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Abstract

We consider proof systems with sequents of the form U � � for

proving validity of a propositional modal ��calculus formula � over a

set U of states in a given model� Such proof systems usually handle

�xed�point formulae through unfolding� thus allowing such formulae

to reappear in a proof� Tagging is a technique originated by Winskel

for annotating �xed�point formulae with information about the proof

states at which these are unfolded� This information is used later in

the proof to avoid unnecessary unfolding� without having to investi�

gate the history of the proof� Depending on whether tags are used for

acceptance or for rejection of a branch in the proof tree� we refer to

�positive� or �negative� tagging� respectively� In their simplest form�

tags consist of the sets U at which �xed�point formulae are unfolded�

In this paper� we generalise results of earlier work by Andersen� Stir�

ling and Winskel which� in the case of least �xed�point formulae� are

applicable to singleton U sets only�

� Introduction

The propositional modal ��calculus is a particularly expressive logic for rea�
soning about branching�time properties of communicating systems� Many
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other logics� like dynamic logic and CTL� have uniform encodings in this
logic �Koz��� Dam��	� Over the last decade� many proof systems for check�
ing validity of ��calculus formulae over given states in a model have been
proposed� e�g� in �SW��� Bra�
� And��� GBK��� Dam��	 among others�
The main di�culty in devising such proof systems lies in the handling of
xed�point formulae� These are usually unfolded during proof construction�
thus allowing them to reappear in a proof� One therefore needs conditions
for terminating the proof search process based on identifying certain �loops�
in a proof� Important techniques for dealing with xed�point formulae are
the subformula condition of Streett and Emerson �SE��	� the constants of
Stirling and Walker �SW��	� the tags of Winskel �Win��	� and the ordinal
variables of Dam et al �DFG��	� The tagging approach is appealing in that
it allows all reasoning to be performed using local rules only� and also in that
it has a simple semantic justication�

Of the two kinds of xed�point formulae� the least xed�point ones are
more di�cult to handle in general� usually requiring some sort of Noethe�
rian induction over some well�founded set �Bra�
� And��� GBK��	� When
model checking nite�state systems� however� it is su�cient to perform sim�
ple unfolding� In this case� inductive reasoning can reduce the size of a proof
signicantly� but makes proof search far more complicated� Even if no in�
duction is employed� it still makes sense to record the states at which a least
xed�point formula has been unfolded� since this information can be used to
reject a branch� For example� the proof system presented in �ASW��	 has a
rule of the shape�

���
s � ���Zfs� Lg���Z	

s � �ZfLg��
s �� L

which prevents least xed�point formulae from being unfolded more than
once at the same state� Such a rule can be justied semantically by dening
tags L to denote sets of states� and by dening the denotation of tagged least
xed�point formulae as follows�

k�ZfLg��kV
�
� �X��k�kV�Z ��X � � L�

Rule ��� is sound and reversible due to the following equivalence� known as
the Reduction Lemma �Kozen �Koz��	� Winskel �Win��	��






s � �X�f�X� � s � f��X��f�X� � fsg�� ���

which holds for any monotone mapping f � ��S�� ��S�� We refer to tagging
used in this way as negative tagging� since tags are in some sense negative
assumptions� we assume that the states in the tag do not belong to the de�
notation of the tagged least xed�point formula�

Unfortunately� equivalence ��� holds only for single states� and not for
sets of states in general �And��	� Rule ��� would in general be unsound in a
proof system with sequents of the shape U � �ZfLg�� where U is a set of
states� and where validity of sequents is understood as set inclusion�

In this paper� we investigate for what semantics of tags and tagged for�
mulae� and for what relationship � between a set of states U and a tag L�
one could justify a rule of the shape

����
U � � ��ZfU�Lg���Z	

U � �ZfLg��
U � L

The paper is organised as follows� First� we present the syntax and se�
mantics of the propositional modal ��calculus� In the following section we
motivate a way of tagging least xed�point formulae� and propose a suitable
semantics for tagged least xed�point formulae� giving rise to a sound and re�
versible inference rule� Section � presents a proof system in which this proof
rule ts naturally� Finally� some conclusions are drawn in the last section�

� Propositional Modal ��Calculus

This section presents brie�y the usual notions and notation for the modal
��calculus used in the sequel�

��� Syntax

Formulae � of the logic are generated by the grammar�

� ��� Z j � � � j � � � j �a	 � j hai� j �Z�� j �Z��

�



where Z ranges over a set of propositional variables� and a ranges over a
non�empty set L of labels�

��� Semantics

Modal ��calculus formulae are usually interpreted as sets of states in transi�
tion systems�

De�nition ��� �Transition System� A transition system is a pair T �
�S� f

a
�� j a � Lg� where S is a non�empty set of states� L is a non�empty

set of labels� and for each a � L�
a
��� S 	 S�

De�nition ��� �Model� A model for a �possibly open� modal ��calculus
formula is a pair M � �T �V�� where T is a transition system� and V is a
valuation taking propositional variables to subsets of states of T �

The semantics of a modal ��calculus formula � in a model M � �T �V�
is given by its denotation k�kTV �we shall sometimes omit the superscript��

De�nition ��� �Denotation� The denotation k�kTV of a modal ��calculus
formula � is de�ned inductively as follows�

kZkTV
�
� V�Z�

k�� � ��k
T
V

�
� k��k

T
V 
 k��k

T
V

k�� � ��k
T
V

�
� k��k

T
V � k��k

T
V

k�a	 �kTV
�
� k�a	kT k�kTV

khai�kTV
�
� khaikT k�kTV

k�Z��kTV
�
� �X� k�kTV�Z ��X �

k�Z��kTV
�
� �X� k�kTV�Z ��X�

where we refer to the praedicate transformers

k�a	kT
�
� �X�fs � S j �s� � s

a
�� s�� s� � Xg

khaikT
�
� �X�fs � S j s� � s

a
�� s�� s� � Xg
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This denition uses the fact that the logic is in a positive form� and hence
the praedicate transformers �X� k�kTV�Z ��X� are monotone w�r�t� set inclu�
sion and are guaranteed to have greatest and least xed points� denoted
�X� k�kTV�Z ��X� and �X� k�kTV�Z ��X�� respectively�

We shall also need the notion of Knaster�Tarski xed�point approximants
of monotone mappings over ��S��

De�nition ��� �Fixed�Point Approximants� Let f � ��S� � ��S� be
monotone� let Ord denote the class of all ordinals� and let � and � range
over ordinals and limit ordinals� respectively� Fixed�point approximants are
de�ned inductively as follows�

��f
�
� � ��f

�
� S

����f
�
� f���f� ����f

�
� f���f�

��f
�
�

S
��� �

�f ��f
�
�

T
��� �

�f

� Negative Tagging for Sets of States

Let us start by analysing why it is that the equivalence ��� fails for sets
of states� If we adopt the notation �XfUg�f�X� for �X��f�X� � U�� this
equivalence could be rewritten as�

s � �X�f�X� � s � f��Xfsg�f�X��

Consider the following LTS�

s�
a
�� s�

a
�� s�

a
�� s�

and the formula �Z� �a	Z� the denotation of which is the least xed�point �f

of the state transformer f
�
� �X� k�a	kX� We have �Xfs�g�f�X� � fs�� s�g

and hence f��Xfs�g�f�X�� � f�fs�� s�g� � fs�� s�� s�g includes s�� In terms
of xed�point approximants� �Xfsg�f�X� contains ��f for the greatest or�
dinal � such that ��f does not include s� since this is the rst point in the
iterative construction of the xed�point where s comes into play�� In this

�Or dually� �� � is the least ordinal such that ����f includes s�
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example � equals two� Since f is monotone� s � �f implies�

s � ����f � f���f� � f��Xfsg�f�X��

and therefore s � f��Xfsg�f�X��� This is exactly the point where we cannot
extend this reasoning to an arbitrary set of states U � if � is the greatest
ordinal� for which ��f does not intersect U � then U � ����f is guaranteed
only when U is a singleton set� For example� for U � fs�� s�g we have
�XfUg�f�X� � fs�g and hence f��XfUg�f�X�� � fs�� s�g which includes
s� but does not include s�� On the other hand� the following observation can
be made� a relationship of the shape

U � ����f � f���f� � f��XfUg�f�X��

would still hold if we redened�

� � to be the greatest ordinal �if there is such� so that ��f does not
contain �rather than �does not intersect�� U � Then U � �����

� tags to be sets of states U denoting not themselves� but rather those
elements of U only which are not in ��f � Then ��f � �XfUg�f�X�
and therefore f���f� � f��XfUg�f�X���

We now proceed to formalise the above intuitive ideas� Let S be a set �of
states�� and let f � ��S�� ��S� be monotone�

De�nition ��� Let U � S be a set of states� The closure ordinal cofU and
closure elements cefU of U w�r�t� f are de�ned as follows�

cofU
�
� the least ordinal � such that U 
 �f � ��f

cefU
�
� U �

S
��cofU

��f

Note ��� In the latter de�ning equation� the term
S
��cofU

��f equals ��f
whenever cofU is the successor ordinal of ��

�It should also be noted here� that such a greatest ordinal is guaranteed to exist only

when U is �nite�
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Property ��� Let U � S be a set of states� Then�

�i� �U 
 �f� � �cofUf �
�ii� cefU 
 �f is non�empty if and only if cofU is a successor ordinal�
�iii� If U is �nite� then cofU is not a limit ordinal�
�iv� If s � S� then ceffsg � fsg�

Proof	 These properties are established as follows�

�i� Follows directly from the denition of cofU �

�ii� We have�

cefU 
 �f �� �
� cefU 
 �f ��

S
��cofU

��f fDef� cefU � ��f � �fg
� U 
 �f �� � �

S
��cofU

��f �� �cofUf fFrom �i�g
� cofU �� � � cofU is not a limit ordinal fDef� xp� approximantg
� � � Ord� cofU � �� � fDef� ordinalg

�iii� From the denition of xed�point approximants follows immediately
that the closure ordinal for singleton sets is not a limit ordinal� If U is �
nite� the closure ordinals of the singletons formed by the elements of U have
a greatest element � which is not a limit ordinal� This ordinal is also the
closure ordinal of U �

�iv� This is a direct consequence of �iii�� �

De�nition ��� Let U � S� We de�ne tagged mappings as follows�

ffUg
�
� �X��f�X� � cefU�

and use the notation ffU�V������Vng for �ffV������Vng�fUg�

Note ��
 In the chosen notation �ffUg equals �XfcefUg�f�X�� Because of
Property ��� �iv�� this semantics of tags coincides with the one already given
in the Introduction for the case of singleton sets�

Property ��� Let U � S be a set of states� Then�

�



�i� �ffUg � �f
�ii� if cofU is the successor of some ordinal �� then ��f � ��ffUg�

Proof	 These properties are established as follows�

�i� Follows directly from the well�known equation�

�f �
�
fX j f�X� � Xg

�ii� Let cofU � � � �� Then cefU 
 ��f � � by Denition ��� and
Note ��
� Consequently cefU 
 ��f � � holds for all ordinals 	 � �� Then
the result holds by a simple inductive argument� �

The following property will be used to justify the side condition of the
new proof rule �����

Property ��� For any �nite non�empty set U �

U �� �ffV������U�����Vng

Proof	 By induction on n� The base case �i�e�� empty tag� holds vacuously�
The induction hypothesis assumes the property for an arbitrary k� Assume
U is a nite non�empty set� If U � Vi for some i such that 
 � i � k�� then
the property holds� since �ffV������Vk��g � �ffV��V������Vk��g by Property ��� �i�
and U �� �ffV������U�����Vk��g by the induction hypothesis� The case that re�
mains to be considered is U � V�� Let g denote �ffV������Vk��g� We have
to show that U �� �gfUg� According to Property ��� �iii�� since U is nite�
cofU is not a limit ordinal� Since U is not empty� either there are elements in
U which are not in �f � or cefU is not empty� and in either case U �� �gfUg� �

The following lemma plays the same r�ole as Kozen�s Reduction Lemma�

Lemma �� �Reduction Lemma� For any set U � S the following equiv�
alence holds�

U � �f � U � f��ffUg�

�



Proof	 The two directions are established as follows�

��� This direction holds simply because f��ffUg� � f��f� � �f �

��� If cefU 
 �f is empty� then the implication holds trivially since in
this case �f � �ffUg � f��f� � f��ffUg�� If cefU 
 �f is not empty� then
by Property ��� �ii� cofU is the successor of some ordinal �� Then�

U � �f � U � �cofUf fProperty ��� �i�g
� U � ����f fcofU � �� �g
� U � f���f� fDef� xed�point approximantsg
� U � f���ffUg� fProperty ��� �ii�g
� U � f��ffUg� f��ffUg � �ffUgg�

We are now ready to give a suitable semantics to formulae tagged with
lists of sets of states�

De�nition ��� The denotation of negatively tagged formulae is de�ned as
follows�

k�ZfV�� � � � � Vng��k
T
V

�
� �ffV������Vng� where f � �X� k�kTV �Z ��X�

Due to Note ��� this semantics is equivalent to the one already given in the
Introduction for the case when the tag sets are singletons� and is hence a
proper generalisation of the latter� It gives rise to the following inference
rule�

����
U � � ��ZfU�Lg���Z	

U � �ZfLg��
U �nite � �V � L� V �� U

In general� a proof rule is called sound if it preserves validity� i�e�� whenever
the premises to the rule are valid and the side�condition holds� then the
conclusion is also valid� If the opposite holds� the rule is called reversible�
In the rule above� the purpose of the side�condition is somewhat unusual�
since it is not needed to ensure soundness� but rather to avoid unnecessary
application of the rule in case the conclusion is invalid� Reversibility of the
rule ensures that validity of the conclusion implies the side�condition� in fact
we use� and prove� the counterpositive statement�

�



Theorem ���� Rule ���� is sound and reversible�

Proof	 As a straightforward consequence of Denition ��� and the Reduc�
tion Lemma� validity of the premise implies validity of the conclusion� and
vice versa� Now assume the side condition does not hold� i�e�� U is nite and
some set Vi in the tag is a subset of U � Then Vi is also nite� and hence� due
to Property ���� the sequent Vi � �ZfV�� � � � � Vng�� is invalid� and hence
U � �ZfV�� � � � � Vng�� is invalid as well� �

Rule ���� is easily seen to be a proper generalisation of rule ��� presented
in the Introduction� The most interesting question that o�ers itself immedi�
ately is whether niteness of U is really relevant for rejecting a branch in a
proof tree� This turns out to be the case� as Example ��
 in the next section
shows�

� Applications

The proof rule ���� can be plugged into any standard proof system for es�
tablishing satisfaction between a set of states U in a model and a modal
��calculus formula� In Figure � below we present one such proof system�
borrowed from Andersen �And��	� in which rule ���� replaces the rules for
least xed�point formulae of the original proof system� In these rules the
following notation is used�

�
a
�U�

�
� fs � S j s� � U� s

a
�� s�g

�U
a
��

�
� fs � S j s� � U� s�

a
�� sg

Example ��� Consider a LTS with two states s� and s� and two labelled
transitions s�

a
�� s� and s�

a
�� s�� State s� can engage in an in�nite

a�sequence� and therefore the attempt of proving the opposite fails�

fs�� s�g � �Zfs�g� �a	Z �� 	�
fs�g � �a	�Zfs�g� �a	Z ����

fs�g � �Z� �a	Z

One can backtrack since an invalid sequent was reached� �

��



���
� � �

���
U � �� U � ��

U � �� � ��
���

U� � �� U� � ��

U� � U� � �� � ��

�� 	�
�U

a
�� � �

U � �a	 �
�hi�

U � �
U � � hai�

�
a
�U� � U �

����
U � �ZfV g��

U � V ����
U � � ��ZfU � V g���Z	

U � �ZfV g��
U �� V

����
U � � ��ZfU�Lg���Z	

U � �ZfLg��
U �nite � �V � L� V �� U

Figure �� An Example Proof System�

Example ��� Consider the in�nite state LTS with states S�

� � �
a
�� s�

a
�� s�

a
�� s�

a
�� s�

and the formula �Z� �a	Z� Consider the following derivation�

S � �ZfSg� �a	Z
�� 	�

S � �a	�ZfSg� �a	Z
����

S � �Z� �a	Z

While it still makes sense to backtrack at the leaf sequent since there is nothing
to be gained from repeating the above steps� it is unsound to conclude that
this sequent is invalid� �

This proof system is complete for nite�state systems and tag�free closed
formulae �i�e�� tags only emerge during proof construction�� To see this� rst
observe that the only rules which do not increase the size of formulae are the
tagging rules �i�e�� the rules for unfolding xed�point formulae�� and that tags
can only be of nite length with the chosen tagging discipline enforced by the
side�conditions� Proof tableaux are hence of nite size only� On the other
hand� it can easily be shown that every valid sequent can be derived from
some �possibly empty� set of valid sequents� Together� these two observations

��



imply that for every valid sequent there is a nished tableau� i�e� a nite
tableau with axiom leaves only� A formal proof of completeness can easily
be obtained along the lines of the completeness proof for the original proof
system �And��	�

� Conclusion

In this paper we present a way of tagging� together with a suitable semantics�
for least xed�point formulae of the propositional modal ��calculus� These
are used to justify a proof rule for unfolding� combined with tagging� of such
formulae in proof systems with sequents of the shape U � � where U is a set
of states� and � is a formula� The proof rule is plugged into a standard proof
system for model checking� yielding a complete proof system for nite�state
systems�

The result is an extension of previous results on negative tagging to the
case of sets of states� This suggests that it can be used for devising similar
proof rules in other settings� For example� formulae can be understood as
sets of states� and so can parametrised processes� and consequently� proof
systems with sequents of the shape � � � or P �x� � � can benet from
the proposed negative tagging technique to provide additional termination
conditions� thus aiding both proof search and the theoretical investigation of
these proof systems�
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