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Abstract. Intensionality is bound to global mappings from sets of pos-
sible worlds to truth states relative to a set of predicates, witness schemes
like Montague Grammar. We discuss this aspect in the frame of rough
set theory where concepts arise as collections of objects constrained by
bounds on values of chosen sets of attributes. We apply the idea of a
rough inclusion as similarity measure for objects, and rough inclusions
measure truth state values of predicates relative to possible worlds –
granules of objects.
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1 Introductory Notions

We give in a nutshell basic notions relevant to our discussion, cf. [13], [4]. An
information system is a pair (U,A), of a set of entities/objects U with a set A of
attributes. Each attribute is a mapping on U with values in a set Va; a decision
system is a triple (U,A, d), where the attribute d, the decision, represents the
external knowledge about U by an oracle/expert.

Concepts with respect to a given data are defined formally as subsets of the
universe U . Concepts can be written down in the language of descriptors.

For an attribute a and its value v, the descriptor defined by the pair a, v is
the atomic formula (a = v). Descriptors can be made into formulas by means
of sentential connectives: ∨,∧,¬,⇒: formulas of descriptor logics are elements
of the smallest set which contains all atomic descriptors and is closed under the
mentioned above sentential connectives. Introducing for each object u ∈ U its
information set Inf(u) = {(a = a(u)) : a ∈ A}, we can define the basic indis-
cernibility relation IND(A) = {(u, v) : Inf(u) = Inf(v)}. Replacing A with a
subset B of attribute set, we define the B–indiscernibility relation IND(B).

A descriptor (a = v) is interpreted semantically in the universe U ; the mean-
ing [a = v] of this descriptor is the concept {u ∈ U ; a(u) = v}. Meanings of
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atomic descriptors are extended to meanings of formulas of descriptor logic by
recursive conditions,

[p ∨ q]=[p] ∪ [q]; [p ∧ q]=[p] ∩ [q]; [¬p]=U ∖ [p] etc. etc.

Any relation IND(B) partitions the universe U into blocks – equivalence
classes [u]B of IND(B), regarded as elementary B–exact concepts. Unions of
families of elementary B–exact concepts constitute B–exact concepts.

In terms of exact concepts, one can express dependencies among attributes
[13]: in the simplest case, a set D of attributes depends functionally on a set
C of attributes if and only if IND(C) ⊆ IND(D); the meaning is that any
class [

⋀
a∈C(a = va)] is contained in a unique class [

⋀
a∈D(a = wa)] so there

is a mapping U/IND(C) → U/IND(D). We write down this dependency as
C 7→ D.

Dependency need not be functional; in such case, the relation IND(C) ⊆
IND(D) can be replaced [13] with a weaker notion of a (C,D)–positive set
which is defined as the union PosC(D) =

∪{[u]C : [u]C ⊆ [u]D}; clearly then,

IND(C)∣PosC(D) ⊆ IND(D). In [13] a factor (B,C) = ∣PosB(C)∣
∣U ∣ was pro-

posed as the measure of degree of dependency of D on C, where ∣X∣ is the
number of elements in X. This form of dependency is denoted symbolically as
C ↪→ D.

Dependencies have a logical form in logic of descriptors as sets of implications
of the form

⋀

a∈C
(a = va)⇒

⋀

a∈D
(a = wa); (1)

in a particular case of a decision system (U,A, d), dependencies of the form
C ↪→ {d} are called decision algorithms and individual relations of the form⋀
a∈C(a = va) ⇒ (d = wd) are said to be decision rules. There have been

proposed various measures of the truth degree of a decision rule, under the
name of a rule quality, see, e.g., [13].

In descriptor logic setting, a decision rule r : �C ⇒ �d is said to be true
if and only if the meaning [r] = U which is equivalent to the condition that
[�C ] ⊆ [�d].

The above introduced constituents: entities, indiscernibility relations, con-
cepts, dependencies, form building blocks from which knowledge is discovered as
a set of statements about those constituents.

It is our purpose to construct a formal logical system in which one would be
able to define values of truth states of formulas of knowledge, decision rules in
particular, in a formal manner, preserving the notion of truth as recalled above,
but in a localized version, with respect to a particular exact concept of entities.

Rough set theory discerns between exact concepts which are unions of indis-
cernibility classes and rough concepts which are not any union of indiscernibility
classes. Passing from rough to exact concepts is achieved by means of approxi-
mations: the lower approximation to a concept W ⊆ U is defined as W = {u ∈
U : [u]A ⊆W}, and, the upper approximation W = {u ∈ U : [u]A ∩W ∕= ∅}.
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Any attempt at assigning various degrees of truth to logical statements places
one in the realm of many–valued logic. These logics describe formally logical
functors as mappings on the set of truth values/states into itself hence they
operate a fortiori with values of statements typically as fractions or reals in the
unit interval [0, 1], see in this respect, e.g., [6], [7], [8], [9], and, as a survey, see
[4].

In many of those logics, the functor of implication is interpreted as the resid-
ual implication induced by a continuous t–norm. We recall, cf., e.g., [4] or [?]
that a t–norm is a mapping t : [0, 1]2 → [0, 1] which satisfies the conditions,

(TN1)t(x, y) = t(y, x) (symmetry);

(TN2) t(x, t(y, z)) = t(t(x, y), z) (associativity);

(TN3) t(x, 1) = x; t(x, 0) = 0 (boundary conditions);

(TN4) x > x′ implies t(x, y) ≥ t(x′), y) (monotonicity coordinate–wise);

and additionally,

(TN5) t can be continuous.

A continuous t–norm is Archimedean in case t(x, x) = x for x = 0, 1 only;
for such t–norms, it was shown, see [5], that a formula holds,

t(x, y) = g(f(x) + f(y)), (2)

with a continuous decreasing function f : [0, 1] → [0, 1] and g – the pseudo–
inverse to f .

Examples of Archimedean t–norms are,

The L̷ukasiewicz t–norm L(x, y) = max{0, x+ y − 1};

The product (Menger) t–norm P (x, y) = x ⋅ y.

The two are up to an automorphism on [0,1] the only Archimedean t–norms
[12].

An example of a t–norm which is not any Archimedean is

Minimum t–norm Min(x, y) = min{x, y}. It is known, see [1], that for Min
the representation (2) with f continuous does not exist.

1.1 Residual implications

Residual implication x⇒t y induced by a continuous t–norm t is defined as,
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x⇒t y = max{z : t(x, z) ≤ y}. (3)

As t(x, 1) = x for each t–norm, it follows that x ⇒t y = 1 when x ≤ y for
each t–norm t.

In case x > y, one obtains various semantic interpretations of implication
depending on the choice of t, see, e.g., [4] for a review. Exemplary cases are,

The L̷ukasiewicz implication x⇒L y = min{1, 1− x+ y}, see [7];

The Goguen implication x⇒P y = y
x ;

The Goedel implication x⇒Min y = y.

1.2 Logics of residual implications vs. logical containment in
decision rules

In logics based on implication given by residua of t–norms, negation is defined
usually as ¬x = x⇒t 0. Thus, the L̷ukasiewicz negation is ¬Lx = 1−x whereas
Goguen as well as Goedel negation is ¬Gx = 1 for x=0 and is 0 for x > 0.
Other connectives are defined with usage of the t–norm itself as semantics for
the strong conjunction and ordinary conjunction and disjunction are interpreted
semantically as, respectively, min, max. Resulting logics have been a subject of
an intensive research, cf., a monograph [4].

In this approach a rule �⇒ � is evaluated by evaluating the truth state [�]
as well as the truth state [�] and then computing the values of [�] ⇒t [�] for a
chosen t–norm t. Similarly other connectives are evaluated.

In the rough set context, this approach would pose the problem of evaluating
the truth state of a conjunct � of descriptors; to this end, one can invoke the idea

of L̷ukasiewicz [6] and assign to � a value [�]L = [�]
∣U ∣ , where [�] is the meaning

already defined, i.e., the set {u ∈ U : u ∣= �}. Clearly, this approach does not
take into account the logical containment or its lack between � and �, and this
fact makes the many–valued approach of a small use when data mining tasks
are involved.

For this reason, we propose an approach to logic of decision rules which is
based on the idea of measuring the state of truth of a formula against a concept
constructed as a granule of knowledge; concepts can be regarded as ”worlds”
and our logic becomes intensional, cf., e.g., [2], [11]: logical evaluations at a given
world are extensions of the intension which is the mapping on worlds valued in
the set of logical values of truth.

To implement this program, we need to develop the following tools:
1 a tool to build worlds, i.e, a granulation methodology based on a formal

mechanism of granule formation and analysis;
2 a methodology for evaluating states of truth of formulas against worlds.
In both cases 1, 2, our approach exploits tools provided by rough mereology,

see, e.g., [14] Similarity measures – rough inclusions – provide means for all
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necessary definitions of relevant notions. Here we dispense with any account of
granulation for space’s sake.

2 Rough inclusions: The basic facts

We now recall some exemplary means for inducing rough inclusions along with
some new results; for a general discussion, cf., e.g. [14].

Rough inclusions on [0,1]

Proposition 1. [14]. For each continuous t–norm t, the residual implication
⇒t defines a rough inclusion by �t(x, y, r)⇔ x⇒t y ≥ r.

There exist rough inclusions not definable in this way, e.g., the drastic rough
inclusion,

�0(x, y, r) if and only if either x = y and r = 1 or r = 0. (4)

Clearly, �0 is associated with the ingredient relation = and, a fortiori, the
part relation is empty, whereas any rough inclusion � induced by a residual
implication in the sense of Prop. 1, is associated to the ingredient relation ≤
with the part relation <.

In case of Archimedean t–norms, it is well–known that a representation for-
mula holds for them, see (2), which implies the residual implication in the form,

x⇒ y = g(f(x)− f(y)). (5)

This formula will be useful in case of information systems which is going to be
discussed in the next section.

Rough inclusions on sets For our purpose it is essential to extend rough
inclusions to sets; we use the t–norm tL of L̷ukasiewicz, along with the represen-
tation tL(r, s) = g(f(r) + f(s)) already mentioned in (2), which in this case is
g(y) = 1− y, f(x) = 1− x. We denote these kind of inclusions with the generic
symbol �.

For sets X,Y ⊆ U , we let,

�L(X,Y, r) if and only if g(
∣X ∖ Y ∣
∣X∣ ) ≥ r; (6)

as g(y) = 1− y, we have that �L(X,Y, r) holds if and only if ∣X∩Y ∣∣X∣ ≥ r. Let us

observe that �L is regular, i.e., �L(X,Y, 1) if and only if X ⊆ Y and �L(X,Y, r)
only with r = 0 if and only if X ∩ Y = ∅.

Thus, the ingredient relation associated with a regular rough inclusion is
the improper containment ⊆ whereas the underlying part relation is the strict
containment ⊂.
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Other rough inclusion on sets which we exploit is the 3–valued rough inclusion
�3 defined via the formula, see [14],

�3(X,Y, r)if and only if

⎧
⎨
⎩
X ⊆ Y and r = 1
X ∩ Y = ∅ and r = 0
r = 1

2 otherwise,
(7)

The rough inclusion �3 is also regular.
Finally, we consider the drastic rough inclusion on sets, �1,

�1(X,Y, r) if and only if

{
X = Y and r = 1
X ∕= Y and r = 0.

(8)

Clearly, �1 is not regular.

3 Rough Mereological Logics

Given an information system (U,A), along with a rough inclusion � on the
subsets of the universe U , for a collection of predicates (unary) Pr, interpreted
in the universe U (meaning that for each predicate � ∈ Pr the meaning [�] is a
subset of U), we define the intensional logic grm� on Pr by assigning to each
predicate � in Pr its intension I�(�) defined by the family of extensions I∨� (g)
at particular granules g, as,

I∨� (g)(�) ≥ r if and only if �(g, [�], r). (9)

With respect to the rough inclusion �L, the formula (9) becomes,

I∨�L(g)(�) ≥ r iff
∣g ∩ [�]∣
∣g∣ ≥ r. (10)

The counterpart for �3 is specified by definition (7).

We say that a formula � interpreted in the universe U of an information system
(U,A) is true at a granule g with respect to a rough inclusion � if and only if
I∨� (g)(�) = 1.

Proposition 2. For every regular rough inclusion �, a formula � interpreted in
the universe U , with meaning [�], is true at a granule g with respect to � if and
only if g ⊆ [�]. In particular, for a decision rule r : p⇒ q in the descriptor logic,
the rule r is true at a granule g with respect to a regular rough inclusion � if and
only if g ∩ [p] ⊆ [q].

Indeed, truth of � at g means that �(g, [�], 1) which in turn, by regularity of
� is equivalent to the inclusion g ⊆ [�].

We will say that a formula � is a theorem of our intensional logic if and only
if � is true at every world g.

The preceding proposition implies that
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Proposition 3. For every regular rough inclusion �, a formula � is a theorem
if and only if Cls(all granules g considered) ⊆ [�]; in the case when granules
considered cover the universe U this condition simplifies to [�] = U . This means
for a decision rule p⇒ q that it is a theorem if and only if [p] ⊆ [q].

3.1 Relations to many–valued logics

Here we examine some axiomatic schemes for many–valued logics with respect
to their meanings under the stated in introductory section proviso that [p ⇒
q] = (U ∖ [p]) ∪ [q], [¬p] = U ∖ [p].

We examine first axiom schemes for 3–valued L̷ukasiewicz logic investigated
in [15] (Wajsberg schemes).
(W1) q ⇒ (p⇒ q);
(W2) (p⇒ q)⇒ ((q ⇒ r)⇒ (p⇒ r));
(W3) ((p⇒ ¬p)⇒ p)⇒ p;
(W4) (¬q ⇒ ¬p)⇒ (p⇒ q).

We have as meanings of those formulas,

[W1] = (U ∖ [q]) ∪ (U ∖ [p]) ∪ [q] = U ;
[W2] = ([p] ∖ [q]) ∪ ([q] ∖ [r]) ∪ (U ∖ [p]) ∪ [r] = U ;
[W3] = (U ∖ [p]) ∪ [p] = U ;
[W4] = ([p] ∖ [q]) ∪ [q] = U .

Thus, all instances of Wajsberg axiom schemes for 3–valued L̷ukasiewicz logic
are theorems of our intensional logic in case of regular rough inclusions on sets.

The deduction rule in 3–valued L̷ukasiewicz logic is Modus Ponens: p,p⇒q
q .

In our setting this is a valid deduction rule: if p, p ⇒ q are theorems than q
is a theorem. Indeed, if [p] = U = [p⇒ q] then [q] = U .

We have obtained

Proposition 4. Each theorem of 3–valued L̷ukasiewicz logic is a theorem of
rough mereological granular logic in case of a regular rough inclusion on sets.

In an analogous manner, we examine axiom schemes for infinite valued L̷uka-
siewicz logic, proposed by L̷ukasiewicz [9], with some refinements showing redun-
dancy of a scheme due to Meredith [10] and Chang [3], cf., in this respect [?] for
an account of the reasoning.

(L1) q ⇒ (p⇒ q);
(L2) (p⇒ q)⇒ ((q ⇒ r)⇒ (p⇒ r));
(L3) ((q ⇒ p)⇒ p)⇒ ((p⇒ q)⇒ q);
(L4) (¬q ⇒ ¬p)⇒ (p⇒ q).

As (L1) is (W1), (L2) is (W2) and (L4) is (W4), it remains to examine (L3). In
this case, we have [(q ⇒ p) ⇒ p]=(U ∖ [q ⇒ p]) ∪ [p])=(U ∖ ((U ∖ [q]) ∪ [p])) ∪

492



[p]=([q] ∖ [p]) ∪ [p]= [q] ∪ [p]. Similarly, [(p ⇒ q) ⇒ q] is [p] ∪ [q] by symmetry,
and finally the meaning [L3] is (U ∖ ([q] ∪ [p])) ∪ [p] ∪ [q] = U .

It follows that,
all instances of axiom schemes for infinite–valued L̷ukasiewicz logic are the-

orems of rough mereological granular logic.
As Modus Ponens remains a valid deduction rule in infinite–valued case, we

obtain, analogous to Prop. 4,

Proposition 5. Each theorem of infinite–valued L̷ukasiewicz logic is a theorem
of rough mereological granular logic in case of a regular rough inclusion on sets.

It follows from Prop.5 that all theorems of Basic logic, see [4], i.e. logic which
is intersection of all many–valued logics with implications evaluated semantically
by residual implications of continuous t–norms are theorems of rough mereolog-
ical granular logic.

The assumption of regularity of a rough inclusion � is essential: considering
the drastic rough inclusion �1, we find that an implication p⇒ q is true only at
the world (U ∖ [p])∪ [q], so it is not any theorem – this concerns all schemes (W)
and (L) above as they are true only at the global world U .

3.2 Graded notion of truth

The graded relaxation of truth is given obviously by the condition, a formula �
is true to a degree at least r at g, � if and only if I∨� (g)(�) ≥ r, i.e., �(g, [�], r)
holds. In particular, � is false at g, � if and only if I∨� (g)(�) ≥ r implies r = 0,
i.e. �(g, [�], r) implies r = 0.

The following properties hold.

1. For each regular �, a formula � is true at g, � if and only if ¬� is false at
g, �.

2. For � = �L, �3, I∨� (g)(¬�) ≥ r if and only if I∨� (g)(�) ≥ s implies s ≤ 1− r.
3. For � = �L, �3, the implication �⇒ � is true at g if and only if g ∩ [�] ⊆ [�]

and �⇒ � is false at g if and only if g ⊆ [�] ∖ [�].
4. For � = �L, if I∨� (g)(�⇒ �) ≥ r then ⇒L (t, s) ≥ r where I∨� (g)(�) ≥ t and
I∨� (g)(�) ≥ s.

The functor ⇒ in 4. is the L̷ukasiewicz implication of many–valued logic: ⇒tL

(t, s) = min{1, 1− t+ s}.
Further analysis should be split into the case of �L and the case of �3 as the

two differ essentially with respect to the form of reasoning they imply.

4 Reasoning with �L

The last property 4. shows in principle that the value of I∨� (g)(�⇒ �) is bounded
from above by the value of I∨� (g)(�)⇒tL I

∨
� (g)(�)).
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This suggests that the idea of collapse attributed to S. Lesniewski can be ap-
plied to formulas of rough mereological logic in the following form: for a formula
q(x) we denote by the symbol q∗ the formula q regarded as a sentential formula
(i.e., with variable symbols removed) subject to relations:

(¬q(x))∗ is ¬(q(x)∗) and (p(x) ⇒ q(x))∗ is p(x)∗ ⇒ q(x)∗. As the value

[q∗]g of the formula q(x)∗ at a granule g, we take the value of ∣g∩[q(x)]∣∣g∣ , i.e,

argmaxr{�L(g, [q∗]g, r)}. Thus, item 4 above can be rewritten in the form.

I∨� (g)(�⇒ �) ≤ [�∗]g ⇒tL [�∗]g. (11)

The following statement is then obvious:
if � ⇒ � is true at g then the collapsed formula has the value 1 of truth at

the granule g in the L̷ukasiewicz logic.
This gives a necessity condition for verification of implications of rough mere-

ological logics:
if ⇒L ([�∗]g, [�∗]g) < 1 then the implication �⇒ � is not true at g.
This concerns in particular decision rules:
for a decision rule p(v)⇒ q(v), the decision rule is true on a granule g if and

only if [p∗]g ≤ [q∗]g.

5 Reasoning with �3

In case of �3, one can check on the basis of definitions that I∨� (g)(¬�) ≥ r if and
only if I∨� (g)(�) ≤ 1 − r; thus the negation functor in rough mereological logic
based on �3 is the same as the negation functor in the 3–valued L̷ukasiewicz
logic. For implication, the relations between granular rough mereological logic
and 3–valued logic of L̷ukasiewicz follow from truth tables for respective functors
of negation and implication.

Table 1 shows truth values for implication in 3–valued logic of L̷ukasiewicz.
We recall that these values obey the implication x ⇒L y = min{1, 1 − x + y}.
Values of x correspond to rows and values of y correspond to columns in Table
1.

Table 1. Truth values for implication in L3

⇒ 0 1 1
2

0 1 1 1
1 0 1 1

2
1
2

1
2

1 1

Table 2 shows values of implication for rough mereological logic based on �3.
Values are shown for the extension I∨� (g)(p⇒ q) of the implication p⇒ q. Rows
correspond to p, columns correspond to q.
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Table 2. Truth values for implication p⇒ q in logic based on �3

⇒ I∨�3(g)(q) = 0 I∨�3(g)(q) = 1 I∨�3(g)(q) = 1
2

I∨�3(g)(p) = 0 1 1 1
I∨�3(g)(p) = 1 0 1 1

2

I∨�3(g)(p) = 1
2

1
2

1 1 when g ∩ [�] ⊆ [�]; 1
2

otherwise

We verify values shown in Table 2. First, we consider the case when
I∨nu3

(g)(p) = 0, i.e., the case when g ∩ [p] = ∅. As g ⊆ (U ∖ [p])∪ [q] for every
value of [q], we have only values of 1 in the first row of Table 2.

Assume now that I∨nu3
(g)(p) = 1, i.e., g ⊆ [p]. As g ∩ (U ∖ [p]) = ∅, the value

of I∨� (g)(p⇒ q) depends only on a relation between g and [q]. In case g∩ [q] = ∅,
the value in Table 2 is 0, in case g ⊆ [q] the value in Table 2 is 1, and in case
I∨�3(g)(q) = 1

2 , the value in Table 2 is 1
2 .

Finally, we consider the case when I∨�3(g)(p) = 1
2 , i.e., g ∩ [p] ∕= ∅ ∕= g ∖ [p].

In case g ∩ [q] = ∅, we have g ∩ ((U ∖ [p]) ∪ [q]) ∕= ∅ and it is not true that
g ⊆ ((U ∖ [p]) ∪ [q]) so the value in table is 1

2 . In case g ⊆ [q], the value in Table
is clearly 1. The case when I∨�3(g)(q) = 1

2 remains. Clearly, when g ∩ [p] ⊆ [q],
we have g ⊆ (U ∖ [p]) ∪ [q] so the value in Table is 1; otherwise, the value is 1

2 .
Thus, negation in both logic is semantically treated in the same way, whereas

treatment of implication differs only in case of implication p⇒ q from the value
1
2 to 1

2 , when g ∩ [p] is not any subset of [q].
It follows from these facts that given a formula � and its collapse �∗, we

have,
I∨�3(g)(¬�) = [(¬�)∗]L3 , I

∨
�3(g)(�⇒ �) ≤ [(�⇒ �)∗]L3 . (12)

A more exact description of implication in both logics is as follows.

Proposition 6. 1. If I∨nu3
(g)(�⇒ �) = 1 then [(�⇒ �)∗]L3

= 1;

2. If I∨nu3
(g)(�⇒ �) = 0 then [(�⇒ �)∗]L3

= 0;

3. If I∨nu3
(g)(� ⇒ �) = 1

2 then [(� ⇒ �)∗]L3 ≥ 1
2 and this last value may be

1.

We offer a simple check–up on Proposition 6. In case 1, we have g ⊆ ((U ∖
[�]) ∪ [�]). For the value of [(� ⇒ �)∗], consider some subcases. Subcase 1.1:
g ⊆ U ∖ [�]. Then [�∗] = 0 and [(� ⇒ �)∗] =[�∗] ⇒ [�∗] is always 1 regardless
of a value of [�∗]. Subcase 1.2: g ∩ [�] ∕= ∅ ∕= g ∖ [�] so [�∗] = 1

2 . Then g ∩ [�] = ∅
is impossible, i.e., [�∗]is at least 1

2 and [(� ⇒ �)∗]=1. Subcase 1.3: g ⊆ [�] so
[�∗] = 1; then g ⊆ [�] must hold, i.e., [�∗] = 1 which means that [(�⇒ �)∗]=1.

For case 2, we have g ∩ ((U ∖ [�]) ∪ [�]) = ∅ hence g ∩ [�] = ∅ and g ⊆ [�],
i.e., [�∗] = 1, [�∗] = 0 so [�∗]⇒ [�∗]=0.

In case 3, we have g∩((U ∖ [�])∪ [�]) ∕= ∅ and g∩ [�]∖ [�] ∕= ∅. Can [�∗]⇒ [�∗]
be necessarily 0? This would mean that [�∗] = 1 and [�∗] = 0, i.e., g ⊆ [�] and
g ∩ [�] = ∅ but then g ∩ ((U ∖ [�]) ∪ [�]) = ∅, a contradiction. Thus the value
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[�∗]⇒ [�∗] is at least 1
2 . In the subcase: g ⊆ [�], g ∩ [�] ∕= ∅ ∕= g ∖ [�], the value

of [�∗]⇒ [�∗] is 0⇒L
1
2 = 1, and the subcase is consistent with case 3.

5.1 Dependencies and decision rules

It is an important feature of rough set theory that it allows for an elegant
formulation of the problem of dependency between two sets of attributes, cf.,
[13], in terms of indiscernibility relations.

We recall, see sect.1 that for two sets C,D ⊆ A of attributes, one says that
D depends functionally on C when IND(C) ⊆ IND(D), symbolically denoted
C 7→ D. Functional dependence can be represented locally by means of functional
dependency rules of the form

�C({va : a ∈ C})⇒ �D({wa : a ∈ D}), (13)

where �C({va : a ∈ C}) is the formula
⋀
a∈C(a = va), and [�C ] ⊆ [�D].

Clearly, if � : �C ⇒ �D is a functional dependency rule as in (13), then �
is a theorem of logic induced by �3.

Indeed, for each granule g, we have g ∩ [�C ] ⊆ [�D]. Let us observe that
the converse statement is also true: if a formula � : �C ⇒ �D is a theorem
of logic induced by �3 then this formula is a functional dependency rule in the
sense of (13). Indeed, assume that � is not any functional dependency rule, i.e.,
[�C ] ∖ [�D] ∕= ∅. Taking [�C ] as the witness granule g, we have that g is not any
subset of [�], i.e, I∨�3(g)(�) ≤ 1

2 , so � is not true at g, a fortiori it is no theorem.

Let us observe that these characterizations are valid for each regular rough
inclusion on sets �.

A more general and also important notion is that of a local proper depen-
dency: a formula �C ⇒ �D where �C({va : a ∈ C}) is the formula

⋀
a∈C(a = va),

similarly for �D, is a local proper dependency when [�C ] ∩ [�D] ∕= ∅.
We will say that a formula � is acceptable with respect to a collection M of

worlds when I∨�3(g)(�) ≥ 1
2 for each world g ∈M , i.e, when � is false at no world

g ∈M . Then,

if a formula � : �C ⇒ �D is a local proper dependency rule, then it is
acceptable with respect to all C-exact worlds.

Indeed, for a C–exact granule g, the case that I∨�3(g)(�) = 0 means that
g ⊆ [�C ] and g ∩ [�D] = ∅; as g is C–exact and [�C ] is a C–indiscernibility class,
either [�C ] ⊆ g or [�C ] ∩ g = ∅. When [�C ] ⊆ g then [�C ] = g which makes
g ∩ [�D] = ∅ impossible. When [�C ] ∩ g = ∅, then g ∩ [�D] = ∅ is impossible. In
either case, I∨�3(g)(�) = 0 cannot be satisfied with any C–exact granule g.

Again, the converse is true: when � is not local proper, i.e., [�C ] ∩ [�D] = ∅,
then g = [�C ] does satisfy I∨�3(g)(�) = 0.

A corollary of the same forms follows for decision rules in a given decision
system (U,A, d), i.e., dependencies of the form �C ⇒ (d = w).
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6 Conclusions

Intensional logics grm� capture the basic aspects of reasoning in rough set theory
as the construction of such logic is oriented toward logical dependency between
premises and conclusions of an implicative rule.
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