SICS/T-89/0001

ALPHA
Implementation of a
subset of PHIGS

by
Ylva Gullestad

SICS technical report
T89001
ISSN 1100-3154

ALPHA
Implementation of a subset of PHIGS

by
Ylva Gullestad

December 1988

SICS, Swedish Institute of Computer Science
BOX 1263
S-164 28 KISTA
SWEDEN

Abstract

ALPHA is a support system for applications using interactive computer graphics. The
ALPHA system is a subsystem of the PHIGS graphic standard (the PHIGS version
presented in dpANS X3.144-198x of October 1986), specifically tailored to the
Xerox/Interlisp-D environment.

The Programmer's Hierarchical Interactive Graphies System (PHIGS) is a functional
specification of the interface between an application program and its graphic support
system. PHIGS supports hierarchical graphics, user interaction and 3-D modelling.

ALHPA is a detached CommonLisp package in the Interlisp-D environment. The package
exports all ALPHA functions to be used and only imports necessary Interlisp-D functions.

Thoughts about this master thesis work

This work has been the most exiting and stimulating experience during my study time.
One reason for this has been the knowledge that my work does not stop at producing a
thesis. It gives a special satisfaction to know that the thesis, as a subproject, will be used in
actual production.

The master thesis work has made me understand that reality is not the way I would like it
to be. Programming environments are not perfect, i.e. they do not always work the way
they are intended, things happening outside the area in which you are working do affect
your work even if they should not.

The knowledge I have collected from the course Programming Environments and
Interactivity has made this work possible. The experience from about 20 different courses
has made it possible for me to learn and use new conditions, and last but not least, to learn
that things most often will work out even though it looks dark at times.

Contents

Abstract

Thoughts about this master thesis work

Contents 1

References 2

Chapter I PHIGS in general 3

Chapter II ALPHA a PHIGS implementation 17

Chapter III Technical documentation of ALPHA 25

Supplement

1 Summary of the ALPHA functions 47
Control functions 47
Editing functions 47
Structure manipulating functlons 48
Graphic output functions 48
Attribute changing functions 48
Miscellaneous structure element creating functions 48
Functions for supporting modelling 49
Input functions 49
Archive functions 49
Inquire functions 49

2 Functional specification of non-standard functions 50
new 50
different 53

3 How to start ALPHA 55

4 The structure function and struct 56

ALPHA - QUICK REFERENCE GUIDE

A full index is available in the beginning of every chapter.

References

[11 Computer Graphics - Programmer's Hierarchical Interactive Graphics System
(PHIGS) Functional Description, dpANS X3.144-198x.

[2] David Shuey, David Bailey, Thomas P. Morrissey, "PHIGS: A Standard, Dynamic,
Interactive Grapfics Interface" IEEE CG&A, August 1986.

[8] Martin Plaehn, "PHIGS: Programmer's Hierarchical Interactive Graphics
Standard, A giant step toward a universal graphics standard”, BYTE November 1987.

(4] Andries van Dam, "PHIGS+ Functional Description Revision 3.0", Computer
Graphics, Volume 22, Number 3, July 1988/125.

[5] Andrew P. Surany, "A simple algorithm for determining whether a point resides
within an arbitrarily shaped polygon" Nato ASI Series, Volume F17, Fundamental
Algoritms for Computer Graphics.

(6] Salim S. Abi-Ezzi, Michael A. Milicia, "An approach for a PHIGS machine", Center
For Computer Graphics Rensselear Polytechnic Institute Troy, N. Y. USA.

[71 Kit Molander, "Phigs Installation and Release Document”, NMP-CAD.

[8] Salim S. Abi-Ezzi, Albert J. Bunshaft, "An Implementer's View of PHIGS", IEEE
CG&A, February 1986.

9] William R. Mallgren, "Formal Specification of Interactive Graphics Programming
Languages", Technical Report No. 81-09-01, Ph.D. Dissertation Dept. of CS, Univ. of
Washington 1981,

[10] Jiirgen Bettels, Peter R. Bono, Eilen McGinnis, Joachim Rix, "Guidelines for
Determining When to Use GKS and When to Use PHIGS", «September 1988 draft to be
submitted for publication».

[11] R.J. Hubbold, W.T. Hewitt, "GKS-3D and PHIGS - Theory and Practice", Prepared for
EUROGRAPHICS 88, Nice, 12 - 16 September 1988.

[12] Christer Carlsson, Jan Frelin, "ALPHA", not published SICS 1988.

(13] Christer Carlsson, "ALPHAimplem" and "Datastrukturer”, in swedish, not published
SICS 1988.

[14] Bjérn Backlund, Par Forslund, Olof Hagsand, Bjsrn Pehrson, "SICS LOGGIE a
Language Oriented Generator of Graphical Interactive Editors"”, SICS 1988.

[15] Interlisp-D reference manual Volume 3: Input/Output.
[16] Interlisp-D reference manual Volume 2: Environment.

[17) Guy L. Steele Jr., "Common LISP:The Language", ISBN 0-932376-41-X.

Chapter I PHIGS in general

Chapter I
PHIGS in general

The Programmer's Hierarchical Interactive
Graphics System (PHIGS) is a functional
specification of the interface between an application
program and its graphic support system. PHIGS
supports hierarchical graphics, user interaction and
3-D modelling. This chapter is a general
presentation of PHIGS.

Implementation of a subset of PHIGS

Contents
Contentso, 4
IIntroduction.......... ... 0o, 5
2Thegoalsof PHIGS, 5
3The PHIGSmodel. 5
4Howtobuildanimage............................ 6
Graphical primitives. 6
Attributes. 6
View specific indicies. 6
Modelling matrices. 6
Labels....... o . 6
Namesets.ccoiiit ... 6
Execute structure. 7
Editing0 i 7
Posted............. 7
The bindings of attribute 8
SWorkstation 8
6 Transformation pipeline. 8
Composite modelling transformation. 9
View transformation. 9
Clipping operation and projection. 9
Workstation clip and transformation 9
TFilter 10
Example 10
8 Interaction-input 12
Modes 12
9Example 13
1I0PHIGS todayoo e 15
11 Critisism of PHIGS00 ... 15

Chapter I PHIGS in general

Chapter I PHIGS in General

1 Introduction

Why is a standard needed at all? A standard makes the programmers able to concentrate
on the application program and not worry about what kind of system they are working
with. Common rules can be taught, improved and reused in different projects, they can be
coordinated with other organizations. The standard makes it easy to mix small and large
systems. It is easy to move applications from one environment to another.
Why PHIGS? PHIGS is using an hierarchical modelling system rather than extended 1/0
libraries. It is an improvement of graphic packages in three ways:

¢ hierarchical defined graphical objects

¢ high degree of interactivity

¢ dynamic modifying of objects
PHIGS is also well suited for object oriented design technique, and it is addressing both 3D
and 2D.

2 The goals of PHIGS

The goals of PHIGS are to provide an interactive toolkit specially made for highly
interactive, hierarchical systems. PHIGS is specified for making and modifying objects.
Since computer graphics can render application data, it has become an important tool to
make models, real or simulated, more understandable. Applications with large databases,
like CAD, CAM, scientific modelling and simulation, all try to interact with the databases
and to reflect these changes in some form of graphical rendering. The key advantages of
PHIGS is that it makes it possible to describe the application model effectively and that it
updates the graphical model and rendering quickly.

3 The PHIGS model

PHIGS consists of four parts:
° the control system
¢ the data definition system
° the data display system
e the interaction handler

interaction

handler input interaction

data
definition
system

control
system

data
display
system

Fig I:1 The PHIGS model

Implementation of a subset of PHIGS

The control system gives the application program access to the different parts mentioned.
The data definition system controls defining and modifying objects, i.e. changes to
structures, the data display system keeps track of the changes made and updates the
rendering. The interaction handler is responsible for the input contact with the application
operator.

4 How to build an image

The fundamental parts of PHIGS, where the graphical information lies are called
structures. The structures consist of structure elements, these are graphical primitives and
their attributes, view specific indexes, modelling matrices, elements for building of
hierarchical structures, labels, namesets and application dependent data. PHIGS is
equiped both with 2D and 3D. The 2D functions are simply shorthand versions of their 3D
counterparts, PHIGS handles this internally by setting the z component to zero.

Graphical primitives
The graphical primitives provided in PHIGS are:
¢ polyline (a set of connected lines)
* polymarker (a set of positions, each indicated with a marker)
e text
e fill area (filled polygons without edges)
o fill area set (filled polygons with edge control)

¢ cell array (a rectangular grid of equal sized rectangular cells with the same
colour)

Attributes

PHIGS provides primitive segregated attributes. That means that every graphical
primitive has its own attributes and that no other primitive is affected by them. The fact that
the colour of text is set does not affect the colour of polyline and vice versa. The
attributes in PHIGS are set either individually or asa bundle. A bundle holds in some
sense global values. E.g. the bundle to line contains the values of LINE WIDTH SCALE
FACTOR, LINE TYPE and POLYLINE COLOUR INDEX.

E.g. the predefined line bundles in PHIGS are:

BUNDLE LINEWIDTH SCALE FACTOR LINETYPE POLYLINECOLOURTABLE
1 1 solid some
2 1 dashed some
3 1 dotted some
4 1 dashed-dotted some

The Aspect Sourse Flag (ASF) decides if bundles or individuality are used. If ASF is
set to INDIVIDUAL, the attributes are set one by one, if it is set to BUNDLE, all attributes are

read from the bundle table. It is not possible to erase the bundle values by writing
individual values.

View specific indexes
The function SET vIEW INDEX decides in which view a structure is displayed.

Modelling matrices
See Transformation pipeline.

Labels

LABEL inserts a label in the open structure. It is possible to set the element pointer at a label
and to delete structure elements between labels.

Namesets
See Filter

Chapter I PHIGS in general

Execute structure
To make hierarchies the EXECUTE STRUCTURE element is used. When the structure is
traversed for displaying, the EXECUTE STRUCTURE element makes another structure
execute in the context of the
original structure, i.e. a
hierarchical organization
has been created, like the
one in figure 1:2.
In this example the structure
linefellow contains
EXECUTE STRUCTURE
[children to linefellow] elements refering to head,
[parent to leftarm rightarm leftleg rightleg] limbs and body. The
structure linefellow is
called parent to head,
limbs and body. The
structures head, limbs
and body are called
children to the structure
linefellow. The structure
linefellow is called the
root of the hierarchy.

linefellow

Fig I:2 The structure hierarchy of linefellow

All structures may execute a structure, and there is no limit given to the number of
structures that each structure may execute. The depth of the hierarchy is also unlimited.

Editing
It is possible to modify structures at any time. This is done with the structure editor. Only
one structure can be edited at the time. To be made ready for editing the structure has to be
opened. If OPEN STRUCTURE is activated
when the specified structure does not
structure exist, it will be created automatically.
When a structure is open it is possible to
insert, modify and delete elements.
Where the modifications take place is
POLYLINE determined by the element pointer.
" The modification takes place at the
structure element that the element poiner
is pointing at. The element pointer can
be moved back and fourth in the
structure, it can be set to point at a label,
moved to a specific element number or
moved a given number of steps from the
current element it is pointing at.

FILL AREA element pointer

structure elements

/-_——__’/
Fig I:3 The open structure
Posted
To make a structure visible it has to be posted to a workstation. To make a structure
hierarchy visible only the root is to be posted. When the structure is posted it is traversed,

i.e. executed. A structure may be posted to several workstations. The UNPOST STRUCTURE
function makes a structure disappear where it is displayed.

Implementation of a subset of PHIGS

The bindings of attribute
The attributes, which define the appearance of the graphical objects, are the same as in
other graphical systems. The big difference with PHIGS, is that the attributes are bound by
execution and not when the primitive is created. When an EXECUTE STRUCTURE element is
executed during structure traversal the following actions are taken:

1 The traversal of the parent structure is interrupted

2 The value of the attributes are saved

3 The executed structure is traversed (and all structures it executes)

4 The attributes values are restored to the values saved before the EXECUTE

STRUCTURE element

5 The traversal of the parent continues
These rules implies that a child structure inherits the value of the attributes from its parent
when it is executed. Since the values of the attributes are restored after a EXECUTE
STRUCTURE element, a structure only affects its children. Posted structures inherit their
attributes from a global default value. One way to look at this is that a structure always
pushes the attribute registers on a stack before calling another structure and then restores
them from the top of the stack when the called structure has returned.

5 Workstation

PHIGS is based on the concept of abstract workstations. These can for instance be
implemented as windows. The workstations provide the logical interface through which
the application program controls physical devices. Connection to a workstation is
established by the function OPEN WORKSTATION. It is possible to have more than one
workstation on the same physical computer or even on different physical computers.
Every graphical primitive has a number of attributes related to it. The workstation
determines how to display a given primitive by examining the attribute registers
available for each primitive. The attributes in PHIGS are workstation dependent.

The application may choose when an updating of the displayed data should take place.
The values (in increasing order of delay) are:

° AsAP: The display on the workstation becomes visually correct As Soon As
Possible. PHIGS takes all the steps necessary to update the display before
control is returned to the application program.

* BNIG: The display on the workstation becomes visually correct Before Next
Interaction Globally, i.e. before the next input device gets underway on
any workstation.

° BNIL: The display on the workstation becomes visually correct Before
Next Interaction Locally,i.e. before the next input device gets
underway on that workstation.

° ASTI: The display on the workstation becomes visually correct At Some
TIme.

® WAIT: the display on the workstation becomes visually correct when the
Application requests IT.

6 Transformation pipeline

PHIGS provides general tools for describing transformations and for making dynamic
modifications to them. The PHIGS transformation pipeline is conceptually a 3D pipeline.
PHIGS also provides 2D tools, they are shorthands of the 3D form with the operation
applied on z=0, i.e. a plane in the 3D. The orientation of this plane in 3D world coordinates
are controlled by model transformations. The transformations available and their
relation are shown in the transformation pipeline in figure I:4.

Chapter I PHIGS in general

Composite modelling transformation

The modelling transformation locates and orients object in space and in relation to other
objects. Structure elements describe model transformations as 4x4 matrices. Besides, there
are utility functions which produce matrices related to the most common transformations,
such as scaling, rotation and translation.
Model transformations can be replaced or
concatenated with new transformations by
matrix multiplication.
There are two kinds of modelling
transformations:
® Global modelling trans-
formations. When a EXECUTE
STRUCTURE is found during
structure traversal, the executed
structure inherits a current
transformation matrix from its
parent. This matrix becomes
the global modelling
transformation of the structure. . .
SET GLOBAL TRANSFORMATION view coordinates
modifies it.
® Local modelling transfor-
mations. These are dio and i
concatenated with the global I:nzgpir;w
value in the order GxL to
produce a composite current
transformation matrix, but
does not affect the value of the
global transformation matrix,
Note that the local modelling workstation
transformations are applied transformation
before the global modelling
transformation. l device coordinates

l model coordinates

composite
model

transformation

workstation independent

world coordinates

view
transtofmation

juepuadsp uonEIs oM

NPC coordinates

The model transformation converts the
model coordinate system to the world

coordinate system. Fig I:4 The transformation pipeline

View orientation transformation

The view table entry on the workstation describes the view transformations, as 4x4 matrices.
They describe the orientation of the view of the scene. The view transformation maps the
world coordinate system onto the view coordinate system.

Clipping operation and projection

The clipping and projection part of the transformation pipeline maps the view coordinates
onto the Normalized Projection Coordinate system (NPC). These window-to-viewport
transformations are stored in the workstation view table, not as structure elements.

Components in this transformation are i.a. the distance of the view plane, the window, the
projections reference point and whether the projection is parallel or perspective.

Workstation clip and transformation

The NPC space can be regarded as an abstract image composition space that is workstation
dependent. The workstation can select any part of its NPC space to be displayed on any part of

its physical display space. A workstation transformation is a mapping from NPC space onto
the device coordinate space.

Implementation of a subset of PHIGS

7 Filter

Many applications need to be able to group objects together according to invisibility,
highlighting and detectability. The application objects do not have to be related in structure
hierarchies, they can be in different objects and structures. PHIGS provides a powerful toolkit
to handle these problems. Every graphical primitive has a NAMESET defining which classes it

INCLUSION FILTER

Fig L5 Sample of Namesets

EXCLUSION FILTER

belongs to. And each of the three traversal
operations visibility, highlighting and
detectability has two filters associated with it.
These filters, inclusion and exclusion filters are
workstation dependent. To be able to execute one
of the operations visibility, highlighting and
detectablity there are two conditions a
primitive’s NAMESET must fulfil, these are: (1)
NAMESET must have at least one member in the
inclusion filter and (2) must not have any
member in the exclusion filter. Figure I:5 shows
how NAMESET A fulfils the conditions and how
NAMESET B does not. The executed structure

inherits its members of the NAMESET from its parent, just like other attributes.

Example:

A car dealer wants to be able to classify his cars available in four classes: type, color, #of

doors, equipment. The structure

CPEN STRUCTURE

LABEL

to be able to set the NAMESET would look like:

(new~car)
(TYPE)

ADD NAMES TO SET (type)

LABEL

(COLOUR)

ADD NAMES TO SET (colour)

LABEL

(NROFDOORS)

ADD NAMES TO SET (number)

LABEL

(EQUIP)

ADD NAMES TO SET (radio)
POLYLINE(...) draw the car

CLOSE

STRUCTURE

At the moment there are seven cars available for sale, they have the following NAMESETS:

carl

car2 (volvo b
car3 (fiat
card (ford
carb (fiat
car6 (saab
car7 (saab

A

(volvo red five radio)

lue four spoiler)

green five radio)
gray two sunroof)
blue four radio)
white three radio)
white four none)

l volvo red five radio

A A
l fiat blue four radio l ford gray two sunroof

N N N N N N
AN AN AN
I volvo blue four spoile I saab white three radi l fiat green five radio
A4 N N N N N
AL N
I saab white four none Fig 1:6 Seven cars

10

<

N

Chapter I PHIGS in general

Now the car dealer wants to highlight the pictures of all cars that are blue, this is done by:

SET HIGHLIGHTING FILTER (workstationnr, include, exclude)
where
include (blue)
exclude = null

The result is depictured below.

l V°1V° red fl"e radio fiat blue four radio I ford gray two sunroof
‘;’ N N

A AN

I saab white three radi l fiat preen five radio

A VA VA V(¢

volvo blue four spoile

AN

| saab white four none Fig I' 7 AL Blue cars highlighted
N N

If he only wants his volvos to be visible this instruction would give him the expected result.
SET INVISIBILITY FILTER (workstation, inclusion, exclusion)
where

inclusion = all possibly kinds of TYPE
exclude = volvo

AN
I volvo red five radio

NN

A
l volvo blue four spoileq

N N/ Fig I:8 All volvos visible

This example shows the use of filters and namesets. As default the inclusion and exclusion

filter are empty, i.e. the objects are not highlighted, not invisible (i.e. visible) and not
pickable.

Implementation of a subset of PHIGS

8 Interaction - input

PHIGS specifies six kinds of logical classes of interaction input. These are:

® Locator

¢ Stroke

® String

® Choice

¢ Valuator

® Pick
Every logical input device is mapped to a physical device.
Locator and Stroke returns position information to the application program and the
graphical system. It is returned on the form (x, y) in 2D and (x, y, z) in 3D. Locator returns
a single position and Stroke returns several positions. They are normally mapped on
mouse, lightpen or joystick.
String returns a string and is usually mapped to the keybord.
Choice is used to choose between several choices, for example to select an item in a menu or
to select which buttons to press on a mouse. Choice returns information on the form "button
number tree is pressed"”.
Valuator is like a light dimmer. It returns a real number between defined minimum and
maximum. Typically mapped on a dialog box (analogous control with lightpen).
Pick returns information about the part of an object of which the device is pointing. The
Pick device is often mapped on the mouse, lightpen or joystick. It returns information of the
form "you are now pointing at the head of a linefellow", obviously written in a more
cryptical form.

Modes

The logical input devices are divided into three modes:
¢ Request
® Sample
°® Event mode

REQUEST mode: demands the application operator to fire the trigger to get the input report. For
example, a Locator Request demands the operator to press a
button on the mouse to return the position (x, y).

MEASURE TRIGGER
Fig I:9 Request mode

* flow of input data

——ee - control

SAMPLE mode: does not request the operator to take any action, it simply reads the current
value of the device and returns it. For example, sample Locator

returns the position where the mouse happened to be.
sample

y

MEASURE TRIGGER

Fig I:10 Sample mode

Chapter I PHIGS in general

EVENT mode: is the most complex and powerful mode of the three. When the application
operator makes a move to fire the triggerto get an input report, this
action - an input event - is placed in a first-in-first-out queue. The
elements in the queue contain the type of the input event and a
package that contain the information that type of input event returns.
The application fetches elements from the event queue, checks the
type and makes appropriate actions.

AWAIT EVENT

Fig I:11 Event mode

MEASURE TRIGGER

Event mode is used to make applications event-driven rather than procedure-driven.
Event-driven systems are known to be more user friendly than procedure-driven, since the
operator controls the order of input actions and not the application developer.

9 Example

This example tries to explain the hierarchical model of PHIGS, the inheritance of attribute
and the pick interaction.
Lets draw a garden.

OPEN STRUCTURE (garden) The structure garden is created and opened

SET LINE WIDTH SCALE FACTOR (2) Set the line width to two

EXECUTE STRUCTURE' (buildings)

SET LINE WIDTH SCALE FACTOR (6)

EXECUTE STRUCTURE (plants) Make a structure hierarchy by calling
plants

OPEN STRUCTURE (buildings)

SET LOCAL TRANSFORMATION ((TRANSLATE (50 75))

EXECUTE STRUCTURE (house)

SET LOCAL TRANSFORMATION (..) Change the modelling coordinate system

EXECUTE STRUCTURE (fence)

SET LINE WIDTH SCALE FACTOR (1)

SET LOCAL TRANSFORMATION (...

EXECUTE STRUCTURE (gate)

OPEN STRUCTURE (plants)
SET LOCAL TRANSFORMATION (..)
EXECUTE STRUCTURE (bush)
SET LOCAL TRANSFORMATION (..)
EXECUTE STRUCTURE (bush)
SET LOCAL TRANSFORMATION (..)
EXECUTE STRUCTURE (bush)
SET LOCAL TRANSFORMATION (..)
EXECUTE STRUCTURE (tree)
SET LOCAL TRANSFORMATION (..)
EXECUTE STRUCTURE (tree)

OPEN STRUCTURE (bush)
POLYLINE ((0 0) (5 5) (8 2)..) Draw a bush

13

Implementation of a subset of PHIGS

OPEN STRUCTURE (tree)
POLYLINE (..)

garden
OPEN STRUCTURE (house)
FILL AREA SET ((0 0) (75 0) (75 100) (0 100))

OPEN STRUCTURE (fence)
POLYLINE (..) 3 1s
buildings

OPEN STRUCTURE (gate)
FILL AREA SET (..)
POLYLINE (..)
POLYLINE (..)

FILL AREA SET (..)

Now all structures used in this example are

| . ire Fig I:12 The structure Rierarchy to garden
defined, they form the hierachical organization shown in figure 1:12.

However none of them are yet visible. To make a structure visible it has to be posted.

POST STRUCTURE (garden)
Makes the picture visible:

original structures

& bush
* tree
B8 oate

house

fence

Fig I:13 Resulting picture and sub pictures

Figure I:13 shows how fence inherits its LINEWIDTH from garden and how gate inherits
its LINEWIDTH from buildings.

14

Chapter I PHIGS in general

The pick device is initiated with:

INITIALISE PICK (WORKSTATIONNAME DEVICENUMBER)
and if REQUEST mode is set, which is set by SET-PICK-MODE, PHIGS waits for a pick when

REQUEST PICK (WORKSTATION DEVICENUMBER) is called.

If the left tree in the garden is chosen, the pick device will return the information (garden,
plants, tree). If the structure tree is posted seperately and picked, the pick device will
return the information (t ree). Note that the SET LINE WIDTH SCALE FACTOR doesnot
affect the edge around the FILL AREA SET primitive, used in for instance gate.

10 PHIGS today

The specification of the PHIGS standard started by ANSI in the end of the eightieth decade.
The formalisation was then overtaken by ISO. PHIGS is today adopted as a standard by both

ANSI and ISO.

Graphical functions addressing shading and lightning are not included in the PHIGS
specification. These facilities are specified by an ad hoc committee called PHIGS+. The
PHIGS+ committee has been working since November 1986. This comittee developes
compatible extensions to the ANSI PHIGS draft proposal. Besides the already mentioned
extensions they also specify parametric definition of curves and curved planes. PHIGS+
primitives and attributes follows the philosophy of PHIGS. The new primitives and
attributes are structure elements just like those in PHIGS.

PHIGS systems implemented so far are among others:

° ALPHA implemented on XEROX 1186/1109 at SICS

* PHIGS 1.0b6 - NMP-PHIGS developped at NMP-CAD [7].

* TGS Figaro, fully supported on VAX/VMS, IBM VM/CMS, MVS/TSO, Apollo
Aegis and many major Unix workstations, including Sun, Silicon Graphics,
Hewlett-Packard ete [3].

* Sun microsystem has as commercial PHIGS implementation available on
their SUN 3 hardware.

11 Criticism of PHIGS

PHIGS structure hierarchy is a complex system and it can be hard to implement quickly
and without loss of much performance. This can make the decision to use PHIGS instead of
GKS for instance, hard to make.

When the ASF is set to BUNDLE it is not possible to change an individual attribute, it is a
major disadvantage not to be able to use parts of the defined bundles.

None of the inquire functions specified in PHIGS return the current coordinates of
graphical primitives. Hence coordinate data has to be stored by the application.

15

Implementation of a subset of PHIGS

This page is intentionally left blank

16

Chapter IT ALPHA a PHIGS implementation

Chapter II
ALPHA a PHIGS implementation

ALPHA is a support system for applications using
interactive computer graphics. The ALPHA system
uses many of the concepts developed for the PHIGS
graphic standard (the PHIGS version presented in
dpANS X3.144-198x of October 1986), but is smaller
and specifically tailored to the Xerox/Interlisp-D
environment. When possible, ALPHA interface
functions are identical to the corresponding PHIGS

functions and can therefore be found in any PHIGS
manual.

17

Implementation of a subset of PHIGS

18

Contents

Contentsttt i i e 18
1TWhy PHIGS. i i 19
2Whereis ALPHA used, 19
3 Where, when, how. i 19
4 General presentation of the ALPHA machine............ 20
SExtentions ...ttt i e 21
6Constraints i 21

7 Parts of the ALPHA system

Workstations., 22
Bundles 22
Attribute inheritance. 22
Transformation pipeline. 23
Structures.coii i e 23
Graphical primitives. 24

Chapter IT ALPHA a PHIGS implementation

Chapter II ALPHA a PHIGS
implementation

1 Why PHIGS?

The following elements of the PHIGS system attracted us particularly:
® Hierarchical graphical structures
symbolical names on these
functions for editing of structures
local coordinate systems
e Updating independent of application
° Interaction directly related to instances of graphical objects
This chapter describes an implementation of a subset of PHIGS which is called ALPHA.

2 Where is ALPHA used?

LOGGIE is a system for construction of design environments in which the design process is based
on formal techniques given an interactive graphic syntax. The LOGGIE user can interactively
specify and use meta notations, specification/programming languages, specifications/programs,
program transformations, etc.

LOGGIE is divided into derivation layer and a structure presentation layer and includes
advanced graphical support. See figure II:1. Since LOGGIE itself is an interactive tool several
types of editors will become state-of-the-art when interactive graphics and human interaction
is concerned.

The derivation layer is specified
in terms of a hierarchical graph
model based on typed nodes
connected by typed links.

DL

Derivation Layer

The structure specification layer
sees the nodes as nodes in a tree.

StructurePresentationLayer
El The graphical support system
G S S sees the nodes as boxes, circles,

Graphical Support System ellipses etc, and is ready to
................... display these objects.

Fig II:1 The LOGGIE pile

SPL

In the derivation layer a graph can represent a meta-notation for specification of attribute
grammar formal language, an attribute grammar (including syntax tree, attributes and
inherit/synthesis functions), or a program written according to a specific grammar.

The purpose of the structure presentation layer is to visualise structures generated by the
derivation layer. It integrates both text and graphical symbols gracefully.

The graphical support system is a versatile system for interactive graphics implemented in an
object oriented manner. The fundament in the system is the graphic standard PHIGS, a sub set
has been implemented, this is ALPHA.

3 Where, when, how?

ALPHA is made on XEROX 1186/1109, LYRIC release, CommonLisp.
ALPHA is made by three persons, and it took approximatly 24 weeks to accomplish.

19

Implementation of a subset of PHIGS

20

4 General presentation of the ALPHA machine

The ALPHA-Machine is the virtual architecture of the ALPHA system, specifically designed
to perform interactive graphics. The machine consists of a memory to hold all active structures,
an editor and a number of workstations (see fig II:2).

Application

Interface functions

The ALPHA machine
Editor Active
Open structures
¥ structure
51 p[Bet Width

Edit.

pointer Line

4—-' 52 < I

- Polygon|
S3 B Line .
S f l Ci;‘;:le N
Interaction Control
4 ™ —V
Workstation
Mouse = e
. Attribute oste L
Windows registers structures TN

B 3
KB J
S2

Fig I1:2 Architecture of ALPHA

The ALPHA machine stores all defined structures and it has a structure editor. Every ALPHA
machine can hold several workstations and every Lisp machine can hold several ALPHA
machines.

To control the machine, the user/using program calls a number of interface functions. These can
be divided into four groups:

¢ Control functions: These immediately perform certain operations such as creating
new structures, opening new workstations etc.

e Editing functions: Editing functions are used to modify the content of already
existing structures, such as deleting an element or moving the editing pointer.

* Structure content functions: This group of functions creates and inserts instruction
elements in the structure being edited. When the structure is executed, these
instructions perform various kinds of graphic output and attribute changing.

* Input functions: These are used to prompt the user for different kinds of values. To
facilitate user interaction, four different kinds of input are provided.

All instructions/functions follows the PHIGS standard as far as possible. One exception is that
all functions have a key-parameter :machine. If no machine name is sent to the function, it uses
the machinename *GLOBALMACHINE* as default. All machines are stored in an association
list in the variable *MACHINETABLE*, which is global in the ALPHA package.

Chapter II ALPHA a PHIGS implementation

5 Extensions

The viewports in PHIGS are implemented by the XEROX window system. It is in these windows
posted structures are displayed. The windows can be opened and closed with OPEN-VIEW and
CLOSE-VIEW.

The ALPHA implementation has skipped the generalized drawing primitive, instead the
following graphical primitives are implemented:

° arc

°® arrow

° box

o circle

® curve

s ellipse

e filled-circle

The function BITMAP replaces the CELL ARRAY, this is made to make Xerox bitmaps used
instead.

The FILL-AREA primitive in ALPHA, is corresponding to the FILL-AREA~SET primitive in
PHIGS.

The POLYMARKER primitive is not implemented.

In ALPHA it is not only possible to make new bundles (the bundles differ from those in PHIGS
too, see Bundles) out of existing attributes. For the graphical primitives LINE, EDGE, TEXT and
PATTERN it is also possible to make bundles with completely new content, eg a line with three
points and one dash.

The text primitive is simplified, only the SET-TEXT-FONT, SET-FONT-FACE and
SET-FONT-SIZE are availible this simplification is made to follow the Interlisp-D functions

in the text area.

6 Constraints

As mentioned before only a subset of PHIGS is implemented. The major parts not present in
ALPHA are:

¢ 3D
ALPHA is the 2D part of PHIGS, the 3D functions are not implemented. However,
2D structures can be put in planes with different priority.

e Colour
No colour is implemented since XEROX 1186/1109 only has black and white.

¢ Coordinate system

The transformation pipeline is not fully implemented see Transformation
pipeline.

¢ Inquire functions
Only a few inquire functions are implemented.

e Miscellaneous
Simple error handling
No hidden lines
No meta file

21

Implementation of a subset of PHIGS

22

7 Parts of the ALPHA system

Workstations

A workstation consists of a number of attribute registers, a collection of windows, a number of input devices
and a memory to hold references to posted structures.
Windows are implemented as Interlisp-D windows. Beside the ALPHA package there is a package
which makes it possible to use all Interlisp-D window properties.
To display a structure, it must be posted to a workstation. The workstation will then execute the structure
at a time determined by the workstations update mode, and the graphics will show in the window(s)
belonging to the workstation. If a posted structure is changed (edited) the changes will show when the
workstation reexecutes the structure. The time when this happens is determined by the update mode of
the workstation.
In ALPHA a workstation has four update modes:
© ASAP (As Soon As Possible): The structure is reexecuted immediately after it is changed.
e BNIG (Before Next Interaction Globally): The structure is reexecuted before any interaction
on any workstation takes place.
° BNIL (Before Next Interaction Locally): The structure is reexecuted before any interaction
on this workstation takes place.
e WAIT : Do not execute until explicitly told (with the UPDATE function)

To change the update mode of a workstation, use the SET-DISPLAY-UPDATE-STATE function.

Bundles

A bundle is a collection of values belonging to a graphic output operation. When a bundle is called, eg.
"SET-LINE-INDEX 2" is executed in a structure, the values of bundle #2 are copied to the attribute
registers of Line (Linetype and Linewidthscalefactor). These values can subsequently be overwritten by
individual attribute changing instructions such as "SET-LINE-TYPE", but the bundle values can always be
restored with another "SET-LINE-INDEX".

The idea of bundles is to provide convenient grouping of attributes, eg. a dot-dashed line is defined as line

bundle #4.

Attribute inheritance

Every graphic output operation has a number of attributes, eg. "Line" have the attributes Linetype and
Linewidthscalefactor. The values of these attributes are fetched from the corresponding attribute
registers of the workstation which the structure is executed in. The values of the attributes are
dynamically bound at the time of execution. This means that if structure FOO sets Linetype and then calls
structure BAR, then BAR will inherit the register value set by FOO. If BAR sets Linetype to a different
value, then, upon returning from BAR, the value will be restored to the value it had when FOO called
BAR. One way to look at this is that a structure always pushes the attribute registers on a stack before
calling another structure and then restores them from the top of the stack when the called structure has

returned.

Chapter I ALPHA a PHIGS implementation

Transformation pipeline

All coordinates given in graphic output operations are transformed via three transforms: the
modelling transformation, the global transformation and the workstation translation and

scaling, i.e. only the modelling coordinate system, the world coordinate system and the device
coordinates are used, see figure II:3.

model coordinates

modelling
transformation

§ model coordinates

K

£

e

k=i

£

) global

g transformation

%

2 world coordinates

g

B

& workstation

& translation

2 and

iy scaling

E device coordinates Fig I1:3 The transformation
§ pipeline of ALPHA

The modelling and global transformations are 3x3 homogeneous matrices, which can perform
arbitrary rotation, translation and scaling. The workstation scaling and translation are view
(window) specific and consist of multiplications and additions, respectively, with scalars.
When a structure calls another structure, the inherited global transformation becomes the
product of the current modelling and global transformations, and the new modelling
transformation is set to the identity matrix. The consequence of this is that every structure
operates in its own local coordinate system which can be arbitrarily translated, scaled and
rotated by a calling structure.

Structures

A structure can be viewed as a program, consisting of instructions understood by the ,
ALPHA-workstation. The instructions usually set the values of attribute registers, perform
graphic output operations such as drawing a line, or calls other structures. Structures are stored
partly as lisp structs and partly as runnable lisp functions (see Chp III 7 Structures) The lisp
structs stores information about children to the structure, which structures it is called by, to
which workstations it is posted, etc. The lisp function generates the code necessary to display
the primitives in the structure..

When structures are executed they build a tree structure in which all graphical information lies
(see Chp III 10 Tree structure).

23

Implementation of a subset of PHIGS

24

Graphical primitives
The graphical primitives implemented are adapted to the graphical package in the
Interlisp-D environment.

Predefined line and edge types are:
1 straight
e 2 dashed
° 3 dotted
° 4 dash/dotted
The edge flag is set to T, i.e. the predefined edgetypes are visible.

Predefined text attributes are:

e 1 Gacha 10 MRR

e 2 Helvetica 5 MRR

¢ 3 Helvetica 10 BRR

e 4 Helvetica 12 MRR

e 5 Timesromand 36 MRR
The tripples "MRR"/"BRR"are Interlisp-D abbreviations for how the font will be displayed
(see [15] 27.12 Fonts). The text attributes are adapted to the Interlisp-D environment. Other
fonts availably to use are those defined in the Interlisp-D package.

Predefined patterns are:

e 1 whiteshade

e 2 grayshade

e 3 blackshade
The Interlisp-D function for editing shades are ment to be used by the user. The Interlisp-D
function for editing bitmaps are also possible to use, although they resist outside ALPHA.

ALPHAs user needs inquire functions for reading data, since functions like that don’t exist in
PHIGS (or in ALPHA), this implies that important data has to be stored by the application.

Chapter IIT Technical documentation of the PHIGS imlementation ALPHA

Chapter III
Technical documentation of the
PHIGS implementation ALPHA

ALHPA is a detached CommonLisp package in the
Interlisp-D environment. The package exports all
Alpha functions to be used and only imports
necessary Interlisp-D functions. The fundamental
conceptual objects (machine, workstation ...) are
implemented as CommonLisp structs. All ALPHA
instructions are implemented as functions that
operate on these objects.

25

