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Abstract

We argue that bidding in the game of Contract Bridge can profitably be
regarded as a micro-world suitable for experimenting with pragmatics. We
sketch an analysis in which a "bidding system" is treated as the semantics of an
artificial language, and show how this "language", despite its apparent
simplicity, is capable of supporting a wide variety of common speech acts
parallel to those in natural languages; we also argue that the reason for the
relatively unsuccessful nature of previous attempts to write strong Bridge
playing programs has been their failure to address the need to reason explicitly
about knowledge, pragmatics, probabilities and plans. We give an overview of
PRAGMA, a system currently under development at SICS, which embodies these
ideas in concrete form, using a combination of rule-based inference, stochastic
simulation, and "neural-net" learning. Examples are given illustrating the
functionality of the system in its current form.

1 Some of the material in this paper was previously published as [Gambaéck et al 90].
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1. Introduction

We will assume that the ultimate goal of research in "Natural Language
Processing" is to create usable computational models of the processes
underlying purposeful communication in unrestricted natural language.
Unfortunately, it seems that this is still a long way beyond what it is feasible to
attempt given the state of the art; any realistic research project must somehow
simplify the problem. If we are prepared to accept the popular division of
language into syntax, semantics and pragmatics, there are a priori two obvious
choices:

a) Keep the syntax and the semantics realistic, but simplify the pragmatics.
b) Keep the pragmatics realistic, but simplify the syntax and the semantics.

Most work up to now has been concentrated on track a); for example, one can
assume that the input forms a connected story describing a visit to a restaurant,
or that each sentence is an isolated question to a given relational database. Here
we will examine the corresponding strategy from track b), effecting a drastic
simplification of the syntactic and semantic rules while keeping the pragmatics
fairly realistic.

At the same time, we want to remove the other great obstacle to progress, the
necessity of formalizing large chunks of "common-sense" knowledge. With these
thoughts in mind, it is natural to look for a game of skill, which in an integral
way involves communication through an artificial language. In the next section,
we will argue that Contract Bridge is a good example of this type of game.

We will continue by describing why Bridge is hard and why previous attempts
to write good Bridge playing programs have been fairly unsuccessful. We claim
that many of the problems are caused by the need to reason about knowledge,
probabilities and plans. Here we will describe a new architecture specifically
designed to attack these problems: at the bidding level, the key idea is to use a
combination of rule-based systems, stochastic simulation and neural nets, each
of which take care of a different type of reasoning. Roughly speaking,

¢ the rule-based part of the program describes the bidding system
* the stochastic simulation part reasons about knowledge and probabilities
* the neural net makes evaluations

We give examples of the way in which these ideas can be used to make
decisions during the bidding phase, and describe how they are realized in
PRAGMA, a prototype system currently being implemented at SICS. Our long-
term plan is to interface the bidding component to a card-player, which is also
briefly described.
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1.1. A Micro-World: Bidding in Contract Bridge

Bridge is a four-person card game played between two two-person teams?.
During the "bidding" stage, the players take turns to make "bids". A bid is either

Pass or consists of a number from 1 to 7 followed by a suit denomination3, and
each bid must be higher than the previous one according to the convention that
<N1,Suitl> is higher than <N2,5uit2> iff either N1 > N2, or N1 = N2 and Suit1 >

Suit2 in the ordering NoTrump > 4 > ¥ > ¢ > &. When no player wishes to bid
further (i.e. all players pass), the highest bid is regarded as an offer to play a
"contract”, in effect a bet that the player who has made the final bid <N, Suit>
can, together with his partner, take at least 6 + N tricks if Suit is trumps.

What makes Bridge interesting from our perspective is, primarily, that it is in
general impossible for any individual player to make such a bet with any
confidence purely on the basis on the information derived from his own cards; it
is consequently greatly to one's advantage to agree with one's partner that bids
prior to the final one should be interpreted as conveying information according
to some pre-arranged scheme. Such a scheme is called a bidding system, and
can in a natural way be regarded as defining the semantics of a simple language.

From the point of view of pragmatics a bidding system is much closer to a
natural language than to, say, first-order logic: this is largely a result of the
constraint mentioned above, that each bid be strictly higher than the preceding
one. Since a player can in most cases only bid a small number of times before
reaching a dangerously high level, the bidding system must be designed so as to
make maximum use of context-sensitivity, presupposition, shared information,
and other linguistic devices aimed at increasing the efficiency of communication.
Coupled with the fact that the syntax of the language is simplified to the point of
non-existence, we get a system where the pragmatic aspects of communication
can be studied almost in isolation.

A simple example of pragmatic Bridge reasoning in action follows. Consider the
bidding sequence:

North East South West
14 pass 2¢ pass
2NT

2We regret that it would be quite impossible to provide a full description of the rules of Bridge.
Readers unfamiliar with the game are urged to consult one of the many excellent introductory
texts. We hope, however, that the introduction given should be enough to make the text
comprehensible even to non-Bridge players, since the ideas are more generally applicable.

3 In fact there are two more possible bids: Double and Redouble, which just raise the stakes.
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In the bidding system most commonly used in Sweden [Nilsland 78], North is
only permitted to make his second bid if he has 11 to 14 high-card points, and a
balanced suit distribution. This can be regarded as the overt semantic content of
the bid 2NT in this context. However, a number of indirect inferences are
available, if we assume that North is using his intelligence and is actively trying
to help his partner. Among the most obvious are the following;:

¢ North doesn't have a biddable heart suit

(then he'd probably have bid 2¥).
* North doesn't have a rebiddable spade suit

(then he'd probably have bid 24 ).
¢ (less certainly) North doesn't have diamond support

(then he might have bid 3+ ).

In each case, the fact that North refrained from saying something which could
potentially be of use indicates that he was probably unable to say it, since it was
untrue. Using a little imagination, we can construct a parallel dialogue in
English to further illustrate the point:

A: Can I offer you some coffee?
B: Do you have any Earl Grey left?
A: T'll just nip out to the shop.

Here, the explicit content of A's second utterance is presumably a statement that
he intends to go to the shop. However, it also seems reasonable to assume the
following, given a lack of contrary evidence:

¢ A has no Earl Grey left
(otherwise he would have accepted the suggestion).

* A is prepared to abandon his original plan to drink coffee
(he made no attempt to defend it).

* (less certainly) A has no alternative brand of tea available
(he might have offered it).

The sort of reasoning that occurs in the two examples is fairly similar: the big
difference from the AI modelling point of view is that the second one will
probably require orders of magnitude more domain knowledge to formalize
properly, and is essentially beyond state-of-the-art. We believe, however, that
the Bridge domain is small enough to be formalized in a reasonably complete
way. Later on in this paper, we will describe what we believe to be a realistic
strategy for building up this kind of coverage.
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1.2. Different types of "speech acts" in Bridge

The bidding phase of Contract Bridge can be regarded as a series of communica-
tion acts using an extremely simple language; the bidding system. The two
partners agree before-hand on the meaning of different bids in various
situations. (and also inform the opponents of their agreements). Is this
"language" then too simple to be of any interest to researchers in Natural
Language Processing? In this section, we will give examples showing that this
certainly is not the case, and that many commonly used speech acts [Searle 79,
Levinson 83, Lyons 77] have direct equivalents in the bidding system.

Examples of how some common speech acts can be performed in the context of
Contract Bridge bidding:

a) Asserting. "By making this bid, I assert that my hand has these properties"
(e.g. that  have a six-card Spade suit)

b) Denying. "By making this bid, I deny that my hand has these properties”
(e.g. that I am interested in playing a major-suit contract)

c) Asking and answering questions. "If your hand is of type 1, make bid 1; if
it is of type 2, make bid 2, etc." (e.g. asking how many aces partner has)

d) Interrupting. "The primary purpose of this bid is to stop the opponents
communicating” (pre-emptive bids)

e) Demanding/Ordering. "This bid forces you to do the following" (e.g.
make a specific bid on the next round, irrespective of what cards you
have)

f) Suggesting/Transferring responsibility. "This bid makes you responsible
for the following decision" (e.g. bid game/slam if you judge that it is
worthwhile)

g) Promising/Taking responsibility. "This bid promises that I can deal with
these possible problems in some way." (e.g. promising that bidder has a
stopper in a suit)

h) Lying (Perhaps not a speech act in the normal sense?).

Remember that the semantics of the bidding system is arbitrary, and is defined
for maximum utility: having all these "speech acts" isn't accidental, but follows
from the principle that they are all useful things that one will want to do. Also
note that lying - i.e. making a bid conveying incorrect information about one's
hand - is legal in Bridge, as long as one tricks one's partner as well as one's
opponents.
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Of course, a single bid can have more than one function, and thus fulfil more
than one "speech act"; concretely, lies are always lies about something, e.g. an
assertion or an answer to a question. How many speech acts a given bid fulfils
in a given situation is, of course, highly context dependent.

1.3. Why Bridge is hard: basic problems

In this section, we will summarize the basic problems that make Bridge a hard
game to play. Firstly, it is necessary at almost every stage to reason about the
other players' knowledge and beliefs: most bids are made in order to convey
information, and it is not in general possible to compare the worth of two
possible bids without at some stage reasoning about what the other players
(especially one's partner) will know as a result of each bid having been made.
Moreover, most knowledge is probabilistic in nature. Exceptionally, one may be
in possession of an exact answer to a question (for example, how many aces
partner has); but for more common attributes such as lengths of suits, it will
normally be the case that there are two or three possibilities, and that the
bidding will say something about their relative likelihood.

The points above apply equally to bidding and play: however, for bidding it is
at least possible to achieve a certain level of performance with conventional
programming methods. (We will quote some examples in the next section). For
card-play, there is the added problem of having to be able to construct complex
plans and counter-plans; human analysis of card-play situations almost
invariably begins by constructing plans for the play in each suit individually,
and then uses these as building blocks to construct a plan for the play of the
entire hand. This type of analysis is considerably more difficult to model than
the tree-searching algorithms used by, for example, most Chess programs.

In the next section, we review previous attempts to write Bridge programs. We
will also give some of the reasons why we think that these approaches are
unsatisfactory.
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1.4. Previous work

Most systems written to date can be lumped under the broad heading of naive
rule-based systems. By "naive", we mean that the rules are essentially to be viewed
as constituting a procedure, rather than a description; this is particularly
apparent in programs which encode bidding systems [Lindel6f 83; Stanier 75;
Wasserman 70]. However, the same is also true (though perhaps to a lesser
degree) in, for example, Quinlan's system for locating high cards [Quinlan 79],
and the PYTHON system [Sterling & Nygate 89], which identifies squeeze
situations.

A naive rule-based system, by our definition, attempts to provide rules to cover
every eventuality that can arise. This strategy can prove highly successful in
some types of situation; in particular, Lindel6f's COBRA appears to be a world-
class bidder when it is allowed to bid undisturbed towards a slam, and Sterling
and Nygate's PYTHON is capable of identifying any double-dummy squeeze
with a small number of cards. Encouraged by these results, it has recently been
suggested by David Levy [Levy 89] that a combination of a COBRA-like rule-
based bidding system and a brute-force card-player (probably implemented on
specialized hardware), might be enough to produce a strong mechanical Bridge-
player.

We think, however, that this is to be unduly optimistic; there seem in particular
to be at least three serious problems that will arise if a system is to be built using
this approach. Firstly, the bidding component will only have a very limited
ability to reason about its opponents' bids; human players frequently ask
questions about the meanings of bids, and use the answers to plan their own
strategy. Being able to make use of this kind of information (or even to frame the
questions needed to acquire it) without at some stage representing it abstractly
seems difficult.

To take a concrete example: suppose that your left-hand opponent opens with

14, your partner doubles, and your right-hand opponent redoubles. You know
that the last bids are conventional (i.e. they convey more information than
simply raising the stakes), but you are in doubt about the exact meaning of the
redouble. This situation is sufficiently unusual that it is unlikely to be
mentioned in the opponents' system declaration: conceivable interpretations
might include "weak hand, long Spade suit", "8-10 high-card points, at least
three Spades", "at least 10 high-card points, defensively oriented hand" or even
"biddable Heart suit, moderate high-card strength". Not knowing which of these
alternatives is the correct one will clearly be a major handicap when planning
one's own next bid, yet adding specific rules to deal with every such situation is
a daunting task.
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Secondly, successful play (especially in defence) requires that the bidding
component is able to pass on the (probabilistic) information extracted from the
bidding to the playing component. Levy's suggested architecture for the card-
player involves brute-force search for optimal plans in each of a large number of
possible distributions of the cards; but if the system is unable to guess which of
these distributions are the likely ones, there is no reason to suppose that it will
play particularly well.

Let us once again look at an simple example. Suppose, as declarer, that South is

evaluating two competing plans: one works if West possesses the # A, and the
other if the Diamond suit is distributed so that East has at least four of the six
cards out. In the absence of other information, the first plan is a 50% bet, and the
second has less than a 35% chance of succeeding. If, however, West has opened

with a non-vulnerable pre-emptive bid of 34, one would normally think it
unlikely that he had an Ace in another suit; since one expects seven of his cards
to be Spades, it also becomes much more probable that he has less than half the
Diamonds. Consequently, one would prefer the second plan. This is a relatively
simple piece of deduction if one is able to reason abstractly about the kind of

hand for which an opening bid of 34 is appropriate, but again becomes
formidably difficult if it is done in terms of specific hand-coded rules.

Finally, there is a third problem: a system using brute-force double-dummy
analysis is by its nature incapable of reasoning about other players' beliefs about
its own hand. As declarer, this means that plays based on bluff can never be
selected, even though this may be the only way to give the opponents a chance
to go wrong. For example, with just small cards on the table against a singleton
King in hand, it may pay to play a small card from the table and hope that it is
not covered with the Ace; if this is done early on, it will usually be impossible
for the right-hand opponent to work out that he has to to play his Ace. In
defence, the issue is even more clear-cut. Two different plays might be
equivalent if viewed by a double-dummy analysis, even though they in reality
will convey different pieces of information to partner.

A brute-force playing component that attempts to construct plans for an entire
hand at once is going to be highly inefficient. The search-space for a complete
double-dummy analysis that takes partner's and opponents' views of its own
hand in to account is just going to be infeasibly large. Human players seem to
reason about single suits first, then combine the plans to form a plan for the
entire hands. This is a much more efficient approach, but even if this might not
be the single feasible solution, one can at any rate deduce that brute-force
double-dummy analysis won't work.
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2. Proposed overall architecture

In this section, we will present an overview of a proposed architecture based on
the ideas outlined above. The picture is as shown in diagram 1: the two main
components are the subsystems for bidding and play.

The first key idea in the design is to maintain a clear distinction between logical
and probabilistic information. Logical information comes from the bidding and
play, and the definitions of the agreed-on bidding system. This is maintained as
a set of declarative rules. The rules defining the bidding system take as input the
observed bidding, and produce a set of constraints, which limit the possible card
distributions which can explain the known facts: these are then in turn used as
input to the probabilistic reasoning component, which, given a set of constraints
C, uses a stochastic simulation procedure to produce an arbitrarily large set of
random deals R for which C holds. (We will in the sequel refer to elements of
these sets as "R-deals"). The larger the size of R, the more accurate the picture it
gives of the system's probabilistic knowledge.

All communication between the bidding and playing components is in terms of
constraints and sets of R-deals. Initially, the card-player is presented with a set
of R-deals summarizing the information gathered during the bidding; if the
card-player wishes, it can add extra constraints gained or hypothesized during
the course of the play, and ask the stochastic simulator for a new set of R-deals
which reflect the extra information.

Bidding Play
Bidding system
(rule-based) Probabilistic Single-suit analysis
- information (brute-force)
Representative deals — about —»
(simulation) representative
deals Global analysis
Evaluation (Al planning method)
(neural net)

Diagram 1: Overview of proposed architecture
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Ideally, the link between the bidder and the card-player would be symmetrical:
thus the bidder would also be able to ask the card-player what the likelihood
would be of making a contract, given an actual deal and sets of R-deals which
reflect the state of knowledge of each player. In practice, it seems that this is in
general going to be far too expensive in terms of computational resources, and
some "quick and dirty" evaluation method is required. In our initial prototype,
we have chosen to implement this as a neural network: there are in fact two
such nets, one for no-trumps contracts, and one for suit contracts. Each net is
trained on a number of deals with known results, and is then capable of taking
an unknown deal as input, and producing a set of fourteen outputs,
representing the probabilities of making zero to thirteen tricks respectively.

Implementation of the bidding component of the prototype system is now
reasonably far advanced, and we will decribe it in more detail in section 3. In
section 4, we will sketch out the proposed design of the card-player.
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3. Architecture of the bidding component
3.1 How the bidding works: an example
We will start by giving an illustrative example, in which the bidding system has

to make a simple, but still non-trivial decision; the discussion in this sub-section
will avoid technical implementation details. Consider the situation in diagram 2:

& K97
vKJ42
¢ 10974
® 85
o AJ82 N 410543
vQ63 v 95
+ Q86 w E ¢ KJ32
*A96 S 1072
& Q6
vy A1087
¢ A5
*#KQJ43
North East South West
Pass Pass 1% Double
1v Pass ?

Diagram 2: Making a decision in the bidding

South has opened with 14, which is meant as a natural bid showing a club suit
and 13 points or more. West has doubled for take-out, indicating an opening
hand and asking partner to bid his best suit; on this, North has bid 1¥, which
should show something significantly better than a minimum response. (Since
partner will have another chance to bid, he can afford to pass with a real
minimum). East has passed, which presumably means that he has a very weak
hand with no good suit; now South has to decide on his next bid. It is clear that
he should be thinking about a contract in Hearts; without simplifying the
picture too much, we can say that his only alternatives are either a) to bid game
directly with 4%, or else b) to invite to game with 3¥ . What this means,

intuitively, is that partner should bid 4¥ if he considers that his hand is

10
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significantly better than he has indicated by his preceding bids; otherwise he
should pass.

An evaluation of the first alternative is quite straight-forward, since we expect it
to end the bidding; all that is necessary is to estimate how likely it is (on the

basis of the information given) that 4¥ will make. In practice, this will be done
by using the stochastic simulator to generate a set of R-deals, and then getting
an evaluation of each R-deal from the neural net for suit contracts; the expected
value of the contract is then computed by multiplying the probability of each
result by the score for making it, and averaging this over the set of R-deals.

The second bid is more interesting, since there are two possible continuations of
the bidding: we need to reason about what decision North will make on his next
bid. As in the first alternative above, we begin by generating a set of R-deals
from the information available to us in the present situation. For each of these R-
deals, we must decide whether North will consider his hand to be "significantly
better than he has already indicated". We will refer to a typical member of this
set of R-deals as R1, and further use N1 and S1 to refer to the North and South
hands in R1, S1 being the known South hand.

We now switch our point of view to North: we have assumed that his hand is
N1. From this, together with the bidding, we can generate a set of R-deals which
represent the possible hands North could think that South had. Once again, we
call a typical member of the set R2, and let S2 be the South hand. (Remember
that North's hand is assumed to be N1). The question now is whether N1 is a
good hand from S2's point of view: thus we create a third nested level of R-deals
(R3), this time assuming that the South hand is S2. As usual, we call a typical
North hand N3.

We now want to know, for each N1, whether the combination N1+52 is better
than the average (over all N3's and S2's) of N3+S52, when playing contracts in

Hearts. If it is, we assume that North would have bid 4% ; otherwise, we assume
he would have passed. Assuming that this bid ends the bidding, we can now
estimate the expected value of alternative b), in the same way as we did for a)
above.

In this particular case, it turns out (perhaps somewhat counter-intuitively), that

bidding 4¥ at once is probably the right choice; 4¥ will often have a good
chance of making, even if North has a hand which he would consider poor, and
on which he would consequently pass 3¥. In other words, we can calculate that
North should not be encouraged to make the decision, because he is likely to
decide wrong.

11
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In the following subsections, we will describe in more detail how the various
functionalities needed to realize the above analysis are implemented in our
prototype version of the bidding component.

3.2 The bidding system

As we have described above, the definition of the bidding system in most earlier
programs has been essentially procedural (perhaps excepting the treatment in
[Quinlan 79]); the rules take as input the bidding to date and the program's own
cards, and produce the next bid. This is insufficient for several reasons. Firstly,
we are not interested in creating a special, hand-crafted bidding system like
Lindelof's COBRA; we want to use a "natural” (non-conventional) system, where
bids are defined in terms of common-sense concepts that assume an ability to
reason and deduce®.

Even more importantly, we most often do not want to know which sequences
are possible for given cards; we rather want to know what conditions obtain on
the deal, if a given sequence is to be possible. In other words, the bidding
system should be able to take the bidding history as input, and derive
constraints on the cards each player would have had to hold to be able to make
the bids he has made.

overcall(d,Bidding,Conditions) -
single_non_pass _bid so_far(Bidding,bid(Level,Suit)),
Is_a_major(Suit),
in_between(1,2 Level),
other_major(Suit OtherMajor),
Conditions = [strength(13,maxPoints),

biddabiity(OtherMigjor, 1),
no(biddability(OtherMajor,3))].
response_to_1 in_a suit(rd,[d,bid(1,Suit)|_],Conditions) -
real_suit(Suit),
Conditions = [strength(8,10),
minLength(Suit3),
balanced].

response_to_1 in_a suit(rd,[d,bid(1,Suit)|_],Conditions) -
real_suit(Suit),
Conditions = [strength(10,maxPoints),
balanced].

Diagram 3: Examples of bidding rules

4 The program's bidding system is based on Modern Standard [Nilsland 78]. MS is currently the
most popular system in Sweden, and combines elements from the Standard American and
British ACOL systems.

12
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In diagram 3 we can see three examples of rules from the bidding system. The
first is one of the rules that defines when a take-out double is legal (there are
actually four more cases). This particular rule says that a takeout double is
possible if the only non-pass bid so far has been a bid of 1 or 2 in a major suit,
under the conditions that either our hand has a high-card strength of at least 13
points, or the other major is a biddable, but not doubly re-biddable suit.

The second and third rules handle redoubles of take-out doubles at the one-
level: the interpretation is that the redouble shows a balanced hand, with either
8 to 10 high-card points and at least three cards in the doubled suit, or more
than 10 points.

In diagram 4 we show an example of a bidding sequence, together with some of

the more important facts known by West after the bid of 3v (West has
announced at least 5 points, lack of a fit in Hearts, and a biddable Spade suit;
North has less than 12 points; East has a rebiddable Heart suit, and either 18 to
19 points with a balanced hand, or 16 to 20 points with an unbalanced one).

o Q1097
v Q874
¢ 2
® 9542
4 KJ73 N s A
v5 v AJ10962
¢+ AK963 w E ¢ QJ54
»]86 S Q3
& 8642
v K3
¢ 1087
&» AK107
North East South West
Pass 1v Pass 1
Pass 3v

"W, [str(5,maxp),no(confirmed_fit('H")),biddability('S’,1)].
'N',[str(0,12)].

'E',[str(18,19),balanced,biddability('H',2)].
'E',[str(16,20),unbalanced,biddability('H'",2)].

Diagram 4: Example of output from the bidding system

13
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3.3 Generating representative deals

We now describe briefly the stochastic simulation module; this is the component
that receives sets of constraints, and outputs sets of R-deals. The basic
mechanism is a simple version of the reversed simulated annealing algorithm, and
is summarized in the flow-chart below (diagram 5). Initially, the unknown cards
are distributed randomly between the three unseen hands. The simulator then
enters a loop; at each iteration, it first checks to see whether all constraints are
already satisfied, and if not tries to find a pair of cards which it can swap to
improve the degree of fit, continuing until the hand satisfies the constraints.

Constraints, own hand

\ 4
Randomly distribute unknown cards

Randomly exchange a
(Areall constraints satisfied@_NO —| pair of unknown cards {¢———-——

Yes Undo sw;p
Stop No —C Are the constraints satisfied worse? )- Yes

'

Deal matching the constraints

Diagram 5: The simulation algorithm

Diagram 6 continues the example from diagram 4, and shows a typical set of R-
deals produced by the simulation module: the situation is viewed from West's
viewpoint, and we can see a set of ten possible East hands (6b) generated from
the given constraints (6a)°.

5 It has been pointed out to us by Anders Ottosson that the constraints in this case are actually
nowhere near tight enough to capture the information available from the bidding. Most
importantly, they do not include two vital pieces of information: East cannot have any Spade
support (otherwise he would have shown it), and it is also unlikely that he has a strong
biddable Club suit. With these constraints added, the set of R-deals would be substantially
different.

14
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Known West hand: Constraints on the other hands:
« KJ73 North has less than 12 points
v5 East has a rebiddable heart suit, and
¢ AK963 either 18-19 points balanced
*]86 or 16-20 points unbalanced

Diagram 6a: Given constraints

Possible East hands:

& A10 & AQ o A84 o QT8 o AQ862
v AK1032 ¥ KQ9864 ¢ AKQJ107 v AKQ103 ¥KQJ83

¢ 10 ¢ - ¢ 10 ¢ - ¢ 5
&#AQ1092 &#AQ1075 #Q93 & AQT7 & A5

& Q65 Q2 & A1084 o A & Q10
vKJ942 vy AKQ42 vy A10943 vKQJ97 v AKQJ32
¢+ ] ¢ 108 ¢ 7 ¢+ Q874 ¢ 74

& AKQ5 & AK53 & AKQ & A52 & AKO9

Diagram 6b: Typical set of R-deals

There are several things to note about the above set of deals. Firstly, they
correctly reflects the intuition that unbalanced hands are much more likely than
balanced ones if the heart suit is long enough to be rebiddable, and that weaker
(16-17 points) hands are more common than stronger (18-20 points) ones. More
surprisingly, they show that the given constraints make it quite likely that East
has a singleton or void in Diamonds. This is not so easy to explain, but seems to
be a result of the requirement that East's hand should contain at least 16 points;
since West knows he has the Ace and King, a long Diamond suit in East's hand
will not contribute many points on average.
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3.4 Evaluating possible contracts

We now describe the neural networks used for evaluating contracts; there are
two of these, one for no-trump and one for suit contracts. Each net takes as input
the sets of cards from the four hands (with the supposed declarer first), and
outputs a set of 14 real numbers, representing the probabilitities that 0 to 13
tricks will be made. In the case of the net for suit contracts, the order of the suits
is re-arranged so that the trump suit is first.

Neural nets in their purest form take the raw input data, and learn to construct
appropriate outputs without doing anything more than recalculating the
weights on the connections between their nodes. However, it is in practice
considerably more efficient to perform a certain amount of pre-processing on
the input, so as to construct values representing features which humans
consider important in the domain; the system we have used as a model here is
the Backgammon-player described in [Tesauro & Sejnowski 89]. Some of the
input nodes represent these pre-computed feature points, PFPs. The PFPs are
dependent on e.g. the high-cards, distribution, controls and shape. The other
input nodes represent specific high-cards, or total suit-lengths.

P(0) P(1) P(2) ... P13

I I I I I
PFP *A *x *0 A ¢t ... %L

Diagram 7: Part of the structure of the neural net used for evaluating contracts
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Part of the structure of one net is shown in diagram 7. The net consists of one
input layer (100 nodes), two hidden layers (16 nodes each), and one output layer
(14 nodes). Each node in the hidden layers is connected to each node in the
layers above and below it (i.e. the net is fully connected). All the connections are
weighted; additionally each node contain an internal threshold value. The
output of a node is a function of the weighted sum of its inputs and internal

threshold.

The nets are trained using the standard back-propagation algorithm [Rumelhart,
Hinton & Williams 87; Lippman 87]. The weights on the connections are
initialized to small random numbers. The nets are fed with a large number of
(pre-processed) deals with known results. Actually, for each deal in the training
set, the nets are fed with deals representing all permutions of the (non-trump)
suits. The nets calculates their outputs, which are then compared with the
results on the deals. The weights on the connections between the nodes are
corrected accordingly from the output nodes backwards to the input nodes.

After a number of passes through the training set, the net has converged
towards a global optimum. If not, the experiment is restarted with new
(random) weights on the connections. When the net has converged, it is tested
with new data, that were not in the original training set. Continuing the running
example from diagram 4, diagram 8 shows the output from the neural net,
queried for contracts in Diamonds with West as declarer. The figures at the
bottom give the probabilities of making 0 to 13 tricks inclusive. As can be seen,

the net estimates (quite reasonably, in our opinion) that 44 is as good as certain,
5¢ is a fair chance, and slam is more or less out of the question.

61 97547

XX 5 xx 4 1 x3
1 xx4 x 4 4
XX4 X 1XxXx6 X 2
X3 4 X 2 XX x4

100 100 100 100 100 100 100100100100 91 78 5 O

Diagram 8: Example of neural network output

The other lines in the diagram show the input data; first the pre-computed
feature points and then each player's suit-holdings. All values are arranged so
that the ones concerning the declarer (i.e. West) come first (followed by N, E and

S), and so that the trump suit, Diamonds, is first (followed by 4, ¥ and #).
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3.5 The top-level: overall co-ordination of decision-making

At top-level, the task of the bidding component can be summed up in a few
words: it has to consider its available information, and having performed a
reasonable amount of analysis decide which of the possible bids appears to be
the best one. What "a reasonable amount of analysis" might be is, naturally,
dependent on context, but in a practical system there will at any rate be two
obvious reasons to stop thinking: either the best bid is already obvious, or a
time-limit has been exceeded. The time-limit can either be fixed, or can be
implemented more subtly, so that the system can attempt to weigh up the
expected gain in decision quality against the loss of time, while keeping to an
overall average time-limit for its bids. This idea has been researched in depth by
Russell and his colleagues, [Russell & Wefald 89], and may be incorporated into
a future version of our prototype.

Bidding history Bidding system  (rule-based)

Constraints on deals

Coordinator ¢ »{ Simulation
(Bayesian planning system |

Probability of Representative deals
making contract

Bidding plan ™ Evaluation (neura net)

Diagram 9: Architecture of the bidding component

A flexible way of attempting to achieve the desired functionality is to structure
the top-level as a "refinement loop": at any moment, it is possible to stop
thinking and read out the relative scores assigned to the possible options,
selecting the one currently given the top rating. There are a number of
"knowledge sources" (KS's), which can be used to try and improve the accuracy
of the system's evaluation of each bid's worth; the simplest ones give a rough-
and-ready estimate at low cost, while the more sophisticated ones take an
appreciable time to perform a detailed analysis. Below, we will describe three
simple KS's, which we are currently implementing.

Before weighing up the possible alternatives, the bidder must ascertain what

they are. The first step in the decision-making process is thus to call the rule-
based definition of the bidding system, to determine the bids legal in the present
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situation. It can of course be the case that only one bid is allowed: for example,
partner may have asked for aces with Blackwood, or made a transfer bid which
forces a specified response. If this is so, no further thought is necessary. In
general, however, there will be two or more bids to choose between.

In contrast to games like Chess, normal tree-searching is an extremely expensive
KS, and can rarely be used; the problem is that there are a great many
alternatives (since the other players' cards are unknown), and a probabilistic
calculation over all these possibilities will normally be infeasibly complex.
However, various kinds of cheap tree-searching are still possible, and very
useful. Often, it is quite enough simply to consider the possible final contracts
that can arise after a candidate bid, without worrying about their relative
plausibility. We can approximate this reasonably well by generating a small set
of R-deals, and running the bidding system non-deterministically on each of
them; we will refer to the possible set of final contracts that a candidate bid can
lead to as the choice set for the bid.

S South West North East
&« K10853 1e - INT -
v 94 ?
¢ A1073
& KQ
1e
/]-I\T\
P /Tv\ 24 2l\|lT 3|0 P ZI\iT
P/ZQ\ 2NT P P P P
P 2I\|IT P
P

Diagram 10: Bidding tree example
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Thus in the example shown in diagram 10 above, the choice set for the bid
"Pass" is {INT}; for 2¢ itis {2¢ ,2v,24 2NT, 3¢ }; and for 24 itis {24, 2NT}.

Using these definitions, we can describe our first three KS's, which we present in
order of increasing complexity.

Knowledge source 1: simple domination

The simple domination KS is based on the following elementary observation.
Suppose that we have two alternative bids, X and Y, and that the choice sets for
them are By and By respectively. If we can ascertain that the worst result in By is
strictly better than the best result in By, then X must be preferable to Y,
irrespective of how play develops; a further analysis of the tree is thus
unnecessary. The most obvious example of this kind of situation is that in which
the partnership has reached game, and there is clearly no reasonable chance of
making a slam; any bid other than "pass" will only result in a contract that is
harder to make.

Simple domination can be estimated by creating a set of R-deals, and evaluating
(with the help of the neural net) the worth, in each R-deal, of each contract in the
choice sets for the various bids. The criterion is thus that the contracts in one
choice set outperform all the contracts in all the other choice sets in every R-deal;
this means, naturally, that these contracts cannot occur in any other choice set.

Knowledge source 2: other players deterministic

Tree-searching is usually much more complex in Bridge than in Chess, since one
needs to take into account the beliefs the other players hold when they make
their decisions. If, however, it is possible to assume that the bidding system will
not give the other players any choices, then the problem is simplified
sufficiently that normal search methods will be applicable. Situations of this
kind can most easily occur when one is sure both that the opponents will pass,
and that partner is restricted to forced bids with conventional meaning; this is
often the case when bidding towards slam.

Suppose, then, that analysis of the bidding tree shows that the other players'
bids will be deterministic in each branch. We take the set R of R-deals used to
compute the tree, and assume that each of these is equally probable. Now we
recursively descend the bidding tree, starting from the root, and annotate each
node N with the subset of R relevant to N; that is to say, the set of R-deals in R
for which bidding could potentially reach the situation N denotes. We will call
this set R(N) Each node N in the tree that represents a choice made by another
player will thus involve a partition of R(N) into a set of mutually disjoint
subsets, one for each daughter.
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When the tree has been fully annotated, we can estimate the expected value of
each choice by a modified minimax calculation. As usual, we work backwards,
starting with the leaves. Each leaf L of the bidding tree will be labelled with a
contract C(L) and a set of R-deals R(L); its worth can thus be computed as the
average over R(L) of the worth of C(L) in each of its members.

When backing up values, there are two separate cases to consider, depending on
whether the bid is made by ourselves or by another player. In the first case, we
can assume that we have a free choice between the different alternatives, and
choose the best one; thus the situation is as in normal minimax, and the value of
the node is the maximum of the values of its daughters. In the second case, we
have assumed that choice is deterministic; the uncertainty derives from the fact
that the player's cards are unknown, rather than from his freedom to make a
choice. Thus the value of the node is not the minimum, but rather the weighted
average of the values of its daughters, where each daughter is weighted by the
number of R-deals associated with it.

Knowledge source 3: players other than partner deterministic after next bid

This KS is an elaboration of the previous one. We want to cover situations where
we transfer control to partner: the simplest case, naturally, is where we just ask
him to make a decision on the final contract. We can do this by first creating a
set of R-deals, and then for each R-deal expanding the bidding tree until we
reach partner's next bid; at this point, we switch our viewpoint to partner's
hand, and use KS 2 to evaluate the worth of the node. (By assumption, this is
possible). As usual, we can now take the average over all R-deals of the
evaluation after each bid, to pick the one that gives the highest score.

It is worth noting that KS 3 is very much more expensive to apply than KS's 1
and 2, since it involves nested generation of R-deals; to keep resource
expenditure within managable bounds, it will probably be necessary to generate
fewer R-deals at the "inner" level than at the outer one.

KS's 1, 2 and 3 are naturally only meant as a beginning; we present them
primarily to show that it is possible, using our framework, to construct tests,
usable in common bidding situations, which will be able to make sensible
evaluations of competing alternative bids.
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4. Proposed architecture of the playing component

Work on the card-play component is still at a preliminary stage, and this section
is not meant to provide more than a rough sketch of our ideas to date; a
prototype based on these notions is currently being implemented by Anders
Ottosson, and will be reported elsewhere.

The fundamental intuition we want to capture is that play (especially declarer
play) is hardly ever planned as a single process; human experts first consider
play in each individual suit on its own, and only then proceed to form a plan for
the whole hand. Although it is by no means a simple matter to write programs
which function in a similar way, recent work by Campbell and Berliner has
shown that such an approach is at least feasible for Chess pawn endings
[Berliner & Campbell 84; Campell 88] in this type of chess position, the concept
analogous to "suit" is that of a "pawn island".

We will restrict ourselves to providing an illustrative example of how we think
we might adapt the Campbell/Berliner methology to Bridge; to keep things as
simple as possible, we restrict ourselves initially to double-dummy declarer
play. We begin by noting that play in one suit can only influence play in another
in the following ways:

Entries:

Suit; can be used as an entry for Suitp, so that play in Suity can shift
discontinuously from one hand to another. (This includes losing the lead to the
opposition, intentionally or otherwise).

Discards:
Cards from Suity can be discarded on those from Suitp, if a hand is unable to
follow suit.

Ruffs:
Cards from the trump suit can be used to ruff cards from Suitj, if a hand is
unable to follow suit.

Tricks, entries, ruffs and discards can be viewed as "resources" which a single-
suit line of play can either "produce" or "consume".
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28654 v AK
N N
432 W E 4KJ9 v6542 W E vJ1093
S S
a AQ107 v Q87

Diagram 11: Example single-suit distributions for Spades and Hearts

Consider now the distribution in Spades shown in the left half of diagram 11.
There is a line of play in which South consumes two entries to dummy, while
producing four tricks, two entries to hand, two discards from West, and one
discard from East; there is also another, in which South loses the lead twice to
East and regains it each time, to produce two tricks. Without knowing the
situation in the other suits, it is obviously impossible to say which of the two
plans is the "better" one. Note also that the resources have to be produced and
consumed in a given order: for the first plan, this can be written as

<consume(entry(n)),
produce(entry(s)),
consume(entry(n)),
produce(entry(s)),
produce(discard(w)), produce(trick),
produce(discard(w)), produce(discard(e)), produce(trick))>

Now look at the Heart suit on the right: here, there is a plan that produces three
tricks, two entries to dummy, and a discard from dummy, while consuming
three entries to hand. (There are clearly other plans to produce three tricks as
well, which consume fewer entries to hand; we will ignore these). The
sequencing of resource production and consumption here will be:

<produce(entry(n)),
consume(entry(s)),
produce(entry(n)),
consume(entry(s)),
produce(discard(n)), produce(trick)>

The point we want to make with the example is that it is now possible to find a
plan which will produce seven tricks from the two suits, by just "matching up"
the two partial plans on the principle that a "produce" in one matches a
"consume" in the other; our basic claim is that finding plans in this way will
normally be much cheaper than performing a single search over play in all suits
simultaneously.
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Thus the search process, in outline, will be something like the following:

1.

Carry out a conventional search of each individual suit, and keep the "best"
lines of play. Note that "best" need not necessarily mean "taking most tricks",
since it can often be worthwhile to lose one or more tricks in order to
establish or save an entry, set up a discard, or avoid being thrown in. Play
can include consumption of "resources" in the sense defined above; one of the
problems to be solved is how to avoid analysis of lines of play in which
obviously unrealistic quantities of resources are consumed.

. Analyze the search trees constructed during phase 1, and annotate each

possible single-suit plan with its relevant properties. Among these would be
the number of tricks taken, the total production and consumption of
resources, and the sequence in which production and consumption events
occurred.

Guided by the summary information acquired during phase 2, combine suit
plans into a global plan.

5. Current state of the implementation

Implementation of the bidding component of the prototype system is reasonably
far advanced, and some basic functionality has been achieved. Most components
are encoded in Prolog, although some of the code for the simulator and the
neural nets is implemented in C. In summary:

* The semantics of most of the bidding system have been formalized.
* A general stochastic simulation system has been constructed.
e A first version of the neural network(s) exists.

The implementation of the card play component, which will also be written in
Prolog, has just started.
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6. Conclusions and future work

We have described why Bridge is hard and an interesting Al topic, and how a
"bidding system" in a natural way can be regarded as a simple language.
Previous attempts to write good Bridge playing programs have been fairly
unsuccessful, and we have claimed that this is because they have not attempted
to properly model the necessary reasoning involved. In contrast, we have
outlined an architecture specifically designed to address the vital problems in
the Bridge domain: knowledge, probabilities and plans.

The architecture that we have described bids by using a rule-based bidding
system, a stochastic simulation of deals and a neural net for contract evaluation.
We have also presented a sketch for a playing component which uses single-suit
brute force analysis and global analysis by plan combination.

As far as future work goes, the most pressing requirement at the moment is
clearly a faster implementation of the simulator, which is still more than an
order of magnitude too slow to be practically useful. Without fast generation of
R-deals, it is difficult to develop any very sophisticated knowledge sources for
the control component of the bidding system. It also appears necessary (as
pointed out in footnote 5 above) to pay more attention to representation of
"negative" information in the constraints output by the bidding system.
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