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Abstract—In this paper, we present a complete analytical study depending on different DHT designs and implementation
of dynamic membership (aka churn) in structured peer-to-peer decisions. Examples include the work of: Li et. al [6], Rhea
networks. We use a master-equation-based approach, which is et.al [9] and Rowstron et.al [4].

used traditionally in non-equilibrium statistical mechanics to ; .

describe steady-state or transient phenomena. We demonsteat In this paper,_we p_resent anew apl‘?mac“ to _Studylng churn,
that this methodology is in fact also well suited to describing Pased on working with master equations, a widely used tool
structured overlay networks by an application to the Chord wherever the mathematical theory of stochastic processes i
system. For any rate of churn and stabilization rates, and any applied to real-world phenomena [8]. We demonstrate the
system size, we accurately account for the functional form of:he applicability of this approach to one specific DHT: Chord][10

distribution of inter-node distances, the probability of network A t tion d intion f d icall Vi
disconnection, the fraction of failed or incorrect successor and master-equation descriplion for a dynamically evolving

finger pointers and show how we can use these quantities to System is achieved by first definingstateof the system. This
predict both the performance and consistency of lookups under is just a listing of the quantities one would need to know
churn. Additionally, we also discuss how churn may actually for the fullest description of the system. For Chord, thate

be of different "types’ and the implications this will have for 14 he defined as a listing of how many nodes there are in the
structured overlays in general. All theoretical predictions match . .
simulation results to a high extent. The analysis includes details system and what f[he state (whether corr_ect, |n_co_rrect md_m' )
that are app|icab|e to a generic structured Over|ay dep|0y|ng a Of eaCh Of the pOInterS Of those nOdeS IS. Th|S |nf0rmat|0n IS

ring as well as Chord-specific details that can act as guidelines not enough to draw a unique graph of network-connections

for analyzing other systems. (because for example, if we know that a given node has an
'incorrect’ successor pointer, this still does not tell ukiet
|. INTRODUCTION node it is pointing to). However, as we will see, beginning at

An intrinsic property of Peer-to-Peer systems is the pmcethls level of description is sufficient to keep track of most o

} . . t[?'ne details of the Chord protocols.

of never-ceasing dyng mic membership. Structured Peer- O_Having defined a state, the master-equation is simply an
Peer Networks (aka Distributed Hash Tables (DHTS)) have tgguation for the evolutior; of the probability of finding the
underlying principle of arranging nodes in an overlay graph in thi . h ils of th . h
known topology and diameter. This knowledge results in thsgstgm In this state, given t_e details of t € dynamlc_s. The

- . specific nature of the dynamics plays a role in evaluating all
provision of performance guarantees. However, dynam|cme[ﬁe terms leading to the gain or loss of this probabilitg
23:hlgﬁ.?_nst;252:1y s)%zguep;s{gzlﬁmsug]; 9(;/:rrrlsc):/t/gr]r:?r’:t‘[tia keeping track of the contribution of all the events which can

Y , P : q bring about changes in the probability in a micro-instant of
the graph in the face of this perturbation. fime

Both theoretical and empirical studies have been conducterqjs'in this formalism our results are accurate functional

to analyze the performance of DHTs undergoing “churn” aq%r 9

simultaneously performing “maintenance’. Liben-Nowe|a ms of the following: (i) The distribution of inter-node

[7] prove a lower bound on the maintenance rate requirrgés.tances when the system IS n equilibrium. This d'S“‘t!“‘
for a network to remain connected in the face of a give'ﬁ independent of any details of Chord and are applicable
0,any DHT deploying a ring(ii) Chord-specific inter-node

dynamic membership rate. Aspnes et. al [3] give upper aﬁd - S . .
lower bounds on the number of messages needed to loc IEetrlbutlon properties(iii) For every outgoing pointer of a

a node/data item in a DHT in the presence of node or lin _or(_j node, we sys'Fematica_IIy compute th? probabil@t_y that
failures. The value of such theoretical studies is that th%}(f'fzr;tafg}; ggShocf)fItt?]ep(;,lsjilt?(laiszt?fr?d ;:'Serpro(ggtbélr';y \I/?/e
provide insights neutral to the details of any particularDH h this inf tion t dict oth 9 pt't' ' h
Empirical studies have also been conducted to complemén?n_ use this nformaion 1o predict other quantities suc

these theoretical studies by showing how within the asytilptoaS (i) the probability that the nework gets disconnected,

._fv) lookup consistency (number of failed lookups), and)
bounds, the performance of a DHT may vary SUIOStamlalfé;okup performance (latency). All quantities are compasa
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by simulations. analysis, we define\; as the rate of joins per nodg, the
rate of failures per node and, the rate of stabilizations

. per node. We carry out our analysis for the general case
Closest in spirit to our work is the informal derivation ireth when the rate of doing successor stabilizatiens,, is not

. . ecessarily the same as the rate at which finger stabilimatio
original Chord paper [10] of the average number of timeou .
) : : — a))\s are performed. In all that follows, we impose
encountered by a lookup. This quantity was approximat " :
: steady state conditioh; = A unless otherwise stated.
there by the product of the average number of fingers us e J o Ty L
. . . . . . urther it is useful to define = <= which is the relevant
in @ lookup times the probability that a given finger points t(r) tio on which all the uantitiesA</ve are interested in will
a departed node. Our methodology not only allows us to den\é%é end. e 50 meacg]s that a ioin/fail event takes place
the latter quantity rigorously but also demonstrates how th pend, e.gr J P

o S o every half an hour for a stabilization which takes place once
probability depends on which finger (or successor) is irsglv very 36 seconds. Throughout the paper we will use the terms

Further we are able to derive a precise relation relating thi .
. . AL, A At, adgAt and(1—a)A\;At to denote the respective
r ility to look rformance an nsistency acelyat 777"~/ =0 O 0s 28 . s o
probability to lookup perfo ce and consistency acelya probabilities that a join, failure, a successor stabil@ator a

at any value of the system parameters. finger stabilization take place during a micro period of time
In the works of Aberer et.al [1] and Wang et.al [11], DHTgNger stabliizall P uring ! per :

are analyzed under churn and the results are compared V\%{ length At. )
) . . . arameters. The parameters of the problem are henfCe:
simulations. However, the main parameter of the analysfseis .
- : N, a and r. All relevant measurable quantities should be
probability that a random selected entry of a routing table 1 .. L
. ; . . entirely expressible in terms of these parameters.
stale. In our analysis, we determine this quantity fromesyst . . . . T
. Simulation Since we are collecting statistics like the prob-
details and churn rates. . : ) .
. N ability of a particular finger pointer to be wrong, we need
A brief announcement of the results presented in this papgr, h . . bef btaini I
has appeared earlier in [5] O’repeat each experimett0 tl_mes efore o ta|r_1|ng well-
' averaged results. The total simulation sequential reaé tim
for obtaining the results of this paper was ab®800 hours
I1l. OUR IMPLEMENTATION OF CHORD that was parallelized on a cluster 6ft nodes where we
The Chord Ring. The general philosophy of DHTs is tohad N = 1000, K = 2?°, S = 6, 200 < r < 2000 and
map a set of data items onto a set of nodes where the insertic2b < o < 0.75.
and lookup of items is done using unique keys of items. While the main outlines of the chord protocol are provided
Chord’s realization of that philosophy is as follows. Peefsy its authors in [10], an exact analysis necessitates the
and data items are given unique keys (usually obtained pgovision of a deeper level of detail and adopted assumption
a cryptographic hash of unique attribute like the IP addreg#hich we provide in the following subsections.
or public key for nodes, and filename or checksum for items) . _ o
drawn from a circular key space of sikeé The Chord system A. Joins, Failures & Ring Stabilization
dictates that the right place for storing an item is at the firs |nitialization. Initially, a node knows its key and at least
alive node whose key succeeds the key of the item. Singge node with key that already exists in the network and
we refer to nodes and items by their keys, in that way, the alive. The knowledge of such a node is assumed to be ac-
insertion and lookup of items becomes a matter of locatirgiired through some out-of-band method. The predecessor
the right “successor” of a key. All nodes have successor agdccessorss(..s) and fingers fin;_.node) are all assigned
predecessor pointers. FOf nodes, using only the successoto nil.
pointers to lookup items requiréﬂ\] hops on average. Joins (Fig. 1). A new noden joins by looking up its
Fingers. To reduce the average lookup path length, nodesccessor using the initial random contact nedé also starts
keep M = log, K pointers known as the “fingers”. Usingits first stabilization of the successors and initializedfiitgers.
these fingers, a node can retrieve any keyiflog N) hops. Stablization of Sucessors(Fig. 1). The functionfixSuc-
The fingers of a node: (wheren € 0---K — 1) point to cessorsis triggered periodically with ratexA,. A node n
exponentially increasing distances of keys away fronThat tells its first alive successar that it believes itself to be’s

RELATED WORK

is, Vi € 1..M, n points to a node whose key is equal-2—".
We denote that key by. fin;.start. However, for a certain,

predecessor and expects as an angygepredecessoy.p and
successorg.s. The response aj can lead to three actions:

there might not be a node in the network whose key is equahase A Some node exists betweenand y (i.e. n's belief

to n + 2¢~1. Therefore,n points to the successor af+ 2¢~!
which we denote by. fin;.node.

iS wrong), son prependsy.p to its successor list as a first
successor and retridxSuccessors

The Successor ListMoreover, each node keeps a list ofCase By confirmsn's belief and informs: of y's old prede-
the S = O(log(N)) immediate successors as backups to itessory.p. Thereforen considersy.p as an alternative/initial
first successor we use the notatiors to refer to this list and predecessor fon. Finally, n reconciles its successor list with
n.s; to refer to thei’” element in the list. Finally we use they.s.
notationn.p to refer to the predecessor Case C y agrees that is its predecessor and the only task

Stabilization, Churn & Steady State. To keep the pointers of n is to update its successor list by reconciling it with.
up-to-date in the presence of churn, each node performBy calling iThinklamYourPred(Fig. 1), some node: in-
periodic stabilization of its successors and fingers. In oforms n that it believes itself to be's predecessor. Ih's



n.join(c) n.initFingers(sy)

s1 = c.findSuccesson) fl=s1.f

fixSuccessors() Vi € 1..M s.th. (fin;.start €]n, s1]),

initFingers(s1) fin;.node = s1

n.fixSuccessor§ Vj € 1.M sih. (fin;.start ¢]n, s1]),

y = firstAliveSuccessor() finj.node =localSuccessq@lf’, fin;.start)

{y.p,y.s} = y.iThinklamYourPred() n.localSuccessdf k) n fixFingers(k)

if (y.p €]me, y[) //Case A fori=1.M <= random()< M
prependy.p) if (k f]n’éi"’g) fin;.node B =
fixSuccessors return(fin; ‘ :

elsif (y.p €]y, me[()) /ICase B return(nil) findSuccessofin,.start)
considerANewPred(p)

reconcilcef.s) Fig. 2. Initialization and Stabilization of Fingers

else //Case Cy.p == me

reconcilegy.s) -
firstAliveSuccess nAThinklAmYourbred(z) n.fl/r/lgSuccAe.skst_ilk) tl |
" (o) @ if ((isNotAlivep) or (p == nil)) ! (Zsf_ * is exactly equal ton
if (s1 == nal) P return(n)
. return({s, z}) AR
. (i/s/EIrit\J/lg(en )I)?mg!! if (a €]p, me[) _/;C]ecxse B:k is betweem and s
o oldp=1p it (k €]n,s1]) .
return (s1) p=uz return(firstAliveSuccessorNoChange());
Viel.(S—1) return({s, oldp}) /ICase C: Forward to the lookup to
Si = Si41 else 8, oLap /lthe closest preceding alive finger
sg = nil return({s, p}) ip(f =fcloses;/lx)liveprecedingFinggfI;
n.considerANewPre| M{ep) ==m
if (isNotAlive) ) n.reconcile(s’) n-?fepefdg)2 y = firstAliveSuccessorNoChange();
or (p == nil) fori=1.(S—1) ore=o- if (k €]n, y))
or (& €]p, n) si41 =] s rewrn@); .
p=a ' S1=Y cpf = closestAlivePrecedingSucc(k);
return(cp f.findSuccessor(k))
Fig. 1. Joins and Ring Stabilization Algorithms else

return (cpf.findSuccessor(k));
n.firstAliveSuccessorNoChandg

predecessop is not alive ornil, then n acceptsz as a \ZN:”é (true)
predecessor and informsabout this agreement by returning if (s; == nil)
z. Alternatively, if n's predecessop is alive (discovering that /[Broken Ring!!

will be explained shortly in section I1I-C), then there aveot i (ifgﬂ\r’ﬁ(‘?;
possibilities: The first is that is in the region betweem '

it A+ N . .
and its current predecessothereforen should accept as a n.closestAlivePrecedingFingék) | n.closestAlivePrecedingSugk)

fori=M..1 fori=38..1

new predecessor and informabout its old predecessor. The if (fini €]n, k) it ((si €]n, k)
second is thap is already pointing ta: so the state is correct and (fin; # nil) and (s; # nil)
at both parties and. confirms that tar by informing it that a”dre'tstﬁ'r;‘é?f;gi» a”dre'tsuAr'r']‘Ese,é)i»
x is the predecessor of. In all cases the function returns g return(nil) ' return(cpf) '

predecessor and a successors list.

The function firstAliveSuccesso(Fig. 1) iterates through
the successors list. In each iteration, if the first sucaess®s
alive, it is retumed. Otherwise, the dead successor ispap are the main quantities of interest in the evaluation of any

f_rom the list an_d _n|I IS appended to th? end Qf the list. If thE)HT. A node n looking up the successor of runs the
first successor isil this means that all immediate SuCcessorf?ndSuccesscmlgorithm which can lead to the following cases:
are dead and that the ring is disconnected. ; . '
Case Alf k is equal ton thenn is trivially the successor
of k.
B. Lookups and Stablization of Fingers Case B.f k €]n, s;] thenn has found the successor bf
Stablization of Fingers (Fig. 2). Stabilization of fingers but it could be that; has failed and: has not yet discovered
occurs at a ratél — a))\s. Each time thdixFingersfunction this. However, entries in the successor list can act as Ipacku
is triggered, a random fingefin; is chosen and a lookup for the first successor. Therefore, the first alive successor
for fin;.start is performed and the result is used to update is the successor df. Note that, in this case, while we try
fin;.node. to find the first alive successor, we do not change the entries
Initialization of Fingers (Fig. 2). After having initialized its in the successor list. This is mainly because, to simplily th
first successos, a noden sets all fingers with starts betweeranalysis, we want the successor list to be changed at a fixed
n ands; to s;. The rest of the fingers are initialized by takingate ratea\; only by thefixSuccessorfunction.
a copy of the finger table of; and finding an approximate Case C.The lookup should be forwarded to a node closer
successor to every finger from that finger table. to k, namely the closest alive finger precedihgn n's finger
Lookups (Fig. 3). A lookup operation is a fundamentatable. The call to the functiortlosestAlivePrecedingFinger
operation that is used to find the successor of a key. It is usedurns such a node if possible and the lookup is forwarded to
by many other routines and its performance and consistericyHowever, it could be the case that all alive precedingdisg

Fig. 3. The Lookup Algorithm



to k are dead. In that case, we need to use the successors list I:”?;L(tt E)A_t)l zafejf(fhgr;?; Plz)
as a last resort for the lookup. Therefore, we locate the first | _ Int:(t) I I (AjAt)N(””,g_lﬁ“"
alive successoy and if k €]n,y] theny is the successor of =Intz(t) + 1 | c1.3=(A\pAH) X5 Pla1) Pz — 21)
k. Otherwise, we locate the closest alive preceding successo | = rnt,(t)+1 | c1.4 = (AL 2N S s, Pla)
to k£ and forward the lookup to it. = Intz(t) 1—(cr1+catecrsteia)
TABLE |
C. Failures GAIN AND LOSS TERMS FORInt(z) THE NUMBER OF INTERVALS OF
Throughout the code we use the calbAlive and LENGTH z.

isNotAlive. A simple interpretation of those routines would

be to equate them to a performance of a ping. However, a

correct implementation for them is that they are discovered

by performing the operation required. For instance, a call killed is randomly picked amongst all the nodes in the iragrv
firstAliveSuccesor in Fig. 1 is performed to retrieve a nodethe probability that it was participating on either side of a
y and then cally.iThinkIamY our Pred, so alternatively the interval of lengthz is 2P (z).

first alive successor could be discovered by iterating on theSecond, an interval of size can be lost at rate; » if a

successor list and calling"hinkIamY our Pred. joining node splits it. Only joining with keys that belong to
one of thelnt, intervals can lead to the loss of an interval

IV. THE ANALYSIS of length z and in each one of these, there are- 1 ways

A. Distributional Properties of Inter-Node Distances (available keys) for splitting. Therefofe—1) x Int, positions

During churn, the average inter-node distance is a flugut of the X — N available keys can destroy an interval of
tuating quantity whose distribution is used throughout olfngthz. Thatis, the PEOE’%?”'EV that one of the intervals of
analysis. The derivation we present here of this distrinuti l€ngth  is destroyed is=—%= which can be rewritten as
is independent of any details of the DHT implementation anﬁw.
depends solely on the dynamics of the join and leave processThird, the number of intervals of size can increase by
It is hence applicable to any DHT that deploys a circular key at rate ¢; 3 if a failure of a boundary node results in
space. the aggregation of two adjacent intervals. To clarify that,

Definition 4.1: Given two keysu,v € {0..K — 1}, the we give the following examples. An interval of length
“distance” between them is— v (with modulo/C arithmetic). cannot be formed by such a process. An interval of length
We interchangeably say that and v form an “interval” of 2 can be formed by the failure of a node if the node that
lengthu — v. Hence the number of keysside an interval of failed was shared between two adjacent intervals of length
length? is ¢ — 1 keys. 1. We are assuming here that the probability of picking two

Definition 4.2: Let Int, be the number of intervals of adjacent intervals of length is P(1)P(1). This is in effect
lengthz, i.e. the number of pairs of consecutive nodes whiclissuming that the probability of having two adjacent irdésv
are separated by a distancezokeys on the ring. of size 1, factorises toP(1)2. However for this system, this

Theorem 4.1:For a process in which nodes join or leavés an accurate estimation. Thus, in general, the probgpluifit
with equal rates independently of each other and uniformly dorming an interval of length is Zil_:ll P(z1)P(z — x1).
the ring, and the number of nodésin the network is almost  Fourth, an increase can happen at rate if a join event
constant withN' << K, the probability () = =) of gpiits a larger interval into an interval of size. For a
flnd|51cg an interval of length is: P(xz) = p* (1 - p) where join to form an interval of lengthz, it must occur in an
pP="K - interval of length greater tham. In each interval of length

Proof : By definition S) P(z) = 1 and Y.« P(z) = K/N. =1 > z, there are exactly two ways of forming an interval of
Further, for the mean number of peers, the join-leave peocdengthz. Therefore,che proIbabiIity of forming an interval of
we consider, simply implies tha% = A; — Ay. We will  lengthz is equal to%, which can be rewritten as
hence need to check that an equation fat x) does indeed 2N %, -. P(@)

satisfy all the above constraints. Note that the intervairog =N . .

considered in the equation for the rate of changéeVois the Finally, Int,. remains the same if none of the above hap-
time-scale over which singlenode change occurs. If we were” "> , )

to write the same equation for time-scales over whicmode 1 erefore the equation fafnt,, for o > 1 is:
changes occur, the equation would thenfe= (\; — A7) N.

For our purposes however, we want to look at the changes in

the system over “microscopic” time-scales in which at most dints _ _ P(z) |:2)\f I N)\](x—l)]
one event occurs to change the state of the system. dt K—N
We now write an equation fofnt, by considering all the g
processes which lead to its gain or loss. These are summarize TAs Z P(z1)P(z —a1) 1)
in table | Z1=1
First, a failure of either of the boundary nodes of an interva + gAjL Z P(z1).
of sizez leads to its loss at rate, ;. That is, since the node K—-N

T1>T



(a) (b) Explanation : Conside; first. For any keyu, the probability
that the first node encountered is atitself (by) is 1 — p
nfin,_, . start from Corollary 1.1. Similarly the probability that the finsbde
/ =n+2 encountered is at. + 1 (b1) is p(1 — p) which is just the
:fp/" o fin, node product of the probabilities that the first key is empty and
st - n.ﬁnk;zl =n2 ey the second is occupied. Thue in general, the ptobahility tha
. e W"Hiiﬁzﬁiwzm_,{ the first populated node starting fromis atwu + i is b(i) =

Fig. 4. (a) Case when andp have the same value gfinj.node. (b) Case
where a newly joined nodg copies thek!" entry of its successor nodeas
the best approximation for its owht” entry (by the join protocol). In this
case, there could be a nodewhich is the 'correct’ entry fomp. fin,.node.
However, sincep is newly joined, the only information it has access to is th

finger table ofn.

(p)'(1 — p). Given this, the probability that there is at least
one node between andv = u + z (not including the case
when the node is at) is 37" b = 1 — p* = a(«). .

Property 4.2: The probability that a node and at least one

of its immediate predecessors share the safftefinger is

pi(k) = (1 - p?"=2). This is ~ 1/2 for K >> 1 and
N << K. Clearlyp1 0 for £ = 1. It is straightforward

The equation fornt; is the same as the above except thgthough tedious) to derive similar expressions fe(k) the

the second term is missing.
We can check that :

d d
dt Z ity dt

as required.

Aj = Ay

Further we can check that the constraint:

T Zz[nt

is also obeyed. Equation 1 can be readily solved in the case ;
Aj = Ay for the steady state (when the time derivative is zeré)

Ieading to the solution:

P(z)=p™!

—N

=0

(1-p)

)

®3)

probability that a node and atleastvo of its immediate
predecessors share the sahie finger, ps(k) and so on.

Explanation : If the distance between node and its
predecessop is x, the distance between. fin,.start and
p.fing.start is also z (see Fig. 4(a)). If there is no node
in betweenn. fing.start and p. fing.start then n. fin;.node
and p. fing.node will share the same value. From Eq. 3,
the probability that the distance betweenand p is x is
L(1 — p). However,z has to be less tha2f~!, otherwise
. fing.node will be equal ton. The probability that no
node exists between. fin;.start and p. fin.start is p* (by
Property 4.1). Therefore the probability that tfrzie,i”zn;C node

andp. finy.nodeshare the same value i5.> i (1 —
k_
pp* =15, (1=p* %) .

Property 4.3: We can similarly assess the probability that

wherep = 22X "

Given the above term fop we can state the following
corollary that gives an intuitive meaning for in the case

Aj = Ay _ . the join protocol(Section refsec:fingers) results in farth
CorollaryK1 1: Given a ring of £ keys populated byN replication of thek' pointer. Let us define the probability
nodes,p = % is the ratio of the unpopulated keys to thg,.,.. (i, k) as the probability that a newly joined node, chooses

total number of keys, i.e. the probability of picking a key aghe i*" entry of its successor’s finger table for its ok
random and finding it empty is. entry. Note that this is unambiguous even in the case that the
The proof of the above theorem does assume that (in t§gccessor's” entry is repeated. All we are asking is, when
case); = Ay) the number of nodesV is fairly constant. is the k' entry of the new joinee the same as & entry
Indeed at first sight this seems to be strictly true from Eq. &f the successor? Clearly< k. Infact for the larger fingers,
However, just as in a random walk, the variance in this cag@ need only considep;oin (k, k), SINCE Pjoin (i, k) ~ 0 for
increases with time. We will comment more on the propertles< k. Usmg the |nter\/a| distribution we find, for |arge
of the variance later. For the moment, we note that the abqye (k k) ~ p(1—p¥ " 72) 4 (1 - p)(1 — p2" 2—2) (1-
result can be generalized to also include the case whéna p)p(2F-2 — 2))02’»‘*2—3_ This function goes td for large k.
fluctuating quantity. In this case we only need to multiplg th
N dependent terms in Eq. 1 witArob(N, t): the probability Explanation : By the join protocol a newly joined nodg,
that there areV nodes in the system at timte and average tries to assigmp. fin;.node to the best approximate value from
over N. the finger table of its successar This approximate value
We now derive some properties of this distribution whicmight turn out to ben.fin.node, especially for the larger
will be used in the ensuing analysis. fingers. If p chooses thé:;, entry of n as its ownk,, entry,
Property 4.1: For any two keys: andv, wherev = v+, it must be because the — 1*" entry of n (if distinct, as is
let b; be the probability that the first node encountered ialways the case for large) does not afford it a better choice.
between these two keys is at+ ¢ (where0 < i < x). Then The condition for this is p.fing.start > n.fing_1.node. If
b; = p'(1 — p). The probability that there is definitely at leasthe distance between fin;.start andp. finy.start is z, and
one node betweem and v is: a(z) = 1 — p*. Hence the the distance between finj_.start andn. fing_1.node is y
conditional probability that the first node is at a distarice (see Fig. 4 (b)), then the constraintemndy is n+2¢~! -2 >
giventhat there is at least one node in the intervalds, z) = n+2*~2+4y orz+y < 2¥~2. We also have the added constraint
b(i)/a(x). thatz < 2F~1, since otherwise. finx.node would simply be
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do also consider the case when adjacent nodes might have
correlated fingers). These assumptions imply that the aisaly

is notexact However as we see below it is sufficiently precise
to predict all quantities extremely accurately.

Consider first the successor pointers. kel(r, «), di(r, «)
denote the fraction of nodes havingwaong k" successor
pointer or afailed one respectively antV (r, o), Dy(r, ) be
n. In fact since the distance between thefing.start and the respectiveiumbers A failed pointer is one which points
n. fing_1.start cannot be more tha2f~2 we haver < 22, to a departed node andvarong pointer points either to an

Thus the probabilityp;,., (k, k) is: incorrect node (alive but not correct) or a dead one. As we

gk-2_jgk-2 gk2_, will see, both these quantities play a role in predictingklgm

Z Z P(2)P(y) = Z 21— )22 —1) (4) consistency and lookup Ie_r?g_th. .

— = = By the protocol for stabilizing successors in Chord, a node
periodically contacts its first successor, possibly cdimngcit
and reconciling with its successor list. Therefore, the bem

where we have put in the expressions ffxz) and P(y) of wrongk!”" successor pointers are not independent quantities
from Eq. 3 and converted the double summation to a singd@t depend on the number of wrong first successor pointers.
one. This expression can be summed easily to obtain thet resvé first considers; here, and then briefly discuss the other
quoted above. cases towards the end of this section.

We can also analogously computg;, (i, k) for anyi. The  \we write an equation fof¥; (r, ) by accounting for all
only trick here is to estimate the probability that startfm@m  he events that can change it in a micro event of titxte An
i, the lastdistinct entry of 's finger tabledoes notgive p jjustration of the different cases in which changediin take
a better choice for its:;, entry. This can again readily bepjace due to joins, failures and stabilizations is provided
computed using property 4.1. Fig. 5. In some caséd/; increases/decreases while in others it

stays unchanged. For each increase/decrease, Table idi@sov
B. Successor Pointers the corresponding probability.

We now turn to estimating various quantities of interest for By our implementation of the join protocol, a new node
Chord. In all that follows we will evaluate variousverage 7, joining between two nodes, andn., has itss; pointer
quantities, as a function of the parameters. However thisesaalways correct after the join. However the statepfs; before
formalism can also be used for evaluating higher momengs lithe join makes a difference. t,.s; was correct (pointing
the variance. to n,) before the join, then after the join it will be wrong

In the case of Chord, we need consider only one of thread therefordd; increases byt. If n,.s; was wrong before
kinds of events happening at any micro-instant: a join, larffai the join, then it will remain wrong after the join anid’; is
or a stabilization. One assumption made in the following ignaffected. Thus, we need to account for the former case only
that such a micro-instant of time exists, or in other word3dhe probability that:,.s; is correct isl — w; and from that
that we can divide time till we have an interval small enougi®llows the terme; ;.
that in this interval, only any one of these three processesrFor failures, we havel cases. To illustrate them we use
occur. Implicit in this is the assumption that a stabilieati nodesn,, n,, n, and assume that, is going to fail. First,
(either of successors or fingers) is over much faster than thdéoth n,.s; andn,.s; were correct, then the failure of,
time-scales over which joins and fails occur. Another (momill make n,..s; wrong and hencél; increases by. Second,
serious) assumption is that the state of the systenpmwduct if n,.s; andn,.s; were both wrong, then the failure of,
of the state of all the nodes. Nodes are hence assumed to hawk decreasell’; by one, since one wrong pointer disappears.
for the most part, states independent of each other. ,the Third, if n,.s; was wrong andr,.s; was correct, theriV;
probability of two adjacent nodes having a wrong successer unaffected. Fourth, ifn,.s; was correct andn,.s; was
pointer is taken to be the product of the individual nodesrong, then the wrong pointer ai, disappears ane,.s;
having wrong successor pointers (though as we have seen fimacomes wrong, therefoid; is unaffected. For the first case
Properties 4.2 and 4.3, in the case of finger pointers, e happen, we need to pick two nodes with correct pointers,

Fig. 5. Changes i1, the number of wrong (failed or outdategl) pointers,
due to joins, failures and stabilizations.
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consecutive nodes fail. i = S, the length of the successor
N o list, then clearly the node whose successor list this is gets

the probability of this is(1 — wi)?. For the second case t0gjisconnected from the network and the network breaks up. For
happen, we need to pick two nodes with wrong pointers, the, range of- considered in Fig. 6P, (S, r, a) ~ 0. However
probability of this isw?. From these probabilities follow the should we go lower, this starts becoming finite. The master
termsc» ande 3. o equation analysis introduced here can be used to estimate

Finally, a successor stabilization does not affiégt, unless Pyu(n,r,a) for any1 < n < S. We indicate how this might
th_e _stabilizing node had a wrong pointer. The probability ¢ done by consideriri; the case= 2. Let Nyu(2,7, @) be the
picking such a node is;. From this follows the termez 4. ymper of configurations in which a node has betrand s,

Hence the equation fdi/,(r, a) is: dead andP,,(2,7,a) be the fraction of such configurations.
aw, 5 9 Table Il indicates how this is estimated within the present
= A (L —wi) + Ap(1—wi)” = Apwi — adsun framework.

dt

Solving forw, in the steady state and putting = Ay, we A join event does not affect this probability in any way. So
get: ‘ we need only consider the effect of failures or stabilizatio
2 2 events. The termas ; accounts for the situation when tffiest

wi(r, o) = 31ra ra ) successor of a node is dead (which happens with probability

This expression matches well with the simulation resulf4 ("> @) @s explained above). A failure event can then kill
as shown in Fig. 6d,(r, a) is then Lw, (r,a) since when its second successor as well and this happens with protyabili
. ’ 2 ’

\; = A, about half the number of wrong pointers are incorre€g:1- The second term is the situation that the first successor is
a%d ab{)’ut half point to dead nodes. Thiyér, a) ~ - which alive (with probabilityl —d,) but the second successor is dead
also matches well the simulations as shown in Fig. 6. We cAfith probability d»). This probability is~ 2/ar. (the second

also use the above reasoning to iteratively:ggtr, o) for any successor of a.node being dgad e|ther_ implies t.h.at the first
k. successor ofts first successor is dead with probabilidy, or

that it has not stabilized recently, and hence has not dedtec
) ] - its second successor pointer.This happens with probabilit
C. Break-up (Network Disconnection) Probability 1/ar. These two terms add up &ar). A stabilization event
We demonstrate below, how calculatidg(r, «): the frac- reduces the number of such configurations by one, if the node
tion of nodes with deadk*” pointers, helps in estimating doing the stabilization had such a configuration to begitwit
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'@ /’f:’/’::\@ SOME OF THE RELEVANT GAIN AND LOSS TERMS FORF),, THE NUMBER
o “eles e K. o 3
OF NODES WHOSEkth FINGERS ARE POINTING TO A FAILED NODE FOR
——— — kE>1.
Before a Stabilization| After a Stabilization F (t+49)
o Thio o ihe -1
,,,,, w» fin_pointing to a failed node
fin_pointing to an alive node .. . - . .
e Alive node caused by a join, failure or stabilization event, and kegpin
Failed node only the most relevant terms. These are listed in table IV and

! . N ) . illustrated in Fig. 9
Fig. 9. Changes inF}, the number of failedfin; pointers, due to joins, .. . .
failures and stabilizations. A join event can play a role here by increasing the number

of F}, pointers if the successor of the joinee had a failéd
pointer (occurs with probabilityf;) and the joinee replicated

Solving the equation forV,, (2,7, «), one hence obtains this from the successor as the joinekth pointer. (occurs with
that P, (2,7, ) ~ 3/(ar)?. As Fig. 8 shows, this is a preciseprobability p;,:, (i, k) from property 4.3). For large enough
estimate. this probability is one only fop;.n(k, k), that is the new

We can similarly estimate the probabilities for three corjeinee mostly only replicates the successatls pointer as its
secutive nodes failingetg and hence also the disconnectiomwn kth pointer. This is what we consider here.
probability P, (S, r, ). This formalism thus affords the pos- A stabilization evicts a failed pointer if there was one to
sibility of making a precise prediction for when the systerbegin with. The stabilization rate is divided by1, since a
runs the danger of getting disconnected as a function of thede stabilizes any one finger randomly, every time it decide
parameters. to stabilize a finger at ratél — a)\.

Lookup ConsistencyBy the lookup protocol, a lookup is  Given a noden with an alive k" finger (occurs with
inconsistent if the immediate predecessor of the sought kKesobability 1 — f;), when the node pointed to by that finger
has a wrongs; pointer. However, we need only consider théails, the number of failedk!” fingers () increases. The
case when the; pointer is pointing to an alive (but incorrectyamount of this increase depends on the number of immediate
node since our implementation of the protocol always reguirpredecessors af that were pointing to the failed node with
the lookup to return an alive node as an answer to the quetheir k*" finger. That number of predecessors couldObé,
The probability that a lookup is inconsistehtr, a) is hence 2,.. etc. Using property 4.2 the respective probabilitiethose
wy (r, ) — dyi(r, ). This prediction matches the simulationcases arel — py (k), p1(k) — p2(k), p2(k) — p3(k),... etc.
results very well, as shown in Fig. 7. Solving for f; in the steady state, we get:

[Qprep(k) +2— pjoin(k) + T(lT_a)}

We now turn to estimating the fraction of finger pointers 20+ Prep(k)) -
Wh|ch_p0|nt to fa!le_d nodes. As we will see th|s is an |mp0ttan \/[Qprep(k) +2 = pioin(k) + r(lj\;a)} — 4(1 + Prep(k))?
guantity for predicting lookups, since failed fingers catisee- _
outs and increase the lookup length. We need however only 2(1+ Prep(k))
consider fingers pointing tdead nodes. Unlike members of (6)
the successor lisglive fmgers even if outdated, always prlng where B..,(k) = Spi(k). In principle its enough to keep
a query closer to the destination and do not affect congigten p : :
or substantially even the lookup length. Therefore we awsrsi even three_terms n the sum. The ab_ove expressions match
fingers in only two states, alive or dead (failed). By our®y well with the simulation resuilts (Fig. 11).
implementation of the stabilization protocol (see Sedidit o
A and 1lI-B), fingers and successors are stabilized entirelyy COst of Finger Stabilizations and Lookups
independently of each other to simplify the analysis. Thughe  In this section, we demonstrate how the information about
though the first finger is also always the first successor, tiige failed fingers and successors can be used to predictshe co
information is not used by the node in updating the finger. of stabilizations, lookups or in general the cost for reaghi

Let fx(r,a) denote the fraction of nodes having théi* any key in the id space. By cost we mean the number of
finger pointing to a failed node and(r,«) denote the hops needed to reach the destinatioriuding the number of
respective number. For notational simplicity, we write ghe timeouts encountered en-route. Timeouts occur every time a
as simply Fj, and f,. We can predict this function for any query is passed to a dead node. The node does not answer and
by again estimating the gain and loss terms for this quantithe originator of the query has to use another finger instead.

D. Failure of Fingers =
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For this analysis, we consider timeouts and hops to add lgqudor Ct ., as follows:

to the cost. We can easily generalize this analysis to imyest

the case when a timeout costs some fagtdmes the cost of

a hop.

Define Cy(r, ) (also denoted”;) to be the expected cost + (1 — fx)a(m)

for a given node to reach some target key whichkeys away

from it (which means reaching the first successor of this key)
For example,C; would then be the cost of looking up the + fra(m) [1 + th(i)
adjacent key [ key away). Since the adjacent key is always

stored at the first alive successor, therefore if the firstasssor
is alive (which occurs with probability — d;), the cost will

€/2' -1

be 1 hop. If the first successor is dead but the second is alive (=0

(occurs with probabilityd; (1 — ds)), the cost will be 1 hop +
1 timeout =2 and theexpectedcost is2 x d; (1 — d2) and so
forth. Therefore, we hav€; = 1—d; +2 x dy(1—d3)+3 %

~1l+d=1+1/(ar).

d1d2(1 — dg,) —+ -

start of the finger (say thé'") that most closely precedes

whereg¢;
a node is forced to use its — i*" finger owing to the death
of its k*" finger. The probabilities:, b, bc have already been

Cerm = Ce [1 — a(m)]

m—1

1+ Z be(i, m)Con—;
i=0

k—1

=1

> be(l,6/2) (1 + (i — 1) + Ce,—i1m) + O(hi(k))

()

=) ,—1,&/2™ andhy (i) is the probability that

introduced in Section 1V, and we define the probability(7)
For finding the expected cost of reaching a general distarfaglow.
t we need to follow closely the Chord protocol, which would The lookup equation though rather complicated at first sight
lookup ¢ by first finding the closest preceding finger. For thenerely accounts for all the possibilities that a Chord Igoku
purposes of the analysis, we will find it easier to think irmer will encounter, and deals with them exactly as the protocol
of the closest precedingtart Let us hence defing to be the dictates.

The first term (Figure 10 (a)) accounts for the eventuality

Hence¢ = 2F~! 4 n andt = ¢ + m, i.e. there aren keys that there is no node intervening betweeand¢ +m (occurs
between the sought targetand the start of the most closelywith probability 1 — a(m)). In this case, the cost of looking
preceding finger. With that, we can write a recursion refatidor £ + m is the same as the cost for looking for



10

The second term (Figure 10 (b)) accounts for the situ&- Analysis of the Lookup Equation in the zero-churn case
tion when a node does intervene inbetween (with probability
a(m)), and this node is alive (with probability — f;). Then On general grounds, it is easy to argue that the average
the query is passed on to this node (witradded to register lookup cost has the following formt + £ + & + ... The
the increase in the number of hops) and then the cost depeddpendence on churn is specified by thdependence and
on the length of the distance between this node iand A,B etc depend on the other parameters of the system like
The third term (Figure 10 (c)) accounts for the case when tidé and K. To get A, we need to consider equation 7 with no
intervening node is dead (with probabilifi;). Then the cost churn (all f;'s set to zero). To gef3, we need to analyze
increases byl (for a timeout) and the query needs to find athe lookup equation tcO(%) and so on. In the following
alternative lower finger that most closely precedes theetargsection, we study the lookup equation 7 in some detail to
Let the k — ¢*" finger (for somei, 1 < i < k — 1) be such a understand the behaviour without churn. This is useful deor
finger. This happens with probability (i), i.e., the probability to ascertain that it does indeed reproduce known results suc
that the lookup is passed back to the- ‘" finger either as for example, that the average lookup cosi.is+ log(V)
because the intervening fingers are dead or share the sawitbout churn [10]. Infact as we will see, for any, the
finger table entry as thg!” finger is denoted by, (7). The average lookup cost as predicted by equation 7 is indeed
start of thek — i*" finger is at¢ /2! and the distance between0.5*log(N) plus somep-dependent corrections which though
£/2" and¢ is equal toZm:M &/2™ which we denote by,. small are accurately predicted. An added benefit of the aigly
Therefore, the distance from tstartof the k—i*" to the target is that we can also predict what the average lookup without
is equal to¢; 4+ m. However, note thafin,_;.node could be churn will be for any base (Chord has basand accordingly
I keys away (with probabilityc(l, £/2%)) from fin,_;.start has a finger table size dbg,(K). By our definition of higher
(for somel, 0 < I < £/2%). Therefore, after making one hopbases a system of badewill have a finger table size of
to fink_;.node, the remaining distance to the targetéis+ (b — 1)logy(K)).
m — I. The increase in cost for this operation list- (i — Equation 7 with the churn-dependent terms set to zero
1); the 1 indicates the cost of taking up the query again byecomes:
fink_;.node, and the; — 1 indicates the cost for trying and
discarding each of the-1 intervening fingers. The probability
hi(4) is easy to compute given property 4.1 and the expression
for the fi’s computed in the previous section.

m—1
Cerm = Ce[L —a(m)] +a(m) + > b(i)Cru—i  (9)
=0
hi(i) =a(/2°) (1 = fr—s)
xTg—1,i-1(1 — a(€/2%) + a(£/2°) fr—s),i <k (8)  After some rewriting of this, it is easily seen that the cost
hio(k) =Is_ 1 (1 — a(€/2°) + a(€/2°) fis) for any key i + 1 can be written as the following recursion

relation:
Equation .8 accounts for all the reasons that a node may

have to use itg — ' finger instead of itst*" finger. This
could happen because the intervening fingers were either dea
or not distinct. The probabilitied, (i) satisfy the constraint
S°¥ , hi(i) = 1 since clearly, either a node uses any one of
its fingers or it doesn’t. This latter probability is. (%), that is Here we have used the definition af and b from the
the probability that a node cannot use any earlier entrysin ihternode-interval distribution and the notatiéfi + 1) refers
finger table. In this case; proceeds to its successor list. Theo the start of the finger most closely precedingt 1. For
query is now passed on to the first alive successor and the nastance, fori + 1 = 4, £(i + 1) = 2 and fori + 1 = 11,
cost is a function of the distance of this node from the targeti 4 1) = 8 etc.
t. We indicate this case by the last term in equation 7 which |, figure 12, we have plotted; versusi by solving equation
is O(hy(k)). This can again be computed from the inter-nodg, numerically.
distribution and from the functiong (r, o) computed earlier. We are interested in solving the recursion relation and
However in practice, the probability for this is extremely : 1 k1 g . .
small except for targets very close 0 Hence this does not computmgL ~ K Zizl Ci'. To do t.h|s, we decompose this
significantly affect the value of general lookups and we 'rgnosum into the following partial sums:
it for the moment.

The cost for general lookups is hence sop=C1 =

B Y Ci(r, ) 51= 0t
L(r,a) = 7 sg=C5+Cy

83:C5+C6+C7+Cg

Cit1=pCi+(1—p)+ (1 - P)Ci+1—5(i+1) (10)

11)

The lookup equation is solved recursively numericallyegiv
the coefficients and”;. We plot the result in Fig 11. The
theoretical result matches the simulation very well. spm=Com-1,1+ ...+ Cx_1
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Lookup cost (in hops)
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Fig. 12. The average cost; (the number hops for looking up an itein
keys away) in a network alV' = 1000 nodes andC = 220 keys without
churn obtained from the recurrence relation (10). The @estaokup length
L is also plotted as a reference.

Substituting the expressions for thés in the above, we find:

50:1
81=L[01—02]+1+30
I—p
=L [cy-Ci+2+[s0+

52 1—p[ 2 4] [80 81] (12)
J—1

8221 [027 1—027]-'—21 1+ZSJ
7=0

By substituting serially the expressions for (where0 <
j <i—1), the expression fos; (for i > 2) becomes:

1—2
S; = 7[22-7201 — Cz'i — Si727j02j]
L—=p ; (13)
+ 204 (i —1)2072
Hence
M
D si=—p+ M - 1]+ MM - M
=0
M—1
+ LMt ne - Y o - C (14)
11— 1 2i K—1
=2
— (M2 )0y — 2MT - 1)Cy - }
Therefore
D si=—p+2M g MM
M-1
P M-1 ,
i =Y Ca—Cra @5)
1=2
M=2

2M ‘7 02] 1:|

Jj=2
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Fig. 13. Theory and Simulation for the lookup cost without héor a
key space of sizéC = 214 for varying N. Plotted as reference is the curve
0.51og,(N). Note that on the y axis we have actually plottéd— 1 for
convenience.

The equation for the average lookup length without churn is
thus,

:—%+1+%M
+1fp{2Ml;1 llcﬂjzzlczllcc Kt te
B Z 2 oM-— ]_102].1]

If we can take the limitC — oo, we can throw away some
of the terms.

1
lim L=1+ *M
K—o0

P = 1
1o, [ 2 Z: IC ~ g Ok
2/‘/‘ i 2 Cya
z Com Y
- 1 P Cl CQ C4 CQM—B
NHTMH—J248‘MH
17)
SinceC; = 1, we can write
Letsipo_r |2l CGitl
2 20 —-p)| 2 4 (18)
CQM73 - ].
IM—=3
From the recursion relation for thg;’s, it is easy to see that
(Ci=1)=01=pg” () + 1 -p?7 () +... (19

where theg;’s are functions only of.

Hence if _(l —p)is gmall (% — 0), we neeo! only compute
the C;’s to first order in { — p) to get the leading order effect
and second order inl(— p) to get the correction etc.
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Hence in general the, the expression fois: the partial sums again in the following manner:

L:”%M{ ei(p) + (1= plea(p) + (1 = p)?es(p) .. Ro=so=C1=1
(20) A1 = 81+ 89 + 83 (25)
Ag =54+ 85+ 56
Whereey (p) = 3124 g5 (p) ete,
We evaluate this expression numerically by solving recur-
sion relation (10) and compare it with simulations done ab ze"here
churn. As can be seen the prediction of the equation is very 51 =Cy=pC1+ (1 —p)+ (1 —p)Cy
accurate (Figure 13). . 9= Cs = pCs+ (1 - p)+ (1 - p)Cy
Let us now compute:; (p) to see what the leading order
effect is. We now need to solve recursion relation (10) only s3=C4=pCs+(1-p)+(1-p)Cy
to orderl — p, which gives: 54 =C5+Cs + C7 4 Cy (26)

55 = Cy + Cho+ C11 + Ch2

Cy—1=(1-p)
Ci—1=(1=p)[1+p+p’] o= G+ Cuat i + G
Cs—1=1=p)[L+p+p*+-+)° (21)
Therefore
Cz‘*lz(l*p)[1+p+p2+~~~+pi72} Ag=Cy
Therefore, Ay =p[A; 4+ C1 = Cul 4+ 3(1 = p) +3(1 — p) [Ao]

1 1+ I 2 AQ:p[A2+C4_016}+12(1_p)+3(1—p)[A0+A1]
p[L 1+ptp’

@2
2 (2 T 22)

L=1+ %M +
(27)

Consider the expression inside the brackets. We are congputi i M
this in the approximatiof! = ¢ — 0, i.e.p = 1—e¢, therefore In general for a basg, defineB =b—1 andb™ = K. Then

Pr=0Q-e*=e* Ifx> %, then p* — 0, therefore if we have:

z > X, thenp® — 0. Hence, the terms inside the brackets A= L (G = Gyl
become: L=p" (28)
0i _ 1 M3 +B(B+1) '+ B[Ag+ AL+ + A ]
_ - _
Z; 2 +(20 1) ZT: ) §J (23) Following much the same procedure as before, we find
J= =T+

M
WhereT = In, £ —Iny, N and we have pup” =~ 1 for = < % L :l ZAJ
andp — 0 for 2 > %. This is clearly an overestimation and K =0

;g we expect the result to over estimate the exact expressmr; - B M B p [Ch—1 Cp—1 .
' _ B+1 B+11—p|B+1 (B+1)? '
Expression 23 becomes: (29)
71— @)M,g 4l (})M,S,T ~T for K — oo as the analogue of (18). Again we can simplify
2 2 - and slightly overestimate the sum by assuming ifat= 0
K T K .
Therefore: forz > & andp 1 for z < 5. Then we get:
1 1 b—1Ino N
L=1+ -y K — = [Ing £ — Iny N] Lxlt ——1 (30)
2 2 (24) "
~1+ 11112 N This is the analogue of equation 24 for any base

2 Clearly it is of interest to carry out a similar analysis with

Which is the known result for the average lookup length @hurn to get an estimate of the(1/r) effect. However in
Chord. this case there is no simple analogue of equation 10. The

Another important parameter in the performance of DHTsrinciple complication comes from the last term in equaffon
in general is the base. By increasing the base, the numbetthed 'back-tracking’ term which accounts for a node not using
fingers per node increases which leads to a shorter lookiwp piite closest preceding finger to the target, owing to its fajlu
length. The effect of varying the base has been studied in [BLt an earlier one. This results in the recursion relation fo
[6]. So far, we have considered in this analysis bagghord. C(: + 1) depending on not just two earlier costs (costs to
We can likewise carry out this analysis for any base. reach two keys closer to the node in question thatl) as in

In general, we have bagewith (b — 1)log,(K) fingers per equation 10 but on a larger and larger number of earlier terms
node. Consider as an example- 4. Here we can define the as: increases. We are nevertheless investigating this further
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V. WHAT IS CHURN? eventually driven to extinction. In this case the process on
N is just an ordinary random walk and the time taken to hit
We now discuss a broader issue, connected with chufRe v — ( state scales a&’2.

which arises naturally in the context of our analysis. As wWe \which of these 'types’ of churn is the most relevant? In the
mentioned earlier, all our analysis is performed in thedearea| world, the churn felt by a DHT, might possibly be some
state where the rate of joina ) is equal to the rate of fanurestime-varying mixture of these three, and will also possibly
As. However the rates\; and A, can themselves each begepend on the application. It is hence probably of impoganc
chosen in one of two different ways. They could either b stydy all these mechanisms and their implications inikleta
“per-network” or “per-node”. In the former case, the number
of joinees (or the number of failuregjoes notdepend on VI. DISCUSSION ANDCONCLUSION
the current number of nodes in the network. This is the case . i i
when a poisson model is considered either for arrivals or 10 summarize, In this paper, we have presented a detailed
departures. Put in another way, this is like saying that dAeoretical analysis of a DHT-based P2P system, Chord, us-

average, there is always a fixed number of nodes joining 99 & Master-equation formalism. This analysis differsniro
failing per time interval, irespective of the total numbr existing theoretical work done on DHTs in that it aims not

nodes in the network. In the case when these rates are chddefiStablishing bounds, but on precise determination of the
to be per-node, the number of joinees or failudegsdepend relevant quantities in this dynamically evolving systerori

on the current number of occupied nodes). We consider thllghg match of our.theo.r)é and the S|mulaft|ons, it can be seen
possibilities here, when, is per-network and; is per-node; hat we can predict with an accuracy of greater thah in

both are per-network or (as is the case studied in this pap St cases. . . )

both are per-node. In all three cases, since the systemagalw | nough this analysis is natxact(in the sense that there
studied in the steady state where the total number of joine¥§ approximations made to make the analysis simpler)tyet i
per unit ime is equal to the total number of failures per unfoVides a methodology to keep track of most of the relevant
time, the equation for the mean is alwaya'/dt — 0. We details of the system. We expect that the same analysis can be

hence expect the mean behavior to be the same, at least indAge for most other DHT's in a similar manner, thus helping
regime when is roughly constant. However the behavior ofo establish quantitative guidelines for their comparison
fluctuations is very different in each of these three casas. A
mentioned earlier, the time-scale over which the rate ohgha

of N is evaluated is again a 'microscopic’ time scale with g1l Karl Aberer, Anwitaman Datta, and Manfred Hauswirifficient, self-
contained handling of identity in peer-to-peer systetE€E Transac-

single node change occurring at every interval of time. tions on Knowledge and Data Engineerihf (2004), no. 7, 858—869.
In the first case, the steady state conditior,}\j'gNo = Ay, [2] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Harid

; o ; DKS(N; k; f): A Family of Low Communication, Scalable and Fau
where N, is the initial number of nodes in the system. The Tolerant Infrastructures for P2P Applicationd’he 3rd International

equation for the mean i8N/dt = \; /N — Ay, which ensures Workshop On Global and Peer-To-Peer Computing on Large Scale
that N cannot deviate too much from the steady state value. Distributed Systems (CCGRID 2003) (Tokyo, Japan), May 2003.

Similarly one can write an equation for the second momerl! James Aspnes, Zobiamadi, and Gauri ShaRault-tolerant routing in
peer-to-peer systemBroceedings of the twenty-first annual symposium

NZ% dN?/dt = (\j/N + Af) + 2(X\; — NXg). While the on Principles of distributed computing, ACM Press, 2002, 3}8—232.
first term is a 'noise’ term which encourages fluctuations, th[4] Miguel Castro, Manuel Costa, and Antony Rowstréerformance and

ot dependability of structured peer-to-peer overlayoceedings of the
second term becomes stronger the Iarger the deviation ¥pm 2004 International Conference on Dependable Systems andohkest

and hence strongly damps out fluctuations. Thus the number (psn'04), IEEE Computer Society, 2004.
of nodes in the system remains close to its initial value.  [5] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, aBelif Haridi,

. . . A statistical theory of chord under churifhe 4th International Work-
In the second case, where the join and failure rates are shop on Peer-to-Peer Systems (IPTPS'05) (Ithaca, New YBet)uary

both per-network the equation for the meand&//dt = 2005.

A\;j/N—X¢/N. Hence putting\; = \; ensures the steady state [6] Jiﬂyang Li, Jegemy Srftriblingy Robert MO;fisy M. Flr(afns 'Shﬂlek, anddh
: . . . ; X . Thomer M. Gil, A performance vs. cost framework for evaluating dht

Cond't'on'_ However in this case, the equatlor_1 for th_e second design tradeoffs under churiProceedings of the 24th Infocom (Miami,

moment isdN?/dt = (\j/N + A¢/N). The joins-failures FL), March 2005.

process thus makes the system execute a “random-walk’, in [7] David Liben-Nowell, Hari Balakrishnan, and David Kargénalysis
of the evolution of peer-to-peer systemdCM Conf. on Principles of
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