A Sophisticated Environment for
Protocol Simulation and Testing

by
Giinter Karjoth Peter Sjodin
Steffen Weckner

SICS R86004
Research Report
ISSN 0283-3638

https://core.ac.uk/display/11433559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Sophisticated Environment for Protocol Simulation and Testing

Giinter Karjoth
Peter Sjodin
Steffen Weckner

Swedish Institute of Computer Science
P O Box 1263
S-163 13 Spanga, Sweden

ABSTRACT

This paper describes a protocol development environment supporting the
development and validation of communication protocols. In the environment, protocols
are defined in the specification language BDL, which is based on the process algebra
CCS. The behavior of a system is expressed in terms of communicating processes,
and there is a set of verification techniques available for analysis of the specification.
The BDL language and simulator are outlined in the paper. The interactive user inter-
face, implemented on a graphical workstation, is presented. Further, the paper
describes an interface between the operating system and the development environment.
It is discussed how this interface can be used for rapid prototyping.

October 20, 1987

A Sophisticated Environment for Protocol Simulation and Testing

Giinter Karjoth
Peter Sjodin
Steffen Weckner

Swedish Institute of Computer Science
P O Box 1263
S-163 13 Spanga, Sweden

1. Introduction

The importance of well-suited development environments for protocol design and analysis is
widely recognized. A good development environment should support the designer in the design and
analysis of the specification of a communication system, in the implementation of the specification, and
in its testing. Such an environment should include the following components:

- a formal specification language
- verification techniques

- implementation strategies

- testing methodologies

- intelligent user interface

The specification language is the basis for any development environment. The designer should be able
to define a system in a concise and unambiguous manner. It is important that the language supports sys-
tem descriptions at different levels of abstraction, so that the designer is encouraged to develop the
specification by stepwise refinement. Proposed specification languages range from declarative languages
(e.g. logic based languages) to operational languages (e.g. state machine languages).

Once the designer has formulated the system in the specification language, the correctness of the
specification should be verified. It has been shown that some verifications are possible to do automati-
cally, Several papers on this subject have been published (IFIP6.1)

A proper user interface assists the designer in percepting the semantics of a specification. The
constructs of the specification language should have a clear and concise graphical representation. This
representation should also be flexible, in the sense that it should be possible for the designer to define
how objects in the specification should be visualized on the screen. For example, a protocol
specification is easier to understand if Protocol Data Units and Protocol Entities can be displayed as
graphical objects.

It is important that a development environment allows for fast prototyping. This means that a
specification can be made operational, so that the behavior of the system can be studied by an prototype
implementation which is directly obtained from the specification. A prototype implementation is useful
in the validation process, since it might be necessary to test that the specification conforms to the
required behavior. This is since the designer might have formulated the properties to be verified
incorrectly, no matter how carefully the actual verification has been carried out. Further, a development
environment might be able to compute the set of possible, or allowed, sequences of actions that can be
taken by the specified system. This set of action sequences can then be used to test other implementa-
tions of the system, by a prototype implementation.

In this paper the BDL (KARS5) development environment is described, focusing on support for
rapid prototyping, tools for machine supported simulation and testing, and on the design of the user
interface. The BDL specification language, based on the process algebra CCS (MIL80) and its inter-
preter are outlined in sections 2 and 3. The fundamentals of rapid prototyping are (1) the possibility to

-2

execute a specification in real-time and (2) the possibility for communication between an executed
specification and the operating system. These concepts are explained in section 4, together with a dis-
cussion about how the designer should go about to make a formal BDL specification operational. Sec-
tion 5 describes the user interface, and discusses general problems concerning interaction between the
designer and the development environment.

2. The BDL language

BDL originates from Milner’s process algebra CCS (calculus of communicating systems). It pro-
vides mechanisms to

- represent the behavior by algebraic expressions,
- calculate the combined behavior of communicating processes,
- determine whether two behaviors are within the same equivalence class.

2.1. The process communication model in BDL

A system is specified in BDL as a set of communicating processes. A process can be observed
only by its interactions. The interactions are communication events at gates, and each gate is identified
by its unique name. Communication is synchronous, i.e. simultaneous cooperation of all processes
connected to that gate is required. An interaction may involve a value transfer between the communi-
cating processes.

Only one interaction can take place at a time. Processes can be combined in parallel, thus allow-
ing the processes to communicate with each other. This concurrency is represented by an arbitrary
interleaving of the communication interactions offered by the processes being run in parallel. The
accessibility of gates may be restricted by hiding them for the outside world. Internal communication
over a hidden gate may still be possible but is not observable. Internal steps are represented by the
silent event tau.

A process P becomes a new process by making a transition p. The execution of a process is thus
of the form

Py =Wi— Piyg =l —> Py - -

where W; ;4 -+ denote either interactions or internal actions, and P; , Py -+ denote
processes.

2.2. Data types

Data expressions in BDL are used for (1) specifying the values to be transferred in interactions
between processes (2) binding values to the formal parameters in a process definition (3) in conditional
expressions (see below). BDL is a strongly typed language, which means that each data expression
must have a value of a well-defined type. Each data type has a corresponding domain, which defines
the possible values of that type.

For example, the data type boolean (which in fact is the only predefined data type in BDL) has
the data domain {rue, false).
2.3. Language operators

Formally, a system is described by means of behavior expressions. Expressions in the language
represents processes. The semantics of a process is its behavior determined by the calculus. See the
appendix for a full semantic definition.

2.3.1. Expressions, variables, types and declarations

Data expressions in BDL are specified in a functional language. (Since the BDL interpreter is

implemented in LISP, this functional language is actually composed of all non-destructive LISP func-
tions.)

-3

Each data domain has to be declared by defining the name of the type that represents that data
domain;

(bdl-type name testf)

This statement declares the data type "name", and the corresponding data domain is defined by the
boolean data expression "testf", which should be a predicate that has the value "true” if and only if it is
applied to a value of the type "name".

2.3.2. Actions

Let Ty,...,T, be user defined types, ey, ... ,e, be data expressions, x, . .. ,x, be variables,
and alpha be a gate name. Then there are three kinds of actions:

(write alphae; Ty --- e, T,) output over gate alpha
(read alpha x; Ty - - - x, T input over gate alpha
(tau) internal action

If a process executes an input action the variables will be bound to the values received over the gate.

2.3.3. Behavior expressions

Let A be an action, B a behavior expression, C be a conditional expression (a data expression of
type "boolean"), S a relabeling of gate names, and P be a process identifier. A relabeling S is given
explicitly in the form

(albl Tt dy bn)

such that each occurrence of g; is replaced by b;. A behavior expression may then be of any of the
following forms:

(stop) no further action

(seq A B) first do A and then behave like B

(choice B1 B2) behave like B1 or B2

(par B1 B2) behave like B1 and B2 in parallel

(hide L B) behave like B, but without external communication over the gates in L
(replace S B) rename B according to S

(if C B1 B2) if C has the value "true" then behave like B1, else behave like B2
(Pey -+ e,) behave like the body of the definition of P, where the values of the

expression are bound to the corresponding formal parameters of the
behavior definition of P.

A behavior definition is of the form
(beh-id P x; Ty, -+ x, T,) B)

where B represents the body, or the behavior, of P, and x; T; declares the i:th formal parameter of the
definition.

It is required that behavior expressions are guarded, i.e. each occurrence of a behavior identifier is
preceded by an action.
2.34. Example

The following example shows a specification of a timer in BDL:
(bdl-type Integer 'fixp)
This declares a data type called Integer. The LISP function fixp returns the value true if (and only if) it

is called with a parameter that is a (LISP) integer, and can thus be used for defining the Integer data
domain.

(beh-id Clock NIL
(seq (write tick) (Clock)))

Clock is a recursively defined parameterless process. It repeatedly outputs a dataless synchronization
signal at the gate "tick".

(beh-id Timer NIL
(choice (seq (read tick) (Timer))
(seq (read start x Integer) (T x))))

The process Timer either interacts over the gate "tick" or the gate "start". If it receives a timeout value
at the gate "start”, it will behave like process (T x).

(beh-id T (x Integer)
(choice (if (GREATERP x 0)
(choice (seq (read stop) (Timer))
(seq (read tick) (T (SUBI x)))))
(if (ZEROP x)
(seq (write alarm) (Timer)))))

T will periodically receive a tick signal causing it to decrease the time value. If a stop signal arrives in
time, eventually the timer expires and signals that situation by a communication offer via the gate
"alarm”.

We compose Clock and Timer in parallel to let them interact with each other. They make match-
ing offers on the gate "tick” and therefore will communicate eventually. Notice that, in conirast to
CCS, this communication is still visible to the outside world. This means that another Timer process
could be connected to the gate "tick" and will receive the tick signals synchronously with the first pro-
cess.

3. The BDL Interpreter

The interpreter can be considered as a state generator function, which in each evaluation step
computes the set of possible actions for the current state. One of them is chosen to be performed next,
and this action determines the next state.

The interpreter can be instructed to record all information necessary to create a finite state model
of the course of exploration, This finite state model consists of the reachability graph and a property list
for each state. The model description can be used later in the extended model checker
(CES83,QUSI82) to verify various properties formulated in temporal logic.

3.1. Next action selection

There are several ways to chose the action to be executed next. In principle, the interpreter can
be used in three modes of operation where the the next action is chosen either:

1. by the user
2. by the interpreter itself
3. by reading a log file

Mode 1: Design validation

In this mode the user has full control of the simulation, by selecting the next action from a list of
all possible actions presented to the user.

It is possible to switch the simulation back to an earlier state with at least one unexplored action.
In this way, all states of a terminating behavior can be visited, going depth-first,

The "old state” recognition facility can be enabled to obtain the state graph of an specification
containing loops.

Mode 2: Test Sequence Generation

The task of choice resolution can be assigned gradually to the interpreter. If there is only one
possible action the interpreter may take it immediately. Moreover, the user can designate events, to
allow them to be automatically chosen by the interpreter. Correspondingly, some events can be
excluded from execution. The interpreter can also be instrucied to resolve nondeterminism completely
by itself, for a given number of steps.

All these facilities together allow for the building of the complete execution tree of finite program
descriptions. Hence, the interpreter can be used as an automatic test sequence generator.

Mode 3: Trace analysis

The interpreter may also be used as an (off line) analyzer for traces of a protocol implementation
under test (IUT). Connected to the trace file, the interpreter proceeds simulation as long as the current
action read from the log file does not cause a deadlock situation, i.e. is a member of the acceptance set
of the current state.

It may however be the case that the specification allows some internal actions to occur before the
next action actually observed during the execution of the TUT takes place. Therefore the interpreter will
explore all branches leading to stable states, i.e. states where no internal action is possible. If there is a
state where the current logged action is enabled, the interpreter continues trace checking,

4. The Test Environment Interface

With some extensions to the execution model, the interpreter can be used for real time execution
of the specified system. This has mainly two advantages:

- The implementor does not have to rewrite the system in another programming langnage. Rewrit-
ing a system is time consuming and error-prone. It is also difficult to ensure that a rewritten Sys-
tem conforms to the original specification.

- The BDL interpreter has powerful debugging tools. The support for trace recording, and to exe-
cute according to a recorded trace, makes the system useful for real time testing of protocol appli-
cations.

The main strategy for executing specifications is to extend interactions to involve value transfers
to and from the operating system. Processes in the specified system can then exchange information with
the world outside the interpreter. From the specification point of view, these information exchanges take
place at gates (just as information exchanges between processes during simulation).

4.1. Driver gates and driver processes

The concept of gates in BDL is extended in order to accomplish real time execution of a
specification: A gate can have a driver property, which allows the gate to be used for communication
with entities outside the interpreter (For readability, gates with driver properties are referred to as driver
gates). The processes inside the interpreter domain, implemented by BDL statements interpreted by the
BDL interpreter, are called BDL processes. The entities outside the interpreter domain are referred to

as driver processes, and can be implemented in practically any manner (even by another instance of the
BDL interpreter!).

In other words, driver gates can be regarded as interfaces between BDL processes and driver
processes. Driver gates can, for example, be interfaces to management functions (e.g. real time timers),
device drivers (Ethernet interfaces) and other programs. An example of a possible configuration, where
driver gates are used for communication with an application program and the file system is depicted in
fig. 4.1 (The application program and the file system represents driver processes in this picture),

Application Program

Event offer

BDL process

Gate

—
O
.

Driver Gate

File system

Figure 4.1: Communication between BDL processes and driver processes

Figure 4.2 shows how driver gates can be used to obtain a prototype implementation of a protocol layer
from a BDL specification.

N+1

protocol layer

(N+1)-layer

Timer
N-layer <4 1
‘ — ate »()
N-1
protocol layer

Figure 4.2: Protocol prototype implementation in BDL, using three driver gates

(N-1) layer

In this example, the N-protocol-layer is implemented by a BDL interpreter executing a BDL
specification of the N-layer. The N-protocol-layer-entity communicates with the surrounding layers

through the (N+1) and (N-1) driver gates. The timer gate interfaces the N-protocol-layer-entity and real
time timers.

In the current version of BDL, driver gates are used for communication with the TCP/IP network
and with a real-time timer.

4.2. The use of driver gates in a specification

All gates are treated in the same way in a system specification, irrespective of their driver proper-
ties. An exchange of data at a driver gate is specified in exactly the same way as a data exchange at an
ordinary gate. Hence, there is no way for a BDL process to determine if it is interacting with a driver
process, a BDL process, or a mix of both.

The interface to the driver gate must be designed according to the interaction scheme in BDL.
That is, the data that is exchanged at the driver gate has to be structured as a vector of values of certain

types.

All interactions are controlled by the interpreter. The interpreter chooses the next action to occur
and performs the interaction. However, the BDL interpreter implements only one party when a BDL
process and a driver process are interacting., This means that the interpreter can not decide on its own
whether it is possible to interact at a driver gates, since the stimuli at driver gates are generated from a
source whose behavior is unknown to the interpreter. A situation may occur (not unlikely) where the
set of actions, from which the next event is selected, do not contain all actions that are possible accord-
ing to the specified behavior of the system. This happens when the specified behavior of a driver pro-
cess allows it to interact, but the driver process has not at that particular moment reached the state
where it performs the interaction. This is not a major problem; a driver process that is able to interact
will sooner or later reach the point where it actually offers to do the interaction.

4.3, From simulation to real time execution

The interpreter can not make any conclusions about the behavior of a driver process, since the
behavior of a driver process is beyond the scope of the BDL interpreter. A driver process, that seems
to always offer interaction at a certain state, might behave as

(seq (write a x X) (P))
as well as

(choice (seq (write a x X) (P))
(seq (tau) (stop)))

However, the interpreter can be used to simplify the conversion of a specification into a real-time
implementation. A strategy that should be applicable for most situations is described below:

First, the behavior of the complete system, including all driver processes, is specified in BDL.
The BDL interpreter is run to ensure that the behavior of the system is correct. When the specification
is found to be correct, an event trace is recorded.

The real-time implementation can then be derived from the simulated system. The behavior
descriptions of the driver processes are removed, one by one, and replaced by the corresponding driver
processes. The resulting system should accept the recorded event trace as a legal sequence of events. If
it does not accept the trace, one or more of the driver processes do not behave according to the
specification. However, an accepted trace does not guarantee that the system is correct. The trace should
be carefully selected to explore significant parts of the execution tree, but will still only give an indica-
tion of whether the system behaves correctly or not.

With this strategy, the process to convert a specification of a system to a real time implementa-
tion is significantly simplified. The major parts of the system are kept intact, and only a few carefully
selected parts have to be rewritten.

4.4. Handling of driver gates in the interpreter

The interpreter uses the same algorithm for calculating the set of possible actions as described in
section 3. In the normal case, when no driver gates are involved, the interpreter determines if two (or

more) processes are offering matching actions at the same gate. If that is the case, an interaction at that
gate is considered a possible action.

-8-

Interaction at driver gates require some special treatment. The interpreter must have some way to
determine if the driver process has offered an action, since the interpreter only represents a BDL pro-
cess at a driver gate. When the interpreter has determined that one BDL process can interact at a driver
gate, a gate-specific predicate function is called. The value returned by the function indicates whether
the driver process is ready to interact at that gate. If the interpreter is running in interactive mode, the
user can force the interpreter to wait for interaction at a driver gate without first checking if the driver
process really is willing to interact.

4.5. Implementation of driver gates

The interface to a driver gate is composed of a set of gate-specific functions, provided by the
designer. These functions are called by the interpreter in different phases of the execution:

- A polling function is called when the interpreter is computing the set of possible actions. This
function inquires whether the driver process is offering an action at the driver gate. Of course, it
is impossible to interact at a driver gate unless a BDL process is offering interaction at that gate.
So the polling function is called only when a BDL process has offered to interact at the driver
gate.

- An exchange function is used to carry out the actual transmission of data between the driver pro-
cess and the BDL process. This function wansfers a data value and a data type over the driver
gate.

- An initiation function is called when the interpreter is started. This function carries out whatever
has to be done to create and initiate that particular gate.

By default, a gate is not a driver gate. Each driver gate has to be explicitly declared to the inter-
preter as being a driver gate. This is the only visible difference between driver gates and non-driver
gates in a BDL specification.

5. An Advanced BDL User Interface.

Since traces of BDL programs tend to be very large (if at all finite), a graphics interface has
been developed to simplify comprehension and analysis. An interactive tool has been used (BNWS86) to
import BDL simulation into a interactive graphics system. This is done in a distributed manner: BDL
runs on a UNIX machine while all user interaction takes place in a INTERLISP-D environment on a
working station as shown in figure 5.1.

Interactive Workstation Unix Host

Bdl

&

4

DDDDDD[
S ——

In house network

Figure 5.1. The configuration of the BDL interfacing system. The graphics system of the XEROX is
used to enhance the BDL interpreters interactive behavior. The communication between the user and the
interpreter is realized via the local Ethemet network.

This approach is appealing since it divides the computational work and makes benefit of the
different capabilities of the two systems. The workstation provides for a more understandable presenta-
tion of a simulation. This enhanced user interface also adds functionality to the system.

5.1. Implementation Strategy.

There are two main objectives of an user interface: (1) guide the user through the control states of
the program (2) keep the user informed of any results produced by the program. Hence, the user inter-
face describes both what is going on during the simulation, and what commands are available at each
moment. The enhanced interface offers an increased level of service in that some interaction is
automated.

The graphics system is used to produce a concise display of the current state of the simulation,
The interface program continuously collects information from the simulator, and the user may at any
time interact with the display to obtain this information. The available commands are presented in such
a way that intermediate commands does not interfere with parts of the display that are more stable. This
is an advantage compared to conventional character oriented systems, where new output scrolls previous
information off the screen. At all points in a simulation the user can use the help facilities, even in the
middle of a command to the BDL interpreter. This is natural in a graphics system as it interacts con-
currently.

The semantics of a simulation is a trace tree which naturally displays graphicly. The tree is stored
in the interface program, and continuously displayed and updated on the screen. This is the most
appealing advantage in porting the user interface to a graphics system.

To ensure that a user is not flooded, the interface abstracts away superfluous information by
organizing the information in levels. The user can examine the displayed items interactively and
thereby stepping down through the abstraction levels.

5.2. The distribution.

The communication between the interpreter and the user interface is layered as shown in figure

5.2.
Worktation Unix host
interface program
OSI Layers
protocols
Commands | €>| gpL 7. Application
Formats < 6. Presentation
RCMD &«>| RCMD 5. Session
TCP &> TCP 4. Transport

Figure 5.2. Architecture of the remote BDL interface. Interaction is redirected from TTY to the worksta-
tion via the RCMD channel to the workstation. Interpretation of application data is regarded as the

responsibility of a presentation entity. There is no presentation peer on the UNIX side because the BDL
program is viewed from a black box perspective.

The channel is realized by the UNIX "session" protocol RCMD, using a TCP/IP-channel, and an
implementation of a corresponding client on the INTERLISP side. The presentation layer contains the

-10 -

interpretations of BDL commands and information output.

As the presentation entity interprets the output from the interpreter, BDL objects (such as
processes, states, behavior and events) are recognized by the interface. These objects are used to build
the structures necessary to analyze the history of a simulation. These structures can be saved in memory
to be used for automated analysis and for generation of test sequences afier the simulation.

5.3. Program Control

The BDL commands, in contrast to the output information, go bidirectionally. The presentation
entity identifies program transitions and displays the set of commands that are valid at a given state of
the simulation.

All interactions between the user and the interface program are regarded as synchronous. At each
point in run time, either the user or the interpreter may introduce interaction primitives. This means,
that the interpreter is either computing or waiting for a user interaction following a program prompt.
With this view, the interaction between the interpreter and the user can be modeled as a state machine
with a main state for each prompt and transitions for all available commands. The interface program is
implemented by a state machine depicted in figure 5.3.

<

(rest. cmd)
{bdl + par)

(exi

(bdl)
Break cmd)
In (exit)

md

/] !

(id)

{(p}
Running
ndice

Figure 5.3. State diagram showing the user interface view of the behavior of a BDL simulation. All
states except the state Running are waiting states where BDL waits for user input. All transitions from
state Running are initiated by BDL output and all 1o the Running state initiate from user interaction. This
state diagram catches all possible interaction transitions although it does not specify the behavior of BDL
as it includes impossible sequences of interactions. The unlabeled transitions are, local to the worksta-
tion, used to dismiss and resume simulation for local analyze of the current simulation history. Some
details of this diagram are explained below but the importance of this picture is to show the bushiness of
interaction. It is nommally the user manual’s responsibility to guide the user through the interaction state
space. One intention of the user interface is to simplify the users understandmg of what happens, i.e.
which state in the state diagram is current.

The state Idle is the initial state. The top level command can be issued to start the program. If
sufficient parameters for starting a simulation are issued a simulation starts, if not, the Cmd state is
entered where the user issues commands altering parameters of the simulation strategies. After a
specification is loaded, the Running state is entered. This means that a simulation is in progress and that
the interpreter is either producing information or computing new state spaces. The simulation continues

211 -

until the interpreter needs user interaction in order to continue, and then prompts for a Value, a
behavior identifier (B-I), the next Event, or prompts the user to Solve a non-deterministic choice
between internal state transitions. The ordering of these prompts is part of the BDL simulation algo-
rithm, and the user interface is triggered by primitives and does not reimplement the BDL state genera-
tor. Each prompt identifies an unique state transition. The user may choose to answer the prompt or to
dismiss (Diss) the simulation for the time being, inspecting the simulation tree or return to the Interlisp
environment.

5.4. The prototype implementation

The goal of the user interface is not to lead the user through the state diagram of figure 5.3,
although a session is a traversal of the diagram. The obligation of the user interface is more one of
explaining what is possible to do at each moment, and of describing the context of the current state.
Two command menus are used to give this information. From the first, "BDL Head", the program can
be started and parameters can be set to start the simulation and to initiate the RCMD channel.

Trace Statistics
Start QFF o
BDL Modet Remember
ON old states

Host |} .SICSTEN
, :/u/peter/bin/rhdl

File to load ~peter/bdl/test/abp.b

Figure 5.4. The main menu of the BDL interface. A menu with one command button and seven buttons
displaying values. The values of the buttons on the low half of the menu are parameters used for the
RCMD channel. The values in the top right quadrant correspond to the parameters in the top level com-
mand "bdl" in the UNIX environment. The interface takes care to passivate buttons that are not relevant
in the current program state.

The menu in figure 5.4 consists of one command button, "Start BDL". Selecting this buttons
issues the command which starts the simulation. The other buttons in the menu are all parameters for
the start command. There are four two-state value buttons and three string value button. The two-state
buttons are used to switch flags, on and off, and are read by the start command. By selecting these but-
tons the flag is switched which also is displayed by the face of the button. If a string button is selected,
a special buffer prompts for the new string which is displayed and used as a parameter by the start
command.

The second menu called "BDL Continue” is used to drive the simulation session. This menu
describes the same state space as in 5.4 but from a different perspective. The menu describes what can
be done in the simulation instead of describing the current program state. The menu is divided into two
different parts. The top half of the menu displays the current state of the behavior specification and the
status of the interpreter. The lower half of the menu displays the different sets of available input com-
mands. If a command set is available, the button is not shaded and a selection of this button will
display a new menu from which a specific command can be chosen.

The "Status" buiton of the menu indicates that the interpreter is waiting for a stimuli. The com-
mand "continue" is used to resume a dismissed simulation. When pressing the "Continue" button, a
new menu will pop up displaying the set of available events from the current state. The user can choose
to press "BDL Cmd" to enter a command mode where parameters directing the BDL simulation can be

-12 -

on Backup in the figure above

If the "Browser" is on,
Figure 3

altered. As the command butt
at a certain time are shaded.
out by a tree display of the simulation trace.

a simulation run.

the us

shows, the commands that aré

er can follow how the

6 shows the entire screen of

Stated

simulation menu displays state
the states of the program,

ulation. This menu refers to the 1
s five command buttons. Butt
ossible to backup to a pri

Figure 5.5. The
concerned with
specification under sirn
The menu also contain
shaded. In this example it is not p

,—‘\B___Prolocnl

Sender Receiver

Sender Receiver Mediun
f“ .‘«. o N .
Senderd Tiwer

Thuer Linel Loied

Await

a1 Tawerl

Thuer

5]
| OFF ON

Model Remcmberl
OFF old states

Sendert

i[Start l\

BDL —
{woL) STATUS | Stimuli

and status.
instead hefshe is interest

ons that are passivatel

~

Medium

CURR.ENTSTATE| State9

The user runnin
inth state encou

evious state.

Line2

Host| s1CSTEN

@L‘T_‘i—-;‘?-li +fu/peter/bin/thdl

@ﬂ Exit Bal
o=
\ Bdl Crod |

not available
simulation is carried
a workstation during

g this interface is not really

ed in states of the behavior
ntered during this simulation.
d (i.e. illegal commands) are

Fife to load | <~peter/bdl/test/abp.b

Figure 3.6. An overview of a BDL session,
the two menus are displaye

Down to the left
of the current simulation trace. On top of the menus,

different states are displaye

simulating the behavior o
d. The tall browser on

tree representations of the p

4. The three symbols to the far rigl

f the alternating bit protocol.
the right side is a tree representation
rocess structure of two

ht are shrunk browsers.

-13 -

At each prompt from the interpreter, a menu will be displayed. The user can issue the requested
value or dismiss the prompt menu. If dismissed, "BDL Continue" will show the current state of the
simulation. In the snap situation of figure 5.7 the user has been prompted for an event from state 9 (i.e.
the status value is Stimuli, current state is 9). All simulation commands are active and available. The
user can now investigate information collected during the simulation. All the different nodes in the
browsers are interactive (mouse sensitive and prompts with menus of the commands that can be applied

to them) so the user just buttons the states, events and processes he/she is interested in and will then be
presented with the chosen information.

The browsers of figure 5.7 are structured displays representing the information collected during
the current session. The root of this information tree is the top symbol of the simulation trace browser,
to the right in the figure. Each state encountered during the simulation is displayed by its number and

the actions are displayed by their labels. Internal events are displayed by 7, and external events by the
name of the gate.

More information of states and events can be investigated by selecting any symbol representing
the object in the browsers, for example names of synchronizing processes, eventual value transfers,
behavior expressions and so on.

Figure 5.7 displays a view into a small partition of a simulation trace browser during a simulation
of the alternating bit protocol. In the figure, state 4 is selected causing the command menu, covering the
state, to be displayed. The menu displays the different functions that can be applied to the state. Chos-
ing Inspect means that all the collected data of this state is shown. By the Edit item the user can alter
the definition of the state, each slot of the object is displayed in a type sensitive editor. By using the

Inspect or Edit command, the user can investigate and analyze the collected information in a recursive
manner.

hapeot
£tit

Receiver Linell

selnDE)
BehaviorSubProcesses

E 4
O R
EY / ..
P4 BN
s N,
rd 4 '\\
Ve I N\ g
T

rc;'hl Arvait Thnerl Receiver Limell Line2

Figure 5.7. A snap shot of four views during a simulation session. A trace of a simulation is shown to
the left. The menu which partly covers the trace browser displays the different interactive commands
available from a state symbol. To the right, two browsers display the composing subprocesses of state

four and six of this session. All symbols are active and will display further information when chosen in
an interactive fashion.

The command ShowBehaviorSubProcesses is also used to analyze the simulation trace, by

displaying a tree of process instances. The investigation can be carried further by selecting a subprocess
in the tree, as all symbols in the tree browser are interactive.

6. Conclusion

The prototype implementation has demonstrated some of the advantages of a sophisticated proto-
col development environment, and the use of the advanced interface has strengthened our opinion that
graphics is an essential part of the environment. There are, however, several ways in which a

- 14 -

simulation can be pictured on a screen. In this prototype, we describe a simulation by a tree representa-
tion of the traces. There are many other alternatives, e.g. a picture with interconnected boxes, and
perhaps tokens jumping around, would, at least for some users, be a more conceptual picture of com-
municating systems.

The advanced graphical interface has been implemented without modifications of the original
BDL interpreter. This demonstrates that it is possible to add an advanced interface to programs with
conventional character-oriented interfaces.

The work done on the user interface in this project concentrates on the interaction with thee inter-
preter. A fully grown development environment should supply a graphical representation of a
specification as well, but that requires a graphical syntax for the BDL language to be developed.

The concept of driver gates makes it possible to construct prototype implementations out of for-
mal protocol specifications in a convenient manner, where only the parts of the specification that are
directly related to communication with the operating system need to be changed. However, the perfor-
mance of the current BDL system makes it impossible to test "real" protocol implementations, since
BDL can not fast enough respond to stimuli from the environment.

-15 -

Appendix A. The semantics of BDL behaviour expressions

We assume an infinite set of symbols, called names, and be distinguished as variables and opera-
tors. We use the convention that E {f y,...f,/%1,...x, } denotes the result of substituting expressions f;
for variables x; simultaneously in expression E. Variables xeX occur free in E, and the sort of the
replacing expression is the same as the sort of the variable. The function L: B — 25 gives the set of
Iabels of the behaviour expression B.

Let g be a label, and v be a vector of data values. An experiment or stimulus p=g¥ may cause a
process to progress. This fact is defined by the relation R, indexed by Act = (Labx¥) U {*S}, over P;

Rpuli=p

means that p may react upon stimulus p and becomes p’ in doing so. We axiomatize the various rela-
tions over each syntactic category and define thereby a family of simulation rules.

Sequencing

R(seq(write g d; ty ... d, 1,) B), gV 1=B where (eval d;)is viet
R(seq(read g %1ty ... X, t) B), gv]=B{v/x;) if v;ey;

R [(seq(tau) B), *S1=B

Summation
R [(choice By ..By), u]l =B;" iff there is a B; = (a; B;”) and R [B; ,u]=B;’

Parallel composition

(par By By) iff R[By =B &g¢L (By)
R[(par By ..By)ul =4 (par B; By) iff R[B,ul=B,&g¢L(B;)
(par By’ By) iff R[B,u]=B,'&R [B,u}=B,&ge (L B;NL (B,))

Restriction

R[(hide A B), u] = (hide A B’) if g¢ A & R[B,u]=B’
R[(hide A B), *S] = (hide A B*) if ge A & R[B,u]=B’
Relabeling

R[(replace (a b) B), u] = R[B {a/b}, u]

Conditional choice

R[Gf d B),ul=RI[B,] iff not (eval d) equal nil

Behaviour definition
RIb dy-+ dy), W1 =R[Bp{dy,dylxy, ... %), 1]

where B,, is the behaviour expression bound to &,

In contrast to the binary communication found in CCS, the parallel composition operator defined here
allows more than two processes to synchronize on the same label.

- 16 -

References

BNW86.
B. Backlund, M. Nordstrom, and S. Weckner, ‘‘Dialogie (overview) - An interactive tool for
creating graphic Man/Machine interfaces,”” T87005, Swedish Institute of Computer Science,
Stockholm, Oct. 1986.

CESS3.
EM. Clarke, E.A. Emerson, and A.P. Sisila, ‘“‘Automatic Verification of Finite State Concurrent
Systems Using Temporal Logic Specifications: A Pratical Approach,”” in 10th Annual ACM Sym-
posium on Principles of Programming Languages, Austin, Tx, Jan. 24-26, 1983,

IFIP6.1. '

IFIP WG 6.1, International Conference on Protocol Specification, Testing and Verification,
North-Holland, 1981-1987.

KARSS.
G. Karjoth, “‘An Interactive System for the Analysis of Communicating Processes,”” in 5th IFIP
Workshop on Protocol Specification, Testing, and Verification, ed. M. Diaz, pp. 91-100, Moissac,
France, June 10-13, 1985,

MIL80.
R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92
Springer-Verlag, 1980.

QUSI82.
J.P. Queille and J. Sifakis, ‘‘Specification and Verification of Concurrent Systems in CESAR,”’ in
International Symposium on Programming, Springer Verlag, LNiCS #137, 1982.

>

