View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Swedish Institute of Computer Science Publications Database

SICS Technical Report
T99:03
ISSN 1100-3154

Tagging and Morphological Processing
in the «vc.sx System

Fredrik Olsson
fredriko@sics.se

March 1998

Abstract: This thesis describes the work of providing separate morphological processing and
part-of-speech tagging modules in the svensk system by integrating the Uppsala Chart Pro-
cessor (UCP) and a Brill tagger into the system. svensk employs GATE (General Architecture
for Text Engineering) as the platform in which the components are to be integrated. Two pre-
processing modules, a tokeniser and a sentence splitter for Swedish, were developed in order
to facilitate the preparation of the texts to be analysed by UCP and the Brill tagger. These
four components were then integrated in GATE together with a newly developed viewer for
displaying the results produced by UCP.

The thesis introduces the reader to the svensk project, the GATE system and its underlying
parts, especially the database architecture which is based on the TIPSTER annotation model.
Further, the issues in connection with the development and design of the tokeniser and the
sentence splitter for Swedish are elaborated on. The mechanisms behind transformation-based
error-driven learning methods as employed by the Brill tagger are introduced as well as the
principles of chart processing in general and UCP in particular. The greater part of the thesis
is devoted to the process of integrating the natural language (NL) modules in GATE using the
Tcl/Tk application programmers interface (API) and a so-called loose coupling.

The results of the integration of the NL modules are very encouraging: it is possible to
mix modules written in programming languages from completely different paradigms (in this
case the languages are Common LISP, Perl and C) and to have them interact with each other,
thus maintaining a high degree of reuse of algorithmical resources. However, the use of Tcl/Tk
and the associated APT for processing structurally relatively complex data, i.e. the output from
UCP, is time consuming and considerably slows the processing in GATE.

Keywords: Reusing Swedish language engineering software, SVENSK

https://core.ac.uk/display/11433703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis describes the work of providing separate morphological processing and part-of-speech
tagging modules in the svensk system by integrating the Uppsala, Chart Processor (UCP)
and a Brill tagger into the system. svensk employs GATE (General Architecture for Text
Engineering) as the platform in which the components are to be integrated. Two pre-processing
modules, a tokeniser and a sentence splitter for Swedish, were developed in order to facilitate
the preparation of the texts to be analysed by UCP and the Brill tagger. These four components
were then integrated in GATE together with a newly developed viewer for displaying the results
produced by UCP.

The thesis introduces the reader to the svensk project, the GATE system and its underlying
parts, especially the database architecture which is based on the TIPSTER annotation model.
Further, the issues in connection with the development and design of the tokeniser and the
sentence splitter for Swedish are elaborated on. The mechanisms behind transformation-based
error-driven learning methods as employed by the Brill tagger are introduced as well as the
principles of chart processing in general and UCP in particular. The greater part of the thesis
is devoted to the process of integrating the natural language (NL) modules in GATE using the
Tcl/Tk application programmers interface (API) and a so-called loose coupling.

The results of the integration of the NL modules are very encouraging: it is possible to
mix modules written in programming languages from completely different paradigms (in this
case the languages are Common LISP, Perl and C) and to have them interact with each other,
thus maintaining a high degree of reuse of algorithmical resources. However, the use of Tcl/Tk
and the associated APT for processing structurally relatively complex data, i.e. the output from
UCP, is time consuming and considerably slows the processing in GATE.

Acknowledgments

This work has been funded by the Swedish Institute of Computer Science (SICS) and carried
out at the Department of Linguistics at Uppsala University.! 1 wish to thank my supervisors
Anna Sagvall Hein, Bjorn Gambéck and Mikael Eriksson for moral and technical support as
well as for giving me the opportunity to work with a thesis on an interesting topic. I also wish
to thank Hamish Cunningham and Pete Rodgers for quick and invaluable help regarding GATE
technicalities. Many thanks to Per Starbéck for setting up our local GATE system. Finally,
thank you all who made this possible.

Fredrik Olsson

fredriko@stp.ling.uu.se

!SICS is a non-profit research foundation. The core of the research is financed by the Swedish National
Board for Technical and Industrial Development (NUTEK), Telia AB, Ericsson, CelsiusTech Systems, Forsvarets
Materielverk (FMV), Statens Jarnvéigar (SJ), IBM Svenska, Hewlett-Packard Sweden and Sun Microsystems.

Contents

Abstract
Acknowledgments . . .

Table of contents . . .

1 Introduction

1.1 Some general problems in developing NL systems

1.1.1 Reuse of data and algorithmic resources

1.1.2 The toy problem syndrome

1.1.3 Evaluation of NL systems

1.1.4 Summary of requirements Lo oo

1.2 Outline of the thesis

2 Background

2.1 The svensk Project e

2.1.1 Goal of the svensk Project L.

2.1.2 Achievements and future plans

2.2 The GATE System e e

2.2.1 The GATE Document Manager — GDM

2.2.2 The GATE Graphical Interface — GGI

2.2.3 The Collection of REusable Objects for LE — CREOLE

2.2.4 Fulfillment of the requirements outlined in Section 1.1.4

2.3 The TIPSTER Architecture o o e e s i e

2.3.1 Attributes, documents and collections

2.3.2 Document annotations e e

2.3.3 Standard document annotations

2.3.4 Differences between the GDM and TIPSTER

3 A tokeniser and a sentence splitter for Swedish

3.1 A tokeniser for Swedish

3.1.1 Problems of tokenisation oo

3.1.2 Overview

ii

iii

10
11
11
12
12
12
13
13

15

3.1.3 Interface e 17

3.1.4 Limitations L L 18

3.2 A sentence splitter for Swedish o, 18
3.2.1 Some problems in finding sentence boundaries. 18
3.2.2 Overview L 19
323 Interface. 19
3.24 Processing 20
3.2.5 Limitations e 20

4 Modules for pos-tagging and morphological processing 23
4.1 A Brill tagger for Swedish oL o 23
4.1.1 Transformation-based error-driven learning methods 24
4.1.2 Pos tagging by means of a Brill tagger 24
4.1.3 Interface e 26
4.1.4 Limitations L 27

4.2 The Uppsala Chart Processor 27
4.2.1 The essence of chart processing oL 27
4.2.2 Morphological processingin UCP 29
423 Interface. 30
4.2.4 Limitations e 32

5 Integrating modules in GATE 33
5.1 Different types of couplings Lo 34
5.2 The creole config.tcltemplate 34
5.3 The moduleName.tcl template 35
5.4 Remarks on integrating the NL modules in GATE 36
5.5 Integrating the tokeniser L Lo o 36
5.5.1 Preparing the input Lo 37
5.5.2 Invoking the tokenisero 37
5.5.3 Recording the output L oo 38

5.6 Integrating the sentence splitter o Lo 38

5.6.1 Preparing the input L 38

5.6.2 Invoking the sentence splitter L oL 40

5.6.3 Recording the output L Lo 41

5.7 Integrating the Brill tagger o L . 41
5.7.1 Preparing the input o Lo 42

5.7.2 Invoking the Brill tagger oL 42

5.7.3 Recording the output Lo oL 44

5.8 Integrating the Uppsala Chart Processor, 45
5.8.1 Preparing theinput o o 46

5.8.2 TInvoking UCP e 47

5.8.3 Recording the output L oo 48

5.8.4 Viewing ambiguities — the single_span_ambiguities viewer 49

6 Concluding discussion and future work 53
Bibliography 54
Appendices 61
A Trouble-shooting — 4 questions and answers about integration 63
B A brief overview of Tcl 65
B.1 Syntax oL 66
B.2 Variables L 67
B.3 Control flow 68
B4 Procedures e e 70
B.5 List and string manipulation 0 o L oo 72
B.6 File I/O and external processes oo 75
B.7 Errors and exceptions L L 77

C The GDM Tcl API 79
D Source code 81
D.1 The wrapper for the tokeniser for Swedish 81
D.2 The wrapper for UCP 85

D.3 Source code for the single_span_ambiguities-viewer

Chapter 1

Introduction

The aim of this work is two-fold: to integrate separate morphological processing and part-of-
speech (pos) tagging modules in the svensk system by integrating the UCP and a Brill tagger,
trained on Swedish texts, into the platform used and to evaluate the results of the integration.
The work has been carried out at the Department of Linguistics, Uppsala University, in col-
laboration with the Swedish Institute of Computer Science (SICS) during the period April -
November in 1997 as a part of the svensk project.

A Brill tagger constitutes the pos-tagging module while the Uppsala Chart Processor (UCP)
is used as morphological analyser. The tagger is currently being trained on a Swedish corpus de-
veloped at the Department of Linguistics at the Uppsala University within the ETAP project.!
The UCP has been used within several research projects, most recently as a part of a grammar
checker for controlled Swedish in the SCANIA project [Sagvall Hein et ol 1997]. Two additional
natural language (NL) components, a tokeniser and a sentence splitter for Swedish, were devel-
oped to enable the integration of the Brill tagger and the UCP into the svensk system. The
task of the tokeniser and the splitter is to pre-process texts to make them meet the requirements
that the Brill tagger and the UCP pose on the input.2

svensk is intended as a tool-box containing natural language processing components and
resources for Swedish, primarily aimed at teaching and research. Until the start of this thesis,
a number of components had already been successfully integrated in the system by SICS, e.g. a
two-level morphology for Swedish (SWETWOL) [Karlsson 1992]; a constraint grammar tagger
for Swedish (SWECG) based on the same technique as the one for English [Karlsson et al 1995];
and a deep-level unification-based processor (DUP) utilizing a Swedish unification-based gram-
mar [Gambéck 1997] and an LR parser [Samuelsson 1994]. svensk is based on the GATE (Gen-
eral Architecture for Text Engineering) framework which is being developed at the Department
of Computer Science at the University of Sheffield. The GATE system in itself is language and
domain independent, providing merely a platform in which NL programs may “talk” to each
other using a standardised interface (a so called “wrapper”) to a database. The strong modular-
ity of GATE gives users the choice of working with supplied NL systems or to create their own,
built from integrated modules in a point-and-click fashion. The system is also equipped with
a set of “viewers”, that is, programs that format and display the contents of the database in a

!Etablering och annotering av parallellkorpus for igenkinning av Gversittningsekvivalenser (Creating and
annotating a parallel corpus for the recognition of translation equivalents). Information about ETAP can be
found on the Internet at the address: stp.ling.uu.se/ corpora/etap/ .

2Henceforth, the tokeniser and the sentence splitter for Swedish are referred to as the tokeniser and the splitter,
respectively, unless the context requires more elaborate expressions.

number of different ways depending on the nature of the data under consideration. Apart from
the NL components dealt with in this thesis, a viewer called the single _span ambiguities-
viewer was implemented and integrated into GATE. The viewer allows for displaying tokens (or
words) in the input that are assigned several morphological readings by UCP. It is designed to
handle ambiguities in terms of entities in the input that may receive zero or more analyses from
some NL program; the intention is that it should be general enough to be used for displaying
data similar to the output from UCP produced by any NL program.

Some efforts related to GATE has been made both in the US and in Europe, e.g. the multi-
modal Open Agent Architecture™ (OAA) developed by SRI International [Cohen et al 1989,
Moran et al 1997]; the Advanced Language Engineering Platform (ALEP), which is an initia-
tive of the European Commission [Simpkins & Groenendijk 1994, Bredenkamp et al 1997]; and
the German Verbmobil architecture [Bub & Schwinn 1996]. Although the latter architecture is
primarily intended to fit the needs of a specific project, a range of NL modules stemming from
different developers as well as from different paradigms of programming languages, were inte-
grated in it. The similarity between these systems and GATE lies in the way the architectures
have been designed, that is, they are all open-ended systems facilitating rapid incorporation of
NL modules in existing, or as parts of new, systems.

1.1 Some general problems in developing NL systems

Apart from the vast area of unanswered questions and unsolved problems in the field of
computational linguistics, language engineering faces some problems of its own (as discussed
in [Gaizauskas et al 1996a]). Among these, two are of primary importance since they constrain
how the field can develop and must therefore be acknowledged and addressed.

e There is no theory of language which is universally accepted, and there is no uncontested
computational model of even a small part of any of the theories presented so far.

e To build an intelligent system that reproduces enough language processing capability to
be useful, is a large-scale project, that, given the political and economic state of the world
today, must rely on the efforts of many small groups rather than a few big ones. This
implies that, without having the possibility of reusing algorithmic and data resources of
other people’s work, these small groups would have to “reinvent the wheel” repeatedly.

Some common problems in developing NL systems are introduced in the next few sections.
The problems have all been attended to, one way or another, by the people at the University of
Sheffield when designing and developing GATE. An outline of GATE’s capabilities in relation to
these problems and the requirements they pose on any NL system is to be found in Section 2.2.4.

1.1.1 Reuse of data and algorithmic resources

One of the main problems in research and development (R&D) of NL systems is how to reuse
already existing resources of data and algorithms. Intuitively, reuse of data (e.g. corpora) is eas-
ier to achieve, one key reason for this being that integration and reuse of existing, algorithmical,
components can be a major undertaking. There are repositories for both algorithms (e.g. The
Natural Language Software Registry which is an initiative of the Association for Computational
Linguistics (ACL)) and data (e.g. The Ozford Text Archive (OTA)). A survey of electronic
corpora can be found in [Edwards 1993, chapter 10].

1.1.2 The toy problem syndrome

The approach to natural language taken within the field of artificial intelligence (Al) is some-
times called the “toy problem syndrome”, referring to the trend in this field towards artificial,
small-scale applications of the technology under development. Scaling up such a “toy” system
domain to a real-world task, e.g. a commercial application, has often shown the technology
used in the toy system to be unsuitable for the job. For example, in [Cunningham et al 1995,
pages 4-5] the authors describe the failure of a large-scale Prolog grammar project that started
in 1985. It turned out that the cause of the failure was the total lack of evaluation methods for
parsing projects at that time. In other words, when creating a small, theoretically and practi-
cally sound system, one might overlook parameters that would make it impossible to enlarge it
to a real-world system.

1.1.3 [Evaluation of NL systems

A big problem in evaluating NL systems is to determine precisely what the criteria of suc-
cess should be. Such criteria depend on, of course, for what the system in question is in-
tended to be used. For instance, methods and criteria for evaluating machine translation (MT)
systems have been, and are currently being, investigated (for an introduction to this topic,
see [Hutchins & Somers 1992, chapter 9]), while the corresponding methods for information
retrieval systems are fuzzier.

An introduction to evaluation concepts for various areas of NL systems is given in, for in-
stance, [Hirschman et al 1996, Gambéck 1997]. Three kinds of evaluation can be distinguished,
appropriate to three different goals. The first is adequacy evaluation, which is a determination
of the fitness of a system for a purpose — will it do what is required and at what cost, etc.
The second kind is diagnostic evaluation, which typically involves the production of a system
performance profile and is often used by system developers. The third kind is performance
evaluation, which is a measurement of system performance in one or more specific areas. It is
used, for instance, to compare two alternative implementations of a technology, or successive
generations of the same implementation.

Participants in the research programmes sponsored by the US government (DARPA), such
as the TIPSTER programme [TIPSTER 1996], the Message Understanding Conference (MUC)
and the Text Retrieval Conference (TREC) competitions, for example, build NL systems to
perform well defined tasks on selected pieces of texts. However, this requires a lot of resources,
economic as well as human, and is therefore not always possible to accomplish in a general
research project. In MUC and TREC, human analysts are employed to produce correct answers
for some set of previously unseen texts, and the systems run to produce machine output for
those texts. The machine output is then evaluated (so called comparative evaluation) with
respect to the output produced by the humans.

1.1.4 Summary of requirements

From the previous sections, one may extract a list of requirements an NL system should be able
to meet in order to eliminate/reduce the problems introduced above. Such a system should
then (see [Cunningham et al 1995]) be able to:

e support, collaborative research, e.g. research groups working in the same project should
be able to concentrate their efforts to different parts of it, knowing that combining the
parts to a whole is not a problem;

e support ’plug-and-play’ module interchangeability and reuse of resources, algorithmic as
well as data. For instance, in a NL system, it should be easy to replace an existing parser
with a new one without having to alter anything in the rest of the system;

e contribute to portability across problem domains and application areas as well as across
programming languages and operating systems;

e support (comparative) evaluation at a reasonable cost, that is, the underlying platform
should support incorporation of test-suites developed at other sites as well as support
creation of such suites for distribution to other research groups. The system should also
provide the users with tools for comparing test suites.

Software engineering issues are also more important as the language engineering systems
grow bigger. Robustness, quality and efficiency at the software level are areas that must be
addressed in the process of transferring LE technology from the research lab to the marketplace.

1.2 Outline of the thesis

This section describes the organisation of the rest of the thesis. Chapter 2 introduces the
reader to the svensk project, its goal and future plans (in Section 2.1); the GATE platform,
its parts and its relation to the list of requirements outlined above (in Section 2.2); and the
TIPSTER annotation model, which is the base for storing information about texts in GATE
(in Section 2.3).

Chapter 3 presents two pre-processing modules developed explicitly for this thesis: a to-
keniser and a sentence splitter for Swedish. The tokeniser is dealt with in Section 3.1 where
some problems in identifying tokens are introduced and exemplified together with an overview
of the tokeniser and how it works as a stand alone program as well as in GATE. Section 3.2
presents the sentence splitter by first introducing some problems in finding sentence boundaries
followed by an overview of the splitter in the same manner as was given for the tokeniser.

Chapter 4 focuses on the modules for part-of-speech tagging and morphological processing,
that is, the Brill tagger for Swedish and the Uppsala Chart Processor (UCP) (Sections 4.1
and 4.2, respectively). The general method used by the tagger to infer rules from a corpora is
introduced in Section 4.1.1 and the way it applies to pos tagging in Section 4.1.2. The tagger’s
interface as a stand alone program as well as with GATE is presented in Section 4.1.3 followed
by its limitations in Section 4.1.4. The section about UCP starts off by introducing chart
processing in general in Section 4.2.1 and, very briefly, how the morphological competence is
realised by means of chart processing in UCP in Section 4.2.2. The interface and limitations
are presented in Sections 4.2.3 and 4.2.4, respectively.

Chapter 5 contains the core of this thesis, that is, how the NL modules described in Chap-
ters 3 and 4 were integrated in GATE. The chapter starts with a description of the different
types of couplings available between NL modules and the GATE Document Manager (GDM)
in Section 5.1 while Sections 5.2 and 5.3 introduce the two templates, creole_config.tcl and
moduleName.tcl, used for creating so-called GATE wrappers. Section 5.4 presents the method
used for integrating the NL components in GATE. The integration of the tokeniser is elaborated

on in Section 5.5: it is the least complex wrapper implemented in this thesis and its structure
is adopted in the wrappers created for the other NL modules. Section 5.6 shows the integration
of the sentence splitter, followed by Section 5.7, in which the integration of the Brill tagger is
elaborated on. The most complex wrapper is the one for UCP introduced in Section 5.8, the
main difference between it and those for the other NL. modules is the way it has to process the
output produced by the NL module: the UCP wrapper has to read the output cumulatively
until enough information has been collected (typically several lines at a time) before recording
it in the GDM. This is not the case for the other wrappers. As will be described later on, GATE
provides a set of viewers for formatting and displaying the data produced by the different NL
modules. Since it turned out that none of the existing viewers were able to display data in the
format produced by UCP, a new viewer was designed and implemented (Section 5.8.4).

Chapter 6 concludes the thesis by a discussion of the results, an estimation of the time spent
in the various parts of the thesis and some pointers to possible future work.

There are four appendices included in this report. The first of which, Appendix A, contains
some practical questions that arose during the process of integrating the NL modules in GATE
together with the answers to those. Appendix B briefly introduces the parts of the Tcl scripting
language necessary for the work performed in this thesis as well as some additional pointers
to where the reader can gain more information on the subject. Appendix C contains a listing
of the methods available in the GDM Tcl applications programmers interface (APT). Finally,
Appendix D contains some of the source code produced. Section D.1 lists the code for the
simplest of the wrappers, that is, the tokeniser, while Appendix D.2 lists the code for the UCP
wrapper. The intention of these listings is to let the reader compare the wrappers’ structure
as well as the procedures used in them to order get an idea of what a wrapper might look like,
what procedures are needed and how the complexity of the input/output of a NL module affects
the complexity of the wrapper. Section D.3 lists the source code for the new viewer, called the
single span ambiguities-viewer.

Chapter 2

Background

This chapter introduces the reader to the svensk project in Section 2.1: the goal in Sec-
tion 2.1.1, and achievements and future plans in Section 2.1.2. Section 2.2 presents the GATE
system and its three constituting parts: Section 2.2.1 elaborates on the underlying document
management component — the GATE Document Manager (GDM) — which is the most im-
portant part of GATE; the GATE Graphical Interface (GGI) is introduced in Section 2.2.2;
and the Collection of REusable Objects for LE (CREOLE) in Section 2.2.3. The relation be-
tween GATE and the requirements outlined in Section 1.1.4 is elaborated on in Section 2.2.4.
The TIPSTER annotation model, which is used in the GDM, is introduced in Section 2.3:
Section 2.3.1 presents the notion of attributes, documents and collections used within the anno-
tation model; Sections 2.3.2 and 2.3.3 introduce document annotations and standard document
annotations, respectively. Finally, the difference between the TIPSTER architecture and the
GDM is outlined in Section 2.3.4

2.1 The svensk Project

The svensk project [Eriksson & Gambick 1997a, Eriksson & Gambéack 1997b,
Olsson et al 1998] is carried out at SICS. The project is divided into three phases, the
first of which covered the period from spring 1996 to the end of 1996, and the second from
the beginning of 1997 to August 1997. The third phase is planned and funded for the period
January 1998 to December 1999. svensk has been funded by the Swedish National Board for
Industrial and Technical Development (Nutek) and SICS.

2.1.1 Goal of the svensk Project

The goal of the project! is to develop a multi-purpose language processing system for Swedish
based, where possible, on existing components. The generality of the system arises from its
adherence to general principles of language engineering, combined with tools which facilitate
adaption to specific domains and applications. Each component is integrated into a language
engineering development platform which, together with the definition of standard interfaces,
ensures interoperability of major components. The system makes it possible to incorporate
linguistic resources (such as lexica, tagged corpora, etc) provided by Swedish universities and

! As adopted from the project plan available on the Internet at: sics.se/humle/projects/svensk.html

research institutes, so that svensk can be seen as a computational linguist’s toolkit for the

Swedish language. The components can be tested for robustness and accuracy on test suites
from a number of specific application domains. Documentation describes how users can adapt
the system to their own domains and applications (such as dialogue systems and machine
translation).

2.1.2 Achievements and future plans

When the first phase of the project was concluded at the end of 1996, the main deliverable was
the GATE system together with the following, integrated, components:

e SWETWOL - a comprehensive morphology for Swedish [Karlsson 1992] based on the
two-level morphology technique presented in [Koskenniemi 1983];

o SWECG - a constraint grammar for Swedish based on the same technique used in the
one for English [Karlsson et al 1995].

Both SWETWOL and SWECG were originally developed by the Department of General Lin-
guistics, University of Helsinki and then turned into a commercial product by Lingsoft Inc.,
Helsinki.

e DUP - a deep-level unification-based processor utilizing a Swedish unification-based gram-
mar [Gambéck 1997] and an LR parser [Samuelsson 1994];

e DSP — a domain-specific parser [Sunnehall 1996];

e SWECG2CLE - a conversion module that converts SWECG tags into corresponding CLE
(Core Language Engine) features which can serve as input to DUP.

DUP and DSP were previously developed at SICS for other projects; DUP together with Telia
and SRI International for the Spoken Language Translator project (SLT) [Rayner et al 1993];
DSP as a part of svensk and the Olga project, in which a multi-modal system for informa-
tion services was developed [Beskow et al 1997]. SWECG2CLE was developed explicitly for
converting between data sets in svensk.

A technical specification of these components in svensk is available in [Eriksson 1997]. At
the end of phase two, the main deliverable included the components introduced above as well
as components supplied by Swedish academia.

2.2 The GATE System

GATE is short for General Architecture for Text Fngineering. Tt is a system developed at
the Department of Computer Science at the University of Sheffield, and funded by the U. K.
Engineering and Physical Sciences Research Council (EPSRC) and the U. K. Department of
Trade and Industry. The current release of GATE is version 1.5, see [Cunningham et al 1995,
Cunningham et al 1996, Gaizauskas el al 1996a]. GATE does not adhere to a particular lin-
guistic theory, but is rather an architecture and a development environment designed to fit
the needs of researchers and application developers. It presents users with an environment in

CREOLE GGl

Figure 2.1: The three elements of GATE

which it is easy to use and integrate tools and databases, all accessible through a friendly user
interface. As can be seen in Figure 2.1, the GATE consists of three major parts.

e The GATE Document Manager (GDM) in which texts and information about them can
be stored and retrieved. The GDM is based on an object-oriented database schema, called
the TIPSTER architecture (see Section 2.3).

e The GATE Graphical Interface (GGI) for launching processing tools on data and viewing
and evaluating the results.

e A Collection of REusable Objects for Language Engineering (CREOLE) which is a collec-
tion of wrappers for algorithmic and data resources that inter-operate with the database
and the interface.

With a GATE distribution comes, amongst other things, a fully working information extrac-
tion system called the Vanilla Information Eztraction system (VIE) [Humphreys et al 1996].
The VIE system is built from language engineering (LE) components such as pos-taggers, syn-
tactic parsers and a discourse interpreter. It is an example of GATE’s capabilities as an aid
in building large and fully functional systems from existing components. Some of the compo-
nents used in VIE are at the same time used in other systems, hence the tokeniser, the sentence
splitter and the two pos-taggers constitute the components of two separate pos-tagging systems.

2.2.1 The GATE Document Manager — GDM

The GDM is based on the TIPSTER database architecture. It serves as a communication
center for the components in an LE system in GATE since it stores all information such a
system generates about the texts it processes. The GDM insulates the parts from each other
and provides a uniform API for handling the data produced by the system.

The way information is handled by the TIPSTER database model (and thus, by the GDM)
is elaborated on in Section 2.3.2. In short, information about a text is stored as annotations

associated to sequences of byte offsets in the original text. Each annotation may have sev-
eral attributes, which in turn may have zero or more values. In Table 2.1 (which is taken
from [Cunningham et al 1995]), there is, for example, an annotation of the type token associ-
ated with the single span 0 and 5, where 0 is the starting byte offset and 5 is the ending one.
In the original text, this corresponds to the word Sarah. To the token annotation is associated
an attribute called pos (short for part of speech) with the value NP.

Text
Sarah savored the soup.
0.../5...]10..[15..|20
Annotations
1d | Type Span Attributes
Start | End
1 | token 0 5 | pos=NP
2 | token 6 13 | pos=VBD
3 | token 14 17 | pos=DT
4 | token 18 22 | pos=NN
5 | token 22 23
6 | name 0 9 | name_type=person
7 | sentence 0 23

Table 2.1: An example of what an annotation in GDM may look like.

The GDM is organised in such a way that source texts and the information about them
are separated. The byte offsets are used as pointers into the original text in order to enable
separate storage of the source text and the database holding information associated to it. The
opposite approach would be to add information to the source text, as is the case with SGML.
See [Cunningham et al 1995, appendix A] for a discussion of these two ways of storing informa-
tion.

2.2.2 The GATE Graphical Interface — GGI

The GGI is a graphical launch-pad which enables interactive testing and building of NL sys-
tems within GATE. Various tasks that a user or a developer is likely to face are supported,
such as integrating modules (see chapter 5), building systems, launching them and viewing the
results [Gaizauskas et al 1996b]. The GGI is designed to provide a user with mechanisms to:

e create and access documents and collections and to run NL systems against single docu-
ments or entire collections of documents;
e view the results produced by the NL systems in an easy-to-understand fashion;

e alter the parameters of individual NL modules in order to make experiments easy to
conduct;

e add modules to the CREOLE set and to create new NL systems from the set available.

The philosophy of the interface, which is implemented in Tcl/ Tk, is to provide the user a
rich set of tools. There are, for example, six generic viewers for displaying the results of NL

systems, ranging from raw annotations to complex parse trees via non-ambiguous output from
part-of-speech taggers.

2.2.3 The Collection of REusable Objects for LE — CREOLE

The CREOLE modules/objects? in the GATE system are to be thought of as interfaces to
resources, either pure data or pure algorithmical or a mixture of both [Humphreys et al 1996].
A CREOLE module may be a wrapper around an already existing piece of NL software or it
may be an entire NL program developed explicitly for GATE compliance. Either way, it is the
CREOLE modules that perform the real work of analysing texts in a GATE NL system. Such
a module provides a standardised APIT to the underlying resources, that is, the GGI and the
GDM. There are three different ways by which a CREOLE module can communicate with the
rest of GATE: by using a loose, dynamic or tight coupling, each of which is realised by either
of two APIs, one in Tcl and one in C++ (see further chapter 5).

CREOLE modules encapsulate information about a program’s pre-conditions (what type
of annotations or attributes that must be present in the GDM for the program to run) and
post-conditions (what data will be the result). The tasks for a CREOLE module involve setting
up the environment for the NL program it implements or wraps up, e.g. processing arguments
given by the user via the GGI, as well as retrieving information from the GDM, invoking the
program, and taking care of the output produced, that is, format it and record it in the GDM.

2.2.4 Fulfillment of the requirements outlined in Section 1.1.4

The relation between the GATE system as such and the list of requirements presented in Sec-
tion 1.1.4 is strong. GATE supports collaborative research in that it allows for different research
groups to supply different parts of a larger NL system. Thus, each group can concentrate its
efforts on a single task rather than on tasks that are out of range for their current research, yet
necessary and crucial for the final result. Further, GATE supports reuse of resources, data as
well as algorithms, since it provides for well defined APIs that are easy to use (see chapter 5).
Once a NL module has been integrated in the system, it is very easy to combine it with already
existing modules to form new NL systems. GATE contributes to the portability of components
in the sense that software written in programming languages stemming from completely dif-
ferent paradigms can be mixed. However, the problem of portability across linguistic domains
and hardware platforms must still be addressed on component level rather than by GATE as a
system, for example, a parser written in assembler will not be easier to port to a new platform
just because it is integrated in GATE. Finally, the last point in the list in Section 1.1.4 concerns
(comparative) evaluation of NL systems. In [Cunningham et ol 1996], the authors say:

“Licensing restrictions preclude the distribution of MUC scoring tools with GATE,
but Sheffield may arrange for evaluation of LE components by other sites. In this
way, GATE/VIE will support comparative evaluation of LE components at a lower
cost than the ARPA programmes...”

Hence, the GATE system seems to satisfy the requirement of supporting evaluation at a rea-
sonable cost.

2The terms CREOLE module and CREOLE object are used interchangeably throughout this thesis unless
otherwise stated.

2.3 The TIPSTER Architecture

The TIPSTER project is led by the Defense Advanced Research Projects Agency (DARPA) and
it is funded by a number of US Government agencies (e.g. the Central Intelligence Agency, CIA,
and the Department of Defense, DoD). The first phase of the project was from 1991 to 1994, the
second phase from April 1994 to September 1996. Phase three started in October 1996 and it
continues to build on phases one and two. The architecture is developed with US Government
agencies with similar text handling requirements in mind. There are two main missions of the
TIPSTER project, the first of which is to provide developers and users with an architecture that
allows for document detection (information retrieval) in very large texts (several gigabytes). The
second mission is to provide an environment for research in document detection and data extrac-
tion. The architecture, which is described in [TIPSTER 1996, Grishman et al 1997], contains
four components: detection, extraction, annotation and document management. Detection is the
technology which performs text retrieval, extraction is the technology for identifying entities
and relations between entities in free text. The annotation component allows for information
sharing between the former two components described while the document management, com-
ponent handles files. Currently, the GATE platform supports document management classes
but not the information retrieval ones, see [Cunningham et al 1996, pages 16-18|.

2.3.1 Attributes, documents and collections

The TIPSTER architecture is described in terms of a set of objects. An object class is char-
acterised by a class name, a set of properties and a set of operations. Some of these objects
and operations must be implemented by any system conforming to the architecture while some
are optional. Since the classes in TIPSTER are well defined (see [Grishman et al 1997]), it is
possible to define standards for annotations that people may want to use in the communication
with (or between) TIPSTER conformant systems, but without requiring all such systems to
generate these annotations.

An attribute is a list of feature-value pairs, where a feature may be an arbitrary string and
the value may be any of a number of types in the TIPSTER architecture. There are a number of
attribute-related classes described in [Grishman et al 1997], e.g. AttributeValue which have
the operations GetValue and TypeOf. Attributes are common to several of the classes in the
architecture.

A document is one of the most central units in TIPSTER. It serves three basic functions: it
is the repository of information about a text and it is the atomic unit for building collections as
well as of retrieval detection operations. Each document is part of one or more collections and
it can be accessed only as a members of such. A collection is a compilation of documents. If
documents are thought of as chapters, the collection is the book containing them. In general,
collections are persistent in the TIPSTER architecture (documents are persistent by virtue of
being member of a collection) and thus have names, although the architecture also provides for
unnamed collections.

2.3.2 Document annotations

Annotations, along with attributes, provide the way by which information about a document
is recorded and transmitted between the modules of a TIPSTER based system. An annotation

keeps information about a portion of, or possibly an entire, document. The portion of a docu-
ment is specified by a set of spans. Each span, in turn, consists of a pair of integers denoting the
starting and ending points (in byte positions) in the raw document. The current span design
is concerned with character-based documents, i.e. not documents including information such as
pictures, video and audio. However, this is not a disadvantage in the work on this thesis since
the svensk project currently involves texts only.

An annotation associates a type with a span. A type may be token, sentence, paragraph
or dateline, for example. In addition to the types, an annotation may have associated with it
one or more attributes. Possible attributes may take a single string as a value, or they may
take annotations as values. An example of the former is the type-of-name attribute on a name
annotation, which might take on such values as person, country, company, etc. An example
of an attribute whose value is another annotation would be a co-reference pointer. Table 2.1
shows an example of annotations in GATE, which conform to the TIPSTER standard.

In most of the cases, an annotation is associated with a single span (and thus, a contiguous
portion of the document). However, it is possible for an annotation to be associated with several
spans at the same time, providing for a single attribute to describe a sequence of portions of
the original text as in the case of discontinuous linguistic elements, e.g. the verb-particle pair in
“Hoppa inte pa taget!” (literarely translated as “Jump not on the train” and meaning “Don’t
board the train”). The TIPSTER architecture does not, in its current version, allow annotations
to modify the text in such a way that subsequent accesses to the text can see the modified version
in place of the original one.

2.3.3 Standard document annotations

A number of standard structural and linguistic annotation types are defined in TIPSTER. The
structural types can be used to distinguish between text, tables and graphics, e.g. TextSegment
and GraphicsSegment. Text segments may consist of one or more languages and information
about this can be recorded by annotations of the type Monolingual TextSegment, which, in turn,
have two attributes: Language and CharacterSet. Another aspect of structural information
is the header and body annotation types. A document body may be divided into paragraphs
that may be divided into sentences which, in turn, may be divided in tokens. According to
[Grishman et al 1997, page 23], the capability to annotate sentences and tokens will be obliga-
tory for a TIPSTER system.

The names and co-reference tagging as defined for the MUC-6 competition are considered as
standard linguistic annotation types. Similarly, the Penn TreeBank part-of-speech tags consid-
ered a standard for English. All three linguistic annotation types mentioned here are optional.

2.3.4 Differences between the GDM and TIPSTER

GATE currently supports the document management subset of the TIPSTER specification.
The information retrieval classes are not available (see [Cunningham et al 1996, pages 16-18]).
There are GATE APIs in the C++ and Tcl programming languages while the original TIPSTER
model is defined in C (the C language header file is available in [Grishman et al 1997, Appendix
C]). The GATE C++ API differs from TIPSTER’s C API in style but not in functionality.

Chapter 3

A tokeniser and a sentence splitter
for Swedish

This chapter presents two pre-processing modules developed explicitly for this thesis: a tokeniser
and a sentence splitter for Swedish, both of which are based on modules that come with the
VIE system [Humphreys et al 1996, chapters 3 and 4]. In the following, the terms tokeniser
and sentence splitter refer to the ones developed for Swedish, unless otherwise stated. The
tokeniser is dealt with in Section 3.1 where some problems of identifying tokens are introduced
and exemplified (in Section 3.1.1), together with an overview of the tokeniser (in Section 3.1.2);
an explanation of how it works as a stand alone program as well as in GATE (in Section 3.1.3);
and its limitations (in Section 3.1.4). Section 3.2 presents the sentence splitter starting with
an introduction of some problems in finding sentence boundaries (in Section 3.2.1), followed
by an overview of the splitter (in Section 3.2.2), its interface as a stand alone program and
towards GATE (in Section 3.2.3), its processing (in Section 3.2.4), and finally, its limitations
(in Section 3.2.5).

3.1 A tokeniser for Swedish

The tokeniser is a fairly naive approach to the problem of tokenising raw text in that it uses
mostly structural, and only a limited amount of linguistic, information in its aim to recognise
tokens. Structural information conveys information about individual characters and the way
by which they can be combined to form tokens. Linguistic information says something about
entities possibly larger than a single character. For instance, the use of linguistic information
may promote the classification of a sequence of characters as a token even though the structure
of the sequence will not. The tokeniser for Swedish is used as a pre-processing module for
the sentence splitter for Swedish described in Section 3.2 and for the Uppsala Chart Processor
(UCP) in Section 4.2.

3.1.1 Problems of tokenisation

The problem of tokenisation is often left aside even though tokens are the basic items in many
text processing systems (see e.g. [Karttunen et al 1996, Guo 1997, Habert et al 1998]). Tokeni-
sation is far from trivial, but still, when it comes to western languages little research has been

done in the area. Some, but not all, of the tokens may be described and identified without the
use of linguistic knowledge. In [Grefenstette & Tapanainen 1994], the authors consider the to-
kenisation process as selectively passing the text through a set of modular filters. Their method
manages to identify 98.35% of the sentences in the Brown corpus using only non-linguistic
knowledge for the identification of tokens.

Numbers (e.g. 128.45), dates (e.g. 97-10-01) and acronyms (e.g. ATET) are examples of
tokens that may contain ambiguous punctuation. An ambiguous punctuation mark is one which
causes trouble in deciding whether the token it is attached to is to be considered as the ending
token of a sentence or not. As a step towards disambiguating punctuation marks in tokens,
some questions are in place:

1. What characters are to be considered as punctuation marks?
2. In what classes of tokens can the language under consideration be divided?

3. How can tokens from these classes be recognised?

(1) It may be argued that any character in the ISO 8859-1 character set (also known as Latin
1), except for the non-readable control character sequences, alpha-numeric characters and white
space characters, are to be considered as punctuation marks in Swedish. This leaves us with
characters such as . '7"#$%&’ O x+,/:;<=>7e[\]"_‘{I}" }

(2) Two classes of tokens can be identified: the first one consists of tokens which do not have
punctuation marks in them, while the second one consists of the tokens that do. The latter
class is of primary interest and it can be further divided in tokens that contain ambiguous
punctuation marks and those that do not.

(3) The three most frequent sentence delimiters in Swedish are the exclamation mark (!),
the question mark (7), and the period (.). The period is by far the delimiter that causes the
most problems in terms of ambiguous tokens. To resolve such ambiguities, there are, at least,
two different approaches, either using structural information or using linguistic knowledge. The
latter may involve a lexicon and a morphological analyser, while the former involves ways of
expressing the structure of the strings constituting tokens, e.g. by using regular expressions.

3.1.2 Overview

The tokeniser for Swedish identifies and returns tokens, possibly together with the associated
pair of byte offsets, in the input text. The design and implementation of the tokeniser was done
with its integration in GATE in mind. However, it is also possible to use it as a stand-alone
program. It is written in the C programming language with the aid of flex [Levine et al 1995],
which is a tool for generating finite state lexical scanners. The flex tool allows the developer
to describe string patterns in terms of regular expressions that it then translates to C code.

The tokeniser uses primarily structural information to recognise tokens, but it is also
equipped with a stop list containing frequent abbreviations. By means of this stop list it is
able to distinguish the cases of a token containing a period (.), and in which the period should
be considered as a sentence delimiter from those cases where it should not. The tokeniser also
recognises and signals consecutive newline characters in the input although they are not consid-
ered as tokens since it does not make much sense trying to squeeze any linguistic information

out of them. Rather, the information about multiple newlines can be used to identify head-
ings in the text as sentences, so this information is passed on to later processing steps for any
component to use.! The regular expressions passed to flex define the following patterns to be
tokens;

1. A contiguous character string in which each character is alpha-numeric or a hyphen, e.g.
“Uppsala”, “orsak-verkan”, “60aringen”, “1004ars-jubileum”.

2. Any of the abbreviations specified in the stop list, e.g. “bl.a.”, “t.” and “ex.” from the
abbreviation “t. ex.”.

W 4(777 “'77
. .y ..

3. Any other characters, except for white space characters, e.g.

When the tokeniser recognises one of the above patterns in the input text, it prints the string
corresponding to the pattern together with its byte offsets.

The list of abbreviations mentioned above is obtained from a 300,000 word portion of the
Stockholm-Umea Corpus (SUC). After extraction, the abbreviations were sorted according to
frequency, and all those which occurred more than once and had a period in them were picked
out. In a subsequent step, all abbreviations containing white space characters were split into
parts containing no white space and all those parts which did not have a period in them were
removed. In this way, a stop list containing approximately 40 abbreviations was obtained. This
may seem too small a number, which it probably is, but it is easy to re-incorporate an extended
list into the tokeniser.

3.1.3 Interface

The information in the subsections about GATE pre- and post-conditions apply only when the
tokeniser is invoked from within GATE. The subsections about input and output apply any
time the tokeniser is invoked; as a stand alone program as well as via GATE.

Input

The tokeniser expects the input to be raw text in Swedish. Currently, it has no capabil-
ities of coping with SGML annotated input (in contrast to the tokeniser in the VIE sys-
tem [Humphreys et al 1996, chapter 2]). It may well be run on other languages than Swedish,
but then the stop list of abbreviations will not apply (or, worse, it will apply to the wrong
cases).

Output

Depending on the command line options given by the user, the tokeniser will be made to produce
output in two different formats, where each line is one of (1) or (2):

1. <sint> <eint> <token>
multiNl <sint> <eint>

!Headings in the input are perhaps better referred to as sentence fragments rather than as whole sentences,
although this is currently not the case.

2. <token>

Where <sint> and <eint> are integers denoting the starting and ending byte offsets, respec-
tively, for the token <token> or for the string, multiN1, which signals consecutive newline
characters. Cases (1) and (2), above, are mutually exclusive. If the user decides to have the
tokeniser suppress the byte offsets, the lines signaling consecutive newline characters are also
suppressed. Note that the option of omitting the byte offsets and the multiNL lines from the
output does not apply when the tokeniser is run in GATE since the byte offsets are needed to
annotate documents in the GDM.

GATE pre-conditions

The tokeniser for Swedish requires no annotations to be present in the GDM to be able to run.

GATE post-conditions

The tokeniser produces token annotations with the attribute tokenVal, which takes as value the
token string itself. It produces two document level attributes, upptoken and language_swedish.

3.1.4 Limitations

The tokeniser is domain independent but language dependent in that it uses a list of Swedish
abbreviations. It does not try to “de-hyphenate” the input text, i.e. apply a pre-processing step
with the aim of getting rid of all hyphens at the end of each line in order to re-join possibly split
words. The presence of a well-defined “de-hyphenation” step is likely to increase the accuracy
of the tokeniser.

3.2 A sentence splitter for Swedish

The sentence splitter for Swedish is, as in the case of the tokeniser described in Section 3.1, a
simple pre-processing module intended for use within the GATE platform. Tts primary task is
to provide the Brill tagger described in Section 4.1 with sentences and annotations associated
with them, but it may also be used to feed other components which take sentences as input.

3.2.1 Some problems in finding sentence boundaries

The problem of splitting a text into sentences is related to that of tokenisation as presented in
Section 3.1.1. Finding and, if necessary, disambiguating sentence boundaries is a bit trickier
than it might appear at first glance. Consider the following examples;

1. “Sta inte sa tatt isir!” rot Sgt. Verkmestar.

2. Lagerldf blev utnamnd till fil. hedersdr. 1907. 1909 fick hon Nobelpriset.

(1) is an example of a sentence within a sentence; how can the nesting of the sentence be
discovered? (2) is an example of periods attached to the three last tokens of a sentence. How can
it be decided which one of the periods constitute the end of the sentence? Possible approaches
to solve problems like these may involve a system that uses rules (e.g. a hand-made or induced
grammar), statistics (e.g. HMMs), or some sort of neural network. Common to all approaches
is that they require one or more pre-processing modules such as a tokeniser, morphological
analyser or a program that calculates word frequencies. For instance, in [Palmer & Hearst 1994]
the authors present an approach towards disambiguating sentence boundaries using a lexicon
with part-of-speech probabilities and a feed-forward neural network. The method is claimed to
correctly label over 98.5% of the sentence boundaries in a corpus of more than 27,000 sentence-
boundary marks.

The sentence splitter for Swedish implements a rule-based approach using a minimum of
information since it is not geared towards any specific corpora (thus assuming a minimum of
information to be present in the input). The splitter’s performance has not been measured
(again, this is due to the fact that it is not tuned to any particular corpora), but it is likely
to improve if it can access more information, e.g. a SGML marked-up text. Currently, the
information present is mostly structural. The amount of linguistic knowledge is small and
implicitly provided by the tokeniser.

3.2.2 Overview

The sentence splitter is designed to be used with the tokeniser described in Section 3.1, but it
may function with any tokeniser that meets the requirements the splitter poses on its input.
The splitter is implemented in the Perl scripting language.

3.2.3 Interface

The information in the subsections about GATE pre- and post-conditions and parameters apply
only when the sentence splitter is invoked within GATE. The subsections about input and output
apply any time the splitter is invoked; as a stand alone program as well as via GATE.

Input

The sentence splitter takes as input a sequence of triples separated by new line characters. A
triple consists of a token preceded by its byte offsets or by a multiN1 followed by its byte offsets.

<sint> <eint> <token>
multiNl <sint> <eint>

where <sint> and <eint> are integers denoting the starting and ending byte offsets, respectively,
for the token <token> and for the string representing consecutive newline characters, multiN1,
generated by the tokeniser (see Section 3.1.3).

Output

Depending on the command line options given by the user when the sentence splitter was
invoked, it produces output on two different formats, where each line is one of (1) or (2):

1. <sint> <eint> <sentence>

2. <sentence>

where <sint> and <eint> are integers denoting the starting and ending byte offsets, respectively,
for the sentence <sentence>.

GATE pre-conditions

The sentence splitter requires the GDM to contain token annotations with associated tokenVal
attributes to run. The value of a tokenVal is the string constituting the token itself. It also
requires the document attribute language _swedish. These pre-conditions are met by the output
of the tokeniser (see Section 3.1.3).

GATE post-conditions

The sentence splitter produces sentence annotations with sentenceVal attributes which takes
as value the sentence itself. It also adds the document attribute uppsplit to the current
document in the GDM.

Parameters

A user may specify two additional parameters to the sentence splitter via the GGI. The options
affect the splitter’s output to the GDM. Either the user can choose to have the splitter convert
the first token in each sentence to lower case, or to have it convert every token to lower case.
These options are not mutually exclusive and if both options are given, all tokens are converted
to lower case.

3.2.4 Processing

The sentence splitter works with a window of two tokens towards the stream of tokens it
processes. It reads and buffers tokens until it encounters one that is defined as a sentence
delimiter, currently these are “.”, “I” and “?”. The splitter then prints the contents of the
buffer, including the sentence delimiter. There are a few exceptions to this behaviour. If
the splitter encounters a token which signals the presence of consecutive newline characters in
the original file, the splitter looks at the next token; if it starts with a lower case letter, the
consecutive newlines are ignored and the processing goes on. However, if the first letter in the
next token turns out to be uppercase, the splitter considers the contents of the buffer to be a
sentence and prints it. The next token is then taken to be the start of a new sentence.

The sentence splitter is quite memory efficient since it keeps at most one sentence of the
input file in memory at any one point in time.

3.2.5 Limitations

The sentence splitter is domain independent. It is also language independent as long as the
language under consideration employs the same sentence delimiters as the ones used by this
program. The sentence splitter will probably perform better if it is extended with linguistic
knowledge such as a list of tokens that are exceptions to the rule of which kind of tokens are
not allowed to start a sentence.

Chapter 4

Modules for pos-tagging and
morphological processing

This chapter introduces the two NL programs used for creating the separate modules for pos-
tagging and morphological processing, presented in chapter 1 as being the aim of this thesis. A
Brill tagger trained on Swedish constitutes the pos-tagger while UCP is used as morphological
processor. The chapter starts off with the Brill tagger for Swedish! in Section 4.1. It continues
with the basics of transformation-based error-driven-learning and the applicability of the method
to pos-tagging in Sections 4.1.1 and 4.1.2, respectively. Section 4.1.3 deals with the tagger’s
interface, while Section 4.1.4 presents its limitations. The part of the chapter dedicated to UCP,
i.e. Section 4.2, starts with a brief introduction to chart processing in general in Section 4.2.1 and
continues in Section 4.2.2 with an overview of how to express morphological competence in UCP.
The interface and limitations of UCP are presented in Sections 4.2.3 and 4.2.4, respectively.

4.1 A Brill tagger for Swedish

The original Brill tagger [Brill 1992] was developed by Eric Brill. The tagger is public domain
software, available from ftp://ftp.cs.jhu.edu/pub/brill/Programs. It is written in the C
programming language and comes with training scripts written in Perl.

The Department of Linguistics, Uppsala University, currently pursues the training of a Brill
tagger for Swedish [Priitz 1997] within the framework of the ETAP project. The criteria for the
training corpus are that the texts must be in Swedish, translated to other languages, correct
and available. The actual text used for this purpose is, among others, Regeringsforklaringen
(Eng. Statement of government policy) as presented to the Swedish parliament in 1994. The
development of the training corpus for the tagger involved processing the selected texts with the
UCP and hence obtaining analyses for individual words out of context. UCP assigns multiple
attribute-value schemata to each word where appropriate, i.e. when the word is ambiguous, and
no schema at all when the word is not present in the lexicon. The texts were then disambiguated
manually.

'Henceforth, the Brill tagger for Swedish is referred to simply as the Brill tagger or the tagger.

4.1.1 Transformation-based error-driven learning methods

Transformation-based error-driven learning [Brill 1992, Brill 1995] has been applied to a number
of natural language problems, including part of speech tagging, speech generation and syntactic
parsing. In transformation-based error-driven learning, an un-annotated text is run through an
initial-state annotator. Then, the text is compared to the truth, which is specified as a manually
annotated corpus, to which the results of the steps in the learning process can be compared
and evaluated. The comparison results in that the system learns a number of transformation
rules which can be applied to the output of the initial state annotator in order to make it better
resemble the truth. See Figure 4.1 for a conceptual view of the learning method.

Unannotated
Text

Initial
State

Annotated
Text

\/

Learner

Rules

Figure 4.1: The learning method of a Brill tagger

A greedy search is then applied: at each iteration of learning, find the transformation
whose application results in the highest score with respect to some scoring function. Add that
transformation to the ordered list of transformations and update the corpus by applying the
learned transformation to it. The following three things must be specified when defining an
application of transformation-based learning;:

1. The initial state annotator.

2. The space of transformations the learner is allowed to examine.

3. The scoring function for comparing the corpus to the truth and choosing a transformation.

When the list of transformations is learned, new text can be annotated by first running it
through the initial-state annotator and then applying the transformations in order.

4.1.2 Pos tagging by means of a Brill tagger

There are by tradition two main approaches to automatic part of speech tagging:> one using
rules and another using statistics (see [Samuelsson & Voutilainen 1997] for a comparison of a

?See [McEnery & Wilson 1996, pages 119-126] for an introduction to part of speech tagging.

rule based and a probabilistic system). The former approach involves hand made rules, often
based on the researchers’ own linguistic intuitions. The latter approach uses statistical data
to capture the structure of the language under consideration. Both approaches have their
advantages and disadvantages. The linguistic information used by a rule based system is likely
to be easy to read (for a human, that is) while the same linguistic information in a probabilistic
tagger is (unreadably) represented implicitly in large tables of statistics, typically as tens of
thousands of contextual probabilities. A statistically based system is trainable, which means it
is easy to adapt it to, for instance, a new language, while it is much harder to transfer a rule
based tagging system to a new language. The Brill pos-tagger is a hybrid system, it is able to
gain information from a corpus and to translate that information to a set of rules. This ability
facilitates adapting a Brill tagger to new domains and to new languages. The processing and
the principles behind transformation-based error-driven learning methods are described in the
documentation of the tagger as well as in separate papers, e.g. [Brill 1992, Brill 1995, Brill 1997].

Learning the rules

The training of the Brill tagger is performed in two steps, the first one involves learning rules to
predict the most likely tag for unknown words, that is, words not seen in the training corpus.
In the second step, the tagger learns contextual rules to improve tagging accuracy.

The tagger tries to predict the tags of unknown words by using a transformation-based
approach similar to the one used for known words. To start with, the initial state annotator
labels the most likely tag for unknown words as proper noun if the word is capitalised and as
common noun otherwise. To learn the actual transformation rules for predicting the tags of
unknown words, the tagger has a set of 5 transformation templates.® The tagger’s efforts in
finding transformation rules applicable to unknown words is limited to word types in contrast
to the learning of rules for known words which also operates on individual word tokens. Once
an unknown word has been assigned a tag, all the occurrences of that word in the corpus are
assigned the same tag. For a more in-depth description of a solution to the problem of tagging
previously unseen words, see [Brill 1995, section 4.3].

In the second step of training the tagger, the initial state annotator assigns each word in
an un-annotated version of the training corpus is most likely tag as indicated in the annotated
training corpus. The transformation rules are then inferred by the learner by applying every
possible transformation, counting the number of tagging errors after a transformation has been
applied and choosing that transformation which results in the greatest error reduction. When
no transformations whose application reduces errors beyond a pre-specified threshold are found,
the learning stops. The result from this procedure of learning is an ordered list of transformation
rules based on observed contextual facts from the training corpus.

Applying the rules

In performing pos-tagging, the Brill tagger first has the initial state annotator assign each word
its most likely tag as indicated in the training corpus. The ordered set of rules obtained from
the training session is then applied to the input text. For each transformation applied, all
environments in the text that can trigger the transformation are found, and the transformation

3The set of transformation templates defines the space of transformations the learner, i.e. the Brill tagger, is
allowed to examine.

is then carried out on all those environments. In effect, this means that the input text is scanned
several times, once for every element in the set of rules.

4.1.3 Interface

All subsections in this section apply when the Brill tagger is invoked via GATE, but only the
ones on the tagger’s input and output apply when it is run as a stand alone program.

Input

The Brill tagger expects a plain text file as input, formatted with one, tokenised, sentence per
line. In this context, tokenisation means that the punctuation marks have been separated from
the words in the sentence, e.g.

"Sta inte sa tatt isar!"
becomes

" Sta inte sa tatt isar !t "

Output

The output from the tagger is a version of the input file with appended part-of-speech tags to
each token:

"/" Sta/VI inte/R sa/R tatt/APNSI is#dr/NNOI !/! /"

The Brill tagger that comes with the VIE system (Section 2.2) in GATE has a somewhat
different output format which consists of the pos-tags only. This approach is due to the fact
that the VIE Brill tagger is dedicated to the GATE system and is, thus, not likely to be of any
use as a stand alone program.

GATE pre-conditions

The Brill tagger for Swedish requires the GDM to contain token and sentence annotations
with the attribute sentenceVal associated to the latter type of annotation. The value of a
sentenceVal attribute is the string constituting the sentence itself. The tagger also requires the
document attribute language_swedish. These pre-conditions are met by the sentence splitter
for Swedish described in Section 3.2.

GATE post-conditions

The tagger produces pos (part of speech) attributes on the existing token annotations. It also
adds the document attribute uppbrill to the current document in the GDM.

Parameters

The set of parameters the Brill tagger for Swedish accepts via the GGI is the same as the VIE
Brill tagger does [Humphreys et al 1996, chapter 4]. Thus, the tagger takes eight additional
parameters, of which the first four have default values: a lexicon; a file containing bigram
information; a file with lexical rules; and a file with contextual rules. The other four parameters
specify whether the tagger should: use an additional word list; process the input a certain
number of lines at a time to save memory; dump intermediate output to a file; and finally, if it
should use the start-state tagger only. See the documentation that comes with the distribution
of the Brill tagger for further information.

4.1.4 Limitations

The Brill tagger for Swedish is domain dependent in that it is trained on texts from specific
domains, e.g. from Regeringsforklaringen. The tagger is obviously highly language dependent
since the material used for training is in Swedish.

4.2 The Uppsala Chart Processor

The Uppsala Chart Processor was originally developed at the Center for Computational Lin-
guistics at the Uppsala University in the early 80’s. The first version, UCP-1, appeared in
1981 and it was written in a dialect of the LISP programming language called Inter LISP
[Sagvall Hein 1981]. The current version, UCP-2, is implemented in Common LISP.

Good introductions to chart processing are given in, for instance, [Wirén 1992, chapter 2]
and [Gazdar & Mellish 1989, chapter 6]. Chart-parsing originates from research in compiler
techniques. Its use as a data structure in NL applications is due to, amongst others, Kay (see
e.g. [Kay 1977]).

4.2.1 The essence of chart processing

A chart processor is a program that makes use of a data structure called a chart which provides
a way to avoid generation of redundant data. The chart is a directed graph, the nodes are often
called wvertices and the arcs edges as illustrated in Figure 4.2.

The vertices are typically numbered from 0 to n, where n is an integer, while the edges are
labeled with some representation of a portion of the input string. The labels are often realised
by “dotted” context free rules on the form X — « - 8. Such a rule corresponds to an edge, X,
which contains an analysis (a confirmed hypothesis) of a constituent, «, and which seeks the
analysis (an unconfirmed hypothesis) of constituent . If § is empty, the edge labeled with the
rule is said to be inactive since it represents a fully analysed constituent in the input. Otherwise,
if 8 is non-empty, the edge is active.

The following is an example illustrating the use of “dotted” rules for labeling arcs in a
chart. If, for instance, S — NP VP is a rule of the grammar then items (1) to (3) below can be
“dotted” grammar rules in the chart:

[i]

[iii]

O

Figure 4.2: A simple chart where [i] represents the only cycle allowed, [ii] is an example of an
edge and [iii] is a vertex.

1. S—-NPVP
2. S—- NP -VP
3. S+ NPVP.

The dots in these labels indicate to what extent the hypothesis that this rule is applicable
to has been verified by the processor, see Figure 4.3. The label in (1) will only occur in the
kind of arc that cycles back to the vertex it emerged from, denoting the hypothesis that S can
be found covering a substring consisting of the sequence NP VP starting from the vertex in
question. In this case, the hypothesis has not even been partly confirmed. The labels in (2)
and (3) denote the same hypothesis as (1), but indicate that the hypothesis has been partially
or fully confirmed. In (2), the processor has found the sequence NP and is now looking for VP.
In (3), the processor has verified the hypothesis of the whole sequence NP VP, and thus, the
label represents an inactive edge. Symbols to the left of a dot in a label represent one or more
confirmed hypotheses while the symbols to the right of a dot represent one or more unconfirmed
hypotheses.

S—=e NP VP

S = NPe VP

%@@

S—= NP VPe

Figure 4.3: A conceptual view of a chart. Active edges are “above the horizon” while inactive
are below it.

At this point, enough information has been given to introduce the essence of chart parsing,
the fundamental rule. This rule describes how active and inactive edges are combined in the

chart. An edge can be written as a triple (see [Wirén 1992, page 16] and [Gazdar & Mellish 1989,
pages 193-196]):
<1)87(Ut7X — 6)

In which vg and vt are the starting and ending vertices, respectively, and X — « - f is a rule
as explained above. The formal definition of the fundamental rule of chart parsing is then (as
cited from [Wirén 1992, page 19]):

The fundamental rule
For each edge of the form (vi, vj, Xo = a- Xmf) and each edge of the form (vj, vk, Yo = 7),
add edge (vi, vk, Xo = aXm - f) if Xm = Yo.

Informally, the fundamental rule means adding an edge to the chart whenever an active edge
meets an inactive edge of the desired category. The new edge should span both the active and
inactive edges. Such a combination of edges in a chart may eventually result in more inactive
edges, i.e. analyses of (parts of) the input to the processor. In addition to the fundamental rule,
a chart parser/processor also needs ways for initialising the chart as well as a rule invocation
strategy and a search strategy. Although various combinations of different decisions regarding
theses three items have been shown sufficient to cover virtually all possible types of chart
parsers [Wirén 1992], the fundamental rule remains, in principle, the same.

4.2.2 Morphological processing in UCP

As many other NL applications of this kind, UCP distinguishes between the linguistic compe-
tence, i.e. some description of the language under consideration, and the machinery intended to
handle it, i.e. the chart and the chart processing software. In UCP, such a linguistic description
consists of a grammar, a number of morph lexicons and character, lemma, and lexeme databases.
Since UCP is quite a complex piece of software, some of the work performed “behind the scenes”
is hidden from the user, e.g. spawning new tasks (a task occurs when an active edge encounters
an inactive one, that is, when the fundamental rule applies) and managing the wait-list (which
handles the backtracking mechanism). Still, the user plays a very important part in how UCP
will behave in a given situation since he provides UCP with the description needed to analyse
a certain language. To help him, a formalism has been developed, which enables full control of
what UCP is doing and yet a comfortable distance to the more difficult and repetitive tasks.
The formalism is described in [Dahllof 1989, Sagvall Hein 1987], to which readers interested in
gaining knowledge about how to use UCP as a syntactic analyser are best referred.

When UCP functions as a morphological analyser, incoming words are looked up in the
lexicon. Each entry in the lexicon is associated with a inflection pattern which describes the
class of inflections that the current word belongs to. In general, an entry in the lexicon is defined
on the following format:

(define D-entry E #u S;)
Where D is the lexicon in which the lexical entry E is to be inserted. FE is associated with the

UCP statement .S, e.g. a rule body and an inflection pattern.

When the word stem has been found, edges corresponding to the suffixes described in the
inflection pattern for the word are added to the chart. The edges are then tested using a word
class specific rule that adds information about the word. Morphological/morphotactic rules are

then employed to categorise the words and to squeeze as much information as possible out of
the chart containing them. The format of such a rule is:

(define G-entry R #u S; {#! Fi; {#!' Fy;}}P)

Where G is the name of the grammar in which the rule will be inserted. R is the rule name,
S is the body and F) and F5 are optional filters. The filters are called the inactive filter and
the active filter since they operate on active and inactive edges, respectively (see [Dahllf 1989,
pages 2-8]).

To give the reader a feel for what the rules may look like, Figure 4.4 gives examples of a
dictionary entry and a morphological (pattern) rule that applies to it. In the figure, a dictionary
entry for the word stem arbet is defined as being a verb following the inflection pattern of the
word dlska. The grammar rule in the second part of the figure conveys information common to
all the word categorised as following the same pattern as dlska.

(define sve.dic-entry "arbet" #u <& lem>:=:’arbeta.vb, pattern.dlska;)

(define sve.gram-entry pattern.&lska
#u assign.infl(’&dlska),
assign.dicstem,
advance, <* char> = ’%a,
<& conj>:=:'I,
<& depon>:=:’-,
advance,
(end.of .word,
<& word.cat> :=:’verb,
<& diat>:=:’act,
(<& inff>:=:’inf
// <& inff>:=:’imp),
assign.majorprocess(’vp),
assign.same,
store.single.morph
/ <& voice> :=: '+,
<& linkb> :=: ’%a,
verb) ;

Figure 4.4: A definition of a dictionary entry and a morphology rule in UCP.
Although UCP can be told to use various rule invokation strategies, the most common one
is bottom-up (possibly with top-down filtering) using a left to right search of the input, that is,

the input is read from the left and the tokens in it are matched against the lexicon and placed
in the chart for further processing.

4.2.3 Interface

UCP is primarily intended as a stand-alone program, but it is also possible to run it via the
GATE platform.

Input

The UCP operates at many linguistic levels simultaneously (e.g. morphological and syntactical
levels). The format of the input expected by UCP depends on what linguistic level the user
wants it to act and, since this thesis is concerned with UCP as a morphological analyser, the
input should be a file in which each line contains one word.

Output

UCP is able to produce output on a number of different formats. However, the format of interest
to this thesis is the one conveying the highest degree of information about the words analysed.
UCP gives zero or more analyses for a given word. Thus, it is likely that some of the words in
the input will not be analysed at all, while som words will get more than one analysis. This is
an example of a word with two readings:

(x

= (LEM = I2.AB
INFL = PATTERN.REDAN
DIC.STEM = i
WORD.CAT = ADV))
(* = (LEM = I1.PP
INFL = PATTERN.I
DIC.STEM = i

WORD.CAT = PREP))

Subsequent analyses are separated by a blank line in the output file. The attribute—value pairs
in a structure like the one above are arbitrary in that the developer of the rules (grammatical
or morphological) may specify any information he/she feels necessary.

GATE pre-conditions

The Uppsala Chart Processor requires the GDM to contain token annotations with associated
tokenVal attributes. The value of a tokenVal is the string constituting the token itself. UCP
also requires the document attribute language_swedish. These requirements are met by the
output of the tokeniser for Swedish described in Section 3.1.

GATE post-conditions

UCP produces morph attributes on the existing token annotations. It also adds the document
attribute uppcp to the GDM. The value of a morph attribute is a list in which each element itself
is a list of lists containing an analysis of the current token. If UCP did not provide an analysis
for the current token, its morph attribute recieves the value of an empty list. The structure of
a non-empty value of the morph attribute is shown in Figure 4.5.

{structure; structures ...structurek}
where structurej, 1 < j >k, is
{{attribute; = value, } ... {attributem = valuep}}

m>landp>1

Figure 4.5: The structure of morph attribute.

Parameters

The Uppsala Chart Processor allows the user to specify two additional parameters via the
GGI. The first, which has a default value, is the path to a file containing a Common
LISP memory dump of morphological rules conforming to the UCP formalism [Dahllof 1989,
Sagvall Hein 1987]. The second parameter, which is an optional one, is the name of a file in
which to place the output from UCP (that is, a copy of the output before it is recorded in the
GDM).

4.2.4 Limitations

The Uppsala Chart Processor is domain as well as language dependent. At least when it comes to
the morphological rules used here. The processing-machinery handling the chart is independent
of any language or domain.

Chapter 5

Integrating modules in GATE

This chapter contains the core of the thesis, that is, how the NL modules described in Chapters 3
and 4 were integrated in GATE. Tt assumes the reader to be familiar with the Tcl scripting
language (but see Appendix B for a brief overview of Tcl/Tk). The chapter starts with a
description of the different types of couplings available between NL modules and the GATE
Document Manager (GDM) in Section 5.1. Sections 5.2 and 5.3 introduce the two templates,
creole_config.tcl and moduleName.tcl, used for creating so-called GATE wrappers, and Sec-
tion 5.4 presents the method used for integrating the NL components in GATE. The integration
of the tokeniser is elaborated upon in Section 5.5: it is the least complex wrapper implemented
in this thesis and its structure is adopted in the wrappers created for the other NL modules.
Section 5.6 shows the integration of the sentence splitter, followed by Section 5.7, in which the
integration of the Brill tagger is discussed. The most complex wrapper is the one for UCP
introduced in Section 5.8. The main difference between it and those for the other NL modules
is the way it has to process the output produced by the NL module: the UCP wrapper has
to read the output cumulatively until enough information has been collected (typically several
lines at a time) before recording it in the GDM, while this is not the case for the other wrappers.
Since it turned out that none of the existing viewers were able to display data on the format
produced by UCP, a new viewer was designed and implemented. The viewer is introduced in
Section 5.8.4.

The process of integrating modules in GATE (see [Cunningham et al 1996, chapter 2]) has
been automated to a large degree. Most things can be, and are preferably, done via the GGI.
However, some of the vital parts in the process must still be done by hand: for each NL
module, two templates generated by GATE are to be filled with code, either in C++ or in
Tcl/Tk, depending on which type of coupling should be used between the module and GATE.
The templates constitute the “wrapper” for the NL component in question since they wrap the
component up in code to make it conform to the GDM API. The ready-made templates are
called creole_config.tcl and moduleName.tcl!, and they describe the way of which an NL
program is to communicate with the GDM. One of the most important things stated in the
template files is the degree of coupling between the NL program and the GDM, the type of
coupling (as described in the next section) implies the use of either of the two available APIs:
Tcl or C++. This thesis is concerned with a loose degree of coupling (and thus the Tcl API),
the dynamic and tight couplings are therefore only mentioned briefly.

moduleName should be substituted for by the name of the NL module.

5.1 Different types of couplings

There are three different types of couplings between a CREOLE object and the GDM:

Tight coupling. Any programming language that obeys the C linking conventions can be
compiled into GATE directly as a Tcl package. Using wrappers written in such a language
is maximally efficient but necessitates re-compilation of GATE when modules change.

Dynamic coupling. On platforms allowing shared libraries, C-based wrappers can be loaded
at run-time. This is slightly less efficient than tight coupling since it takes some time to
load a wrapper. It allows for change of modules without having to recompile the GATE
System.

Loose coupling. Wrappers written in Tcl can also be loaded at run-time. There is a perfor-
mance penalty in comparison with using the C++-based API but it is the easiest solution
of integrating simple cases of modules. The advantage is that a module can be altered
and reloaded without leaving GATE.

In the work with the NL components described in this thesis, i.e. the tokeniser and the
sentence splitter in Chapter 3 and the Brill tagger and Uppsala Chart Processor in Chapter 4,
the type of coupling is set to be loose since the components pre-date the wrappers. One
limitation in using a loose coupling is that the GDM API cannot communicate directly with
the NL component, but the communication has to take place by creating intermediate results
which means that the processing is quite slow in its nature. However, there are a few advantages
as well. For instance, the NL module can be a ready-to-run binary, meaning the CREOLE
developer? does not have to care about how and why the NL module works, and the supplier
of the module need not provide the CREOLE developer with the source code of his long-time-
and-very-expensive research. Thus, both the CREOLE developer and the NL program supplier
have got less to worry about while the degree of reusability of resources, i.e. the NL module, is
still high.

5.2 The creole_config.tcl template

The creole config.tcl template specifies the constraints that are put on a module when it
comes to its communication with the GDM, i.e. what kind of attributes must be present in the
GDM before the module can be executed (pre-conditions), and what is present in the GDM after
the module has been executed (post-conditions). Other things specified by the template are,
for instance, in what way the data produced by the module will be displayed to the user, and
what type of coupling will be used between the module and the GDM. The creole config.tcl
is actually nothing more than a Tcl-list, although formatted in a way that makes it easy to
read. The file contains six different fields, which in some cases contain fields themselves (i.e.
the Tcl-list is actually a list of lists). The fields are introduced and briefly explained below
(see [Cunningham et al 1996] for further details).

1. title This field should contain the name the module has in the GGI system graphs.

2A CREOLE developer is a person who integrates NL modules in GATE.

2. pre_conditions Annotations and attributes required in the GDM in order to execute the
module. The conditions affect three types of TIPSTER objects: collection attributes,
document_attributes and annotations. The latter may be either annotation/attribute
pairs or plain annotations.

3. post_conditions Annotations and attributes produced by the module. The TIPSTER
objects mentioned above are affected here as well.

4. viewers There are six generic viewers that can be used to display the output from a
module, a viewer may be specified for each post condition. If a viewer is not specified for
a post condition, there is no way of viewing the result corresponding to that particular
condition except for when using the full annotation viewer found under the View menu
option in the system window (see [Gaizauskas et al 1996b, chapter 5]). The viewers are:

(a) raw Takes an annotation as parameter and uses a standard annotation viewer to
display it.
(b) single_span Takes an annotation as parameter and colours the text based on one of

the attributes, if any, associated with the annotation. A coloured key bar is produced
at the bottom of the viewer. This viewer is used for the VIE Brill tagger.

(c) multiple_span Takes an annotation as parameter and highlights all chains of spans
associated with it. The VIE Discourse Interpreter uses this viewer for displaying
co-reference chains.

(d) parse Takes an annotation as parameter and produces a parse tree, as in the VIE
buChart Parser.

(e) text_attr Takes a document_attribute or collection_attribute as parameter
and displays the attribute value as plain text.

(f) text_file Takes a filename as parameter and displays the file as plain text.

5. parameters This field specifies the additional parameters a module might accept via the
GGI, e.g. a different set of resource files for a Brill tagger. The parameters are used by
GATE to generate a dialogue box that prompts for the corresponding values.

6. coupling Can take one of these three values: loose, dynamic or tight.

5.3 The moduleName.tcl template

While the creole_config.tcl file described a module’s way to communicate with the GDM
in terms of requirements that must be fulfilled both by the GDM and the module itself to
work properly, the moduleName.tcl file implements the actual CREOLE object. Informally, a
CREOLE object is any NL program that is able to “talk” to GATE via the GDM. To put it
more formally, a CREOLE object is a piece of software that implements a function/command
called creole X in either C++ or Tcl, where X is the name of the current module. This thesis
focuses on the use of Tcl for implementing CREOLE objects. The reason why being the fact
that all the Uppsala components pre-date integration and, thus, loose coupling is used. For
information on the C++ API, see [Cunningham et al 1996].

Figure 5.1 shows the only procedure that must be defined by a loosely coupled CREOLE
object. The arguments passed by GATE to the procedure are doc, which is the currently open
GDM document, and args, which is a list of additional arguments passed to the module by

proc creole_X { doc args } {

Process argument in $args, if non-empty, and

make TIPSTER calls regarding $doc, which is a

document in the spirit of the TIPSTER architecture.
X

Figure 5.1: A template for the only procedure required of a loosely coupled CREOLE object.

the user via the GGI. The X in the procedure head in Figure 5.1 should be substituted for by
the name of the current module. Of course, the creole X module may, in turn, need other
procedures to run. Such procedures can be declared within the same file as the creole X or
“sourced” from other files (see Section B.6 for further information about the source command).
All work performed by a wrapper is initiated by GATE calling the creole X procedure, which
then is responsible for setting up the environment the current NL module needs to be able to
run, as well as invoking the module and taking care of the output.

5.4 Remarks on integrating the NL modules in GATE

In general, the way each moduleName.tcl file handles the input and output data of the NL
components of concern to this thesis can be described as the following sequence of actions:

1. Prepare the input. Retrieve the desired data from the GDM and, if necessary, re-format
it to make it correspond to the input format required by the wrapped-up NL module. Put
the input data in a temporary file.

2. Execute the program. Run the NL module on the file from step 1. Place the output
in another temporary file.

3. Record the output. Scan the output file and record relevant data in the GDM.

As can be seen from these steps, the wrappers for the components store intermediate results
in files rather than in the computer’s internal memory. The main reason for this is the way by
which the NL programs in question are invoked: they all expect their input to be in files or
interactively input at a prompter. Since the latter is not an option in the case of the, supposedly,
large texts that the svensk system will handle, the former approach is used. Another reason
is that the NL programs pre-date integration. If that would not have been the case, i.e. the
modules were designed only to work in GATE, a tight or dynamic coupling together with some
look-ahead at design time might result in the ability of the modules to accept input on another
format than files, for instance by letting the NL program access the input via direct calls to the
GDM using the C++ APIL.

5.5 Integrating the tokeniser

The integration of the tokeniser for Swedish was quite straightforward since I had access to the
GATE wrappers developed for the svensk system [Eriksson 1997]. Those wrappers also make
use of a loose coupling (and thus the Tcl API) between the CREOLE object and the GDM.

The organisation of the wrapper for the tokeniser is shown in Figure 5.2. The creole_upptoken
procedure uses upptoken _prepareInput for preparing the input to the tokeniser before invoking
it, and upptoken_recordQutput to scan and record the data produced by the tokeniser in the
GDM.

creole_upptoken

upptoken_preparelnput upptoken_recordOutput

Figure 5.2: The organisation of the tokeniser’s wrapper.

5.5.1 Preparing the input

The upptoken_preparelInput procedure takes two arguments: doc and file. The former is the
currently open GDM document, and the latter is a path to a file in which the prepared input
for the tokeniser should be placed. The vital parts of the procedure are shown in Figure 5.3.3

1. set Text [tip_GetByteSequence $doc]
2. set F [open $file w]
3. puts $F $Text

Figure 5.3: Preparing the input to the tokeniser.

The GDM command tip_GetByteSequence in line 1 is used to retrieve the text from doc
(the tokeniser requires the input to be plain text, see Section 3.1.3). In line 3, the file handle
created in line 2 is used for writing the text to the temporary file file (see Section B.6 for
information about file I/O in Tecl).

5.5.2 Invoking the tokeniser

The tokeniser reads the input from the standard input channel and writes the produced output
to the standard output channel. This means that it does not explicitly handle the opening and
closing of files. Figure 5.4 shows the Tcl command which invokes the tokeniser.

The variable $UpptokenDir holds the path to the directory where the tokeniser resides. The
paths to the temporary files used are stored in $IntermediateFile and $FinalFile.

3The numbers to the left in the figures in the rest of this chapter are there for clarity only, they are not part
of the code.

exec $UpptokenDir/upptoken < $IntermediateFile > $FinalFile

Figure 5.4: Invoking the tokeniser.

5.5.3 Recording the output

The procedure that records the output produced by the tokeniser 1is called
upptoken _recordOutput. It takes two arguments, doc and file. The first argument is
the currently open GDM document while the second argument is a temporary file holding the
output as produced by the tokeniser (the format is described in Section 3.1.3). The procedure
reads file and splits each line into three parts corresponding to the starting and ending byte
offsets, and a string which may be a token or a multiN1 string signalling consecutive new line
characters. The procedure then creates appropriate annotations (that is, token or multiN1
annotations) and records them in the GDM with the associated byte offsets as indices.

set TokenAttr [tip_CreateAttribute tokenVal \
[tip_CreateAttributeValue GDM_STRING $Token]]
set Annot [tip_CreateAnnotation token \
[list [tip_CreateSpan $Start $End]] [list $TokenAttr]]
tip_AddAnnotation $doc $Annot

g W N

Figure 5.5: Recording the output from the tokeniser in the GDM.

Figure 5.5 shows how a token annotation with an associated tokenVal attribute is created
and placed in the GDM. In lines 1 and 2, a tokenVal attribute is created and given the value of
the current token stored in the variable $Token. The commands in lines 3 and 4 create a token
annotation and associate the tokenVal attribute with it. $Start and $End are the starting
and ending byte offsets for the current token. The annotation is added to the GDM in line 5.
The multiN1 annotations are recorded in a similar way, with the exception of not having an
attribute.

5.6 Integrating the sentence splitter

The main difference between integrating the tokeniser and the sentence splitter lies in that the
former needs the input to be a plain text file, while the latter requires the input to be on a
well-defined format. This made the procedure used to prepare the input to the splitter a bit
more complex than the corresponding one for the tokeniser. Another difference is the possibility
for users to give additional options to the sentence splitter via the GGI. The organisation of
the splitter’s wrapper, which is similar to that of the tokeniser’s, is shown in Figure 5.6. The
top-level procedure, creole uppsplit, uses uppsplit_preparelnput to format the contents
in the GDM to fit the needs of the splitter, and uppsplit_recordQutput to record the data
produced in the GDM.

creole_uppsplit

uppsplit_preparelnput uppsplit_recordOutput

Figure 5.6: The organisation of the sentence splitter’s wrapper.
5.6.1 Preparing the input

The uppsplit_prepareInput procedure takes two arguments: doc and file. The former is
the currently open GDM document, and the latter is a path to a temporary file in which the
prepared input is to be placed.

The task the procedure has to deal with is to make file look exactly as the output from
the tokeniser would have done if it had been invoked on the text in doc, since this is what the
splitter expects (see Section 3.2.3). To achieve this, uppsplit_prepareInput takes both token
and multiN1 annotations into consideration and prints them to file while maintaining correct
relative order between each unique annotation of the two annotation types. To help out in
deciding which of two annotations to print, there are two things to consider. The first is that
both token and multilN1 are single span annotation types, meaning that each annotation has
only one span associated to it. The other important thing is that the tokeniser never returns
multiN1 annotations for which the ending byte offset for the first one is the starting byte offset
for the second. That is, if the tokeniser returns multiN1 0 2, it will not return multiN1 2 5.
The essence of these two important things is that, once a multiN1 annotation has been printed,
a token annotation is always next (if any annotation at all, that is).

set TokenAnnotations [tip_SelectAnnotations $doc token {}]
set MultiNlAnnotations [tip_SelectAnnotations $doc multiN1l {}]
set MultiN1lCount O
if {[1length $MultiNlAnnotations] > 1} {

set MultiNlLastIdx [expr [llength $MultiNlAnnotations] - 1]
} else {

set MultiNlLastIdx -1

O N O O WN -

}

Figure 5.7: Retrieving token and multiN1 annotations from the GDM.

Figure 5.7 shows how token and multiN1 annotations are retrieved from the GDM (lines 1
and 2). The annotations are stored in Tcl lists, TokenAnnotations and MultiNlAnnotations.
Since it seems reasonable to assume that the number of multiN1 annotations will be lower
than that of token annotations, counters keeping track of the current position in the list with
multiN1 annotations and the upper bound of that list, are initiated in lines 3 and 4 to 7.
This approach facilitates for the procedure to iterate over the list of token annotations and
to consider multiN1 annotations only when necessary. A negative value on MultiNlLastIdx
means that there were no multiN1 annotations present in the GDM for the current document.

At this point, it is time to start processing the lists containing the annotations. The byte
offsets of the first multiN1 annotation, if any, are retrieved. The procedure then considers each
token annotation, one at a time, comparing the starting byte offsets of the token annotations
with those of the multiN1 annotations, see Figure 5.8.

1 if { $TokenStart <= $MultiN1lStart } {

2 puts $F "$TokenStart $TokenEnd $TokenAttribute"
3 } else {

4 puts $F "multiN1l $MultiN1Start $MultiN1End"

5. puts $F "$TokenStart $TokenEnd $TokenAttribute"
6 if {$MultiN1lCount <= $MultiNlLastIdx} {

7 set MultiNlSpan [lindex [tip_GetSpans \

8 [tip_Nth $MultiNlAnnotations $MultiN1Count]] 0]
9. set MultiNlStart [tip_GetStart $MultiN1Span]
10. set MultiN1End [tip_GetEnd $MultiNl1Span]

11. incr MultiNlCount

12. }

13. }

Figure 5.8: Gathering annotations from two sets in one file, maintaining the relative order
between their members.

If the starting byte offset of the current token annotation is smaller than that of the current
multiN1 annotation (line 1), the token annotation is printed to the temporary file (line 2).
Otherwise, the multiN1 annotation is printed to the file, followed by the token annotation
(lines 4 and 5). The byte offsets for the next multiN1 annotation are then retrieved (lines
6-11). When both lists with annotations have been exhausted, the input to the sentence splitter
is available in the file associated with $F.

5.6.2 Invoking the sentence splitter

A somewhat different approach than the one used for the tokeniser had to be taken in order to
invoke the sentence splitter. The splitter allows for the user to specify additional parameters
via the GGI (see Section 3.2.3). The parameters are passed in a (possibly empty) Tcl list to
the wrapper. Since the command line options are not mutually exclusive, the list, $args, is
converted to a string $CommandLine in line 1, see Figure 5.9.

1. set CommandLine [join $args " "]
2. eval exec $UppsplitDir/uppsplit $CommandLine < $IntermediateFile > $FinalFile

Figure 5.9: Invoking the sentence splitter.

The Tcl command eval precedes exec in line 2, the reason being that the $CommandLine
variable would cause the wrapper to abort execution otherwise. $CommandLine is not recognised
by the splitter as a valid argument since the white space characters in it are considered as a
part of one argument rather than separators between several arguments. The eval command
concatenates all arguments, with white spaces as separators, and then executes the result as a
Tcl script (see Section B.6 for information about the eval command).

5.6.3 Recording the output

Recording the output from the sentence splitter resembles the task of recording of the output
produced by the tokeniser. However, the uppsplit_recordQutput procedure, which handles the
output from the splitter, does not have to take multiN1 annotations into consideration since
it operates on sentence annotations rather than token annotations. uppsplit _recordOutput
takes two arguments, doc and file. The former is the currently open GDM document and
the latter is the file which contains the output produced by the sentence splitter. Each line
in file is split into three parts, two integers and a string. The string is a sentence and the
integers are its starting and ending byte offsets, respectively (the output format is described in
Section 3.2.3). The procedure then records sentence annotations with sentenceVal attributes
in the GDM in a way analogous to the one in Figure 5.5.

5.7 Integrating the Brill tagger

The Brill tagger is different from the previous NL modules since it adds attributes to existing
annotations. In this case, it is token annotations that recieve new attributes, called pos. The
attributes added to the GDM by the tokeniser and the sentence splitter are added at the same
time as the annotations they are associated to, i.e. there is no need to check for correspondence
between the annotation and the attribute. The wrapper for the Brill tagger, more precisely,
the procedure that records the output from the tagger, has to make sure the sentences in the
output have been tagged properly, i.e. that each token has got a pos-tag appended to it. If this
is not the case, the tagger notifies the user and aborts the processing.

creole_uppbrill

uppbrill_preparelnput uppbrill_dialog uppbrill_recordOutput

uppbrill_file2list

Figure 5.10: The organisation of the Brill tagger’s wrapper.

The organisation of the Brill tagger’s wrapper is shown in Figure 5.10. The top-level
procedure, creole uppbrill, uses procedures for preparing the input to the NL program
as well as for recording the output in the GDM. It also makes use of a procedure called
uppbrill _dialog for generating dialog boxes which issue status/error messages to the user.
The uppbrill recordOutput employs a procedure, uppbrill file2list, for converting the
file containing the output from the tagger to a Tcl list.

5.7.1 Preparing the input

The uppbrill prepareInput takes two arguments: doc and file. The former is the currently
open GDM document, and the latter is the path to a temporary file in which to place the
prepared input for the Brill tagger.

set SentenceAnnotations [tip_SelectAnnotations $doc sentence {}]
foreach SentenceAnnotation $SentenceAnnotations {
set SentenceAttribute [tip_GetValue \
[tip_GetAttribute $SentenceAnnotation sentenceVal]]
puts $F $SentenceAttribute

OO WN -

Figure 5.11: Preparing the input to the Brill tagger.

Figure 5.11 shows how all sentence annotations are selected from the GDM (line 1). The
sentenceVal attributes corresponding to each annotation are then retrieved (lines 3 and 4) and
printed to the temporary file (line 5), resulting in a file with one sentence per line. The required
input format is described in Section 4.1.3.

5.7.2 Invoking the Brill tagger

The Brill tagger accepts additional (user specified) arguments via the GGI, as in the case of the
sentence splitter (see 5.6.2). However, there is a slight difference in the way the wrappers for
the two modules handle the list of user specified arguments. There are four default arguments
specified for the tagger and they are picked out and stored in variables rather than treated
as anonymous parts of a string (mainly because it makes it easier to understand the wrapper
code).

set lexicon [lindex $args 0]
set bigrams [lindex $args 1]
set lexRules [lindex $args 2]
set conRules [lindex $args 3]
set AddCommands " "
set RestOfArgs [lrange $args 4 end]
if {[llength $RestOfArgs] > 0} {
set Commands [join $RestOfArgs " "]
set AddCommands [format " %s " $Commands]

O W 00 NO O b WN -

[y

Figure 5.12: Collecting default and additional arguments given via the GGI.

The default arguments are picked out in lines 1 to 4 in Figure 5.12. If additional arguments
have been given by the user, they are collected in the variable AddCommands by the Tcl code
in lines 5 to 10. The control of whether the arguments given to the tagger make sense or not
is delegated to the tagger itself. Default arguments are accessible to the wrapper as long as
the user does not specify new values in the dialog box: they are present in $args even if the
corresponding fields in the dialog box have been cleared and left empty.

A user who wants to execute a Brill tagger has to change his/her working directory to that
of the tagger’s. Otherwise, the tagger cannot find two additional programs called start-state-
tagger and final-state-tagger which it needs in order to run. In Figure 5.13, there are three lines
of Tcl code that stores the current working directory (line 2) before it changes to the new one
(line 3).

1. set UppbrillDir /home/staff/gateuser/Brill/Bin
2. set 01dDir [exec pwd]
3. cd $UppbrillDir

Figure 5.13: Changing to the tagger’s directory.

Once the wrapper has got the arguments and the directory right, it is time to invoke the
Brill tagger. The tagger continuously prints information to the standard error channel about
the state of processing it is in. This information has to be dealt with in one of several ways (if
left alone, it will cause GATE to abort processing since the exception handling mechanisms will
interpret the status information as an error and act accordingly). One way is simply to ignore
whatever messages comes from the tagger, i.e. re-direct all messages to some place where they do
no harm. However, this does not seem to be a very good idea since the user will not have a clue of
what has happened if the tagger refuses to work. The Brill tagger has a large set of status/error
messages that helps the user to figure out what is happening during processing. Why not use
them? Other ways of dealing with the information are to save it in a log-file for later use or to
display it to the user immediately. Currently, the tagger’s wrapper implements the latter way,
all messages produced by the Brill tagger are shown to the user at once. One problem in all
this is that the tagger writes both status and error messages to the same channel, meaning they
are hard to tell apart. In Figure 5.14, a Tcl command called catch is used to collect status

set Code [catch {eval exec tagger \
$lexicon \
$BrillInput \
$bigrams \
$lexRules \
$conRules${AddCommands}> $BrillResult} Msg]

if {$Code == 1} {

uppbrill_dialog .d {Brill Status} $Msg info 0 {0k}

O 0 ~NO 0Lk WN -

}

Figure 5.14: Invoking the tagger using catch to collect status and error messages.

and error messages produced by the tagger (line 1. See Section B.7 for information about the
catch command). The tagger is invoked (lines 2 to 6) with the arguments from Figure 5.12 and
a path to the file $BrillInput which was created by uppbrill_preparelInput in Figure 5.11.
The catch command stores the return value from the tagger in Code and the message(s) printed
by the tagger to the error channel in Msg (lines 1 and 6, respectively). The value of Code is
then used to trigger a procedure, uppbrill_dialog, that displays the contents of Msg to the
user (line 8).

5.7.3 Recording the output

The procedure uppbrill_recordQutput records the output from the Brill tagger in the GDM.
It takes two arguments, doc which is the currently open GDM document, and file, which is a
file containing the output produced by the tagger.

As already mentioned, the Brill tagger is different from the previously described NL programs
in that it adds new GDM attributes to existing annotations. One additional attribute is added
to each token annotation. The attribute, which is called pos for part-of-speech, recieves as
value the tag the Brill tagger assigns to every token in its input. Thus, it is important that the
token annotations present in the GDM matches the output of the Brill tagger so that, after
uppbrill recordOutput is done, each token has the right part-of-speech tag associated with it
in the GDM. To ensure this, the first thing the uppbrill _recordOutput procedure does is to
convert the file containing the output from the tagger (the format is described in Section 4.1.3)
to a Tcl list in which each element is on the form word/tag, where word is a token in the input
and tag is a pos-tag given by the Brill tagger. The word part of each element is then used to
match tag with the right token annotation.

1. set BrillResult [uppbrill_file2list $file]

2. set TokenAnnotations [tip_SelectAnnotations $doc token {}]

3. set CurrIndex 0

4. foreach TokenAnnotation $TokenAnnotations {

5. set TokenValue [tip_GetValue \

6. [tip_GetAttribute $TokenAnnotation tokenVal]]

7. set CurrBrillInput [lindex $BrillResult $CurrIndex]

8. regexp {~ *(.+)/(.+) *$} $CurrBrillInput Trash Word PosTag
9. if {$Word == $TokenValue} {

10. set PosAttribute [tip_CreateAttribute pos \

11. [tip_CreateAttributeValue GDM_STRING $PosTag]]
12. tip_AddAnnotation $doc \

13. [tip_PutAttribute $TokenAnnotation $PosAttribute]
14. incr CurrIndex 1

15. } else {

16. return -code error \

17. -errorinfo $errorInfo \

18. -errorcode $errorCode \

19. "The output produced by the Uppsala Brill \
20. tagger is corrupt: the character sequence \
21. found doesn’t match the current token \
22. annotation"
23. }
24. }

Figure 5.15: Recording the output from the Brill tagger in the GDM.

Figure 5.15 contains the Tcl code doing roughly what the previous paragraph talked about.
The output from the tagger is converted by a procedure called uppbrill file21list to a list
BrillResult in line 1. The token annotations are retrieved from the GDM in line 2. The
current tokenVal and the current element, Word and PosTag, are picked out in lines 5 to 8. If
there is a match, i.e. the tokenVal is the same as Word, then a pos attribute is created and
added to the GDM (lines 9 to 14). On the other hand, if a mismatch occurs, the procedure

returns an error code and an error message (see Section B.7 for information about exceptional
events in Tecl).

set Code [catch {uppbrill_recordOutput $doc $BrillResult} Msg]
if {$Code == 1} {
uppbrill_dialog .d {Error trying to record Brill output} $Msg \
error 0 {0k}
set TokenAnnotations [tip_SelectAnnotations $doc token {}]
foreach token_annotation $TokenAnnotations {
tip_AddAnnotation $doc [tip_RemoveAttribute $TokenAnnotation pos]

0 ~NO O WN -

}

Figure 5.16: Calling uppbrill recordQutput, taking possible errors into consideration.

Figure 5.16 shows how uppbrill recordOutput is invoked from within the
creole_uppbrill procedure (line 1). Again, the catch command is used to catch possi-
ble errors that a mismatch between the output as produced by the Brill tagger and the token
annotations present in the GDM might cause. If an error occurs, the pos attributes added to
the GDM so far have to be removed in order to keep the database consistent (lines 5 to 8).

5.8 Integrating the Uppsala Chart Processor

The wrapper integrating the Uppsala Chart Processor in GATE is by far the largest one im-
plemented in this thesis (see the listing in Appendix D.2). Tt differs in some essential aspects
from the other wrappers described in the previous sections. As for the preparation of the input
to UCP, the wrapper converts the first token in every sentence to lower case (as described in
the next section). To achieve this, the wrapper must be able to recognise sentence delimiters
constituted either by certain values of the current tokenVal attribute or by the presence of a
multiN1 annotation. Thus, the wrapper takes more information into consideration than any of
the other wrappers at the same point in time during processing. When it comes to invoking
UCP, the wrapper cannot pass the additional arguments on to the UCP as a raw string (as was
the case in Sections 5.6.2 and 5.7.2), rather, the arguments are used to build LISP commands
that are then passed to UCP. For instance, such a command could tell UCP which lexicon to
use and where to place an additional output file. Finally, when recording the output from any
of the other modules, the procedure responsible for that could read from a file and record data
in the GDM in a line-at-a-time fashion. Since the structures produced by UCP span several
lines, the current procedure has to read and process the file containing the output cumulatively,
until enough information is gathered and then record it in the GDM.

The organisation of the wrapper in terms of the procedures it uses and the relation be-
tween them is shown in Figure 5.17. The procedure creole_uppcp employs three procedures:
uppcp-preparelnput for preparing the input for UCP, uppcp-dialog for issuing error mes-
sages to the user and uppcp_recordQutput for recording the output produced by UCP in the
GDM. The latter uses, directly or indirectly, another three procedures: uppcp_toLowerCase,
for converting upper case characters from the ISO 8859-1 character set to lower case, and
uppcp-file2list for converting the file containing the output from UCP to a Tcl list,
uppcp-file2list in turn, uses a procedure called uppcp_refinelist to clean up partial lists.

creole_uppcp

uppcp_preparelnput uppcp_dialog uppcp_recordOutput

uppcp_toLowerCase uppcp_file2list

uppcp_refineList

Figure 5.17: The organisation of the Uppsala Chart Processor’s wrapper.
5.8.1 Preparing the input

A procedure called uppcp_prepareInput handles the preparation of the input to the Uppsala
Chart Processor. The procedure takes two arguments: doc, which is the currently open GDM
document; and file, which is a path to a file in which to put the prepared input.

To facilitate for UCP to analyse the words in the input, the wrapper converts the first token
in every sentence to lower case. This is because the information encoded in the lexicon and
morphological rules used by the UCP is in lower case, with the exception for proper names. Of
course, the conversion of tokens employed here is not the best solution possible since proper
names starting a sentence will not be assigned correct analyses. A proper name converted to
lower case may be interpreted by UCP as something completely different. For example, consider
the name Fster (i.e. Esther), when written in lower case, ester can be interpreted as taken from
a chemical domain or as Estonians, while the intended analyse as a proper name is not very
likely to occur. The uppcp_preparelnput procedure was implemented under the assumption
that proper names are less frequent at the first position in a sentence than any other word is.

To be able to recognise the first token in the sentences, the wrapper has to decide
which tokens are sentence delimiters and which are not. Thus, the work performed by
uppcp-preparelnput resembles, to some extent, that of the sentence splitter described in Sec-
tion 3.2. However, uppcp_prepareInput only has to recognise the delimiters, it does not have
to buffer its input and print it whenever appropriate, which means the procedure still is less
complex than the sentence splitter.

uppcp_preparelnput uses an approach similar to that described in Figures 5.7 and 5.8: it
considers both token and multiN1 annotations, maintaining the relative order between the an-
notations in the two sets. The basic idea is then to compare byte offsets for the current token
annotation and the current multiN1 annotation as well as using information about the previ-
ously seen token in order to know when a token should be converted to lower case and printed
and when it should be printed as is. Figure 5.18 illustrates how uppcp_prepareInput converts
the appropriate tokens to lower case. $TokenStart and $MultiN1Start are the starting byte
offsets for the current token and multiN1l annotations, respectively. $PrevTokenAttribute

1. if { $TokenStart <= $MultiN1lStart } {

2. if {[string match \. $PrevTokenAttributel} {

3. puts $F "[uppcp_toLowerCase $TokenAttribute]"
4. } elseif {[string match \! $PrevTokenAttribute]} {
5. puts $F "[uppcp_tolLowerCase $TokenAttribute]"
6. } elseif {[string match \\7? $PrevTokenAttributel} {
7. puts $F "[uppcp_toLowerCase $TokenAttribute]"
8. } else {

9. puts $F "$TokenAttribute"

10. }

11. set PreviousAnnotation "token"

12. set PrevTokenAttribute $TokenAttribute

13. } else {

14. puts $F "[uppcp_toLowerCase $TokenAttribute]"

15. set PreviousAnnotation "multiN1"

16. set PrevTokenAttribute ""

17. if {$MultiNlCount <= $MultiNlLastIdx} {

18. set MultiNlSpan [lindex [tip_GetSpans \

19. [tip_Nth $MultiNlAnnotations $MultiN1lCount]] 0]
20. set MultiNlStart [tip_GetStart $MultiN1lSpan]
21. set MultiN1lEnd [tip_GetEnd $MultiN1Span]
22. incr MultiNlCount
23. +
24. }

Figure 5.18: Deciding whether a token is the first one in a sentence or not.

holds the value of the tokenVal attribute seen before the current one, which is stored in
$TokenAttribute. $PreviousAnnotation is a flag signaling the type of the previous anno-
tation. It can assume the strings token or multiN1 as value. The if-statement starting at line
1 in Figure 5.18 applies if the current type of annotation is token. The procedure then tries to
match the previous tokenVal attribute against one of the sentence delimiters (.! and 7), and if
successful, convert the attribute to lower case and print it to the temporary file (lines 2 to 7).
The procedure used for converting a string to lower case is called uppcp_toLowerCase and it
is not the same as the built in string tolower construct since that does not handle the ISO
8859-1 character set the way needed by the wrapper.

The else branch starting in line 13 applies if the current type of annotation is multiN1. The
procedure then prints the current tokenVal attribute to the temporary file (line 14) and proceeds
with the next multiN1 annotation, if any, for comparison with the next token annotation (lines
17 to 23).

5.8.2 Invoking UCP

The wrapper integrating UCP in GATE allows for the user to give additional arguments to
UCP via the GGI. This was also the case with the sentence splitter and the Brill tagger as
described in sections 5.6.2 and 5.7.2. However, in those cases, the contents of the list containing
the user specified parameters, $args, could more or less be converted to a string which was
then passed as is to the NL program in question. UCP expects the additional arguments to be
embedded in LISP commands which are then passed to UCP together with a memory dump

of the morphological rules at loading time, the reason being that the arguments are originally
intended to be input interactively to UCP via the underlying Common LISP interpreter, but
a later patch allows a user to specify the arguments on the command line. Figure 5.19 shows
how the $args list is processed.

1. set RemoveParseFile 1

2. set UcpMorphology [lindex $args 0]

3. if {[lindex $args 1] == ""} {

4. set LispCommands \

5. [format \

6. "(progn (usegd) (try-file \"%s\" :report-style :parses))" \
7. $UcpInput]

8. } else {

9. set LispCommands \

10. [format \

11. "(progn (usegd) (try-file \"%s\" \

12. :report-style :parses :parse-file \"%s\"))" \
13. $UcpInput [lindex $args 1]]

14. set UcpParses [lindex $args 1]

15. set RemoveParseFile 0

16. +

Figure 5.19: Processing arguments given by the user via the GGI.

RemoveParseFile (line 1) is a flag telling the wrapper whether the file containing the ana-
lyses produced by UCP should be removed or not at the end of processing. $UcpInput (line 7)
is the path to the file in which the prepared input to UCP resides and $UcpParses (line 14) is
the path to a file in which the output from UCP is to be stored.

Currently, the UCP wrapper accepts only two user specified arguments, of which the first,
a path to a set of morphological rules, has a default value. The second argument is a file in
which to save the analyses produced by UCP. If the GGI dialog box is left unchanged, i.e. there
is only one argument in $args, the wrapper builds the LISP expression at line 6 in Figure 5.19.
Otherwise, the expression in lines 11 and 12 is constructed.

5.8.3 Recording the output

A procedure called uppcp_recordOutput records the output from UCP in the GDM. The pro-
cedure takes two arguments, doc, which is the currently open GDM document, and file, which
is the temporary file used for storage of the output from UCP.

The output produced by UCP is structurally more complex than the output from the
other modules in that several lines, rather than just one, must be considered in order to
record one attribute in the GDM (the output from UCP is described in Section 4.2.3). First,
uppcp-recordlutput converts the file containing the analyses produced by UCP to a list. The
list is then compared to the token annotations present in the GDM. All token annotations
present in the GDM are assigned a morph attribute. The value of morph depends on whether
there is a match between the current element in the list of analyses and the current tokenVal
attribute. If there is, the morph attribute is assigned as value a list of lists, in which each
element contains an analysis (sequence of attribute—value-pairs) for the word represented as the

current tokenVal attribute. Otherwise, if there is no match, the morph attribute is assigned an
empty Tcl list as value. There will most likely not be a one-to-one correspondence between the
analyses given by UCP and the token annotations present in the GDM since UCP assigns zero
or more analyses to any given word (in contrast to the Brill tagger which assigns one pos-tag
to every token in the input, see Section 5.7). If the current analysis does not match the cur-
rent tokenVal attribute, the processing goes on with the next attribute. The only mismatch
that causes the procedure to abort processing is if there are UCP analyses left when the token
annotations are exhausted.

Reading the file containing the output from UCP is done in one pass using two proce-
dures: uppcp_file2list and uppcp-refinelList. The former reads the file line by line while
building up a list containing the current analysis. Once such a list is built, it is passed to
uppcp-refinelist which, as the name suggests, refines the list, meaning the attribute—value-
pairs are extracted and put in lists of their own. The structure of the list resulting from these
procedures is shown in Figure 5.20 and the source code of the UCP wrapper in Appendix D.2.

{analyseward: analysewads - . . analysewadn }
where analysewadi , 1 < i >mn, is
{{token,} structure; ...structurek}
and structurej, 1 < j >k, is
{{attribute; = value:} ... {attributem = valuep}}

m>landp>1

Figure 5.20: The structure of the list of morphological analyses resulting from applying
uppcp-file2list on a file containing the output from UCP.

5.8.4 Viewing ambiguities — the single_span_ambiguities viewer

None of the viewers available in GATE was suitable for displaying the output of UCP. The
ones considered were raw and single_span (see Section 5.2), but using any of them would
surely only confuse the user since, in some cases, the value associated to a morph attribute is
so big (in terms of numbers of characters, that is) it cannot be displayed all at once. In fact,
there is no viewer in GATE able to handle attributes, associated to single span annotations,
taking on multiple values like the multiple analyses UCP may assign to a word. This is why the
single _span_ambiguities-viewer was implemented. It is written in Tcl/Tk with the guidance
of source code from available viewers as well as with help from the people at the University of
Sheftield who are developing the GATE system. Hopefully, the viewer is general enough to be
of use to any CREOLE object which produces attributes that are stored in the same fashion as
the morph attributes.

Figure 5.21 shows the viewer. The upper window contains a text processed by UCP. Words
written in black with a grey background (which is light blue in real life) in the figure have been
assigned at least one analysis while the words in black without background colour have not
received any at all. When an analysed word is clicked by the user, the corresponding analyses

are displayed in the bottom window. The colours of the words that have been clicked are
changed to white text on dark blue background. The current word, i.e. the one whose analyses
are displayed, is written in white on a red background. In Figure 5.21, the currently activated
word is mitt (third from the left at the first line in the upper window).

=

1 i alltihopa! ¥ad ska det betwda? Det kanske bara &dr for att
testa hur saker och ting fungerar...

Biocgrafi

Selma Lagerldf [§ a5 o S getas Marbacka 1 Ostra Amteviks socken
i Wdrmland. Marbacka sdldes 1 EREERESE av 1880-talet men aAterkdptes 1910 aw
farfattaren, som sedan bodde dir till sin dad 1940,

Selma arbetade som lararinna 1 Landskrona 1885-95. Hon debuterade med Gosta
Berlings saga &r 1891, en berfttelsesvit dir skilda lokalsigner wivs samman
och grupperar sig kring de "kavaljererna" péd den wirmlindska herrgirden
Ekeby.

Efter debuten fortsatte Lagerldf med konstnirligt mognare noveller, t. ex.
Dunungen, som ingar 1 samlingen Osvnliga lankar (1854). I mitten aw
189%0-talet fick hon méjligheten att gdra en Italienresa, resan gav henne
miljdn £ill romanen Antikrists mirakler (1897). NEsta resa, efter den korta
romanen En herrgirdssdgen (1899), gick till Palestina. Dar samlade hon
material till sitt fdrsta stora episka verk, Jerusalem (1-2, 1901-02).

P& bestéllning skrev hon Nils Holgerssons underbara resa genom Sverige (1-2,
1906-07) , avsedd som historisk-geografisk l&sebok for folkskolan. Ett annat
bestidllningsarbete ar Korkarlen (1912), som bygger pd en sdgen om dédens
korkarl och som Lagerldf skrew for Nationalfdreningen mot tuberkulos. Ater

LEM=MITTI .&B
INFL=FATTEEN . REDAII
DIC,STEM=mitt
WORD ., CAT=ADV

EOW=+

=k

LEM=MITTE . NN
INFL=FPATTERN.EXIL
DIC.STEM=mitt
NUMB=3ING
WORD . CAT=NOUN
GENDER=UTR
FORM=INDEF
CASE=BASIC

LEM=MINZ . PN
INFL=FATTERN.DITT
NUMB=3 ING
GENDER=NEUTE
PRON. TYPE=POZR
DIC,.STEM=mitt
WORD . CAT=FRON
CASE=BASIC

Figure 5.21: The single_span_ambiguities-viewer.

When designing a viewer for the GATE system, there are a few things to keep in mind:*

e Procedures or global variables used in the viewer should not already be in use by GATE.

“Based on personal communication with Pete Rodgers and Hamish Cunningham, the Department of Computer
Science at the University of Sheffield.

e The definition of the viewer procedure should be
ggi view TYPE { doc annotation attribute title }
where doc is the currently open GDM document, annotation is the annotation to be
viewed, attribute is the specific attribute of the annotation to be viewed and title is
the name of the viewer to appear in the module viewer window. TYPE should be substituted
for by a viewer name not already in use.

e The file containing the viewer must have the extension .gw to enable integration of the
viewer into the GATE system.

The procedures used in the ambiguity viewer and the relations between them are displayed
in Figure 5.22. Boxes connected to ggi_view_single span ambiguities with dashed lines
represent three procedures present in the files ggi.tcl and ggi_viewers.tcl, which constitute
parts of the GGI and the viewers available in GATE. The procedure ggi_wait message creates
a window telling the user that work is in progress; ggi_destroy_wait is used to destroy such
a window; gu_gensym generates a unique symbol each time it is called, symbols that are used
for naming windows so the GGI can tell them apart at updates, deletions etc. The other boxes
represent procedures constituting the actual viewer, the source code of which is available in
appendix D.3.

ggi_wait_message

ggi_view_single_span_ambiguities | - — — — ggi_destroy_wait

gu_gensym

ggi_ssavPlaceText

ggi_ssavDisplayAttributes ggi_byteOffset2LineChar

goi_ssavDisplayNestedAttributes

Figure 5.22: Procedures used in the single_span_ambiguities-viewer.

The top-level procedure, ggi_view_single span_ambiguities, sets up the window and fills
the upper half with the text of the current GDM document using the ggi_ssavPlaceText
procedure. The latter places the text in a given window, using ggi byte0ffset2LineChar to
convert the span corresponding to each relevant GDM annotation to co-ordinates in terms of
lines and characters as used by text widgets in Tk. Each span is assigned a unique tag, which
is an integer denoting the index of an element in a list containing the attributes in question (in
the case of UCP, these are morph attributes associated to token annotations), and bound to a
procedure called ggi_ssavDisplayAttributes. When a highlighted portion of text in the upper
window is activated, i.e. clicked by the user, the co-ordinates given by the windowing system

are used by the ggi_ssavDisplayAttributes to retrieve the tag corresponding to the clicked
area. This tag, in turn, is used to get the value of the attribute-value associated to the span.
The value of the attribute is a list (possibly containing lists of arbitrary nesting depth) which
is passed to ggi_ssavDisplayNestedAttributes that formats and displays the information in
the bottom window. All in all, a hypertext effect is achieved since tags associated to pieces of
text in the upper window are used as addresses to the attributes in the GDM which are then
displayed in the bottom window.

Chapter 6

Concluding discussion and future
work

This chapter concludes the thesis with a discussion of the results of the integration, an estimation
of the time spent in the different parts of the thesis and a short note on possible future work.

First of all, the GATE system is easy to work with, although it might take some time to get
acquainted to it. T have only come to know parts of it in depth, that is, the Tcl APT using a loose
coupling between the GDM and the NL modules to be integrated. Also, I have spent more time
on integrating the modules than T have on using the system purely from an end-user’s point of
view. Table 6.1 illustrates the approximate amount of time I have spent on the different phases
in the creation of the thesis, it also shows that a person without previous knowledge about
GATE and Tcl/ Tk can integrate NL programs in GATE after a fairly short learning period.

Activity

Exploring the GATE system documentation and practical behaviour
Learning about UCP and the Brill tagger

Basic wrapper design

Designing and implementing the tokeniser and the sentence splitter
Tecl basics

Integrating the tokeniser

Integrating the sentence splitter

Integrating the Brill tagger

Integrating the UCP

Tk basics

Implementing and integrating the ambiguity viewer

Writing a first version of the report (including learning I¥TEX)

~
cn»—\»—\wwwwwwr—\wwg‘
O

Table 6.1: Time (in weeks) spent in the different phases of the thesis.

One of the best things about the modularity of the GATE system is that, once a module is
integrated into GATE, it is easy to combine it with existing modules to form new NL systems.
However, T believe GATE would be even more user and developer friendly if it provided for
interaction between the NL modules and the user (or other programs) during the execution of
the module in question. For instance, once an NL module has been invoked, the current version

of GATE does not allow the user to interrupt the module, and conversely, GATE is unable to
prompt the user for information using the existing commands/functions in the GATE core.! A
high degree of interaction between GATE and a user would be required by, for instance, an NL
module for manual disambiguation of the output from UCP. Of course, it is possible for any
CREOLE developer to define his own set of commands/functions for solving problems like these,
but perhaps the best solution would be to extend the GATE core with a standardised set of
commands for handling user interaction, i.e. dialog boxes, exception handling,? and other ways
to communicate with NL modules that are first and foremost intended to be used interactively.

The process of integration was, with a few exceptions (see Appendix A), straightforward
since it was possible to use the same approach in all four wrappers. It is likely that the approach,
which is described in Section 5.4, is applicable for integrating any non-interactive NL program
in GATE. The Tcl API and the loose coupling are also shown sufficient to successfully integrate
NL programs implemented in programming languages from completely different paradigms (in
this case the languages are C, Perl and Common LISP). There is, however, one major drawback
of the wrappers: the most complex one, i.e. the one for UCP (see Appendix D.2), tends to
spend a lot of its processing time to record the output produced. Therefore, I conclude that
Tcl is suitable for processing large sets of data (especially lists) only if the developer/user
is not concerned with reducing the time of the processing that is spent in the wrapper vs.
the time spent by the NL program actually processing texts. For smaller wrappers, like the
ones integrating the tokeniser and the sentence splitter, the use of Tcl seems to be no greater
disadvantage. As a user, my impression of the time it takes to load the tokeniser or the sentence
splitter is that it is about the same as it takes to load the corresponding modules in the VIE
system which are integrated in GATE using a tight coupling and the C++ APL

As previously pointed out, it is easy to integrate new NL modules in GATE and, as shown
with the single_span_ambiguities-viewer, it is also quite easy to incorporate a new viewer
in GATE. It is my belief that it is equally easy to extend GATE as a platform with respect
to other parts, such as a set of dialogue/interface handling primitives, and that extensions not
necessarily need to be provided for by one site only, i.e. the University of Sheffield, but can be
designed, implemented and incorporated in GATE by other sites.

When it comes to future work, I would like to see the two APIs appropriately compared in
terms of speed and accessibility. Especially, it would be interesting to re-write the UCP wrapper
in C++ using a tight coupling and to compare its performance to that of the one implemented
in Tcl.

!The version of GATE referred to here is 1.0.3.
2There are already ways to handle exceptions defined in the GATE documentation, but in my opinion, they
are hard to use.

Bibliography

[Beskow et al 1997] Jonas Beskow, Kjell Elenius, and Scott MacGlashan. “Olga — A dialogue
system with an animated talking agent”. In Proceedings of the 5th European
Conference on Speech Communication and Technology, volume 3, pp. 1651-1654,
Rhodes, Greece, 1997.

[Bredenkamp et al 1997] A. Bredenkamp, T. Declerck, F. Fouvry, B. Music, and A. Theofilidis.
“Linguistic Engineering using ALEP”. In Proceedings of the 2nd International
Conference on Recent Advances in Natural Language Processing, pp. 92-97, Tzigov
Chark, Bulgaria, 1997.

[Brill 1992] Eric Brill. “A Simple Rule-Based Part of Speech Tagger”. In Proceedings of the 3rd
Conference on Applied Natural Language Processing, pp. 152-155, Trento, Italy,
1992. ACL.

[Brill 1995] Eric Brill. “Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part of Speech Tagging”. Computational Linguistics,
pp. 543 — 565, 1995.

[Brill 1997] Eric Brill. “Unsupervised Learning of Disambiguation Rules for Part of Speech
Tagging”. In K. Church, S. Armstrong, P. Isabelle, E. Tzoukermann, and
D. Yarowsky, editors, Natural Language Processing Using Very Large Corpora.
Kluwer Academic Press, Dordrecht, Holland, 1997. in press.

[Bub & Schwinn 1996] Thomas Bub and Johannes Schwinn. “Verbmobil: The Evolution of a
Complex Large Speech-to-Speech Translation System”. In Proceedings of the 4th
International Conference on Spoken Language Processing, Philadelphia, Pennsyl-
vania, 1996.

[Cohen et al 1989] Philip R. Cohen, Adam J. Cheyer, Michelle Wang, and Soon Choel Baeg.
“An Open Agent Architecture”. In AAAI Spring Symposium, pp. 1-8, Stanford
University, California, 1994.

[Cunningham et al 1995] Hamish Cunningham, Robert J. Gaizauskas, and Yorick Wilks. “Gen-
eral Architecture for Text Engineering (GATE) - a new approach to Language
Engineering R&D”. Technical Report CS—95-21, Dept. of Computer Science,
University of Sheffield, Sheffield, England, December 1995.

[Cunningham et al 1996] Hamish Cunningham, Yorick Wilks, and Robert J. Gaizauskas.
“GATE - a General Architecture for Text Engineering”. In Proceedings of the

16th International Conference on Computational Linguistics, volume 2, pp. 1057—
1060, Kgbenhavn, Denmark, 1996. ACL.

[Cunningham et al 1996] Hamish Cunningham, Kevin Humphreys, Robert J. Gaizauskas, and
Martin Stower. CREOLE Developer’s Manual. Sheffield, England, 1996.

[Dahllof 1989] Mats Dahllof. “Satslosning i en lexikonorienterad parser for svenska”. Master
of Art Thesis, University of Gothenburg, Dept. of Computational Linguistics,
Gothenburg, Sweden, 1989. (in Swedish).

[Edwards 1993] Jane A. Edwards. “Survey of Electronic Corpora and Related Resources for
Language Researchers”. In J.A. Edwards and M.D. Lampert, editors, Talking
Data: Transcription and Coding in Discourse Research, pp. 263-310. Erlbaum,
Hillsdale, New Jersey, 1993.

[Eriksson 1997] Mikael Eriksson. SVENSK Module Specification. Kista, Sweden, January 1997.

[Eriksson & Gambéck 1997a] Mikael Eriksson and Bjorn Gambick. “SVENSK: A Toolbox of
Swedish Language Processing Resources”. In Proceedings of the 2nd International
Conference on Recent Advances in Natural Language Processing, pp. 336-341,
Tzigov Chark, Bulgaria, 1997.

[Eriksson & Gambéck 1997b] Mikael Eriksson and Bjorn Gambéck. “Final Report of
SVENSK?”. Technical report, Swedish Institute of Computer Science, Kista, Swe-
den, September 1997.

[Gaizauskas et al 1996a] Robert Gaizauskas, Hamish Cunningham, Yorick Wilks, Peter
Rodgers, and Kevin Humphreys. “GATE: An Environment to Support Research
and Development in Natural Language Engineering”. In Proceedings of the 8th
IEEE International Conference an Tools with Artificial Intelligence, Toulouse,
France, 1996.

[Gaizauskas et al 1996b] Rob Gaizauskas, Pete Rodgers, Hamish Cunningham, and Kevin
Humphreys. “GATE User Guide”. Technical report, Department of Computer
Science and Institute for Language, Speech and Hearing (ILASH), University of
Sheffield, UK, 1996.

[Gambéck 1997] Bjorn Gambéck. Processing Swedish Sentences: A Unification-Based Grammar
and some Applications. Doctor of Engineering Thesis, The Royal Institute of
Technology and Stockholm University, Dept. of Computer and Systems Sciences,
Stockholm, Sweden, June 1997. Also available as SICS Dissertation Series 21,
Swedish Institute of Computer Science, Kista, Sweden.

[Gazdar & Mellish 1989] Gerald Gazdar and Chris Mellish. Natural Language Processing in
Prolog. Addison-Wesley, Wokingham, England, 1989.

[Grefenstette & Tapanainen 1994] Gregory Grefenstette and Pasi Tapanainen. “What is a
word, What is a sentence? Problems of Tokenization”. In Proceedings of the Srd
Conference on Computational Lexicography and Text Research, Budapest, Hun-
gary, 1994.

[Grishman et ol 1997] Ralph Grishman et al. TIPSTER Text Phase II Architecture Design.
Version 2.3. New York, January 1997.

[Guo 1997] Jin Guo. “Critical Tokenization and its Properties”. Computational Linguistics,
23(4):569-596, December 1997.

[Habert et al 1998] B. Habert, G. Adda, M. Adda-Decker, P. Boula de Maréuil, S. Ferrari,
O. Ferret, G. Illouz, and P. Paroubek. “Towards Tokenization Evaluation”. In
Antonio Rubio et al., editors, Proceedings of the First International Conference
on Language Resources and Evaluation, volume 1, pp. 427-431, Granada, Spain,
1998. ELRA.

[Hirschman et al 1996] Lynette Hirschman, Henry S. Thompson, Beth Sundheim, John
Hutchins, Ezra Black, Margaret King, David S. Pallet, Adrian Fourcin, Lois
C. W. Pols, Sharon Oviatt, Herman J. M. Steeneken, and Junichi Kanai. “Eval-
uation”. In Ronald A. Cole et al., editors, Survey of the State of the Art in
Human Language Technology. Oregon Graduate Institute of Science and Tech-
nology, 1996. The book is available only on the Internet at the address:
www.cse.ogi.edu/CSLU/HLTsurvey/.

[Humphreys et al 1996] Kevin Humphreys, Robert J. Gaizauskas, Hamish Cunningham, and
Saliha Azzam. CREOLE Module Specifications. Sheffield, England, 1996.

[Humphreys et al 1996] Kevin Humphreys, Robert J. Gaizauskas, Hamish Cunningham, and
Saliha Azzam. VIE Technical Specifications. Sheffield, England, 1996.

[Hutchins & Somers 1992] W. John Hutchins and Harold L. Somers. An Introduction to Ma-
chine Translation. Academic Press, London, England, 1992.

[Johnson 1997] Ray Johnson. “Tcl Style Guide”, August 1997. Available on the Internet at
sunscript.sun.com/techcorner/.

[Karlsson 1992] Fred Karlsson. “SWETWOL: A Comprehensive Morphological Analyser for
Swedish”. Nordic Journal of Linguistics, 15(1):1-45, 1992.

[Karlsson et al 1995] Fred Karlsson, Atro Voutilainen, Juha Heikkil&, and Arto Anttila, editors.
Constraint Grammar: A Language-Independent System for Parsing Unrestricted
Text. Mouton de Gruyter, Berlin, Germany, 1995.

[Karttunen et al 1996] Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne
Schiller. “Regular Expressions for Language Engineering”. Natural Language
Engineering, 2(4):305-328, 1996.

[Kay 1977] Martin Kay. “Reversible Grammar: Summary of the Formalism”. Technical
report, Xerox Palo Alto Research Center, Palo Alto, California, 1977.

[Koskenniemi 1983] Kimmo Koskenniemi. Two-Level Morphology: A General Computational
Model for Word-Form Recognition and Production. Doctor of Philosophy Thesis,
University of Helsinki, Dept. of General Linguistics, Helsinki, Finland, 1983.

[Levine et al 1995] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. O'Reilly &
Associates, Sebastopol, California, 1995.

[McEnery & Wilson 1996] Tony McEnery and Andrew Wilson. Corpus Linguistics. Edinburgh
University Press, 1996.

[Moran et al 1997] Douglas B. Moran, Adam J. Cheyer, Luc E. Julia, David L. Martin, and
Sangkyu Park. “Multimodal User Interfaces in the Open Agent Architecture”.
In Proceedings of the International Conference on Intelligent User Interfaces, pp.

61-68, Orlando, Florida, 1997. ACM.

[Olsson et al 1998] Fredrik Olsson, Bjorn Gambick, and Mikael Eriksson. “Reusing Swedish
Language Processing Resources in SVENSK”. In Workshop on Minimizing the
Effort for Language Resource Acquisition, Granada, Spain, 1998. Furopean Lan-
guage Resources Association.

[Ousterhout 1994] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[Ousterhout 1997] John K. Ousterhout. “Scripting: Higher Level Programming for the 21st
Century”. Whitepaper, Sun Microsystems Laboratories, 1997. This paper is a
draft dated March 28, 1997.

[Palmer & Hearst 1994] David D. Palmer and Marti A. Hearst. “Adaptive Sentence Bound-
ary Disambiguation”. In Proceedings of the 4th Conference on Applied Natural
Language Processing, Stuttgart, Germany, 1994. ACL.

[Priitz 1997] Klas Priitz. “Sammanstillning av en traningskorpus pa svenska for trining av
ett automatiskt ordklasstaggningssystem”. Technical report, Dept. of Linguistics,
Uppsala University, Uppsala, Sweden, 1997. (in Swedish).

[Rayner et al 1993] Manny Rayner, Hiyan Alshawi, Ivan Bretan, David M. Carter, Vassilios
Digalakis, Bjérn Gamback, Jaan Kaja, Jussi Karlgren, Bertil Lyberg, Stephen G.
Pulman, Patti Price, and Christer Samuelsson. “A Speech to Speech Translation
System Built from Standard Components”. In Proceedings of the Workshop on
Human Language Technology, Princeton, New Jersey, 1993. ARPA, Morgan Kauf-
mann. Also available as SRI International Technical Report CRC-031, Cambridge,
England.

[Samuelsson 1994] Christer Samuelsson. “Notes on LR Parser Design”. In Proceedings of the
15th International Conference on Computational Linguistics, volume 1, pp. 386-

390, Kyoto, Japan, 1994. ACL.

[Samuelsson & Voutilainen 1997] Christer Samuelsson and Atro Voutilainen. “Comparing a
Linguistic and a Stochastic Tagger”. In Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics, ACL, pp. 246-253, 1997.

[Simpkins & Groenendijk 1994] N. Simpkins and M. Groenendijk. “The ALEP Project”. Tech-
nical report, Cray Systems/CEC, Luxembourg, 1994.

[Sunnehall 1996] Joel Sunnehall. “Robust Parsing Using Dependency with Constraints and
Preference”. Master of Art Thesis, Uppsala University, Uppsala, Sweden, Septem-
ber 1996.

[Sagvall Hein 1981] Anna Sagvall Hein. “An Overview of the Uppsala Chart Parser Version
1 (UCP-1)”. Technical report, Center for Computational Linguistics, Uppsala
University, Uppsala, Sweden, 1981.

[Sagvall Hein 1987] Anna Sagvall Hein. “Parsing by Means of the Uppsala Chart Processor
(UCP)”. In Leonard Bolc, editor, Natural Language Parsing Systems, pp. 203—
266. Springer-Verlag, Berlin, Germany, 1987.

[Sagvall Hein et al 1997] Anna Sagvall Hein, Ingrid Almqvist, and Per Starbdck. “Scania
Swedish — A Basis for Multilingual Machine Translation”. In Proceedings of
the 19th Conference on Translating and the Computer, London, England, 1997.
ASLIB.

[TIPSTER 1996] Architecture Committe for the TIPSTER Text Phase II Program. TIPSTER
Text Phase Il Architecture Concept. New York, New York, 1996.

[Wirén 1992] Mats Wirén. Studies in Incremental Natural-Language Analysis. Doctor of Philos-
ophy Thesis, Linkdping University, Dept. of Computer and Information Science,
Linkoping, Sweden, December 1992.

Appendices

Appendix A

Trouble-shooting — 4 questions and
answers about integration

This appendix deals with some practical questions that came up during the integration of the
NL programs introduced in chapters 3 and 4.

What about using additional Tcl procedures, that is, procedures used by creole X
in the moduleName.tcl file?

When developing CREOLE objects, the (possible) additional procedures defined at the
same level as the creole X procedure in any moduleName.tcl file must have different
names! Otherwise, there will be unreported name clashes when GATE tries to execute a
system, which will result in a behaviour that may appear random to the user: the wrapper
works fine one moment but not at all the next. The reason being that all procedures at
the top-level in the wrappers shares the same name space in GATE. As a consequence, if
two procedures have the same name, only the definition of the last loaded one will be used
by GATE. However, such behaviour can be prevented by either using unique names for
the procedures or by defining the additional procedures within the scope of the creole X
procedure (things defined within a the scope of a procedure cannot be accessed from
outside that procedure).

GATE refuses to start — what’s wrong?

What is wrong if GATE refuses to start after the last module was loaded, but instead
gives an error message similar to this?

user@computer ~“$> This is GATE, version 1.0.3
command returned bad code: 537861148
while executing
"gate_startup"
(file "/usr/local/lib/gate-1.0.3/Build/gate" line 567)

The reason for this particular error is that there was a mistyping in the head of the
procedure creole X, e.g. pric instead of proc, and the module was then loaded into
GATE before the typo was discovered. At next start-up, GATE gave the above message.
Behaviour like this is due to syntactical errors in the Tcl code making up the wrapper.

To attend to such errors, the directory holding the wrapper must be renamed and the
module reintegrated and loaded from a “fresh” directory. The erroneous wrapper code
may then be taken care of before it is copied to and loaded as the new module.

For instance, if the module test is situated in a user’s creole directory such that GATE
can find it in “user/creole/test, creole may be renamed to, say, creole_tmp, pre-
serving the contents of the creole. The original creole directory may then be emptied.
Now, launch GATE and create a new module named test in the empty creole directory.
Then take care of the erroneous code in the version of test located in creole_tmp, copy
the corrected files to the new “user/creole/test directory and reload the module.

How can I make a system I’ve created available to all users?

Suppose you are logged on as root on your local system, and that you have integrated
some new modules in the $GATE/creole directory (where $GATE is the path to the top-
level of the local GATE system). After having created a new system containing the newly
integrated modules, the question is how to make the new system available to all users, and
not only to the root user? The answer lies in the .gate.props file, which is a property file
that controls the appearance of GATE. A user must have a copy of the .gate.props file in
his/her home directory that contains information about the new system. To achieve this,
the user could copy root’s .gate.props file, i.e. the file "root/.gate.props generated
by GATE when the new system was created. As root, you can replace the default file,
which resides in $GATE/Build/gate.props with “root/.gate.props and the delete the
users’ .gate.props files. However, this approach is only applicable as long as no user
has created their own, locally available, system. If the property file is deleted, the local
system will no longer be available to the user, and in that case, it is probably better to
edit the user’s .gate.props file so the local system is kept intact while the user still gains
access to the new, global, system.

How can I get my new viewer into the local GATE system?

To integrate a new viewer into an already successfully installed GATE system, the follow-
ing steps should be taken (henceforth, $GATE refers to the top-level directory of your local
GATE system and viewer.gw refers to the file containing the viewer):

1. Copy viewer.gw to the directory $GATE/Build/
2. Two lines in the file $GATE/gui/Makefile.inc has to be changed:

e Add viewer.gw to the SCRIPTS:= —line.
e Add viewer.guw file to the gui line under Application targets.
3. In the file $GATE/gui/ggi.tcl, add the line

source QAPPL HOMEQ/viewer.gw
at the top of the file, nearby the other source...-lines.

4. Change to the $GATE/Build directory and type
make gui(enter)
After a while, GATE should answer:
*kkkkkk made gui

Appendix B

A brief overview of Tcl

This chapter introduces, very briefly, the parts of the Tcl scripting language that were used
throughout the thesis. It will serve as a pointer to further reading as well as a good start in
integrating NL modules, using a loose coupling, in the GATE system. Section B.1 introduces
the reader to the syntax of Tcl as well as to the notion of substitutions, Section B.2 elaborates on
simple variables and associative arrays, while mechanisms for controlling the flow of execution
in a Tcl program is introduced in Section B.3. Next, how procedures are declared and used
is presented in Section B.4. Section B.5 elaborates on Tecl lists and strings, two of the most
important features of the language when it comes to creating GATE wrappers. Another thing
needed is the ability to communicate with other programs, i.e. spawning external processes and
handling file I/O, introduced in Section B.6. Finally, errors, exceptions and ways to handle
those are presented in Section B.7.

There is a big difference between the paradigms of languages known as system programming
languages and scripting languages [Ousterhout 1997]. The former are languages such as C,
C++, Ada, Pascal and the latter such as Visual Basic, Perl and Tcl/Tk. The thing a user
might notice is the difference in abstraction from the underlying platform (operating system
and hardware) and degree of typing!. System programming languages are primarily suited for
creating fast and efficient programs while the scripting languages are used to combine those
programs into larger systems. Typically, system-programming languages have a higher degree
of typing than scripting languages. Of course, there are advantages with both paradigms and it
all boils down to being a trade-off between control and abstraction. For instance, the number
of computer actions taken from one single statement in Tcl code might range from 100 to 1000,
while the same figure for a language like C is likely to be in the interval of 5 to 50. Tcl provides
a developer with a high level of abstraction and is thus easy to learn and to use. It is well suited
to be used in applications such as GATE wrappers and viewers.

The rest of this appendix pretty much follows the structure of [Ousterhout 1994] and most
of the examples are adopted from there. A good aid in Tecl programming style is given
in [Johnson 1997]. There are also numerous on-line sources on the Internet. The one of most
use to the work in this thesis was sunscript.sun.com/.

The text in the examples and figures used throughout the rest of this appendix follows
some typographical rules: text typed in to the computer by a user is written in typewriter
style and whatever the computer responds to those particular Tcl commands is written in
italic typewriter style preceded by an arrow, =, unless an error occurred, then the answer

!The term “typing” refers to the degree to which the meaning of information is specified in advance of its use.

is preceded by @. In some figures, the response from the computer is left out, and line numbers
are introduced in the input to emphasise what is important (e.g. the equivalence of the two Tcl
scripts in Figure B.1).

B.1 Syntax

A Tel script is made up of one or more commands which, in turn, consists of one or more
words. Fach command is separated from the others by new lines or semicolons. For instance, in
Figure B.1 the script in lines 1a and 2a. is equivalent to that in line 1b.2 Words are separated by
whitespace characters (spaces or tabs). The first command in each of the scripts in Figure B.1
has three words while the second command has two. A word is an arbitrary string which does
not, contain any white space character.

la. set Var "SVENSK"
2a. puts $Var
1b. set Var "SVENSK"; puts $Var

Figure B.1: Commands and words in Tcl.

There are three forms of substitution in Tcl. When a substitution occurs, some of the
original characters in a word are replaced by a new value. The three substitutions provided for
are variable-, command- and backslash substitution:

Variable substitution is triggered by the dollar ($) sign. It causes the value of a variable
to be inserted into a word. The command in line 1 in Figure B.2 sets the value of the
variable seconds to 60. The command in line 2 calculates how many seconds there are
in five minutes. Variable substitution is used to replace $seconds with the value of the
variable seconds, what is actually calculated is 60x*5.

1. set seconds 60
2. expr $seconds*5

Figure B.2: Variable substitution.

Command substitution causes a word (or a part thereof) to be replaced by the result of
a Tcl command. This kind of substitution is triggered by brackets ([and]), enclosing
a valid Tecl script. Command substitution occurs in line 2 in Figure B.3. It causes the
variable nbrSeconds to be set to the result of the Tcl script within the brackets: [expr
$seconds*5] is replaced by 300 and assigned to nbrSeconds.

Backslash substitution is used to insert special characters such as §, [and newlines into Tcl
commands. This is achieved by inserting a backslash (\) before the special character.

2The numbers to the left in the figures in the rest of this appendix are there for clarity only, they are not part
of the Tcl code.

1. set seconds 60
2. set nbrSeconds [expr $seconds*5]

Figure B.3: Command substitution.

set str Time\ is\ \$\nWork\ hard!

Figure B.4: Backslash substitution.

The variable str in Figure B.4 would be printed as:

Time is $
Work hard

There are a number of ways to prevent the Tcl interpreter from regarding characters such
as $, new lines and semicolons as special characters. The use of this technique is called quoting,.
Backslash substitution is one quoting technique, the use of double quotes (”) is another and
braces ({) is a third.

Characters following a # character up to the next newline are considered as comments in a
Tecl script.

B.2 Variables

In Tcl, there are two kinds of variables, simple variables and associative arrays. A variable has a
name and a value, both of which may be an arbitrary string. Variable names are case sensitive,
i.e. svensk is different from Svensk. Variables are always stored as strings in Tcl, even though
they may appear to be characters, integers, reals, lists etc.. This is possible because Tcl is
designed to be “typeless”, i.e. variables do not have types.

The set command is used to create, read and modify variables. It takes either one or two
arguments of which the first is the name of a variable and the second, if present, is the new
value for that variable. In Figure B.5 the workings of the set command is illustrated. The first
command sets the variable Var to a string, the second command is used to query for the value
of Var and the third command modifies the value. In all cases, the set command returns the
value of the variable.

The incr command is used to increase the value of a variable which has an integer string
as value, as illustrated in Figure B.6. It takes either one or two arguments, the first being the
variable whose value is to be increased and the second, if present, is an integer string denoting
the increment. The first command in Figure B.6 sets the variable Var to 10. The second
command increases the value by one, which is the default used if there is no second argument
to incr. The third command increases the value of Var by 3. The incr command returns the
new value as well as stores it in the variable.

The third and last Tcl command concerning variables introduced in this section is the unset
command, illustrated in B.7. It is used to delete variables and it takes an arbitrary number

set Var "SVENSK employs GATE"
= SVENSK employs GATE
set Var

= SVENSK employs GATE
set Var 4711

= 4711

Figure B.5: The set command.

set Var 10
= 10

incr Var
= 11

incr Var 3
= 14

Figure B.6: The incr command.

set Var SVENSK

= SVENSK

unset Var

set Var

@ can’t read "Var”: no such variable

Figure B.7: The unset command.

of arguments. The first set command in the figure sets the variable Var to the value SVENSK,
which is then returned. The unset command in the second line unsets Var. Note that it seems
as if nothing is returned but, actually, the empty string is. Finally, the unsetting of the variable
is verified with another set command, which results in an error message indicating that the
variable does not exist.

The arrays provided for by Tcl are called associative arrays since the indices to an array
may be an arbitrary string. An array is a collection of elements of which each is a variable itself.
The first line in Figure B.8 illustrates how an associative array is created (unless, of course, it
already exists, in which case the figure illustrates how such an array is modified). The name of
an array may be any string, in this case it is theArray. The two elements in the figure, Varl
and Var2, has the values 10 and SVENSK, respectively. The commands introduced earlier in this
section, set, incr and unset, applies to arrays in the same way as they do to simple variables.

B.3 Control flow

Tcl provides a number of different control mechanisms for controlling the flow of execution in
a script, i.e. the conditional construct if and the looping commands while, for and foreach.
Two commands for loop control are available, break and continue.

set theArray(Varl) 10

= 10

set theArray(Var2) SVENSK
= SVENSK

set theArray(Varl)

= 10

Figure B.8: Associative arrays in Tcl.

The if command tests an expression and executes one of two scripts based on the result of
the test. The syntax of the if command is shown in Figure B.9. If <test1> evaluates to a value
other than zero, <body1> is executed. Otherwise, if <test2> is evaluated to non-zero, <body2>
is executed. If none of <test1> or <test2> evaluates to non-zero, <body3> is executed. The
tests are evaluated as expressions and the bodies as Tcl scripts. The if command returns as
result the value obtained from executing one of the bodies. Either, or both, of the elseif in
line 3 and else in line 5, with associated bodies, can be omitted. Due to the design of the
Tcl interpreter (valid Tcl syntax is described by a set of procedures rather than, as might be
expected, by a set of grammar rules, see [Ousterhout 1994, chapter 2]), each open brace ({),
must be on the same line as the preceding word. Otherwise, the newline between the brace and
the word will be treated as a command separator. Figure B.10 illustrates how not to use the
if command. The newline character between lines 1 and 2 will cause the interpreter to split
the code in Figure B.10 up in two commands, which is most probably not the intention of the
programmer.

if { <test1> } {
<body1>

} elseif { <test2> } {
<body2>

} else {

<body3>

}

~N O O WN -

Figure B.9: The syntax of the if command.

if { $X <0 }
{
set X O

D w N e

3

Figure B.10: A non-valid if command.

There are three commands for looping in Tcl: while, for and foreach. The syntax for each
command is illustrated in Figure B.11, Figure B.12 and Figure B.13, respectively. The while
command in Figure B.11 evaluates the <test> expression and if the result is other than zero
the Tcl script <body> is executed. This is repeated until <test> evaluates to zero. The while
command then terminates and returns an empty string.

1. while { <test> } {
<body>

N

3. }

Figure B.11: The syntax of the while command.

The for command in Figure B.12 takes four arguments: <init> which is a Tcl script for
initialising relevant variables; <test> which is an expression that, if evaluated to non-zero,
causes <body> to be executed; <reinit> which is a Tecl script for reinitialisation of variables
and which is executed after <body> is run; and <body> which is a Tcl script. The execution of
<body> is repeated until <test> becomes zero, the for command then returns an empty string.

1. for { <init> } { <test> } { <reinit> } {
2. <body>
3. }

Figure B.12: The syntax of the for command.

The foreach command in Figure B.13 iterates over all elements in a valid Tcl list. It
sets <variable> to each element in <1ist>, in order, and executes <body> for each value of
<variable>. The foreach command returns an empty string.

1. foreach <variable> <list> {
2. <body>
3. }

Figure B.13: The syntax of the foreach command.

There are two commands for loop control: break and continue. The break command causes
the loop from which it is called to terminate immediately. Execution control then returns to
the part of the Tcl script which initiated the loop. The continue command causes the current
iteration of the loop from which the command was called to terminate. Looping then continues
at next iteration. None of the looping control commands takes any arguments and they do not
have return values.

B.4 Procedures

A Tecl procedure implements a Tcl command. Procedures may be defined within the scope of
other procedures, making the newly defined procedure available only to procedures defined at
the same level. However, there are ways to reach procedures defined outside the scope of the pro-
cedure in which the caller is defined (see the upvar and uplevel commands in [Ousterhout 1994,
chapter 8]). This section introduces the Tcl commands proc, return and global.

The proc command in Figure B.14 is used to define Tcl procedures. It takes three arguments:
<name> which is the name of the procedure, <arglist> which is a list in which each element is

proc <name> <arglist> <body>
return <options> <value>
global <varl> <var2> ... <varN>

Figure B.14: The syntax of the proc, return and global commands.

an argument to the new procedure, and <body> which is a valid Tcl script. The proc command
returns an empty string. One important thing to notice is that the procedure name, <name>,
overrides any existing procedures with the same name. Figure B.15 gives an example of the
definition of a procedure called printList which takes one argument, theList, and prints each
element in it.

proc printList { theList } {
foreach Element $thelList {
puts $Element
}

return

DO WN -

Figure B.15: An example of a procedure definition.

The return command takes two optional arguments, see Figure B.14. It returns from the
innermost nested procedure or source command (see Section B.6). The <options> argument
can be used to trigger exceptions (see Section B.7) and <value> is the result of the procedure
from which return returns. The default for <value> is an empty string, but it may be anything.

Variables used within a procedure are not the same as the ones the calling procedure has.
Variables in a procedure are local to that procedure: they are available only for the procedure
in which they are declared and they are deleted (deallocated) when the procedure terminates.
Variables referenced outside a procedure definition are said to be global. Initially, when a
procedure is about to start processing, i.e. just after it has been called, the only local variables
with values are those which are given as arguments to the procedure. The global command,
introduced in Figure B.14, is used to enable a procedure to access global variables not given as
arguments.

Consider the example in Figure B.16. In line 1, two variables, a and b, are set to 4 and 5,
respectively. In lines 2 to 5, a procedure called addGlobals is defined, the purpose of which is to
add the values of a and b and to return the result of the operation to the caller. To provide for
the procedure to access a and b, the global command is used (line 3). Command substitution
(Section B.1) is used together with the expr command (see [Ousterhout 1994, chapter 5]) to
calculate and return the sum of a and b. The result from invoking the procedure in Figure B.16
can be seen in Figure B.17.

set a 4; set b 5

proc addGlobals {} {
global a b
return [expr $a + $b]

g W N

Figure B.16: An example of the global and the return commands.

addGlobals
= 9

Figure B.17: Invoking the procedure from Figure B.16.

B.5 List and string manipulation

The basic structure of a list is illustrated in Figure B.18. In its simplest form, a Tcl list is just
a string containing any number of items separated by whitespace characters such as spaces or
tabs. The list in Figure B.18 contains three elements, SVENSK, GATE and Tcl.

SVENSK GATE Tcl
Figure B.18: A simple list structure.
The 1list and concat commands can be used for creating lists. The list command in

Figure B.19 takes any number of arguments and it joins them together so that each argument
becomes a distinct element in the list that is returned by list.

list <valuel> <value2> ... <valueN>

concat <listl> <1ist2> ... <listN>

llength <list>

lappend <var> <valuel> <value2> ... <valueN>

split <string> <splitchars>
join <list> <joinstring>

Figure B.19: The 1ist, concat, 1length, lappend, split and join commands.

Figure B.20 illustrates how a list is created using the 1ist command. As can be seen from
the figure, the elements in the returned list are as distinct as they were when 1ist was called.

The syntax of the concat command is illustrated in Figure B.19. Unlike 1ist, the concat
command does not treat the arguments as being distinct elements of a list, but rather expects
the arguments to be well formed Tcl lists. Hence, it joins all of the arguments together into one
large list as illustrated in Figure B.21.

list {SVENSK GATE} Tcl {TIPSTER}
= {SVENSK GATE} Tcl TIPSTER

Figure B.20: Creating a list using the 1ist command.

concat {SVENSK GATE} Tcl {TIPSTER}
= SVENSK GATE Tcl TIPSTER

Figure B.21: Creating a list using the concat command.

llength {SVENSK GATE} Tcl {TIPSTER}
= 3

llength S

=1

llength {}

= 0

Figure B.22: The 11length command.

set A [list a b {c d}]
= a b {cd}

lappend A {b c} e

= ab{cd} {bc}e

Figure B.23: The use of the 1append command.

The 1length command (see Figure B.19) takes a Tcl list as argument and returns the the
number of elements present in it. As illustrated in Figure B.22, a string one character long is a
well formed Tcl list containing one element. The empty string corresponds to the empty list.

There are a number of commands for modifying lists (i.e. linsert, lreplace and lrange,
see [Ousterhout 1994, chapter 6]), but this section only introduces the lappend command, see
Figure B.19. It appends <valuel> - <valueN> to the variable <var> as list elements and
returns the new value of <var>, which is created if it does not already exist. Figure B.23 shows
an example of lappend.

There are two commands for converting between strings and lists: split and join, see
Figure B.19. The split command takes a string and a set of split-characters as arguments and
returns the string as a list in which the elements are the the pieces of the string after breaking it
up over the split-characters. How the split command works is illustrated in Figure B.24. Note
that the split-characters themselves are discarded. The join command works the opposite way,
it forms a string by joining the elements of a list together. It takes two arguments, a list and a

set Var x/y/z
= x/y/z
split $Var /
= XYy Z

Figure B.24: The use of the split command.

set L [list a b c 4]
= abecd

join $L +

= a+b+c+d

Figure B.25: The use of the join command.

string which is used to join the elements together, and returns the new string as illustrated by
the example in Figure B.25.

As in the case of Tcl lists described above, there are a number of Tcl commands for manipu-
lating strings. Among other things, there are two kinds of pattern matching available: glob-style
and regular expressions, of which the latter is introduced in this section (see [Ousterhout 1994,
chapter 9] for information about glob-style pattern matching). The syntax of the regexp com-

regexp -indices -nocase -- <exp> <str> <mVar> <sVarl> ... <sVarN>
regsub -all -nocase -- <expression> <string> <subSpec> <var>
format <formatString> <varl> <var2> ... <varN>

Figure B.26: The regexp, regsub and format commands.

mand, which is used for regular expressions, is illustrated in Figure B.26. The options -indices
and -nocase are used in order to get the answer from the operation in terms of indices in the
string, <str>, and to allow the matching to be case insensitive, respectively. The -- option is
used to tell the Tcl interpreter that the next argument should be treated as being a <exp>, even
if it starts with a —. The regexp command determines whether the regular expression, <exp>,
matches part of or all of string, <str> and it returns 0 if there is no match and 1 otherwise.
The portions of the string, <str>, that matches the expression, <exp>, are placed in the vari-
ables <mVar> and <sVar1> - <sVarN>, if present. As an example of the use of regexp, a Tcl
command used for extracting the starting and ending byte offsets as well as the sentence from
a line in the output from the sentence splitter is shown in Figure B.27. The notion of regular
expressions is almost a science of its own and is not elaborated on here, see [Ousterhout 1994,
chapter 9] for more information. In the example in Figure B.27, $Line is a string conforming to
the format that the sentence splitter produces (see Section 3.2.3). The variables Trash, Start,
End and Sentence are used to store the parts of $Line that matched the regular expression {
*([0-9]+) *([0-9]+) *(.+)}. When the regexp command has been executed, Trash stores
the whole line, Start and End holds the starting and ending byte offsets, respectively, and the
Sentence variable holds the part of Line constituting the sentence itself.

set Line "0 14 This is a test"
= 0 14 This is a test

regexp { *([0-9]+) *([0-9]+) *(.+)} $Line Trash Start End Sentence
= 1

puts $Trash

= 0 14 This is a test

puts $Start

= 0

puts $End

= 14

puts $Sentence

= This is a test

Figure B.27: The use of the regexp command.

Regular expressions can be used for substituting a whole string or a part thereof. The com-
mand implementing this feature is regsub. It resembles the regexp command in its arguments
structure, illustrated in Figure B.26. The -nocase option have the same function as in the case
of the regexp command while -all is used if all parts of the string, <string>, that matches
the regular expression, <expression>, are to be substituted by the string, <subSpec>, before
the result is copied as a string to <var>. The -- argument has the same function as in the case
of the regexp command. The example in Figure B.28 shows a regsub command for imploding
consecutive whitespace characters in a string. The command is taken from the wrapper code
for integrating the Brill tagger for Swedish described in chapter 4.

set Line "This is a test"

= This is a test

regsub -all { +} $InLine " " Outline
= 3

puts $0utline
= This is a test

Figure B.28: A regsub command for imploding consecutive whitespace characters in a string.

Strings can be generated using the format command (and they can be parsed with the scan
command, see [Ousterhout 1994, chapter 9]). The syntax of format is illustrated in Figure B.26.
The command returns a result equal to the string, <formatString>, when the values of the
variables, <var1> - <varN>, have been substituted in place of % -sequences in <formatString>.
An example of how the format command can be used is given in Figure B.29.

B.6 File I/O and external processes

This section introduces the basics of how to read from and write to files as well as how to invoke
external processes.

set Name Jonna

= Jonna

set Age 1

= 1

set Msg [format "Ys is %d year old" $Name $Age]
= Jonna is 1 year old

Figure B.29: Using the format command to generate a string.

open <name> <access>

close <fileId>

gets <fileld> <var>

puts —nonewline <filelId> <string>

Figure B.30: The open, close, gets and puts commands.

Files are opened and closed with the open and close commands, respectively. The syntax
of open is illustrated in Figure B.30, where <name> is the path to the file to be opened and
<access> is the method of access, e.g. that the file is opened for reading only. There are a
number of different access methods (see [Ousterhout 1994, chapter 10]), of which the r and w
methods are the only ones employed by the wrappers implemented in this thesis. The r access
method is used to open a file for reading only (which is the default for open), the file to be
opened must already exist. The w access method is used to open a file for writing only. The
file is truncated (overwritten) if it already exists and created otherwise. The open command
returns a file identifier to be used in conjunction with other file handling commands such as
close, gets and puts. Figure B.31 shows how the file fredriksFile is opened for writing only
and how open returns the identifier file4 as a so called file handle. The syntax of the close
command is shown in Figure B.30. It takes a file identifier as a single argument and returns an
empty string.

set File [open fredriksFile w]
= filed

Figure B.31: Opening the file fredriksFile for writing only.

The gets command is used to read from files, the syntax is illustrated in Figure B.30. It
takes two arguments, a file identifier, <file>, and a variable name, <var>, which is optional.
The gets command reads the next line from file, discarding the terminating newline character.
If <var> is specified, then the current line is stored in it and the command returns the number
of characters present in the line (or -1 for end of file). Otherwise, if <var> is not present, the
gets command returns the line (or an empty string for end of file).

The puts command is used to write to a file one line at a time. The syntax is illustrated
in Figure B.30. It takes three arguments, -nonewline, <fileId> and <string>, of which the
latter is the only compulsory one. puts writes <string> to the file associated to <fileId>, if
specified (the standard output channel is the default value), appending a newline character to
the line unless the -nonewline option has been used. The return value is an empty string.

exec -—keepnewline -- <argl> <arg2> ... <argNh>
eval <argl> ... <argh>
source <file>

Figure B.32: The exec, eval and source commands.

New processes can be created by using the exec command, which syntax is illustrated in
Figure B.32. It executes the commands specified in <argl> - <argN> and waits until they have
completed processing before returning the results to the standard output, or to the caller as
an empty string if the output has been redirected. The trailing newline character is discarded
unless the ~keepnewline option is specified. The -- argument has the same function as in the
case of the regexp command in Section B.5. For information about how to redirect the output
and create background processes, see [Ousterhout 1994, chapter 11]. An example of the exec
command is given in Figure B.33 where a word count facility, wc, is invoked by exec on the file
fredriksFile. The return value from the wc command is returned to the caller by exec.

exec wc fredriksFile

= 4 38 210 fredriksFile

Figure B.33: Using exec to invoke a word count facility as an external process.

A command that may come in handy when external processes is to be created by the exec
command is eval. It is a building block for creating and executing Tcl scripts. The syntax
ig illustrated in Figure B.32; it takes any number of arguments, concatenates them with white
spaces as separators and then evaluates the result as a Tcl script. The result of the evaluation
is returned by eval.

The source command reads a file and executes it as a Tcl script. It takes a single argument,
as can be seen in Figure B.32, and returns the value returned from the Tcl script in the file,
<file>. Also, eval allows for procedures in the file making up the Tcl script to use the return
command to terminate the processing of the file.

B.7 Errors and exceptions

An error in a Tecl script is a special case of a set of events called exceptions. The cause of an
exception may be a number of things, for instance a call to a non-existing T'cl command in a Tcl
script, or an attempt to index out of bounds in an array. To facilitate for error and exception
handling in Tcl, there are commands for generating errors as well as for trapping them. The
commands referred to are return, error and catch, see Figure B.34 (also, see [Ousterhout 1994,
chapter 12] for more information about exceptional events in Tcl).

The error command should be used only in situations where the only correct action is to
abort the script being executed. If this is not the case, the commands return and catch should
be used instead. How these commands function is best illustrated with the help of examples. The
procedure uppbrill recordQutput from the wrapper integrating the Brill tagger for Swedish
in GATE (described in chapter 4) uses the Tcl code shown in Figure B.35 to return an error to

return -code <code> -errorinfo <info> -errorcode <code> <string>
catch <command> <var>
error <message> <info> <code>

Figure B.34: The return, catch and error commands.

its caller if the processing of the output produced by the Brill tagger fails. The -code option
can assume one of several values: ok, error, return, break, continue or an integer. The
-errorinfo and -errorcode options are used to initialise global variables called errorInfo and
errorCode, respectively, which are used to store information about the state of the processing
the script was in when the error occurred.

return -code error)\
-errorinfo $errorInfo)
-errorcode $errorCode\
"There wasn’t enough data produced by the\
Uppsala Brill Tagger to create attributes)\
for the existing token annotations."

OO WN

Figure B.35: Using the return and error commands to generate and return an error to the
calling procedure.

set Code [catch {uppbrill_recordOutput $doc $BrillResult} Msg]

Figure B.36: Using the catch command to trap possible errors from returned from the
uppbrill recordOutput procedure.

Figure B.36 illustrates how catch is used in the wrapper integrating the Brill tagger to catch
whatever is returned by the uppbrill recordOutput procedure. The variable Code in the figure
will hold the value returned from the called procedure and the variable Msg will contain the
message returned in lines 4 to 6 in Figure B.35. Code can then be used to test the result of the
processing performed by uppbrill_recordOutput, and if an error is discovered, the contents of
Msg can be issued to the user as an error message.

Appendix C

The GDM Tcl API

This appendix contains a listing (see Table C.1) of all the TTIPSTER methods as employed by and
implemented in the GDM. Note that the implemented methods may vary from version to version
of GATE. This particular listing is extracted from version 1.0.3. Refer to [Grishman et al 1997,
appendix B] for information about argument structures and return values for these commands.

tip-AddAnnotation tip_GetName
tip-Annotate tip_GetOwner
tip-AnnotateCollection tip_GetParent
tip_AnnotationsAt tip_GetRawData
tip_Close tip_GetSpans
tip_CreateAnnotation tip_GetStart
tip_CreateAnnotationSet | tip_GetType
tip_CreateAttribute tip_GetValue
tip_CreateAttributeValue | tip_Length
tip_CreateCollection tip_MergeAnnotations
tip_CreateDocument tip_NextAnnotations
tip_CreateSpan tipNextDocument
tip_DeleteAnnotations tip_Nth

tip_Destroy tip_OpenCollection
tip_FirstDocument tip_PutAttribute
tip_GetAnnotations tip_ReadSGML
tip_GetAttribute tip_RemoveAnnotation
tip_GetAttributes tip_RemoveAttribute
tip_GetByExternalld tip_SelectAnnotations
tip_GetByteSequence tip_SetExternalld
tip_GetDocument tip_SetOwner
tip_GetEnd tip_Sync
tip_GetExternalld tip_test

tip_GetId tip_WriteSGML

Table C.1: The TIPSTER methods available in the GDM Tecl API in GATE 1.0.3.

Appendix D

Source code

This appendix contains the source code of two of the wrappers! for the NL components dealt
with in this thesis — the one for the tokeniser (in Section D.1) and the one for UCP (in
Section D.2) — together with the source code for the single span ambiguities-viewer (in
Section D.3). The purpose of the wrapper listings is to illustrate two extremes in terms of
wrapper length and complexity: the wrapper integrating the tokeniser is short and not very
complex, while the one for UCP is an example of the opposite.

D.1 The wrapper for the tokeniser for Swedish

upptoken.tcl --

This file implements the GATE ’wrapper’ code for the Uppsala Tokenizer.

a part of his M.A. thesis "Tagging and Morphological Processing in the SVENSK
System", which was carried out within the framework of the SVENSK Project at
the Swedish Institute of Computer Science (SICS) and at the department of

#
#
#
#
This CREOLE module was created by Fredrik Olsson, fredriko@stp.ling.uu.se, as
#
#
#
linguistics, university of Uppsala during the preiod April - October, 1997.

B s s s s g g
#

upptoken.tcl - Mon Jun 16 11:11:01 DFT 1997

#

To create a new module provide some code in the function

creole_upptoken below.

#

$Id: template_wrapper.tcl,v 1.4 1996/11/12 12:22:23 hamish Exp $

#

B s s s s s g

Location of this wrapper

set upptoken_home /home/staff/gateuser/creole/upptoken

"Wrapper in this context corresponds to the contents of the moduleName.tcl template introduced in Sec-
tion 5.3.

upptoken_prepareIlnput --

#

Retrieves information from the GDM and formats it to meet the

requirements the Uppsala Tokenizer poses on its input.

#

Arguments:

doc The currently open GDM document.

file The file in which the formatted information from doc will be
placed.

#

Results:

The procedure creates a file which contains input data to the Uppsala
Tokenizer. The procedure does not return anything.

proc upptoken_preparelnput { doc file } {
set Text [tip_GetByteSequence $doc]
set F [open $file w]
puts $F $Text

close $F
return
}
upptoken_recordOutput --
#
Formats the output produced by the Uppsala Tokenizer and records the
information in the GDM.
#
Arguments:
doc The currently open GDM document.
file The file in which the output produced by the Uppsala Tokenizer
resides.
#
Results:
Information created by the Uppsala Tokenizer is recorded in the GDM.
The procedure does not return anything.

proc upptoken_recordOutput { doc file } {

Read the file line by line and extract the byte offsets from it. Then
create token annotations and add them to the GDM.

set F [open $file r]
while {[gets $F Line] >= 0} {

The format of the input line depends on whether the tokenizer has
found a sequence of multiple newline characters or not.

If the line is on the format <int> <int> <string> then <string>
is a token and should be recorded as such in the GDM.

if {[regexp { *([0-91+) +([0-9]1+) +(.+)} \
$Line Trash Start End Token]} {

Create a token attribute, tokenVal, which has as value the token
string itself. Use the attribute to create a token annotation,

which is then added to the GDM.

set Token_attr [tip_CreateAttribute tokenVal \
[tip_CreateAttributeValue GDM_STRING $Token]]

set Annot [tip_CreateAnnotation token \

[list [tip_CreateSpan $Start $End]] [list $Token_attr]]
tip_AddAnnotation $doc $Annot

If the line is on the format <multipleNewline> <int> <int> then
the tokenizer has found consecutive newline characters in its

input. Record this in the GDM as an annotation without an

attribute.

} elseif {[regexp { *(multiN1l) +([0-9]1+) +([0-9]1+)} \
$Line Trash String Start End]} {

S

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

set MnAnnot [tip_CreateAnnotation multiN1 \
[list [tip_CreateSpan $Start $End]] {}]
tip_AddAnnotation $doc $MnAnnot

}

close $F
return

creole_upptoken --

Implements the Tcl procedure that serves as a GATE wrapper for the

Uppsala Tokenizer.

Arguments:

doc The currently open GDM document.

args User specified arguments specified by the user via the GGI. Empty

in the case of this particular procedure.

Results:
The result is that of the Uppsala Tokenizer being run taking the
currently open GDM document into consideration and the information
produced by the tokenizer being recorded in the GDM. The procedure does

not return anything.

proc creole_upptoken { doc args } {

Use the env-array to get the path to the home directory of the current

user.

global env
set UserHome $env(HOME)

The path to the directory which holds the executable program.
set UpptokenDir /home/staff/gateuser/Upptoken
Temporary files.

set IntermediateFile ${UserHome}/upptokenIntermediate.tmp

set FinalFile ${UserHomel}/upptokenFinal.tmp

Prepare the input, run the tokenizer and record its output.
upptoken_preparelnput $doc $IntermediateFile

exec $UpptokenDir/upptoken < $IntermediateFile > $FinalFile
upptoken_recordOutput $doc $FinalFile

Remove temporary files.

eval exec rm $IntermediateFile $FinalFile

Record the fact that we ran and exit normally. Add a document attribute
to signal that the document was treated as if it was in Swedish.

tip_PutAttribute $doc {upptoken {GDM_STRING "language_swedish"}}
return

HERHHEHHH R R R R R
$Log: template_wrapper.tcl,v $
Revision 1.4 1996/11/12 12:22:23 hamish

added module paths

Revision 1.3 1996/11/05 12:15:09 hamish
CVS keywords in (again)

HOoH H OH O K O H

HEHHHEFH R ESH R R R R R R

#
End of upptoken.tcl
#

D.2 The wrapper for UCP

the department of linguistics at

uppcp.tcl --

#

This file implements the GATE ’wrapper’ code for the Uppsala Chart

Processor.

#

This CREOLE module was created by Fredrik Olsson, fredriko@stp.ling.uu.se, as

a part of his M.A. thesis "Tagging and Morphological Processing in the SVENSK

System", carried out within the framework of the SVENSK Project at the Swedish
Institute of Computer Science (SICS) and at

Uppsala University during the period April - October, 1997.

HERHHHHHH R R R R

creole_uppcp below.

HOoH H O H H H H

uppcp.tcl - Tue Aug 12 17:01:55 DFT 1997

To create a new module provide some code in the function

$Id: template_wrapper.tcl,v 1.4 1996/11/12 12:22:23 hamish Exp $

HERHHHHHH R EH R R R R

Location of this wrapper.

set uppcp_home /home/staff/gateuser/creole/uppcp

uppcp_preparelnput --

#

Retrieves information from the GDM and formats it to meet the

requirements the Uppsala Chart Processor poses on its input. Any values
on the tokenVal attributes associated with token annotations that

follows .! or 7 in the original input text, are converted to lower case
since the lexicon of the UCP does not include capitalized words. The

procedure also takes into account any multiNl annotations that might be
present in the GDM in order to decide on whether a token should be

convertwed to lower case or not.

#

Arguments:

doc The currently open GDM document.

file The file in which the formatted information from doc will be

placed.

#

Results:

The procedure creates a file which contains input data to the Uppsala

Chart Processor. The procedure does not return anything.

proc uppcp_preparelnput { doc file } {

set F [open $file w]

Get the set of token annotations and the (possibly empty) set of

multiN1l annotations (mulitNl = multiple

newline characters).

set TokenAnnotations [tip_SelectAnnotations $doc token {}]

set MultiNlAnnotations [tip_SelectAnnotations $doc multiN1 {}]

Decide on upper bound for indexing in the set of multiNl annotations. A
negative value is used if there are no annotations.

set MultiN1Count O
if {[1length $MultiNlAnnotations] > 1} {

set MultiNlLastIdx [expr [llength $MultiNlAnnotations] - 1]
} else {

set MultiNlLastIdx -1

Get the value of the starting and ending byte offsets for the current

mulitNl annotation. If no multiNl annotations exists for the current

document, make sure the values used on MultiNL-variables do not interfere
with the ones of the token annotations.

if {$MultiN1lCount <= $MultiNlLastIdx} {
set MultiNlSpan [lindex [tip_GetSpans \
[tip_Nth $MultiNlAnnotations $MultiN1Count]] 0]
set MultiNlStart [tip_GetStart $MultiNlSpan]
set MultiN1lEnd [tip_GetEnd $MultiNlSpan]
incr MultiN1lCount
} else {
set LastTokenAnnotation [tip_Nth $TokenAnnotations \
[expr [llength $TokenAnnotations] - 1]]
set LastTokenSpan [lindex [tip_GetSpans $LastTokenAnnotation] 0]

This way, the starting and ending byte offsets for the (non-existant)
set of multiNl annotations get larger values than those of the last
token annotation.

set MultiNlStart [expr [tip_GetStart $LastTokenSpan] + 1]
set MultiN1lEnd [expr [tip_GetEnd $LastTokenSpan] + 1]

We need to keep track of the type of the previously seen annotation as
well as of the value of the previous token attribute.

set PreviousAnnotation ""
set PrevTokenAttribute ""

The basic idea is to compare starting values for the current token

annotation and the current multiNl annotation as well as using information
about the previously seen token in order to know when a token should be

converted to lower case and printed and when it is just to be printed.

foreach TokenAnnotation $TokenAnnotations {

set TokenSpan [lindex [tip_GetSpans $TokenAnnotation] 0]
set TokenStart [tip_GetStart $TokenSpan]
set TokenEnd [tip_GetEnd $TokenSpan]
set TokenAttribute [tip_GetValue \
[tip_GetAttribute $TokenAnnotation tokenVal]]

This case only applies if the current token annotation is the first

one; it is retrieved and converted to lower case, since it is assumed
to be the starting token of a sentence.

if {[expr {$PreviousAnnotation == ""} \
&& {$PrevTokenAttribute == ""}]} {
puts $F "[uppcp_toLowerCase $TokenAttribute]"
set PreviousAnnotation "token"
set PrevTokenAttribute $TokenAttribute
continue;

The current type of annotation is token.
if { $TokenStart <= $MultiN1lStart } {

If any sentence delimiter is matched, convert the current value
of the token to lower case and print it to the output file.

if {[string match \. $PrevTokenAttributel} {
puts $F "[uppcp_tolLowerCase $TokenAttribute]"

} elseif {[string match \! $PrevTokenAttribute]} {
puts $F "[uppcp_toLowerCase $TokenAttribute]"

} elseif {[string match \\? $PrevTokenAttribute]} {
puts $F "[uppcp_toLowerCase $TokenAttribute]"

} else {
puts $F "$TokenAttribute"

}

Update the variables holding information about the previously seen
annotaion and the value of the previous token attibute.

set PreviousAnnotation "token"
set PrevTokenAttribute $TokenAttribute

The current type of annotation is a multiNl1.
} else {

Convert whatever follows after one or more empty lines in the
original input file to lower case.

puts $F "[uppcp_tolLowerCase $TokenAttribute]"

Update the variables holding information about the previously seen
annotaion and the value of the previous token attibute.

set PreviousAnnotation "multiN1"
set PrevTokenAttribute ""

Proceed with the next multiN1l annotation.

if {$MultiN1lCount <= $MultiNlLastIdx} {
set MultiNlSpan [lindex [tip_GetSpans \
[tip_Nth $MultiNlAnnotations $MultiN1lCount]] 0]
set MultiNlStart [tip_GetStart $MultiN1Span]
set MultiN1End [tip_GetEnd $MultiNl1Span]

incr MultiN1lCount

X
X

3

close $F

return
}
uppcp_tolLowerCase --
#
The procedure converts a string to lower case. This procedure handles
the cases which the built in ’string tolower" cannot handle, that is,
the characters corresponding to those in the ASCII table for the ISO
8859-1 character set that have a decimal value between (and including)
224 and 255.
#
Arguments:
str Is the string to be converted.
#
Results:
The procedure returns a string which is the input string where upper
case characters have been converted to lower case.

proc uppcp_toLowerCase { str } {
toASCITI --

This procedure is private to the uppcp_toLowerCase-procedure.
It converts a character to its corresponding decimal value.

char Is the character to be converted.

#
#
#
#
#
Arguments:
#
#
Restults:
The procedure returns an integer corresponding to the decminal value
of the characters position in the ASCII table.
proc toASCII { char } {
scan $char Jc value
return $value

3

toChar --

#

This procedure is private to the uppcp_tolLowerCase-procedure.

It converts an integer to a character. No control is made to

ensure that the value corresponds to a printable ASCII character.
#

Arguments:

value Is the value to be converted to a character.

#

Results:

The procedure returns a character corresponding to the input value.

proc toChar { value } {

return [format %c $valuel

set Result {}

Convert the string to a list and check each element in it. As long as
an element has a decimal value corresponding to an upper case letter,
32 is added to the value before it is converted back to a character.

foreach Element [split $str {}] {
set Value [toASCII $Element]
if {($Value >= 65 && $Value <= 90) || \
($Value >= 192 && $Value <= 221)} {
lappend Result [toChar [expr $Value + 32]]
} else {
lappend Result $Element

}

Return the result as a string rather than as a list.

return [join $Result {}]

X

uppcp_dialog --

#

The procedure generates various dialog boxes based on its input data. It
is originally named "dialog" and is taken from chapter 27 in the book

"Tcl and the Tk Toolkit" by John K. Ousterhout.

#

Arguments:

W Is the path to the window.

title Is the title shown at the top of the window.

text Is the message displayed in the window.

bitmap Is the name of, or path to, a bitmapped picture to display. If
left empty, no picture appears in the window.

default Is an integer representing the default button in the window. O
denotes the left-most button and a negative value indicates that
no default button is desired.

args Is one or more text strings which are used as labels for the

buttons in the window.

#

Results:

The procedure returns the name of the button clicked by the user.

proc uppcp_dialog {w title text bitmap default argsl} {
global button

1. Create the top-level window and divide it into top and bottom parts.

toplevel $w -class Dialog

wm title $w $title

wm iconname $w Dialog

frame $w.top -relief raised -bd 1
pack $w.top -side top -fill both
frame $w.bot -relief raised -bd 1

-

pack $w.bot -side bottom -fill both
2. Fill the top part with the bitmap and message.

message $w.top.msg -width 3i -text $text \
-font -Adobe-Times-Medium-R-Normal-*-180-x*
pack $w.top.msg -side right -expand 1 -fill both -padx 3m -pady 3m
if {$bitmap !'=""} {
label $w.top.bitmap -bitmap $bitmap
pack $w.top.bitmap -side left -padx 3m -pady 3m

3. Create a row of buttons at the bottom of the dialog.

set 1 0
foreach but $args {
button $w.bot.button$i -text $but -command "set button $i"
if {$i == $default} {
frame $w.bot.default -relief sunken -bd 1
raise $w.bot.button$i
pack $w.bot.default -side left -expand 1 -padx 3m -pady 2m
pack $w.bot.button$i -in $w.bot.default -side left \
-padx 2m -pady 2m -ipadx 2m -ipady 1im
} else {
pack $w.bot.button$i -side left -expand 1 \
-padx 3m -pady 3m -ipadx 2m -ipady 1m

incr i

4. Set up a binding for <Return>, if there’s a default, set a grab, and
claim the focus too.

if {$default >= 0} {
bind $w <Return> "$w.bot.buttonPdefault flash; set button $default"
}
set oldFocus [focus]
grab set $w
focus $w

5. Wait for the user to respond, then restore the focus and return the
index of the selected button.

tkwait variable button
destroy $w

focus $oldFocus

return $button

uppcp_refinelist --

This procedure is used by the procedure uppcp_file2list. It converts a
list containing a flattened UCP attribute-value structure to a list of
lists.

Arguments:

list Is a list which contains a flattened UCP attribute-value strucutre.

Results:
The procedure returns a list where the first element is a list containing
the the word being analyzed and where the rest of the elements are lists,
each of which are holding an attribute-value pair.

H OH H O R

proc uppcp_refinelist { list } {
InteriorLinesList holds the attribute-value pairs found in the elements in
list representing the innermost lines in an UCP attribute-value structure.
BodyList holds the attribute-value pairs in InteriorLinesList and those

found at the first and last rows of an UCP attribute-value structure.

set InteriorLinesList {}
set BodyList {}

One of the following cases should apply to each element in the input list
in order discard unwanted syntactic items.

foreach Element $list {
Get the word which appears on the form "word :"
if {[regexp {"(.+):$} $Element Trash Word]l} {
Get rid of the "(x = ("construct.
} elseif {[regexp {"\(*=\((.+)$} $Element Trash FirstLinel} {

Get rid of the "))" construct. It’s time to start preparing the
final list.

} elseif {[regexp {"(.+)\)\)$} $Element Trash LastLine]} {

lappend BodyList [concat $FirstLine $InteriorLinesList $LastLine]
set FirstLine {}

set InteriorLinesList {}

set LastLine {}

This case serves as a default case; all "body" lines in an UCP
attribute-value structure is caught here.

} else {
lappend InteriorLinesList $Element
X
3
return [concat [list $Word] $BodyList]
}
uppcp_file2list —-
#
The procedure converts a file containing morphological analyzes produced
by the Uppsala Chart Processor to a list of lists.
#
Arguments:

file Is a file holding morphological analyzes produced by the Uppsala
Chart Processor.

Results:
The procedure returns a list of lists, where each list in turn consists
of lists containing the attribute-value pairs extracted from the output
from the Uppsala Chart Processor when invoked with morphological rules.
Thus, the list have three levels of nesting.

HOoH H O H H H H

proc uppcp_file2list { file } {

set F [open $file r]
set FinalList {}

set AttrValList_1 {}
set AttrVallList_2 {}

while {[gets $F Line] >= 0} {

If we see an empty line and if we, at the same time, have a non-empty
list containing an UCP attribute-value strucutre, it’s time to refine
that list and add it to the final output.

if {[regexp {~ *$} $Line] && [expr [llength $AttrValList_1] > 0]} {
set AttrValList_2 [uppcp_refinelList $AttrVallList_1]
lappend FinalList $AttrValList_2
set AttrValList_1 {}
set AttrValList_2 {}

This case is just to skip all but the first of consecutive empty
lines (originating from the input file).

} elseif {[regexp {~ *$} $Linel \
&& [expr [llength $AttrVallList_1] <= 0]} {

All non-empty lines are added to a buffer list which is later
processed in the first if-statement.

} else {
regsub -all { } $Line {} refinedLine_1
lappend AttrVallList_1 $refinedLine_1
}
}
close $F
return $Finallist

S

uppcp_recordOutput --

Formats the output produced by the Uppsala Chart Processor and records
the information in the GDM.

Arguments:
doc The currently open GDM document.
file The file in which the information to be recorded in the GDM
resides.

Results:
Information provided by the Uppsala Chart Processor is recorded in the
GDM. The procedure returns an error if something went wrong, otherwise
it returns nothing.

H OB

proc uppcp_recordOutput { doc file } {
global errorInfo errorCode
Get a list containing the UCP analyzes.
set UcpResult [uppcp_file2list $filel
set TokenAnnotations [tip_SelectAnnotations $doc token {}]

Initiate counters, the first points to the current
position in the $UcpResult-list and the second one
points to the end of the same list.

#

Counters for keeping track of the current position in the list of
analyzes produced by the UCP.

set CurrIndex 0O
set LastIndex [llength $UcpResult]

The basic idea is to check for a match between the current token and the
first element in the current list of analyzes. If there is a match, add
some information to the GDM, otherwise, add an empty value and move on

to the next token value.

foreach TokenAnnotation $TokenAnnotations {

set TokenValue [tip_GetValue \
[tip_GetAttribute $TokenAnnotation tokenVal]]
set CurrUcpInput [lindex $UcpResult $CurrIndex]
set Word [lindex $CurrUcpInput 0]
set MorphValue [lrange $CurrUcpInput 1 end]

Check for a match between the current token and the current UCP
analyze.

set LowWord [uppcp_toLowerCase $Word]
set LowTokenValue [uppcp_toLowerCase $TokenValuel

if {$LowWord == $LowTokenValue} {
set MorphAttribute [tip_CreateAttribute morph \
[tip_CreateAttributeValue GDM_STRING $MorphValue]]
tip_AddAnnotation $doc \
[tip_PutAttribute $TokenAnnotation $MorphAttributel
incr Currlndex

} else {
set MorphAttribute [tip_CreateAttribute morph \
[tip_CreateAttributeValue GDM_STRING ""]]
tip_AddAnnotation $doc \

-

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

[tip_PutAttribute $TokenAnnotation $MorphAttributel

If there are analyses left when all token annotations have been taken into
consideration, an error has occurred.

if {$CurrIndex < $LastIndex} {
return -code error\

3

return

-errorinfo $errorInfo)

-errorcode $errorCode\

"The output produced by the Uppsala Chart\
Processor is corrupt OR the annotations\

for $doc in the GDM are defect: UCP output)\
remains after all token annotations have been)\
treated"

creole_uppcp --

Implements the Tcl prcedure that serves as a GATE wrapper for the Uppsala
Chart Processor.

Arguments:
doc
args

Results:

The currently open GDM document.

User specified arguments (some with default values) passed to the
procedure via the GGI. In the case of the Uppsala Chart Processor,
the following arguments can be present in the args-list:

ucpMorphology Is the path to a memory dump produced by
clisp of a set of morphology rules written
in the UCP formalism. Default value exists.

The final argument that may appear is a path to a file in which
the raw UCP analyzes are stored.

The result is that of the Uppsala Chart Processor being run taking the
currently open GDM document into consideration and the information
produced by the processor being recorded in the GDM. The procedure does
not return anything.

proc creole_uppcp { doc args } {

Use the env-array to get the path to the home directory of the current

user.

global env
set user_home $env (HOME)

Temporary files.

set UcpInput ${user_home}/ucpInput.tmp
set UcpFailures ${user_homel}/ucpInput.O

set UcpParses ${user_homel}/ucpInput.parses
The path to the directory which holds the executable program.
set UcpDir /usr/local/ucp

This is a flag used to decide whether the output file prdoced by the UCP
should be removed or not. Default is to remove it.

set RemoveParseFile 1

Get the (default) value for the path to the UCP morphology from the
args-list.

set UcpMorphology [lindex $args 0]

An additional value in the args-list affects the looks of the final command
line to be passed to the UCP. In any case, the command line should have the
load a dictionary and tell the UCP on what format the output should be.

if {[lindex $args 1] == ""} {
The user have not specified an output file.

set LispCommands \
[format \
"(progn (usegd) (try-file \"%s\" :report-style :parses))" \
$UcpInput]
} else {

The user have specified an output file. Propagate this to the rest of
the program via the RemoveParseFile-flag.

set LispCommands \
[format \
"(progn (usegd) (try-file \"%s\" \
:report-style :parses :parse-file \"/%s\"))" \
$UcpInput [lindex $args 1]]

set UcpParses [lindex $args 1]

set RemoveParseFile 0

3

This is where the actual processing starts. Retrieve

information from the GDM and place it, suitably formatted,
in a file.

#

+*

Prepare the input to the processor and place the result in a file.
uppcp_preparelnput $doc $UcpInput

Additional information to the user in case of an error.

set ErrorString "No morph annotations present in the GDM."

Invoke the ucp Perl-script with relevant parameters. Catch errors that the

UCP may generate.

set Code [catch {eval exec \
{${UcpDir}/ucp -m $UcpMorphology -x "$LispCommands"}} msg]

If there was an error, issue an error message to the user and return to
the caller.

if {$Code == 1} {
set ErrorMessage [format "Ys %s" $msg $ErrorString]
uppcp_dialog .d {UCP Status} $ErrorMessage error 0 {0k}
return

Record the output produced by the Uppsala Chart Processor in the GDM. The
procedure uppcp_recordOutput throws an exception which we catch here.

set Code [catch {uppcp_recordOutput $doc $UcpParses} Msg]

If an error has occurred, issue an error message to the user and remove
the morph attributes present on the token annotations to keep the database
consistent.

if {$Code == 1} {
set ErrorMessage [format "%s %s" $Msg $ErrorString]
uppcp_dialog .d {Error trying to record UCP output}\
$ErrorMessage error 0 {0k}
set TokenAnnotations [tip_SelectAnnotations $doc token {}]
foreach TokenAnnotation $TokenAnnotations {
tip_AddAnnotation $doc [tip_RemoveAttribute $TokenAnnotation morph]
}

Remove temporary files. Remove the raw UCP data file only if it is
flagged as unwanted.

eval exec rm $UcpInput $UcpFailures
if {$RemoveParseFile} {
eval exec rm $UcpParses

X
We didn’t quite succeed in annotating the current $doc, but we’ll
return to the caller anyway (for now). Without adding *any*
annotations to the GDM!!
return
Remove temporary files. Remove the raw UCP data file only if it is
flagged as unwanted.
eval exec rm $UcpInput $UcpFailures

if {$RemoveParseFile} {
eval exec rm $UcpParses

Record the fact that we ran and exit normally. Add a document attribute

to signal that the document was treated as if it was in Swedish.

tip_PutAttribute $doc {uppcp {GDM_STRING "language_swedish"}}
return

HEHBHBHHEHEHBHBEHHEHHEHHEH AR R ARG H AR BEH R HEHHEHRHHERH AR SRS RS R R 8
$Log: template_wrapper.tcl,v $
Revision 1.4 1996/11/12 12:22:23 hamish

added module paths

Revision 1.3 1996/11/05 12:15:09 hamish
CVS keywords in (again)

HOoH O O H H R

HER S H R R R R

#
End of uppcp.tcl
#

D.3 Source code for the single_span_am biguities-viewer

ggi_AmbiguityViewer.gw --

This file implements the Tcl code for a single span ambiguity viewer
intended to be used for displaying ambiguous attributes created by
CREOLE objects invoked from the GATE platform.

This viewer was created by Fredrik Olsson, fredriko@stp.ling.uu.se, as a part
of his M.A. thesis "Tagging and Morphological Processing in the SVENSK System",
carried out within the framework of the SVENSK Project at the Swedish
Institute of Computer Science (SICS) and at the department of linguistics at
Uppsala University during the period April - October, 1997.

The first version was created during the period 1997-09-01 to 1997-09-09.

Henceforth, the string ’ssav’ is an abbreviation for ’single span ambiguity
viewer’. Any procedure name denoting a procedure specific to the single span
ambiguity viewer is on the form "ggi_ssavXXX", where XXX is a text string.
Other procedures, which could be of use in a more general perspective have
names on the form "ggi_ XXX".

HoH O H O OH K H H O H K HHHHH R

Global variables

A1l global variables used by this program are gathered in one ass-
ociative array, ggi_ssavGlobals. For clarity, all elements in the
array are set in the next few lines.

H OH H B R

set ggi_ssavGlobals(passiveCheckedBg) blue
set ggi_ssavGlobals(passiveCheckedFg) white
set ggi_ssavGlobals(passiveBg) skyBlue

set ggi_ssavGlobals(passiveFg) black

set ggi_ssavGlobals(activeBg) red

set ggi_ssavGlobals(activeFg) white

set ggi_ssavGlobals(staticBg) ""

set ggi_ssavGlobals(staticFg) ""

set ggi_ssavGlobals(prevClickedAnnotation) ""
set ggi_ssavGlobals(annotationSet) ""

set ggi_ssavGlobals(attribute) ""

set ggi_ssavGlobals(sourceWin) ""

set ggi_ssavGlobals(targetWin) ""

ggi_view_single_span_ambiguities --

Displays ambiguous GDM attributes using a hyper text approach. The
source document is displayed in one window and, when a piece of text is
clicked on, the attributes corresponding to that piece are displayed in
another window.

Arguments:
document The currently open GDM document.
annotation The annotation type to be displyed.
attribute The attribute which may have ambiguous (0 or more) values.

#
#
#
#
#
#
#
#
#
#
#
title The title of the window holding the viewer.
#

Results:

The result is that of the values of the specified attribute for the

specified annotation type being displayed to the user. The procedure

returns the path name of the window constituing the single span ambiguity
viewer.

proc ggi_view_single_span_ambiguities { document annotation attribute title } {
global ggi_ssavGlobals
ExitSsav --

This procedure is private to '"ggi_view_single_span_ambiguities".
It resets some variables before exiting the ambiguity viewer.

win Is the path to the ambiguity viewer window.

#
#
#
#
#
Arguments:
#
#
Results:
The variable holding the value of the last clicked annotation is
reset and the window is destroyed.
proc ExitSsav { win } {
global ggi_ssavGlobals
set ggi_ssavGlobals(prevClickedAnnotation) ""
destroy $win
return

set WaitWin [ggi_wait_message "$annotation annotations being loaded"]
update

set AnnotationSet [$document SelectAnnotations $annotation {}]
set TextStr [$document GetByteSequence]

Store the set of annotations and the current kind of attribute as global
variables for later use.

set ggi_ssavGlobals(annotationSet) $AnnotationSet
set ggi_ssavGlobals(attribute) $attribute

Create a top level window containing three frames; two text widgets and a
button. Use a unique integer in combination with the window name.

set win [gu_gensym .w]
toplevel $win

wm title $win $title
wm iconname $win $title

frame $win.buttons

pack $win.buttons -side bottom

button $win.buttons.dismiss -text "Dismiss" \
-command [list ExitSsav $win]

pack $win.buttons.dismiss -padx 2 -pady 2

frame $win.topFrame

pack $win.topFrame -fill both -expand true

text $win.topFrame.text -borderwidth 2 -relief sunken -wrap word \
-setgrid true -yscrollcommand [list $win.topFrame.scroll set] \
-width 80 -height 25

scrollbar $win.topFrame.scroll -command [list $win.topFrame.text yview]
pack $win.topFrame.scroll -side right -fill y
pack $win.topFrame.text -side left -fill both -expand true

frame $win.bottomFrame

pack $win.bottomFrame -fill both -expand true

text $win.bottomFrame.text -borderwidth 2 -relief sunken -wrap word \
-setgrid true -yscrollcommand [list $win.bottomFrame.scroll set] \
-width 80 -height 25

scrollbar $win.bottomFrame.scroll -command [list $win.bottomFrame.text yview]

pack $win.bottomFrame.scroll -side right -fill y

pack $win.bottomFrame.text -side left -fill both -expand true

If the elements staticFg and/or staticBg are specified as global variables;
use those values to colour the background and foreground of the two text
widgets, otherwise use the defaults.

set staticFg $ggi_ssavGlobals(staticFg)

set staticBg $ggi_ssavGlobals(staticBg)

if {$staticFg != ""} {
$win.topFrame.text configure -fg $staticFg
$win.bottomFrame.text configure -fg $staticFg

}
if {$staticBg != ""} {
$win.topFrame.text configure -bg $staticBg
$win.bottomFrame.text configure -bg $staticBg
}

Store the paths to the two text widgets as global variables.

set ggi_ssavGlobals(sourceWin) $win.topFrame.text
set ggi_ssavGlobals(targetWin) $win.bottomFrame.text

Place the text in the top text widget. See the documentation of the
ggi_ssavPlaceText-procedure below!

ggi_ssavPlaceText $win.topFrame.text $TextStr $AnnotationSet \
$attribute $ggi_ssavGlobals(passiveBg) $ggi_ssavGlobals(passiveFg)

ggi_destroy_wait $WaitWin
Insertion/deletion in any of the text widgets is not allowed.

$win.topFrame.text configure -state disabled
$win.bottomFrame.text configure -state disabled

return $win

ggi_ssavPlaceText --

Places a text in a text widget, also marks the span corresponding each
GDM annotation with a unique tag and binds it to an event (procedure).

Arguments:
srcWin Is the window in which the source text is displayed. The
variable must contain a path to a text widget!
textStr Is the text string to be displayed in dstWin.
annSet Is the set of annotations from which the values of the
attributes is extracted.

attr Is the type of attribute the user wished to view.

tagBg Is the background colour of the tagged areas in srcWin.

tagFg Is the foreground colour of the tagged areas in srcWin.
Results:

The result is that of the text being placed in a window and then
processed in a way necessary for the rest of the program. The procedure
returns nothing.

HoH H OH OH K H H O HH HHEHHH

proc ggi_ssavPlaceText { srcWin textStr annSet attr tagBg tagFg } {

$srcWin delete 1.0 end
$srcWin insert end $textStr

The value of this counter will serve as a tag for the annotations’ span
in the text widget.

set AnnCounter O

Tag each annotation with a unique number (which will later be used as an
index in the list of annotations).

foreach Annotation $annSet {

Make sure we only tag the appropriate spans, i.e. those belonging to
annotations which have non-emtpy values on the attribute in question.

set AttrVal [tip_GetValue [tip_GetAttribute $Annotation $attr]]
if {$Attrval == ""} {

incr AnnCounter
continue

}

set Start [tip_GetStart [lindex [tip_GetSpans $Annotation] 0]]
set End [tip_GetEnd [lindex [tip_GetSpans $Annotation] 0]]

Convert the current byte offsets to text widget coordinates (i.e. to
line.character format).

set LineCharList [ggi_byteOffset2LineChar $srcWin $Start $End]

Tag the current span with the value of the annotation counter.

$srcWin tag add $AnnCounter [lindex $LineCharList 0] \

S

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

[lindex $LineCharList 1]

Raise the priority of $AnnCounter tag to the highest possible to
ensure that the tag is the last in a list resulting from a "tag names"-
command performed later.

$srcWin tag raise $AnnCounter
Bind the tag to a procedure.

$srcWin tag bind $AnnCounter <Button-1> {
ggi_ssavDisplayAttributes %x %y
}

Set the appearance of the tagged span.

$srcWin tag configure $AnnCounter -background $tagBg \
-foreground $tagFg
incr AnnCounter
}

return

ggi_ssavDisplayAttributes --

The procedure displays the values of the specified attribute for the
current (clicked) annotation. Note that the passing of information to
procedure is done via global variables.

Arguments:
x Is the x-coordinate given by the user when clicking a tagged area
in the source window (top text widget).
y Is the y-coordinate given by the user at the same time as the x-
coordinate.

Results:
The result is that of all the values for a specific GDM attribute being
displayed in the bottom text widget. The procedure returns nothing.

proc ggi_ssavDisplayAttributes { x y } {

global ggi_ssavGlobals
set PreviousAnn $ggi_ssavGlobals(prevClickedAnnotation)

set SrcWin $ggi_ssavGlobals(sourceWin)
set DstWin $ggi_ssavGlobals(targetWin)

$DstWin delete 1.0 end

Since the priority of the tag added to each span is the highest possible,
it should appear last in the list of tags produced by the '"tag names"-
command. That way we get a hold of the value if the tag, which is also an
index to the list of attibutes relevant to this annotation set.

H O H O H R

set CurrTags [$SrcWin tag names [$SrcWin index @${x},${y}1]

-

HoH H O H WK O H

set CurrTag [lindex $CurrTags [expr [llength $CurrTags] - 1]]

Reconfigure the tag corresponding to the previously clicked area in the
source text as well as the appearance of the currently clicked one.

if {$PreviousAnn != ""} {
$SrcWin tag configure $PreviousAnn \
-background $ggi_ssavGlobals(passiveCheckedBg)

$SrcWin tag configure $PreviousAnn \
-foreground $ggi_ssavGlobals(passiveCheckedFg)

$SrcWin tag configure $CurrTag -background $ggi_ssavGlobals(activeBg)
$SrcWin tag configure $CurrTag -foreground $ggi_ssavGlobals(activeFg)

Update the global variable that holds the information about the previously
clicked annotation to point to the one just clicked.

set ggi_ssavGlobals(prevClickedAnnotation) $CurrTag

set AnnotationSet $ggi_ssavGlobals(annotationSet)

set Attribute $ggi_ssavGlobals(attribute)

Get a list of relevant attribute values.

set Ann [tip_Nth $AnnotationSet $CurrTag]

set Attr [tip_GetAttribute $Ann $Attribute]

set AttrVal [tip_GetValue $Attr]

Toggle the state of the bottom text widget to enable the program to output
information in it. The state is toggled once again when the information is
in place.

$DstWin configure -state normal

$DstWin delete 1.0 end

Display the list of attribute-values in a human readable way. See the
documentation of the ggi_ssavDisplayNestedAttributes-procedure below!

ggi_ssavDisplayNestedAttributes $DstWin $AttrVal
$DstWin configure -state disabled

return

ggi_ssavDisplayNestedAttributes --

Displays attribute values that might be nested, i.e. list of lists, to

an arbitrary level. Note that the nesting of any element may not be more
than one level deeper than that of the first element in the (sub) list.
Otherwise, the appearance of the contents of the list will be obscured by
curly braces.

Arguments:

win Is a path to the text widget in which the annotationSet is
to be displayed.

annotationSet Is the annotation set to be displayed.

#

Results:

The result is that if the annotations being displayed to the user in a

text widget. The procedure returns nothing.

proc ggi_ssavDisplayNestedAttributes { win annotationSet } {

ListOrString --

#

The procedure determines whether its argument’s first element is a
list or a string. It is private to the

ggi_ssavDisplayNestedAttributes-procedure.

#

Arguments:

Var Is a list or a string.

#

Results:

The procedure returns 0 if its argument is a list and 1 otherwise.

proc ListOrString { Var } {

if {[string index $Var 0] == "\{"} {
return O

} else {
return 1

}

foreach Annotation $annotationSet {

If the current list element doesn’t start with a list but with a

string, print all elements regardless of their level of nesting

relative to the first element. The number of elements may be one or
more.

if {[ListOrString $Annotation]} {
foreach element $Annotation {
$win insert end $element\n

}

$win insert end \n
} else {
Otherwise, proceed recursively with the current element.

ggi_printNestedList $Annotation

3

return

ggi_byteOffset2LineChar --
#
Converts a pair of byte offsets to the corresponding line-character

The procedure returns a list containing two elements; the first is
"start" converted to line-character format (i.e. X.Y, where X is the line
number, starting from 1, and Y is the character number, starting from O
on each line) and the second element is "end" converted to the same
format.

coordinates in a text widget.

#

Arguments:

win Is the path to the text widget for which the conversion will take
place.

start Is the first integer denoting a byte offset.
end Is the second integer denoting a byte offset.
#

Results:

#

#

#

#

#

proc ggi_byteOffset2LineChar { win start end } {
return [list [$win index "1.0 + $start chars"] \
[$win index "1.0 + $end chars"]]

#
End of ambiguity viewer.
#

