
Efficient search in hidden text
of large DjVu documents∗

Janusz S. Bień†

September 12, 2011

Abstract
The paper describes an open-source tool which allows to present end-

users with results of advanced language technologies. It relies on the DjVu
format, which for some applications is still superior to other modern for-
mats including PDF/A. The DjVu GPLed tools are not limited just to the
DjVuLibre library, but are being supplemented by various new programs,
such as pdf2djvu developed by Jakub Wilk. It allows in particular to con-
vert to DjVu the PDF output of popular OCR programs like FineReader
preserving the hidden text layer and some other features.

The tool in question has been conceived by the present author and
consist of a modification of the Poliqarp corpus query tool, used for Na-
tional Corpus of Polish; his ideas have been very succesfully implemented
by Jakub Wilk. The new system, called here simply Poliqarp for DjVu,
inherits from its origin not only the powerfull search facilities based on
two-level regular expressions, but also the ability to represent low-level
ambiguities and other linguistic phenomena. Although at present the
tool is used mainly to facilitate access to the results of dirty OCR, it is
ready to handle also more sophisticated output of linguistic technologies.

1 DjVu technology and DjVuLibre
The DjVu technology, described by its authors as an image compression tech-
nique, a document format, and a software platform for delivering documents
images over the Internet [Le Cun et al., 2001, p. 2] was originally developed by
Yann Le Cun, Léon Bottou, Patrick Haffner, and Paul G. Howard at AT&T
Laboratories in 1996. AT&T Laboratories acquired several patents for some
aspects of the technology, but didn’t offer any product using or supporting
DjVu1. The broad rights to the patents have been purchased by LizardTech
∗This is an updated version of the paper which appeared in Bernardi, Raffaella and

Chambers, Sally and Gottfried, Björn and Segond, Frédérique and Zaihrayeu, Ilya (eds.),
Advanced Language Technologies for Digital Libraries, Lecture Notes in Computer Sci-
ence 6999, Springer Berlin / Heidelberg, pp 1-14, 2011, DOI 10.1007/978-3-642-23160-5_1
(http://dx.doi.org/10.1007/978-3-642-23160-5_1).
†Formal Linguistics department, University of Warsaw,Browarna 8/10, 00-927 Warszawa,

Poland, jsbien@uw.edu.pl, http://www.klf.uw.edu.pl.
1Although the patents in question are valid only in USA, they definitely delayed the practi-

cal applications of the format (fortunately software patents are not allowed at all in European
Union and a lot of other countries).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteka Cyfrowa KLF UW (Digital Library of the Formal Linguistics Department at the...

https://core.ac.uk/display/11337643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-23160-5_1
http://www.klf.uw.edu.pl


(it later became a part of Celartem Technology Inc., which in 2009 appointed
Caminova Inc. “to develop, distribute and manage its DjVu document imag-
ing technology”, cf. http://www.caminova.jp/en/), which in 2001 allowed
to use patented techniques in the software distributed under the GNU Gen-
eral Public License; as the wording of the statement was considered unprecise,
in 2002 it was supplemented by an additional clarification. The implementa-
tion of the DjVu technology available on the GNU GPL licence is called DjVu-
Libre. It is worth reminding that GNU GPL provides the user with 4 freedoms
(http://www.gnu.org/philosophy/free-sw.html):

1. The freedom to run the program, for any purpose.

2. The freedom to study how the program works, and adapt it to your needs.

3. The freedom to redistribute copies so you can help your neighbor.

4. The freedom to improve the program, and release your improvements to
the public, so that the whole community benefits.

In consequence, it is most appropriate for academic research.
DjVu has several features. First of all, it provides very efficient algorithms

for image compression; the best of them are still available only in the form of
commercial and quite expensive products. Secondly, it provides an efficient way
to transfer the compressed images over the Internet, even on relatively slow lines.
Moreover, it provides also an efficient way to display the image on the end-user’s
computer, using such tricks as progressive decoding (which decompresses only
this part of the image which is to be displayed), downloading the next page in
the background etc.

DjVu allows to store every page in a separate file and download only the
pages which are really needed, which is of crucial importance especially for
large dictionaries, which are not read in a sequential way. Another feature of
crucial importance is the possibility to accompany the scans by the hidden text
layer, which can be searched, copied etc.

From a user’s point of view it is the DjVu viewer which is important. There
exist several of them, both commercial and free, for various platforms, palm-
tops and cellular phones included. All the viewers profit from the DjVu design
features allowing the viewer to simulate the operations on a paper document in
comparable time, as illustrated by the table 4 in [Le Cun et al., 2001, p. 6]:

Action Real-word equivalent Acceptable delay
Zooming/Panning Moving the eyes Immediate
Next/Previous Page Turning a page < 1 second
Random Page access Finding a page < 3 seconds

From the very beginning, DjVu viewers allowed to highlight specified frag-
ments of a remote text. For example, the address

http://www.leoyan.com/century-dictionary.com/04/index04.djvu?djvuopts=
&page=p2719.djvu&zoom=100&showposition=0.48,0.34&highlight=1084,
3451,1004,344

points to the entry hardware in the online edition of the famous The Century
Dictionary and Cyclopedia (published from 1888 to 1891), referenced also later
in the paper. The main part of the address describes the primary document

2

http://www.caminova.jp/en/
http://www.gnu.org/philosophy/free-sw.html
http://www.leoyan.com/century-dictionary.com/04/index04.djvu?djvuopts=&page=p2719.djvu&zoom=100&showposition=0.48,0.34&highlight=1084,3451,1004,344
http://www.leoyan.com/century-dictionary.com/04/index04.djvu?djvuopts=&page=p2719.djvu&zoom=100&showposition=0.48,0.34&highlight=1084,3451,1004,344
http://www.leoyan.com/century-dictionary.com/04/index04.djvu?djvuopts=&page=p2719.djvu&zoom=100&showposition=0.48,0.34&highlight=1084,3451,1004,344


file, which in this case is just an index to the files containing individual pages
of the 4th volume of the dictionary. The parameter page describes the page
using its name which happens to coincide with the name of the file containing
it. The highlight parameter specifies pixel coordinates of the rectangle to be
highlighted, and the showposition part guarantees that the visible area of the
page will contain the highlight.

This very useful feature was however very little used because there was no
easy way to identify the coordinates of the area to be highlighted. Therefore in
2008 I asked Jakub Wilk (then a student of mine) to extend djview4 allowing to
create such URLs conveniently after marking a region with a mouse. The patch
has been submitted to the Sourceforge tracking system on 9th February and by
29th February it has been reimplemented more efficiently by Léon Bottou, the
author of the program, who included it in the official distribution. I think this
feature is extremely important for academic research, as it allows to quote a
specific fragment of a digitalized work when including its image is technically
difficult or not desirable.

When accessing a document with a highlighted fragment, the page is dis-
played in the default resolution and in the default position, so it could happen
that the highlighted fragment is not immediately visible. The free but closed
source LizardTech viewer for MS Windows had a solution to the problem in
the form of the ShowPosition parameter. In May 2008 I asked for an identical
feature in djview4 and just several months later (in June 2008) Léon Battou im-
plemented it. So if you send an URL referring to a highlighted fragment of text,
the receipient will see it exactly as the sender (with some minor exceptions).

2 DjVu and Portable Document Format
Portable Document Format (PDF) is an open standard (formally since July 1,
2008) for document exchange introduced by Adobe Systems in 1993. A subset of
the specification is known as PDF/A and described in the international standard
ISO 19005-1:2005 Document management – Electronic document file format for
long-term preservation – Part 1: Use of PDF 1.4 (PDF/A-1).

Reportedly already version 1.0 of the specification allowed to create “sand-
wich PDF” containing both the scans and hidden text layers, predating in this
respect DjVu, which however for years provided better compression (at present
the compression ratio is comparable) and is still in many aspects more conve-
nient.

Thanks to the open character of the PDF standard it became very popular,
both as the output of scanning programs and stand-alone scanners, and as
an input for printing, ranging from personal printers to professional devices.
Moreover “sandwich PDF” is used also as the output format of many OCR
programs, including the widely-used Abby FinerReader.

To have the best of both worlds, in 2008 Jakub Wilk created the first ver-
sion of the pdf2djvu program, which he has since then actively maintained and
developed; the software is hosted at http://code.google.com/p/pdf2djvu/.
It is released under the terms of the GNU General Public Licenses and available
in the package form in major free operating system (GNU/Linux and FreeBSD)
distributions, such as Debian, Ubuntu and OpenSuse; it can be compiled also
for MS Windows. The current version of the program is 0.7.10 (released on 20th

3

http://code.google.com/p/pdf2djvu/


August 2011) and supports such features as

• compressing the scans the DjVu way, trying to split them into front and
background;

• optionally preserving hidden text;

• optionally preserving the document outline;

• optionally preserving hyperlinks (with some limitation intrinsic for the
DjVu format);

• optionally preserving and updating the document metadata.

The program is able in particular to preserve and update the metadata
in the XMP format; XMP stands for Extensible Metadata Platform (http:
//www.adobe.com/products/xmp/) which is becoming more and more popular.

The expensive commercial DjVu document creators provide better compres-
sion than pdf2djvu, but are available only for MS Windows and include built-in
OCR programs which cannot be controlled by the user. In consequence, pdf2djvu
used alone or with an OCR program of choice is a viable competitor in many
circumstances.

3 Searching the hidden text layer
Every DjVu viewer allows for searching the hidden text layer, but for large
remote documents it is inefficient as it defeats the purpose of splitting the doc-
ument into separate pages: to access the hidden text, all the pages have to be
loaded, and if the search is repeated, they are reloaded multiple times. On the
other hand, if the document is available locally, djview4 offers very efficient and
convenient incremental search which seems to be absent in other viewers.

Hence, the optimal solution is to use some kind of index and a search engine.
Yann LeCun, one of the creators of the DjVu format, implemented JSSindex
(JavaScript Search Engine, http://sourceforge.net/projects/jssindex/),
an interesting search tool for collections of documents in HTML, PS, PDF, and
DjVu, but unfortunately oriented only at English language texts and very diffi-
cult to modify and extend. A simple search engine has been provided for Cen-
tury Dictionary Online (http://www.global-language.com/CENTURY/) men-
tioned earlier. Although it looks like this is a special purpose software writ-
ten for the specific task, this electronic edition created by Jeffery A. Triggs
sets standards for an efficient and convenient access to DjVu documents. An-
other electronic edition prepared by Triggs is Jamieson’s Etymological Dictio-
nary of the Scottish Language Online (http://www.scotsdictionary.com/);
it allows to choose between two search engines: Hunter and Amberfish. Hunter
is commercial software developed by Alternative Output Inc. (http://www.
alternativeoutput.com/), used by a few customers, one of them being Ox-
ford University Press, which reportedly uses it for the online version of Oxford
English Dictionary. Amberfish is an open source text retrieval system devel-
oped by Etymon Systems; the company seems to no longer exist, but the soft-
ware is still available at http://sourceforge.net/projects/amberfish/ and
https://github.com/nassar/amberfish.

4

http://www.adobe.com/products/xmp/
http://www.adobe.com/products/xmp/
http://sourceforge.net/projects/jssindex/
http://www.global-language.com/CENTURY/
http://www.scotsdictionary.com/
http://www.alternativeoutput.com/
http://www.alternativeoutput.com/
http://sourceforge.net/projects/amberfish/
https://github.com/nassar/amberfish


Although general purpose search engines are quite useful, there is a whole
family of interesting software which treats texts as linguistic objects, namely
corpus management software. One of the most sophisticated systems of this type
is Poliqarp (Polyinterpretation Indexing Query and Retrieval Procesor), an open
source tool developed in the Institute of Computer Science of Polish Academy of
Sciences (http://poliqarp.sourceforge.net/). It has been in use for several
years, now also for the National Corpus of Polish (http://nkjp.pl/); this
should guarantee its continuous maintenance. An important factor is also a
user community familiar with its query language. The maintainer of Poliqarp
and implementor of the extensions designed primarily by Adam Przepiórkowski
(cf. [Przepiórkowski, 2009]) was till recently Jakub Wilk.

The Poliqarp query language has been inspired by Corpus Query Processor, a
component of Corpus Workbench developed at the University of Stuttgart (now
an open source system, cf. http://cwb.sourceforge.net/, but it was not so
when the development of Poliqarp started). The basic principle is to use two
levels of regular expressions. One level is applied to strings representing the
values of linguistic features of a word, the actual spelling of the word being one
of them. The second level of regular expressions is applied to words or their sets
defined with the first level expressions. In consequence the query language is
very powerful (it seems that practically all queries available in e.g. Hunter and
Amberfish mentioned above can be expressed in Poliqarp), but less user-friendly
than in simpler systems.

The idea to use Poliqarp for searching hidden text of DjVu documents has
been conceived by the present author in 2008 and formulated first as a term
project for Computer Science students. The background and the results of this
preliminary attempt were presented in [Bień, 2009a]. A research grant allowed
to implement later a more efficient and elegant solution described below, and
to support the development of some other tools mentioned in the paper.

The results of the search in the hidden text layer may be successful only if
the text really represents the content of the scan. Usually it is not the case
as the hidden text layer is created by ‘dirty OCR’, i.e. an unattended OCR
process. Hence it is important to estimate easily the quality of the hidden text.
Upon my request of May 2008 Léon Bottou in a few days included in djview4
the possibility to display hidden text for the scan fragment under the cursor;
another added feature is the possibility to display the whole hidden layer at once.
It allows e.g. to spot the OCR errors which are to blame if the search misses a
target (such errors can be now corrected with the help of Jakub Wilk’s program
djvusmooth available in several Linux distribution including Debian Squeeze;
the program is still under development, so it should become more convenient to
use in the near future). On the other hand the same purpose can be served by
graphical concordances mentioned below.

4 Poliqarp for DjVu
Poliqarp for DjVu, also known under the code name marasca-wbl, is an extension
of Poliqarp allowing, at least in principle, to use the full power of the program to
search hidden text in DjVu documents. Its development is one of the tasks sup-
ported by the Polish Ministry of Science and Higher Education’s grant entitled
Text digitalization tools for philological research. The source of the system is

5

http://poliqarp.sourceforge.net/
http://nkjp.pl/
http://cwb.sourceforge.net/


available under the terms of the GNU GPL license at https://bitbucket.org/
jwilk/marasca-wbl. It is worth noting that although at first the system was
just a modification of Poliqarp, we contribute in return to the original project.
Since March 2010 the National Corpus of Polish has used our version of the
WWW Poliqarp client (https://bitbucket.org/jwilk/marasca).

Poliqarp for DjVu was implemented by Jakub Wilk according to the design
of the present author. It has been available for testing since December 2009
at http://poliqarp.wbl.klf.uw.edu.pl. It operates by augmenting a stan-
dard Poliqarp corpus with information about the bounding box coordinates
of the text tokens. The text and the coordinates are provided in hOCR for-
mat [Breuel, 2007] generated with the djvu2hocr program bundled with Jakub
Wilk’s ocrodjvu software (http://jwilk.net/software/ocrodjvu). Thanks to
pdf2djvu it allows to apply Poliqarp for DjVu to the results produced by prac-
tically all important OCR programs. Moreover, recently a converter from the
PAGE (Page Analysis and Ground-truth Elements) format [Pletschacher and
Antonacopoulos, 2010] to hOCR has been developed, which allows Poliqarp to
handle, at least in principle, numerous texts prepared in the very format by the
so called library partners in the framework of the IMPACT project (IMProving
ACcess to Text, www.impact-project.eu).

As of September 2011, four important Polish dictionaries are available for
testing Poliqarp for DjVU:

• “Warsaw dictionary”, more precisely Słownik języka polskiego (Dictionary
of the Polish Language) by J. Karłowicz, A. Kryński and W. Niedźwiecki
published in Warsaw in 8 volumes in 1900–1927. It has been scanned by
the library of the University of Warsaw, which used Abby FineReader 8
for OCR; the results contain many mistakes but seem to be usable.

• Słownik polszczyzny XVI wieku (Dictionary of the 16th century Polish).
The work started in 1949 and is still in progress. Its digitalization has
complex history, which has been described elsewhere (cf. [Piotrowski,
2005] and [Bień, 2009b]). Since December 2010 all the 34 already published
volumes have been available. Most of them are scanned and the OCR
is, unfortunately, of rather low quality. Thanks to the sponsor of the
dictionary, Foundation for Polish Science, which recently made publication
on the Internet a formal requirement for further funding, the last two
volumes are digitally born; the same files that were used for printing were
converted by Jakub Wilk with his pdf2djvu program, so the physical and
electronic versions have the same appearance and content. Two earlier
volumes were preserved in the internal format of the typesetting system
used; when typeset again, the resulting PDF files have slightly different
appearance due to some minor changes in the system and fonts. As the
content remained identical, these volumes are also available as digitally-
born.

• Second edition of Linde’s dictionary. Słownik języka polskiego (Dictionary
of the Polish language) by Samuel Bogumił Linde were published in 4
volumes (two of them are split into two parts, so it makes actually 6
volumes) in 1807-1814, the second edition has been published in 1854-1861.
This is one of the most important historical dictionaries not only from the
Polish point of view, as all definitions are also given in German and there

6

https://bitbucket.org/jwilk/marasca-wbl
https://bitbucket.org/jwilk/marasca-wbl
https://bitbucket.org/jwilk/marasca
http://poliqarp.wbl.klf.uw.edu.pl
http://jwilk.net/software/ocrodjvu
www.impact-project.eu


is a lot of quotations from other languages (including Old Slavonic, Greek
and even Hebrew) and dialects, some of them already extinct. The mixture
of languages and scripts makes OCR extremely difficult; at present the
hidden text layer has been prepared with Abby FineReader 10 set to
Polish language. In consequence the fragments in Polish are of quite good
quality, while the remaining parts are completely unusable; this is however
already a sufficient help for readers trying e.g. to locate an entry, which
are ordered according to rules which are different from contemporary ones.
We have some plans to improve the quality of the hidden text, but this is
outside the scope of the present paper.

• Słownik geograficzny Królestwa Polskiego i innych krajów słowiańskich
(The Geographical Dictionary of the Polish Kingdom and other Slavic
Countries), a gazetteer in 15 volumes of almost 1000 pages each, published
in 1880-1914, extremely useful for genealogical research. The gazetteer
covers Poland in its borders before the partitions between Russia, Ger-
many and Austria, but due to the censorship it was impossible to state
this explicitly in the title.

From a user’s point of view, Poliqarp for DjVu enhances Poliqarp proper
with functionalities present already in The Century Dictionary Online and
Jamieson’s Etymological Dictionary of the Scottish Language Online, namely
with linking hits (keywords in the KWIC index) to the scans with highlighted
hits. To quickly sort out false positives caused by the low quality of “dirty
OCR”, Poliqarp for DjVu additionally provides so called graphical concordances,
i.e a KWIC index with the scan snippets created on the fly. Figure 1 shows a
graphical concordance for a non-trivial query in Linde’s dictionary. The purpose
of the query is to find the occurences of the abbreviation Syr. meaning Syryjski
(i.e. Syriac [language]). The problem is that the same abbreviation refers also
to Syreniusza zielnik (i.e. Syreniusz’ herbarium), but in such a case it is followed
by a page reference in the form of a number. Hence regular expression

Syr "\." "[^[:digit:]].*"

specifies 3 tokens:

1. the character string Syr,

2. a full stop,

3. a token that does not start with a digit.

Before going into the details of the regular expression syntax let us note that
most of the hits are obviously correct. Hit number 2 is a false positive due to
an OCR error, the digit has been misinterpreted as a letter. Hit number 4 may
seem incorrect, but actually this is a result of size limitation of the displayed
snippet.

Let us have a look now at an example illustrating how the power of regular
expressions can be used to circumvent the OCR errors. The following expression

("[CĆOGU]ze[sś]" | "[CO][z/]o[sa]") "\."

7



Figure 1: Graphical concordances in Poliqarp for DjVu

seems to match all the occurences of the abbreviation Czes. (meaning Czech
language) in the Warsaw dictionary, which has been recognized as Cześ, Gzes,
Czos, Ozos etc., as illustrated in figures 2 and 3.

Let us analyze the structure of the query. The top level of the query consists
of three second level regular expressions and has the structure

(RE1 | RE2) RE3

which means that we are searching for RE3 immediately preceded either by RE1
or by RE2.

Expression "\." denotes simply a full stop ending the abbreviation. Because
the full stop in regular expressions means “any character except new line” (in
this meaning it occurs close to the end in the first example), it has to be escaped
with backlash to recover its standard meaning. Quotes are needed to distinguish
the levels of regular expressions.

Expression "[CĆOGU]ze[sś]" matches words consisting of 4 characters. The
second and third one must be respectively z and e, the first and last may be
any character from the respective bracketed list. If such a list starts with ^,
it means the the list specifies characters which are not allowed, as in our first
example.

The bracketed list may contain also predefined names of character classes,
as exemplified by [:digit:] in the first example. Another use of this construct
is demonstrated by a query usefully applicable to the dictionary of the 16th
century Polish:

"[[:upper:]]{3,}" within body meta orig=pdf

8



Figure 2: Graphical concordances for dirty OCR

It allows to search for headwords, always spelled in capitals. The query matches
also the Roman numbers referring to centuries, but it doesn’t do much harm and
avoiding this makes the query much more complex. The results are presented
in figure 4.

The top level regular expression is simple and consists of only one component,
it is however supplemented by two clauses. The first clause limits the search to
the section named body; sections are defined during the corpus building, in our
case this sections refers to the part of dictionary containing the entries. The
second clause refers to metadata assigned to the publications included in the
corpus. In our case this is non-standard metadata which allows to limit our
search to digitally-born volumes.

The second level expression consists of two parts: the character specification
[[:upper:]] and the quantifier {3,}. The character specification is just a
single element bracketed list, and the element is the name of a character class
(also written in brackets); the class [:upper:] denotes, as expected, all upper
case characters; the meaning of “all” depends on an operating system property
called locale, but can be safely assumed to mean at least all characters present
in the Basic Multilingual Plane of the Unicode standard (www.unicode.org).

The quantifier {3,} means that the preceding element has to occur in a
word at least three times; in the case of our dictionary it means that we skip

9

www.unicode.org


Figure 3: Standard concordances for dirty OCR

the initials of authors (in the dictionary every entry is signed by its author) but
match the head of entries longer than two letters. Other popular quantifiers are:
* (the preceding element occurs any number of times or does not occur at all;
the construct was used in the first of our examples), + (the preceding element
occurs at least once), ? (the preceding element occurs at most once).

The regular expressions are far from being user-friendly, they may be con-
fusing even for an experienced programmer. Their use is however so ubiquitous
that learning them is a good investment. On the other hand, there exist al-
ready various tools for editing and debugging regular expressions and we hope
to adapt one of them in the future to Poliqarp. For the time being the best
approach is to start with a simple general query and to refine the search by
adding additional restrictions.

5 Lemmatization, morphosyntactic tagging and
polyinterpretations

The standard linguistic corpus workflow includes two important steps: mor-
phosyntactic analysis and disambiguation (cf. eg. [Przepiórkowski, 2004, p. 14]).
Morphosyntactic analysis assigns all possible interpretations to a word, in par-

10



Figure 4: Standard concordances for digitally born texts

ticular all possible canonical forms of the word. For example, the Polish word
mam can be a form of MIEĆ (to have), MAMA (deminutive of mother) or
MAMIĆ (to deceive); moreover even for a fixed canonical form there are often
different values of morphological categories possible. Disambiguation is usually
performed by a program using stochastic rules to select the interpretation suit-
able for the given context; of course the results are sometimes wrong. Therefore
Poliqarp allows to store and access all the interpretations and to compare them;
for example, the user can search for words which where unambiguous already
at the level of morphosyntactic analysis etc. (cf. section 3.5 of [Przepiórkowski
et al., 2006]). This unique feature of Poliqarp is called polyinterpretation.

All this features related to language technology are present also in Poliqarp
for DjVu. Moreover, some of them can be used on a lower level then originally
intended.

When working with historical texts, e.g. with the quotations in the dictio-
nary of 16th century Polish, we have different but analogical problems on the
spelling level: letter y may mean contemporary y or j, letter i may mean con-
temporary i or j (so e.g. przyymuiemy is now spelled przyjmujemy) etc. Listing
all possible interpretation of a letter can be considered an analogue of the mor-
phological analysis, while reconstructing the contemporary spelling according
to some inferred rules is an analogue of the morphological disambiguation by
a stochastic tagger. The main difference is purely technical and consists in the
fact that the latter interpretation processes do not operate on linguistic fea-
tures, but on the canonical form field (in Poliqarp the features are represented
differently than the textual and canonical forms). This possibility has not been
yet used in practice, but we hope that it will be in due time.

For many purposes a simplified form of morphological analysis is quite use-

11



ful. So called lemmatization consists in assigning the canonical form, i.e. the
lemma, to the given word form; the process is sometimes also called stemming.
It is relatively easy for English, so it is often built into some search engines
like JSSIndex mentioned earlier, but quite difficult and costly for inflectional
languages like Polish. The tools used for the National Corpus of Polish do not
seem to be directly applicable to historical texts, so it is still an open problem.
One of the possible solutions is to organize collaborative work of volunteers who
would enter the requested information by hand.

6 Towards collaborative proofreading and lemma-
tization

The important innovation of Poliqarp for DjVu is the ability to bookmark the
hits with Firefox and other browsers based on the Gecko engine. The bookmark
refers to the appropriate page of the DjVu document with the hit highlighted.
The name of the bookmark is created by JavaScript code and contains the
following elements:

• the abbreviated name of the dictionary,

• the text of the query,

• the timestamp (to distinguish different hits of the same query).

Additional information can be added by the user either by editing the name or
by using, in Firefox and some other browsers, the tags field. Hence the user can
not only bookmark hits easily for his own use, but also mark and correct OCR
mistakes. The problem is how to organize sharing of this information.

From purely technical point of view, the tools are already available in the
form of the Firefox Sync plug-in, which is to become a standard feature of the
browser, and the Sync server (formerly called Weave) which collects information
from the plug-ins. There is however a serious problem of privacy, because it
is not possible to grant access only to the Poliqarp error-correcting bookmarks.
The simplest solution seems to export the relevant bookmarks locally and submit
them to the dedicated server by a special program.

We are of course aware of various specialised tools for collaborated proof-
reading, but our general philosophy is make OCR error report extremely easy
for a casual user, and to move the burden to the receiving side. One of possible
scenario is to convert the collected reports into annotations in a special copy
of the document to be used later with Jakub Wilk’s DjVu editor djvusmooth
(http://jwilk.net/software/djvusmooth) mentioned earlier.

7 Concluding remarks
Poliqarp for DjVu is a powerful tool for searching the hidden text layer of DjVu
documents, which can be created in particular by converting PDF files used for
printing or output of OCR programs. Although the Computer Science principle
garbage in, garbage out is generally valid, the sophisticated queries allowed in
Poliqarp may partially alleviate the problem of bad quality OCR. For digitally
born or thoroughly proof-read texts the program is even more useful.

12

http://jwilk.net/software/djvusmooth


8 Acknowledgment
The work described in the present paper is supported by the Polish Ministry of
Science and Higher Education’s grant no. N N519 384036.

References
Janusz S. Bień. Facilitating access to digitalized dictionaries in DjVu format.
Studia Kognitywne - Études Cognitives, 9:161–170, September 2009a. URL
http://bc.klf.uw.edu.pl/160/. (Referenced on p. 5).

Janusz S. Bień. Digitalizing dictionaries of Polish. In Krzysztof Bogacki, Joanna
Cholewa, and Agata Rozumko, editors, Methods of Lexical Analysis: Theoret-
ical assumption and practical applications, pages 37–45. Wydawnictwo Uni-
wersytetu w Białymstoku, Białystok, 2009b. URL http://bc.klf.uw.edu.
pl/71/. (Referenced on p. 6).

Thomas Breuel. The hOCR microformat for OCR workflow and results. In
Proceedings of the Ninth International Conference on Document Analysis and
Recognition, pages 1063–1067. IEEE Computer Society, 2007. URL http:
//madm.dfki.de/publication&pubid=4373. (Referenced on p. 6).

Yann Le Cun, Léon Bottou, Andrei Erofeev, Patrick Haffner, and Bill W.
Riemers. DjVu document browsing with on-demand loading and rendering
of image components. In Internet Imaging, San Jose, January 2001. URL
http://leon.bottou.org/papers/lecun-2001. (Referenced on p. 1 and 2).

Tadeusz Piotrowski. Digitization of Polish historic(al) dictionaries. Review
of the National Center for Digitization, 6:95–102, 2005. URL http://
elib.mi.sanu.ac.rs/files/journals/ncd/6/d009download.pdf. (Refer-
enced on p. 6).

Stefan Pletschacher and Apostolos Antonacopoulos. The PAGE (Page Analysis
and Ground-Truth Elements) format framework. In International Conference
on Pattern Recognition, pages 257–260, Los Alamitos, CA, USA, 2010. IEEE
Computer Society. URL http://www.cse.salford.ac.uk/prima/papers/
ICPR2010_Pletschacher_PAGE.pdf. (Referenced on p. 6).

Adam Przepiórkowski. The IPI PAN Corpus: Preliminary version. Institute of
Computer Science, Polish Academy of Sciences, Warsaw, 2004. URL http://
nlp.ipipan.waw.pl/~adamp/Papers/2004-corpus/. (Referenced on p. 10).

Adam Przepiórkowski. TEI P5 as an XML standard for treebank encoding.
In Marco Passarotti, Adam Przepiórkowski, Savina Raynaud, and Frank
Van Eynde, editors, Proceedings of the Eighth International Workshop on
Treebanks and Linguistic Theories (TLT8), pages 149–160, Milan, Italy, 2009.
URL http://nlp.ipipan.waw.pl/~adamp/Papers/2009-tlt-tei/. (Refer-
enced on p. 5).

Adam Przepiórkowski, Aleksander Buczyński, and Jakub Wilk. The National
Corpus of Polish Cheatsheet, 2006. URL http://nkjp.pl/poliqarp/help/
en.html[Accessed2011-02-08]. (Referenced on p. 11).

13

http://bc.klf.uw.edu.pl/160/
http://bc.klf.uw.edu.pl/71/
http://bc.klf.uw.edu.pl/71/
http://madm.dfki.de/publication&pubid=4373
http://madm.dfki.de/publication&pubid=4373
http://leon.bottou.org/papers/lecun-2001
http://elib.mi.sanu.ac.rs/files/journals/ncd/6/d009download.pdf
http://elib.mi.sanu.ac.rs/files/journals/ncd/6/d009download.pdf
http://www.cse.salford.ac.uk/prima/papers/ICPR2010_Pletschacher_PAGE.pdf
http://www.cse.salford.ac.uk/prima/papers/ICPR2010_Pletschacher_PAGE.pdf
http://nlp.ipipan.waw.pl/~adamp/Papers/2004-corpus/
http://nlp.ipipan.waw.pl/~adamp/Papers/2004-corpus/
http://nlp.ipipan.waw.pl/~adamp/Papers/2009-tlt-tei/
http://nkjp.pl/poliqarp/help/en.html [Accessed 2011-02-08]
http://nkjp.pl/poliqarp/help/en.html [Accessed 2011-02-08]

	DjVu technology and DjVuLibre
	DjVu and Portable Document Format
	Searching the hidden text layer
	Poliqarp for DjVu
	Lemmatization, morphosyntactic tagging and polyinterpretations
	Towards collaborative proofreading and lemmatization
	Concluding remarks
	Acknowledgment

