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Abstract

Thisthesis investigates how abstractions can be used to improve performancein a
railroad scheduling system that uses constraint programming. The idea behind
abstractions isto solve alarge problem in smaller parts and extract information from
these parts. That information can then be used when solving the entire problem.

Two different types of abstractions are introduced: Relations and Net abstractions.
The use of relations builds orders between trips or parts of trips. These orders can be
used to reduce the search necessary to find a solution to the scheduling problem.
When using net abstraction, the problem is solved in an abstract search space, where it
is easier to solve. The solution computed in the abstract search space is then used to
reduce search when solving the problem in the original space.

It is shown that these two types of abstraction can improve performance in problems
with various settings. Relations can successfully be used in problems that have few
solutions and are hard to solve. Net abstraction on the other hand works best for
problems with many valid solutions.
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1 Introduction

This section gives a brief introduction to the report. The goals of the thesisand an
outline of the following chapters are presented.

The aim of thisthesisisto investigate and implement abstraction methodsin a
railroad scheduling system. The system, TUFF (TéagplaneUtveckling For Framtiden —
Train planning development for the future) features the following functionality:

e Train scheduling
e Vehiclerouting
e Personnel scheduling

Train scheduling is the process of determining departure and arrival times for each
train. For the convenience of passengers, passenger trains often have periodic
timetables, whereas freight transports are schedul e according to the customers
demands. TUFF uses technology from the field of Constraint Programming to perform
train scheduling.

Vehicle routing determines how locomotives and cars are assigned to trains, that is,
which locomotive and which cars should form a certain train on the trip from a station
to another.

Personnel scheduling determines how to assign drivers and other personnel to atrain.
In this process, it is necessary to take into account things like breaks, costs for
overtime, etc. The mechanisms for personnel scheduling are currently being
developed in TUFF.

TUFF is more thoroughly described in Section 5 The TUFF system.

1.1 Goals
More precisely, the goals of this thesis were to:

e |Investigate how relations between trips and parts of trips (slots) may be used in the
train scheduler of TUFF.

e Implement relations and evaluate if the use of relations can improve performance
and/or reduce memory consumption.

e Design, implement and evaluate functionality for net abstraction in the train
scheduler. A net abstraction is to take a set of tracks, paths and trips, and
transform them to amore abstract level, with fewer details.

1.2 Outline of the report
Section 2 Mathematical foundations presents the mathematics necessary for this work.
Section 3 Constraint programming gives an introduction to constraint programming. It

has no intention of being a complete description. Instead, its purposeisto give the
basic understanding of constraint programming necessary for this work.



In Section 4 Fundamentals of abstraction, a background to the concept of abstraction
Is presented. Abstractions have been studied in Al for some time, and some of the
results and definitions of that research are presented in this section.

Section 5 The TUFF system describes the techniques used in TUFF more thoroughly.

In Section 6 Abstractions in TUFF, the abstractions that have been designed and
Implemented are presented, and in Section 7 Tests and results, they are eval uated.

Section 8 Conclusions and future work, summarizes the thesis, and presents future
work that is not covered by thisthesis.

In the appendixes test examples and a definition of a script language, TUFFScript can
be found. The script language is atool for combining abstraction methods. However,
implementation of TUFFScript is beyond the scope of thisthesis.



2 Mathematical foundations

This section introduces the mathematical definitions needed for thiswork. These are
standard definitions, which can be found in any textbook on discrete mathematics. See
for instance [PY 73].

Let S be aset with N elements. Let the elementsbe T4, Ty, ... Tn, Which can be
thought of as departure or arrival times. If there is no order between any of the times,
i.e. there is no order between T; and T; for any i and j, then S can be represented by

S= {Tl, T2, TN}
To be able to state properties of a set, afew further definitions are needed.

Definition 2.1: Reflexivity. A relation o. on a set S is said to have the reflexive
property (to be reflexive) if, for every s€ S, so. s.

Definition 2.2: Antisymmetry. A relation o. on a set S is said to have the
antisymmetric property (to be antisymmetric) if, for a and b in S, ao. b and bo. a
imply a=b.

Definition 2.3: Transitivity. A relation o. on a set S is said to have the transitive
property (to be transitive) if, for a, b, and c in S, ao. b and ba. ¢ imply ao. c.

Definition 2.4: Partial ordering. A partial ordering is a reflexive, antisymmetric and
transitive relation on a set.

Thiswork deals with sets where some of the elements — but not al — are ordered. It is
therefor necessary to introduce the partly ordered set (poset):

Definition 2.5: Partly ordered set. A partly ordered set (poset) consists of a set S and
a partial ordering relation < on S. A poset is usually denoted by the pair [S, <],
which also denotes the graph of the relation < on §.

Most interesting when considering thiswork is a special case of posets, chains.

Definition 2.6: Chain. A chain is a poset where any pair of elements is comparable. A
chain C with the elements T}, T, ... Ty is represented by C = < T, T, ... Ty>

A notation for sets of chains will also be needed. Let S be a set containing the chains
Cyand C,. C1is< Ty, T, T3> and C, is<T4, Ts>. The notation

S ={Cy, C3} ={<T1, Tp, T3>, <Ty4, T5>}

states that in the set S, thereis an order between T4, To and T3. Thereisalso an order
between T, and Ts, but there is no order between any of the elementsin C; and the
elementsin Cs.



In some cases, all elementsin aset will be ordered. The set isthen called atorally
ordered set. The representation of such aset S with three elements Ta, Tg and T¢ will
beS ={<Ta, Tg, Tc>}. The definition of totally ordered set isfrom [Col99].

Definition 2.7: Totally ordered set. Given a reflective relation R for a set S, such that
for every pair of elements a, b in S either a R b or b R a, there is a one-to-one
Sfunction f that preserves the relations on S in both ways, i.e. a R b < fla) <f(b).

Furthermore, there is a need to investigate the structure of a set. An interesting
structure isthe lattice.

Definition 2.8: Join. For a and b in a poset [S, <], a join of a and b is an element ¢ of
S which satisfies the relationships a<c and b<c, and there is no other x in S for
which a<x<cand b<x<c. If two elements have a unique join, the latter is denoted

by (av b).

Definition 2.9: Meet. For a and b in a poset [S, <], a meet of a and b is an element d
of S, which satisfies the relationship d<a and d<b and there is no other x in S for
whichd<x<a and d<x<b. If two elements a and b in S have a unique meet, the

latter is denoted by a A b.

Definition 2.10: Lattice. A lattice is a poset [S, <], any two elements of which have a
unique join and meet. The symbol for a lattice is [S,v, A ].



3 Constraint programming

Since one of the goals of thiswork is to speed up the scheduling process, some
knowledge of how this process works is necessary. The train scheduler uses
techniques from the domain of Constraint Programming (CP). This section givesan
introduction to the concept of CP. It is by no means intended to cover all issues dealt
with in CP, but merely to give the basic understanding of CP necessary for this work.
It relies heavily on [Tsa93] and [SS99].

3.1 Basic concepts
A Constraint Satisfaction Problem (CSP) consists of three parts:

1. A finite set of variables
2. A domain associated with each variable

3. A set of constraints restricting the values that the variables can take
simultaneously.

When solving a CSP, the task isto assign values to al variables in such away that no
constraint is violated, and the value for each variable is within the domain of the
variable.

Example 3.1: Send more money
Thisisaclassical example of a CSP. The story goes that a boy was out on a journey,
and ran out of money. He then sent his parents a postcard, with the equation

S E N D

The parents now had to solve this equation to find out how much more money the boy
needed. Each of thevariables (D, E, M, N, O, R, S, Y) should have a value between
one and nine, and no two variables should have the same value.

It is easily shown that this problem is a CSP. The three parts are:
1. Thefinite set of variablesis{DEM NORSY}.
2. Thedomain isthe samefor all variables: 0< x < 9, where x isthe variable.

3. Theconstraint isthat no two variables can take the same value simultaneously.



In Section 3.6 Constraint programming in Mozart/Oz, it is shown how this problemis
solved with CP in Mozart/Oz.

3.2 Formal description of a CSP

This section gives amore formal description of a CSP. It does by no meanstry to
cover the entire field of descriptionsin CSPs. Instead, its purposeis to present the
definitions necessary for this brief introduction.

Definition 3.1: Domain. The domain of a variable is the set of all values that may be
assigned to the variable. D, denotes the domain for the variable x.

The valuesin adomain do not have to be restricted to numbers. In some problems, it
may be convenient to use other types of values. Consider for instance a coloring
problem, where a number of countries on a map should be colored. No two
neighboring countries should have the same color. In such a problem, it is natural to
use colorsinstead of numbersin the domains.

Definition 3.2: Label. A label is a pair of a variable and a value. It represents the
assignment of that value to the variable. A label that assigns the value v to the
variable x is denoted by <x, v>. <x, v> is only meaningful if v is in the domain of x,
thatis, ve D, .

Definition 3.3: Compound label. A compound label is the simultaneous assignment of
values to a set of variables. The compound label of assigning v, va, ..., v, to
X1 X2, ..., Xp is denoted by (<x;, v;>, <x2, V2>, ..., <Xp, V).

A constraint can be seen as a set that contains all legal compound labels for the
variables in the CSP. However, in practice constraints can be equalities, inequalities,
or other types of relations. Regardless of how the constraint is represented, the
constraint represents a number of legal compound labels for the problem variables.

Definition 3.4: Constraint. A constraint on a set of variables is conceptually a set of
compound labels for the variables in the problem. A constraint on the set of variables
S is denoted Cl.



Definition 3.5: Satisfaction. Assume there is a compound label

X=(<x, vi>, <xp, vo>, ... <X, v,>>) and a constraint C.

X is said to satisfy the constraint C if the variables in X and C are the same, and X is
an element of C, that is, (<xj, v;>,<x2, V2>, ..., <Xp, v,>>) € Cx1.x2 . xn

Definition 3.6: Constraint satisfaction problem (CSP). A CSP is a triple (Z, D, C),
where

Z is a finite set of variables {x;, x> ..., X,}

D is a function, which maps every object in Z to a set of objects of arbitrary
type, D:Z — finite set of objects (of arbitrary type).
D, is the set of objects obtained by mapping from x; using D. These

objects are the possible values of x;, and D_ is the domain of x;.

C is a finite set of constraints on a subset of the variables in Z, that is, C is a
set of compound labels.

3.3 Solving a CSP

When solving a CSP there are two categories of methods: Problem reduction and
Search. Thetype of problem at hand determines which category and method that is
most feasible. The best solving method is usually not a single one of these methods.
Instead, the most efficient way of solving a CSP is often to combine the two
techniques. Which the optimal solution method is also depends on whether one or all
solutions are required.

3.4 Problem reduction

The idea of problem reduction isto make the problem smaller by reducing the
domains of the variables. The CSP is then hopefully easier to solve or recognize as
insolvable. Problem reduction alone does not normally solve a CSP. However, when it
is combined with Search, it can reduce the effort necessary to solve the CSP.

Problem reduction is made by constraint propagation, which isaway to limit the
domains of the variables of the CSP. There are two types of propagation: domain
propagation and interval propagation. Consider an example:

Example 3.2: Domain and interval propagation.
Assume that there is a CSP with two variables X and Y. Let the domains of X and Y be

De={1,2..,10} Dy,={12 ., 7

The constraint of X and Y is Cy,: 2X=Y.
If domain propagation is used, then the domains are narrowed as much as possible.
The new domains becomes

Dy,={1 23} D,={2 4, 6}



However, if interval propagation is used, only the bounds of the intervals are
narrowed. Thus, the new domains become

D.={1 23, D,={2 34756}

Normally interval propagation is used, because of its lower computational cost.

In most problems, it is not optimal to perform a compl ete problem reduction, since it
Isexpensive. Instead, it is usually preferable to do some reduction, and then use
Search methods to solve the CSP.

3.5 Search

A lot of research effort has been made to find good search strategies for various
problems, and there are various techniquesin the literature. This section triesto give
some insight and basic understanding in concept of search in CSPs. For amore
extensive overview of search techniques, see [Tsa93].

3.5.1 Backtracking

A simple but widely used technique for search is simple backtracking. The ideaisto
consider one variable at atime, and try to assign avalue to that variable. The
algorithm is simply as follows:

1. Pick one of the variablesin the CSP.

2. Choose avalue, which isin the domain for this variable. Check if this value
satisfies the constraints. If it does, go to step 1 and pick another variable. If it does
not, choose another value.

3. If there are no values that satisfies the constraints for avariable, go back to the
variable that was assigned a value last. Change the value of that variable, and try
again to assign the current variable avalue.

4. Thiscontinues until a solution has been found or al the combinations of labels
have been examined and failed. Figure 3.1 shows the idea of backtracking.



Given aproblem

Backtrack to the
Try to choose avalue for X last variable,
that isin the domain of X and let it be X.
and satisfies the constraints Fail if nowhereto
backtrack to.

variables
|abelled?

Figure 3.1: Backtracking. The backtracking algorithm tries to label all variables, and
backtracks if there is no possible value to assign a variable.

The basic algorithm for backtracking above is normally combined with problem
reduction to improve efficiency. This means that in step 2, after a value has been
chosen for avariable and it has been checked that the value satisfies the constraints,
problem reduction is performed. An attempt is made to reduce the domains of all
variables. If adomain of avariable isreduced, some other variable may be affected by
this reduction and the domain of that variable may also be reduced.

3.5.2 Labeling

A question that arisesis how to choose the variable that should be labeled and how to
label the variables in such away that backtracking is avoided? There are a number of
approaches to this problem. Some possible strategies for choosing which variable to
label are:

e The naive strategy: Choose the first variable in an arbitrary ordering of the
variables. This strategy performs very poorly as a general method.

o First fail strategy: Choose the variable that is most likely to fail. This strategy
aims at recognizing dead-ends as soon as possible, and thereby reduce the amount
of computation. One simple way of determining which variable is most likely to
fail isto compare the size of the domains of the variables. This approach isused in
the constraint programming language CHIP with impressive results [Tsa93].

e Minimal width ordering: This strategy can be used in CSPs where some
variables are constrained by more variables than others. The ideaisto first choose
the variable that is constrained by the largest number of other variables. Since the
last variables to be labeled are those that affect the smallest number of other
variables, the chances of avoiding backtracking are good.



Once a variable has been chosen, it must be determined what value to assign to that
variable. There are also in this case a number of standard techniques. A simple
approach isto label the variable with the lowest, highest or middle valuein its
domain. Another technique is to decrease the size of the variable’ s domain instead of
assigning it avalue. In this case, the new domain of the variable is set to the lower or
upper half of the origina domain. This may reduce the number of backtracks
necessary.

3.5.3 Search spaces

The search space is the space of all combinations of compound labels and unlabeled
variables. Different search strategies give different search spaces. The backtracking
algorithm searches the space of all compound labels. This makes the search space
look like in Figure 3.2.

Q
pick pick y pick z
3 @ O
X=a x=d y=¢ =9 z=p \z=q
=b =C y=
O O O O O O O O O
s/Bee/le g/\e g/lle e/\B.g/l\s. g/\a B/\8 Gl\.
Q o0 o Q0 Q Q o 0 [eRN®) o 0 Q Q Q O Q
~ ~ ~ N N ~ N XN\~ ~ ~
N < N < N N X N N X N

Figure 3.2a: Search space of the backtracking algorithm. The variables in the CSP
are Z={x, y, z}, and the domains D.={a,b,c,d}, Dy={e f,g} and D.={p,q}. Note that the
entire tree is not shown — the bottom row is lefi out.

The search space is highly dependent on the order in which the variables are labeled.
If the CSP from Figure 3.2ais taken as example, then either X, y or z can be labeled
first. If the variables are labeled in the order (X,y,z), the search space will ook likein
Figure 3.2b. However, if they are labeled in the order (z,y,x), the search space looks
different. This search space can be seen in Figure 3.2c.
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Figure 3.2b. Search space of the backtracking algorithm when the variables are
labeled in the order (x,y,z).

z=p z=q

y=e/ y=f y=g y=e/ y=f| y=g

X

b b
O O

Figure 3.2c. Search space of the backtracking algorithm when the variables are
labeled in the order (z,y,x).

3.5.4 Characteristics of search spaces

When determining how to approach a certain CSP, it is necessary to get some
structured overview of the problem. The properties listed below provide a great help

11



in this process. Based on these properties, specialized search techniques have been
developed that solve CSPs more efficiently.

The properties that have to be considered are:

e The size of the search space is finite.
As can be seen when comparing Figure 3.2.b and 3.2.c, the number of nodesin the
search tree depends on the order in which the variables are labeled. However, the
number of leavesin the tree, i.e. the number of nodes at the bottom of the tree, is
always the same. The number of leaves for a CSP with the variables

Z={X1, Xp, .., Xn} is L = ‘Dxl D D

X2
Thisis also the term that dominates the size of the entire search tree. The size of
the entire tree, counted in number of nodes, is[Tsa93):

N=1+ ﬁ (‘Dxl D, \)
i=1

* * *

Xy |-

* *

e The depth of the tree is fixed.
When the order in which the variables are labeled is fixed, asin Figure 3.2b and
3.2c, the depth of the search tree is equal to the number of variables. If no order is
specified, asin Figure 3.2a, the depth is two times the number of variables.

e Subtrees are similar
As can be seen when comparing Figure 3.2a, 3.2b and 3.2c, the subtrees are
similar regardless of how variables are ordered. This fact can be exploited to
construct more efficient search agorithms. For instance, learning algorithms can
be created.

3.5.5 Combining search and problem reduction

In most cases, it is more effective to combine search and problem reduction than to try
to use only one of these methods. The more compound labels that are removed using
problem reduction, the fewer backtracks will be done during the search. However, it is
normally not effective to perform a complete problem reduction. The computational
cost increases as the number of values that are possible to remove decreases. An
approximate relation between search and problem reduction can be seen in Figure 3.3.
Ascan be seen in thefigure, it is often important to find a balance between the two
methods to be able to minimize the computational cost.

12
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1) problem
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C

.% Problem
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Problem reduction effort

Figure 3.3: Search and problem reduction costs. The optimal way to solve a CSP is
often to combine the two methods.

3.6 Constraint programming in Mozart/Oz

This section presents a program written in Mozart/Oz solving the CSP introduced in
Example 3.1, “Send More Money”.

The program uses one variable for each letter. This means that there are eight
variables. The search mechanism uses the first-fail method described above. For this
problem, there are three constraints created:

1. There may be no leading zeros, i.e. Sand M must not be zero.
2. Two variables must not have the same value.
3. Thefollowing sum must be correct:

S E N D
+ M O R E

M O N E Y
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The program listing (from [Ss99)]) is:

proc {Money Root}
SENDMORY

in

end

Root = so0l(g:S8 e:E n:N d:D m:M 0:0 r:R y:Y)
Root ::: O#9

{FD.distinct Root}

S \=: 0

M \=: O

1000*S + 100*E + 10*N + D

+ 1000*M + 100*0O + 10*R + E

=: 10000*M + 1000*O + 100*N + 10*E + Y
{FD.distribute ff Root}

o\® o\° o o\
B wNh R

o°
ul

o\°
(0

The commented lines are;

%1:
%02:
%3:

%4:
005:
%06:

These are the labels and variables in the problem.
Specifiesthat all values must be between zero and nine.

All values must be distinct. This means that no two values may be equal. The
line implements constraint 2 above.

S and M must not be equal to zero. These lines implement constraint 1.
The sum must be correct. Thisis constraint 3.

Thisline tells the system to start solving the problem, using the first-fail
method described above.

Since there are 8 variables and each variable has adomain of 10 values, there are 10
possible leaves in the search tree. This means that a completely naive algorithm, that
investigates all possible combinations of labels, would have to do alot of work to find
the solution. Problem reduction combined with the first-fail principle, on the other

hand, manages to solve the problem creating only the small search tree showed below
in Figure 3.4.

14



[ Sol (d:[2#8] e:[4#7] m:1 n:[5#8] 0:0 r:[2#8] s:9 y:[2#8]) J

E=4 E#4

[ Sol (d:[2#8] e[5#7] m:1 n:[6#8] 0:0 r:[2#8] s:9 y:[2#8]) ]

E=5 E#5

[ Sol(d:7e5m:1n:60:0r:8s9y:2) } [ Sol (d:[2#8] e:[6#7] m:1 n:[7#8] 0:0 r:[2#8] s:9 y:[2#8]) }

Failure Failure

Figure 3.4: Search tree for “Send more money” using the first-fail principle. The root
node is obtained by performing problem reduction on the specified domains. For each
new node in the tree, problem reduction is performed.

The notation x:[y#z] specifies that the variable x has a domain ranging from y to z.
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4 Fundamentals of abstraction

Abstraction is the process of taking a problem from its original problem space to some
simpler, abstract space. The ideaisthat it should be easier to solve the problem in the
abstract space, and that the abstract solution should be used when solving the original
problem. This often reduces the effort to solve the original problem.

In the area of artificial intelligence, Al, abstraction has been thoroughly studied. A
large number of problem-solving systems that use the idea of abstraction have been
implemented and studied. Examples of such systems, presented in [Yan97], are GPS,
ABSTRIPS, LAWLY, NOAH, NONLIN, MOLGEN, SOAR, SIPE and ABTWEAK.

In thiswork, an attempt is made to use the ideas of abstraction for scheduling
problems instead of Al problems, planning problems. The scheduling problem and the
planning problem are somewhat different.

In scheduling, the task isto allocate the resources necessary for some action. This
must be done in such away that the result is avalid schedule. Additionally, it might
be desirable to achieve a schedule for which some cost function is minimized.

In planning, there are normally specifications for the effect that an action hasto the
outside world. This outside world is modeled by the use of states, and each action
changes the state of the outside world. There may be preconditions specifying that a
certain action may only be performed from certain states.

This section gives a brief description of what has been done in the field of abstraction
in Al. In Al, the problems to be solved are often referred to as plans. Therefor, the
term plan will bein this section.

4.1 Abstraction hierarchies

There are several approaches when creating an abstraction. A common way is to use
an abstraction hierarchy. Such a hierarchy reaches from the origina concrete plan,
possibly through several intermediate levels of abstract plans, to the most abstract
plan. This creates an abstraction hierarchy, which may look asin Figure 4.1 (from
[Yan97]). The figure shows that on the highest, most abstract level, the plan to solve
isrelatively small, whereas on the concrete level, the plan islarge.
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Abstract level / \
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Intermediate ’/.\‘
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Figure 4.1. An abstraction hierarchy, reaching from an abstract level down to the
concrete level where initial problem resides.

The process of obtaining asolution isto
e Solve the plan on the highest, most abstract level

® Refine it to account for the missing components when taking it to the next, lower
level (for afurther discussion of refinement, see below), and

e |terate until the concrete level is reached.

An example of the use of abstraction hierarchiesis a simple routing problem:

Example 4.1: Total order. Suppose one wants to drive from a street Sy in city X to the
street Sy in city Y. It might then be necessary to drive through other cities on the way,
and thus find ways to get out of these cities on the right exit.

An abstract plan would then correspond to an inter-city route, that is

<City, => City. => City, => City,>. The concrete plan also features all intra-city
information. It would mean that the abstract plan could be expanded to <City, =>
CityStreet,; => City,Street,; => ... => City,Street,y => City, => City,Street,; => ...
=> City,Street,y => City,>.

Example 4.1 shows an example of a situation where all steps are ordered. Each step
has to be either before or after every other step. Situations like this, where all steps are
ordered with respect to every other step, are called rotal orders.

An example of asituation where thereis no total order isfound in example 4.2. Here,
there is an order between a step and some, but not all, of the other states. Such a
situation is called apartial order.
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Example 4.2: Partial order. When getting ready to go to work in the morning, several
steps must be performed. Suppose you want to take a shower, get dressed and have
breakfast. Each of these steps can be subdivided into more concrete steps, which
means that abstractions can be used when planning your morning activities.

However, in this example there is no total order between each step. It is impractical to
get dressed before taking a shower, so getting dressed must be done after taking a
shower. But there is no reason for an order between taking a shower and having
breakfast. Therefor only some of the steps are ordered, and the plan is not totally, but
partially ordered.

4.2 Abstraction methods

When the decision has been made to use a hierarchical abstraction model, there are
several approaches to how to build this model. This section presents a short overview
of various abstraction methods. Further details can be found in [Kno94].

4.2.1 State abstraction

If State abstraction is used, a hierarchy of abstraction spacesis introduced. For each
abstract level, the plan is somewhat simpler than on the previous, more concrete level,
asin Figure 4.1 above. The problem isfirst solved in the most abstract space. It is then
refined at successively more detailed levels. The solution from a more abstract level
can be used when solving a plan on amore concrete level.

4.2.2 Abstract operators

An alternative approach which, is quite similar to state abstraction, isto use abstract
operators. As before, an abstraction hierarchy isintroduced. On each level there are a
number of operators — rather few on the most abstract level, and considerably more on
the concrete level. For each hierarchical step, the number of operators and the detail of
each operator are increased.

It should be noted that the difference between abstract operators and state abstraction
issmall. In fact, as shown in [Kno94], abstract operators can be used to implements
state abstraction.

The routing situation in Example 4.1 above shows the use of abstract operators.

4.2.3 Macro operators

When the concepts of state abstraction and abstract operators are combined, the result
IS macro operators. The ideaisto combine several operators into a macro operator. A
number of such macro operators together form amacro problem space, and the
abstraction hierarchy is built of a number of such spaces. Once the problem has been
solved in amacro problem space, the concrete problem is solved, since a macro
operator encapsul ates the effect of several operators.
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4.3 Properties of abstractions

Does the existence of a solution to a plan on some level guarantee the existence of a
solution at some other hierarchical level? [ Y an97] defines two properties that deal
with thisissue: Upward solution property and Downward solution property.

4.3.1 Upward solution property

Consider an abstraction hierarchy, where there are one or more abstract plans P, and
one concrete plan Pc. If the existence of a solution to a concrete plan Pc implies the
existence of a solution to an abstract plan P, then the hierarchy satisfies the upward
solution property.

In the definition of the upward solution property, the levels are numbered from 0O, as
the concrete level, up to N, which is the most abstract level, as shown in Figure 4.2.

Definition 4.1: Upward solution property. Whenever any i-th-level solution P; exists,
there exists an abstract solution P;.; at level i+1

Level 3 (most abstract)

/

Level 2

/ /
- f 3 7 N
ey’ 4 d b 4

(concrete)

Figure 4.2. The abstraction levels for the definition of upward solution property.

If an abstraction hierarchy fulfills the upward solution property, and thereis no
solution for a problem at an abstract level, thereis no solution at any lower level
either. In such cases, a top-bottom approach is a good way to traverse the hierarchy. If
thereis no solution at a certain abstract level, then there is no need to continue the
search at lower levels. It can be stated that there is no solution simply by solving an
abstract level plan.

4.3.2 Downward solution property

If ahierarchical structure fulfills the condition that whenever thereis a solution on an
abstract level, there exists a solution at the concrete level, then the hierarchical
structure fulfills the downward solution property.

Definition 4.2: Downward solution property: If there exists a solution to a plan P; on
any level i higher then 0, then there is a solution to a plan Py on the concrete level.
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If this property isfulfilled, and there exists a solution at any abstract level, then there
exists asolution at the concrete level. That is, as soon as a solution is found on an
abstract level, the downward solution property guarantees that there is a solution to
the concrete plan. In addition it follows from this property that if thereis no solution
at the concrete level, there are no solutions at any higher level either.

4.4 Refinement methods

The upward- and downward solution properties deal with the existence of solutionsin
auseful way. But they do not say anything about the exact relationship between two
solutions at different levels. No matter which abstraction method is used; when an
abstract plan istaken to alower level, it must be extended by additional steps.

This extension is called refinement and can be done in several different ways.

Below two different types of refinement are discussed: Forward-chaining, total-order
refinement and backward-chaining, partial order refinement. A property of the
refinement, monotonic refinement, is then presented.

4.4.1 Forward-chaining, total order refinement

The idea behind forward-chaining, total order refinement is to introduce gaps when
taking a plan from a higher level down to alower, more concrete level. When the plan
isrefined at the lower level, every gap isfilled with new steps.

Figure 4.2 (from [Yan97]) shows an example of how gaps are introduced and filled
with additional steps asaplan istakento alower level.

Plan at an abstract leve

Initial . Step 1

A

Step2 — — Goal

Initial — Gap 1~ Step1— Gap2 — Step 2—  — Goal

4 U

1.1p1.2 t Step1p 2.1f 2.2H Step 2+ . — Goal

v

Initial

Plan at amore concrete level
Figure 4.2. In forward-chaining, total order refinement a gap is introduced between

every pair of steps when a plan is taken to a lower level. During the refinement
process, these gaps are filled with new, additional steps.
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The gaps arefilled using alength-first method starting from the Initial-state at the left
and advancing towards the Goal-state at the right. In the construction of state 1.1, the
preconditions that must be considered are specified in the Initial-state.

When advancing to state 1.2, the preconditions are obtained by applying the plan
<Initial => 1.1>. For step |, the preconditions are obtained by applying

<lnitial => 1.1 => ... =>j-1>.

This process continues until al gaps have been filled with new steps, and the Goal-
state is reached.

4.4.2 Backward-chaining, partial order refinement

For partially ordered plans, the approach is somewhat different. Assumethereisa
partialy ordered abstract plan P. When taking P to alower abstraction level, each step
is replaced by its corresponding step on the lower level. An abstract step may have
several corresponding steps on the next lower level. If thisisthe case, one of these
stepsis chosen, and the others are saved. If the plan isimpossible to solve, it isthen
possible to go back and check if one of the saved steps work.

The refinement process is then to plan the lower level in such away that the
preconditions of each step are fulfilled.

Figure 4.3 shows the process of backward-chaining, partial order refinement.

1a \ More abstract plan
Initial / 2 Goal
1b
la(1) More concrete plan
1a(2) \
Initial / 2 God
1b

Figure 4.3: Backward chaining, partial order refinement. Both step 1a and 1b must
be executed before step 2 can be executed. Each step in the abstract plan is replaced
by a corresponding step in the more concrete plan. If more than one step correspond
to an abstract step, one of these steps is chosen. In the figure, la (1) has been chosen
to replace la, and 1a (2) is saved if solving the more concrete plan would fail.
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4.4.3 Monotonic refinement

A refinement that preserves the order between all steps calculated on a higher
abstraction level, and where no steps from the abstract plan are deleted or moved is
called amonotonic refinement. When using a monotonic refinement, a plan will never
decrease in size when it is taken from one level to alower, more concrete level.

Example 4.1 above (on page 17) fulfills the monotonic refinement property.
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5 The TUFF system

5.1 Definitions

In order to make the TUFF system familiar to railroad planners, most of the terms are
originally railroad terms. However, sometimes a term has been used to denote several
different things. In these cases, to avoid ambiguity, a new term has been introduced in

the system.

The terms used in the system are explained in text, and also presented graphically

below.

Station

Headway

Track

Path

Trip

Slot

A station is alocation where trains may be turned or shifted to anew
track. In addition, stations are the only places where atrain may
overtake another train.

Headway is the minimum time period between two trains going in the
same direction on atrack, i.e. the safety distance in time.

A track isthe physical connection between two locations. Once atrain
has started on atrack, thereis no way of turning back until the end of
the track is reached.

Tracks may be double tracks or single tracks. If the track is a double
track, the different directions of the track have individual ids (and can
be considered two different tracks). If there for instance are two double
track between A and B withids T; and T, then T will go from A to B
and T, from B to A.

A path is an ordered series of tracks connecting a start and an end
station. For instance, the path between Stockholm and Gothenburg may
be

(T[ >T,->T5 ... TN), where T are tracks.

A tripisatrain traversing a path with pre-defined arrival and departure
times. These times may also be intervals.

A dotisthe minimal part of atrip. Severa dots, placed in order, form
atrip. Each slot represents the traversal of atrack and the stop at a
station. For instance, a trip departing from Stockholm at 12.04 towards
Gothenburg may be (S; -> S,-> S5 ... Sy), where S; are Slots.
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Tripset A tripset isaset of trips and corresponding slots. It is used as problem
specification to the schedulers of the TUFF system. The result of a
scheduling is also stored in a tripset.

Tripsets are the basic building blocks in the TUFF system. They are
modeled as single assignment structures, i.e. once atripset has been
instantiated, it can not be changed. All operationsin the system are

done on tripsets.

Net A net isbuilt from locations, tracks and paths. It determines how these
elements are connected.

These definitions are perhaps easiest to understand through examples. Figure 5.1

illustrates the concepts of locations, tracks and paths, and Figure 5.2 the relations
between dlots, trips and tracks.

Location A
Jrack T1

[ Location B

Track T3 Track T2

Location C

Figure 5.1: Tracks, locations and paths. Track T1 and T2 form a path between
location A and location C.
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Stockholm

Departing Departing Departing

13.08 14.08 15.08
Trip 1 Trip 2 Trip 3
Slot11 Slot19 Slot42
Gothenburg

Figure 5.2: Trips, slot and tracks. Several trips traverse the same track between two
locations. Each trip consists of several slots. The slot gets a new id for each trip,
although the traversed track is the same.

5.2 The architecture of TUFF

TUFF has an agent-based architecture, which consists of a number of independent
agents: A coordinator, atrain scheduler, avehicle router and (in a near future) a
personnel scheduler. In addition to these vital parts, a Graphical User Interface (GUI)
Is used for communication between the TUFF system and the user. Data necessary for
the system is stored in Nets and Tripsets. The relations between the components can
be seen in Figure 5.3.

A train scheduler createstimetables, avehicle router assigns cars and locomotives to
trains, and apersonnel scheduler assigns personnel to trains. See Section 1
Introduction for a brief description of the various types of planning mechanisms
necessary in arailroad planning system.
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GUI \

Coordinator

Train Personnel Vehicle router
scheduler scheduler

Figure 5.3: The architecture of TUFF.

The application uses two different languages: Prolog, a constraint logic programming
language, which is used for calculation and constraint programming, and Mozart/Oz, a
high-level language used for graphics and communication between agents.

The entire application is controlled through the GUI, which is connected to the
coordinator. A user can give orders to the coordinator viathe GUI. These orders are
then propagated to the agent involved in the operation. If the agent isin need of
further information, it asks the coordinator, using one of the pre-defined protocols for
guestions. When the agent has finished itstask, it returns the solution to the
coordinator, which may present the result graphically to the user.

Example 5.1. The user wishes to make a timetable for the trips between Stockholm
and Gothenburg. He/she selects the desired specification for the trips, adds it to the
tasks that are supposed to be computed, and chooses to make a schedule. The
coordinator tells the train scheduler to make such a schedule.

However, the train scheduler does not know anything about the railroad net that
connects the involved location. Nor does it know the specifications for the arrival-
and departure times for each trip. Therefor, it has to ask the coordinator to supply
this information. When all needed information is present at the train scheduler, the
schedule is calculated, and the result is sent back to the coordinator.
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5.2.1 The coordinator

The objective of the coordinator is— as the name implies —to coordinate all activities
in the system. The responsibilities for the coordinator are:

e Handling input and output to/from the user. The coordinator is the only
component connected to the GUI, and is therefor responsible for the management
of all user requests.

e Propagating user orders to the train scheduler, the vehicle router and the personnel
scheduler.

e Keeping adatabase of al Tripsets generated by the system.

¢ Responding to requests from the train scheduler agent, the vehicle router agent and
the personnel scheduler agent. These requests may be to get a specific Tripset, or
to get information about the Net.

5.2.2 The train scheduler
The train scheduler is divided in two parts:

One part written in Mozart/Oz. This part handles the communication with the
coordinator and with the Prolog part, but does very little about the scheduling. Hardly
anything is stored in the scheduler itself — all necessary information must be retrieved
from the coordinator by using various method calls. Some of the data must then be
converted before it can be passed on to the Prolog part of the scheduler. Sending all
information as text strings solves the differences in representation in Mozart/Oz
compared to Prolog.

The Prolog part is the one that does the actual work. It uses constraint programming
techniques to calculate the schedule. See Section 3 Constraint programming for
further information about constraint programming.

Based on the information it gets from the Mozart/Oz scheduler, the Prolog schedul er
triesto calculate avalid schedule. The data sent is:

e A number of specificationsfor trips. In each specification, a departure time and an
arrival time are specified. The paths for the trips are specified as well as all tracks
the trip traverses on its way. For each trip a number of locomotive types are
allowed. Thetotal time for atrip and the total waiting time at stations are also
limited.

e The necessary resources. Thisincludes all stations involved in the trips. Each
station has an id, a minimum turn time - which determines the time it takes to turn
atrain - and a number of tracks.

In addition, all tracks traversed by the trips are sent together with a specification
of the time period when aftrip traverses the track, and the direction the track is
traversed in. Each track has a headway, which determines the minimum safety
time distance.
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e Optionaly, relations can be sent. These relations state that there should be a
specific order between the arrival/departure of two trips or two slots, possibly with
some offset. In the case of trips, the following may be specified: ‘ The train from
Stockholm to Gothenburg (with trip id X) should arrive 5 minutes before the train
from Gothenburg to Karlskrona departs’ . The vehicle router may produce relations
when creating a vehicle route. These relations can then be used in the train
scheduler, and thus be used to create a complete schedule, involving both atrain
schedule and a vehicle route. See Section 6.6 Creating relations for further
information about relations.

All these restrictions are used to create constraints. The resulting problem isthen a
constraint satisfaction problem (CSP). CSPs can be solved by using subroutinesin
Prolog. The generated solution is guaranteed to be valid. Alternatively, no solution is
found.

When atrain schedule has been calculated, atextual representation of the scheduleis
sent back to the Mozart/Oz part of the train scheduler. There a new Tripset containing
the solution is created. The Tripset is sent back to the coordinator and stored in a
database.

5.2.3 The vehicle router

The structure of the vehicle router is similar to that of the train scheduler. It consists
of apart written in Mozart/Oz, and a part written in Prolog.

The Mozart/Oz part handles communication between the coordinator and the Prolog
part. Datais retrieved from the coordinator and sent in atext string representation to
Prolog. When the result is returned from the Prolog part, it is transformed to a format
meaningful to the coordinator. Some effort is also made to create rel ations between
the tripsinvolved in the solution. The handling of these relations is presented in
Section 5.2.2 The train scheduler above.

The Prolog part does the actual calculation of the vehicle router. In the current version
of the system, avariation of the insertion heuristic is used. A heuristic is an attempt to
use trial-and-error in an intelligent way for solving large problems. The insertion
heuristic is the best known heuristic for this type of problems[Sol87]. It produces a
valid but not optimal result. However, the worst-case performance is very poor
[Sol86]. Nevertheless, the system currently used by the Swedish Railway (SJ), uses
similar techniques [DHKK97].

5.2.4 The GUI

A Graphical User Interface is used to handle all communication with the user. The
GUI can be seenin Figure 5.5 (from [Mar00]). Through the GUI, the user may choose
atripset to schedule. He or she may also choose whether data from previous
scheduling should be used.

When a scheduling is finished, it is possible to have the result presented graphically.
For avehicle route, the entire result is presented in the same window. For atrain
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schedule, it is possible to choose a part of the path that should be presented. It is then
shown in a separate window.

Tuff Il version 3.3 Develop Svenska _ Ol x|
— Installningar

Tripfilz bibliotek: IC:\Proiekt\Tuff\tuffS.-"trips.-"

Tidinterwall: Ida_l,l[mon] Anvand | ™ Anvand triprelationer

— Tripper

||EI:\Proiekt\Tuff\tuffS.-"trips.-"Gtbrg-KtmhIm-StkhIm.oz ¥ | Walj... |

Addera tipset |

C:AProjekts Tuffstuff 3 rpsa/Gtbrg-Ftrnblm-Stkhim,. oz

C:A\Projek T uffstuff3AnipesStkhim-K trmhim-Gibrg. oz =
| >

Ta bort tripzet | Markera alla Awsluta

I Sl ihop

Ta bort alla markeringar

et [DEBLUG)

— Info

Det grafiska anvandargransznittet ar startat.
Adderar filen: C:A\Projekts Tuffsuff3/rips/Stkhim-Kirnhlm-Gtbrg.oz.... Klart,
Adderar filen: C:A\Projekts Tulfsuff3/ips/Gtbrg-Kimhlm-Stkhim.oz.... Klart,

| »

N [oF

Figure 5.5: The Graphical User Interface of TUFF.

The GUI also does some fault handling to prevent illegal requeststo reach the

coordinator. When an error occurs, a message containing the problem is presented to
the user, who may adjust the input to get a proper resullt.
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6 Abstractions in TUFF

Themain goa of thiswork isto investigate how abstractions can be used in TUFF.
There are several reasons to introduce abstractions. Al research has shown that
abstractions may drastically speed up the scheduling process [HMZM96] [HPZM 96].
In addition, the notion of abstractions provides a more flexible way of representing
data. Abstractions can for instance be used when combining a solution and a problem.
The important parts of the solution can be extracted, and then the solution and the
problem combined.

In this section, the various abstraction methods that have been implemented are
discussed. The testing process of these abstractions and the testing results can be
found in Section 7 Tests and results.

6.1 Abstraction methods

Given a scheduling problem in the railroad domain, there are several ways of
abstracting it. Whether a method yields a good result or not is highly dependent of the
nature of the problem. In most cases, it is necessary to examine several methods
before the optimal method is found.

Some of the abstraction and concretion methods that may be usable are:

¢ Relaxation: Assume there is a scheduling problem with departure times and
arrival times. Let these times be fixed times or time intervals. If a departure or
arrival timeisan interval, enlarge the interval. If thetime isfixed let it become an
interval. The times have then been relaxed.

e Strengthening: The opposite of relaxation, i.e. intervals are narrowed and fixed
times are left unchanged.

e Net abstraction: Given anumber of slots and tripsin atripset, create new slots
such that each new dlot corresponds to one or more of the previous slots. The
result is atripset with areduced number of sots, and less details than the original.

e Net refinement: \When net abstraction has been used on a tripset, net refinement
can be used to take the tripset back to its original state. Each slot in the abstract
tripset is replace by the corresponding original slots. Information from the abstract
dot istransferred to the original dots.

e Creating relations: From a solution to a scheduling problem, relations between
trips and/or slots can be computed. These relations can then be added to a relaxed
version of the solution. To create and add relations is actually to make a problem
more concrete rather than more abstract, but it may be used for abstraction if itis
combined with relaxation.
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These methods will be defined and more thoroughly described in the following
sections. It should be noted that the presented abstractions are local for atripset. This
means that when an abstraction is performed on one tripset, no other tripsets will be
affected. The methods that have been implemented and tested in thiswork are
Relaxation, Net abstraction, Net refinement and Creating relations.

6.2 Relaxation

Relaxation isto enlarge the domains for departure and arrival times. The domain of
the traversal time as well as the waiting time at a station may also be enlarged.

A formal definition of relaxation (from [Kre00]) is:

Definition 6.1. If p isan relaxation operator it must satisfy:

1 p(Tripset) = <p (Trips(Tripset)), p (Rels(Tripset;)) >
p (Trips (Tripset)) = { p (Tripi)}, 1< k <n where n isthe number of tripsin
Tripset; and
Trips(Tripset;) is an operator which extracts all trips from Tripset;,
Rels(Tripset;) is an operator which extracts all relations from Tripset;.

2. p (Rels(Tripset)) < Rels(Tripset;)

3. p(Trip) = <Id;, p (Dep), p (Trav;), p (Arr), p (Turn),
<p (Sloty) ... p (Sotjn)>>, 1<k < n, wherenisthe number of slotsin Trip;.

Dep, Trav, Arr and Turn represent the intervals of departure, traversal, arrival and
turn time respecitvly.

4. Foreachtripjin Tripseti: Depj < p (Dep;), Travijc p (Travyy), Arrij < p (Arr),
Turnij cp (Turnij).

5. Foreachdot kineachtrip;in Tripset;: Depijx < p (Depijk), Travic p (Travi),
Arrijk cp (Arrijk), Turnijkg p (Turnijk)

When atripset in TUFF isrelaxed, the domains of the departure time, arrival time,
traversal time and turn time of all or some trips and slots of that tripset may be
enlarged. Example 6.1 presents the idea of relaxation.

Example 6.1: Relaxation. Assume there is a tripset with one trip, T. Let T have two
slots, 87 and S,. The departure and arrival times of the slots are
Dep(S;)=2..3, Arr(S;)=3...4, Dep(S;)=4..5, Arr(S;)=7..8.

A possible relaxation is then to enlarge the intervals to
Dep(S;)=1..3, Arr(S;)=3...6, Dep(S:)=3..8, Arr(S;)=5..11.
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6.3 Strengthening

Let Trips(Tripset;), Rels(Tripset;) be defined as in Section 6.2 above, and Dep, Trav,
Arr and Turn represent the intervals of departure, traversal, arrival and turn time

respecitvly.
A strengthening operator ¢ can then be defined.

Definition 6.2 Strengthening operator.
G isastrengthening operator if it satisfies

1. O (Tripset) = <o (Trips(Tripset;)), o (Rels(Tripset;)) >
2. 0 (Rels(Tripset)) o Rels(Tripset;)

3. o (Trip) = <Id;, o (Dep), o (Trav)), o (Arr;), o (Turn),
<o (Sloty) ... o (Slotjn)>>, 1< k < n, wherenisthe number of slotsin Trip;.
Dep, Trav, Arr and Turn represent the intervals of departure, traversal, arrival and
turn time respecitvly.

4. Foreachtripjin Tripseti: Depj o o (Dep;), Travijo o (Trav), Arrij ¢ (Arrj),
Turnj 2 o (Turny).

5. For each slot kineach tripj in Tripseti: Depijx 2 ¢ (Depij), Travixo o (Travij),
Arrijk o0 (Arri,-k), Turnijk; (¢ (Turnijk)

6.4 Net abstraction

Net abstraction is away to reduce the number of slots and tracks in atripset by
merging severa slotsinto one abstract slot, and several tracks into one abstract track.
The abstraction can be used in two ways:

1. Net abstraction can be used to produce an abstract schedule.
In this case, atripset is abstracted and then scheduled, and the result is considered
the compl ete schedule, although arrival and departure times have not been
calculated for al dlots.

2. If amore detailed schedule is desired, scheduling can be done in two steps.

First, an abstract schedule is calculated (asin 1). Then net refinement is used to
replace the abstract slots with the original, concrete slots, and the abstract tracks
with the original tracks. Information is transferred from each abstract slot to the
corresponding concrete slots. This means that some of the arrival times, traversal
times, etc. in the concrete slots will be fixed, and some will still beintervals.

Second, another scheduling of the concrete slots determines the times that have
not yet been fixed. The result is a complete, concrete schedule.
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To calculate a schedule in two steps, asin 2, may seem complicated and time
consuming. However, Al research has shown that this type of hierarchical scheduling
may reduce the computational cost of solving the problem [Yan97]. Thisisaso the
case here. As can be seen by the evaluation in Section 7 Tests and results, both the
computational cost and the memory usage is reduced when compared to ordinary
scheduling in one step.

6.4.1 Abstract slots

Define the ordinary slots in the TUFF system as concrete slots. Abstract slots are then
created by merging one or more concrete slots. The technique used is comparable to
State abstraction, which is presented in Section 4.2 Abstraction methods.

Assume that an abstract slot AS should be created based on the concrete slots
S1, Sz, ..., Sp. Then the following properties should hold:

e Departure time(AS)=Departure time(S;)
e Arrival time(AS)=Arrival time(S,)

S, S,1
e Traversa ti me(AS)ZZT raversal time(S;) + ZWaiting time at location(S,)
S, S
Waiting time at station(AS)=Waiting time at station(S,,)
Headway(AS)=max(Headway(S,), Headway(S,), ..., Headway(S,))
Origin(AS)=0rigin(S)
Destination(AS)=Destination(S,)

Example 6.2 shows how abstract slots can be created from concrete slots.

Example 6.2: Net abstraction
Assume there is a trip T with four slots, S, S2, 83, S4 Let these slots have
specifications as shown in the table below:

Slot | Departure | Traversal | Arrival | Waiting | Head- | Origin | Destination
time time time time way

S 3.5 1.2 4...6 1.2 2 A B

S, 4..6 1..2 5.7 0.1 3 B C

S3 5.7 2.3 7.9 0.1 2 C D

Sy 7.9 2.3 10..11 |0...1 4 D E
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A possible net abstraction is then to merge S; and S>to the abstract slot AS}, and S3
and Sy to the abstract slot AS>. Following the above rules, AS; and AS; will become
as in the below table:

Slot | Departure | Traversal | Arrival | Waiting | Head- | Origin | Destination
time time time time way

AS; | 3.5 2.6 5.7 0..1 3 A C

AS; | 5.7 4..7 10..11 |0...1 4 C E

6.4.2 Abstract tracks

As previously mentioned in the description of the TUFF system, Section 5.1
Definitions, each slot is associated with atrack. This should be the case also for
abstract dots. Therefor it is necessary to introduce the concept of abstract tracks.

Theideaisthat each abstract dlot is associated with an abstract track. An abstract
track is created based on severa concrete tracks. To be useful, the abstract tracks must

fulfill the following conditions:

e The concrete tracks covered by the abstract track form aroute from the origin to
the destination of the abstract track.

e Each concrete track may appear in only one abstract track.

e An abstract track can be considered a double track only if all concrete tracks
covered by this abstract track are double tracks, and go in the same direction.

An example will clarify how abstract tracks are created.




Example 6.3: Abstract tracks. Assume two abstract tracks should be created. One
track going from location A to locations B, and one going from B to A.

1 shows a situation where all concrete tracks between A and B are double tracks.
Then the abstract tracks can also be double tracks.

In 2, there is a single track between C and B, and therefor, the abstract track will be a
single track.

A
1 2 A A
1 3
1 3
v
C v
A C
2 4
2
v
B B

Figure 6.1: Creation of abstract tracks

6.4.3 Properties of the implemented net abstraction

The implementation of net abstraction isintended to be as safe as possible. Ideally, the
net abstraction should fulfill the downward solution property. However, thisis not the
case. In fact, examples can be created where problems with both tracks and stations
prevent arefined schedule from being solved.

6.5 Net refinement

When an abstract tripset has been scheduled, it must be refined to get back to the
concrete level. The implementation of net refinement is rather straightforward. The
abstract dots are ssimply replaced with the concrete slots they cover. Then the arrival
time for each abstract slot is assigned to the first of the covered concrete slots.
Similarly, the departure times are assigned to the last covered slots. The resulting
concrete tripset can then be schedul ed.

Referring to Section 4.4 Refinement methods, the method used for refinement is
forward-chaining, total order refinement. Thisis anatural choice since each trip can
be seen as atotally ordered plan, with slots being the elements of the plan. The
refinement method fulfills the monotonic refinement property. As can be recalled
from Section 4.4.3 Monotonic refinement, this property states that the plan will not
decrease in size during refinement. Furthermore, the order calculated in the abstract
plan remains unchanged in the refined plan.
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6.6 Creating relations

The idea behind relations is to solve alarge scheduling problem in smaller parts.
When these parts have been solved, relations between trips and/or slots in each part
can be created. The entire problem can then be solved with these rel ations added.
When solving the entire problem, the relations will provide guidance for the constraint
programming system. Big parts of the search tree can then be ignored, and the search
can be focused whereit islikely to find a solution.

Relations can be created in severa different ways; between slots or between trips,
between arrival times or departure times, and based on locations or tracks. To create
relations between tripsis to specify that one trip should arrive or depart before some
other trip. Relations between slots specify that a slot should arrive or depart to a
location or on atrack before some other slot. That is, relations between trips specify
orders at end locations or end tracks, whereas relations between slots specify orders at
any location or track.

The way relations are created can be specified by alist with three elements:
[trip/dlot, track/location, departure time/arrival time/both].
It isthen easily verified that there are (2* 2* 3=) 12 possible ways of creating relations.

Example 6.4 A location L is connected to three tracks: T4, Ty and Tc. There are three
trains A, D and E heading for L, and two trains, B and C, leaving L. The situation is
shown in Figure 6.2.

Location L

Figure 6.2. A location L is connected to three tracks. Two trips - B and C - leave L,
and three trips - A, D and E - arrive at L.
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6.6.1 Creating relations on location basis for both arrival and departure time

Let trip A arrive on track Ta, trip B leave on track Tg, trip C leave on track T¢, and
trip D and E arrive on track T¢. Order all trips at this location by examining the arrival
timesfor the arriving trains A, D and E, and the departure times for the departing
trains B and C. There will then be an order between all fivetrips.

If aset S consisting of the fivetripsis created, then Swill be atotally ordered set.
Using the notation from Section 2 Mathematical foundations, S can be represented as
S={<A,B,C,D,E>}.

Each departure and arrival isrelated to every other departure and arrival. The ordering
may for instance be (A<C<B<D<E). This would mean that the first thing that happens
iIsthat A arrivesat L. Then, C leaves, B leavesand D and E arrive.

6.6.2 Creating relations on location basis for arrival and departure time
individually

A similar approach to the one presented above is to maintain the order among the
arriving trips and the order among the departing trips, but ignore the relations between
arriving trips and departing trips. In this way, no departure will be related to any
arrival, but to all other departures. Similarly, each arrival will be related to every other
arrival, but not to any of the departures. Referring to Example 6.4 above, this will
create relations between trip A, D and E, and between trip B and C. The set of
relations will contain two chains, that is

S={<A,D,E> <B,C>}.

6.6.3 Creating relations on a location basis for arrival or departure time

In some situations, it may be interesting to create relations that only deal with arrival
times. Once again referring to Example 6.4, the set of relations will contain only one
chain — the one that involvesthe arriving trips. That is, S = {<A, D, E>, B, C}.

Ordering by departure time is similar to ordering by arrival time. The only difference
Isthat different trips will beinvolved in the resulting relations. In this case, still
referring to Example 6.4, the set of relations will be S ={<B, C>, A, D, E}.

6.6.4 Creating relations on track basis

When relations are created on atrack basis, the situation is dlightly different. All trips
or slots that depart on atrack must also arrive on that same track. Therefor, the set of
relations is independent of whether relations are created on arrival time, departure
time or both.

As mentioned in Section 5.1 Definitions, there are two different types of tracks: single
tracks and double tracks. For asingle track, there is only one track between two
locations. There can only be trips going in one direction on that track at the same time.
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However, if there are double tracks between two locations, two trips may go in
opposite directions simultaneoudly.

Consider Example 6.4. The situation is once again shown in Figure 6.1 below.

\ /
Location L

i

Figure 6.1. A location L is connected to three tracks. Two trips - B and C - leave L,
and three trips - A, D and E - arrive at L.

Suppose the trips C, D and E run on a double track. C will then run on one track,
going away from L. D and E will run on another track, going towards L. Since A and
B are going in different directions, they will have separate tracks. However, C, D and
E may al run on asingletrack. If thisisthe case, then C cannot be on that track
simultaneously with D or E, but D and E may be on the track as long as the headway
time — that ensure the safety distance — is respected. Thus on asingle track, all trips or
dlots arriving or departing to alocation on that track will be related.

If relations are created for all tracks connected to location L, and C, D and E run on a
single track, the set of relationswill be S = {<A>, <B>, <C, D, E>}. However, if C, D
and E run on adouble track, D and E will be considered to go on a different track
from C, and the set of relations becomes less restricted. The set then becomes

S ={<A>, <B>, <C>, <D, E>}.

In fact, asingle track will always give a more restricted set than a double track. Thisis
because on a single track, trips or slotsin both directions must be considered, but on a
double track, only trips or slots in one direction can be considered.

6.6.5 Structure of methods to create relations

The methods to create relations described above give various restrictions for a
location or atrack. The order of the set S from Example 6.4 ranges from total order to
almost no order at all. In this section, the grade of restriction for the methods that
create relationsisinvestigated. A few definitions are necessary for this task.

Definition 6.3: Basic element. Let a basic element be an identifier of a slot or a trip.
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Definition 6.4: Set of relations. A set S is called a set of relations if each of its
elements is either a basic element or a chain of basic elements.

Definition 6.5: Basic element extraction. Let BaseEI(S) be a flattening operator on the
set S that extracts all the basic elements.

Let there be alocation L. Let the tracks connected to thislocation be T, T, ..., Tn. TO
reach the station L, one of the tracks T; must be traversed. Create two sets of relations:
One set S; for arrival and departuretime for all slotsor tripsat L, and one set S, for
al dotsor tripstraversing atrack T;, 1<i< N . Since al dotsor tripsin S; are related,
S; will be atotally ordered set. Furthermore, all trips or sots that reaches L must have
traversed one of the tracks connected to L. This means that the relation BaseEI(S;) =
BaseEl(S;) must hold. S, istotally ordered (see above). Since there is no stronger
ordering restriction that atotal order, S; isasleast asrestricted as S,. The statement S,
LessRes S; with the operator lessRes defined as below will therefor hold.

Definition 6.6: Less restricted operator. For two sets of relations, S; and S,, where
BaseEIl(S;) = BaseEI(S,), define a less restricted operator <. Let there be N chains in
S; and M chains in S,. Then the statement S; < S5 holds if every chain in S is a subset

of achainin S ie Vi:C, cC, 1<isN, 1sjsM

A set of relations obtained by creating relations on departure time and arrival time
individually is always more restrictive than a set obtained when creating relations only
on departure time or only on arrival time. The reason is of course that the former set
considers both arrivals and departures, but the later set only considers either arrivals
or departures. As described above in Section 6.6.4 Creating relations on track basis,
the situation is similar when dealing with double or single tracks. Creating relations
for asingle track always gives a more restrictive result than for a double track.

The structure of the methods of creating relationsis shown in Figure 6.2. This
structure holds for all possible cases where tracks are connected to alocation. The
observant reader may note that the presented structure is ailmost alattice. If the single
track case was removed, each pair of elements would have a unique join and mest,
and the structure would thus be a lattice.

(The set Sin the figure refers to the Example 6.4).
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Location, departure and arriva

S={<A, B, C,D, B>}

Location, departureand ariva individudly
S{<A, D, B>, <B, C3}

/\

SngleTrack
SH{<C, D, B>, <A>, <B>}

Location, departure
S{<B,C>, A, D, E}

Location, arriva
S{<A,D, B>, B,C}

Double Track
SH{<D, B>, <A>, <B>, <C5}

Figure 6.2. The result of the various ways to create relations ranges from total order
to almost no order at all. The arrows can be considered to be Less restricted
operators, <. The case that no relations are created (‘No order’) is added to obtain a

No order.
SH{A,B,C,D,E}

complete structure. The set S is the set that is used in Example 6. 1.

Which type of relation should then be used in practice? The answer to that question is
that there is probably no single ‘best’ type. The type of relations that suits one
problem best islikely not optimal for some other problem. In Section 7.3 Creating
relations, experimental results of using various methods for creating relations can be

found.
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7 Tests and results

This section presents the results of using abstraction, and creating and adding
relations. In the first subsection, the result of using abstractions is shown. Then the
effects of creating and adding relations are shown. Finally, a number of strategies are
presented. These strategies involve both abstractions and creation of relations.

7.1 Test settings

The tests were performed on a network of tracks based on real data. The main paths
used were the two different routes between Stockholm and Gothenburg. The first
route goes south of Mélaren, via Katrineholm. Thisis the main route for personnel
traffic, and consists almost exclusively of double tracks. The second route goes north
of Méalaren, via Orebro. This route is used mainly for freight transports. It consists
largely of single tracks. The routes can be seenin Figure 7.1.

Orebro

Stockhol

Katrineholm
Hallsberg

Gothenburg

Figure 7.1: Network of tracks.

In the representation of the network, the path from Stockholm to Gothenburg via
Katrineholm consists of 35 tracks connecting 36 stations. The second path, from
Stockholm to Gothenburg via Orebro, consists of 63 tracks connecting 64 stations.
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7.2 Net abstractions

The net abstraction mechanism was evaluated on the route from Gothenburg to
Stockholm via Katrineholm. The number of trips was varied between 19 and 104
trips, al scheduled on one single day. The abstract scheduling was performed in two

steps:

1. First, the tripset was abstracted. The abstraction made is of various degrees.
‘Light abstraction’ reduces the number of slots by 50 percent. * Hard abstraction’
reduces the number of slots by 80 percent. ‘Really hard abstraction’ reduces the
number of slots as much as possible, that is, it removes all slots not connected to

end stations.

2. Then the abstracted tripset was schedul ed.
3. The abstract schedule was refined, and scheduled once more to get a concrete

schedule.

Thetotal processing time for all steps was measured, and compared to the processing
time of the concrete scheduling. As can be seen in Figure 7.2, the time required for
scheduling is up to 4 times shorter for the best type of abstraction than for the concrete
scheduling. Furthermore, the abstract scheduling requires less memory than the
concrete scheduling. In fact, the concrete scheduling was unable to handle more than
about 2500 dlots due to lack of memory. The best abstraction used less memory, and

managed 5500 slots.
—e— Concrete
25,0 —&— Light abstraction
— -~ — Hard abstraction
20,0 Really hard abstraction
0
S15,0
<}
(5]
@
L
[
£ 10,0
=
5,0
0,0

3000
Concrete slots

4000

5000 6000

Figure 7.2. Total processing time for scheduling using various degrees of abstraction,

and for concrete scheduling.

Thetest revealed that the different degrees of abstraction gave very different results.
An interesting question is how far the abstraction should ideally go — how many
concrete tracks should ideally be replaced with one abstract track? This was examined
in a second experiment. As before, the route used was the one from Stockholm via
Katrineholm to Gothenburg. 48 trips and 2712 slots were scheduled with different
amount of abstraction, and the processing time was measured. As can be seenin
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Figure 7.3, the time for scheduling the refined tripset is about constant. Scheduling the
abstract tripset, on the other hand, is an amost linear function of the number of
abstract dots, that is, the amount of abstraction. Only maximum abstraction differs
from the pattern. Apparently, at such a high level of abstraction, it becomes harder to
find solutions to the problem.

As earlier mentioned the route Stockholm-Katrineholm-Gothenburg consists mainly
of double tracks. This makes scheduling this route relatively easy. The conclusion is
that for such ‘easy’ problems, net abstractions works well, especially if a high degree
of abstraction is used.

" A — —— — Abstract scheduling
E 4 > - -..m-- - Concrete scheduling
= e g —— Total
3 Salba - L eseoees n
Q 4
2 \ i
\ -
\ 7
1 O
‘/
O T T
0 500 1000 1500
Abstract slots

Figure 7.3. Scheduling time as a function of the amount of abstraction. The first
scheduling is made on the abstract tripset. The tripset is then refined, and a second
scheduling is done to achieve a concrete schedule.

7.3 Creating relations

This section presents an evaluation of using relations between trips or slots to improve
scheduling performance. Theideaisthat the relations should guide the search by
cutting out undesired parts of the search tree during the scheduling.

Two different tests have been made. In both tests, the same method has been used.
The scheduling problem was split in two parts of about equal size. Each part was
scheduled individually, and relations were extracted. Then the entire problem was
scheduled, with the relations added.
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7.3.1 Small test

The settings for the first test are similar to those of the abstraction tests. 48 trips are
scheduled, al of them going from Stockholm to Gothenburg. 24 of them go via
Katrineholm, and 24 of them via Orebro. The trips going via Katrineholm where
scheduled as one set, and the trips via Orebro as another. From these sets, relations
were created. The relations were used when al of the 48 trips were scheduled
simultaneously.

As can be seen in Table 7.1, performance depends both on the number of relations and
whether relations are created on aslot or atrip basis. Generally, relations created on
trips basis are faster than those on slot basis are. In fact, for these settings the total
scheduling timeis only reduced if relations are created on trip basis.

Type of relations Number of relations ~ Scheduling time
(seconds)
No relations, ordinary scheduling 0 11,4
Locations, departing trips 30 6,9
Locations, arriving and departing 60 7,1
trips
Locations, arriving trips 30 7,8
Locations, departing slots at [CST] 30 11,0
Locations, departing slots at [HPBG] 30 11,2
Locations, arriving slots at [G] 30 11,9
Locations, arriving and departing 90 19,2
slots at [CST HPBG G]

Table 7.1. The table shows scheduling times for 48 trips going from Stockholm to
Gothenburg, using various types of relations. [CST] represents Stockholm,
[G] Gothenburg and [HPBG|] Hallsberg.

The conclusion of thistest isthat relations created on slot basis give too much
overhead, and therefor the performance improvement is small —in same cases
performance is even worse than without relations. Relations created on trip basis, on
the other hand, may reduce the scheduling time. It can aso be noted that the
scheduling times when using relations based on arrival times is somewhat longer than
when using relations based on departure times.



7.3.2 Larger test

The second test is larger, and harder to solve. 86 trips are scheduled, mainly on the
route from Stockholm via Orebro to Gothenburg. 39 of the trips are freight trips, and
47 personnel trips. As can be seen in Table 8.2, relations created on trip basis give
better performance than those created on slot basis. Note that when relations are
created on the slots passing [HPBG] (Hallsberg) — which include most trips — the
restrictions posed by the relations were too hard, and it was impossible to calculate a
valid schedule. For relations at [HSA], where fewer trips pass, it was possible to
calculate a schedule, but also in this case the restrictions were hard, and the
scheduling time-consuming.

Type of relations Number of relations Scheduling time
(seconds)
No relations, ordinary scheduling 0 68,9
Locations, departing trips 68 24,3
Tracks, departing trips 67 24,7
Locations, arriving and departing 151 26,4
trips
Locations, arriving trips 67 26,8
Tracks, arriving trips 65 26,8
Locations, arriving and departing 45 49,9
slots at [HSA]
Locations, arriving and departing 56 No solution
slots at [HPBG]

Table 7.2. Tests of relations on a harder example.

Itisasoin thistest evident that relations created on location basis give a better
performance improvement than those created on slot basis. However, aslong as
relations are created on location basis, it only makes marginal differenceif they are
based on locations or tracks, and on arriving or departing trips.

7.4 Strategies

In the last sections, the effects of using abstraction and the effect of using relations
have been presented. This section shows how abstraction and relations can be
combined. Such acombination will be referred to as astrategy. A strategy can be
formulated by using a script language such as TUFFScript, which is presented in
Appendix B - TUFFScript. The idea behind TUFFScript is similar to that of [CLS99].
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There an *algebra’ for aconstraint programming system is presented. The *algebra is
used as a script language, and it is shown that alearning algorithm, which uses the
‘algebra’, can improve performance of the system. However, in TUFFScript thereis
no learning. All strategies have to be manually generated.

Four different strategies have been developed and tested. The testing has been made
on the two routes from Stockholm to Gothenburg — one of them via Orebro, and one
via Katrineholm. The routes have common tracks from Hallsberg to Gothenburg. The
routes can be seen in Figure 7.1. The number of trips and slotsis varied from 16
trips/904 slots to 48 trips and 2712 slots. Note that thisis relatively simple problem,
since dl trips go in the same direction.

The ideas behind the different abstractions are:

1. Concrete scheduling — no abstraction or relations used.

2. The route Stockholm-Katrineholm-Gothenburg, where half the trips go, is
scheduled. Then the route Stockholm-Orebro-Gothenburg — with the other half of
the trips —is scheduled. Relations are extracted from the resulting schedules and
added to the original tripset, which is then scheduled.

3. Theroute Stockholm-Katrineholm-Gothenburg is abstracted in such away that
Stockholm-Hallsberg becomes one single slot. It is then scheduled. The same
thing is done with the route Stockholm-Orebro-Gothenburg.

Relations are extracted from the two schedules, and added to the original tripset,
which is then scheduled.

4. Both routes are abstracted in such away that Stockholm-Hallsberg becomes a
single slot. The tripset is refined. Relations from the tripset are added to itself, and
the tripset is scheduled.

5. As3, but without adding relations, that is: Abstract Stockholm-Hallsberg to a
single slot. Refine the tripset. Schedule the tripset.

The performance of the strategies can be seen in Figure 7.4. For these settings, the
only strategy that outperforms a simple, concrete scheduling is the one that only uses
net abstraction, and no relations. The conclusion that can be drawn isthat thistest is
so simple that the extra overhead of propagating the relations makes scheduling
slower than if no relations were used. When using net abstraction the number of
solutions is decreased. Net abstraction works best for problems with many valid
solutions, and therefor losing some solutions is acceptable. The overhead when using
Net abstraction is small, and therefor performance isimproved.
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Figure 7.4. Performance of strategies.
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8 Conclusions and future work

From the testing and experimentsin Section 7 Tests and results, it is evident that
abstractions and relations must be handled with care. If properly used, performanceis
improved. However, if handled incorrectly, there will be no improvement or —in some
cases — system performance may deteriorate.

The trend that can be observed is that abstraction is useful for ‘easy’ problems with
many valid solutions. Relations, on the other hand, should be used for hard problems.
In those cases it is agood idea to solve the problem in smaller parts, extract relations
from these solutions, and use the relations to guide the search when the entire problem
IS solved.

To be useful in apractical system, a script language, which allows the user of the
system to experiment and find the most suitable solving method for a certain problem
Is necessary. A definition of such a script language, TUFFScript, has been made. It
has also been implemented and integrated with the system. The definition of
TUFFScript can be found in Appendix B — TUFFScript.

Additionally, other types of abstraction methods than those implemented in this work
may also be useful. Examples of possible operations are time abstraction, location
abstraction and trip abstraction. Furthermore a system, which automatically generates
abstractions, could make the use of abstractions easier to handle and would certainly
be of great scientific interest.
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%% Start the TUFF system.
declare SCH CIR

[Agent Coord GUI SAgent CAgent]={Module.link [’agents/agent.ozf’
"coordinate/coordinatorAgent.ozf’ ‘graphics/gui.ozf’
"schedule/scheduleAgent.ozf’ ’circuit/circuitAgent.ozf’]}
Show=System.show Coordinator=Coord.coordinatorAgent
NewAgent=Agent .newAgent

ScheduleAgent=SAgent .scheduleAgent CircuitAgent=CAgent.circuitAgent
Ko={NewAgent Coordinator init}

Ko setTimeRng (day (mon)) }

Ko loadNet(file:’net/new—net.ozf’)}

thread
SCH={NewAgent ScheduleAgent init (coordinator:Ko pdebug:true) }
{scH add}

end

thread
CIR={NewAgent CircuitAgent init (coordinator:Ko pdebug:true) }
{CIrR add}

end

%% No GUI used for these tests
%$declare Gui={New GUI.coordinatorGui init (coordinator:Ko )}

% Test 0: Solve everything in one single shot.

declare Trips={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Stkhlm-Ktrnhlm-Gtbrgé.oz’#"'\n" $}
declare Trips={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Goods and P.oz’'#"’'\n" ${

declare T={Ko addTrips(trips:Trips $)

declare Tsch={Ko schedule (tripSet:T $)}

% Test 1: Solve the problem in two steps, using relations.
declare Trips={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Goods and Pa.oz’#"’'\n" $}
declare Trips2={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Goods and Pb.oz’'#"’'\n" ${
declare Tl={Ko addTrips (trips:Trips $)
declare T2={Ko addTrips (trips:Trips2 $)}
declare Tsch={Ko schedule(tripSet:T1l useRels:false $)} %Snabb!
declare Tsch2=}Ko schedule (tripSet:T2 useRels:false $)}
declare TSsch={Ko getTripset (id:Tsch $)}
declare TSsch2={Ko getTripset (id:Tsch2 $)}

Ko saveTripset (id:Tsch file:tsch guiData:g failure: )}

Ko saveTripset (id:Tsch2 file:tsch2 guiData:g failure: )}
declare TS={Ko getTripset (id:Tsch $)}

declare TS2={Ko getTripset (id:Tsch2 $)}

declare Relsl={TS makeRels (extractMeth: [locs depTime trips] $)}
declare Rels2={TS2 makeRels (extractMeth: [locs depTime trips] $)}
declare T3={Ko merge (Tl T2 $)}

declare TS3={Ko getTripset (id:T3 $)}

TS3 clearRels}

TS3 addRels(rels:Relsl){

TS3 addRels(rels:Rels2)

Ko saveTripset (1id:T3 file:t3 guiData:g failure: )}

51



declare Tsch={Ko loadTripset (file:tsch guiData:_ 3)}
declare Tsch2={Ko loadTripset (file:tsch2 guiData: $)}
declare T3={Ko loadTripset (file:t3 guiData:_ 3)}

declare TS3={Ko getTripset (id:T3 $)}

declare TS={Ko getTripset (id:Tsch $)}

declare TS2={Ko getTripset (id:Tsch2 $)}

{TS3 clearRels}

declare Relsl={TS makeRels (extractMeth: [locs depTime slots]
locList: ['HSA'] $)}

declare Rels2={TS2 makeRels (extractMeth: [locs depTime slots]
locList: ['HSA'] $)}

TS3 addRels (rels:Relsl)

TS3 addRels (rels:Rels2)

declare T3sch={Ko schedule (tripSet:T3 useRels:true $)}
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declare Trips={Compiler.virtualStringToValue "\\insert
""#/trips/PHO_Stkhlm Orbr Hllsbrg.oz’'#"’'\n" $}

declare Tl={Ko addTrips (trips:Trips $)}

declare Tripset={Ko getTripset (id:T1 $)}

{Tripset makeAbsSlots(locs:['CST' 'HUV' 'SPA' 'JKB' 'KHA' 'BRO'
'"EKO1' 'GIB' 'VAV' 'KBA' 'MORP' 'ARB' 'OA' 'HSA' 'OB' 'HPBG' ])}
declare Tsch={Ko schedule(tripSet:T1l useAbstr:true useRels:false $)}
declare Tripset2={Ko getTripset (id:Tsch $)}

{Tripset2 concretize}

declare Tsch2={Ko schedule (tripSet:Tsch useRels:false 3)}
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% Test 0: Solve CST-K-G + CST-ORB-G in one single shot.
declare Trips={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Goods and P.oz'#"'\n" S

declare T={Ko addTrips(trips:Trips $)

declare Tsch={Ko schedule(tripSet:T useRels:true 3)}

Test 1: Solve CST-K-G + CST-ORB-G with relations added

Solve CST-K-G. Extract relations. Solve CST-ORB-G. Extract
relations.

Solve CST-K-G + CST-ORB-G with both these relations.

declare Tripsl={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Stkhlm-Ktrnhlm-Gtbrg-Stkhlmla.oz'#"'\n" $}

declare Trips2={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Stkhlm-Ktrnhlm-Gtbrg-Stkhlmlb.oz'#"'\n" $}

declare Tl=tKo addTrips (trips:Tripsil $)1

declare T2={Ko addTrips(trips:Trips2 $)

declare Tlsch:}Ko schedule (tripSet:T1 useRels:false $)

declare T2sch={Ko schedule (tripSet:T2 useRels:false 3)

declare Tripsetl:}Ko getTripset (id:Tlsch $)1

declare Tripset2={Ko getTripset (id:T2sch $)

de?lare Relsl={Tripsetl makeRels (extractMeth: [locs arrDepTime trips]
$)

de?lare Rels2={Tripset2 makeRels (extractMeth: [locs arrDepTime trips]
$)

declare TJoined={Ko merge (Tl T2 $)}

declare TripsetJoined={Ko getTripset (id:TJoined $)}

declare }TripsetJoined addRels(rels:Relsl)%

o\° o\° o\° o\ o\

declare {TripsetJoined addRels (rels:Rels2)
declare Tsch={Ko schedule(tripSet:TJoined useRels:true $)}
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Test 2: Solve CST-K-G + CST-ORB-G in two steps, with relations
added.

1.Abstract CST-K-G in such a way that CST-HPBG becomes one single
slot.
2 .Abstract CST-ORB-G in such a way that CST-HPBG becomes one single
slot.
Solve 1. Solve 2. Concretize the two schedules.
Extract relations from these schedules. Merge the two original
tripsets,
and solve the resulting plan using the relations from above.
declare Tripsl={Compiler.virtualStringToValue "\\insert
""#'trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlmla.oz’#"'\n" $}
declare Trips2={Compiler.virtualStringToValue "\\insert
""#'trips/PHO_Stkhlm-Ktrnhlm-Gtbrg-Stkhlmlb.oz’#"'\n" $}
declare T1=}Ko addTrips (trips:Tripsil $)1
declare T2={Ko addTrips(trips:Trips2 $)
declare Tripsetl:%Ko getTripset (id:T1 $)1
declare Tripset2={Ko getTripset (id:T2 $)

{Tripsetl makeAbsSlots(locs:['CST' 'HPBG' 'TAL' 'LA2' 'LA' 'GDO’
'"SLE' 'T' 'MH' 'VA' 'SK' 'RMTP' 'SS' 'F' 'FBY' 'HR' 'VGA' 'A' 'VBD'
'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P' 'SEL' 'SAV' 'GSV' 'OR1' 'OR'
'GRO' IGI])}

{Tripset2 makeAbsSlots(locs:['CST' 'SUB' 'SPA' 'KHA' 'STT' 'TOT'
'EKO1' 'EP' 'VA' 'VAvV' 'KBA2' 'MORP' 'VSG' 'ARB' 'OA' 'OR' 'KLA'
'"HPBG' 'TAL' 'LA2' 'LA' '@Dd' 'SLE' 'T' 'MH' 'VA' 'SK' 'RMTP' 'SS'
'F' 'FBY' 'HR' 'VGA' 'A' 'VBD' 'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P!'
'"SEL' 'SAV' 'GSV' 'OR1' 'OR' 'GRO' 'G'])}

declare Tlsch:}Ko schedule (tripSet:T1l useRels:false useAbstr:true $)
declare T2sch={Ko schedule (tripSet:T2 useRels:false useAbstr:true $)
declare Tripsetlsch:}KO getTripset (id:Tlsch $)

declare Tripset2sch={Ko getTripset (id:T2sch $)

Tripsetl concretize

Tripset2 concretize

Tripsetlsch concretizei

Tripset2sch concretize

declare Relsl={Tripsetlsch makeRels (extractMeth: [locs depTime slots]
locList: ['HPBG'] $)}

declare Rels2={Tripset2sch makeRels (extractMeth: [locs arrTime slots]
locList: ['HPBG'] $)}

declare T3={Ko merge (Tl T2 $)}

declare Tripset3={Ko getTripset (id:T3 $)}

Tripset3 addRels(rels:Relsl)

Tripset3 addRels (rels:Rels2)

declare T3sch={Ko schedule (tripSet:T3 useRels:true $)}

o\° 0\° o\° o\° A\® o\° o\° o\° o\° o\ o\

Test 3.
Solve CST-K-G + CST-ORB-G in two steps, with relations added.

1.Abstract CST-K-G + CST-ORB-G in such a way that CST-HPBG becomes
one single slot. Solve 1. Concretize. Extract relations at HPBG.
Solve the remaining part of the plan with relations added.
declare Tripsl={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Stkhlm-Ktrnhlm-Gtbrg-Stkhlml.oz'#"'\n" $}
declare Tl={Ko addTrips (trips:Tripsl $)}
declare Tripsetl={Ko getTripset (id:T1 $)}

{Tripsetl makeAbsSlots(locs: ['CST' 'SUB' 'SPA' 'KHA' 'STT' 'TOT'
'EKO1' 'EP' 'VA' 'VAv' 'KBA2' 'MORP' 'VSG' 'ARB' 'OA' 'OR' 'KLA'
'"HPBG' 'TAL' 'LA2' 'LA' '@DO' 'SLE' 'T' 'MH' 'VA' 'SK' 'RMTP' 'SS'
'"F' 'FBY' 'HR' 'VGA' 'A' 'VBD' 'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P!'
'"SEL' 'SAV' 'GSV' 'OR1' 'OR' 'GRO' 'G'])}

declare Tlsch={Ko schedule (tripSet:T1l useRels:false useAbstr:true 3$)}
declare Tripsetlsch={Ko getTripset (id:Tlsch $)}

{Tripsetlsch concretize}

de?lare Rels={Tripsetlsch makeRels (extractMeth: [locs depTime trips]
$)

Tripsetlsch clearRels}

Tripsetlsch addRels (rels:Rels) }

declare T2sch={Ko schedule(tripSet:Tlsch useRels:false 3)}

o® o\® o\° o\® o\° o
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Test 4 - as Test 3, but without relations.
Solve CST-K-G + CST-ORB-G in two steps, without relations added.

1.Abstract CST-K-G + CST-ORB-G in such a way that CST-HPBG becomes
one single slot. Solve 1. Concretize. Solve the remaining part of
the plan.
declare Tripsl={Compiler.virtualStringToValue "\\insert
""#'trips/PHO Stkhlm-Ktrnhlm-Gtbrg-Stkhlml.oz’#"'\n" $}
declare Tl={Ko addTrips (trips:Tripsl $)}
declare Tripsetl={Ko getTripset (id:T1 $)}

{Tripsetl makeAbsSlots (locs: ['CST' 'SUB' 'SPA' 'KHA' 'STT' 'TOT'
'EKO1' 'EP' 'VA' 'VAV' 'KBA2' 'MORP' 'VSG' 'ARB' 'OA' 'OR' 'KLA'
'"HPBG' 'TAL' 'LA2' 'LA' '@DO' 'SLE' 'T' 'MH' 'VA' 'SK' 'RMTP' 'SS'
'"F' 'FBY' 'HR' 'VGA' 'A' 'VBD' 'NS' 'FD' 'SN' 'LR' 'ASD' 'APN' 'P'
'"SEL' 'SAV' 'GSV' 'OR1' 'OR' 'GRO' 'G'])}
declare Tlsch={Ko schedule (tripSet:T1l useRels:false useAbstr:true 3$)}
declare Tripsetlsch={Ko getTripset (id:Tlsch $)}

{Tripsetlsch concretize}
declare T2sch={Ko schedule(tripSet:Tlsch useRels:false 3)}

*

/
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Appendix B — TUFFScript

Abstract

This document describes a script language for TUFF. The language is only intended to
be used together with TUFF, and is therefor rather limited. It handles variables,
assignments, procedure and function calls, and provides a conditional statement as
well as equality and inequality test operators. Variablesin this script language are
similar to variablesin Mozart, and most of the types are present in the form of classes
in the TUFF system.

The language provides the possibility of storing long series of commands to TUFF,
and enables amore fine-grained control of the TUFF system. The many similarities
between TUFFScript and the structures in TUFF are intended to make it easy for a

user who is familiar with the GUI of TUFF to understand and create a TUFFScript.
The similarities with Mozart will ssmplify the execution of the TUFFScript.

Types

The typesin TUFFScript are of various kinds, but limited to the elements necessary
for TUFF. All present types are described below.

Tripset

A Tripset can be described by atriple <Tasks, Rels, Res>. The Tripset may contain
one or more tasks, which in turn may contain one or more subtasks. Rels specifies
relations between tasks, and Res the resources necessary to perform the tasks. The
tasks must not necessarily traverse the same tracks, or even the same geographical
area

A Tripset can be obtained by using the function GetTripset, which reads a
specification from file and creates anew Tripset. A Tripset may exist on various
levels of abstraction. Thisis further described in a separate document®. An example of
thisisthat the departure, traversal and arrival times for atripset are either intervals or
fixed pointsin time. This means that a Tripset may be the argument to a scheduling
operation as well as the result of the same operation.

Abstract Tripset

An Abstract Tripset isa Tripset that has been abstracted. It works like a Tripset,
except that no pathwindow can be shown, i.e. it is not possible to call procedure

1 [Kre00]

55



ShowPathWindow with an Abstract Tripset as argument. However, if the Abstract
Tripset isfirst concretized, a pathwindow can be shown.

Relations

Relations are used to add conditions to a Tripset. Relations may exist for any level of
tasks or subtasks, and specify that there must be a certain order between two tasks or
subtasks.

For instance, if atrip traversesthesots[1 2 3], then it is necessary to traverse slot 1
before slot 2. Relations can also be used to specify orders between trips. It is possible
to restrict the order between a departing trip and another departing trip, between an
arriving trip and another arriving trip, and between an arriving and a departing trip.
The two possible ways of creating relations are on tracks and on locations. If
Relations are created on locations, then the trips and slots arriving and departing at a
certain location are considered.

If they are created on tracks, then only the trips or slots that traverses that that track
are considered. Relations are treated the same way regardless of the basis on which
they are created.

Extraction method

The Extraction method determines how to extract Relations from a Tripset. The
extraction method is a list with three elements: [Element1 Element2 Element3]. The
elements have the following objectives:

1. Thefirst element isaeither alist of resources, describing the resources for which
relations should be created, or the atom tracks or locations. In the case of an atom,
it determines whether relations should be determined based on locations or tracks.

2. Thesecond element isarrTime, depTime or arrDepTime, and specifiesif relations
should be extracted based on arrival time, departure time or both arrival and
departure time.

3. Thethird element can be slots or trips, and tells the system to generate relations
between slots or between trips.

Example: A valid Extraction method is [tracks depTime slots]. This example shows
how to specify an Extraction method for the departure time of all slots on common
tracks

Filename

A Filename is atext-string that specifies the location of afile. The text-string should
be enclosed with quotation signs.

Example: **Ihome/me/my_plans.oz”
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Path description

A Path description is either atext-string or arecord, which describes the path that
should be shown by the procedure DrawSchedule. It must specify avalid path. If the
path is specified by atext-string, it must be one of the predefined paths. If the path
description isarecord, it should have the features orig, dest and locs. orig should be
the location that the path originates from, dest the location that is the destination of
thetrip, and locs alist of locations that the trip should pass on its way from orig to
dest.

Examples:

'CST-K- O’ (thisis atext-string),
path(orig:’CST’ dest:’G’ locs:['K"]) (and thisis arecord).

List
A list may contain one or more elements of one of the types listed above. All elements
inalist must be of the same type. Thelist is enclosed with brackets.

Example: [E1 E2 E3].

Operators
The assignment operator =

Assignments are made with the operator =. A variable can be assigned the return value
of afunction call, or the value of another variable. Since all variables are single
assignment, the assignment operator can operate only once on each variable.

Example: Variablel = Variable2

The equality test operator ==

Tests can be made to check the equality of al combinations of return value and
variables. That is, equality can be checked between two variables, the return values of
two function calls or avariable and athe return value of afunction call. The test
operator returns the Boolean value true if the structures of the two compared items are
equal. If the structures are unequal, the Boolean value false is returned.

Example: Variablel==Variable2 may return true or false.

The inequality test operator \=

This operator works similarly to the equality test operator, except that it tests
inequality. It returns one of the Boolean values true or false.
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Variables

Variables are dynamically typed, and do not have to be declared. All variables are
single-assignment, and thus have alot in common with variablesin Mozart. All names
of variables must start with a capital letter. The name of avariable may contain letters,
numbers and underscores.

Function and procedure calls
Function calls should follow one of the patterns

Variable_name = Function_name (Argumentl) or
Variable_name = Function_name (Argument1, Argument2)

A function always returns a Tripset or the reserved word FAILURE if the function
failed. The return value must be stored in avariable, and since all variables are single
assignment, no variable may be assigned a value more than once.

The functions available are listed below in Table 1. For instance, Schedule takes as
argument a Tripset, and returns a new Tripset, where the intervals of the departure and
arrival times have been reduced to fixed pointsin time.

The names of all functions reflect the terms used in the GUI of TUFF. Thisisa
deliberate attempt to make it easier for someone familiar with TUFF to understand a
TUFFScript.

Procedure calls are similar to function calls, except that they do not give any return
value. A procedure call should follow one of the patterns

Procedure_name (Argument1) or
Procedure_name (Argumentl1, Argument2)

The two available procedures in TUFFScript and their arguments are shown in Table
2.
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Function Arguments Return value
Schedule Tripset Tripset

Circuit Tripset Tripset
GetTripset Filename Tripset

Merge Tripsetl, Tripset2 Tripset
LoadTripset Filename Tripset
CreateRelations Tripset, Extraction method Relations
NetAbstract Tripset, strength Abstract tripset
Concretize Abstract tripset Tripset
AddRelations Relations, Tripset Tripset

Future functions for abstraction

Table 1: The functions available in TUFFScript, their arguments and return values.

Procedure

Arguments

ShowPathWindow

Tripset, Path description

ShowCircuitWindow

Tripset

SaveTripset

Tripset, Filename

Extract

Tripset

Table 2: The procedures available in TUFFScript.

Conditional statement

TUFFScript provides a conditional statement with the syntax

if B then S1 else S2 end

where B isaBoolean, S1 and S2 are statements. If B is evaluated to true then
statement Sl is executed. Otherwise, S2 is executed. The conditional statement isthe
only statement that may contain other statements. A conditional statement may
contain another conditional statement. This means, that a nested structure of




statements is allowed when using conditional statements.

Comments

All comments are started with the marker /* and closed with */. A comment can be
placed on aline of its own aswell as before or after a statement on aline. It can be
one or more lines long, and may contain any characters.

Example: [* Thisis acomment*/
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