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ABSTRACT

There have been considerable developments in the field of hard cartxm thin film 
deposition in the past decade The films show properties of extreme hardness, chemical 
inertness and optical transparency and their use has been suggested for wear protective
coatings The results presented here concern the use of Plasma Enhanced Chemical Vapour 
Deposition (PECVD) to produce these films Details of the effects of the important 
deposition parameters on their mechanical properties are presented

The deposition system design and implementation are desenbed The resultant film
charactenstics are presented graphically as a function of the deposition vanables Films
were produced which exhibited extreme hardness of up to 3000 Vickers Their deposition
rate was found to decrease with substrate temperature and increase with induced bias and
pressure The intrinsic stress and wear resistance were found to increase with the induced 
bias and substrate temperature but decreased as the pressure was increased The film 
adhesion was found to improve at higher temperature and bias and also at higher pressure
but films in this region were found to be of reduced hardness

The intrinsic stress and poor adhesion of carbon films were identified as the main
difficulties in the application of these films as wear protective coatings Possible ways of 
improving these film charactenstics were investigated

The main deposition vanables of substrate temperature, induced bias and pressure were
identified, along with the possible optimisation of carbon thin film charactenstics by control 
of the deposition environment
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CHAPTER 1

INTRODUCTION

Thin films can be used to protect or enhance the properties of the underlying

material called the substrate They can be used for a vanety of reasons either

decorative, mechanical, electrical, optical or chemical [1-3]

The particular area of interest is in the plasma deposition of hard carbon films as 

wear protective coatings Due to the increasing costs of raw matenals, ways of 

prolonging the life of material or attnbuung to cheap matenals the charactenstics of a 

expensive bulk matenal is becoming increasingly important Researchers have produced 

carbon films of hardness exceeding 3000 HV Abrasive wear rate is inversely 

proportional to the hardness of the matenal, so these films would make excellent wear 

protective coatings The unusual combination of density, hardness, chemical inertness,

optical transparency and electncal charactenstics make carbon films a very interesting 

area of study as wear protective coatings and other applications [4-7]

The aims of this project are to design and build a system capable of depositing 

these films Together with the deposition system there must also be a film evaluation 

procedure to relate the film qualities with system parameter settings

Carbon thin films have been produced by researchers on a limited basis using

vanous methods such as Plasma Enhanced Chemical Vapour Deposition (PECVD)

[8-14], Direct Current (DC) and Radio Frequency (RF) plasmas [15-17], Laser induced 

plasma [18], Electron beam assisted [19-20], Ion beam methods [21-28] and Microwave

plasma [29] It is the intention to produce "state of the art" films and identify the
enfluence of the most important deposition parameters on the resultant film properties

1.2 Plasma-Enhanced Deposition Processes

A plasma is defined as an ionised gas It is often descnbed as the fourth state 

of matter Plasma Enhanced Chemical Vapour Deposition [30] facilitates the 

deposition of many types of films at much lower temperatures than would be possible 
with chemical vapour deposition alone

Plasma-enhanced deposition processing is done using electnc discharge plasmas in 
which the energy to sustain the ionised state is supplied by an externally applied 

electnc field Most of the applications involve the use of low pressure (glow

11 Introduction
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discharge) plasmas The energetic species m these plasmas are the free electrons

They gam energy from the electnc field faster than the ions do and are thermally

isolated from the atoms and molecules, as far as elastic collisions are concerned, by

the mass difference Consequently, the electrons accumulate sufficient kinetic energy 

to undergo inelastic collisions and to sustain the ionisation, while the heavy particle

(molecule) temperature remains low

In PECVD reactant gases are passed through an active glow discharge plasma 

A typical deposition arrangement [31] is shown m figure 1 1 which is a parallel plate

type This is most frequently used because of its ease of construction and good film

properties ì e coverage, uniformity, etc The voltage division between the plasma

and the r f  dnven electrodes depends to first order on their relative sizes, the voltage 

is largest for the smaller electrode Plasma bombardment can have an important

influence on the properties of the growing coatings

rR F  p o w e r e lec tro d e
_

Figure 1 1 Capacitive Coupling Type

The deposition process for carbon films can be divided into two categories those

that use hydrocarbon gases as a source of carbon and those that use solid carbon

itself The latter involves a sputtering technique utilizing high energy ion beams, 

lasers, pulsed discharges etc The former technique is by far more common and is 

the one that concerns us

Dense films have been grown from hydrocarbon gases using a vanety of r f  and

d c discharge reactors The hydrocarbon source gases that have been used are

methane, ethane, butane, propane, acetylene, ethylene, propylene, cycloyhexane, octane, 
decane, benzene, xylene, naphtalene, and probably others Very little analysis has been 

made of the plasma products Most researchers take the black box approach to the
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reaction, concentrating on the variables and relating the resultant films to their 

selection of parameters The substrate is generally placed on the small electrically

powered electrode where it acquires a negative d c self-bias, and so preferentially

attracts positive ions and molecules [32]

1 3 Thin Films

The first evaporated thin films are often attributed to Faraday [33] in 1857, when 

he exploded metal wires m an inert atmosphere Since then thin film technology has 

become one of the fastest growing areas of technology Thin film applications can be 

found in optical, electronics, chemical, and mechanical areas

Advantages of using a film on a substrate are either to protect the substrate from 

external forces or attnbute to the substrate properties of a more precious or rare

material The particular area of interest for this project is m materials science It is 

estimated that m the United States 100 billion dollars worth of damage is done to 

equipment annually by wear alone [34] Diamond-like films are extremely hard,

resistant to wear, waterproof and transparent Machine tools, razor blades and beanngs 

coated with a thin layer of harder matenal have lasted up to a hundred times longer 

than ones without [35] Diamond-coated glass in windows or optical instruments 

would not get scratched or degrade Diamond coatings have already been applied to 

magnetic storage media to prevent damage from the reading head [1] Thin films are 

typically of the order of tens of angstroms up to tens of microns with average 

thicknesses for wear protective coatings being typically 5 ^m

14  Categorisation of Films

The extremely varied methods of preparation have produced, as might be 
expected, films with a very broad spectrum of properties This variation reflects

differences m structure and elemental composition, which m turn depend upon the
details of the method of preparation

Some authors such as Angus [36] proposed that carbon films be classed according 
to their gram atom number densities, pn and their atomic composition The gram 

atom number densities, pn is just the total number of gram atoms per unit volume

Pn = P m /^ A j (11)

where pm is the mass density, X x the atom fraction and At the atomic mass of
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element 1 In figure 12 Pn is plotted as a function of the atom fraction of

hydrogen for a variety of carbonaceous solids The matenals on the upper part of 

figure 1 2  represent those films of number densities greater than 0 2  g-atom per cm3

and show the spread m densities from various researchers

The position of diamond (D) and adamantane (AD) should be noted in figure 1 2 

Adamantane is a fully hydrogen-saturated microcrystal of diamond containing ten

carbon atoms The dense carbon and hydrocarbon film fall in the region between 

these two extreme cases The graph illustrates just how unusual this is There are 

no other carbon or hydrocarbon structures with such high number densities

The position of conventional "plasma polymerised" hydrocarbon films (PP) is also 

of interest These appear to have a greater number density than conventional 

hydrocart)on polymers and may be considered to be part of the dense hydrocarbon 

groupmg The other solid carbon phases, which are based either on a graphitic, 

trigonal structure or completely unsaturated carbon chains, all fall at number densities 

well below 02 g atom per cm3 The aromatic hydrocarbons (eg benzene, 

naphthalene, and anthracene) the linear saturated hydrocarbons (eg polyethylene and 

dodecane) and the unsaturated hydrocarbons (e g polyactylene, hexatnene, and 

butadiene) fall together in groupings at number densities significantly less than 0 2 

g-atoms per cm3

There has been no consistent nomenclature for describing these unusual 

hydrocarbon and carbon films A variety of names have been used eg  diamond-like 

films, hard carbonaceous films, hard carbon, a-C H, and l-caibon Often different 

names have been used to descnbe very similar matenals and conversely, the same 

name used to descnbe very different matenals

The figure 1 2 provides a rational basis for the naming of the films Films with 

pn> 0 2 are designated "dense carbonaceous films” Films containing significant 

amounts of hydrogen are called "dense hydrocarbon films" The abbreviation a-C H 

will also be used to descnbe these latter films when it is clear that they are 

amorphous Films that are essentially pure carbon will be called "dense carbon" if pp 

> 0 2  g-atom per cm3
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ATOM FRACTION HYDROGEN X H

Figure 1 2 Gram atom number density vs atom fraction of hydrogen [36]

In the above figure the numbers 1-6 represent the spread of "Diamond-like" solids 

found by researchers Other phases AD, adamantane, AM, amorphous carbon, DO, 

dodecane, AN, anthracane, BD, butadiene, BZ, benzene, D, diamond, GL, glassy 

polyethylene, PL, polyyne, PP, plasma polymers, Si, sihcoa The numbers correspond 

to the spread in results from various researchers

The term ’’diamond-like" has been widely used by many authors because of the 

obvious similanties m properties between the films and diamond If it is apphed, it 

clearly should be restricted to films of Pn > 0 2  g-atom per cm3

The term "l-carbon" or ”i-C" has been suggested by Weissmantel [37] The i

refers to the fact that the films are usually made by deposition of accelerated ions

This nomenclature appears somewhat less appropnate For example, m sputter
deposition the impacting species are largely neutral Also, many authors claim

processes which do not mvolve significant numbers of lomsed species

The term "hard carbonaceous” has also been suggested and used widely The

designation, while appropnate m many cases, could also apply to the hard, tngonally

bonded films produced by evaporatioa Also hardness is difficult to quantify, 
especially, for thin films
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15  Historical Background To Thin Rim Preparation

Man has always tned ways of improving the physical properties of the matenals 

[38] he works with or just to enhance their appearance In an age of ever increasing 

prices for raw matenals and the search to push technology to its limit, new matenals 

must be found so that the continued expansion of the human empire is possible

As mentioned, Faraday is claimed to have deposited the first film by evaporating 

a tungsten wire in an inert atmosphere Thin film technology has expanded rapidly in 

the past 100 years Chemical Vapor Deposition (CVD) has been around for many

years The process whereby gases are heated to very high temperatures, dissociating 

and forming a solid phase which condenses onto a targeted area or substrate 

Physical Vapour Deposition (PVD) is a process whereby a solid or liquid is 

vapounsed

Both of these thin film processes have limitations and advantages as will be 

discussed in section 3 1 PECVD is a hybnd process taking the advantages of both 

processes

Although the quest for diamond growth [39] from a low pressure vapour started 

at least as far back as 1911, in Germany, by W Von Bolton [40], it was not until 

1955 that this effort intensified During that year the General Electric [41] process 

for making industnal diamonds at high pressures and high temperatures was announced, 

and Bndgeman soon followed with an article m Scientific American [42], speculating 

that diamond powders and films should be equally achievable at low pressures dunng 
deposition

The first attempts by Eversole [43] m 1958 of Union Carbide were extremely 
slow and impractical and the evidence for diamond film growth was meager This 

process was studied in detail in the 1960’s and 1970’s by Angus [44] and co-workers 
at Case Western Reserve University Eversole’s findings were fully confirmed but the

low growth rates (0 001 |xm h"1) were not substantially increased The vanous 

techniques developed relied on a two-step process of first producing a layer with a 

small percentage (less than 1 %) of diamond bonds and second removing the much 

larger percentage of graphically bonded matenal by a selective hydrogen reduction 

process at a high temperature and pressure The process was repeated many times to 

produce a single film (on diamond powder) with enough matenal for analysis

Deqagum, Fedoseen, Spitsyn and co-woricers [45] at the Institute of Physical 
Chemistry in Moscow also heeded the work of Eversole in conjunction with some
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earlier predictions of growing diamonds by Lejnunskij and Frank-kameneckij During 

the course of their studies starting in the mid-1950’s, they investigated the kinetics of 

the pyrolysis of various hydrocarbon-hydrogen gas mixtures, including 

methane-hydrogen, and the mechanisms of nucléation and growth of diamond on 

diamond seed crystals

Dunng their research, the Russian workers began to realise the importance of 

atomic hydrogen as a selective etchant, for removing graphite but not diamond, and its 

utility to dissolve continuously any graphite that forms dunng deposition It became 

clear that to accelerate diamond growth, it was necessary to introduce even higher 

concentrations of atomic hydrogen than the equilibrium concentration related to the 

thermal dissociation of hydrocarbon-hydrogen gases This important breakthrough came 

about 1976 by Deijaguin and Fedoseea They published a book entitled "Growth of 

Diamond and Graphite from the Gas Phase" in which they outlined three different 

methods for producing a superequilibnum of atomic hydrogen catalytic, electnc 

discharge, and heated tungsten filament (HF)

They used a chemical vapour transport process in a closed tube to which an 

unspecified electnc discharge was used to generate the necessary atomic hydrogen 

They produced scanning electron micrographs of large crystals (up to 30 |im) and 

highly faceted thick continuous films were seen alongside the confirming electron 

diffraction data This was followed immediately by an a c plasma discharge technique 

in a flowing gas system used by Mama et al [46], and the HF chemical vapour 

deposition (HF CVD) approach was taken by Matsumoto [15,47] and co-workers m 

Japan He showed in detail that the concentration of methane in the

methane-hydrogen gas mixture must be about 1% to get optimum diamond growth 

Most subsequent work confirms this cunous result use copious amounts of hydrogen 

to produce diamond with very little, if any, hydrogen. This group of researchers have 
published many papers in areas of HF CVD microwave plasma CVD and r f  PECVD

The term "diamond-like-carbon" was coined by Aisenberg and Chabot [48] in 

1971, it covers a wide range of matenals including both amorphous and

microcrystalline atomic structures and containing anywhere from 0% to more than 30% 

hydrogen True diamond can only be considered when the hydrogen content is less

than 1% This has recently been achieved by Spencer et al [21], which showed

TEM micrographs of fine grained diamond structure

There is a huge amount of interest m i-carbon m the Soviet Umon. One claim 

is to have produced diamond film up to a centimeter thick [2] This would seem 

impossible due to internal stress limitations
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1 6  Review of Literature

In the past twenty years the interest in so-called diamond like carbon or i-C 

films has grown enormously, at least 5,000 articles published m the past ten years 

alone [3-5] These films are produced by ionizing a hydrocarbon compound, which is 

possibly dissociated and accelerated in an electnc field towards the substrate where the 

film is grown The deposition takes place at a moderately low pressure Carbon 

films grown in this way have some remarkable properties they are insulating 

(10 MO1 4 Q cm) and have a negative temperature coefficient of conductivity (10*2 

° C '1) [49], a high dielectric strength (breakdown voltage of about 106 Van'*), a 

dielectric constant of 8 - 12 [50], extreme hardness (a microhardness of 3000 HV or 

more, chemical inertness towards acids and organic solvents [51], an optical bandgap 

of 1-2 eV [52], the possibility of being doped with either n-type or p-type dopants 

[53], a density of about 2 g cm"3 and a refractive index of 2 - 2 8 [54]

Such films have found applications as dielectrics m the electronics industry and

as protective coatings for metals, for other surfaces such as silicon and for silicon

devices Hard coatings with a low coefficient of faction have become increasingly 

interesting m mechanical devices where high wear insistence and dry lubricating 

properties make them well suited in applications where oils and greases cannot be

used Depending on the fabrication process, the properties of the film will vary from

ones similar to those of bulk diamond to ones similar to those of amorphous carbon

The reader is referred to several excellent reviews namely that by Lars-Peter Anderson

[4] The various properties of the films are outlined by Enke [55], with particular 

reference to their use as metallurgical and protective coatings

The main area of literature searching was concentrated on the deposition process 
and the film properties dependence on experimental parameters Along with the 
process, evaluating the resultant films properties is critical in establishing the best 
parameter setting for an ideal film So, a large amount of papers have been written 
on thin film evaluation both structurally and charactenstically i e adhesion, stress,
hardness

Most researchers use the two parallel plates arrangement and capacitively couple 

the r f  power mto the chamber A detailed reasoning for choosing this method will 

be given later R f  power, bias voltage of the powered electrode, gas pressure and 

deposition temperature can all be measured and controlled independently These 

properties and additional parameters that are fixed for a given system (geometry,

frequency), determine the deposition process and the film properties The reactor 

geometry, i e basically the ratio of capacitively coupled electrode surface area (Cathode
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Ac) to the grounded part of the system (Anode Aa), is of importance for potential 

distnbution The ratio of the sheath potentials over the cathode and anode hard space 

(Vsc and Vsa respectively) depends on electrode [30] areas as will be shown in 

Section 2 6

This electrode area geometry develops an asymmetnc voltage distnbution between 

the plates, which is important for the sheath potential between plasma and the powered 

electrode, and is given by measunng the negative self bias The plasma is "focussed" 

onto the small powered electrode, therefore deposition is almost totally onto this 

electrode Due to the high negative self-bias, the acceleration potential is lower for 

the electrons in companson to the positive ions Therefore, the electron contnbution 

to the power dissipated on the substrate is negligible Larger particles such as dust

charge up negatively and so are repelled from the substrate, thus preventing pin-holes

developing in the film

There has been a wide spectrum of hydrocarbon gases used as a precursor 

matenal Anderson and Berg [56] used alkanes, CrnH2m+2, from methane to butane 

and found an almost linear increase of the deposition rate with m Methane has been 

suggested because it can dissociate into only a few types of radicals Also, since no

double C bonds are present it will not form polymers so readily Two factors appear

to be responsible for this dependence With increasing molecular weight the ionization 

probability increases Together with the larger carbon content per ion, this leads to an 

increased carbon flux towards the substrate

D Nir and R Walsh [57] tned ways of reducing the hydrogen content of the 

films which they said was the mam cause of stress Since, graphite oxidises at 400 

°C  and diamond at 800 °C , they heated the sample to greater than 400 °C , and 

added oxygen in the form of C 0 2 to preferentially bum out the graphite which 
replaced some of the hydrogen with oxygen Hydrogen was also added to the 
reaction to achieve low hydrogen content films

The impact energy is physically the most important parameter m the deposition of 

dense hydrocarbon films It is normally lower than the sheath potential Thus bias 

potentials around 1000 eV are needed to provide the optimum impact energy for dense 
hydrocarbon formation

9
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Figure 1 3 Influence of impact energy on type of film produced

Bubenzer et al [58] demonstrated the dependence of the mean impact energy on 

both bias potential and pressure In their benzene r f  discharge the proportionality 

was found to be,

where

E = mean impact energy 

Vg = bias voltage 

P = overall pressure

Since the ion energy is not directly measurable in r f  systems, most workers used 

the discharge power and hydrocarbon pressure to control the deposition process and the 

film properties In fact, the negative bias voltage and pressure have been shown to 

effectfilm properties such as density, hydrogen content, and refractive index

Parameter and film properties have an intricate interdependency

A possible area of development is in finding an optimum parameter level for the

best film Enke [55], carried out extensive tests on parameter interdependence

(12)
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Figure 1 4  Curves of equal compressive stress of l-caifoon layers

From Enke’s results, he concludes that the decrease in stress towards the graphite

like region can be explained as due to the incorporation of less hydrogen, which is of

course always present in the plasma The original motivation for the stress

measurements was the hope that a region within the parameter space could exist where 

the stress charges sign to become tensile, so that it would be possible to deposit

nearly stress-free carbon layers of any desired thickness

17  Possible Areas of Development Identified from the Literature Review

It is evident from the vast amount of research papers on carbon films, that these 

films can be produced by various techniques and exhibit very unusual properties as 

discussed previously Why then is there not a range of commercial products 
available with carbon coatings7 The answer would seem to be in identifying the main 

problems with carbon films, namely the high internal stress and poor adhesion of these 
films

These two factors are the limiting cntena m the production of hard carbon films 

Poor adhesion and highly stressed films are related in that stress forces can be so

great as to cause dehmination of the film from the substrate, hence leading to poor

adhesion results Primary objectives would be to deposit hard carbon films and

investigate the deposition parameters effect upon the film characteristics Reduction in 

the film stress and improved adhesion are essential for the development of carbon

films into the areas of wear protective coatings
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CHAPTER 2 

PLASMA THEORY

Plasmas have been studied for many years, with the result that there are very

many excellent reference works on plasma theory [30,59] In 1879 it was well

established that a plasma [38], the state of ionised gases, described by Crookes as "a

world where matter may exist m a fourth state" had attained an important and more

recently a crucial place m research and industry world wide

Crookes developed the "glow discharge tube" In this tube an electncal current 

flows between the two electrodes, causing the gas to break down into positively 

charged ions and electrons

Thomson [60] in 1897 identified electrons as an inherent part of the atom, freed 

under those conditions from its parent atom Man had at last opened up the atom

2 1 Ongin of Plasmas
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Figure 2 1  Crookes glow discharge tube

Hertz demonstrated that electromagnetic waves other than light can be created and 
transmitted over a distance without wires These so called "Hertzian Waves" were ten 

million tunes larger than light waves, which are from 3 5 to 8 X 10 ' 7 metres long

At about the same time in history James Clark Maxwell was tying together gas

physics with electromagnetics and showed that electncity and magnetism were two

facets of the same force and that light and heat radiation are both forms of

electromagnetic energy

It was not until 1928 when Irving Langmuir in his basic studies of electnfied 

gases in vacuum tubes coined the term "plasma", that the "fourth state of matter" was 
given a name of its own-
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2 2  Glow Discharge Plasma

Glow discharge or low-temperature plasmas represent by definition plasmas that

are essentially neutral, le  the number of negatively charged particles equals that of 

positively charged species A local charge imbalance may exist, and its presence is

established m the vicinity of the confining walls While free electrons represent the 

bulk of the negatively charged species, many plasmas also contain negatively charged 

atoms and molecules The plasma state may be described in terms of charactenstic 

scale lengths [61]

rc < i r ' / M  k>  « (2 1 )

Where rc= q 2/KT is the distance at which potential and kinetic energies are

equal when two like charges approach each other nM^3 is the average mterparticle 

separation, n is the number density of charges, and is the "Debye Length", le  

the charactenstic distance over which the potential of a charge is shielded by

neighbouring charges is the mean collision length, le  V4rcrc 2n [30] for simple 

Rutherford scattenng Lp is a dimension of the plasma The mam features m such a 
plasma are

*  Freedom of movement of the charged particles

* Interaction by virtue of the long-range Coulomb force

*  Collective interaction of the charged particles within a Debye length of a given

charge, with > n“1^3
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GLASS ENVELOPE

Figure 2.2 Discharge Tube

The first gas discharge to be used for purposes of sputter coating was the d.c. 

glow discharge which develops when a high d.c. voltage (1.5 KV) is applied to a gas 

at relatively low pressures. This type of gas discharge is known as a self-sustaining 

discharge because the charge carriers responsible for conduction are generated by 

collision processes which occur within the discharge. Argon gas is primarily used for 

such purposes and the predominant collision process responsible for charge carrier 

generation is that which occurs between a relatively fast electron and a neutral argon 

atom. This results in ionization of the argon atom via the reaction [62]:

Ar + e ' (fast) -> Ar+ + e" (slowed) + e" (slow) (2.2)
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This reaction requires that the ionization energy, 15 76 eV for argon, be supplied 

by the fast electron This electron therefore suffers an energy loss upon collision, 

and is slowed In addition, a second electron is generated by the collision If both 

these electrons were to be accelerated by an electnc field, then they could both gain 

enough energy to engage in further ionizing collisions This process, therefore, 

results in an avalanche effect which very quickly results in an abundance of positive 

ions and electrons, which are able to migrate through the gas discharge and thereby 

carry current The initial avalanche usually results quite spontaneously when a high 

voltage is applied to a low pressure gas, since natural radiation creates the initial

electrons by ionization of a small fraction of the neutral gas atoms The avalanche is 

known as a gas breakdown, and is marked by an abrupt drop in the voltage required 

to carry a given current After breakdown, the glow discharge is established which 

typically appears as shown in figure 2 2

The glow discharge is seen to consist of bnghtly glowing regions which are due 

to the excitation of the gas, and therefore show spectral tines which are typical for

the gas The luminous regions are called the negative glow and the positive column 

The glow does not extend to any surface of the tube Near all surfaces, (including

cathode and anode surfaces) dark regions form which are called sheaths or dark

spaces

The sheaths present in glow discharges are all due to a basic characteristic of the 

discharge, namely, the much greater mobility and kinetic energy of electrons compared

with gaseous ions The electrons have a much smaller mass, and are therefore

accelerated more easily m the presence of any electnc field Furthermore, because 

electrons have such a small mass, elastic collision between electrons and gas atoms 

cause the electons to simply ’’bounce off’ the gas atoms without transference of any 

kinetic energy to the gas atoms This property may be denved from the laws of

conservatism of momentum and kinetic energy which govern elastic collisions, and

yields the basic expression for the kinetic energy of the electron after collision which
is

E = e 0 [m-M/m + M ]2 (23)

Where E is the kinetic energy of the electron after collision

Eo is the kinetic energy of the electron before collision 

m is the electron mass

M is the atom mass
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Since M > m, this shows that E = Eq, le  virtually no kinetic energy is lost 

by the electron, so long as the collision is an elastic collision

On the other hand, if the collision is inelastic, such that the gas atom is excited

or lomzed as the result of the collision, then kinetic energy can transfer from the

electron to the gas atom, and thereby be converted to internal energy (ionization or

excitation energy) of the struck gas atom, is given by

Um = [ M/m +M ]Eo (2 4)

Since M > m, it is seen from this that the electron has the capability of

transferring almost all of the kinetic energy to the gas atom, provided that the proper

conditions exist for the excitation or ionization of that atom It is known that atoms 

can receive energy in only discreet amounts Thus, if the value of Um is less than 

the minimum energy that the atom can absorb, then the collision remains elastic and 

energy transfer from electron to gas atom is very inefficient

The minimum amount of energy which an argon atom is capable of absorbing

corresponds to the energy required to raise the outer electron from the ground state to 

the first excited state This is called the first resonance potential, and in argon

corresponds to an energy of approximately 11 5eV The resonance energies for some 

common elements are listed in table 2 1

ELEMENT RESONANCE ENERGY IONIZATION ENERGY

eV eV
H 10 2 13 6

He 20 91 24 58
N 6 3 14 54
0 9 11 13 61
Al 3 13 5 98

Table 2.1 Resonance and Ionization Energies

The gas may be visualised as consisting of an aggregate of relatively fast mobile 

electrons, and relatively slow, immobile ions and gas atoms In the cathode dark 

space (also known as Crooke’s dark space) it is noticed that this region consists of 

an abundance of positive ions, combined with a relative sparsity of electrons In this 

region the negative voltage applied to the cathode has dnven out the light mobile 

electrons, leaving behind the slow massive ions As a consequence of this condition,

most of the cathode voltage is screened off by the positive ion cloud The tube
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voltage falls off almost entirely across this dark space by virtue of this ion screening, 

with the result that only a small voltage drop exists across the remainder of the tube 

It is apparent that the glow regions are excellent conductors These glow regions are 

known as plasmas They tend, on average, to be electrically neutral, containing an 

equal abundance of positive and negative charge These plasma regions also tend to 

be almost free of any electric field A typical dc gas discharge used for sputtering  ̂

purposes will contain a concentration Ni of 10 9 to 10 10 ions per cubic centimetre 

and an equal concentration of electrons m the plasma regions At a 60 millitorr 

pressure, the unexcited gas will contain Dq = 2 X 10 15, atoms, per cubic

centimeter, thus the fractional degree of ionization is of the order of n ^  = 5 X 

10‘ 6 Hence, the plasmas are quite dilute

The cathode dark space region is of vital importance to the sustenance of the 

discharge as well as the sputtering process The large voltage drop which occurs 

across the dark space is responsible for the acceleration of ions which enter the dark 

space by diffusion from the negative glow region These ions impact upon the 

cathode with considerable energy to give nse to the sputtering process The ions are 

also neutralized by impacting the cathode Important to the discharge is the fact that 

these ions also give nse to the liberation of electrons from the cathode These latter 

electrons are accelerated away from the cathode by the dark space field and quickly 

gam enough energy to engage m ionizing collisions with neutral argon gas atoms 

For the discharge to be self-sustaining each argon ion which is neutralised at the 

cathode must be replaced by another argon ion generated by an ionizing collision 

caused by a liberated electron If this were not the case, then the cathode would 

simply drain ions from the negative glow region, neutralise these, and the discharge 

would quickly be extinguished This latter condition can occur if the anode is 

brought very close to the cathode surface Under such circumstances, the electron will 

reach the anode, before causing a sufficient number of ionizing collisions, and the 
discharge will extinguish The anode spacing needed to accomplish such discharge 

extinction is the dark space distance Thus, if one desires to prevent a discharge 

from forming near some portions of the cathode surface, the placement of an anode at 

a distance less than the dark space length, will accomplish this desire This practice 

is common in plasma deposition systems, and the shielding is called dark space 

shielding, for obvious reasons

The probability that a given type of collision will occur under given conditions is 

often expressed m terms of its collision cross sectioa A related parameter is the 

mean free path or average distance traversed by particles of given type between 

collisions of a specified type The Mean Free Path X for Electrons and producing a 

given type of reaction A of collision cross section is given by
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where N = Particle density

oca = Cross sectional area for reaction A 

Thus the dark space shielding must be less than the mean free path

2 3 Events which occur at the cathode

The sputtering process [63] is the direct consequence of the ion bombardment 

which occurs at the cathode The sputtering process occurs by virtue of momentum 

transfer between the impacting ion and the target lattice atom

*A = (2 5)

TAAGrr ATOM

1 - * - ,

v I » n n T m i o  atom

INDICATE MRECTIOM Of MOMCNTUM TRAMS F t *

Figure 2 3 Collision Process of Atoms on Surface

The target face is a source of sputtered atoms as well as "fast” neutral gas 

atoms Both of those particle type reach the anode which may also be the substrate

A second process which occurs at the discharge cathode is the emission of 

electrons These electrons are responsible for discharge sustenance via ionizing 

collisions with the gas atoms Cathode electrons are emitted primarily by two 

processes photoelectric effect and positive ion bombardment The former process is 

the emission of electrons due to electromagnetic radiation from the nearby negative 

glow
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2 4  Events which occur in the daifc space

It will be recalled that the dark space is characterised by an intense electnc field 

This field causes rapid acceleration of the emitted cathode electrons, with the obvious 

result that ionizing collisions with neutral gas atoms soon occur Less obvious is a 

second consequence which results in high energy electron bombardment at the

substrate

The lack of obviousness of this second process results from the fact that up until 

now, electrons, ions and atoms have been considered to be hard spheres This is not 

really the case Consider, for example, the process whereby an electron moves 

through a space occupied by a population of atoms Since electrons move much more 

rapidly than the atoms, it can be assumed that the space through which the electron 

moves is populated by stationary atoms Consider a slab of unit cross sectional area 

and thickness ^x If the gas atom density is n atoms per unit volume, and the

effective collision cross-section of each atom is a, then the probability that an electron 

will suffer a collision is given by n a ^ , as it passes through ^x - the fraction of the 

cross-section area, occupied by atoms having a target of area a

A hard sphere model of the gas discharge would predict that a  is not a function

of how fast the electron is moving This is not the case, and it may be understood

if one considers that the atom is not a hard sphere but instead consists of a positive

nucleus and an orbiting cloud of electrons An approaching electron will cause a 

displacement of this electron cloud, hence the positive nucleus will not totally be

screened out Thus the approaching electron is diverted from its path and strikes the

atom, le  the atom appears "larger" than it actually is The displacement of the

electron cloud takes time however, and therefore a fast moving electron will not have 

been m the vicinity of the atom for a sufficiently long time to permit such a 
displacement Thus, an atom will appear large to a slow movmg electron, and small 
to a rapidly movmg electroa This is quantitatively expressed by means of the curves 
shown in figure 2 4 [30]
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Figure 24  Ionization Cross Section

Here the cross section for ionization type collisions between an electron and 

various inert gases is expressed as a function of the electron velocity The electron 

velocity is expressed in terms of electron kinetic energy, and the atom cross section is 

expressed in units of tcOq2, where Oq is the radius of the first Bohr orbit of 

hydrogen 710̂ 2 has a value of 8 82 x 10"17 cm2 From these curves, it is seen 

that the higher the electron energy the smaller is the apparent size of the target atom 

An appreciation for the magnitude of the effect can be obtained by means of equation 

2 5, which expresses the mean free path (cm) of an electron as a function of the 

gas density n ( atoms/cm3) and the cross sectional area a

The events m the dark space can now be visualised as follows some electrons 

purely by chance suffer an ionizing collision with an argon atom very early in their 
travels through the dark space These electrons are slowed, and create another slow 

electron The mean free path remains short because these electrons are movmg 

slowly Other electrons travel a long distance through the dark space, and thereby 

gam a large amount of energy from the dark space field These electrons now do not 
suffer any ionizing collisions because of their long mean free path, (le atoms appear 

small to these electrons), and bombard the substrate with the full energy gained by 

traversing the space field The events which occur in the dark space involving the 

slow electrons consist of ionization of the gas atoms accompanied by further generation 

of electrons, which are accelerated by the dark space field Thus, an electron 

avalanche occurs, until at the leading edge of the negative glow, an abundance of 

electrons and ions exist Here, the dark space field has fallen off to such a degree 

that excitation rather than ionization collisions occur It is these latter excitation
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collisions which give rise to the luminescence of the negative glow, ionizing collisions

do not give nse to luminescence

The dark space length manifest by the gas discharge is a function of the pressure 

as well as the nature of the gas As the pressure is reduced, the dark space 

lengthens, until at some point, the dark space length becomes equal to the 

anode-cathode spacmg At this point the discharge will extinguish.

Another effect which occurs in the daik space is a process of symmetric charge

transfer This is a process whereby an ion strikes a neutral atom, and charge is 

transferred, leaving the ion neutralized and the atom ionized This process may be 

written as

Ar+ + Ai° -> Ar° + Ai+ (2 6)

where Ai° designates the neutral argon atom 

Ar+ designates the argon ion.

The process is charactensed by a collision cross-section which turns out to be 

quite large As a consequence, an argon ion accelerating across the dark space travels

only a short distance before it is neutralised, and is therefore no longer accelerated

A neutral atom is left behind which is movmg towards the target and m addition a

new ion is generated which is accelerated towards the target

A final process which occurs m the cathode dark space region is the collision 

between sputtered atoms, and gas atoms A consequence of this process is the 

scattering of sputtered atoms These scattered sputtered atoms coat other parts of the 

sputtering system, and may indeed, even be scattered back to the cathode from which 

they originated

25  The Negative Glow

The negative glow region of the discharge is the first region thus far encountered 

which can be charactensed as a plasma A plasma is defined as follows [38]

"A plasma is a quaisineutral gas of charged and neutral particles which exhibits 
collective behaviour "

This definition implies that equal concentrations of electrons and ions exist in the 

negative glow, this concentration is typically 10 10 per cm3 Collective behaviour 

results because of the fact that as these charged particles move, local concentrations of 
positive or negative charge can develop which give nse to relatively long range
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electric fields Similarly, charged particle motion gives nse to long range magnetic 

fields, which affect the motion of other charged particles far away

The motion of the charged particles as well as the neutral atoms in the 

frequentiy have velocity distributions very similar to an ideal gas The 

distributions are therefore Maxwellian distributions which are characterised by 

probable velocity Cq which is given by

Co = [2xT/m] 1/2

where

m = Mass of the atom or molecule of which the gas is comprised 

T = Absolute temperature of the gas
1

k  = Boltzmann’s gas constant

A plasma can be characterised by means of three Maxwellian distributions for 

respectively, the electrons, the 10ns and neutral atoms making up the plasma An 

immediate implication of equation (2 7) is the fact that C q is  large when T is large, 

or a high velocity particle can be characterised as having a high "temperature" This

is commonly done in describing its electron, ion, and neutral atom temperatures

Quantitative descriptions of these temperatures, require the definition of two 

further velocities, which are commonly encountered when one discusses the Maxwellian 

velocity distribution The velocities are the average velocity C%, and the root mean 

square velocity Cr The three velocities thus defined are interrelated in the following 
way [59]

ca = (3/2)’/2 Co = 1224 Co (2 8)

Cr = (2Co/jt)i/2 = 1 128 Cq (2 9)

Practical forms of equations (2 8) and (2 9) are found by substituting in for
Boltzmann’s constant

C0 = 1 656 X 10'8 (T/m) ' / J cm/sec (2 10)

Ca = 2 027 X 10-8 (T/m) ,/2 cm/sec (211)

Cr = 1 868 X 10'8 (T/mW 2 cm/sec (212)

plasmas 

velocity 

a most

(2 7)
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The energy content of a Maxwellian gas resides in the kinetic energy of the gas 

molecules The "average” kinetic energy of the gas is related to the absolute

temperature by the equation

mC2 = 3 KT (213)

The equation therefore serves for the quantitative characterisation of the plasma 

For example, if the mean kinetic energy of the electrons in the plasma is 1 eV, then

the electron temperature is that temperature at which kT is equal to 1 eV A

convenient term to remember in descnbmg plasmas is the fact that 1 eV corresponds 

to an absolute temperature of 11,600 K

In plasmas electrons tend to bounce off atoms until the electron energy is 

sufficient to excite or ionize the atom Also, even dunng excitation or ionizing 

collisions transfer of kinetic energy to the atom is almost zero Atom - atom, or ion 

- atom collisions result m efficient transfer of kinetic energy Thus, electrons tend to 

move about with much higher velocities than the atoms or ions, and therefore have a 

higher temperature

Another extremely useful equation which can be denved from the Maxwellian 

distrubution is the rate at which particles strike a surface immersed in the plasma. 

This hit rate, expressed in terms of hits per cm2 per second is given by

x = i nCa hits/cm2 sec (214)

where Ca = Average velocity

n = Particle concentration (particles per cubic centimetre)

This equation can be used to calculate hit rates by ions, electrons, neutral atoms 

and residual impunty atoms, etc, provided that their velocity distributions follow the
Maxwellian distnbutions

The application of equations (214) to an object immersed m the negative glow 

immediately allows for the derivation of the "floating potential” of the negative glow 

The floating potential is that potential that any dielectric or electncally isolated surface

will achieve when immersed in the discharge This potential anses because of the

differing temperatures of the ions and electrons in the negative glow plasma Thus,

since Ni = Ne in the negative glow, the application of equation (2 14) predicts that 

the hit rate by electrons Te, will be substantially higher than the hit rate by ions Ti
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This arises since Ce > C Thus any floating surface immersed on the negative glow 

will rapidly acquire a negative voltage with respect to the plasma This negative

voltage will now cause some of the electrons to be repelled upon approaching the

surface The negative voltage will continue to grow until Ti = Te at which point the

charge building stops, since now the charge transfer by ions equals that due to the 

electrons This equilibrium then characterises the floating potential

When a surface acquires a floating potential, a sheath (or dark space) forms 

adjacent to this surface The sheath has many of the same characteristics as the 

cathode daik space except that the voltage drop across the sheath is the difference

between the plasma potential and the floating potential

The magnitude of the sheath voltage drop (difference between floating and plasma 

potential) may be calculated by once again referring to the Maxwellian distribution 

function This function predicts that the fraction N’e/Ne of electrons which can 

penetrate the sheath is

N’e/Ng = Exp (-«v /k t ) (215)

where V is the sheath voltage drop

Now the equilibrium between ion and electron hit rates requires that

N e Ce = N, C, (216)

Further application of the Maxwellian distribution shows that

(217)

and that

c , = [ 8KTi/kM i],/ j (218)

By combining equations (2 15), (2 16), (2 17) and (2 18)



This equation now quantitatively relates the sheath voltage drop, or the difference 

between the plasma potential and the floating potential, to the electron and ion 

temperatures This sheath voltage drop therefore is sufficient to repel enough electrons 

from reaching the substrate surface, such that the ion hits equal the electron hits The 

ions which reach the surface now are accelerated by this same potential and therefore 

impact on the surface with considerably more energy than they possess in the plasma

Another basic characteristic of the plasma is its ability to screen off any electnc 

field which one attempts to apply to it This screening occurs at the cathode sheath 

as well as the sheath which develops at any electrically floating surface These 

surfaces both develop sheaths, over which a potential change occurs, leaving the 

plasma basically as a field free region. The plasma is field free for very much the 

same reason that the mtenor of an electrically conductive metal is field free

The plasma differs however, m that the number and mobility of charge cames is 

substantially less than m a metal Thus, small fields applied to a plasma tend to fall 

off over a finite dimension known as the "Debye Length" This Debye length can be 

derived by applying the standard electrostatics equation (Poisson’s equation) to the 

plasma, which then predicts that a voltage perturbation Vo applied to the plasma will 

fall off according to the law

where

Vo = Potential applied at a point

V(e) = Potential at a distance 1 from the point

Xj) = Debye length

The Debye length is therefore the length over which the applied voltage has 
fallen off to 0 37 of its initial value Again, if one assumes Maxwellian velocity 
distributions, for ions and electrons, and an equal abundance of ions and electrons one 
can express the Debye length as

V(e) = V0 e -VXd (220)

(2 21)

By substitution

XD = 69  x (Te/Ne)'/* (222)

Where Te = Electron temperature K

Ne = Electron concentration cm' 3
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Hence a plasma is an equipotential region, except for small voltage fluctuations 

which fall off over a dimension Xj)

An t alternative way of studying the negative glow plasma, is to realise that the 

plasma is like a gas, having neutral atoms, ions and electrons It is known that the

velocity distributions can be described by three distinct Maxwellian distributions having 

characteristic temperatures To, Ti and Te, and that a high temperature signifies a high 

particle energy or velocity Also, Te is high and Ti and To are close to room 

temperature Suppose now that a plasma ball suspended m space is created and one 

can examine what happens to the ball Firstly, one might expect that the electrons, 

having a high velocity, would simply race out of the ball and leave the slow ions 

behind However, this would generate a large electnc field which would restrain the 

electrons In fact, the electrons do not have enough energy (Te) to get away from 

the ions by more than approximately one Debye length- Thus the electrons are held 

into the ball by the slow moving ions The ions on the other hand, feel that tug of 

the electrons and are slowly dragged out of the plasma balL Thus, the ball will

dissipate by this tug and drag action, known as "ambipolar diffusion" In a deposition 

system in which there is a cathode and anode, a plasma region exists between these 

and then there is a large space surrounding these until one arrives at the system 

chamber walls, one can conceptually appreciate the similarity between this situation and 

the previously imagined plasma ball suspended m space Thus, it is easy to visualise 

that electrons and ions dnft out of the plasma, toward the chamber walls, at a rate 

controlled by the aforementioned ambipolar diffusion process This causes a 

concentration gradient of ions and electrons to develop in the plasma This has

consequences in film sputtering rates across the cathode, and gives nse to lower

sputtering rates from those portions of the cathode near the edge of the glow

Considering the plasma ball in space, one might ask "Why don’t the ions and 

electrons simply combine to yield neutral atoms7” The plasma would then simply
disappear by recombination of the electrons and ions This process does mdeed occur,

but it occurs slowly The reason for the slow recombination rate lies m the
energetics of the recombination process The recombination is the collision process 

which requires the simultaneous satisfaction of both the law of conservation of

momentum and kinetic energy Thus, the ionization energy liberated by the

recombination process would have to be absorbed by the increased kinetic energy of 

the newly neutralised atom This however would not allow for the conservation of 

the momentum for the entire collision process Thus, recombination requires a three 
body collision such as

A i* + Ai+ + e -> AT* + Aj°  (2 23)
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Ar4* + e + Ai° -> Ai° + Ai°

For the simultaneous satisfaction of both the laws of conservation of momentum 

and energy Three body collisions are relatively rare in the plasma, and as a

consequence, electron-ion recombination rates are very slow This, however, is not the 

case near a chamber wall Here the electrons and ions can recombine and dissipate 

their energy as heat to the chamber wall The chamber wall is thereby heated, and 

the ions and elections are neutralised For this reason, the chamber acts as a

recombination sink for the plasma The plasma particles diffuse to the chamber walls 

by the ambipolar diffusion process at which location they coalesce to form a neutral 

atom Chamber walls, by acting in this capacity, thereby have a very decided 

influence over the plasma density gradients which develop, and thereby ultimately have 

a decided influence on deposited film uniformity

The negative glow plasma is a region which is nch in collision events between 

electrons and the gas atoms Analysis has been restricted to noble gases such as 

argon, where the predominant events are excitation and ionization If one now 

considers a more complex molecular gas, then a wide variety of other events occur 

These events form the basis of plasma etching and plasma deposition processes
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2 6 Radio Frequency Gas Discharge

The utility of r f  methods [59,64] lies in the capability of sputtenng dielectric 

materials, greater ease in sputtenng reactive metals, and the lower pressure operation 

afforded by this method R f  discharges are very similar to dc discharges, in that 

sheath regions and plasma regions develop

Recalling figure 2 2, imagine now that a pair of diametncally opposed electrodes 

are attached to the outside of the glass tube The placement of these electrodes is 

adjacent to the negative glow region of the discharge The electrodes are further 

connected to a battery through a switching arrangement which permits the periodic 

reversal of the electrode polarity The arrangement shown has electrode 2 connected

to the negative terminal of the battery, and electrode 1 connected to the positive

terminal The switch is closed at time t0, and current flow occurs because the

plasma and tube walls, here assumed to be glass, it behaves as a large capacitor, with 

a time dependent polanzation The d c current flows because the capacitor is
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Firstly, examining what happens at electrode 2, the negative electrode The 

plasma inside the tube feels the electric field from electrode 2 , and accordingly 

responds Positive ions are attracted to the tube wall, and travel across the plasma 

sheath Upon striking the tube wall the positive ions strip an electron from the glass 

tube wall, and are converted to neutral gas atoms, leaving behind a positive charge on 

the wall surface This positive charge attracts electrons in the external electrode 2, 

and an electron current e to flow mto electrode 2 This current is illustrated m 

figure 2 6, as the current commencing at t0 and ending at t2 At t2 the accumulated 

positive charge on the inside of the tube wall, completely screens off the field from 

electrode 2 , and no further ions are attracted to the tube

Figure 2 6 Current How in the Figure 2.5 Circuit

At the site of electrode 1, the positive electrode, electrons are attracted across the 

sheath causing a negative charge accumulation on the tube wall, which causes electrons 

in the external electrode to flow out of the electrode as shown in figure 2 5 This 

flow continues until the accumulation of negative charge on the tube wall completely 

screens off the field from electrode 1, at which point current flow ceases This is 

shown m figure 2 6, as the current flow which extends over the time interval t0 to 

t 1 This yields a total current flow m the external circuit shown by the solid 

step-shaped curve Notice that the current flow to electrode 1 occurs over a shorter 

time interval t 0 to t 1 compared with electrode 2 , where the current flows for an 

interval t0 to t2 This phenomenon is fundamental to the properties of the plasma 

and is the basic reason why r f  deposition is feasible

The sheath current opposite electrode 1 is an electrode current The sheath 

current opposite electrode 2 is an ion current Since electrons are more mobile than 

ions, the current flow interval is shorter opposite electrode 1 , because electrons travel
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across the sheath with greater speed Notice further that the total charge transfer (area

under the current-txme curves) is the same for each electrode If this were not the 

case, the plasma would end up with a net excess of positive or negative charge which 

would result in very large electnc fields Notice farther that the time period of 

voltage application t0 to t3 is sufficient for all current flow to cease, and equilibrium 

conditions to be established

If the voltage is now reversed, and maintained over the same time penod, the 

sheath currents as well as the electron current in the external circuit will reverse At 

electrode 2 a sheath electron current flows, and at electrode 1 a sheath positive ion 

current flows At electrode 1, the positive ion current first neutralizes the accumulated 

negative charge on the tube wall, and then continues, with an imagery electron flow 

into the external electrode Similar events occur at electrode 2, resulting in an 

equilibnum state which is just the reverse of the condition shown in figure 2 5 

Having an ac voltage source instead of the switch and battery will permit an ac 

current to flow

If the frequency of polanty reversal on the external electrodes is increased, at 

some point one reaches a frequency (=1MHZ) , where ions are not given sufficient 

time to travel across the plasma sheath to neutralize the previously accumulated

negative charge on the glass wall opposite each electrode Thus, each polanty reversal

results m a net residue of negative charge on the inside of the glass tube opposite

each electrode, thereby causing the glass tube to acquire a negative dc bias with

respect to the plasma On the next polanty reversal sequence, the previously

accumulated negative charge causes a greater acceleration of the ions, and a retardation 

of the electrons dunng their respective flows across the plasma sheath, with the result 

that the net residue of negative charge on the glass has been increased to a lesser

extent after the second cycle compared with the first The negative bias grows, but 

to a lesser extent Continuing this reasoning, one can understand that the dc bias 

grows until the respective ion and electron currents reaching the glass surface become 

equal, at which point no further charge accumulation will occur, and a time invanant 

d c bias offset exists This situation is depicted in figure 2 7, which shows the 

voltage wave form on the external electrodes (generation) versus the voltage wave 

form on the glass tube wall opposite the electrodes (target) In both cases, the 

voltage zero is taken to be the plasma potential It is noticed that dunng the bulk of 

the sinusoidal cycle, the target surface is negative with respect to the plasma Ions

are extracted from the plasma, travel across the sheath and impact into the target,

thereby causing sputtenng Dunng each sinusoidal cycle the target surface goes 

positive relative to the plasma for a very short time penod, dunng which time the 

electron current balances the previous ion current, such that, over the complete cycle,

30



no net current flows to or from the target Figure 2 7 further shows that the dc 

voltage offset which occurs is almost equal to the rf peak voltage The target 

surface, m the case of figure 2 7, runs through a voltage range in which it vanes 

from slightly positive relative to the plasma, all the way to a -2KV negative This 

voltage falls off across the plasma sheath, leaving the plasma as an isopotential region 

through the entire cycle (This is true except for a small ac field of the order of «

2-5 volts per cm which penetrates mto the plasma)

Figure 2 7 Voltage wavefonns at generator (Va) and target (V5) in a convential

sinusoidally excited if discahaige

With r f  voltages of the magnitude described here, the need for an independent 
dc  cathode and anode such as were present in this discussion, become superfluous
The fields necessary to generate the initial gas breakdown are entirely provided by the

two r f  electrodes Similarly, a pair of metal electrodes, or one metal electrode and

one metal electrode faced with a dielectnc, will also accomplish the objective of

establishing the gas discharge and the symmetrical sheath configuration which was 

previously descnbed Thus, one can sputter from a configuration such as depicted in 

figure 2 8 Here one has a plasma (shaded region) which is at potential Vp sheaths 

of length D 1 and D2 opposite each of the electrodes, across which dc voltage drops 

V, and V2 occur In this configuration, equal sheath voltage drops occur and one 

sputters from each of the electrodes As in the previous discussion, the plasma region 

is an equipotential region and is very similar to the dc negative glow previously 
discussed
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0
V1 = V2

Figure 2 8 Voltage Distribution - without blocking capacitor

This type of configuration is inconvenient, in that both electrodes sputter 

However, by the simple placement of a senes capacitor into the r f  circuit, one can 

substantially alter the distributions of sheath voltages, such that sputtering occurs from 

only one electrode, and deposition on the other A simple two electrode sputtering 

system thereby occurs whereby one electrode does not sputter, and thereby serves as a 

convenient surface for placement of the substrates

<s>

Figure 2 9  Voltage Distribution - with blocking capacitor



The understanding of how the sheath voltage redistribution occurs may be

achieved by consideration of the law which relates the ion flux through the sheath, to

the voltage across the sheath If one assumes a space charge limited current then this

ion current flux J 1 is given by the Child-Langmuir equation

j, = c \nh
m '/2D 2 (2 25)

where V is the voltage drop across the sheath 

D is the sheath length 

m is the ion mass 

C is a constant.

If one requires that the current density of positive ions is equal at both 

electrodes, then this equation predicts
3/2 v 23h

D , 2 D 2 2 (2 26)

where D 1 D 2 and V 1 and V 2 refer to the respective voltage drops, and sheath 

lengths associated with two electrodes having electrode areas A, and A 2

As we recall, the sheath region is associated with a large voltage drop This 

implies a very limited conductivity across the sheath. The electrode sheath-plasma 

configuration may therefore be regarded as a capacitor, having a capacitance given by

A
C = k —

D (2 27)

where k is the dielectric constant associated with the sheath. Now it is known that 
an r f  voltage will divide between the two capacitances present here, according to

V, _ C 2

V 2 C, (2 28)

Using equation (2 27) and (2 28)

V, a 2 d ,

V 2 A, D 2
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and substituting this into equation (226) gives

V 3/2 _ n 2 _ r AV ,2
V^a/2  -  “  I
V 2 U  2 2 2  (2 30)

V r A.
v t  = I X  J (231>

Thus a larger sheath voltage will develop across the electrode having the smaller 

area Now since the plasma is an isopotennal region, these differing sheath voltages 

imply that a dc voltage difference will exist between the two electrodes The power 

supply cannot support these dc voltage differences, and for this reason a blocking 

capacitor is placed in series between the supply and the electrode as shown in figure 

2 9 In practical systems for deposition the substrates are placed on the powered 

electrode and the top plate and chamber walls act as the second electrode

In addition to serving as a source of high energy electrons, the target in 

sputtering systems and sheath regions also serve as a source of electro-magnetic 

radiation, fast neutral atoms, and negative ions, the generation of which was discussed 

in the previous section on dc gas discharges Similarly, the r f  plasma is very 

similar to the dc plasma, and gives nse to random ion and electron bombardment of 
the substrate

A difference between the r f  and dc discharges is the observation that an 

equivalendy dense plasma can be achieved at lower operating pressures Thus, r f  

sputtenng is usually accomplished at a pressure of 10 milhtoiT as opposed to the 40 - 

60 millitorr pressures utilised with dc sputtenng The greater ionization efficiency of 
the r f  discharge is not well understood It is believed that the most important 

ionization source is due to electrons oscillating in response to the very weak r f  field
which succeeds in penetrating the plasma This oscillation coupled with properly

timed elastic collisions between electrons and atoms, permits the electrons to gam
sufficient energy despite the weak field, to cause ionization events
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CHAPTER 3

3 1 Introduction to fUm deposition 

3 11 Vacuum Technology

In man’s quest for economy and perfection, thin films have been deposited on 

substrates for the enchancement of the mechanical, electrical, chemical, optical or decorative 

properties The deposition of thin films with controlled properties requires an operating 

environment which interferes as little as possible with the process of film formation High 

vacuums are attained to minimise the interaction between residual gases and the surfaces of 

growing films

A vacuum [65] is defined as a region of space where pressure is below that of the 

surrounding atmosphere Absolute vacuum is practically impossible in any system, the 

nearest being that of Space, which is often desenbed as an absolute vacuum The 

terminology used for the varying degrees of vacuum, which are distinguished according to 

pressure langes are

Low Vacuum 

Medium Vacuum 

High Vacuum 

Very High Vacuum 

Ultrahigh Vacuum

THEORY OF FILM DEPOSITION

3 12 Physical Vapour Deposition (PVD)

PVD technology [30] consists of the techniques of evaporation, ion plating and

sputtenng It is used to deposit films and coatings on self-supported shapes such as sheet,

foil, tubing, etc Their use has been increasing at a very rapid rate, since

modem technology demands multiple and often conflicting sets of properties from

engineenng matenals, eg  combination of two or more of the following - high
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temperature strength, impact strength, specific optical, electrical or magnetic properties, 

wear resistance, fabncability into complex shapes, cost, etc A single or monolithic 

matenal cannot meet such demands in high technological applications The resultant 

solution is therefore a composite matenal, le  a core matenal and a coating each 

having the requisite properties to fullfill the specifications

In general deposition processes may pnncipally be divided into two types 1) 

those involving droplet transfer such as plasma spraying, arc spraying, wire explosion 

spraying, detonation gun coating and 2) those involving an atom by atom transfer 

mode such as physical vapour deposition processes of evaporation, ion plating, and 

sputtenng, chemical vapour deposition and electrodepositioa The chief disadvantage of 

the droplet transfer process is the porosity in the final deposit which affects the 
properties

There are three steps m the formation of any deposit

1) Synthesis of the matenal to be deposited

a) Transition from a condensed phase (hqind or solid) to the vapour

phase

b) For deposition of compounds, a reaction between the components of the 

compounds some of which may be introduced into the chamber as a gas or 
vapour

2) Transport of the vapours between the source and substrate

3) Condensation of vapours (and gases) followed by film nucleation and
growth.

There are significant differences between the vanous atom transfer processes In 

chemical vapour deposition and electrodeposition processes, all of the three steps 
mentioned above take place simultaneously at the substrate and cannot be independently 

controlled Thus, if a choice is made for a process parameter such as substrate 

temperature, the resultant film microstructure and properties are predetermined On the 

other hand inPVD processes, these steps (particularly steps 1 and 3) can be 

independently controlled and one can therefore have a much greater degree of 

flexibility m controlling the structure and properties and deposition rate
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313 PVD Processes

There are three physical vapour deposition processes [59], namely, evaporation, 

ion plating and sputtenng In the evaporation process, vapours are produced from a 

matenal located in a source which is heated by direct resistance, radiation, eddy 

currents, electron beam, laser beam or an arc discharge The process is usually

earned out in vacuum (typically 10“5 to 10*6 torr), so that the evaporated atoms

undergo an essentially collisionless lme-of-sighi transport pnor to condensations on the 

substrate The substrate is usually at ground potential (le not biased)

It is noticed that the deposit thickness is greatest directly above the centre-line of 

the source and decreases away from it This problem is overcome by importing a 

complex motion to substrates ( e g  in a planetary or rotating substrate holder), so as to 

even out the vapour flux on all parts of the substrate or by introducing a gas at a 

pressure of 0 5 to 10 mbar into the chamber so that the vapour species undergo 

multiple collisions dunng transport from the source to substrate, thus producing a 

reasonably uniform thickness of coating on the substrate This technique is called 

gas-scattenng evaporation or pressure plating

In the lon-platmg process the matenal is vapounsed in a manner similar to that 

in the evaporation process through a gaseous glow discharge on its way to the

substrate, thus ionising some of the vapounsed atoms The glow discharge is

produced by biasing the substrate to a high negative potential (-2 to -5 KV) and

admitting a gas, usually argoa

In this simple mode, which is known as diode ion-plating the substrate is 

bombarded by high energy gas ions which sputter off the matenal present on the

surface This results in a constant cleaning of the substrate (le removal of surface 
impunties by sputtenng), which is desirable for producing better adhesion and lower 

impunty content This ion bombardment also causes a modification in the

microstructure and residual stresses in the deposit On the other hand, it produces the
undesirable effect of decreasing the deposition rates since some of the deposit is

sputtered off, as well as causing a considerable heating of the substrate by the intense 

gas ion bombardment The latter problem can be alleviated by using the supported 

discharge ion-plating process where the substrate is no longer at the high negative

potential, the electrons necessary for supporting the discharge coming from an auxiliary 

heating tungsten filament The high gas pressure dunng deposition causes a reasonably 

uniform deposition of all surfaces due to gas-scattenng as discussed above
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In the sputtering process, positive gas ions (usually argon ions) produced in a 

glow discharge bombard the target matenal (also called the cathode) dislodging groups 

of atoms which then pass into the vapour phase and deposit onto the substrate 

Sputtering is an inefficient way to induce a solid-to-vapour transition Typical yields 

(atoms sputtered per incident ion) for a 50 eV argon ion incident on a metal surface 

are unity Thus the phase change energy cost is from 3 to 10 times larger than 

evaporation Sputtenng is a mechanical action, where the coating flux is not dependent 

on the melting point of the sputtered matenal The deposition is usually very 
uniform

There are several advantages of PVD [31] processes over competitive processes 

such as electrodeposition, CVD, plasma spraying They are

1 - Extreme versatility in composition of deposit

2 - The ability to produce unusual microstructures and new crystallographic 

modifications eg  amorphous deposits

3 - The substrate temperature can be vaned within very wide limits from sub-zero to

high temperatures

4 - Ability to produce coatings of self-supported shapes at high deposition rates

5 - Deposits can have very high punty

6 - Excellent bonding to the substrate

7 - Excellent surface finish which can be equal to that of the substrate

8 - Eliminations of pollutants and effluents from the process which is a very important
ecological factor

The present limitations of PVD processes are 

1 - Inability to deposit polymenc matenals with certain exceptions

2- Higher degree of sophistication of the processing equipment and hence a higher

initial cost

3- Relatively new vacuum technology, hence expensive
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3 1 4  Chemical Vapour Deposition [38]

CVD is the process by which chemicals are mixed in a vapour phase in a 

chamber and heated to very high temperatures, to cause chemical reactions

The compounds thus formed diffuse onto the substrates CVD is a reaction in 

which two types of gas, C(g) and D(g), react about one atmosphere and high 

temperature to form a solid phase A(s) and a gas phase B(g)

C(g) + D(g) -> Heat -* A(s) + B(g) (3 1)

32  Plasma Enhanced Chemical Vapour Deposition

3.2 1 Introduction

The rapidly rising application of plasma - CVD technology has led to there being 

a need for the understanding of the basic reaction mechanisms

Ion-molecule and radical-molecule mechanisms are responsible for the dissociation 

of organic and organic-inorganic molecules and for the formation of polymensed 

species m the plasma state There is still a lot of uncertainty about reactions and

depositions Most of the advances are through experimentation rather than modelling 

The complexity of the field is enormous and each advance in the art in one direction

must be considered in the context of all impacting parameters

All types of electrical discharges have three elements in common 1) They are 
sustained by a source of electnc power, 2) The electric power is delivered by

means of a coupling mechanism, 3) It is delivered to a plasma environment
associated with a particular desiga

Plasma deposition has for a long time been used m the electronic industry, 

plasma-deposited nitnde and oxide are utilised as inter layer dielectric films between 

metallisation levels In recent years, glow discharge-produced amorphous silicon has 

attained considerable importance as a new electronic material for fabricating thin film 

devices such as solar cells, transistors, sensors and photoreceptors Further

developments of PECVD techniques to prepare metal thin films or novel organic 

materials are expected in the near future, based upon better understanding of the 
chemistry in the glow discharge
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As all CVD processes require high temperatures, this limits their application for 

coating temperature sensitive materials Using a plasma source the thermal heat is 

reduced so that chemical reactions take place at equivalently high temperatures due to 

high ion and electron temperatures

Plasma CVD is a gas-phase reaction in a low temperature plasma that forms a 

thin solid film on a substrate,

C(g) + D(g) -> Plasma -> A(s) +B(g) (3 2)

For example, ordinary and plasma CVD of silicon nitnde films are expressed as

CVD 3SiH4(g) + 4NH 3(g) 700-900 °C  ^ SiN4(s) + 12H2(g) (33)

Plasma CVD 3SiH4(g) + 4NH3(g) 3 0 0 - 5 0 0  °C  SiN4(s) + 12H2(g) (3 4)

With the use of plasmas, substrate temperature can be lowered and thermal 

damage of the film reduced A comparison of different reactions for CVD and 

plasma CVD is given m table 3 1
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Precipitation Temperature in aim. CVD and Plasma CVD

Compounds Reacting Material  Atm CVD °C PCVD °C

S i 3N4 S i H4 700-900 300-500

NH3(N2)

S i 0 2 S i H4 900-1200 200-300

N20

A120 3 A1C13 700-1000 100-500

0 2

Table 31

In a low-temperature plasma, the energy of the electron is larger than that of the 

10ns or neutral particles and are thermally in a non-equihbnum state Although the 

energy of the 10ns or netural particles is relatively low, these particles become excited 

by colliding with electrons This excited state is equivalent to a high temperature state, 

and the effective reaction can thus proceed at a low temperature Various states of 

the species in the plasma depend on the generating plasma pressure, and other

parameters When the plasma is generated by a high potential and low current no

dissociation of molecules is detected At a relatively low potential and high current, 

however, some dissociation can be detected When the reaction is thermodynamically 

possible m the CVD method but has a very slow rate, the excited states can be

induced by the catalytic action of the plasma, and the reaction is accelerated When

atoms are formed by dissociation of the molecules in the plasma and participate m the 

reaction, reactions that were previously thermodynamically impossible can occur
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3.2.2 General Features of Plasma Deposition.

Electron-impact dissociation of precursor gases in the glow discharge is the 

primary step for chemical reactions in a plasma CVD system

Figure 3 2 [66] gives a schematic representation for the kinetic processes in a 

methane plasma We consider here a model based on a set of rate equations for 

CH4, and various species produced, in the plasma Fifteen kinds of neutral species 

and twenty kinds of ionic species are considered in the model as shown
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Figure 3.2 Schematic of the Kinetic Processes in a Methane Plasma



The neutral fragments (radicals), produced in the gas phase, diffuse toward the 

substrate and chamber wall, and ionic species move toward the electrodes under the 
influence of the applied field Some of the neutral species are electronically or 

vibrationally excited by electron impact and emit light whose wavelength ranges from 

UV to IR Secondary processes such as lon-molecule and neutral-molecule reactions 

take place through collisions in the gas phase Finally, heterogeneous chemical 

reactions among reactive atoms, molecules and ions impinging onto surface may 

proceed to form a deposit

3.2 3 Deposition Variables

Many vanables must be controlled in plasma deposition, such as power, total 

pressure, reactant partial pressure, gas flow rates, pumpmg speed, sample temperature, 

electrode spacing, discharge frequency, electrode materials and reactor geometry [31,67] 

These vanables mutually interact [58] in determining matenal properties as well as 

deposition rates These vanables are shown schematically in figure 3 3

RF- Geometry
Power of

Re a ct or

S u b s t r a t «

Temperatur«
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/  \
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R a t « S p e e d

Figure 3 3 Parameters of the rf plasma deposition process
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It should be noted that higher power or current results m higher electron densities 

in the plasma, while lowering of pressure leads to an increase of electron temperature 

The decomposition reaction rate ^  is given by Bell [68]

Ri = He [P] (35)
where 1% = electron density, lq is the rate constant for the dissociation reaction, and 

[P] is the concentration of the reactant The rate constant lq is given by

k, = (2/Mg)'/2 J E '/* f(E) o,(E) dE (3 6)

where Me is the electron mass, E is the Electron energy, f(E) is the normalised 

electron distribution function and q  (E) is the cross section for the reaction

Therefore, a change in the pressure or electron temperature primarily affects the rate

constant of the reaction lq in equation 1 , and hence the chemical reaction pathway is 

often influenced by pressure, while applied electric power is basically related to the 

electron concentration The partial pressure of the reactant gas determines the

magnitude of [P] m equation (3 5) It is evident that the deposition rate, or Rj, can 

be increased by increasing the power or partial pressure of the gas without changing 

the major pathway of decomposition reactions when the total pressure is kept 

unchanged The gas-flow rate and pumping speed determine the residence time of

the reactive gas in the active region of plasma This strongly influences reaction of 

the gas in the active region of plasma, which in turn strongly influences the 

deposition kinetics Attainment of equilibnum depends on whether or not the

residence time is shorter than the charactenstic time of the reaction or the overall 
reaction-time constant [69]

324  Plasma Volume Reactions

3 2 4 1  Dissociation Reactions of Reactants

The photolytic decomposition of the gas can provide useful insights in the most 
probable primary processes in the glow discharge The major reactive species [70] in 
the plasma of methane are CH3, CH2 CH and C

CH j + CH4 -» C 2H6* -> 2CH3 C 2H 6 (3 7)

^  C 2He (3 8)
CH + CH4 C jH s*  -> C 2H4 + H (3 9)

-an-> C jH 5 -an-> 1/2 C 4H 10 (310)

C + CH4 -> CH4*  -> C 2H2 + H2 (3 11)

Methyl radicals, which are mainly formed by the reaction of CH2 with CH4 are 

the precursors for the formation of C 2H6 (reaction 3 7) At 77k the contnbuDon of
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reaction (3 8) becomes also significant Ethylene is fonned by the reaction of CH 

with CH4 (reaction 3 9) At 77k, a greater part of C 2H5 species are stabilised by 

the third body and n-C4H10 are formed by the recombination reactions of stabilised 

C 2H5 radicals The lifetime of C 2H4* which is formed by the reaction of C with 

CH4, is  too short to be stabilised, and it decomposes ummolecularly to acetylene and 

hydrogen even at 77k

The basic reaction on the surface is given by

CH. + e‘  -> Bond Energy CH, + CH, + C +hVH (3 12)

Existence of C must be greater than the lifetime x to deposit The carbon atom 

must be free from reaction and in the area of the substrate long enough for C=C 

bands to form

3 2 4  2 Election Interaction with Atoms and Molecules

As seen it is the electrons which are mainly responsible for the ionization The 

resultant products are active species, and radicals having much different chemical 

activities than those of the parent gas Electron ionization processes are obviously 

important in the sustaining of plasma discharges The excitation and dissociation 

processes are important in plasma chemistry and form the basis for PECVD and 

plasma polymerisation An electron with a kinetic energy which exceeds the ionization 

energy of an atom, can either cause excitation or ionization as it passes m close 
proximity to it

i ! * - °

~ - f - ............. - T -
I b

Eli

ELECTRON

CROSS SECTION

Figure 3 4 Electron-atom collision from the point of view of the virtual photon

model
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The Coulomb force from the electron produces an electric field at the atom The 

component of this field which is perpendicular to the direction of electron motion (E ,) 

produces a time-varying ’’impulsive” electric field which can act on the components of 

the atom This electnc field pulse is equivalent to a beam of photons havmg

frequencies corresponding to the Founer components of the pulse The point is that 

an electron passing closely by an atom does not simply knock an electron out of the

atom, but produces a perturbation at the atom which is approximated by a beam of

white light that induces electronic excitation and ionization m proportion to the optical 

oscillator strengths

The important factor [59] is the Average energy W spent by an electron in

creating an electron-ion pair It is seen in the table 3 2 that W/X = 2 le  almost 

equal probability of ionization or excitation in atmosphere, but slightly more excitation 

in molecules, where X is the ionization potential

Atom/Molecule w X W/X

He 46 24 58 1 87

Ne 37 21 56 1 71
Ar 26 15 56 1 65
Kr 24 14 00 1 71
Xe 22 12 13 1 81

h2 36 15 43 2 33

n2 36 15 59 2 31
NO 29 9 25 3 13
CO 35 14 04 2 49

o 2 32 12 15 2 63
c o 2 34 13 81 2 46
c 2h 2 28 11 4 2 45
ch4 29 12 99 2 23

c 2h4 28 10 54 2 65

c 2h6 27 11 65 2 31

c 3h 6 27 9 73 2 77

c 3h8 26 11 15 2 33

c 6h6 27 9 23 2 92

Table 3.2 Probability of ionization
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Electron interaction with molecules produce excitation and ionization via 

mechanisms essentially identical to those for atoms as described above The difference 

between the atoms and molecules is what ultimately happens to the excitation energy 

In the atomic case, the excitation energy is lost by radiation unless the transitions are 

quantum-mechanically forbidden. In the molecular case, it may result in dissociation 

of the molecules

ELECTRIC

F IU O

Figure 3 5  Production of Active Species
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CHAPTER 4

A newly exposed surface’s atoms relax [65] into an equilibrium configuration 

which differs from their bulk configuration, the surface plane often relaxes outwards, 

with the atomic arrangement parallel to the surface remaining unchanged Such effects 

may result in the occurrence of a surface electric dipole moment Surface electronic 

properties invanably differ from those of the bulk simply because the three 

dimensional periodic potential vananon m the bulk has been disrupted Electrons may 

occupy energy levels m the surface which do not exist in the bulk and this may 

have profound implications for the electron affinity and chemical reactivity of the 

surface Also, chemical bonds may be kept "dangling" from a free surface

Perfect surfaces are very difficult to preserve Sputter etching, while samples are 

situated in deposition chamber, can be used to clean up contaminated surfaces but this 

will cause surface damage

The atoms in a surface vibrate about their mean lattice positions, they are far 

from motionless In fact, surface atoms tend to vibrate with amplitudes larger than 

those of bulk atoms because they have neighbours on one side only If an atom 

requires an amount of energy W m order to move to a different position in the 

surface, then the probability that it will make this move is given by

A exp (-W/KT) (4 1)

As expected, surface diffusion occurs much more readily as the temperature is 

increased As will be discussed later, adatom mobility is influenced by pressure and 

temperature, for a good film coverage high temperature and low pressure are needed

NATURE OF THIN FILMS

4 1 The Free Surface
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42  Rim Growth

Adsorption of atoms onto a substate surface may occur either with or without the 

transfer of electrons, processes which are called chemisorpuon and physisorption, 

respectively

Physisorption is the most basic phenomenon, binding energies are typically 0 25 

eV and attachment is by virtue of relatively weak Van der Waals forces, which are 

both undirected and nonspecific

42  1 Adsorption and NucleaUon Processes

The above diagram of figure 41, shows the decrease in potential energy of an
atom undergoing physisorpnon, the atom will not remain on the substrate unless at

least its kinetic energy is transferred to the surface Such behaviour, which is

reversible, is typical of inert gases absorbing onto metals Physisorbed species tend to 

desorb readily, unless very low substrate temperatures are employed

Figure 4 2 below depicts potential energy variations dunng chemisorption. It can 

be seen that physisorption occurs as a preliminary step and that an activauon energy 

(Ep+Eo) determines whether this will be followed by chemisorptioa In such a 

process which is basically the formation of a surface compound, the bonding electrons 

are generally thought of as occupying oifaitals between the film and substrate

50



Although in extreme cases pure ionic bonding may occur Binding energies are much 

larger than in physisorption, eg  8 4 eV for oxygen on tungsten, and the process is 

seldom reversible The condensation of metal atoms on metallic substrates also 

requires electron transfer, and leads to the phenomenon of metallic bonding through the 

sharing of free electrons

Figure 4 2 Change in Potential Energy of a Chemisorbing Atom.

The probability of an atom sticking to a surface depends usually upon the

proportion of the surface already covered by adsorbates The situation exists in which

as the surface sites become filled, the probability of an impinging atom finding its

own site gets smaller, and multi-layer foimation does not take place This is

demonstrated in figure 4 3

Figure 4 3 Sticking Coefficient Variation with Coverage (eg gas on metal)



Alternatively, figure 4 4 shows a different type of behaviour, here the sticking 

coefficient [67] remains constant until a monolayer has formed, when it changes to a 

different value as adsoiption continues upon this monolayer

The basic theory of homogeneous nucléation was developed by Gibbs [72] for the 

case of liquid droplet condensation from a vapour The theory shows that for

molecular clusters greater than a critical size, the total free energy decreases with 

increasing size, so that continued growth is energetically favourable This approach is 

applicable to the case of condensation on a surface provided that desorption and 

surface diffusion are taken into account and that only nuclei with more than 100 
atoms are considered

Figure 4 4  Sticking Coefficient Variation with Coverage (eg metal on metal)

Systems containing small numbers of molecules can be described only in terms of 

dynamic, as opposed to thermodynamic, variables Since some critical nuclei 

apparently consist of two or three atoms, a more elaborate theory of heterogeneous 

nucleation must be resorted to The atomistic model of Walton and Rhodin [72,73] 

predicts that the rate of formation of cnucal clusters depends mainly on this factor

Exp [(i^+lJEa + Ec - E^/k t ] (4 2)
where = number of atoms in a cnncal nucleus 

Ea = activation energy for desorption 

Eq = dissociation energy of a cntical cluster 

E^ = activation energy for diffusion

From plots of the log of nucleation rate versus T _1 discreet changes in have

indeed been manifested at certain temperatures The model also predicts an

experimentally verified dependence of nucleation rate upon deposition rate
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4 2 2  The Four Stages of Rim Growth

The general picture of the sequence of the nucléation and growth steps [65] to

form a continuous film which emerges from nucléation theory and electron-mi scroscopic 

observations is as follows

1 - Formation of adsorbed monomers

2- Formation of subcntical embryos of various size

3 - Formation of critically sized nuclei (nucléation step)

4- Growth of these nuclei to supercritical dimensions with the resulting depletion of

monomers in the capture zone around them

5 - Concurrent with step 4, there will be nucléation of cntical clusters in areas not 

depleted of monomers

6 - Ousters touch and coalesce to form a new island occupying an area smaller than 

the sum of the original two, thus exposing fresh substrate surface

7 - Monomer adsorbs on these freshly exposed areas, and "secondary” nucléation

occurs

8 - Large islands grow together, leavmg channels or holes of exposed substrate

9- The channels or holes fill via secondary nucléation to give a continuous film

NUCLEATION NUCLEI GROW

# *
• i  • •

#

# 1f
COALESCENCE

CONTINUOUS FILM

CHANNELS HOLES

Figure 4 5 Schematic of die stages of film growth.
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Four distinct stages [73] of the growth process can be clearly identified

a) The Island Stage

First stage observable of film growth is the sudden appearance of nuclei of 

similar size This is probably because growth occurs largely by the surface diffusion 

of monomers on the substate, rather than by direct impingement from the vapour 

phase

b) The Coalescence Stage

The figure 4 6 illustrates the manner of coalescence of two rounded nuclei The 

coalescence occurs in less than 0 1 sec for the small nuclei and is characterised by a 

decrease in total projected area of the nuclei on the substate (and an increase in their 

height)

In addition nuclei having well-defined crystallographic shapes before coalescence 

become rounded dunng the event After coalescence the islands assume a more 

hexagonal profile and are often faulted

Theliquid-like character of the coalescence leads to enlargements of the 
uncovered areas of the substrate, with the result that secondary nuclei form between 

the islands This effect becomes noticeable when the primary islands have grown to 

about 1 |im, and continues until the final hole-free film is formed A secondary 

nucleus grows until it touches a neighbour, and if this happens to be a much larger 

island, the secondary nucleus coalesces very rapidly and becomes completely 

incorporated in the large island The coalescence behaviour is best explained by 
surface diffusion

c) The Channel Stage

As the islands grow, there is a decreasing tendency for them to become 

completely rounded after coalescence Large shape changes still occur, but these are

Figure 4 6 Schematic of the shape changes dunng coalescence
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confined mainly to the regions in the vicinity of the junction of the islands 

Consequently, the islands become elongated and jom to form a continuous network 

structure in which the deposited material is separated by long irregular and narrow 

channels of width 0 05 to 02 pm As the islands coalesce bare regions are exposed 

The liquid-hke behaviour of the deposit persists until a complete film is obtained In 

the channel and hole stages, secondary nuclei (islands) are pulled into the more

massive regions of the film

It is clear that both the liquid-like behaviour of coalescing nuclei and the rapid 

elimination of channels are manifestations of the same physical effects, namely the 

minimization of total surface energy of the overgrowth by the elimination of regions 

of high surface curvature

d) The Continuous Film

Dunng the coalescing stage, orientations are set and islands align to each other 

The continuous film stage signifies that end of the nucléation stage The film 

continues to grow at a rate determined by the sticking coefficient of the deposited

material

4 3 Surface Reactions

Surfaces in contact with plasmas are bombarded by electrons, ions and photons

The electron and ion bombardment is particularly important The relative number of 

ions and electrons which are incident on a surface depends on whether it is biased as 

a cathode or anode or is electrically isolated

4 3 1 Ion Bombardment

The momentum exchange associated with ion bombardment can cause 

rearrangement and ejection (sputter) of surface atoms The rearrangement can have 

dramatic effects on the structure and properties of a growing film, and is of 

importance in the processes of ion plating and bias sputtering The ejection is 

important m the processes of sputter cleaning and deposition

Ion bombardment can greatly influence the processes involved in the adsorption of 

molecules into surfaces and their subsequent reactions These processes are of

obvious importance in plasma-enhanced CVD and etching and in plasma 

polymerisation The process of molecular adsorption and surface compound formation 
are directly influenced by ion bombardment
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Figure 4 7  Schematic representation of surface chemisoiption and volatile compouixi

The CVD case with the formation of a non-volatile product is obviously very 

similar Physical adsorption is due to polanzation (Van der Waals) bonding It is a 

non-activated process and occurs with all gas surface combinations under appropriate 

conditions of temperature and pressure Adsoiption energies are typically less than 05 

eV Chemisorption involves a rearrangement of the valence electrons of the adsorbed 

and surface atoms to form a chemical bond It involves an activation energy and has 

a high degree of specificity between gas surface combinations Adsorption energies 

are typically 1 to 10 eV Molecules may be chemisorbed m their molecular state or 
may dissociate into atoms The latter case is known as dissociative chemisorption 

Dissociative chemisorption is generally a precursor to compound formation, which is 

also an activated process Various types of chemisorption bond sites can exist on a 

solid surface Thus both molecular and dissociative chemisorption can occur 

simultaneously on the same surface Ion bombardment can influence these processes 
in the following ways

1 - Ion bombardment can cause adsorbed molecules to dissociate, thereby overcoming 

the activation energy for this process Ion bombardment dissociation is expected to be 

a sputter-type momentum transfer

2- Ion bombardment can create surface defect sites, which have reduced activation

formation in gas phase etching.
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energies for the occurrence of dissociative chemisorption or for the formation of a 

solid compound

3 - Ion bombardment can remove (by sputtering) foreign species from a surface 

Such species may interfere with the dissociative chemisorpnon of a preferred species

4 3.2 Electron Bombardment

Electron bombardment of atoms and molecules adsorbed on surfaces is believed to 

produce excitation and ionization in processes which are similar to those which occur 

in the gas phase Thus atoms are ionized and also excited into states from which

there is a probability of dissociation or bond rearrangement Electron bombardment 

can dissociate molecules and cause them to pass into a form that has a high

probability of desorption (electron-stimulated desorption) Finally, electron-induced bond 

rearrangement can cause polymerisation of adsorbed surface species

4 3 3 Preferential Sputtering and Initial Etching in an RJF Plasma 

I Initial Substrate etching

As long ago as the 1950’s Holland and Ojha [89,74] among others reported on

the possibility of growing diamond like carbon films by cracking a hydrocarbon gas in

an R F discharge and by extracting the ionised hydrocarbon fragments on to a 

negatively biased substrate Yet still, no model of the reaction between the incoming

hydrocarbon and substrate can be fully developed as the process is extremely complex 

In the process of normal sputtering , the sticking coefficient for the impinging carbon 

fragments is greater than the sputtering yield for the same fragment This means 

that the cracking products of the butane plasma have a larger possibility to condense 

carbon on the substrate surface than to sputter off carbon from the substrate surface

In order to venfy this description, Andersson and Berg [75,76] studied 

experimentally the interaction between the butane plasma and different substrate 

materials It was found that the lomzed cracking products of the butane plasma, m 

fact, initially sputter etched the substrate surfaces The etch rates correspond closely 

to what could be expected from the sputtering yield values of the substrates The 

sputtering yield from carbon, however, is low, and thus the substrates after some tune 

will be totally covered by a carbon film that prevents further etching of the underlying 

substrate The results of such a process are drawn schematically in figure 4 8
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Figure 4 8 Subsequent etching of substrate materials and the deposition of a carbon
f f l m T

The substrate contain three regions of different materials A, B and C, with 

sputtering yields S ^ t Sg and S<3, respectively After some time the surface will be 

covered with a carbon file of thickness 1q, evenly distributed all over the surface 

However, during the initial growth of 1q sputter etching of the surface took place, 

thereby etching d^, dg and dc away from regions A, B, and C The thickness d \̂, 

dg, and d<̂  of the material removed depends on the sputtering yield S^ f S3  and Sq 
of the substrate matenal A, B, and C

H Norstrom and R Olarson [77] found similar results They related the partial 
pressures and gas type to the initial etching The ratio oxygen/hydrocarbon gas and 

argon/hydrocarbon gas that resulted in zero deposition/etching was determined The 

ratios obtained clearly indicate that chemical reaction is the dominating mechanism m 

the case of oxygen-mixture but pure physical sputtering is dominant in an argon 
mixture

58



n Preferential Sputtenng

The preferential sputter hypothesis was first advanced by Spencer et al [78]

TetrahedraUy bonded (Sp3) structures are assumed to be more resistant to sputtenng 

then tngonally bonded graphmc precursors The ion flux to the growing surface

serves both as a source of new material and as an agent for re-sputtenng non-Sp3
structures eg  graphitic, olefimc and cumulene nuclei This hypothesis is supported by

the relative energies of the vanous processes

The energies of importance to carbon film growth [32] are listed m table 4 1 It 

is noticeable that the typical impact energies, from 50 to 500 eV, are just above the 

sputtenng threshold for carbon, at the reported displacement energies, and very 

significantly below the energy where the sputter yield is greater than unity These 

considerations indicate that both sputtenng and deposition take place simultaneously 

during film growth.

ENERGIES OF VARIOUS PROCESSES

ITEM ENERGY
(eV)

Ion energy for C when s e l f  sputter  y ie ld  = 1 2000

Ion energy for C, sputter y ie ld  = 0 15 with Ar+ 600

Displacement energy of carbon atoms in Diamond 80

Approximate Energies of incident ions 50-500

Displacement energy of Carbon atoms in graphite  25

Threshold energy for graphite  sputter ing  15

Intraplanar bond energy in graphite  7 43

Bond energy of diamond 7 41

C-H bond energy 3 5

Interplanar bond energy in graphite  0 86

Table 41

Furthermore, the bonding energy of graphite precursors to the surface would be 

closer to the interplanar bond energy (0 86 eV) than to the intraplanar bond energy 

(743 eV), making the probability of sputtenng of these nuclei more likely Typical
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sticking coefficients of approximately 013 => 05 found by expenmentors [44,49] are 

consistent with a mechanism involving simultaneous sputtering and deposition

Also of interest is the C-H bond energy, which is significantly less than the C-C 

bond energies Furthermore, low mass atoms are sputtered more efficiently than high 

mass atoms Hydrogen should therefore be preferentially sputtered from a carbon 

surface Mon and Namba [79] found that when ion beams denved from methane 

were used at impact energies greater than 200 eV, the hydrogen content could be 

reduced to low values Carbon has an anomalously low sputter yield compared to 

other matenals This unusual behaviour permits a wide range of conditions under

which preferential sputtering of hydrogen and hydrocarbon structures can be expected 

to occur

4 3 4 Role of Hydrogen

The trend throughout the literature seems to be toward the addition of hydrogen 

gas to the hydrocarbon gas It has been suggested [80,81] that at least 95% of the 

gas mixture needs to be hydrogen for two mam reasons 1) Reduction of 

hydrogen-carbon groups with a lower concentration of CH2 2) Chemical erosion of 

graphite by hydrogen impact

Classically the hydrogen atoms can attain high speeds within the plasma The 

collision of these H atoms into the hydrocarbon molecules can cause C-H bonds to be 

broken There is evidence that hydrogen incorporation lowers the density of carbon 

films [87] This is not pnmanly a mass effect, but reflects the reduction of cross 
linking due to hydrogen incorporation

The main scientific instrument to determine C-H groups on films grown on 
silicon wafers is Infra-red Spectroscopy [52,54,74] which has revealed that dense a-CH 

films [82] (amorphous Caibon-Hydrogen) contain mainly CH groups with a lower 

concentration of CH2 In less dense films additional CH3 groups have been observed 

Angus and Jansen [83] defined "Diamond-Like Films” as films with hydrogen atom 

fractions from 0 5 to 0 6 which select a structure with an average coordination number 

close to the theoretical value at which stabilisation by bonding and destabilization by 

strain energy are balanced This coordination number is achieved by the incorporation 

of the hydrogen and by the presence of tngonally (Sp2) bonded carbon m the carbon 

skeletal network The question of optimum cross linking in a covalent random 

network has been treated by Phillips [84,85] He considered the mismatch between 

bonding constraints and the degrees of freedom in three dimensions, showmg that an
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average coordination number of

represents the best compromise between mechanical stability (due to cross linking) and 

stress minimisation (due to minimal bond length and bond angle disorder)

A significant quality of hydrogen is its ability to chemically erode graphite [86] 

Although graphite is more thermodynamically stable m a PECVD system diamond 

growth is made possible because hydrogen erodes graphite and is less likely to erode 

diamond The displacement energy of carbon atoms is substantially higher than the 

carbon atoms in graphite (80 eV), compared to 25 eV respectively The process of 

hydrogen etching the graphite is complex and not fully explained In most diamond 

growth environments, hydrogen gas must be kept above a certain concentration (95%) 

to deposit films with nearly no graphitic component

m = 6 '/ *  = 2 45 (4 3)
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44 Structures of Carbon Forms

4 4  1 Introduction

The term "structure" [88] encompasses a variety of concepts which describe on 

various scales, the arrangement of the building blocks of a material On an atomic 

scale, one deals with the crystal structure, which is defined by the crystallographic 

data of the unit cell These data contain the shape and dimensions of the unit cell 

and the atomic positions within it. They are obtained by x-ray diffraction 

experiments

On a coarser scale, one deals with microscopic observations of the microstructure 

which characterises the sizes, shapes and mutual arrangements of individual crystal 

grains It also mcludes the morphology of the surface of the material

An intermediate range is occupied by the defect structure, which is concerned 

with deviations of the regular arrangement of unit cells within one crystal gram, 

examples are point defects, dislocations and stacking faults In studying the defect 

structure, one makes use of both direct microscopic (mainly electron microscope) 

observation and diffraction evidence In addition, one can utilise measurements of 

structure sensitive properties which are related to defects in crystals, eg  resistance due 

to point defects and impurities

44.2 The Carbon Atom and the Nature of the Carbon - Carbon Bond

To determine the structure of carbon [89], one needs to look at the ways m 

which carbon atoms can be connected together to form a solid material There are 

three possible configurations of the outer electrons when a carbon atom is bonded to 
others

1) Tetrahedral or Sp3 state In this state all four electrons are bonded into four 

evenly spaced hybnd orbitals The most probable positions for the surrounding four 

atoms would then be at points which form a tetrahedron with the carbon nucleus at 

the centre The o  bonds formed with four neighbours will then be at 109° 28’ to 

each other There are no electrons available to foim subsidiary k bonds

An example of tetrahedral carbon atoms bonded together would be in the gas 

ethane (H3C-CH3) which is at the start of a homologous senes culminating in the 

long chain polymer polyethylene, consisting of a chain of methylene (-CH2-) groups 

Such carbon atoms can be bonded in three dimensions to form the cubic diamond
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lattice, thus producing a hard crystalline solid.

2) Trigonal or Sp2 state In this state three electrons are bonded in a 

symmetrical hybridised orbital system The most probable positions for the orbital 

axes are coplanar and mutually at 120° The extra electron is in the free p state and 

is available for forming a subsidiary n bond

An example of carbon atoms bonded together m the trigonal state would be the 

gas ethylene CH2=CH2

All graphitic materials consist of extensive paralllel sheets of such carbon atoms 

arranged in such a pattern Polymeric carbons are also made up of Sp2 atoms but 

arranged to form networks of long , narrow, entwined graphitic nbbons

3) Diagonal or Sp state This is the state with symmetrical hybridised orbitals 
whose electrons are capable of being bonded in a molecular orbital bonding system 

The only possible arrangement for neighbouring carbon atoms is on either side of the 

nucleus, the o  bonds being colinear and the co-ordination number being two The 

remaining two electrons are in the free p state and are available for forming 

subsidiary k bonds

Examples of molecules containing carbon atoms in this state are the gas acetylene 

(HOCH) and "carbyne" (CsQn which consists of chains of Sp carbon atoms

The bond energy between carbon atoms and their separation depend on the 

number of electrons contributing The bond energy between two carbon atoms in the 

Sp 3 state is 83 kcal mole’ 1, and the distance between is 154 Angstroms This is so

m such widely differing molecules as ethane, polethylene and diamond

With carbon atoms in the Sp2 state the extra p electrons increase the bond 

energy and decrease the atomic spacing These changes are attributed to an increase 

in "percentage double bond character’* Thus the C-C distance in ethylene is 1353

Angstroms There exists a range of possible interatomic distances from 154 to 1 35 

Angstroms depending on the degree of participation by the extra electrons The bond 

energy is increased to 147 kcal mole“1 for the case of ethylene With atoms in the 

Sp state, there is a further increase m bond energy and reduction in interatomic 
distance

There exists a variability in bond distance within a molecule containing carbon

atoms in the Sp2 and Sp states This is important in that carbon - carbon bond
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distances are not necessarily characteristics of the presence of carbon in any one of 

the possible states

An important factor is the ability of carbon atoms to rotate about a C-C bond

If the partners are m the Sp3 state and the bond is purely o in character, rotation is

easy and a high degree of flexibility in molecular orientation is possible If the bond 

has any n component, however, rotation is severly hampered and a much more rigid

inflexible structure is inevitable

The bonds between the molecular units ( the mtermolecular cohesion) can only be 

weak Van der Waals forces since no electrons are left over to form strong primary 

bonds The small molecules or units will therefore be gases and liquids at room

temperature Polyethylene chains can be sheared past each other and onented easily

by cold work at room temperature Perfect graphite sheets slide over each other 

easily at room temperature and will do so even down to 10 K Diamond incorporates 

just one extended unit and so is extremely hard Polycrystallme graphites and carbon 

must also have covalent cross-links between graphite sheets m neighbounng crystals in 

order to exist as covalent materials of significant strength

4 4  3 Structure of Carbons

There are only two crystalline forms of carbon - graphite and diamond Graphite

consists of sheets of carbon atoms m the Sp2 state, each sheet being stacked m a

hexagonal ABA sequence above each other as m figure 4 9

Figure 4 9 Atomic structure of a perfect graphitic crystal [88]
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The bonds in the basal plane are extremely stiff and strong and so the modulus 

m a-directions is very high, the matenal can withstand temperatures of 33000 °C  

before breaking up by thermal degradation alone The bonds between the planes are 

of weak Van der Waals type and so the crystal can be sheared and cleaned easily m 

the plane peipendicular to the c-axis even at very low temperatures The distance 

between carbon atoms in the sheets is 142 Angstroms while between perfect sheets 

the interlayer Spacing is 3 354 Angstroms Graphite can be distorted permanently with 

ease by simply bending or shearing the sheets

When carbons are formed at low temperatures they contain many grown-in defects 

because thermal energy is not then sufficient to break carbon-carbon bonds once

formed The presence of such defects increases interlamollar cohesion considerably and 

so such carbons are generally hard The overall morphology of the graphite sheets is 

also laid down during carbomsatioa Simple annealing at high temperature does not 

destroy this morphology

Diamond consists of carbon atoms in the tetrahedral state bonded to accommodate 

all electrons without distortion, the carbon atoms fitting into the classic diamond type 

cubic lattice, consisting of two interpenetrating cubic (F) lattices based on 000 and

Since all the bonds are equally strong and stiff, distortion is very difficult It

is possible to introduce dislocations and plastic flow at high temperatures but the 

structure will not tolerate the high degree of distortion possible m the graphite

structure Hence, diamond is only found m the crystalline state and the lattice

constants never vary This contrasts with graphite in which the mterlayer spacmg can 

be vaned easily and with the quasicrystalline states of some carbons which are quite 

stable

Because of the strong covalent bonding which prevents easy glide on all possible 

planes, diamond is hard and brittle It reverts to graphite merely by heating above

1800 °C  in an inert atmosphere It is concluded that at such temperature the Sp2 
state is much more stable than the Sp3 state Small distorted volumes of carbon in 

the Sp3 state will clearly revert at much lower temperatures than large perfect crystals

4 4 4  Structure of Polymers

Polymers [90] consist of long chains held together by mtermolecular forces of

different amounts and intensities depending on the nature of the groupings attached to 

the chains and their ability to he parallel to each other to form crystalline regions

Some polymers, such as atactic polystyrene lack symmetry so that it becomes
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impossible for the chains to pack closely they can only exist as polymeric glasses 

with no crystallimty whatsoever The chains are arranged completely randomly m 

space and can, m fact, be described quite adequately by three-dimensional random 

walk theory [88] Above the glass point, such materials are rubber-hke - a condition 

in which chain segments are free to move by thermal activation to allow the free 

chains to assume a limitless number of configurations between fixed points, which are 

generally physical entanglements m thermoplastic materials and chemical cross-links m 

thermo-setting materials Others, such as polythene, with a symmetrical arrangement of 

hydrogen atoms, crystallise easily Crystalline regions consist of straight chain 

segments of polymer lying parallel to each other and separated by a constant distance 

They are thus highly anisotropic, the strong and stiff covalent bonds only affecting the 

strain response in one direction (along the chain length) The strength and stiffness in 

all other directions are governed only by weak mtermolecular cohesion In high 

tensile polymer fibres all the crystalline regions he approximately parallel to each other 

with the chains lying parallel to the fibre axis, and thus show a high degree of 

preferred orientation In isotropic polymers the orientation of these essentially 

' anisotropic crystallites is completely random and there is continuity of C-C bonding 

from one crystallite to another, usually via an "amorphous" zone

In recent years it has been demonstrated that m many crystalline polymers, the 

polymer chains cluster together to form "fibrils" or "microfibnls” The crystalline 

regions detected by X-rays are merely parts where fibrils happen to be taut The full 

extent of a fibnl is therefore not revealed by X-rays but only by the new technique 

of high resolution electron imaging

Figure 4 10 The Various firoms of Carbon [88]
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4.5 Structure of Thin Films

The miscrstructure of thin films [65] depends on many factors Some of the

most important are

*  Rate of Deposition of condensing atoms

* Pressure of working gas

*  Temperature of substrate

* Substrate surface roughness

* Bombardment of substrate with ions or electrons

4.5 1 Deposition Rate

It may be experimentally very difficult to isolate the influence of deposition rate 

per second from the influences of other deposition variables For example, increasing 

the R F  power to the chamber will raise the energy of atoms on the surface Hence 

they will be more mobile on the substrate surface, which is equivalent to raising the

substrate temperature It has been found that the occurrence of voided structures is

less likely at low deposition rates, because the adatom surface mobility is adequate to

prevent holes from forming [91]

Under normal conditions, pure metallic films invariably have a crystalline 

structure This may not be true of alloys and compounds, however, since the 

impinging atoms and molecules have considerably reduced surface mobilities The 

influence of deposition rate on crystallimty [92] is difficult to predict The texture of 

metallic films is known to be related to the kinetic energy of the incident particles

4.5.2 Pressure, Temperature and Surface Roughness

The influence of pressure, temperature and substrate surface roughness on film 

structure was considered in a famous article by Thornton [93] Basically, higher inert 

gas pressures are thought to limit the mobility of adatoms upon the substrate surface, 

inert gas atoms are themselves adsorbed and hence limit the surface diffusion of 

arriving species Increased substrate temperature, on the other hand, enhances surface 

mobility and also conventional bulk diffusion Thornton's model is depicted 

schematically m figure 4 11 In zone 1, protuberances on the adsorbing surface 
preferentially collect incident atoms which, because of low substrate temperature, do 

not have sufficient thermal energy to diffuse away and form a continuous structure
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Film growth m Zone 1 tends to yield open, le  porous, gram boundenes In Zone T, 

the temperature is still too low to permit diffusion at significant rates, but the surface 

here is considered smooth because enough diffusion has occurred to overcome the 

mam surface irregulanties, the dense fibrous structure is the same as that within the 

open grams of Zone 1 At low deposition temperatures an increase m inert gas 

pressure promotes the growth of a more porous structure through the detrimental effect 

on surface mobility descnbed above Inert gas adsorption and its consequences are 

lower temperature phenomena. Zone 2 is dominated by surface diffusion processes, in 

this region the film generally consists of columnar grams with fully dense boundaries 

The high temperatures defining Zone 3 produce substantial bulk diffusion, 

re-crystallisation and gram growth may, therefore, take place in this regime

TRANSITION STRUCTURE 
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FIBROUS GRAINS

COLUMNAR GRAINS

POROUS STRUCTURE 
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Figure 4 11 Influence of substrate temperature and argon pressure on the 

microstiucture of thin films. [93]

Changes in substrate temperature dunng the deposition process may cause the 

formation of ’’hillocks" These features occur as a result of differences in thermal

expansivity between the film and substrate materials They consist of small projections 

normal to the film surface, or in the case of ’negative’ hillocks, of holes For 

example, if deposition commences on a cold substrate of relatively low expansivity and 

heating takes place as deposition continues, the initial deposit will ’want to* expand

more than the small expansion of the substrate permits, the outcome is a relief of

the compressive stress in the film by the "pushing up" of hillocks Figure 412 

illustrates precisely this situation for the case of aluminium or silicon Addition of 

copper to Al growth can reduce hillocks Also, penodically introducing oxygen
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dunng film growth produces alternate layers under tensile (pure aluminium) and 

compressive (aluminium oxide) stress, and hence leads to an overall reduction m film 

stress

Af PRESSURE (n>

Figure 4 12 Influence of aigon pressure on stress in sputtered tungsten.

4.5 3 Influence of Substrate Bias

If thin film deposition is accompanied by high energy electron bombardment, an 

increase in the density of nuclei on the substrate surface is found to occur This 

phenomenon is apparently due to the creation of defects which act as nucleation 

centers, since electron bombardment has no effect on substrates for which the energy 

required to create surface defects is very high
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Thin films are often subjected to ion bombardment dunng growth, pnmanly for 

redistribution of deposited materials to areas that would otherwise be difficult to coat 

Of course, increasing the energy of bombarding ions will eventually produce a net 

sputter erosion of the film, but sputtering yields are generally so low with ion 

energies below 100 eV that the deposited mass will remain virtually constant Bias of 

the substrate may also affect the crystal orientation [65] and preferential sputtering of 

certain planes

For a particular film morphology it has been recognised that substrate temperature 

and bias voltage play inverse roles [94] "High temperature" deposits may be obtained 

at low temperatures provided that substrate bias is employed Also, at high bias 

conditions large levels of inert gas entrapment may occur
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4 6 Stresses in Thin Filins

Stresses in thin films result from two basic causes

1 Distortion of the crystal lattice leading to so called "mtnnsic stress”

2 A difference in thermal expansivity between the film and substrate matenals,

leadmg to the development of stress upon cool-down from the deposition temperatures

The ongin of thermal stresses is easy to comprehend Intrinsic stresses, on the 

other hand, are more complex m nature and may be due to a vanety of causes

a) Lattice mismatch between the substrate and film inevitably leadmg to interfacial

distortion

b) Incorporation of impunties m the growing deposit which precludes the growth of

a perfectly ordered, strain-free lattice

c) Rapid film growth, which does not allow sufficient tune for the formation of a

defect-free lattice

d) In the sputtenng-off of already deposited atoms by impinging atoms and ions

Highly stressed films are generally more susceptible to corrosion and are more likely 

to exhibit poor adhesion Film stress may be compressive (1 e the film would like to 

expand, parallel to the surface), so that in extreme cases it may buckle up on the 

substrate Alternatively the film may be in tensile stress (l e the film would like to 

contract), and in certain cases the forces may be high enough to exceed the elastic 

limit of the film so that it breaks up A tensile stress will bend it so that the film 

surface is concave, and a compressive stress so that it is convex Ways of measuring 

this stress depend mostly on this fact and include disk techniques, bending-beam, etc 

Many factors influence the stress developed and the most important of these are [95]

I Deposition Rate

Relevant data is rather ambiguous, but defects caused by rapid deposition are the 
definite causes of stress
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n Pressure

It has been postulated that one of the main contributions to the tensile stress in 

an evaporated film is the annealing and shrinkage of disordered material which has 

been buried during further depositioa The mechanism proposed to explain the 

increasing compressive stress with reducing pressure is based upon the higher mean 

free path of sputtered atoms and energetic neutral inert gas atoms at lower pressures 

It is proposed that such energetic particles amve at the substrate and pack the 

deposited material more closely by a type of compressing "atomic peening” interaction

Figure 4 13 [96] shows the kind of behaviour which is invariably observed, ie  a 

transition from compressive to tensile stress as the pressure is increased through a 
critical point.

(Angstroms)

FILM THICKNESS (^m)

Figure 4 13 Force per unit width vs Film thickness for sputtered chromium
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m  Thickness

It is well known that the stress in a thin film vanes with depth, a phenomenon 

well evidenced by the fact that films frequently cuii upon removal from their 

substrates Such behaviour may reflect a change in the film structure with depth. 

The film may begin to grow with the lattice constant, of the substrate and with 

gradually accumulating strain energy, until eventually a thickness is reached at which 

dislocations are introduced and the film relaxes to assume the lattice constant of the 

bulk

IV Substrate Bias

Negative substrate bias would seem to have the same general effect as reducing 

the working gas pressure, namely of introducing more and more compressive stress as 

the voltage is made more negative The application of negative bias usually influences 

the amount of gas incorporated m the growing deposit

Gas species film composition and incorporation of argon and hydrogen have all 

been investigated and effects on internal stress studied In an article by D Nir [95] 

the compressive stresses in the films were attributed mainly to the bombarding energy 

of the ion beam An additional contribution to the compressive stresses probably 

came from the complex species m the discharge The contribution of the hydrogen to 

the stresses in the films did not seem to be obvious

V Other Influences

Other factors which may influence the stress in a thin film in a complicated way 
are, contamination of the film dunng growth and variations in substrate temperature 

Interstitial impurities may migrate to regions of high strain energy (vacancies, 

dislocations and gram boundaries) and relieve the stress m those regions Indeed, it 

has been shown that oxygen co-deposited with evaporated aluminium migrates over 

long periods at ambient temperatures to the film substrate interface [97] The 

incorporated oxygen conferred compressive stress on the aluminium

Higher substrate temperatures may cause diffusion If one matenal diffuses into 

another such that vacancies flow in the reverse direction, then one side of the 

interface will gam mass while the other will gam porosity the former will 

consequently develop compressive stress and the latter tensile stress This situation 

may result in plastic deformation within the interface, and to recrystalhsation and grain

73



growth

Higher substrate temperatures may also result in a larger gram size and a lower 

level of intrinsic stress The reduction m stress when higher temperatures are 

employed is believed to be related to the higher rate of annealing of disordered

material, for minimal stress, this obviously must be greater than the rate of deposition

4 7 Adhesion of Thin Rims

Adhesion [65] may be defined as the sum of all the mter-molecular interactions

between two different matenals placed side by side These interactions [89] may be

metallic ionic, covalent, Van der Waals, etc, and are a function of the separation of 

the adhering surfaces [98]

If the work functions of the opposing surfaces are different, charge transfer from 

one to the other will occur upon contact This will result in an electrostatic

attraction, which actually vanes much more slowly with distance than the attraction

due to Van der Waals forces It has been demonstrated expenmentally that m some

cases charge transfer has a substantial effect on adhesion and it is felt that the long

range nature of the electrostatic force may be particularly significant

Substrate surface roughness may also be important Increased roughness may

promote adhesion because of the larger surface area involved as well as through the 

type of interlocking illustrated m figure 4 14 Excessive roughness on the other hand 

can result m coating defects which may promote adhesion failure

Figure 4 14 Mechanical interlocking of film and substrate
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In many film coatings, intermediate layer adhesion is used This may chemically 

match film and substrate This may be in the form of an oxide coating or, for 

example, with titanium nitride (TiN) films a thin layer of titanium is first applied to 

the substrate An intermediate layer of mid-way thermal expansivity coefficient 

material is often used to index match film to the substrate

4 71 Control of Adhesion

Factors which are known to strongly influence thin film adhesion [65] are the

intrinsic stress in the film and the cleanliness of the substrate surface pnor to

deposition

As far as substrate cleaning is concerned, weakly bound species such as oils and 

grease may impair adhesion, as materials which act as a bamer to diffusion when 

diffusion is necessary, for example, an oxide coating

Contaminants may be removed by conventional chemical means and by sputter

etching techniques It was found that best surfaces for adhesion were 1) Polished

mechanically to a surface finish of at least 6 pm, 2) Ultrasomcally cleaned for 

half an hour, 3) Argon plasma sputter etched in the chamber for at least 

forty-five minutes

There may be a connection between the stress to which a thin film is subjected 

and its adhesion to the substrate Generally, however, the intnnsic stress in a thin 

film is not adequate to cause delamination unless the film is very thick. Failure will 

occur at the weakest point, which may alternatively be a breakdown of the substrate 
or film cohesion
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CHAPTER 5

DESIGN AND IMPLEMENTATION OF PLASMA DEPOSITION SYSTEM

5 1 Types of Deposition Reactor

A typical PECVD system [31] consists of a plasma generating section, a gas 

introduction section, a vacuum system, a power source, and a control system with 

adequate metering to establish the various parameter values R f plasma CVD 

equipment can be classified into inductive and capacitive coupling types, based on the 

method of excitating the reactive gas

The inductive coupling method consists of a tube of quartz glass wrapped m a 

coil, to which the r f  signal is applied, thus generating a plasma within the tube 

This structure has the following properties

1) The structure is small and simple

2) Contamination from coil to plasma is minimised

3) Power is concentrated and a high density plasma is formed, although it is difficult 

to maintain this density across the complete substrate

| Reaction gas

Figure 5 1 Inductively Coupled Reactor
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The capacitive coupling method was shown m figure 1 1 The advantages are
that of both coating distribution and high productivity The parallel plate reactor is 

most commonly used for matenal processing The design is basically the same as 

first constructed by Remberg [67] In his system a circular electrode is placed 

parallel to an r f  electrode The gas flows from the top electrode down over the 

substrate and off the sides It is the intention to compensate for the electnc field 

gradient from the centre of the electrode toward the edge by the gas concentration 

distribution and thus obtain a uniform film
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Figure 5 2 Configurations used in PECVD [99]

77



There are many deposition variables which need to be controlled or monitored 

Very many of these parameters have direct film characteristic relationships A general 

rule of thumb used in the design was to monitor as much as possible and as 

accurately as possible Close attention was paid to the practical considerations for r f  

plasma deposition systems and to possible future applications in the research laboratory 

The reliability of the unit must be high for maintenance of quality This means that 

the capacity of each component element should be stable and the reliability should be 

high

CO Pumping System

The pumping system must be able to evacuate the chamber down to 10’ 6 mbar 

to eliminate any impurities, especially water moisture Reactive and decomposed gases 

can be either corrosive, flammable, or toxic Since a large quantity of diluted gas or 

earner gas is used, exhaust gas after the reaction contains a large amount of unreacted 

gas Hydrogen gas for instance can lodge m pipes and pumps and forms an 

explosive mixture with air Exhaust pipes should be of non-permeable type and nsing 

from the chamber, with no drops or bends

a) Type of Pump The type of pump used vanes with the pressure range and gas

load A rotary oil pump backing a diffusion pump is the usual arrangement

b) Protection of Pumping System 1) Foreline Trap, In order to prevent damage to 

the pump by granular matenals or condensable matenals, a filter, a trap, or a baffle is 

used between the pump and the system 2) Oil Replenishment, When an oil rotary

pump is operated for a prolonged penod, microparticles or nonreacted matenals enter 

the oil, gradually increasing its viscosity and rendenng it useless Regular checks and 

penodic changes of the oil can prevent this 3) Back-streaming of oil and
contamination of chamber, If the oil rotary pump or diffusion pump are operated for 

extended penods below 01  mbar, the pump oil can back-stream toward the high

vacuum region Measures must be taken to prevent this, such as not operating on 

rotary pump alone below 0 1 mbar and using a liquid nitrogen trap at the top of the 

diffusion pump 4) Removal of Pollutants, If toxic gases are mvolved they should be 

suitably scrubbed before release to atmosphere If highly inflammable or explosive

gases are used the gases should be diluted with an inert gas such as nitrogen, before

release to the atmosphere

52  Components of PECVD System

78



(ii) Electrodes and Substrate Holders

The electrode is used to form the plasma, and the substrate support is used to

hold the substrate in place and maintain it at a given temperature The shape and

structure of the substrate support determine the operability of the unit and its

production capacity The substrate support should have the following properties and

functions [31]

1) Support samples beneath top electrode

2) Supply r f  power to the cavity

3) Concentrate plasma by the use of Debye Shields

4) Externally heat the substrate

5) Be adjustable in height and positioa

6) Made of a material that does not absorb too much heat or interfere with the

plasma

7) Made of a noncorroding material

8) Dimensional integnty should be maintained dunng thermal cycling

9) Sputtering yield should be small

10) Made of a cheap and machinable matenal

In most carbon deposition systems the self biasing technique of the substrate 

electrode is used This means the electrode must be electncally isolated All

deposition techniques require external heat to be applied to the substrates, this can be

done by hot filment, infra-red or radient heat sources

As was mentioned m section 2 2, the electrodes must also incorporate dark space

shielding, to confine the plasma and to prevent loss of power

(iii) R F  Power Source

This is probably the most difficult part of the apparatus to design and install
The r f  source consists of three mam parts [100] (1) Oscillator (2) Power Amplifier 

and (3) Impedance matching network.

The film charactenstics will be directly effected by its plasma density Important 

aspects of the r f  design are A) Power of r f  source B) Transmission of r f  to 

electrodes Q  Cable and Chamber attenuation and D) Effective tuning to the 

impedance of the cavity The generator must be able to supply sufficient power to 

dissociate the gas The frequency chosen is 13 56 MHz The signal must be clear 

and reproducible, with minimal reflected power The stability of the power source is 

critical, since between runs of varying parameters, only one van able must change and 

absolute control over all other variables must be main tamed
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A fully equipped power source will have the following controls/functions

* AC on/off

*  Vanac for variable power control

*  Manual switches for tuning, one for each phase and load

* Forward/reflected power indicators

* Appropriate protection circuitry

* Power meters

(iv) Gas Introduction System

The supply of the reactive gas and its control are important The parameters to 

be controlled [101] are 1) gas composition 2) flow rate 3) pressure and 4) 

temperature The number of reactive species in the gas plasma is related to the gas 

density of the system Gas density is a function of volume, pressure, and temperature 

In order to hold the quality of the film constant, it is necessary not only to maintain 

contant pressure, but to prevent changes in the flow rate The system must be 

accurate and reliable for all depositions Reproducibility of the exact gas flow 

conditions are critical

(v) Control and Monitoring Systems

The control can be divided into two separate areas One part monitors the 

various parameters necessary for deposition i e pressure, flow rate, substrate 

temperature etc The other part may monitor each process of deposition and 

sequencing It would be the former type that will concern this design, Due to the 

r f  interference with electronic monitors it was found that analogue controls offered 

isolation, independence and immunity to stray r f  It is necessary to know exactly the 

stages of system dynamics related to film growth

(vi) Pressure Measurement

The PCVD reaction is usually in the range 01 mbar to several mbars Single 

gases or a mixture of gases may be used at any one time The sensitivity of vacuum 

gauges utilising thermal conduction or ionisation changes may vary with the type of 

gas Also the gauge can corrode due to a corrosive gas atmosphere Reliability of 

the pressure gauge is very poor [102] as often the pressure is just below atmospheric 

level where gauges are inaccurate Ideally a diaphram gauge would be used which is 

independent of gas used and gives an absolute pressure reading
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Before the design [103] can be drawn up the limitations of the project along

with the goals must be specified

Frequency The licensed international standard for r f  plasma deposition is 13 56 MHz 

Any operation outside of this frequency is in breach of the broadcast and licensing 

authorities act

R f  Shielding Along with the need to protect the system’s own electronic circuitry 

There is a legal obligation not to pollute the airwaves or electnc mains with r f

noise

Flexibility Any research apparatus must be capable of adaptmg to a change in project

direction This is particularly important when the technology is unknown and several

minor projects may also use the pnmary appartus in fulfilling the overall project 

objectives, for example spectral monitoring of the plasma reactions requires that special 

optical ports be provided to the chamber

Simplicity of Design Ideally the design should use standard components and fittings 

This allows the easy addition of equipment and reduction m cost Generally complex 

designs of components and fittings to the system should be avoided

Load size The system should be able to take a range of substrates so that several

different film tests may be earned out eg  glass, steel, silicon etc Also the area of

the top electrode should be much larger than the substrate holder, so that plasma and 

hence the uniformity is maintained This limits the size of the substrate holder

Process Cycle Time Cycle time for a plasma system is limited by the temperature 

stabilisation which is the time required for a large thermal mass (the electrode

assembly) to reach deposition temperature Plasma deposition systems must incorporate 

specially designed heatmg systems that can rapidly heat the electrodes to the process 

temperature, or use electrodes that are never thermally cycled

Deposition Rate Deposition rate increases with applied power The deposition rate is 

limited by the gas phase reactions with acceptable rates being about 500 Angstroms 

per Hour For a given spacing, electrode geometry and frequency, there is a unique

power at which the plasma intensity across a parallel plate will provide uniform 

deposition Deposition times should be at most six to seven hours for practical use

5 3 Design Criteria for Deposition System
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Within-substrate Uniformity In plasma enhanced CVD systems this is controlled by 

plasma uniformity across the surface of the substrate With electrodes much larger 

than the size of the substrate, within-substrate uniformity is easily achieved With 

electrodes of a size comparable to the substrate, the field is higher at the edges of an 

electrode when high frequency r f  power is used This mercases deposition rates at 

the edges and leads to nonuniformity in film coverage

Reproducibility of Depositions In order that conclusive results can be drawn from 

operating parameters, the parameters must be stable and reproducible from deposit to 

deposit

Cost As with all high technological areas, components and equipment are very 

expensive This mercases the need to make the system as flexible and durable as 

possible The costs may also limit the designer’s choice in matenals and labour 

available

The raw matenals for carbon films arc very cheap íe  methane and hydrogen, 

which makes the process very attractive m the long term for large-scale commercial 

production

5 4  Initial Tnal Reactor

In facing a new technological field of science, the best knowledge is gamed by 

tnal and error, so it was decided to build an initial deposition system This proved 

most beneficial for the following reasons

*  R f generator could be developed on a capacitive load
*  Substrate holder could be developed

*  Inlet gas nozzle and top electrode plate was perfected

*  R f  shielding techniques and filtering proved necessary

*  Range of parameters and degree of control needed was gamed
*  Effect of different gases on film properties

* Confirmation that the r f  generator was capable of dissociating the hydrocarbon gas

*  Idea for the range of parameter settings for hard films
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Figure 5 3 Tnal Reactor

5  41 Deposition Apparatus

The chamber consisted of a 8" diameter glass tube, 6" in height, with polished 

steel plates on either end as shown in figure 5 3 The pumping system consisted of a 

four stage rotary pump directly coupled beneath the chamber The gases were 

controlled by in line needle valves and meters and piped directly into the top of the 

chamber, through a 1/4 " stainless steel tube The top electrode, was a circular 

aluminium of 50 mm in diameter The substrate holder was an aluminium plate with 
insulating supports and a high intensity light bulb cradled beneath to provide substrate 

heating Additionally an electrical and thermocouple feed-through enabled substrate 

temperature to be applied and controlled, respectively
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5.5 R.f Power Generator

5 5  1 Specifications

The function of the generator is to supply r f  power to the chamber in order to 

excite the gas into a plasma state The generator, at a r f  frequency of 13 56 MHz, 

has an electncal power input of 100 watts to the power amplifiers This low power, 

is compensated for by the fact that the substrate area is small ( 196 xlO ' 3 m2), 

hence the power density is quite high.

The r f  generator consists of the following parts 1) Power supply 2) Oscillator 3) 

Driver Circuit 4) Power Amplifier and 5) Impedance matching network.

□ u t p u t

Figure 54 RJF Generator Components
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5 5 2  Impedance Malching

Electrical theory [104] reveals that maximum power in d c circuits will be 

transferred from a source to its load if the load resistance equals the source resistance 

In dealing with ac or time-varying waveforms the maximum transfer of power, from 

its source to its load, occurs when the load impedance (Z jJ is equal to the complex

conjugate of the source impedance When the source is said to dnve its complex

conjugate, it is simply the condition m which any source reactance is resonated with

an equal and opposite load reactance

Figure 5 5 Impedance Transformation

There are many possible networks which could perform this task The best 

known is probably the L network This network receives its name because of its 

component onentation which resembles the shape of an L

Zs C

Figure 5 6 The L Networic
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The fixed inductor, L, is connected in senes with two variable capacitors This 

allows the varying of L by adding or subtracting an opposite reactance

55  3 Complex Loads

In designing the matching network [105] of an r f  generator to a load, one 

assumes ideal resistive loads for example 50 ohms In practice the load may not be 

a real impedance The plasma cavity’s impedance is a function of the pressure, area, 

power, gas type, etc and can change dramatically dependmg on the process 

parameters Transistor input and output impedances are almost always complex, that is 

they contain both resistive and reactive components (R ± jX) Transmission lines,

sources and loads are no different in this respect

There are two basic approaches m handling complex loads

1) Absorption To absorb any stray reactances into the impedance matching network

itself This can be done through prudent placement of each matching element such 

that element capacitors are placed in parallel with stray capacitances, and element 

inductors are placed m senes with any stray inductances

2) Resonance To resonate any stray reactance with an equal and opposite reactance at 

the frequency of interest

The impedance matching network utilises both approaches In its implementation 

a lot of the refinement is through a process of tnal and error The L network was 

used to match parts of the internal circuitry of the generator The matching

arrangement that was chosen between the generator and the chamber [106] is shown
in figure 5 7

Figure 5 7 Unbalanced Bandpass Network
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This network utilises the advantages of harmonic suppression characteristics and is 

described as a tunable transfomer arrangement The tunable transformer network was 

used to match the output to the chamber, which has external switches on the generator 

cabinet for manually tuning to the plasma impedance This circuit was chosen 

because it gave a wide band of tunable impedances and offers the facility of

grounding the output, if so desired

5.5 4 Matching to Coaxial Feedlines

At the transmitter end of the coaxial feedhne, the impedance that the output

transistor actually sees is not only a function of the chambers resistance, but also is a

function of the length of the coaxial feedhne It is extremely difficult to estimate the

actual input impedance of any transmission line unless the line is terminated m its 

characteristic impedance le  50 ohms This is hardly ever the case when dnving 

practical plasma discharge cavities, so the matching network must be tunable over a 

wide range of impedance values

The attenuation of the signal through a coaxial will increase when the line 

terminates into a load other than 50 ohms The increased attenuation is given by [92]

Aa = A(p2 + l/2p) (4 1)

A = Initial Attenuation

Aa = Final corrected value of attenuation

p = Voltage standing wave ratio VSWR

The power losses can be dramatic and have unpredictable changes in system 
power calibration It is most important to use the appropriate cable of low attenuation 
to r f signals
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5 6 Design of Components in Caibon Him Deposition System

5 61 R J  Shielding

In order to prevent loss m plasma power [107] and interference with electrical 

equipment great care must be taken to properly screen the r f  signals [108] The

following are the steps taken to achieve this

1) R f  generator was enclosed in a suitable metal box, with no gaps greater than 3 

mm

2) All coaxial cables to the chamber were grounded, and the length of these cables

was as short as possible

3) R f filtenng was nescessary on the electncal mains to prevent mains contamination

If possible an independent mains source should be used for the r f  power generator

4) A true ground source was used.

5) All ground lines were arranged in a star network with the common earth at the

centre This was done to prevent an electncal spike going to ground via a piece of 

equipment

Figure 5 8 Ground Line Network

6) All exposed r f  connectors were screened with earthed aluminium tape

7) All dc signal and power lines were passed through r f  chokes before entering 
equipment These hnes were also screened
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8) A Faraday cage enclosing the complete system proved necessary, because of stray 

airbom r f  from the chamber This consisted of a tight steel mesh walled room, 8’ x 
8* x 4 ’ with a door at one end

5 62  Pumping System

The pumping system must be able to pump to 10"6 mbar for initial purging of 

the system and sustain the chamber pressure of 10"2 mbar when the deposition

through put of the system is about 50 seem

The system chosen was the base of the Edwards 306A vacuum evaporation

system The pumping mechanism consisted of a two stage ( 8 cubic litres per 

minute) rotary pump backing a 6 " diffusion pump with a liquid nitrogen cooled 

stack

5 6 3  Inlet Gas Control and Mixing

Three gases in all were needed to be controlled and mixed together before entry

mto the chamber They consisted of a reactive gas eg  CH4, a catalyst gas to help

the deposition eg  hydrogen and a earner or pre-etch gas eg  argon

The three gases were controlled by needle valves with a glass bearing meter It 

was realised that fine control over the reactive gas flow rate would be needed so a 

mass flow controller was installed inline A schematic representation of the gas mput 

system is shown in figure 5 9

MFC Flow M e t e r

C ham ber

Figure 5 9 Gas Input System

The reactive and catalyst gases were mixed immediately after the control valves 

The earner gas was not mixed until the inlet to the chamber This was done to 
allow flexibility of gas mixes
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5 64 Chamber Geometry

The chamber was an Edwards pyrex glass cylinder, 12” diameter and 14" in

height, with L-shaped gaskets The top plate was a polished disk of aluminium, 14" 

in diameter and 3/4 " thick This plate’s preparation and design are important for the 

present deposition and for future applications of the apparatus

The top plate had five ports machined into it The central port was 25 mm in 

diameter for the insulating PTFE feedthrough for the gas inlet pipe Symetncally 

about the centre were four other holes, three of which are 26 mm in diameter with

outer "O" ring grooves These ports are for future optical emission spectroscopy

experiments of the plasma [109] and can be blocked off with commercially available 

blanking plugs when not in use There are also available a wide selection of 

feedthroughs that will fit into these ports The other port was a large 40 mm 

diameter hole with the associated screw holes for a blanking cap This port was 

intended for use as a plasma probe [110] access point, presently being developed 
within the college

The bottom plate of the chamber was the base of the Edwards deposition system 

as shown schematically in the diagram 510 It had fourteen possible access ports

Installed were a thermocouple, r f  , electnal and an internal movable arm 

feedthroughs The remaining ten ports are available for further development using 

standard feedthroughs
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1. Short tripod leg
2 * Fixing bracket
3- Baffle plate
4. Long tripod leg

Figure 5 10 Vacuum Chamber's Base Plate [102]

5 6.5 Substrate Holder and Heater

The substrate holder is shown figure 5 11 It was made of sheet aluminium, 

with a crew connector for the r f supply The holder rested on ceramic tubes 

beneath which at a distance of 5 mm was a perforated sheet of aluminium to act as 

the Debye shield Perforated aluminium was chosen to reduce entrapment of gas and 

improve even gas flow over the substrate holder It also was of a lower mass hence 
absorption of conducted heat was reduced [111]

A stainless steel tube earned the r f  power line within to the bottom electrode 

and also supported the whole assembly This support was adjustable vertically and 
honzontally

The heat was supplied by tungsten wire filaments The wire was fed through 

high temperature ceramic tubing in parallel lines beneath the substrate plate which 
rested upon these tubes
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5 6 6 Gas Inlet Nozzle

It was found from experiment on the initial deposition system that that the input 

flow pattern of the gas over the substrates was crucial for good film coverage In

the initial system no film was formed directly under the inlet pipe and ridges of

varying thicknesses of film radiated out from the centre

In order to solve this problem and achieve an even flow of gas over the

substrates a "shower-head" type nozzle was designed This was made of aluminium m 

a cone shape which allowed a back pressure of gas to foim behind a sintered glass 

filter which dispersed the gas evenly over the substrate

The nozzle was made in two parts to facilitate filter replacement and cleaning 

The area of the top electrode could be easily changed by the addition of various sizes 

of circular disks around the top of the nozzle The gas inlet nozzle is shown in

figure 5 11

5 6 7 Parameter Control and Monitoring

The main parameters to monitor are the gas flow, pressure, substrate bias, peak 

to peak voltage of r f  waveform, substrate temperature and r f  power It is important 

to monitor as accurately as posssible the above parameters Most can be simply

monitored using various meters The substrate temperature is very important for the

film qualities, but presents a difficulty in its measurement because of r f  interference 

with the thermocouple The thermocouple cannot measure the temperature or be in

contact with the electrode, when the r f  is o a  In order to over come this problem a

thermocouple was fitted onto a movable arm, as shown in figure 5 11, which could be
moved over onto any part of the substrate surface momentarily when the r f  source is 
turned off
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Gas in le t

Figure 511 Plasma Deposition System
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5 7 Substrate Preparation

5 71 Introduction

Although the substrate [65] is a mandatory part of any deposition system, without 

which the concept of films is lost, the substrate is often forgotten about or obliquely

referred to Specific application and film tests require different substrate materials

which offer an acceptable compromise for the purpose on hand Ideally, the substrate 

should provide only mechanical support, but not interact with the film except for 

sufficient adhesion Mam factors to be considered when choosing substrates would be 

their usefulness in a range of mechanical, optical, chemical and electrical tests on the 

films

5 12  Thermal and Mechanical Considerations

When films are being deposited the substrate is placed under thermal and 

mechanical strain Heating of materials is always followed by expansion Upon

removal of heat the substrate and film will cool at different rates depending on their

thermal conductivity

The basic properties which must be considered in this category are coefficient 

of expansion and the thermal conductivity There are two types of situations m which 

a substrate encounters temperature changes One occurs during processing when the 

entire substrate is heated - for example, to deposit a film - and subsequently cooled 

The other time is when the film heats due to mechanical or electrical effects 

producing local regions of heating This can be a greater stress as some regions will 

expand while others retain their dimensions This is a problem with l-carbon films, m 

that their coefficient of thermal expansivity is very different from that of the steel 

substrates

5 73  Choice of Substrates

High Speed Steel H S S Steel substrates were chosen because it was 

ultimately hoped to be able to coat dnll bits The samples were 1" square by 1/8"

thick These could be easily polished to a finish of 3 pm This polish is necesary

for adhesion of film to substrate Also polished samples are necessary for hardness

tests using a diamond indentor and wear abrasion tests using a rubber wheel abrasion
tester

Silicon was selected because it is transparent to infra-red light down to
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approximately 600 nm'1 This allows the determination of CH bonding structure and

whether bonding is SP2 or SP3 type, through infra-red absorption spectroscopy

Glass availability of smooth clean surfaces and also the fact that it was easier 

to deposit on glass than on steel Usefull thickness tests, colour, transparency and

optical absorption can be conducted on glass samples

Glass cover slip very thin glass disks of 19 mm in diameter were used as a

means of determining the stess in films Depending on the radius of curvature of

these disks the induced film stress force can be determined

5 7 4  Substrate Cleaning

The adhesion of a film to a substrate is effected greatly by the cleanliness

[65,112] of the surface Oil, dust, etc, can act as a boundary layer between film and 

substrate [113] The surfaces must also be flat and smooth to facditate even film

coverage The following procedure was adapted in the cleaning and preparation of 

samples

1 - Solvent cleaning suitable reagents for substrate cleaning include acqueous 

solutions of acids and alkalies as well as organic solvents such as alcohols, ketones,

and chlorinated hydrocarbons The cleaning effect of acids is due to the conversion

of some oxides and greases into water-soluble compounds

2 - Substrate Polishing applicable to steel only, since glass and silicon wafers are

both pre-polished The process is a tedious one of step polishing down the surface to

a 3 pm finish on rotating desk polishing disks

3 - Ultrasonic Activation all samples except the silicon can be placed in a bath of

alcohol and placed in an ultrasonic activator for up to two hours Particularly

important for the polished steel samples as it removes oil and swarf

4- Substrate heating a convenient in situ procedure of heating the samples using 

the substrate holder heater assembly This should be done when the system is being 

pumped down to its lowest limit Particularly good at expelling water vapour and 

residual gases

5 - Glow-discharge cleaning again, a convenient in situ cleaning using an argon 

plasma The heavy argon atoms crash onto the surface heating it, expelling loosely

bound atoms and etchmg the surface, removing any oxides or grease
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The pre-etch has been well documented for enhanced nucleation during subsequent 

film deposition This etch is particularly important for film adhesioa In fact, without 

an argon pre-etch film adhesion is found to be extremely poor [114]
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The growth rate of films is an important process parameter It may also affect 

the structural and compositional properties of the film due to the vanations in the ton flux 

arriving at the substrate surface

Figure 6 1 shows the effect of substrate temperature on deposition rate A monotomc

decrease with increasing temperature was observed Above 190 °C  no film growth 

whatsoever occurred This suggests that a surface reaction is taking place whereby volatile 

species from the gas phase condense on the substrate surface and are then incorporated into 

the growing film with desorption of by-products Increase m substrate temperature decreases 
the residence time of these species on the surface and thus reduces the likelihood of their 
incorporation into the film

Figure 6 2 shows the effect of substrate bias voltage on the deposition rate Bias

voltage is related to the r f  power supplied to the plasma - increasing r f  power increases 

the substrate bias voltage Increasing power will increase ionisation and therefore increase

the active spccies in the discharge increase in bias will also increase the energy of tons

amving at the substrate and thus will probably increase the reaction rate of adsorbed
species

Figure 6 3 shows that the deposition rate increases with gas pressure A higher gas

pressure will provide a higher concentration of reactant materials

Figure 6 4 shows the effect of top electrode diameter upon deposition rate At point
(A) on the graph the deposition rate is low because of high power density which leads to

a large sputtering effect, therefore the net deposition is low At point (C) there is a low

power density hence the gas is not being dissociated effectively in the plasma This leads

to a low deposition rate At point (B) conditions are optimal and a good net deposition
rate is achievable

CHAPTER 6

RESULTS

6 1 Growth Rate of Films
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Figure 61 Deposition Rate vs Substrate Temperature

INDUCED BIAS (VDLTS)

Figure 62 Deposition Rate vs Induced Bias
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62  Stress of Thin Films

Plasma deposited films are particulary susceptible to intrinsic stress [65] As will 

be shown the stress is dependent on many of the deposition parameters such as the 

induced bias, substrate temperature, pressure, etc The film stress is the limiting factor

in the growth of films to thicknesses greater than around one micron because the 

forces can be strong enough to exceed the elastic limit of the film or substrate and

can cause the film itself or the substrate to shatter Intrinsic stress is dominant and

must be controled for film applications Total stress observed S is given by

S ~ ^external + ^thermal + ^intrinsic (6 1)

When a stressed film is deposited upon a thin substrate, it will cause it to bend

Most measuring techniques use this phenomenoa Others utilise x-ray or electron

diffraction, but these techniques give the strain and hence the stress in a crystallite

lattice This is not necessarily the same as that measured by substrate bending since 

the stress at the gram boundaries may not be the same as that in the crystallites

The mechanical methods for stress measurement are the Disk and Bending Beam 

methods [65] The disk method is prefered because of its ease of use In this 

method the stress of a film is measured by observing the deflection of the centre of a

circular substrate when the film is deposited on it.

Figure 6 5 Bending of cover-shp under deposited film

The approach taken was to use a optical microscope with a travelling stage The

fine focus was used to determine the deflection from the middle of the disk to the

edge The disks were glass cover slips of 19 mm diameter and 06  mm thick From

the centre shift d and the properties of the glass cover slip the stress S was

calculated [95]

S = d Y(g) T(g)2

(D/2)2 3(l-u) T(f) (6 2)
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where D = diameter, T(g) = thickness of glass, Y(g) = Youngs modulus of glass, v = 

Poisson ratio, T(f) = Thickness of film.

All the films exhibited compressive stress. The films were limited to thicknesses 

of below lum to avoid film shattering off and so avoid confusing film adhesion and 

film stress. Figure 6.6 is a photograph of a stressed film taken with an optical 

microscope. It shows clearly the buckling of the surface under compressive stress.

Figure 6.6 Photograph of stressed film

Figure 6.7 shows the effect of bias on film stress. Increasing the negative bias 
causes the stress to increase.

Figure 6.8 shows the decrease in stress with increasing pressure. This is due to 
the fact that at higher pressures more polymer-like films are produced.

Figure 6.9 illustrates the surprising result that as the substrate temperature is 

increased the stress of the films is also increased. Higher temperature would be 

expected to increase the surface mobility of adatoms and facilitate their incorporation 

into optimum bonding configuration and hence reduce film stress. A possible 

explanation is that at higher temperatures the film is less polymer-like with fewer 

graphitic carbon bonds and more tetrahedral bonds which provide less scope for stress 

relief due to the greater average number of interatomic bonds per atom.
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INDUCED BIAS (VOLTS) 

Figure 6 7 Film Stress vs Induced Bias

Figure 6 8 Film Stress vs Total Pressure
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Figure 69  Film Stress vs Substrate Temperature
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6 3 Adhesion of Films

This is the most important attribute of a deposited film without which all other

film characteristics [113] are meaningless If the adhesion of films is adequate, the

mam obstacle to their use m mechanical components is overcome Many parameters 

affect the adhesion such as temperature of the substrate, induced bias, cleanliness of 

the substrate, surface finish and pressure

Tape measurements were used because of ease of use, quickness and availability

In this technique adhesive tape is stuck to the film and pulled off, removing the film

partially or wholly This method is only qualitative and gives no indication of the 

relative magnitudes of the adhesive forces if the adhesion of the film to the substrate 

exceeds the adhesion of the tape to the film A standard masking tape was used

This allowed easy viewmg of stripped film as results were stored on acetate sheets 

The tape was peeled off at a similar angle and speed by the operator

A series of experiments were conducted to determine the effect of substrate 

temperature, pressure, bias and electrode area upon adhesion of the film to the 

substrate

The temperature did not have a drastic effect but adhesion increased with 

substrate temperature It was necessary to have a minimum substrate temperature for 

best deposits The coverage and smooth finish of the film were also improved by 

heatmg Figure 611 shows the percentage improvement in adhesion as a function of 
the substrate temperature

The adhesion of the film was greatly enhanced by increased negative bias Low 

bias (< 100V) films peeled off substrates These films were also soft and resembled a 

sort of polymer film There would seem to be an optimum bias for adhesion as at 

high bias rates the film was powder-like This may be as a result of high stress 

Figure 612 shows the percentage improvement in adhesion as a function of the 

induced bias The graph is devided in to two parts, as it was found that above a 

negative bias of 160 volts the film removed from substrate due to stress factors

As the pressure is increased the adhesion of the film improves At very low

pressures of less than 04  mBar film removed totally from substrate Figure 6 13 

shows the percentage improvement in adhesion as a function of the pressure

The area of the top electrode could be easily changed This meant that a senes

of experiments could be conducted to investigate its effects on film properties From
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' this it was seen in figure 6 4 an optimum ratio was achieved This was probably due 

to the fall-off in plasma density with large electrode area Figure 611 shows the

percentage improvement in adhesion as a function of electrode diameter

In an effort to improve the adhesion of carbon films to the steel Polished steel

samples were coated with 2 jxm of tungstea As can be seen, in figure 6 10, the

adhesion was dramatically improved This was attributed to the foimation of tungsten

carbides [32] at the interfacial layer This result also suggests a possible reason for

the good adhesion of the films on silicon and glass substrates due to the foimation of 

silicon carbides The dark areas of the photograph are the removed film

COATED UNCOATED

Figure 6 10 Effect of coating the steel with tungsten, before deposition of carbon film
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Figure 6 11 Adhesion Improvement % vs Substrate Temperature

Figure 6 12 Adhesion Improvement % vs Induced Bias
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Figure 6 13 Adhesion Improvement % vs Pressure
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64 Effect of Deposition Parameters on the Mechanical Properties of

Hun Caibon Films

Accurate measurement of the hardness of thin films is extremely difficult

Diamond tipped indentors commonly used for such measurements should not indent 

more than one tenth of the film thickness [115] otherwise the measurement is substrate 

dependent. Films may also demonstrate elastic properties giving misleadingly high 

hardness values Qualitatively, one finds the films difficult to scratch with a steel 

point

A Leitz Mini-Load 2 indentor was used to obtain hardness values on films of 

several micron thickness These hardness values were approximately 3000 Vickers, 

uncorrected for film elasticity Films of this thickness are very highly stressed and

disintegrate in a short penod It is difficult to grow hard carbon films greater than

one micron thickness for this reason It was decided to produce films of thickness 

less than one micron and to test these films for their wear resistant properties

Available for the wear abrasion test was a rubber wheel abrasion tester built to 

ASTM 665 specifications [116] The purpose of this machine is to reproducibly rank 

different coatings in order of their resistance to abrasioa From these wear 

measurements in revolutions per micron, approximate hardness values can be 
extrapolated by knowing wear amounts for materials of known Vickers hardness

In wear applications the hardness of the wear coatings is naturally of prune

interest For abrasive wear applications the hardness of the coating has to be higher

than the hardness of the abrasive particles themselves The abrasive wear rate 

decreases very fast with increased coating hardness and even small hardness increases 
have significant effects

The procedure involved mounting the sample in the arm of the machine The

speciman is immersed in a slurry of abrasive particles (AI2O3 particles) and pressed 

against the rotating wheel at a specified force by means of a lever arm and weight
system, as shown in figure 6 15

Wear is inversely proportional to the hardness of the abraded matenal [117,118]

Wear a  1/Hardness (6 3)

Figure 616 shows the wear resistance in revolutions of abrasion wheel per 

micron (rev/jim) of film plotted as a function of substrate temperature A linear

increase in wear resistance is found with substrate temperature At the lower
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temperatures the adhesion of the films is poor Hence it is difficult in this region to 

separate poor adhesion with wear resistance Low wear rates signify a failure m the

adhesive force of the film rather than the cohesive wear which is obvious at high 

wear rates

Figure 615 Schematic Drawing of Wear Abrasion Tester

Figure 617 shows the wear resistance as a function of the induced bias, a 

dramatic increase m wear resistance is observed with increasing bias Again it is 

difficult to separate poor adhesion and wear as it was found from adhesion tests that 

below -120 volts induced bias, adhesion was very poor and the films were soft and 
dusty like in appearance

Figure 618 shows the wear resistance as a function of total pressure of the 
deposinon system It reveals a sudden increase in film wear rate above 15 mBar 

The films in this region were found to be polymer-hke Bunshah [59] found that 
films produced at high pressures and low power were polymer-hke in structure
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Figure 616 Wear Resistance vs Substrate Temperature
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Figure 617 Wear Resistance vs Induced Bias



m
n

z2
> 

—
t c

o1 
1 (/O

 p
i 

7 ö 
/o
i>
m<
;

TGTAL PRESSURE (nBARS)

Figure 618 Wear Resistance vs Total Pressure

111



65 Summary of Results of the Mechanical Properties of Thin Carbon Films

For any large throughput of coated items it is necessary to have a high

deposition rate Dearly by increasing the bias the ion flux is increased which 

produces a significant increase in the deposition rate The process and resultant film 

characteristics are interdependent in a complex way Optimising the film growth along 

with the properties is extremely difficult The properties required for a particular 

application dictate the process parameter values For example, although the deposition 

rate is increased by increasing the bias so also is the intrinsic stress of the film 

A summary of the effects of increasing the three mam parameters on film properties 

is given below

Param sler Pep/rate Stress___Adhesion ffear Resistance

B ia s  Increase Increase Improved Increased

Pressure  Increase Decrease Improved Decreased

Su b stra te  Decreased Increased Improved Increased

Temperature

Table 6 1 Effect of Deposition Parameters on the Film Properties

The intrinsic stress is the mam disadvantage of carbon films This stress must

be minimised dunng the film growth It is thought to be caused by the high hydrogen

content of the films It has been found that the addition of hydrogen to the plasma

actually reduced the hydrogen content of the films [75] All the above deposits were

done at a methane to hydrogen ratio of 5 1 This is not to suggest that this is an
optimum ratio, but was one which produced high quality hard films
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6 6 Composition and Structure of Carbon Films

Important cntena for the understanding of the films unusual properties is their 

bonding and structure, and their variation dependmg on the deposition parameters

6 61 IR. Spectroscopy

Infra-red spectrometery [119] works upon the principle of exciting molecules at 

the resonant frequency of the molecular bonds This instrument scans through the 

wavelength range from 4000 cm" 1 to 250 cm' 1 The resultant transmission spectrum 

shows the absorption peaks of the various molecular species interactions This 

phenomena is similar to the simple harmonic oscillator, where it can be shown through 

quantum mechanics, that the vibrational energies, like all other molecular energies are 

quantized, and the allowed vibrational energies for any particular system may be 

calculated from the Schrodinger equation For the simple harmonic oscillator these 

turn out to be

Eu = + 1/ 2) h Wosc Joules (6 4)

Where x> is called the vibrational quantum number An extension of this theory 

into three dimensions and polyatomic molecules allows an understanding of the spectra 

There are many possible vibrational modes of the molecules As an example, the 

water molecules three fundamental vibrations are shown in figure 6 19

/ ° \  / ° \I T  H H H

Figure 6 19 a) Symmetric Stretching b) Symmetric Bending c) Antisymmetric Stretch

The bonding structures of many molecules can be observed by their absorption 
peaks in IR  analysis

Functional group spectroscopy provides information on the existence of CH, CH2, 

or CH3 groups [22,120] This can yield information on the reduction of 

carbon-carbon cross-linking by hydrogen decorated atoms can be inferred

In order to determine the effect of deposition parameters upon the film bonding, 

a piece of silicon wafer was mcluded with the substrates as the various systematic
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parameter changes were conducted The silicon samples were then placed in a dual 

beam Perkin-Elmer 983 infra-red spectrometer

A typical spectrum is shown in figure 5 20 Strong absorption bands were 

observed near the 2900 and 1450 cm' 1 lmes and are unambigous evidence for C-H 

bonds, most probably in methyl and methylene groups Other peaks were observed 

with the addition of oxygen, as shown in figure 6 20 it increased the C=0 absorption 

peak at 1785 -> 1755 cm ' 1, or nitrogen to the system [121] The broad O-H near 

3300 cm-1, the N-H or NH2 bands between 3200 and 3500 cm* 1 all appeared 

depending on the gas mixture In general these contaminants had detrimental effects 

on the film growth

7000  2000  1600 1200 800

Figure 6 20 Typical IJR. Absorption Spectrum of a Carbon Film

The IR  spectrograph's features did not vary substantially with variations in the 

deposition parameters In order to determine the the parameters effect upon the 

bonding withm the film The absorption coefficient for the C-H peak at 3000 cm' 1 

was plotted as a function of the mam deposition parameters

The transmitted intensity I \  is given by the equation [122]

Film (1) 1 /  = I0 Exp -(a + P) X, (6 5)

where a  is the absorption coefficient for the substrate material

P is the absorption coefficient of the absoiption mode of interest
X is the thickness of the film
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I, = Iq Exp -a  X ,

v  = Exp -pX,
I, (6 7)

Hence,
P = V x Ln . I o / r  (66)

This coefficient will be proportional to the amount of C-H bonds present at a 

particular wavelength This equation also takes into consideration the thickness of the 

deposited film

In figure 6 21 the absorption coefficient is shown as a function of the applied 

substrate temperature A linear fall-off with substrate temperature is observed This

suggests that there is a decrease in the proportion of C-H bonds in the film This is

as expected, more hydrogen is expelled from the film at high temperatures

The absorption coefficient as a function of the induced bias is shown in figure 6 22 

The proportion of C-H bonds is found to decrease with the applied bias This is 

evidence that the gas molecules are being dissociated more effectively at higher bias 

voltages It is important to note that the deposition rate and wear resistance also 

increased at higher bias voltages

The absorption coefficient as a function of the total pressure is shown in figure 

6 23 As was predicted from the films mechanical properties, there was a large 

increase m the proportion of C-H bonds with pressure These films are certainly
polymer-like in nature
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Figure 621 Absorption Coefficient vs Substrate Temperature
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Figure 622 Absorption Coefficient vs Induced Bias
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Figure 6 23 Absorption Coefficient vs Pressure
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6 62  X-Ray Diffraction

A selection of films were also subjected to tests of X-Ray Diffraction XRD

[123] This technique utilises the phenomena of diffraction of light waves as they 

pass through gaps in a crystal lattice Using the Bragg equation for the diffraction of 

light, the lattice spacing d, which is a unique property of every crystalline matenal 

can be found

Bragg Equation nX = 2d Sin 0 (6 7)

where n = Fnnge Number

X = Wavelenth of X-rays 

0 = Angle of Diffraction

This instrument consists of a sample stage at the centre of a circular drum, 

which has a travelhing X-ray detector around its circumference The instrument rotates 

the detector about the drum yielding a plot of light intensity versus diffraction angle

From the XRD tests no crystal structure was observed This itself is a result in 

that now an amorphous structure is identified The IR  and XRD results would 

together suggest that an amorphous carbon structure, consisting of mainly C-H bonds 

is present The structure was descnbed as a network of random covalently bonded 

molecules by Angus [83,84] This could explain their unusual strength, being a 

closely packed structure of strong C-H bonds

Graphitic like films were easily recognisable because of their ease of wear and 

soot like appearance It is more difficult to separate amorphous and polymer-like 

films, but certainly at high pressures and low power a polymer was formed This 
polymer had very good coverage and surface finish and exhibited very little film 

stress Unfortunately these films were soft and easily removed The amorphous type 

were very hard and wear resistant, but very highly stressed and could be not grown to 

thicknesses greater than 1 jxm without film shattenng-off the substrate There was a 

vast difference in the wear abrasive properties of these two films but t o r  deposition 

conditions were quite similar This suggests that at critical level the films change 

from a hard amoiphous to a soft polymer-like with increasing pressure This can be 

seen m figure 6 18 as the pressure is increased above 1 5 mbar the wear resistance 
falls off sharply
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6 7 Plasma Gas Species

A simulation under the typical deposition conditions was performed on another 

system to which a mass spectrometer was attached This instrument tells the atomic 

mass units of the vanous gas species present and the proportion of these in a plasma 

gas [57,95,124]

The spectrum was taken with the r f power turned on and with the same

conditions but with the r f  turned off This was done to identify the ionization effect 

of the gas caused by the analyser itself

Shown in figure 624 is a spectrogram of methane without r f  plasma activatioa 

The peaks of CHX denvatives at 13 and 16 am u can be clearly seen When the

plasma is activated the spectrogram changes too that of figure 625, here the methane 

denvatives are clearly visible between 13 and 15 am u A large hydrogen peak is 

also observed at 2 am u These spectrographs confirm the results from the IR  that

the films contain carbon-hydrogen bonded molecules and the methane gas is not being

dissociated into pure carbon atoms The intensities of the CH* peaks were 

substantially increased due to the extra ionization caused by the plasma All the C-H 

denvatives are present in the plasma, with a noticeable increase in the proportion of 

CH2 and CH peaks in the activated gas
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Figure 6 24 Mass Spectrogram of Methane
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Figure 6.25 Mass Spectrogram of RF Activated Methane Discharge
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CHAPTER 7

DISCUSSIONS

7 1 Introduction

A range of films were deposited under vanous expenmental conditions The 

range of film properties and their complex dependence on deposition parameters make 

specialising in certain fundamental properties necessary The three parameters of 

substrate temperature, induced bias and pressure were identified as the most important, 

the other vanables such as electrode area or reactor geometry etc are peculiar to any 

one system, hence their effects, although important, cannot be generalised

The optimisation of film qualities is extremely difficult Many of the effects of 

the varying parameters are inter-dependent, so conclusive results are impossible 

Presented here are the process trends, which identify clearly the areas of difficulty in 
the process and properties of carbon films

12  Effect of Substrate Temperature

In order to achieve good adhesion of the film to the substrate, the substrate must 

be heated to a certain level This increases the surface adatom mobdity, which leads 

to a better coverage on the surface and a more densely packed structure It is 

extremely difficult to separate the effects of the vanous parameters from each other, as 

increasing the induced bias will also increase surface adatom mobility

Assuming all other parameters are held constant and only the parameter of 

interest is changed then we can analyse the effect of this one parameter change

As shown in figure 61 the deposition rate falls off linearly with the substrate 

temperature This is due to the reduction in sticking coefficient with increasing

temperature It can be shown that the mass condensed at time t is given by [65]

M(t) = M t + exp (-I*Dxat) - 1

I*Dta 0 1)

It is seen that the mass deposited M(t) strongly depends on the total impingement 

time t, the substrate temperature Tx, the diffusion coefficient of monomers on the 

substrate D, the mean residence time of adsorbed monomers t, and the impingement
rate I* This is shown graphically in figure 7 1
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Figure 7 1 Mass deposited vs. time at various substrate temperatures

All the samples were deposited for the same length of time, hence at higher 

temperatures, less film material was laid down

It can also be shown that there is an exponential dependence of the nucleation 

frequency on (free energy) The rate at which supercntical aggregates are created 

will decrease rapidly with increasing temperature This means that at higher substrate 

temperatures it will take longer before a continuous film is produced [72]

[6^G*/8T] > 0 (7 2)

The film’s physical properties are of utmost importance As stated already 

substrate heating was necessary for good adhesioa As can be seen in figure 68 a 

minimum substrate temperature of 100 °C  is needed, and above this level adhesion 
improves with temperature Without good adhesion it is impossible to determine such 

properties as wear resistance or film stress In performing the range of tests a 

compromise must be made with the substrate temperature, that is to have good 
adhesion and yet good deposition rate

The film stress was found to increase with increasing substrate temperature The 

increased stress can be attnbuted to two effects Firstly, the hydrogen content of the 

films was reduced with increasing temperature This is seen in figure 6 21 that the 

absorption coefficient of C-H peaks decreases with substrate temperature Less C-H 

, bonds are formed at high temperature adding to the evidence that a surface reaction 

was incorporating more carbon atoms and expelling volatile hydrogen in atom and 

molecular form This leads to a purer carbon content film, which does not have the
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bonded hydrogen to relieve stress Secondly, as the substrate temperature is increased 

the microstructure will be more densely packed as was shown in figure 4 11 This 
compactmg of the carbon structure with substrate temperature will cause increased 

stress of the film The wear resistance as a function of substrate temperature would 

indicate that these films were more resistant and therefore harder

7 3 Effect of Induced Bias

The induced bias is found to be determined by the r f  power to the chamber, 

the gas pressure and the gas type It reflects the ionization state of the plasma and 

is a measure of ion energy amving at the surface By knowing the induced bias and 

the peak to peak voltage of the r f  the important parameter of plasma potential can 

be found which is typically of the order of about 20 volts

The higher the induced bias the more ionization, hence more dissociation of the 

gas molecules which leads to a higher deposition rate as seen m figure 6 2 The gas 

molecules are being broken up more effectively, so one would expect that the 

deposited film would contain less C-H bonds Figure 6 22 confirms this showing that 

the absorption coefficient of the C-H peak decreases with increasing bias voltage

Although increasing the bias voltage helps the adhesion, this has a threshold

level and because the film stress increased with bias, a stage was reached when the 

film spontaneously shattered off the substrate This limited the thickness of the films 

to less than one micron, so that adhesion tests could be conducted without the effect 

of stress This bias effect on the adhesion is shown in figure 6 12 It is clear that

a cntical level is reached where film adhesion falls off dramatically

As the induced bias is increased so also is the wear resistant property of the
film This is seen in figure 617 At low bias levels the film was soft, 

polymer-like This, as stated, can be summarised as follows Low bias voltage gives 

bad dissociation of the hydrocarbon molecules, hence incorporation of many 

polymer-like structures and a low deposition rate At high bias a high ion flux is 

achieved, deposition rate is higher, dissociation of the molecules is more efficient, 

hence the film is of a higher carbon content This is shown by the IR  data that the 

absorption coefficient of the C-H peak decreases as a function of bias voltage in

figure 6 22 Unfortunately, at high deposition rates and ion flux energies, more

impunty atoms are incorporated and defects in film structure occur, which lead to 

highly stressed films
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7 4 Effect of Total Pressure

The chamber pressure directly affects the deposition process and the film

properties Increasing the pressure reduces the adatom surface mobility, just as

lowering the substrate temperature will do The pressure of the chamber was changed 

by increasing or decreasing the flow-rates Yasuda [125] suggested the parameter of 

W/FM where W is the power, F is the flow rate and M is the molecular mass 

Hence, the effect of pressure is related to power and type of gas dissociation 

Practically the approach taken was to adjust the power to repeat the same deposition 

conditions such as the induced bias Increasing the pressure also caused a higher

substrate temperature to be achieved This was due to heat convection effects within 

the chamber In order to compensate for this effect the substrate heater power was 

reduced at high pressures

By increasing the flow rates the "residence time” of active species at the 

substrate and the supply of fresh monomer to the discharge are increased Which 

means that there are more species and they have a longer time to be incorporated into 

the film growth As was seen in figure 6 3 the deposition rate increased with

pressure Above a pressure of approximately 1 5 mbar the deposition rate was three

times that of the low pressure region The process at high pressure is a plasma 

polymerization phenomena [126]

Several models have been proposed to explain plasma polymerization In early 

studies of a c discharges the mam emphasis was on the process of monomer 

adsorption on the substrate, but in later work the effects in the gas volume were

taken into account [127]

Lam et al [128] analysed four main possibilities in the case of r f  discharge in 

styrene and again found that the adsorption of monomers on the substrate is very

important. They claimed that the best descnption of the behaviour was that the

monomers were activated ui the gas phase by electron bombardment and were diffused 

to the substrate where they propagated and terminated Yasuda [125] suggested a new 
terminology, and accordingly proposed that, m general, polymerization in a glow 

discharge comprises both of plasma-induced polymerization (essentially conventional 

polymerization triggered in an electnc discharge) and plasma (atomic) polymerization 

In the latter case the onginal monomer molecules serve as the source of the reactive 

species (fragments or even atoms) which form large molecules by repeated stepwise

reactions In the former case, plasma-induced polymerization, this proceeds via 

utilisation of polymerizable structure and no gaseous byproduct is created The 

formation of the polymer and the properties of the coatings are controlled by the
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balance between plasma-induced polymenzation, plasma polymerization and ablation of 

the polymer [129]

Further, justification for descnbing the films at high pressures as polymers, is 

given by the very low stress levels of these films, shown in figure 6 8, and the 

extremely poor wear resistant properties, shown in figure 618 In fact, these films 

resembled a polythene-like coverage and adhesion to the substrates

The IR  spectrograph showed a significant change in the absorpuon coefficient as 

a function of the pressure, indicating an increase in the incorporation of C-H bonded 

molecules in the film The adhesion of these films improved linearly with pressure 

This is misleading in that these films resembled a polymer coating rather than a hard 

film

In conclusion, at higher pressures polymer-hke films were produced These had 

good coverage and adhesion and where virtually stress-less The structure showed a 

large incorporation of H bonded molecules These films were soft and easily 

scratched away In fact, some were so soft they were below wear resistant 

measurement on the abrasion tester

Three distinct film types were observed 1) Hard carbon type, 2) Graphite 

carbon-like and 3) Polymer-like film

75 Chamber Geometry

The specific deposition results are dependent on the chamber geometry and 

design It has been discussed in section 2 6 that the induced bias is dependent on 
the relative electrode areas by equation (2 31)

A series of experiments were conducted using different top plates to investigate 
this effect The resultant films can be best explained in terms of plasma ion density 

An optimum region exists where the deposition rate is high, stress is not excessive, 

adhesion is good and films exhibit good wear resistant properties In this region a 

net film deposition occurred, the induced bias was high enough for hard caibon films 

to be formed and not the polymer-like which occur at low bias voltages
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7 6 Formation of Carbides

The adhesion of the films in general was better on silicon and glass, than on 

steel This was attributed to the formation of silicon carbides at the interfacial layer 

The adhesion was very bad on the polished steel samples, when hard carbon films 

were deposited

Polished steel samples were coated with a tungsten layer of approximately 2 Jim 

thick and coated with carboa For comparison polished steel samples without a 

tungsten coating were included with these samples in the deposition system The 

result was conclusive Carbon films of up to one micron could be grown on the 

tungsten coated steel These showed excellent adhesion as seen in figure 6 10 and the 

wear resistant properties of the film went from virtually none, to one which was 

capable of resisting more than 300 revolutions per micron on the abrasion tester

Other workers [32] have found similar charatenstics coating the substrate with 

titanium or tungsten helps carbide formation and also produces a thermal expansivity 

coefficient matching layer

7 7 Optimum Conditions

The requirements of a particular film determine the deposition conditions There is 

a wide range of "carbon" films, having very different properties from very hard 

diamond-like to soft polymer-like films Although these soft films were thought to be 

a nuisance new applications such as refractive index matching within optical 

instruments have meant that these films may be of use

The most desirable film property for this project was the wear resistive aspect of 
the films The process is one of a compromise between the vanous film properties 

such as a high bias produces hard films but also increases the film’s intrinsic stress

The three mam vanables are substrate temperature, induced bias and pressure 

By adjusting these, other parameter effects such as geometry, or electrode design, can 

be compensated for The optimum conditions for a hard carbon film would seem to 

be an environment as active as possible, that is high bias, high substrate temperature 

and low pressure It is the practical factors that limit this such as high stress and 
low deposition rate
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CHAPTER 8

CONCLUSIONS

8 1 Conclusions

R f plasma deposition is an adaptable and reliable way of producing hard thin 

carbon films The process parameters have a complex relationship with each other 

and their effects on the resultant film properties

The three most important process parameters are substrate temperature, induced 

bias and system pressure In terms of the film‘s growth environment, these affect the 

adatom surface mobility, dissociation efficiency of the gas, ion unpact energy on the 

surface and the residence time of atoms or molecules m the reaction zones

The resultant carbon films varied dramancally depending on the deposition 

settings They ranged from soft polymer-like to hard films of a strong amorphous 

structure, which demonstrated hardness qualities of 3000 Vickers

The deposmon rates and properties of these films were graphically related to the 

deposition parameters in order for the advantages and disadvantages of each parameter 

to be examined It is believed that optimum deposition conditions will depend on the 

desired film properties

Expenmentation was concentrated on the three most important parameters to effect 

the film properties Some other parameters such as electrode area, gas mixture and 

interfacial layers were also investigated m an effort to achieve hard carbon film 
growth on steel samples

The effect of increased bias voltage can be summarised as causing an increase in 

the gas dissociation leading to increased deposition rate and an increase in the wear 

resistant properties of these films The disadvantage of high biased conditions was 

found to be the increase in the film stress The film stress was so high in some 

cases that the forces exceeded the elastic limit of the films and caused them to shatter 

off the substrate This intrinsic stress was found to be the limiting aspect in the 

growth of thin carbon films Due to this stress, the thickness of the films was limited 

to less than one micron, so that analysis could be conducted

Film induced defects and the higher carbon content of the films are the main 

cause of this intrinsic stress For a particular film morphology, it has been recognised
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that substrate temperature and bias voltage play inverse roles High temperature 

deposits may be obtained at low temperatures provided that substrate bias is employed 
These high biased produced films were much more wear resistant than low bias films 

This was attributed to the purer carbon content of these films as was observed by the 

IR  analysis These films may be classified as "hard amorphous thin carbon films"

The main consequences of increasing the substrate temperature was the 

improvement in film adhesion to the substrate and the increased wear resistive 

properties of the films Increased temperature deposits caused the deposition rate to 

fall off below practical deposition levels The nucleation rate is a function of the 

substrate temperature and falls off according to equation (71) Intrinsic film stress 

increased with increasing temperature This result was unexpected, but has been 

observed in other deposition systems [61] and suggests that a surface chemical reaction 

is involved in the surface phase of the deposition

The effect of the deposition pressure on the properties of the films was 

investigated by varying the gas flow rates to the chamber but keeping the gas ratios 

constant The induced bias is a function of gas type and pressure, so in order to keep 

conditions as reproducible as possible from deposit to deposit while varying only one 

parameter the r f  power to the chamber was increased with increasing gas pressure

The deposition rate was found to increase with increasing pressure These films 

were found to be of very low stress and good coverage Unfortunately, they were 

soft, with virtually no wear resistant properties whatsoever These films were certainly 

polymer-like in structure This was confirmed by the IR  analysis which showed the 

increase m C-H bonding present in the films This film formation was attributed to a 

’’plasma polymerization" [127] process The increased pressure, caused the "residence 

time" of the molecules to increase, thus more molecules were available for film 
growth on the surface The increased pressure would also cause the dissociation of 
the hydrocarbon gas to be less efficient so that a higher proportion of the surface 

molecules have a higher amount of hydrogen atoms bonded to the carbon atoms

The tests conducted on the relative areas of the top electrode to bottom electrode, 

indicate clearly the effect of plasma density on film depositions An optimum ratio 

was found where net deposition of the film occurred Basically, with large surface 

areas, the plasma is dispersed so a lower concentration of dissociated species amve at 

the surface With very small areas, the plasma density is high and the film is being 

sputtered off the surface as quickly as it is being deposited For any particular ratio 

of electrode areas, the film characteristics can be understood tn terms of ion flux and 

surface adatom mobility A range of thin film properties can be produced by varying
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the three primary parameters But for any particular system an optimum condition 

will exist

It was extremely difficult to deposit carbon films upon steel substrates In an 

effort to improve this adhesion, samples were coated with a 2 fun thick coating of 

tungsten, which readily forms tungsten carbide bonds with the deposited film This 

proved most successful achieving adhesion rates as good as those deposited upon glass 

and silicon The importance of this mterfacial layer is likely to be more beneficial 

for the practical application of these carbon films on to steel dnll bits These 

tungsten layers could be used through the coating in a layering process to help reduce 
the film’s intrinsic stress

129



CHAPTER 9

RECOMMENDATIONS

91 Introduction

In any new and innovative technological research field, there are always 

improvements and modifications to be made both to the deposition system and process 

Some of the following recommendations were not possible due to limitations m time

or resources available The recommendations have been divided up into three sections

1) Deposition System - pieces of equipment that would enhance the system or

possible improvements to the existing apparatus 2) Deposmon Process - possible 

new deposition techniques or ideas on achieving various types of films, and 3) 

Film Analysis - a bnef suggestion as to analytical techniques that would be very
useful m determining film properties

9 2  Deposition Systran

The present system is lacking two pieces of important equipment Firstly, the r f  

generator and tuning mechanism, although capable of producing hard films at current 

operating pressures, if lower pressures are desired, which may well be when one

considers the Thornton diagram m section 4 5 2, it will be unsuitable for these low

pressures and will not be able to stnke a plasma Also, the literature would suggest 

that higher powered plasmas produce hard diamond-like films This range of different 

powers is yet to be explored As important as the power source, a commercial r f  

tuning mechanism would also be necessary, as this would couple more power into the 

chamber and reduce the risk of back power spikes destroying the generator

Secondly, the gas flow control into the chamber In order to achieve low

chamber pressures a very low flow rate is required This flow must also be

reproducible and accurately measurable To this end, mass flow controllers, calibrated 
for low flow rates, le less than 50 seem are necssary for all inlet gas lines It is 

also important to mix the gases before entry into the chamber There are several 

commercially available steel drum-like apparatus for this use

One cannot speculate on other additions to the system, such as a mass spectrum 

analyser, or ion beam gun These developments are dependent on the area of 

interest of the project and on the resources available
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9 3 Deposition Process

The main obstacles m carbon thin film growth have been clearly identified as

intrinsic stress and adhesion of the films to the substrate Many researchers have tned 

various techniques to reduce this stress They include the addition of hydrogen to 

plasma in large amounts, addition of other gases to selectively etch the surface as the 

film grows, to produce a hard pure carbon form The addition of mterfacial layers 

showed very significant improvement to the adhesion of the film This may require a 

modification on the system for in situ coating of the samples, with tungsten for 

example, which would chemically bond the carbon in a carbide form to the surface

The film may also be grown in a layered structure of composite materials or by 

changing the deposition parameters so as to create layered structures of stress-free

regions The above may be applied together or in various combinations As can be 

seen, the list of possible techniques for deposition films is virtually endless This 

would prompt the use of an experimental technique such as the Taguchi Method [130] 

to help in optimising the growth conditions

9 4 Film Analysis

There are an endless vanety of possible tests that could be conducted on the 

films In selecting several of these one has to ask which tests will yield the most 

information The tests can be divided up into two categories 1) Characteristically, 

such as hardness, adhesion, wear resistance, etc, and 2) Structurally and 
Composidonally

The thickness of thin films is extremely difficult to measure The mterferometnc 
method used here depends on measuring the lme spacings on the resultant photograph 

This can be extremely difficult to gauge as often the lines are very close and faint

A better technique would be to use a ellipsometer or a profileometer for this
important measurement

The hardness of thin films is usually done on a microindentor using a Knoop or

Vickers diamond mdentor If the indentation is more than a 1/10 of thickness of the

film, the measurement is substrate dependent Knoop mdentors do not mdent as 

deeply into the surface so are often used in thin film applications

A summary of possible thin film characterisation techniques [131] is shown in
table 9 1
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Thin Film Characterisation

Structure Determination

X-Ray Diffraction

Morphology
Scanning Electron Microscopy

Stress

Newton’s Rings 

Microscope 

Bending Beam

Adhesion

Tape Methods 

Scratch Methods

Hardness
Indentation Tests

Compositional Analysts

Auger Electron Spectroscopy AES 

Auger Depth Profiling ADP 

X-Ray Photoelectron Spectroscopy XPS 
Electron Probe Microanalysis EPM 

Secondary Ion Mass Spectroscopy SIMS 

Rutherford Back-Scattering RBS

Table 91
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Abstract

Hard carbon thin films have been investigated intensively in the past decade They 

show properties of extreme hardness, chemical inertness and optical transparency and their 

use has been suggested for wear protective coatings This paper describes the deposition 
of such films by PECVD and details the effects of the most important deposition 

parameters on their mechanical properties

Films were produced which exhibited extreme hardness of up to 3000 Vickers

Their deposition rate was found to decrease with substrate temperature and increase with 
induced bias and pressure The intrinsic stress and wear resistance were found to

increase with the induced bias and substrate temperature but decreased as the pressure

was increased The film adhesion was found to improve at higher temperature and bias 

and also at higher pressure but films m this region were found to be of reduced
hardness

The deposition conditions which must be maintained in any scaling-up of the system 
to commercial size were identified
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1 INTRODUCTION

The wearing and corrosion of machine parts is the main cause of mechanical

breakdown This costs tens of millions of pounds every year in replacements and lost 

production Ways to reduce this wear loss include coating the surface with an extremely 

hard material to improve wear and corrosion resistance The unusual combination of

density, hardness, chemical inertness and electncal insulation make hard carbon films a

possible contender for such coatings1

There has been a large and continual increase over the past sixteen years in interest

in carbon films since the work of Aisenberg and Chabot^ Over five thousand articles

have been published in the past ten years alone The produced films are called 

l-carbon, diamond-hke carbon, a-C H, carbonaceous carbon or plasma polymensed carbon, 

according to their properties or the techniques by which they are produced 3 These 

films have been produced by many vaned experimental techniques encluding DC and

R F  plasma, ion beam, laser induced and microwave plasma.

The method of Plasma Enhanced Chemical Vapour Deposition PECVD is employed 

in this study This allows a chemical process to be conducted at relatively low

temperatures compared to normal CVD The process involves dissociating methane gas 

(CH4) in a capacitively coupled R F  plasma operating at 13 56 MHz

A descnption of the experimental apparatus and the effects of the deposition

parameters on the process and film characteristics is givea The implications of the 

important aspects of carbon film deposition with regard to the manufacturing industry are 

discussed
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2 EXPERIMENTAL APPARATUS

The Carbon thin films were deposited by the dissociation of methane in an r f  

plasma A schematic diagram of the deposition system is shown in figure 1 The 

chamber was borosilicate glass pumped by diffusion and rotary pumps The r f  power 

was supplied by an 13 56 MHz generator with an output of 100 Watts

Gas in le t

The power was supplied to the bottom electrode and the top electrode was normally 

earthed but could be floated to any desired potential The reactant gas was fed in via a 

"shower head" arrangement which incorporated a sintered glass filter to ensure even gas 

flow over the substrate The methane flow was controled by a Tylan mass flow 

controller and the other gases were controled by flowmeters The substrate temperature 

was measured by contacting the surface with a moveable thermocouple

A r f  capacitively coupled reactor is advantageous in the manufacturing situation 

from the viewpoint of both coating distnbution and high productivity  ̂ The arrangement 

is intended to compensate for the electnc field gradient from the centre of the electrode 

toward the edge by the gas concentration distnbution, and thus to obtain a uniform film 

The gas mixture used dunng deposition was a mixture of methane and hydrogen in the 

ratio of 5 1 The addition of hydrogen was found necessary to improve the film 

properties in agreement with other studies^ Before loading the steel substrates were 

polished to a 3 micron finish and ultrasomcally cleaned in dichloromethane Before 

deposition the substrates underwent an argon bombardment for atleast 40 mmutes to 
reduce surface contaminatioa
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3 RESULTS

3 1 Growth Rate of Filins

The growth rate of films is an important process parameter from the

manufacturing point of view It may also affect the structural and compositional 

properties of the film due to the variations in the ion flux amving at the substrate

surface

Figure 31 shows the effect of substrate temperature on deposition rate A

monotonic decrease with increasing temperature was observed Above 190°C no film 

growth whatsoever occurred This indicates that a surface reaction is taking place

whereby volatile species from the gas phase condense on the substrate surface and are

then incorporated into the growing film with desorption of by-products Increase in 

substrate temperature decreases the residence time of these species on the surface and

thus reduces the likelihood of their incorporation into the film

Figure 3 2 shows the effect of substrate bias voltage on the deposition rate Bias

voltage is related to the r f  power supplied to the plasma - increasing r f  power

increases the substrate bias voltage Increasing power will increase ionization and

therefore increase the active species in the discharge Increase m bias will also increase

the energy of ions amvmg at the substrate and thus will probably increase the reaction
rate of adsorbed species

Figure 3 3 shows that the deposition rate increases linearly with gas pressure A

higher gas pressure will provide a higher concentration of reactant materials

Figure 3 4 shows the effect of top electrode diameter upon deposition rate At

point (A) on the graph the deposition rate is low because of high power density which 

leads to a large sputtering effect, therefore the net deposition is low At point (Q  there 
is a low power density hence the gas is not being dissociated effectively in the plasma

This leads to a low deposition rate At point (B) conditions are optimal and a good net
deposition rate is achievable
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SUBSTRATE TEMPERATURE (C)

Figure 3 1 Deposition Rate vs Substrate Temperature

DEPOSITION RATE V S  INDUCED BIAS

INDUCED BIAS (VOLTS)

Figure 3 2 Deposition Rate vs Induced Bias

(
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Figure 3 3 Deposition Rate vs Total Pressure
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Figure 3 4 Deposition Rate vs Top Electrode Diameter
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3 2 Stress of Thin Rims

Plasma deposited films are pamculaiy susceptible to intrinsic stress^ As will be 

shown the stress is dependent on many of the deposition parameters such as the induced 

bias, substrate temperature, pressure, etc The film stress is the limiting factor in the 

growth of films to thicknesses greater than around one micron because the forces can 

be strong enough to exceed the elastic limit of the film or substrate and can cause the 

film itself or the substrate to shatter The stress may be compressive or tensile in 

nature

Stress can be caused when the coefficients of thermal expansion of the film and its 

substrate are not the same This contribution is known as theimal stress Even 

accounting for this many films have a residual stress known as intrinsic stress Intrinsic 

stress is dominant and must be controled for film applications Total stress observed S is 

given by

S = ^external + Sj^gj^a] + Smtnnsic

When a stressed film is deposited upon a thin substrate, it will cause it to bend 

Most measuring techniques use this phenomenon Others utilise x-ray or electron 

diffraction, but these techniques give the strain and hence the stress m a crystallite 

lattice This is not necessarily the same as that measured by substrate bending since the

stress at the gram boundaries may not be the same as that in the crystallites

The mechanical methods for stress measurement are the Disk and Bending Beam 

methods^ The disk method is prefered because of its ease of use In this method the 
stress of a film is measured by observing the deflection of the centre of a circular 
substrate when the film is deposited on it

Figure 4 Bending of Cover-slip under deposited film
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The approach taken was to use a optical microscope with a travelling stage The 

fine focus was used to determine the deflection from the middle of the disk to the edge 

The disks were glass cover slips of 19 mm diameter and 0 6 mm thick From the

centre shift d and the properties of the glass cover slip the stress S was calculated

S =  d Xig) l i s lL
(D/2)2 3(1-u) T(0

where D = diameter, T(g) = thickness of glass, Y(g) = Youngs modulus of glass, u = 

Poisson ratto, T(f) = Thickness of film

All the films exhibited compressive stress The films were limited to thicknesses of 

below \\im to avoid film shattering off and so avoid confusing film adhesion and film 
stress

Figure 3 5 shows the effect of bias on film stress Increasing the negative bias 
causes the stress to increase

Figure 3 6 shows the decrease m stress with increasing pressure This is due to 

the fact that at higher pressures more polymer-like films are produced

Figure 3 7 illustrates the surprising result that as the substrate temperature is

increased the stress of the films also is increased Higher temperature would be 

expected to increase the surface mobility of adatoms and facilitate their incorporation into 

optimum bonding configuration and hence reduce film stress A possible explanation is 

that at higher temperatures the film is less polymer-like with fewer graphitic carbon 

bonds and more tetrahedral bonds which provide less scope for stress relief due to the 

greater average number of interatomic bonds per atom
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Figure 3 5 Film Stress vs Induced Bias

Figure 3 6 Film Stress vs Total Pressure
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This is the most important attribute of a deposited film without which all other film

characteristics are meaningless Adhesion is defined as the sum of all the intermolecular

interactions between two different juxtaposed materials

If the adhesion of films is adequate, the mam obstacle to their use in mechanical 

components is overcome Many parameters affect the adhesion such as temperature of the 

substrate, induced bias, cleanliness of the substrate, surface finish and pressure

Tape measurements were used because of ease of use, quickness and availability 

In this technique adhesive tape is stuck to the film and pulled off, removing the film 

partially or wholly This method is only qualitative and gives no indication of the 

relative magnitudes of the adhesive forces if the adhesion of the film to the substrate

exceeds the adhesion of the tape to the film A standard masking tape was used This

allowed easy viewing of stripped film as results were stored on acetate sheets The tape 
was peeled off at a similar angle and speed by the operator

A series of experiments were conducted to determine the effect of substrate 

temperature, pressure, bias and electrode area upon adhesion of the film to the 

substrate

The temperature did not have a drastic effect but adhesion increased with substrate 

temperature It was necessary to have a minimum substrate temperature for best

deposits The coverage and smooth finish of the film were also improved by heattng 

Figure 3 8 show the percentage improvement in adhesion as a function of the substrate 
temperature

The adhesion of the film was greatly enhanced by increased negative bias Low

bias (<100V) films peeled off substrates These films were also soft and resembled a
sort of polymer film There would seem to be an optimum bias for adhesion as at

high bias rates the film was powder-like This may be as a result of high stress

Figure 3 9 shows the percentage improvement in adhesion as a function of the induced 

bias The graph is devided m to two parts, as above a negative bias of 160 volts the 
film removed from substrate due to stress factors

As the pressure is increased the adhesion of the film improves At very low

pressures of less than 04mBar film removed totally from substrate Figure 3 10 shows 

the percentage improvement in adhesion as a function of the pressure

The area of the top electrode could be easily changed This meant that a series of 

experiments could be conducted to investigate its effects on film properties From this it 

was seen that the film adhesion was best with a smaller top electrode area This was

3 3 Adhesion
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probably due to the fa11-off in plasma density with large electrode area This was 

probably due to the fall-off in plasma density with large electrode area Figure 3 11

shows the percentage improvement in adhesion as a function of electrode diameter

In an effort to improve the adhesion of carbon films to steel polished steel samples 

were coated with 2um of tungsten As can be seen, m figure 5, the adhesion was 

dramatically improved This was attributed to the formation of tungsten carbides^ at the 

interfacial layer This result also suggests a possible reason for the good adhesion of 

the films on silicon and glass substrates due to the formation of silicon carbides The

dark areas of the photograph are the removed film

COATED UNCOATED

Figure 5 Effect of Coating the steel with tungsten, before deposition of carbon film
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3 4 Effect of Deposition Parameters on the Mechanical Properties of Thin Carbon Films

Accurate measurement of the hardness of thin films is extremely difficult Diamond 

tipped indentors commonly used for such measurements should not indent more than one 

tenth of the film thickness^ otherwise the measurement is substrate dependent Films 

may also demonstrate elastic properties giving misleadingly high hardness values 

Qualitatively, one finds the films difficult to scratch with a steel point

A Leitz Mini-Load 2 mdentor was used to obtain hardness values on films of 

several micron thickness These hardness values were approximately 3000 Vickers, 

uncorrected for film elasticity Films of this thickness are very highly stressed and 

disintegrate in a short penod It is difficult to grow hard carbon films greater than one

micron thickness for this reason It was decided to produce films of thickness less than

one micron and to test these films for their wear resistant properties

Available for the wear abrasion test was a rubber wheel abrasion tester built to 

ASTM 665 specifications The puipose of this machine is to reproducibly rank different 

coatings m order of their resistance to abrasion From these wear measurements m 

revolutions per micron, approximate hardness values can be extrapolated by knowing wear 
amounts for materials of known Vickers hardness

In wear applications the hardness of the wear coatings is naturally of prime interest 

For abrasive wear applications the hardness of the coating has to be higher than the 

hardness of the abrasive particles themselves^ The abrasive wear rate decreases very 

fast with increased coating hardness and even small hardness increases have significant 
effects

Today a large range of vanous coatings can be grown by PVD and CVD processes
and some of the most commonly used materials are listed in table 1 below 8 pgs(l-15)
Of these carbides and nitrides are the most used ones, but other refractory compounds 
such as oxides and bondes are being increasingly used
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Coating Thermal Coeff  Hardness Decomposition 

10-6 k -1 Kg mm'2 Temp °c

TiC 7 4 2900 3067

HfC 6 6 2700 3928

TaC 6 3 2500 3983

WC 4 3 2100 2776

c r 3c 2 10 3 1300 1810

A120 3 9 00 2000 2300

T i N 9 35 2000 2949

Substrate
H S S t e e l 12-15 800-1000

A1 23 30 658

Table 1 Some Commonly Used Hard Coatings

The procedure involved mounting the sample in the arm of the machine The 

speciman is immersed in a slurry of abrasive particles (AI2O3 particles) and pressed 

against the rotating wheel at a specified force by means of a lever arm and weight 

system, as shown in figure 6

Wear is inversely proportional to the hardness of the abraded material

Wear a  1/Hardness

Figure 3 12 shows the wear resistance m revolutions of abrasion wheel per micron 

(rev/urn) of film plotted as a function of substrate temperature A linear increase in 

wear resistance is found with substrate temperature At the lower temperatures the

adhesion of the films is poor Hence it is difficult in this region to separate poor

adhesion with wear resistance Low wear rates signify a failure m the adhesive force of

the film rather than the cohesive which is obvious at high wear rates
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Figure 6 Schematic Drawing of Wear Abrasion Tester

Figure 313 shows the wear resistance as a function the mduced bias shows a

dramatic increase with bias Again it is difficult to separate poor adhesion and wear as

it was found from adhesion tests that below -120 volts induced bias, adhesion was very 

poor and the films were soft and dusty like in appearance

Figure 314 shows the wear resistance as a function of total pressure of the

deposition system It reveals a sudden increase in film wear rate above 1 5 mBar The

films in this region were found to be polymer-like Bunshah^ found that films 

produced at high pressures and low power were polymer-like m structure

17



SUBSTRATE TEMPERATURE (C)

Figure 3 12 Wear Resistance vs Substrate Temperature

INDUCED BIAS (VOLTS)

Figure 3 13 Wear Resistance vs Induced Bias
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4 DISCUSSION

If carbon films are to be of use to the manufacturing industry, several intrinsic 

difficulties with their deposition process and charactenstics must be over-come For any 

large throughput of coated items it is necessary to have a high deposition rate Clearly 

by increasing the bias the ion flux is increased which produces a significant increase in 

the deposition rate The process and resultant film charactenstics are interdependent in a 

complex way Optimising the film growth along with the properties is extremely 

difficult The properties required for a particular application dictate the process parameter 

values For example, although the deposition rate is increased by increasing the bias so 

also is the intrinsic stress of the film

A summary of the effects of increasing the three main parameters on film properties is 

given below

P u m fcifcl P6B/JCate S t r e s s  AdhesioiL Wear Resis tance

Bias  Increase Increase Improved Increased

Pressure  Increase Decrease Improved Decreased

Substra te  Decreased Increased Improved Increased
Temperature

Table 2 Effect of Deposition Parameters on the Film Properties

The intrinsic stress is the main disadvantage of carbon films This stress must be 

minimised dunng the film growth. It is thought to be caused by the high hydrogen 

content of the films It has been found that the addition of hydrogen to the plasma 

actually reduced the hydrogen content of the films^ All the above deposits were done 

at a methane to hydrogen ratio of 5 1 This is not to suggest that this is an optimum 

ratio, but was one which produced high quality hard films
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5 IMPORTANT ASPECTS FOR THE MANUFACTURING PROCESS

5 1 Plasmas in Industrial Processes

Plasma Enhanced CVD11»1̂  offers the facility of unique processing applications to 

very many ready established chemical processes Plasmas offer clean efficient coating or 

etching of materials Vanous low temperature matenals can now be processed in a 

highly active chemical process that hitherto were exclusively high temperature procedures 

R f  plasmas offer the facility of coating insulating matenals, which can enhance their 

properties to a standard of matenal which would be very much more expensive 

In a world of ever increasing raw matenals costs, new matenals or prolongment of the 

useful lifetime of old will be needed as we enter the 21st century

5 2 Usefullness to Manufacturers

Although initial costs and development are expensive plasma processing is cheap and

has very high throughput Raw matenals for carbon films are methane, hydrogen gas

and electncal power This high technological area is especially important in the Insh 

industnal environment, since being small and adaptable to world trends Ireland could act 

in a specialist service capacity m the world of matenals processing

Plasma deposition methods have found widespread acceptance as a technique for the 

deposition of thin films with electrically, mechanically and optically desirable 
charactenstics The process spans from dielectnc low temperature coating m the 
micro-electronics industry to the expanding area of macro-electronic device fabncatioa 

The plasma deposition process enables the sophisticated matenals and device engineenng 
which is required by this emerging technology

From a process point of view, major challenges exist if the requirements posed by 

different technology applications are to be met Carbon film deposition onto matenals to 

enhance their wear resistant properties must compete with other established technologies 

or coatings, eg  TiN Definite advantages such as cost or reliability have to be

established beforehard carbon technology can successfully compete In all cases, the 

challenge is to fabncate relatively defect free films with uniform properties over large
areas
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5 3 Scale-up Issues

In order that plasma deposition can be profitable and economically viable a 

transformation must be made from the laboratory to the production line? All deposition 

reactors are expensive, therefore, it is necessary to ensure that the scaled-up version will 

produce the desired results It is important to understand to first order how a 

volumetnc enlargement of the reaction space requires other externally controlled

parameters to change Obviously substrate temperature will be similar if the kind of 

reactive species and their condensation rate are the same as for the small scale process 

The primary question is therefore, how the gas flow rates, the pressure and electrical 

power have to be changed to assure that the scale-up does not affect the plasma 

chemistry significantly

The deposition can be viewed as two separate stages Firstly, the formation of 

condensable species and secondly the mass transport, by convective diffusion, of these 

radicals to the surface of the growing film For the former process it has been 

theoretically proven that the rate coefficients for the reactions caused by electrons m a 

gas pressure P, subjected to electncal excitation by a source of effective electric field 

strength E, depend only on the value E/P 13 To first order, molecular dissociation

rates by electron impact are therefore a function of this ratio

The molecular transport is also, through diffusion coefficient D, a function of the 

pressure, since DP is a constant for any gas Therefore pressure and effective field 

strength should be similar for small and large scale reactors The only parameter left to 

vary is the gas flow rate which can be scaled by imposing the requirement that the

average gas flow velocity be the same in a small and a large reactor Alternatively it

can be required that the average gas residency time be the same for both reactors

When the interelectrode distance of the large and small reactor are the same, the 
requirements of the same gas velocity and gas residency time are equivalent

In any case, the problem of scaled-up parameter optimisation is reduced to the 

adjustment, by linear extrapolation, of the electncal power and the flow rate However,

it would be a mistake to think life is so simple since other factors would be changed in

reactor geometry, eg  wall temperature effects, and practical design considerations such as 

easy cleaning and automation will affect the plasma environment

Finally the efficiency of the reactor is crucial for it to be a viable commercial

operation High matenal efficiency is usually associated with low deposition rates This 

is especially important for the case where a large throughput of devices is necessary or 
thick films ( > 10pm) are needed
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6 CONCLUSION

Hard carbon films were obtained which showed varying charactensties depending on 

the deposition parameters The three most cntical parameters from a deposition 

viewpoint were identified as being substrate temperature, pressure and induced bias, and 

the effect of these parameters on the mechanical properties of the resultant films was 

shown The limiting factor was identified as film stress and the effect of this stress on 

other characteristics was discussed

From a manufacturer’s viewpoint carbon films are a possible area of matenal 

processing waiting to be explored with new products The scaling-up of the process is 

possible provided the required film properties are clearly defined m the initial stages of 

the design
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