some trips and slots of that tripset may be
enlarged. Example 6.1 presents the idea of relaxation.
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Let Trips(Tripseti), Rels(Tripseti) be defined as in Section 6.2 above, and Dep, Trav,
Arr and Turn represent the intervals of departure, traversal, arrival and turn time
respecitvly.

A strengthening operator σ can then be defined.

�
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���	
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������
σ is a strengthening operator if it satisfies

1. σ (Tripseti)  =   <σ (Trips(Tripseti)), σ  (Rels(Tripseti)) >

2.  σ (Rels(Tripseti)) ⊇  Rels(Tripseti)

3. σ (Tripj)  =			>	Idj,�σ (Depj),�σ (Travj),�σ (Arrj),�σ (Turnj),
<σ (Slotjk) ... σ (Slotjn)>>, �D ≤≤1 , where n is the number of slots in Tripj.
Dep, Trav, Arr and Turn represent the intervals of departure, traversal, arrival and
turn time respecitvly.

4. For each trip 6 in Tripseti: Depij ⊇ σ (Depij), Travij ⊇ σ (Travij), Arrij ⊇ σ (Arrij),
Turnij ⊇ σ (Turnij).

5. For each slot D�in each trip 6 in Tripseti: Depijk ⊇ σ (Depijk), Travijk ⊇ σ (Travijk),
Arrijk ⊇ σ (Arrijk), Turnijk ⊇ σ (Turnijk)

%�#�.	
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Net abstraction is a way to reduce the number of slots and tracks in a tripset by
merging several slots into one abstract slot, and several tracks into one abstract track.
The abstraction can be used in two ways:

1. Net abstraction can be used to produce an abstract schedule.
In this case, a tripset is abstracted and then scheduled, and the result is considered
the complete schedule, although arrival and departure times have not been
calculated for all slots.

2. If a more detailed schedule is desired, scheduling can be done in two steps.

First, an abstract schedule is calculated (as in 1). Then net refinement is used to
replace the abstract slots with the original, concrete slots, and the abstract tracks
with the original tracks. Information is transferred from each abstract slot to the
corresponding concrete slots. This means that some of the arrival times, traversal
times, etc. in the concrete slots will be fixed, and some will still be intervals.

Second, another scheduling of the concrete slots determines the times that have
not yet been fixed. The result is a complete, concrete schedule.
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To calculate a schedule in two steps, as in 2, may seem complicated and time
consuming. However, AI research has shown that this type of hierarchical scheduling
may reduce the computational cost of solving the problem [Yan97]. This is also the
case here. As can be seen by the evaluation in Section 7 Tests and results, both the
computational cost and the memory usage is reduced when compared to ordinary
scheduling in one step.

1�&�!�)�	������	���	

Define the ordinary slots in the TUFF system as �����
�
��
���� Abstract slots are then
created by merging one or more concrete slots. The technique used is comparable to
State abstraction, which is presented in Section 4.2 Abstraction methods.

Assume that an abstract slot �� should be created based on the concrete slots
��, ��, …, ��. Then the following properties should hold:

• Departure time(��)=Departure time(��)
• Arrival time(��)=Arrival time(��)

• Traversal time(��)=∑
�

�

�

��$
����
���

1

)(
�
�  + ∑

−1

1

)(
�

�

�


�����������$
I������
�
�

• Waiting time at station(��)=Waiting time at station(��)
• Headway(��)=max(Headway(��), Headway(��), …, Headway(��))
• Origin(��)=Origin(��)
• Destination(��)=Destination(��)

 Example 6.2 shows how abstract slots can be created from concrete slots.
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 As previously mentioned in the description of the TUFF system, Section 5.1
Definitions, each slot is associated with a track. This should be the case also for
abstract slots. Therefor it is necessary to introduce the concept of � �����������D�.

 The idea is that each abstract slot is associated with an abstract track. An abstract
track is created based on several concrete tracks. To be useful, the abstract tracks must
fulfill the following conditions:

• The concrete tracks covered by the abstract track form a route from the origin to
the destination of the abstract track.

• Each concrete track may appear in only one abstract track.
• An abstract track can be considered a double track only if all concrete tracks

covered by this abstract track are double tracks, and go in the same direction.

An example will clarify how abstract tracks are created.
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The implementation of net abstraction is intended to be as safe as possible. Ideally, the
net abstraction should fulfill the downward solution property. However, this is not the
case. In fact, examples can be created where problems with both tracks and stations
prevent a refined schedule from being solved.

%�$�.	
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When an abstract tripset has been scheduled, it must be refined to get back to the
concrete level. The implementation of net refinement is rather straightforward. The
abstract slots are simply replaced with the concrete slots they cover. Then the arrival
time for each abstract slot is assigned to the first of the covered concrete slots.
Similarly, the departure times are assigned to the last covered slots. The resulting
concrete tripset can then be scheduled.

Referring to Section 4.4 Refinement methods, the method used for refinement is
forward-chaining, total order refinement. This is a natural choice since each trip can
be seen as a totally ordered plan, with slots being the elements of the plan. The
refinement method fulfills the monotonic refinement property. As can be recalled
from Section 4.4.3 Monotonic refinement, this property states that the plan will not
decrease in size during refinement. Furthermore, the order calculated in the abstract
plan remains unchanged in the refined plan.
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The idea behind relations is to solve a large scheduling problem in smaller parts.
When these parts have been solved, relations between trips and/or slots in each part
can be created. The entire problem can then be solved with these relations added.
When solving the entire problem, the relations will provide guidance for the constraint
programming system. Big parts of the search tree can then be ignored, and the search
can be focused where it is likely to find a solution.

Relations can be created in several different ways; between slots or between trips,
between arrival times or departure times, and based on locations or tracks. To create
relations between trips is to specify that one trip should arrive or depart before some
other trip. Relations between slots specify that a slot should arrive or depart to a
location or on a track before some other slot. That is, relations between trips specify
orders at end locations or end tracks, whereas relations between slots specify orders at
any location or track.

The way relations are created can be specified by a list with three elements:

[trip/slot, track/location, departure time/arrival time/both].

It is then easily verified that there are (2*2*3=) 12 possible ways of creating relations.
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Let trip A arrive on track TA, trip B leave on track TB, trip C leave on track TC, and
trip D and E arrive on track TC. Order all trips at this location by examining the arrival
times for the arriving trains A, D and E, and the departure times for the departing
trains B and C. There will then be an order between all five trips.

If a set S consisting of the five trips is created, then S will be a totally ordered set.
Using the notation from Section 2 Mathematical foundations, � can be represented as
� = {<A, B, C, D, E>}.

Each departure and arrival is related to every other departure and arrival. The ordering
may for instance be (A<C<B<D<E). This would mean that the first thing that happens
is that A arrives at L. Then, C leaves, B leaves and D and E arrive.

1�1�$������
��������
��	���������
�����	
	�
������
�������������������
��

��
�
�����'

A similar approach to the one presented above is to maintain the order among the
arriving trips and the order among the departing trips, but ignore the relations between
arriving trips and departing trips. In this way, no departure will be related to any
arrival, but to all other departures. Similarly, each arrival will be related to every other
arrival, but not to any of the departures. Referring to Example 6.4 above, this will
create relations between trip A, D and E, and between trip B and C. The set of
relations will contain two chains, that is
� = {< A, D, E >, >	B, C >}.
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In some situations, it may be interesting to create relations that only deal with arrival
times. Once again referring to Example 6.4, the set of relations will contain only one
chain – the one that involves the arriving trips. That is, � = {<A, D, E>, B, C}.

Ordering by departure time is similar to ordering by arrival time. The only difference
is that different trips will be involved in the resulting relations. In this case, still
referring to Example 6.4, the set of relations will be �	= {<B, C>, A, D, E}.
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When relations are created on a track basis, the situation is slightly different. All trips
or slots that depart on a track must also arrive on that same track. Therefor, the set of
relations is independent of whether relations are created on arrival time, departure
time or both.

As mentioned in Section 5.1 Definitions, there are two different types of tracks: single
tracks and double tracks. For a single track, there is only one track between two
locations. There can only be trips going in one direction on that track at the same time.
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However, if there are double tracks between two locations, two trips may go in
opposite directions simultaneously.

Consider Example 6.4. The situation is once again shown in Figure 6.1 below.
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Suppose the trips C, D and E run on a double track. C will then run on one track,
going away from L. D and E will run on another track, going towards L. Since A and
B are going in different directions, they will have separate tracks. However, C, D and
E may all run on a single track. If this is the case, then C cannot be on that track
simultaneously with D or E, but D and E may be on the track as long as the headway
time – that ensure the safety distance – is respected. Thus on a single track, all trips or
slots arriving or departing to a location on that track will be related.

If relations are created for all tracks connected to location L, and C, D and E run on a
single track, the set of relations will be � = {<A>, <B>, <C, D, E>}. However, if C, D
and E run on a double track, D and E will be considered to go on a different track
from C, and the set of relations becomes less restricted. The set then becomes
�	= {<A>, <B>, <C>, <D, E>}.

In fact, a single track will always give a more restricted set than a double track. This is
because on a single track, trips or slots in both directions must be considered, but on a
double track, only trips or slots in one direction can be considered.
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The methods to create relations described above give various restrictions for a
location or a track. The order of the set S from Example 6.4 ranges from total order to
almost no order at all. In this section, the grade of restriction for the methods that
create relations is investigated. A few definitions are necessary for this task.
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Let there be a location L. Let the tracks connected to this location be T1, T2, ..., TN. To
reach the station L, one of the tracks Ti must be traversed. Create two sets of relations:
One set S1 for arrival and departure time for all slots or trips at L, and one set S2 for
all slots or trips traversing a track Ti, G� ≤≤1 . Since all slots or trips in S1 are related,
S1 will be a totally ordered set. Furthermore, all trips or slots that reaches L must have
traversed one of the tracks connected to L. This means that the relation BaseEl(S1) =
BaseEl(S2) must hold. S1 is totally ordered (see above). Since there is no stronger
ordering restriction that a total order, S1 is as least as restricted as S2. The statement S2

LessRes S1 with the operator lessRes defined as below will therefor hold.
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≤≤≤≤⊆∀ 1,1,: 21

A set of relations obtained by creating relations on departure time and arrival time
individually is always more restrictive than a set obtained when creating relations only
on departure time or only on arrival time. The reason is of course that the former set
considers both arrivals and departures, but the later set only considers either arrivals
or departures. As described above in Section 6.6.4 Creating relations on track basis,
the situation is similar when dealing with double or single tracks. Creating relations
for a single track always gives a more restrictive result than for a double track.

The structure of the methods of creating relations is shown in Figure 6.2. This
structure holds for all possible cases where tracks are connected to a location. The
observant reader may note that the presented structure is almost a lattice. If the single
track case was removed, each pair of elements would have a unique join and meet,
and the structure would thus be a lattice.
(The set S in the figure refers to the Example 6.4).
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No order.
S={A, B, C, D, E}

Double Track
S={<D, E>, <A>, <B>, <C>}

Single Track
S={<C, D, E>, <A>, <B>}

Location, departure and arrival individually
S={<A, D, E>, <B, C>}

Location, departure
S={<B, C>, A, D, E}

Location, arrival
S={<A, D, E>, B, C}

Location, departure and arrival
S={<A, B, C, D, E>}
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Which type of relation should then be used in practice? The answer to that question is
that there is probably no single ‘best’ type. The type of relations that suits one
problem best is likely not optimal for some other problem. In Section 7.3 Creating
relations, experimental results of using various methods for creating relations can be
found.
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This section presents the results of using abstraction, and creating and adding
relations. In the first subsection, the result of using abstractions is shown. Then the
effects of creating and adding relations are shown. Finally, a number of strategies are
presented. These strategies involve both abstractions and creation of relations.
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The tests were performed on a network of tracks based on real data. The main paths
used were the two different routes between Stockholm and Gothenburg. The first
route goes south of Mälaren, via Katrineholm. This is the main route for personnel
traffic, and consists almost exclusively of double tracks. The second route goes north
of Mälaren, via Örebro. This route is used mainly for freight transports. It consists
largely of single tracks. The routes can be seen in Figure 7.1.

Stockholm

Hallsberg

Gothenburg

Mälaren

Katrineholm

Örebro
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In the representation of the network, the path from Stockholm to Gothenburg via
Katrineholm consists of 35 tracks connecting 36 stations. The second path, from
Stockholm to Gothenburg via Örebro, consists of 63 tracks connecting 64 stations.
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The net abstraction mechanism was evaluated on the route from Gothenburg to
Stockholm via Katrineholm. The number of trips was varied between 19 and 104
trips, all scheduled on one single day. The abstract scheduling was performed in two
steps:

1. First, the tripset was abstracted. The abstraction made is of various degrees.
‘Light abstraction’ reduces the number of slots by 50 percent. ‘Hard abstraction’
reduces the number of slots by 80 percent. ‘Really hard abstraction’ reduces the
number of slots as much as possible, that is, it removes all slots not connected to
end stations.

2. Then the abstracted tripset was scheduled.

3. The abstract schedule was refined, and scheduled once more to get a concrete
schedule.

The total processing time for all steps was measured, and compared to the processing
time of the concrete scheduling. As can be seen in Figure 7.2, the time required for
scheduling is up to 4 times shorter for the best type of abstraction than for the concrete
scheduling. Furthermore, the abstract scheduling requires less memory than the
concrete scheduling. In fact, the concrete scheduling was unable to handle more than
about 2500 slots due to lack of memory. The best abstraction used less memory, and
managed 5500 slots.
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The test revealed that the different degrees of abstraction gave very different results.
An interesting question is how far the abstraction should ideally go – how many
concrete tracks should ideally be replaced with one abstract track? This was examined
in a second experiment. As before, the route used was the one from Stockholm via
Katrineholm to Gothenburg. 48 trips and 2712 slots were scheduled with different
amount of abstraction, and the processing time was measured. As can be seen in
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Figure 7.3, the time for scheduling the refined tripset is about constant. Scheduling the
abstract tripset, on the other hand, is an almost linear function of the number of
abstract slots, that is, the amount of abstraction. Only maximum abstraction differs
from the pattern. Apparently, at such a high level of abstraction, it becomes harder to
find solutions to the problem.

As earlier mentioned the route Stockholm-Katrineholm-Gothenburg consists mainly
of double tracks. This makes scheduling this route relatively easy. The conclusion is
that for such ‘easy’ problems, net abstractions works well, especially if a high degree
of abstraction is used.
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This section presents an evaluation of using relations between trips or slots to improve
scheduling performance. The idea is that the relations should guide the search by
cutting out undesired parts of the search tree during the scheduling.

Two different tests have been made. In both tests, the same method has been used.
The scheduling problem was split in two parts of about equal size. Each part was
scheduled individually, and relations were extracted. Then the entire problem was
scheduled, with the relations added.
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The settings for the first test are similar to those of the abstraction tests. 48 trips are
scheduled, all of them going from Stockholm to Gothenburg. 24 of them go via
Katrineholm, and 24 of them via Örebro. The trips going via Katrineholm where
scheduled as one set, and the trips via Örebro as another. From these sets, relations
were created. The relations were used when all of the 48 trips were scheduled
simultaneously.

As can be seen in Table 7.1, performance depends both on the number of relations and
whether relations are created on a slot or a trip basis. Generally, relations created on
trips basis are faster than those on slot basis are. In fact, for these settings the total
scheduling time is only reduced if relations are created on trip basis.
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No relations, ordinary scheduling 0 11,4

Locations, departing trips 30 6,9

Locations, arriving and departing
trips

60 7,1

Locations, arriving trips 30 7,8

Locations, departing slots at [CST] 30 11,0

Locations, departing slots at [HPBG] 30 11,2

Locations, arriving slots at [G] 30 11,9

Locations, arriving and departing
slots at [CST HPBG G]

90 19,2
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The conclusion of this test is that relations created on slot basis give too much
overhead, and therefor the performance improvement is small – in same cases
performance is even worse than without relations. Relations created on trip basis, on
the other hand, may reduce the scheduling time. It can also be noted that the
scheduling times when using relations based on arrival times is somewhat longer than
when using relations based on departure times.
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The second test is larger, and harder to solve. 86 trips are scheduled, mainly on the
route from Stockholm via Örebro to Gothenburg. 39 of the trips are freight trips, and
47 personnel trips. As can be seen in Table 8.2, relations created on trip basis give
better performance than those created on slot basis. Note that when relations are
created on the slots passing [HPBG] (Hallsberg) – which include most trips – the
restrictions posed by the relations were too hard, and it was impossible to calculate a
valid schedule. For relations at [HSA], where fewer trips pass, it was possible to
calculate a schedule, but also in this case the restrictions were hard, and the
scheduling time-consuming.
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No relations, ordinary scheduling 0 68,9

Locations, departing trips 68 24,3

Tracks, departing trips 67 24,7

Locations, arriving and departing
trips

151 26,4

Locations, arriving trips 67 26,8

Tracks, arriving trips 65 26,8

Locations, arriving and departing
slots at [HSA]

45 49,9

Locations, arriving and departing
slots at [HPBG]

56 No solution
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It is also in this test evident that relations created on location basis give a better
performance improvement than those created on slot basis. However, as long as
relations are created on location basis, it only makes marginal difference if they are
based on locations or tracks, and on arriving or departing trips.

/�#��
��
	"�	�

In the last sections, the effects of using abstraction and the effect of using relations
have been presented. This section shows how abstraction and relations can be
combined. Such a combination will be referred to as a �����
����A strategy can be
formulated by using a script language such as TUFFScript, which is presented in
Appendix B - TUFFScript. The idea behind TUFFScript is similar to that of [CLS99].
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There an ‘algebra’ for a constraint programming system is presented. The ‘algebra’ is
used as a script language, and it is shown that a learning algorithm, which uses the
‘algebra’, can improve performance of the system. However, in TUFFScript there is
no learning. All strategies have to be manually generated.

Four different strategies have been developed and tested. The testing has been made
on the two routes from Stockholm to Gothenburg – one of them via Örebro, and one
via Katrineholm. The routes have common tracks from Hallsberg to Gothenburg. The
routes can be seen in Figure 7.1. The number of trips and slots is varied from 16
trips/904 slots to 48 trips and 2712 slots. Note that this is relatively simple problem,
since all trips go in the same direction.

The ideas behind the different abstractions are:

1. Concrete scheduling – no abstraction or relations used.

2. The route Stockholm-Katrineholm-Gothenburg, where half the trips go, is
scheduled. Then the route Stockholm-Örebro-Gothenburg – with the other half of
the trips – is scheduled. Relations are extracted from the resulting schedules and
added to the original tripset, which is then scheduled.

3. The route Stockholm-Katrineholm-Gothenburg is abstracted in such a way that
Stockholm-Hallsberg becomes one single slot. It is then scheduled. The same
thing is done with the route Stockholm-Örebro-Gothenburg.
Relations are extracted from the two schedules, and added to the original tripset,
which is then scheduled.

4. Both routes are abstracted in such a way that Stockholm-Hallsberg becomes a
single slot. The tripset is refined. Relations from the tripset are added to itself, and
the tripset is scheduled.

5. As 3, but without adding relations, that is: Abstract Stockholm-Hallsberg to a
single slot. Refine the tripset. Schedule the tripset.

The performance of the strategies can be seen in Figure 7.4. For these settings, the
only strategy that outperforms a simple, concrete scheduling is the one that only uses
net abstraction, and no relations. The conclusion that can be drawn is that this test is
so simple that the extra overhead of propagating the relations makes scheduling
slower than if no relations were used. When using net abstraction the number of
solutions is decreased. Net abstraction works best for problems with many valid
solutions, and therefor losing some solutions is acceptable. The overhead when using
Net abstraction is small, and therefor performance is improved.
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From the testing and experiments in Section 7 Tests and results, it is evident that
abstractions and relations must be handled with care. If properly used, performance is
improved. However, if handled incorrectly, there will be no improvement or – in some
cases – system performance may deteriorate.

The trend that can be observed is that abstraction is useful for ‘easy’ problems with
many valid solutions. Relations, on the other hand, should be used for hard problems.
In those cases it is a good idea to solve the problem in smaller parts, extract relations
from these solutions, and use the relations to guide the search when the entire problem
is solved.

To be useful in a practical system, a script language, which allows the user of the
system to experiment and find the most suitable solving method for a certain problem
is necessary. A definition of such a script language, TUFFScript, has been made. It
has also been implemented and integrated with the system. The definition of
TUFFScript can be found in Appendix B – TUFFScript.

Additionally, other types of abstraction methods than those implemented in this work
may also be useful. Examples of possible operations are time abstraction, location
abstraction and trip abstraction. Furthermore a system, which automatically generates
abstractions, could make the use of abstractions easier to handle and would certainly
be of great scientific interest.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Testfile for relations and abstract slots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Start the TUFF system.
declare SCH CIR
[Agent Coord GUI SAgent CAgent]={Module.link [’agents/agent.ozf’
’coordinate/coordinatorAgent.ozf’ ’graphics/gui.ozf’
’schedule/scheduleAgent.ozf’ ’circuit/circuitAgent.ozf’]}
Show=System.show Coordinator=Coord.coordinatorAgent
NewAgent=Agent.newAgent
ScheduleAgent=SAgent.scheduleAgent CircuitAgent=CAgent.circuitAgent
Ko={NewAgent Coordinator init}
{Ko setTimeRng(day(mon))}
{Ko loadNet(file:’net/new-net.ozf’)}
thread
   SCH={NewAgent ScheduleAgent init(coordinator:Ko pdebug:true)}
   {SCH add}
end
thread
   CIR={NewAgent CircuitAgent init(coordinator:Ko pdebug:true)}
   {CIR add}
end

%% No GUI used for these tests
%declare Gui={New GUI.coordinatorGui init(coordinator:Ko _)}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tests of mixed goods and personell traffic.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test 0: Solve everything in one single shot.
declare Trips={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Stkhlm-Ktrnhlm-Gtbrg6.oz’#"’\n" $}
declare Trips={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Goods_and_P.oz’#"’\n" $}
declare T={Ko addTrips(trips:Trips $)}
declare Tsch={Ko schedule(tripSet:T $)}

% Test 1: Solve the problem in two steps, using relations.
declare Trips={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Goods_and_Pa.oz’#"’\n" $}
declare Trips2={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Goods_and_Pb.oz’#"’\n" $}
declare T1={Ko addTrips(trips:Trips $)}
declare T2={Ko addTrips(trips:Trips2 $)}
declare Tsch={Ko schedule(tripSet:T1 useRels:false $)} %Snabb!
declare Tsch2={Ko schedule(tripSet:T2 useRels:false $)}
declare TSsch={Ko getTripset(id:Tsch $)}
declare TSsch2={Ko getTripset(id:Tsch2 $)}
{Ko saveTripset(id:Tsch file:tsch guiData:g failure:_)}
{Ko saveTripset(id:Tsch2 file:tsch2 guiData:g failure:_)}
declare TS={Ko getTripset(id:Tsch $)}
declare TS2={Ko getTripset(id:Tsch2 $)}
declare Rels1={TS makeRels(extractMeth:[locs depTime trips] $)}
declare Rels2={TS2 makeRels(extractMeth:[locs depTime trips] $)}
declare T3={Ko merge(T1 T2 $)}
declare TS3={Ko getTripset(id:T3 $)}
{TS3 clearRels}
{TS3 addRels(rels:Rels1)}
{TS3 addRels(rels:Rels2)}
{Ko saveTripset(id:T3 file:t3 guiData:g failure:_)}
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declare Tsch={Ko loadTripset(file:tsch guiData:_ $)}
declare Tsch2={Ko loadTripset(file:tsch2 guiData:_ $)}
declare T3={Ko loadTripset(file:t3 guiData:_ $)}
declare TS3={Ko getTripset(id:T3 $)}
declare TS={Ko getTripset(id:Tsch $)}
declare TS2={Ko getTripset(id:Tsch2 $)}
{TS3 clearRels}
declare Rels1={TS makeRels(extractMeth:[locs depTime slots]
locList:[’HSA’] $)}
declare Rels2={TS2 makeRels(extractMeth:[locs depTime slots]
locList:[’HSA’] $)}
{TS3 addRels(rels:Rels1)}
{TS3 addRels(rels:Rels2)}
declare T3sch={Ko schedule(tripSet:T3 useRels:true $)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tests of abstract slots on single tracks.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

declare Trips={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Stkhlm_Orbr_Hllsbrg.oz’#"’\n" $}
declare T1={Ko addTrips(trips:Trips $)}
declare Tripset={Ko getTripset(id:T1 $)}
{Tripset makeAbsSlots(locs:['CST' 'HUV' 'SPÅ' 'JKB' 'KHÄ' 'BRO'
'EKO1' 'GIB' 'VÅV' 'KBÄ' 'MORP' 'ARB' 'ÖA' 'HSA' 'ÖB' 'HPBG' ])}
declare Tsch={Ko schedule(tripSet:T1 useAbstr:true useRels:false $)}
declare Tripset2={Ko getTripset(id:Tsch $)}
{Tripset2 concretize}
declare Tsch2={Ko schedule(tripSet:Tsch useRels:false $)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tests of strategies
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test 0: Solve CST-K-G + CST-ORB-G in one single shot.
declare Trips={Compiler.virtualStringToValue "\\insert
'"#'trips/PHO_Goods_and_P.oz'#"'\n" $}
declare T={Ko addTrips(trips:Trips $)}
declare Tsch={Ko schedule(tripSet:T useRels:true $)}

% Test 1: Solve CST-K-G + CST-ORB-G with relations added
%
% Solve CST-K-G. Extract relations. Solve CST-ORB-G. Extract
% relations.
% Solve CST-K-G + CST-ORB-G with both these relations.
declare Trips1={Compiler.virtualStringToValue "\\insert
'"#'trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlm1a.oz'#"'\n" $}
declare Trips2={Compiler.virtualStringToValue "\\insert
'"#'trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlm1b.oz'#"'\n" $}
declare T1={Ko addTrips(trips:Trips1 $)}
declare T2={Ko addTrips(trips:Trips2 $)}
declare T1sch={Ko schedule(tripSet:T1 useRels:false $)}
declare T2sch={Ko schedule(tripSet:T2 useRels:false $)}
declare Tripset1={Ko getTripset(id:T1sch $)}
declare Tripset2={Ko getTripset(id:T2sch $)}
declare Rels1={Tripset1 makeRels(extractMeth:[locs arrDepTime trips]
$)}
declare Rels2={Tripset2 makeRels(extractMeth:[locs arrDepTime trips]
$)}
declare TJoined={Ko merge(T1 T2 $)}
declare TripsetJoined={Ko getTripset(id:TJoined $)}
declare {TripsetJoined addRels(rels:Rels1)}
declare {TripsetJoined addRels(rels:Rels2)}
declare Tsch={Ko schedule(tripSet:TJoined useRels:true $)}
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% Test 2: Solve CST-K-G + CST-ORB-G in two steps, with relations
% added.
%
% 1.Abstract CST-K-G in such a way that CST-HPBG becomes one single
% slot.
% 2.Abstract CST-ORB-G in such a way that CST-HPBG becomes one single
% slot.
% Solve 1. Solve 2. Concretize the two schedules.
% Extract relations from these schedules. Merge the two original
% tripsets,
% and solve the resulting plan using the relations from above.
declare Trips1={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlm1a.oz’#"’\n" $}
declare Trips2={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlm1b.oz’#"’\n" $}
declare T1={Ko addTrips(trips:Trips1 $)}
declare T2={Ko addTrips(trips:Trips2 $)}
declare Tripset1={Ko getTripset(id:T1 $)}
declare Tripset2={Ko getTripset(id:T2 $)}
{Tripset1 makeAbsSlots(locs:['CST' 'HPBG' 'TÄL' 'LÅ2' 'LÅ' 'GDÖ'
'SLE' 'T' 'MH' 'VÄ' 'SK' 'RMTP' 'SS' 'F' 'FBY' 'HR' 'VGÅ' 'A' 'VBD'
'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P' 'SEL' 'SÄV' 'GSV' 'OR1' 'OR'
'GRO' 'G'])}
{Tripset2 makeAbsSlots(locs:['CST' 'SUB' 'SPÅ' 'KHÄ' 'STT' 'TOT'
'EKO1' 'EP' 'VÅ' 'VÅV' 'KBÄ2' 'MORP' 'VSG' 'ARB' 'ÖA' 'ÖR' 'KLA'
'HPBG' 'TÄL' 'LÅ2' 'LÅ' 'GDÖ' 'SLE' 'T' 'MH' 'VÄ' 'SK' 'RMTP' 'SS'
'F' 'FBY' 'HR' 'VGÅ' 'A' 'VBD' 'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P'
'SEL' 'SÄV' 'GSV' 'OR1' 'OR' 'GRO' 'G'])}
declare T1sch={Ko schedule(tripSet:T1 useRels:false useAbstr:true $)}
declare T2sch={Ko schedule(tripSet:T2 useRels:false useAbstr:true $)}
declare Tripset1sch={Ko getTripset(id:T1sch $)}
declare Tripset2sch={Ko getTripset(id:T2sch $)}
{Tripset1 concretize}
{Tripset2 concretize}
{Tripset1sch concretize}
{Tripset2sch concretize}
declare Rels1={Tripset1sch makeRels(extractMeth:[locs depTime slots]
locList:['HPBG'] $)}
declare Rels2={Tripset2sch makeRels(extractMeth:[locs arrTime slots]
locList:['HPBG'] $)}
declare T3={Ko merge(T1 T2 $)}
declare Tripset3={Ko getTripset(id:T3 $)}
{Tripset3 addRels(rels:Rels1)}
{Tripset3 addRels(rels:Rels2)}
declare T3sch={Ko schedule(tripSet:T3 useRels:true $)}

% Test 3.
% Solve CST-K-G + CST-ORB-G in two steps, with relations added.
%
% 1.Abstract CST-K-G + CST-ORB-G in such a way that CST-HPBG becomes
% one single slot. Solve 1. Concretize. Extract relations at HPBG.
% Solve the remaining part of the plan with relations added.
declare Trips1={Compiler.virtualStringToValue "\\insert
'"#'trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlm1.oz'#"'\n" $}
declare T1={Ko addTrips(trips:Trips1 $)}
declare Tripset1={Ko getTripset(id:T1 $)}
{Tripset1 makeAbsSlots(locs:['CST' 'SUB' 'SPÅ' 'KHÄ' 'STT' 'TOT'
'EKO1' 'EP' 'VÅ' 'VÅV' 'KBÄ2' 'MORP' 'VSG' 'ARB' 'ÖA' 'ÖR' 'KLA'
'HPBG' 'TÄL' 'LÅ2' 'LÅ' 'GDÖ' 'SLE' 'T' 'MH' 'VÄ' 'SK' 'RMTP' 'SS'
'F' 'FBY' 'HR' 'VGÅ' 'A' 'VBD' 'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P'
'SEL' 'SÄV' 'GSV' 'OR1' 'OR' 'GRO' 'G'])}
declare T1sch={Ko schedule(tripSet:T1 useRels:false useAbstr:true $)}
declare Tripset1sch={Ko getTripset(id:T1sch $)}
{Tripset1sch concretize}
declare Rels={Tripset1sch makeRels(extractMeth:[locs depTime trips]
$)}
{Tripset1sch clearRels}
{Tripset1sch addRels(rels:Rels)}
declare T2sch={Ko schedule(tripSet:T1sch useRels:false $)}
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% Test 4 - as Test 3, but without relations.
% Solve CST-K-G + CST-ORB-G in two steps, without relations added.
%
% 1.Abstract CST-K-G + CST-ORB-G in such a way that CST-HPBG becomes
% one single slot. Solve 1. Concretize. Solve the remaining part of
% the plan.
declare Trips1={Compiler.virtualStringToValue "\\insert
’"#’trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlm1.oz’#"’\n" $}
declare T1={Ko addTrips(trips:Trips1 $)}
declare Tripset1={Ko getTripset(id:T1 $)}
{Tripset1 makeAbsSlots(locs:['CST' 'SUB' 'SPÅ' 'KHÄ' 'STT' 'TOT'
'EKO1' 'EP' 'VÅ' 'VÅV' 'KBÄ2' 'MORP' 'VSG' 'ARB' 'ÖA' 'ÖR' 'KLA'
'HPBG' 'TÄL' 'LÅ2' 'LÅ' 'GDÖ' 'SLE' 'T' 'MH' 'VÄ' 'SK' 'RMTP' 'SS'
'F' 'FBY' 'HR' 'VGÅ' 'A' 'VBD' 'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P'
'SEL' 'SÄV' 'GSV' 'OR1' 'OR' 'GRO' 'G'])}
declare T1sch={Ko schedule(tripSet:T1 useRels:false useAbstr:true $)}
declare Tripset1sch={Ko getTripset(id:T1sch $)}
{Tripset1sch concretize}
declare T2sch={Ko schedule(tripSet:T1sch useRels:false $)}
*/
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This document describes a script language for TUFF. The language is only intended to
be used together with TUFF, and is therefor rather limited. It handles variables,
assignments, procedure and function calls, and provides a conditional statement as
well as equality and inequality test operators. Variables in this script language are
similar to variables in Mozart, and most of the types are present in the form of classes
in the TUFF system.

The language provides the possibility of storing long series of commands to TUFF,
and enables a more fine-grained control of the TUFF system. The many similarities
between TUFFScript and the structures in TUFF are intended to make it easy for a
user who is familiar with the GUI of TUFF to understand and create a TUFFScript.
The similarities with Mozart will simplify the execution of the TUFFScript.
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The types in TUFFScript are of various kinds, but limited to the elements necessary
for TUFF. All present types are described below.
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A Tripset can be described by a triple <Tasks, Rels, Res>. The Tripset may contain
one or more tasks, which in turn may contain one or more subtasks. Rels specifies
relations between tasks, and Res the resources necessary to perform the tasks. The
tasks must not necessarily traverse the same tracks, or even the same geographical
area.

A Tripset can be obtained by using the function GetTripset, which reads a
specification from file and creates a new Tripset. A Tripset may exist on various
levels of abstraction. This is further described in a separate document1. An example of
this is that the departure, traversal and arrival times for a tripset are either intervals or
fixed points in time. This means that a Tripset may be the argument to a scheduling
operation as well as the result of the same operation.
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An Abstract Tripset is a Tripset that has been abstracted. It works like a Tripset,
except that no pathwindow can be shown, i.e. it is not possible to call procedure

                                                

1 [Kre00]
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#	�+���	I����+�with an Abstract Tripset as argument. However, if the Abstract
Tripset is first concretized, a pathwindow can be shown.
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Relations are used to add conditions to a Tripset. Relations may exist for any level of
tasks or subtasks, and specify that there must be a certain order between two tasks or
subtasks.

For instance, if a trip traverses the slots [1 2 3], then it is necessary to traverse slot 1
before slot 2. Relations can also be used to specify orders between trips. It is possible
to restrict the order between a departing trip and another departing trip, between an
arriving trip and another arriving trip, and between an arriving and a departing trip.
The two possible ways of creating relations are on tracks and on locations. If
Relations are created on locations, then the trips and slots arriving and departing at a
certain location are considered.

If they are created on tracks, then only the trips or slots that traverses that that track
are considered. Relations are treated the same way regardless of the basis on which
they are created.
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The Extraction method determines how to extract Relations from a Tripset. The
extraction method is a list with three elements: [Element1 Element2 Element3]. The
elements have the following objectives:

1. The first element is a either a list of resources, describing the resources for which
relations should be created, or the atom tracks or locations. In the case of an atom,
it determines whether relations should be determined based on locations or tracks.

2. The second element is arrTime, depTime or arrDepTime, and specifies if relations
should be extracted based on arrival time, departure time or both arrival and
departure time.

3. The third element can be slots or trips, and tells the system to generate relations
between slots or between trips.

=��$�

��A valid Extraction method is [tracks depTime slots]. This example shows
how to specify an Extraction method for the departure time of all slots on common
tracks�
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A Filename is a text-string that specifies the location of a file. The text-string should
be enclosed with quotation signs.

=��$�

� ‘‘/home/me/my_plans.oz’’
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A Path description is either a text-string or a record, which describes the path that
should be shown by the procedure DrawSchedule. It must specify a valid path. If the
path is specified by a text-string, it must be one of the predefined paths. If the path
description is a record, it should have the features orig, dest and locs. orig should be
the location that the path originates from, dest the location that is the destination of
the trip, and locs a list of locations that the trip should pass on its way from orig to
dest.

=��$�
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’CST-K- 0’ (this is a text-string),
path(orig:’CST’ dest:’G’ locs:[’K’]) (and this is a record).
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A list may contain one or more elements of one of the types listed above. All elements
in a list must be of the same type. The list is enclosed with brackets.
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��[E1 E2 E3].
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Assignments are made with the operator =. A variable can be assigned the return value
of a function call, or the value of another variable. Since all variables are single
assignment, the assignment operator can operate only once on each variable.

=��$�

� Variable1 = Variable2
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Tests can be made to check the equality of all combinations of return value and
variables. That is, equality can be checked between two variables, the return values of
two function calls or a variable and a the return value of a function call. The test
operator returns the Boolean value true if the structures of the two compared items are
equal. If the structures are unequal, the Boolean value false is returned.

=��$�

� Variable1==Variable2 may return true or false.
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This operator works similarly to the equality test operator, except that it tests
inequality. It returns one of the Boolean values true or false.



58

5������	�

Variables are dynamically typed, and do not have to be declared. All variables are
single-assignment, and thus have a lot in common with variables in Mozart. All names
of variables must start with a capital letter. The name of a variable may contain letters,
numbers and underscores.
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Function calls should follow one of the patterns

Variable_name = Function_name (Argument1) or

 Variable_name = Function_name (Argument1, Argument2)

A function always returns a Tripset or the reserved word FAILURE if the function
failed. The return value must be stored in a variable, and since all variables are single
assignment, no variable may be assigned a value more than once.

The functions available are listed below in Table 1. For instance, Schedule takes as
argument a Tripset, and returns a new Tripset, where the intervals of the departure and
arrival times have been reduced to fixed points in time.

The names of all functions reflect the terms used in the GUI of TUFF. This is a
deliberate attempt to make it easier for someone familiar with TUFF to understand a
TUFFScript.

Procedure calls are similar to function calls, except that they do not give any return
value. A procedure call should follow one of the patterns

Procedure_name (Argument1) or

Procedure_name (Argument1, Argument2)

The two available procedures in TUFFScript and their arguments are shown in Table
2.
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Function Arguments  Return value

Schedule Tripset Tripset

Circuit Tripset Tripset

GetTripset Filename Tripset

Merge Tripset1, Tripset2 Tripset

LoadTripset Filename Tripset

CreateRelations Tripset, Extraction method Relations

NetAbstract Tripset, strength Abstract tripset

Concretize Abstract tripset Tripset

AddRelations Relations, Tripset Tripset

Future functions for abstraction
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Procedure Arguments

ShowPathWindow Tripset, Path description

ShowCircuitWindow Tripset

SaveTripset Tripset, Filename

Extract Tripset

�� 
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TUFFScript provides a conditional statement with the syntax

if B then S1 else S2 end

where B is a Boolean, S1 and S2 are statements. If B is evaluated to true then
statement S1 is executed. Otherwise, S2 is executed. The conditional statement is the
only statement that may contain other statements. A conditional statement may
contain another conditional statement. This means, that a nested structure of
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statements is allowed when using conditional statements.
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All comments are started with the marker /* and closed with */. A comment can be
placed on a line of its own as well as before or after a statement on a line. It can be
one or more lines long, and may contain any characters.
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: /* This is a comment*/




