
Fast Freenet: Improving Freenet Performance by
Preferential Partition Routing and

File Mesh Propagation

Hans-Emil Skogh, Jonas Haeggström, Ali Ghodsi and Rassul Ayani
KTH/Royal Institute of Technology

School of ICT
Email: {hansemil, jonasha, aligh}@kth.se

Abstract

The Freenet Peer-to-Peer network is doing a good job
in providing anonymity to the users. But the performance
of the network in terms of download speed and request hit
ratio is not that good.

We propose two modifications to Freenet in order to im-
prove the download speed and request hit ratio for all par-
ticipants. To improve download speed we propose Preferen-
tial Partition Routing, where nodes are grouped according
to bandwidth and slow nodes are discriminated when rout-
ing. For improvements in request hit ratio we propose File
Mesh propagation where each node sends fuzzy information
about what documents it posesses to its neigbors.

To verify our proposals we simulate the Freenet network
and the bandwidth restrictions present between nodes as
well as using observed distributions for user actions to show
how it affects the network.

Our results show an improvement of the request hit ratio
by over 30 times and an increase of the average download
speed with six times, compared to regular Freenet routing.

1 Introduction

Freenet is a fully decentralized anonymous P2P (Peer-
to-Peer)-network which provides freedom of speech. Even
though Freenet manages to provide anonymity for all its
users, it suffers from a poor ability to locate requested files
(low request to hit ratio) and low download speed for found
files.

Much research has been done on structured P2P-
systems, such a Chord, Pastry, Kademlia, which provide
high guarantees in terms of lookup length, data avail-
ability, and low maintenance cost. We believe, however,
that unstructured P2P-networks are desirable in terms of
anonymity, as the inherent randomness leads to less infor-

mation leakage. Therefore, we believe unstructured P2P-
networks to be viable when building large scale anonymous
systems, given that it can provide adequate service and per-
formance.

Freenet, nonetheless, suffers from grave performance
problems, impairing its anonymity advantages. In this pa-
per, our main motivation is to improve the performance of
Freenet. Specifically download speed and request to hit ra-
tio will be improved, as they are two important factors in
a P2P-network from a user perspective. We substantially
improve on both factors.

The Freenet network is simulated with network band-
width restrictions and we observe the effects of the amend-
ments proposed.

We will not discuss the affects of churn as this would
add considerable complexity and make the results difficult
to compare with other work done in the area. We will also
not focus on the anonymity aspects of these changes. Even
though we believe the methods are coherent with Freenets
design objectives, more in depth studies are needed to make
assumptions about their impact on anonymity in Freenet.

The rest of the paper is structured as follows. In Sec-
tion 2, we describe how Freenet works. Section 3 details
the two problems in Freenet that we want to solve. Sec-
tion 4 contains our proposed solution to the problems. In
Section 5 we describe how we intend use simulations to
verify our proposal. Section 6 presents and discusses the
results from our simulations in depth. Section 7 summa-
rizes related work and Section 8 briefly discusses possible
future research. Finally Section 9 wraps it up with conclu-
sions and a brief summary of the results.

2 A brief review of Freenet

Freenet[8] was initially designed by Ian Clarke as a sys-
tem for storing and retrieving data with emphasis on pro-
viding anonymity and deniability for all participants. To

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


achieve these goals the system was designed as a P2P-
network utilizing encryption and data forwarding. Freenet
does not provide any guarantees on persistent storage, nor
does it provide any search functionality.

Because of Freenet’s way of routing, where requests and
answers are passed from node to node (proxying), a user in
Freenet can request and insert documents without the risk
of being identified. Each user runs a Freenet node which
contributes to the network by providing data storage for the
network (a “datastore”) and Freenet routing capability.

There is a subtle difference between making documents
publicly available in Freenet and other popular file sharing
networks. Instead of the documents that the node will be
sharing, one must insert the documents into the network.
Once the documents are in the network there is no way to
know who will be storing them, and therefore no way to
remove them. A user does not know what documents its
node is storing because of encryption, thus cannot affect
what documents it is hosting. The user only decides how
much space to dedicate to the datastore, and the Freenet
node decides what documents to save and when to delete
them.

2.1 Under the hood

Each Freenet node provides two basic services for the
network: routing and data storage. Routing is done by
maintaining routing tables, associating with each node a set
of file keys. The data is stored in the datastore together a
corresponding file key.

Each node has a routing table in which known routes to
file keys are stored. Every time a node is involved in a suc-
cessful request or insert it becomes aware of the node that
requested or inserted the document. The IP (Internet Pro-
tocol) address and port to that node is stored in the routing
table together with the file key. The size of the routing table
is limited. If the table is full and a new route is to be added,
the least-recently-used (LRU) item in the table is removed
in favor of the new one. By handling the routing table in
this manner, popular routes stay in the table while obsolete
and invalid routes are replaced.

As with the routing table, the datastore implements a
LRU caching scheme, limited in the size of all stored doc-
uments. Hence, many small documents might have to be
removed to make room for a single large document if the
datastore is filled. Again, the LRU-scheme helps to keep
more popular documents in the network longer than less
popular documents, and because of Freenet’s caching mech-
anism the popular documents will be more widely spread in
the network. All documents in the datastore are encrypted
individually and the node storing them does not have the
descriptive string needed to decrypt them. It does, however,
have a matching file key for each document in the datas-

tore, enabling it to identify all its stored documents during
routing.

2.2 Routing queries and insertions

Routing in Freenet is handled by recursively sending re-
quest and insert messages between the nodes. In order to
stop the network from being overloaded by requests for doc-
uments that cannot be found, the recursion must be termi-
nated at some point and be interpreted as a failure. This is
solved by appending a HTL-counter1

In order to get a document one has to obtain the file key
of that document by out of band means, as Freenet offers
no search functionality. This key is transmitted to a Freenet
node, which starts the Freenet query routing algorithm. The
node first checks if a document with the corresponding key
is located in its own datastore. If it is not found in the datas-
tore, the node calculates and compares the distance (binary
closeness) between this key to all the other keys in the rout-
ing table and passes the request on to the node that has a
key with the closest match. If the query is returned and
the requested document has not been found, the node will
choose the second closest match, and so on, until either the
document is found or the HTL (Hops To Live) of the query
reaches zero. Every contacted node then repeats the pro-
cedure. As each query is assigned a pseudo-unique identi-
fier, nodes will reject queries that they have seen before. If
the document is found in the local store, it will be passed
back along all the nodes in the request chain until it reaches
the requesting node. All nodes that the document passes
will add the originator of the document to their routing ta-
ble and also cache the document to speed up possible future
requests. Each node on the chain may change the owner-
ship of the document to itself or any other node in order
to confuse potential malicious nodes. This does, however,
mean that if only one of the nodes on the request chain is
under heavy load, or has very limited bandwidth, it will be
a bottleneck for the entire transfer chain.

When inserting a document the network will be probed
for key collisions. This is done in exactly the same way as a
document request (including the recursive caching if a doc-
ument is found), except that the path is “remembered” for
this insert query. If no key collision is found, the new doc-
ument will be propagated and stored along the pre-routed
path. If a node is out of storage space it will make space as
described in Section 2.1. By doing a search to determine the
insertion path, documents will be stored close to documents
with similar hashes which will speed up future searches. As
with requests, any node on the chain may confuse potential
malicious nodes by claiming that it (or any other node) is
the inserter of the document.

1The HTL in Freenet is equivalent to the more familiar time-to-live
counter, to all request (and insert) messages.



3 The Freenet performance problem

We have identified two main areas of concern when it
comes to the performance of Freenet. First, a high proba-
bility of not finding existing documents, i.e. Freenet suf-
fers from a low hit-ratio. Second, low download speeds for
found documents.

Freenet utilizes a non-deterministic request routing that,
by design, may fail to satisfy some requests to existing doc-
uments in the network. Even though this is by design there
is an obvious problem that users will start to mistrust the
network if the ability to find existing documents is not good
enough. A request failure in Freenet will leave the user un-
sure of whether the document ever existed, has existed but
vanished, or does exist but simply could not be found. Im-
proving the mechanism that locates documents should be a
top priority in optimizing Freenet from a user perspective.

Freenet achieves a good part of its anonymity by prox-
ying requests and transfers, and because of that it will be
quite susceptible to poor download performance due to lim-
ited node bandwidth. Nodes acting as proxies for many
other nodes will fill their bandwidth with the numerous
transfers and thereby act as bottlenecks in all transfers that
they are participating in. Therefore, improving download
speeds should be a top priority in optimizing Freenet as
well.

4 Our proposal

We are proposing two different solutions to remedy the
two identified problems from a user perspective in Freenet.

4.1 The file mesh

As described in section 2.1, Freenet nodes find out about
the existence of a document by serendipity when they are
involved in a successful document request or insertion.
Hence, a node’s knowledge about the documents in the sys-
tem is restricted to the requests and insertions that it has
been involved in. Using this specific, but incomplete infor-
mation about each neighbor, the routing mechanism tries to
make the best decision when routing a request.

We suggest improving the request hit ratio in Freenet by
making use of a File Mesh. Intuitively, the File Mesh com-
pactly represents the set of all files a node has. This data
structure is similar to a Bloom filter[5] in that it can give
false positives, i.e. believing a node has a file when it has
not. A Bloom filter can, however, not be used for our pur-
poses since it does not provide the ability to find if a node
has key similar to another key. This ability is important,
as Freenet tries to insert documents to the nodes with keys
similar to the document’s key.

Technically the file mesh consists of a bit field of the
length N . Each bit in the field represents a 1/N -sized part
of the key space. If the part contains any files, the bit will
be set to 1, else it will be set to 0. This gives us the benefit
to have some information about the state of the whole data-
store of the node, but with a fraction of the space needed
to transmit a complete list of keys. This approach also has
anonymity benefits, as you can not say anything about the
presence of a specific file, you can only say with certainty if
it is missing. If searching for a document, whose respective
bit is set to 1 in the File Mesh, a node knows that that node
at least has some similar documents.

With our proposed solution the nodes pass a file mesh
in addition to the document source. Hence, a node will
have approximate knowledge about all documents its rout-
ing neighbors are storing.

A challenge in the file mesh solution is to keep the
meshes on each node fairly up to date without excessive
data transfer overhead. To solve this we will employ a form
of update difference compression in combination with al-
lowing a certain staleness of the meshes. Each time a node
sends a query response to another node, it will check if it has
sent a file mesh to it before. If no mesh has been sent, the
complete mesh is piggy-backed on the response message
and a copy of the mesh is saved and tagged as the last mesh
sent to that node. If a mesh has been sent, the node checks if
the mesh that has been sent earlier differs from the current
mesh. If it differs it sends information about what positions
in the file mesh that have been changed, and updates the lo-
cal copy of the mesh for that node to the state of the current
mesh. In this way, only a minimal amount of extra band-
width will be used and no extra messages. The nodes will
also get recent file meshes in a way that will guarantee them
not to use old and possibly outdated routing information for
a node more than once.

4.2 Preferential partition routing

Since documents are routed through multiple nodes in
Freenet before they reach their destinations these transfer
chains are obviously not stronger than their weakest links.
The ability to distinguish faster nodes from slower is a
simple method to avoid the obvious potential bottlenecks
in order to speed up transfers. Our proposal to solve the
bottleneck-problem is called Preferential Partition Routing,
and we will refer to it as partitioning or partitionizing.

We suggest that all nodes should be divided into a num-
ber of different partitions (groups), where each partition
contains nodes with similar bandwidth restrictions. During
the requesting and inserting phase, the nodes have the pos-
sibility to use the information the partitions give to optimize
their routing by avoiding slow nodes.

One obvious problem with this approach is to determine



what partition a node belongs to. Our suggestion is that
each user will set his own partition (by specifying the avail-
able bandwidth) and then the node will know what partition
it is in. In order to make the users set the correct bandwidth
one must assure that the user will not benefit from cheating
(or simply making the wrong setting by mistake), as P2P-
users are prone to misreport their real bandwidth if there is
something to gain[11].

The two cases are that the node might become member of
a higher or lower partition than it really belongs to. A node
that becomes a member of a higher partition than intended
will be punished by design. Fast nodes will choose it in their
routing and it will become overloaded, not getting much
bandwidth for its own queries. A user might want to become
a member of a lower partition than it should be in order to
avoid receiving requests by fast nodes, but still send all of its
own requests to fast nodes. This can be avoided by limiting
transfer speeds to nodes that claim to be in a slow partition.

When nodes try to determine which neighbors to send
a query to, they will avoid choosing nodes that are partic-
ipants in a lower partition. This is done by modifying
the distance each node is assigned in the routing process
by making sure that all nodes in a faster partition have a
shorter distance than all nodes in a slower partition, while
maintaining the mutual order within all partitions. By dis-
criminating the lower partitions the chance of getting a low
bandwidth node in the transfer chain is minimized. The sac-
rifice of the optimum path length routing gives the benefit
of trying to ensure a high bandwidth “download path” for
the document. This does not guarantee that all nodes in the
transfer chain will be high speed nodes since a node will
start to query slower nodes when all fast nodes it knows
have rejected the query. One obvious downside to this ap-
proach is the potential “over shot” that is created when a
large number of fast nodes has to be visited before even try-
ing the slower ones, no matter if they are likely to have the
file or not. This is possibly remedied by the fact that in-
serts will follow the same pattern and popular files should
be prone to end up on a fast node.

5 Simulations

To test and evaluate our proposed changes ot Freenet we
decided to simulate them.

We evaluated the two “official” Freenet simulators
(Aurora[2] and Serapis[3]) as well as the simulator devel-
oped by Zhang, Goel and Govindan for their paper [12].
We also considered the generic P2P-simulator p2psim[1].
As none of these simulators offered a satisfying method for
bandwidth simulation we decided to write our own simula-
tor, named Eos.

Though we strived to model the Freenet network as
closely as possible, we made some simplifications to make

it possible to finish the simulations within our timeframe.
No actual encryption is done anywhere since it does not
affect the routing in any way (except contributes to CPU
load). No files are actually transferred, instead the simu-
lator keeps track of how much data would have been sent
in each transfer. We decided to simulate an abstract net-
work level above the packet level. Requests are instanta-
neous, atomic and non-concurrent. Document transfers are
concurrent and duration will depend on available network
resources that the transfer can consume during its lifetime.
We are not handling joining or leaving/failing nodes during
the duration of the simulation.

The simulator is time step based and parameters such as
how often nodes should request or insert files are set per
time step. The time span of a single time step can be varied
and we have used 10 seconds per time step in our simula-
tions.

To accurately simulate node behavior, we studied sev-
eral recently published papers on P2P measurements. The
results in these papers were incorporated in the simulator as
aproximated functions for node up- and downstream band-
width2, popularity of any given file3, size of any given file4

and relation between inserts and requests in Freenet5.
We have chosen not to simulate network transfers at

packet level, but to see all transfers as flows. This will allow
the model to scale with an increasing number of nodes and
transfers. The model we have used for all our simulation
results is named minimum share allocation and is proposed
by Ahn and Danzig in [4] as a part of the Narses network
simulator. We also implemented the Naı̈ve network model
used in Aurora[2] to validate Eos.

We started the network creation in each simulation with
a set of nodes connected in a bi-directional ring, to ensure
that all nodes are part of the network. To speed up the initial
convergence, we also added two more neighbors to each
node by connecting the nodes in two rings, where each node
has a random position in each ring. This added possible
shortcuts through the network.

The simulator continuously meassures several selected
properties of the nodes present in the simulated network.
These properties are evaluated and logged on each time
step. We present the collected statistics from these logs in
the Results section.

6 Results

All simulation data originates from the Eos simulator de-
scribed in Section 5. All graphs represent an average of 10

2See [11] by Saroiu, Gummadi and Gribble in 2002.
3See [6] by Chu, Labonte and Levine in 2002.
4See our own study of over 500 arbitrarily chosen DirectConnect nodes

between March 2003 and October 2004 described in [9].
5See our own survey in late 2004 described in [9].



runs using different random seeds.
The simulation duration is set to 5000 time steps. We

performed a number of longer test runs to observe how the
simulated network evolved over a longer time span and to
support our choice of simulation duration. We did not see
any significant changes after somewhere around the 5000:th
time step, and therefore we have chosen this as simulation
duration.

All partition based simulations use two partitions. The
partition membership is decided by putting all nodes with
lower upload bandwidth than the median in the slow parti-
tion and the nodes with higher upload bandwidth in the fast
partition.

From here on abbreviations will be used for the dif-
ferent algorithms. We have chosen the name V (Vanilla)
for the original Freenet implementation detailed in [8] to
avoid confusion with current Freenet implementation. The
name symbolizes that it is the originally proposed flavor
of Freenet. The name M (Mesh) is our routing optimiza-
tion. The partition algorithms are used in combination with
the other algorithms, where the combinations are named
PV (Partitioning Vanilla) and PM (Partitioning Mesh).

6.1 Results at a glance

By logging several properties of the simulation every
time step, we got the ability to see how they evolve over
time. Figure 6.1 and Figure 6.1 are graphs showing how the
values changes with time. Each data point on the curve rep-
resents an average of 100 time steps to avoid noisy data and
visualize trends more easily.

0%

10%

20%

30%

40%

50%

60%

70%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Duration

V
M

Figure 1. Percent unsuccessful requests over
time

By measuring how many of the requests that did not
manage to find its document we get the graph in Figure 6.1.
As one can tell from the graph the network needs some time

to converge before it learns how to route queries. This be-
havior is unavoidable, but the time needed for the network
to learn can be reduced. Both the algorithms have the same
trend but our Mesh version does start in a far better posi-
tion than Vanilla. Mesh also manages to keep the failure
rate close to 0% while Vanilla stabilizes with about 10%
failures.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

kB/s

Duration

PV-Fast
PV-Slow

V-Fast
V-Slow

Figure 2. Average download speed over time

Moving on to download speed shown in Figure 6.1,
where the lines suffixed with “Fast” and “Slow” represent
the faster and slower partitions. It becomes very clear that
the partition optimization manages to increase the down-
load speed for all nodes, both fast and slow. The graph also
shows that the faster nodes that are using PV are not slowed
down as much by the slower ones because of the partition-
ing. Neither do they level out as fast and definite as the
others, but keep increasing.

6.2 Evaluating the results

Figure 6.1 and 6.1 gives a detailed image of how the al-
gorithms perform over time, but it makes it more difficult
to see and compare the actual performance of the different
algorithms. To avoid this clutter of many fluctuating curves
in the same graph, the remaining figures are bar charts that
simplify comparison of the different tested algorithms. To
avoid the chaotic convergence phase of the network, and
thereby get a fair average of every algorithm, each bar rep-
resents an average of the data between the time steps 1500
and 5000.

All confidence intervals are calculated using a sample
size of 10 simulations per graph and we have chosen a con-
fidence level of 95%. The size of the confidence interval is
visualized as a bracket located to the right of each bar.

The number of hops needed to get to a source in a re-
quest has earlier been used as a metric to describe the per-
formance of the Freenet network, for example in [8] and



[10]. We did also monitor the request pathlength during
our simulations in order to be able to use it to evaluate the
different solutions we tested.6 As seen in Figure 6.2, our
results show that the differences in average request path-
length are varying very little between the solutions, once
the network has converged. The relatively low pathlength
combined with the narrow confidence interval indicates that
the efficiency is quite high in all solutions, whenever a doc-
ument is found.

Hops 6

0

0.5

1

1.5

2

2.5

2.7

M

2.4

PM

2.1

PV

2.2

V

Figure 3. Average successful request path-
length

As we described earlier the number of unsuccessful re-
quests is very important to the user experience. This metric
is shown in Figure 6.2. Since all requests in our simula-
tion are issued for documents that we know have previously
been successfully inserted into the network at some point,
we would expect an optimum of near zero percent failed
requests. What could influence this metric is the presence
of orphan documents in the simulator. These orphans are
documents that no longer are present in the network as they
have been dropped by every node that had them. Our sim-
ulation shows that none of the algorithms produced any or-
phans during the simulation.

When comparing the different algorithms, all of them
show an improvement over Vanilla, but PM stands out
clearly as the best. Where Vanilla fails more than every
tenth request (that should have succeeded), PM show an im-
provement of over thirty times with approximately one fail-
ure for every two hundred requests. In our simulation this
means that, on average, when using Vanilla, 650 requests by

6Note the difference in measurement technique. The original Freenet
paper measures the hops via timed probes of the network using a number of
request packets with a very high HTL, where we are measuring continually
on the participating nodes.

% 6

0

5

10

2.3

M

0.4

PM

5.9

PV

13.1

V

Figure 4. Percent unsuccessful requests

users would be affected by getting false failures, and when
using PM this is reduced to 20 requests.

Download speed in Figure 6.2 is not simply measured
by averaging all incoming transfers to a node. The only
transfers that are taken into account are those where the user
initiated the requested. These results are interesting because
this is the transfer speed which a user will experience when
requesting and downloading documents.

kB/s 6

0

20

40

60

80

10.1

M
-F

5.4

M
-S

67.0

PM
-F

31.7

PM
-S

70.1

PV
-F

32.7

PV
-S

9.7

V
-F

6.2

V
-S

Figure 5. Average download speed

Figure 6.2 clearly shows how all our partition algorithm
succeed in increasing the download speed. Even nodes with
slow connections manage to perform better with the par-
tition algorithm than fast connection nodes do with Vanilla
routing. The pure mesh routing stays close to Vanilla perfor-
mance but when it is combined with the partition algorithm,
its speed increases drastically.



Both slow and fast nodes benefit from the partition rout-
ing since the slow nodes do not get overloaded by the faster
ones, and the fast nodes do not have to route thru the slower
bottlenecks.

Another important issue is how much of the nodes band-
width that is consumed on average. This is shown in Fig-
ure 6.2 and Figure 6.2.

It is easy to think that the low values on the fast nodes
mean less utilization than high values on the slow nodes be-
cause of the relative scale. But since the capacity is so much
higher on the fast nodes, they still manage to outperform the
slow ones.

Again, Mesh and Vanilla stay close to each other when it
comes to transfer speeds. With Mesh the upload bandwidths
for the slow nodes is slightly higher than with Vanilla but
other than that they are about equal. The small advantage in
speed with Mesh is probably due to the fact that it manages
to find more content than Vanilla.

One interesting observation is that the partition algo-
rithm has managed to inverse the upload utilization between
fast and slow nodes as shown in Figure 6.2. By inverse we
mean that the fast nodes have higher values and the slow
have lower. This means that the overall speed will be higher
with the partition algorithm since the fast nodes have more
capacity.

Another interesting effect of the partition algorithm is
that it manages to even out the utilization between fast and
slow nodes. This is good because there is not a particular
group of nodes that have to pull the weight, but all nodes
will get a relatively small part of the total load. This also in-
creases the total performance since the fast nodes get more
load than with Vanilla.

% 6

0

2

4

6

0.2

M
-F

7.3

M
-S

1.2

PM
-F

4.7

PM
-S

0.7

PV
-F

4.1

PV
-S

0.2

V
-F

5.7

V
-S

Figure 6. Download bandwidth utilization

% 6

0

5

10

0.8

M
-F

12.3

M
-S

4.0

PM
-F

0.7

PM
-S

2.6
PV

-F
0.5

PV
-S

0.7

V
-F

8.8
V

-S

Figure 7. Upload bandwidth utilization

7 Related work

The work done in the area of improving Freenet is lim-
ited, probably due to Freenets rather unique design and de-
sign objectives.

In [12], Zhang, Goel and Govindan show that by en-
forcing the small world model on Freenets cache, the rout-
ing performance can be improved, compared to using LRU
(Least Recently Used). The algorithm influences the node
to make the documents in the cache cluster around an arbi-
trarily chosen key. When discarding a document from the
cache, the document that is furthest from the chosen “spe-
cialization key” is removed. Simulations in [12] indicate a
significant decrease in the number of failed requests com-
pared to LRU and a slight improvement compared to clus-
tering without random shortcuts. The small world method
renders close to 0% fails compared to LRU with about 65%
fails.7

In [10] the authors argue that Freenets approach of up-
dating the routing table gets inefficient if the number of
requests is much greater than the number of inserts. The
authors propose a better way of solving this problem by
spreading the news in a different manner. Instead of simply
passing the note along the search path, they let the initial
requester spread the news. This is done by the requester by
means of sending a message to a random neighbor contain-
ing the note (which contains the information about which
node satisfied the request of what key) and that neighbor
will send the note to one of its neighbors and so on.

Another way of modifying the routing is presented by
Ian Clarke in [7] where he proposes the NGR (Next Gen-

7The notably bad performance of LRU in this simulation is most likely
due to choices in cache size (50-200) and number of inserted documents
(10 per node) combined with an excessively large HTL (40-100).



eration Routing) routing principle. The basic idea behind
NGR is that all nodes will collect statistical data about the
communication with their neighbors and use that material
as a decision-base when they are routing future queries.

8 Future research

There is plenty of research needed in this area. Both
on Freenet and unstructured P2P-networks in general and
regarding our proposals and results.

The file mesh inherits many properties from the bloom
filter, like being useless when saturated. This leads to the
topic of finding the optimal size of the file mesh. Another
quite interesting possibility is to evaluate different “desatu-
ration” techniques. The implementation of such a desatura-
tion technique would probably be a requirement for actual
deployment in a live Freenet system.

There is no lack in directions for future research on Pref-
erential Partition Routing either. When looking at using
partitioning to optimize download performance, there is the
matter of choosing the optimal number of partitions and
their sizes. Another area of research is selecting (and veri-
fying) what partition each node should belong to in a more
efficient manner.

How these changes affects anonymity in Freenet is also
an area where research is needed.

9 Conclusions

In this paper we investigate how to improve performance
of Freenet by focusing on two issues: (i) hit-ratio, and (ii)
download speed.

Our proposal for improving the hit-ratio is based on
propagating some information about the documents avali-
able at each node, so called File Meshes, to its neighbors.
To increase the download speed we suggest to partition the
network based on node’s bandwidth.

We have developed a simulator to evaluate the impact
of our proposal to the Freeenet performance. The simula-
tion results indicate that applying our improvements to a
Freenet, the bandwidth would become more evenly utilized
by both fast and slow nodes, and as a side effect the down-
load speeds would increase. Routing would also become
more efficient and precise due to the file mesh propagation.
Our results give a clear indication that preferential partition
routing can be used to improve overall performance of net-
works that route thru multiple hops. They also suggest that
file meshes can be used to improve precision in Freenet like
routing mechanisms.

Our experimental results show that combining partition-
ing with file meshes will increase the request hit ratio by
over 30 times and the average download speed by six times,
compared to the original Freenet.

Further information and the simulator source code are
avaliable at http://www.skoghs.se/eos/.

References

[1] p2psim: a simulator for peer-to-peer (p2p) protocols, August
2004.

[2] Sourceforge.net cvs repository - directory - cvs:
freenet/aurora, August 2004.

[3] Sourceforge.net cvs repository - directory - cvs:
freenet/serapis, August 2004.

[4] J. Ahn and P. Danzig. Speedup vs. simulation granularity. In
IEEE/ACM Transactions on Networking, vol. 4, no. 5, pages
743–757, October 1996.

[5] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Communications of the ACM, July 1970.

[6] J. Chu, K. Labonte, and B. Levine. Availability and locality
measurements of peer-to-peer file systems. In vol. 4868 of
Proceedings of SPIE, July 2002.

[7] I. Clarke. Freenet’s next generation routing protocol, 2003.
[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:

A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Science, 2009:46, 2001.

[9] J. Haeggström and H.-E. Skogh. Improving freenet perfor-
mance by precedencial network partitioning and file mesh
propagation, 2005.

[10] J. Mache, D. Ely, M. Gilbert, J. Gimba, T. Lopez, and
M. Wilkinson. Modifying the overlay network of freenet-
style peer-to-peer systems after successful request queries.
In Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04) - Track 9, page
90289c, 2004.

[11] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings
of Multimedia Computing and Networking, 2002.

[12] H. Zhang, A. Goel, and R. Govindan. Using the small-world
model to improve freenet performance. In Proceedings of
INFOCOM 2002, 2002.


