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Abstract

This thesis presents the design, implementation, and evaluation of Flow Java, a
programming language for the implementation of concurrent programs. Flow Java
adds powerful programming abstractions for automatic synchronization of concur-
rent programs to Java. The abstractions added are single assignment variables
(logic variables) and futures (read-only views of logic variables).

The added abstractions conservatively extend Java with respect to types, pa-
rameter passing, and concurrency. Futures support secure concurrent abstractions
and are essential for seamless integration of single assignment variables into Java.
These abstractions allow for simple and concise implementation of high-level con-
current programming abstractions.

Flow Java is implemented as a moderate extension to the GNU GCJ/libjava
Java compiler and runtime environment. The extension is not specific to a partic-
ular implementation, it could easily be incorporated into other Java implementa-
tions.

The thesis presents three implementation strategies for single assignment vari-
ables. One strategy uses forwarding and dereferencing while the two others are
variants of Taylor’s scheme. Taylor’s scheme represents logic variables as a circu-
lar list. The thesis presents a new adaptation of Taylor’s scheme to a concurrent
language using operating system threads.

The Flow Java system is evaluated using standard Java benchmarks. Eval-
uation shows that in most cases the overhead incurred by the extensions is be-
tween 10% and 50%. For some pathological cases the runtime increases by up
to 150%. Concurrent programs making use of Flow Java’s automatic synchroniza-
tion, generally perform as good as corresponding Java programs. In some cases
Flow Java programs outperform Java programs by as much as 33%.
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Chapter 1

Introduction

This thesis presents the design, implementation, and evaluation of Flow Java, a
programming language for the implementation of concurrent programs. Flow Java
adds powerful programming abstractions for automatic synchronization of concur-
rent programs to Java. The abstractions added are single assignment variables
(logic variables) and futures (read-only views of logic variables).

1.1 Motivation

Concurrent, distributed, and parallel programs fundamentally rely on mechanisms
for synchronizing concurrent computations on shared data. To synchronize ac-
cesses to shared data most systems and languages for concurrent programming
provide monitors and/or locks and condition variables. Implementing non-trivial
concurrent programs using these synchronization mechanisms is known to be error
prone. Flow Java provides a better way to construct concurrent programs which
avoids explicit synchronization.

The goals of Flow Java are:

• Provide automatic synchronization for concurrent computations. The pro-
grammer should only have to consider what needs to be synchronized, not
how and when.

• Provide efficient means for organizing concurrent computations as a collec-
tion of communicating tasks.

• Integrate seamlessly with standard Java. Recompilation should be the only
requirement for using Java programs in Flow Java. This allows the Flow

1



2 1.2. APPROACH

Java programmer to take advantage of the wealth of standard Java libraries
available.

• Have an efficient implementation. The implementation should have a rea-
sonable overhead for using Flow Java features without unduly penalizing
standard Java code. The implementation should make few assumptions on
the underlying Java system, thus making it easily portable to different Java
implementations.

1.2 Approach

1.2.1 Automatic Synchronization

Flow Java adds logic variables to Java. Logic variables in Flow Java are referred to
as single assignment variables. Single assignment variables are initially unbound,
that is they have yet to acquire a value. A thread accessing the content of a single
assignment variable suspends until the variable’s value becomes available. A single
assignment variable acquires a value (becomes determined) by an operation called
bind. This operation binds a single assignment variable to a Java object. This
makes the single assignment variable indistinguishable from the object. Single
assignment variables in Flow Java are typed and can only be bound to objects of
compatible types.

1.2.2 Inter-task Communication

The automatic suspension of operations accessing the content of an unbound sin-
gle assignment variable until its value becomes determined lends itself well to
implementing abstractions such as streams [36]. Streams are a prerequisite for a
port-based message passing system [22]. Once an initial message has been sent
using the port, additional communication can occur through unbound single as-
signment variables embedded in the initial message (for example, for replies or
further messages).

As the only operations on single assignment variables are the implicit synchro-
nization and bind, a programmer wishing to connect two tasks via a shared single
assignment variable has to create the variables before the tasks are created. To
provide greater flexibility when constructing systems, a second operation on single
assignment variables is introduced, aliasing. The alias operation allows two un-
bound single assignment variables to be made equal, equal in the sense that they
will be indistinguishable from each other.

In order to allow safe abstractions where the ability to bind a single assignment
variable is restricted, Flow Java provides a new kind of object, a future. The future
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is a read only view of a single assignment variable. A future is always associated
with a single assignment variable, when the variable becomes bound the future
also becomes bound. A future has the same synchronization properties as a single
assignment variable except that it cannot be bound. Futures are created by an
overloaded type conversion operation, converting a single assignment variable to
its ordinary Java type converts it to a future. A thread can, instead of a single
assignment variable, share a future with other threads. The read-only property
of the future ensures that only the thread having access to the single assignment
variable can bind the future.

1.2.3 Integration with Java

For Flow Java to be useful for real applications, Flow Java must integrate seam-
lessly with standard Java libraries. The main issue is how single assignment vari-
ables should be visible to Java programs. Requiring that all objects passed to
standard Java should be determined is unnecessarily restrictive. It would lead to
unnecessary synchronization and also require a traversal of the involved Flow Java
objects.

The approach taken in Flow Java is to add an implicit type conversion from
single assignment variables to futures. This makes seamless integration with stan-
dard Java possible as methods in Java libraries will operate on futures. The syn-
chronization properties of futures guarantees correct execution of standard Java
code.

1.2.4 Efficient Implementation

The Flow Java implementation is based on the GNU GCJ Java compiler and the
libjava runtime environment which implements ahead of time compilation of
Java. The distinction between futures and single assignment variables is main-
tained purely by the compiler. The runtime system is only concerned with or-
dinary objects and synchronization objects (which represent single assignment
variables and futures). The runtime system of GCJ/libjava uses the same ob-
ject representation as C++. Flow Java objects are extended with a forwarding
pointer field to support binding and aliasing. By using a specially constructed
virtual method table for synchronization objects, automatic synchronization when
invoking a method is possible without incurring a runtime overhead (apart from
the extra memory required for the forwarding pointer). Synchronization on field
accesses is on the other hand associated with a runtime overhead as the compiler
generates code to check the binding status of the variable. The overhead of these
checks can be reduced by compiler optimizations which remove redundant checks.
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The infrastructure for Java monitors and locks is exploited for implementing thread
suspension.

The binding and aliasing information manipulated and maintained by the run-
time system uses the previously described forwarding pointer field in each ob-
ject. Operations manipulating the information use a two layer architecture which
separates concerns for correctness and atomicity from the representation of the
equivalence classes formed by aliasing and binding. The forwarding based scheme
for representing equivalence classes is selected after evaluating three alternative
representations.

1.3 Source Material

The material in this thesis has previously been published in the following two
internationally peer-reviewed papers:

• Frej Drejhammar, Christian Schulte, Seif Haridi, and Per Brand. Flow
Java: Declarative concurrency for Java. In Proceedings of the Nineteenth
International Conference on Logic Programming, volume 2916 of Lecture
Notes in Computer Science, pages 346–360, Mumbai, India, December 2003.
Springer-Verlag. [11]. Won the Association of Logic Programming best ap-
plication paper award 2003.

• Frej Drejhammar and Christian Schulte. Implementation strategies for sin-
gle assignment variables. In Colloquium on Implementation of Constraint
and LOgic Programming Systems (CICLOPS 2004), Saint Malo, France,
September 2004. [10].

The thesis author is the main contributor to the design of Flow Java as well as
the only implementor.

1.4 Thesis Contribution

The contribution of this thesis is the design, implementation, and evaluation of
an extension to Java that makes logic programming technology for concurrent
programming available in a widely used programming language. More specifically,
it contributes the insight that futures as read-only variants of logic variables are
essential for seamless integration of logic variables.

The thesis contributes implementation techniques for integrating logic vari-
ables and futures into object-oriented programming systems using a traditional
thread-based concurrency model. Three different implementation strategies for
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single assignment variables, previously known in logic programming, are adapted
to a thread-based environment. The adaption takes locking, token equality, and
updates into account. The thesis contributes a new two-layer architecture which
separates the representation of single assignment variables from the operations
required to ensure correctness and atomicity in an environment with operating
system threads.

Additionally, the thesis clarifies how Taylor-based schemes need to be adapted
to be compatible with thread-based concurrency, token equality, and update. Eval-
uation shows that the most crucial aspect for efficiency is to minimize the amount
of memory accessed.

1.5 Thesis Organization

Chapter 2 presents Flow Java by presenting its features and giving illustrative
examples. Chapter 3 shows how Flow Java can be applied to a non-trivial problem.
Flow Java is used to implement a lift controller organized as a set of communicating
tasks. The Flow Java implementation is discussed in Chapter 4 followed by its
evaluation in Chapter 5. The thesis concludes with a summary of the thesis’s
contributions and presents plans for future work in Chapter 6.
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Chapter 2

Flow Java

This chapter introduces Flow Java and presents some basic concurrent program-
ming abstractions. Section 2.1 introduces single assignment variables, followed by
futures in Section 2.3. Henceforth the term synchronization variable will used as a
term for both single assignment variables and futures. Section 2.3 discusses aliasing
of single assignment variables as an mechanism for constructing synchronization
abstractions such as barriers. Section 2.5 describes types for synchronization vari-
ables. Finally, in Section 2.6, other languages with similarities to Flow Java are
discussed.

The description of Flow Java in this chapter assumes basic knowledge of Java,
as for example available in [3, 14].

2.1 Single Assignment Variables

Single assignment variables in Flow Java are typed and serve as place holders for
objects. They are introduced with the type modifier single. For example,

single Object s;

introduces s as a single assignment variable of type Object.
Initially, a single assignment variable is unbound which means that it contains

no object. A single assignment variable of type t can be bound to any object of
type t. Types for single assignment variables are detailed in Section 2.5. Binding a
single assignment variable to an object o makes it indistinguishable from o. After
binding, the variable is said to be bound or determined.

Restricting single assignment variables to objects is essential for a simple im-
plementation, as will become clear in Chapter 4. This decision, however, follows

7



8 2.1. SINGLE ASSIGNMENT VARIABLES

1 ListCell currentTail;

2 ...

3 while(...) {

4 single ListCell newTail;

5 currentTail @= new ListCell(value, newTail);

6 currentTail = newTail;

7 }
Figure 2.1: Building a stream

closely the philosophy of Java which separates objects and primitive types such as
integers or floats. For example, explicit synchronization in Java is only available
for objects. Additionally, Java offers predefined classes encapsulating these re-
stricted primitive types (for example, the class Integer storing an int). If single
assignment properties are needed for a primitive type, one of the predefined classes
should be used.

Flow Java uses @= to bind a single assignment variable to an object. For
example,

Object o = new Object();

s @= o;

binds s to the newly created object o. This makes s equivalent to o in any
subsequent computation.

The attempt to bind an already determined single assignment variable x to an
object o raises an exception if x is bound to an object different from o. Otherwise,
the binding operation does nothing. Binding two single assignment variables is
discussed in Section 2.4. Note that the notion of equality used is concerned with
the identity of objects only (token equality).

Note that in Flow Java it is the actual object which has the single assignment
property, not the variable storing the reference. A variable containing a refer-
ence to a single assignment variable can be overwritten by the normal assignment
operator.

The reason for the special @=-operator instead of overloading the =-operator
with bind semantics if the left hand side is a single assignment variable is to allow
the value of a field or variable declared single to be exchanged for a another single
assignment variable. The need occurs for example when a stream [36] is built
incrementally. A stream is an infinite list with an undetermined single assignment
variable at its end. The stream is extended by binding the variable at its end to
a new list cell whose tail is a new undetermined variable. For this to be efficient
the creator of the stream has to keep track of the current end of the stream.
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Consider the example in Figure 2.1, the tail of the stream is kept in the vari-
able currentTail (line one). The current tail is bound to a new list cell in line
five. The new cell is instantiated with a value and an unbound single assignment
variable (newTail, on line four), that is the new tail. When the list cell has been
added currentTail is updated with the new tail (line six). If the =-operator had
been overloaded to represent bind the update would not be possible, as update
would only be available for normal variables. In that case the single assignment
tail would have to be encapsulated in a wrapper object. A new wrapper would
have to be instantiated for each element added to the stream. The wrapper would
be discarded as soon as the next element was added to the stream, producing
unnecessary garbage.

2.2 Synchronization

Statements accessing the content of an undetermined single assignment variable
automatically suspend the executing thread. These access statements are: field
access and update, method invocation, and type conversion (to be discussed in
Section 2.5).

For example, assume a class C with method m() and that c refers to a single
assignment variable of type C. The method invocation c.m() suspends its executing
thread if c is undetermined. As soon as some other thread binds c, execution
continues and the method m is executed for c.

As all operations which access and/or need the contents of a single assignment
variable suspends until the variable becomes bound, synchronization on its binding
is truly automatic.

Automatic synchronization has two immediate benefits: It avoids needless ex-
plicit synchronization which artificially limits the available concurrency in a pro-
gram; The programmer does not have to write error prone explicit code for syn-
chronization or checks for determination.

Binding a synchronization variable forces all variables assigned to by the thread
to be written back to main memory. Likewise a thread which resumes computation
after having been suspended is guaranteed to flush all variables from its working
memory. These semantics are analogous to the standard Java semantics for ac-
quiring and releasing locks. They are needed for single assignment variables to be
usable for coordinating access to shared variables.

2.2.1 Example: Network Latency Hiding

The mechanisms in Flow Java described so far allows us to easily implement con-
structs which concurrently computes a result which is needed only much later. A
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1 single Integer answer1, ..., answerN;

2

3 issue(answer1);

4 issue(answer2);

5 ...

6 issue(answerN);

7

8 System.out.println(answer1);

9 System.out.println(answer2);

10 ...

11 System.out.println(answerN);

12

Figure 2.2: Masking network latency by pipelining

1 static public void issue(final single Integer result) {

2 new Thread() {

3 public void run() {

4 result @= syncRequest(); /* Bind */

5 }

6 }.start();

7 }
Figure 2.3: Spawning a thread to issue a request asynchronously

typical application of such a construction is in a distributed system. If network
latency is high, unrelated requests to a remote node can be pipelined to hide net-
work latency. In such a scenario all requests are issued in sequence and when all
requests have been sent the results are processed. Consider the code fragment in
Figure 2.2 which illustrates such a scenario, N requests are issued (lines three to
six) and the answers are printed (lines eight to eleven). Printing the results will
automatically synchronize on the reception of the answers.

Hidden in the issue() method is the functionality to spawn a new thread
which sends the request, waits for the answer, and then binds the answer variable.
Figure 2.3 contains the code for issue(). The single assignment variable to which
the result will be bound to is passed as an argument to the method (line one). In
lines two to six a new thread is created. The thread performs the remote request
(the request is synchronous) in line four and then binds the answer to result.

A similar abstraction (a latch as described by Lea [26]) in plain Java requires
roughly twice the number of lines of code, as it uses explicit synchronization for
both storing and retrieving the result. Additionally, usage requires awareness that
the result is encapsulated in an object. This is in contrast to Flow Java, where
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the result is transparently available.

The Flow Java mechanisms described so far can be used to synchronize multiple
threads. They allow for easy construction of patterns where one or more threads
synchronize on the availability of a value, such as in the pipelining example shown
above.

2.3 Futures

Single assignment variables can be shared among threads, sharing makes it possible
to construct concurrent programs in which a thread controls other threads via
shared variables. Consider a scenario in which two worker threads are given their
input via a single assignment variable shared with a third controlling process. The
synchronization properties of single assignment variables allows the workers to be
programmed as if the input is available as they will automatically suspend until the
input becomes determined. In this scenario the binding of the variable functions
as a broadcast which sends the input to all waiting threads.

A problem with such a construction is that erroneous or malicious code in one
of the workers can cause exceptions in the controller or trick the other worker to
start processing unintended input by binding the shared variable. If the variable
shared among the threads were a special kind of single assignment variable which
only could be bound by the controller, but would retain the same synchronization
properties as a normal variable, the integrity of the system could be guaranteed.
To this end, Flow Java offers futures as secure and read-only variants of single
assignment variables.

A single assignment variable x has an associated future f . The future is bound,
if and only if the associated variable is bound. If x becomes bound to object o,
f also becomes bound to o. Operations suspending on single assignment variables
also suspend on futures.

The future associated with a single assignment variable, v, is obtained by
converting v’s type from single t to t. This can be done by an explicit type
conversion, but in most cases this is performed implicitly (see Section 2.5.2). A
typical example for implicit conversion is invoking a method not expecting a single
assignment variable as its argument.

In a secure implementation of the scenario described above the controller would
be the only thread having access to the single assignment variable. The workers
would only share the read-only future, thus protecting the integrity of the system.

Futures allow safe concurrency and synchronization constructs where the abil-
ity to bind a single assignment variable can be restricted to a subset of threads
sharing a variable and its associated future.
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1 single Object s;

2 Object sf = s;

3 f @= sf;

4 s @= new Object(); // f is bound

Figure 2.4: Why aliasing of futures violate the read only property of futures

2.4 Aliasing

With the operations on synchronization variables described so far, the ways in
which to construct threads sharing synchronization variables is restricted. The
shared variables have to be created first and then handed to the participating
threads, either via their constructors or with a special initialization method. This
is sufficient to create any sharing pattern but not very flexible. Using a special
initialization method may also require extra explicit synchronization as Flow Java’s
automatic synchronization cannot be used to synchronize on a variable which
has not yet been created. The problem can be eliminated by introducing an
operation which aliases two unbound single assignment variables (makes them
equal). Aliasing two single assignment variables x and y is done by x @= y. Binding
either x or y to an object o, binds both x and y to o. Aliasing single assignment
variables also aliases their associated futures.

Aliasing allows sharing patterns where the participating threads create single
assignment variables as part of their initialization (for example in a static factory
method) which returns the shared variable. A main program can then connect
communicating threads by aliasing their single assignment variables.

Aliasing is only possible for single assignment variables, not for futures or
a combination of a future and a single assignment variable. This restriction is
essential to preserve the read only property of futures. If aliasing was available for
futures a reference to a future would be sufficient to bind it. Consider the example
in Figure 2.4. Assume f is a future, by creating a single assignment variable s

(line one), retrieving its associated future sf (line two), we could alias f and sf

(line three). But as we have access to s we could then bind sf and f by binding
s (line four). This would effectively have removed the read-only attribute of f.

Aliasing is only possible for variables declared as having the same type. The
reason for this restriction is to avoid inconsistencies in the language semantics.
Consider the program fragment in Figure 2.5. If the alias in line three were allowed,
would the alias in line four succeed? Looking at the declared types of a and c the
operation is legal. But in that case, the alias in line three has no effect. Another
possible interpretation of the fragment is that the alias in line three dynamically
constrains the type of a to type B, this would lead to a type mismatch and a runtime
error in line four. Neither of these alternative behaviors would be useful and as
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1 class A; class B extends A; class C extends A;

2 single A a; single B b; single C c;

3 a @= b;

4 a @= c;

Figure 2.5: Inconsistencies if aliasing were allowed for variables of non-identical
types

the current semantics have a simple implementation, aliasing of single assignment
variables of different types is forbidden.

Aliasing provides a way to express equality among unbound variables, therefore
Flow Java extends the equality test == such that x == y immediately returns true
if x and y are two aliased single assignment variables. Otherwise, the equality test
suspends until both x and y become determined or aliased.

Aliasing combined with the extended equality test allows Flow Java to borrow
synchronization constructs from the field of Concurrent Constraint Programming.
The example in Figure 2.6 of a barrier uses a technique which is often referred to
as short circuit [32]. A barrier can in Flow Java be implemented by giving each
thread two single assignment variables prev and succ. Before a thread terminates,
it aliases the two variables. The main thread, assuming it spawns n threads,
t0 . . . tn−1, creates n + 1 single assignment variables v0, . . . , vn. It then initializes
prev and succ as follows: prev

i
= vi and succi = vi+1 where i (0 ≤ i < n) is the

index of the thread, thus sharing the variables pairwise among the threads. The
main thread then waits for v0 to be aliased to vn as this indicates that all threads
have terminated.

In Flow Java the algorithm can be implemented as shown in Figure 2.6. The
prev and succ variables are stored in the instance when it is created with the
constructor in line four. The actual computation is done in run() in line eight
and finishes by aliasing prev to succ in the next line.

The main function spawn() creates the threads and waits until they have com-
pleted. Each loop iteration creates a new single assignment variable t and a
thread running the computation. The final check suspends until all threads have
terminated and hence all variables have been aliased.

2.5 Types

Variables of type t in Java can refer to any object of a type which is a subtype of t.
To be fully compatible with Java’s type system, single assignment variables follow
this design. A single assignment variable of type t can be bound to any object of
type t′ provided that t′ is a subtype of t.
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1 class Barrier implements Runnable {

2 private single Object prev;

3 private single Object succ;

4 private Barrier(single Object p, single Object s) {

5 prev = p; succ = s;

6 }

7 public void run() {

8 computation();

9 prev @= succ;

10 }

11 public static void spawn(int n) {

12 single Object first; single Object prev = first;

13 for(int i = 0; i < n; i++) {

14 single Object v;

15 new Thread(new Barrier(prev, v)).start();

16 prev = v;

17 }

18 first == prev;

19 }

20 }
Figure 2.6: A short circuit barrier

1 class A;

2 class B extends A;

3

4 void doit(single A a) { }

5 single A a;

6 doit(a);

7 single B b;

8 doit(b);

Figure 2.7: single does not denote a subtype, therefore the calls are legal
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Note that the single keyword is a type modifier just like final and volatile

and does not denote a subtype. Assume we have a base class A and a subclass B

of A as in the program fragment in Figure 2.7. If we define a method as in line
four, we can invoke it with arguments of both type single A and single B as in
lines six and eight. If single would denote a subtype, single B would not be a
subclass of single A which would make the invocations illegal. That single is a
type modifier is also the reason why synchronization variables, with the semantics
of Flow Java, cannot be expressed in standard Java (see also Section 4.7).

2.5.1 Aliasing

Aliasing two single assignment variables x and x′ with types t and t′ respectively,
is only correct if it statically can be determined that t = t′.

2.5.2 Type Conversions

Type conversion can also convert the type of a synchronization variable by con-
verting to a type including the single type modifier. Widening type conversions
immediately proceed. The operation is always safe in that it can statically be
proved to be correct. A narrowing type conversion on an undetermined single as-
signment variable suspends until the variable is determined. Allowing a narrowing
conversion on an undetermined synchronization variable would be equivalent to
allowing aliasing of single assignment variables of different types as discussed in
Section 2.4.

The type conversion syntax present in standard Java is overloaded to provide
access to the future associated with a single assignment variable. The future is
obtained by a conversion from single t to t.

A conversion from a single assignment variable to a future is implicitly done
each time a single assignment variable is passed to a method or assigned to a vari-
able of non-single assignment type. The implicit conversion to a future is essential
for seamless integration of single assignment variables. Conversion guarantees that
any method can be called, in particular methods in predefined Java libraries. The
methods will execute with futures and execution will automatically suspend and
resume depending on whether the future is determined or not. This approach
is different from other language extensions such as CC++ [9] which enforce that
anything visible to components written in the base language must be determined
before execution can proceed. An advantage of this approach is that it allows
reuse (linking) of code written in the base language without recompilation. The
requirement that everything visible to the base language must be determined may
lead to unnecessary or premature synchronization which reduces the amount of
parallelism available.
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The Flow Java approach maximizes the available parallelism at the cost of
recompilation and the overhead for automatic synchronization. On the other hand
it allows data structures such as collection classes written in the base language to
be used for synchronization objects.

A drawback with this approach is that standard Java collection classes cannot
be directly used to store single assignment variables. When the variable is added it
will automatically be converted to a future as part of the method invocation. This
drawback can be circumvented by encapsulating the single assignment variable in
a wrapper object.

2.6 Related Approaches

The design of Flow Java has been inspired by concurrent logic programming [36]
and concurrent constraint programming [33, 32, 37], and distributed program-
ming [17]. The main difference is that Flow Java does not support terms or
constraints in order to be a conservative extension of Java. On the other hand,
Flow Java extends the above models by futures and types. The closest relative to
Flow Java is Oz [37, 28, 41], offering single assignment variables as well as futures.
The main difference is that Oz is based on a constraint store as opposed to objects
with mutable fields and has a language specific concurrency model. As Oz lacks a
type system, conversion from single assignment variables to futures is explicit.

Another closely related approach is Alice [1] which extends Standard ML by
single assignment variables (called promises) and futures. Access to futures is by
an explicit operation on promises but without automatic type conversion. Alice
and Flow Java share the property that futures are not manifest in the type system.

The approach to extend an existing programming language with either single
assignment variables or futures is not new. Multilisp is an extension of Lisp which
supports futures and threads for parallel programming [16]. Here, futures and
thread creation are combined into a single primitive similar to the thread spawning
construct in Section 2.2.1. Multilisp is dynamically typed and does not offer single
assignment variables and in particular no aliasing. Another related approach is
Id with its I-structures [4]. I-structures are arrays of dataflow variables similar
to single assignment variables without aliasing. A field in an I-structure can be
assigned only once and access to a not yet assigned field will block.

Thornley extends Ada as a typed language with single assignment variables [39].
The extension supports a special type for single assignment variables but no fu-
tures and hence also no automatic conversion. The work does not address to which
extent it is a conservative extension to Ada, even though it reuses the Ada concur-
rency model. It supports neither aliasing nor binding of an already bound single
assignment variable to the same object. A more radical approach by the same
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author is [40]. It allows only single assignment variables and hence is no longer a
conservative extension to Ada.

Chandy and Kesselman describe CC++ in [9] as an extension of C++ by typed
single assignment variables without aliasing together with a primitive for thread
creation. CC++ does not provide futures. Calling a method not designed to deal
with single assignment variables suspends the call. This yields a much more re-
stricted concurrency model.

The approach to extend Java (and also C#) with new models for concurrency
has received some attention. Decaf [34] is a confluent concurrent variant of Java
which also uses logic variables as the concurrency mechanism. Decaf does not sup-
port futures and changes Java considerably, hence requiring a complete reimple-
mentation. Hilderink, Bakkers, et al. describe a Java-based package for CSP-style
channel communication in [19].

An extension to C# called Polyphonic C# is described in [6], where the system
is implemented by translation to standard C#. Polyphonic C# adds a mechanism
for asynchronous message sending by adding asynchronous functions which spawn
new threads. Polyphonic C# also adds a construct for receiving messages to the
language. Message reception is through a construct called a chord which is a
method definition associated with a list of messages. An invocation of such a
method will suspend until the messages in the list have been received.

While the two latter approaches use models for concurrent programming differ-
ent from synchronization variables, they share the motivation to ease concurrent
programming in Java or C# with Flow Java.

Another Java dialect is jcc [31] which redefines Java’s concurrency model.
In jcc threads are isolated from each other and communicate through message
sending. The message contents are copied during sending, only immutable objects
are shared among threads. The language compiles to standard JVM bytecode and
can transparently use Java libraries as long as they do not make use of threads.
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Chapter 3

Programming in Flow Java

This chapter illustrates the current best practice in Flow Java programming by
describing the implementation of a non-trivial application, a lift controller.

The chapter starts with an overview of concurrency abstractions in Section 3.1.
Section 3.2 describes some of these abstractions as adapted to Flow Java. The
design of the lift controller is then described in terms of these abstractions in
Section 3.3. Finally, Section 3.4 relates the implementation to hypothetical im-
plementations in other languages, including standard Java, and discusses the key
insights gained in implementing the controller.

3.1 Concurrency Abstractions

One of the motivations for Flow Java is to avoid explicit synchronization for shared
data. A powerful approach to writing concurrent programs which avoids explicit
synchronization is to construct programs as a set of communicating tasks. A task
is a separate thread of control which sends and accepts messages. Messages sent
to a task are stored in a FIFO queue. Messages can selectively be read from this
queue by the task.

The task abstraction can be found in many languages which have been de-
signed with concurrency support built in such as Ada [21], Concurrent C [13], and
Erlang [2] (Where, for the last two, tasks are called processes). Here the task
abstraction is visible at the syntactic level with constructs for defining task types,
accepting and sending messages. Ada and Concurrent C have task types, this is
in contrast to Erlang where a message can be any Erlang term. Task types char-
acterize tasks by the types of messages it accepts. Tasks accepting the same set
of messages are said to be of the same task type.

19
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3.2 Tasks in Flow Java

Flow Java tasks are typed and internally structured as state machines. Messages
sent to the task are buffered in a message queue from which the task selectively can
read messages. Compared to other languages which has task support built in, Flow
Java requires the programmer to implement his own task abstractions. This section
starts by describing how states and messages are represented in Section 3.2.1.
Then the implementation of message delivery and message queues is described in
Section 3.2.2. Finally task creation is described in Section 3.2.3.

3.2.1 Messages and States

Messages are instances of message classes. A message instance encapsulates the
information contained in it.

The states of the state machine are represented as instances of a base state
class, State. The State class contains a protected field self which is the task’s
message queue.

Messages are delivered to a state by calling a handler method with an argument
of the message type, that is, handle(A msg) handles a message msg of type A.
The method returns either null, to indicate that the state does not accept the
message, or a state object to indicate that the message was accepted. This setup
allows for simple construction of state machines by defining an abstract base class
with a method for each possible message. The methods in the base class all return
null. States are built by subclassing the base class overriding the methods for
the messages which are accepted in that particular state. The base class which
defines all messages accepted by the task is called the task type, as it serves the
same purpose as Ada task types [21].

It is desirable for the framework delivering messages to states to be fully generic.
For this to be possible the framework cannot directly call the handle method of
the state as it would require an explicit type conversion to the task type of the
recipient. Therefore all message classes implement the interface Message which
specifies a single deliver(Object state) method. This method is responsible for
converting its argument to the correct task type and invoking the handle method
for the message.

3.2.2 Message Handling

The message queue implements buffering of messages which have not been pro-
cessed yet, as well as storing messages which are not accepted by the current state.
The message queue preserves the order of sent messages. It guarantees that a task
will receive the oldest message which is accepted in the current state.
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The message queue implementation can be decomposed into four functional
units:

• Adding messages to the message queue.

• Buffering messages not yet delivered to the task.

• Delivering messages to the task.

• Storing messages which were not accepted by the task.

Buffering of messages not yet delivered to the task is handled by a linked list
with an undetermined single assignment variable at its end. Such a list is called
a stream [36] (see also Section 2.1). The synchronization properties of Flow Java
will automatically suspend a thread iterating over the list when it reaches the
unbound synchronization variable at its end.

New elements can be appended to the list by binding the single assignment
variable at the end to a new list cell, the tail of which is unbound. The binding of
the tail element will automatically awaken a thread suspended on the tail.

Streams are easily implemented in Flow Java, they are simply a list cell whose
elements are declared as single and two access methods to access the head and
tail, see Figure 3.1. The stream can grow arbitrarily long and is therefore suitable
for buffering messages delivered to the task.

A problem with streams is that it is hard to allow multiple threads to si-
multaneously append elements to the end of the stream without introducing race
conditions. This problem can be avoided by introducing an object which holds a
reference to the end of the stream and a synchronized method which creates and
appends a new list element. The synchronized method will then arbitrate among
multiple threads appending to the stream. The arbitrating object is usually called
a port [22] and is the mechanism by which messages are added to the message
queue.

The implementation of a port is shown in Figure 3.2. The send() method (line
eight) appends a new element to the stream by: creating a new unbound tail (line
nine); binding the existing tail to a new stream element containing the message
which is sent o (line ten); and finally update the private field containing the tail
to the new tail (line eleven).

Delivery of newly arrived messages and storage of messages not yet accepted
by the task are intertwined. Undeliverable messages are stored in a doubly linked
list which is organized as a queue. The main loop which drives the task is shown
in Figure 3.3. The loop first tries to deliver the messages in the queue (line seven),
if it is accepted the message is unlinked from the list (line eleven) and attempted
delivery restarts from the head of the queue (line five), otherwise the next message
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1 public class Stream {

2 private single Object head;

3 private single Stream tail;

4

5 public Stream(single Object o, single Stream tail) {

6 this.head = o;

7 this.tail = tail;

8 }

9

10 public single Stream get_tail() {

11 return tail;

12 }

13

14 public single Object get_head() {

15 return head;

16 }

17 }
Figure 3.1: A stream

1 public class Port {

2 private single Stream tail;

3

4 public Port(single Stream stream) {

5 tail = stream;

6 }

7

8 public synchronized void send(Object o) {

9 single Stream new_tail;

10 tail @= new Stream(o, new_tail);

11 tail = new_tail;

12 }

13 }
Figure 3.2: A port
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is tried (line nine). When the list is exhausted of deliverable messages the stream is
accessed (line 19). The driver loop does not access the stream directly but uses an
iterator with the operations read(), to return the current message (if no message
is available it suspends until one is available), and next() (advances the internal
position of the iterator to the next message). When a message has been read it
is delivered to the current state (line 20), if it is accepted, message delivery starts
over from the beginning of the queue (line 27).

3.2.3 Task Creation

Tasks are encapsulated by instances of the Task class. The class has a single public
create method, shown in Figure 3.4, which takes an initial state. The method
creates a port and a stream and then creates a new thread which starts executing
the infinite message delivery loop described in Section 3.2.2. The method then
returns the port.

3.3 A Lift Controller

The use of a lift controller to demonstrate concurrent programming is inspired
by the examples in Erlang and Oz in [2] and [41] respectively. This example is
modeled after a lab given in the course 2G1512 at KTH [35].

The lift controller controls a system of three lifts in a six floor building. Each
floor except the bottom and top floors have two buttons, one for calling a lift to go
downwards and one to go upwards (the top and bottom floors only have a single
down respectively up button). Inside the lift-cabins there are buttons for each
floor.

There is a task for each lift cabin handling the low level control of the lift,
that is opening/closing of the doors and going to a certain floor. The low level
controller is in the implementation called a Cabin. For each lift there is also a
high-level controller managing a record of scheduled stops, called a Controller.
There is one task, called Floor for each floor which receives a message when one
of the call buttons on that floor are pressed. It is responsible for asking all high
level lift controllers for an estimate of the time required to serve the request and
give the request to the lift with the smallest waiting time. The low level controller
communicates with the high-level controller receiving orders to go to a floor and
telling the high level controller when it has arrived.

This section describes the implementation of one of the cabins in Section 3.3.1,
it then discusses system initialization in Section 3.3.2. Section 3.3.3 shows how
Flow Java’s automatic synchronization can be used to simplify the implementation
by reducing the number of states in a task.
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1 public final void run() {

2 while(true) {

3 /* Try the queue */

4 ListIterator q = queue.listIterator(0);

5 while(q.hasNext()) {

6 Msg msg = (Msg)q.next();

7 State new_state = msg.deliver(state);

8 if(new_state == null) {

9 continue; // This message is ignored

10 } else {

11 q.remove(); // This message was accepted

12 state = new_state;

13 q = queue.listIterator(0);

14 }

15 }

16

17 /* Nothing found in the queue, try the stream */

18 while(true) {

19 Msg msg = (Msg)stream.read();

20 State new_state = msg.deliver(state);

21 stream.next(); // Advance the queue

22 if(new_state == null) {

23 queue.addLast(msg); // Message was not accepted,

24 // queue it

25 } else {

26 state = new_state; // Message was accepted

27 break;

28 }

29 }

30 }

31 }
Figure 3.3: The message delivery loop in a task
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1 public final static Port create_task(State initial) {

2 single Stream s;

3 Port p = new Port(s);

4 initial.install_port(p);

5 Thread handler = new Thread(new Task(new StreamIterator(s),

6 initial));

7 handler.start();

8 return p;

9 }
Figure 3.4: Method for creating a new task

3.3.1 A Sample Task: The Cabin

To illustrate the implementation of a task we will now describe the Cabin task
which controls a single lift cabin. The task implements the state machine in
Figure 3.5. The machine has five states:

stopped The elevator is standing still with the doors closed. In this state it
accepts the goto(n) message which is an order to go to floor n. The message
is represented by the class definition in Figure 3.6. Note how the message
calls a method of the correct task type.

running In this state the cabin is moving to a floor. To animate the simulation
it uses a timer provided by the system to periodically receive a timeout

message. On reception of the timeout it updates the cabin position and if
the cabin has arrived at the desired floor it transitions to the opening state.

opening In this state the lift cabin is in position and is opening its doors. It uses
the same timeout mechanism as the running state.

open In this state the cabin’s doors are open, here a single longer timeout suffices.
When it expires the state changes to closing.

closing This state is similar to opening but here the doors are closing. When
the doors are closed it transitions to stopped. When the transition occurs it
sends an arrived message to its controller.

The Cabin’s task type is defined in Figure 3.7. Apart from being a specification
of the accepted messages it also defines information shared between all states, in
this case: a reference to the hardware controlling the physical motors, buttons,
etc (line four); the lift identity (line two) which is needed for interacting with
the external lift hardware; the controller responsible for this lift (line three); the
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running

stopped opening

closing open

goto(n)

timeout

timeout

timeouttimeouttimeout

Figure 3.5: The Cabin state machine

1 public class Goto implements Message {

2 public int floor;

3 Goto(int floor) {

4 this.floor = floor;

5 }

6

7 public State deliver(State in) {

8 return ((Cabin.CabinState)in).handle(this);

9 }

10 }
Figure 3.6: Representation of a goto(n) message

current cabin position (line five). The constructor in line 15 is used when the initial
cabin state is created during initialization. The constructor in line seven preserves
the shared information and is used when the state machine makes a transition.
The two non-accepting handlers for goto(n) and timeout are defined on line 22
and 26.

In Figure 3.8 the code for the stopped state is shown. As the stopped state is
the initial state, it defines a constructor initializing the shared information (line
two) as well as a constructor used when changing from the closing state (line five).
The stopped state only accepts the goto(n) message, the handler is defined in line
nine. It creates and returns a new running state using a constructor which takes
the current state (to preserve the current shared information) and a destination
floor.

The running state is defined as in Figure 3.9. As this state is only entered when
the stopped state does a transition on a goto(n) it has only a single constructor
(line three). The constructor uses a timer provided by the system to send itself a
timeout message after 50 ms (line six). The handler for the timeout is defined on
line nine. If the cabin has arrived at the desired floor it changes to the open state
(line eleven). Otherwise it schedules a new timeout (line twelve) and updates the
internal position (line 14) as well as the hardware (line 15).
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1 abstract public class CabinState extends State {

2 protected int no;

3 protected Port controller;

4 protected Hardware hw;

5 int pos;

6

7 CabinState(CabinState old) {

8 super(old);

9 no = old.no;

10 controller = old.controller;

11 hw = old.hw;

12 pos = old.pos;

13 }

14

15 CabinState(int no, Hardware hw, Port controller, Timer t) {

16 this.no = no;

17 this.controller = controller;

18 this.hw = hw;

19 this.pos = 0;

20 }

21

22 public State handle(Goto msg) {

23 return null;

24 }

25

26 public State handle(Timeout msg) {

27 return null;

28 }

29 }
Figure 3.7: The cabin task type
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1 public class Stopped extends CabinState {

2 Stopped(int n, SockReader sr, Port controller, Timer t) {

3 super(n, sr, controller, t);

4 }

5 Stopped(CabinState old) {

6 super(old);

7 }

8

9 public State handle(Goto msg) {

10 return new Running(this, msg.floor);

11 }

12 }
Figure 3.8: The cabin stopped state

1 public class Running extends CabinState {

2 int dest;

3 Running(CabinState old, int dest) {

4 super(old);

5 this.dest = dest;

6 Timer.delay(50, self, new Timeout(null));

7 }

8

9 public State handle(Timeout msg) {

10 if(pos == dest) // We have arrived, open doors

11 return new Opening(this);

12 Timer.delay(50, self, new Timeout(null));

13

14 pos += dest < pos ? -1 : 1;

15 hw.setpos(no, pos); // Animate

16 return this;

17 }

18 }
Figure 3.9: The cabin running state
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Floor Controller

offer(..., a)

a @= answer(..., take)

take @= TRUE/FALSE

Figure 3.10: An offer dialog

3.3.2 System Initialization

In the lift controller the low-level controller and the high-level controller communi-
cate asynchronously. This means that they both must have access to each other’s
ports thus creating a cyclic dependency. This dependency is easily handled by
exploiting single assignment variables. The initial states are simply given port
futures which are then bound to the real ports by the main thread when both
tasks have been created.

3.3.3 Inter-task Synchronization

When tasks communicate asynchronously explicit message sending is needed. This
is the case with the controller and the cabin, the controller sends a goto(n) to the
cabin. The cabin will, when it has reached the floor, send an arrived message
back to the controller.

If RPC (Remote Procedure Call) semantics is desired this can be implemented
by introducing an extra state which only accepts the reply message (this corre-
sponds to using a separate receive statement in Erlang or Ada). Single assign-
ment variables provide a simple way to implement RPCs. Consider the interac-
tion between a controller and a floor in the lift controller, see Figure 3.10. The
floor sends an offer(Direction d, int floor, single Answer a) to the con-
troller, where a is an unbound variable. The controller replies by binding a to
an answer(int time, single Boolean take) message (dashed lines represents
communication through single assignment variables), where time is the controller’s
estimate of the time it will require to serve a request for floor floor in direction
d. Using this technique makes the handler for the offer message very simple, as
shown in Figure 3.11. No extra states are needed as the handler synchronizes on
the binding of take in line five.



30 3.3. A LIFT CONTROLLER

1 public State handle(Offer msg) {

2 // Tell estimated time

3 msg.answer @= new Answer(time(msg.floor, msg.dir));

4

5 if(msg.answer.take.booleanValue())

6 stop_at(msg.floor, msg.dir); // Schedule the stop

7 return this;

8 }
Figure 3.11: The handler for the offer message in a cabin

1 // Send a offer to each lift, then collect the answers

2 for(int i = 0; i < noof_lifts; i++) {

3 single Answer a;

4 ans[i] = a;

5 lifts[i].send(new Offer(floor_no, msg.dir, a));

6 }

7

8 // Pick the fastest

9 int fastest = 0;

10 for(int i = 1; i < noof_lifts; i++) {

11 if(ans[i].time < ans[fastest].time) {

12 ans[fastest].take @= Boolean.FALSE;

13 fastest = i;

14 } else

15 ans[i].take @= Boolean.FALSE;

16 }

17 ans[fastest].take @= Boolean.TRUE;

Figure 3.12: Selecting and notifying the fastest lift

As mentioned before, the floor task sends an offer(Direction d, int floor,

single Answer a) to each of the controllers and then assigns the request to the
fastest lift. The automatic synchronization in Flow Java and the previously de-
scribed technique for RPCs makes the selection surprisingly easy. The implemen-
tation also allows for the controllers to handle offers in parallel. The program
fragment in Figure 3.12 shows how this is implemented. An offer is sent to each
lift (line five) which contains the unbound variable created on line three. The
future associated with the variable is stored in the array ans (line four). When an
offer has been sent to each lift the array is traversed and lifts that are slower than
the currently fastest lift are told to ignore the request (line 15). Finally when all
lifts have been considered the one receiving the request is informed (line 17).
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3.4 Implementation in Other Languages

Implementing a system as a set of communicating tasks boils down to three main
issues:

Message delivery. Flow Java uses a state machine, the states of which are rep-
resented by instances of a state class which is derived from the task type.
The state class overrides the message handling methods for the messages it
accepts in that state.

Message Passing. Each task has a port to which messages are sent. The message
delivery framework reads one message at a time from the stream associated
with the port and tries to deliver it to the task. Messages which are not
accepted in the current state are queued.

Initialization. The task may have cyclic dependencies if two communicating
tasks perform asynchronous communications as both processes need to know
the other task’s port. This is handled by using futures for the counterpart’s
port during initialization. Cyclic dependencies can also be broken by pass-
ing asynchronous replies via single assignment variables instead of an explicit
message send.

Implementing the lift controller in a language which provides built-in support
for sending and receiving messages among tasks simplifies the implementation.
Languages which have this support are for example: Ada, Concurrent C, and Er-
lang. Using one of these languages removes the need for the infrastructure devel-
oped in Section 3.1, that is the message representation and the classes representing
the task’s states as well as the code for message handling and queuing. What re-
quires more work to emulate in one of these languages are the initialization and
the mechanism for asynchronous replies using synchronization variables. It would
require either explicit message sending or the implementation of an abstraction of
synchronization variables in the base language.

An implementation in Flow Java’s closest relative, Oz, can use the same mech-
anisms as Flow Java for initialization and replies but would, just as Flow Java,
have to explicitly emulate the message handling.

An implementation in standard Java could emulate the Flow Java implemen-
tation by implementing synchronization variables by either creating type-specific
wrapper classes emulating the future or sacrifice the static typing with a generic
class as in [25]. See Section 5.3 for an estimate of the overhead for such an ap-
proach. Even if the programmer chooses to use a type specific wrapper it does not
allow direct access to object fields (see Section 4.7 for a discussion on the feasibility
of emulating futures in standard Java).
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Chapter 4

Implementation

Flow Java can be implemented by extending an existing Java implementation.
Compared to Java a Flow Java implementation adds support for synchronization
variables. This includes primitives for aliasing, binding and synchronization in the
runtime system. The compiler is also extended to parse the syntax specific to Flow
Java and to generate code supporting automatic synchronization.

Additionally the Flow Java extensions must be compatible with the garbage
collection and multi-threading facilities of the underlying Java implementation.
The Flow Java implementation described in this thesis uses a novel two-level ar-
chitecture for the representation of single assignment variables. The architecture
separates concurrency issues from the underlying representation of aliased vari-
ables.

The extensions described in this chapter can easily be implemented in any
Java runtime environment using a memory layout similar to C++. The extensions
are not limited to Java, they can equally well be applied to other object-oriented
languages such as C# or C++.

The Flow Java implementation is based on the GNU GCJ Java compiler and
the libjava runtime environment. They provide a virtual machine and the ability
to compile Java source code and byte code to native code. The runtime system
uses the same object representation as C++. Garbage collection is provided by a
conservative collector.

The runtime system does not distinguish between futures and single assign-
ment variables as this distinction is maintained by the compiler. Both kinds of
synchronization variables are in the runtime system represented by synchronization
objects.

This chapter starts by giving an overview of the GCJ/libjava runtime en-
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vironment in Section 4.1 and the implementation of synchronization objects in
Section 4.2. The implementation of synchronization objects is factored into two
parts: one part dealing with concurrency and synchronization aspects, described
in Section 4.3, and one part describing three different strategies for representing
synchronization objects (Section 4.4). The prior description is parametric with
respect to the underlying variable representation strategy. Section 4.5 describes
the compiler support for Flow Java. Flow Java-specific optimizations are discussed
in Section 4.6. Section 4.7 discusses alternative ways of implementing Flow Java.
The description of the implementation concludes with a summary in Section 4.8.

4.1 The GCJ/libjava Runtime Environment

The Flow Java implementation is based on the GNU GCJ Java compiler and the
libjava runtime environment. They provide a virtual machine and the ability to
compile Java source code and byte code to native code. This section describes the
base system.

4.1.1 Object Representation

The GCJ/libjava implementation uses a memory layout similar to C++. An object
reference points to a memory area containing the object fields and a pointer, called
vptr, to a virtual method table, called vtab. The vtab contains pointers to object
methods and a pointer to the object class. The vtab also contains a garbage
collector descriptor. The memory layout is the same for classes loaded from byte
code and native code. Instances of interpreted classes store pointers in their vtab
to wrapper methods which are byte code interpreters. The byte code interpreters
are instantiated with byte code for the methods during class loading.

4.1.2 Memory Management

libjava uses a conservative garbage collector developed by Hans Boehm [7]. The
collector is originally intended to be used for C and C++ but works equality well
with Java as the object representation in C++ and libjava is the same.

4.1.3 Suspension

The GCJ/libjava runtime uses operating system threads. For example, on x86-
linux pthreads [20] are used. Explicit suspension and resumption in Java is im-
plemented by the wait(), notifyAll(), and notify() methods. The methods
are present in all Java objects. A thread suspends if it calls wait() on an object.
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The thread resumes execution when another thread calls either notifyAll() or
notify() on the same object. The difference between notifyAll() or notify()
is that notifyAll() will awaken all threads suspended on an object, notify()
will only wake up one thread, which thread waken up is not specified.

The wait/notify functionality is made available to the Flow Java runtime as two
functions, prim wait/prim notifyAll, each taking the waiting/notified object as
an argument. The functions interface with the underlying system-level thread
implementation.

4.1.4 Monitors

Orthogonal to the wait/notify mechanism is the monitor which is present in each
Java object to support synchronized methods. The lock associated with the mon-
itor is made available to the Flow Java runtime by the two functions lock and
unlock.

4.2 Implementing Synchronization Objects

Synchronization objects are allocated on the heap and contain minimal information
to support aliasing.

All objects which are aliased to each other are in some sense equivalent, we
call the set of objects which are aliased to each other the equivalence class. The
implementation strategies discussed in this chapter select one element from the
equivalence class as leader.

Equivalence classes are maintained in two layers. An upper layer (described
in Section 4.3) handles the language level operations and makes them safe and
atomic. The lower layer (described in Section 4.4) handles the representation and
maintenance of equivalence classes.

4.2.1 Binding

When a synchronization object is bound to an object o, its internal information is
updated to point to o. Binding is implemented by the primitive bind(a,b). It is
infeasible to allocate synchronization objects which are large enough to contain the
largest possible object in the system. Therefore, a synchronization object contains
a pointer to its value. This in contrast to systems using tagged pointers where
logic variables are simply overwritten during binding.
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4.2.2 Aliasing

Aliasing creates or extends an equivalence class by merging two, possibly singleton,
equivalence classes with the primitive alias(a,b). The aliasing operation modifies
the internal information of the synchronization objects to maintain the equivalence
relation (equality).

4.2.3 Synchronization

The runtime system sometimes suspends execution until a synchronization ob-
ject becomes determined. The primitive waitdet(r) suspends until its argument
becomes determined and then returns the determined object.

Synchronization objects do not use the same virtual method table as ordinary
objects. Entries in the vtab of a synchronization object point to stub functions
which are created by the runtime system during class loading. The stub suspends
the executing thread until the object becomes determined, using waitdet(r), and
then restarts the method invocation. This provides automatic synchronization of
method invocations without a runtime penalty for method invocations on ordinary
objects.

4.3 Concurrency and Aliasing

Atomic aliasing and binding are required by Flow Java. In contrast to other
systems supporting logic variables (for example, PARMA [38], WAM [42, 5], or
even Mozart [29, 27]), the runtime system of Flow Java provides concurrency by
using operating system threads. The primitives implementing synchronization
and atomic bind/alias are more complex as the operations must be made safe and
atomic without resorting to a “stop the world” approach.

This section describes how binding, aliasing, and synchronization operations
can be implemented using lock and unlock (see Section 4.1.4). First the low-level
operations manipulating equivalence classes are described in Section 4.3.1. The
invariants applying to the use of these operations are described in Section 4.3.2.
The operations on synchronization variables are then described in terms of these
low-level operations in Sections 4.3.3 to 4.3.7.

4.3.1 Operations

The operations manipulating equivalence classes do so through a set of low-level
primitives:

ll is so(r) A predicate which tests whether r is a synchronization object.
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ll bind(a, b) updates the internal representation of the equivalence class a to
bind it to b.

ll alias(a, b) updates the representation of a and b by merging their equiva-
lence classes.

ll leader(r) returns the leader of the equivalence class r.

ll compress(orig, new) Shortens the reference chain of orig to point directly
to new if the representation needs or supports it.

4.3.2 Invariants

The following invariants apply to the use of the low level primitives:

1. The leader of a bound object is the object itself.

2. An equivalence class is only modified if the lock for its leader is held by the
modifying thread.

3. Leader locks are acquired in order of increasing address of the leader.

4. Binding an equivalence class notifies all threads suspending on its leader by
prim notifyAll. The lock of the leader is still held by the binding thread.

5. If two equivalence classes are merged, the leader at the highest address is
notified by a call to prim notifyAll while its lock is still being held by the
modifying thread.

6. All low level primitives except ll leader(r) and ll is so(r) take leaders
as arguments.

4.3.3 Bind

The bind(a,b) primitive (defined in Figure 4.2) binds the synchronization object
a to b. It first acquires the determined value of b by using waitdet() (which will
suspend if b is not already determined). It then uses ll leader(a) to find the
leader of a and acquire its lock. If another thread is modifying the equivalence
class this may require multiple iterations.

When the lock has been acquired the binding is checked for validity. The
equivalence class is updated by ll bind(). prim notifyAll is then called on the
leader to wake up all threads suspended on the leader. Finally the lock for the
leader is released.
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1 jobject alias(jobject a, jobject b)

2 {

3 bool as, bs;

4 jobject low, high;

5 while(true) {

6 a = ll_leader(a);

7 b = ll_leader(b);

8 as = ll_is_so(a); bs = ll_is_so(b);

9 if(!as && !bs) {

10 if(a == b)

11 return a;

12 throw TellFailureException;

13 } else if(as && bs) {

14 if(a < b) {

15 low = a; high = b;

16 } else {

17 low = b; high = a;

18 }

19 lock(low); lock(high);

20 if(low == ll_leader(low) && high == ll_leader(high))

21 break;

22 unlock(high); unlock(low);

23 continue;

24 } else {

25 if(as)

26 return bind(b, a);

27 return bind(a, b);

28 }

29 }

30 if(!valid_alias(low, high)) {

31 unlock(high); unlock(low);

32 throw TellFailureException;

33 }

34 ll_alias(low,high);

35 prim_notifyAll(high);

36 unlock(high); unlock(low);

37 return low;

38 }
Figure 4.1: The primitive alias
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1 jobject bind(jobject a, jobject b)

2 {

3 b = waitdet(b);

4 while(true) {

5 a = ll_leader(a);

6 lock(a);

7 if(ll_leader(a) == a)

8 break;

9 unlock(a);

10 }

11 if (!bind_is_valid(a, b)) {

12 unlock(a);

13 throw error;

14 } else if(a == b) {

15 // Nothing to do

16 } else {

17 ll_bind(a, b);

18 prim_notifyAll(a);

19 }

20 unlock(a);

21 return b;

22 }
Figure 4.2: The primitive bind

1 jobject waitdet(jobject o)

2 {

3 if(!ll_is_so(o))

4 return o;

5 jobject t = o;

6 while(ll_is_so(o)) {

7 o = ll_leader(o);

8 lock(o);

9 if(ll_is_so(o) && ll_leader(o))

10 prim_wait(o);

11 unlock(o);

12 }

13 ll_compress(t, o);

14 return o;

15 }
Figure 4.3: The primitive waitdet
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4.3.4 Aliasing

Aliasing of synchronization objects is implemented by alias. The definition of
alias is shown in Figure 4.1. In order to be thread safe, alias iteratively acquires
the locks of the two leaders (the while-loop in line five). The lock of the leader with
the lowest address is acquired first to prevent deadlock (the ordering is handled by
the if on line 14, the locking in line 19). When both locks have been acquired, a
check is made to verify that no other thread has modified the equivalence classes.
If so the locks are released and the aliasing starts anew (line 20). If one of the
leaders is determined the operation is turned into a bind (line 25-27). If both
objects are undetermined leaders the aliasing operation is tested for validity (line
30) and the equivalence classes are merged (line 34). The leader with the highest
address is then notified (line 35) and the locks are released (line 36).

4.3.5 Synchronization

The waitdet primitive suspends the currently executing thread until its argument
becomes determined.

Only the bind(a,b) primitive changes the status of a synchronization ob-
ject from unbound to bound. The invariants maintained by alias(a,b) and
bind(a,b) (invariants four and five) guarantee the following property: if the leader
for an equivalence class changes or all members become bound, prim notifyAll

is called on the leader when its lock is held by the thread doing the modification.
Therefore waitdet(r) can be implemented as shown in Figure 4.3. It is based on a
loop which uses ll leader(r) and terminates when a determined object is found
(line six). If an undetermined leader is found, the lock associated with the leader
is acquired (line eight). If the object is still undetermined (line nine) prim wait

is called to wait for the leader to be updated (line ten). When prim wait returns,
the lock is released (line eleven) and the loop continues. Requiring the thread to
acquire the lock before calling prim wait guarantees that no binding or aliasing
notifications are lost. For representations which can make use of path-compression
ll compress is executed as a final step (line 13).

4.3.6 Method Invocation

As described in Section 4.2.3 synchronization objects do not use the same virtual
method table as ordinary objects. Instead they have a synchronization virtual
method table (sync. vtab.) which contains pointers to stub methods with code
as in Figure 4.4. The synchronization virtual method table is constructed by the
runtime system during class loading. The class loader allocates and initializes a
memory area for each class containing the table and the stubs.
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1 void meth_stub(jobject *this, ...)

2 {

3 this = waitdet(this);

4 goto METHOD_ADDRESS;

5 }

6

Figure 4.4: A synchronization virtual method table (sync. vtab.) stub

sync. object sync. vtab

o vptr class · · ·

rptr · · ·

method

· · ·

UNB method

meth stub()

Figure 4.5: Unbound synchronization object in Flow Java.

The stub uses the runtime primitive waitdet (see Section 4.3.5) which suspends
until its argument becomes determined. When the object is determined the stub
replaces the object reference pushed on the stack as part of the method invocation
with the determined object. The invocation is then continued by dispatching to the
corresponding method in the standard vtab. This achieves transparent redirection
of method invocations without a runtime penalty when synchronization objects
are not used. Figure 4.5 shows an unbound synchronization object.

4.3.7 Reference Equality

The reference equality operators == and != are implemented by the runtime prim-
itive refeq and its negation. refeq suspends until either both its arguments have
been determined or aliased to each other. The primitive refeq is defined as shown
in Figure 4.6. The code makes use of the helper function lock leader (Figure 4.7)
which iteratively acquires the lock for the leader of its argument.

The refeq primitive executes in an infinite loop, first it acquires the leaders of
its arguments (line five and six). If both objects have the same leader, it returns
true (line nine). If both arguments are referring to determined objects it returns
false (line twelve). If only one of the arguments is determined it suspends on the
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undetermined argument (line 17 and 22).
Recall that suspension is implemented using the primitives prim wait and

prim notifyAll (Section 4.1.3) which only operate on one object at a time. If
the reference equality function is given two undetermined objects it makes use of
the invariant that the aliasing operation updates the rptr of the synchronization
object at the higher address to point to the object at the lower address. The
explicit ordering allows the operators to only suspend on the object at the higher
address as this is the object that will receive the notification if both objects are
aliased to each other (line 28). This is sufficient as the only case when the operators
return before both objects are determined is when they are aliased to each other.

4.4 Maintaining Equivalence Classes

The description of the operations in Section 4.3 defined the semantics of the
low level operations (named ll <name>). This section describes three different
schemes for implementing the underlying representation. By construction of the
high level operations the operations modifying equivalence classes (ll bind and
ll compress) can assume exclusive access. The only exception is ll compress

which is allowed to shorten a reference chain without holding the lock as it does
not change the interpretation of a determined equivalence class.

This section describes three representations for equivalence classes. First a
scheme based on a forwarding pointer is described in Section 4.4.1. This is the
representation used by the standard Flow Java implementation. Then an variant
of Taylor’s scheme [38] adapted to a language with update and token equality (non
structural equality) is described in Section 4.4.2. Then finally Section 4.4.3 shows
an optimization to Taylor’s scheme in a concurrent setting.

4.4.1 Forwarding

This scheme is similar to the forwarding pointer scheme used in the WAM [5]. An
equivalence class is represented as a tree of synchronization objects rooted in the
leader. A bound equivalence class has a determined object at its root.

Synchronization objects are in this scheme allocated as two-field objects con-
taining a redirection-pointer field rptr and the vptr. Normal objects also have a
rptr, the rptr is used to indicate binding status and is also used as a forwarding
pointer. In standard Java objects the rptr points to the object itself.

The rptr of a synchronization object can be: a sentinel UNB (for unbound),
a pointer to a determined object, or a pointer to a synchronization object. A
sentinel is used instead of null as otherwise an undetermined synchronization
object would be indistinguishable from an object bound to null.
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1 jboolean refeq(jobject a, jobject b)

2 {

3 while(true)

4 {

5 a = ll_leader(a);

6 b = ll_leader(b);

7

8 if(a == b)

9 return true;

10

11 if(!ll_is_so(a) && !ll_is_so(b))

12 return false;

13

14 if(is_determined(a)) {

15 b = lock_leader(b);

16 if(ll_is_so(b))

17 prim_wait(b);

18 unlock(b);

19 } else if(is_determined(b)) {

20 a = lock_leader(a);

21 if(ll_is_so(a))

22 prim_wait(a);

23 unlock(a);

24 } else {

25 jobject high = a < b ? b : a;

26 high = lock_leader(high);

27 if(ll_is_so(high))

28 prim_wait(high);

29 unlock(high);

30 }

31 }

32 }
Figure 4.6: The primitive refeq, used to implement == and !=
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1 jobject lock_leader(jobject o)

2 {

3 o = ll_leader(o);

4

5 while(true) {

6 lock(o);

7 if(ll_leader(o) == o)

8 return o;

9 unlock(o);

10 }

11 }
Figure 4.7: The helper function lock leader

The rptr for all objects increases the memory requirements, but requires only
one pointer dereference and a comparison to determine whether an object is a
synchronization object (that is o->rptr != o). To save memory the rptr could
be present only in synchronization objects. But as libjava does not have tagged
pointers, the test whether an object is a synchronization object would have addi-
tional runtime overhead. There are at least two ways to implement such a test.
The first emulates tagged pointers by allocating vtables in a special area. The
vtable pointer is then tested to see if it is inside this area. This approach is trou-
blesome as the area cannot be of fixed size, and testing would have to be aware
of the current area size and location. The second approach makes use of the ref-
erence to an object’s class object which is present in each vtable (that is both the
synchronization and normal vtable). The vtable is dereferenced to reach the class
object which is in turn dereferenced to acquire the reference to the synchronization
vtable, that is o->vtab->class->svtab == o->vtab. The test requires at least
three pointer dereferences and a comparison.

The primitives in the forwarding scheme are as follows:

ll is so(r) An object is a synchronization object if it is not null and its rptr is
not pointing to the object itself. This operation takes constant time.

ll bind(a, b) Binding is implemented by changing the leader’s rptr to point to
the object b. Again, this operation takes constant time.

ll alias(a, b) Aliasing is implemented by allowing a synchronization object’s
rptr -field to point to another synchronization object. The operation updates
the rptr of the synchronization object at the higher address to point to the
object at the lower address. This makes the “high” object aliased and the
“low” object the leader of the joined equivalence class, Section 4.3 (Synchro-
nization) motivates the ordering. The operation takes constant time.
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Free variables

Aliased variables

Bound to value V

V V

(a)

Aliased variables

Bound variables

Value

(b)

Figure 4.8: Variable representation in Taylor’s scheme: a, plain; b for Flow Java.

ll leader(r) follows the rptr of its argument until it finds an object which is
either determined or which has its rptr set to UNB. The found object is
returned. The worst-case runtime of this operation is linear in the number
of objects forming the equivalence class.

ll compress(orig, new) The conservative garbage collector used in the runtime
system does not shorten or remove chains of aliased objects. Therefore path
compression [30] is implemented by waitdet (see Section 4.3.5) which deref-
erences synchronization objects. The ll compress(orig, new) primitive
simply updates the rptr of orig to contain new.

4.4.2 Taylor

In this adaption of Taylor’s scheme [38] an equivalence class is represented as a
cycle containing all elements of the class. The element at the lowest address is
defined as the leader.

Taylor’s scheme is a conceptually simple scheme to represent free variables in
Prolog. It avoids arbitrarily long reference chains as in the WAM by representing
a free variable by a special reference type with a single pointer field. A single
free variable contains a reference to itself, thus making it a member of a one-
element cycle. When two free variables are aliased their cycles are merged by
exchanging the pointer values of the objects being aliased. Binding is implemented
by traversing the cycle and overwriting the variables with the value to which
they are bound. Figure 4.8(a) graphically shows how variables are represented in
Taylor’s scheme.

Taylor’s scheme cannot be used for Flow Java without some modifications.
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1 single Object a, b;

2 Object v = new Object();

3 a @= b;

4 a @= v;

5 bool result = a == b; // result is false

Figure 4.9: The effects of token equality

Overwriting single assignment variables as part of the binding operation is trou-
blesome. Single assignment variables would have to be allocated as large as the
size of the largest object which could be stored in the variable. The largest size
of a compatible object is not necessarily available to the runtime system when the
variable is created as classes can be loaded at runtime.

Another problem is that token equality is implemented by pointer comparison.
Consider the example in Figure 4.9. As a and b are at different addresses the
equality test on line five will return false although a and b should be equivalent
after the aliasing on line three. Even if equality in Java was defined on the contents
of the objects, Taylor’s scheme would still be incompatible with Flow Java. An
update of a would not modify b even though a and b are aliased.

In Flow Java Taylor’s scheme can be used to reduce the number of derefer-
encing steps needed to get the value of a determined single assignment variable
to one. Instead of overwriting the single assignment variable during the binding,
the forwarding pointer is overwritten to point to the determined object, as in
Figure 4.8(b).

Limiting the length of the reference chains is attractive but has drawbacks.
When synchronization objects are bound, Taylor’s scheme will modify all objects
in the cycle even if only one thread is interested in the value. The forwarding
scheme will only update objects which are accessed (see waitdet, Section 4.3.5).

As the libjava garbage collector is conservative the system is unable to collect
a cycle of synchronization objects unless all references to the cycle are unreachable.

Taylor’s scheme leads to the following implementation of the low level primi-
tives:

ll is so(r) A sentinel in place of the forwarding pointer is used to indicate a
bound object. A special case is null which cannot be dereferenced but is
not a synchronization object. This operation takes constant time.

ll bind(a, b) Traverses the cycle overwriting the forwarding fields of the vari-
ables with b. This operation is linear in the number of elements in the cycle.

ll alias(a, b) Aliasing merges the cycles by exchanging the forwarding pointer
values. This operation takes constant time.



CHAPTER 4. IMPLEMENTATION 47

ll leader(r) traverses the cycle. If a determined object is found (this only oc-
curs if another thread is modifying the cycle concurrently) it is returned.
Otherwise the object at the lowest address is returned. This operation is
linear in the number of elements in the cycle.

ll compress(orig, new) This operation does nothing since no compression is
performed.

4.4.3 Hybrid

The hybrid scheme removes the linear time complexity of the ll leader(r) prim-
itive by maintaining a field in all synchronization objects pointing to the leader of
the equivalence class.

Compared to the Taylor scheme, only the following operations change:

ll alias(a, b) Merges the cycles as in Taylor followed by choosing a new leader
for the now merged cycle. The leader at the lowest address is selected as the
new leader. The half-cycle which is assigned a new leader is traversed and
the leader pointer is updated. This operation takes linear time in the size of
the cycle.

ll leader(r) The value of the leader is simply returned in constant time.

4.5 Compiler Support for Flow Java

To support Flow Java, the compiler’s code generation strategy has been modi-
fied: Object references are checked for determination before being dereferenced;
Single assignment variables are initialized when entering scope; Reference equal-
ity operators (== and !=) are translated into calls to runtime primitives; The
binding/aliasing operator, @=, is translated into a call to a runtime primitive; The
argument to a narrowing conversion is checked for determination before being per-
formed. The type system of Flow Java allows the compiler to statically determine
if an application of the @= primitive is an alias or bind operation.

4.5.1 Dereferencing

When an object reference is dereferenced to access a field, the compiler wraps the
reference in a call to the runtime primitive waitdet. The primitive suspends the
executing thread, if the reference is undetermined, and returns a reference to the
object to which it is bound. See Section 4.3.5 for a detailed description of waitdet.
This wrapping of references is correct but unnecessarily strict as not all accesses
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need to be wrapped. The optimizations that are implemented in Flow Java are
further elaborated in Section 4.6.

4.5.2 Initialization of Single Assignment Variables

When a single assignment variable enters scope the compiler generates code which
allocates a new unbound synchronization object and initializes the variable with
a reference to the synchronization object.

The compiler’s code generation when compiling constructors is also augmented
to initialize all single assignment fields to newly allocated synchronization objects
before the body of the constructor is run on the object.

4.5.3 Operators Implemented as Runtime Primitives

The bind and alias operator, @=, is translated into a call to the runtime primitive
alias if both arguments are single assignment variables. If only the left hand
argument is a single assignment variable it is translated into a call to bind.

The reference equality operators == and != are also implemented as calls to
the runtime primitive refeq and its negation.

4.5.4 Narrowing Conversions

The compiler wraps the argument of a narrowing conversion of a single assignment
variable in a call to waitdet, thus forcing the variable to be determined before
conversion occurs. Code generation then proceeds as for ordinary narrowing con-
versions.

4.6 Compiler Optimizations

Dereferencing all references by a call to the runtime primitive waitdet, as de-
scribed in Section 4.5.1, is correct but not needed in many cases. For example,
when accessing the fields of this (the self object), this is always determined as
the executing thread synchronized on the binding of the object which now is this
when invoking the current method.

A second optimization critical for the performance of the Flow Java imple-
mentation is to optimize waitdet for the non-suspending case. This is done by
annotating the conditionals in the primitive with GCC-specific macros for telling
the optimizer the most probable execution path.

A third optimization avoids repeated calls to waitdet within a basic block, if
a reference is known to be constant inside the block. For example, the program
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1 class Vec {

2 int x, y;

3 public void add(Vec v) {

4 x += waitdet(v).x; y += waitdet(v).y;

5 }

6 }
Figure 4.10: Unnecessary calls to waitdet

1 public void add(Vec v) {

2 v = waitdet(v);

3 x += v.x; y += v.y;

4 }
Figure 4.11: Optimized version of the code in Figure 4.10

fragment in Figure 4.10 can be rewritten as in Figure 4.11. Inside add(Vec v) v

is constant and only a single call to waitdet is necessary.
This optimization has previously been described in the context of PARLOG

in [15]. In Flow Java it is implemented by exploiting the common subexpression
elimination in GCC by marking waitdet as a pure function (its output only de-
pends on its input). Evaluation shows that this optimization yields a performance
improvement of 10% to 40% for real programs.

4.7 Alternative Implementation Strategies

During the development of Flow Java an implementation based on a precompiler
was considered. A näıve precompiler implementation would, to implement single
assignment variables, for each class create a wrapper class boxing object references.
The wrapper class would have a boolean flag and a reference to the determined
object. The precompiler would then generate explicit unboxing code for each field
and method access. This is not a feasible implementation strategy as it incurs an
overhead for all method invocations.

A natural improvement to the näıve strategy would be to use Java’s type sys-
tem to remove the explicit boxing and unboxing. This is not feasible as the single
assignment aspect of variables cannot be expressed in Java. The reason for this
is that Java’s type system only allows subtyping. Consider the example in Fig-
ure 4.12 where the single assignment variables are represented as a subclass. The
invocation of doit on line nine is illegal as SingleB is not a subtype of SingleA.
If ordinary objects were subclasses of single assignment variables a corresponding
example could be constructed, but in this case a method with the signature void

doit(A a) would be the problem.
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1 class A;

2 class B extends A;

3 class SingleA extends A;

4 class SingleB extends B;

5 void doit(SingleA a) {

6 ...

7 }

8 SingleB b;

9 doit(b); // illegal, B is not a subtype of A

Figure 4.12: The difference between a subtype and a type modifier

Worth noting is that this problem cannot be be worked around by having the
precompiler create a method for each single subclass of A as classes extending B

could be loaded at runtime.

4.8 Summary

Flow Java is implemented by extensions to the GCJ/libjava runtime system and
compiler. The extensions are straightforward and only require an object repre-
sentation similar to C++. They are fully compatible with systems using operating
system threads. They could therefore be applied to other languages as for example
C#. The Flow Java compiler maintains the distinction between futures and single
assignment variables. The runtime system represent both kinds of synchronization
variables as synchronization objects. Aliasing and binding is implemented with
a simple forwarding scheme. The compiler is responsible for generating explicit
determination checks where needed. The conservative garbage collector used by
libjava makes it necessary to implement path compression in the dereferencing
primitives as the collector cannot safely modify objects in memory.



Chapter 5

Evaluation

This chapter contains a performance evaluation of Flow Java. In Section 5.1 the
three equivalence class implementations described in Section 4.4 are compared to
each other. The implementation with least overhead is then used to assess the
overhead incurred by Flow Java to code not making use of Flow Java functionality
(Section 5.2). In Section 5.3 the performance of a Flow Java program is compared
to a similar program implemented in plain Java. The chapter concludes with a
summary of the findings in Section 5.4.

5.1 Equivalence Class Implementations

To measure the performance of the three different implementation schemes, four
benchmark sets were used: constructing an equivalence class of size n (the bench-
marks are named cr.f, cr.t, and cr.h where .f is for forwarding, .t for Taylor,
and .h for hybrid); aliasing two equivalence classes of size n each (al.f, al.t,
and al.h); binding an equivalence class of size 2n (bi.f, bi.t, and bi.h); and
accessing a bound value of an equivalence class through all its members repeat-
edly (ac1.f, ac1.t, and ac1.h for first time access, ac2.f, ac2.t, and ac2.h for
second time access).

5.1.1 Methodology

All benchmarks have been run on a 3GHz Intel Pentium 4 with 1GB RAM and
hyperthreading enabled. Each benchmark has been run a hundred times and
the mean time for each set has been calculated. The standard deviation of the
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individual runtimes is for all cases less than 6.5 percent which is small enough to
not change the relative performance of the three implementation schemes.

5.1.2 Random Allocation

The benchmarks have been performed with synchronization objects allocated at
random addresses. This captures the situation where synchronization objects are
allocated by different program parts. It is also a typical memory layout after
garbage collection.

Figure 5.1 shows the results of the cr.*-benchmarks involving n objects. The
equivalence class is constructed by adding one element at a time. The Tay-
lor scheme (cr.t) is slowest due to scanning the whole cycle to find the leader
(quadratic complexity).

The forwarding (cr.f) and hybrid (cr.h) schemes also have quadratic com-
plexity. On average they follow an indirection path of length n/2. As the entire
chain fits into the cache the actual scanning time is dwarfed by the time taken to
handle cache misses (linear in the number of unique memory locations accessed).
Therefore, in practice, building an equivalence class is done in O(n). As cr.h

accesses more memory than cr.f, cr.h is marginally slower due to more cache
misses.

For aliasing and binding the caching effects dominate here as well, see Fig-
ure 5.2. For aliasing, two chains of length n are aliased to each other. al.f and
al.h execute in linear time, but they execute in more or less constant time for
the cycle lengths considered. The hybrid scheme has a much larger constant over-
head for aliasing as it updates the leader pointer in half of its resulting cycle (n
elements). Pure Taylor is slowest as it accesses all objects in both cycles (2n).
The difference in performance for bind is less pronounced as both bi.f and bi.h

access all elements.
Also for accessing the value of a bound equivalence class through its members

caching effects dominate. Figure 5.3 shows the time required for accessing all ele-
ments the first (ac1.*) and second (ac2.*) time. As to be expected the forwarding
scheme is slowest as it accesses the largest amount of memory. The hybrid scheme
is slower than the pure Taylor scheme as it accesses more memory. Looking at
the time required for the second access it is clear that path compression has little
impact compared to the effect of a hot cache in the Taylor based schemes.

5.1.3 Ordered Allocation

The same set of benchmarks has also been performed with synchronization ob-
jects allocated in order. The objects have been ordered in memory such that the
forwarding based scheme constructs the longest possible forwarding chains.
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For creating equivalence classes cr.f shows the same relative performance as
for random allocation. This is due to the low overhead for traversing the elements
already loaded in the cache by the previous aliasing operation. For aliasing, al.t
and bi.t outperform al.h and bi.h. This is because synchronization objects are
smaller for the Taylor scheme. Hence more objects fit into the cache and also
accessing one object might already prefetch part of another object into the cache.

Even if the experiment is set up to maximize the length of the forwarding
chains, and neutralize the effect of path compression, the measured time for ac-
cessing a bound class is linear in the number of elements. This has been verified
with an instrumented waitdet primitive which counts the number of forwarding
hops taken.

5.1.4 Summary

The benchmarks show that the time required to handle cache misses dominates
to such a large extent as to make the quadratic components insignificant. To
maximize performance one should minimize the amount of memory accessed, as
multiple accesses to memory already in the cache is very fast. The Taylor based
scheme is the slowest as it accesses all objects in the equivalence class for all
operations. The forwarding based scheme accesses, on average, half of the objects
in the equivalence class and is therefore the fastest. The hybrid scheme behaves as
the forwarding scheme but is penalized as it has a larger memory footprint, and
updates half the cycle when performing an alias and the complete cycle when doing
a bind. The best of these schemes is therefore the scheme based on forwarding.

It would be interesting to study the performance of the forwarding scheme
combined with a more aggressive path compressor which updates all elements in
a path as soon as the leader is found.

5.2 Determining the Overhead of Flow Java

To determine the performance impact of the Flow Java extensions compared to
the unmodified GCJ/libjava the Java Grande benchmark suite [12] has been used.
The Flow Java implementation used for benchmarking uses the standard forward-
ing scheme to represent equivalence classes.

5.2.1 Methodology

The benchmark suite has been run using both the Flow Java compiler and the
standard Java compiler. The suite has been run 20 times which is sufficient to
limit the standard deviation of the run-times among runs of the same benchmark
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to less than 3%. Most benchmarks show a standard deviation of less than 1%, a
single benchmark has a deviation of 12% due to jump prediction failures (discussed
later). All benchmarks have been run on a standard PC with a 1.7GHz Pentium 4
and 512MB main memory running Linux 2.4.21.

When the current Flow Java implementation was started the equivalence class
implementation chosen was the forwarding scheme. That decision was later, when
a functioning Flow Java system existed, substantiated by a comprehensive evalu-
ation. Therefore the hardware used to determine the overhead of Flow Java is not
the same as when the relative performance was determined.

5.2.2 Results

In this section the benchmark results are presented as graphs, as for example in
Figure 5.4. A lightly shaded bar extending above the horizontal axis indicates
a speedup. A dark bar extending downwards indicates a slowdown. The names
above the bars are the Java Grande benchmark name. The number shown above
or below each bar is the speedup/slowdown in percent. A speedup value of 100%
means that Flow Java is twice as fast as Java. A slowdown of 100% means that
Java is twice as fast as Flow Java.

The Flow Java extensions have very little impact on operations on primitive
types as shown in Figure 5.4 and Figure 5.5. This is to be expected as Flow
Java does not modify the handling of primitive types. The same is true for op-
erations in java.lang.math such as abs(), sin(), cos(), etc. Anomalies show
up in the benchmarks for abs(int) and sin() where the slowdowns are 12% and
69% respectively. As abs(long) just has an overhead of 0.02% and the stan-
dard deviation is as large as 12% it indicates that the slowdown is due to branch
prediction failure coupled to scheduling in the operating system. For sin() the
situation is the same but here branch prediction is consistent (standard deviation
0.03%) which gives an overhead of 69% just as for abs(), cos() does not show
any slowdown.

Overhead for control constructs and exceptions are all less than 6% as shown
in Figure 5.6 which is to be expected as Flow Java does not change the implemen-
tation of these constructs.

The increased size of Flow Java objects due to the forwarding pointer is visible
in benchmarks studying object creation. The results shown in Figure 5.7 are
for a benchmark which creates arrays of increasing size. It is noticeable how
the increased size of allocated objects changes the performance of the memory
allocator. Similar results are shown by the benchmark in Figure 5.8 which creates
objects with: none, one, two, and four fields of type int (Simple:nField); Objects
with four float and long fields (Simple:4fField and Simple:4LField). The Subclass
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benchmark creates objects of a subclass extending the class in Simple:0Field and
shows comparable performance. Cplx and Cplx:Constr creates an object with
one field but uses complex constructors. Therefore the allocator performance has
less impact than in the Simple:∗ cases. Generally the slowdown due to memory
allocation is less than 20% but can sometimes be as large as 40%.

The other main contributor to slowdown in Flow Java is the checks for deter-
mination before dereferencing. For method calls the special vtable does not incur
any overhead except for calls to methods declared final which are resolved stati-
cally and require a determination check. This is clearly visible in the benchmark
in Figure 5.9 where Same:FinalInstance have a slowdown of 13%.

The results shown in Figure 5.10 are for benchmarks measuring overhead for
(left to right): assigning a scalar local variable to a scalar local variable; assign-
ing a scalar member variable to a scalar member variable; assigning a scalar class
variable to a scalar class variable. For these three the overhead is negligible as
the compiler does not generate a determination check when dereferencing this

and accessing local variables (which are on the stack). The next three bench-
marks perform the same operations with fields of an array, here a determination
check is generated before dereferencing the array when accessing instance and
class variables. The next four benchmarks are the same as Same:∗:Instance and
Same:∗:Class but here the variables assigned are not accessed through this, thus
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Figure 5.9: Performance of method invocations

requiring extra determination checks. Here it is noticeable how the common sub-
expression elimination in the compiler manages to keep the class reference live
and therefore avoids a determination check while accessing class variables. The
maximum overhead can be as large as 226% but is typically below 20%.

The Java Grande benchmarking suite also contains larger benchmarks, the re-
sults for these are shown in Figure 5.11. What is noticeable is the large slowdown
for benchmarks in which member methods make frequent accesses to instance
variables of other objects and/or allocate many small objects. For these the over-
head can be as large as 150% but is generally below 50%. For a majority of the
benchmarks the overhead is less than 10%.

5.3 Flow Java Versus Plain Java

This section evaluates the performance of concurrent programs using synchroniza-
tion variables, either natively or emulated in standard Java.

Three benchmarks have been used:

• The Issue abstraction as described in Section 2.2.1.

• Merge sort, MSort, for linked lists using recursive concurrency, with a limit
on the number of concurrent threads. Synchronization between recursion
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levels is implicit through futures.

• A producer-consumer program, PC, in which a consumer communicates with
a producer over a stream. The consumer requests data from the producer
by appending a new stream element containing an unbound synchronization
variable to the stream. It then synchronizes on the binding of that variable.
The producer iterates over the stream binding the synchronization variable
in each element.

The standard Java versions of the benchmarks emulate synchronization vari-
ables by using type-specific wrapper classes which are instantiated with an ordinary
object when bound. The wrapper defines an access method for each field of its
parent type, as well as a bind method. The methods check a status flag indicating
the determination status and suspend if the object is unbound, otherwise they
forward the invocation to the ordinary object.

5.3.1 Methodology

The benchmarks have been run on the same machine as described in Section 5.1.1.
The benchmarks were run repeatedly and the mean time for each benchmark has
been calculated. As the benchmarks use concurrency the scheduling of threads in
the operating system has a large impact, after 8000 runs the standard deviation
of the runtimes is still as large as ten percent for PC and less than five percent
for Issue and MSort.

5.3.2 Results

The results of the benchmarks are presented in Figure 5.12. The figure uses the
same type of graph as the performance graphs in Section 5.2.2.

As can be expected, the primitive operations (wait and notify) performed by
the programs are the same, the performance of Issue and PC are comparable to
their Java counterparts. For MSort on the other hand, the Flow Java implementa-
tion is 33% percent faster. This is mostly due to the increased memory footprint of
the emulated synchronization variables. An emulated synchronization variable re-
quires three words of storage (vptr, determination flag, and forwarding pointer), a
Flow Java synchronization variable only needs two (vptr and forwarding pointer).
The increased memory footprint is only noticeable in this benchmark as the other
two benchmarks have a much smaller working set. The MSort operates on a large
linked list, the other two only operate on one element at a time after which it can
be garbage collected.
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5.4 Summary

Compared to standard Java, Flow Java incurs both a runtime and memory over-
head. Memory overhead is always present as the forwarding pointer used increases
the size of all objects by a word. This overhead is most noticeable during allocation
of small objects where it is up to 40%.

Runtime overhead comes both from the increased memory footprint for the
larger Flow Java objects and the extra checks for suspension which are performed
when an object is dereferenced. These checks incur an overhead for access to non-
member fields. Optimizations for multiple accesses to the same field and accesses
relative to this reduce the impact to between 10% to 50%. Some pathological
cases exhibit as much overhead as 150%. For multithreaded programs exploiting
the implicit synchronization of Flow Java the runtime overhead is negligible com-
pared to a standard Java implementation using explicit synchronization. For some
benchmarks the Flow Java implementation even outperforms the standard Java
version by as much as 33%.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presents the design, implementation and evaluation of Flow Java. Flow
Java is a superset of Java which adds logic variables as a mechanism for automatic
synchronization. The Flow Java variant of logic variables are referred to as single
assignment variables.

A thread accessing an undetermined single assignment variable will automat-
ically suspend until the single assignment variable becomes determined. A single
assignment variable becomes determined when a bind operation is performed on it.
Binding assigns the single assignment variable a value, the operation is monotonic
and atomic.

Single assignment variables are typed and can only be bound to values of a
compatible type. The single assignment type does not form a subtype of the base
type. This is the reason for the flexibility of single assignment variables and also
the reason for why single assignment variable types cannot be expressed by the
Java type system without sacrificing type precision.

Single assignment variables can be aliased, made equal, while still undeter-
mined, this is useful for creating abstractions in which threads share variables.
Without aliasing such abstractions must be created top-down, where the shared
variables are created first, then the threads. Aliasing allows the threads to be
created individually and then connected through aliasing.

To aid security and correctness when sharing single assignment variables among
threads, Flow Java adds futures which are read-only views of single assignment
variables. A thread having access to a future can not bind it. The future can only
be bound through the single assignment variable associated with the future. A
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future is obtained by converting the single assignment type to its standard Java
type.

Futures are also the basic mechanism for integration with Java. By adding an
implicit type conversion from single assignment types to their standard type when
calling a method or assigning a variable, interoperability with Java is achieved. The
drawback with this approach is that single assignment variables cannot be stored
in standard Java collection classes as the variables are automatically converted to
futures. If needed this problem can be circumvented by encapsulating the single
assignment variable in a wrapper object.

Single assignment variables and futures are ideal for creating abstractions such
as ports which are used to construct concurrent programs as sets of message passing
tasks. Message encoding, reception, and sending can be implemented in Flow Java
itself but requires some extra work from the programmer.

The Flow Java implementation includes both a compiler and a runtime system.
The distinction between single assignment variables and futures is maintained
solely by the compiler. The runtime system operates on synchronization objects
which represent both single assignment variables and futures.

For high performance it is essential to limit the memory requirements and
accesses required for maintaining the aliasing and binding information. Flow Java
uses a forwarding based scheme, which incurs an overhead of one pointer field per
object.

Flow Java incurs a moderate runtime overhead for sequential programs due to
the need to check for determination before dereferencing a variable. The overhead
is reduced by optimizations which only do the check before the first access and
remove it completely when accessing fields of this. The runtime overhead is
generally below 50%. For concurrent code which makes use of the automatic
synchronization provided by Flow Java, the overhead is generally negligible. For
some examples the Flow Java implementation even outperforms standard Java.

6.2 Future Work

The Flow Java language and system presented in this thesis still has areas open
to refinement and optimizations. The following sections present ideas for future
work.

6.2.1 Abstractions

The programming abstractions adapted to Flow Java in Chapter 3 for sending
and receiving messages are not optimal. The need for the programmer to create
explicit message and state classes is cumbersome. Ideally, only the task type
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should have to be defined and message sending and reception should have special
syntactic constructs such as in Ada or Concurrent C. Such an refinement could be
implemented as syntactic sugar for the implementation presented here. Generics
as added to Java in version 1.5 could also be used to ease the implementation [8].
Message reception by a special construct could be implemented by manipulating
the message queue directly thus freeing the programmer from creating explicit
states.

Generic collection classes are also a natural way in which to integrate synchro-
nization variables with the standard Java collection classes.

6.2.2 Distributed Flow Java

Flow Java is but a first step in the development of a platform for high-level and
efficient distributed and parallel programming. Work to add distribution support
similar to the support available in Oz [18] to Flow Java, based on a language-
independent distribution middleware [24] is planned. The goal is to make these
powerful abstractions available in a widely used language such as Java while being
based on a high-level and declarative model of concurrent programming.

6.2.3 Improved Compilation

The current Flow Java compiler is conservative when generating code for derefer-
encing variables. Currently the optimizations described in Section 4.6 only operate
on the level of basic blocks. A further optimization would be to analyze and opti-
mize across basic block boundaries. The compiler could also be made to emit two
versions of the generated code for each method. One with full suspension checking
during dereferencing and one without, the fully checking code would then divert
to the version without checking as soon as arguments and variables are known to
be determined.

6.2.4 Flow Java in Other Implementations

This thesis argues for and claims that the extensions needed for Flow Java are
minor and make few assumptions on the underlying Java implementation. It would
be interesting to substantiate this claim by implementing Flow Java by extending
other Java implementations as for example Kaffe [23].

6.2.5 Flow Java Functionality in Other Languages

It would be interesting to port the Flow Java functionality to a language which
have built in support for inter-task message passing such as Ada. Another ap-
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proach would be to combine C++ or C# with synchronization variables and message
passing.
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