ISRN SICS-R-91/15-5E

Formal Derivation of Concurrent Assignments
from Scheduled Single Assignments

Bjorn Lisper

SICS research report
RIL:15
ISSN 0283-3638

Formal Derivation of Concurrent Assignments from
Scheduled Single Assignments

Bjoérn Lisper

SICS research report R91:15

Swedish Institute of Computer Science
Box 1263, S-164 28, KISTA, Sweden

October 17, 1991

Abstract

Concurrent assignments are conimonly used to describe synchronous
parallel computations. We show how a sequence of concurrent assigniments
can be formally derived from the schedule of an acyclic single assignment
task graph and a meniory allocation. In order to do this we develop a for-
mal model of memory allocation in synchronous systems. We use wealkest
precondition semantics to show that the sequence of concurrent assign-
ments computes the same values as the scheduled single assignments. We
give a lower bound on the memory requirements of memory allocations for
a given schedule. This bound is tight: we define a class of memory allo-
cations whose memory requirements always meets the bound. This class
corresponds to conventional register allocation for DAGs and is suitable
when memory access times are uniform. We furthermore define a class
of simple “shift register” memory allocation. These allocations have the
advantage of a minimum of explicit storage control and they yield local
or nearest-neighbour accesses in distributed systems whenever the sched-
ule allows this. Thus, this class of allocations is suitable when designing
parallel special-purpose hardware, like systolic arrays.

1 Introduction

A particular class of deterministic algorithms is the class of static algorithms.
Static algorithms have a structure that is totally known in advance; every time
a static algorithm is executed, the same steps will be carried out, in the same
(possibly partial) order. regardless of indata. In a conventional, imperative
language, static algorithms correspond to straight-line code.

A static algorithm can be formally specified by a fixed set of single assign-
ments (cf. single assignment languages [1]). The basic constituents of such sets
are assignments, just as for imperative programs. But in a set of single assign-
ments, as indicated by the name, a variable is assigned at most once. Thus,
single assignment variables stand for values, not storage locations. Sets of sin-
gle assignments can be given a simple semantics [18. 19] which reflects their
closeness to functional programs.

A set of single assignments can be directly interpreted as a data dependence
graph which is a certain kind of acyclic task graph. The nodes are the single
assignments and there is an arc from an assignment to another iff the vari-
able assigned by the first assignment is used by the second. This opens up
the possibility of optimizing a synchronous execution by scheduling the tasks
(assignments) in advance. Once a schedule is found, a sequence of instructions
implementing the schedule can be derived. Some instructions will be parallel, if
the schedule calls for concurrent execution of tasks. Scheduling is an important
part in code generation for tightly coupled synchronous systems like pipelined
processors [15], VLIW architectures [8] and superscalar processors [11]. It is
also possible to build synchronous hardware that supports the schedule directly:
in that case, we have performed hardware synthesis from the functional specifi-
cation given by the set of single assignments. Thus. scheduling of operations is
also an important phase in high-level hardware synthesis [25]. Particular classes
of schedules, known as space-time mappings, have furthermore been extensively
studied for direct synthesis of regular hardware structures (systolic arrays and
alike) [5, 6, 12, 17, 19, 21. 26. 27, 29, 30].

Synchronous computation, possibly in parallel, can be modeled by concur-
rent or multiple assignments [7, 10]. The execution of a simple concurrent
assignment (zy,....2,) — (RHS(aq),.... RHS(x,)). where @y, ... @, are dis-
tinct program variables, can be seen as a three-stage operation:

1. Read all variables occurring in any right-hand side.

2. Evaluate the right-hand sides with the ')]'(",\r"i()l].‘%]\’ read values of the oc-
) .
Clll‘]'illg variables.

3. Assign each left-hand variable the value of the corresponding evaluated
right-hand side.

This read-evaluate-write cycle is essentially a step in a CREW PRAM com-
putation. A particular class of non-deterministic concurrent assignment pro-
grams is considered in Chandy and Misra’s UNITY [4]. With suitable restric-
tions, concurrent assignments can be used to model synchronous hardware [24].
Transformations of concurrent assignments that keep desired properties invari-
ant can be used to find efficient hardware implementations, provided that the
initial specification is formulated with such assignments [3, 31].

In this paper we consider static algorithms specified by set of single assign-
ments and we use concurrent assignments as the target model for synchronous
computation. We show how a set of single assignments, if a schedule and a
“register allocation” is given, can be formally translated into a sequence of con-
current assignments. We prove that this sequence really computes the functions
defined by the single assignments. This is intuitively the case and is in fact often
implicitly assumed throughout the literature on instruction scheduling, but so
far we have seen no formal proof of this. We give a lower bound on the memory
requirements of register allocations for a given schedule. The bound is tight: we
define a class of memory allocation that always meet it. Finally we define a sec-
ond class of register allocations, where a synchronous queue of suitable length

is allocated to each data transfer, and show that these allocations indeed are
valid. This kind of allocation is simple to derive from the given schedule, it
can be efficiently implemented in hardware as chains of shift registers and it is
usually not wasteful of memory for highly repetitive computations where the
queues are filled most of the time. Therefore it is of interest when synthesizing
regular hardware systems by space-time mapping methods.

2 Preliminaries

In this paper we will use substitutions to model assignments of various kinds.
We assume that the reader is somewhat familiar with universal algebra [9]. For
simplicity, we consider homogenous algebras A = (A; F), where A is a set and
F is a set of finitary operators. (Many-sorted algebras can also be used but
would lead to more complicated definitions.) Each operator fin [I” has an arity
n(f) (or type AMJ) — A)and is interpreted as a [unction [rom A to A, First
order expressions over A are built from constants (interpreted as elements in the
sets of A), first order variables (interpreted as projections [9]) and the operators
in F. ¢ denotes the natural homomorphism: it provides an interpretation for
each first order expression by mapping it to its corresponding polynomial, a
function formed by successive applications of (interpreted) operators in exactly
the same way as the expression is built up. For each polynomial p there is at
least one first order expression e such that p = o(¢). varset(e) denotes the set
of variables in the expression e.

We define a (first order) substilution in X over A to be a partial function
from the variables in X to expressions over A, where any variables in the ex-
pressions belong to X. The domain of a, dom(c). is the set of all variables
for which o(x) is defined. The range of o, rg(c), is the set of all variables that
occur in any o(2), i.e., J(varsel(a(x)) | € dom(c)). The set of variables of
a, V(o),is dom(a) U rg(a). Substitutions are naturally extended to general ex-
pressions: o(e) is the expression obtained when all occurrences in ¢ of variables
z in dom(o) are replaced with a(x). Composition of substitutions is essentially
composition of functions. The main difference is that if o(a) is defined but
not o’(z), then oo’(2) = a(x) whereas the composed partial function would be
undefined [19].

A usual, alternative way is to define substitutions as fotal functions from X
to expressions over A. and consider the domain of o to be the set of variables
2 for which o(2) # 2 [13]. Which definition to choose is merely a matter of
taste. We will often consider substitutions as sets of variable-expression pairs
where each pair is interpreted as an assignment. In this context our particular
definition of substitutions is more natural.

Finally some notation: il we have two functions /: 4 — B and (: 4 — (',
then F x G denotes the function A — B xC for which (F < G)(a) = Fla)xG(a)
for all @ € A.

3 Single assignments

We now formalize the concept of single assignments. Informally, the following
should hold:

e A variable is assigned at most once.

o There should be no data dependence cycles, i.e. chains of def-use relations
such that a variable is dependent on the precence of its own value to be
evaluated.

Under these conditions, each single assignment @ — RHS(2) can be given
the following simple operational semantics: whenever the values are present
for all variables in RHS(x), evaluate RHS(2) and assign the resulting value
to 2. Note that each variable will be assigned a unique value. Furthermore,
the only sequencing constraints come from def-use relationships: a variable
must be assigned a value before it can be used in a right-hand side. Thus, a
single assignment representation of a static algorithm does not hide the inherent
parallellism that may be present.

Let us now formalize the above. (Cf. [18, 21. 22], where a similar develop-
ment is made.)

Definition 1 For any substitution o in X, define the relation <, on X by:
<y iff v € varsel(a(y)).

Definition 2 The substilulion @ is causal iff <} is well-founded (a strict par-
tial order and no infinite decreasing chains exist).

In a causal substitution o, each pair (x,o(2)) of argument and function
value can be directly interpreted as a single assignment @ — o(x). The relation
<, can be considered a data dependence relation: if @ <, y, then the value of
x is needed when o(y) is evaluated. Thus, a
y «— o(y) and the value of x must be sent from the time and place of the first
execution to the time and place of the second. If we for a moment consider <,

— a(2) must be executed before

(restricted to dom(c)) as a relation on o seen as a set of pairs, then (o, <,) is
a task graph for the set of single assignments.

The evaluation of a the right-hand side of a single assignment is considered
to be strict. This will not cause any termination problems since (the transitive
closure of) the dependence relation <7 is well-founded for causal substitutions.
Furthermore, we can give causal substitutions a simple semantics.

Definition 3 For any causal o, o is the unique substitulion with domain
dom(a) such that ¢ = o*o. For any v in dom(a). the output function of
zis goo*(a).

o* is always well-defined for any causal o: due to the well-foundedness of
<% it will, for any 2, eventually hold that ¢"(2) = ¢"*!(2) for some n > 0,
and we find that o*(2) = o”(x). Furthermore, we have the following theorem:

Theorem 1 rg(o™) = rg(o)\ dom(c).

Proof. rg(a*) C rg(o)\ dom(c) was proved in [19, Th. 6.2]. In order to
prove rg(c*) D rg(a) \ dom(c), we simply note that if a y ¢ dom(c) belongs to
varsel(e), then it belongs to varset(o(e)) as well. Thus, for all @ € dom(c), any
y € varset(o(x)) which is not in dom(o) will also bhelong to varset(a"(x)) for
all n > 0. y € varset(o™(x)) follows. B

Any causal substitution o thus, for each @ € dom(c), defines a function
¢doo*(x)in the variables in rg(o)\ dom(c). We refer to these as free variables.

4 Space-time mappings of single assignments

A causal substitution can be scheduled in advance as to optimize the use of
resources and minimize the runtime control overhead. The usual way to define
a schedule of a task graph is to assign a time (i.e., natural number) to each task,
such that precedence constraints are preserved into time. The time assigned to
a task is then interpreted as the time when it is carried out. Our definition will
be slightly different: we will assign a time to each variable in rg(o) U dom(o)
rather than each assignment task. This time should be interpreted as the time
when the corresponding value is available for the computation(s) where it is
used as input.

A basic assumption is that a processing unit can only process one task at a
time. Thus, we need an allocation that for each task, besides its scheduled time,
defines where it is to be executed. Together, schedule and allocation constitutes
what is known as a space-time mapping. More formally, we assume a space R of
possible processor coordinates, and we obtain the following definition (cf. figure

1):

Definition 4 A space-time mapping I' of a causal substitution ¢ is a function
V(o) — N x R, where N is the sel of the natural numbers. I' consists of a

schedule Fy: V(o) — N and an allocation F.: V(o) — R such that ' = F; X F,..
Furthermore, F fulfils:

1. Ifv <5y, then Fi(x) < Fy(y). (causalily)
2. Fis I-1. (injectivity)

This definition is based on the assumption that an input is required to be
present one time unit before the results are present. i.e.. the computation of each
assignment takes one time unit to complete. The definition can be changed to
model e.g. internally pipelined execution, non-unit time computations or various
constraints on communication [19, 20, 21].

5 Prescheduled memory allocation

A schedule of a causal substitution is not enough to define an imperative pro-
gram, since it does not specify how memory is used to transfer values between

S

Causal substitution Space-time

yi= x A time |)
X
x:=10
ZZ = XX+Xx
XX 1= 743 | | l
Xx Tl
=0 I

pl p2 p3
Fr(z)

Figure 1: A space-time mapping.
& o

the different computations. In this section we develop a formalism for this. It
is based on a variation of the transfer relations defined in [23], where they were
used to specify and verify the correctness of various prescheduled permutations
of distributed data fields.

Definition 5 Let M be a set of variables. Then N x M is an address space-
time.

Variables used to model memory will be given a different interpretation than
(single assignment) variables in causal substitutions. We will refer to the former
as program variables whenever confusion may arise.

Definition 6 A relation — on the address space-lime N x M is a transfer
relation if it fulfils the following:

1. Forall (t,m), (. m"y in Nx M, (t.m) — (I'.m') == <. (causality)

2. — is a foresl. (uniquencss of source)

Intuitively, if (1. m) — (t'.m'), then the data item stored in program variable
m at time ¢ becomes stored in m’ at time /. The causality property 1 rules
out the transfer of data backwards in time. Forests are disjoint unions of trees:
thus, elements in forests have unique immediate predecessors. Property 2 then
ensures that two different data items never are written to the same address
at the same time. When an address space-time event is connected to another
event there is a transfer relation path between them. which means that data
will be transferred from the first to the second in a number of steps.

i

Definition 7 A transfer relation — on N x M is a temporally local if (1, m) —
(t',m'y always implies ! =1 + 1.

A temporally local transfer relation specifies the data movements for each
cycle in a synchronous system. See figure 2. It therefore provides a close
description of how the transfer of data can be implemented. We will use tem-
porally local transfer relations to specify prescheduled memory or “register”
allocations. Note that these relations in a sense are more general than “con-
ventional” register allocations, since they can describe situations where data
is shifted around between several addresses during the execution rather than
being fixed in a certain register. While this usually is not good practice in con-
ventional uniprocessor programs, it is often a useful feature in parallel hardware
architectures like systolic arrays.

Atime

i

4
4
|

S

address space

Figure 2: A temporally local transfer relation.

6 Concurrent assignments

Let us now turn to imperative programs with concurrent assignments. We are
not interested in syntactic details: thus. the following definition is appropriate:

Definition 8 A concurrent assignment s a substitution.

Note that the empty substitution § is allowed: this assignment is some-
times denoted “skip”. As mentioned earlier. static algorithms correspond to
straight-line programs. Therefore, we study a restricted language of impera-
tive straight-line programs that consists of possibly infinite sequences of con-
current assignments. For convenience, we introduce the following notation for
sequences: 8, is the n-th element of the sequence 8. and 67 (m < n) denotes the
subsequence (0,,,....68,) of 8. The semantics for each finite (sub)program 6,
in this language is given hy the following two well-known weakest precondition
axioms [7]:

o wp(d. Q) < 0,(Q).

o If m < k < n, then wp(0l,,0Q) <= wp(gk=1 wpl01. Q).

7 Translating single assignments into concurrent as-
signments

We will now formally define a straight-line program of concurrent assignments
for each causal substitution, schedule and memory allocation. We will show
that in a sense, the straight-line program always computes the same values as
defined by the causal substitution according to definition 3.

Definition 9 For any causal substitution o, schedule Iy and sel of program
variables M such that M NV (o) =0, a« memory allocation of ¢ and I in M is
a triple (W, {r, | v € dom(o)}. —) where:

o W is a function V() — 2\ {0} such that if v # y. m, € W(x) and
my € W(y). then (F(x).m,) # (Fily).my,).

o For each x € dom(e). r, is a funclion varsel(o{x)) — M.
o — is a temporally local transfer relation on N x M. such thal:

1. For any x € V(o) there is no s € N x M and no m € W(x) such
that s — (Fy(x),m).

2. For all @ € dom(o) and all y € varsel(a(x)) holds that there is an
my € W(y) such that (Fy(y).my) —" (Fi(x) - 1. ra(y).

The interpretation is as follows: W (“write”) defines, for all single assign-
ment variables, where the corresponding value is to be stored upon creation (or
where it is to be input. in case of a free variable). », (“read”) tells where the
inputs to the evaluation of @ are to be taken from. We can note that », formally
is a substitution in M U V(o). Property 1 of the transfer relation ensures that
there are no write conflicts. (This property is not strictly necessary but will
simplify the consequent definitions.) Property 2. finally, makes sure that there
is a transfer path through memory from the appearance of a value to each time
and place where it is used. See figure 3.

Definition 10 For any causal substitution o, schedule Fy and time 7, we define

X, ={{a| Flz)=1}.

Definition 11 For any temporally local transfer relation — and lime 7, we

define M, = {m | 3Im’: (r = L.m') — (r.m) }.

Definition 12 Lel — be a transfer relation. For any limes 7,7" and program
variables m, m', if (r'.m') — (r.m) we define anc,(m) = m' (the “memory
ancestor” of m at lime 7).

Since — is a forest, anc,(m) is well-defined whenever it exists. Furthermore,
anc.(m) exists for all m € M.

l
l
Fiiy) ——p—
fo—
program
variables

Figure 3: A memory allocation.

Definition 13 For a causal substilution o, a schedule Fy, « memory allocation
(W, {ry|a € dom(c)}.—) in M and any time 7. we define:

o c; ={m— anc;(m)|me M, }.
o ar=J({m—rulo(x))|meW()}|re X, ndom(a)).
o ir=U({m—a]meW(@)}|aeX,nlglo)\ dom(a))).

Furthermore, we define the straight-line program of o, Iy and (W, {r, | v €
dom(o) },—) as the infinite sequence § wheve, for all times 7, 8; = ¢, Ua; Ui,

Proposition 1 ¢,. a;. i, and 8, arve all well-defined substitutions.
Proof. That ¢, is well-defined is immediate. Irom definition 9 follows that
W(a) and W (y) are disjoint for distinct & and y whenever Fy(x) = F;(y). This
is the case for all variables in X,: thus a, and i, are well-defined. Finally we
note that the domains for ¢,, a, and i, are distinct. For a. and i, this follows
similarly to the above, and that dom(c;) is distinct from the other two domains
follows from property 1 in definition 9. Thus, their union is also a well-defined
substitution.]

Intuitively, the construction of the concurrent assignments and the straight-
line program is as follows. ¢, are assignments transferring data that is created
before time 7 and used after 7. a, are single assignments whose results are to
be available at time 7: the occuring single assignment variables are mapped to
program variables as specified by the memory allocation. ¢; maps free variables
becoming available at time 7 to program variables: this corresponds to “input”
statements of conventional imperative languages. For each 7, a concurrent
assignment is then formed from these three parts and the resulting straight-line

Atime W(x) W)
; <te>(a b ¢\ T2\ Or= (e d

~— - >
« f.2) Ft(u) = 1, u has no a « fla,c),
’ predecessors b « fla,c),
ol ¢ « flae),

<1-1,d> rx(y) =a rx(z)=c¢ g« uj

Figure 4: The construction of a concurrent assignment.

program is simply the infinite sequence of such assignments ordered by time.
See figure 4.

The straight-line program obtained in this way is by no means the most
efficient straight-line program for the given causal substitution, schedule and
memory allocation. If for instance (7 — 1,m) — (7.m), then an assignment
m «— m will be included in ¢,: such trivial assignments can be removed without
changing the semantics. Furthermore, empty concurrent assignments can be
removed from the sequence. (This may, however, change the times when results
become available, and then it will strictly speaking violate the schedule Fy.) If
dom(c) is finite, then only a finite number of concurrent assignments will be
nonempty: in this case, a finite straight-line program exists which is equivalent
to the infinite program of definition 13.

We now prove that the straight-line program for a causal substitution o,
schedule F; and memory allocation (W, {r, |2 € dom(c)},—) in M computes
the same values as . We first show a lemma regarding the transfer of values.
To make the lemma more concise we introduce the empty sequence ¢ into the
language of straight-line programs, we define wp(c,)) == ¢ and finally we
define, for all times 7, 67, = «.

Lemma 1 If (r,m) —= (r'.m'), then wp('(};:r].m’ =¢) &= m=e.
Proof. By induction on 7/, Since (7,m) —= (7. m’), it must hold that ' > 7.

o 7 = 71: then (r,m) —= (r,m’) which implies m = m’. Thus, wp(e,m’ =
- ot .
e) < m' =¢ < m = e Furthermore. 87, = ¢ which proves the
base case.

o 7' > 1: assume as induction hypothesis that for all m.m” (r,m) —~*
(r'=1,m") implies wp('{):;[l",'m” =¢) <= m=e¢. Since 7’ > 7 it follows
from (r,m) —= (7', m’) that (r, 'm)l “ (7' = 1, anc,(m’)). The induction
hypothesis then implies that wp(_+‘l ancy(m') =¢) <= m = e. Now,

u»p(é’rH =e) <=

wp(()TH w01, R —=

(¢, and thus 8. contains m’ — anco(m’)) <
mp(F)T-HJ anco(m')y =¢) <<= m=c.

Lemma 2 For any expression e with varsel(e) C V{(a) and any time 7, 8,(¢) =
e.

Proof. Since dom(6,) C M and M is disjoint from V(o). 2]

Theorem 2 For all times 7, all x € X, and all m € W(x), it holds that
wp(6], m = o*(x)) < true.

Proof. We first prove the equality for all @ € X; N (rg(e)\ dom(c)). For
all such 2 and m € W(x), i, contains an assignment m — 2. Furthermore,
o(z) =2 = oc*(2). Thus,

wp(By.m = o™(x)) <=

wp(ly.m = 1) <=

(by the axioms for wp, and since #-(2) = 2 by lemma 2) <=
wp(B, " =2) &=

) =

wp(07 4. true true.
0

For 2 € X, N dom(c) we prove the result by induction over the times 7.

o 7 = 0: For any @ € Xy N dom(o) there can be no y such that y <, =.
Thus, o(2) must be a ground term, and ¢*(2) = o(a) follows. For the
same reason, r,(o(x)) = o(x). Furthermore. ag for all m € W(a) contains
m — r.(o(x)). Therefore,

wp(fg, m = o™ (a

)
up(Bg, m = o)) <
(Ba(a(2)) = a(2) by lemma 2)

)

re{o(a)) =a(a) <= true.

e T > 0: assume as induction hypothesis that for all 7/ < 7, all 2/ € X;v N
dom(c) and all m’ € W(a') holds that wp(()5'., m' = o™ (a)) = lrue.
By the first result in the proof, this will then hold for all 2’ € X, where
7' < 7. Now, for any @ € X, and all m € W(a),

wp(fy.m = o () <= 1,1',/)(05_] Lwp(f..m = o™ (2))).

By lemma 2. wp(f,,m = o*(2)) <= 8.(m) = o*(x). Furthermore,
6:(m) = (1/,.(177) = r(c(x)). By property 2 of 1(‘ﬁ,nition 9, it must
hold for any 2" € varset(o(x)) that there is an m” € W(a") such that
(Fy(2"),m") —= (F (") — 1.re(a™)). Tt holds Lh(xt Fi(z) = 7. Then, by
lemma 1, up(()],,) (7”) = o*(2")) = m" = o*(2"). Thus,

wp(05 7" a2’ = 07(2") =

Y
mp(()g'(‘]' b = a¥(2")) = lrue

by the (extended) induction hypothesis. Irom definition 3 follows that
0'*(’1‘) = 0*(0(;‘1’.)) = U*]'ua.rset((r(m))((o(7)) (:U*Il'(u'f;(;f'(cf(.'lf)) is o™ restricted to
varset(a(x)).) We can then use distributivity of conjunction over wp [7]
to show, for all m € W(a):

wp(by,m = o™ (z)) <<=
wp(057 (o)) = o (@) A true ==
11)})(:06'] sre(a(a)) = a™(2))A
/\ wp(85 1, ro(2”) = 0*(2")) =
s evarsel(o(x))
20])(08“1,7'4,,,(0(’3:)) = o"(2)A
/\ ro(2”) = o (2")) =
' evarsel(s(x))
’t17])(08—] 0 Lvarseraep (@) = o™ (2)A
A re(a) = ot (2")) ==
s evarset(o(2))
wp(857 o (v) = o (@)A
/\ ro(a”y=07(2") =
a€varset(o(x))
wp(06_] Arue)A
/\ wp(5_1,7'.1.(.7-”) =0 (2")) <=
alevarscl{a{r))
true A lrue <= lrue.

8 Memory requirements

An important parameter for a program is its memory requirements. i.e., how
many memory locations does it need for its execution. In this section we will
give a simple definition of memory requirements for the straight-line programs of
concurrent assignments, and prove a lower bound for the memory requirements
of such a program implementing a given schedule.

Definition 14 For any siraighi-line program 6, its set of program variables is
V(8) = U(dom(8,) | T € N) and ils memory requirement is m(6) = [V(0)].

In the following we will talk about memory requirements for causal substi-
tutions, schedules and memory allocations. We then mean the memory require-
ment of the corresponding straight-line program.

For convenience, we will make some extensions to previous definitions. We
add an infinite element oc to the natural numbers, with the properties that for
any natural number n # oc holds that » < . x = n = o and © +n =

12

oo. Furthermore, for any causal substitution o, we introduce a (non-program)
variable o* that is distinct from V(o). We extend any schedule F;: V(o) — N
into a function V(o) U {a "} — N U {0} by deﬁning Fy(z*) = oo. For any 2 in
V(o) we now deﬁno 21, “the last variable using a7, by the following:

1. If there is no y such that @ <, y, then a| = =.

2. If there exist a Y such that: (1) 2 <U y and (2) for any y/ such that
<y, F(y') < Fi(y), then 2T =

3. If there is a y such that @ <, y, and if for all y such that 2 <, y exists a
y’ such that Fy(y) < Fi(y'), then 2] = 2™,

Lemma 3 Let 8 be the straight-line program of o, F, and some memory alloca-
tion (W, {7, |2 € dom(o } —). Then, for each time 7, |[dom(a, Ui-)| > |X |
and |dom(c;)| > [{x | Fi(z) < 7 A Fy(2x1) > 7}

Proof. From definition 13.
dom{a, Ui,) = U(' W(z)| 2 € X;Ndom(o))U
U(Wiz)|a € XN (rg(o)\ dom(c)))
= (since dom(a)U (1g(a)\ dom(a)) = V(c)and X, C V(o))
= [Jw(x)[2 e X;).
Since all W(a) are disjoint for 2 € X, it then follows that [dom(a, Ui)] >
| X
In order to prove the second inequality, we note that dom(c;) = M;. TFur-
thermore it holds that Fi(z]) > 7 exactly when there is an 2’ such that @ <, 2
and Fy(z') > 7. We now show that

M| > {a| Fila) <7 A3 ia <, 20" A F(7.

Consider any x,2', 5.y € V(o)) such that x # y, @ <, 2" and y <, y'. By
property 2 of definition 9, there must be program variables m, and m, such

that there are chains (F;(2), m,) — -+ — (Fy(a') =1, rp(2)) and (Fy(y), my) —
— (Fi(y") = 1,7yp(y)). — is a transfer relation a.nd thus a forest. Further-

more, by property 1 of definition 9, it cannot be the case that (Fy(a),m,) —~
(Fi(y),my), or vice versa. It follows that the two chains are disjoint. Now
assume that Fy(z) < 7, Fi(y) <7, Fy(a') > 7 and Fy(y') > 7. Since — is tem-
porally local, there nmst by the above exist program variables m/,, m/, m), and
my, where m! # mj. such that (1 — 1,m}) — (r,m7), (r = 1,my) — <T my),
(r,ml)y —* (Fy(a)—1 re(2)) and (7, m”) —* {Fy") = L.ryly)). Thus, thele
must be at least one distinct element m!”in M, for each pair a, 2’ where @ <, a’,
Fi(z) < 7 and Fy(2') > 7. and the 1ne(|ua,ht) follows. &

a, Ui, and ¢, have disjoint domains. Thus, according to lemma 3,

[dom(8,)| = |dom(a, Ui,)|+]|dom{c)| > | X |+ {a | Fila) <7 AFla])> 7}
For any 7 it furthermore holds that |dom(6,)] < |U(dom(6;)]| T € N)|. We

obtain the following result.

Theorem 3 The memory requirement of the causal substitulion o and the
schedule F is, for any memory allocation, bound from below by

XA+ Hal| Fi(e) <t AF(al)>T1})

max(
TeEN
if this mazimum exists. Otherwise the memory requirement is infinite.

Theorem 3 is illustrated in figure 5. As will be seen in the next section, the
bound it gives is tight. This theorem points out the importance of scheduling
to memory allocation. If a low memory requirement is the goal, then the limit
of theorem 3 should be part of the objective for the scheduling.

Atime

T+1
A
] (\ N
N~/
1-1

| | |
ik Fi(x) <1,
FixTy>1

Figure 5: An illustration of theorem 3.

9 Strategies for memory allocation

In this section we will define two memory allocation strategies, i.e., systematic
methods to find a memory allocation from a given schedule of a causal substi-
tution. The first strategy is the natural one in systems with global RAM: it
minimizes the memory requirements for the schedule, and it uses a minimum of
data movements. The latter means that it will minimize the number of explicit
memory handling instructions in systems where such instructions are needed to
move data. This strategy is essentially conventional register allocation.

The second strategy is natural in heavily pipelined hardware implemen-
tations. It was formally described by communication structures in [19] and
implicitly used before, most notably in work on two-level pipelining in systolic
arrays [16, 28]. Here, spatial locality is important. The strategy is to allocate,
for each pair of spatial coordinates r, »" and positive integer 8, a chain of é
shift registers from r to »’ iff there are x, y such that: (1) z <, y, (2) z is
mapped to » at time ¢, (3) y is mapped to at time t" and (4) ' —1 = 6. The
advantage of this strategy is twofold: first, it will make the “communication
part” of the concurrent assignment program time invariant, which implies that
it can be implemented in hardware. Second, if the spatial allocation is such that

14

only spatial neighbours will ever communicate, the memory allocation allows
communication through a local channel between the neighbours.

9.1 Minimal memory allocation

Definition 15 For any causal substitution o and schedule Fy of o, a minimal
memory allocation (W, {7, | a € dom(o)},—) for o and F; is given by:

o For each x in V(o), W(a) = {m,} where all m, are distinct.
o For each y in dom(c) and each x in varsel(y), ry(x) = m,.

6 — 18 Jwen by: for all x in rg(o), (Fi(z),m,) — (Fi(e)+ 1L.my) — -+ —

(Fy(a1) = 1,my,). For no other s, s holds that s — ',

my, 18 chosen according to the following. If v € Xq. then m, is chosen freely
so it is distinct from any other mgy 'u'/?(“rr« 2 € Xy, Furthermore, we define
FV(0) = 0. For >0, we define NV(7) = {m, | Fi(x]) =7} and:

PV — 1)U NV(r — 1), then for each @ € X, my is uniquely
selected from FV(t ~ 1)U NV(7 — 1) and FV(7) = (FW{r - YU NV(r —
IN\{m.lee X, }.

o If |X,| > |FV(r—1)UNVWV(r - 1) = n, then for the first n elements z
from X, my is chosen from FV(r— 1) UNW 7T —1), and for the remaining
@ in X, fresh, distinct m,. are selected. Furthermore, FV(1) = 0.

A minimal memory allocation is shown in figure 6. It is not hard to verify
that minimal memory allocations are well-defined memory allocations of ¢ and
Fi, and the verification is left as an excercise to the interested reader. More
interesting is the fact that they meet the memory requirement limit of theorem
3. Before proving this, we show two lemmas. From now on, we assume that o is
a causal substitution, that F} is a schedule of ¢, and 6 denotes the straight-line
program of o, F; and a minimal memory allocation (W.{r, | 2 € dom(o) }, —)
of o and F;.

Lemma 4 For all times T,

[dom(0.)| = | X |+ {a| Fix) <7 Ay 7} .
Proof. For a minimal memory allocation each W(z) is a singleton {my}.
Since dom(a, Ui,) = J(W(a) | 2 € X;) (see the proof of lemma 3), it fol-
lows that |dom(a, Ui;)| = I_\.T}.]fun,herm,ore, dom(c;) = M,. TFrom the

definition of — follows that Af, contains exactly the program variables m,,,
2 € rg(o), for which Fi(z) < 7 and Fy(2]) > 7. TFinally, there is no 2 out-
side rg(o) which]‘mq a successor w.r.t. <,: thus, it must be the case that
M| =|U(z | Fi(z) <7 A F(2])> 7). The lemma follows. [

Fi(T) — Operation creating a value: O
Storage of a value for one time cycle: *
Input of value to operation: A -
Fi(x) —
X program
variables

Figure 6: A minimal memory allocation.

Lemma 5 For all times 7 > 0, dom(c¢,;) U NV(7 — 1) = dom(0._1).

dom(6;_y) and finally
llows that all program

).

Proof. We show dom{c,) C dom(b,_,), NV(r — 1) C

dom(c;)UNV(7 = 1) D dom(6;_y). From definition 15 fo

variables involved are of the form m,, for some 2 € Vio

o dom(c;) C dom(f,_y): if m, € dom(cy), then (1 — 1,m,) — (7, my).
Then either (r — 2.m, > — (7 = 1,my), in which case m, € dom(c;—_1),
or (T —2,my) & (7 —1.m,). in which case I, (2) = 7 — 1 which implies
my € dom(a;_y U i;_4).

o NV(r—1)C dom(f.-y): il m, € NV(7 — 1), then Fy(a]) =7 — 1. Then
either » = a7, in which case F[(.,) = r—1and thus m, € dom(a,-1Ui,_1),
or @ <,], in which case (1 — 2,m,) — (7 = 1.m,) and then m, €
dom(c,_1).

o dom(c,)U NV(r — 1) D dom(f,_1): let m, belong to dom(f,_y). Then
there are two cases:

1. & = af: then m, € NV{7 — 1).
2. Fy(z) < Fy(aT): then (r — 1.m,) — (r.m,) which implies that
my € dom{c.).

Theorem 4 m(8) = max,en(|X;| + {2] Fila) <7 AF(al) > 71}) if this
maximum exists, and infinile otherwise.

Proof. We prove that for all times 7, there is a 7/ < 7 such that for all 7”7 < 7,

> = dom(8,+)U FV(r") = dom(8,)
< = dom(8,»)U FV(r") C dom(8,+).
This implies that for all times 7, |U(dom(6,) | 7/ < 7)| = max,ic, |dom(8,1)].

Together with lemma 4 the theorem then follows.
Let us now prove the statement above. This is done with induction over 7.

e 7 =0: Then 7/ = 7" = 7 = 0 and FV(0) = 0, so the statement holds
trivially.

e 7 > 0: Assume that the statement holds for 7 — 1. In definition 15 there
are two cases for the allocation of program variables to variables in X;:

X, <PV T = 1)U NV(T = 1)|: then dom(a, Ui;) C FWr—-1)U
NV(r - 1), and F¥(7) = (Vr - YU NV(r — 1)\ dom{a; U i;).
Thus, FW{r)Udom{a,Ui.) = FW{r - 1)U NV(+ = 1), and it follows
that

FV(ryUdom(8,) = FV(r)Udom(c:)Udom(a,Ui;)
= FVWr—-1u~NVr-1Ul(ec;)
= FV{r—-1)Udom(8,_y)

where the last vqualih follows from lemma 5. By the induction
hypothesis there is a 7/ < 7 — 1 such that FV(7 = 1)U dom(f;-1) =
dom(0,): it follows that also FV(7)U dom(6;) = dom(6,) which,
since 7 > 7 — 1 > 7/, proves the induction step in this case.

2. |X;] > [FVr = 1)U NV(7 = 1)]: then dom(a, U i) D FV {7 —-1)U
NWV(r = 1) and FV{7) = 0: thus.

dom(8,) = dom(c:)U dom{a, Ui;)
FYr — 1)U NV(T — 1)U (es)
FWr — YU dom(6,_y)

1

Il

where lemma 5 is used once more. Again there is a 7/ < 7 -1
such that F'V(r") U dom(8,1) = dom(#,/) for all 7" between and
including 7" and 7 — 1, and FV(r") U dom(8,) C dom(8./) for all
" < 7' It follows that for all 7" < 7, FV{#")Udom(8,1) C dom(8,).
Furthermore, dom(8;)U FV(r) = (lmn(U0 = dom(6;). Thus, the
statement holds also for 7. with 7' = 7.

Register allocation is in practice usually done through graph colouring [2].
Minimal memory allocation is related to graph colouring in the ’fol}owing way.

For any variable 2 € V (o), we can interpret the time interval [Fy(x), Fi(z]) = 1]
as the lifetime of x. We then define the undirected conflict graph (V()s F) by
{z,2'} € Eiff their lifetimes intersect. Graph colouring can now be carried out

on the conflict graph as usual.

9.2 Pipelined memory allocation

In the following we assume that R is a space, and that M is an infinite set of
program variables. Let ZT denote the set of positive integers. Assume, finally,
that p is an injective function R?x (Z*)? — M. In the following we will use the
function m to specify series of shift registers between points in R: “u(r,?’,6,1)
is shift register no. i in the chain of é shift registers from r to »'”. We will also
use the following simplifying notation: for any two variables 2, y scheduled by
F; we denote Fi(y) — Iy (2) by 6,y.

Definition 16 For any causal substitution o and space-time mapping Fy X F,
of o, a pipelined memory allocation (W,{r, | v € dom(c)},—) for o and
EFy x F,. is given by the following:

1. Forany x € V(o):

o If v <, y for some y, then W(x) = { p(Fo(a). Fo(y), by, 1) | @ <4
¥}

o Otherwise W(x) = {m,}, where m, is chosen distinct from any other
W(a'y where Fy(2') = Fy(2).

2. Foranyy € dom(o) and @ € varset(o(y)), r,(x) = p(Fo(x), Fo(y)s bpys b2y)-

3. For any x and y such that x <, y, for all times 7 and for all i where 1 <
i< byy holds that (T, u(Fu(2), Fo(y), 6y. 1)) — (7 + Lo p(Fu(2), F(y), Ouy,

i+ 1)). For no other s, s holds that s — §'.

Again, it is simple to verify that (W, {r, | 2 € dom(o)}, —)is a well-defined
memory allocation of ¢ and Fy. That W(z)n W(y) =) whenever @ # y and
Fi(z) = Fy(y) follows from F,.(z) # F,(y), which must be true then. and the
injectivity of m. The other required properties are immediate.

A pipelined memory allocation has the following property, which makes it
interesting for hardware implementation:

Theorem 5 Let 8 be the straight-line program of o, F, and the pipelined mem-
ory allocation (W. {r, | @ € dom(a)},—) for o and Fy x F,. Then, for all times
T > O, Cr = Crq1.

Proof. For a pipelined memory allocation — holds, for any time 7 and program
variables m, m’, that (7. m) — (7 4+ 1, m") ifl (4 1, m) — (v +2,m'). It follows
that for any time 7 > 0, M, = M,y; and, for any m such that anc.(m) is
defined, that anc.yq(m) is defined and equal to anc.(m). ¢; = ¢-4q follows. B

Thus, ¢, = ¢ for all 7 > 0, and since dom(c) is disjoint from any W(z) it
follows that 8y can be replaced by 8y U ¢ without altering the semantics of 8.
0 I Y Go
Therefore, since ¢ is time invariant, it can be hardwired. See figure 7. This will
b s
greatly reduce the number of explicit memory handling instructions required to
implement the memory allocation.

From definition 16 another interesting property for pipelined memory al-
locations follows. For any chain of shift registers p(r,7',8,1),...,p{r. 7,8, 8),
plryr’,8,1) will be accessed only by writes from computations mapped to r, and
p(r, 7', 6,8) will be accessed only by reads from computations mapped to /. All
other memory accesses will be local shifts from u(r,7’,8,7) to p(r, 7, 6,7+ 1).
Thus, the chain can be laid out with the input to p(r,7’.4.1) hardwired to r,
the output of u(r,1’,d,¢) hardwired to the input of pu(r,r’,6,i+1)for 1 <i<§
and the output of u(r,7’,é,6) hardwired to 7'. If the allocation F, is such that
r <, y always implies that F.(z) and F,.(y) are neighbours in R, then all PE
connections will be local.

WFr(x), Fr(y), 3, 1) uFrx), Fr(y),3,2) wFr), Fry),3,3)

Fuiy)
Oxy =3
Fi(x)
g Drogram
variables,

(PE) space

PE shift registers PE

Figure 7: A pipelined memory allocation, and the resulting hardwired structure.

In general, a straight-line program for a pipelined memory allocation can
be implemented as follows [19]. A processing element is allocated at each space
point » such that » = F,.(2) for some . The program variables are implemented
as hardwired shift registers as indicated above. The PE located at r will execute
the following local straight-line program in synchrony with the others. For
T = 0,1, ete.: if there is an @ € dom(o) such that F.(2) = r and Iy(2) = T,
then execute {m — r,(o(x)) | m € W(x)}, i.e., read all values on the shift
registers r,(y), for all y € varset{o(2)). compute o(x), and write the result to
the shift registers in W (). (Note that all shift registers »,.(y) and in W(x) are
connected toin- and outports of the PE at r, respectively.) Il @ € rg(o)\dom(o),
then read the value of @ into the shift registers in W(a). If, finally, there is no
@ with F(2z) = » and Fy(a) = 7. then the PE is free to do any action in time
step 7.

Sometimes it is of interest to cluster space points. The clusters are then seen
as processing element locations and the points in the cluster as locations for
local “functional units™ within a PE. This gives an opportunity to save memory:

19

if the same value is sent over two lines, with the same number of shift registers,
to space points in the same cluster, then we may as well use a single line and
let the receiving functional units read the same line. Formally, we consider
equivalence relations “~” on the space R. For any such equivalence relation,
we postulate an injective function pu~: R x R/~ x (Z7)* — M. Definition 16
can be modified to use ji~ rather than p. That the resulting memory allocation
is well-defined follows in the same way as before. (Note the extreme case when
~ = F, the total relation. It is simple to see that its memory requirement is
minimal within the class of pipelined memory allocations defined here. On the
other hand, any notion of locality is lost.)

9.3 An application of pipelined memory allocation

We now show a simple application of pipelined memory allocation. It is the
synthesis of a standard systolic array for in-place matrix multiplication, since
long known from the literature [14]. See also [19, ch. 11}, where space-time
mapping step of the synthesis is carried out in some detail.

The following set of single-assignments describes an algorithm for multiply-
ing an m X p matrix A with an p x 2 matrix B. The algorithm is reduced w.r.t.
fanout, so the elements of A and B are explicitly reused during the computation.

1< <m, 1 <5< n:
cijo — 0
1<i<m, 1 <k <
Uiky — g
1<y<n 1<k<m
[) ko 1) ki
1<i<m I1<y<n, 1<k
Cijk o Cijh=1 F Gikj—10p i1
iki — Oifj-
brji — iz

The algorithm above can be scheduled in the following way: any assignment
producing an output ¢;jr, a;; and/or by is labeled with an index vector
(7,7, k,a) (where a € {a.b,c}). These index vectors are linearly mapped to
four-dimensional space-time coordinates (1,2, y. o) as follows:

/ 1110 j
v | 1000 j
y |10 100 i
o 00 0 I o

(By a slight abuse of notation, 17 is also interpreted as identity element and
“0” as absorbing element for the symbols a, b, c. The meaning of the mapping
above should be clear.)

If the “a”-dimension is interpreted as a “local” dimension, i.e., (z,y, o)
(2,y,a’) for all a. o/, then the resulting system supporting this mapping is a

DO
Py
fow]

two-dimensional processor array with processor coordinates 2, y ranging be-
tween 0 and m and 0 and n, respectively. The rows @ = 0 and y = 0
are used only for input of elements of A and B, respectively. The follow-
ing communication is needed: c¢;;; at time and space (Z,2,y) (1 < 2 < m,
1 <y < n)needs ¢;jp—1 from (¢ — 1,2,y), aixj—1 from (¢ — 1,2 — 1,y) and
brji—1 from (¢ —1,2,y—1). A pipelined memory allocation w.r.t. o~ then yields
the program variables p~((2,y,¢),(z,y),1,1) (which we immediately rename
to ¢(z,y)) for ¢;jh1. p~((2 — L, y,a),(2,y),1,1) = alx — 1,y) for a;;—y and
pe((zyy—1,0), (2. y), L.1)=blz,y— 1) for brji—1, 1 La <m, 1 <y <n.a
and bgj; needs a;r;—1 and bypj;—1, respectively. Since their space coordinates
are “clustered” with the coordinate for ¢;j, they will read from the same pro-
gram variable. Finally, for the “output” values ¢;;,. @, and byj,,, we define
W(eijp) = {e(i,5)}, Wiap,) = a(i,n) (distinct from any other a(x,y)) and
W(bgjm) = b(m, j) (distinct from any other b(z,y)). See figure 8.

Denote the vectors (i, j, k) and ({,z,y) by 2 and s, respectively.
of linear inequalities for 7, j and k is then of the form Az < b. If 2 is mapped
linearly to s, i.e.. s = T, then the inequalities for ¢ vields the inequalities
AT *s < b for s. The single assignments above are defined by indices con-
strained by linear inequalities: the given space-time mapping thus transforms
these into constraints on the space-time coordinates. For any given time 7, we
obtain constraints on @ and y for the concurrent assignment 6; in the straight-
line program for the schedule. Each f; is then given by the following:

A system

Il<ae<m, I <y<n.a+y=m

cle,y) — 0
I<a<m,a<r-La>71—pm

alx,0) — a; (wherei=a, bk =71—2)
I<y<n,y<r—=Lyzt-p

b(0,y) — Dbyj (where j =y, k=7 —y)
I<ae<m, I <y<n,a+y<r=1l,a4+y>17—p

cla,y) — clz,y)+ale = 1L.)b(a.y—1)

alz,y) — alzx—1.y)

bz,y) — blx,y—1).

Note that . is empty whenever 7 < 2o0r 7> p+n+ m.

The memory requirement of the allocation above is 3mn + m + n, which
is easily verified. It is interesting to compare this with the lower limit for the
memory requirement of the schedule. For any two variables u, v above, such
that u <, v, holds that Fi(v) = Fy(u+ 1). Thus, the second term in the
right-hand side of theorem 3 is zero for all times 7. and the lower limit equals
max,en(|X,]). If p > m+ n =1, then this number is 3mn (which occurs for
m+n+1< 7 < p—=2). Thus, the memory requirement of the pipelined
memory allocation differs from the optimal number with m + n. This difference
is, however, due entirely to the saving of the elements a;p, and byjp,: if they
are not needed, then the corresponding program variables can be dropped and
an optimal memory allocation results.

21

Ay

f % b(x, y)
.. S_— — Q
f f e(x,y
e i — N .
? f a(x, y)
-1 e —
4 4 a processing element with local memory
-
X

Figure 8: A pipelined memory allocation, and the resulting hardwired structure.

In this example, all ¢, are empty since there is no communication taking
time greater than one. Examples with non-empty ¢, include two-level pipelined
arrays for FIR filtering [16, 21, 28] and an O(log n) processor O(n) time semisys-
tolic array for n-point FFT [19].

10 Conclusions and further research

We have provided a framework for reasoning about memory allocation. This
framework unifies such seemingly distant activities as register allocation and
synthesis of synchronous hardware. They have in common that values must
be transferred from the source computations to the destinations: this requires
memory, and the two memory allocation strategies that we define are designed
to meet the different ohjectives that arise in the different situations. It is
our belief that memory allocation strategies for other types of synchronous
target systems can he defined, verified and evaluated in our framework. Further
development is certainly necessary to adapt the simple strategies defined here
to more realistic conditions, e.g. including memory hierarchies, taking the cost
of memory handling instructions into account, etc.

We also want to point out the bridging provided between the “concurrent
assignment school” and the “space-time mapping school” in the field of regular
hardware synthesis. We have demonstrated here how concurrent assignments
can be formally derived from single assignments, schedule and memory alloca-
tion. Which school to choose depends on whether one prefers to specify the
intended action of the hardware by imperative programs or recursive functions.

A limitation of the development here is the restriction to static algorithms,
or basic blocks. The extension to more general classes of algorithms is an
interesting task for further study.

22

11 Acknowledgements

I want to thank Per Hammarlund for interesting discussions and criticism.

References
[1] W. B. Ackerman. Data flow languages. Computer, 15:15-25, Feb. 1982.

[2] G. J. Chaitin. Register allocation and spilling via graph coloring. ACM
SIGPLAN Notices, 17(6):201-207, 1982.

[3] K. M. Chandy and J. Misra. Systolic algorithms as programs. Distributed
Comput., 1:177-183. 19%6.

[4] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, Reading, MA, 1988.

[5] M. C. Chen. Transformation of parallel programs in Crystal. In H.-J. Ku-
gler, editor, INFORMATION PROCESSING 86, pages 455-462. Elsevier
Publishers B.V. (North-Holland), 1986.

[6] J.-M. Delosme and I. Ipsen. Efficient systolic arrays for the solution of
Toeplitz systems: an illustration of a methodology for the construction of
systolic architectures in VLSI. In W. Moore, A. McCabe, and R. Urquhart,
editors, Systolic Arrays, pages 37-46. Bristol, UK, 1987. Adam Hilger.

[7] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, N.J.. 1976.

[8] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press,
Cambridge, MA. 1986.

[9] G. Grédtzer. Universal Algebra. Springer-Verlag, New York, NY, 1979.

[10] D. Gries. The multiple assignment statement. IEFE Trans. Software Eng.,
SE-4(2):89-93. Mar. 1978.

[11] J. H. S. Warren. Instruction scheduling for the IBM RISC system/6000
processor. IBM J. Res. Develop., 34(1):85-92, Jan. 1990.

[12] C.-H. Huang and C. Lengauer. The derivation of systolic implementations
of programs. Acta Inform.. 24:595-632, 1987.

[13] G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. J. Assoc. Compul. Mach., 27(4):797-821, Oct.
1980.

[14] E. Katona. Cellular algorithms for binary matrix operations. In Proc.
CONPAR-81, pages 203-216. Springer-Verlag, 1981.

[15] S. M. Krishnamurthy. A brief survey of papers on scheduling for pipelined
processors. SIGPLAN Notices, 25(7):97-106. July 1990.

23

16

[23]

H. T. Kung and M. S. Lam. Wafer-scale integration and two-level pipelined
implementations of systolic arrays. .J. Parallel Distrib. Comput., 1(1):32—
63, Aug. 1984.

S. Y. Kung. VLSI array processors. In W. Moore, A. McCabe, and
R. Urquhart, editors, Systolic Arrays, pages 7-24, Bristol, UK, 1987. Adam
Hilger.

B. Lisper. Single assignment semantics for imperative programs. In
E. Odjik, M. Rem, and J.-C. Syre, editors, Proc. PARLE’89 vol. II: Par-
allel Languages, pages 321-334, Berlin, June 1989. Volume 366 of Lecture
Notes in Comput. Sci., Springer-Verlag.

B. Lisper. Synthesis of Synchronous Systems by Static Scheduling in Space-
Time, volume 362 of Lecture Notes in Comput. Sci. Springer-Verlag, Hei-
delberg, May 1989.

B. Lisper. Linear programming methods for minimizing execution time of
indexed computations. In Proc. Int. Workshop on Compilers for Parallel
Computers, pages 131-142. Dec. 1990.

B. Lisper. Synthesis of time-optimal systolic arrays with cells with inner
structure. J. Parallel Distrib. Comput., 10(2):182-187, Oct. 1990.

B. Lisper. Detecting static algorithms by partial evaluation. In Proc.
ACM SIGPLAN Symposium on Partial Fvaluation and Semantics Based
Program Manipulation, pages 31-42, June 1991.

B. Lisper and S. Rajopadhye. Affine permutations of matrices on mesh-
connected arrays. invited chapter in Parallel Algorithms and Architectures
for DSP Applications, Ed. M. A. Bayoumi, Kluwer Academic Publishers
(in press).

A. R. Martin and J. V. Tucker. The concurrent assignment representation
of synchronous systems. Parallel Computing, 9:227-256. 1988 /89.

M. C. McFarland, A. C. Parker, and R. Camposano. The high-level syn-
thesis of digital systems. Proc. IEEE, 78(2):301-318, Ieb. 1990.

D. I. Moldovan. On the analysis and synthesis of VLSI algorithms. IEEE
Trans. Comput., C-31:1121-1126, Oct. 1982.

P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent
equations. In Proc. 11th Annual Int. Symp. on Comput. Arch., pages 208-
214, June 1984.

P. Quinton and P. Gachet. Automatic design of systolic chips. Res. Rep.
RR 450, INRIA, Rennes, Oct. 1985,

S. V. Rajopadye. Synthesizing systolic arrays with control signals from
recurrence equations. Distribuled Compul., 3:88-105. 1989,

[30] S. K. Rao and T. Kailath. Regular iterative algorithms and their imple-
mentation on processor arrays. Proc. IEEFE, 76(3):259-269, Mar. 1988.

[31] J. L. A. Van de Snepscheut and J. B. Swenker. On the design of some
systolic algorithms. J. Assoc. Comput. Mach., 36(4):826-840, Oct. 1989.

