ISRN SICS-R--91/8--SE

Programming Paradigms of the
Andorra Kernel Language

by
Sverker Janson and Seif Haridi

SICS research report
R91:08
ISSN 0283-3638

SICS/R91:08

Programming Paradigms of
the Andorra Kernel Language

Sverker Janson Seif Haridi

April 10, 1991

SICS Research Report R91:08
Swedish Institute of Computer Science
Box 1263, S-164 28 KISTA, Sweden

Abstract

The Andorra Kernel Language (AKL) is introduced. It is shown how AKL provides
the programming paradigms of both Prolog and GHC. This is the original goal of
the design. However, it has also been possible to provide capabilities beyond that
of Prolog and GHC. There are means to structure search, more powerful than plain
backtracking. It is possible to encapsulate search in concurrent reactive processes.
It is also possible to write a multi-way merger with constant delay. In these respects
AKL is quite original. Although AKL is an instance of our previously introduced
Kernel Andorra Prolog framework, this exposition contains important extensions,
and a considerable amount of unnecessary formal overhead has been stripped away.

1 Introduction

The Andorra Kernel Language (AKL) is a general concurrent logic programming
language that is based on an instance of the Kernel Andorra Prolog (KAP) control
framework for the Extended Andorra Model [8§].

This paper presents a language design. The purpose is to, by means of more or
less familiar examples, illustrate the possibilities provided by AKL. This is not to
say that implementation has been set aside. We have a prototype implementation
of the language, which is showing good results. However, it is felt that there is
a need to first explain the properties of the language, before discussing ingenious
implementation techniques.

AKL is a concurrent language. Very few aspects of the language are order de-
pendent, which means that there should be ample possibilities for parallel execution.
We will touch upon how to provide a potential for parallel execution when writing
programs.

The paper is organised as follows. Section 2 provides some background. Section
3 defines AKL and its computation model. Section 4 shows that the programming
paradigms of Prolog and GHC are available by providing translations into AKL. It is
also shown how to improve upon the translation of “Prolog” in several ways. Section
5 is devoted to nondeterministic computation. First, it is shown how to realise
finite domain constraint programming in AKL. Then, it is shown how to produce a
Cartesian product effect, combining solutions for two goals. Finally, the Cartesian
product is applied to only partially computed solutions, with improved behaviour
as the result. Section 6 shows how to make use of an encapsulated nondeterministic
computation within a reactive computation to do multi-way merge with constant
delay.

2 Background and Related Work

AKL brings together many ideas from different camps and different people in our
quest to combine Prolog, committed-choice languages, and constraint logic program-
ming in a single unified framework.

The Andorra model was proposed by Warren [14] as a basic tool for combining
or-parallelism with general and-parallelism in the execution of pure definite clauses
(see section 4.2.3). This idea owes much to the notion of determinacy in P-Prolog
[16). The Andorra model has been implemented providing stream-and parallelism
in combination with or-parallelism [3].

The potential of the Andorra model as a basis for combining Prolog and commit-
ted-choice languages was first realised by Haridi 7, 6]. Independently, Bahgat and
Gregory extended the basic Andorra model by allowing full Parlog execution during
the deterministic phase in the language Pandora [1].

As a joint effort between us and Warren, an Extended Andorra Model (EAM)
was developed. It is a set of rewrite rules on AND/OR-trees that potentially unifies
the abilities of Prolog and GHC. In some sense, the EAM is for AKL what definite
clause resolution is for Prolog. The EAM itself provides no control, but the Andorra
idea of giving priority to deterministic computation is the foundation for the different
control principles proposed for the EAM.

Warren has proposed an implicit control regime for the EAM with the goal to
provide good behaviour for programs without extra annotations apart from cut and
commit [15].

We have earlier developed a formal computation model based on the EAM for
the language framework Kernel Andorra Prolog (KAP) [8]. There we added the wait
guard operator to delimit local execution, and the model was based on the notion
of constraints and constraint operations. For the latter notions, the work of Vijay
Saraswat was very influential [9].

A language that is an instance of the KAP framework uses a subset of the guard-
operators and the constraint operations, and it may also further restrict the basic
control principles provided. For example, GHC is an instance of KAP using the
guard operator commit and (implicitly) the constraint operation telly.

AKL is an instance of KAP using all three guard operators proposed for KAP
and (implicitly) the constraint operation tell,. The control has been restricted to
allow quiet pruning only. This instance has been chosen for its nice properties, such
as being comparatively insensitive to the order of execution of goals. We have been
careful to preserve the reactive aspects of the language as well as providing means
for controlling search.

3 The Andorra Kernel Language

In this section we introduce the Andorra Kernel Language (AKL) and its computa-
tion model. For a thorough treatment of the AKL rules and their logical properties
see [5, 4].

The computation model generalises definite clause resolution where program
clauses are resolved against a goal clause. Here, nested goal expressions built from
atomic goals, conjunction, and disjunction—AND/OR trees—are worked upon by
rewrite rules.

In the following sections the syntax of AKL is defined, then its computation
states, and finally we present the formal rewrite rules that form the basis of the
computation model.

3.1 The ‘Language

The syntactic categories pertaining to programs follow.

{guarded clause)

(head)

(guard), {(body)
(atom) =

)

)

= (head) :- {guard){guard operator)(body)
= (program atom)

(
(
(sequence of atoms)
(

program atom) | (constraint atom) | (aggregate)

(aggregate) := aggregate((variable), (sequence of atoms), (variable))

(guard operator) ::= | " ||’ (wait, cut, commit)

A constraint atom is any formula in some constraint language (as defined by the
constraint system used). In this paper we will only use the constraint system of
Prolog and GHC. Thus, constraint atoms are equalities on terms, as usual. A
constraint atom of the form X =17 or X =Y is called a binding. We assume that

a unification algorithm is available, and that it is used to establish the consistency
of a conjunction of equality constraints, and when consistent also reducing it to a
conjunction of bindings.

A program atom is an atomic formula of the form p(X+,...,X,), with different
variables Xy, ..., X,. It is for technical simplicity that program atoms have distinct
variables as arguments. It makes the language description completely independent of
the constraint system. Programs with head unification may be translated by putting
equalities corresponding to head unification in the guard. Conversely, programs with
terms as arguments to body goals may be translated by putting the corresponding
equalities together with the goal.

A definition is a finite sequence of guarded clauses with the same head atom and
the same guard operator, defining the predicate of the head atom. We will speak
of wait-definitions, cut-definitions, and commit-definitions, depending on the guard
operator. Cut and commit are the pruning guard operators. The wait-operator only
delimits local execution, as discussed below. A program is a finite set of definitions,
satisfying the condition that the predicate of every program atom occurring in a
clause in the program has a definition in the program. The local variables of a
clause are those variables that are not formal parameters (and thus do not occur in
the head).

AKL can support several kinds of aggregate constructs, depending on the con-
straint system used. Here, we will present and use a derived form of bagof construct,
which is written as in Prolog. For technical simplicity, the collected term is restricted
to be a variable not occurring elsewhere in the clause, and the goals for which solu-
tions are collected may not be prefixed by existential quantification. Both of these
restrictions can be relaxed by the use of simple source-to-source transformations.

We also adopt the syntactic convention that when a guard operator is omitted
in a clause, its default position is at the neck of the clause. If another clause in the
same definition has an explicit guard operator, it is used, otherwise the default is
the wait guard operator.

3.2 Configurations

Configurations are nested expressions built from atoms and components called boxes.
The precise logical reading of these expressions is given by the declarative semantics
of AKL [5, 4]. The syntax of these expressions is defined as follows.

(configuration) ::= (and-boz) | (or-box)
(and-boz) ::= and((sequence of local goals))(set of variables)
(or-boz) ::= or((sequence of configurations))
(local goal) ::= (atom) | (choice-boz) | (bagof-boz)
(choice-box) ::= choice(({sequence of guarded goals))

i

(bagof-boz) bagof({variable), (configuration), (variable))
(guarded goal) ::= (configuration)(guard operator)(sequence of atoms)
(open goal) ::= {configuration) | (local goal)

)

(goal) ::= (open goal) | (guarded goal)

Roughly, the and-boxes and the guarded goals are conjunctions, or-boxes and choice-
boxes disjunctions, and bagof-boxes are set-abstractions. The variables with which
an and-box is indexed are existentially quantified within the box.

In the following, the letters R, 5, and T stand for sequences of goals, A for an
atom, B for a sequence of atoms, and C for a sequence of constraint atoms. (A
sequence may be empty.) The letter G will be used for goals, and for the sequence
of atoms in the guard of a guarded clause. The letters V' and W stand for sets of
variables. Concatenation of sequences will be written using comma. The symbol
fail denotes the empty or-box. The symbol ‘%’ stands for a guard operator.

The constraint of an and-box is the conjunction of the constraint atoms appearing
as members of the and-box. The environment of (an occurrence of) a goal in a
configuration is the conjunction of all constraints of all its surrounding and-boxes.
A variable is external to an and-box if it is local to a surrounding and-box. An
and-box, and(C)y, is solved if it contains constraint atoms only, in which case it
may be written as Cy. An and-box is quiet if it is solved and the constraint of the
and-box does not restrict its environment (6) outside the local variables of the and-
box (or more formally 7C |= 8 D IV ((AC) A 8), where TC is the current theory of
constraints). Roughly, an and-box is quiet if it doesn’t contain bindings for external
variables for which there are no corresponding bindings in its environment.

3.3 Computation Model

The computation model is a transition system on configurations. Each kind of
transition is defined by a conditional rewrite rule G = G’, that substitutes the goal
G, on its right hand side, for some part of the configuration that matches the goal
G, on its left hand side, if the associated condition is satisfied.

The local forking rule

A = choice(and(G1)y; % Bi,...,and(Gy)v, % B,)

rewrites a program atom A, not occurring in the body of a guarded goal, where
A Gy % By,...,A - G, % B, is the definition of the predicate of A, with the
arguments of A substituted for the formal parameters, and the local variables of
the ¢:th clause replaced by the variables in the set V;. The sets V; are chosen to be
disjoint from the set of variables in the rewritten configuration.

The determinate promotion rule

and(R,choice(Cy % B), S)w = and(R,C, B, S)vuw

may be applied if Cy is solved. If % is a pruning operator it is also required that
Cv is quiet.
The nondeterminate promotion rule

and(Ty, choice(R,Cv : B, S), To)w =
or(and(Ty,C, B, Ty)vuw, and(T}, choice(R,), T2)w))

can promote a wait-guarded goal with a solved guard, if R or § is non-empty and
the rewrite is performed within a stable and-box. An and-box is stable if i) no
other rule is applicable to any subgoal of the and-box, and ii) the and-box satisfies
a constraint-stability condition.

A constraint stability condition is a condition from which it follows that no
possible changes in the environment (through applications of rules to other subgoals
of the global configuration) will lead to a situation in which non-trivial environment
synchronisation, cut pruning, or commit pruning is applicable in the and-box. Note
that a top-level and-box always satisfies a constraint stability condition, as it has
no environment.

For the constraint system in this paper, a general constraint stability condition
is that no environment of a subgoal of the and-box may restrict variables outside
the and-box. In other words, this means that the and-box should not anywhere
contain bindings of variables that are external to the and-box for which there are
no corresponding bindings in its environment.

The cut rule

choice(R,Cv ! B, S) = choice(R,Cyv ! B)

prunes to the right of a guarded goal with a quiet solved guard Cy.
The commit rule

choice(R,Cv | B, S) = choice(Cy | B)

prunes both to the right and the to left of a guarded goal with a quiet solved guard
Cy.

The environment synchronisation rule
and(R)y = fail

fails an and-box if the constraint of R is incompatible with the environment of the
box.
The guard distribution rule

choice(R,or(G,5) % B,T) = choice(R,G % B,or(S) % B, T)

distributes the guard operation over a branch in an or-tree in the guard of a guarded
goal.
The choice elimination rule

choice(R, fail % B, 5) = choice(R,S)

removes a failed guarded goal.
The failure propagation rule

and(R, choice(), 5) = fail

fails an and-box, if it contains an empty choice-box.

Below we will define the aggregating operation bagof, which is applicable when
the constraint system makes it possible to form lists. It is related to the bagof found
in Prolog, but different in that it will not attempt to enumerate different solutions
for different constraints on the external variables. Instead, the solutions are required
to be quiet. This will allow us to retain their relation to external variables. The
end result is a solution collecting operation reminiscent of the list comprehension
operation of some functional languages.

Bagof-boxes are introduced by the following rule.
bagof(X, B,Y) = bagof(X,and(B)x3,Y)
We may rewrite bagof-boxes by
and(R, bagof(X,fail,Y), S)y = and(R,Y =[], S)v

and(R, bagof(X,or(51,Cv,52),Y), 1w =
and(R’ Y = [X/ [lf’]a Cl7 bagOf(X7 OI‘(S1, 52)3 Y,), T)VUVV

if Cy is quiet. The sequence of constraints C’ is C' in which the variables V that
are local to the solution are given new names, occurring nowhere else in the config-
uration. In particular, the variable X is renamed to X’.

This completes the description of the computation model.

4 Basic Logic Programming Paradigms

In this section, we show that the basic logic programming paradigms of GHC and
Prolog are available in AKL. As a notion such as programming paradigm is rather
loosely defined, this is very much a matter of belief based on a set of convincing
examples. We have convinced ourselves by adapting programs written in these lan-
guages and running them in our AKL implementation. Prolog programs often only
require moving output unification after cut. GHC programs require no modification
at all. PARLOG programs are almost as easy.

4.1 Subsuming GHC

A program written in the GHC subset of AKL will execute almost exactly as in GHC.
In AKL, the commit operation is delayed until there exists a corresponding external
binding for each local binding of an external variable. In GHC the binding operation
itself is delayed until that moment. The difference in computational behaviour
is that the binding will not be visible to the sibling goals in the guard in GHC,
whereas it will be visible in AKL. The local bindings will sometimes detect failure,
for example in

p(X) - X=1, X=2 | true.

7- p(2).

In AKL this would fail, whereas GHC would suspend. Worse is that GHC can
arbitrarily fail or suspend, depending on whether the guard in the following clause
is executed from the left or from the right, respectively.

p(X) - Y=1, Y=2, X=Y | true.

Although no sane programmer would write code like this, the situation could appear
as the result of a deep guard execution, or as the result of a program transformation.
This problem is almost immaterial in theoretical GHC, as the difference between
suspension and failure plays no essential réle for the semantics of a program. In a
context with the “otherwise” guard goal or a failure-detecting meta-call facility, as
in KL1, the problem is of course more serious.

4.2 Subsuming “Prolog”

The first goal of this section is to show that the Prolog style of execution of pure
definite clauses is easily achievable in AKL. Then it is shown how to translate
Prolog definitions that contain cut. It is also shown how a simple improvement of
the translation of pure clauses introduces the determinacy detecting, stream-and
parallelisable style of execution given by the Andorra principle. Finally, it is shown
how to make way for independent and-parallel execution.

Using data-flow analysis, it is possible to make translation from Prolog to AKL
completely automatic along the lines outlined below [2].

4.2.1 Trivial Translation of Pure Definitions

The first translation considered completely ignores the possibility of putting goals
in the guard. A pure definite clause with some terms #; in the head

H(t1, ..., tn) - B.
is translated as
H(Xq, ..., Xp) - true : Xy=tq, ..., X,=t,, B.

putting the equality constraints corresponding to head unification in the body. Note
that the arguments of this AKL clause are distinct variables, and that the guard is
empty.

Assume in the following the above trivial translation of the definitions of some
predicates p, q, and r. The definition of p has two clauses

p :- true : By.
p :- true : Bs.

The execution of the goal

- P, q, T.

proceeds as follows. The initial goal is an and-box containing the goal.

and(p,q,r)

Computation begins by local forking on each of the atomic goals, and with further
computation within the resulting guarded goals. However, as the guards of the
guarded goals for p are empty, these are immediately solved.

and(choice(true : By, true : By), choice(R), choice(5))

Assuming that the goals q and r have at least two candidate clauses, the and-box is
also stable. If either goal had a single defining clause, this would be reduced first,
and a similar stable state would be reached shortly.

Computation may now proceed with nondeterminate promotion of the body By,
and then determinate promotion of the single remaining body B,. The following
state would then be achieved in which computation may proceed in the promoted
bodies in both of the two branches.

or(and(Bj, choice(R), choice(S5)),
and(B;, choice(R), choice(S5)))

It is fairly obvious that this style of translation leads to a computation which resem-
bles SLD-resolution, and thereby the basic programming paradigm of pure Prolog.

Pure Horn-clause programs can also be executed by the following meta-inter-
preter, which is derived from the Or-parallel Prolog interpreter in Concurrent Prolog
by Ken Kahn [11]. (The predicate clauses/2 returns a list of clauses for a goal, and
append/3 is the directional append from two input lists to one output list.) The
major difference is that the following is a full-fledged all-solutions interpreter as
opposed to the single-solution interpreter in Concurrent Prolog. This is because we
can use the wait-operator in resolve/3 instead of a commit-operator.

solve([]).
solve([A|As]) - | clauses(A, Cs), resolve(A, Cs, As).

resolve(A, [(A :- Bs)|Cs], As) -

append(Bs, As, ABs), solve(ABs) : true.
resolve(A, [C|Cs], As) :-

resolve(A, Cs, As) : true.

It is also possible to use this technique when translating a program.

4.2.2 Translating Definitions with Cut

The difference between cut in Prolog and cut in AKL is that cut is quiet in AKL.
Therefore, output must be produced in the body-part of the clause, as in GHC.

Prolog: H(in,out) :- G, !, B.
AKL: H(in,Y) :- G ! Y=out, B.

The quietness restriction is essential for parallel execution by making cut insensitive
to the order of execution of goals. Also, with the quietness restriction, cut in AKL
can be given an intuitive logical interpretation as “if-then-else”; see [5] for a discus-
sion and proof. An important corollary is the soundness of negation-as-failure in its
most general way (without being constructive) in AKL.

Unfortunately, the quietness restriction also makes some pragmatically justifiable
programming tricks impossible that are possible in Prolog. These tricks depend on
the sequential flow of control, and the resulting particular instantiation patterns of
the arguments of a cut-procedure in specific execution states.

As when translating from Prolog to a language such as GHC, there are work-
arounds that do not involve noisy pruning. However, in some cases, the translation
is quite non-trivial, and cannot be readily automated.

In the following, a typical case is presented together with suggestions for alter-
native solutions in AKL. The principles underlying these alternative solutions can
be adapted to other similar cases. The example that will be used is the lookup-
procedure as defined below. In Prolog it is simply written as follows.

lookup(X, [X|R]) :
lookup(X, [Y|R]) :- lookup(X, R).

-0

Its definition is equivalent to the well-known memberchk procedure, and when used
for checking membership of a ground element in a ground list, its behaviour is
equivalent in AKL. However, in Prolog it can also be used to add a new element to
a list with an uninstantiated tail, and to find an element matching a given partially
instantiated template.

| 7- lookup(key=value, Dict), lookup(key=Value, Dict).

Dict = [key=value|R},
Value = value ?

As mentioned above, this technique is not available in AKL. Now, there are sev-
eral work-arounds for this problem. It is for example quite possible to manage a
dictionary as a complete list of key-value pairs, as in the following.

lookup(K, V, D, ND) :- lookup(K, V1,D) ! V = V1, ND = D.
lookup(K, V, D, ND) :- | ND = [K=V|D].

lookup(K, V, [K=V1|D]):- ! V = V1.
lookup(K, V, [X|D]) :- ! lookup(X, V, D).

When using this kind of dictionary, it is also necessary to pass the dictionary along in
a more explicit way than for the Prolog solution. Note that access to the dictionary
is serialised in the above solution. Two updating lookups can not go on at the same
time in the same list. The following solution allows several lookups at the same time.
It uses an incomplete list as in the Prolog solution, but access to the dictionary has

to be managed by a dictionary server in order to synchronise the additions to the
tail of the list.

dict(S) :-
merger(S, S1), % (optional, see section 6.2)
dictionaryserver(S1, D, D).

dictionaryserver([lookup(K, V)|S], D, T) :-
| lookup(X, V, D, T, NT),
dictionaryserver(S, D, NT).
dictionaryserver([], D, T).

lookup(K, V, [K=V1|R], T, NT) - | V = V1, T = NT.
lookup(K, V, [K1=V1|R], T, NT) :- not(K = K1)

| lookup(K, V, R, T, NT).
lookup(K, V, T, T, NT) :- | T = [K=VI|NT].

This could have been an FGHC program, but FGHC implementations usually do
not consider variable identity as a quiet case, and therefore the third lookup- clause
will not recognise the uninstantiated tail as intended.

Note that the above program can be extended to perform a checking lookup
which does not add the new element, even though the list ends with a variable.
In Prolog some meta-logical primitive would be needed to achieve the same effect.
The incomplete structure technique is of course more useful when the dictionary is
organised as a tree. Unless sophisticated memory management techniques are used
(such as reference counting, producer-consumer language restrictions (e. g. Janus),

9

or compile-time analysis), alternative solutions with complete structures will require
O(log(N)) allocated memory for each new addition to the tree. The following Prolog
program will only allocate the new node.

treelookup(X, t(X, L, R)) :- L.
treelookup(X, t(Y, L, R)) - X @< Y, !, treelookup(X, L).
treelookup(X, t(Y, L, R)) :- treelookup(X, R).

In the AKL, the tree can be represented by a tree of processes, as in GHC. It can
be argued that this is less efficient than the Prolog solution, but new results on
compilation techniques for FGHC-like programs suggest that this inefficiency is not
necessarily an inherent problem (see [12]).

A more definitive solution, allowing fully automatic translation, is to add noisy
cut as a new guard operator in the language [8, 10]. This is an option in the Kernel
Andorra Prolog framework, and it has been included in the prototype implementa-
tion of AKL. Noisy cut has the disadvantage of being less concurrent than quiet cut,
and it also requires that programs are properly synchronised, to avoid problems with
back-propagation of values. As it is mainly intended for backward compatibility in
the context of automated translation from Prolog to AKL, it is omitted from this
presentation.

Another difference from Prolog is that AKL, for simplicity, only allows definitions
where the clauses are of the same kind. Mixed definitions must be translated into
their corresponding unmixed definitions. Almost always, this means adding a cut
to all clauses.

In some rare cases, a Prolog definition, e. g.

H :- B;.
H: G,!, By
H - B3.

has to be translated into two (or more) AKL definitions as follows

H :- true: Bj.
H :- true : Hjy.
Hl -G Bz.

Hy :- true ! Bs.

to make “backtracking” from B to By possible. Our experience of translating Prolog
programs is that elegant translations are always available in the specific cases.
Finally, it should be noted that there is no fully general translation of cut inside a

disjunction. However, it is the opinion of the authors that this abominable construct
should be avoided anyway.

4.2.3 Andorra Principle Style Translation

The Andorra principle can be seen as a computation rule for pure definite clause
programs. It states that atomic goals that have at most one candidate clause (de-
terminate goals) should be selected first. Only when there are no such goals may
another goal be selected (a nondeterminate goal) [14].

10

One appealing property is that all determinate goals may be executed in parallel,
thereby extracting implicit dependent and-parallelism from pure programs. For ex-
ample, the Andorra-I implementation provides both dependent and- and or-parallel
execution on the Sequent Symmetry [3].

In AKL, this principle has been generalised to a language with deep guards, and
is embodied in the stability condition. However, the basic principle itself is available
as a special case. Its implications are further discussed in section 5.1. In this section,
we present a translation from pure definite clauses to AXL. As a consequence of the
AXKL computation model, the translated programs will behave exactly as stated by
the Andorra principle.

A clause can be considered to be a candidate clause for a goal, in the above
sense, if its head unification and primitive test goals (such as </2 and the like) will
not fail for the goal. By putting the head unification and the primitive test goals
before a wait-operator, local execution in the guard will establish whether the clause
fails for the goal or not. The and-box failure and the determinate promotion rule
have priority over nondeterminate promotion, and therefore execution in AKL will
be as given by the Andorra principle.

A pure definite clause

p(t1, ..., ty) :- Tests, Body.
can thus be translated to AKL as
P(Xy, ooy Xp) - Xy=ty, ..., Xp=t,, Tests : Body.

according to the above suggested scheme. User-defined tests can of course also be
counted among the candidate clause detecting guard goals.

4.2.4 Independent-AND Style Translation

When it is known that two goals are independent when executed by Prolog, a
more interesting translation scheme is possible. The implications of this and related
translations for programming search problems are discussed in section 5.2. Assume
that in the Prolog clause

P(X) = q(X,Y), 1(X,Z), s(Y,Z).

the goals q and r are found to be independent. In the context of restricted and-
parallelism, this means that the program that uses p calls it with an argument
X such that neither of the goals q or r will instantiate X further. The following
translation to AKL enables independent parallel execution of q and r as soon as X
is sufficiently instantiated by its producers.

p(X) :- true : q1(X,Y), r1(X,2), s(Y,Z).

ql(X,Y) - ¢(X,Y1) : Y = YI.
rl(X,Z) - 1(X,21) : Z = Z1.

By putting the goals in guards and extracting the output argument, unless the goals
attempt to restrict X, all computation steps are always admissible.
This style of translation can make use of the tools developed for restricted and-

parallelism, such as compile-time analysis of independence, making it completely
automatic [2].

11

4.3 Meta-Interpretation

Some logic programming languages allow compact meta-interpreters to be written.
Meta-interpreters come to many different uses. A meta-interpreter can be written
in AKL in the traditional style.

prove(true) :- | true.

prove((P,Q)) = | prove(P), prove(Q).

prove(X=Y) - | X=Y.

prove(A) :- guardoperator(A, wait) | trywait(A).
prove(A) :- guardoperator(A, cut) | trycut(A).
prove(A) :- guardoperator(A, commit) | trycommit(A).

trywait(A) :- clause((A :- G : B)), prove(G) : prove(B).
trycut(A) :- clause((A :- G ! B)), prove(G) ! prove(B).
trycommit(A) :- clause((A :- G | B)), prove(G) | prove(B).
guardoperator(append(A,B,C), wait).

clause((append(A,B,C) - A =[], B = C : true)).
clause((append(A,Y,C) :- A = [E|X], C = [E|Z] : append(X,Y,Z))).

The try-procedures will allow nondeterminate generation within their guards quite
independently, as no restrictions are imposed on external variables before promotion
of the alternative clauses.

5 Controlling Nondeterminism

AKL not only subsumes Prolog and GHC, but it also provides new mechanisms for
controlling search in nondeterministic programs.

5.1 Finite Domain Constraint Techniques

There are several examples showing the strength of the Andorra principle, and AKL
in particular, for finite domain constraint programming. An often used example is
the n-queens problem [13, 9, 1]. The following program is adapted from [13] using
a finite domain constraints package written entirely in AKL.

queens(N, []).
queens(N, [X|Y]) :- fd(domain(N, X)), noattack(X, Y), queens(N, Y).

noattack(X ,Xs) :- noattack(X, Xs, 1).

noattack(X, [], Nb).

noattack(X, [Y|Ys], Nb) :-
fd((X #Y,X#Y-Nb, X #Y + Nb)), Nbl is Nb+1,
noattack(X, Ys, Nbl).

12

The domain(N, X) constraint generates values from 1 to N.

The corresponding program in CHIP has to be rewritten to provide generalised
forward checking, but since AKL delays nondeterminate goals, the determinate goals
will execute first, and all of the constraints will be available before alternatives are
tried for the domain variables. Note that the domain is not predefined in this AKL
solution, but is provided as a parameter. There is also no need to declare the domain
variables. It is only necessary to call the domain generator.

5.2 Local Execution

The purpose of this example is to show how to execute two goals independently
and completely, and how to collect their combined solutions in a Cartesian product
manner. For simplicity, the more than familiar member-predicate is used.

It should be mentioned that virtually nothing is gained for this particular exam-
ple when compared to its Prolog execution. However, when enumeration is costly,
as in some search problems, the illustrated functionality is useful.

The following is the definition of member using the trivial AKL translation.

member(X, Y) :- true : Y=[X|Y1].
member(X, Y) :- true : Y=[Z|Y1], member(X, Y1).

The goal is to find the common members of two lists.
?- member(X, [1,2,3]), member(X, [2,3,4]).

We would like the two goals to be executed locally, and that the solutions are
combined afterwards in a Cartesian product manner.

Complete local execution of a goal is achieved in AKL by putting the goal in the
guard part of a clause, as shown in section 4.2.4. For this purpose we introduce an
auxiliary predicate m, defined by

m(X,Y) :- member(X,Y) : true.

It encapsulates the call to member in a guard, in order to execute it locally. The
previous goal is now restated.

7- m(X,[1,2,3]), m(X,[2,3,4]).

The execution proceeds as follows. The initial goal is an and-box containing the two
atomic goals. All rewrites will be performed on both goals “in parallel”.

and(m(X,[1,2,3]),m(X,[2,3,4]))

First of all, local forking is applied to the m goals. The member goals now appear
in the guard of a wait guarded goal.

and(choice(and(member(X,[1,2,3])) : true),
choice(and(member(X, [2,3,4])) : true))

The first step of the local execution is local forking of the member goals with the

two clauses in the definition, producing choice-boxes with two guarded goals each
with trivially solved guards.

13

choice(and(choice(true: X =1,
true : member(X,[2,3]))) : true,

and(choice(true : X = 2,
true : member(X,[3,4]))) : true)

As this state is stable, nondeterminate promotion may be applied on either of the
branches, followed by determinate promotion of the other. (There is room for some
indeterministic choice between rules here, but with equivalent result. The most
lucid execution is shown.)

and(choice(and(X = 1) : true,
and(member(X, [2,3])) : true),

choice(and(X = 2) : true,
and(member(X, [3,4])) : true))

Now note that the member goals that have been promoted are similar in appearance
to the previous member goals. It is easily seen that the last two steps can be repeated
two more times for each of the remaining elements in the lists. Finally, there will
appear a member(X,[]) goal that will fail and disappear. The final result after
completed local execution is as follows.

and(choice(and(X = 1) : true,and(X = 2) : true,and(X = 3) : true),
choice(and(X = 2) : true,and(X = 3) : true,and(X = 4) : true))

This state is stable. We may now apply nondeterminate promotion on the first
choice-box, promoting all its local solutions.

or(and(X = 1, choice(and(X = 2) : true,and(X = 3) : true,
and(X = 4) : true),

and(X = 2, choice(and(X = 2): true,and(X = 3) : true
and(X = 4) : true),

and(X = 3, choice(and(X = 2) : true,and(X = 3) : true,
and(X = 4) : true))

The “grid” of the Cartesian product should now be apparent. Applying environment
synchronisation and failure propagation rules yields the final answers.

or(and(X = 2),and(X = 3))

?

Hopefully, this example provided some intuition for the style of local execution
available in AKL.

5.3 Structured Nondeterminism

Between doing no local computation, as in SLD-resolution, and completely local
computation, as in the previous section, lies a whole spectrum of possible organi-
sations of nondeterministic computations. The tradeoff is on one side between the
danger of repeating work, as when only little work is done locally in advance, and
the danger of wasting work, as when complete failure destroys the local work that
has been done. Also, the more that is done locally, the more may be available for
parallel execution on a multi-processor.

The following example shows how a useful tradeoff can be achieved (adapted
from [15]). It is a program that finds common sublists of two lists. In its first
formulation, there is only trivial local execution.

14

sublist([], []).
sublist([X|L], [X|L1]) :- sublist(L, L1).
sublist(L, [X|L1]) :- sublist(L, L1).

?- sublist(L, [c,a,t,s]), sublist(L, [1,a,s,t]).

If the trivial or the Andorra principle style translation is used, local execution is
very limited. It is reasonably safe to execute each goal locally until the first point
at which the execution for this goal could fail in an interesting way. This happens
when the first element of a sublist is generated.

To achieve this effect, the above definition is transformed into the following.

sublist([], Y).

sublist([E|X], Y) :- suffix([E|Z], Y) : sublist(X, Z).
suffix(X, X).

suffix(X, [Z|Y]) :- suffix(X, Y).

The following illustrates the state that will be reached when executing the above
goal. The generation is basically performed on the members of the lists. Thus, we
start with the initial goal

and(sublist(L, [c, a, 1, s]), sublist(L, I, a, s,1]))

After a while the following configuration is reached.

and(choice(and(L = []) : true,
and(L = [c|L1]) : sublist(L1,[a,t, s]),
and(L = [a|L1]) : sublist(L1,[¢, s]),
and(L = [t|L1]) : sublist(L1,[s]),
and(L = [s|L1]) : sublist(L1,[])),

choice(and(L = []) : true,

and(L = [I|L1]) : sublist(L1,[a, s,]),
and(L = [a|L1]) : sublist(L1,[s,]),
and(L = [s|L1]) : sublist(L1, [t]),
and(L = [t|L1]) : sublist(L1,[])))

Subsequent nondeterminate promotion will combine the solutions for the local or-
trees, producing the following tree of independent alternatives.

or(and(L = []),
and(L = [a|L1],sublist(L1, ¢, s]), sublist(L1, [s, #])),
and(L = [t|L1],sublist(L1, [s]), sublist(L1, [])),
and(L = [s|L1],sublist(L1,[]), sublist(L1,[])))

This formulation is able to share some part of the computation of the second goal
between the solutions for the first goal.

6 Controlling Reactive Computations

The ability to encapsulate nondeterminate computation within an otherwise reactive
computation opens up for new programming techniques.

6.1 FEncapsulated Nondeterminism

The AKL model makes it possible to encapsulate a process doing nondeterminate
search within a process performing a determinate computation in a way that allows
both processes to proceed concurrently in a fair implementation of the language.
Determinacy can be enforced by the encapsulating goal either by the use of a pruning
operator, or by the use of bagof.

6.2 Multi-way Merge with Constant Delay

The following realises a multi-way merger with constant delay that uses encapsulated
nondeterminism. It is called with one initial input stream and one initial output
stream. The input stream can be split by binding it to a term split(S1,52). The
merger consists of two cooperating goals: 1) a generator that detects that one of the
streams being merged has become instantiated and then enters it on a stream to a
server, 2) a server that for each instantiated stream either removes a message (and
feeds the rest to the generator), splits the stream (and feeds the two new streams
to the generator), or closes the stream.

merger(In, Out) :-
server(B, A, Out, 5(0)),
bagof(S, generator(S, [In|A]), B).

The generator procedure enters the streams as nondeterministic alternative solutions
for the bagof goal. It requires that the streams are bound, and bagof will wait until
they are.

generator(S, [S1|R]) :- | generator(S, S1, R).

generator(S, S, R) :- stream(S).
generator(S, S1, R) :- generator(S, R).

stream([]) :- |. stream([E[R]) :- |. stream(split(51,52)) :- |.

The server procedure expects a stream of instantiated streams from the bagof goal.
Apart from dealing with these in the above mentioned way, it also keeps track of the
number of merged streams, and closes the output stream and terminates the bagof
goal when none remain.

server([[E|R]|B], A, S, N) :-

| S = [E|S1], A = [R|A1], server(B, A1, S1, N).
server([split(S1,52)|B], A, S, N) :-

| A =[S1,52|A1], server(B, A1, S, s(N)).
server([[]|B], A, S, s(N)) :-

| server(B, A, S, N).
server(B, A, S, 0) :-

[A=1,8=].

The binding of A to [} in the last clause will make the generator fail, whereby the
bagof is terminated.

16

7 Discussion

AKL is being implemented and the results so far are promising. The current imple-
mentation covers everything described in this paper. In our AKL environment, we
have been able to use public domain code originally written in Prolog (by O‘Keefe
and others) with minor modifications only. Nondeterministic benchmarks have also
been easy to adapt. Most committed-choice examples run with no modifications
except simple changes to the syntax.

When compared to a high-performance Prolog implementation with an abstract
machine that is emulated in C (e. g. SICStus), the current implementation executes
deterministic code about four times slower. Experiments show that a flat guard
optimisation alone will bring this factor down to between 1.5 and 2. There is nothing
in the abstract machine itself that is substantially less efficient than the WAM when
executing deterministic code. Therefore, it is expected that performance will be
close to that of a WAM implementation of Prolog.

Nondeterminate promotion is currently implemented using copying, as in the
rule itself. Naive copying seems to incur an overhead of between 30% and 60%
on the execution of highly nondeterministic problems such as N-queens. We are
experimenting with more clever copying schemes that avoid copying of boxes that
would fail almost immediately. Experiments show that this can be very beneficial.

Acknowledgements

We would like to thank Torkel Franzén and Johan Montelius of the Andorra group
at SICS, and also the other members of ESPRIT Project 2471 (PEPMA), for their
contributions to this work.

References

[1] Reem Bahgat and Steve Gregory. Pandora: Non-deterministic parallel logic
programming. In Proceedings of the Sizth International Conference on Logic
Programming. MIT Press, 1989.

[2] Francisco Bueno and Manuel Hermenegildo. Towards a translation algorithm
from Prolog to the Andorra Kernel Language. PEPMA Internal Report, Jan-
uary 1991.

[3] Vitor Santos Costa, David H. D. Warren, and Rong Yang. The Andorra-I
engine: A parallel implementation of the Basic Andorra model. Technical note,
University of Bristol, Department of Computer Science, March 1990.

[4] Torken Franzén. Logical aspects of the Andorra Kernel Language. (Revised
version of SICS Research Report R90008, submitted to ILPS’91).

[5] Torken Franzén. Formal aspects of the Andorra Kernel Language: I. Research
Report R90008, SICS, May 1990.

[6] Seif Haridi. A logic programming language based on the Andorra model. New
Generation Computing, (7):109-125, 1990.

17

[7] Seif Haridi and Per Brand. Andorra Prolog, an integration of Prolog and
committed choice languages. In Proceedings of the FGCS, 1988.

[8] Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computa-
tion model. In Proceedings of the Seventh International Conference on Logic
Programming. MIT Press, 1990. (Revised version of SICS Research Report
R90002).

[9] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD the-
sis, Carnegie-Mellon University, January 1990.

[10] Vijay A. Saraswat and Seif Haridi. Some notes on Andorra Prolog. unpublished
note, May 1989.

[11] Ehud Shapiro. Concurrent Prolog: A progress report. IEEE Computer,
8(19):44-58, August 1986.

[12] Kazunori Ueda. A new implementation technique for flat GHC. In Proceedings
of the Seventh International Conference on Logic Programming. MIT Press,
1990.

[13] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

[14] David H. D. Warren. The Andorra principle. Presented at the Gigalips work-
shop, Stockholm, 1987.

[15] David H. D. Warren. The Extended Andorra Model with implicit control.
presented at a Parallel Logic Programming workshop in Eilat, June 1990.

[16] Rong Yang and Hideo Aiso. P-Prolog: A parallel logic langauge based on
exclusive relation. In Proceedings of the Third International Conference on
Logic Programming. MIT Press, 1986.

A workshop record for the Parallel Logic Programming workshop in Eilat, with
copies of slides and position papers, is available from SICS.

18

