SICS/R-89/8916

Finding Out = Achieving Decidability
by
Manny Rayner and Sverker Janson

SICS research report
R89016
ISSN 0283-3638

https://core.ac.uk/display/11433564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FINDING OUT = ACHIEVING DECIDABILITY

Manny Rayner and Sverker Janson
Swedish Institute of Computer Science
Box 1263, §-164 28 KISTA, Sweden

manny@sics.se, sverker@sics.se

ABSTRACT

We present a framework for reasoning about the concepts of "knowing what" and "finding
out", in which the key concept is to identify "finding out the answer to question Q" with
"achieving a situation in which Q is decidable". We give examples of how the framework can
be used to formulate non-trivial problems involving the construction of plans to acquire and use
information, and go on to demonstrate that these problems can often be solved by systematic
application of a small set of goal-directed backward-chaining rules. In conclusion, it is
suggested that systems of this kind are potentially implementable in A-Prolog, a logic
programming language based on higher-order logic.

1. INTRODUCTION

The goal of this paper is to construct a framework which will allow us to describe problems
which involve acquisition and use of knowledge. The first, and most immediate, demand that
we will make on this formalism is that it should be well-defined, that is to say possessed of a
clear formal semantics; the second is that it should, at least in many of the cases where this
seems intuitively reasonable, be able to support efficient goal-directed reasoning about these
concepts. Before we go any further, however, we will pause a moment to give an example of
the kind of thing we want to achieve. At this stage, we will present the problem informally: later
in the paper, we will demonstrate how to describe and solve it in terms of the formalism we will
be proposing.

Problem 1: finding a squash racket

I want a squash racket. I know Keith has one, and I know that he knows where it is. I
can find out where it is if I can ask him. I can do this if I can find out where he is. 1
don't know where he is, but I know that his secretary does, at least during office hours.
I can ring his secretary and ask her if I know her number, which I do during office
hours.

Merely from the way the problem is described, it is obvious to a human that a simple solution
exists. We can reason backwards from the initial goal "find out where Keith's racket is",
producing a goal-tree like the one in diagram 1: what we are trying to do, then, is to justify this
kind of reasoning in formal terms.

The basic notions we will use have already been described by us in an earlier paper [Rayner &
Janson 88], and are closely related to Levesque's work on incomplete databases [Levesque 81,
84]. To summarize, we follow Levesque in extending first-order logic with a modal knowledge
operator K, with the intuitive significance that K(P) expresses the fact that "the agent knows P".
(Actually, we will soon see that this needs to be made relative to agents and situations; we deal
with that in the next section). The point is of course that this makes it possible for us to
distinguish between an agent's knowing something, and its merely being true.

So far Levesque: however, we wish to extend the formalism so as to be able to talk about
"knowing" as applied not just to propositions ("know the block is on the table"), but also to
questions, ("know what is on the table", "know where the block is")!. We represent questions
as follows: a yes/no question is the proposition whose truth is being questioned, and a WH-
question is a A-bound form which represents the questioned property2. We then define an
operator KW ("knows what/whether"), which can be applied to question denotations. The
intended semantics is that KW(Q) is true iff Q is a decidable question. More exactly, if Qis a
proposition representing a yes/no question, we have

I'The assumption we are making here (which is completely standard among theoretical linguists) is that a phrase
like "know what is on the table" is composed of the verb "know" and the (embedded) question "what is on the
table". We refer to the previous paper for a discussion of this idea, which may seem a little strange to readers
used to the Al literature.

2Note for readers interested in NL semantics: this approach to question denotations is essentially that of [Bennett
791, and should be contrasted with the currently more popular ideas emanating from [Karttunen 77)]. Once again,
we refer to our previous paper for a more complete discussion of this point.

2

Rule 1: definition of propositional KW

KW(Q < K(Q) v K(=Q)
and if Q is a property representing a WH-question, we have
Rule 2: definition of non-propositional KW

KW(Q) & Vy.K(Q(y)) v K(=Q(y)
(Remember that Q is of the form Ax.P(x).)

I know it
|
Find out Y's .
Y
phone number Ring Y up
Manage to talk to Y Ask him

Y = secretary
|

Find a Y who knows
what X's number is

Find out from Y what it is

Find out X's phone number Ring X up
X = Keith “Manage to talk to X Ask him

Find an X who knows

- ‘ Find out from X where it is
where Keith's racket is

Find out where Keith's squash racket is

Diagram 1. Goal tree for a "finding out” problem

These are essentially the standard definitions of decidability; we refer the reader to [Rayner &
Janson 88] for a detailed discussion of their applicability in the context of natural language and
question answering.

The idea of the current paper is to extend the framework to cover not only the static concept of
"knowing", but also the dynamic one of "finding out". We do this in the obvious way, by first
relativizing "knowing" to "knowing in a situation": then we can define "finding out” by saying
in effect that "Agent A can find out the answer to question Q" is equivalent with "Agent A can
produce a situation S, in which Q is decidable". There are of course many ways of
implementing this, depending on how we want to represent actions; in the sequel, we will
content ourselves with presenting a very simple-minded solution based on the situation
calculus.

Several other definitions of "knowing what" have been proposed in the Al literature, and in the
interests of making our claim more precise we try to summarize briefly what we regard as the
connections between the various approaches. Firstly, there is the line of investigation instigated

3

by [McCarthy 77], which treats concepts as primitive objects in the domain; this has
subsequently been examined by several other authors, most notably [Barnden 83]. In our
system, the notion of a "concept" roughly corresponds to that of an intensional interpretation of
A-bound forms and modal operators; McCarthy's denotes predicate, which links concepts to the
objects which they represent, corresponds to function application. Our opinion is that
McCarthy's formalization is less elegant than to the one we propose, since he is forced to
introduce pseudo-logical operators on "concepts” and ends up more or less reconstructing the A-
calculus anyway.

The second major approach is that advocated in [Konolige 84], which in effect defines the KW
operator by

KW(Q) < 3x.K(Q(x))

This definition sometimes turns out to be equivalent to ours, when the question Q is known to
have exactly one answer. As we see it, our approach has the advantage of covering questions
with multiple answers; for example, it seems reasonable to say "I know what is in the box" both
when I know that nothing is is the box (no answers), and when I know that it contains (say) my
wallet and passport (two answers). However, the issues involved here are sufficiently subtle
that it is really more prudent to defer a serious comparison to another occasion.

The rest of the paper is laid out as follows. In section 2, we formalize the definitions outlined
above and present the other mathematical apparatus we will require, and in section 3 we use it to
give precise formulations and backward-chaining solutions for two typical "finding out"
problems, one of them being the "squash racket" problem above. In the last section, we present
our conclusions and suggest directions for further research.

2. FINDING OUT IN TERMS OF DECIDABILITY: SOME DEFINITIONS

This section summarizes the machinery we will need to formulate the examples in the next
section; we start with the "knows-what" concept. We will write

K(Agent,Proposition,Situation)
for "Agent knows Proposition in Situation", and
KW (Agent,Question,Situation),

for "Agent can decide Question in Situation". Questions will be either propositions or A-bound
forms, as described above. Following the usual formulation of the situation calculus, we write

res(Action,Situation)

to denote "the situation that arises from an execution of Action in Situation”.

We will assume that acquisition of knowledge is monotonic (once we have learned something,
we can neither forget it, nor invalidate it by learning something new), and we will thus have
frame axioms

VSit,Act,Agent,Prop.K (Agent,Prop,res(Act,Sit)) < K(Agent,Prop,Sit)
v Sit,Act,Agent,Q. KW(Agent,Q,res(Act,Sit)) < KW (Agent,Q,Sit)

To give a simple example of the formalism, we present an axiomatization of the problem
described in the Call for Papers. We want to say that 1) we can find out where the assembly line
is by seeing it, 2) we can see it from the North side of the factory. These become

4

v Sit. KW(me,AX position(line,X),Sit) < see(me,line,Sit)

VSit.see(me,line,Sit) <= is_at(me,north_side,Sit)
If we add the assumption that we will be somewhere if we walk there,
VSit,Place.is_at(me,Place,res(go_to(Place),Sit)).

we can readily produce a backwards-chaining proof that we can in any situation find out where
the line is by walking to the north side, 1.e.

‘v’Sit.KW(me,kX.position(line,X),res(go_to(north_side),Sit))

Before going further, this seems as good a place as any to introduce the subject of KW
expressions whose second arguments are complex formulas, i.e. formulas containing
quantifiers and logical connectives; evidently, expressions of this type are going to occur in
most non-trivial problems. In line with our general approach, we do not think it reasonable to
hope to find a general solution which can be implemented in an efficient goal-directed way;
what seems much more realistic is to look for a a set of reduction rules, which will at least solve
a large class of problems intuitively felt to be easy.

To be able to express these, we must first say a few words about our interpretation of the
concept "backward-chaining rule”, which is not entirely standard. We will use three distinct
backward-chaining schemas, which we summarize briefly below:

Schema A (modus tolens)

Givena goal P& R,and arule P & Q, reduce to the goal Q & R.

Schema B (¥ -introduction)

Reduce the goal Vx.P(x) to the goal P(x*), where P(x*) is derived from P(x) by consistently
replacing the variable x with a unique constant x*.

Schema C (&-introduction)

Reduce the goal P <= Q to the goal P 1 Q, where P 1 Q is interpreted as "Prove P, with the added
assumption Q".

We will also restrict the range of problems considered by making the important assumption that
all constants and functors used are "rigid", in the sense of denoting the same individuals in each
possible world. This allows us freely to substitute terms inside modal operators; however, it
means that we are not permitted to use skolemization within the scope of a modal operator, as
this will give rise to non-rigid designators. To use a classic example, we will thus not permit the
expression

K(john,3x.spy(X)) "John believes that there is someone who is a spy."
to be rewritten using a skolem constant sk as

K(john,spy(sk)) "John believes that sk is a spy."

Several researchers have investigated automatic proof construction in modal logics which lack
this restriction (see e.g. [Geissler & Konolige 86], [Genesereth & Nilsson 87] §§9.5-9.7).
However, it is unclear to us that their methods are applicable to the type of backward-chaining
proofs that we are considering here.

~ We now present the rules themselves, and look first at formulas of the type KW (P&Q). (In the
remainder of this section, we will suppress the first and third arguments to K and KW for the
sake of brevity). The following rule gives a sufficient condition for the truth of such formulas,
which appears adequate in most practical cases:

Rule 3 (KW-conjunction reduction)
KWEP & Q) <= KW(P) & (KW(Q) «=P)

The intuitive significance of the rule is that we will know whether P&Q is true if 1) we know
whether P is true, and 2) we would know whether Q was true if P was. The proof of its
correctness follows directly from the definitions. There is a similar rule for disjunctions:

Rule 4 (KW-disjunction reduction)
KW(PVQ) <= KW(P) & (KW(Q) & —P)

The trickiest case seems to be existential quantification. Intuitively, we think that people have
three distinct ways of reasoning about statements of the form KW(@x.P(x)), and that these give
rise to three distinct reduction rules, as follows:

Rule 5a (KW-existential to universal reduction)

KW(@@x.P(x)) & Vx.KW(P(x))

Rule 5b (KW-existential reduction to example)
KW(@x.P(x)) < Ix.K(P(x))

Rule 5¢ (KW-existential reduction to lack of examples)
KW(@@x.P(x)) & Vx.K(—P(x))

The intuitive significance of the three rules should be clear. a) states that we can know whether
there is anything which is P, if we know which things are P's; b) says that it will be enough to
find one thing that is known to be P; and c) says that it also suffices to know that nothing is a P.

Finally, it is possible to expand an expression in a KW goal to an equivalent definition if the
agent knows that they are equivalent, thus

Rule 6 (KW-definition expansion)
KW(P & R) <= K(P < Q) & KW(Q & R)

3. TWO EXAMPLES

3.1 THE "SQUASH RACKET" PROBLEM REVISITED

We first use the formalism developed in the last section to present a rigorous formulation of the
"squash racket" problem. First, in any situation Keith knows where his squash racket is:

KW (keith,A X position(keiths_racket,X,Sit),Sit) ¢y

The following two axioms give a simple characterization of how one agent can acquire
knowledge from another by asking a question. Firstly, the Asker will know the answer to the
Question if he has successfully_asked the Asked:

KW (Asker,Question,Sit) ¢= 2)
successfully_asked(Asker,Asked,Question,Sit)

And the asker (X for brevity) has successfully_asked the answerer (Y) the Question, if Y
knows the answer to it, X asks, and they are talking together:

successfully_asked(X,Y,Q,res(ask(X,Y,Q),Sit)) = 3)
KW(Y,Q,Sit) &
talking_to(X,Y,Sit)

X will be talking to Y if he has successfully performed a ring_up operation. To do this, Y needs
to have a phone number, and X needs to know what it is.
talking_to(X,Y,res(ring_up(X,Y),Sit)) < 4)
3IN.phone_no(Y,N,Sit) &
KW (X AN.phone_no(Y,N,Sit),Sit)
Keith has a number during office hours, and keiths_secretary knows what itis:

KW (keiths_secretary,AN.phone_no(keith,N,Sit),Sit) < (5a)
in_office_hours(Sit)

phone_no(keith, keiths_phone(Sit), Sit) &= in_office_hours(Sit) (5b)
I know keiths_secretary's phone_no during office hours (and she has one):

KW(me,kN.phone__no(keiths_secretary,N,Sit),Sit) = (6a)
in_office_hours(Sit)

phone_no(keiths_secretary, secretarys_phone(Sit), Sit) < (6b)
in_office_hours(Sit)

We assume that office hours are between 11:00 and 16:00, that a phone-call lasts exactly 0.1
hours, and that it takes exactly 0.01 hours to ring someone up. (Obviously this could be
improved; the important point is to show that we can reason about situation-dependent
information, in this case a person's phone number).

in_office_hours(Sit) < time_of(Sit,N-oclock) & 11 <N & N <16 @)
time_of(11-oclock,11-oclock) (8)
time_of(res(ring_up(X,Y),Sit),N1-oclock) < 9

time_of(Sit,N-oclock) & N1 =N + 0.01

time_of(res(ask(X,Y,Q),Sit),N1-oclock) < (10)
time_of(Sit,N-oclock) & N1 =N + 0.1

An axiom whose importance perhaps isn't immediately obvious: we will assume that asking a
question doesn't physically affect the world. We will specifically require that it doesn't affect
the positions of objects, or people's phone numbers, and that this is known to agents:

- K(A, position(Obj,Loc,res(ask(X,Y,Q),Sit)) & an

position(Obj,Loc,Sit),
S)
K(A, phonc_no(Person,N,res(ask(X,Y,Q),Sit)) =S (12)
phone_no(Person,N,Sit),
S)

We want to produce a plan which lets us find out where the racket is, i.e. prove
3Sit. KW (me A X.position(keiths_racket,X,Sit),Sit)

We work as follows:

The first step is perhaps the trickiest one. We can't do the obvious thing, and simply ask where
the squash racket is in Sit: if we did this, we would in the preceding situation be asking the
question Q, where Q can be expressed as "Where is the racket in the situation that arises when I
ask Q?". This is self-referential, and is thus disallowed. Instead, we invoke axiom (12) and find
out where the racket was before we asked the question. Thus we reduce to:

KW(me,\X position(keiths_racket,X,Sit1),Sit)

in the process instantiating Sit to res(ask(Asker,Asked,Q),Sit1). We can now apply (2) to
reduce to

successfully_asked(me,Asked,?»X.position(keiths_racket,X,Sitl),Sit)
and then further by (3) to
KW (Asked,AX.position(keiths_racket,X,Sit1),Sit1) & talking_to(me,Asked,Sit1)

instantiating Asker to me and Q to AX.position(keiths_racket,X,Sitl). We now apply (1) to
reduce the first conjunct, instantiating Asked to keith in the process, and thus leaving

talking_to(me,keith,Sit1)
This is reduced by (4) to

phone_no(keith,N1,Sit2) & KW (me,AN.phone_no(keith,N,Sit2),Sit2)
which instantiates Sit1 to res(ring_up(me,keith),Sit2)

The first conjunct can immediately be reduced by an application of (5a), following which an
application of (12) reduces the second one to

KW (me,AN.phone_no(keith,N,Sit3),Sit2)

and instantiates Sit2 to res(ask(X1,Y1,Q1),Sit3) for some so far unspecified X1,Y1,Q1, and
we now use (2) again to make this

successfully_asked(me,Askedl AN.phone_no(keith,N,Sit3),Sit2)
and then (3) to turn it into
KW(Y 1,AN.phone_no(keith,N,Sit3),Sit3) & talking_to(me,Y1,Sit3)

Using (5), the first conjunct is reduced to

in_office_hours(Sit3)

instantiating Y1 to keiths_secretary. This has to be suspended for a while, and left as a
constraint until Sit3 is completely instantiated. The rest of the proof is more or less the same as
the last few steps, and we finally get

Sit3 =res(ring_up(me keiths_secretary),11-oclock)
and thus
Sit = res(ask(me,keith,AX.position(keiths_racket,X,Sit1)),Sit1)
Sitl = res(ring_up(me,keith),Sit2)
Sit2 = res(ask(me,keiths_secretary, AN.phone_no(keith,N,Sit3)),Sit3)

3.2 DEALING WITH COMPLEX FORMULAS

Although it may appear involved, the "squash racket" problem is actually fairly simple, since
the formulas appearing as second arguments to KW terms never contain any logical
connectives. We will now present a second example, which does not have this nice property; to
solve it, we will need some of the reduction rules given at the end of section 2 above.

Problem 2: Is it near me?

Given an address, I want to prove that I can find out whether or not it is within one
kilometer of my house. I will assume that my city map gives the co-ordinates of any
address in the rectangular box whose upper and lower sides are 8 km North of me and 4
km South of me, and whose left and right sides are 16 km West of me and 3 km East of
me.

We formalize this as follows. Firstly, I know the distance between two addresses in terms of
their co-ordinates. Distance will be defined by the usual Pythagorean formula:
K(me, distance(Al,A2,D) < (13)
3C1,C2.co_ords(A1,C1) & co_ords(A2,C2) &

pythagoras(C1,C2,D),
Sit)

I know the definition of the Pythagorean formula too:

K(me, pythagoras(C1,C2,D) < (14)
3X1,X2,Y1,Y2.C1 =(X1,Y1) & C2 =(X2,Y2) &
D =+ (X2-X1)2+(Y2-Y1)?

Sit)

I know the co-ordinates of my own address, which we for convenience take to be the origin.

K(me,(co-ords(me,C) & C =(0,0)),Sit) (15)

I can always decide whether any arithmetical formula (an equality or inequality) is correct:
KW(me, X <Y, Sit) (16a)
KW(me, X = Y+Z, Sit) (16b)

(and so on...)

I know what the co-ordinates of an address are, if I look it up on a map and they are within the
area covered by that map:

KW (me,co_ords(A,C),res(look_up(A,Map),Sit)) < on_map(C,Map) (17)
The limits of the city map are as described above:

on_map({X,Y),stockholm_map) < -16 <X <3 &-4<Y <8 (18)
Given an address A*, I want to find whether it is within 1 km of my house, i.e. prove:

3Sit. KW(me,3D.distance(me,A*,D) & 0 <D < 1,Sit)

The first step is to remove the internal existential quantifier from the formula. We convert it into
an external universal quantifier using rule 5a; this gives the (technically more general) goal

VD.KW(me,distance(me,A*,D) & 0 <D < 1,Sit)

We then remove the universal quantifier, using Schema C to replace the quantified variable D
with a unique constant D* and get

KW (me,distance(me,A*,D*) & 0 < D* < 1,5it)

Using (16) together with Rule 3, we can remove the second conjunct and treat it as an
assumption. This gives us the new (conditional) goal

KW (me,distance(me,A*,D*),Sit) |0 < D* < 1
We now use Rule 6 with (13) to expand the formula, getting

KW(me,3C1,C2.co_ords(me,C1) & co_ords(A*,C2) &
pythagoras(C1,C2,D%*),Sit)) 0 <D*<1

from which we can remove the existential quantifier to get

KW (me,co_ords(me,C1*) & co_ords(A*,C2*) &
pythagoras(C1*,C2* D*),Sit)) I0<D*<1

Rule 6 again, this time with (15), now allows us to expand the first conjunct and replace C1*
with (0,0), giving

KW (me,co_ords(A*,C2*) & pythagoras({0,0),C2*,D*),Sit) | 0 < D* <1

We use (14) to expand the second conjunct, remove the existential quantifier, and simplify to
get

KW (me, co_ords(A* (X2%,Y2*)) & D* = 4/ (X2%)2+(Y2*)2, Sit)) | 0 < D* <1

Now by (16) and Rule 3, we can move the second conjunct over to treat it as an assumption:

KW (me, co_ords(A*,(X2*,Y2%)), Sit)) | 0 < D* <1, D* = A (X2%)24(Y 2%)2
We finally apply (17). We will have for some Map, Sit1 that
KW (me,co_ords(A* (X2*,Y2*)),res(look_up(A* ,Map),Sitl))

if we can prove

10

on_map({X2*,Y2*),Map) | 0 < D* <1, D* = 4/ (X2%)2+(Y2*)2

Using (18), we can instantiate Map to stockholm_map and reduce the goal to

-16 < X2*% <3 & -4 < Y2* < 810 <D* <1, D* = 4/ (X2%)24+(Y2%)2
This is evidently true, as can be seen from diagram 2.

As far as we know, at least some of the existing mathematical manipulation systems should be
capable of performing the last few steps to complete the derivation. However, this is not the
point: the interesting thing, in our opinion, is that we have succeeded in reducing the problem to
this form using only backwards-chaining rules and natural definitions, in the process deriving
the desired conclusion that we can obtain the required information by looking up address A* on
the Stockholm map. Moreover (just as in the first example) the formal argument closely follows
the intuitive one, although it is not a simple matter to draw a goal-tree.

0< D* <1, D* = af (X2%)2+(Y2%)?

ﬁ//s’{ééﬁﬁéi‘ff{ha”é'f)””’ // /////
//
.

Diagram 2. The right-hand inequalities imply the left-hand ones

7&

-16<X2¥<3&-4<Y2%<8

4. SUMMARY AND FURTHER DIRECTIONS

To sum up: we claim that we have presented a fairly robust framework for reasoning about the
concepts of "knowing what" and "finding out what", based on the well-understood
mathematical concept of decidability. In general, construction of proofs requires a quantified
modal-logic theorem-prover; this is just as it should be, since there is no reason we can think of
to suppose that general "finding-out" problems need be easy. It would be interesting to
investigate in this context the use of a system like those described in [Geissler & Konolige 86]
or [Wallen 87], and this can also form the basis of a possible line of investigation. However,
our main claim is that many of the problems which intuitively seem simple can be solved
efficiently by backward chaining, as one would intuitively expect. This seems to give a system
which is readily applicable to practical problems in planning and natural-language
understanding.

We have intentionally been somewhat vague about how a backwards-chaining system of this
type could be implemented in practice, though it has hopefully been clear that we have had some
kind of Prolog-like system in mind. In fact, it seems that A-Prolog [Miller & Nadathur 86] gives
us nearly the functionality we need: preliminary investigations by Per Kreuger at SICS have
shown that at least some problems of the kind described here can be solved automatically in a
straightforward way, and it is intended that a detailed description of these experiments will be
the subject of a later report. There are also a number of theoretical points which need more
study: one which in particular is still very unclear to us, is how to formalize "uniqueness"
information: that is, how to exploit facts like "a person has a unique name" or "a name and a

11

telephone number together determine a person uniquely". However, even the framework in its
preseiit state is capable of supporting formulations of many interesting types of problem.

In conclusion, we think that there are good reasons to support our claim that this is a useful way
of characterizing the concept of "finding out".

REFERENCES
[Barnden 83]

[Bennett 79]

[Geissler & Konolige 86]

[Genesereth & Nilsson 87]
{Konolige 84]

[Karttunen 77}

[Levesque 81]

[Levesque 84]

[McCarthy 77]

[Miller & Nadathur 86]

[Rayner & Janson 88]

[Wallen 87]

J.A. Barnden, Intensions as Such: An Outline, Proc. 8th IJCAI (pp. 280-286),
Karlsruhe, 1983

M. Bennett, Questions in Montague Grammar, University of Indiana Lingustics
Club, 1979.

C. Geissler & K. Konolige, A Resolution Method for Quantified Modal Logic,
in J. Halpern (ed.) Theoretical Aspects of Reasoning about Knowledge, Morgan
Kaufmann, 1986

M. Genesereth & N. Nilsson Logical Foundations of Artificial Intelligence,
Morgan Kaufmann, 1987

K. Konolige, A Deduction Model of Belief and Its Logics, Ph.D. thesis, Stanford
University, 1984

L. Karttunen, Syntax and Semantics of Questions, Lingustics and Philosophy 1,
pp. 3-44, 1977.

H. Levesque, A Formal Treatment of Incomplete Knowledge Bases, Ph.D. thesis,
Dept. of Computer Science, University of Toronto, 1981

H. Levesque, The Logic of Incomplete Knowledge Bases, in M.L. Brodie, J.
Mylopoulos and J.W. Schmidt (eds.) On Conceptual Modelling, Springer, 1984

J. McCarthy, Epistemological Problems of Artificial Intelligence, Proc. 4th
IJCAI, (pp. 1038-1044), Cambridge, MA, 1977

D. Miller & G. Nadathur, Higher-Order Logic Programming, Proc. 3rd Intl.
Conf. on Logic Programming, (p. 448-462), Springer, 1986

M. Rayner & S. Janson, Epistemic Reasoning, Logic Programming, and the
Interpretation of Questions, in V. Dahi & P. Saint-Dizier (eds.) Natural
Language Understanding and Logic Programming II, North-Holland, 1988.

L. Wallen, Automated Theorem-Proving in Non-Classical Logics: Efficient
Matrix Proof Methods for Modal and Classical Logics, Ph.D. thesis, University
of Edinburgh, 1987

12

