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Abstract— In this paper, we present a complete analytical study
of dynamic membership (aka churn) in structured peer-to-peer
networks. We use a master-equation-based approach, which is
used traditionally in non-equilibrium statistical mechanics to
describe steady-state or transient phenomena. We demonstrate
that this methodology is in fact also well suited to describing
structured overlay networks by an application to the Chord
system. For any rate of churn and stabilization rates, and any
system size, we accurately account for the functional form of: the
distribution of inter-node distances, the probability of network
disconnection, the fraction of failed or incorrect successor and
finger pointers and show how we can use these quantities to
predict both the performance and consistency of lookups under
churn. Additionally, we also discuss how churn may actually
be of different ’types’ and the implications this will have for
structured overlays in general. All theoretical predictions match
simulation results to a high extent. The analysis includes details
that are applicable to a generic structured overlay deploying a
ring as well as Chord-specific details that can act as guidelines
for analyzing other systems.

I. I NTRODUCTION

An intrinsic property of Peer-to-Peer systems is the process
of never-ceasing dynamic membership. Structured Peer-to-
Peer Networks (aka Distributed Hash Tables (DHTs)) have the
underlying principle of arranging nodes in an overlay graphof
known topology and diameter. This knowledge results in the
provision of performance guarantees. However, dynamic mem-
bership continuously “corrupts/churns” the overlay graphand
every DHT strives to provide a technique to “correct/maintain”
the graph in the face of this perturbation.

Both theoretical and empirical studies have been conducted
to analyze the performance of DHTs undergoing “churn” and
simultaneously performing “maintenance’. Liben-Nowell et. al
[7] prove a lower bound on the maintenance rate required
for a network to remain connected in the face of a given
dynamic membership rate. Aspnes et. al [3] give upper and
lower bounds on the number of messages needed to locate
a node/data item in a DHT in the presence of node or link
failures. The value of such theoretical studies is that they
provide insights neutral to the details of any particular DHT.
Empirical studies have also been conducted to complement
these theoretical studies by showing how within the asymptotic
bounds, the performance of a DHT may vary substantially
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depending on different DHT designs and implementation
decisions. Examples include the work of: Li et. al [6], Rhea
et.al [9] and Rowstron et.al [4].

In this paper, we present a new approach to studying churn,
based on working with master equations, a widely used tool
wherever the mathematical theory of stochastic processes is
applied to real-world phenomena [8]. We demonstrate the
applicability of this approach to one specific DHT: Chord [10].

A master-equation description for a dynamically evolving
system is achieved by first defining astateof the system. This
is just a listing of the quantities one would need to know
for the fullest description of the system. For Chord, thestate
could be defined as a listing of how many nodes there are in the
system and what the state (whether correct, incorrect or failed)
of each of the pointers of those nodes is. This information is
not enough to draw a unique graph of network-connections
(because for example, if we know that a given node has an
’incorrect’ successor pointer, this still does not tell us which
node it is pointing to). However, as we will see, beginning at
this level of description is sufficient to keep track of most of
the details of the Chord protocols.

Having defined a state, the master-equation is simply an
equation for the evolution of the probability of finding the
system in this state, given the details of the dynamics. The
specific nature of the dynamics plays a role in evaluating all
the terms leading to the gain or loss of this probability,i.e.
keeping track of the contribution of all the events which can
bring about changes in the probability in a micro-instant of
time.

Using this formalism our results are accurate functional
forms of the following: (i) The distribution of inter-node
distances when the system is in equilibrium. This distribution
is independent of any details of Chord and are applicable
to any DHT deploying a ring.(ii) Chord-specific inter-node
distribution properties.(iii) For every outgoing pointer of a
Chord node, we systematically compute the probability that
it is in any one of its possible states. This probability is
different for each of the successor and finger pointers. We
then use this information to predict other quantities such
as (iv) the probability that the network gets disconnected,
(v) lookup consistency (number of failed lookups), and(vi)
lookup performance (latency). All quantities are computedas a
function of the parameters involved and all results are verified
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by simulations.

II. RELATED WORK

Closest in spirit to our work is the informal derivation in the
original Chord paper [10] of the average number of timeouts
encountered by a lookup. This quantity was approximated
there by the product of the average number of fingers used
in a lookup times the probability that a given finger points to
a departed node. Our methodology not only allows us to derive
the latter quantity rigorously but also demonstrates how this
probability depends on which finger (or successor) is involved.
Further we are able to derive a precise relation relating this
probability to lookup performance and consistency accurately
at any value of the system parameters.

In the works of Aberer et.al [1] and Wang et.al [11], DHTs
are analyzed under churn and the results are compared with
simulations. However, the main parameter of the analysis isthe
probability that a random selected entry of a routing table is
stale. In our analysis, we determine this quantity from system
details and churn rates.

A brief announcement of the results presented in this paper,
has appeared earlier in [5].

III. O UR IMPLEMENTATION OF CHORD

The Chord Ring. The general philosophy of DHTs is to
map a set of data items onto a set of nodes where the insertion
and lookup of items is done using unique keys of items.
Chord’s realization of that philosophy is as follows. Peers
and data items are given unique keys (usually obtained by
a cryptographic hash of unique attribute like the IP address
or public key for nodes, and filename or checksum for items)
drawn from a circular key space of sizeK. The Chord system
dictates that the right place for storing an item is at the first
alive node whose key succeeds the key of the item. Since
we refer to nodes and items by their keys, in that way, the
insertion and lookup of items becomes a matter of locating
the right “successor” of a key. All nodes have successor and
predecessor pointers. ForN nodes, using only the successor
pointers to lookup items requires12N hops on average.

Fingers. To reduce the average lookup path length, nodes
keep M = log2 K pointers known as the “fingers”. Using
these fingers, a node can retrieve any key inO(log N) hops.
The fingers of a noden (where n ∈ 0 · · · K − 1) point to
exponentially increasing distances of keys away fromn. That
is, ∀i ∈ 1..M, n points to a node whose key is equaln+2i−1.
We denote that key byn.fini.start. However, for a certaini,
there might not be a node in the network whose key is equal
to n + 2i−1. Therefore,n points to the successor ofn + 2i−1

which we denote byn.fini.node.
The Successor ListMoreover, each node keeps a list of

the S = O(log(N)) immediate successors as backups to its
first successor we use the notationn.s to refer to this list and
n.si to refer to theith element in the list. Finally we use the
notationn.p to refer to the predecessor

Stabilization, Churn & Steady State.To keep the pointers
up-to-date in the presence of churn, each node performs
periodic stabilization of its successors and fingers. In our

analysis, we defineλj as the rate of joins per node,λf the
rate of failures per node andλs the rate of stabilizations
per node. We carry out our analysis for the general case
when the rate of doing successor stabilizationsαλs, is not
necessarily the same as the rate at which finger stabilizations
(1 − α)λs are performed. In all that follows, we impose
the steady state conditionλj = λf unless otherwise stated.
Further it is useful to definer ≡ λs

λf
which is the relevant

ratio on which all the quantities we are interested in will
depend, e.g,r = 50 means that a join/fail event takes place
every half an hour for a stabilization which takes place once
every36 seconds. Throughout the paper we will use the terms
λj∆t, λf∆t, αλs∆t and(1−α)λs∆t to denote the respective
probabilities that a join, failure, a successor stabilization, or a
finger stabilization take place during a micro period of time
of length∆t.

Parameters.The parameters of the problem are hence:K,
N , α and r. All relevant measurable quantities should be
entirely expressible in terms of these parameters.

Simulation Since we are collecting statistics like the prob-
ability of a particular finger pointer to be wrong, we need
to repeat each experiment100 times before obtaining well-
averaged results. The total simulation sequential real time
for obtaining the results of this paper was about1800 hours
that was parallelized on a cluster of14 nodes where we
had N = 1000, K = 220, S = 6, 200 ≤ r ≤ 2000 and
0.25 ≤ α ≤ 0.75.

While the main outlines of the chord protocol are provided
by its authors in [10], an exact analysis necessitates the
provision of a deeper level of detail and adopted assumptions
which we provide in the following subsections.

A. Joins, Failures & Ring Stabilization

Initialization. Initially, a node knows its key and at least
one node with keyc that already exists in the network and
is alive. The knowledge of such a node is assumed to be ac-
quired through some out-of-band method. The predecessorp,
successors (s1..S) and fingers (fin1..M.node) are all assigned
to nil.

Joins (Fig. 1). A new noden joins by looking up its
successor using the initial random contact nodec. It also starts
its first stabilization of the successors and initializes its fingers.

Stablization of Sucessors(Fig. 1). The functionfixSuc-
cessorsis triggered periodically with rateαλs. A node n
tells its first alive successory that it believes itself to bey’s
predecessor and expects as an answery’s predecessory.p and
successorsy.s. The response ofy can lead to three actions:
Case A. Some node exists betweenn and y (i.e. n’s belief
is wrong), son prependsy.p to its successor list as a first
successor and retriesfixSuccessors.
Case B. y confirmsn’s belief and informsn of y’s old prede-
cessory.p. Thereforen considersy.p as an alternative/initial
predecessor forn. Finally, n reconciles its successor list with
y.s.
Case C. y agrees thatn is its predecessor and the only task
of n is to update its successor list by reconciling it withy.s.

By calling iThinkIamYourPred(Fig. 1), some nodex in-
forms n that it believes itself to ben’s predecessor. Ifn’s
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n.join(c)
s1 = c.findSuccessor(n)
fixSuccessors()
initFingers(s1)

n.fixSuccessors()
y = firstAliveSuccessor()
{y.p, y.s} = y.iThinkIamYourPred(n)
if (y.p ∈]me, y[) //Case A

prepend(y.p)
fixSuccessors()

elsif (y.p ∈]y, me[) //Case B
considerANewPred(y.p)
reconcilce(y.s)

else //Case C:y.p == me
reconcile(y.s)

n.firstAliveSuccessor()
while (true)

if (s1 == nil)
//Broken Ring!!

if (isAlive(s1))
return (s1)

∀i ∈ 1..(S − 1)
si = si+1

sS = nil

n.iThinkIAmYourPred(x)
if ((isNotAlive(p) or (p == nil))

p = x
return({s, x})

if (x ∈]p, me[)
oldp = p
p = x
return({s, oldp})

else
return({s, p})

n.considerANewPred(x)
if (isNotAlive(p)

or (p == nil)
or (x ∈]p, n[))

p = x

n.reconcile(s′)
for i = 1..(S − 1)

si+1 = s′i

n.prepend(y)
for i = S..2

si = si−1

s1 = y

Fig. 1. Joins and Ring Stabilization Algorithms

predecessorp is not alive or nil, then n acceptsx as a
predecessor and informsx about this agreement by returning
x. Alternatively, if n’s predecessorp is alive (discovering that
will be explained shortly in section III-C), then there are two
possibilities: The first is thatx is in the region betweenn
and its current predecessorp thereforen should acceptx as a
new predecessor and informx about its old predecessor. The
second is thatp is already pointing tox so the state is correct
at both parties andn confirms that tox by informing it that
x is the predecessor ofn. In all cases the function returns a
predecessor and a successors list.

The function firstAliveSuccessor(Fig. 1) iterates through
the successors list. In each iteration, if the first successor s1 is
alive, it is returned. Otherwise, the dead successor is dropped
from the list and nil is appended to the end of the list. If the
first successor isnil this means that all immediate successors
are dead and that the ring is disconnected.

B. Lookups and Stablization of Fingers

Stablization of Fingers (Fig. 2). Stabilization of fingers
occurs at a rate(1 − α)λs. Each time thefixFingersfunction
is triggered, a random fingerfini is chosen and a lookup
for fini.start is performed and the result is used to update
fini.node.

Initialization of Fingers (Fig. 2). After having initialized its
first successors1, a noden sets all fingers with starts between
n ands1 to s1. The rest of the fingers are initialized by taking
a copy of the finger table ofs1 and finding an approximate
successor to every finger from that finger table.

Lookups (Fig. 3). A lookup operation is a fundamental
operation that is used to find the successor of a key. It is used
by many other routines and its performance and consistency

n.initFingers(s1)
f ′ = s1.f
∀i ∈ 1..M s.th. (fini.start ∈]n, s1]),

fini.node = s1

∀j ∈ 1..M s.th. (finj .start /∈]n, s1]),
finj .node =localSuccessor(f ′, finj .start)

n.localSuccessor(f ,k)
for i = 1..M

if (k ∈]n, fini])
return(fini)

return(nil)

n.fixFingers(k)
1 ≤ i = random()≤ M
fini.node =

findSuccessor(fini.start)

Fig. 2. Initialization and Stabilization of Fingers

n.findSuccessor(k)
//Case A:k is exactly equal ton
if (k == n)

return(n)
//Case B:k is betweenn and s1

if (k ∈]n, s1])
return(firstAliveSuccessorNoChange());

//Case C: Forward to the lookup to
//the closest preceding alive finger
cpf = closestAlivePrecedingFinger(k);
if (cpf == nil)

y = firstAliveSuccessorNoChange();
if (k ∈]n, y])

return(y);
cpf = closestAlivePrecedingSucc(k);
return(cpf .findSuccessor(k))

else
return (cpf .findSuccessor(k));

n.firstAliveSuccessorNoChange()
i = 1
while (true)

if (si == nil)
//Broken Ring!!

if (isAlive(si))
return (si)

i + +
n.closestAlivePrecedingFinger(k)

for i = M..1
if ((fini ∈]n, k[)

and (fini 6= nil)
and isAlive(fini))

return(fini)
return(nil)

n.closestAlivePrecedingSucc(k)
for i = S..1

if ((si ∈]n, k[)
and (si 6= nil)
and isAlive(si))

return(si)
return(cpf)

Fig. 3. The Lookup Algorithm

are the main quantities of interest in the evaluation of any
DHT. A node n looking up the successor ofk runs the
findSuccessoralgorithm which can lead to the following cases:

Case A.If k is equal ton thenn is trivially the successor
of k.

Case B.If k ∈]n, s1] thenn has found the successor ofk,
but it could be thats1 has failed andn has not yet discovered
this. However, entries in the successor list can act as backups
for the first successor. Therefore, the first alive successorof
n is the successor ofk. Note that, in this case, while we try
to find the first alive successor, we do not change the entries
in the successor list. This is mainly because, to simplify the
analysis, we want the successor list to be changed at a fixed
rate rateαλs only by thefixSuccessorsfunction.

Case C.The lookup should be forwarded to a node closer
to k, namely the closest alive finger precedingk in n’s finger
table. The call to the functionclosestAlivePrecedingFinger
returns such a node if possible and the lookup is forwarded to
it. However, it could be the case that all alive preceding fingers
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to k are dead. In that case, we need to use the successors list
as a last resort for the lookup. Therefore, we locate the first
alive successory and if k ∈]n, y] then y is the successor of
k. Otherwise, we locate the closest alive preceding successor
to k and forward the lookup to it.

C. Failures

Throughout the code we use the callisAlive and
isNotAlive. A simple interpretation of those routines would
be to equate them to a performance of a ping. However, a
correct implementation for them is that they are discovered
by performing the operation required. For instance, a call to
firstAliveSuccesor in Fig. 1 is performed to retrieve a node
y and then cally.iThinkIamY ourPred, so alternatively the
first alive successor could be discovered by iterating on the
successor list and callingiThinkIamY ourPred.

IV. T HE ANALYSIS

A. Distributional Properties of Inter-Node Distances

During churn, the average inter-node distance is a fluc-
tuating quantity whose distribution is used throughout our
analysis. The derivation we present here of this distribution
is independent of any details of the DHT implementation and
depends solely on the dynamics of the join and leave process.
It is hence applicable to any DHT that deploys a circular key
space.

Definition 4.1: Given two keysu, v ∈ {0...K − 1}, the
“distance” between them isu−v (with modulo-K arithmetic).
We interchangeably say thatu and v form an “interval” of
lengthu − v. Hence the number of keysinsidean interval of
length ℓ is ℓ − 1 keys.

Definition 4.2: Let Intx be the number of intervals of
lengthx, i.e. the number of pairs of consecutive nodes which
are separated by a distance ofx keys on the ring.

Theorem 4.1:For a process in which nodes join or leave
with equal rates independently of each other and uniformly on
the ring, and the number of nodesN in the network is almost
constant withN << K, the probability (P (x) ≡ Intx

N ) of
finding an interval of lengthx is: P (x) = ρx−1(1− ρ) where
ρ = K−N

K
.

Proof : By definition
∑

P (x) = 1 and
∑

x P (x) = K/N .
Further, for the mean number of peers, the join-leave process
we consider, simply implies thatdN

dt = λj − λf . We will
hence need to check that an equation forInt(x) does indeed
satisfy all the above constraints. Note that the interval oftime
considered in the equation for the rate of change ofN is the
time-scale over which asinglenode change occurs. If we were
to write the same equation for time-scales over whichN node
changes occur, the equation would then bedN

dt = (λj −λf )N .
For our purposes however, we want to look at the changes in
the system over “microscopic” time-scales in which at most
one event occurs to change the state of the system.

We now write an equation forIntx by considering all the
processes which lead to its gain or loss. These are summarized
in table I

First, a failure of either of the boundary nodes of an interval
of sizex leads to its loss at ratec1.1. That is, since the node

Intx(t + ∆t) Rate of Change
= Intx(t) − 1 c1.1 = (λf∆t)2P (x)

= Intx(t) − 1 c1.2 = (λj∆t)
N(x−1)P (x)

K−N

= Intx(t) + 1 c1.3 = (λf∆t)
Px−1

x1=1 P (x1)P (x − x1)

= Intx(t) + 1 c1.4 = (λj∆t) 2N
K−N

P
x1>x P (x1)

= Intx(t) 1 − (c1.1 + c1.2 + c1.3 + c1.4)

TABLE I

GAIN AND LOSS TERMS FORInt(x) THE NUMBER OF INTERVALS OF

LENGTH x.

killed is randomly picked amongst all the nodes in the interval,
the probability that it was participating on either side of an
interval of lengthx is 2P (x).

Second, an interval of sizex can be lost at ratec1.2 if a
joining node splits it. Only joining with keys that belong to
one of theIntx intervals can lead to the loss of an interval
of length x and in each one of these, there arex − 1 ways
(available keys) for splitting. Therefore(x−1)×Intx positions
out of theK − N available keys can destroy an interval of
length x. That is, the probability that one of the intervals of
lengthx is destroyed is(x−1)Intx

K−N which can be rewritten as
N(x−1)P (x)

K−N .
Third, the number of intervals of sizex can increase by

1 at rate c1.3 if a failure of a boundary node results in
the aggregation of two adjacent intervals. To clarify that,
we give the following examples. An interval of length1
cannot be formed by such a process. An interval of length
2 can be formed by the failure of a node if the node that
failed was shared between two adjacent intervals of length
1. We are assuming here that the probability of picking two
adjacent intervals of length1 is P (1)P (1). This is in effect
assuming that the probability of having two adjacent intervals
of size 1, factorises toP (1)2. However for this system, this
is an accurate estimation. Thus, in general, the probability of
forming an interval of lengthx is

∑x−1
x1=1 P (x1)P (x − x1).

Fourth, an increase can happen at ratec1.4 if a join event
splits a larger interval into an interval of sizex. For a
join to form an interval of lengthx, it must occur in an
interval of length greater thanx. In each interval of length
x1 > x, there are exactly two ways of forming an interval of
lengthx. Therefore, the probability of forming an interval of

length x is equal to
2
P

x1>x Intx

K−N , which can be rewritten as
2N
P

x1>x P (x)

K−N

Finally, Intx remains the same if none of the above hap-
pens.

Therefore the equation forIntx for x > 1 is:

dIntx
dt

= − P (x)

[

2λf +
Nλj(x − 1)

K − N

]

+ λf

x−1
∑

x1=1

P (x1)P (x − x1)

+ 2λj
N

K − N

∑

x1>x

P (x1).

(1)
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Fig. 4. (a) Case whenn andp have the same value offink.node. (b) Case
where a newly joined nodep copies thekth entry of its successor noden as
the best approximation for its ownkth entry (by the join protocol). In this
case, there could be a nodeo which is the ’correct’ entry forp.fink.node.
However, sincep is newly joined, the only information it has access to is the
finger table ofn.

The equation forInt1 is the same as the above except that
the second term is missing.

We can check that :
d

dt

∑

Intx =
dN

dt
= λj − λf (2)

as required.
Further we can check that the constraint:

d

dt

∑

xIntx =
dK

dt
= 0

is also obeyed. Equation 1 can be readily solved in the case
λj = λf for the steady state (when the time derivative is zero)
leading to the solution:

P (x) = ρx−1(1 − ρ) (3)

whereρ = K−N
K

.

Given the above term forρ we can state the following
corollary that gives an intuitive meaning forρ in the case
λj = λf .

Corollary 1.1: Given a ring ofK keys populated byN
nodes,ρ ≡ K−N

K
is the ratio of the unpopulated keys to the

total number of keys, i.e. the probability of picking a key at
random and finding it empty isρ.

The proof of the above theorem does assume that (in the
caseλj = λf ) the number of nodesN is fairly constant.
Indeed at first sight this seems to be strictly true from Eq. 2.
However, just as in a random walk, the variance in this case
increases with time. We will comment more on the properties
of the variance later. For the moment, we note that the above
result can be generalized to also include the case whenN is a
fluctuating quantity. In this case we only need to multiply the
N dependent terms in Eq. 1 withProb(N, t): the probability
that there areN nodes in the system at timet, and average
over N .

We now derive some properties of this distribution which
will be used in the ensuing analysis.

Property 4.1: For any two keysu andv, wherev = u + x,
let bi be the probability that the first node encountered in
between these two keys is atu + i (where0 ≤ i < x). Then
bi ≡ ρi(1 − ρ). The probability that there is definitely at least
one node betweenu and v is: a(x) ≡ 1 − ρx. Hence the
conditional probability that the first node is at a distancei
giventhat there is at least one node in the interval isbc(i, x) ≡
b(i)/a(x).

Explanation : Considerbi first. For any keyu, the probability
that the first node encountered is atu itself (b0) is 1 − ρ
from Corollary 1.1. Similarly the probability that the firstnode
encountered is atu + 1 (b1) is ρ(1 − ρ) which is just the
product of the probabilities that the first key is empty and
the second is occupied. Thus in general, the probability that
the first populated node starting fromu is at u + i is b(i) ≡
(ρ)i(1 − ρ). Given this, the probability that there is at least
one node betweenu and v = u + x (not including the case
when the node is atv) is

∑x−1
i=0 bi = 1 − ρx ≡ a(x).

Property 4.2: The probability that a node and at least one
of its immediate predecessors share the samekth finger is
p1(k) ≡ ρ

1+ρ (1 − ρ2k
−2). This is ∼ 1/2 for K >> 1 and

N << K.Clearly p1 = 0 for k = 1. It is straightforward
(though tedious) to derive similar expressions forp2(k) the
probability that a node and atleasttwo of its immediate
predecessors share the samekth finger, p3(k) and so on.

Explanation : If the distance between noden and its
predecessorp is x, the distance betweenn.fink.start and
p.fink.start is also x (see Fig. 4(a)). If there is no node
in betweenn.fink.start and p.fink.start then n.fink.node
and p.fink.node will share the same value. From Eq. 3,
the probability that the distance betweenn and p is x is
ρx−1(1 − ρ). However,x has to be less than2k−1, otherwise
p.fink.node will be equal to n. The probability that no
node exists betweenn.fink.start and p.fink.start is ρx (by
Property 4.1). Therefore the probability that then.fink.node
andp.fink.nodeshare the same value is:

∑2k−1
−1

x=1 ρx−1(1−

ρ)ρx = ρ
1+ρ (1 − ρ2k

−2)

Property 4.3: We can similarly assess the probability that
the join protocol(Section refsec:fingers) results in further
replication of thekth pointer. Let us define the probability
pjoin(i, k) as the probability that a newly joined node, chooses
the ith entry of its successor’s finger table for its ownkth

entry. Note that this is unambiguous even in the case that the
successor’sith entry is repeated. All we are asking is, when
is the kth entry of the new joinee the same as theith entry
of the successor? Clearlyi ≤ k. Infact for the larger fingers,
we need only considerpjoin(k, k), sincepjoin(i, k) ∼ 0 for
i < k. Using the interval distribution we find, for largek,
pjoin(k, k) ∼ ρ(1 − ρ2k−2

−2) + (1 − ρ)(1 − ρ2k−2
−2) − (1 −

ρ)ρ(2k−2 − 2)ρ2k−2
−3. This function goes to1 for largek.

Explanation : By the join protocol a newly joined nodep,
tries to assignp.fink.node to the best approximate value from
the finger table of its successorn. This approximate value
might turn out to ben.fink.node, especially for the larger
fingers. If p chooses thekth entry of n as its ownkth entry,
it must be because thek − 1th entry of n (if distinct, as is
always the case for largek) does not afford it a better choice.
The condition for this is :p.fink.start > n.fink−1.node. If
the distance betweenn.fink.start andp.fink.start is x, and
the distance betweenn.fink−1.start andn.fink−1.node is y
(see Fig. 4 (b)), then the constraint onx andy is n+2k−1−x >
n+2k−2+y or x+y < 2k−2. We also have the added constraint
that x < 2k−1, since otherwisep.fink.node would simply be
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Fig. 5. Changes inW1, the number of wrong (failed or outdated)s1 pointers,
due to joins, failures and stabilizations.

n. In fact since the distance between then.fink.start and
n.fink−1.start cannot be more than2k−2 we havex < 2k−2.

Thus the probabilitypjoin(k, k) is:

2k−2
−1

∑

x=1

2k−2
−x

∑

y=1

P (x)P (y) =

2k−2
−1

∑

z=2

ρz−2(1 − ρ)2(z − 1) (4)

where we have put in the expressions forP (x) and P (y)
from Eq. 3 and converted the double summation to a single
one. This expression can be summed easily to obtain the result
quoted above.

We can also analogously computepjoin(i, k) for any i. The
only trick here is to estimate the probability that startingfrom
i, the lastdistinct entry of n’s finger tabledoes notgive p
a better choice for itskth entry. This can again readily be
computed using property 4.1.

B. Successor Pointers

We now turn to estimating various quantities of interest for
Chord. In all that follows we will evaluate variousaverage
quantities, as a function of the parameters. However this same
formalism can also be used for evaluating higher moments like
the variance.

In the case of Chord, we need consider only one of three
kinds of events happening at any micro-instant: a join, a failure
or a stabilization. One assumption made in the following is
that such a micro-instant of time exists, or in other words,
that we can divide time till we have an interval small enough
that in this interval, only any one of these three processes
occur. Implicit in this is the assumption that a stabilization
(either of successors or fingers) is over much faster than the
time-scales over which joins and fails occur. Another (more
serious) assumption is that the state of the system is aproduct
of the state of all the nodes. Nodes are hence assumed to have,
for the most part, states independent of each other ,i.e. the
probability of two adjacent nodes having a wrong successor
pointer is taken to be the product of the individual nodes
having wrong successor pointers (though as we have seen from
Properties 4.2 and 4.3, in the case of finger pointers, we

Change inW1(r, α) Rate of Change
W1(t + ∆t) = W1(t) + 1 c2.1 = (λj∆t)(1 − w1)
W1(t + ∆t) = W1(t) + 1 c2.2 = λf (1 − w1)2∆t
W1(t + ∆t) = W1(t) − 1 c2.3 = λf w2

1∆t
W1(t + ∆t) = W1(t) − 1 c2.4 = αλsw1∆t
W1(t + ∆t) = W1(t) 1 − (c2.1 + c2.2 + c2.3 + c2.4)

TABLE II

GAIN AND LOSS TERMS FORW1(r, α): THE NUMBER OF WRONG FIRST

SUCCESSORS AS A FUNCTION OFr AND α.

do also consider the case when adjacent nodes might have
correlated fingers). These assumptions imply that the analysis
is notexact. However as we see below it is sufficiently precise
to predict all quantities extremely accurately.

Consider first the successor pointers. Letwk(r, α), dk(r, α)
denote the fraction of nodes having awrong kth successor
pointer or afailed one respectively andWk(r, α), Dk(r, α) be
the respectivenumbers. A failed pointer is one which points
to a departed node and awrong pointer points either to an
incorrect node (alive but not correct) or a dead one. As we
will see, both these quantities play a role in predicting lookup
consistency and lookup length.

By the protocol for stabilizing successors in Chord, a node
periodically contacts its first successor, possibly correcting it
and reconciling with its successor list. Therefore, the number
of wrongkth successor pointers are not independent quantities
but depend on the number of wrong first successor pointers.
We first considers1 here, and then briefly discuss the other
cases towards the end of this section.

We write an equation forW1(r, α) by accounting for all
the events that can change it in a micro event of time∆t. An
illustration of the different cases in which changes inW1 take
place due to joins, failures and stabilizations is providedin
Fig. 5. In some casesW1 increases/decreases while in others it
stays unchanged. For each increase/decrease, Table II provides
the corresponding probability.

By our implementation of the join protocol, a new node
ny, joining between two nodesnx andnz, has itss1 pointer
always correct after the join. However the state ofnx.s1 before
the join makes a difference. Ifnx.s1 was correct (pointing
to nz) before the join, then after the join it will be wrong
and thereforeW1 increases by1. If nx.s1 was wrong before
the join, then it will remain wrong after the join andW1 is
unaffected. Thus, we need to account for the former case only.
The probability thatnx.s1 is correct is1 − w1 and from that
follows the termc2.1.

For failures, we have4 cases. To illustrate them we use
nodesnx, ny, nz and assume thatny is going to fail. First,
if both nx.s1 and ny.s1 were correct, then the failure ofny

will make nx.s1 wrong and henceW1 increases by1. Second,
if nx.s1 and ny.s1 were both wrong, then the failure ofny

will decreaseW1 by one, since one wrong pointer disappears.
Third, if nx.s1 was wrong andny.s1 was correct, thenW1

is unaffected. Fourth, ifnx.s1 was correct andny.s1 was
wrong, then the wrong pointer ofny disappears andnx.s1

becomes wrong, thereforeW1 is unaffected. For the first case
to happen, we need to pick two nodes with correct pointers,
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the probability of this is(1 − w1)
2. For the second case to

happen, we need to pick two nodes with wrong pointers, the
probability of this isw2

1. From these probabilities follow the
termsc2.2 andc2.3.

Finally, a successor stabilization does not affectW1, unless
the stabilizing node had a wrong pointer. The probability of
picking such a node isw1. From this follows the termc2.4.

Hence the equation forW1(r, α) is:

dW1

dt
= λj(1 − w1) + λf (1 − w1)

2 − λfw2
1 − αλsw1

Solving for w1 in the steady state and puttingλj = λf , we
get:

w1(r, α) =
2

3 + rα
≈

2

rα
(5)

This expression matches well with the simulation results
as shown in Fig. 6.d1(r, α) is then≈ 1

2w1(r, α) since when
λj = λf , about half the number of wrong pointers are incorrect
and about half point to dead nodes. Thusd1(r, α) ≈ 1

rα which
also matches well the simulations as shown in Fig. 6. We can
also use the above reasoning to iteratively getwk(r, α) for any
k.

C. Break-up (Network Disconnection) Probability

We demonstrate below, how calculatingdk(r, α): the frac-
tion of nodes with deadkth pointers, helps in estimating

Change inW1(r, α) Rate of Change
Nbu(t + ∆t) = Nbu(t) + 1 c3.1 = (λf∆t)d1(r, α)
Nbu(t + ∆t) = Nbu(t) + 1 c3.2 = λf∆t(1 − d1)d2

Nbu(t + ∆t) = Nbu(t) − 1 c3.3 = αλs∆tPbu(2, r, α)
Nbu(t + ∆t) = Nbu(t) 1 − (c3.1 + c3.2 + c3.3)

TABLE III

GAIN AND LOSS TERMS FORNbu(2, r, α): THE NUMBER OF NODES WITH

DEAD FIRST andSECOND SUCCESSORS
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.

precisely the probability that the network gets disconnected for
any value ofr andα. Let Pbu(n, r, α) be the probability thatn
consecutive nodes fail. Ifn = S, the length of the successor
list, then clearly the node whose successor list this is gets
disconnected from the network and the network breaks up. For
the range ofr considered in Fig. 6,Pbu(S, r, α) ∼ 0. However
should we go lower, this starts becoming finite. The master
equation analysis introduced here can be used to estimate
Pbu(n, r, α) for any 1 ≤ n ≤ S. We indicate how this might
be done by considering the casen = 2. Let Nbu(2, r, α) be the
number of configurations in which a node has boths1 ands2

dead andPbu(2, r, α) be the fraction of such configurations.
Table III indicates how this is estimated within the present
framework.

A join event does not affect this probability in any way. So
we need only consider the effect of failures or stabilization
events. The termc3.1 accounts for the situation when thefirst
successor of a node is dead (which happens with probability
d1(r, α) as explained above). A failure event can then kill
its second successor as well and this happens with probability
c3.1. The second term is the situation that the first successor is
alive (with probability1−d1) but the second successor is dead
(with probabilityd2). This probability is∼ 2/αr. (the second
successor of a node being dead either implies that the first
successor ofits first successor is dead with probabilityd1, or
that it has not stabilized recently, and hence has not corrected
its second successor pointer.This happens with probability ∼
1/αr. These two terms add up to2/αr). A stabilization event
reduces the number of such configurations by one, if the node
doing the stabilization had such a configuration to begin with.
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Fig. 9. Changes inFk, the number of failedfink pointers, due to joins,
failures and stabilizations.

Solving the equation forNbu(2, r, α), one hence obtains
thatPbu(2, r, α) ∼ 3/(αr)2. As Fig. 8 shows, this is a precise
estimate.

We can similarly estimate the probabilities for three con-
secutive nodes failing,etc, and hence also the disconnection
probability Pbu(S, r, α). This formalism thus affords the pos-
sibility of making a precise prediction for when the system
runs the danger of getting disconnected as a function of the
parameters.

Lookup ConsistencyBy the lookup protocol, a lookup is
inconsistent if the immediate predecessor of the sought key
has a wrongs1 pointer. However, we need only consider the
case when thes1 pointer is pointing to an alive (but incorrect)
node since our implementation of the protocol always requires
the lookup to return an alive node as an answer to the query.
The probability that a lookup is inconsistentI(r, α) is hence
w1(r, α) − d1(r, α). This prediction matches the simulation
results very well, as shown in Fig. 7.

D. Failure of Fingers

We now turn to estimating the fraction of finger pointers
which point to failed nodes. As we will see this is an important
quantity for predicting lookups, since failed fingers causetime-
outs and increase the lookup length. We need however only
consider fingers pointing todeadnodes. Unlike members of
the successor list,alive fingers even if outdated, always bring
a query closer to the destination and do not affect consistency
or substantially even the lookup length. Therefore we consider
fingers in only two states, alive or dead (failed). By our
implementation of the stabilization protocol (see Sections III-
A and III-B), fingers and successors are stabilized entirely
independently of each other to simplify the analysis. Thus even
though the first finger is also always the first successor, this
information is not used by the node in updating the finger.

Let fk(r, α) denote the fraction of nodes having theirkth

finger pointing to a failed node andFk(r, α) denote the
respective number. For notational simplicity, we write these
as simplyFk andfk. We can predict this function for anyk
by again estimating the gain and loss terms for this quantity,

Fk(t + ∆t) Rate of Change
= Fk(t) + 1 c4.1 = (λj∆t)

Pk
i=1 pjoin(i, k)fi

= Fk(t) − 1 c4.2 = (1 − α) 1
M

fk(λs∆t)
= Fk(t) + 1 c4.3 = (1 − fk)2[1 − p1(k)](λf∆t)
= Fk(t) + 2 c4.4 = (1 − fk)2(p1(k) − p2(k))(λf∆t)
= Fk(t) + 3 c4.5 = (1 − fk)2(p2(k) − p3(k))(λf∆t)
= Fk(t) 1 − (c4.1 + c4.2 + c4.3 + c4.4 + c4.5)

TABLE IV

SOME OF THE RELEVANT GAIN AND LOSS TERMS FORFk , THE NUMBER

OF NODES WHOSEkth FINGERS ARE POINTING TO A FAILED NODE FOR

k > 1.

caused by a join, failure or stabilization event, and keeping
only the most relevant terms. These are listed in table IV and
illustrated in Fig. 9

A join event can play a role here by increasing the number
of Fk pointers if the successor of the joinee had a failedith

pointer (occurs with probabilityfi) and the joinee replicated
this from the successor as the joinee’skth pointer. (occurs with
probabilitypjoin(i, k) from property 4.3). For large enoughk,
this probability is one only forpjoin(k, k), that is the new
joinee mostly only replicates the successor’skth pointer as its
own kth pointer. This is what we consider here.

A stabilization evicts a failed pointer if there was one to
begin with. The stabilization rate is divided byM, since a
node stabilizes any one finger randomly, every time it decides
to stabilize a finger at rate(1 − α)λs.

Given a noden with an alive kth finger (occurs with
probability 1 − fk), when the node pointed to by that finger
fails, the number of failedkth fingers (Fk) increases. The
amount of this increase depends on the number of immediate
predecessors ofn that were pointing to the failed node with
their kth finger. That number of predecessors could be0, 1,
2,.. etc. Using property 4.2 the respective probabilities ofthose
cases are:1 − p1(k), p1(k) − p2(k), p2(k) − p3(k),... etc.

Solving for fk in the steady state, we get:

fk =

[

2P̃rep(k) + 2 − pjoin(k) + r(1−α)
M

]

2(1 + P̃rep(k))

−

√

[

2P̃rep(k) + 2 − pjoin(k) + r(1−α)
M

]2

− 4(1 + P̃rep(k))2

2(1 + P̃rep(k))
(6)

where P̃rep(k) = Σpi(k). In principle its enough to keep
even three terms in the sum. The above expressions match
very well with the simulation results (Fig. 11).

E. Cost of Finger Stabilizations and Lookups

In this section, we demonstrate how the information about
the failed fingers and successors can be used to predict the cost
of stabilizations, lookups or in general the cost for reaching
any key in the id space. By cost we mean the number of
hops needed to reach the destinationincluding the number of
timeouts encountered en-route. Timeouts occur every time a
query is passed to a dead node. The node does not answer and
the originator of the query has to use another finger instead.
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Fig. 10. Cases that a lookup can encounter with the respective probabilities and costs.
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For this analysis, we consider timeouts and hops to add equally
to the cost. We can easily generalize this analysis to investigate
the case when a timeout costs some factorγ times the cost of
a hop.

Define Ct(r, α) (also denotedCt) to be the expected cost
for a given node to reach some target key which ist keys away
from it (which means reaching the first successor of this key).
For example,C1 would then be the cost of looking up the
adjacent key (1 key away). Since the adjacent key is always
stored at the first alive successor, therefore if the first successor
is alive (which occurs with probability1 − d1), the cost will
be 1 hop. If the first successor is dead but the second is alive
(occurs with probabilityd1(1− d2)), the cost will be 1 hop +
1 timeout =2 and theexpectedcost is2× d1(1− d2) and so
forth. Therefore, we haveC1 = 1−d1 +2×d1(1−d2)+3×
d1d2(1 − d3) + · · · ≈ 1 + d1 = 1 + 1/(αr).

For finding the expected cost of reaching a general distance
t we need to follow closely the Chord protocol, which would
lookup t by first finding the closest preceding finger. For the
purposes of the analysis, we will find it easier to think in terms
of the closest precedingstart. Let us hence defineξ to be the
start of the finger (say thekth) that most closely precedest.
Henceξ = 2k−1 + n and t = ξ + m, i.e. there arem keys
between the sought targett and the start of the most closely
preceding finger. With that, we can write a recursion relation

for Cξ+m as follows:

Cξ+m = Cξ [1 − a(m)]

+ (1 − fk)a(m)

[

1 +

m−1
∑

i=0

bc(i,m)Cm−i

]

+ fka(m)

[

1 +
k−1
∑

i=1

hk(i)

ξ/2i
−1

∑

l=0

bc(l, ξ/2i)(1 + (i − 1) + Cξi−l+m) + O(hk(k))

]

(7)

whereξi ≡
∑

m=1,i ξ/2m andhk(i) is the probability that
a node is forced to use itsk − ith finger owing to the death
of its kth finger. The probabilitiesa, b, bc have already been
introduced in Section IV, and we define the probabilityhk(i)
below.

The lookup equation though rather complicated at first sight
merely accounts for all the possibilities that a Chord lookup
will encounter, and deals with them exactly as the protocol
dictates.

The first term (Figure 10 (a)) accounts for the eventuality
that there is no node intervening betweenξ andξ +m (occurs
with probability 1 − a(m)). In this case, the cost of looking
for ξ + m is the same as the cost for looking forξ.
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The second term (Figure 10 (b)) accounts for the situa-
tion when a node does intervene inbetween (with probability
a(m)), and this node is alive (with probability1 − fk). Then
the query is passed on to this node (with1 added to register
the increase in the number of hops) and then the cost depends
on the length of the distance between this node andt.

The third term (Figure 10 (c)) accounts for the case when the
intervening node is dead (with probabilityfk). Then the cost
increases by1 (for a timeout) and the query needs to find an
alternative lower finger that most closely precedes the target.
Let thek − ith finger (for somei, 1 ≤ i ≤ k − 1) be such a
finger. This happens with probabilityhk(i), i.e., the probability
that the lookup is passed back to thek − ith finger either
because the intervening fingers are dead or share the same
finger table entry as thekth finger is denoted byhk(i). The
start of thek − ith finger is atξ/2i and the distance between
ξ/2i andξ is equal to

∑

m=1,i ξ/2m which we denote byξi.
Therefore, the distance from thestartof thek−ith to the target
is equal toξi + m. However, note thatfink−i.node could be
l keys away (with probabilitybc(l, ξ/2i)) from fink−i.start
(for somel, 0 ≤ l < ξ/2i). Therefore, after making one hop
to fink−i.node, the remaining distance to the target isξi +
m − l. The increase in cost for this operation is1 + (i −
1); the 1 indicates the cost of taking up the query again by
fink−i.node, and thei − 1 indicates the cost for trying and
discarding each of thei−1 intervening fingers. The probability
hk(i) is easy to compute given property 4.1 and the expression
for the fk ’s computed in the previous section.

hk(i) =a(ξ/2i)(1 − fk−i)

×Πs=1,i−1(1 − a(ξ/2s) + a(ξ/2s)fk−s), i < k

hk(k) =Πs=1,k−1(1 − a(ξ/2s) + a(ξ/2s)fk−s)

(8)

Equation .8 accounts for all the reasons that a node may
have to use itsk − ith finger instead of itskth finger. This
could happen because the intervening fingers were either dead
or not distinct. The probabilitieshk(i) satisfy the constraint
∑k

i=1 hk(i) = 1 since clearly, either a node uses any one of
its fingers or it doesn’t. This latter probability ishk(k), that is
the probability that a node cannot use any earlier entry in its
finger table. In this case,n proceeds to its successor list. The
query is now passed on to the first alive successor and the new
cost is a function of the distance of this node from the target
t. We indicate this case by the last term in equation 7 which
is O(hk(k)). This can again be computed from the inter-node
distribution and from the functionsdk(r, α) computed earlier.
However in practice, the probability for this is extremely
small except for targets very close ton. Hence this does not
significantly affect the value of general lookups and we ignore
it for the moment.

The cost for general lookups is hence

L(r, α) =
ΣK−1

i=1 Ci(r, α)

K

The lookup equation is solved recursively numerically, given
the coefficients andC1. We plot the result in Fig 11. The
theoretical result matches the simulation very well.

F. Analysis of the Lookup Equation in the zero-churn case

On general grounds, it is easy to argue that the average
lookup cost has the following formA + B

r + C
r2 + .... The

dependence on churn is specified by ther-dependence and
A,B etc depend on the other parameters of the system like
N andK. To getA, we need to consider equation 7 with no
churn (all fk’s set to zero). To getB, we need to analyze
the lookup equation toO( 1

r ) and so on. In the following
section, we study the lookup equation 7 in some detail to
understand the behaviour without churn. This is useful in order
to ascertain that it does indeed reproduce known results such
as for example, that the average lookup cost is0.5 ∗ log(N)
without churn [10]. Infact as we will see, for anyN , the
average lookup cost as predicted by equation 7 is indeed
0.5∗ log(N) plus someρ-dependent corrections which though
small are accurately predicted. An added benefit of the analysis
is that we can also predict what the average lookup without
churn will be for any base (Chord has base2 and accordingly
has a finger table size oflog2(K). By our definition of higher
bases a system of baseb will have a finger table size of
(b − 1)logb(K)).

Equation 7 with the churn-dependent terms set to zero
becomes:

Cξ+m = Cξ [1 − a(m)] + a(m) +

m−1
∑

i=0

b(i)Cm−i (9)

After some rewriting of this, it is easily seen that the cost
for any key i + 1 can be written as the following recursion
relation:

Ci+1 = ρCi + (1 − ρ) + (1 − ρ)Ci+1−ξ(i+1) (10)

Here we have used the definition ofa and b from the
internode-interval distribution and the notationξ(i + 1) refers
to the start of the finger most closely precedingi + 1. For
instance, fori + 1 = 4, ξ(i + 1) = 2 and for i + 1 = 11,
ξ(i + 1) = 8 etc.

In figure 12, we have plottedCi versusi by solving equation
10 numerically.

We are interested in solving the recursion relation and
computingL = 1

K

∑K−1
i=1 Ci. To do this, we decompose this

sum into the following partial sums:

s0 = C1 = 1

s1 = C2

s2 = C3 + C4

s3 = C5 + C6 + C7 + C8

. . .

sM = C2M−1+1 + . . . + CK−1

(11)
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Substituting the expressions for theC ’s in the above, we find:

s0 = 1

s1 =
ρ

1 − ρ
[C1 − C2] + 1 + s0

s2 =
ρ

1 − ρ
[C2 − C4] + 2 + [s0 + s1]

. . .

si =
ρ

1 − ρ
[C2i−1 − C2i ] + 2i−1 +

j−1
∑

j=0

sj

(12)

By substituting serially the expressions forsj (where0 ≤
j ≤ i − 1), the expression forsi (for i ≥ 2) becomes:

si =
ρ

1 − ρ
[2i−2C1 − C2i −

i−2
∑

j=1

si−2−jC2j ]

+ 2i + (i − 1)2i−2

(13)

Hence

M
∑

i=0

si = −ρ + [2M+1 − 1] + M2M−1 − [2M − 1]

+
ρ

1 − ρ

[

(2M−1 − 1)C1 −

M−1
∑

i=2

C2i − CK−1

− (2M−2 − 1)C2 − (2M−3 − 1)C4 − . . .

]

(14)

Therefore

M
∑

i=0

si = −ρ + 2M + M2M−1

+
ρ

1 − ρ

[

(2M−1 − 1)C1 −
M−1
∑

i=2

C2i − CK−1

−

M−2
∑

j=2

(2M−j − 1)C2j−1

]

(15)
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Fig. 13. Theory and Simulation for the lookup cost without churn for a
key space of sizeK = 214 for varying N . Plotted as reference is the curve
0.5 log2(N). Note that on the y axis we have actually plottedL − 1 for
convenience.

The equation for the average lookup length without churn is
thus,

L =

∑

s

K

= −
ρ

K
+ 1 +

1

2
M

+
ρ

1 − ρ

[

2M−1 − 1

K
C1 −

1

K

M−1
∑

i=2

C2i −
1

K
CK−1

−

M−2
∑

j=2

2M−j − 1

K
C2j−1

]

(16)

If we can take the limitK → ∞, we can throw away some
of the terms.

lim
K→∞

L = 1 +
1

2
M

+
ρ

1 − ρ

[

C1

2
−

1

K

M−1
∑

i=1

C2i +
C2

K
−

1

K
CK−1

−

M−2
∑

j=2

2M−j

K
C2j−1 +

M−2
∑

j=2

C2j−1

K

]

≈1 +
1

2
M +

ρ

1 − ρ

[

C1

2
−

C2

4
−

C4

8
. . . −

C2M−3

2M−2

]

(17)

SinceC1 = 1, we can write

L = 1 +
1

2
M−

ρ

2(1 − ρ)

[

C2 − 1

2
+

C4 − 1

4
+ . . .

+
C2M−3 − 1

2M−3

] (18)

From the recursion relation for theCi’s, it is easy to see that

(Ci − 1) = (1 − ρ)g
(1)
i (ρ) + (1 − ρ)2g

(2)
i (ρ) + . . . (19)

where thegi’s are functions only ofρ.
Hence if (1 − ρ) is small (N

K
→ 0), we need only compute

theCi’s to first order in (1−ρ) to get the leading order effect
and second order in (1 − ρ) to get the correction etc.
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Hence in general the, the expression forL is:

L = 1 +
1

2
M−

ρ

2

[

e1(ρ) + (1 − ρ)e2(ρ) + (1 − ρ)2e3(ρ) . . .

]

(20)

Wheree1(ρ) =
∑M−3

i=1 g
(1)
2i (ρ) etc.

We evaluate this expression numerically by solving recur-
sion relation (10) and compare it with simulations done at zero
churn. As can be seen the prediction of the equation is very
accurate (Figure 13).

Let us now computee1(ρ) to see what the leading order
effect is. We now need to solve recursion relation (10) only
to order1 − ρ, which gives:

C2 − 1 = (1 − ρ)

C4 − 1 = (1 − ρ)
[

1 + ρ + ρ2
]

C8 − 1 = (1 − ρ)
[

1 + ρ + ρ2 + · · · + ρ6
]

. . .

Ci − 1 = (1 − ρ)
[

1 + ρ + ρ2 + · · · + ρi−2
]

(21)

Therefore,

L = 1 +
1

2
M +

ρ

2

[

1

2
+

1 + ρ + ρ2

4
+ . . .

]

(22)

Consider the expression inside the brackets. We are computing
this in the approximationN

K
= ǫ → 0, i.e. ρ = 1−ǫ, therefore

ρx = (1 − ǫ)x ≈ e−ǫx. If x > 1
ǫ , thenρx → 0, therefore if

x > K

N , then ρx → 0. Hence, the terms inside the brackets
become:

T
∑

j=1

2j − 1

2j
+ (2T − 1)

M−3
∑

j=T+1

1

2
j (23)

WhereT ≡ ln2 K− ln2 N and we have putρx ≈ 1 for x < K

N
andρ → 0 for x > K

N . This is clearly an overestimation and
so we expect the result to over estimate the exact expression
20.

Expression 23 becomes:

T −

[

1 − (
1

2
)M−3

]

+

[

1 − (
1

2
)M−3−T

]

≈ T

Therefore:

L = 1 +
1

2
ln2 K −

1

2
[ln2 K − ln2 N ]

≈ 1 +
1

2
ln2 N

(24)

Which is the known result for the average lookup length of
Chord.

Another important parameter in the performance of DHTs
in general is the base. By increasing the base, the number of
fingers per node increases which leads to a shorter lookup path
length. The effect of varying the base has been studied in [2],
[6]. So far, we have considered in this analysis base-2 Chord.
We can likewise carry out this analysis for any base.

In general, we have base-b with (b− 1)logb(K) fingers per
node. Consider as an exampleb = 4. Here we can define the

the partial sums again in the following manner:

∆0 = s0 = C1 = 1

∆1 = s1 + s2 + s3

∆2 = s4 + s5 + s6

. . .

(25)

where

s1 = C2 = ρC1 + (1 − ρ) + (1 − ρ)C1

s2 = C3 = ρC2 + (1 − ρ) + (1 − ρ)C1

s3 = C4 = ρC3 + (1 − ρ) + (1 − ρ)C1

s4 = C5 + C6 + C7 + C8

s5 = C9 + C10 + C11 + C12

s6 = C13 + C14 + C15 + C16

. . .

(26)

Therefore

∆0 = C1

∆1 = ρ [∆1 + C1 − C4] + 3(1 − ρ) + 3(1 − ρ) [∆0]

∆2 = ρ [∆2 + C4 − C16] + 12(1 − ρ) + 3(1 − ρ) [∆0 + ∆1]

. . .
(27)

In general for a baseb, defineB ≡ b− 1 andbM = K. Then
we have:

∆j =
ρ

1 − ρ
[Cbj−1 − Cbj ]

+B(B + 1)j−1 + B [∆0 + ∆1 + · · · + ∆j−1]
(28)

Following much the same procedure as before, we find

L =
1

K

M
∑

j=0

∆j

≈1 +
B

B + 1
M−

B

B + 1

ρ

1 − ρ

[

Cb − 1

B + 1
+

Cb2 − 1

(B + 1)2
+ . . .

]

(29)

for K → ∞ as the analogue of (18). Again we can simplify
and slightly overestimate the sum by assuming thatρx ≈ 0
for x > K

N andρx ≈ 1 for x < K

N . Then we get:

L ≈ 1 +
b − 1

b

ln2 N

ln2 b
(30)

This is the analogue of equation 24 for any baseb.
Clearly it is of interest to carry out a similar analysis with

churn to get an estimate of theO(1/r) effect. However in
this case there is no simple analogue of equation 10. The
principle complication comes from the last term in equation7
the ’back-tracking’ term which accounts for a node not using
the closest preceding finger to the target, owing to its failure,
but an earlier one. This results in the recursion relation for
C(i + 1) depending on not just two earlier costs (costs to
reach two keys closer to the node in question thati+1) as in
equation 10 but on a larger and larger number of earlier terms
as i increases. We are nevertheless investigating this further.
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V. WHAT IS CHURN?

We now discuss a broader issue, connected with churn,
which arises naturally in the context of our analysis. As we
mentioned earlier, all our analysis is performed in the steady
state where the rate of joins (λj) is equal to the rate of failures
λf . However the ratesλj and λf can themselves each be
chosen in one of two different ways. They could either be
“per-network” or “per-node”. In the former case, the number
of joinees (or the number of failures)does notdepend on
the current number of nodes in the network. This is the case
when a poisson model is considered either for arrivals or
departures. Put in another way, this is like saying that on
average, there is always a fixed number of nodes joining or
failing per time interval, irrespective of the total numberof
nodes in the network. In the case when these rates are chosen
to be per-node, the number of joinees or failuresdoesdepend
on the current number of occupied nodes). We consider three
possibilities here, whenλj is per-network andλf is per-node;
both are per-network or (as is the case studied in this paper)
both are per-node. In all three cases, since the system is always
studied in the steady state where the total number of joinees
per unit time is equal to the total number of failures per unit
time, the equation for the mean is alwaysdN/dt = 0. We
hence expect the mean behavior to be the same, at least in the
regime whenN is roughly constant. However the behavior of
fluctuations is very different in each of these three cases. As
mentioned earlier, the time-scale over which the rate of change
of N is evaluated is again a ’microscopic’ time scale with a
single node change occurring at every interval of time.

In the first case, the steady state condition isλj/No = λf ,
whereNo is the initial number of nodes in the system. The
equation for the mean isdN/dt = λj/N −λf , which ensures
that N cannot deviate too much from the steady state value.
Similarly one can write an equation for the second moment
N2: dN2/dt = (λj/N + λf ) + 2(λj − Nλf ). While the
first term is a ’noise’ term which encourages fluctuations, the
second term becomes stronger the larger the deviation fromNo

and hence strongly damps out fluctuations. Thus the number
of nodes in the system remains close to its initial value.

In the second case, where the join and failure rates are
both per-network the equation for the mean isdN/dt =
λj/N−λf/N . Hence puttingλj = λf ensures the steady state
condition. However in this case, the equation for the second
moment isdN2/dt = (λj/N + λf/N). The joins-failures
process thus makes the system execute a “random-walk” inN ,
where the “steps” of the walk depend onN and are smaller if
N is larger. For such a system, fluctuations are not bounded
and a large deviation can and will take the system to theN = 0
state eventually. The time for this to happen scales withN as
N3 for this process.

The third case (which is also the case considered in this
paper) is when both rates are per-node. This is very sim-
ilar to the second case. The equation for the mean is just
dN/dt = λj −λf as mentioned earlier. Again settingλj = λf

ensures steady state. The equation for the second moment is
now dN2/dt = (λj + λf ). There is thus again no “repair”
mechanism for large fluctuations, and the system will be

eventually driven to extinction. In this case the process on
N is just an ordinary random walk and the time taken to hit
the N = 0 state scales asN2.

Which of these ’types’ of churn is the most relevant? In the
real world, the churn felt by a DHT, might possibly be some
time-varying mixture of these three, and will also possibly
depend on the application. It is hence probably of importance
to study all these mechanisms and their implications in detail.

VI. D ISCUSSION ANDCONCLUSION

To summarize, in this paper, we have presented a detailed
theoretical analysis of a DHT-based P2P system, Chord, us-
ing a Master-equation formalism. This analysis differs from
existing theoretical work done on DHTs in that it aims not
at establishing bounds, but on precise determination of the
relevant quantities in this dynamically evolving system. From
the match of our theory and the simulations, it can be seen
that we can predict with an accuracy of greater than1% in
most cases.

Though this analysis is notexact (in the sense that there
are approximations made to make the analysis simpler), yet it
provides a methodology to keep track of most of the relevant
details of the system. We expect that the same analysis can be
done for most other DHT’s in a similar manner, thus helping
to establish quantitative guidelines for their comparison.
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