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Abstract

This paper describes how to extend the garbage collection for WAM [ACHS&8] so that it
will shunt chains of bound variables if possible. Doing so has two advantages:
1. Space is saved by making it possible to deallocate the intermediate cells. This is particu-
larly useful when those cells are associated with frozen goals.
2. Later dereferencing is speeded up by not having to follow long variable chains.

The main complication of this optimization is the treatment of the trailed variables. We
claim that all possible chains of variables are shunted by this algorithm.

The algorithm has been implemented in SICStus Prolog, and benchmark results are pre-
sented in this paper.

This paper is a revised version of [Sahlin89] and is meant to be read in conjunction with
[ACHS88] as the notation used is presented there and only briefly summarized here. The full
source code for the shunting algorithm is given in this paper.

An example

Chains of variables are unavoidable in an ordinary WAM execution. For instance, the query
p (1000, s (A),B) given to the program below, will create a variable chain starting in B having 1000 links.

p(0,s(2),2).
p(N,s(X),z) :- N>0, N1 is N-1, p(N1,Y,2), ¥Y=s(X).

During WAM execution a number of value cells containing various instances of s (X) will be created first.
Then the chain of X's will be linked so that the last one will point to the next to last, the next to last will point to
the third from the end, etc. Thus these variable chains may occur in normal WAM execution.

If these intermediate cells are “short-circuited” (shunted), subsequent dereferencing of the variable B in the
query will not have to traverse the intermediate cells. Thus execution speed is improved.

If the intermediate cells are not referenced from anywhere else, they may also become deallocated. Thus
more storage can be reclaimed.



Invocation

Variable shunting is an independent algorithm, and may take place either before or after garbage collection.
As the whole heap is traversed it seems advantageous to do the shunting after garbage collection, as the heap
will only contain reachable value cells at that stage. The disadvantage is of course that the value cells which are
no longer referred to after the shunting, will not be freed until the next garbage collection. Furthermore, if the
segmented garbage collection optimization is used, it is pointless to perform shunting after garbage collection
as this part of the memory will not be treated in the next garbage collection.

In the sequel we shall therefore assume that variable shunting is performed immediately prior to garbage
collection.

The basic ideas

First some examples that will illustrate the basic ideas. When investigating the variable chain below, a natu-
ral idea is to replace the left-most VAR-cell with the contents of the right-most cell.

After !CONST abc| IVAR

Unfortunately, this is not always a correct optimization, as some cells may be trailed, and thus reset on
backtracking, as shown below. If the first cell had been changed to “CONST abc”, as suggested above, an in-
correct state would have been created.
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A natural solution is of course to stop following the chain as soon as a trailed cell is found. But we can do
better than that!

In the example below, the left-most cell is trailed later than the other two cells. In this case, copying the
value at the end of the chain is quite safe, as the first cell is reset before the other cells are reset. Thus there is
no danger of the first cell containing a copy of a cell whose value is actually reset.
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One more refinement of the rule above is possible. If two cells are trailed so they will be reset by the same
backtracking point, then it is also safe to copy. The figure below shows a situation where the order of the trail
entries is reversed compared to the example above, but where it is safe to shunt the chain, as all trail entries
belong to the same choice point.

VAR &1VAR

\

CONST abc

These entries are reset
at the same time

Trail Choice Points

Not all value cells are trailed, so how are these cells to be treated? For a simple and uniform treatment of
bound value cells the following definition is introduced:

DEFINITION:
The binding age of a bound value cell is
« for an untrailed cell: the age of the youngest choice point created before the cell.
» for a trailed cell: the age of the youngest choice point created before the trail entry.

This figure illustrates the age of some value cells on
the heap, where darker cells indicate older cells. For
clarity, the choice points and the trail cells have also
been given the corresponding shade. White cells indi-
cate unbound value cells. These cells do not take part in
the shunting.

Heap Choice Trail
points



With this definition of binding age we can state the following:

For a variable pointing to a value cell of the same binding age or older, it is always safe to copy the contents
of the value cell to the variable. By safe we mean here that the value of the variable after dereferencing will
during subsequent execution be the same as if no copying had been done.

As the variable cell is either reset (for trailed variables) or deallocated before or at the same time as the
value cell it refers to, it is safe to copy the contents of the value cell into the variable cell.

If the value cell being copied is also a variable cell, the procedure above may be repeated until either a non-
variable cell or a younger value cell is encountered. This principle is the basis for the algorithm.

2 As illustrated by this figure, it may happen that it
Initial state could be safe for the starting cell of a variable chain
to be copied, whereas the intermediate cell may not
be copied. Thus in general it is not possible to change
all variable cells in a variable chain.

An unsafe copy

CONST:abe:
A safe copy

The algorithm

Let us call the parts of the stack and heap delimited by consecutive choice points a segment. (This is not to
be confused with the two segments introduced by the segmented garbage collection.) Untrailed variables in the
same segment have the same binding age, as defined above. The binding age of trailed variables is on the other
hand determined by the choice point that caused them to be trailed. We do not need to know the exact binding
age of variables, only their relative binding age.

In this algorithm each segment is shunted separately, but there is a need to have the value cells being trailed
from younger segments (i.e. younger value cells) marked. This can either be done by starting with the youngest
segment and ending with the oldest, or vice versa. The marking phase of the garbage collection algorithm
[ACHSS88] starts from the newest, but here we choose instead to start with the oldest. This seems slightly more
advantageous as variable chains normally go in the opposite direction, i.e. from newer to older segments, as
this is the preferred binding direction in WAM (to maximize the likelihood of not having to trail a value cell).
Going in the opposite direction of a chain while shunting it, is computationally more efficient as shown by the
example below.



Number of dereference steps:

4 3 2 1
Collapsing a variable chain by scanning it along its major direction

==

Number of dereference steps:

1 1 1 1
Collapsing a variable chain by scanning it against its major direction is more
advantageous

The algorithm becomes slightly simpler to describe if we represent the principal WAM registers as a choice
point w, which among other things contains pointers to the current environment (E), the continuation program
counter (CP), the current choice point (B), the current top of trail (TR) and heap () and also all active argu-
ment registers (3).

Let w0 be a pointer to a designated choice point, chosen so that w0 and w delimit the area which is subject
to variable shunting. Thus if the segmented garbage collection optimization has been used, w0 points to the
youngest choice point of the most recent GC, otherwise it points to a choice point containing the original set-
tings of the relevant WAM registers.

Definitions of the relevant data types are shown in the Appendix.

The algorithm, called shunt_vars below, is comprised of the following steps:

» All trailed value cells are marked.

» To simplify traversing the choice points from the oldest to the newest, the chain of choice points starting
with the control area w is temporarily reversed.

« Then the actual variable shunting is performed, starting from the oldest segment working towards the
newest. During this step all marked value cells also become unmarked again.

= The chain of choice points is restored by another reversal.

shunt_vars ()

{
mark _all trailed(w0—TR, w—TR);

w = reverse_choicepoints (w);

shunt_choicepoints(w);
w = reverse_choicepoints(w);

The procedure mark_all trailed traverses the trail between from and to marking all trailed cells.



mark_all trailed(from,to)
struct valuecell **from, **to;

{
while (from £ to)
{
(*from) —-m = TRUE;
from = from + 1;

For completeness, the simple procedure reverse_choicepoints is also explicitly given :

struct choicepoint *reverse choicepoints (B)
struct choicepoint *B;
{

struct choicepoint *temp, *B2;

B2 = w0;
while (B#w0)

temp = B—B, BB = B2, B2 = B, B
return B2;

temp;

In shunt_choicepoints, which is shown below, the chain of all choice points is traversed by the
variable cp. A trailing pointer cp_last is maintained which points to the previous (older) choice point. For
each choicepoint, the respective stack, heap and trail segments are shunted separately.

First all value cells being trailed between cp_last and cp are unmarked. This denotes that the values in
these cells are created in this segment and thus safe to shunt. Notice that these cells all reside in stack and heap
segments that are older than the segments defined by cp_last and cp.

Then the same cells (referenced from the trail segment) are shunted. As mentioned above, the values of
these variables are considered to be created in this segment and should therefore be shunted at the same time.

Then the heap segment defined by cp_last and cp is traversed, shunting the variable chain for any
encountered unmarked variables. A marked variable must not be followed, as this denotes that it received its
value at a later choice point.

Similarly the chain of environments is followed as long as they are more recent than cp_last. Unmarked
variables in these environments are shunted.

Finally, the saved argument registers of the choicepoint are shunted. Notice that it is advantageous to con-
sider the various segments in the exact order described above, due to the directionality of variable bindings.



shunt_choicepoints (cp)

struct choicepoint *cp;

{

struct choicepoint *cp_last = w0;

while (cp # w0)

{

unmark_trailed(cp_last—TR,cp—TR);
shunt_trail (cp_last—TR, cp—>TR);
shunt heap (cp_last—H, cp—H) ;
shunt environments (cp—E,env_size (cp—CP),cp_last);
for (i=0; i<size; i++)
shunt_variable (&cp-»A[i]);
cp_last = cp:
cp = Ccp—B;

shunt_environments (env, size,cp_last)

struct environment *env;

int size;

struct choicepoint *cp_ last;

{

while (env>cp_ last)

{

for (i=0; i<size; i++)
if (env—Y[il.m = FALSE)
shunt_variable (¢env—>Y[i]);
size = env_size (env—CP);
env = env—CE;

shunt_heap (from, to)

struct valuecell *from, *to;

{

while (from#to)

{

if (from—m = FALSE)
shunt variable (from);
from = from+l;



shunt_trail (from, to)
struct valuecell **from, **to;
{
while (from#to)
{
shunt_variable (*from);
from = from+l;

unmark_trailed(from, to)
struct wvaluecell **from, **to;
{
while (from#to)
{
(*from) ->m = FALSE;
from = from+l;

Finally the workhorse of this whole algorithm: shunt_variable which does the actual pointer shunting.
It is very simple; it follows an unmarked chain of bound variables, copying for each link of the chain its tag and
value to the start of the chain.

An alternative implementation would be to postpone copying the tag and value until the end of the chain is
reached, but since the length of a chain rarely exceeds 1, the current formulation is more efficient.

shunt_variable (start)

struct valuecell *start;

{

while (start-—>tag = VARIABLE AND

start—value-»m = FALSE AND
start—value # start) /* checkfor unbound variables */
start—tag = start-»value-dtag,
start—value = start-—>value-—value;

Discussion

It would have been preferable to incorporate variable shunting into the marking phase of the garbage col-
lection. Unfortunately, with the pointer reversal technique used during marking we found that this was not
feasible.

Alternatively one would like to extend the ordinary execution of Prolog (i.e. the unification) to handle
variable shunting. To some extent this is already done, but generally dereferencing during run-time is only
done when necessary, following the principle of not doing anything unnecessary as the branch may fail any-
way. The run-time system is however incapable of shunting variable chains originating in value cells created



before the latest choice point, as no run-time information is available in value cells regarding whether or when
they have been trailed.

Finally, the most important question: Is this extra work trying to shunt variable chains worthwhile? Data
from [Tick87] and [Touati87] suggest that most variable chains are very short. In the larger benchmarks (in
[Touati87]) only 1.1%-36.9% of the references go from a variable cell to a constant cell. Longer reference
chains account for less that 1% of all references. As these are dynamic and not static data, they are not directly
related to how much memory could be saved by shunting. Also, the report does not mention how many of
these cells were trailed in a way that makes shunting impossible. Nevertheless, those data suggest that variable
shunting is of little importance in most applications.

Examples, like the one given in the first section, can be constructed where an unbounded amount of mem-
ory is consumed if no variable shunting is done. Thus, these programs would not be executable without shunt-
ing. However, this is not so interesting, as similar arguments can be made for almost any memory optimiza-
tion.

In SICStus Prolog there are some indications that a particular application of variable shunting could be very
tmportant for some programs. This is due to the way freeze is implemented [Carlsson87]. A frozen unbound
variable also refers to some goals that have to be executed when the variable becomes bound. Those goals are
not removed when they have executed, as they are still potentially reachable if backtracking should occur and
the variable should become rebound. But in precisely those circumstances when variable shunting is safe, the
goals can safely be removed. This application seems to be the major advantage of using this algorithm, as
garbage collection alone is incapable of removing those goals. Data from running some programs indicate that
enormous amounts of memory can be consumed by frozen goals, causing the system to run out of space soon.

The same point is made in a paper by Serge Le Huitouze [Huitouze90], where variable shunting in the con-
text of the MALI abstract machine is described (without algorithms). MALI uses essentially the same freeze
mechanism as SICStus. The paper gives an example of a program generating prime numbers which allegedly
consumes enormous amounts of memory unless variable shunting is used. To our surprise, the program ran in
linear space in SICStus, without variable shunting, probably because the program was designed to simply print
prime numbers instead of computing a list of them, and so the garbage emanating from the already computed
prime numbers could be reclaimed by the usual mechanism. We did, however, reach results similar to
[Huitouze90] with the program shown below, which computes a list of prime numbers:

nprimes (N, List) :- length(List, N), primesfrom(List, 2).
primesfrom([], ).
primesfrom([I|Ns], I) :- nomultall{Ns, I), J is I+1, !, primesfrom(Ns, J).

primesfrom(L, I) :- J is I+1l, primesfrom(L, J).

nomultall ([], _).
nomultall ([N|{Ns], I) :- freeze(N, N mod I > 0), nomultall (Ns, I).

We ran the above program with the query '?- nprimes(N,L), garbage collect.'for different

values of N and observed the amount of cells marked by the garbage collector, with and without variable shunt-
ing. The results are displayed in the table below.
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Conclusions

We have designed and implemented algorithms for shunting chains of variable bindings in the WAM. We
do not expect the technique to cause improved execution speed due to faster dereferencing except in excep-
tional cases. Nor do we expect the gain in execution speed for better memory reclamation to outweigh the
overhead of variable shunting for most programs. However, we have demonstrated that unless this technique is
used, some programs using the freeze mechanism will soon run out of memory.
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Appendix: Data Types

This Appendix contains pseudo C declarations for the principal data types used.
An important data type is the value cell. A value cell stores a Prolog term and consists of a tag, a value, and
two bits used for garbage collection:

struct valuecell {
int tag;
struct valuecell *value;
bool m;
bool £;
]

A choicepoint consists of saved pointers into the various stacks, an alternative program pointer, saved
environment and continuation pointers, and saved argument registers:
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struct choicepoint {

struct code *Pp; /* alt. program pointer */

struct code *CP; /* continuation program pointer */

struct environment *E; /* environment pointer */

struct choicepoint *B; /* previous choicepoint */
struct valuecell **TR; /* trail pointer */
struct valuecell *H; /* heap pointer */

struct valuecell A[m]; /* argument registers */

}

An environment
variables:

consists of a continuation program pointer, a continuation environment, and local

struct environment {

struct code *CP; /* continuation program pointer */
struct environment *CE; /* continuation environment pointer */
struct valuecell Y[m]; /* local variables */
}
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