-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Swedish Institute of Computer Science Publications Database

SICS Technical Report T2000:05 ISSN: 1100-3154
SICS-T--2000/05-SE

Knowledge-Based Locomotive Planning for the
Swedish Railway
by

Volker Scholtz

Swedish Institute of Computer Science
Box 1263, S-16429 Kista, SWEDEN


https://core.ac.uk/display/11433741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Knowledge-based Locomotive Planning for the
Swedish Railway

Volker Scholz

December 1998



Prolog

This work was done during my half-year stay at SICS (Swedish Institute
of Computer Science) in Stockholm. I want to thank my colleagues Per
Danielsson, Per Kreuger, Thomas Sjéland and Emil Astrém for their interest
and their comments regarding my work. Thanks to Jan Olsson, the head
of the COL department for the offer to do a M.Sc. thesis in his group in
connection with the TUFF project.

My supervisor Per Kreuger was always interested in discussing new ideas,
although he was busy with other projects. He encouraged me to continue
the work also in difficult situations through his positive way of thinking. I
remember him as a good friend.

I also want to thank Mats Carlsson from the ISL department for proof-
reading parts of the work. Thanks to Prof. Dr. Volker Claus for his role as
examiner, his interest in my work and the time he spent on my problems.
Dipl. Inform. Friedhelm Buchholz supervised the work in the final phase in
Stuttgart and gave some valuable comments.

I really appreciated the familiar and liberal atmosphere at SICS. I was
warmly welcomed as a foreigner and got some taste of international re-
search. It was really a good time at the end of my days of study.

Sjung om studentens lyckliga dag,
Latom om oss frojdas i ungdomens var!
An klappar hjertat med friska slag,
Och den ljusnande framtid &r var.

Prins Gustafs Studentsang



Contents

Introduction

1.1 Railway Planning Problems . . . . . ... .. ... ......
1.2 The Swedish Railway . . . . . .. ... ... ... ......
1.3 The TUFF Project . . . . . . .. ... ... ... .. .....
1.4 Locomotive Assignment . . . .. ... ... ... .......

1.5 Overview . . . . . . i e e e e e

Mathematical Foundations

2.1 Basic Definitions . . . . ... ... ... ... .. ...
2.2 Graphs. . . . . ..
2.3 Network Flows . . . ... .. .. ... ... ... .. .....

Problem Definition
3.1 Track Allocation . . . . . . . . . . . . .
3.2 Locomotive Assignment . . . .. ... ... ... .......

3.3 Example . . . . . . .. L

Related Work
4.1 Routing and Scheduling of Vehicles . . . . . . ... ... ...
4.2 The Multiple Depot Vehicle Scheduling Problem . . . .. ..

4.3 The Vehicle Routing and Scheduling Problem with Time Win-
dows . . ...

4.4 DISCuSSION . . . . . . v i e e e e e e e e e e e e e

11
11
16
19



CONTENTS

5 Constraint Programming

5.1 Introduction. . . . ... ... ... ... . . ..
5.2 Solving of Constraint Problems . . . . . ... ... ... ...
5.3 Search Strategies . . . . . ... .. ... oL
5.4 Constraint Propagation . .. ... ... ... ... ......
5.5 Constraint Programming Languages . . .. ... ... .. ..
5.6 Constraint Programming in Oz . . . . ... ... ... ....

5.7 A High-Level Geometric Constraint . . . . ... ... .. ..

Constraint Model for Locomotive Assignment

6.1 The Exclusion Marker Model . . . . ... ... .. ......
6.2 Example . . . . . . ...
6.3 Discussion of the Marker Model . . . . . .. ... ... ....

Propagation Algorithm

7.1 Introduction. . . . . . . ... .. ... .. L
7.2 Kernels . . . ... .
7.3 Domain Reduction . . . ... .. ... ... ... ... ....
7.4 Several Part Domains and Forbidden Areas . .. ... .. ..
7.5 Pairwise Reasoning . . . . . . . .. ... ..o
7.6 Examples . . . .. ... ..
7.7 Stronger Consistency . . . . . . . .. ...

7.8 Variable Rectangle Sizes . . . . . . .. ... ...

Heuristics

8.1 Imntroduction. . . ... ... ... ... ... . ... ...
8.2 Best Predecessor Heuristic . . . . . .. .. ... ... .....
8.3 Nearest Neighbour Heuristic. . . . . . ... ... ... ....
8.4 Imsertion Heuristic . . . ... ... ... ... ... ......
8.5 Examples . . . .. ..
8.6 Matching Heuristic . . . . . ... ... ... ... ......

31
31
33
35
36
38
39
40

43
43
47
48

51
51
54
56
o8
65
67
68
69



8.7 Improvement Heuristic . . . . . . ... ... ... .......
8.8 Locomotive Types and Passive Transports . . . . . . . .. ..

8.9 Discussion . . . . . . . ... e e e e

9 Implementation
9.1 The TUFF system . . . ... .. ... ... .. ........
9.2 Exclusion Marker Model . . . . . . . ... ... ... ... ..
9.3 Imsertion Heuristic . . . . ... ... ... ... ........

9.4 Diff2 Propagator . . . . .. ... ... ..

10 Experiments
10.1 Performance . . . . . . . . . . . . ...
10.2 Small Example . . . . . .. ... o oo

10.3 Larger Example . . . . . . ... ... oo

11 Conclusions

Bibliography

A Examples
A.1 Performance Example A . . . .. ... ... .. ........
A.2 Performance Example B . . . . . ... ... ... ... ..
A3 Small Example . . . .. ... ..o o
A4 Larger Example . . . . . . ... ... oL
A.5 Larger Example with Time Windows . . . . . .. . ... ...

B Code
B.1 Exclusion Marker Model . . . . . . . . ... ... ... ....
B.2 Insertion Heuristic . . . . . . . . ... .. ... ........

B.3 Diff2 Propagator . . . . .. ... ... ... ... ...

92
92
94
94
97

100
100
110
115

124

125

130
130
136
139
139
141






Chapter 1

Introduction

1.1 Railway Planning Problems

With the advent of the industrial revolution, railway traffic played an im-
portant role in the coal and steel industry. It is still an important factor in
the transportation system of modern countries in the information age. Pas-
senger transport could gain new customers by high-speed trains like the ICE
in Germany or the X2000 in Sweden, whereas freight transport meets hard
competition from the road carriers. The competition becomes also harder
due to the decay of monopolistic structures and deregulation.

Planning problems in railway traffic where always of great interest to railway
companies due to economical reasons. They need computer-aided tools for
the most efficient use of their resources. Transport planning has also an eco-
logical dimension, the great amount of transport tasks should be performed
in the most energy efficient way.

In the planning of rail traffic one has to deal with the following problems
[BWZ9T]:

e train scheduling
e rolling stock scheduling
e personnel scheduling

e rescheduling

We will describe the different subproblems briefly [BWZ97].

Train scheduling is the determination of the departure and arrival times of
the trains at the stations. Passenger trains have periodic departure times
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whereas schedules for freight transport are adjusted to customer demand.
There are safety restrictions (two trains must keep a certain distance) and
capacity restrictions, e.g. the number of platforms at stations. The alloca-
tion of tracks to trains must be planned.

Rolling stock scheduling deals with the assignment of locomotives and cars to
trains. They are often stored in depots and must be maintained after certain
time intervals. In this work, we will look at the assignment of locomotives
to trains.

Personell scheduling is the assignment of engine-drivers and accompanying
staff to trains. Legal restrictions like working times, breaks etc. have to be
taken into account.

Rescheduling is the generation of adjusted schedules after delays of trains,
in case of heavy traffic or technical failure. A dispatcher must be able to
recompute parts of the schedule on-line so that a fast reaction to events
in the network is possible. A complete reoptimization is in this real-time
situation often not possible, and local improvement heuristics are used.

Before these planning tasks can be addressed, some strategic decisions have
to be made. The structure of the network, routes and lines have to be
determined. Although the network is a result of its historical development,
decisions about new tracks have to be taken. The railway network can
be divided into different subsystems: long-distance trains and regionally
operating trains. Another strategic decision is the number of engines and
cars that shall be used in the long-term.

Todays railway companies often follow a top-down approach in their plan-
ning tasks [BWZ97]. The planning of the network and routes is followed by
train scheduling, and train scheduling followed by rolling stock and person-
nel planning. This leads to subproblems of manageable size. Additionally,
the different planning horizons of the subtasks are reflected in this approach.
One begins with long-term strategical planning, followed by tactical and op-
erational planning. This problem decomposition has also disadvantages. It
is only possible to optimize the solutions for the different isolated problems.
It is difficult to obtain an optimum solution for the whole problem.

1.2 The Swedish Railway

Swedish State Railways SJ ' operates passenger and freight trains in Sweden.
Fig. 1.1 shows the Swedish railway network for freight transport. Large
parts of the network consist of single tracks due to the large distances. These

!Statens Jirnviigar [SJ]
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can only be occupied by one train at a time and are used in both directions.
Track capacity is therefore a special issue in the Swedish network.

In the Swedish freight transport system, there are long-distance trains be-
tween 11 cities. > These are the centers of so-called production areas. The
transport of the cargo from a production area to its center is done by regional
trains, so-called terminal trains.

1.3 The TUFF Project

The TUFF 3 project is a cooperation between the Complex Operations
Laboratory at SICS * and SJ. Its aim is to investigate how information
technology can make the train planning process for freight transport at SJ
more efficient and is funded by SJ. In the TUFF 2 project, a scheduler
for the allocation of tracks to trains has been developed. We will give a
formal description of this planning task in Chapter 3. The scheduler uses
constraint programming technology and is implemented in the constraint
language Oz 2. One research goal is to study the feasibility of constraint
programming techniques in the railway scheduling domain. Constraint pro-
gramming has already been successfully applied to real-sized problems in
scheduling and transport planning [Sim96].

The program has a graphical user interface with windows for the railway
network and the plan parameters (see Fig. 1.1, 1.2). Partial plans for certain
routes in the net can be visualized in so-called train sequence diagrams (see
Fig. 1.3), where the z-axis represents time and the y-axis the intermediate
locations between a station pair. These time-space diagrams are used by
railway companies for an illustration of the timetable. The whole plan can
be inspected by several such diagrams by choosing the stations pairs in the
map.

An interesting feature of this planning system is the possibility to extend
an existing timetable by an additional plan specification for new trains so
that the planner can generate an extended plan. If this process is iterated,
one can extend the timetable in every step by a moderate number of new
trains. With this technique, planning problems with several hundred trains
can be handled.

The generated plans are not optimum solutions with respect to parameters
like the total plan time and the waiting times for the trains, but feasible

’Borlinge, Gévle, Goteborg, Helsingborg, Lulea, Malmo, Nissjd, Stockholm,
Sundsvall, Umea and Orebro [SJ 98]

3Tagplaneutveckling for framtiden, Train Planning for the Future

“Swedish Institute of Computer Science [SIC]
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plans which respect upper bounds for these parameters can be generated
quickly [KCO'97].

The purpose of this work is to extend the TUFF system by a planner for
the assignment of locomotives to transports. In the common hierarchical
approach, the track allocation problem is solved in a first step and leads to
a timetable with fixed departure times. For this timetable, the locomotive
assignment problem is solved.

The goal of this work is to integrate the track allocation and locomotive as-
signment tasks. We hope to generate better solutions by coordinating these
mutually dependent tasks. Constraint Programming provides the possiblity
to add new constraints to the ones which already exist for track allocation.

Figure 1.3: A train sequence diagram

1.4 Locomotive Assignment

The objective of the locomotive assignment problem is to assign locomotives
to trains as cost-efficient as possible.

We define a trip as a transport on which is not possible to change the
locomotive. The number of weekly trips at SJ is more than 3000 for freight
traffic as well as passenger traffic [DHKK97]. A trip requires at least one
locomotive, sometimes two and can be run by more locomotives than are
actually needed. The required locomotives are called active locomotives
while the extra locomotives are passive. It can be useful to move a locomotive
to the start location of a new trip by running it as a passive locomotive in
a trip. Ome can also move a locomotive by running it without any cars.
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This is called a passive transport and it is more expensive than a passive
locomotive. We call the trip order which a locomotive has to serve a route.

Different trips require different locomotive types (different speeds, horse-
power etc.). Every trip is compatible with a subset of locomotive types.
The locomotive types rcl-rcb at SJ are hierarchically ordered, where a lo-
comotive of type rc6 can serve any trip. A locomotive of a certain type
in this hierarchy can run any trip in the same or a lower class. Addition-
ally, there are the classes X2000, Radio and Diesel. Trips which require one
of these classes require one particular locomotive type, i.e. the assignment
problem decomposes by the locomotive type and can be solved for each type
separately.

At the start and end location of a trip a certain amount of time is needed to
change the cars between two trips which are served by the same locomotive.
This process is called docking which needs a certain amount of turn time.

There are several factors for the cost of a locomotive schedule, we order
them after their importance:

e the number of locomotives
e the amount of passive transport kilometers

e the waiting times of the locomotives

The number of locomotives is the largest cost factor. There is a fixed cost
for using a locomotive in a schedule. Additionally, SJ pays a fee to the
track operator (Banverket) depending on the number of locomotives used.
Unused locomotives can sometimes be rented to other railway companies.

Passive transports are not directly productive and require locomotive and
staff resources. They consume also track capacity, so that they should be
avoided. Obviously, a smaller number of locomotives leads to an increase
in passive transport and a balance between these two cost factors must be
achieved. We will define the cost function in Chapter 3.

If there are restrictions on the departure times of the trips, waiting times
for the locomotives can occur. The time a locomotive has to wait until it
can run the next transport is not productive and should also be minimized.

1.5 Overview

In the next chapter, we will give some basic mathematical definitions. Chap-
ter 3 contains a formal definition of the whole planning problem, i.e. the
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track allocation and locomotive assignment problem. After we have defined
our problem, we look at several approaches to vehicle routing problems in
the literature in Chapter 4. Chapter 5 provides a short introduction to con-
straint programming. In Chapter 6, we present a constraint model for the
locomotive assignment problem which can be added to the TUFF system.
This constraint model uses a new geometric constraint which is not avail-
able in Oz 2 and a propagation algorithm for this constraint is presented in
Chapter 7. We discuss several heuristics for the generation of locomotive
routes in Chapter 8. Chapter 9 describes the implementation part of this
work. Chapter 10 contains experiments on problem sets for the Swedish
network and the last chapter gives an outlook on further problems.



Chapter 2

Mathematical Foundations

2.1 Basic Definitions

N denotes the set of the non-zero natural numbers and Ny contains also
the number zero. Z denotes the set of integers and R the set of reals. R
denotes the positive real numbers including zero. We use a special notation
for the set of all subsets of a certain size. Let A # (), |[A| =nand 0 <k < n:

(1) = tscansi=n

2.2 Graphs

A graph G = (V, E) is given by a set of nodes V' and a set of edges F. It is
directed if £ C V x V and undirected if £ C (‘2/) Our graphs contain no
loops, i.e. Yo € V : (v,v) ¢ E in the directed case and Vv € V : {v} ¢ E in
the undirected case.

A multigraph G = (V, E,w) contains additionally a function w that maps
every edge to its two incident nodes. If w is not injective, the graph contains
multiple edges between nodes. The multigraph is directed if w: E =V xV
and undirected if w : E — (‘2/) We use loop-free multigraphs, i.e. Ve €
E Vv € V : w(e) # (v,v) in the directed case and Ve € E Vv € V :

w(e) # {v} in the undirected case.

2.3 Network Flows

We introduce two network flow minimization problems in this section. The
notation is taken from [AMO93].
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2.3.1 The Minimum Cost Flow Problem

Let G = (N, A) denote a directed graph over which we want to send units
of flow. Every arc (i,j) € A has a maximum capacity u;; € R" and an
associated cost ¢;; € RT. ! For every node i € N, the number b(i) € R
represents its supply/demand function or divergence. The amount of flow
in the network is constant: Y. ; b(¢) = 0. Nodes with b(z) > 0 are supply
nodes, nodes with b(7) < 0 are demand nodes and nodes with b(i) = 0 are
transshipment nodes. The goal is to determine the flow z;; € RT on every
arc (4,j) € A which fulfills the following conditions:

min Z CijLij (21)

(i,7)EA

Z Tij — Z Tj; = b(’l) Vi e N (2.2)

{ilGi.5)eA} {ilGm)eA}

0 <z <uy V(,j) €A (2.3)

Equation 2.1 defines the cost function that we want to minimize. The flow
on every arc is weighted with its associated cost. The flow conservation
condition is described in Eqn. 2.2, i.e. the amount of out-flow minus the
amount of in-flow of a node is equal to its divergence b(¢). Eqn. 2.3 limits
the amount of flow on every arc to a maximum value.

Today, the most efficient method for solving this problem is a simplex algo-
rithm which is tailored to the network problem [AMO93], [Loe98]. The
network simplex algorithm runs theoretically in pseudo-polynomial time
[AMO93]. Experiments have shown that on the average, one can assume
a low-order polynomial in the number of arcs and nodes [Loe98].

2.3.2 The Multicommodity Minimum Cost Flow Problem

We are given a directed graph G = (N, A), a cost ¢;; € RT and a maximum
capacity u;; € R for every arc (i,j) € A. We want to represent the flow
of K different commodities 1,..., K in the network, i.e. the flow units have
different type. Let xfj denote the flow of commodity k € {1,..., K} on arc
(i,7) € A and cfj € R the associated cost. The vectors x¥ = (acfj)(z-,j)eA
and cF = (ij)(i,j)e 4 denote the flow vector and cost vector of commodity k.

!We assume that the flow cost varies linearly with the amount of flow over an arc.



CHAPTER 2. MATHEMATICAL FOUNDATIONS 10

b* (i) denotes the divergence of the node i € N for the commodity k. The
amount of flow of every commodity is constant:

ibk(i)zo VEe{l,...,K}
i=1

The multicommodity flow problem can be formulated as follows:

K
min Z ck . xF (2.4)
k=1

afi— Y ali=t() VieN Vke{l,... K} (25

{j1(i1)€A} {i1(:5)€A}
K

> ak <uy V(i,j) €A (2.6)
k=1

0<af <ufy V(i,j)eA Vke{l,... K} (2.7)

Eqn. 2.4 defines the cost function. We compute the flow cost for every
commodity by computing the dot product ¢* - x¥ and sum over the com-
modities. The next equation describes the flow conservation condition for
each commodity. Eqn. 2.6 states a bundle constraint for each arc, i.e. the
sum of flows of all commodities on an arc (7,j) € A must respect the upper
bound u;;. The individual flows of the commodities are restricted by their
own upper bounds (Eqn. 2.7).

This problem can be solved by Lagrangean relaxation methods [AMO93].
The run times are not polynomial in general and can degenerate into expo-
nential in the worst-case.



Chapter 3

Problem Definition

We begin this chapter with a formal description of the model for track
allocation in the TUFF system [KCO197]. After that, we extend this by a
definition of the locomotive assignment problem. We conclude the chapter
with an example in order to explain the definitions.

3.1 Track Allocation

The track allocation problem can be summarized as follows: schedule a set
of train trips with predetermined paths over a railway network, where

e paths consist of track sequences and a track connects nodes where
trains can meet and overtake.

e the trains must keep a certain safety distance.
e there is a maximum number of waiting trains at each node.

e schedules should respect bounds on the total time required to execute
the schedule and on waiting times of the trains.

We begin with a definition of the railway network:

Definition 1 (Network) The railway network is given by an undirected
multigraph Gy = (V1, E1,w) where V7 is the set of locations, Ey = {e1,...,eq}
the set of tracks and w: E1 — (‘;i)

The capacity function o : Vi — N denotes the capacity of a location, i.e. the
maximum number of trains that can be there at the same time. The function
v: By — RT defines a mazimum velocity per track, § : By — R* is the

11



CHAPTER 3. PROBLEM DEFINITION 12

track length and s' : Ey — {0,1} labels a track as double (0) or single (1).
A double track can be used simultaneously by two trains running in opposite
directions, a single track cannot.

The set of routes R = {ri,...,rg} defines the paths of the trains in the
network. Given two locations u, v € Vi, there is exactly one path which
leads from u to v. A route r; is given by its start location S(r;) = u, its
end location E(r;) = v and € = €(r;) tracks which are traversed by the
route: T; = (€;,,...,¢;.) where lw(e;;) Nw(e;, )] =1 Vje{l,...,e—1}
(connectedness) and S(r;) € w(e;,), E(r;) € w(e;, ). The track order induces
a start location S(e;;,r;) and an end location E(e;;,r;) for each track that
is contained in the route (1 < j <€), depending on the direction in which it
is traversed.

We need a multigraph representation of the network, because two locations
can be connected by several tracks (e.g. by a single and a double track). The
set of locations contains stations but also intermediate points in the network
where trains can meet. The capacity function for the locations is necessary
because they have a limited number of parallel tracks, this limits the number
of trains that can wait simultaneously at a location. Most locations in the
Swedish network have two parallel tracks.

The properties of a track are its maximum velocity, its length and the at-
tribute single or double. A single track corresponds to one track in reality,
it can’t be used simultaneously by two trains running in opposite directions,
but by two trains with the same direction and a safety distance. It is used
for trains traveling in both directions. A double track corresponds to two
tracks in the physical network, one for each direction. Trains of opposite
direction can meet at a double track.

The set of routes R is an input to the planning system. The problem of
generating suitable transport paths in the network is not addressed in this
work. We assume that the paths are already known. Our routes are simple
paths, i.e. a track can’t be traversed several times by a route. Transports
with loops must be decomposed into several single paths.

The railway network used in the TUFF system consists of 264 locations, 336
tracks and 126 example routes.

Definition 2 (Planning problem) The input for the planning of track
allocation is a set of trips P = {p1,...,pn}. A trip is given by a start
location S(p;), an end location E(p;) and a route r(p;) € R connecting them.
v: P — RT defines the mazimum speed of a trip. Every trip has a time
window [Tmin (Pi)s Tmaz (Pi)] for the departure time of the trip where Tpin(pi),
Tmaz(Pi) € No and Tmin < Tmagz- The time window [Wpin (pi, V), Wmaz (Pi, V)]
denotes the minimum and maximum waiting time for each location v € V;
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which is visited by trip p;. For every location v € Vi, we have additionally o
window [Wyin (V), Wmaz (V)] for a location dependent minimum and mazimum
waiting time.

As an additional input, some parameters for the computed timetable must
be given:

® [Smin, Smaz] 15 a global time window for the departure time of all trains.

e the location slack factor p

We call the difference between the actual and the minimum waiting time at
a location slack. The location slack factor p with 0 < p <1 s the ratio of
slack at o location and the time for the following track traversal. The slack
s bounded by p for all locations and trips in the problem.

The input to the planning problem is a set of trips (or trains). ! Each trip
has a maximum velocity which depends on the route and the train weight.
The freight trains in the Swedish network have velocities between 80 and
120 km/h [SJ 98]. There is also a time window for the departure time of a
trip which is given by customer demands. The time points are represented
as natural numbers, i.e. we use a discrete time scale (minutes). A trip can
require certain waiting times at intermediate locations on its route in order
to allow docking operations. This can be specified by time windows for the
minimum and maximum waiting time at these locations. Every location has
also an individual time window for the waiting times.

A specification of a planning problem contains also parameters for the gen-
erated timetable. There is a time window for the whole plan defining the
planning horizon. The waiting times of the trains at the stations are a qual-
ity measure for the generated timetable and ensure reasonable travel times
for the trains. One can specify an upper bound for the slack at locations,
i.e. the amount of waiting time which exceeds the minimum waiting time.

Definition 3 (Timetable) We have again n trips P = {p1,...,pp}. A
trip consists of a sequence of track traversals, so-called tasks. Let t;; de-
note the traversal of track e; € Ey by the trip p; with the route r(p;) =
(€j1s---,€5.) € R with e = €(r(p;)). Let I(p;) = {j1,-..,je} denote the set
of the indices of the edges traversed by trip p;. w; ; € No denotes the waiting
time of the train in the start location S(e;,p;) of the track and s;; € Ny

'We look at the freight transports without a determined schedule. Passenger and
freight transports with fixed departure times could also be included into our model (with
a departure time window of zero length), but we won’t consider them further.
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its departure time at this location. d;; € Ng is the duration of the track
traversal which is given by

d(e;)
min{v(p;),v(e;)}

0J =

hij € No is the headway that must be respected between trains which travel
in the same direction on this track. The headway is a constant fraction of
the duration of the track traversal: h;j = ~yd; ; with v = 0.15. The departure
time s(p;j) of a trip p; is the departure time on its first track: s(p;) = sj, ;-

The computed timetable consists of all start times s; j and waiting times w; ;
and must respect the following constraints:

o time bounds:

= Vi e{l,...,n}: s(pj) € [Smins Smaz)
(time window for the whole plan)
- Vje{l,...,n} Viel(p;):
w;j € [wmin(pjav)awmaw(pjav)] N [Winin (v), Winaz (V)]
where v = S(e;,p;).
(minimum, mazimum waiting time per location,)
- Vje{l,...,n} Viel(p;):
wjj — Max{Wmin (Pj, V), Wmin (v)} < pd;,
where v = S(e;,p;).
(mazimum slack per trip and location)

e trip constraints:

- Vje{l,...,n}: 5(10]') € [Tmin(pj)aTmaw(pj)]
(time window for each trip)
-Vje{l,...,n} Vke{l,...,e—1}:
Sjkerd = Siwd T g T Winsr,g
where I(pj) = {j1,---,Je}-
(the tracks are traversed in the order given by the routes)

e Jocation constraints:
Let I1 : P x No — V4 U E; denote the function that maps a trip
p € P and a time point t € Nq to the location or track where the
corresponding train is located at time t. We can formulate the location
constraints as:

Yoe Vi VteNg:|{pe€ Pll(p,t) =v} <o(v)

e track constraints: We must distinguish two cases:
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— the trips pi and p; traverse the single track e; in opposite direc-
tions

(k <INi€I(py)NI(p)AS(eispr) # S(eipr) Ns'(e) =1):
(sig +dig < 500) V (850 +diy < sik)

There is no such restriction for opposite directions and double
tracks.

— the trips py and p; traverse the track e; in the same direction
(k <Ini€I(pe) NI(p) AS(ei,pr) = Slei,pi)):

(si +max{h;p, hip +dir—di;} < sij)
Vo (s +max{hig, hig +dig —dig} < sip)

For the computation of the track traversal time d; ;, we have to consider the
maximum velocity specifications for the trip and the track. The other input
parameter is the track length. We get identical traversal times for both
traversal directions. This is a simplification because we can have different
traversal times in reality if the track has a certain slope.

The headway h; ; ensures that trains traveling in the same direction have
a certain safety distance. This is approximated by a constant fraction of
the traversal time for the track. In reality, the headway corresponds to
the distance of two signals on the track. A track is divided by its signals
into several segments. One could also model all these track segments in the
network model, but this would lead to a significantly larger net. Thus, the
headway abstraction was introduced.

The constraints for the time bounds include the plan time window and the
waiting times. For the waiting time at locations, we must consider the
trip and location dependent time windows and take their intersection. The
amount of slack, i.e. the amount of waiting time which exceeds the minimum
waiting time is bounded for every location by the location slack factor pu.
The trip constraints include the time window for the departure time of each
trip and the traversal of the tracks in the route specific order. The location
constraints state that there’s a maximum number of waiting trains at every
location and every time instance.

The track constraints ensure that trains with opposite directions can’t use
a single track simultaneously. They must traverse it sequentially, the two
possible orders can be expressed as a disjunction. This is illustrated in Fig.
3.1, where task t; ;. is completed before task ¢;; on the single track e;. We
illustrate this in a time-space diagram. Task t; starts at time s;j at its
start location S(e;,py) and arrives after the track traversal time d; j in its
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hi g T
Sik Si

Figure 3.1: Trip py traverses track e; before trip p; (adapted from [KCO197])

end location E(e;, px). Due to the headway condition, another trip traveling
on track e; in the same direction must wait the headway time h; ; until it
can start. This is shown by the left dark area, it is a safety area for task
t; k. Task t;; can start at time s;; = s; ) +d; } in the opposite direction and
has its own safety area.

Trains which travel in the same direction on a track must respect a certain
headway time in the start and end location. This is shown in Fig. 3.2.
Observe that the safety areas from Fig. 3.1 have been extended by white
triangles, because the headway condition must be respected in the start and
end location by trains with identical direction. If the first trip py is slower
than the second trip p;, we get the headway h;j (left figure). If p; is faster
than p;, the second trip must wait longer so that the headway is not violated
in the end location. We get the headway h; . + d; , — d;; (right figure). We
can combine these two cases into the expression max{h;, hix +d;r —d;;}.

3.2 Locomotive Assignment

In the last section, we have described the track allocation problem. For
more detailed information about its implementation in the TUFF system,
the reader may refer to [KCO™97]. The existing planner in the TUFF sys-
tem shall be extended by the planning of locomotive assignment which we
describe in the following definition.

Definition 4 (Locomotive assignment) Let Vo, C Vi denote the start
and end locations of the routes R in the network that we have defined (we
only work on a subset of all possible routes). We call a location v € V5 turn
location. We define the directed graph Go = (Va, E) with Ey =V, X V.
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Sik  Sil

Figure 3.2: Headway max{h;, h;; + d; ; — d; ;} for two trips with different
speeds (adapted from [KCO™97])

dy : By — RT defines an estimated travel time for a passive transport be-
tween a turn location pair.

Given a set of trips P, a specification | : P — 2 for the suitable locomotive
types for each trip where L denotes the set of locomotive types and a set
of locomotives M = {l1,...,lyn} with types ¢ : M — L, we are looking for
an assignment ¢ : P — M of the trips to the locomotives that respects the
locomotive types:

Vp € P:1p(¢(p)) € l(p)

The assignment ¢ must fulfill the location continuity constraint. Let
P = {p1,...,pn} and s(p;) = si,; is the departure time of trip p; which
traverses € = €(r(p;)) tracks. d(p;) is the traversal time of trip p;: 2

d(pi) = diy i + Y (diy i +wiy i)
k=2

Let d(pi,pj) = 62(E(ei.,pi),S(ej,,pj)) denote the travel time for a passive
transport connecting the trips p; and p; and © the turn time which is needed
for the docking of cars between transports:

Vpi,pj ePi<j:
o(pi) = d(p;) = (s(pi) + d(pi) + d(pi, pj) + © < s(pj))
v (s(pj) +d(p;) + d(pj,pi) +© < s(p;))

3 : M — Vy defines the start locations of the locomotives. ¢ must allow a
passive transport from the start location of a locomotive to the start location

2We assume that there’s no waiting time in the start location S(p;) of trip p;.



CHAPTER 3. PROBLEM DEFINITION 18

of its first trip if these are different. Let p' = arg ming,c p|gp)=r} s(p) be the
first trip that is served by the locomotive I' € M :

vI'e M : (') # S(p') = in s(p) > &(S(I'),S(p))

m
{peP|d(p)=I"}

¢ shall be optimized with respect to the following parameters:

o minimum number of used locomotives

e minimum total passive transport time for the minimum locomotive
number

o minimum amount of waiting time for the locomotives

We call the subset of locations where trips can start and end turn locations.
The travel times 09 for the passive transports are calculated from the route
length between the turn location pair in the network and a constant velocity.
This is an estimation since we can’t be sure that the route is free. Every
trip can be served by a subset of locomotive types so that we must consider
the locomotive types in the assignment ¢. The locomotive type requirement
of a train depends on the weight of its cars and the route on which it must
travel.

The location continuity constraint ensures that the locomotives have enough
time to get to the start location of the next trip. There must be enough
time for a necessary passive transport and for the turn time. If a locomotive
has another start location than the start location of its first trip, we get
a passive transport at the beginning of the locomotive route. We do not
formulate an explicit turn time at the beginning of a locomotive route. This
turn time can be included into the trip departure time window.

The cost function for the locomotive schedule gives priority to the number
of used locomotives, followed by the amount of passive transport time and
the locomotive waiting times. This is a common cost function also for other
vehicle routing problems and it reflects the high cost of locomotives.

Observe that we have restricted the locomotive assignment problem to the
case where every trips needs exactly one active locomotive. We don’t con-
sider additional passive locomotives or several active locomotives as de-
scribed in Section 1.4. We needn’t take into account maintenance intervals
for the locomotives, as we assume that a locomotive can be replaced at any
time in the schedule by another one, if maintenance is necessary. Thus, we
compute the vehicle route for a virtual locomotive which can be replaced by
several physical locomotives.

We do not address the issue of personnel planning and its interaction with
the track allocation and locomotive assignment problems. As far as we
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know, these three problems have always been handled separately and the
integration of two of them is a first step.

3.3 Example

As an example for the combined track allocation and locomotive assignment
problem we look at the railway network in Fig. 3.3.

J
E F

Figure 3.3: A small railway network

We have six locations A-F where trips can start and end (turn locations),
these are connected by single tracks (thin lines) and double tracks (thick
lines, B-F and D-FE). Every line segment in the figure corresponds to a
track that connects points where trains can meet and overtake. The mini-
mum travel times between the turn locations are given in hours. We’ll make
the following assumptions (simplifications):

e all transports can be handled by the same locomotive type, all loco-
motives have the same type.

e all trains have the same speed, the travel times are given in Fig. 3.3.

e trains traveling in the same direction on a single track must respect a
headway of 30 minutes.

e the turn time between two transports is 30 minutes.

e we ignore the maximum number of waiting trains at a station.
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We assume that the trains always take the route with the shortest travel
time. The trip specification is given in Table 3.1.

trip | start, end location | departure time window
P1 A-F 8-10
P2 A-F 8-10
3 E—-F 12-15
P4 F-B 8-10
D5 F-A 12-18
D6 B-D 12-15
p7 B-F 824

Table 3.1: Trip specification with departure time windows

In Fig. 3.4, alternative schedules are shown, depending on how many loco-
motives are available. In the first Gantt diagram, five locomotives [1—5 are
available, their start positions are given in Table 3.2.

locomotive | start location
I A
Iy A
I3 F
Iy C
l5 F

Table 3.2: Locomotive start locations

Locomotive [; begins with trip p; and can continue in £ with trip ps after
a turn time of half an hour (the time window for p3 has been reached). Iy
performs the trip po parallel to p; and must respect a headway of 30 minutes
after p;. I3 begins with trip ps and must wait in B until the time window
for pg is reached. It continues then with trip ps which has to stop in x (see
Fig. 3.3) when trip ps with opposite direction on locomotive /5 has reached
Y. pg can be continued after ps has passed the track between y and z. 4 is
located in C' in the beginning so that a passive transport PT to B, the start
location of p7 is necessary. p; starts after the passive transport. Observe
that p; doesn’t get in conflict with p3, because the path D—FE consists of
double tracks and can be used simultaneously by two trains with opposite
directions. [5 performs trip ps according to its time window.

In the second Gantt diagram we want to get rid of the locomotive I5. ps
can be scheduled on /9 after a passive transport from E to F' and the turn
time. Observe that the passive transport can’t start immediately because it
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locomotive
11 (A pl El [E_p3 F
12| (A p2 El
3E__p4 Bl [B___|[p6 D
14 PT[B p7 E|
15 (F p5 Al
§ 10 12 14 1 18 20 2
nA pl El [E_p3 F
12 A p2 El PT [F p5 Al
3(F_p4 Bl [B__p6 D

14 PT|B p7 E|

Figure 3.4: Solutions with five and four locomotives

locomotive
111A pl E|] [E_p3 F]
2] [A p2 E| PT [F p5 Al
13LE p4A__Bl (B p6  Dj PT (B p/ E|
8 10 12 14 16 18 20 22

Figure 3.5: Solution with three locomotives
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must respect a headway with regard to p3 on /1. This means that the track
allocation problem has not only to be solved for the normal trips, but also
for the passive transports.

In the third Gantt diagram (Fig. 3.5) three locomotives are sufficient if
we eliminate [4. We schedule p7 on I3 after a passive transport from D to
B. A smaller locomotive number is not possible because the three trips
p1, p2 and py start in the earliest time window (8-10) and can’t be done
sequentially. The amount of passive transport is not optimal because the
passive transport on /o could be replaced by the trip ps.



Chapter 4

Related Work

We describe in this chapter several vehicle routing problems which can be
found in the literature and the techniques which are used to solve them. We
conclude the chapter with a comparison between these problems and our
locomotive assignment problem.

4.1 Routing and Scheduling of Vehicles

Assad et al. classify in [ABBG83] vehicle problems into scheduling and
routing problems. A route is an ordered sequence of locations visited by a
vehicle!, whereas a schedule also contains the associated arrival and depar-
ture times. If the times are known in advance, the problem is a scheduling
problem. If there are no restrictions on the arrival and departure times, we
have a routing problem. The definition of our locomotive problem contains
time windows for the departure times, it is therefore a combined routing
and scheduling problem. We describe in the following section a scheduling
problem.

4.2 The Multiple Depot Vehicle Scheduling Prob-
lem

A well studied scheduling problem in public transport is the Multiple Depot
Vehicle Scheduling Problem (MDVSP) [Loe98], which has been applied to
bus and locomotive scheduling. Given a set of timetabled trips, one wants to
assign a fleet of vehicles to them. The vehicles are stationed at several depots

!Observe that this has nothing to do with our definition of routes in the network in
Def. 1.

23
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and are supposed to return to their own depot after operation. They should
be used as efficiently as possible. We will describe the problem formulation
in [Loe98] in the following.

The vehicles are grouped by their type and their spatial location into depots,
D denotes the set of depots. A depot d € D contains all vehicles of the same
type stationed at the same location. We associate a start point d* and an
end point d~ of the vehicles with every depot d € D. Let 7 denote the set
of timetabled trips, i.e. every trip ¢ € 7 has a specified departure time s;
at its first stop t~ and an arrival time e; at its last stop tT. The terms first
and last stop come from bus scheduling where a bus has several stops on
its trip. Different trips have different vehicle demands so that the vehicle
types must be considered. The vehicle demand of trip ¢ is given by its depot
group G(t) C D.

The timetabled trips are linked by passive trips. Pull-out trips connect
a start point d™ with a first stop ¢, pull-in trips a last stop tT with an
end point d~ and dead-head trips a last stop p™ with a following first stop
q—. Two timetabled trips p,q € T can be linked by a dead-head trip iff
ep + Ap g < 5, where A, , denotes the travel time from p™ to ¢~.

The objective is to minimize the vehicle number and the operational costs.
This can be formulated as a multicommodity low model. We define the sets

ATt = Lttt € T}
Apull=out . — £(qt )|t € T,d € D}
APull=in . — £+ ™)t € T, d € D}
AT = {(p",q )P, g €T AGP) NG(g) # D Aep + Dyg < 5}
for timetabled, pull-out, pull-in and dead-head trips. Every trip is repre-
sented by an arc in our network. We introduce an arc for a dead-head trip
between two timetabled trips p, ¢ € T if they can be served by a common

depot and if there is enough time for the vehicle to get from the last stop of
p to the first stop of g. Our network has the node set

N={d",d |[de DyuU{tt,t | €T}
and the arc set
A= At—trip U Apull—out U Apull—in U Ad—trip U {(d_, d+)|d c D}
Fig. 4.1 shows an example for two depots di, d2 and four trips a, b, ¢ and

d. We distinguish the two depots by different colours (black and hatched).
Normal arcs can be used by vehicles of depot dy, dotted arcs by vehicles
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Figure 4.1: An example with two depots and four trips (adapted from
[Loe98])

of depot ds. Observe that we use multiple arcs for the purpose of better
illustration, but our multicommodity flow network contains actually single
arcs with depot-dependent capacities. The trips ¢ and c¢ can be served by
both depots whereas b and d must be served by their own depot. The
deadhead arcs result from a here not specified timetable and indicate the
common depots of the connected trips. If we look at Fig. 4.1, we can imagine
how a vehicle of depot d flows from its start point d over several start/stop
pairs t~, tT to its end point d~ and back to the start point.

Let 2¢ denote the flow of depot d on the arc a € A. We have to specify the
cost ¢4 for each arc a € A. We set c? =0 if a € A""V"P U {(d~,d")|d € D}.
The timetabled trips and the backward arcs don’t produce costs. If a €
Apull=in  Ad=trip 4 represents the operational cost of the passive trip. For
a € Aruli—out cg is the operational cost of a pull-out trip plus the capital
cost for a new vehicle. The capital cost is set to a large constant M > 0
which is bigger than the operational costs of any solution. The minimization
of the flow costs leads then to a solution with the minimum vehicle number.

We can now give the multicommodity flow formulation (compare Section
2.3.2):

min Z ct . x4 (4.1)

> aly - v,y =0 VieN VdeD (4.2)
{jli.g)eA} {jl(G)eA}
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Y zl=1 VteT VacA ' (4.3)
deG(t)

0<zl<1 VdeD Vae ATIrpy gruli=out |y gpull=inj gd=irip (4 4)

MN<zl<ky VdeD Vae{(d,d")|deD} (4.5)

Equation 4.1 defines the cost function we want to minimize, i.e. the total
amount of flow. Eqn. 4.2 describes the flow conservation condition for
each depot. Eqn. 4.3 states that every timetabled trip is served by exactly
one vehicle. The last two equations define the arc capacities. We set all
arc capacities to one except the capacities for the backward arcs (d—,d").
These serve to model the depot capacities. Ay and k4 define lower and upper
bounds for the number of used vehicles of depot d.

Given this network flow model, Lobel applies in [Loe98] Lagrangean relax-
ation techniques to solve the MDVSP for large problem instances. Problem
sizes up to 49 depots and 25000 timetabled trips can be handled. It is known
that the MDVSP is NP-hard for several depots [Loe98], whereas the single
depot case can be solved by a simplex method in polynomial time. These
solution methods are used for the MDVSP in public transport [Loe98].

4.3 The Vehicle Routing and Scheduling Problem
with Time Windows

We will introduce another vehicle routing problem that is encountered in
the distribution of goods. Given a set of customers requiring service, a
fleet of vehicles, stationed at a central depot, shall be routed so that each
customer is visited once. The vehicles have a maximum capacity for the
delivered goods which must not be exceeded and are supposed to return to
the depot after service. The objective is to determine a set of minimum-cost
vehicle routes, i.e. the minimum number of routes with the minimum travel
distance. This is the so-called vehicle routing problem (VRP) [ABBG83].

In the vehicle routing and scheduling problem with time windows (VRSPTW),
the customers can additionally specify a time window for the delivery time,
i.e. an earliest and latest delivery time [Sol87]. Due to the time windows,
a vehicle can arrive to early at a customer location and has to wait until
the earliest delivery time has been reached. These waiting times are an
additional cost factor.

Let C = {1,...,n} denote the set of costumers. The service at costumer
1 € C takes s; units of time and begins at time b;. The time window for
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service is given by an earliest time e; and a latest time I;, i.e. e; < b; < [;.
The travel time between two costumers ¢ and j is denoted by t%;;, their
distance by d;;. The distance matrix D = (d;;) is symmetric and satisfies the
triangle equality and the travel times #;; are proportional to the distances.
If a vehicle coming from customer ¢ arrives too early in j, it has to wait until
the time window for service is reached: b; = max{e;,b; + s; +t;;}.

Solomon suggests in [Sol87] the following cost factors, which determine a
lexicographical ordering between the solutions (i.e. the factors are hierar-
chically ordered, beginning with the most important one):

1. number of vehicles
2. total schedule time
3. total travel distance

4. total waiting time

We will describe an insertion-type heuristic for tour building which per-
formed best compared to other heuristics on a heterogenous problem set
[Sol87]. The heuristic builds sequentially one vehicle route after the other.
A route is initialized with a seed costumer, e.g. the farthest unrouted cus-
tomer or the unrouted customer with the earliest deadline for service. At
every iteration, a new unrouted customer wu is inserted between two cus-
tomers 7 and j in the current partial route. A new route is started if no more
customers with feasible insertions (i.e. without violation of time windows)
can be found. Let (ig,...,%y) denote the current route where ig = i, = 0
represent the depot. For every unrouted customer wu, its best feasible in-
sertion place is computed: we determine its predecessor i(u) and successor
j(u) with

C1 (’L(U), U, _](U)) = 12111)1<nm C1 (ip—la u, Zp)

c1(4,u,7) defines the cost of an insertion of costumer u between two cos-
tumers ¢ and j and will be defined later. Next, the best costumer u* to be
inserted in the route is selected by

ea(i(u’), u”, (u7)) = maxea(i(u), v, j(u))

where U denotes the set of unrouted and feasible customers. Costumer u*
is then inserted between i(u*) and j(u*).

The cost function ¢ (7, u,j) consists of two components c11, cio:

ci(i,u,j) = arcri (i, u, j) + aocin(i,u,7), a0 >0, aj+ay=1
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c11(4,u,7) is the additional distance the vehicle must travel when w is in-
serted between ¢ and j:

Cll(i,u,j) =dj, + duj — Ndij, w>0

c12(i,u,7) is the extra time which is required to visit customer u on the
current route:

612(2.,’(14,].) = b]u - b]

where b;, is the new time for service at customer j; when wu is inserted.
co(i,u,7) is the benefit of serving customer u between i and j compared to
service on a direct route:

CQ(iauaj):)\dﬂu_cl(iauaj)a AZO

Solomon develops in [Sol87] a set of benchmark problems with different
characterics (e.g. the distribution of customer locations, time windows) and
tests several heuristics on this problem set. The insertion heuristic behaved
very stable across different problem variants and often obtained the optimal
or near-optimal solutions.

Since the VRP is NP-hard [LK81], the VRSPTW is NP-hard by reduction.
A worst-case analysis in [Sol86] shows that the worst-case performance ratio
ry, of the insertion heuristic 2 in terms of the travel distance and the number

of vehicles grows linearly with the number of costumers, i.e. 7, € Q(n).
This shows that the VRSPTW is a notoriously difficult problem.

Potvin et al. suggest in [PR93] a parallel route building algorithm instead
of a sequential route building algorithm which builds one route at a time.
Experiments have shown that the last routes often have poor quality in the
sequential approach. In the parallel approach, the initial number of vehicles
is determined by the sequential route building algorithm. The generated
routes are also used for selecting appropriate seed customers. The insertion
cost ¢y (i,u,j) of costumer u is computed for all insertion positions in all
routes. co(i,u,j) is different from the sequential route building algorithm
as it is a regret measure for costumer u. A costumer receives a large regret
measure if there is a large gap between its minimum insertion cost and the
next best insertions. Costumers with large regrets are inserted first since
their number of good insertion positions is small.

Computational experiments in [PR93] show that the parallel approach is
better than the sequential approach for some problem variants where the
costumer locations are randomly distributed and not clustered.

2the quotient of the cost of the heuristic solution and the cost of the optimal solution
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Figure 4.2: Four trips and their kernel times (black)

4.4 Discussion

We will now compare the two described vehicle routing problems with our
locomotive assignment problem.

The network flow model in Section 4.2 can’t handle time windows for the
trips, the departure times must already have been determined. This in-
formation is needed in order to determine which timetabled trips can be
connected by a passive trip. A previously fixed timetable leads to subop-
timal solutions, because flexible departure times could be used to generate
better vehicle schedules.

There have been approaches which try to move the departure times of a
fixed timetable in order to obtain better vehicle schedules. Bokinge et al.
[BHS80] shift the departure time of every trip so that the maximum number
of required vehicles over all time instances is minimized. This decision is
possible because the trips have only a small flexibility and a kernel time in-
terval, defined by the latest departure and earliest arrival time, is known for
every trip. Fig. 4.2 shows four trips with their earliest departure time d,;p,
their latest arrival time a4, and the black kernel time interval [d,qz, Gmin]-
At time instance tg, at least three vehicles are required.

Every trip is shifted in a way which minimizes the vehicle demand at every
time instance, i.e. the number of kernel time intervals which include a
certain time point. The network flow problem is then solved for the modified
departure times and some postprocessing has to be done because the vehicle
schedules become scattered through the trip shifting.

This approach was developed for the case where a given timetable shall
be changed by a small amount, e.g. in bus scheduling where it is more
convenient for the passengers to have a timetable with periodic departure
times. These departure times may only be changed by small amounts.

The approach works only if the trip kernels are known. The trip kernel
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can’t be determined for short trips with a large flexibility. We won’t con-
sider this approach further because in our problem, we needn’t modify an
old timetable. We can build a new timetable which allows good vehicle
routes. This way seems to be more direct than changing a given timetable
by small amounts. Additionally, network flow algorithms would be difficult
to integrate into the constraint-based TUFF environment.

But the kernel time interval idea could be used to get a lower bound for
the required number of vehicles: we determine the maximum of required
vehicles over all time points by considering the kernel intervals. This is a
lower bound for the number of vehicles for our schedule. It is only a lower
bound because we do not consider the start locations of the vehicles in this
estimation.

The VRSPTW from Section 4.3 includes time windows in the problem spec-
ification and can be mapped to our locomotive assignment problem. If we
identify customers with trips and the journey between two costumers with
a passive transport connecting two trips, we can see the correspondence
between the two problems. The time window for the begin of service of a
costumer corresponds to the time window for the departure time of a trip.

Despite the similarities, there are also differences between the two problems.
The locomotives have different start locations and needn’t return to them
after operation whereas the vehicles in the VRSPTW all start and end at
the same depot. There are no vehicle capacities either, so that a locomotive
can perform an arbitrary amount of trips . But the routing component is
similar in both problems.

We presume that our locomotive assignment problem is NP-hard because the
VRSPTW is also NP-hard. Thus, we have to use heuristics in order to solve
the problem. The heuristics for the VRSPTW should also be helpful for our
locomotive assignment problem and we will suggest several just heuristics
in Chapter 8.

3we needn’t bother about maintenance intervals, we discussed this in Section 3.2.



Chapter 5

Constraint Programming

5.1 Introduction

This chapter provides a short introduction to constraint programming and
defines its most important concepts. We will begin with an informal defini-
tion of the problems encountered in constraint programming and explain it
by means of an example [Tsa93]:

Definition 5 A Constraint Satisfaction Problem is a problem composed of
a finite set of variables, each of which is associated with a finite domain,
and o set of constraints that restricts the values the variables can simulta-
neously take. The task is to assign a value to each variable satisfying all the
constraints.

A well-known example of this kind of problems are puzzles like the following
[Sch98]:

Definition 6 (MONEY) Find distinct digits for the letters in the equation
SEND + MORE = MONEY

such that S, M # 0 and the equation is satisfied. What is a solution of this
problem?

31
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This problem can be formulated by the following numerical constraints:

S, M #0 (5.1)
D,E,M,N,O, R, S pairwise distinct (5.2)
102-S+102-E+10-N+ D (5.3)

+ 103- M +102-0+10-R+ E (5.4)
= 10" - M+10*-0O+10>- N+10-E+Y (5.5)

We give now a formal definition of constraint satisfaction problems [T'sa93]:

Definition 7 (CSP) A Constraint Satisfaction Problem is given by a triple
(X,D,C) with

o X ={x1,x9,...,%,}, a finite set of variables.

e D ={Dy,Dy,...,D,}, a finite set of domains. D; is the domain of
the variable z; (1 <1 <mn).

o C={C1,...,Cp} is a finite set of constraints. The constraint
Ci(i1,...,1ik) over the variables ;,... ,xz; is the set of valid labels
Ci(ir,...,ik) €Dy X --- X Dy, .

A label is the assignment of all variables in a CSP to a value. We will omit
the index of a constraint if it is not necessary. In the following we will only
deal with finite domain constraint problems where the domains are finite
sets of nonnegative integers:

Definition 8 (Finite Domain CSP) A finite domain CSP is a CSP with
D; CH0,...,FDg,} Vi€ {1,...,n} where FDyg,, € N is the largest finite
domain integer value.

We call the variables occuring in a finite domain CSP finite domain variables
(FD-variables):

Definition 9 (FD-variable) The domain D of a finite domain variable z
is a subset of the nonnegative integers: D C {0,...,FDyg,,}. We use the
interval notation D = [a,b] for a domain of the form D = {a,a +1,...,b}.

We restrict our CSPs to binary CSPs i.e. they contain only constraints
C(i,7) (1 <i < j < n) where two variables are involved. This is no severe
restriction as a general CSP can always be transformed into a binary CSP
[Tsa93]. We can define a constraint graph for binary CSPs which represents
the dependencies between the variables:
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Definition 10 (Constraint Graph) The Constraint Graph of a binary
CSP (X, D, C) is a directed graph G = (X, E) with

E={(zi,zj)|3ce C: (c=C(i,j) Vc=C(j,4) Nzj,x; € X}

Every constraint C(i,7) is represented by two arcs (x;,xj), (z;,2;) € E.

Although an undirected graph would be sufficient to illustrate the variable
dependencies, the formulation as a directed graph is more suited for an
algorithm that we will describe in Section 5.4.

5.2 Solving of Constraint Problems

A naive and inefficient strategy to solve a CSP is the generate-and-test
paradigm [Bru95]. As the search space is finite in a finite domain CSP,
we can generate all labellings of the variables and test which of them satisfy
the imposed constraints. Since the search space has the size of the cartesian
product of the domains, this strategy works only for small problems.

The backtracking paradigm is an improvement of this strategy. Instead of
checking the constraints after all variables have been instantiated, we assign
values to the variables sequentially and perform a consistency check after
every assignment. If a constraint is violated, we backtrack to the most
recently instantiated variable and assign an alternative value to it. We
formulate this algorithm in pseudocode [Bru95]:

procedure Backtrack(k, [Dg, Dgi1, ..., Dy))
begin
repeat
select wy € Dy;
Dk = Dk - {wk};
L) 1= Wg;
boolean consistent := true;
fori:=1tok—1do
if (w;,wg) ¢ C(i,k) then
consistent := false;
endif
endfor
if consistent then
if k<n
then Backtrack(k + 1, [Dyy1,...,Dy));
else print solution; stop;
endif
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endif
until Dy, =0
end

The procedure Backtrack gets two parameters, the first defines the search
depth, the second is the list of variables that have not been instantiated
yet. Backtracking does an a posteriori pruning of the search space as it
backtracks when a failure is detected. The search space is still quite large
so that this strategy can only be applied to small problems.

Constraint programming introduces the notion of constraint propagation
which means that the assignment or restriction of a variable is propagated
through the constraint graph and reduces the domains of dependent vari-
ables. Constraint propagation during search reduces the search space a
priori before a failure is detected. We will look at the forward-checking
strategy as an example for the combination of backtracking and propaga-
tion [Bru95]. After a variable has been assigned, one removes all incompat-
ible values from the domains of the not instantiated variables. We give the
algorithm for forward-checking also in pseudocode [Bru95]:

procedure ForwardChecking(k, [Dg, Diy1, ..., Dy]) % selection
begin
repeat
select wy € Dy;
Dk = Dk — {wk};
x = wg; % assignment
boolean empty := false;
fori:=k+1tondo
D) :=0;
forall w; € D; do
if (wg,w;) € C(k,7) then
D! := D! U {w;}; % propagation
endif
endfor
if D} = () then empty:=true endif;
endfor
if not empty then
if £ < n then ForwardChecking(k + 1, [D;_, ,,..., D,])
else print solution; stop;
endif
endif
until Dy, =0
end
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The invariant can be formulated as follows: for every not instantiated vari-
able there exists at least one value in its domain which is consistent with
the labels of the variables that have already been assigned. Observe that
we needn’t check consistency with the already assigned variables as this is
guaranteed by the invariant.

The algorithm runs through a selection-assigment-propagation cycle [Bru95]:

1. Selection: choose the next variable z; which shall be instantiated (the
variable ordering is implicitely given by the variable indices in the
pseudocode above).

2. Assignment: assign the values in Dy successively to xj (the value order
is defined by the search strategy, see Section 5.3).

3. Propagation: restrict the domains of the not instantiated variables by

propagation.

We can illustrate the search process by a search tree where the nodes rep-
resent not instantiated variables and the branches the different assignment
alternatives. In every node of the search tree one has to make two choices:

e the next variable that shall be instantiated.

e the next value the variable shall be assigned to.

We will describe some heuristics for this choice in the next section.

5.3 Search Strategies

Variable ordering aims at moving failures to the upper levels of the search
tree [Kum92]. A good variable ordering reduces the bushiness of the search
tree. Examples for common variable ordering heuristics are:

e first-fail-principle: choose the variable with the smallest domain.
e choose the variable that participates in the highest number of con-
straints.
One hopes that these variables act as a bottleneck to the problem and their

instantiation leads to an early pruning of the search space.

Value ordering tries to move solutions to the left of the tree so that they can
be found quickly by depth-first-search. Examples for value orderings are:
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e the minimum, maximum or middle value of a domain.

e splitting of domains: branching into the two alternatives z < m, x > m
where m denotes the middle value of the domain of .

5.4 Constraint Propagation

Constraint propagation tries to identify redundant values in variable do-
mains. We will start with a definition of pairwise consistency between the
variables in a CSP and develop an algorithm that removes values from vari-
able domains in order to achieve pairwise consistency. Recall from Def. 10
that the constraint graph G = (X, E) contains two directed arcs between
two dependent variables.

Definition 11 (Arc Consistency) Arc (z;,z;) € E is arc-consistent iff
Va € D; Jbe Dj: (a,b) € C(i,5). A CSP is arc-consistent if all arcs are
arc-consistent.

We explain this definition by a graph-colouring example [Kum92]. In this
problem, the nodes of a graph have to be coloured so that adjacent nodes
have different colors. We assign to every node a finite domain variable which
can take different color values. Fig. 5.1 shows an example graph and the
initial variable domains. The arcs (V3,V3), (V3,V1), (V1, Vo) and (Va, V)

V3

V1 V2

Figure 5.1: Graph-Coloring Problem with initial variable domains (r, g, b
denote the colors red, blue, green).

are already arc-consistent. The arcs (V5, V3) and (V1, V3) are not consistent.
If we want to make (Va,V3) arc-consistent, we have to remove the value g
from the domain of V5 (see Fig. 5.2). As the domain of V5 has become
smaller, we can’t be sure that consistent arcs of the form (V;,V2) remain
consistent. Some of the members of V; might no longer be compatible with
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V3

V1 V2

Figure 5.2: Domains after restriction of V5

any remaining member in the domain of V5. In this example (V3, V) remains
arc-consistent but (Vi,V2) becomes inconsistent. We have to examine this
arc again. By achieving arc-consistency for (V7, V3) and for (V7, V3) we arrive
at the solution Vi = {r}, Vo = {b} and V3 = {g}.

As we have seen in the example, we need a procedure which achieves arc-
consistency for the arc (z;,x;) by removing redundant values from the do-
main of z;:

procedure boolean ReviseDomain(z;,z;,(X, D, C))
begin
boolean Delete := false;
forall a € D;
if Abe Dj: (a,b) € C(i,7)

D;:=D; —{a};
Delete := true;
endif
endfor
return Delete;

end

The procedure ReviseDomain gets as input the arc (z;,z;) and the CSP
(X, D, C). It returns true if a value from D; has been removed. If d denotes
the size of the largest variable domain, the time complexity of this procedure
is O(d?), because the complexity of the for-loop and the if-statement are in

0(d).

To achieve arc-consistency for all arcs in the constraint graph, we have to
consider all arcs and must examine all arcs again which are incident to an
updated variable:
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AC3-algorithm
input: CSP (X, D,C)
output: arc-consistent domains

begin
L:= {(xi,xj)|0,~,j eCv Cj,i € C}
while L # ()
L= L - {(wi2)};
if ReviseDomain(z;,z;,(X,D,C))
then L .= LU {(xk,xi)|0k7i eCANiL#k# j},
endif
endwhile
end.

We examine all arcs in the constraint graph (while-loop). If the vari-
able x; has been updated, we must add incident arcs of the form (zg, ;).
The condition £ # ¢ in the then-part of the if-statement is obvious, be-
cause our constraint graph contains no loops. We can also say k # j be-
cause it is not necessary to add the arc (z;,z;) after the application of
ReviseDomain(x;, xj, (X,D,C)). None of the elements deleted from the
domain D; provided support for any value in the domain D).

Let d denote the size of the biggest domain and e the number of arcs in the
constraint graph. As every arc has to be examined at least once and the

time complexity of ReviseDomain is O(d?), a lower bound for the run time
is Q(ed?).

An arc (zg,z;) is inserted into L when at least one value has been removed
from the domain D;. This can happen at most d times for every arc and a

maximum of O(ed) arcs can be added to L. Thus, the worst-case run time
is O(ed?).

5.5 Constraint Programming Languages

Constraint programming languages were developed in order to free the user
from the implementation of propagation and search algorithms [Bru95, Tsa93].
They provide built-in functions for commonly encountered constraints and
search strategies. The paradigm of knowledge-based programming in artifi-
cial intelligence says that the problem knowledge and the solution techniques
should be separated. This separation allows the modification and extension
of existing programmes in an easy way. Constraint programming languages
are well-suited for this approach, because they provide a natural separation
between the constraints and the search strategy.
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Most constraint programming languages are based on the logic program-
ming paradigm. This is quite natural since logic programs operate on rela-
tions between objects. Languages like Prolog have built-in search strategies
(depth-first-search). The variables are not typed and have terms as values.
Prolog programmes for combinatorial problems use the generate-and-test
strategy which provides no pruning of the search space.

Constraint logic programming introduces types for the variables (domains)
and propagation techniques for constraints. The hope is that the pruning of
the search space by constraint propagation leads to more efficient programs
for combinatorial search problems.

One of the most popular constraint programming languages is CHIP (Con-
straint Handling in Prolog) [Bru95]. It can handle finite, boolean and ra-
tional domain variables. The basic search strategy is forward-checking com-
bined with the first-fail-principle for variable selection. Applications include
scheduling, geometrical layout and vehicle routing problems [Sim96]. CHIP
introduced the notion of global constraints i.e. global conditions that are
difficult to express by elementary binary constraints. It provides an efficient
implementation of high-level global constraints with a strong propagation
behaviour. We will describe an example for these constraints in Section 5.7.

In this work the constraint programming language Oz 2 was used. It allows
higher-order functional and object-oriented programming. We will focus in
the next section on the constraint part of Oz 2.

5.6 Constraint Programming in Oz

We follow in this section the exposition in [Wiir97] and [Sch98]. The con-
straints in Oz operate on FD-variables, the domains are finite sets of non-
negative integers. Constraints are terms of first order predicate logic with
arithmetic equality.

The domains are stored in the constraint store. It contains basic constraints
for each variable of the form x = n, £ =y or £ € D where z and y denote
finite domain variables, n € Ny and D denotes a finite domain. The more
expressive constraints which contain the problem formulation are stored in
propagators, one for each non-basic constraint.

The propagators communicate via shared variables in the constraint store
which serves as a blackboard (see Fig. 5.3). A propagator for a constraint
C is a computational agent that tries to narrow the domains of the variables
occuring in C. It performs constraint propagation.

A propagator is triggered whenever one of its variables is narrowed by an-
other propagator or the search procedure. Propagation takes place until a
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[ Propagator A] { Propagator B}
[Constrai nt Stor%

Figure 5.3: Propagators communicating via the constraint store

fixed point reached, i.e. none of the propagators can narrow its variables
anymore.

The search procedure in Oz is called distribution. Given a CSP (X, D,C),
we choose in every node of the search tree a constraint C’ and branch into
the two alternatives C A C' and C' A—C’. This is called the distribution of C
with the constraint C' at a choice point. C' can be a basic constraint, e.g.
variable assignment with the alternatives £ = n and x # n or a non-basic
constraint. Due to the equivalences

C=CVT=CV((=C'ANC"Y=(CAC")V(CA-C"

this search procedure is complete and generates all solution tuples of the
CSP. After the branching into one of the two alternatives the propagation
starts again until a fixed point is reached.

Oz contains predefined distribution strategies like first-fail but allows also
user-defined distribution procedures. In Chapter 9, such a user-defined dis-
tribution will be described.

Oz can also be extended by additional propagators by implementing them
in C++. We will describe in Chapter 9 the extension of Oz by a new
propagator.

5.7 A High—Level Geometric Constraint

We define in this section a geometric constraint which describes a non-
overlapping condition between rectangles in the plane. It is one example
for a global constraint and also existent in the CHIP system. This so-called
diff2-constraint will be used later in the constraint model for the locomotive
problem.

The following definition is adapted from [BC94] from the higherdimensional
to the two-dimensional case, the constraint for n dimensions is called diffn.



CHAPTER 5. CONSTRAINT PROGRAMMING 41

Given a set of n iso-oriented rectangles in the plane, the diff2-constraint
ensures that the rectangles do not overlap:

Definition 12 (diff2) The constraint

diff2((x1, ..., 2n)y (Y1 -y Yn), (W1, ... ywy), (B1, ..., hy)) with n > 1 holds
iff the following conditions hold:

o Vic{l,...,n}: z; and y; are FD-variables for the bottom-left corners
of the rectangles and w;, h; are FD-variables for the rectangle widths
and heights.

o Viec{l,...,n}: w;, hy #0.

o Vi,je{l...n} withi< j:

(z; > x5 + wj)
V(x> x4 w;)
Vo (yi >y +hy)
Vo (yj > yi + )

We illustrate the non-overlapping condition with an example where we as-
sume fixed rectangle sizes (i.e. the domains of the w; and h; are single-
ton domains). Fig. 5.4 shows that two rectangles in the plane overlap iff
both the projections on the z- and the y-axis overlap. They do not over-
lap if at least one of the conditions (z; > z; + w;) V (z; > z; + w;) or
(yi > yj + hj) V (y; > yi + h;) holds. The first condition says that the -
projections of rectangle R; and rectangle R; do not overlap, the second states
the same for the y-projections. We demand non-zero widths and heights of
the rectangles in Def. 12 in order to avoid special cases like intervals and
points.

The aim of a propagation algorithm for this constraint is to narrow the
domains of the participating variables as far as possible. It should also detect
the case where it is not possible to place the rectangles without any overlap
and produce a failure. Such an algorithm will be presented in Chapter 7.
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Figure 5.4: Rectangles R; and R; and their z- and y-projections



Chapter 6

Constraint Model for
Locomotive Assignment

In this chapter, a constraint model from [Sim95b] is presented. It guarantees
the location continuity constraint for the locomotives which we have intro-
duced in Def. 4 in Section 3.2, i.e. the locomotives have always enough time
to perform necessary passive transports between the trips. The locomotive
trips are modeled as rectangles in a Gantt diagram. We use the geometric
diff2-constraint to formulate non-overlap conditions.

6.1 The Exclusion Marker Model

Recall from Def. 4 that we are looking for an assignment ¢ : P — M of
trips to locomotives and suitable start times s(p;) for all trips p; € P in
the locomotive assignment problem. To simplify matters we will neglect
the locomotive types in the beginning and assume that every trip can be
handled by any locomotive. Different locomotive types will be introduced
later.

We can illustrate the assignment in a Gantt diagram and model every trip
p; as a rectangle with width d(p;) for its duration and height one (Fig. 6.1).

We will use the FD-variables s(p;) for the start times and r(p;) for the
resource (locomotive) of a trip p; € P in our constraint formulation of
the problem. We can set the initial domains to s(p;) = [0, F Dsyp| and
r(p;) = [0,m — 1] where m denotes the numbers of locomotives. The set of
locomotives is M = {0,...,m — 1}.

A locomotive can only handle one trip at a time i.e. the trips assigned to
a locomotive may not overlap in time. We can express this by a geometric

43
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locomotive

time t

Figure 6.1: Gantt diagram

diff2-constraint (see Def. 12) which states that the trip rectangles may
not overlap. Given the set of trips P = {p1,...,pn}, we can formulate the
following diff2-constraint:

diff2((8(p1), s 73(pn))7 (T(pl)a s 7T(pn))7 (d(pl)a s 7d(pn))7 (17 Tt tzs)l)

This is only a necessary condition because we also have to consider passive
transports which introduce gaps between the trips on a locomotive. Recall
that d2(v1,v2) denotes the travel time for a passive transport between the
turn locations vy, vo € Vs in our network. In order to simplify the model,
we include the turn time © from Def. 4 into the trip durations d(p;).

Fig. 6.2 shows the markers that are introduced for every trip in order
to allow passive transports. The figure contains four coordinate systems.
The first coordinate system contains all trip rectangles (black) which must
fulfill the diff2-constraint of Equation 6.1. We add an additional diff2-
constraint for every turn location v € V, that occurs in our planning prob-
lem. T denotes the set of all turn locations in our planning problem, i.e. all
start and end locations in our trip set P.

The three following coordinate systems in Fig. 6.2 correspond to the diff2-
constraints for the start location S(p;), the end location E(p;) of trip p; and
any other location L € T with S(p;) # L # E(p;). The last coordinate
system is representative for all locations L which are neither start nor end
location of trip p;.

Every coordinate system is divided into rows (horizontal dotted lines in
Fig. 6.2) of height k, a parameter which will be explained later. Every
row corresponds to a locomotive and we place markers (rectangles) into the
row corresponding to the assigned locomotive r(p;). If the trip rectangle is
placed at height 7(p;) in the first coordinate system, we place our markers
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locomotive

: ” |
k *r(p;) | :

Location F(p;)
02(E(pi), S(pi))

other Location L

(L. S(py)) L B(Ep).D)

Figure 6.2: Start, end and exclusion markers for a trip

into the row with the lower bound kr(p;) and the upper bound kr(p;)+k—1
in the following coordinate systems.

We will describe in the following all rectangle positions by the notation (z, y)
for the position of its bottom-left corner where = and y are FD-variables. We
place a start marker (grey) in the diff2-constraint of the start location S(p;)
with position (s(p;), k-7 (p;)), width one and height k. An end marker (grey)
is placed in the diff2-constraint of the end location E(p;) with position
(s(pi) + d(p;) — 1,k - r(p;)), width one and height k.

To get the necessary gaps between the trips we introduce exclusion mark-
ers before and after the trip period. We call them before and after mark-
ers. An after marker (white) is placed in every location L # FE(p;) at
position (s(p;) + d(pi), [k - r(pi), k - r(pi) + k —1]), width 62(E(p;), L) and
height one. These markers ensure that the locomotive has enough time
to get from the end location F(p;) of trip p; to a new location L for the next
trip. The interval notation means that these markers can move vertically,
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this is necessary in order to avoid overlaps between exclusion markers. Re-
call that the variables for the rectangle positions are FD-variables, i.e. their
domains are subsets of the natural numbers.

We place symmetrically to the after markers before markers (black) in every
location L # S(p;). They have the position

(5(ps) — 02(L, S(p))s [k - 7(pi), b - 7(pi) + k — 1]), width (L, S(p;)) and height
one. These markers ensure that the locomotive has enough time to get from

a distant location to the start location S(p;) of trip p;.

Exclusion markers prohibit start and end markers in certain time intervals
before and after the trip period and guarantee location continuity, because
exclusion markers may not overlap with start or end markers. The variable
vertical position of the exclusion markers allows them to move so that over-
laps between exclusion markers of different trips on the same locomotive can
be avoided. We have introduced so far two markers per turn location for
each trip, the total amount of markers is in O(n - |T).

The exclusion markers we have introduced so far allow passive transports
between two trips that are assigned to the same locomotive. We must also
take into account passive transports from the start location of a locomotive
to the start location of its first trip.

We extend the model from [Sim95b] by adding additional exclusion markers
to the location diff2-constraints. Let | € M be a locomotive with start
location ¥(I). We put an exclusion marker in every location L # X(I)
in the row corresponding to locomotive [. This marker has the position
0,[k - I,k -1+ k —1]), width d2(X(l), L) and height one. This has to be
done for all locomotives [ € M. We call these markers locomotive markers.
We introduce O(m -|T|) locomotive markers and get O((m + n)|T'|) markers
in total. In the diff2-constraint for the trip rectangles, we have O(n)
rectangles and in the location constraints O(m + n) rectangles.

k is a parameter that must be chosen large enough so that overlaps between
exclusion markers can always be avoided. This parameter is not further
explained in [Sim95b]. We will show how to compute a minimum value for
k from the distance function 9 and the trip durations d(p;). We assume
that we know the minimum trip duration dy,;;, = minyecp dyin(p) where
dpmin(p) is the minimum trip time for trip p which can be computed from
the minimum waiting times for a trip (compare Def. 4). We also know the
maximum time for a passive transport: 02 ez = MaXy, wevs 02(vV1,2).

We look at the row that corresponds to one locomotive in a location diff2-
constraint (Fig. 6.3). We will compute the maximum number of exclusion
markers at the departure time s(p;) of a trip in a diff2-constraint for a
location L # S(p;). Observe that the number of exclusion markers doesn’t
change between the discrete departure and arrival times, it is therefore suffi-
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cient to look at these discrete time points. We start with the before markers

52,mam

s(pi)

Figure 6.3: Before and after markers at departure time s(p;)

(black) in Fig. 6.3. Trip p; can have a before marker at time s(p;), this is
the bottom rectangle in Fig. 6.3. The departure time of the next trip after
p; is at least s(p;) + dpin, so that its before marker is also shifted by the
amount dy;,. The same argument holds for the next trip and so on. We get
| before markers at time instance s(p;).

2, maz

a maximum number of 1 + |

min

If (Z’ﬂ is an integer, we must also consider a before marker which exactly
ends at time s(p;).

The maximum number of after markers (white) at time s(p;) is 1 + {(E’WLZ_‘:”J

with the same argument. We have to increase the lower bound for k£ by one
for the locomotive start location markers and finally get:

0
k Z 3+ { 2,max J
dmin
The situation at the arrival times is analogous and doesn’t change the lower
bound for k.

We have omitted different locomotive types so far. We can introduce dif-
ferent locomotive types quite easily if we restrict the initial domains of the
r(p;) appropriately: r(p;) = l(p;) € M where [(p;) is the locomotive type
requirement of trip p; from Def. 4. Now trip p; can only be assigned to
locomotives with correct type I(p;).

6.2 Example

We show in Fig. 6.4 an assignment of five trips to two locomotives and
the corresponding marker model. Although this is only a static view of the
model (recall that the rectangle positions are FD-variables), it illustrates the
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main idea. There are three turn locations A, B and C. The durations for a
trip and a passive transport on the same route are identical. We have marked
start markers with S, endmarkers with E and locomotive start markers with
L. Before markers are black and after markers are white. Both locomotives
have start position A. We get one passive transport between the trips C—A
and B—A on the second locomotive.

The figure shows also a small mistake in the model, because gaps of width
one are introduced between trips where the end and start locations are
identical. The gaps of width one come from overlaps between after and end
markers on the one hand and before and start markers on the other hand.
We tried to solve the problem by separating the after and start markers of
one location constraint into one diff2-constraint and the before and end
markers into another, i.e. we have doubled the number of location diff2-
constraints. This solves the problem but poses the additional question if we
need before and end markers at all, because start and after markers are suf-
ficient to get the gaps for the passive transports. We presume that they are
necessary for a stronger propagation behaviour, especially if the predecessor
of a trip is not determined at all times during search. As we would weaken
this propagation by the separation into two constraints, we have decided
to return to the old model. The mistake has no practical consequences as
there must always be a considerable larger turn time between two trips in
our locomotive problem.

6.3 Discussion of the Marker Model

Recall from Def. 4 that the location continuity constraint can be expressed
by binary constraints between all pairs of trips (we express the implication
in Def. 4 by a disjunction, replace ¢ by r and include the turn time © into
the trip durations):

Vpi,pj ePi<j:
r(pi) # r(p;) v (s(pi) + d(pi) + d(pi, pj) < s(pj))
v (s(pj) + d(pj) + d(pj,pi) < s(pi))

Simonis discusses in [Sim95a] the disadvantages of this formulation as dis-
junctions. The number of binary constraints grows quadratically in the
number of trips which generates a lot of overhead. Also the time to set
up these constraints is in O(n?). The disjunctive formulation provides only
little propagation because the domains for the start times s(p) can only be
narrowed if two trips have already been assigned to the same locomotive

(r(pi) = r(pj) and [r(pi)| = |r(pj)| = 1).
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The formulation of the problem with diff2-constraints provides better prop-
agation because it considers the twodimensional nature of the problem (time
and locomotives). Propagation happens before a trip is actually assigned
to a locomotive. For example, if the number of trips exceeds the number
of available locomotives at a certain time instance, at least one start time
interval must be reduced. This can be helpful if we have different locomo-
tive types and a certain locomotive type is required by many trips. If the
number of available locomotives of this type is too small compared to the
number of trips that require it, the y-domain of some trips can be reduced.

We will illustrate this by an example (Fig. 6.5). Assume that the trips p,
and p3 have been constrained during search to the area which is indicated by
the box. They are constrained to this area and have not yet been assigned
to one of the two possible locomotives. Trip p; can move in an extended
area which is indicated by the dotted outline. The diff2-constraint for all
trip rectangles can detect that p; must be assigned to the top locomotive
as the other two locomotives are already occupied by p2 and p3. Thus, the
domain of r(p;) can be narrowed.

The time to set up the diff2-constraints is in O(|T'|n), this is an advan-
tage compared to binary constraints if |T'| < n. As the number of diff2-
constraints grows linearly with the number of locations, this model should
only be applied to situations where only a small number of locations is in-
volved. The number of locations in a railway planning problem is usually
small compared to the number of trips. This is not the case for other vehicle
routing problems. In the vehicle routing problem from Section 4.3, we have
as many locations as there are customers.
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B->A

Figure 6.4: Example with five trips and two locomotives

‘ ' P1
b2
b3

Figure 6.5: Three trips and the area in which they can move



Chapter 7

Propagation Algorithm

7.1 Introduction

We will develop in this chapter a propagation algorithm which does pairwise
reasoning for the rectangles in the diff2-constraint (see Def. 12). The pur-
pose of this algorithm is to reduce the area in which a rectangle can move by
considering the positions of the other rectangles. Our aim is a big reduction
because a strong propagation reduces the search space. The algorithm must
also detect the case when it is not possible to place the rectangles without
overlap, in this case at least one rectangle domain becomes empty.

The algorithm was developed together with Anders Nordin [Nor|. The
diff2-constraint is implemented in the CHIP system but the propagation
algorithm has never been published. We want to give some solution ideas
in this chapter. Related work can be found in [TAT91], where a dynamic
algorithm for the sequential allocation of rectangles in the plane without
overlap is discussed. Verdier et al. discuss in [dVT91] a constraint-based
layout system which achieves arc-consistency for the non-overlap constraint.
They work on more general objects, polygons with horizontal and vertical
edges where the polygon points lie on a grid.

We will begin with the simpler case where all rectangles sizes are fixed
(compare Def. 12), i.e. the widths and heights are FD-variables with a
singleton domain and only the positions of the rectangles are undetermined.
It can be easily shown that even the problem to decide if a set of movable
rectangles can be placed without overlaps is NP-hard. The problem to
reduce the areas in which the rectangles can move is then also NP-hard.

We reduce the NP-hard bin packing problem from [GJ79] to the decision
problem if a set of movable rectangles can be placed without overlap:

o1
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Definition 13 (Bin Packing) Given a finite set U of items, a size s(u) €
Z7" for each u € U, an integer bin capacity B > 0 and an integer K > 0.
Question: Is there a partition of U into disjoint sets Uy,...,Ux such that
the sum of the sizes of the items in each U; is B or less?

In Fig. 7.1, a geometrical interpretation of the bin packing problem is shown.
If we represent every item u € U by a rectangle of width s(u) and height
1, the question is if all rectangles can be placed into a box of width B and
height K. Every row in Fig. 7.1 corresponds to a bin in the bin packing
problem. We can reduce the bin packing problem to the question if the |U|
rectangles which can all move in the same box of size BxK can be placed
without overlap:

Bin packing problem has a solution < Rectangles can be placed without overlap

Thus, we have shown that the rectangle problem is also NP-hard.

1

Figure 7.1: Geometrical interpretation of the bin packing problem

Recall from Fig. 5.4 that we defined the positions x; and y; of a rectangle R;
in the usual way: we worked on the grid N2 and labelled the grid lines with
coordinates. In the following sections it will be more convenient to label the
grid cells themselves with coordinates as shown in Fig. 7.2.

We give some basic definitions:

Definition 14 (Rectangular Area) A rectangular area A C N3 is given
by its left, right, bottom and top boundaries x1, T2, Y1, yo € Np:
A = [11,22] X [y1,y2] where x1 < 13 and yy < yo.

The rectangle in Fig. 7.2 is given by [z;,z; + w; — 1] X [y, yi + hy — 1]
in our notation. We use the interval notation [a,b] for the set of integers
{a,a+1,...,b}.
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Figure 7.2: Grid NZ and the new coordinate labelling

Definition 15 (Overlap) Two rectangular areas Ay, As overlap iff
A1 NAy #0.

Definition 16 (Covering) The rectangular area Ay covers As iff As C Ay,
i.e. Ay includes As.

Recall from Def. 12 that the FD-variables  and y constrain the bottom-left
corner of rectangle R to a rectangular area (the grey region in Fig. 7.3)'. We
call this region the domain of the bottom-left corner and define additionally
the domain of a rectangle D as the area within which the rectangle must be
included:

Definition 17 (Rectangle Domain) The Domain D of a rectangle R with
FD-variables x € [z,7], y € [y,y] for the position of the bottom-left corner,
width w and height h is the area D = [z,Z +w — 1] x [y, 7+ h — 1].

We will now look at the conclusions we can draw from the domain and size
of a rectangle.

Example 1 Fig. 7.4 shows an example where we can compute a rectangular
area, K1 which is necessarily covered by a rectangle Ry with the domain D,
in all its positions. Another rectangle Rs with domain Do must not overlap
K. This means that its domain Do can be reduced. Observe that Do doesn’t
remain rectangular if we remove the forbidden positions of Ro so that we
will introduce a new definition for rectangle domains in Section 7.5.

The area K; can be regarded as a kernel region which is necessarily covered
by Ri. We give a formal definition of this concept:

Yi.e. z and y have intervals as initial domains. Domains with holes lead to several
rectangular areas and this case will be explained later in the text.
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Figure 7.3: Rectangle R, rectangle domain D and the domain of its bottom-
left corner
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Ry

Figure 7.4: Reduction of the domain Dy

Definition 18 (Kernel) The Kernel K(R,D) = [ai,as] X [B1,82] of a
rectangle R with width w and height h and domain D = [z, x2] X [y1,y2] is
given by: a1 = min{z1+w—1,z0—w+1}, oy = max{z1+w—1,z9 —w+1},
f1 =min{y; + h —1,y2 — h+ 1} and By = max{y; + h — 1,y2 —h + 1}.

More informally, the kernel is obtained by putting the rectangle into the two
extreme positions in the bottom-left and upper-right corner of its domain.
The rectangular kernel is then given by the two corners of R which lie
opposite to the domain corners in these positions.

7.2 Kernels

As the relative sizes of a rectangle and its domain change, the kernel must
be interpreted differently. We will have a closer look at the different cases
which can occur.
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Figure 7.5: Four different cases for a rectangle R and its domain D

Figure 7.5 shows for every case the two extreme positions of a rectangle R in
its domain D and the resulting kernels. We check if the z- and y-projections
of the rectangle in these two positions overlap and get four different cases
(we begin with the subimage in the top-left corner and proceed rowwise):

1. Overlap in z and y: the kernel K may not be overlapped by any other
rectangle as explained in Example 1.

2. Overlap only in z: the kernel K can be divided into vertical strips of
width one. Every strip must not be covered by another rectangle [Nor]
because the z-projection of rectangle R covers the interval [y, as] (see
Def. 18) in all its positions. If a strip is entirely covered, R can’t be
placed in its domain D without overlap. In Fig. 7.5 we get eight
vertical strips which must not be covered.

3. Overlap only in y: the kernel K can be divided into horizontal strips
of height one. As in case 2, every strip must not be covered by another
rectangle [Nor] because the y-projection of rectangle R covers the in-
terval [y, 2] in all its positions. In Fig. 7.5 we have three horizontal
strips that must not be covered.

4. No overlap: the kernel K must not be entirely covered by another rect-
angle [Nor|. If K is covered by another rectangle R', the projections
of R and R’ on both the z- and y-axis will overlap (it is not possible
to move R enough outside in its domain).
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We can now compute the forbidden areas for another rectangle R’. Figure
7.6 shows how to determine the forbidden positions for R'. In the first case
the black area must not be overlapped whereas in the other three cases the
dark shaded areas must not be covered. The figure shows for every case
two extreme positions of R’ in the forbidden area. The forbidden area D"
is indicated by a box. We will show in the next section how the forbidden

Figure 7.6: Forbidden positions for another rectangle R’

positions D" can be removed from the domain D’ of R'.

7.3 Domain Reduction

If we want to remove a rectangular part domain D" from a domain D’, it
is easier to work on the correspondent domains of the bottom-left corner
instead of the rectangle domains themselves. The direct correspondence
between these two domain concepts was shown in Fig. 7.3.

Figure 7.7 shows a rectangle R’ and its rectangle domain D’. In the begin-
ning, the domain of its bottom-left corner is the grey area C' (left figure).
We want to remove a rectangular area D" from D’. D" corresponds to a
corner domain C” (white rectangle in the interior of the grey area). We get
a new domain of the bottom-left corner. It can be represented by a union
of four rectangles (L, R, B and T in the right figure). The corresponding
rectangle domains are indicated by boxes. There are also cases where we
can get less than four rectangles (Fig. 7.8). If we have the fourth case in
Fig. 7.8, a rectangle domain has become empty and we have detected an



CHAPTER 7. PROPAGATION ALGORITHM o7

Figure 7.7: The removal of a rectangular part domain leads to four new part
domains

overlap between rectangles. The diff2-constraint should produce a failure
in this case.

Figure 7.8: Some cases where we get less than four new part domains

We call the grey rectangles part domains of the corner and to these belong
correspondent part domains of the rectangle (boxes). We will now return
from the corner domains and work on rectangle domains again. The part
domains of the rectangle build a set of domains:

Definition 19 (Domain Set of a Rectangle) The domain set D =
{D1,...,Dn} of a rectangle R consists of the part domains D; = [z}, z4] X
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[yt,y8]. The union \JI", D; describes the area the rectangle R must be in-
cluded in.

This definition subsumes Def. 17 for rectangle domains.

7.4 Several Part Domains and Forbidden Areas

We have explained how we can compute the forbidden area in the case when
the domain set consists of one element. The kernel of this domain must be
determined. We will now look at domain sets with several part domains. As
we will see, the kernels of the part domains can be combined into a common
kernel. 2

Every part domain is rectangular so that we can compute its kernel. We
sort the kernels into four different sets O, X, Y and C' depending on the
kernel type (compare Section 7.2). R denotes the considered rectangle and
D ={D,...,Dp} with m > 1 is its domain set:

Algorithm 1
input: Rectangle R and its domain set D
output: sets of kernels O, X, Y and C

O:=X:=Y :=C:=0
forall D; € D do
K := K(R, D;);
case kerneltype(K) of
zy_overlap_type:O := O U {K};
x_overlap_type: X := X U{K};
y-overlap_type: Y :=Y U{K};
no_overlap_type:C := C U{K};
endcase
endfor

We compute for every part domain D; the kernel K (R, D;) and decide which
of the four cases from Section 7.2 occurs. If the domain set D contains m part
domains, the complexity of this algorithm is O(m). We can now distinguish
two cases:

e Case I: XUY UC =0 (and O # 0).

2All algorithms in this section are contributions from [Nor].
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e Case 2: XUY UC # 0.

In case 1 we have only part domains with kernels that must not be over-
lapped, kernels of the O-type. Let O = {O1,...,0,} denote the set of these
kernels. We don’t know in which part domain D; the rectangle R will be
placed as it can move freely in D, but we know that the intersection

must not be overlapped by any other rectangle R’. The computation of O
can be done in time O(m).

We call O the non-overlappable area of rectangle R in the following, as it
must not be overlapped by any other rectangle. If O # (), we can determine
all forbidden positions of the other rectangle R’ in the same way as shown
in the first subimage of Fig. 7.6. Observe that O must be rectangular as it
is an intersection of iso-oriented rectangles. The forbidden positions of R’
must be removed from all part domains of R’ in O(m) time. After we have
done that, we have finished the procedure for case 1.

If O = (), we can’t remove forbidden positions from another rectangle. In
this case, we continue with the procedure for case 2 and try to compute
non-coverable areas which we will explain in the following.

In case 2 we have X UY U C # 0, i.e. we have kernels that must not be
covered. Kernels of the X-type contain vertical strips that must not be
covered, kernels of the Y-type horizontal strips and kernels of the C-type
must not be entirely covered. We will show how to compute a set C =
{C1,...,Cg} of areas which must not be covered by any other rectangle. We
will call C the set of non-coverable areas. We are obviously only interested
in minimum areas C; which must not be covered, i.e. these areas don’t have
a proper subset that must not be covered. If we enlarge a non-coverable
area Cf, it can only be covered by a rectangle with bigger size and we can’t
remove as many forbidden positions from this rectangle.

If we go back to Fig. 7.5, we see that the following conditions must hold for
any C; € C:

e it must overlap all areas in O.

e it must cover at least one vertical strip of every area in X.

e it must cover at least one horizontal strip of every area in Y.

e it must cover all areas in C.
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These four conditions must be fulfilled so that we can be sure that R can’t
be placed in its domain set D if C; is entirely covered. If all areas in O are
overlapped by C; and C; is covered by another rectangle, R can’t be placed
in the corresponding part domains. The situation for the other three kernel
types is similar.

If we look at the projections of the two-dimensional areas onto the z- and y-
axis, this can be formulated by the following relations between the resulting
intervals:

e z-projection of C;:

— overlap all z-projections of the O-areas.
— overlap all z-projections of the X-areas.
— cover all z-projections of the Y-areas.

— cover all z-projections of the C-areas.

e y-projection of Cj:

overlap all y-projections of the O-areas.

cover all y-projections of the X-areas.
— overlap all y-projections of the Y-areas.

— cover all y-projections of the C-areas.

We define covering and overlap of intervals in a similar way to the two-
dimensional case (inclusion and intersection). Let A, (A,) denote the set of
intervals which is obtained by projecting the rectangular areas in set A on the
x-axis (y-axis). I(A.) is the intersection of this interval set (¢ € {z,y}) and
C(A.) the smallest interval that covers all members in the interval set. The
set of non-coverable areas C can be computed by the following algorithm:

Algorithm 2
input: kernel sets O, X, Y and C
output: projections C, and Cy of C and boolean flags X Segm, Y Segm.

Olbegin

02interval C, := C, :=

03boolean X Segm :=Y Segm := false;
Odinterval temp := ();

05

06% z-projection

07if YU C = () then C, := I(0O, U X,.); endif;
08if C, # 0
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09then X Segm := true;

10else

11 if YUC # 0 then temp := C(Y, U C,); endif

12 if OU X # 0 then temp:=ExtendToOverlap(temp,O, U X;); endif
13 Cy :=temp; % X Segm = false

14endif

15

16% y-projection

17if X UC = 0 then C, := I(O, UY),); endif;

18if Cy # 0

19then Y Segm := true;

20else

21 if X UC # 0 then temp := C(X, U Cy); endif

22 if OUY # () then temp:=ExtendToOverlap(temp,0, UY,); endif
23 Cy:=temp; % Y Segm = false

24endif

25end.

The output of this algorithm are the projections of C on the z- and y-axis.
As will be explained later, C; and Cy can consist of a single interval or a set
of consecutive unit intervals. The output of the algorithm is actually not C,
and C; themselves, but C; and C, represent an interval and the flags X Segm
and Y Segm indicate if we have the single or unit interval case.

Algorithm 2 has complexity O(m) because the operations I, C' and Extend-
ToOverlap have complexity O(m). The algorithm considers the projections
of C on the z- and y-axis separately, we start with the z-projection.

The z-projections of the areas in O and X must be overlapped by a non-
coverable area C;, whereas the z-projections of the areas in Y and C must
be covered. If Y U C = ) (line 7), we have only projections that must be
overlapped. The projection of C; must overlap the projections of all areas in
O and X, thus we calculate the intersection (O, U X,) of these projections
(line 7). If I(Oy U X)) = [a,b] # 0, we know that the projection of a C;
needs only to cover one of the unit intervals in {[a,a],[a+1,a+1],..., [b, b]}.
We write [z,z] for a unit interval according to our labelling of grid cells
(Section 7.1). We want to compute minimum areas Cj. If the projection of
C; shall overlap all projections of the areas in O and X, it is sufficient to
overlap one unit interval in the intersection I(O; U X,). We set C; = [a, b]
and set the boolean flag X Segm which means that a region C; has width
one (line 9), it is a vertical strip.

If C; = 0 (line 10), then either I(O, U X;) = () or we didn’t enter the then-
part in line 7 because Y UC # 0. If Y UC # ), we have also projections
which must be covered. We compute an interval temp := C(Y,, C;) that
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covers all projections of the areas in Y and C (line 11). We use then the
following procedure to extend temp to the smallest interval that overlaps all
projections of O and X as well (line 12). The return value of this procedure
is an interval, its first argument an interval and its second argument a set
of intervals:

Olinterval procedure ExtendToOverlap([e, 8],{[a1, B1],-- -, [@n, Bn]})
02begin

03 if [o, 3] =0 then

04 return [minlgign ,Bi, maxi<i<n Ozz'];

05 else

06 for ::=1ton do

07 if [o, 8] N[y, Bi] = 0 then

08 if 8 < a; then
09 B = aj;

10 else

11 a = By

12 endif’;

13 endif’;

14 endfor;

15 return [o, S];

16 endif;

17end

The procedure has complexity O(n). If the procedure gets an empty interval
which shall be extended to overlap with all [a;, §;], it returns the interval
which has as lower bound the minimum of the right interval ends and as
upper bound the maximum of the left interval ends (line 4). This is the
interval of minimum length which overlaps all [a, ;] If [, ] # 0 (line 5),
we must extend it until it overlaps all [a;, 5;]. We go through all [«, 5]
(line 6) and check first if [, 5] N [e;, B;] = O (line 7). If these two intervals
already overlap, we needn’t change [«, 5]. Otherwise we increase S if [a;, (]
lies on the right side of [a, (] (line 9). If [, 5;] lies on the left side of [a, ],
we must decrease « (line 11). We return [«, 8] as the extended interval after
we have completed the for-loop (line 15).

The procedure ExtendToOverlap can be entered with temp =0 if Y UC =
() and I(O; U X;) = 0 in line 7 of algorithm 2. In this case, we don’t
enter the then-part in line 11 and temp remains empty. (O, U X,) = 0
means that the intersection of the z-projections of the O- and X-areas is
empty. ExtendToOverlap returns then the smallest interval that overlaps
all projections of O and X. Recall that we said in case 1 that we continue
with case 2 if the non-overlappable area O was empty. In this case, we
had O # 0, X = () and I(O, U X,) = I(O,) = 0 and ExtendToOverlap is
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entered with temp = 0, i.e. we compute the smallest interval which overlaps
all z-projections of O. This leads also to a non-coverable area C;, because
if all O-areas are overlapped by a C; the rectangle can’t be placed in the
corresponding part domains.

We return now to algorithm 2, line 13. We set C, := temp and the boolean
flag X Segm remains unset i.e. a region C; has the same width as C, because
the whole interval C, must be covered by a Cj.

The computation of C, and Ysegm is symmetrical (lines 16-25). C is now
given by its projections C; and C,. The flags Xsegm and Y segm indicate
the form of the Cj:

e Xsegm = true: vertical strips C; with width one.
e Ysegm = true: horizontal strips C; with height one.

e Xsegm =Y segm = false: one non-coverable area C'.

This is illustrated in Fig. 7.9.

C6
C1 C8 C1
C1
segmentation in x-direction segmentation in y-direction no segmentation

Figure 7.9: Possible configurations of set C

Observe that the case X segm = Y segm = true can’t occur as we would then
have YUC = () (lines 7 and 9) and X UC = () (lines 17 and 19). This means
X =Y = C = (. We do not enter algorithm 2 if O = () (then we would have
no part domains at all), so that we will assume O # () and X =Y = C = 0.
In this case we compute first a non-overlappable area, O with the procedure
for case 1. If O # (O we do not enter algorithm 2. If O = () and O # 0,
the if-condition in line 11 is false (because Y = C' = (), i.e. temp remains
unset. We enter ExtendToOverlap in line 12 with temp = 0, i.e. we compute
the smallest interval that overlaps all intervals in O,. X Segm remains false
(line 13). The same result is obtained for the y-projection. We finally get
one area (' which overlaps all kernels in O and Xsegm = Y segm = false
in contradiction to our assumption.

Example 2 Fig. 7.10 shows an example for the computation of C. We have
two kernels of the O-type, O1 and Oy and one kernel of the X -type. This
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means X UO # () and Y = C = (), which is case 2 and we enter algorithm
2. The if-condition in line 7 is true, because Y U C = (), we compute the
intersection 1(O, U X,) and set C, = I(O, U X,). This projection is divided
into unit intervals, we set X Segm = true (line 9). The projection C, is
shown in Fig. 7.10.

We continue with the y-projection. The if-condition in line 17 is false,
because X UC # 0. In line 21, we compute the interval C(X, U Cy) which
covers the y-projection of the single X -kernel. C(X, U Cy) = X is shown
in Fig. 7.10. The if-condition O UY # () in line 22 is true, we extend
temp = X so that it overlaps also the projections O1, and Oz .. We get C,
as shown in Fig. 7.10, it is not divided into unit intervals (Y Segm = false,
line 23). By combining C, and Cy, we get two areas Cy and Cy which must
not be covered by another rectangle.

—+—
Co

Figure 7.10: Example for a set of non-coverable areas C

We have shown in this section how to compute a common kernel for a rect-
angle R with several part domains. Either we get a non-overlappable area
O (case 1) or we get a set of non-coverable areas C. As we have seen, both
O and C are rectangular. Thus, we can compute the forbidden positions for
another rectangle R' exactly in the same way as shown in Fig. 7.6. We re-
move these positions from the domain set D’ as described in Section 7.3. All

algorithms in this section have complexity O(m) so that we can determine
O and C in O(m) time.
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7.5 Pairwise Reasoning

We know how to reduce the domains of a rectangle pair. We can now
give the overall algorithm which considers all rectangle pairs for a set R =
{R1,...,R,} of n rectangles. We use the AC3-algorithm which was intro-
duced in Section 5.4:

Algorithm 3 (AC3)
input: set R = {Ry,...,R,} of rectangles and their domain sets Dy,..., D,
output: pairwise consistent rectangle domain sets

begin
L :={(i,5)|i # j A D; and D; overlap};
while L # ()
Li=L - {(i,5));
reduce D; by determining the O or C areas of R;;
if D; has changed
then L := LU{(k,i)|j # k # i and Dy and D; overlap};
endif;
endwhile;
end.

The set L contains the arcs in an abstract version of the constraint graph
G = ({1,...,n}, L) where every node represents a rectangle. We collapse
the variables z;, y; of rectangle R; into one node because they are only
influenced by variables of other rectangles.

We add the arc (i,7) to the constraint graph if the domainsets D; and D;
overlap, otherwise the rectangles R; and R; can never overlap. As long as
L # (), we remove an arc (i, 7) from L and establish its consistency. We have
to insert arcs into L again which could be affected by a smaller domain D;
because its O- or C-areas have been enlarged.

The time complexity for the determination of non-overlappable and non-
coverable areas is O(m), where m denotes the maximum number of part
domains of a rectangle (compare Section 7.4). We must remove the forbidden
positions from O(m) part domains of D;, this can also be done in O(m) time
(the removal of forbidden positions in Section 7.3 is done in time O(1)). A
lower bound for the AC3 algorithm is therefore Q(mn?) (compare Section
5.4), as we must examine every arc in the constraint graph at least once. An
arc can be inserted d times into L, where d denotes the maximum domain
size of a rectangle . The worst-case run time is O(dmn?) (compare Section
5.4).

3i.e. the number of rectangle positions, d = wh where w denotes the width and h the
height of the corner domain.
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d can be quite large and is not related to the other parameters n and m.
It depends on the domain size of the variables for the rectangle positions
which can vary from problem to problem. In the worst-case, d is a measure
for the number of repeated arc inspections in the AC3-procedure.

m depends on d because the number of part domains grows with every
removal of forbidden positions. Thus, m is difficult to estimate. We can show
however that m can only grow by a constant in every removal step. This
is illustrated in Fig. 7.11. Assume that we have four corner part domains

Figure 7.11: Growth of the number of part domains

B, L, R and T and that we want to remove the area in the thick box. T
remains unchanged and the other three part domains are split because at
least one corner of the box lies in these part domains. L is split into L,
Lo, R in Ry, Ry and B into By, By and Bs. Observe also that it would be
possible to merge Ly, By and Ry, Bs in order to reduce the number of part
domains.

We remove always rectangular areas. Only part domains which contain a
corner of the removed area are split (compare Fig. 7.7, 7.8). We look at the
different cases in Fig. 7.7 and 7.8 and see that one corner can generate one
new part domain:

e one corner inside of a part domain: two new part domains
e two corners inside: three new part domains
e four corners inside: four new part domains
In the worst-case, each of the four corners of the removed area generates

a new part domain. We can get at most four new part domains in each
removal step.
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7.6 Examples

The pairwise reasoning will be illustrated by means of two examples.

Example 3 We look at Fig. 7.12 where we have to rectangles Ry and Ra
with sizes 6z6 and 2z2 which can both move in an area of 8x8. We show in
this and the following example always rectangle domains (thick lines), not
corner domains. We compute the kernel of Ry, it is of the O-type (grey). Ra
must not overlap O and we remove the positions of Ro where Ro overlaps
O. We get four new part domains, strips of width two. We compute for
these part domains the kernels and get two kernels of the X -type, two of the
Y -type. Algorithm 2 computes the set of non-coverable areas C. It consists
of one area Cy which covers at least one strip in each of the four kernels. Ry
covers C1 in its middle position, we remove this position from the domain of
Ry and get four new part domains. FEach part domain contains exactly one
position of Ri. We compute the kernels of these part domains, they are all
of the O-type because the part domains contain one rectangle position. We
compute the intersection O = ﬂ;-lzl O; which is the same area as the kernel
O in the beginning, i.e. we can’t remove further positions from Ra.

Example 4 Fig. 7.13 shows a bigger example with four rectangles Ry, Ro,
R3 and Ry of size 4z1, 1z4, 3z2 and 2z8. They can all move in the same
area with size 5z4. It is obviously not possible to place all four rectangles
in this area. Qur algorithm starts with Ry and computes its kernel. It is
of the X -type and contains three vertical strips. These strips can be covered
by Ra, so that we remove the three middle positions from Rs. We get two
new part domains and compute their kernels (O1 and Oz). The intersection
O = 01 N 07 is empty, we compute instead a set of non-coverable areas.
Each non-coverable area C; must overlap both O1 and Os, we get four non-
coverable areas C1-Cy. They can’t be covered by one of the other rectangles
so that we can’t remove positions from other rectangles. We compute the
kernel of Ry and get one strip of the X-type. This strip can be covered by
Ry. We remowve the forbidden positions of Ry and get two new part domains
with the kernels Oy and Oo. Their intersection O = O1 N Oy is empty, we
compute C and get two areas Cy and Cy (an area C; must overlap both Oy and
0). These strips can be covered by Ry and Rs. We remove the forbidden
positions of Rz and get two new part domains with size 3z4, D1 and Da,.
They have kernels of the X -type (three strips each) which are combined into
one non-coverable area C by algorithm 2. It is identical to the old kernel
X of R3 so that we get no new information out of this. We remove also
the forbidden positions of Ry and get two new part domains with the kernels
01 and Oy. O1 N Oy = B, thus we compute C and get three non-coverable
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Figure 7.12: Example with two rectangles, sizes 6x6 and 2x2

areas C1—Cs. They can’t be covered by another rectangle and the propagation
stops.

Our algorithm can’t detect that it is not possible to place all four rectangle
in the area, because it looks only at two rectangles at a time.

7.7 Stronger Consistency

The algorithm described in the preceeding sections does only pairwise rea-
soning for a rectangle set. For stronger consistency like k-consistency [Tsa93],
we consider propagation based on rectangle area calculations. We can detect
whether an area in the plane is too crowded by rectangles by calculating the
sum of the areas of the rectangles which reside in this area. If the area is
too crowded, we can possibly move some rectangles outside and reduce their
domains. We have implemented a simple heuristic where we look at each of
the rectangles separately and decide if its domain can be reduced: *

“Observe that this heuristic doesn’t help in Example 4 either, but in other cases.
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Algorithm 4

input: set R = {Ry,...,R,} of rectangles and their domain sets
D ={Dy,...,Dy}

output: reduced rectangle domain sets

begin
forall R, € R do
B:=bounding box of {D — {D;}};
if area(R) > area(B) then
reduce the domain of R accordingly;
endfor
end.

A bounding box is here the smallest enclosing rectangle and area() denotes
the area sum of a rectangle set or a rectangle. For every rectangle R;, we
decide if the bounding box B of D—{D;} becomes too crowded if we move R;
inside B. If yes, we can move R; away from B and reduce the domain of R;.
The time complexity of this algorithm is O(n?), because every bounding
box computation has complexity O(n) if we store the bounding box of a
rectangle domain set D; separately.

Example 5 In Fig. 7.14, we have three rectangles Ry, Ro and Rs. The
bounding box of the domains of Ry and Ry is B. There is an empty space
of four unit squares left in B, the domain of Rs is D3. We can’t move Rj
completely inside B, as there is not enough space for it. We remove the
position of Rs where R3 is contained in B and get two new part domains
for Rs.

This is of course a simple heuristic, because all rectangle subsets of size
n — 1 are considered. It would be better to consider only rectangle subsets
in crowded areas, because they are good candidates for a domain reduc-
tion. It should be further investigated how to find crowded areas and the
corresponding rectangle subsets. One idea for finding crowded areas could
be to build the overlap graph of the rectangle domains. In this graph, we
search after big cliques with a heuristic. We get rectangle subsets where the
domains overlap heavily, i.e. crowded areas.

7.8 Variable Rectangle Sizes

All algorithms described so far can be easily adapted to the case with vari-
able rectangle sizes if all calculations are based on the minimum rectangle
size. The computation of kernels in Fig. 7.5 remains correct if we assume
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minimum rectangle sizes, because all necessarly covered areas remain cov-
ered if the rectangle becomes bigger. This is illustrated in Fig. 7.15 for a
rectangle with an O-type kernel. The kernel is enlarged for a bigger rectan-
gle, but the old kernel area is still included in the new one. Thus, all other
rectangles that overlapped the old kernel overlap also the new kernel. The
situation for the other three kernel types is similar.

The calculation of forbidden positions in Fig. 7.6 remains also correct, as
all forbidden positions for a minimum size rectangle remain forbidden for a
bigger one. We can see this in Fig. 7.16 for an O-type kernel. The area of
forbidden positions grows with the rectangle size, but the old area is still
included in the new one. This argument holds also for the other three kernel

types.
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I R Ry Ry

Figure 7.13: Example with four rectangles, sizes 4x1, 1x3, 3x2, 2x3

Figure 7.14: Three rectangles, bounding box B
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Figure 7.15: Change of the kernel size

Figure 7.16: Change of the forbidden area
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Chapter 8

Heuristics

We will describe in this chapter several heuristics which build locomotive
routes. The constraint model from Chapter 6 ensures only feasible loco-
motive routes, it provides no optimization with respect to the number of
locomotives and the amount of passive transport.

We need quite specialized search strategies for our locomotive assignment
problem as TSP-like problems ' haven’t been solved satisfactory by con-
straint propagation yet. The propagation in former approaches is too weak
for a reduction of the search space and only small problems can be solved to
optimality [CL97]. Thus, we use route building heuristics which construct
one solution. We walk down on one path of the search tree and do not
explore the rest of the search tree.

We can’t benefit from the main strength of constraint programming, con-
straint propagation. But the built-in mechanism of constraint programming
languages to dynamically handle the constraints simplifies the programming
task, because the various interactions of the constraints are implicit during
program execution. It is not necessary to formulate the constraint checks in
an algorithm, they are implicitely done by the constraint system.

8.1 Introduction

The main idea in our approach is the simultaneous planning of locomotive
assignment and track allocation. The mutual exclusion condition for trains
on tracks has an effect on the departure time windows of the trips. These in
turn influence the vehicle routes, so that we should always take into account
the constraints from the track allocation problem while doing locomotive
assignment.

!Traveling Salesman Problem

73
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This can be easily done in the TUFF system. The constraints for the track
allocation problem are implemented in this system and can be used during
the construction of the locomotive routes. We will describe the track allo-
cation constraints of the TUFF system in Chapter 9. The constraints check
implicitely if the constructed locomotive routes are possible and guide the
route construction algorithm in case of failures.

We proceed in two steps in order to compute the timetable and the as-
signment of trips to locomotives for a certain problem. We start with the
determination of the trip order for every locomotive. We call this a locomo-
tive plan. In the locomotive plan, all passive transports are known but the
departure times are still flexible because only the trip order is determined.
We will describe several heuristics which construct locomotive plans in the
following sections.

In the second step, we determine the departure times and solve the track
allocation problem at a detailed level. We use a simple search heuristic
which has been developed for track allocation in the TUFF system. It will
be explained in Chapter 9.

Our cost function for the vehicle routes has two parts. Our primary objective
is two minimize the number of used locomotives. For this minimum number
of locomotives, the amount of passive transport time should be minimized.
Our heuristics do not consider the waiting times of the locomotives as they
are not as important as the other two cost factors. We won’t address the
problem of locomotive types in the beginning and explain later how the
algorithms can be extended to different locomotive types.

8.2 Best Predecessor Heuristic

Let M = {l1,...,ln} denote the set of locomotives and P = {pi,...,pp}
the set of trips. Trip p; has the start location S(p;) and the end location
E(p;). Its departure time window is [Tpin (i), Tmaz (Pi)]- The locomotive [;
has the start position 3([;).

For every locomotive, we want to compute its trip order. We store the trip
order for the locomotive /; in a trip list L; = [pj,,...,p;.] with a = a(j).
The set of all trip lists determines the locomotive plan.

Best Predecessor Heuristic
input: trips P = {p1,...,pn}
locomotives M = {l1,...,ln}
output: trip order list L; = [pj,,...,pj,] for every locomotive I;
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Olbegin

02 for j:=1tomdo

03 list L; := nil;

04 endfor

05 list P :=[p,...,pi, ] := sort(P, Tmaz);
06 for k:=1tondo

07  set C:=0;

08 for j:=1 to m do

09 if p;, can be added to L;

10 if L; # nil

11 then integer c; := c(last(L;),p;, );
12 else integer ¢; := c(X(15),pi,) + A;
13 endif

14 C:=CU{¢};

15 endif

16 endfor

17 list C' := [ck,, ..., Ck,, | = sort(C);
18 list A:=[k1,...,Eknl;

19 repeat

20 integer j := first(A);

21 A = tail(A);

22 L;j := append(Lj,p;,);

23 boolean successful := false;
24 if constraints violated

25 then L; := L; — last(L;);
26 else success ful := true;

27 endif

28 until successful or A = nil;

29 if A = nil then print p;, not added; endif
30 endfor

3lend.

Assume that we we want to assign the trips to the locomotives in a certain
order, we sort them e.g. after increasing latest departure time 7,,,, and
begin with the earliest trips. We build up the locomotive plan from left to
right. This sort step is done in line 5.

We go through the sorted trip list with the for-statement in line 6. A
straightforward strategy is to add the current trip p;, at the end of the trip
list where it fits best. We check first if the time window of trip p;, allows
an addition to the list end L; (line 9), i.e. if its latest departure time 7,44
is greater than the current minimum route time. We compute then a cost

c(pi,pj) = arci(pi, pj) + aoca(pispj), a0 >0, ar+ax=1
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for the connection of trip p; with trip p;. ¢ is the cost for a necessary
passive transport

c1(pi, p;) = 02(E(pi), S(p;))

and ca(p;,p;) is the minimum waiting time of the locomotive before it can
start with trip p; after completing trip p;:

¢2(i5 ) = Tmin (P3) = (Tmin (pi) + d(pi))

d(p;) is the duration of trip p; and can be approximated by its minimum
duration. Recall from Chapter 3 that the trips have variable waiting times
at the locations, so that the trip duration can also vary. We assume that
trip p; starts at T, (p;), so that we get a worst-case waiting time. J, is the
travel time for passive transports from Def. 4 in Chapter 3.

If we assign trip p;, to a new locomotive, we must take into account the
start location of the locomotive. We define the cost

c(3(15), piy,) = a102(3(15), S(piy,)) + @2Tmin (piy,)

which includes the passive transport from the start location of the locomotive
and the waiting time until the locomotive can start with trip p;,. We add a
penalty A > 0 to this cost (line 12) in order to force the heuristic to use few
locomotives.

These connection costs are computed for all locomotives in the for-loop in
line 8. The costs are sorted after increasing cost in line 17. In line 18, the
list A contains the locomotives sorted after increasing connection cost. In
the repeat-loop in line 19, we try to add trip p;, to a list end. We begin
with the list end with the minimum connection cost and add p;, to it (line
22). The constraint system checks if the track allocation constraints are
violated by this new trip (line 24). If yes, we remove the trip from this list
end (line 25) and try the next best list end. The loop is terminated if we
could add the trip or if we have tried all locomotives (line 28). Trips which
can’t be added at all are discarded and not scheduled (line 29). We continue
the for-loop from line 6 until we have tried to add all trips. The output of
the algorithm is a locomotive plan, given by the trip order lists L;.

We will give an estimation of the worst-case run time of this algorithm. The
time complexity for the sorting of the trips in line 5 is O(nlogn). We have
to perform the following tasks for every trip:

1. find predecessors for a trip, sorted after cost: O(m logm)

2. check track and location constraints: O(m3nt)
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The computation of the connection costs can be done in O(m) time (line 8)
and the sort operation for the predecessors has complexity O(m logm) (line
17).

We will now look a the complexity of the constraint checks. First, we check if
the departure time of the added trip lies in its corresponding time window.
This can be done in O(1) time. If the time window is not violated, we
continue with constraint checks for the track allocation problem.

We assume that a trip traverses an average number of ¢ tracks. Assume
that we have added the trip p to locomotive [;. We must then check every
traversed track in the added trip against collisions with track traversals of
locomotive l5. The same has to be done for the location constraints of
O(t) visited locations, i.e. we must check the maximum number of waiting
trains. We go through the tracks of trip p in O(¢) time and check if there
are collisions with [, 2. The location constraints can be checked at the same
time. Thus, the check between p and l> can be done in O(t).

If there are collisions, we must shift all the departure times of the track
traversals of the colliding trips on /5 in the worst-case. We could also shift
p but maybe this is not possible as its time window is too small. In the
worst-case, not only the colliding track traversals but also all trips that
follow afterwards on lo must be shifted. We get O(nt) for the shifting in the
worst-case. For all operations between [; and I, we get time O(nt).

Trip p on [y and the O(nt) shifted track traversals on ls must be checked
against collisions with locomotive /3. The number of tracks to be checked is
O(nt). In the worst case, O(nt) track traversals on 3 must be shifted. The
check between [y, [ and [3 costs O(nt).

This procedure is done O(m) times in the worst-case until we have reached
the locomotives l1,...,l,,_1 and [,,,. Thus, the time for the constraint checks
is O(m?nt) after the addition of a trip to a trip list.

A trip can be added m times in the worst case (repeat-loop in line 19), so
that the total time for the constraint checks is O(m3nt).

For one iteration of the for-loop in line 6, we get time O(m>nt + mlogm).
We have n iterations and must add the sort step in the beginning, so that the
total time is O(m3n?t+mnlogm+nlogn). We assume ¢t € O(1) and m < n,
because the number of locomotives is usually smaller than the number of
trips. We finally get complexity O(n®).

*We assume that we have a data structure for the tracks that stores for every track
references to all trips that traverse this track.
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8.3 Nearest Neighbour Heuristic

Another heuristic uses the same cost function for a connection, but doesn’t
sort the trips beforehand. We choose instead the next trip as the trip which
fits best to a certain list end, the nearest neighbour.

Nearest Neighbour Heuristic
input: trips P = {p1,...,pn}

locomotives M = {ly,...,ln}
output: trip order list L; = [pj,,...,pj,| with a = «a(j) for every locomotive /;
Olbegin

02 for j:=1tomdo
03 list L; := nil;

04 endfor
05 repeat
06 integer ¢; := current minimum route time of /;;

07 if £; = 0 then t; := X endif;
08 list M := [l]'l, ce ’ljm] = SO’I“t(M, tj);
09 list N :=[j1,...,m};

10 if [;,...,l;, are new locomotives

11 sort sublist [[;,,...,l;,] after nearest neighbour in P;
12 endif;

13 repeat

14 integer j := first(N);

15 N := tail (N);

16 set C := ();

17 forall p; € P do

18 if L; # nil

19 then integer ¢; := c(last(L;),p;);
20 else integer ¢; := ¢(X(l;), pi);
21 endif

22 C:=CU{c};

23 endfor

24 list C' :=[cj,,...,¢5,] = sort(C);
25 list A:=[j1,...,7al;

26 repeat

27 integer i := first(A);

28 A = tail(A);

29 Lj := append(L;,p;);

30 boolean successful := false;
31 if constraints violated

32 then L; := L; — last(L;);
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33 else P := P — {p;}; successful := true;
34 endif

35 until successful or A = nil;

36 until successful or N = nil;

37 if N = nil then print P not added; stop; endif
38 until P = ();
39end.

We determine for all locomotives their current minimum route time ¢; (line
6). If it is zero, we set it to a penalty A > 0 in order to avoid the use
of too many locomotives (line 7). We sort the locomotives after increasing
route time (line 8), because we want to choose locomotives with few trips
first in order to get equally long locomotive routes. N contains in line 9
the locomotive numbers, sorted after this order. If we have several new
locomotives to choose from, we should take the locomotive which has the
nearest neighbour in the trip set P. We sort the new locomotives after this
criterion again in line 11.

We start with the locomotive /; with minimum route time (line 14). If we
can’t add any trip to this locomotive, we must try the next best one. The
repeat-loop in line 13 iterates over the locomotives.

We compute for all unscheduled trips in P the connection cost from Section
8.2 with the last trip in L; (line 17) and sort them after increasing cost
(line 24). The list A in line 25 contains the trips, sorted after increasing
connection cost. In the following repeat-loop, we try to add a trip to the
end of L;. If no constraints are violated, we remove the trip from P (line
32). The loop is terminated if we could add a trip or there are no more trips
to try.

If we couldn’t add any trip at all, we try the next locomotive. If we can’t
add any trips to any locomotive, the algorithms terminates and prints out
the remaining unscheduled trips.

The repeat-loop in line 5 has n iterations. We sort the locomotives after
their travel time in time O(mlogm) (line 8). The sort step for the new
locomotives (line 11) takes time O(mn + mlogm) in the worst-case: We
must compute for m locomotives the nearest neighbour in P, this can be
done in time O(mn). The sort step takes O(mlogm). We get a total time
of O(mn? + mnlogm) for the determination of the locomotive order.

The repeat-loop in line 13 has m iterations in the worst case. The compu-
tation of the connection cost in line 17 for the remaining trips can be done
in time O(n). They are sorted in time O(nlogn) (line 24). We have a total
time of O(mn?logn) for these operations.
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The repeat-loop in line 26 has n iterations in the worst case. If we add a
trip, we must do the necessary constraint checks. The complexity for this is
O(m?nt) as in Section 8.2. We get complexity O(m?n?t) for this loop.

Thus, the total time for the algorithm is O(mn? + mnlogm + mn?logn +
m3n3t). With the assumptions ¢ € O(1) and m < n we get complexity
O(nb).

8.4 Insertion Heuristic

We can try to improve the best predecessor heuristic by not only considering
the list ends for the addition of a trip, but also all insertion positions in the
trip lists. We try to insert our current trip between two trips p, and pg in
a trip list Lj;, where the end location of p, and the start location of pg fits
best to our current trip.

We give the insertion heuristic in pseudocode:

Insertion Heuristic
input: trips P = {p1,...,pn}

locomotives M = {l1,...,ln}
output: trip order list L; = [pj,,...,pj,] with a = «a(j) for every locomotive I;
Olbegin

02 for j:=1tomdo

03 list L; := nil;

04 endfor

05 list P :=[pi,...,pi, ] := sort(P, Tmaz);

06 for k:=1tondo

07 set C := ();

08 forall insertion positions (pa,pg) in Li,..., Ly, do

09 integer c¢; o5 = c(Pas Piys Ps);
10 C:=CU{cjasl;
11 endfor

12 list C" := [¢j,,01,815- - -+ Cjysan,8,] 7= SOTE(C);
13 list A := [(jlaalaﬁl)a"'7(j’yaa’ya/6’y)];

14 repeat

15 integer (j,a, ) := first(A);
16 A :=tail(A);

17 Lj :=insert(Lj, pa,Pi, Pg);
18 boolean successful := false;
19 if constraints violated

20 then L; := remove(Lj,p;,);
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21 else successful := true;

22 endif

23 until successful or A = nil;

24 if A = nil then print p;, not inserted; endif

25 endfor

26end.

We sort the trips into a list P = [p;,, ..., p;,] after increasing latest departure

time T,,q. in line 5. We insert them in this order so that we build up the
locomotive plan from left to right. This enables us to take into account the
locomotive start positions for the first trips which are inserted and we insert
always the most urgent trip. We try to avoid violations of departure time
windows by inserting always the most urgent trip.

In the loop in line 6, we compute the insertion cost for the current trip p;,
at all possible insertion positions in all current lists L;. (pa,pg) denotes
the position in between the trips p, and pg. The cost for inserting trip p;
between trip p; and trip pg is defined as

c(pi, pjspr) = 62(E(pi), S(pj)) + 62(E(ps), S(pr)) — 62(E(ps), S(pr))

This is the additional amount of passive transport time after the insertion.
In line 9, we store the corresponding locomotive [; in the index j of ¢jq g
and the insertion position in o and B. Observe that ¢(p;,p;,pr) can also
become negative if we can replace a passive transport by inserting trip p; at
this position.

We must also handle the cases when the trip is inserted in an empty list, or
if it is inserted as the first trip or the last trip. These cases are not shown
explicitely in the pseudocode in order to keep it simple. We add a penalty
cost A > 0 to the passive transport from the start location, if we use a new
locomotive I, with an empty trip list L, = nil. This forces the heuristic to
allocate a trip first to an already used locomotive and reduces the number
of used locomotives:

cllg,pj) = 02(5(lg), S(pj)) + A

If we insert a trip p; as a first trip in a nonempty trip list L, of a locomotive
lq with the current first trip py, we must consider the start location of the
locomotive:

c(lgpj,pr) = 02(X(lg), S(pj)) + 62(E(ps), S(pk)) — 02(E(lg), S(pk))

If we add a trip p; after trip py at a list end, the cost is:

c(pr,pj) = 02(E(pr), S(p;))
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We sort the set C after increasing insertion cost in line 12. The list A
contains the insertion positions which are represented by a triple (4, «, ),
sorted after increasing cost. The repeat-loop in line 14 iterates over the
insertion positions, we begin with the best insertion position. We insert
trip p;, (line 17) and check if any constraints are violated. We repeat the
insertions until an insertion was successful. If trip p;, can’t be inserted at
all, it is discarded and not scheduled (line 24).

We compute also for this algorithm the worst-case run time. The for-loop in
line 6 has n iterations. The computation of the insertion cost for all insertion
positions takes time O(m +n), because we have O(m +n) possible insertion
positions. Thus, the complexity of the forall-loop in line 8 is O(m + n).
The insertion costs are sorted in time O((m + n)log(m + n)) (line 12).

The repeat-loop in line 14 has O(m + n) iterations in the worst-case, i.e.
we must try all possible insertion positions until we can insert trip p;, .

The constraint checks after an insertion can be done in time O(m?nt): as-
sume that we insert trip p;, on locomotive /1. In the worst-case, the depar-
ture times of O(nt) following trips must be shifted. This can be done in
time O(nt). This is different to the case where we add a trip at the end of
a trip list, because we have no shifts in this case. The shifted trips must be
checked against collisions with trips on locomotive [, this can be done in
time O(nt). We use the same argument as in Section 8.2 where we had to do
the check for O(nt) track traversals between [, [5 and [3. The only difference
when we insert a trip is that we have already to perform O(nt) operations
between /1 and [s. We have to repeat this until we compare l4,...,/[,,, 1 and
Im, so that the total time for the constraint checks is O(m?nt).

Thus, the total time for the repeat-loop in line 14 is O(m?nt(m +n)). We
get for the total time O(n(m + n)log(m + n) + m?n?t(m +n)). With the
assumptions ¢ € O(1) and m < n, we get O(n’).

8.5 Examples

We will compare the three route building heuristics by means of three ex-
amples. We will concentrate on the amount of passive transport time and
choose our examples so that the locomotive number is fixed, because the
penalty cost mechanism is the same for all three heuristics. We set the
penalty parameter for the use of a new locomotive to zero: A = 0.

Assume that we have two locomotives 1, [ which have the start positions
Y(ly) = X(l2) = A (see Fig. 8.1). We want to compute a locomotive plan
for four trips p1 — p4, the departure time windows and estimated durations
are given in Table 8.1.
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("B
p3 P2

Figure 8.1: Example 1

yZ

trip | departure time window | duration
P1 [0, 4] 1
D2 [07 2] 1
b3 [0’ 4] 1
D4 [07 2] 1

Table 8.1: Data for Example 1

Observe that we need two locomotives because one locomotive can’t perform
all trips in their respective time windows.

We begin the with the best predecessor heuristic. The trips are sorted after
their last departure time and added to the plan in the order ps, p4, p1,
p3 (without loss of generality). To simplify the discussion, we set oy = 1
and as = 0 in our connection cost measure from Section 8.2, i.e. we don’t
consider waiting times of the locomotives. If we always choose the best
connection, we can get the following trip lists:

Ly = [p2,p1]

LZ = [p47p3]

This means that every locomotive has two passive transports, before and
after its first trip. This is obviously not the optimal solution.

The nearest neighbour heuristic finds the optimal solution. We choose a
nearest neighbour to the start position of locomotive 1, for example p;.
The nearest neighbour for Iy is p3. We finally get:

Ly = [p1,p2]
L2 — [p3ap4]

The insertion heuristic sorts the trips after their latest departure time, we
get the order po, p4, p1, p3. p2 is added to l;, then py to lo. p; and p;3
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Figure 8.2: Example 2

are then inserted at the beginning of the trip lists. We finally get the same
solution as with the nearest neighbour heuristic.

This example shows a deficiency of the best predecessor heuristic. We can
only add trips at the list end. We must sort the trips after some criterion, it
seems reasonable to sort them after their departure times. Trips with large
time windows (p; and p3) can’t be inserted at the beginning of the trip list,
because we add them late to the plan. This leads to a solution with many
passive transports.

The second example shows a difference between the nearest neighbour and
the insertion heuristic (Fig. 8.2). The trip durations are given in Table 8.2.

trip | duration
P1 1
D2 1
Ps3 2

Table 8.2: Data for Example 2

We have now one locomotive [; with start location A. Assume that the
departure time windows are quite large, i.e. they don’t play an important
role in this example. The nearest neighbour heuristic constructs for example
the trip list L1 = [p1,p3,p2], i.e. the locomotive must perform a passive
transport between p3 and py of duration 3 from C to A.

Independent of the order in which the trips are inserted, the insertion heuris-
tic finds the optimum. Assume that we have the order pq, po, p3. After py
is inserted, p2 can be inserted before or after p;. We insert po at the begin-
ning of the list. pj3 is finally added at the end so that we get the optimum
L1 = [p1,p2,p3] with a passive transport of duration 1 from B to A.

There are also examples where both the insertion and the nearest neighbour
heuristic fail. In Figure 8.3, we have five trips with the data from Table 8.3.

We have two locomotives with the start positions ¥(I;) = A and X(l2) = C.
Two locomotives are needed in order to meet all time window restrictions.
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Figure 8.3: Example 3

trip | departure time window | duration
2} [0, 2] 1
D2 (2, 6] 1
p3 [0,7] 6
P4 [0, 8] 2
Ps [0,9] 2

The optimum solution is obviously

Ly = [p1, p3]

Ly = [p4, ps, p2]

Table 8.3: Data for Example 3

with a passive transport of duration 2 between p4 and ps.

85

The insertion heuristic sorts the trips after their latest departure time, we
get the order p1, po, p3, P4, P5. p1 is inserted on [ because X(l1) = A. po is
inserted after p; on [; because 3 is in C, a passive transport of duration 2
would be necessary. On [, we need only a passive transport of duration 1.
ps is inserted after po and we get for [y:

Ly = [p1,p2,p3]

pq is inserted in Lo and ps5 after ps. We get for [o:

Lo = [p4,ps)

This is not the optimum as we have passive transports between p;, po and
pa, ps of total duration 3. The same solution is obtained with the best

predecessor heuristic.

The nearest neighbour heuristic starts for example with [y and assigns p; to
it. Then, we assign p4 to lo because ls is the locomotive with minimum route
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d(p1) d(py)

P1 | [ p2 |
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l p1 [ po |
Tmin (pl ) Tmaz (pl ) Tmin (pZ) Tmazx (P2)

Figure 8.4: Time windows with 71 > 7

time. After that, [y is the locomotive with the smaller total route duration
and we assign p3 to it. We get for [:

Ly = [p1, p3]

As [1 has now a quite large total route time, we assign the remaining trips
to Io. We add first po and then ps. The result is:

LZ = [p47p27p5]

This solution is also not the optimum as we get a passive transport of du-
ration 3 between the trips p2 and ps.

We can see that there are examples where all three heuristics fail. A discus-
sion of the choice of one heuristic will follow in Section 8.9.

8.6 Matching Heuristic

As a preprocessing step to the route building algorithms above, we can try
to build blocks of trips with good connections which can be used instead of
single trips in our route building algorithms. This reduces the amount of
trips » by a constant factor a with 0 < o < 1.

We show in Fig. 8.4 and 8.5, that the time window of a block is in gen-
eral smaller than the smaller time window of the individual trips. Let
[Tmin (Pi), Tmaz (pi)] denote the time window of trip p; and 7; = Ty (pi) —
Tmin(pi) its window size.

We consider blocks of two trips p1, ps and begin with the case 71 > 7. We
look in this and the following cases always at worst-case departure times ? of

3i.e. the departure times that lead to a minimum window size of the block.
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Figure 8.5: Time windows with 7 < 7

the trips because we don’t know the departure times beforehand. In the first
figure in Fig. 8.4, we have T05(p1) + d(p1) < Tmin(p2), this is the only case
where the window size does not decrease because the window size of the block
[p1,p2] is 7 = 71. In the second figure, when 7., (p1) +d(p1) > Tinin(p2), the
block window becomes smaller, its size is T = Tynae (P2) — (Timin (p1) +d(p1)) <
Ty, because the flexibility of po becomes smaller. Between these two extreme
cases lie cases where the flexibility of py is reduced only for a subset of p;s
departure times.

In Fig. 8.5, the case 71 < 79 is shown. In the upper figure, we have
Tmaz(P1) + d(p1) < Tmin(p2), the block window size is 7 = 71. In the
lower figure, Timin(p1) + d(p1) > Tmin(p2) and the block window size is
7 = min{ 7y, Tmaz (P2) — Tmin(p1) + d(p1)}. Thus, 7 can even become smaller
than 7. As in Fig. 8.4, there are intermediate cases between these two
extreme cases.

In the worst-case, the window size decreases with every combination of indi-
vidual trips. This restricts the block size, because blocks with small windows
are inflexible and are not so useful for our route building algorithms.

We suggest a matching heuristic which builds iteratively blocks of increasing
size. Let P denote the set of trips. We build an undirected graph G = (P, E).
We add an edge {p;,p;} to E, if E(p;) = S(pj) or E(p;) = S(p;) and if the
trips p; and p; can be combined into a block. This depends on their time
windows and durations. We can build the block [p;, p;] if Tpmin (i) +d(p;) <
Tmaz(Pj). We set also a threshold value € > 0 for the worst-case waiting
time of the locomotive between the two trips, because we don’t want to
combine trips which lie far apart in time. If both orders [p;,p;| and [p;, p;]
are possible, we choose the one with lower waiting time. The construction
of this graph can be done in O(n?) time.

We can now compute a maximum cardinality matching with the algorithm
from [MV80] in time O(n*%). It finds a maximum number of edges in G
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which have not any nodes in common. We remove the blocks from P where
the new time window size lies under a threshold 6 > 0. The remaining
blocks and single trips are now regarded as new single trips with a new time
window which can be computed in time O(n).

In the next iteration, we repeat our graph construction in time O(n?). The
procedure is repeated as long as there are blocks with appropriate time

window size. If we have k iterations, the total time for the algorithm is
O(kn??).

8.7 Improvement Heuristic

After we have built locomotive routes with one of the heuristics above, we
can try to improve the routes by a post-optimization procedure. We look at
every trip which is preceeded or followed by a passive transport. These trips
can possibly be inserted at a better position, an insertion of the other trips is
not reasonable as this does not improve the amount of passive transport. We
can always consider the insertion of the last trip in a route as this doesn’t
generate any new passive transport in the old route. Another idea is to
insert trips on locomotives with few trips on locomotives with more trips so
that the number of locomotives can be reduced.

Improvement Heuristic
input: trip order lists L;
output: trip order lists L;

Olbegin

02 list P:=[p1,...,pnl;

03 fori:=1tondo

04 p- := predecessor of pj;

05 ps := successor of pj;

06 set C := ();

07 forall insertion positions (pq,pg) in Li,..., Ly, do

08 integer c;j o g := c(py, Pi, D6, Par PB);
09 if ¢j o3 > 0 then C := CU{c¢jap};
10 endfor

11 list C" :=[¢j, 01,815 - -+ Cjeae 8] = sort(C);
12 list A :=[(j1,1,51),-- -, (Je, e, Be)];

13 repeat

14 integer (j,a, ) := first(A);
15 A = tail(A);

16 remove p; from old list;

17 Lj :=insert(Lj, pi, PasPp);
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18 boolean successful := false;
19 if constraints violated

20 then L; := remove(Lj,p;);
21 else successful := true;

22 endif

23 until successful or A = nil;

24 endfor

25end.

We look a each trip separately (line 3) and compute for every possible in-
sertion position the benefit from this insertion. Let p; denote the trip which
we want to insert somewhere else, p, its predecessor and ps its successor at
the current position. p, is the predecessor at the insertion position, pg the
successor. The benefit of the insertion is (observe that we look now at a
benefit and not a cost):

c(DysPirPssPasPg) = 02(E(pa), S(pg)) + 02(E(py), S(pi) + 02(E(pi), S(ps))
— 02((E(pa), S(pi) + 62(E(pi), S(pg))) — 02(E(p,), S(ps))

This definition can easily be adapted for the first and last positions in a list.

This benefit is computed for every potential insertion position in O(n + m)
time (line 7). All insertion positions with ¢ > 0 give a benefit. We sort them
in O((n+m)log(n+m)) time after decreasing benefit (line 11) and try one
insertion position after the other until no constraints are violated (repeat-
loop in line 13). The time for the constraint checks is O(m?nt). This is done
for O(n + m) insertion positions in the worst-case. For one iteration of the
for-loop in line 3, we get the time O((n + m)(log(n + m) + m?2nt)).

We repeat this for n trips, so that the total run time is O(n(n +m)(log(n +
m) +m?nt)) or O(n®).

If we iterate this algorithm as long as we can improve our solution (hill-
climbing), we get a local search procedure. We start from an initial solu-
tion which was constructed by a route building algorithm and improve it
until we reach a local optimum. Local search techniques have been success-
fully applied to traveling salesman and vehicle routing problems [RSLT77],
[ABBGS3], [PR95], [Sav85]. This approach seems also to be reasonable for
the locomotive assignment problem.
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8.8 Locomotive Types and Passive Transports

We can include different locomotive types into our heuristics if we assign
the trips only to locomotives with suitable types. This can be easily checked
in the three route building heuristics and the improvement heuristic. The
matching heuristic must be extended so that only trips with compatible
locomotive types I(p;) N I(pj) # 0 are connected by an edge (compare Def.
4). We can then do one matching step and build pairs of trips. If we want
to combine two trip pairs (p;,pj) and (pg,p;) into one block, we must check
if (I(p;) Nl(p;)) N (L(pk) NI(p1)) # 0 before we add an edge. A similar check
must be done for the following iterations.

We haven’t adressed the track allocation problem for the passive transports
yet. As soon as we generate passive transports in our route construction
procedure, we should add them to the track allocation problem as additional
constraints in order to get early failures if there are no tracks for passive
transports available. We can add passive transports immediately in the best
predecessor and nearest neighbour heuristic because all generated passive
transports are also in the final locomotive plan. In the insertion heuristic,
passive transports can be replaced by trips and we would formulate too hard
constraints if we would add the passive transport contraints immediately.
Thus, we can only add them after the locomotive plan is completed. This
is a disadvantage of the insertion heuristic.

After we have determined the locomotive plans and the trip order for every
locomotive, we must determine the departure times of the trips at a detailed
level. We will show in Chapter 9 how this can be done in the TUFF system.

8.9 Discussion

The examples suggest that we should choose the nearest neighbour or the
insertion strategy for the construction of locomotive routes. The run times
are similar. Experiments for the VRSPTW with similar heuristics in [Sol87]
suggest also that both heuristics can construct near-optimum solutions and
behave relatively robust.

When it comes to implementation, the nearest neighbour heuristic is difficult
to implement in Oz because the search procedure in Oz requires a definite
variable order on the current path in the search tree. In route construction,
these variables are trip departure times. In the nearest neighbour heuristic,
this order is not fixed as we postpone the addition of a trip if the constraints
gave a failure. In the insertion heuristic, the trips are ordered after their
departure times and we have a definite variable ordering. Thus, this heuristic
is better suited for an implementation in Oz.
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As we have mentioned before have local search techniques successfully been
applied to routing problems. Local search methods are difficult to implement
in constraint programming languages, because it is not possible to modify
FD-variables arbitrarily. This would be necessary in order to insert trips at
new positions. FD-variables can only be narrowed during search. Thus, the
improvement heuristic is difficult to implement in Oz.

The probably easiest way to implement the matching heuristic and the
matching algorithm on graphs is to use a conventional, imperative pro-
gramming language. The output of such a program could be used as a
preprocessed input for the TUFF system.



Chapter 9

Implementation

We describe in this chapter the implementation part of this work. We begin
with a short description of the implementation of the TUFF system. Then
we explain the new parts that have been added. The exclusion marker model
from Chapter 6 has been implemented in Oz and the insertion heuristic was
chosen from the heuristics in Chapter 8 as a search heuristic for the con-
struction of locomotive routes. We conclude the chapter with a description
of the diff2-propagator implementation in C++.

9.1 The TUFF system

The TUFF system was already presented briefly in Section 1.3. We give
here a short overview over its implementation.

The input to a planning problem consists of a network file and a train file.
The network file contains all the network data from Def. 1 in Section 3.1.
For all locations v € Vi, a maximum number of trains of waiting trains o(v)
and location specific waiting times are defined. All tracks are given with
their length, their maximum velocity and the attribute single or double
track. The network file contains also the definition of the routes between
the location pairs.

The train file contains the trips for a scheduling problem. Every trip p; has
the following attributes:

e Start location S(p;) and end location E(p;).
e Maximum speed v(p;).

e Departure time window [7,in (Pi), Tmaz (Pi)]-

92
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One can additionally specify waiting times at intermediate locations in a
route ([Wpin (Pi, V), Wmaz (Pi,v)] in Def. 2), but we don’t use this feature in
our experiments. The additional input for a planning problem is:

e Time window for the whole plan [spin, Smaz]

e Location slack factor u

We have explained these parameters in Def. 2. The TUFF system computes
with these inputs a timetable for all trains in the train file. The timetable
can be visualized by train-sequence diagrams (Fig. 1.3 in Chapter 1).

The conditions for a timetable from Def. 3 are implemented as Oz finite
domain constraints. The most important constraints are (Def. 3):

1. precedence constraints for the traversal of the tracks in a trip.
2. track constraints

3. location constraints

The precedence constraints are part of the trip constraints in Def. 3. The
precedence and track constraints are implemented by constraints for arith-
metic relations and correspond exactly to the formulation in Def. 3. The lo-
cation constraints are implemented with the cumulative-constraint [HMSW98],
a special constraint which has been developed for scheduling applications.

It states that for all time instances, the resource usage does not exceed the
available capacity. In our problem, the resources are locations and these
have a maximum capacity of waiting trains. The other constraints of Def. 3,
e.g. the time window [s,,in, Smaz] for all departure times are represented by
Oz FD-variables with corresponding domains.

The system uses a simple search heuristic for the determination of the
timetable:

{FD.distribute generic(order:nbSusps value:splitMin) Deps}

Deps is the vector of all task departure times, i.e. track traversals. These
variables are ordered after their number of suspensions, i.e. the number
of constraints they take part in. Variables which are highly constrained
are narrowed first during search in order to get early failures. In every
choice point of the search tree, the search strategy branches into the two
alternatives z < m and z > m, where m denotes the middle value of the
domain of . The alternative where x is narrowed to the lower half of its
domain is tried first. This leads to minimum departure times for the tasks.
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If the planning problem has no solution, the constraint solving mechanism
does not give us hints about the conflicting trips. The output of the system
is just “no solution”. The user must identify the conflicting trips manually.
This is a considerable drawback of the system.

For the locomotive planning problem, the following input parameters have
been added:

e Locomotives M = {ly,...,l,,} with their start positions X([;)

It is possible to specify locomotive types in the train files but these are not
used in our implementation (compare Section 9.3). The locomotive plans
can be visualized in Gantt diagrams (see Chapter 10 for examples).

9.2 Exclusion Marker Model

The Oz code for the exclusion marker model can be found in Appendix B.1.
We will point to the most important parts.

We post one diff2-constraint for all trip rectangles (line 29). Then, we go
through all turn locations in our problem (line 36). For one turn location,
we go through all trips (line 44) and add the markers which belong to the
corresponding location diff2-constraint. We distinguish between the start
location (line 49), the end location (line 64) and any other location (line 83).
Depending on the location, we add start, end, after and before markers.
After that, we add the markers for the start positions of the locomotives
(line 106) if the current location is not a start location (line 110). We post
the location diff2-constraint in line 126.

9.3 Insertion Heuristic

For the construction of suitable locomotive routes, the insertion heuristic
from Chapter 8 was implemented as an Oz search mechanism, a so-called
distribution. The code for this distribution can be found in Appendix B.2.
The distribution mechanism in Oz can be specified by the following proce-
dure [HMSW98]:

{FD.distribute generic(order: filter: value:)}
The feature order is a function which determines the variable order during

search. We order the trips after their latest departure time (lines 9-11).
Observe that the variable order is recomputed in every choice point, not
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just once in the beginning. The latest departure times of the trips can
change during search.

filter is a boolean function which defines the subset of variables which shall
be distributed. We choose only variables where the resource (locomotive)
hasn’t been determined yet (domain size greater one, line 19). These are
the unrouted trips.

value is the main procedure which determines the variable value alternatives
in the choice point. We compute first the insertion cost for all insertion
positions and then, we try them sequentially (line 143). The procedure
FindPos computes the insertion cost for all insertion positions (line 27).
The cost function from Section 8.4 was implemented, i.e. the insertion cost
is the additional passive transport plus a penalty A if a new locomotive is
used.

We have tried to include the additional waiting time of the locomotive that
occurs when the new trip is inserted into the cost function. It turned out
that the weight for this cost factor must be much larger than the weight for
the additional passive transport in order to give an effect on waiting times.
The cost factor passive transports is more important than the waiting times
so that we returned to the old cost function.

The insertion positions are sorted after increasing insertion cost (line 67).
The procedure TryPos (line 73) inserts the current trip sequentially at these
insertion positions until an insertion is successful. First, we assign the trip
to its locomotive (line 80). We insert trip p; by posting constraints on its
departure time. p; denotes the predecessor trip, p, the successor (compare
Def. 4):

s(pi) + d(p;) + d(pi,pj) + © < s(p;)
s(pj) +d(p;) + d(pj,pr) + O < s(p)

These constraints are posted in lines 86 and 98. The turn time © does
not occur in the code because it is included as a last waiting time into the
trip durations d(p;) respectively d(p;). If there is no predecessor trip, the
locomotive start location must be taken into account (line 90).

Observe that the trip durations d(p;) and d(p;) are FD-variables and are not
determined during search, because they include waiting times at locations
which are only known for a completely fixed timetable. The best we can do
is to approximate these durations by their current upper bounds (the upper
bounds of the corresponding FD-variables) so that we can be sure that the
following trips do not start too early. As the trip durations vary only within
a few percent, this is only a small mistake. But we loose of course solutions
by this approximation.
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By posting constraints on the departure time of the inserted trip, we do
actually work that the exclusion marker model could do. The gaps for
the passive transports could also be obtained by propagation in the diff2-
constraint, but at a much higher cost. Thus, we post these constraints during
search as additional constraints in order to reduce the variable domains early.

If the insertion was successful, we continue with the remaining unrouted
trips (line 124). Otherwise, we try the next best insertion position (line
129). If all insertions have failed, we discard the trip and this is reported
to the user (line 132). Finally, we determine the timetable by the search
procedure from Section 9.1 (line 150).

If all trips could be inserted, we have now determined the complete timetable.
The locomotive plan can be visualized as a Gantt diagram and the timetable
can be inspected through train sequence diagrams.

If some trips where discarded because it was not possible to insert them,
we must determine the timetable in a second run. As the track allocation
constraints are built up for all trains which are contained in the train file,
the not inserted trips are still represented as constraints. This means that
we can’t compute a solution in only one run. After the first run, the user
must remove the trips which could not be inserted from the train file. The
schedule can then be determined in a second run.

We have not implemented a differentiation between locomotive types, all
trips can be handled by any locomotive. It shouldn’t be difficult to extend
the system in this way. As we have mentioned in Section 6.1, the initial
domain for the FD-variable which represents the resource of a trip must be
chosen appropriately. The search heuristic could be extended in a way that
takes into account how specific the locomotive type requirement of certain
trips is. Trips with very specific requirements could be inserted first in order
to avoid later failures.

More important is the fact that we do not check the track constraints for
the passive transports. We can’t be sure that the passive transports can
be performed, i.e. if the necessary tracks are available. We solve the track
allocation problem only for the normal transports.

There are different alternatives to solve this problem. One can add ad-
ditional constraints for the track usage of the passive transports after the
locomotive plan has been determined. New FD-variables for the departure
and waiting times of these passive transports must be introduced. This leads
to solutions if the track capacity is not at its limit, but it doesn’t help us if
we can only detect that the passive transports are not possible.

A better approach is possibly to take the generated locomotive plan as an
input to a second planning step. We fix the trip order for every locomotive
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and add the generated passive transports to our trip set. For this extended
trip set, we try to solve the track allocation problem with the old TUFF
system. By fixing only the trip order for a locomotive, we give the trips their
largest possible flexibility within their time windows. If the track allocation
problem has no solution, we have do identify the conflicting trips and to
change the locomotive plan.

9.4 Diff2 Propagator

The diff2-propagation algorithm from Chapter 7 was implemented as an
Oz propagator according to the conventions of the Oz Constraint Propa-
gator Interface (CPI) [MW97]. This interface allows the extension of the
Oz language by additional constraint propagators which are implemented in
C++. The C++-Code for the two main classes Diff2Prop and DomainSet
of the propagator can be found in Appendix B.3.

OZ_Propagator

Diff2Prop

Figure 9.1: The most important classes of the diff2-propagator

Fig. 9.1 shows the most important C++-classes of the diff2- implemen-
tation. Arrows indicate inheritance relations, the other relations are has-a
relations (class A has B as a member if the dot lies on As side).

Diff2Prop is the main propagator class and inherits from 0Z_Propagator,
a CPI class. It contains the method Diff2Prop: :propagate () which starts
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the AC3 propagation and the heuristic for stronger consistency from Sec-
tion 7.7. The method Diff2Prop: :localPropagation() contains the AC3—
algorithm. In the first invocation of the propagator, the propagation is done
for all overlapping rectangle pairs until the AC3-algorithm stops. In later
invocations during search are only subsets of the rectangles considered, de-
pending on which rectangles were changed. Diff2Prop: :globalPropagation()
contains the heuristic for rectangle area sums.

The part domains of each rectangle are stored in an instance of the class
DomainSet. It contains a list of rectangular domains which are instances
of the class Domain. Each Domain contains the domain itself, the corre-
sponding kernel and an enumeration type indicating the type of the ker-
nel. The class DomainSet contains also the non-overlappable area O and
the non-coverable area C of a rectangle. They are updated by the method
DomainSet: :updateForbiddenAreas when the part domains have changed.
This method contains all the algorithms from Section 7.4 for the computa-
tion of @ and C. The kernel computation for a rectangular domain from
Def. 18 in Chapter 7 is done in the method DomainSet: :getKernel.

For the domains we need two geometric base classes, the classes Rectangle
and Interval. A rectangle is stored as a 4-tuple (rectangle sides). The class
contains methods for inclusion, intersection, equality tests between rectan-
gles and for the projections on the axes. Interval is the onedimensional
analog of this class.

We have not implemented geometric data structures for the storage of the
areas in which the rectangles can move, the domain sets. If we store for
every domain set a bounding box in a geometric data structure, this would
speed up the search after overlapping rectangle domains for a changed rect-
angle domain. We have found two data structures in the literature for the
storage of rectangle sets, MX-CIF quadtrees [Sam89] and 4-D-trees [Ros85].
Both are static tree structures and make the insertion and deletion of rect-
angles difficult, the trees can become unbalanced [HNP197]. Our rectangle
domains must be updated constantly.

Another alternative is the grid file [OW93]. Grid files for points partition
the plane into grid cells and store the points of one grid cell in a list. The
search effort for a region query can be reduced by a constant factor with this
technique, because only the lists of the cells which lie within the region must
be scanned. Insertion and deletions of points can be easily done, although
some effort must be spent on the splitting and merging of grid cells in order
to keep the number of grid points per cell in a certain range. If we want to
store rectangles which heavily overlap, it is difficult to find a mesh size where
the rectangles can be separated into different grid cells, they will all lie on
grid cell boundaries. We can extend the 2D gridfile to a 4D gridfile, because
a rectangle can be represented by a 4-tuple (I, r,b,t) for the rectangle sides.
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The memory requirement for a 4D gridfile can be enormous. If we partition
our space into m intervals in each dimension, we get m* grid cells. For this
reason, we haven’t implemented this data structure either.



Chapter 10

Experiments

This chapter contains experiments with problem sets on the Swedish railway
network. We begin with performance measurements with and without the
exclusion marker model. After that, we look at out first example from
Chapter 3 again. We conclude the chapter with a larger example.

10.1 Performance

All performance measurements are based on two differents train sets A and
B where we have varied different parameters. The locomotive start locations
and train files can be found in Appendix A.1 and A.2. Whenever we use
fewer locomotives or trains in our experiments, we use the corresponding
prefix of the locomotive and train set. Both examples where obtained by
distributing manually the trips and locomotive start positions over the net-
work. Train set A contains trains between 14 locations, the corresponding
part of the network is shown in Fig. 10.1. Thin lines indicate single tracks
and thick lines represent double tracks. The abbreviations for the city names
are explained in Table 10.1.

Ch Charlottenberg No | Norrkoping
Fa Falkoping Sk Skovde
Go Goteborg St | Stockholm
Ha Hallsberg Tr | Trollhattan
Ka | Katrineholm, Karlstad | Up Uppsala
Mj Mjolby Va | Vasteras
Na Nassjo

Table 10.1: City names for Train Set A

100
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Figure 10.1: Network for Train Set A

Train set B contains long-distance trains between 11 locations, the network
is shown in Fig. 10.2. A link between two cities is shown as a single track
link if the majority of the tracks on this link are single tracks, otherwise it
is a double track link. Table 10.2 contains the corresponding city names.

Go | Goteborg Ma Malmo
Ha | Hallsberg Sk Skovde
He | Helsingborg | St | Stockholm
Ka Karlstad Um Umea
Lu | Lund, Lulea | Os | Ostersund

Table 10.2: City names for Train Set B

All performance measurements where done on a 248 MHz Sun Ultra En-
terprise with 1 GB memory. We used Oz 2.0.4 and the C++-Compiler gcc
2.7.2.3.

The run times were measured with the tool Oz Panel. It provides a measure-
ment of the run time, divided into different components like propagation,
garbage collection of the Oz system etc. The sum of all these components
was used as the run time. The memory consumption of the complete TUFF
system was measured with the Unix program top.
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@@ Lund

Figure 10.2: Network for Train Set B

10.1.1 Performance of the Exclusion Marker Model

The performance of the exclusion marker model including the diff2-constraint
was tested on a problem including the first 50 trains from train set A. The
departure time specifications from the train file in Appendix A.1 where ig-
nored so that all trains have as departure time window the total schedule
period.

The train set was stepwise reduced by 10 trains for the performance mea-
surements. Table 10.3 shows the problem parameters. For the penalty pa-
rameter \ (see Section 8.4), we use the mean duration of a passive transport
0> which is estimated by the mean duration of the trips in the problem !.
This parameter setting reduces the number of used locomotives quite well.
We have chosen a location slack factor of 4 = 0.05, i.e. the slack of a trip
is at most 5% of the whole trip duration. This is a reasonable upper bound
for the slack in practical problems.

!The trip durations where calculated from the distance in the network and the passive
transport velocity.
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number of locations 14

total schedule time (hours) 24

train velocity (km/h) 120

velocity passive transports (km/h) 120
A (min) 0y=110

location slack factor p 0.05

departure time windows (hours) 24

turn time © (mins) 30

Table 10.3: Parameters for performance measurement

The results are shown in Table 10.4. The run times are the average of three
runs.

number of trips n 10 | 20 | 30 40 50
number of locomotives m 3 6 9 12 15
number of used locomotives | 3 6 6 10 12
time in s 1.9 | 7.7 | 21.5 | 34.7 | 69.8

memory in M B 30 | 47 | 150 | 255 | 352

Table 10.4: Results

The number of locomotives m was adapted to the number of trips n so
that the ratio m/n is constant. The number of actually used locomotives is
indicated in the third line.

As can be seen in Fig. 10.3, the run times seem to have an exponential
behaviour. The run time for 60 trains could not be determined due to
the high memory consumption. The high memory consumption is another
problem, thus we can only handle small problems.

The run times can be explained by the inefficiency of the diff2-implementation.
Tests have shown that the number of inspected arcs in the AC3-algorithm
grows enormously with the number of rectangles in the constraint. As we
have mentioned in Section 7.5, the number of arc inspections is related to
the maximum number d of rectangle positions in the worst-case. d can be
quite large in the marker model, its size is d = kmt where k is the parameter

in the marker model from Section 6.1, m denotes the number of locomotives
and t is the size of the whole schedule period. ¢ can make d quite large.

The memory consumption can be explained by the storage requirement for
the part domains of the rectangles 2. As the number of rectangles in the con-

%in addition to the memory requirement for the TUFF system, this will be explained
in Section 10.1.2.
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Figure 10.3: Performance with Marker Model

straint grows, we have to store more rectangle domains and these domains
fall into more part domains during the propagation algorithm.

A remedy could be to limit the number of inspected arcs in the AC3-
algorithm and to perform less propagation than is actually possible. The
memory consumption could be limited by limiting the number of part do-
mains for a rectangle domain. Thus, we represent a rectangle domain not
at the most detailed level and loose some propagation. We should also try
to merge rectangle part domains in order to reduce the number of part do-
mains. Another idea is to simplify the computation of a common kernel for
several part domains in Section 7.4. It should be investigated how much
propagation is lost if the common kernel is based on the bounding box of
the part domains. Such heuristics are necessary for this NP-hard problem.

Due to the inefficiency of the diff2-implementation, we won’t use the
diff2-constraint and the marker model in our further experiments. We
have explained in Section 6.3 that the marker model can provide helpful
propagation with an efficient diff2-implementation. The implementation
of the insertion heuristic from Section 9.3 works also without the exclusion
marker model.

If we go back to Table 10.4, we can see that the ratio of the number of used
to the number of available locomotives is approximately constant. This is
an expected behaviour and shows that the penalty parameter A reduces the
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number of used locomotives.

10.1.2 Performance without the Marker Model

The insertion heuristic was tested on the train sets A and B. The examples
1-3 are based on train set A:

e Example 1: train set A with large departure time windows
e Example 2: train set A with more restriced departure time windows

e Example 3: example 2 with a reduced locomotive number

By large time windows we mean that the windows size is equal to the whole
schedule period. The time windows in Appendix A.1 for example 2 where
generated by the following procedure. 2 The time window center ¢ is uni-
formly distributed over the whole schedule period. The half window length
w is normal distributed with a mean of 6 hours and a standard deviation of 2
hours. The time windows are then given by [max{c —w, 0}, min{c+w, 24}].
Due to an error in the generation of the window sizes, the time windows
became a bit large but example 2 shows the qualitative effect of departure
time windows.

The parameter settings for the other parameters are the same as in Table
10.3. The results for the examples 1-3 can be found in the Tables 10.5, 10.6
and 10.7. *

n 10 | 20 | 30 | 40 | 50 | 60 | 70 80 90 100

m 3 6 9 |12 ]| 15 | 18 | 21 24 27 30
used locomotives | 3 6 6 10 | 12 15 18 1 >19>19|>19
time in s 0310 (12]23]| 34| 55| 78] 10.0 | 22.3 | 45.0
memory in MB | — - - — | 154 | 154 | 183 | 183 | 205 | 260

Table 10.5: Results for Example 1

In the examples 1 and 2, the locomotive number is larger than the actually
needed number of locomotives. We can determine the locomotive plan in
one run. In example 3 (Table 10.7), we have not enough locomotives and
some trips must be discarded. As explained in Section 9.3, we determine in a

3The random numbers where generated with MATLAB.

“The locomotive plan window allows a maximum of 19 locomotives, larger locomotive
numbers are indicated by > 19. For some small problems, the memory measurement of
the top program was not reliable.
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n 10 | 20 | 30 | 40 | 50 | 60 | 70 80 90 100

m 5 10 | 15|20 | 25 | 30 | 35 40 45 50
used locomotives | 3 5 8 10 | 12 | 15 17 17 | >19 | >19
time in s 03109 |1.7]35]|6.6|8.0]|17.8|21.4| 30.1 | 47.0
memory in MB | — - - - | 38|70 | 70 | 107 | 172 | 209

Table 10.6: Results for Example 2

n 10 | 20 | 30 | 40 50 60 70 80 90 100
m 1 3 4 6 7 9 10 12 13 15
used locomotives | 1 3 4 6 7 9 10 12 13 15
phase I (in s) 032365123 26.7|48.1 | 75.9 | 88.6 | 166.2 | 203.2
n' 5 | 15| 23 | 34 39 50 56 72 75 86
phase II (in s) 0308 (23| 45 | 59 |14.5|16.5 | 39.9 | 44.5 | 54.3

Table 10.7: Results for Example 3

first run the trips that can be scheduled (phase I). We get a new trip number
n' and determine for these remaining trips the locomotive plan (phase IT).

Fig. 10.4 shows the run times for example 1, 2 and phase I of example 3.
We can see that the run times of example 2 are higher than those of example
1 due to the more constrained time windows. The insertion heuristic must
search longer for a feasible insertion position and also the track allocation
problem becomes more difficult. The curves are not smooth and this indi-
cates that the trip number is not the only parameter which determines the
difficulty of a problem.

The difficulty of the track allocation problem depends also on other input
parameters [KCOT97]. Especially the distribution of the trips over the net-
work is an important factor. If many trips traverse the same track, it is
harder to find a schedule without conflicts.

Example 3 shows in phase I significantly higher run times than the other
two examples. The run times show an approximately cubic behaviour. The
insertion heuristic must try all insertion positions until it can decide that a
trip cannot be scheduled. The run times in phase II are in the same range
as those in examples 1 and 2, because we have enough locomotives in this
case.

For the examples 2 and 3, we have also measured the run time when the
track allocation constraints of the TUFF system are switched off >. We

5i.e. the track constraints, the precedence constraints and the location constraints as

well as the final search procedure for the determination of the departure times.
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Figure 10.4: Performance for examples 1-3

don’t get a solution in this case, but this should give us an estimation how
the run time is distributed over the insertion heuristic part and the other
constraints®. The results are shown in the Tables 10.8 and 10.9.

n 10 | 20 | 30 | 40 | 50 | 60 70 80 90 100
time in s 031091735 |66 |80 |17.8|21.4 | 30.1 | 47.0
without constraints | 0.2 | 0.4 | 0.7 | 0.7 | 1.8 | 3.2 | 3.4 6.4 5.3 9.2

Table 10.8: Results for Example 2 without TUFF constraints

n 10 | 20 | 30 | 40 50 60 70 80 90 100

phase I (in s) 0312365123 |26.7 | 48.1 | 75.9 | 88.6 | 166.2 | 203.2

without constraints | 0.2 | 0.4 | 2.1 | 1.5 | 3.3 | 56 | 79 | 11.1 | 10.8 | 20.5

Table 10.9: Results for Example 3 without TUFF constraints

We can see in both cases that the overhead of the TUFF constraints dom-
inates the total run time. This seems reasonable because the number of
tracks is considerable larger than the number of trips in a problem, so that

6We can’t isolate the insertion heuristic in another way, there are no profiling tools in
Oz available.
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the track allocation constraints consume the largest part of the run time. It
can also be seen that the insertion heuristic has a higher share of the run
time in example 3, because it must try all insertion positions for some trips.

The interpretation of the run times is difficult, because the run time be-
haviour of constraint systems is hard to analyze. We don’t know the con-
trol flow in the program because the constraints interact dynamically. The
measurements without TUFF constraints indicate that the run time is dom-
inated by the track allocation constraints. This run time behaviour is not
explained in [KCO97]. We can see that the worst-case run time of O(n®)
from Section 8.4 is not achieved in our examples and that the most difficult
example has a run time of approximately O(n?).

We should also explain the high memory consumption of the TUFF system.
This is a known deficiency of the TUFF system [KCO197]. It comes from
the fact that Oz creates in every choice point a copy of all FD-variables
in the system. This is necessary for backtracking because the old variable
values must be stored. The number of FD-variables in the TUFF system
is quite large, all departure times for the track traversals and the waiting
times at locations are represented by FD-variables. Due to the copying, the
memory consumption grows linearly with the depth of the search tree.

This problem can be limited in Oz by recomputation [HMSW98]. This means
that not in every choice point a copy of the variables is created, only in every
n-th. If backtracking occurs, the old variable values must be recomputed
from the nearest copy in the search tree. Thus, we trade space for time and
get higher run times. We have used a recomputation distance of n = 15
for all examples in this Chapter. A bigger value for n doesn’t reduce the
memory consumption further.

The examples 4 and 5 are based on the train set B. Example 4 is an example
with large departure time windows. The parameter settings are given in
Table 10.10. In example 5 the number of locomotives was reduced so that
some trips remain unscheduled.

number of locations 11

total schedule time (hours) 48
train velocity (km/h) 120
velocity passive transports 120

A (min) 02=350

location slack factor p 0.05
departure time windows (hours) 48
turn time © (mins) 30

Table 10.10: Parameters for Example 4 and 5
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n 10 | 20 | 30 | 40 50

m 3 6 9 12 15

used locomotives 3 5 7 9 11
time in s 1.1 28|89 | 18.6 | 36.5
without constraints (ins) | 0.3 | 0.6 | 0.7 | 1.8 | 3.9
memory in M B 18119 {62 70 | 129
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Table 10.11: Results for Example 4

n 10 | 20 | 30 40 50
m 2 2 4 5 7
used locomotives | 2 2 4 ) 7
phase I (in s) 0.4]83|24.2|70.5 | 155.7
n' 4 9 19 22 29
phase IT (ins) |05 | 12| 3.2 | 74 | 16.9

Table 10.12: Results for Example 5
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Example 4 shows considerable higher run times than the examples 1 and 2 for
the same number of trips. This can be explained by the higher difficulty of
this example. One measure for the difficulty of the track allocation problem
is the maximum track load, i.e. the maximum number of trains that traverse
a certain track. For n = 50 trips, example 1 and 2 have a maximum track
load of 11 trains whereas example 3 has a maximum track load of 22 trains
(i.e. nearly the half of the 50 trains). This leads to higher run times.

The increase of the run times in example 5 comes again from the reduced
locomotive number. They also seem to have a cubic behaviour, although the
problems are not large enough in order to be sure. We show the locomotive
plan for n = 30 trips in Fig. 10.6. Due to the long schedule period, the
locomotive plan was split into two windows. In phase I, 11 trips are discarded
and 19 trips remain. They are shown in Fig. 10.6. The locomotive start
locations for this plan are given in Table 10.13. A passive transport has
an approximately 20% shorter duration than a corresponding normal trip,
because the trip durations include minimum waiting times at the locations,
the passive transport durations do not.

ll Lulea l3 Umea
[y | Stockholm | Iy | Goteborg

Table 10.13: Locomotive start locations for Fig. 10.6

10.2 Small Example

After the performance measurements, we will now look at a smaller example
in order to show how the TUFF system solves the track allocation problem.
We can find the net from our first example from Section 3.3 in the Lake
Viénern area (Fig. 10.7). The only difference is that this net contains only
one double track path, the net in Section 3.3 contained two. The city names
and the correspondent letters from Section 3.3 are given in Table 10.14. The

A | Ch | Charlottenberg
B | La Laxa

C | Ki Kil

D | Me Mellerud

E | Ko Kornsjo

F | Go Goteborg

Table 10.14: City names
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Figure 10.6: Locomotive plan for n’ = 19 trips
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Figure 10.7: 6 cities in West Sweden

train file can be found in Appendix A.3. The departure time windows from
the example in Section 3.3 were shifted by eight hours but have still their
relative positions. The problem parameters are given in Table 10.15.

number of locations 6

total schedule time (hours) 24
train velocity (km/h) 120
velocity passive transports (km/h) 120

A (min) 0o=124

location slack factor p 0.05
departure time windows (hours) 24
turn time © (mins) 30

Table 10.15: Parameters for the small example

The start locations of the locomotives are given in Table 10.16 7. The routes
are the same as in Section 3.3.

We look at the locomotive plan in Fig. 10.8. The minimum number of
locomotives for this problem is obviously three, because three trips start
in the earliest departure time interval. Our heuristic finds a solution with
three locomotives and a passive transport between the trips ps and pg. The
other gaps come from the fact that the trips p2 and ps must wait until their
departure time window is reached. This solution is better than the ones
which were presented in Section 3.3.

We show the timetable in three diagrams. The paths G6-Me-Ki-Ch, Go-La
and La—Ki—Me—Ko cover the whole net. We begin with G6—Ch in Fig. 10.9.

"The start locations of I4 and [5 where exchanged compared to Section 3.3.
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[1 | Charlottenberg
lo | Charlottenberg
I3 Goteborg

ly Goteborg

ls Kil

Table 10.16: Start locations of the locomotives for the small example

TUFF: Lokomlopp

Figure 10.8: Locomotive plan for our small example

We can see the headway distance between the trips pp and p;. This is the
safety distance from Def. 3 that two trains must keep which run in the same
direction. The trip numbers are also indicated in this figure, trip po starts
before trip p;.

Fig. 10.10 contains only one train for the path Go-La. Only trip ps uses
this path. Fig. 10.11 shows the third path La—Ko, the trains between Kil
and Mellerud are identical to those in Fig. 10.9.

In order to get a collision between trains of opposite directions, we decrease
the departure time of trip p4 and set its window to [0,2]. Fig. 10.12 shows
the new solution with four locomotives and one passive transport between
the trips p2 and pg. An additional locomotive is needed because we have
now four trips which start in the earliest departure time interval.

If we look now at the changed timetable for the path Goteborg—Charlottenberg
in Fig. 10.13, we can see that the trips pg, p1 and ps must pass a certain
track between Mellerud and Kil sequentially. The trip numbers where omit-
ted in this figure because they were not readable. Trip pg starts before trip
p1 in Charlottenberg and trip py starts in Goteborg. The conflict is solved
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TUFF: Delplan Gitehorg- Charottenbery
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Figure 10.9: Timetable for Géteborg—Charlottenberg
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Figure 10.10: Timetable for Géteborg—Laxa

by the following order for the track traversals: pg, ps and then p;.

10.3 Larger Example

We will now look at some locomotive plans for a larger example. They are
based on train set A from Section 10.1 with the network from Fig. 10.1.

The train file can be found in Appendix A.4. The trains have velocities
between 80 and 120 km/h. The routes are given in Appendix A.1.2. The
start locations of the locomotives are given in Table 10.17. We use the
locomotives [ to I1o first and add the other locomotives later. The problem
parameters are given in Table 10.18.

We will look at the effect of the penalty parameter A in the following two
locomotive plans. In Fig. 10.14, we have chosen A = %(5_2 = 57. The time
scale is not visible in this screen shot, the vertical lines in Fig. 10.14 have
a distance of three hours. Ten of the twelve available locomotives are used,
this seems not to be the minimum number because the locomotive Iy has
only one trip. The heuristic finds good trip connections quite well, observe
that the small gaps come from the turn time. The wider gaps come from
passive transports, Fig. 10.14 contains 18 passive transports. Most of them
have short durations (compared with the trip durations).
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TUFF: Delplan Laxa- Komsji

Kellerud

Figure 10.11: Timetable for Laxd—Kornsjo

TUFF: Lokomlopp

Figure 10.12: Locomotive plan with 4 locomotives
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Figure 10.13: New timetable for Goteborg—Charlottenberg

Iy Uppsala

lo Karlstad

I3 Hallsberg

l4 Goteborg

l5 Stockholm

lg | Charlottenberg
Iy Nassjo

lg Hallsberg

lg Norrkoping
Lo Stockholm

l12
l13
l14
l15
l16
li7
l1s
l1g
I20

Goteborg
Uppsala
Skovde
Mjolby
Visteras
Uppsala
Karlstad
Hallsberg
Goteborg
Stockholm

Table 10.17: Locomotive start locations for the larger example

117
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number of locations 14

total schedule time (hours) 18
velocity passive transports (km/h) | 120
location slack factor p 0.05
departure time windows (hours) 18
0y (mins) 114

turn time © (mins) 30

Table 10.18: Parameters for first example

TUFF: Lokomlopp

9 rck

10 rck

d2

Figure 10.14: Locomotive plan for A = %
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TUFF: Lokomlopp

Figure 10.15: Locomotive plan for A = 5 = 113
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Figure 10.16: Timetable for A = d, direction Stockholm-Géteborg

In Fig. 10.15, we have increased A to A = d,. We need now only nine
locomotives. This shows that A decreases the number of used locomotives.
A further increase of A didn’t lead to a smaller locomotive number in this
example. We save also two passive transports in this example (16 passive
transports), so that we should prefer this parameter setting for A.

In Fig. 10.16, the timetable for the path St-Ka-Ha-Sk-Fa-Gé in Fig. 10.1 is
shown. This is a path with double tracks, so that only trains of one direction
are shown, because they can’t be influenced by trains of the opposite direc-
tion. We can see the safety areas of the trains and that the track allocation
conditions are fulfilled. For example, the two trains in the bottom-right
corner of Fig. 10.16 correspond to the trips p1; and ps3o in Fig. 10.15.

We add now time windows to this example. The modified train file can be
found in Appendix A.5. The trains are ordered after their latest departure
time in order to show the order in which the trips are inserted. This is
actually not the exact insertion order, because the trips are sorted dynam-
ically in every choice point (compare the remark in Section 9.3). The time
windows have an average size of 4.7 hours and where set manually. The
problem parameters are the same as in Table 10.18 and we use now all 20



CHAPTER 10. EXPERIMENTS 121

locomotives from Table 10.17.

We will look again at locomotive plans for different A—values. Fig. 10.17
shows the plan for A = 09. 15 of the 20 available locomotives are used. Iy
and [14 have only a single trip so that it should be possible to reduce the
locomotive number further. The number of passive transports is 12. This
is not counterintuitive as we have now more locomotives than in the case
without time windows. Thus, we can save passive transports. We can also
see that considerable waiting times for the locomotives can occur. Take for
example the trips ps and psg on the locomotive /1;. The locomotive must
wait several hours between these trips at the same location. Our heuristic
can’t detect this cost factor because it minimizes only the locomotive number
and the amount of passive transports.

In Fig. 10.18, X\ was set to A\ = 2d, and this saved one locomotive (14
locomotives). A further increase of A didn’t lead to a smaller locomotive
number. We get 19 passive transports.

The penalty parameter mechanism is a weakness in this heuristic. The
examples suggest that values in the neighbourhood of 0, lead to a minimum
number of locomotives. However, this parameter must be adjusted manually
from problem to problem in order to find the minimum locomotive number.
As we have explained in Section 4.4, we can compute a lower bound for
the locomotive number by considering the kernel time intervals of the trips.
This is only a lower bound because the start locations of the locomotives
are not taken into account. This estimation can give us a hint how far we
are from the optimum locomotive number.

The heuristic is well-suited for the minimization of the passive transports, as
can be seen in the examples. The generated passive transports are usually
short compared to the trip durations. As we have mentioned before, the
heuristic doesn’t consider the waiting times of the locomotives at all. This
is an additional weakness.

The improvement heuristic from Section 8.7 could probably be used to im-
prove the plans further, especially the amount of passive transport. Also
the locomotive number could be reduced in some cases by inserting lonely
trips on locomotives with more trips. Such post-optimization procedures
have been successfully applied to other vehicle routing problems [RSL77],
[ABBGS3], [PR95], [Sav85].
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Figure 10.17: Locomotive plan for A = &y
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Conclusions

The experiments show that we can solve problems of reasonable size with
our approach. The run times are moderate but the memory consumption is
a major problem if we want to handle bigger problems. Regarding the cost
function, the heuristic considers the number of locomotives and the amount
of passive transports, but not the waiting times. We do not obtain an
optimal solution but the examples have shown that the generated solutions
have a reasonable quality. Observe that we handle only the case where each
transport requires one locomotive, we have mentioned in Section 1.4 that
freight transports can also require several locomotives. The track allocation
problem is solved for the normal transports, but the track allocation for the
passive transports must be done in a second step.

The use of a specialized heuristic for route building was necessary because
we have no powerful constraint formulation for the routing problem. The
exclusion marker model ensures only feasible solutions and doesn’t help for
optimization, so that the search strategy becomes more important. Thus, we
can only use the track allocation constraints as side constraints in our route
building heuristic. We have not achieved the goal of constraint program-
ming, a reduction of the search space by constraint propagation. Instead,
we use a heuristic that generates a near-optimum solution.

An alternative to the exclusion marker model is the use of another high-
level global constraint, the cycle-constraint in the CHIP system [BC94].
This constraint finds minimum-cost cycles in directed graphs. It can be
used in transport problems if one uses a graph model which is similar to the
models which are used in network flow approaches [Sim95b], [Sim96]. This
constraint provides more propagation than the exclusion marker model. It
has the disadvantage that dummy nodes for the passive transports must be
introduced. The number of passive transports is not known beforehand and
the number of potential passive transports can be quite large.
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The extension of constraint programming languages by high-level constraints
like the diffn and the cycle-constraint seems promising because their ab-
straction level is adapted to the problem itself. With these high-level con-
straints, passive transportation problems have been solved successfully with
the CHIP system [SBCK95], [BKC94].

The goal to develop an efficient diff2-implementation for the exclusion
marker model was too ambitious for this work. It would have required
a much greater effort without contributing directly to the locomotive as-
signment problem. Although the diff2-implementation does not scale, the
algorithm contains solution ideas that should be pursued further. Together
with heuristics for area reasoning, an efficient implementation could be de-
veloped.

Regarding the behaviour of the TUFF system in case of over-constrained
problems, an explanation component that shows the conflicting trips should
be added. The output “no solution” is not satisfactory. Another idea could
be to treat some constraints as soft, e.g. certain departure time windows in
order to find any solution at all. “Soft” means that these constraints may be
violated. Additionally, the time windows in freight transport are not that
strict and one could introduce soft instead of hard time windows. We could
add a delay cost if a transport starts after its time window. In this case, we
could also delay trains until a locomotive becomes available.

In order to limit the problem size in practical problems, some decomposition
into geographical regions should be tried. Starting from a plan for long-
distance trains, one could generate plans for regional trains for different
regions independently.

After the integration of track allocation and locomotive assignment, the in-
tegration with personnel and carriage planning remains to be done. For this
purpose, it would be better to have a powerful constraint model instead of a
specialized search heuristic. It is easier to combine the different constraints
for the subproblems than to integrate several search heuristics.

In the TUFF 3 project at SICS, the coordination of track allocation and
locomotive assignment shall be done by distributed planning agents. SJ is
interested in a distributed planning mechanism because several people at dif-
ferent locations take part in the planning process. This is a totally different
approach compared to this work, where one planner for both planning tasks
has been developed. The main goal in this project is to develop suitable
coordination mechanisms between different planners so that the quality of
the overall solution can be improved. The planners can use constraint pro-
gramming technology or conventional techniques from operations research
(e.g. network flows). Maybe it’s possible to use a route building heuristic
from this work in a locomotive planner.
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