
A Statistical Theory of Chord under Churn ⋆

Supriya Krishnamurthy1, Sameh El-Ansary1, Erik Aurell2, and Seif Haridi3

1 Swedish Institute of Computer Science, Kista, Sweden
{supriya,sameh}@sics.se

2 Department of Physics, KTH-Royal Institute of Technology, Sweden
erik.aurell@physics.kth.se

3 IMIT-Royal Institute of Technology, Kista, Sweden
seif@imit.kth.se

Abstract. Most earlier studies of DHTs under churn have either de-
pended on simulations as the primary investigation tool, or on establish-
ing bounds for DHTs to function. In this paper, we present a complete
analytical study of churn using a master-equation-based approach, used
traditionally in non-equilibrium statistical mechanics to describe steady-
state or transient phenomena. Simulations are used to verify all theo-
retical predictions. We demonstrate the application of our methodology
to the Chord system. For any rate of churn and stabilization rates, and
any system size, we accurately predict the fraction of failed or incorrect
successor and finger pointers and show how we can use these quantities
to predict the performance and consistency of lookups under churn. We
also discuss briefly how churn may actually be of different ’types’ and
the implications this will have for the functioning of DHTs in general.

1 Introduction

Theoretical studies of asymptotic performance bounds of DHTs under churn have
been conducted in works like [1, 2]. However, within these bounds, performance
can vary substantially as a function of different design decisions and configu-
ration parameters. Hence simulation-based studies such as [3–5] often provide
more realistic insights into the performance of DHTs. Relying on an understand-
ing based on simulations alone is however not satisfactory either, since in this
case, the DHT is treated as a black box and is only empirically evaluated, under
certain operation conditions. In this paper we present an alternative theoretical
approach to analyzing and understanding DHTs, which aims for an accurate pre-
diction of performance, rather than on placing asymptotic performance bounds.
Simulations are then used to verify all theoretical predictions.

Our approach is based on constructing and working with master equations,
a widely used tool wherever the mathematical theory of stochastic processes is
applied to real-world phenomena [6]. We demonstrate the applicability of this
approach to one specific DHT: Chord [7]. For Chord, it is natural to define the
state of the system as the state of all its nodes, where the state of an alive node
is specified by the states of all its pointers. These pointers (either fingers or suc-
cessors) are then in one of three states: alive and correct, alive and incorrect or

⋆ This work is funded by the Swedish VINNOVA AMRAM and PPC projects, the
European IST-FET PEPITO and 6th FP EVERGROW projects.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

failed. A master equation for this system is simply an equation for the time evo-
lution of the probability that the system is in a particular state. Writing such an
equation involves keeping track of all the gain/loss terms which add/detract from
this probability, given the details of the dynamics. This approach is applicable
to any P2P system (or indeed any system with a discrete set of states).

Our main result is that, for every outgoing pointer of a Chord node, we
systematically compute the probability that it is in any one of the three possible
states, by computing all the gain and loss terms that arise from the details of
the Chord protocol under churn. This probability is different for each of the
successor and finger pointers. We then use this information to predict both
lookup consistency (number of failed lookups) as well as lookup performance
(latency) as a function of the parameters involved. All our results are verified by
simulations.

The main novelty of our analysis is that it is carried out entirely from first
principles i.e. all quantities are predicted solely as a function of the parameters of
the problem: the churn rate, the stabilization rate and the number of nodes in the
system. It thus differs from earlier related theoretical studies where quantities
similar to those we predict, were either assumed to be given [8], or measured
numerically [9].

Closest in spirit to our work is the informal derivation in the original Chord
paper [7] of the average number of timeouts encountered by a lookup. This quan-
tity was approximated there by the product of the average number of fingers used
in a lookup times the probability that a given finger points to a departed node.
Our methodology not only allows us to derive the latter quantity rigorously but
also demonstrates how this probability depends on which finger (or successor) is
involved. Further we are able to derive an exact relation relating this probability
to lookup performance and consistency accurately at any value of the system
parameters.

2 Assumptions & Definitions

Basic Notation. In what follows, we assume that the reader is familiar with
Chord. However we introduce the notation used below. We use K to mean the
size of the Chord key space and N the number of nodes. Let M = log2 K be the
number of fingers of a node and S the length of the immediate successor list,
usually set to a value = O(log(N)). We refer to nodes by their keys, so a node
n implies a node with key n ∈ 0 · · · K − 1. We use p to refer to the predecessor,
s for referring to the successor list as a whole, and si for the ith successor. Data
structures of different nodes are distinguished by prefixing them with a node key
e.g. n′.s1, etc. Let fini.start denote the start of the ith finger (Where for a node
n, ∀i ∈ 1..M, n.fini.start = n + 2i−1) and fini.node denote the actual node
pointed to by that finger.

Steady State Assumption. λj is the rate of joins per node, λf the rate of
failures per node and λs the rate of stabilizations per node. We carry out our
analysis for the general case when the rate of doing successor stabilizations αλs,

is not necessarily the same as the rate at which finger stabilizations (1 − α)λs

are performed. In all that follows, we impose the steady state condition λj = λf .
Further it is useful to define r ≡ λs

λf
which is the relevant ratio on which all the

quantities we are interested in will depend, e.g, r = 50 means that a join/fail
event takes place every half an hour for a stabilization which takes place once
every 36 seconds.

Parameters. The parameters of the problem are hence: K, N , α and r. All
relevant measurable quantities should be entirely expressible in terms of these
parameters.

Chord Simulation. We use our own discrete event simulation environment
implemented in Java which can be retrieved from [10]. We assume the familiarity
of the reader with Chord, however an exact analysis necessitates the provision of
a few details. Successor stabilizations performed by a node n on n.s1 accomplish
two main goals: i) Retrieving the predecessor and successor list of of n.s1 and
reconciling with n’s state. ii) Informing n.s1 that n is alive/newly joined. A
finger stabilization picks one finger at random and looks up its start. Lookups
do not use the optimization of checking the successor list before using the fingers.
However, the successor list is used as a last resort if fingers could not provide
progress. Lookups are assumed not to change the state of a node. For joins,
a new node u finds its successor v through some initial random contact and
performs successor stabilization on that successor. All fingers of u that have v
as an acceptable finger node are set to v. The rest of the fingers are computed
as best estimates from v′s routing table. All failures are ungraceful. We make
the simplifying assumption that communication delays due to a limited number
of hops is much smaller than the average time interval between joins, failures
or stabilization events. However, we do not expect that the results will change
much even if this were not satisfied.

Averaging. Since we are collecting statistics like the probability of a par-
ticular finger pointer to be wrong, we need to repeat each experiment 100 times
before obtaining well-averaged results. The total simulation sequential real time
for obtaining the results of this paper was about 1800 hours that was parallelized
on a cluster of 14 nodes where we had N = 1000, K = 220, S = 6, 200 ≤ r ≤ 2000
and 0.25 ≤ α ≤ 0.75.

3 The Analysis

3.1 Distribution of Inter-Node Distances

During churn, the inter-node distance (the difference between the keys of two
consecutive nodes) is a fluctuating variable. An important quantity used through-
out the analysis is the pdf of inter-node distances. We define this quantity below
and state a theorem giving its functional form. We then mention three properties
of this distribution which are needed in the ensuing analysis. Due to space limi-
tations, we omit the proof of this theorem and the properties here and provide
them in [10].

Definition 1. Let Int(x) be the number of intervals of length x, i.e. the number
of pairs of consecutive nodes which are separated by a distance of x keys on the
ring.

Theorem 1. For a process in which nodes join or leave with equal rates (and
the number of nodes in the network is almost constant) independently of each

other and uniformly on the ring, The probability (P (x) ≡
Int(x)

N) of finding an
interval of length x is:

P (x) = ρx−1(1 − ρ) where ρ = K−N
K

and 1 − ρ = N
K

The derivation of the distribution P (x) is independent of any details of the
Chord implementation and depends solely on the join and leave process. It is
hence applicable to any DHT that deploys a ring.

Property 1. For any two keys u and v, where v = u+x, let bi be the probability
that the first node encountered inbetween these two keys is at u + i (where
0 ≤ i < x − 1). Then bi ≡ ρi(1 − ρ). The probability that there is definitely
atleast one node between u and v is: a(x) ≡ 1 − ρx. Hence the conditional
probability that the first node is at a distance i given that there is atleast one
node in the interval is bc(i, x) ≡ b(i)/a(x).

Property 2. The probability that a node and atleast one of its immediate pre-

decessors share the same kth finger is p1(k) ≡ ρ
1+ρ (1− ρ2k

−2). This is ∼ 1/2 for

K >> 1 and N << K.Clearly p1 = 0 for k = 1. It is straightforward (though
tedious) to derive similar expressions for p2(k) the probability that a node and
atleast two of its immediate predecessors share the same kth finger, p3(k) and
so on.

Property 3. We can similarly assess the probability that the join protocol (see
previous section) results in further replication of the kth pointer. That is, the
probability that a newly joined node will choose the kth entry of its successor’s

finger table as its own kth entry is pjoin(k) ∼ ρ(1 − ρ2k−2
−2) + (1 − ρ)(1 −

ρ2k−2
−2)− (1− ρ)ρ(2k−2 − 2)ρ2k−2

−3. The function pjoin(k) = 0 for small k and
1 for large k.

3.2 Successor Pointers

In order to get a master-equation description which keeps all the details of the
system and is still tractable, we make the ansatz that the state of the system is
the product of the states of its nodes, which in turn is the product of the states
of all its pointers. As we will see this ansatz works very well. Now we need only
consider how many kinds of pointers there are in the system and the states these
can be in. Consider first the successor pointers.

Let wk(r, α), dk(r, α) denote the fraction of nodes having a wrong kth succes-
sor pointer or a failed one respectively and Wk(r, α), Dk(r, α) be the respective
numbers . A failed pointer is one which points to a departed node and a wrong

Fig. 1. Changes in W1, the number of wrong (failed or outdated) s1 pointers, due to
joins, failures and stabilizations.

Change in W1(r, α) Rate of Change
W1(t + ∆t) = W1(t) + 1 c1 = (λj∆t)(1 − w1)
W1(t + ∆t) = W1(t) + 1 c2 = λf (1 − w1)

2∆t

W1(t + ∆t) = W1(t) − 1 c3 = λfw2
1∆t

W1(t + ∆t) = W1(t) − 1 c4 = αλsw1∆t

W1(t + ∆t) = W1(t) 1 − (c1 + c2 + c3 + c4)

Table 1. Gain and loss terms for W1(r, α): the number of wrong first successors as a
function of r and α.

pointer points either to an incorrect node (alive but not correct) or a dead one.
As we will see, both these quantities play a role in predicting lookup consistency
and lookup length.

By the protocol for stabilizing successors in Chord, a node periodically con-
tacts its first successor, possibly correcting it and reconciling with its successor
list. Therefore, the number of wrong kth successor pointers are not indepen-
dent quantities but depend on the number of wrong first successor pointers. We
consider only s1 here.

We write an equation for W1(r, α) by accounting for all the events that can
change it in a micro event of time ∆t. An illustration of the different cases
in which changes in W1 take place due to joins, failures and stabilizations is
provided in figure 1. In some cases W1 increases/decreases while in others it
stays unchanged. For each increase/decrease, table 1 provides the corresponding
probability.

By our implementation of the join protocol, a new node ny, joining between
two nodes nx and nz, has its s1 pointer always correct after the join. However the
state of nx.s1 before the join makes a difference. If nx.s1 was correct (pointing
to nz) before the join, then after the join it will be wrong and therefore W1

increases by 1. If nx.s1 was wrong before the join, then it will remain wrong

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 200 400 600 800 1000 1200 1400 1600 1800 2000

w
1
(r

,α
),

 d
1
(r

,α
)

Rate of Stabilisation /Rate of failure (r=λs/λf)

w1(r,0.25) Simulation
w1(r,0.5) Simulation

w1(r,0.75) Simulation
w1(r,0.25) Theory
w1(r,0.5) Theory

w1(r,0.75) Theory
d1(r,0.75) Simulation

d1(r, 0.75) Theory

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 200 400 600 800 1000 1200 1400 1600 1800 2000

I(
r,

α)

Rate of Stabilisation of Successors/Rate of failure (αr=αλ s/λf)

I(r,0.25) Simulation
I(r,0.5) Simulation

I(r,0.75) Simulation
I(r,0.25) theory
I(r,0.5) theory

I(r,0.75) theory

(b)

Fig. 2. Theory and Simulation for w1(r, α), d1(r, α), I(r, α)

after the join and W1 is unaffected. Thus, we need to account for the former
case only. The probability that nx.s1 is correct is 1 − w1 and from that follows
the term c1.

For failures, we have 4 cases. To illustrate them we use nodes nx, ny, nz and
assume that ny is going to fail. First, if both nx.s1 and ny.s1 were correct, then
the failure of ny will make nx.s1 wrong and hence W1 increases by 1. Second,
if nx.s1 and ny.s1 were both wrong, then the failure of ny will decrease W1 by
one, since one wrong pointer disappears. Third, if nx.s1 was wrong and ny.s1 was
correct, then W1 is unaffected. Fourth, if nx.s1 was correct and ny.s1 was wrong,
then the wrong pointer of ny disappeared and nx.s1 became wrong, therefore W1

is unaffected. For the first case to happen, we need to pick two nodes with correct
pointers, the probability of this is (1− w1)

2. For the second case to happen, we
need to pick two nodes with wrong pointers, the probability of this is w2

1. From
these probabilities follow the terms c2 and c3.

Finally, a successor stabilization does not affect W1, unless the stabilizing
node had a wrong pointer. The probability of picking such a node is w1. From
this follows the term c4.

Hence the equation for W1(r, α) is:

dW1

dt
= λj(1 − w1) + λf (1 − w1)

2 − λfw2
1 − αλsw1

Solving for w1 in the steady state and putting λj = λf , we get:

w1(r, α) =
2

3 + rα
≈

2

rα
(1)

This expression matches well with the simulation results as shown in figure 2.
d1(r, α) is then ≈ 1

2w1(r, α) since when λj = λf , about half the number of wrong
pointers are incorrect and about half point to dead nodes. Thus d1(r, α) ≈ 1

rα
which also matches well the simulations as shown in figure 2. We can also use
the above reasoning to iteratively get wk(r, α) for any k.

Fig. 3. Changes in Fk, the number of failed fink pointers, due to joins, failures and
stabilizations.

Lookup Consistency By the lookup protocol, a lookup is inconsistent if
the immediate predecessor of the sought key has an wrong s1 pointer. However,
we need only consider the case when the s1 pointer is pointing to an alive (but
incorrect) node since our implementation of the protocol always requires the
lookup to return an alive node as an answer to the query. The probability that a
lookup is inconsistent I(r, α) is hence w1(r, α)−d1(r, α). This prediction matches
the simulation results very well, as shown in figure 2.

3.3 Failure of Fingers

We now turn to estimating the fraction of finger pointers which point to failed
nodes. As we will see this is an important quantity for predicting lookups. Unlike
members of the successor list, alive fingers even if outdated, always bring a query
closer to the destination and do not affect consistency. Therefore we consider
fingers in only two states, alive or dead (failed).

Let fk(r, α) denote the fraction of nodes having their kth finger pointing to a
failed node and Fk(r, α) denote the respective number. For notational simplicity,
we write these as simply Fk and fk. We can predict this function for any k by
again estimating the gain and loss terms for this quantity, caused by a join,
failure or stabilization event, and keeping only the most relevant terms. These
are listed in table 2.

A join event can play a role here by increasing the number of Fk pointers
if the successor of the joinee had a failed kth pointer (occurs with probability
fk) and the joinee replicated this from the successor (occurs with probability
pjoin(k) from property 3).

A stabilization evicts a failed pointer if there was one to begin with. The sta-
bilization rate is divided by M, since a node stabilizes any one finger randomly,
every time it decides to stabilize a finger at rate (1 − α)λs.

Fk(t + ∆t) Rate of Change
= Fk(t) + 1 c1 = (λj∆t)pjoin(k)fk

= Fk(t) − 1 c2 = (1 − α) 1

M
fk(λs∆t)

= Fk(t) + 1 c3 = (1 − fk)2[1 − p1(k)](λf∆t)
= Fk(t) + 2 c4 = (1 − fk)2(p1(k) − p2(k))(λf∆t)
= Fk(t) + 3 c5 = (1 − fk)2(p2(k) − p3(k))(λf∆t)
= Fk(t) 1 − (c1 + c2 + c3 + c4 + c5)

Table 2. Some of the relevant gain and loss terms for Fk, the number of nodes whose
kth fingers are pointing to a failed node for k > 1.

Given a node n with an alive kth finger (occurs with probability 1 − fk),
when the node pointed to by that finger fails, the number of failed kth fingers
(Fk) increases. The amount of this increase depends on the number of immediate
predecessors of n that were pointing to the failed node with their kth finger. That
number of predecessors could be 0, 1, 2,.. etc. Using property 2 the respective
probabilities of those cases are: 1 − p1(k), p1(k) − p2(k), p2(k) − p3(k),... etc.

Solving for fk in the steady state, we get:

fk =

[

2P̃rep(k) + 2 − pjoin(k) + r(1−α)
M

]

2(1 + P̃rep(k))

−

√

[

2P̃rep(k) + 2 − pjoin(k) + r(1−α)
M

]2

− 4(1 + P̃rep(k))2

2(1 + P̃rep(k))

(2)

where P̃rep(k) = Σpi(k). In principle its enough to keep even three terms
in the sum. The above expressions match very well with the simulation results
(figure 4).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 200 300 400 500 600 700 800 900 1000

f k
(r

,α
)

Rate of Stabilisation of Fingers/Rate of failure ((1-α)r=(1-α)λs/λf)

f7(r,0.5) Simulation
f7(r,0.5) Theory

f9(r,0.5) Simulation
f9(r,0.5) Theory

f11(r,0.5) Simulation
f11(r,0.5) Theory

f14(r,0.5) Simulation
f14(r,0.5) Theory

(a)

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 100 200 300 400 500 600 700 800 900 1000

L
o
o
k
u
p
 l

at
en

cy
 (

h
o
p
s+

ti
m

eo
u
ts

)
L

(r
,α

)

Rate of Stabilisation of Fingers/Rate of failure ((1-α)r=(1-α)λs/λf)

L(r,0.5) Simulation
L(r,0.5) Theory

(b)

Fig. 4. Theory and Simulation for fk(r, α), and L(r, α)

3.4 Cost of Finger Stabilizations and Lookups

In this section, we demonstrate how the information about the failed fingers and
successors can be used to predict the cost of stabilizations, lookups or in general
the cost for reaching any key in the id space. By cost we mean the number of hops
needed to reach the destination including the number of timeouts encountered
en-route. For this analysis, we consider timeouts and hops to add equally to
the cost. We can easily generalize this analysis to investigate the case when a
timeout costs some factor n times the cost of a hop.

Define Ct(r, α) (also denoted Ct) to be the expected cost for a given node to
reach some target key which is t keys away from it (which means reaching the
first successor of this key). For example, C1 would then be the cost of looking up
the adjacent key (1 key away). Since the adjacent key is always stored at the first
alive successor, therefore if the first successor is alive (occurs with probability
1 − d1), the cost will be 1 hop. If the first successor is dead but the second is
alive (occurs with probability d1(1 − d2)), the cost will be 1 hop + 1 timeout
= 2 and the expected cost is 2 × d1(1 − d2) and so forth. Therefore, we have
C1 = 1 − d1 + 2 × d1(1 − d2) + 3 × d1d2(1 − d3) + · · · ≈ 1 + d1 = 1 + 1/(αr).

For finding the expected cost of reaching a general distance t we need to
follow closely the Chord protocol, which would lookup t by first finding the
closest preceding finger. For notational simplicity, let us define ξ to be the start
of the finger (say the kth) that most closely precedes t. Thus t = ξ+m, i.e. there
are m keys between the sought target t and the start of the most closely preceding
finger. With that, we can write a recursion relation for Cξ+m as follows:

Cξ+m = Cξ [1 − a(m)]

+ (1 − fk)

[

a(m) +

m−1
∑

i=0

biCm−i

]

+ fka(m)

[

1 +

k−1
∑

i=1

hk(i)

ξ/2i
−1

∑

l=0

bc(l, ξ/2i)(1 + (i − 1) + Cξi−l+m) + O(hk(k))

]

(3)

where ξi ≡
∑

m=1,i ξ/2m and hk(i) is the probability that a node is forced

to use its k − ith finger owing to the death of its kth finger. The probabilities
a, b, bc have already been introduced in section 3.

The lookup equation though rather complicated at first sight merely accounts
for all the possibilities that a Chord lookup will encounter, and deals with them
exactly as the protocol dictates. The first term accounts for the eventuality
that there is no node intervening between ξ and ξ + m (occurs with probability
1 − a(m)). In this case, the cost of looking for ξ + m is the same as the cost for
looking for ξ. The second term accounts for the situation when a node does inter-
vene inbetween (with probability a(m)), and this node is alive (with probability

1 − fk). Then the query is passed on to this node (with 1 added to register the
increase in the number of hops) and then the cost depends on the distance be-
tween this node and t. The third term accounts for the case when the intervening
node is dead (with probability fk). Then the cost increases by 1 (for a timeout)
and the query needs to be passed back to the closest preceding finger. We hence
compute the probability hk(i) that it is passed back to the k − ith finger either
because the intervening fingers are dead or share the same finger table entry as
the kth finger. The cost of the lookup now depends on the remaining distance to
the sought key. The expression for hk(i) is easy to compute using theorem 3.1
and the expression for the fk’s [10].

The cost for general lookups is hence

L(r, α) =
ΣK−1

i=1 Ci(r, α)

K

The lookup equation is solved recursively, given the coefficients and C1. We
plot the result in Fig 4. The theoretical result matches the simulation very well.

4 Discussion and Conclusion

We now discuss a broader issue, connected with churn, which arises naturally in
the context of our analysis. As we mentioned earlier, all our analysis is performed
in the steady state where the rate of joins is the same as the rate of departures.
However this rate itself can be chosen in different ways. While we expect the
mean behaviour to be the same in all these cases, the fluctuations are very
different with consequent implications for the functioning of DHTs. The case
where fluctuations play the least role are when the join rate is “per-network”
(The number of joinees does not depend on the current number of nodes in
the network) and the failure rate is “per-node” (the number of failures does
depend on the current number of occupied nodes). In this case, the steady state
condition is λj/N = λf guaranteeing that N can not deviate too much from
the steady state value. In the two other cases where the join and failure rate
are both per-network or (as in the case considered in this paper) both per-node,
there is no such “repair” mechanism, and a large fluctuation can (and will) drive
the number of nodes to extinction, causing the DHT to die. In the former case,
the time-to-die scales with the number of nodes as ∼ N3 while in the latter case
it scales as ∼ N2 [10]. Which of these ’types’ of churn is the most relevant?
We imagine that this depends on the application and it is hence probably of
importance to study all of them in detail.

To summarize, in this paper, we have presented a detailed theoretical analysis
of a DHT-based P2P system, Chord, using a Master-equation formalism. This
analysis differs from existing theoretical work done on DHTs in that it aims not
at establishing bounds, but on precise determination of the relevant quantities
in this dynamically evolving system. From the match of our theory and the
simulations, it can be seen that we can predict with an accuracy of greater than
1% in most cases.

Apart from the usefulness of this approach for its own sake, we can also
gain some new insights into the system from it. For example, we see that the
fraction of dead finger pointers fk is an increasing function of the length of
the finger. Infact for large enough K, all the long fingers will be dead most of
the time, making routing very inefficient. This implies that we need to consider
a different stabilization scheme for the fingers (such as, perhaps, stabilizing the
longer fingers more often than the smaller ones), in order that the DHT continues
to function at high churn rates. We also expect that we can use this analysis to
understand and analyze other DHTs.

References

1. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: ACM Conf. on Principles of Distributed Computing (PODC),
Monterey, CA (2002)

2. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems.
In: Proceedings of the twenty-first annual symposium on Principles of distributed
computing, ACM Press (2002) 223–232

3. Li, J., Stribling, J., Gil, T.M., Morris, R., Kaashoek, F.: Comparing the perfor-
mance of distributed hash tables under churn. In: The 3rd International Workshop
on Peer-to-Peer Systems (IPTPS’02), San Diego, CA (2004)

4. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In: Pro-
ceedings of the 2004 USENIX Annual Technical Conference(USENIX ’04), Boston,
Massachusetts, USA (2004)

5. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured
peer-to-peer overlays. In: Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN’04), IEEE Computer Society (2004)

6. N.G. van Kampen: Stochastic Processes in Physics and Chemistry. North-Holland
Publishing Company (1981) ISBN-0-444-86200-5.

7. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet ap-
plications. IEEE Transactions on Networking 11 (2003)

8. Wang, S., Xuan, D., Zhao, W.: On resilience of structured peer-to-peer systems. In:
GLOBECOM 2003 - IEEE Global Telecommunications Conference. (2003) 3851–
3856

9. Aberer, K., Datta, A., Hauswirth, M.: Efficient, self-contained handling of identity
in peer-to-peer systems. IEEE Transactions on Knowledge and Data Engineering
16 (2004) 858–869

10. El-Ansary, S., Krishnamurthy, S., Aurell, E., Haridi, S.: An analytical
study of consistency and performance of DHTs under churn (draft). Tech-
nical Report TR-2004-12, Swedish Institute of Computer Science (2004)
http://www.sics.se/ sameh/pubs/TR2004 12.

