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Abstract

We investigate di�erent solution techniques for solving a basic part of con�guration prob�

lems� namely linear arithmetic constraints over integer variables� Approaches include integer

programming� constraint programming over �nite domains and hybrid techniques� We also

discuss important extensions of the basic problem and how these can be accommodated in

the di�erent solution approaches�
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� Introduction

This report investigates two classes of Integer Programming problems
 which often come up in
con�guration problems� The �rst class IP� can generally be described in Integer Programming
form as

min cx

s�t� Ax � b

x � �� x integer

with the additional knowledge that c
 A and b have positive integer coe�cients
 and c � ��
The second class IP�� is an extension of the �rst where we have additional logical or symbolic
constraints
 C� � � � ��Cn�

min cx

s�t� Ax � b

x � �� x integer

Ci �i

The aim of this report is to evaluate di�erent algorithms for the above problems with respect to
several criteria�

Performance How e�ciently can these problems be solved to optimality or satisfaction�

Flexibility Is the algorithm general enough to deal with the additional constraints C with main�
tained performance�

This paper is outlined as follows� Section � discusses the available techniques
 such as constraint
programming
 integer programming
 cuttting planes
 preprocessing
 etc� Section � then applies
and evaluates these techniques to a set of instances of our �rst
 pure problem IP�� Section � and
� concludes this paper and discusses future work
 including how the topic of how these techniques
extend to IP�
 which yet is mainly to explore�

� Solution Techniques

The general techniques applied here are

Integer Programming using branch�and�bound and Linear Relaxations


Constraint Programming using constraint propagation
 and

Hybrid approaches where CP and LP are combined
 either with a CP� or IP�style search�

In addition to these techniques
 there are various ways to tighten the linear relaxation prior to
search� preprocessing
 which tries to remove rows and columns
 and to adjust remaining coe�cients�
and cutting�plane techniques
 which try to generate strong valid inequalities�

��� IP branch�and�bound

Let LP � fmincx � Ax � b� x � �g
 that is IP with the integrality restrictions removed
 �x the best
integer solution found so far
 and c�x its objective value� Then
 for a node in the branch�and�bound
tree
 do
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�� Solve LP
 with optimal possibly fractional� solution vector v�

�� If LP is infeasible
 skip this node�

�� If cv � c�x then this node is suboptimal
 skip this node�

�� If cv is integral
 then let �x � v since we have a new best solution
 and skip this node�

�� Otherwise
 branch on each variable xi � x with fractional value vi
 creating new nodes
fmincx � Ax � b� x � �� xi � bvicg and fmincx � Ax � b� x � �� xi � dvieg�

This search can either be depth��rst
 breadth��rst or something in between� A common scheme
is best��rst
 which picks a non�explored with feasible
 fractional LP solution� node with the best
LP value�

What characterizes this method is that it�s heavily based on the linear relaxation� If the linear
relaxation is strong
 i�e� cxLP � cxIP 
 where xLP and xIP is the optimal LP and IP solution
respectively
 then this method is very e�cient� If the linear relaxation is weak
 i�e� cxLP � cxIP 

then one has to try to �x this by adding cutting planes� A cutting plain is a valid inequality for
IP that cuts of part of the feasible region of LP
 thus strengtening the linear relaxation�

Another very important fact about branch�and�bound with linear relaxations is that it very ef�
fectively takes the objective functions into account and thus is good at quickly �nding feasible
integral solutions that are close to the optimal IP solution�

��� Constraint Programming over Finite Domains

In Finite Domain Constraint Programming each integer variable xi has an associated domain Di

which is the set of possible values this variable can take on in the optimal� solution� The cartesian
product of the domains
 D� � � � ��Dn
 forms the solution space of the problem� This space is
�nite and can be searched exhaustively for a feasible or optimal solution
 but to limit this search
constraint propagation is used to infer infeasible solutions and prune the corresponding domains�
From this viewpoint
 CP operates on the set of possible solutions and narrows it down�

It is in general harder to use the objective function e�ectively in constraint programming � it
does not come for free from the use of a linear relaxation as in IP branch�and�bound� Also
 the
bounds derived on the objective function from constraint propagation are usually much weaker
than the ones provided by a linear relaxation�

One main bene�t of constraint programming is that any constraint � linear
 non�linear or symbolic
� that can infer infeasible values and project this on the domains can be combined with any other
such constraint� Constraint programming
 not restricted to a linear formulation of the problem

often allows for compact models� High�level abstractions of problem constraints can be encoded
with special�purpose constraints such as those for scheduling
 allocation and permutation�

��� Constraint Programming over Rationals

Constraint logic programming over rational or reals� is basically an embedding of the Simplex
algorithm for linear programming in a logic programming framework� It�s incremental
 which
means that it�s kept consistent at all times
 and there�s rudimentary support for mixed�integer
programming and non�linear equations�

SICStus has two variants
 one operating over real values R� and one over rational Q�� the
latter is the one used here
 mainly because of rounding error and numerical instability problems
encountered in the former� SICStus Q� cannot compete with commercial solvers for pure LP	IP
problems
 this is partly due to the incrementality and the domain being rational values�
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��� Cutting Planes

We have experimented with two kinds of cutting planes� The �rst procedure is a heuristic for
producing cuts of Chv�atal�Gomory rank �
 and the second type of cuts are more specifally the
Gomory mixed�integer cuts�

����� Chv�atal�Gomory rank � cuts

We use a heuristic to generate cuts of Chv�atal�Gomory rank � ���
 Sect� II���� For any linear
combination
 u � �


duTAex � duT be

is a valid inequality� The heuristic is as follows� For each row i
 u is chosen with ui � � and ui� � �
for i� �� i� For each row i in column j
 Aij � gcdAi� bi� gives rise to an inequality ui � ��Aij�

Example�
Given the inequality

�x� � �x� � �x� � ��

we derive the two inequalities with u � �
�
� and u � �

�
�
 respectively

x� � x� � �x� � �

x� � x� � x� � �

�

����� Gomory Cuts

The Gomory mixed�integer MIG� cuts ���
 p� ���� are derived using a solved linear relaxation in
a node� Although general enough to cover MIP
 they can also be used for pure IP problems� Given
a row of the LP simplex tableau as x� �

P
j�N ajxj � b where x� is a basic variable and N the

indeces for the non�basic variables some of which might be slack variables�
 the cut is e�ective
for each fractional b as

X
j�N �fj�f�

fjxj �
f�

�	 f��

X
j�N �fj�f�

� 	 fj�xj � f�

where fj � aj 	 bajc for j � N 
 and b � bbc � f��

Example�
Given a row of the simplex tableau

x� � ���x�� ���x� � ���

we derive a MIG cut as

���x� �
���

�	 ����
�	 ����x� � ���
�

���x� � ���x� � ���

�

These cuts can potentially be applied to any node in the search
 and valid within and in any child
of that node
 as well as derived iteratively� In our tests below
 the cut is only derived in the root
node in a single iteration�
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In general
 and commonly
 these cuts have fractional coe�cients even if
 as in our case
 the original
problem only have integral coe�cients� Currently
 SICStus FD� does not allow fractional values
in arithmetic FD constraints
 so these cuts are safely rounded i�e�

P
dajexj � bbc� before added

as such� This will in most cases seriously weaken the cuts
 but might be improved if coe�cients
were scaled before rounding� However
 the scaling is limited by the maximum and minimum size
of integers available in the system�

��� Relaxing FD constraints

For the basic problem IP�
 the common linear relaxation
 strengthened with cuts
 is su�cient�
For our extended problem
 IP��
 we need to �nd linear relaxations for our additional constraints
C to be able to use pure IP branch�and�bound search�

We will here consider two kinds of nonlinear constraints� logical constraints and binary relations�

����� Logical constraints

It is relatively easy to form a linear relaxation for logical relations over ��� integer variables using
arithmetic�

Example�
Given ��� variables a and b
 we can express logical relations as follows�

a � b  a� b � �

�

This can be done systematically
 given that the needed logical ��� variables exist� Quite often

however
 we need to tie a ��� variable to a general linear inequality
 that is reify the inequality�
While rei�cation usually denotes an equivalence C � B between constraint C and boolean variable
B
 the corresponding method in IP relies on the introduction of �big�M� constraints which enforce
implication B � C� In general
 given an inequality aix � bi
 a big�M formulation

aix�M �	B� � bi

expresses B � aix � bi given a su�ciently large constant M ��

Example�
The logical relation

x� � � � x� � �

is translated into linear form as follows

a � b � �

x� � ��	 a� � �

x� � � �M �	 b�

where a� b are ��� integer variables and x�� x� � �� M should be a constant larger than the upper
bound of x�� �

Expressing logical relations in the linear relaxation of course increases the size of LP
 but more
importantly
 the new variables are ��� integer variables which �� must be constrained to represent
the truth value of a linear inequality through rei�cation�
 and �� must take integral values and
thus be considered in the IP branch�and�bound search along with the original integer variables of
IP�
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If the amount of such additional logical constraints is limited
 it should not be a problem in terms
of performance� If relations become more complicated
 there will be an increase in temporary ���
variables and a weaker relaxation�

It is unclear
 for example
 if the following constraint from the truck con�guration example in FD
Obelics� can e�ectively be handled using linear relaxations�

�Chassi �� �

���

FrameHeight in ��� ��

�	


Wheels in ��� �� �� ��

�	


Suspension���

�	


Engine in ����

�	


Power �
����

�

����� Binary relations

For two given variables
 the relation	� constraint in SICStus FD� de�nes a set of pairs of values
which are feasible�

Example�
relation�X����f��g��f���g��Y� speci�es that ����
�����
���� and ���� are the only
feasible combinations of values for X and Y �

We can achieve a linear relaxation for this constraints as before
 i�e� create a temporary ��� integer
variable for each assignment X � � 
� a�
 Y � � 
� b�
 Y � � 
� b�
 etc�
 and then
form

a� � b�� � a� � b�� � � � �

This will lead to jDX j� jDY j� jDX j � jDY j new variables and inequalities
 and might also weaken
the relaxation too much to be tractable�

There might very well be better ways to relax this constraint
 and this is a topic of further study�

��� Preprocessing

Three simple techniques are iterated until no more reductions are possible� adjustment of coe��
cients
 elimination of subsumed rows
 and elimination of redundant columns�

����� Adjustment of coe	cients

Firstly
 the right hand side bi of any row Aix � bi can be rounded up to the nearest multiple of
the greatest common divisor of the left hand side coe�cients�

Secondly
 let U denote the upper bound of bi	Aix� Then any coe�cient Aij � U can be replaced
by U � Moreover
 if U � �
 the row is entailed and can be removed�

For example
 �x� � x� � x� � � can be tightened to x� � x� � x� � � if the lower bound of x� is
known to be ��

These are among the techniques described in �����

�



����� Elimination of subsumed rows

An inequality ax � b is subsumed by an inequality a�x � b� if

ai�b � a�i�b
� �i

����
 Elimination of redundant columns

Let Ai be the column of variable i and cx the objective function� Then a variable xi is redundant
zero in some optimal solution� if

�xj s�t�

Ari � b
ci
cj
cArj �r

or
 equivalently

Arj � �� Ari � �

Arj � ��

�
Ari

Arj

�
� ci

cj

�r ��

Proof� Assume �� and some feasible solution x � v where vi � �� Let �j � maxfrjArj��g

�
viAri

Arj

�
�

Then another feasible solution x � v� is obtained as follows�

v�i � �
v�j � vj � �j
v�k � vk� i �� k �� j

Consider now the objective value cv� of the solution x � v�� We have that cj�j � cjvimaxfrjArj��g

�
Ari

Arj

�
�

Hence and from �� we obtain cj�j � civi� But since cv� � cv 	 civi � cj�j we get cv� � cv�

Thus without loss of optimality
 from any solution where xi � � we can obtain another one where
xi � �� �

��� Hybrids of IP and CP

There are several ways in which we can combine IP and CP� We can take the CP framework as a
starting point and try to use a linear relaxation on the linear part of the problem� Sections �����
and ����� explore how linear programming can be expoited in this context� On the other hand

one can begin with a IP search
 and add features from CP
 which is described in Sect� ������

����� Bounds Strengthening and Infeasibility Detection

If a linear relaxation is formed on the linear part of the problem
 bounds can be propagated from
the �nite domain constraint store to the LP
 and �xed variables can be derived by the LP���� This
will in some cases improve the situation
 partly because infeasibility can be detected earlier and
also because the LP solution can be used
 albeit a bit roughly
 to guide the search� We will report
on this approach below
 which is similar to what has been done in �����

The LP can also be used directly for domain reduction
 where we minimize and maximize the LP
with the objective function xi for each variable� This quite e�ectively derives bounds which are
projected on the variables� domains
 but is generally very expensive� The next section describes a
weaker but more e�cient way of deriving bounds and doing domain reduction�
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����� Reduced Costs Propagation

Provided for each variable xi which is zero in the solution of linear program i�e� in the �nal
simplex tableau� are the reduced costs
 �ci� They indicate how much the objective function value
would increase per unit� if the variable were to take a non�zero value�

This information is used in some MIP packages see e�g� ����
 as a way to strengthen the bounds
of variables and thus strengthen the relaxation� It is
 however
 relatively new as applied in a CP
context� In ��
 ��
 the reduced costs are introduced as inference mechanisms and in ��
 �� it is
used for all different	� and a relaxation of the assignment problem used in a TSP technique

respectively�

A similar technique could be tried to enhance a CP search with the more general Ax � b as linear
part�

����
 Generalizing IP Search

A second starting point for integration of CP and IP is to add  exibility to an linear relaxation�
based IP search through constraint propagation� The direct problem with this is that the domains

and thus the solution space
 are not maintained and pruned in an IP branch�and�bound search
to the same extent as it is in CP� An integral solution of the linear relaxation may not satisfy
the additional constraints
 which have to be handled
 ultimately as extensions to the search� If
not carefully crafted
 this might mean loss of generality new constraints implies changes in the
search� of IP� This is still a topic of further research�

� Experimental testing

��� Benchmark Problems

The algorithms have been tested on the following set of problems� Table � shows the original size
of the problem
 the number of CG and MIG cuts generated
 and the LP relaxation and IP optimal
values�

Table � shows the performance of a few established commercial and non�commercial LP	IP codes
on the problem set� ILOG CPLEX is commercial ���
 lp solve is public domain ���
 and Lindo
is commercial �!�� The �PP� column displays the problem size after preprocessing
 and �Time� is
CPU solution time in milliseconds�

Experiments with MIP search parameters for CPLEX show relatively small variations� Default
CPLEX node selection is best�bound� a depth��rst search shows similar behavior with the excep�
tion of problem �� with MIG cuts which is about � times slower� Changes in branching heuristics
have a small impact� default variable selection di�ers from problem to problem
 but maximum
infeasibility is common� Strong branching look�ahead with LP objective value to choose the most
promising branch of a node� decreased the number of nodes of problem � without MIG cuts�
by a factor �� and cut the time in half
 but no noticeable e�ects on the other instances� Al�
ways branching up on the fractional variable selected showed some improvement in general
 and
branching down was somewhat worse� All in all
 the performance varies with a factor � up or
down depending on the heuristics
 which is a fairly robust behavior�

��� CPLEX and preprocessing

Table � shows the performance for the benchmarks suite with CPLEX preprocessing turned o��

!



Problem Constraints�Variables IPopt LPopt

Orig CG MIG Pre�proc Orig CG MIG CG�MIG
� �x� � � �x� ����� ������� �������� �������� ��������
� �x� � � �x� ����� ������� ������� ������� �������
� �x� � � �x� ����� ������� ������� ������� �������
� �x� � � �x� �� �!�� ���� ���� ����
� �x� � � �x� ��� ������ ������ ������ ������
� �x� ! � !x! ����� �������� �������� �������! ��������
� �x� � � �x� ��� ����� ����� ����� �����
! �x� � � �x� �� ������ ���� ������ ����
� �x�� � � �x�� !�� ��!��� !���� ����� !����
�� �x�� �! � �x�� ��� ����� ����� ������ ������
�� �x�� �� � �x�� ��� ������ ����� ������ �����
�� �x�� �� � �x� ���� ������! ���!��� ������� �������
�� �x�� �� � ��x�� �!��� ����!��� �������� ��!����� ��������
�� �x�� �� � �x�� ����! �������� ������� ����!��� �������
�� �x�� �� � ��x�� ����� ���!!�� ���!���� ��������� ���!����
�� �x�� �� � �x�� ���� ������� ������ ������ ������
�� �x�� �� � �x� ���� �!���� ������ ������ ������
�! �x�� �� � �x� ���� �����!� ���!�� ������ ������

Table �� Problem statistics

CPLEX LP solve Lindo
Problem Original MIG Original MIG Original MIG

PP Time Nodes PP Time Nodes Time Time Time Time
� �x� �� � ��� �
� �x� � � � �
� �x� � � � � �� � �� ��
� �x� � � �x� �� � � � � �
� �x� �� ! �� � ��� ��� �� ��
� �x� � � �x� � � ���� � �� ��
� �x� ��� ���� �� � ���� � ��� ��
! �x� �x� � � �!� �
� �x�� �� �� �x�� �� �� �� �!� �� ��
�� �x�� �� �! �� � �� � �� ��
�� �x�� �� �� � � �� � �� ��
�� �x�� �x� �� � �x� �� � � �� �� ��
�� �x�� �x�� �� �� �x�� � �� ����!� ������ �� ��
�� �x�� �x�� �� �� �x�� �� �� ����!� ����!� ��� ���
�� �x�� �x�� � � �x�� �!� ��� ������� ����!� �� ��
�� �x�� �x�� � � �x�� � � � � �� ��
�� �x�� �x�� � � �x�� �� � �� �� �� ��
�! �x�� �x�� � � �x�� � � � � �� ��

Table �� Benchmark results with commercial and public domain LP	IP codes�
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CPLEX
 with preprocessing CPLEX
 no preprocessing
Problem Original MIG Original MIG

Time Nodes Time Nodes Time Nodes Time Nodes
� �� � � �
� � � � �
� � � � � �� � � �
� � � �� � �� � � �
� �� ! �� � � ! �� �
� � � � � �� � � �
� ��� ���� �� � ��� ���� � �
! � � �� �
� �� �� �� �� �� �� �� ��
�� �� �! �� � �� �! �� �
�� �� �� � � � �� � �
�� �� � �� � � � �� �
�� �� �� � �� !!� ���� ��� ���
�� �� �� �� �� ��!� ���� ���� ��!�
�� � � �!� ��� ��� ��� ��� ���
�� � � � � �� �� � �
�� � � �� � �� �� � �
�! � � � � � �� � �

Table �� E�ect of preprocessing in CPLEX

��� Approaches in SICStus 	FD


A pure CP approach
 using only �nite domain constraints is not viable� In the following sections
we�ll explore some more powerful approaches�


�
�� Bounds propagation and infeasibility detection

Using LP for infeasibility detection improves the situation somewhat� This is a basic and weak
hybrid approach � it simply consists of global constraint that propagates bounds from domains of
FD variables
 and checks satis�ability of the LP�

Table � shows the search results with binary search on the cost
 followed by labeling of the xi

with Ax � b as FD constraints and as a relaxation in LP�


�
�� IP branch�and�bound in SICStus �FDQ�

While still in the FD framework
 but now using an IP�style branch�and�bound search
 we can
improve the results signi�cantly� Table � shows the results of doing an branch�and�bound IP
search in SICStus FD	Q� with branching on fractional values of the solution to a series of linear
relaxations�

The downside of this is not directly obvious� Note that the focus of the search is this time the
linear relaxation� a feasible integral solution to LP is also a solution of IP
 but not necessarily
a solution to IP�� So we must either linearize IP� to be able to use this search technique
 or
incorporate the satisfaction of the side constraints of IP� in the search�

��



SICStus FD	Q�� FD � LP � PP � FD cost splitting search
Problem Original MIG

Time BTs Initial Domain Time BTs Initial Domain
� ��� �� ����!��� ��� �� ����!���
� �� ! ����!�!� �� ! ����!�!�
� ��� �! ��������� ��� ! ���������
� �� � ����� �� � �����
� �� �� ������� �� �� �������
� ��� �� ����!��! ��� �� ����!��!
� ��!� ���� ���!!�� ��� �� ���!!��
! �� � ����� �� � �����
� �� � ������� ��� � �������
�� ��!�� ���� �������� ����� !�� ��������
�� ��� � ������! ��� � ������!
�� ����� ����� ���������� ������ ����� ����������
�� �!�!�� ���� ������������� ������ ���� �������������
�� ������ ����� ������������! ������� ����� ������������!
�� ����� ���� ������������� ����� ���� �������������
�� ��� � �������!�!� ��� � �������!�!�
�� ��� � ����������� ��� � �����������
�! �!� � ������!���! ��� � ������!���!

Table �� Benchmark results for a �nite domain search with domain splitting on cost�

SICStus FD	Q�� FD � LP � PP � IP search
Problem Original CG MIG CG�MIG

Time BTs Time BTs Time BTs Time BTs
� �� � �� � �� � �� �
� �� � �� � �� � �� �
� ��� � ��� � ��� � ��� �
� �� � �� � �� � �� �
� ��� �� ��� �� ��� �� ��� �
� ��� � ��� � ��� � ��� �
� ���� ��� ���� ��� !� � !� �
! � � � � � � � �
� ��� �! �� � ���� �� ��� �
�� ���� �� ���� � ���� � �!�� �
�� ��� � ��� � ��� � ��� �
�� ��� � �� � �� � �� �
�� ������ �!�� ���� � ������ ���� ���� �
�� ������ �!�! ���� �� ���!��� ���� ���� ��
�� ������ ���� ��� � ������ ���� ���� �
�� ��� � ��� � �� � ��� �
�� �� � �� � �� � �� �
�! �� � �� � �� � �� �

Table �� Benchmark results with IP branch�and�bound search in SICStus FD	Q��
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�
�
 Hybrid CPIP search

The algorithm of ���� is a compromise between IP branch�and�bound and FD�style search� It�s
a CP search in the sense that it reduces all domains to singletons during search
 but an IP�style
search because it centers the labeling around the values given by the linear relaxations�

Table � shows the benchmark results for an implementation of this algorithm in SICStus FD	Q��

SICStus FD	Q�� FD � LP � PP � Hybrid search
Problem Original CG CG�MIG

Time BTs Time BTs Time BTs
� �� � !� � ��� �
� �� � �� � �� �
� ��� �� ��� �� ��� ��
� �� � �� � �� �
� ��� �� ��� �� ��� !
� ��� �� ��� �� ��� ��
� !��� ���� !��� ���� ��� �!
! �� � � � � �
� ��� �� ��� � ��� �
�� ����� ��� ����� ��� ����� ���
�� �!� �� ��� � ��� ��
�� ��� � �� � �� �
�� ������ ���� !!�� �!� ����� �!�
�� ������ ����� ����� ��� ����� ���
�� ������ ���� !��� ��� ���� ���
�� ��� �� ��� � ��� �
�� ��� � �� � �� �
�! ��� � ��� ! �� �

Table �� Benchmark results with hybrid search in SICStus FD	Q��

��� Satisfaction of IP

A second use of the constraint model discussed in this paper
 apart from optimization
 is satisfac�
tion� The use of this is mostly to �x or constrain one or a few variables and then
 possibly given
a constrained objective function
 check satisfaction of the problem�

To illustrate the e�ciency one can expect for such a situation
 we have compared the di�erent
solution techniques for obtaining solutions within �"
 �" and ��" of the optimal value� The
results are summarized in the Table ��

� Conclusion

For the pure problem IP�
 an IP�style branch�and�bound search using linear relaxations is supe�
rior� The easier of the benchmarks are solvable in reasonable time also with an CP search
 but
breaks down when the problem grows� Hybrid search ���� is better than CP
 but cannot compete
with IP branch�and�bound�

For IP�
 it is still unknown if we can �nd good linear relaxations for the additional logical and
symbolic constraints so that a pure IP search can handle the problem�

��



SICStus FD	Q�� CG � MIG � PP �
FD � LP � IP search

SICStus FD	Q�� CG � MIG � PP �
FD � LP � FD bisect
 �c

Problem �" �" ��" �" �" ��"
Time BT Time BT Time BT Time BT Time BT Time BT

� �� � �� � �� � ��� � ��� �� ��� �
� �� � �� � �� � !� � ��� ! ��� �
� ��� � ��� � ��� � ��� � ��� � ��� �
� �� � �� � �� � �� � �� � �� �
� �� � !� � !� � ��� � ��� �� ��� �
� ��� � ��� � ��� � �!� �� ��� � ��� �
� �� � �� � �� � ��� � ��� � ��� �
! � � �� � � � � � � � � �
� ��� � ��� � ��� � ��� � ��� � ��� �
�� �!�� � ���� � ���� � ���� � ���� � ���� ��
�� ��� � ��� � �� � ��� � ��� � ��� �
�� �� � �� � �� � �� � �� � �� �
�� ���� �� ���� �� ���� �� ����� ��� �!���� ����� ������ ���!
�� ���� �� �!�� �� ���� � ����� ��� ����� ��� �!�� ��
�� ����� ��� ���� �� ���� � ����� ��� ���� �� ��!��� �!��
�� ��� � ��� � ��� � ��� � ��� � ��� �
�� �� � �� � �� � �� � �� � �� �
�! �� � �� � �� � �� � �� � �� �

Table �� Benchmark results for �nding solution within �"
�" and ��" of optimum�

Solving satis�ability instances of IP is easier for the CP search
 but only marginally so for IP
branch�and�bound�

A good commercial solver like CPLEX or Lindo is about a magnitude or two faster than a similar
code in SICStus Q�� It is unclear whether this is due to CLPQ�
 the link FD�Q or the search�

� Future Work

The main future research direction is to continue to explore how IP� can be solved e�cently and
 exibly� This involves de�ning the side constraints of IP� and extend the techniques used the IP
problem to handle them� For example
 a linearization of the side constraints are needed for the
pure branch�and�bound approach� We also need get hold of or create representative benchmarks
problems�

There is also a set of minor research topics that should treated� We should investigate using other
LP solvers than SICStus Q� as backends
 since there is some evidence that this would improve
solution times� Another path to explore further is preprocessing and search strategies� both can
be further re�ned and for example CPLEX or other IP solvers could be used as reference and
comparison�

Extending SICStus FD��s arithmetic constraints to allow for real or rational coe�cients would
allow a more succinct use of e�g� the mixed�integer Gomory or any other fractional cuts to improve
propagation� This would be a more succinct and precise alternative to scaling of these cuts�

Finally
 there are also a couple of interesting new techniques for improved domain reduction�
One is the reduced�cost propagation
 which was outlined in Sec� �����
 the other that might be
interesting to explore is projection propagation ���� As domain reduction techniques
 they would
primarily bene�t the FD and hybrid searches investigated above
 but might also prove valuable in

��



the extension needed for branch�and�bound to handle the side constraints of IP��

� Acknowledgements

The research reported herein was funded in part by SICS with a grant from the Swedish National
Board for Technical and Industrial Development NUTEK�
 and in part by Tacton Systems AB�
The benchmark data was kindly provided by Tacton Systems AB�

References

��� H� Beringer and B� De Backer� Combinatorial problem solving in constraint logic programming
with cooperating solvers� In C� Beierle and L� Pl#umer
 editors
 Logic Programming� Formal

Methods and Practical Applications
 Studies in Computer Science and Arti�cial Intelligence

chapter !
 pages �������� Elsevier
 �����

��� Y� Caseau and F� Laburthe� Solving various weighted matching problems with constraints�
Lecture Notes in Computer Science
 ����������
 �����

��� Yves Caseau and Fran$cois Laburthe� Solving small TSPs with constraints� In Lee Naish

editor
 Proceedings of the ��th International Conference on Logic Programming
 pages ����
���
 Cambridge
 July!��� ����� MIT Press�

��� CPLEX� CPLEX Manual
 ���!� URL http�		www�cplex�com�

��� Filippo Focacci
 Andrea Lodi
 and Michela Milano� Integration of cp and or methods for
matching problems� In CP�AI�OR��� Workshop on Integration of AI and OR techniques in

Constraint Programming for Combinatorial Optimization Problems�

��� Filippo Focacci
 Andrea Lodi
 Michela Milano
 and Danielo Vigo� Solving tsp through the
integration of or and cp techniques� In CP�� Workshop on Large Scale Combinatorial Opti�

misation and Constraints�

��� Andreas Fordan� Linear projection in clpfd��

�!� Lindo� Super Lindo �	
� URL http�		www�lindo�com�

��� LP Solve� LP Solve �	�� URL ftp�		ftp�es�ele�tue�nl	pub	lp solve�

���� George L� Nemhauser and Laurence A� Wolsey� Integer and Combinatorial Optimization�
John Wiley and Sons
 New York
 ��!!�

���� Robert Rodosek
 Mark Wallace
 and Mozafar Hajian� A new approach to integrating mixed
integer programming and constraint logic programming� Baltzer Journals
 �����

���� M�W�P� Savelsbergh� Preprocessing and probing for mixed integer programming problems�
ORSA Journal on COmputing
 ���������
 �����

��


