View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Swedish Institute of Computer Science Publications Database

A Comparison of CP, IP and Hybrids for

Configuration Problems

Mats Carlsson Greger Ottosson

matsc@sics.se greger@csd.uu.se

April 1999

SICS Technical Report T99/04

Abstract

We investigate different solution techniques for solving a basic part of configuration prob-
lems, namely linear arithmetic constraints over integer variables. Approaches include integer
programming, constraint programming over finite domains and hybrid techniques. We also

discuss important extensions of the basic problem and how these can be accommodated in
the different solution approaches.

ISSN 1100-3154
ISRN:SICS-T-99/04-SE

https://core.ac.uk/display/11433704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

This report investigates two classes of Integer Programming problems, which often come up in
configuration problems. The first class (IP) can generally be described in Integer Programming
form as

min cx
st. Ax>b
z > 0, z integer
with the additional knowledge that ¢, A and b have positive integer coefficients, and ¢ > 0.

The second class (IP4) is an extension of the first where we have additional logical or symbolic
constraints, C7 A ... A Cly:

min cx

st. Ax>b
z > 0, z integer
C; W1

The aim of this report i1s to evaluate different algorithms for the above problems with respect to
several criteria.

Performance How efficiently can these problems be solved to optimality or satisfaction?
Flexibility Is the algorithm general enough to deal with the additional constraints C' with main-

tained performance?

This paper is outlined as follows. Section 1 discusses the available techniques, such as constraint
programming, integer programming, cuttting planes, preprocessing, etc. Section 2 then applies
and evaluates these techniques to a set of instances of our first, pure problem (IP). Section 3 and
4 concludes this paper and discusses future work, including how the topic of how these techniques
extend to IP+, which yet is mainly to explore.

2 Solution Techniques

The general techniques applied here are

Integer Programming using branch-and-bound and Linear Relaxations,

Constraint Programming using constraint propagation, and

Hybrid approaches where CP and LP are combined, either with a CP- or IP-style search.

In addition to these techniques, there are various ways to tighten the linear relaxation prior to

search: preprocessing, which tries to remove rows and columns, and to adjust remaining coefficients;
and cutting-plane techniques, which try to generate strong valid inequalities.

2.1 IP branch-and-bound

Let LP = {mincz : Az > b,z > 0}, that is IP with the integrality restrictions removed, the best
integer solution found so far, and cz its objective value. Then, for a node in the branch-and-bound
tree, do

1. Solve LP, with optimal (possibly fractional) solution vector v.

2. If LP is infeasible, skip this node.

3. If cv > cz then this node 1s suboptimal, skip this node.

4. If cv 1s integral, then let = v since we have a new best solution, and skip this node.

5. Otherwise, branch on each variable x; € x with fractional value v;, creating new nodes
{minez : Az > b2 > 0,2; < |v;]} and {minez : Az > b2 > 0,2; > [v;]}.

This search can either be depth-first, breadth-first or something in between. A common scheme
is best-first, which picks a non-explored (with feasible, fractional LP solution) node with the best
LP value.

What characterizes this method 1s that it’s heavily based on the linear relaxation. If the linear
relaxation is strong, i.e. cepp ~ cayp, where zpp and zyp is the optimal LP and TP solution
respectively, then this method is very efficient. If the linear relaxation is weak, i.e. cxpp < cxrp,
then one has to try to fix this by adding cutting planes. A cutting plain is a valid inequality for
IP that cuts of part of the feasible region of LP, thus strengtening the linear relaxation.

Another very important fact about branch-and-bound with linear relaxations is that it very ef-
fectively takes the objective functions into account and thus is good at quickly finding feasible
integral solutions that are close to the optimal IP solution.

2.2 Constraint Programming over Finite Domains

In Finite Domain Constraint Programming each integer variable z; has an associated domain D,
which is the set of possible values this variable can take on in the (optimal) solution. The cartesian
product of the domains, Dy x ... x D,, forms the solution space of the problem. This space 1s
finite and can be searched exhaustively for a feasible or optimal solution, but to limit this search
constraint propagation is used to infer infeasible solutions and prune the corresponding domains.
From this viewpoint, CP operates on the set of possible solutions and narrows it down.

It is in general harder to use the objective function effectively in constraint programming — it
does not come for free from the use of a linear relaxation as in IP branch-and-bound. Also, the
bounds derived on the objective function from constraint propagation are usually much weaker
than the ones provided by a linear relaxation.

One main benefit of constraint programmingis that any constraint — linear, non-linear or symbolic
— that can infer infeasible values and project this on the domains can be combined with any other
such constraint. Constraint programming, not restricted to a linear formulation of the problem,
often allows for compact models. High-level abstractions of problem constraints can be encoded
with special-purpose constraints such as those for scheduling, allocation and permutation.

2.3 Constraint Programming over Rationals

Constraint logic programming over rational (or reals) is basically an embedding of the Simplex
algorithm for linear programming in a logic programming framework. It’s incremental, which
means that it’s kept consistent at all times, and there’s rudimentary support for mixed-integer
programming and non-linear equations.

SICStus has two variants, one operating over real values (R) and one over rational (Q); the
latter is the one used here, mainly because of rounding error and numerical instability problems
encountered in the former. SICStus (Q) cannot compete with commercial solvers for pure LP /TP
problems, this is partly due to the incrementality and the domain being rational values.

2.4 Cutting Planes

We have experimented with two kinds of cutting planes. The first procedure is a heuristic for
producing cuts of Chvatal-Gomory rank 1, and the second type of cuts are more specifally the
Gomory mixed-integer cuts.

2.4.1 Chvital-Gomory rank 1 cuts

We use a heuristic to generate cuts of Chvdital-Gomory rank 1 [10, Sect. I1.1]. For any linear
combination, u > 0,

[ul Ale > [ulb]
1s a valid inequality. The heuristic is as follows: For each row ¢, u is chosen with u; > 0 and u;» = 0
for 4/ # 1. For each row ¢ in column j, A;; > ged(A;, b;) gives rise to an inequality u; = 1/4;;.

Example:
Given the inequality

2l‘1 + 4l‘2 + 61‘3 Z 10
we derive the two inequalities with u = (%) and u = (%), respectively

z1+xo+ 203> 3
r1+xo+2a32>2

2.4.2 Gomory Cuts

The Gomory mixed-integer (MIG) cuts [10, p. 250] are derived using a solved linear relaxation in
a node. Although general enough to cover MIP, they can also be used for pure IP problems. Given
a row of the LP simplex tableau as zq + ZjeN a;x; = b where xg is a basic variable and N the
indeces for the non-basic variables (some of which might be slack variables), the cut is effective
for each fractional b as

> fj%*'(lfiof) Yo (=fei=fo
JEN:f;<fo) jeN:1i> fo
where f; = a; — |a;| for j € N, and b = |b] + fo.

Example:
Given a row of the simplex tableau

xo+ 2.221 4+ 3.6 =0.5

we derive a MIG cut as

0.5
0.221 + ———(1 — 0.6)xs > 0.5 <=
it T og) Joz 2

O

These cuts can potentially be applied to any node in the search, and valid within and in any child
of that node, as well as derived iteratively. In our tests below, the cut is only derived in the root
node in a single iteration.

In general, and commonly, these cuts have fractional coefficients even if, as in our case, the original
problem only have integral coefficients. Currently, SICStus (FD) does not allow fractional values
in arithmetic FD constraints, so these cuts are safely rounded (i.e. > [a;]z; > |b]) before added
as such. This will in most cases seriously weaken the cuts, but might be improved if coefficients
were scaled before rounding. However, the scaling is limited by the maximum and minimum size
of integers available in the system.

2.5 Relaxing FD constraints

For the basic problem (IP), the common linear relaxation, strengthened with cuts, is sufficient.
For our extended problem, (IP+), we need to find linear relaxations for our additional constraints
C to be able to use pure IP branch-and-bound search.

We will here consider two kinds of nonlinear constraints; logical constraints and binary relations.

2.5.1 Logical constraints

It is relatively easy to form a linear relaxation for logical relations over 0-1 integer variables using
arithmetic.

Example:
Given 0-1 variables a and b, we can express logical relations as follows.

aVb=a+b>1

O

This can be done systematically, given that the needed logical 0-1 variables exist. Quite often,
however, we need to tie a 0-1 variable to a general linear inequality, that 1s reify the inequality.
While reification usually denotes an equivalence ' < B between constraint C' and boolean variable
B, the corresponding method in IP relies on the introduction of “big-M” constraints which enforce
implication B = C'. In general, given an inequality a;z > b;, a big-M formulation

azl‘—l—M(l—B)ZbZ

expresses B = a;x > b; (given a sufficiently large constant M).

Example:
The logical relation

1s translated into linear form as follows

a+b>1
1+ 1(l—a)>1
o <0+ M(1—b)

where a, b are 0-1 integer variables and 1, x2 > 0. M should be a constant larger than the upper
bound of z,. O

Expressing logical relations in the linear relaxation of course increases the size of LP, but more
importantly, the new variables are 0-1 integer variables which (1) must be constrained to represent
the truth value of a linear inequality (through reification), and (2) must take integral values and
thus be considered in the IP branch-and-bound search along with the original integer variables of

IP.

If the amount of such additional logical constraints is limited, it should not be a problem in terms
of performance. If relations become more complicated, there will be an increase in temporary 0-1
variables and a weaker relaxation.

It is unclear, for example, if the following constraint (from the truck configuration example in FD
Obelics) can effectively be handled using linear relaxations.

(Chassi #= 1

#=>

FrameHeight in {1, 3}
#/\

Wheels in {1, 3, 4, 6%}
#/\

Suspension#=3

#/\

Engine in {1,2}

#/\

Power #\=360

)

2.5.2 Binary relations
For two given variables, the relation/3 constraint in SICStus (FD) defines a set of pairs of values
which are feasible.

Example:
relation(X,[1-{2,3},2-{1,5}1,Y) specifies that <1,2><1,3><2,1> and <2,5> are the only
feasible combinations of values for X and Y O

We can achieve a linear relaxation for this constraints as before, i.e. create a temporary 0-1 integer
variable for each assignment (X =1 <= a1, Y =2 <= b, Y =3 <= b, etc), and then
form

(a1 A bl) vV (Cll A bz) vV
This will lead to |Dx |+ |Dy |+ |Dx|*|Dy | new variables and inequalities, and might also weaken
the relaxation too much to be tractable.

There might very well be better ways to relax this constraint, and this is a topic of further study.

2.6 Preprocessing

Three simple techniques are iterated until no more reductions are possible: adjustment of coeffi-
cients, elimination of subsumed rows, and elimination of redundant columns.

2.6.1 Adjustment of coefficients
Firstly, the right hand side b; of any row A;z > b; can be rounded up to the nearest multiple of
the greatest common divisor of the left hand side coefficients.

Secondly, let U denote the upper bound of b; — A;z. Then any coefficient A;; > U can be replaced
by U. Moreover, if U < 0, the row is entailed and can be removed.

For example, 221 4+ x5 + x3 > 2 can be tightened to @1 + x5 + o3 > 2 if the lower bound of x4 is
known to be 1.

These are among the techniques described in [12].

2.6.2 Elimination of subsumed rows

An inequality axz > b is subsumed by an inequality ¢’z > b if
a;/b>al/b Vi

2.6.3 Elimination of redundant columns
Let A; be the column of variable ¢ and cx the objective function. Then a variable x; is redundant
(zero in some optimal solution) if

Jdz; s.t.

or, equivalently
Ar;=0= A4, =0

Arj>0:>[j,‘—ﬂ§6—’

€

Vr (1)

Proof: Assume (1) and some feasible solution # = v where v; > 0. Let d; = max{,|a,;>0} ’VUAAf’-‘ .

Then another feasible solution £ = v’ is obtained as follows:
=0

v = vj =+ (Sj

v, =vp, i Fk#E]

v

TN TN

Consider now the objective value cv’ of the solution # = v'. We have that ¢;6; < ¢;v; Max{y|A,;>0} lrﬁr?-‘ .
rjy

Hence and from (1) we obtain ¢;d; < ¢;v;. But since ¢v' = cv — ¢;v; 4 ¢;0; we get cv’ < cu.

Thus without loss of optimality, from any solution where #; > 0 we can obtain another one where
r; = 0.0

2.7 Hybrids of IP and CP

There are several ways in which we can combine IP and CP. We can take the CP framework as a
starting point and try to use a linear relaxation on the linear part of the problem. Sections 2.7.1
and 2.7.2 explore how linear programming can be expoited in this context. On the other hand,
one can begin with a IP search, and add features from CP, which 1s described in Sect. 2.7.3.

2.7.1 Bounds Strengthening and Infeasibility Detection

If a linear relaxation is formed on the linear part of the problem, bounds can be propagated from
the finite domain constraint store to the LP, and fixed variables can be derived by the LP[1]. This
will in some cases improve the situation, partly because infeasibility can be detected earlier and
also because the LP solution can be used, albeit a bit roughly, to guide the search. We will report
on this approach below, which is similar to what has been done in [11].

The LP can also be used directly for domain reduction, where we minimize and maximize the LP
with the objective function x; for each variable. This quite effectively derives bounds which are
projected on the variables’ domains, but is generally very expensive. The next section describes a
weaker but more efficient way of deriving bounds and doing domain reduction.

2.7.2 Reduced Costs Propagation

Provided for each variable x; which is zero in the solution of linear program (i.e. in the final
simplex tableau) are the reduced costs, ¢;. They indicate how much the objective function value
would increase (per unit) if the variable were to take a non-zero value.

This information is used in some MIP packages (see e.g. [4]), as a way to strengthen the bounds
of variables and thus strengthen the relaxation. It 1s, however, relatively new as applied in a CP
context. In [3, 2], the reduced costs are introduced as inference mechanisms and in [5, 6] it is
used for all different/1 and a relaxation of the assignment problem used in a TSP technique,
respectively.

A similar technique could be tried to enhance a CP search with the more general Az > b as linear
part.

2.7.3 Generalizing IP Search

A second starting point for integration of CP and IP is to add flexibility to an linear relaxation-
based IP search through constraint propagation. The direct problem with this is that the domains,
and thus the solution space, are not maintained and pruned in an IP branch-and-bound search
to the same extent as it 1s in CP. An integral solution of the linear relaxation may not satisfy
the additional constraints, which have to be handled, ultimately as extensions to the search. If
not carefully crafted, this might mean loss of generality (new constraints implies changes in the
search) of TP. This is still a topic of further research.

3 Experimental testing

3.1 Benchmark Problems

The algorithms have been tested on the following set of problems. Table 1 shows the original size
of the problem, the number of CG and MIG cuts generated, and the LP relaxation and IP optimal
values.

Table 2 shows the performance of a few established commercial and non-commercial LP/TP codes
on the problem set. ILOG CPLEX is commercial [4], Ip_solve is public domain [9], and Lindo
is commercial [8]. The "PP’ column displays the problem size after preprocessing, and *Time’ is
CPU solution time in milliseconds.

Experiments with MIP search parameters for CPLEX show relatively small variations. Default
CPLEX node selection 1s best-bound; a depth-first search shows similar behavior with the excep-
tion of problem 15 with MIG cuts which is about 3 times slower. Changes in branching heuristics
have a small impact; default variable selection differs from problem to problem, but maximum
infeasibility is common. Strong branching (look-ahead with LP objective value to choose the most
promising branch of a node) decreased the number of nodes of problem 7 (without MIG cuts)
by a factor 10 and cut the time in half, but no noticeable effects on the other instances. Al-
ways branching up on the fractional variable selected showed some improvement in general, and
branching down was somewhat worse. All in all, the performance varies with a factor 2 up or
down depending on the heuristics, which is a fairly robust behavior.

3.2 CPLEX and preprocessing

Table 3 shows the performance for the benchmarks suite with CPLEX preprocessing turned off.

Problem Constraints x Variables IP s LPp¢
Orig | CG | MIG | Pre-proc Orig CG MIG CG+MIG
1| 1x3 3 0 4x3 60000 59999.4 | 59999.66 | 59999.39 59999.66
2| 1x3 3 0 2x3 60000 60000.0 | 60000.0 60000.0 60000.0
3| 3xb 5 3 6x5 29002 29000.0 | 29000.0 29002.0 29002.0
4| 1x3 2 1 2x2 25 18.0 20.0 24.0 25.0
51 2x4 5 2 9x4 457 455.73 456.54 456.09 456.57
6 | 3x9 8 3 8x8 60035 | 60023.53 | 60027.16 | 60032.78 60033.53
7| 4x6 5 2 5xbH 601 600.0 600.0 600.5 600.5
8 | 1x4 1 0 1x1 15 14.375 15.0 14.375 15.0
9 | 2x12 9 2 6x11 840 758.33 840.0 762.5 840.0
10 | 2x63 | 18 2 9x62 626 600.5 611.0 616.71 616.71
11 | 1x12 | 12 1 6x12 196 192.30 196.0 195.99 196.0
12 | 6x12 | 14 4 4x3 3170 1005.18 | 2548.66 2555.27 2555.27
13 | 6x50 | 14 4 10x39 18020 | 17468.64 | 17923.66 17801.22 17923.66
14 | 6x50 | 14 3 7x39 16758 | 16116.16 16612.0 16448.74 16612.0
15 | 6x50 | 14 3 11x39 15635 14988.5 | 15585.33 | 15435.001 15585.33
16 | bx32 | 12 2 5x14 3119 2037.33 3119.0 3119.0 3119.0
17 | bx32 | 12 2 3x3 3119 1827.5 3119.0 3119.0 3119.0
18 | bx32 | 12 2 3x4 3371 2546.83 3368.0 3371.0 3371.0
Table 1: Problem statistics
CPLEX LP_solve Lindo
Problem Original MIG Original MIG | Original | MIG
PP | Time | Nodes | PP | Time | Nodes Time Time Time | Time
1| 1x3 10 0 950 0
2| 1x3 0 0 0 0
3] 3xb 0 2 0 0 10 0 10 10
4| 1x3 0 2| 1x3 10 2 0 0 0 0
51 2x4 10 8 10 2 120 120 10 10
6 | 3x9 0 3| 5x9 0 3 7720 0 10 10
7| 4x6 250 1290 10 5 3560 2 160 10
8| 1x4 1x3 0 0 380 0
9 | 2x12 30 99 | 4x12 20 73 60 080 10 10
10 | 2x63 40 78 10 1 40 0 50 40
11 | 1x12 10 19 0 5 10 0 10 10
12 | 6x12 | 3x7 10 1| bx7 10 1 0 10 20 10
13 | 6x50 | Hbx5H0 10 13 | 6x50 0 10 311980 | 222330 60 70
14 | 6x50 | Hbx5H0 20 25 | 6x50 20 27 417280 | 269480 100 110
15 | 6x50 | Hbx5H0 0 4 | 6x50 180 522 | 1705270 | 150580 20 40
16 | bx32 | 1x14 0 0| 1x14 0 0 0 0 10 10
17 | bx32 | 1x14 0 0| 1x14 10 0 10 10 10 10
18 | bx32 | 1x14 0 0| 1x14 0 0 0 0 10 10

Table 2: Benchmark results with commercial and public domain LP/IP codes.

CPLEX, with preprocessing CPLEX, no preprocessing
Problem Original MIG Original MIG

Time | Nodes | Time | Nodes | Time | Nodes | Time | Nodes

1 10 0 0 0

2 0 0 0 0
3 0 2 0 0 10 2 0 0
4 0 2 10 2 10 3 0 2
5 10 8 10 2 0 8 10 2
6 0 3 0 3 10 6 0 3
7 250 1290 10 5 260 1290 0 5

8 0 0 10 1
9 30 99 20 73 10 73 10 73
10 40 78 10 1 30 78 10 1
11 10 19 0 5 0 19 0 5
12 10 1 10 1 0 9 10 2
13 10 13 0 10 880 2564 230 677
14 20 25 20 27 | 1180 3443 | 1550 4185
15 0 4 180 522 250 727 190 537
16 0 0 0 0 10 14 0 0
17 0 0 10 0 10 13 0 0
18 0 0 0 0 0 12 0 1

Table 3: Effect of preprocessing in CPLEX

3.3 Approaches in SICStus (FD)

A pure CP approach, using only finite domain constraints is not viable. In the following sections
we’ll explore some more powerful approaches.

3.3.1 Bounds propagation and infeasibility detection

Using LP for infeasibility detection improves the situation somewhat. This is a basic and weak
hybrid approach — it simply consists of global constraint that propagates bounds from domains of
FD variables, and checks satisfiability of the LP.

Table 4 shows the search results with binary search on the cost, followed by labeling of the ;,
with Ax > b as FD constraints and as a relaxation in LP.

3.3.2 IP branch-and-bound in SICStus (FD/Q)

While still in the FD framework, but now using an IP-style branch-and-bound search, we can
improve the results significantly. Table 5 shows the results of doing an branch-and-bound IP
search in SICStus (FD/Q) with branching on fractional values of the solution to a series of linear
relaxations.

The downside of this is not directly obvious. Note that the focus of the search is this time the
linear relaxation; a feasible integral solution to LP is also a solution of IP, but not necessarily
a solution to TP+4. So we must either linearize IP4 to be able to use this search technique, or
incorporate the satisfaction of the side constraints of IP+ in the search.

10

SICStus (FD/Q): FD + LP + PP + FD cost splitting search

Problem Original MIG
Time BTs | Initial Domain Time BTs | Initial Domain

1 110 10 0..48670 120 10 0..48670

2 30 8 0..48680 20 8 0..48680

3 270 28 0..760023 100 8 0..760023

4 10 0 0..21 10 0 0..21

5 60 11 0..3143 70 11 0..3143

6 460 27 0..48908 270 11 0..48908

7 6680 1654 0..8812 100 14 0..8812

8 20 0 0..60 20 0 0..60

9 70 2 0..5306 110 2 0..5306
10 26840 1343 0..72934 20910 819 0..72934
11 100 2 0..3018 100 2 0..3018
12 63730 | 21199 420..13923 137970 | 21199 420..13923
13 | 186860 7132 | 1259..1372913 259990 7132 | 1259..1372913
14 | 612730 | 24354 | 1259..1240118 | 1029560 | 24354 | 1259..1240118
15 49330 2039 | 1259..1114769 62510 2039 | 1259..1114769
16 150 0 2577.. 78682 160 0 2577.. 78682
17 120 0 2577..72701 120 0 2577..72701
18 180 5 2577..85118 240 5 2577..85118

Table 4: Benchmark results for a finite domain search with domain splitting on cost.

SICStus (FD/Q): FD + LP + PP + IP search

Problem Original CG MIG CGH+MIG
Time | BTs | Time | BTs Time | BTs | Time | BTs

1 40 0 40 0 50 0 40 0
2 10 0 20 0 10 0 10 0
3 270 6 270 6 110 0 110 0
4 30 1 20 1 10 0 10 0
5 140 15 310 15 220 13 120 0
6 140 1 250 4 130 0 240 0
7 2630 | 741 | 2610 | 741 80 1 80 1
8 0 0 0 0 0 0 0 0
9 910 68 50 0 1270 69 130 0
10 4020 30 | 2420 1 1060 0 | 4850 3
11 200 2 200 3 110 0 230 3
12 110 6 40 0 30 0 50 0
13 | 230410 | 2842 | 1710 9 | 227300 | 1313 | 2260 9
14 | 764710 | 9838 | 2750 29 | 1028920 | 7995 | 5130 30
15 | 417510 | 5365 950 2 125140 | 1003 | 1150 2
16 250 5 120 0 70 0 120 0
17 90 5 40 0 20 0 50 0
18 90 3 90 1 30 0 50 0

Table 5: Benchmark results with TP branch-and-bound search in SICStus (FD/Q).

11

3.3.3 Hybrid CP/IP search

The algorithm of [11] is a compromise between IP branch-and-bound and FD-style search. It’s
a CP search in the sense that it reduces all domains to singletons during search, but an IP-style
search because it centers the labeling around the values given by the linear relaxations.

Table 6 shows the benchmark results for an implementation of this algorithm in SICStus (FD/Q).

SICStus (FD/Q): FD + LP + PP + Hybrid search
Problem Original CG CGH+MIG
Time BTs | Time | BTs | Time BTs
1 70 0 80 0 120 0
2 50 0 50 0 40 0
3 410 64 420 64 330 50
4 30 3 40 4 20 0
5 170 31 150 16 170 8
6 320 39 540 46 410 14
7 8110 | 1679 | 8120 | 1679 250 28
8 10 0 0 0 0 0
9 700 77 140 0 260 0
10 | 13250 412 | 19960 | 240 | 20590 254
11 380 24 290 6 410 14
12 110 6 30 1 50 1
13 | 116360 | 4560 | 8850 | 285 | 10210 285
14 | 355100 | 14693 | 11640 | 490 | 15620 490
15 | 101700 | 4066 | 8150 | 223 | 9510 222
16 420 26 220 0 230 0
17 110 3 60 0 60 0
18 100 5 140 8 60 0

Table 6: Benchmark results with hybrid search in SICStus (FD/Q).

3.4 Satisfaction of IP

A second use of the constraint model discussed in this paper, apart from optimization, is satisfac-
tion. The use of this is mostly to fix or constrain one or a few variables and then, possibly given
a constrained objective function, check satisfaction of the problem.

To illustrate the efficiency one can expect for such a situation, we have compared the different
solution techniques for obtaining solutions within 1%, 5% and 10% of the optimal value. The
results are summarized in the Table 7.

4 Conclusion

For the pure problem (IP), an IP-style branch-and-bound search using linear relaxations is supe-
rior. The easier of the benchmarks are solvable in reasonable time also with an CP search, but
breaks down when the problem grows. Hybrid search [11] is better than CP, but cannot compete
with IP branch-and-bound.

For TP+, it is still unknown if we can find good linear relaxations for the additional logical and
symbolic constraints so that a pure IP search can handle the problem.

12

SICStus (FD/Q): CG + MIG + PP + SICStus (FD/Q): CG + MIG + PP +
FD + LP + IP search FD 4+ LP + FD bisect, ffc
Problem 1% 5% 10% 1% 5% 10%
Time | BT | Time | BT | Time | BT | Time | BT Time BT Time BT
1 30 0 40 0 40 0 100 7 240 10 220 6
2 40 0 30 0 40 0 80 7 170 8 200 9
3 100 0 100 0 100 0 200 6 200 7 210 5
4 10 0 10 0 10 0 10 0 10 0 20 0
5 70 0 80 1 80 1 120 2 210 11 140 2
6 160 1 160 1 160 1 180 10 290 6 340 6
7 60 1 50 1 60 1 110 7 120 7 120 4
8 0 0 10 0 0 0 0 0 0 0 0 0
9 130 0 140 0 140 2 160 1 160 0 160 0
10 1800 1| 1910 2 | 1510 0 2110 3 2670 1 6600 72
11 120 1 100 0 90 0 140 1 150 2 160 1
12 30 0 30 0 30 0 40 0 40 0 40 0
13 6140 73 | B350 | 72| 5340 | 72 | 26560 | 534 | 482210 | 13197 | 140750 | 6658
14 | 2740 13| 1870 | 10 | 1120 1| 12260 | 345 15390 526 2800 70
15 | 12660 | 110 | 2220 | 10 | 1100 0 | 15340 | 251 3170 46 | 148750 | 5843
16 110 0 100 0 110 0 130 0 120 0 130 0
17 50 0 50 0 50 0 50 0 50 0 50 0
18 50 0 50 1 50 0 50 0 50 0 60 0

Table 7: Benchmark results for finding solution within 1%,5% and 10% of optimum.

Solving satisfiability instances of IP is easier for the CP search, but only marginally so for IP
branch-and-bound.

A good commercial solver like CPLEX or Lindo is about a magnitude or two faster than a similar

code in SICStus (Q). Tt is unclear whether this is due to CLP(Q), the link FD-Q or the search.

5 Future Work

The main future research direction is to continue to explore how IP+ can be solved efficently and
flexibly. This involves defining the side constraints of I[P+ and extend the techniques used the IP
problem to handle them. For example, a linearization of the side constraints are needed for the
pure branch-and-bound approach. We also need get hold of or create representative benchmarks
problems.

There is also a set of minor research topics that should treated. We should investigate using other
LP solvers than SICStus (Q) as backends, since there is some evidence that this would improve
solution times. Another path to explore further is preprocessing and search strategies; both can
be further refined and for example CPLEX or other IP solvers could be used as reference and
comparison.

Extending SICStus (FD)’s arithmetic constraints to allow for real or rational coefficients would
allow a more succinct use of e.g. the mixed-integer Gomory or any other fractional cuts to improve
propagation. This would be a more succinct and precise alternative to scaling of these cuts.

Finally, there are also a couple of interesting new techniques for improved domain reduction.
One is the reduced-cost propagation, which was outlined in Sec. 2.7.2, the other that might be
interesting to explore is projection propagation [7]. As domain reduction techniques, they would
primarily benefit the FD and hybrid searches investigated above, but might also prove valuable in

13

the extension needed for branch-and-bound to handle the side constraints of IP+.

6 Acknowledgements

The research reported herein was funded in part by SICS with a grant from the Swedish National
Board for Technical and Industrial Development (NUTEK), and in part by Tacton Systems AB.
The benchmark data was kindly provided by Tacton Systems AB.

References

[1] H. Beringer and B. De Backer. Combinatorial problem solving in constraint logic programming
with cooperating solvers. In C. Beierle and L. Plumer, editors, Logic Programming: Formal
Methods and Practical Applications, Studies in Computer Science and Artificial Intelligence,
chapter 8, pages 245-272. Elsevier, 1995.

[2] Y. Caseau and F. Laburthe. Solving various weighted matching problems with constraints.
Lecture Notes in Computer Science, 1330:17-77,1997.

[3] Yves Caseau and Francois Laburthe. Solving small TSPs with constraints. In Lee Naish,
editor, Proceedings of the 14th International Conference on Logic Programming, pages 316—
330, Cambridge, July8-11 1997. MIT Press.

[4] CPLEX. CPLEX Manual, 1998. URL http://www.cplex.com.

[5] Filippo Focacci, Andrea Lodi, and Michela Milano. Integration of cp and or methods for
matching problems. In CP-AI-OR’99 Workshop on Integration of AI and OR techniques in
Constraint Programming for Combinatorial Optimization Problems.

[6] Filippo Focacci, Andrea Lodi, Michela Milano, and Danielo Vigo. Solving tsp through the
integration of or and cp techniques. In CP98 Workshop on Large Scale Combinatorial Opti-
misation and Constraints.

Andreas Fordan. Linear projection in clp(fd).
Lindo. Super Lindo 5.3. URL http://www.lindo.com.
LP_Solve. LP_Solve 2.2. URL ftp://ftp.es.ele.tue.nl/pub/Ip_solve.

George L. Nemhauser and Laurence A. Wolsey. [Integer and Combinatorial Optimization.

John Wiley and Sons, New York, 1988.

[11] Robert Rodosek, Mark Wallace, and Mozafar Hajian. A new approach to integrating mixed
integer programming and constraint logic programming. Baltzer Journals, 1997.

[12] M.W.P. Savelsbergh. Preprocessing and probing for mixed integer programming problems.
ORSA Journal on COmputing, 6:445-454, 1994.

14

