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Abstract

We present results which identify some of the bottlenecks of the Concurrency
Workbench (CWB). Our results concentrate on the Minimize command which com-
putes an agent with the smallest state space that is observation equivalent with a
supplied agent. Measurements show that three major bottlenecks can be identified
and that the performance of the CWB depends heavily on the amount of available
primary memory.

1 Introduction

The Concurrency Workbench(CWB) is an automated tool which caters for the analysis
of concurrent finite state processes expressed in Milner’s Calculus of Communicating Sys-
tems(CCS). It has been applied to examples involving the verification of communication
protocols and mutual exclusion algorithms and has proved to be a valuable aid in teaching
and research.

Recently, industry has taken interest in the Workbench for the verification of concur-
rent processes. The Swedish Telecom Radio have used the Workbench to verify certain
parts of the protocols developed for GSM and Ellemtel have used it to experimentally
verify an ISDN protocol. Both these examples were relatively large in nature, requiring
Workbench calculations which occasionally took more than a day to complete.

The large computations can to a certain extent be attributed to the lack of a clear
methodology when it comes to the verification of concurrent processes. Clearly, abstrac-
tions and appropriate modularization can reduce the size of the state space and thereby
cut down the size of the computations. By abstraction we mean reducing the level of de-
tail in a specification. However, large abstractions are hard to grasp and often give little
confidence to designers developing a large distributed system. Furthermore long com-
putations make an interactive design process between the designer and the Workbench
difficult. It is therefore of general interest to identify the bottlenecks in the Workbench
in order to focus eventual code optimizations on the most time-consuming functions.

*Authors’ email: pernberg@sics.se; fred@sics.se



One Workbench command which has been frequently used in the verification process is
the minimize command. This command computes an agent with the smallest state space
that is observation equivalent with the supplied agent. In the remainder of this paper
we will concentrate on this command. The command consists of four major functions:
Mkgraph,Obscl, Equiv.minimize, and MkAgent. Within Obscl, three other functions can
be identified: Reflezcl, Transcl, and Actcl. A more detailed description of these functions
will be given in Section 2 of this paper.

Earlier experiments have suggested that the Transcl algorithm implemented in the
Workbench is particularly time consuming and could be optimized considerably. An M.Sc.
student at SICS has studied other algorithms for the Transcl function and successfully
implemented them in the Workbench. Early results seem to suggest that an algorithm
by J.Eve and R.Kurki-Suonio [EK77] is the most efficient.

This paper presents results which confirm the efficiency of the the above mentioned
algorithm. We also present results related to other functions involved in the minimize
command and show how the efficiency of these functions depends on the size of the graphs
being minimized as well as on the machine configuration.

In the rest of this paper we will assume that the reader is familiar with CCS and the
general architecture of the Concurrency Workbench. We refer to [Mil89] for an extensive
explanation of CCS and to [CPS88] and [CPS89] for more detail regarding the architecture
and operating instructions of the Workbench.

Section 2 presents the different functions comprised in the minimize command. In
section 3 we describe the different tests we performed and the results that were obtained.
Lastly, we conclude and give some recommendations regarding further work and opti-
mizations within the Concurrency Workbench.

2 The Minimize Command

The minimize command computes an agent with the smallest state space that is observa-
tion equivalent with the supplied agent. The command is divided into 4 major functions:

o Mkgraph: Computes a transition graph from a CCS-agent.

e Obscl: Is a combination of three graph transformation functions which are appro-
priate to use with the bisimulation algorithm to prove observation equivalence. The
three functions which constitute Obscl are:

— transcl: Replaces —— with the transitive closure of —— .

— actel: Adds (Z>) -2 (5 ) to —%» in a graph which has been produced
by Transcl.

— reflexcl: Takes a graph and adds 7-loops to all states.

o Fquiv.minimize: Takes a graph and returns a “minimal” graph, i.e. a graph where
all bisimilar states have been collapsed to single states.

e MkAgent: Computes a CCS-agent from the minimal graph produced by Equiv.Minimize



3 Tests

3.1 An Introduction to the Tests

The time measurements reported in this document were performed on various Sun com-
puters including Sparcstations and Sun-3:s. The operating system running on these
machines was SUN-OS 4.0.X.

The CWB is written in Standard ML[HMT88] for which a number of different com-
pilers exist. For the measurements we decided to use the New Jersey SML compiler since
it

e was available for public use on a large number of platforms including SUN Sparc-

stations and Sun-3 computers.

e was reasonably efficient in terms of execution speed of the compiled code.

e had features which enabled us to perform precise time measurements.

The timing figures we report are of three kinds: System time, User time and Real,
elapsed time. User time is the CPU time consumed while executing instructions in the
user space of the CWB. These figures do not include the time the operating system spends
servicing system calls requested by the CWB nor the time spent servicing page faults,
i.e. fetching missing pages from the swap devices. The User time figures are relatively
independent of the amount of memory in the computer that the measurements were run
on, except for the (hopefully) small part which is accounted for by garbage collection in
user mode. Most of the time spent garbage collecting will be a consequence of waiting
for the operating system, since the process of garbage collecting causes a lot of memory
faults. The User time figures should therefore accurately reflect the CPU speed of the
tested computer. (Unfortunately they will also reflect the quality of the compiler that
was used to compile the Concurrency Workbench). Furthermore, User time figures are
not affected by the workload on the computer at the time of the test runs.

System time is the CPU time spent by the operating system servicing the CWB. Since
the CWB does not do many system calls during the minimization process this figure is
relatively unimportant. However, the figures are somewhat affected by paging activities
even though the actual time spent waiting for pages from the swap device is not included.

Real, elapsed time is the real amount of time that a user would have to wait during the
minimization of an agent. This includes all activities that have to be performed during the
minimization including time spent waiting on the virtual memory system (swap device).
This figure is naturally heavily affected by the workload, memory configuration and type
of swapping device for the computer that the measurements are run on. We have tried
to run the tests at times when the workload was low. The figures for Real time can be
used to study the impact of different memory configurations on the total time required
for minimization of an agent.

3.2 Test 1: Measuring Time Spent by the Different Functions
in the Minimize Command

In this section we will identify the functions which account for most of the time spent
minimizing an agent with respect to observation equivalence. To be able to reason about

3



this with some confidence we decided to collect a fairly large set of different CCS agents
including for example mutual exclusion algorithms and several different communication
protocols.

All tests in this section were performed on a Sparcstation-1 with 16 Megabytes of
memory swapping to a local disk. We report results for both User time and Real time.
We have done some measurements on the memory usage of the functions involved in the
minimization process but will only touch upon the results informally. This topic is also
discussed in the next section of the report.

In Table 1 we show the number of states, transitions and 7-transitions in the graphs
before the Obscl function, after the Obscl function, and after the completed minimization.

Example Before Obscl After Obscl After Reduction |
States | Trans. | 7 Lrans. || States | Trans. | 7 Trans. || States | Trans. | 7 Trans.

DDM59 59 124 36 59 623 163 31 156 18
LAGS 68 135 84 68 752 262 20 80 15
PET78 78 155 109 78 1122 356 29 155 33
UT8s8 88 185 24 88 379 115 30 80 5
CSMA102 102 243 113 102 4935 1359 9 24 0
NT203 203 416 66 203 1152 299 40 112 5
ABP225 225 589 537 225 14266 5872 2 2 0
GSM275 275 494 474 275 8177 8369 11 32 12
ABP372 372 880 816 372 47741 16061 2 2 0
DI386 386 717 657 386 35326 25343 5 12 2
LA545 545 1582 1378 545 56404 30306 26 212 72
PET25 725 1458 748 725 12715 3240 64 351 51
PRO897 897 1805 1373 897 106111 22110 12 74 19
ABP1011 1011 3027 2897 1011 | 277553 118177 2 2 0
ABP1446 1446 4699 4506 1446 | 597516 234101 13 84 24

Table 1: Automata sizes in various stages of the Minimize command

In Figure 1 we display the percentage of total time spent executing in user mode
accounted for by the different parts of the minimization process. A graph of the actual
time spent executing in user mode is displayed in Figure 2. The agents minimized in the
figures are sorted in ascending order with respect to state space size.
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Figure 1: Percentage of User time spent in each function.

As can be seen in the figures, the Actcl, Transcl, Mkgraph and Equiv.minimize func-
tions account for the major part of the execution time. Since the Reflexcl function ac-
counts for a very small amount of the reduction time (less than 1%) it was not included
in the figures. The relative importance of the different functions for the total execution
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Figure 2: The total User time required for minimization.

time varies a lot for different agents. The measurements of the impact of memory con-
figuration on the real, elapsed execution times show that the Transcl and Actcl functions
require lots of memory for their execution, more so than the Mkgraph function. Therefore
their importance for the real execution time tends to grow as memory becomes scarce.
This is not surprising given what they do (as explained in Section 2): both functions
add transitions (edges) to the transition graph constructed by the Mkgraph procedure,
thereby requiring more memory for the storage of the graph.

3.2.1 A New Implementation of the Transcl Function

To reduce the time required to minimize agents it was decided to reimplement the
Transcl function. An M.Sc. student did an extensive study on transitive closure algo-
rithms [Dah90], implemented some of them, and then studied their impact on the per-
formance of the Concurrency Workbench. As a result of this study, it was decided to
use what seemed to be the “most efficient” transitive closure algorithm by J. Eve and R.
Kurki-Suonio in a new, experimental version of the Workbench.

We decided to compare the performance of the new Transcl function with the old
function. The results of the comparison on the same set of agents as in the preceding
section can be seen in Figure 3.
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Figure 3: Comparison between the two Transcl functions.

The results show that the gain of using the new algorithm is surprisingly large. The



algorithm is on average 60 times faster than the old one although that figure varies a lot
for different agents. The new Transcl function is never less than 5 times faster than the
old function. Furthermore, considerably less memory is used by the new Transcl function.
The User time percentage figures for a minimization using the new Transcl function is
displayed in Figure 4. The real execution times are displayed in Table 2.

Note that a surprisingly large proportion of the Real Time is spent in the Equiv.Minimize
function for the ABP1446 example (1135.7 s.). This should be compared with the rela-
tively moderate proportion of User Time spent in the function for the same example (see
Figure 4. A closer study of the example revealed that Equiv.Minimize was slow because
the amount of primary memory for the storage of the transition graph was too small. As
a result, the number of page faults increased catastrophically.
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Figure 4: Percentage of User time spent in each function (new Transcl).

In Graph 5 finally, we show the actual User times for a minimization using the old
Transcl function compared to the minimization using the new Transcl function. The bars
in that graph come in groups of two. The first bar in the group represents a minimization
using the old Transcl function, the second the new function.

[ Examples ]| Mkgraph | Transcl | Actcl | Minimize | Total |

DDM59 2.3 0.0 1.8 0.3 4.5
LA68 2.5 0.0 1.7 0.2 4.5
PE78 3.5 0.0 2.2 0.5 6.3
uU'rses 3.7 0.0 9.7 0.3 13.9

CSMA102 5.0 0.1 3.7 0.4 9.2
N'T203 14.1 0.1 69.3 0.9 84.6

ABP225 15.0 0.3 8.8 0.4 24.5

GSM275 38.5 0.3 21.8 0.8 61.5

ABP372 41.3 0.8 37.3 1.1 80.8
DI386 58.0 1.0 42.2 1.4 103.0
LA545 109.7 4.7 106.5 16.4 238.0
PE725 115.8 0.3 523.0 6.0 645.5

PRO8&97 166.6 0.9 298.3 11.1 477.5

ABP1011 186.0 15.7 303.3 6.2 512.3
ABP1446 335.7 51.5 | 2027.5 1135.7 | 3638.3

Table 2: Real Time in seconds for the examples (new Transcl)
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Figure 5: Total User time as influenced by the two Transcl functions.

3.3 Test 2: Time as a Function of Machine Configuration

3.3.1 User Time and Real Time on 16Mb and 8Mb Machines on Cycler
Experiment

In this Section we present results obtained when minimizing Milner’s scheduling problem
(see [Mil80] page 33). This example is interesting for evaluation purposes because the
number of states, transitions and equivalence classes grow in the same proportion. It
has also been used when testing other tools and algorithms concerned with state space
reduction (see, for example, [Fer89]). We have therefore included this example to make
comparison with these tools possible. Furthermore, we have performed the same reduc-
tions on both an 8Mb and a 16Mb Sparc station in order to evaluate what effect an
increase in memory has on reduction times.

The scheduler example has been specified in two different ways. In the first specifica-
tion, we allow both o and S-actions to be visible actions. In the second specification, we
hide -actions and thus only allow a-actions to be visible. We refer to [Mil80} for a more
detailed description and specification of the cycler experiment.

In Table 3 the number of states and transitions after Mkgraph and after Equiv.Minimize
for both specifications and for different numbers of cyclers are summarized. The number
of transitions that are added by Obscl for both specifications is also given.

After MkGraph No. of Trans. After Minimize
After Obscl 1st Spec. 2nd Spec.
Cyclers || States | Trans. || 1st Spec. | 2nd Spec. || States | Trans. || States | Trans.
2 15 22 56 117 8 12 2 2
3 45 87 198 518 24 48 3 3
4 117 283 592 2009 64 160 4 4
5 285 831 1632 7346 160 480 5 5
6 669 2287 4280 25949 384 1344 6 6
7 1533 9307 10840 89534 896 3584 7 7

Table 3: No. of states and transitions before and after reduction for both specifications



The results using the first and second specifications are presented in Tables 4 and 5.
We have included the time taken to perform both Obscl and Equiv.Minimize in order to
make comparison with other tools easier. The new Transcl function was used for all the
experiments.

[ Cyclers | Mkgraph | Obscl | Minimize | Obs + Mini | MkAgent | Total |
2 0.1 0.1 0.0 0.1 0.0 0.3
3 0.8 0.8 0.1 0.9 0.0 1.8
4 3.8 6.5 0.7 7.2 0.1 11.2
5 18.5 46.6 4.6 51.2 0.5 70.3
6 91.3 290.1 30.7 220.8 2.5 414.7
7 449.5 1793.3 164.9 1958.2 11.5 2419.5

Table 4: User Time in seconds for different functions and cyclers on Sparc Station for first specification

| Cyclers | Mkgraph | Obscl | Minimize | Obs+ Mini | MkAgent | Total |
2 0.1 0.1 0.0 0.1 0.0 0.3
3 0.7 0.4 0.0 0.4 0.0 1.2
4 3.7 3.3 0.2 3.5 0.0 7.2
5 17.6 23.9 0.5 24.4 0.0 42.0
6 88.5 145.9 1.6 147.5 0.0 236.0
7 436.3 902.0 6.2 908.2 0.0 | 13444

Table 5: User Time in seconds for different functions and cyclers on Sparc Station for second specification

The Concurrency Workbench could not handle more than 7 cyclers. This should be
compared to the Aldébaran and Auto tools which can handle 9 and 8 cyclers respectively.
Furthermore, these tools seem to have considerably more efficient reduction algorithms.
Aldébaran, for example, reduces 7 cyclers for the first specification in 7.3 seconds, i.e
several 100 times faster than the Concurrency Workbench. Results on Aldébaran were
obtained on a Sun 3/60 with 50 Mb and are therefore not entirely comparable. The
results nevertheless remain far superior to those of the Concurrency Workbench.

As a final result, we compare reduction times on an 8Mb Sparc station vs. a 16Mb
Sparc station, where Reductiontime = Obscl + Equiv.Minimize. The results are illus-
trated in Table 6 and Figure 6. The experiment was only conducted for the first cycler
specification. Note that the scale is logarithmic in Figure 6.

[ Cyclers || User Time | Real Time(8Mb) | Real Time(16M) |

2 0.1 0.1 0.1
3 0.9 1.2 0.9
4 7.4 7.9 7.5
5 51.9 52.2 52.2
6 323.0 426.6 326.3
7 1958.7 2971.8 2009.8

Table 6: User time and Real time in seconds for Reduction of cyclers on 8Mb and 16Mb Sparc Stations for first specification

Again, the sources of error are considerable as we have not performed a fully controlled
experiment. The 16Mb station swapped against a local SCSI disk while the 8Mb station
swapped against a server on a network. However, the results do seem intuitively.correct.
We can see that the machines perform equally well on experiments involving 5 cyclers or
less. On the other hand, the 16Mb machine is much more efficient on experiments with
more than 5 cyclers. A likely explanation is that the heap size becomes larger than the
memory available for the 8Mb machine, forcing it to swap and, as a consequence, real
time increases considerably.
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Figure 6: Comparing reduction times for Cyclers on 8Mb and 16Mb Sparc stations.

3.8.2 User Time and Real Time on Different Processors

A small experiment was conducted to compare the efficiency of the workbench on dif-
ferent machines. A Reduction of the communication protocol with 897 states(PRO897 in
Section 3.2) was performed on a Sun 3/80, a Sun 4/100, and a Sparc Station each with
8 Mb of memory. The results are presented in Figure 7.

1500

1000

Bl Real Time
Bl User Time

Time (s}

500

.

Sun /80

o

Sun 4/100 Sparc
Machine

Figure 7: Efficiency of the Concurrency Workbench on Different Machines with 8Mb of memory

The experiment was performed in a network environment where workstations swapped
against different servers and is consequently subject to many sources of error. The results
merely seem to indicate the not especially sensational fact that Sparc Stations are faster
than Sun 4:s which in turn are faster than Sun 3:s.

4 Conclusions and Further Work

In this paper we have presented performance tests on the Concurrency Workbench. Re-
sults have shown that the most time and memory consuming functions are MkGraph,
Transcl and Actcl. Measurements were performed on Milner’s cycler experiment and
results were compared to other tools available for the reduction of transition graphs. It
turns out that the performance of the Concurrency Workbench is poor in comparison
with these tools.



To obtain the best performance on the current version of the Workbench, a fast
workstation (eg. Sparc Station) with a fair amount of memory (at least 16Mb) should be
used.

Several different strategies can be adopted in order to increase the efliciency of the
Workbench. One such strategy is clearly to optimize all functions involved in the min-
imize command concentrating on those functions which are most time consuming. We
have also presented measurements on one such optimization concerning a new Transcl
function which turns out to be both faster and less memory-intensive. Presumably similar
optimizations could be achieved on all other functions in the minimize command starting
with the most time-consuming function Actcl. Optimization of the MkGraph function
is also interesting since almost all Workbench commands rely on the construction of a
graph from a CCS-agent.

Another strategy is to try to keep the state space small before and during state space
reduction. Modifications of the Workbench at Edinburgh [Mor90] also confirm that con-
siderable performance improvements can be achieved using this strategy. Alternatively,
a more integrated reduction algorithm which avoids explicitly computing for example the
transitive closure of a relation may be a fruitful approach. This has recently been done
on a trial implementation of Branching Bisimulation [GV89] with promising results.

Lastly, a reimplementation of the Concurrency Workbench in a more “efficient” lan-
guage would probably improve its performance considerably. Current ML implementa-
tions are quite slow and require a considerable amount of memory.
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