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Abstract 

 

This paper describes the application of the Soil and Water Assessment Tool (SWAT) 

model to the Maquoketa River watershed, located in northeast Iowa. The inputs to the model 

were obtained from the Environmental Protection Agency’s geographic information/database 

system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS). 

Climatic data from six weather stations located in and around the watershed, and measured 

streamflow data from a U.S. Geological Survey gage station at the watershed outlet were 

used in the sensitivity analysis of SWAT model parameters as well as its calibration and 

validation for watershed hydrology and streamflow. A sensitivity analysis was performed 

using an influence coefficient method to evaluate surface runoff and baseflow variations in 

response to changes in model input hydrologic parameters. The curve number, evaporation 

compensation factor, and soil available water capacity were found to be the most sensitive 

parameters among eight selected parameters when applying SWAT to the Maquoketa River 

watershed. Model calibration, facilitated by the sensitivity analysis, was performed for the 

period 1988 through 1993, and validation was performed for 1982 through 1987. The model 

performance was evaluated by well-established statistical methods and was found to explain 

at least 86% and 69% of the variability in the measured streamflow data for the calibration 

and validation periods, respectively. This initial hydrologic modeling analysis will facilitate 

future applications of SWAT to the Maquoketa River watershed for various watershed 

analyses, including water quality. 

 

Keywords:  calibration and validation, hydrologic simulation, sensitivity analysis, SWAT.
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1. Introduction 

Hydrology is the main governing backbone of all kinds of water movement and hence of 

water-related pollutants. Understanding the hydrology of a watershed and modeling different 

hydrological processes within a watershed are therefore very important for assessing the 

environmental and economical well-being of the watershed. Simulation models of watershed 

hydrology and water quality are extensively used for water resources planning and 

management. These models can offer a sound scientific framework for watershed analyses of 

water movement and provide reliable information on the behavior of the system. New 

developments in modeling systems have increasingly relied on geographic information 

systems (GIS) that have made feasible large area simulation, and on database management 

systems such as Microsoft Access to support modeling and analysis. 

Several watershed-scale hydrologic and water quality models such as HSPF 

(Hydrological Simulation Program - FORTRAN) (Johansen et al., 1984), HEC-HMS 

(Hydrologic Modeling System) (USACE-HEC, 2002), CREAMS (Chemical, Runoff, and 

Erosion from Agricultural Management Systems) (Knisel, 1980), EPIC (Erosion-Productivity 

Impact Calculator) (Williams et al., 1984), AGNPS (Agricultural Non-Point Source) (Young 

et al., 1989), and SWRRB (Simulator for Water Resources in Rural Basins) (Arnold et al., 

1990) have been developed for watershed analyses. While these models are very useful, they 

are generally limited in several aspects of watershed modeling, such as inappropriate scale, 

inability to perform continuous-time simulations, inadequate maximum number of 

subwatersheds, and the inability to characterize the watershed in enough spatial detail (Saleh 

et al., 2000). A relatively recent model developed by the U.S. Department of Agriculture 

(USDA) called SWAT (Soil and Water Assessment Tool) (Arnold et al., 1998) has proven 
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very successful in the watershed assessment of hydrology and water quality. It has been used 

extensively worldwide (Gassman et al., 2007) as evidenced by over 500 peer-reviewed 

publications on the model (personal communication, Jeffery G. Arnold, USDA-ARS, 

Temple, Texas). SWAT is a physically based model and offers continuous-time simulation, a 

high level of spatial detail, an unlimited number of watershed subdivisions, efficient 

computation, and the capability of simulating changes in land management. An early 

application of the model by Arnold and Allen (1996) compared the results of SWAT to 

historical streamflow and groundwater flow in three Illinois watersheds. Arnold and Allen 

found that the model was able to simulate all the components of the hydrologic budget within 

acceptable limits on both annual and monthly time steps. The Natural Resources 

Conservation Service (NRCS) used the SWAT model in the 1997 Resource Conservation 

Appraisal. The model was validated against measured streamflow and sediment loads across 

the entire U.S. (Arnold et al., 1999). The effect of spatial aggregation on SWAT was 

examined by FitzHugh and Mackay (2000) and Jha et al. (2004a). SWAT applications for 

flow and/or pollutant loadings have compared favorably with measured data for a variety of 

watershed scales (Srinivasan et al., 1998; Arnold et al., 1999; Saleh et al., 2000; Santhi et al., 

2001). The SWAT model was successfully applied to assess the impact of climate change in 

hydrology of the Upper Mississippi River Basin (Jha et al., 2004b) and the Missouri River 

Basin (Stone et al., 2001). SWAT has been chosen by the Environmental Protection Agency 

to be one of the models of their Better Assessment Science Integrating Point and Nonpoint 

Sources (BASINS) (Whittemore, 1998). 

Besides successful application of physically based models, there are several issues that 

question the model output such as uncertainty in input parameters, nonlinear relationships 
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between hydrologic input features and hydrologic response, and the required calibration of 

numerous model parameters. These issues can be examined with sensitivity analyses of the 

model parameters to identify sensitive parameters with respect to their impacts on model 

outputs. Proper attention to the sensitive parameters may lead to a better understanding and 

to better estimated values and thus to reduced uncertainty (Lenhart et al., 2002). Knowledge 

of sensitive input parameters is beneficial for model development and leads to a model’s 

successful application. Arnold et al. (2000) performed a sensitivity analysis of three 

hydrologic input parameters of the SWAT model against surface runoff, baseflow, recharge, 

and soil evapotranspiration on three different basins within the Upper Mississippi River 

Basin. Spruill et al. (2000) selected fifteen hydrologic input variables of the SWAT model 

and varied them individually within acceptable ranges to determine model sensitivity in daily 

streamflow simulation. They found that the determination of accurate parameter values is 

vital for producing simulated streamflow data in close agreement with measured streamflow 

data. Two simple approaches of sensitivity analysis were compared by Lenhart et al. (2002) 

using the SWAT model on an artificial catchment. In both approaches, one parameter was 

varied at a time while holding the others fixed except that the way of defining the range of 

variation was different: the first approach varied the parameters by a fixed percentage of the 

initial value and the second approach varied the parameters by a fixed percentage of the valid 

parameter range. Lenhart et al. found similar results for both approaches and suggested that 

the parameter sensitivity may be determined without the results being influenced by the 

chosen method. The paper identified several most sensitive hydrologic and plant-specific 

parameters but emphasized that sensitivities can be different for a natural catchment because 

of oversimplification of the processes in the chosen artificial catchment. 
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In this study, SWAT was applied to the Maquoketa River watershed (MRW), located in 

northeast Iowa (Figure 1). The objectives of this study were to identify the SWAT’s 

hydrologic sensitive parameters relative to the estimation of surface runoff and baseflow, and 

to calibrate and validate the model for streamflow. The influence coefficient method was 

used to examine surface runoff and baseflow responses to changes in model input 

parameters. The parameters were ranked according to the magnitudes of response variable 

sensitivity to each of the model parameters, which divide high and low sensitivities. The 

SWAT model was calibrated by varying the values of sensitive parameters (as identified in 

the sensitivity analysis) within their permissible values and then compared simulated 

streamflow with the measured streamflow at the watershed outlet. This study will facilitate 

future applications of the SWAT model to the MRW, which will support efforts to mitigate 

water quality problems in the region. 

 

2. Materials and methods 

2.1 The SWAT model 

The SWAT model is a long-term, continuous simulation watershed model. It operates on a 

daily time step and is designed to predict the impact of management on water, sediment, and 

agricultural chemical yields. The model is physically based, computationally efficient, and 

capable of simulating a high level of spatial detail by allowing the division of watersheds into 

smaller subwatersheds. SWAT models water flow, sediment transport, crop/vegetation 

growth, and nutrient cycling. The model allows users to model watersheds with less 

monitoring data and to assess predictive scenarios using alternative input data such as 

climate, land-use practices, and land cover on water movement, nutrient cycling, water 
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quality, and other outputs. Major model components include weather, hydrology, soil 

temperature, plant growth, nutrients, pesticides, and land management. Several model 

components have been previously validated for a variety of watersheds. 

In SWAT, a watershed is divided into multiple subwatersheds, which are then further 

subdivided into Hydrologic Response Units (HRUs) that consist of homogeneous land use, 

management, and soil characteristics. The HRUs represent percentages of the subwatershed 

area and are not identified spatially within a SWAT simulation. The water balance of each 

HRU in the watershed is represented by four storage volumes: snow, soil profile (0-2 

meters), shallow aquifer (typically 2-20 meters), and deep aquifer (more than 20 meters). The 

soil profile can be subdivided into multiple layers. Soil water processes include infiltration, 

evaporation, plant uptake, lateral flow, and percolation to lower layers. Flow, sediment, 

nutrient, and pesticide loadings from each HRU in a subwatershed are summed, and the 

resulting loads are routed through channels, ponds, and/or reservoirs to the watershed outlet. 

Detailed descriptions of the model and model components can be found in Arnold et al. 

(1998) and Neitsch et al. (2002). 

 

2.2 Maquoketa River watershed and SWAT input data 

The Maquoketa River watershed (MRW) covers 4,867 km2 of predominantly agricultural 

land in northeast Iowa (Figure 1). The MRW is one of 13 tributaries of the Mississippi River 

that have been identified as contributing some of the highest levels of suspended sediments, 

nitrogen, and phosphorus to the Mississippi stream system 

(http://www.umesc.usgs.gov/data_library/sediment_nutrients/sediment_nutrient_page.html). 

These pollution loads are attributed mainly to agricultural nonpoint sources and result in 



6 
 

degraded water quality within each watershed, in the Mississippi River, and ultimately in the 

Gulf of Mexico. 

Land use, soil, and topography data required for simulating the watershed were obtained 

from the BASINS package version 3 (USEPA, 2001). Topographic information is provided 

in BASINS in the form of Digital Elevation Model (DEM) data. The DEM data were used to 

generate variations in subwatershed configurations such as subwatershed delineation, stream 

network delineation, and slope and slope lengths using the ArcView interface for the SWAT 

2000 model (AVSWAT) (Di Luzio et al., 2000). Land-use categories provided in BASINS 

are relatively simplistic, including only one category for agricultural land (defined as 

“Agricultural Land-Generic” or AGRL). Agricultural lands cover almost 90% of the MRW; 

the remaining area is mostly forest (Figure 2). The soil data available in BASINS comes from 

the State Soil Geographic (STATSGO) database (USDA, 1994), which contains soil maps at 

a 1:250,000 scale. Each STATSGO map unit is linked to the Soil Interpretations Record 

attribute database that provides the proportionate extent of the component soils and soil layer 

properties. The STATSGO soil map units and associated layer data were used to characterize 

the simulated soils for the SWAT analyses. 

The daily climate inputs consist of precipitation, maximum and minimum temperatures, 

solar radiation, wind speed, and relative humidity. In case of missing observed data or the 

absence of complete data, the weather generator within SWAT uses its statistical database to 

generate representative daily values for the missing variables for each subwatershed. 

Historical daily precipitation and daily maximum and minimum temperatures were obtained 

from the Iowa weather database (www.mesonet.agron.iastate.edu) for the six climate stations 

located in or near the watershed (see Figure 1). The management operations required for the 
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HRUs were defaulted by AVSWAT and consisted simply of planting, harvesting, and 

automatic fertilizer applications for the agricultural HRUs. 

 

2.3 Sensitivity Analysis 

The influence coefficient method is one of the most common methods for computing 

sensitivity coefficients in surface and ground water problems (Helsel and Hirsch, 1992). The 

method evaluates the sensitivity by changing each of the independent variables, one at a time. 

A sensitivity coefficient represents the change of a response variable that is caused by a unit 

change of an explanatory variable, while holding the rest of the parameters constant: 
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where F is the response variable, P is the independent parameter, and N is the number of 

parameters considered. The sensitivity coefficients can be positive or negative. A negative 

coefficient indicates an inversely proportional relation between a response variable and an 

explanatory parameter. 

To meaningfully compare different sensitivities, the sensitivity coefficient was normalized 

by reference values, which represent the ranges of each pair of dependent variable and 

independent parameter. The normalized sensitivity coefficient is called the sensitivity index 

and is given as (Gu and Li, 2002): 
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where si is the sensitivity index, and Fm and Pm are the mean of lowest and highest values of 

the selected range for the explanatory parameter and the response variable, respectively. A 

higher absolute value of sensitivity index indicates higher sensitivity and a negative sign 

shows inverse proportionality. 

 

2.4 Simulation Approach 

The AVSWAT model (ArcView interface of the SWAT model) was used in the 

watershed delineation process, which includes processing of DEM data for stream network 

delineation followed by subwatershed delineation. A total of 25 subwatersheds were 

delineated for the entire MRW (see Figure 1). The subwatersheds were then further 

subdivided into HRUs that were created for each unique combination of land use and soil. 

Recommended thresholds of 10% for land cover and 5% for the soil area were applied to 

limit the number of HRUs in each subwatershed. 

After the model setup, SWAT was executed with the following simulations options: (1) 

the Runoff Curve Number method for estimating surface runoff from precipitation, (2) the 

Hargreaves method for estimating potential evapotranspiration generation, and (3) the 

variable-storage method to simulate channel water routing. A simulation period of 1988 

through 1993 was selected for the sensitivity analysis. Several model runs were executed for 

each input parameter with a range of values, keeping simulation options and other 

parameters’ values constant. The sensitivity index was calculated for each parameter from 
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the average annual values for surface runoff and baseflow separately. The analysis provided 

information on the most to least sensitive parameters for flow response of the watershed. 

Facilitated from the sensitivity analysis, the model was calibrated for the same period 

against the measured streamflow data at the U.S. Geological Survey (USGS) stream gage 

(Station # 05418500). The model was then validated for the period 1982 through 1987. Two 

statistical approaches were used to evaluate the model performance: coefficient of 

determination (R2) and Nash-Sutcliffe simulation efficiency (E). The R2 value is an indicator 

of the strength of relationship between the observed and simulated values; and, E indicates 

how well the plot of observed versus simulated value fits the 1:1 line. If the R2 value is close 

to zero and the E value is less than or close to zero, the model prediction is considered 

unacceptable. If the values approach one, the model predictions become perfect. 

 

3. Results and discussion 

3.1 Sensitivity results 

Based on personal experience with the model and an extensive literature review of the 

SWAT model application such as in Spruill et al. (2000), Santhi et al. (2001), and Lenhart et 

al. (2002), a total of eight model input parameters were selected for sensitivity analysis. The 

parameters were curve number (CN), soil evaporation compensation factor (ESCO), plant 

uptake compensation factor (EPCO), soil available water capacity (SOL_AWC), baseflow 

alpha factor (ALPHA_BF), groundwater revap coefficient (GW_RAVAP), and deep aquifer 

percolation coefficient (RECHRG_DP). Table 1 lists the model parameters along with their 

initial estimates and acceptable ranges. Details on the model parameters and their functions 

can be found in Neitsch et al. (2002). The initial estimate value of a model parameter is the 
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average and most applicable value for that particular parameter and is defaulted by the model 

interface. Most of the model inputs in the SWAT model are physically based (that is, based 

on readily available information) except for a few important variables such as runoff curve 

number, evaporation coefficients, and others that are not well defined physically. These 

parameters, therefore, must be constrained by their applicability limits. 

In the sensitivity analysis, surface runoff and baseflow were treated as the response or 

dependent variables, while model parameters were the explanatory or independent variables. 

The sensitivity coefficients and indices were examined to characterize surface runoff and 

baseflow under different parameter ranges. Table 2 summarizes the sensitivity coefficients 

and sensitivity indices of all parameters corresponding to the changes in surface runoff and 

baseflow volumes in response to changes in the model parameter. In general, the higher the 

absolute values of the sensitivity index, the higher the sensitivity of the corresponding 

parameter. A negative sign indicates an inverse relationship between the parameter and 

response variable. Results in Table 2 indicate that the surface runoff is sensitive, from most 

to least, to CN, ESCO, SOL_AWC, and EPCO for the selected variation range, while 

baseflow is sensitive, from most to least, to CN, ESCO, SOL_AWC, RECHRG_DP, 

GW_REVAP, ALPHA_BF, and GW_DELAY. Surface runoff was found to be not sensitive 

at all for ALPHA_BF, GW_REVAP, GW_DELAY, and RECHARG_DP, while baseflow 

was found to be sensitive for all the parameters selected for the study. 

The top three most influencing parameters were CN, ESCO, and SOL_AWC. A further 

detailed sensitivity analysis was performed for these three parameters. CN was found to be 

extremely sensitive parameter for flow. CN is a dimensionless number that is related to land 

use and soil type. Figure 3(a) shows the response of surface runoff and baseflow when CN 
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was changed from -10% to +10%. Larger CN values resulted in increased surface runoff and 

at the same time decreased infiltration. Baseflow is inversely proportional to CN. The second 

most sensitive parameter, ESCO, was found to have more impact on baseflow than on 

surface runoff (Figure 3b). ESCO adjusts the depth distribution for evaporation from the soil 

to account for the effect of capillary action, crusting, and cracking. Decreasing ESCO allows 

lower soil layers to compensate for a water deficit in upper layers and causes higher soil 

evapotranspiration, which in turn reduces both surface runoff and baseflow. Figure 3c shows 

the sensitivity of the model to SOL_AWC. Increasing SOL_AWC was found to lead to 

higher soil water capacity, which increased both surface runoff and baseflow. Conversely, 

decreasing soil water capacity resulted in higher water availability for surface runoff and 

baseflow.  

 

3.2 Calibration and validation 

The SWAT model was calibrated and validated for streamflow using the measured data 

at USGS gage station 05418500 (Maquoketa River near Maquoketa, Iowa). The measured 

data was divided into two parts: 1988 to 1993 for calibration and 1982 to 1987 for validation. 

The calibration period includes wide variation of climatic conditions of wet, dry, and normal 

years. During the calibration process, the model’s input parameters were adjusted, as guided 

by the sensitivity analysis, to match the observed and simulated streamflows. Table 3 lists the 

final calibrated values of the model variables. A time-series plot of the measured and 

simulated monthly streamflows (Figure 4) shows that the magnitude and trend in the 

simulated monthly flows closely followed the measured data most of the time. The measured 

and simulated average monthly flow volumes were 22.28 and 24.08 mm, respectively. The 
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statistical evaluation yielded an R2 value of 0.86 and an E value of 0.85, indicating a strong 

correlation between the measured and predicted flows. 

Flow validation was conducted using the streamflow data for the period 1982 to 1987. In 

the validation process, the model was run with input parameters set during the calibration 

process without any change. Figure 5 shows the time-series plot of monthly measured and 

simulated monthly streamflows and indicates an acceptable correspondence of simulated 

streamflows with the measured values. The measured and simulated average monthly flow 

volumes for the validation period were 23.40 and 23.44 mm, respectively. The R2 and E 

values between the measured and simulated streamflows were 0.69 and 0.61, respectively. 

Overall, it can be concluded that the model was able to predict streamflow with reasonable 

accuracy. 

 

4. Conclusion 

Information about a model’s sensitivity to some input parameters benefits model 

development and leads to the model’s successful application. This study identified which 

input hydrologic parameters the SWAT model is most sensitive to using the influence 

coefficient method, as determined in an application to the Maquoketa River watershed. 

Surface runoff was found to be sensitive, from most to least, to CN, ESCO, SOL_AWC, and 

EPCO for the selected variation range, while baseflow was found to be sensitive, from most 

to least, to CN, ESCO, SOL_AWC, RECHRG_DP, GW_REVAP, ALPHA_BF, and 

GW_DELAY. Surface runoff was found to be not sensitive at all to ALPHA_BF, 

GW_REVAP, GW_DELAY, and RECHARG_DP, while baseflow was found to be sensitive 

to all the parameters chosen in this study. Model sensitivities to the three most influencing 
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parameters for both surface runoff and baseflow—CN, ESCO, and SOL_AWC—were 

further evaluated. Sensitivity analysis provides good insight into the model input parameters 

and demonstrates that the model is able to simulate hydrological processes very well. 

Based on the assessment of model parameters to which the model is most to least 

sensitive, SWAT was calibrated and validated for streamflow at the watershed outlet. The 

calibration process used measured data for the period 1988-1993 and yielded a strong 

correlation (R2 = 0.86 and E = 0.85) between measured and simulated flow volumes. Model 

validation was performed for the period 1982-1987 and generated an R2 value of 0.69 and E 

value of 0.61. This study indicates that the SWAT model can be an effective tool for 

accurately simulating the hydrology of the Maquoketa River watershed. Accurate flow 

simulations are required to accurately predict sediment loads and chemical concentrations, 

and to simulate various scenarios related to cropping and alternative management to mitigate 

water quality problems in the region. 
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Figure 1. Location of the Maquoketa River watershed (Northeast Iowa), and weather stations 
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Figure 2. Land use categories in Maquoketa River watershed 
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Figure 3. Sensitivity of surface runoff and baseflow to (a) CN, (b) ESCO, and (c) SOL_AWC 
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Figure 4. Monthly time series of predicted and measured streamflow at USGS gauge 

05418500 (watershed outlet) for the 1988-93 calibration period 
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Figure 5. Monthly time series of predicted and measured streamflow at USGS gauge 

05418500 (watershed outlet) for the 1982-87 validation period 

 

 

 

 

 

 

 

 

 

 



22 
 

 

Table 1. Parameter ranges and initial values used in the sensitivity analysis 

Model parameter* Variable name Range 
Model initial 

estimates 

Curve Number (for AGRL) CN 69-85 77 

Soil evaporation compensation factor ESCO 0.75-0.95 0.95 

Plant uptake compensation factor EPCO 0.01-1 1.0 

Soil available water capacity (mm) SOL_AWC ±0.04 - 

Baseflow alpha factor ALPHA_BF 0.05-0.8 0.048 

Groundwater revap coefficient GW_REVAP 0.02-0.2 0.02 

Groundwater delay time  (day) GW_DELAY 0-100 31 

Deep aquifer percolation fraction RECHRG_DP 0-1 0.05 

 *Detailed descriptions are given in the SWAT theoretical documentation (Neitsch et al., 

2002). 
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Table 2. Sensitivity indices of model parameters 

Parameter Initial 
value 

Parameter Response variable (Surface Runoff) Response variable (Baseflow) 

P1 P2 ΔP Mean 
(Pm) F1 F2 ΔF Mean 

Fm P
F

Δ
Δ  

P
F

F
P

m

m

Δ
Δ  F1 F2 ΔF Mean 

Fm P
F

Δ
Δ  

P
F

F
P

m

m

Δ
Δ  

CN 77 85 69 16 77 310 173 137 241 8.57 2.73 21 181 -160 101 -10.0 -7.63 

ESCO 0.95 0.5 1 0.5 0.75 214 249 -34 231 -68.9 -0.22 69 110 -41 90 -82.2 -0.69 

EPCO 1 0.01 1 0.99 0.505 264 249 15 256 15.09 0.03 124 110 14 117 14.1 0.06 

SOL_AWC  0.04 -0.04 0.08 0.04 232 259 -27 246 -336 -0.05 95 135 -40 115 -503 -0.17 

ALPHA_BF 0.048 0.048 0.8 0.75 0.424 249 249 0 249 0 0 110 114 -4 112 -4.7 -0.02 

GW_REVAP 0.02 0.02 0.2 0.18 0.11 249 249 0 249 0 0 110 95 15 102 85.6 0.09 

GW_DELAY 31 0 100 100 50 249 249 0 249 0 0 108 106 1 108 0.0 0.01 

RECHARG_DP 0.05 0 1 1 0.5 249 249 0 249 0 0 113 91 22 102 22.3 0.11 
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Table 3. Final calibrated values of SWAT parameters for Maquoketa River watershed 

Parameter Value 

CN (for AGRL only) 72 

ESCO 0.85 

SOL_AWC -0.04 

GW_REVAP 0.15 

GW_DELAY 50 

RECHRG_DP 0.5 
 

 


