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A b s tr a c t

Two different approaches for finding the exponentially improved asym ptotic be
haviour of integrals w ith saddlepoints are presented B oth  rely on the deform ation  
of the contours o f integration and can be applied to single and m ultidim ensional 
integrals alike The class of integrals studied is of the form

J  J  9(zu ,zp)e~f{zu 'Zp,X)dzi dzp:

where A G C is the asym ptotic param eter and S , the surface of integration is allowed 
finite or infinite lim its Thus, for exam ple, the asym ptotic behaviour o f the Spitzer 
integral

roo />oo
/  /  *?' Zppesxz' zp- ^ +  +&dZl dzp, |z | ->• oo,

Jo Jo

could be determ ined This latter integral is the solution o f the differential equation

y {n\ x )  -  Y,™=0arx ry(r)(x) = 0,

where the a x of the integral are related to the at of the differential equation by certain  
recurrence relations H yperasym ptotic m ethods have recently been developed for 
certain classes o f differential equations but m som e cases it is useful to have an 
alternative approach originating with the integral representation o f such solu tions—  
for instance, when the asym ptotic behaviour of the solution at infinity has to be 
m atched to initial or boundary value data The m ethods presented here should  
provide the necessary link

The first m ethod to be presented is based on a technique suggested by Nikishov  
and R itus in 19921 which dealt with single integrals only, the second is a m ethod  
detailed by Berry and Howls in a series of papers from 1990 to 19972 which works 
on integrals of any finite dim ension Various m odifications and extensions o f these 
procedures were necessary to achieve the results obtained T hese allow, for instance, 
the presence o f a logarithm ic singularity m the function g(zu  , zp)

Nikishov and V Ritus Stokes line width English translation m Theoret and Math Phys 
92(1) 711-721,1992

2M Berry and C Howls Hyper asymptotics Proc Roy Soc London Ser A 430(1880) 653- 
668,1990
M Berry and C Howls Hyperasymptotics for integrals with saddles Proc Roy Soc London 
Ser A 434(1892) 657-675,1991
C Howls Hyperasymptotics for integrals with finite endpoints Proc Roy Soc London Ser A 
439(1906) 373-396,1992
C Howls Hyperasymptotics for multidimensional integrals, exact remainder terms and the global 
connection problem Proc Roy Soc London Ser A 453(1966) 2271-2294,1997



C o n t e n t s

1 S in g le  I n te g r a ls  A n  I n tr o d u c t io n  1
1 1 Introduction to A sym ptotics 1
1 2 Integral Representation 2
1 3 M athem atical Prerequisites 4

1 3  1 Pom care A sym ptotics 4
1 3  2 Exponential A sym ptotics 6
1 3  3 Stokes Phenom enon 8

1 4 Classical M ethods 10
1 4  1 Integration by Parts 11
1 4  2 Laplace’s M ethod 12
1 4  3 M ethod of Stationary Phase 13
1 4  4 Saddlepom t M ethod 15
1 4  5 M ethod of Steepest Descent 17

1 5 Modern M ethods 20
1 5  1 Sum m abihty M ethod 20
1 5  2 D istributional Approach 21
1 5  3 M ellm (or M ellm-Barnes) Transform Techniques 22
1 5  4 Uniform Expansions 23

2 M e th o d  o f  N ik is h o v  &; R itu s  25
2 1 Outline of M ethod 25

2 11  The Dom inant Term 27
2 12  The Recessive Term 29
2 1 3  Remarks 31

2 2 Extension of M ethod of Nikishov & Ritus 32
2 2 1 Discrepancies 32
2 2 2 D istance from Stokes Line 34
2 2 3 Choice of 2* 35
2 2 4 Higher Order Approxim ation 35
2 2 5 Number of Saddlepom ts 37
2 2 6 Factor g(z) 39
2 2 7 F in ite Endpoint Contribution 40

2 3 Exam ple A iry’s Integral 41
2 3 1 Convergence 42
2 3 2 A nalyticity  42
2 3 3 Contour of Integration 43
2 3 4 Branch Cut 44

1



2 3 5 Contour P lots 45
2 3 6 R esults 45
2 3 7 Conclusions 50

3 B e r r y  & H o w ls  A p p r o a c h  53
3 1 The Saddlepom t M ethod of Berry & Howls 53
3 2 Incorporating Finite Endpoints 56

3 2 1 Q uadratic Dependence 57
3 2 2 Linear Dependence 58

3 3 Ordinary Differential Equations 60
3 4 Comparison of R esults 62

3 4 1 Application of M ethod 62
3 4 2 Numerical results 63
3 4 3 Contours of Integration 64
3 4 4 Conclusions 67

3 5 Sm oothing of Stokes Discontinuities 68
3 6 Erf vs Erfc 69
3 7 Natural Variables 70

4  M u lt id im e n s io n a l  I n te g r a ls  A n  I n tr o d u c t io n  72
4 1 Introduction 72
4 2 Prelim inaries 73
4 3 D ouble Integrals of Laplace Type 76

4 3 1 Reduction to Single Integral 76
4 3 2 Transformation to R epeated Integrals 78
4 3 3 A lternative Transformation 80

4 4 Higher D im ensional Integrals of Laplace T ype 81
4 5 M ultivariate Saddlepom t M ethod 85
4 6 Recent Work 86
4 7 A pplication to Differential Equations 91

4 7 1 Spitzer Integral 91
4 7 2 M olms Integral 94

5 M u lt id im e n s io n a l  M e th o d s  97
5 1 A nalogue of Nikishov & R itu s’ M ethod 97

5 11  Dom inant Term 98
5 12  Recessive Term 99
5 1 3  Remarks 100

5 2 A pplication to Double Airy Integral 101
5 3 H ow ls5 M ultidim ensional M ethod 101

5 3 1 Exam ple Double Airy Integral 106
5 4 Conclusions 107

6 E x t e n s io n s  108
6 1 Integrals w ith one Finite Boundary 108

6 11  Q uadratic Dependence 108
6 12  Linear Dependence 112

6 2 A pplication to Single Integrals 113

11



6 3 Application to Double Integrals 116
6 4 Logarithmic Singularities 122

6 4 1 Exam ple 126
6 5 Further Extensions 127
6 6 Conclusions 132

A  S in g u la r it ie s  o f  A^G  133

B ib lio g r a p h y  135

in



L i s t  o f  F i g u r e s

1 1 R elief of exf(z) w ith saddlepoint z° and schem atic diagram of lines of
steepest ascent and descent through z°, the shaded regions denoting  
the sectors where 5R/(z) <  19

2 1 Contours Cu% and C*/ near a Stokes line note that lies on both Cu*
and the contour joining z^  to z^  27

2 2 Contours Cu* and C*/ away from a Stokes line note that lies on
both and the contour joining z^  to 2^  35

2 3 Contour deform ation m the case of 3 saddlepom ts 38
2 4 Contours of integration for the Airy Ai function 43
2 5 Contour plots generated by Mathematica for the Airy Ai function 46
2 6 Contour plots generated by Mathematica in a neighbourhood of the

Stokes line at 9\ — y  47

3 1 Contours of integration m £-plane §3 1 57
3 2 Contours of integration m £-plane §3 2 2 60
3 3 Contour truncation in the £-plane 67

4 1 An exam ple of a Newton polygon [37] for where m  and n
represent the indices of ¿i and t2 respectively 88

4 2 Sketch of a Lefschetz thim ble [29] 90
4 3 Volume enclosed by trajectories arising from edges of V  [34] 91

6 1 Sketch of the analogue of a ‘Lefschetz th im ble’ when a saddle point
appears on a boundary of the surface of integration 110

6 2 Contour plots generated by Mathematica for y(A) m (6 37) 114
6 3 Contour plots generated by Mathematica for /(A ) in (6 88) 127

IV



L i s t  o f  T a b l e s

2 1 Num erical results using the m ethod of Nikishov & Ritus 48
22 Possible choices of z* for Ai(A) w ith zu = 1, z l =  — 1 49
2 3 Numerical results m a neighbourhood of the Stokes line at 6\ — ~ 50
2 4 Numerical results in a neighbourhood of the Stokes line at 9\ =

(contd ) 51
2 5 Values of chosen m a neighbourhood of the Stokes line 51

3 1 Results obtained by Berry & Howls m ethods as described in §3 1 and
§3 3 respectively 65

3 2 R esults obtained by Berry k  Howls integral m ethod m a neighbour
hood of the Stokes line 66

5 1 Values of /(A ) com puted using the m ethod of §5 1 102
5 2 Values of A i(a i  X)Ai(piX)  w ith 9\ = 0 [29] 106

6 1 Values of y(A) m (6 37) obtained using the m ethod of §6 1 2 117
6 2 Values o f y(A) m (6 48) obtained using the m ethod of §6 1 1 121
6 3 Values of /(A ) obtained using the m ethod of §6 4 w ith |A| =  1 128

v



C h a p t e r  1  

S i n g l e  I n t e g r a l s :  A n  I n t r o d u c t i o n

1.1 In tro d u c tio n  to  A sym p to tics
'i

A sym ptotic approxim ation is an im portant branch of applied analysis and concerns 

the study o f the behaviour of functions m particular lim its of interest— perhaps one 

of the function’s parameters tends to a specific value or the index of a sequence m ay 

tend towards infinity To quote de Bruijn [15], it is “a difficult subject that requires 

constant alertness and carefulness” because, although asym ptotic and perturba

tion techniques provide m ost useful and powerful m ethods for finding approxim ate  

solutions to problems, they can be difficult to justify  rigorously O riginating in V ic

torian tim es when it provided the m ost reliable and rapid m eans of approxim ation, 

asym ptotics holds its own in this, the age of powerful com puters, as even still m any  

m athem atical m odels cannot be solved by the use o f direct numerical m ethods alone 

A sym ptotics, however, may provide the inform ation required to sim plify the com 

putational procedure, its value lying in the quantitative description o f phenom ena  

it obtains

It would be difficult to nam e a branch of m athem atics, physics, or indeed the 

natural sciences in which asym ptotic m ethods could not be used, having had an 

im portant role to play in electrom agnetism , diffraction theory, fluid m echanics, m e

teorology and statistics T he investigation of integrals, series, solutions of linear 

and non-linear differential equations and system s (both ordinary and partial), dif

ference equations and integral equations have all resorted to the use of asym ptotics  

In the case of differential and difference equations, much o f the asym ptotic analy

sis em ployed is local analysis— that is to  say, the behaviour o f the solutions in the

1



1 2 I n t e g r a l  R e p r e s e n t a t i o n 2

neighbourhood of a particular point is predicted w ithout incorporating the in itial 

or boundary data at other points Local analysis enables the solutions of equations 

which are not soluble in closed form, to be sim ply expressed in term s of elem entary  

functions T his results in a representation of the solution which is valid in a suffi

ciently sm all neighbourhood o f such a particular point P iecing together the local 

behaviours m different neighbourhoods m ay lead to a uniform approxim ation to the  

behaviour of the solution over the entire interval in question, which is the ultim ate  

aim The piecing together process requires the use of global analysis

1.2 In te g ra l R ep resen ta tio n

The second half of the seventeenth century saw the onset of infinite series and their 

analogues, integral representations, as fundam ental tools m m athem atical analy

sis T hey provided the m eans for introducing all of the transcendental functions  

including those which are now term ed elementary (l e trigonom etric, logarithm , 

exponential functions) These m turn helped in the solution of m any differential 

equations, both ordinary and partial However, the analysis of power series soon  

gave way to integral representation techniques when it cam e to analysing their sin

gular points or continuing them  outside their dom ain of convergence B oth  these  

problems are more easily solved when dealing with an integral of an analytic func

tion w ith respect to  a parameter, where the dependence on such a param eter is also 

analytic

Research into the behaviour at infinity of an entire function can also be notice

ably sim plified by the use of an integral representation in place of a convergent power 

series B ut it is m the solution o f differential and difference equations which can

not be solved in term s of elem entary functions that integral representations, when 

available, are m ost useful The predictions of the behaviour of such solutions at a 

particular point will usually contain unknown constants because the boundary value 

or in itial value data at other points has not been incorporated For m any o f these  

equations however, it is possible to find an integral representation o f the solution  

m which the independent variable appears as a param eter T ypically  th is integral 

will contain all of the inform ation supplied by the initial value or boundary condi

tions Som etim es such a representation can be found m erely by using the m ethod
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of integrating factors to  find the solution of a sim ple differential equation w ithout 

actually  evaluating the integral More often it is obtained by applying an integral 

transform (such as the Laplace, Fourier, M ellm transforms) to  the equation These  

transforms are by no m eans arbitrary linear integral operators— each o f them  sup

ports an inversion and com m utation formula and they have been used successfully  

in a huge number of concrete problems in m athem atical physics Once the integral 

form of the solution has been established its value at any finite point can be found  

by sim ple substitu tion  (It should be noted that it is not always possible to  find such 

an integral representation particularly for nonlinear differential equations However, 

there are other techniques available to  fully determ ine the asym ptotic behaviour in 

question— for exam ple, the technique of m atched asym ptotic expansions [59] )

However, m any of these integrals, when found, are too  difficult to  evaluate ex

actly, thus the asym ptotic expansion of integrals becom es extrem ely im portant All 

of the special functions com m only used in m athem atical physics and applied m ath

em atics have integral representations from which their asym ptotic properties were 

determ ined Once the properties of these special functions were known, they could  

in turn be used in the derivation of the global behaviour o f solutions of general 

classes o f differential equations whose solutions were not them selves expressible as 

integrals T hat is to  say, som etim es the solution could be w ritten as a function of 

special functions— thus widening the sphere of influence of integral representations of 

the latter1 We confine ourselves to the study of techniques which find the asym ptotic  

behaviour of a function from its expression as an integral, but it should be noted  

that m any of the procedures used have counterparts in other areas of asym ptotic  

analysis

A flavour of the variety of applications where asym ptotics of integrals has becom e 

useful can be given by the following physical phenom ena such as the dam ped-m ass 

spring system , heat conduction m non-radiating solids, acoustical scattering and 

probability theory To be a little  more specific, integrals o f the type

I(X) = Jg(z)e-Mdz, (11)

whose asym ptotic behaviour can be determ ined by the m ethod of steepest descent, 

arise naturally in the context of linear wave propagation, am ong other problem s
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1.3 M a th e m a tic a l P rereq u is ites

1.3.1 Poincare Asymptotics

In order to define w hat is m eant by an asym ptotic expansion o f a function, some 

prelim inaries are required

(I) f ( x )  is of order not exceeding g(x)

f ( x ) = 0 ( g ( x ) ) ,  x - > x °  => \f(x)\ < K \g(x) \ ,  K  e R, x  -»  x 0> (1 2 )

(II) f (x )  is of order less than g(x)

f (x )  = o(g(x)), x —¥ x° => lim
i - » x °

or f ( x )  <C g(x), x x°,

(111) f ( x )  is asym ptotic to g(x)

f ( x)
9(x)

= 0 (13)

f ( x )  ~  g(x), x —> x => lim f ix) = 1 (14)
9{x)

or f ( x )  — g(x) -C g(x), x —> x° or even f (x )  =  p (x ) ( l  +  o ( l) ) ,  x  —> x°,

(iv) A sym ptotic expansion for f (x )
o o

f i X) ~  ^ 2 an<t>nix), X X° (1 5 )
71=0

is an asym ptotic expansion for f (x )  where { an} is a sequence o f constants and {(j)n} 

is a sequence of functions such that (j)n+i(x )  =  o(</>n(x)), x  x°, if

m

f i x ) = ^ 2 an4>nix) + 0{<f)m+l(x)), V m  (1 6 )
n=0

T his m eans that the error com m itted in truncating the series at a finite point is of 

the order o f the first neglected term and m the particular case where <j)n(x) — x n, 

it behaves like a power of x  N ote that an asym ptotic expansion of a function f (x )  

is not unique because there exists an infinite number of asym ptotic sequences {<f)n} 

to  choose from However, given a particular asym ptotic sequence, the asym ptotic  

representation o f f ( x )  is unique with respect to  this sequence

In general, an asym ptotic formula for a function f ( x )  is the nam e given to  an 

approxim ation function # (x ) in some dom ain of values of x, where g(x) is ‘sim pler’
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than f ( x )  For instance, if f ( x )  is an integral, g(x)  would be given either m the form  

of a sim pler integral or in term s of values of the integrand and its derivatives at a 

finite number of points All asym ptotic m ethods have two com m on characteristics—  

firstly, the asym ptotic formula is more accurate the closer x  is to  rc° (to quote Laplace 

“the m ethod is the more precise the more that it is necessary” ,[43]) and secondly, 

an asym ptotic formula alone does not guarantee the value of f ( x )  to be calculated  

to  any assigned degree of accuracy In fact, it can be easily illustrated that two 

asym ptotic formulae for the sam e function which look tolerably similar can produce 

very different predictions for a value of f ( x)  The error term s which have been 

neglected m the formulae are the source of this difference and consequently it is 

im portant to take note of the form and m agnitude of such error terms As de 

Bruijn [15] points out, even if an asym ptotic result is presented in the m ost explicit 

form possible, it m ay not provide satisfactory results from a numerical point of view  

In practice, when expanding f ( x )  asym ptotically to  n terms, the remainder, 

denoted Rn(x ) , m ore often than not becom es steadily larger as n grows As f ( x )  is 

finite, such a growth m ust be balanced by the series and so the infinite series can be 

expected to diverge However, all is not lost because if x  is allowed to approach x° 

while n is kept fixed, Rn{x) still tends to zero W hereas convergence of the series 

m eans that there is a certain statem ent about n —¥ oo for each x , to say that a series 

is asym ptotic m eans that there is a statem ent about x  -4  oo (x°) for each n— an 

im portant distinction Even if the asym ptotic series were to converge, its sum need 

not be equal to f { x ) ]

In 1828, Abel condem ned divergent series as the invention of the devil and dic

tated that it was “sham eful to base on them  any dem onstration whatsoever” [6] 

Fortunately, neither Poincare nor Euler shared this loathing Euler carried out 

m any operations on power series outside their dom ains o f convergence and managed  

to  obtain accurate results despite the apparent illegitim acy of his com putations To 

justify  such perversity, he claim ed that he was working not on the series them selves 

but on the functions which could be expanded into such series The uniqueness of 

the expansion of a function into a power series did indeed perm it this free transition  

from series to  function In actual fact, in m ost cases, the term s of an asym ptotic  

series decrease rapidly at first but later start to  increase again For that reason,
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Stieltjes had nam ed them  ‘sem i-convergent’ series and others had talked of ‘con- 

vergently beginning’ series but neither of these term s persisted It was Poincare 

who first introduced the notion of an ‘asym ptotic series’ in his ‘Sur les m tegrales 

irregulieres des equations lineaires’ [71] in which he showed that the formal series sat

isfying linear differential equations w ith analytic coefficients were asym ptotic series 

for the general solutions of these equations

1.3 2 Exponential Asymptotics

According to Poincare’s definition of an asym ptotic series, w ith the choice o f an 

asym ptotic sequence such as <f>n(x) = x n, transcendental exponential term s disap

pear or have been traditionally discarded These term s are said to lie beyond all 

orders o f the expansion However, the need to retain these ‘correction’ term s as 

such, becom es apparent m practical applications where they can becom e im portant 

analytically  and even num erically if a certain precision is required D ingle [17], in 

his investigation o f this problem, cam e to the conclusion that Poincare’s definition  

should not be literally adhered to — it needed not so much to be replaced as to  

be supplem ented Instead of following Poincare m truncating the series at a fixed 

order, he advocated Stokes’ approach of optim al truncation— stopping at the m ini

mum term , just before the series starts to  diverge, the order of this term depending  

on the asym ptotic parameter, x  This procedure was termed ‘superasym ptotics’ or 

‘asym ptotics beyond all orders’ and achieves sm all, exponential errors 

Suppose f ( x )  can be expressed in the form

oo
f ( x ) ~  ' ^ o m <S)m{x)> (1 7 )

m=0

then stopping at an optim al m , n0(x) say, leads to

no(x)

f{x)  ^  ̂  ̂ Rno{%) (l 8)
m=0 !t

It was suggested by Stieltjes [77] and formally considered by Dm gle [17] that this 

estim ate for f ( x )  could be further improved if Rn0(x) were to be itse lf expanded in 

an asym ptotic series

rco(x) oo

/(#) ^ ̂ H" ̂  ̂ ̂1,772̂1,771 (̂) (I 9)
771=0 771=0
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Perform ing the two previous steps iteratively

n0(x) n i(x)
/ (x) ~

m=0 m=0
7i 0( x )  t i i ( x )  o o

= ^ ̂ H" ̂  ̂ ®1,77101,m(̂ ) ̂  ̂ &2>m$2,m{pt)
771=0 771=0 771=0

T l o ( i c )  n i ( x )  t i 2 ( x )

=  ̂Q'mfim(̂) ^ ̂ ®1,77101,m(̂ ) “1“ ̂  ̂ -̂ 712 C**')
771=0 771=0 771=0

and so on, gives the hyperasym ptotic scheme of Berry and Howls [4] and supplies 

steadily more accurate approxim ations for f (x )  Each tim e the series in question  

is truncated optim ally, an algorithm  determ ining the point of optim al truncation  

H yperasym ptotics can be said to be ‘beyond asym ptotics beyond all orders5

It was D m gle who was first to  appreciate that the ta ils o f divergent series have 

universal properties Having truncated an asym ptotic series, he was able to derive 

and evaluate integral representations to approximate its remainder term using just 

the general term of the series itself This implied that despite their u ltim ate di

vergence, asym ptotic series could be precisely interpreted Such a ‘tam ing’ of the  

ta il revealed a structure of exponentials which had been hidden from v iew 1 To 

understand the need to retain small remainder terms, consider the case away from  

the asym ptotic lim it x° there, more and more terms of the series m ay be needed to  

m atch the asym ptotic expansion with the original function However, in th is ‘region’ 

the optim al number of term s to be considered may also be decreasing Thus, the  

only way to balance this conflict and to regain the original function is to recover 

previously discarded exponentially small terms

A closer exam ination of the physical world seems to show that the divergence 

of series representing physical system s is in fact a general phenom enon Thus these 

exponential im provem ents on previous asym ptotic results have been o f vita l im 

portance in understanding the behaviour of many such system s N otable progress 

has since been recorded in outstanding problems in quantum  tunnelling, quantum  

chaology, dendritic crystal growth, directional solidification of crystals and problem s 

involving viscous flows in the absence/presence of surface tension Moreover, these  

developm ents have allowed progress to be made in reducing general theories to  more

1See Chapter 3 for further discussion
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restricted ones, a lim it question which has prevailed since the 1800s Foi instance, 

an unproblem atic lim it of this kind is that of the sm ooth reduction of special relativ

ity  to  N ew tonian m echanics However, the transition from statistica l m echanics to  

therm odynam ics or from wave to ray optics is not so straightforward It was not so 

much believed that these theories were incom patible, but the boundary separating  

them  seem ed im penetrable w ithout the help of exponential asym ptotics— such is the 

effect on the physics world of what might appear at first to  be m erely a m athem atical 

nicety

13 3 Stokes Phenomenon

Up to this point it has been assumed that the asym ptotic param eter x  is real 

G eneralising the aforem entioned asym ptotic relations to com plex functions /(A )  is 

non-tnvia l Taking the lim it as A —> A0 along arbitrary paths m the com plex plane 

presents difficulties For instance, m m any cases paths rotating around A0, as they  

approach it, m ay give non-unique lim its and thus m ust be excluded In order to  

guarantee this, it is necessary that all paths along which the lim it is taken, he w ithin  

a sector of the com plex plane with opening angle depending on the functions which 

are asym ptotic At m ost this angle is n (i e | arg A| <  7r) and such a specification  

results m a path-m dependent definition of the asym ptotic relations One cause of 

concern then, is the inadequacy of a particular asym ptotic sequence to describe 

the behaviour of the function m question outside this sector To illustrate what 

happens, consider the fundam ental solutions of a second order differential equation  

having leading behaviours e5l<A) and e52^  as A A0 W hat form should the general 

solution take ?

The com plex plane can be divided into sectors by the lines 5R5i(A) =  3ftS2(A) 

W hen A lies m the interior of the sector for which 3ftSi(A) >  9£S2(A), e5 l(A) is said to  

dom inate e5* ^  and so provides the leading behaviour o f the general solution m this 

sector, which is term ed the wedge of validity of e51^  e5^ Â is said to be ‘recessive’ 

or ‘subdom m ant’ withm  that sector As A approaches the edge of the wedge of 

validity, and e52(A) aie of the same older of m agnitude and so the labels

‘dom inant5 versus ‘subdom m ant’ are no longer applicable H aving crossed over to the  

sector 5R5i(A) <  3R52(A), or the wedge of validity of e5 i Â\  the dom inance properties
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have switched and the leading behaviour of the general solu tion  should possib ly  be 

given by e52̂ 1 Thus the argum ent that the asym ptotic approxim ation should be 

dom ain dependent arose and was first suggested by Stokes T he abrupt change in 

the coefficients m ultiplying the ‘subdom inant5 term s in com pound expansions across 

certain rays in the complex plane has since come to be known as Stokes phenom enon  

The lines along which the leading behaviours e51^  and e52^  are m ost unequal are 

called the Stokes lines and are determ ined as asym ptotes, as A A0, to  the curves

S(Si(A)-S2(A)) = 0, (111)

whereas the lines along which they are m ost equal are called the anti-Stokes lines, 

given by the asym ptotes, as A —)• A0, to  the curves

K(51(A)-S2(A)) = 0 (1 1 2)

In th is case, the Stokes phenom enon is not an intrinsic property o f the function /(A )  

being approxim ated, but rather reflects the presence of the exponential functions in 

the asym ptotic approximation

A nother way it can arise is as a consequence o f approxim ating a function /(A ) ,  

which may be m ultivalued, by another m ultivalued function g( A) possessing a dif

ferent m ultivalued structure Or indeed, considering an analytic function /(A ), 

single-valued m a sector or wedge, W,  it is possible that both  /(A )  and its asym p

totic expansion as A -»  A0 can be analytically continued outside W,  but that when 

certain rays through A =  A0 are crossed the analytic continuation o f the asym ptotic  

expansion is no longer the asym ptotic expansion o f the analytic continuation and 

Stokes phenom enon m anifests itself

H aving first observed this phenom enon, it took Stokes much thought and several 

years to elaborate on its nature He initially described the change m the coefficient 

of the subdom m ant term by an involved argument m aking use of the asym ptotic  

behaviour of an integral representation of the function m  question along certain rays 

in the com plex plane The com putation of the dom inant series to  an appropriate 

precision was required, so he employed the optim al truncation procedure m entioned  

above The response of m athem aticians at the tim e was to  ignore Stokes’ findings 

D ingle [17] was really the first to explore further in the 1950s and his investiga

tions were successfully extended by Berry [3] The conventional view  had been
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that the change in coefficients was discontinuous but Berry proved, by view ing the  

problem from a different perspective and on a su itable scale, that the change is 

indeed continuous (see §3 5) Berry’s interpretation showed that the divergence of 

an asym ptotic series actually explains the phenom enon by reflecting its inability  

to  describe the other ‘hidden’ exponentials His resum m ation o f the divergent tail 

allowed him to obtain a precise description of the change in m ultipliers or coeffi

cients and represented the first stage of hyperasym ptotics A lthough the techniques 

used showed great insight, the m anipulations were quite form al However, several 

others, led by Olver [64], followed with a more rigorous treatm ent of the theory, 

having been prom pted by Berry’s work M cLeod [47] n gon sed  Berry’s results step  

by step whereas Jones [31] independently showed how certain definite integrals w ith  

coalescing poles and saddle points have a remainder whose behaviour is o f error 

function type Boyd [10], on the other hand, investigated  functions defined by a 

Stieltjes transform for which he introduced an exponentially  improved asym ptotic  

theory, while P ans [66] was able to find uniform exponentially-im proved asym ptotic  

expansions for functions defined by M ellin-Barnes integrals, where the integrand  

contains one or more gam m a functions and then together w ith W ood [69] found 

an exponentially-im proved expansion for the gam m a function itse lf A lso, Liu and 

W ood [46] aplied these new theories to  the field of asym ptotic m atching for a m odel 

optical tunnelling problem, after which Olde Daalhuis, Chapm an et al [59] followed 

w ith an interpretation of such asym ptotic m atching procedures w ith a view  to their 

extension to results for partial differential equations

1.4  Classical M e th o d s

W hen given an integral

I(x) = f  g ( t ,x )d t  (1 13)
J a

and asked to  find its asym ptotic expansion as x —> rc°, it m ay be possible to  asym p

totically  expand the integrand

00

9(t,x)  ~  Y l 9n(t )(x ~ x °'>an’ x - ^ x ° ,  (1 1 4 )n=0
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for som e a  >  0 and integrate th is series term  by term

b ° o  r b

g(t, x) dt ~  ~  x °)an /  9n(t) dt, (1.15)

This will work when the above expansion holds uniform ly in a < t < b and if the  

result upon integrating each gn(t) is finite. In the sim plest cases it may even be 

achieved by m erely writing the integrand as a Taylor or binom ial series. Needless

that more elaborate m ethods are required.

1.4.1 Integration by Parts

Probably the easiest m ethod for developing an asym ptotic expansion of a function  

represented as an integral is that of repeated integration by parts — each integration  

produces another term in the expansion, leaving the remainder expressed explicitly  

as an integral. It is necessary to check that the resulting expansion is actually  

asym ptotic and som etim es it is possible to  find a num erical bound on the error. An  

im m ediate application of the m ethod is incorrect if an algebraic singularity arises 

at an endpoint of the interval of integration or if a contribution from an endpoint is 

infinite. Then som e m odification is necessary— sp littin g  the interval o f integration  

and dealing w ith the subsequent integrals separately m ay be all that is needed. The  

m ethod is applicable to both Laplace, / 0°° g(t)e~xt dt, and Fourier, f™g(t)elxtdt, 

type integrals and to integrals where the asym ptotic param eter appears in the lim it 

of integration. In fact, Laplace used the m ethod to obtain an asym ptotic expansion  

of an integral similar to the com plem entary error function [22]

where (2k -  1)!! =  (2k -  1 )(2k -  3)...3 .1 .

Problem s arising in the application of integration by parts are m ade obvious 

by the appearance of a non-existent integral. However, it m ay still be possible to  

obtain the leading behaviour o f a function before this occurs. The im portance o f  

this m ethod lies really in the developm ent of more sophisticated m ethods which 

fundam entally depend on it.

to say, it is the com plicated situations that arise in practice and it has been found

x  —> oo (1.16)
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1.4.2 Laplace’s Method

Laplace’s m ethod is a very general technique for finding the asym ptotic behaviour 

of integrals o f the form

I ( x ) =  f  p(t, x)dt,  x  —̂  #°, (1 1 7 )
J a

where p(t,x),  considered as a function of t  (being both real and continuous), has a
<>

sharp peak or m axim um  at som e point in [a, b] and the contribution of the neigh

bourhood o f this peak is alm ost equal to  the entire integral when x  approaches x° 

Thus the function p(t,x)  can be approxim ated in that neighbourhood by simpler 

functions for which it is possible to  directly evaluate the integral The m ain benefit 

of Laplace’s m ethod is that only a sm all neighbourhood of the m axim um  needs to  

be investigated Though first appearing m Laplace’s ‘Théorie analytiques des prob

ab ilités’ in 1812 [43], the essence of the m ethod was used earlier still by R iem ann  

but only m entioned m his m em oir ‘An analysis of the possibility of representing a 

function by a trigonom etric series w ith  no special assum ptions on the nature of the  

function5 published after his death m 1867 [72]

Consider the behaviour of the integral

nb
I(x) = /  g{t)exf^  dt , x oo,i (1 18)

J a

where f ( t )  and g(t) are real, twice differentiable, functions and the m ajor contribu

tion to the integral com es from the neighbourhood of the point where f ( t )  attains  

its m axim um  i e t =  t° such that /'(¿°) =  0 and f u(t°) ^  0 R eplacing g(t) and 

f{t)  by the leading term s o f their Taylor series (assum ing g(t°) ^  0) gives

/(*) ~ ~ X _  00,
(1 19)

for a < t° < b However, if the m axim um  occurs instead at t° = a w ith / ' ( a )  ^  0 or 

at t° = b w ith f'(b) ^  0 then the leading behaviour obtained is

I(x)  ~  [ a+e g(a)ex^ â t- a'>}' ^  dt ~  x  ->  oo, (1 20)
Ja xf '(a)

or

l(x)  ~  / 6 dt „  x - > o o ,  ( l  21)
Jb-e XJ \b)
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respectively The determ ination of higher order term s requires the inclusion of more 

term s m the Taylor series for f ( t )  and g(t)

’ A different approach to obtain the expansion is to make use of the following

W a t s o n ’s L e m m a  If g(t) is locally mtegrable on (0, oo) w ith g(t) =  0 ( e Qi) as 

t —y oo for som e real a  and g(t) ~  Ylm=o cmtQTn W1̂  —> oo as m  —>• oo, then

I (x ) =  [  g{t)e~xtdt ~  ^ 2  cJ ia:  ^ , x  - > o o  (1 2 2 )
JO rf̂ O Xm+

Then given any integral

I(x) = f  g{t)exf^ d t ,  (1 23)
J a

the substitution  r  =  —f(t)  can be made and the lem m a applied However, writing  

t m term s of r , where t = / - 1(—r ) , requires the use of Lagrange’s reversion of  

series formula and can be unwieldy The full asym ptotic expansion obtained thus 

(see p 99 §2 2 [22]) for an interior m axim um  point is given by

(!)•*, ' -(t - i0)2 ■(n+è)
[/w- m \

x~n~2 (1 2 4 )
¿=¿0

Laplace’s m ethod enjoys wide application not least having been applied by 

Fulks [25] to integrals depending on two large parameters whose behaviours are not 

bound rigidly together T his work was later generalised by Thom sen [80] Laplace’s 

m ethod has also been shown to provide an effective m eans of solving linear func

tional equations of the form YH=i(akX +  bk)y(x +  a k) — 0 [20] by searching for a 

solution y(x) = f c (/)(t)exidt

14 3 Method of Stationary Phase

How would the previous theory cope w ith a Fourier integral

I ( x ) =  f  g{t)elxt dt, (125)
J a

where g(t) is a real-valued function and £ is a large real param eter, given that the 

exponential decay as x  increases is now absent 7 The integration by parts technique  

works as long as the resulting boundary terms are finite and the newly formed
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integral ex ists To guarantee that the expansion produced is actually asym ptotic, 

the R iem ann-Lebesgue lem m a comes into play

L e m m a  g(t)eixtdt —> 0 as x  —> oo, if \g(t)\dt exists

Thus, repeatedly applying integration by parts yields 

o o  /  \  n +1

{e"*JW(o) - e*Jw(4)}, (1 2 6 )
72=0 ^ '

if g(t) is infinitely differentiable Extending this approach to the generalised Fourier 

integral

I(x) = f  g(t)etx^ ^  dt, x —> oo, (1 27)
J a

where now f ( t )  is also a real-valued twice differentiable function, would result in

b -i rb

and the Riem ann-Lesbegue lem m a can again be used to show that the integral 

appearing on the right vanishes more rapidly than £ as x oo and thus

i(x)  —
b

, x —y oo (1 2 9 )

B ut problem s arise if f ( t ° )  = 0 for some t° e  (a, b)—  near such a point the expo

nential oscillates quite slowly and g(t) hardly changes whereas away from this point 

the oscillations are much faster and a cancellation will persist Thus, a possible  

contribution to  the asym ptotic behaviour of the integral from the neighbourhood of 

a stationary point will ensue, similar to Laplace’s m ethod In fact, if the stationary  

point under consideration is one at which only the first derivative of f ( t )  vanishes, 

the integral is actually converted to a Laplace-type integral by rotating the contour 

of integration through an angle of |  and transforming the variable of integration  

Then

/(̂  ~ \ l ± x 2r '{ to)9^ e lix m ± *]’ x 00 ^ 30)
according as t° is a m inim um  or m axim um  of f ( t )  (as ^  0 ) For stationary

points at which higher order derivatives also vanish, different angles of rotation can 

be used
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It is im portant to note, however, that this contribution, though significant, may 

be dom inated by the endpoints of the interval In m any physical problem s, par

ticularly those involving the propagation o f waves, the function f ( t )  is called the  

‘phase’ function, hence the evaluation of the contribution from a stationary point 

has been called the m ethod of stationary phase Unfortunately, only the leading  

behaviour can be obtained by this m ethod Higher order term s require the entire 

interval to be taken into consideration This occurs because the error incurred m 

neglecting the non-stationary points is algebraically sm all rather than exponentially  

sm all Either the m ethod of asym ptotic m atching or that of steepest descent would 

be better employed to continue the expansion For instance, a class of Fourier-type  

integrals o f the form

In(x) = r  e~t2n+ixidt, n = 1 ,2 , (1 31)
J — oo

has been studied by Senouf [75] He manages to obtain the asym ptotic behaviour 

of In(x) as x  —>• oo via the m ethod o f steepest descent as well as a high-order 

asym ptotic approxim ation of the real zeroes of the function The coefficients in the  

expansion are system atically obtained using Lagrange’s reversion of series

Though the m ethod of stationary phase was first explicitly  laid down in 1887 m  

Lord K elvin ’s ‘On the waves produced by a single im pulse m water o f any depth or 

in a dispersive m edia’ [39], where he considered the behaviour of

1 /*°°
—  / cos[m(:r -  t / f (m)) \dm,  (1 32)

Jo

its essence seem s to have been used by Cauchy, Stokes and Riem ann prior to that 

Since then, W atson, Erdelyi and van der Corput have both  form ulated the m ethod  

more precisely and adapted it to  a more general setting To date, it has been suc

cessfully applied to a variety of problems including the study of neutron transitions  

m nuclear physics

14 4 Saddlepoint Method

R everting back to the 1850s, Stokes followed up A iry’s investigation on the intensity  

of light in the neighbourhood o f a caustic and showed that the rainbow integral,

cos ^r(ws — mw)dw ,
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behaved like a dam ped exponential on one side of the caustic whereas it behaved  

sinusoidally on the other side In doing this, it would be fairer to say that he de

veloped various asym ptotic procedures as opposed to applying them  He effectively  

em ployed the saddle point m ethod though he did not refer to it as such C onse

quently, he was able to  calculate the zeroes of the rainbow integral more effectively  

than before and for larger values of m  [78] Moreover, further work entailed the  

optim al truncation of a dom inant asym ptotic expansion and a resum m ation o f the  

divergent tail to increase the accuracy of his com putations— all of th is well before 

Poincare’s 1886 definition of an asym ptotic expansion1

A lthough the saddlepoint m ethod is one of the m ost powerful asym ptotic tools, 

it was 1863 before it was even formally ‘sketched’ by Riem ann [73] It consists of 

two stages, having as its objective the useful approxim ation o f integrals o f the form

I(x) = j  p(z,x)dz,  x —tx ° ,  (1 3 3 )

where £ is now a com plex variable and C is a contour m the com plex plane The  

first stage is the more difficult, involving the exploration of the problem  m order to  

choose a new, suitable path of integration which allows for the application of the 

second stage— an evaluation of the integral employing, essentially, Laplace’s m ethod  

A good upper estim ate for I(x)  would be given by

\I(x)\ < [  \p{z,x)\ \dz\ <  ic m ax 1/ (̂2:, x ) | , (1 3 4 )
Jc c

where lc is the (finite) length of the path C Changing the path, therefore, m ay 

provide a better estim ate— the path V  for which Ip m axp \p(zt x)\ is m inim al coin

ciding w ith the idea of a ‘least upper bound’ This is w hat Fedoryuk [22] refers to  as 

the ‘rmnimax property’ Note that while deforming the contour care m ust be taken 

of singularities of the integrand (so Cauchy’s integral theorem  proves useful) Usu

ally it turns out, conveniently for the practitioner, that the path chosen to satisfy  

such a condition allows for the easy param etrisation and evaluation of I (x)

W orking with logp(z ,x)  sim plifies the problem som ew hat— p(z,x)  can be writ

ten as p(z,x) — eKz'x>} and then the point z° satisfing pf(z°,x)  =  0 also gives 

f f(z°yx) =  0 and is, thus, a saddlepoint of /  (as /  is a harm onic function) Hence 

the m m im ax contour will pass through a saddle of /  De Bruijn [15] suggests investi

gating the ‘a ltitude5 of all of the saddles of f ( z , x) and trying to deform the contour
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into a path through the lowest one, while retaining the endpoints of the original 

contour, as one way o f tackling the otherwise difficult problem  of determ ining such 

a m m im ax contour T he saddlepoint m ethod is really m ost successful in the case 

where the function p(z,x)  behaves rather violently, so that sm all variations in z 

m ay result m large changes in p(z> x) and thus only a sm all neighbourhood of the  

m axim um  is necessary This can be achieved if the contour chosen is one of steepest 

descent— explaining why the term s ‘saddlepoint m eth od ’ and ‘m ethod of steepest 

descent’ are often used m terchangebly

1 4.5 Method of Steepest Descent

The m ethod of steepest descent was first docum ented by Debye in a paper in 

1909 [16] in which Bessel functions o f large orders were being investigated It is 

a technique m ost often used to derive the asym ptotic expansion of integrals of the  

form

/(A ) =  J  g{z)eXf(z) dz, (1 35)

where f (z ) ,  g(z) are analytic functions of the com plex variable 2 , A is the (com plex) 

asym ptotic parameter and C is a contour m the z-plane f ( z )  can be w ritten as

f ( z )  = $lf(z) +i$sf(z) = <t>(z) + iip(z) (1 3 6 )

The basic idea is to  deform the contour C to a new path of integration C  such that

(I) C* passes through one or more zeros of f \ z ), z° say,

(II) A'tp(z) is constant on Cl, ip(z) =  z °) V z 

Thus

/(A ) =  f  g(z)exfiz) dz = [  g(z )exM z)+t^ 2» dz =  e,A*<*°> [  g{z)ex<f>{z) dz (1 3 7 )  
Jc Jc Jc'

(If / '  does not vanish, the contour is chosen to com ply w ith the second condition

only) As <j>(z) is real, Laplace’s m ethod can be used to evaluate /(A ) as A 00

Such a deform ation of C to C' is m otivated by the fact that rapid oscillations of the

integrand when A is large are elim inated on a path where 'ip(z) is constant Had C

been deform ed instead into a path Cn on which (j)(z) was constant, the m ethod of

stationary phase could have been applied exactly as described in §1 4 3 (N ote that

as th is m ethod itself requires a rotation of the contour, C" w ill eventually coincide
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w ith C  ) However, Laplace’s m ethod provides a better approxim ation scheme as 

the full asym ptotic expansion o f a Laplace integral relies only on the im m ediate 

neighbourhood of the point(s) where <j>(z) is m axim um  on the contour (i e the 

neighbourhood of the point(s) z° giving f ( z ° )  =  0)

It can easily be shown that constant phase contours through a m axim um  of f ( z )  

can also be viewed as lines of steepest descent through a saddle of f ( z )  A saddle of 

order n  is defined as a point at which (z ) is the lowest non-vanishing derivative 

and there are 2n analytic curves forming lines of steepest descent and ascent through  

such a saddle, each separated from the next by an angle of 7rf n  W hen deform ing  

the original path of integration, only the lines of steepest descent can be used as 

the integrand m ust converge m order for the integral to  exist However, because 

Laplace’s m ethod determ ines the asym ptotic expansion of an integral using the 

direct neighbourhood of the m axim a, the structure of the lines of steepest descent 

m ust only be known m such a neighbourhood After a little  m anipulation, having  

replaced <j>{z) by its  truncated Taylor expansion, the following result is obtained for 

sim ple saddles (i e n = 2)

/(A) ~ y Q ^ ( 2°)eA/(z0)’  ̂38>
m the case where g(z°) ^  0 (Higher order term s can be obtained as before )

Note, that the function f (z )  may have several saddles In this case, suppose the 

original path of integration can be deformed into an equivalent path consisting of 

paths through som e but not all of the saddlepom ts— it has been claim ed that such 

saddlepoints alone are relevant to the asym ptotic expansion Their contributions are 

calculated separately and added to give the full asym ptotic expansion— the leading  

behaviour being the contribution from that relevant saddle w ith the greatest 

However, should it arise that two saddles with different phases are necessary for the 

calculation (obviously they cannot be joined by a single line of steepest descent), 

then a  contour along which the integrand vanishes as A —> A0 should join the line 

of steepest descent through one to that through the other (i e the lines o f steepest 

descent should m eet m a valley of f ( z ), see below) A m ong the relevant/adm issible  

critical points, those being either saddles or endpoints o f the contour, som e are 

exponentially  sm all compared to others and are thus num erically negligible— the
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contributions from such subdom inant points need only be retained when they bear 

som e special significance

If the asym ptotic parameter, A, is com plex, then the lines o f steepest descent for 

eA/( z) rotate in the com plex plane w ith  argA Thus the deform ation of the contour  

w ill also change w ith  argA, and the asym ptotic behaviour o f the integral changes 

accordingly— the Stokes phenom enon m ust be taken into account

n V alley

Steep est ascent 

-S teep est descent

Figure 1 1 R elief of ex^ z  ̂ w ith saddlepoint z° and schem atic diagram of lines of 
steepest ascent and descent through z°, the shaded regions denoting the sectors 
where Stf(z) < Xf(z°)

To visualise and ‘physically’ interpret the m ethod, think o f |eÂ z)| as a surface, 

term ed the relief o f ex^ z  ̂ Then the saddlepoints will actually  appear as saddles 

on the relief and the lines of steepest ascent and descent divide it into hills and  

valleys T hough the lines o f steepest descent m ust not be followed exactly, except
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at a saddle, it is essential to  stay w ithin the valleys elsewhere so that the integrand  

converges (see Figure 1 1) Indeed, there can be no autom atic assum ption that the  

deform ation o f the original contour to a line of steepest descent is possible and often  

the construction o f such lines is im practical— it can be more advantageous then to  

use other saddle contours, once their asym ptotic equivalence to the lines of steepest 

descent has been established

1.5 M o d e rn  M e th o d s

Unfortunately, the classical m ethods just described do not cover all problems In 

more recent tim es, other techniques have been developed to supplem ent them

1.5.1 Summability Method

In 1939, T itchm arsh [81] investigated the asym ptotic behaviour of the Fourier inte

gral
r oo !

F{x) = /  e“ *"41 sin[t*] dt , (1 39)
Jo

and in doing so discovered that the m ethod of repeated integration by parts does 

not apply In fact he had to combine it with contour integration in order to show  

that

F(x)  ~  |F  ( |) e ^ a ; - ?, x  —> oo (1 4 0 )

Using contour integration alone, he remarked that only the more feeble result 

F(x)  =  o (x -1 ) could be obtained However, T itchm arsh’s result can be deter

m ined m a different manner entirely, by a procedure first m ade rigorous by Olver 

m 1974 [63]— the sum m ability m ethod Subsequently, a lot of research developed  

along these lines The m ethod hinges on the following

T h e o r e m  (W ong [83]) Consider the Fourier integral
/ » O O

F ( x ) =  f( t )e lxi dt, (1 4 1 )
Jo

where f ( t )  is m  tim es differentiable on (0 ,o o ), m  being a non-negative integer Let 

{a$ s e  N} be a sequence in C w ith increasing real parts and let n be the sm allest 

non-negative integer such that >  m  Define f n(t) by
n—1

m  = £ > si“‘-i+/n(i) (1 4 2)
s - Q
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Then the integral, F(x),  satisfies

(1 4 3 )

where the remainder is given by

Fn ( x ) = ( ~ y  J " (1 4 4 )

Furthermore as x —> oo, Fn(x) =  o(x m)

T he sum m ability m ethod can be applied to the more general integral

I ( x ) =  /  f ( t )h (x t )d t ,
Jo

(1 45)

where h(xt)  is an oscillatory function and examples arise m problems o f high en

ergy nuclear physics Its advantage lies m the construction of desired error bounds 

associated w ith the easily derived asym ptotic expansion

15 2 Distributional Approach

T he theory of distributions first arose m problems of m athem atical physics and was 

developed, initially, hand m hand with the theory of partial differential equations 

B ut recently it has also becom e of use m the field of asym ptotics of integrals The  

construction of an asym ptotic expansion usually involves three steps the derivation  

of a form al expansion, the establishm ent of the result on a rigorous footing and the  

construction of error bounds The first of these uses m ost frequently either integra

tion by parts or termwise integration However, a purely formal application can yield  

an incorrect result and it is im portant to study the divergent integral in great detail 

Here the distributional approach com es into its own— its m am  advantage being the  

interpretation of and assigning of values to som e divergent integrals which cannot 

be m ade m eaningful by the more classical techniques It has been successfully ap

plied to obtain asym ptotic expansions in the case of Stieltjes, Fourier, Laplace and 

H ilbert transform s and the Riemann-Liouville fractional integrals Lighthill [44] and 

Jones [30] both dealt w ith the topic and it is also advocated by W ong [83] who re

marks that the one-dim ensional distributional approach can easily be extended to
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higher dim ensions The basic idea behind distributional theory involves the associ

ation o f a function, /  say, appearing in the integrand w ith  a number

< f ,  <!>>=[ f{t)4>(t)dt, (1 4 6 )
J - O O

where <j> is any differentiable function on 1Z which vanishes outside a finite interval 

and /  is mtegrable over a finite interval, thus allowing /  to  be regarded as a linear 

functional Then using the elementary theory of distributions, the determ ination of 

the asym ptotic behaviour can be more accurately realised

1 5.3 Mellin (or Mellin-Barnes) Transform Techniques

M any im portant integral transforms arising m practice can be w ritten in the form

I(x)  =  f  f(t)h(xt) dt (1 4 7 )
Jo

(including Laplace, Fourier, Hankel, Stieltjes) Taking the M ellm transform  of such  

an integral would give

M[I,z] = M [ f , l - z ] M [ h , z \ ,  (1 4 8 )

where M[g> z) is the M ellm transform of a locally m tegrable function g(t) on (0 , oo) 

defined by

M \9, A =  f  dt, (1 49)
Jo

when the integral converges The dom ain o f analyticity o f such an integral is usually

an infinite strip, a <  SRz <  6, say, so if M [ f , 1 — z] and M[h,z]  share a com m on

dom ain then I(x)  can be recovered from the inversion formula

J: rc+ioo

H x ) ~  9—  /  x ~zM[f,  1 — z]M[h, z] dz, a < c < b  (1 5 0 )I'Kl Jc—ioo

An asym ptotic expansion of I(x)  for small x  can be achieved using the Cauchy 

residue theorem  provided M [/ ,  1 - z ]  and M[h} z) can both be analytically  continued  

to  m erom orphic functions m the left half-plane and the vertical line of integration  

can be shifted from $lz = c to =  d resulting m

I(x) = ^ 2  R e s { x '2M [/ ,  1 -  z]M [/i, 2]} 4- E ( i ) ,  (1 5 1 )
d < f c z < c

with
^  r d + i o o

E{x ) “  ^—  /  x~zM [ f , 1 -  z\M[h , z\ dz (1 52)
¿Kl Jd-1 0 0
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In a sim ilar fashion, the asym ptotic expansion of I(x)  as x —> oo can be obtained  

if M [ / ,  1 — z] and M[h, z] can be analytically continued to m erom orphic functions 

m the right half-plane and the line of integration shifted to the right Knowing  

explicitly  the M ellin transforms appearing m the error term s, it m ay be possible  

to  find a bound for the error directly In general, it is preferrable to express the  

errors in term s of /  and h and several means have been devised for constructing  

such explicit expressions Moreover, the technique described can be adapted in the  

case when M [ / ,  1 — z] and M[h, z] lack a com m on strip of analyticity  A gain, the  

M ellin-transform  technique has had much success in real-life physical problem s, for 

instance m the study of free and forced vibrations o f a circular m em brane subm erged  

in a com pressible fluid

In fact, Kaminski and Paris [36] have shown how asym ptotic expansions for a 

class of integrals

I(x,  a ,  c2, , c„) = f° °  * ‘m,> dt, (1 53)
Jo

where \x > m\ > m 2 > > m k >  0 , can be developed by a m ethod which entails

using the expression

1 rlOQ ~r

e~Z = 2 m J  r (r )2_Tdr> Iargz\< z ±  0, (1 5 4 )

to represent the integral as an iterated M ellm-Barnes integral, repeatedly displacing  

the contours of integration and applying the residue theorem  as each contour is 

shifted past a pole of the integrand This approach can be applied to a sim ilar class 

of m ulti-dim ensional integrals w ith little extra effort T hey also went on to obtain  

exponential asym ptotics from the standard M ellm -Barnes integral representation of 

a function by a slight, but im portant, m odification o f the integral [35]

1.5.4 Uniform Expansions

O ften an asym ptotic expansion w ith respect to A m ay also depend on a second para- 

m ater, a  say However, it may be non-uniform with respect to  th is second param eter, 

becom ing invalid as a  approaches a critical value, a  a° T h is lack of uniform ity  

can arise as a consequence of the coalescence of two saddles, the coalescence of a 

saddle and an endpoint of the integral or the m erging of other singularities The
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ordinary saddle point m ethod does not contend w ith  such characteristics— it m ay 

no longer be possible, for instance, in the case of an integral w ith  a sim ple saddle, 

to  write the integral in the usual form w ith  a G aussian dom inant exponential term  

All is not lost though, as som e of the more recent literature in the area (including  

work by Chester, Friedman and Ursell [13]) suggests various procedures to obtain  

asym ptotic expansions which remain uniform ly valid in a dom ain containing the  

critical value a 0 These include expressing the integral m term s o f special functions 

whose asym ptotic behaviours are known and then reverting to the m ethods of inte

gration by parts or termwise integration Integrals which possess such occurrences 

of coalescing saddles and so on have been found to appear in the propagation and 

diffraction of waves

Berry and Howls [7] have taken the idea of uniform expansions a step  further by 

investigating what happens when saddles in a cluster, d istant from the saddle on the  

contour of integration, coalesce and separate Such distant saddles are responsible  

for the divergence of the expansion and control the sw itching on and off of the  

subdom inant exponentials



C h a p t e r  2  

M e t h o d  o f  N i k i s h o v  & ;  R i t u s

2.1 O u tlin e  o f M e th o d

Nikishov and R itus, m [52], addressed the issue of Stokes line ‘w id th ’ m the theory  

of asym ptotic expansions and found an explicit expression for the function which 

‘sw itches on ’ the exponentially small term s m such an expansion The m ethod, as

described by Nikishov and R itus1, considers the entire function /(A ) represented by

the integral

' /(A ) =  A J  e/(z’A) dz, (2 1)

where A 6 C is the large asym ptotic parameter, A  is a constant and C is a contour 

m the com plex plane w ith endpoints z ^ , z ^ , where

aft/04, A) = »/(4..A) = - 00 (2 2)

T hey have restricted their investigation to the case m which exactly  two sim ple 

saddlepom ts of / ( z ,  A) occur A lthough based on the m ethod of steepest descent, 

their m ethod incorporates a deform ation and truncation of the contour of integration  

which separates the contributions of the dom inant and recessive saddles This, 

they claim , yields a more natural representation of a function than conventional 

procedures

In the case of such an integral representation as m (2 1) the leading behaviours of 

/(A ) are given by e ^ ’A) and e ^ zl,x>) where zu and z l are the saddlepom ts of / ( z ,  A) 

Thus the Stokes lines for an integral representation can be found by solving

-  f ( z l,X)) = o, (2 3)
1§2 1 explains the method following [52], later §2 2 will describe necessary alterations for its 

practical application

25
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which gives A =  As say, on the Stokes line T he saddlepoints, zu, zz, can also be 

term ed dom inant and subdom inant/recessive, where the dom inance of the saddle- 

points sw itches as A is rotated in the com plex plane

To use the argument put forward by Nikishov and R itus, if A is near As, the 

contour C can be chosen either along a line of steepest descent through zu, the  

upper saddle, alone (hereafter, term ed L S D U) or through both the upper, zu, and 

lower saddles, z l (termed L S D U +  LSDi)  The saddles, z u, z \  are given the labels 

upper and lower respectively when

R ( / ( z “,A) -  / ( * ' ,  A)) » 1, A ->■ A0, (2 4)

in a particular sector— thus, upper signifies dom inant and lower, subdom inant The 

contour L S D U +  LSDi  is denoted Cu\, its in itial and final points being z ^ , z^  

respectively (The end of L S D U and the beginning o f LSDi  m eet at a point z ^  

which also satisfies 5R/(zoo, A) =  — oo)

The originality of the m ethod arises in the division of Cui into two contours

Cui =  C«* +  (2 5)

such that Cu% begins at z ^ , passes through zu and ends at z*, C*/ begins at z*, passes 

near (or perhaps through) z l and ends at z^  (see Figure 2 1) The point z* must 

satisfy

9 / ( 2 * .  A) =  9 / ( z«, A), A) =  » / ( z 1, A), (2 6)

which ensures

(I) that z* is on the L S D U)
r

(II) that the distance between /(z * , A) and / ( z z, A) is m inim ised  

It is logical to interpret

/(A ) =  A f e/(2'A) dt + A  f  e /(z’A) dz (2 7)
Cu* J  Cn\

as the sum  of the contributions from the two saddlepoints— that is, as a sum  of a 

dom inant and a recessive term

/(A ) -  D{A) +  R ( A) (2 8)

Subsequently, f u shall be used to denote / ( z u, A), /"  to denote /" ( z u, A), w ith  sim ilar

notation for f ( z l, A) etc , but the dependence of these values on A should be noted
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'00

Figure 2.1: Contours and C*i near a Stokes line: note that zu lies on both  Cw* 
and the contour joining z'^ to z'^.

A lthough Nikishov and Ritus have not detailed the exact determ ination of D(z)  or 

R (z ), it is assum ed that they proceeded in a similar m anner to  that which follows.

2.1.1 The Dominant Term

From above,

D{A) =  A f  e/(z;A> dz = A f  
Jz'co Jcu,

(2.9)

where Cu+ is L S D U, which im plies $s f ( z ; A) =  ^sfu is constant on Cu*.

Thus D (A) can be written as

D(A) = [  e ^ xU z ,  (2.10)
JCu*

which is a Laplace integral and is determ ined to leading order by the integrand in a 

sm all neighbourhood of zu, i.e.

D(A) -  [ Z e*/(2;A) dz. (2 .11)
J zu-e

The Taylor series of f ( z ; A) about zu, which is valid only in a neighbourhood of  

can be used to approxim ate f ( z ; A) in th is case:

/ (* ;  A) =  / « + (z 2f )2 / :  + (2.12)



2 1 O u t l i n e  o f  M e t h o d 28

Hence

H/(z,A) =  S t f u +  x ( { z / )2/:) +  , (2 13)

3 / ( z ,A )  =  3 / u +  s ( (^ ~ f )2/ : ) +  (2 14)

But noting that 9 / ( z ,  A) =  S / u on the contour Cu*, im plies that

» ((* ~ / )2ff) + = 0 (2 15)

Therefore, SR/(z, A) can be w ritten as

B/(z, A) = K/u + (2 ~ f )2/: + (2 16)

Truncating at this second derivative gives

-D (A ) ~  Ael^fu (  e^ /u+ ( ~2< } f* dz  =  ^4e^ f  e ( ~2> } ^  ^  (2 17)
Jzu-£ Jzu~£

Then by the assum ptions of Laplace’s m ethod, the interval of integration is ex

tended to be infinite However, to  ensure the continued existence of the integral, 

the integrand m ust converge Thus it m ust be ensured that

e f»
/m - ) 0  as ^ o o  (2 18)

(z — zu)2 // i2/”
(Note that e 21 /¿' is dom inated by e ~ ^ a s  2 —>> 00 )

e ”f “- =  e x p [ | |z |2| /" |( c o s 2#0 -f z s in 20z) (c o s0/  4- ismO/)] -»  0 , 2: —» 00 ,

cos(202 +  0/ )  < 0 , 2; —̂ co,

ip 3?r 0 f <rQ< n 6f ( o ^ \
1 6 - T “ ' 2 < ^ < “ 4 “ Y ’ 4 " T  z< T " T  (219)

So
/ * o o e tQ2 _  u

Z)(A) ~  ± A e fu /  e *  ̂ ^  dz , (2 20)
J  o o e m i

where

(2 2 1)

(N ote that for real 2 , /"  is negative l e  /"  =  |/"  |el7r T his gives

ftle (- f , -^)u(f , j ) ,  a2 e ( - f,f) (2 22)

— thus the contour can be taken along the real axis)
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Now using the change of variable s = ± i ( z -  zu)yj~&, gives

ds / / "  2 (z - z u)2f ”
4Z -  V 2 ' ~5 = (2 23)

If z = ooetai then

si = ±i{z  -  z ^ J ^ -  =  e ^ o o e 1“ 1 -  =  ooe,<± t +“ ‘+^> (2 24)
V & ¿*

Similarly, for z  — ooem2,

s2 =  ooe,(±5 +a2+^ ) (2 25)

Then

/ ■ o o e tQ2 (z_ zus2 ¡~2 ~ r S2
D(X) ~  ± A e fu /  e 2 ^  dz ~  ±%a —  Ae*u /  e -s  ds (2 26)

J o o e t a i  y J u  J s i

In order to replace J^2 e- *2 ds by 0 r  we need

a r g s i €  (—7r, - ^ )  U ( j , f ) , a rg s2 e ( - f , f )  (2 27)

However, if a\  and a 2 have been chosen so that the integral w r t z converges, then  

Si and s2 w ill autom atically  fall into the specified intervals Thus

D (A) ~  ± t J - ^ A e u  (  f  e - s2 d s )  ~  ± iA  J ^ e f\  (2 28)
V  J u  \ J C s  )  y  Ju

where Cs starts at infinity m the sector ( —7r, U ( y , ^ )  and ends at infinity in 

the sector ( — | ,  | )  The choice of branch is such as to agree w ith the direction of 

the contour N otice th is estim ate of the leading behaviour is the sam e as that 

obtained by the traditional m ethod of steepest descent

2.1.2 The Recessive Term

From above,
rz>L r

R{A) = A  e/(*'A) dz = A  e /(z’A) dz (2 29)
Jz* J C ml

An expansion of / ( z ,  A) in a Taylor series about z l w ill be valid only m the neigh

bourhood o f z l B ut as the greater part of the path C*i is L S D t (along which the  

integral is com pletely determ ined by a small neighbourhood of zl) and the point
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z* is by definition, chosen so that /(z * , A) is as near as possible to /(z* , A), it is 

acceptable to use the Taylor expansion

/ [z ) A) = fi + -— 2i  ̂ + ^
to  approxim ate / ( z ,  A) It could be said that z* is assum ed to lie w ithm  what de 

Bruijn [15] term s the ‘range’ of z l i e “the circular neighbourhood of z l consisting  

of all z values which are such that | (z — z l)2f[f \ is not very large”

N ote th at it would be incorrect to  proceed as for D (A) by using Laplace’s m ethod  

because  ̂ /"  +  0 ( z 3) may have a non-zero im aginary part Instead
n

R{A) ~  Aefl °° dz, (2 31)

where again arg z^  m ust lie m the sectors

{ - T - ei ~ i - 9i )  or (2 32)
as z —y oc  for the integrand to converge

j~ftt
S u b stitu tin g  s =  ±i(z  — z l) y  gives

(2 33)

T hen taking z =  z* and z =  z^  =  ooe1Q2, gives

5i =  — and (2 34)Y u

s2 =  ± z(ooet0£2 -  z l) J =  ooel ±̂ 5 +Q!2+^')j (2 35)
V ^

respectively Thus

R{A) ~  ± t A J  r  e -g2 ds (2 36)
V fl Jsi

In order to replace e~s2 ds by the com plem entary error function w ith argument 

s i ,  we m ust have arg s2 6 ( —f , This coincides w ith the regions m which a 2 must 

lie m  order for the integral w r t z to converge Hence it is concluded th a t2

R{\)  ~  erfc (2 37)

A gain, the branch is chosen in accordance with the value o f a 2 which will be deter

m ined by the direction of the contour C*/

2 A dependence is contained in fi and //' terms
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2.1.3 Remarks

M otivating Nikishov and Ritus is the concept that a single asym ptotic series cannot 

(alone) adequately describe the behaviour of a function in certain sectors near an 

essential singularity because of its divergence U sing the ‘trad itional5 approach, 

such an asym ptotic series is truncated at the term w ith  m inim um  m odulus and a 

remainder term  is formed According to Nikishov and R itus [52], this remainder 

term  m ust

encapsulate all the quantitative and qualitative inform ation about the  

behaviour of the recessive series, and in addition, change sm oothly  on  

the passage of A through the Stokes line

i e the remainder term itself is continuous since /(A ) and the truncated series are 

both  continuous functions This follows D ingle’s theory that the asym ptotic series 

m ay be seen as “a com pact encoding of a function” [17] and its divergence becom es 

a source of inform ation by indicating the existence of exponentially sm all term s 

Thus the idea of resurgence emerges, in which a subdom inant exponential can be 

born out of the tail o f the dom inant asym ptotic series

T h e  c r u x  o f  t h e  m e th o d  p r e s e n te d  a b o v e  is  t h a t  t h e  u s u a l p r a c t ic e  o f  

t r u n c a t in g  a n  a s y m p to t ic  s e r ie s  a t  i t s  le a s t  t e r m  h a s  b e e n  r e p la c e d  b y  

t h e  c o n c e p t  o f  t r u n c a t in g  t h e  c o n to u r  o f  in te g r a t io n  in  o r d e r  t o  f in d  th e  

a s y m p to t ic  b e h a v io u r  o f  t h e  in te g r a l This truncation associates the dom inant 

properties of the integral with one saddlepoint and the recessive properties w ith the  

other In an asym ptotic series found by traditional m ethods, the distant term s of the 

series are strongly influenced by the lower saddlepoint It is the claim  of Nikishov  

and R itus that the finite sum of such a series is less able to  separate the contribution  

to  /(A ) of the upper saddle from the contribution of the lower and thereby less able 

to  correctly determ ine the ‘turning on’ of the recessive term  as such, as the Stokes 

line is crossed

T he authors of the m ethod are them selves interested in the im plications th is new  

approach has on the width of the region which appears to be affected by the Stokes 

line T hey understand the width of the Stokes line to m ean the angular distance  

over which a discernible change in the m ultiplier takes place T his m ay be m otivated
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by their physical interpretation of the problem

for a physical quantity/process described by /(A ), the dom inant and 

recessive series of its  asym ptotic expansion near the singularity describe 

qualitatively different properties of this quantity /process Sm all changes

of the parameter A can significantly change som e o f these properties 

the width o f the Stokes line determ ines the form ation length or tim e  

of the (pair production) process

Com paring their m ethod to standard asym ptotic procedures, the ‘w id th ’ of the  

Stokes line appears to have been reduced by their approach, which they interpret as 

resulting from their greater ability to  separate the contributions from the upper and 

lower saddles However, our primary interest was directed towards the use o f this 

new approach to recover the asym ptotic expansions of integrals found previously  

by well-known techniques Our hope was that this new approach would provide a 

sim pler m ethod of treating integrals with a more com plicated saddlepoint structure

2.2 E xten s io n  o f M e th o d  o f N ik is h o v  &  R itu s

2 2.1 Discrepancies

In the outline of the m ethod, the saddles are designated lower and upper in 

accordance w ith the m agnitude of 5R/(zi,u,A) As A rotates in the com plex plane  

and crosses the Stokes lines, the dom inance of the saddles should change w ith  it 

Thus the saddle which was labelled upper and used in the calculation o f the term  

D (A) should becom e the lower saddle in due course and determ ine R ( A) instead  

However, putting this procedure blindly into practice by choosing the saddle to  

com pute D (A) or J2(A) solely on its dom inance properties w ill lead to errors It 

m ust be remembered that th is m ethod is based on the m ethod of steepest descents 

and so, in originally deforming the contour of integration to  the lines of steepest  

descent, the same rules must be adhered to The ‘upper’ saddle, being the one  

through which the contour m ust first pass, is chosen by exam ining the lines of 

steepest descent and detecting which saddles are perm issible, keeping in m ind that  

the endpoints of the original contour must be retained H aving thus chosen the  

upper saddle, further inspection of the lines of steepest descent will indicate if it is
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possible to  again deform the contour o f integration to pass through a second saddle  

and take into account its contribution— the notion of ‘adjacent’ saddles3 o f Berry 

and Howls [5] is thus com ing into play here In fact, this argum ent is illustrated by 

the exam ple m §2 3, where the behaviour of the Airy A i function is investigated  

Ai(A) is the solution of y” = Ay which decays exponentially  along the real positive  

axis Thus it m ust satisfy

Ai(A) ~  , |A| —v oo, arg A =  0 (2 38)
Z

It can be seen that it is physically im possible m th is case to deform the contour 

of integration solely into a line of steepest descent through the saddle, z  =  — 1, 

corresponding to the greatest m agnitude of ^ / ( z ,  A) Moreover, as th is would m 

fact yield

Ai(A) ~  ^ 7r~^A_ *e2A3/2//3, |A| —»• oo, arg A =  0, (2 39)

it is clearly incorrect

As seen above, D(A) and R ( A) are com pletely determ ined only when we make a 

‘correct’ choice of the branch of the square root T his is not discussed by Nikishov  

and R itus— rather D (A) and jR(A) are presented as m (2 28) and (2 37) retaining  

the m both cases Even m the discussion of the traditional m ethod of steepest 

descent, m any authors tend to ignore the branch issue De Bruijn [15] does remark 

that the branch is chosen m accordance w ith the direction m which the saddlepom t 

is crossed However, it is left to Fedoryuk [22] to tackle the issue more definitively  

with his formula - 

If

/(A ) =  f  g(z)exf^  dzy (2 40)
J i

then the contribution of a sim ple saddle point z° is given by

=  ^ - ^ ^ 0) [fl(z°) +  0 ( A - 1)]eA/(2°), A 00, (2 41)

choosing the branch as follows arg \ J —/" (z 0) is equal to  the angle betw een the  

positive direction of the tangent to the line of steepest descent passing through z° 

and the positive direction of the real axis

3 See §3 1 for further explanation
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U sing th is, the branch of the square root term in all occurrences of D ( A) and R ( A) 

presented here is determ ined by an inspection of the directions o f the lines of steepest 

descent relative to the original contour of integration

2 2 2 Distance from Stokes Line

In the previous discussion, it was assumed that A is ‘near’ a Stokes line The  

question thus arises— how is ‘near’ to  be defined in this context ? Such a question  

m ay however be unnecessary B y definition,

W , A ) - / ( z ‘,A)) = 0 (2 42)

on the Stokes line and a line of steepest descent will pass through both saddles 

sim ultaneously As A moves slowly away from A5 , the contour can be deformed as 

suggested above, to a line of steepest descent through the upper saddle and then  

away to  z ^ , where it m eets a line of steepest descent through the lower saddle Now  

consider the case when A is not equal to  or even in the neighbourhood o f A5 —  

then $sf(zl, A) and ^sf{zu, A) cannot be regarded as equal Thus no line of steepest 

descent (constant phase contour) can join z l to  z u (see Figure 2 2) So L S D U starts 

at z ^ , passes through zu and ends at z ^ , whereas L S D l starts at 2^ , passes through  

z l and ends at z ^ , but although

» / ( ^ i A) =  S I / ( C A )  =  -oo, (2 43)

the picture has changed som ewhat as

a r g z o o / a r g ^  (2 44)

Joining Zoo to z £  at infinity by a third contour along which the integral vanishes, 

solves the problem The contour C along which z =  Ret0 w ill always work, so long 

as Zqoj z'^ both  lie in the sam e sector of the com plex plane (valley) where

5R/(z, A) —y - 00 , V z, as | z | -> 00 (2 45)

Thus the expressions for D(A)  and R (A) should add to give /(A ) for any value o f A 

in the com plex plane However, as A moves away from A5 , the point o f truncation, 

z*, m oves further away from LSDi  and the portion of the contour of integration
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Figure 2 2 Contours Cu* and C*i away from a Stokes line note that zu lies on both  
Cu* and the contour joining z^  to z

which joins z* to z l and lies only on a line of descent, lengthens T his increases the 

error in the approxim ation, albeit by an exponentially sm all am ount and ham pers 

the num erical precision So when an exponentially improved estim ate or expansion  

is sought, use of the m ethod should be confined to a neighbourhood of Stokes line

2 2.3 Choice of z*

D epending on the form of / ( z ,  A), the equations (2 6) fail to  define z* uniquely For 

instance if / ( z ,  A) is an nth  degree polynom ial in z then there are up to n  choices 

o f z* However, no criteria have been given to suggest which value of z* should be 

used Once again it would appear that the choice relies on an exam ination o f the 

contours o f steepest descent It is not enough to expect S / ( z * ,  A) =  3 / ( z u, A) — z* 

m ust lie on the contour through zu to which the contour of integration has been  

deform ed

2 2 4 Higher Order Approximation

W hile calculating the expression (2 28) for D (A), only the first three term s in the 

Taylor series of / ( z ,  A) were used, which results in the determ ination of the leading



2 2 E x t e n s i o n  o f  M e t h o d  o f  N i k i s h o v  &  R i t u s 36

behaviour of D (A) only R etaining more terms of the Taylor series will result in 

higher order term s m the asym ptotic expansion of D (A) To illustrate this, the 

third and fourth derivative term s are retained in the following

/ M )  = , (2 46)

D(A) ~  >1 F *  dz  (2 47)
J z u - e

Then Taylor expanding e ( ""31 ) ^”+t ) ■f“(4) gives

1, (*-*“)3 fill . (2-*")4 yr(4) , 1 /W “)3 fin , (z-z")'1 f(4)\ 2 
K _ l t  6 24 J” + 2^ 6 J « +  24 J“ J >

(2 48)

z?(A) ~ {i+ ^ / ¿ 4)+ ^  (/d2

+ ^ ^ 7 ^  + ̂  (/^)2} dz (2 49)
E xtending the range of integration as before, the endpoints becom e ooeiai and ooeia2 

and satisfy the same inequalities Then lettm g 5 =  ±%{z — ¿w) \ /7 ^ ,  

s2 = — (z — zu)2f ", ^  and using the general formulae

/
/;

oo
e - ^ s 2nds =  \Phx{2n — l ) ( 2 n  — 3 )(2 n  — 5) (5 ) (3 ) (1 )  (2 50)

e-4 s2n+l^ = 2̂5l^

it can be shown that D(z)  has the leading asym ptotic behaviour4

r>(\) „  p  e- 4  i i -p-gj f" t _  5 1 ( 0 1  x  ? *7 /u7u(4)
1  ̂ V #  51 I 6 UfF1 + 24 (/")2 72 T7^ T 1̂44 (/")7/2

“*"Ii52 +  |  ds (2 52)

— drzvle^ / —  / l  -I- ^   ̂ _  M/m")2 i 35(/  ̂ I 1 /o co1!_:Cme V ^ l  8(/u)2 24(/i')3 + 384(/u )4 + J
T he formulae m equations (2 50), (2 51) for real 5 will apply here to the com plex

variable s if, oncc again, S),S2 lie in certain scctors of the com plex plane, nam ely

those given m (2 27)

4 These lesults are exactly as in Dingle [17], whose derivation is given without an explicit ap
pearance of the large asymptotic parameter



2.2 E x t e n s i o n  o f  M e t h o d  o f  N i k i s h o v  &  R i t u s 37

To determ ine expressions for both D(A) and R(A) in the procedure followed 

by Nikishov and R itus, the term s in the expansion of f ( z ; A) containing the third  

derivative and higher were ignored. This can be seen from the above to be equivalent 

to  their condition

77„(A) =  | / (% ' ^ A ) | | / V ' “; A ) r ?  <  1, n >  3 (2.54)

— the error then arising being of the order rjn(X).

2.2.5 Number of Saddlepoints

Following the general theory of Nikishov and Ritus, there seem s to be no reason 

why the m ethod cannot be extended to three or more saddlepoints. However, once 

again (see §2 .2.1 Discrepancies) the term s ‘upper’ and ‘lower’ used to describe cer

tain  saddles should not be determ ined from the relative m agnitude of 5t/(;zm; A), 

where zm is a saddle, but rather by exam ining the structure of the lines of steepest 

descent through the saddle and the possibilities for the deform ation of these. In the  

case of three saddlepoints, denote the upper saddle by zu, the lower by zl and the  

‘interm ediate’ saddle by z \  As previously, the contour C can be chosen along lines 

of steepest descent through then z l and finally zl — denoted Cuu (see Figure 2.3). 

Cuu is then divided into three contours 

C'uil — ̂ua Cab H- Cbl 

where

Cua begins at passes through zu and ends at z*a;

Cab begins at z*a, passes near (or perhaps through) zl and ends at z *b;

Cbi begins at z *b, passes near (or perhaps through) z l and ends at z ’̂ . 5

The points z*a and z*b must satisfy the following relations

5 / ( z * a; A) =  Z f ( z u; A), » /(* * » ; A) =  » /(* * ;  A); (2.55)

3 / ( z * 6; A) -  9 / ^ ;  A), S i /( 2*6; A) =  5i / ( z ' ;  A). (2.56)

Let the ‘leading behaviour’, as such, be termed the dom inant term i.e.

£>(A) =  A f e/(2;A) dz, (2.57)
* Cua

5It may be helpful to refer to §3.4.3 at this point.



2 2 E x t e n s i o n  o f  M e t h o d  o f  N i k i s h o v  &  R i t u s 38

Figure 2 3 Contour deform ation m the case o f 3 saddlepoints

and group the remaining term s as the recessive i e

R { A) = A f  e/(*’A) dz + A [  e/(z’A) dz 
Jcab Jcbl

A s before, fi shall denote f ( z l, A), / / '  denotes A) etc  

C om puting D ( A) exactly as in the case of two saddlepoints gives

D{A) -  ± iA , /% e f"
V Ju

(2  58)

(2 59)

R ( \ )  is tackled in two parts First consider A f c e ^ 2’̂  dz It follows from the  

calculations for the previous case that

A  j  e/(z,A) dz ~  T i y / ^ e ^ e r f c  ( ± i ( z *6 -  z l) \ J ^ j (2  60)

Secondly, A  f c  ̂e-^z,A* dz m ust be calculated Proceeding as for A f c e-^z,A) dz it 

can be shown that

A f  e ^ 2,A) dz ~  q~s2 ds , (2 61)
JCab V *

where sa = ±(z*a -  z ' ) y p f ,  sb =  ±(z*b -  z ' ) \ p f
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T hen rewriting

results in 

A

f b e~*2 ds — f °° e~s2 d s -  f e"s“ ds.
J  Sa J  Sa. J  S f t

(2 62)

J  e-^z,A) dz ~  (er fc ( ± 2(2*“ —z “) ^ /^ - )  — e r fc (± i(z * i) —

(2 63)

and, as before, Soo m ust lie m a sector such that arg €  ( —f , f )

In conclusion, when three saddlepom ts occur, / (A)  can be approxim ated as

/ (A)  =  D(X) +  R(X), (2 64)

where

D(  A) 

i?(A)

(2 65)

erfc ±i{z*b -  z

T̂ /ÿê 'erfc ̂ ±i(2*b   gl \ . I fl (2 66)

N otice, the procedure for choosing the order m which the saddles are traversed is 

sim ilar to the discussion of Berry and Howls on the adjacency of saddles Carrying 

the process a step further to deal with four saddlepom ts gives

D(X) ~  ± iA M ^ ,y Ju

R ( A) ~  =F%A y J ^ p d ' 1 ^erfc ^=h(z*a -  — erfc ^ ±i(z*b -  z l1

T ^ ^ / ^ - e ^2 ^erfc ^ ± z (z *6 -  zl2)*J~^j  -  erfc ^±i(z*c — zt2

(2 67)

T i A x/ 2̂ 770̂ erfc ( ±i(z*c — z1)*  ̂ 1 (2 68)

and so on in the event of encountering more than four saddles

2 2 6 Factor g ( z )

A lthough the integral considered here is of the form (2 1), the m ethod carries across 

to  the more general class of integrals

I{X) = A J  g(z)i (2 69)
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It is assumed that the continuous function g(z) is slowly-varying when compared to 

an(j to leading order

g(z) —> g(zu) as z zu, (2 70)

g(z ) g(zl) as z ->• z l, (2 71)

with neither g{zu) nor g(zl) vanishing Then, while f ( z ,  A) is replaced by the first 

few terms of its Taylor series (in the determination of both D(z)  and R ( z )), g(z) 

can also be replaced by g{zu) or g(zl) respectively, resulting in

fo/TT
D(z)  ~  ± i A J - g ( z u) e (2 72) 

y Ju

R(z) ~  ̂ A , j ^ g { z l)Qfi &dc^±i(z* -  z l) \ j ^ j  ( 2  73)

2 2 7 Finite Endpoint Contribution

When investigating

/(A) =  f  e/(2’A) d z =  f  e/(z’A> dz +  i  e/(z’A) dz, (2 74)
J  J  C#l

care must be taken to remember that separating the contour Cui m two, at a point 

z*, introduces in each of the resulting integrals a finite endpomt which must be 

taken into consideration As can be seen from § 2  3 , z* can be very close to or even 

coincide with one of the saddlepoints and thus may make a contribution to the 

asymptotic expansion of /(A) (as it is the lowest order approximation incorporating 

both saddlepoints that is being sought) There are three cases

1  z* coincides with the upper saddle, zu, yielding

(2 75)

R (A) ~  T l A ^ J ^ e fl evfc ^ ± i { z u -  zl) ^ p j  (2 76)

2  z* coincides with the lower saddle, z l, yielding
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3 z* does not coincide with either saddle but SR/(z*, A) may be of comparable 

magnitude to ïîf u or 5R/j and so

D{x) ~ * A7 ( ^ ) ef{z’'X )± lA^ ef'‘ (2 79)

* (A) ~  (2 80)

Consequently, numerical computations will be affected In particular, at a Stokes 

line, the endpoint, z*, will always coincide with the lower saddle, z l Thus in that 

case the final term m R(A), erfc ^ ± 2 (2 :* — equals erfc(O) which is 1 and

/(A) becomes

I ( \ ) ~ ± t A J — ef' ( 2  81)y Ju
or

127T / ?7T
J(A) -  ± i A J — efu ±  i A J — efi ( 2  82)

y h  y //
as expected, the ‘+ ’ or £-’ to be taken m accordance with the directions of the 

contours of steepest descent Thus if /(A) represents the Airy Ai function as in § 2  3, 

its asymptotic behaviour when arg A =  0 is correctly determined as

/(A) ~  =  -7r^^A“ ïe _2A3/2//3, A 0 0  ( 2  83)
v ' 2m  V 2A§ 2  v '

and likewise when arg A =  2tt/3  its behaviour is now shown to be

A2 I 2n _2A3/2/3 / 27T oA3/2/3

2 m y  2X2 2 m ] j - 2X2

=  ^7r"^A_;îe ” 2 A 3 / 2 / 3  -f ~ 7T- 2 A“ ^e2AV2/3, A —> 0 0  (2 84)
2 2z

Obviously, the results given in §2 2  5 and § 2  2  6  should also be modified to allow for

the inclusion of such finite endpomt contributions

Moreover, the results presented here also illustrate how the occurence of finite

endpoints in the original integral /(A) might be dealt with

2.3  E xam p le : A ir y ’s In te g ra l

To illustrate the method presented by Nikishov and Ritus, D(A) and R (A) are com

puted for Airy’s integral for various values of A The Stokes lines for the function



occur at arg A =  0 , ± y- The values of Airy’s integral are readily available (eg 

m Mathematica) and provide a benchmark against which to test the accuracy of 

Nikishov and Ritus’ method

According to Abramowitz and Stegun [1 ], Airy’s Ai(A) function has the integral 

representation

1 f°°
Ai(A) =  -  /  cos (i3/ 3 +  At) dt, A , t e R  ( 2  85)

J o
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To write this m the form of a Laplace integral, note tha t cos 6 =  ei9+9e lg Thus
POO 1 r  O O  -I po o

/  cos (i3/3  +  Xt) dt =  -  /  el (i3/3+A*) dt -f  -  /  e -*(£3/ 3+At) dt
J o  2 ,/0 2 y0o

oo
=  _ ±  /  e -*(t3/3+At) d t +  -  I  e - ' W ^ d t

2 Jo 2 y0
00 -.r*3

\ L
-«(t3/3+At) ( 2 8 6 )

' O O

giving Ai(A) =  ~  e-Iti3/3+Ai) dt To extend t to the complex plane, the

analyticity of the integrand and the convergence of the integral must be investigated

2 3.1 Convergence

Convergence of the integral e“ l^ 3/3+Â  d(  requires that

e -.(C3/3+Af) ^  o as C - ^ o o  (2 87)

(Note that e- ^ 3 / 3  dominates e_2̂ 3/3+Â  as £ —> oo )

Setting £ 3  =  (Cl3 et3̂ c gives

0-*C3/3  _  e “ i|Cl3/3(cos 30^-H sin 30^)

=  e ICl3/3sm36»Ce-i |C l3/3 c o s 3 ^  ^  8 8 )

Thus e“ 1^ 3 / 3  —> 0 when eKI3/3sin3<9< —y 0, which happens when s in 30  ̂ < 0, 

or equivalently, 6C € ( - t t ,  - ^ ) , (—f , 0 ) ,  ( f , ^ )

2 3 2 Analyticity

Writing w((,  A) =  e ^ ,A) =  e~z(xi+<3/3) and setting (  =  x +  zy, A =  a +  ib gives

(C,A) =  e ^ + ^ - ^ + ^ c o s  ( - a x  +  by -  x*/3 +  xy2) (2 89)

+ 1 ê bx+ay~v /3+x2v) Sln ( _ ax +  by — x 3/ 3  +  xy 2)

=  u ( x , y ) + i v ( x , y )  (2 90)

w \
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Figure 2 4 Contours of integration for the Airy Ai function

Thus u (x ,y ), ux, v(ie,i/), vy are all continuous, and it can be shown that

tLx 'Vy j Uy — Vj;, (2 91)

which implies that the Cauchy-Riemann equations hold, so therefore wf((, A) exists 

and

io(C,A) =  e/CC)A) =  e“?(AC+c3/3) ( 2  92)

is an entire function of £

2 3 3 Contour of Integration
i roo

Ai(A) =  /  e - « 3/3+x^dC
27r J-oo

= lim f  e-«3/3+A<> d(
2i7T R oo JCi +Cz

=  ¿ phm [  w{C,X)d(  (2 93)
¿7T R -> oo J CI+C2

Using Cauchy’s integral theorem, as the integrand is entire, gives

(see Figure 2 4)
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Thus

[  w(C,A)dC =  -  [  w ( ( , \ ) d ( -  [  w ( ( , X ) d (  ( 2  95)
JCi JCi Jcs

However, as R  —> oo, f Cs —> 0, and

[  w(CX)dC =  -  [  w(C,A)dC (2 96)
JCi JcA

for any C4 lying m the region — n < arg C< Similarly,

[  w(C,A)dC =  - /  ™«>A)dC (2 97)
JCi JCxfc2 jc s

for any C5 lying in the region — |  < a rg (  < 0  So

Ai(A) =  -  i -  i  e- t(c3/3+AC) d (  (2 98)
2 ?r

Using this representation of Ai(A) and the same notation as above, we find

/(C, A) =  - z( (3/3  +  AC), / ' ( c, A) -  -i(A  +  C2), (2 99)

giving the saddlepomts (  =  =hA 2 —thus, ‘movable’ saddles exist in this case In 

order to avoid this, the alternative representation

Ai(A) =  I dz, (2 100)
27x% Jc

where C is a contour with endpoints at — |  |  arg A and |  — |  arg A (which lies

within the regions of convergence of the integrand), can be substituted by letting 

z — z^/A1 / 2 However, use of the former representation illustrates how the method 

works for a phase function /(z , A) as well as for the more usual form Af ( z )

Using the method of Nikishov and Ritus, C must be deformed along lines of 

steepest descent through the saddlepomts of the integrand while taking care to 

retain the original endpoints

2 3 4 Branch Cut

In evaluating Ai(A), various values of A were chosen, namely A =  |A|ei0* with

|A| =  5 2414827884177932413, 6X €  { - f , - f , - f , 0, f , §, f  } (2 101)

Also investigated was the behaviour of the approximation in the neighbourhood of 

the Stokes line at 0\ — y ,  using



3
However, as A 2 is a multi-valued function, its presence and that of square root 

functions in the expressions (2.28) and (2.37) ensures their multi-valuedness. Thus 

it was necessary to cut the A-plane. A branch cut along the negative real axis 

was chosen, thereby excluding the values ± tt from the choice of 0\ . The value 

|A| =  5.24148... was used to enable comparison with the results of Berry and 

Howls [4] which will be discussed in §3.4.

2.3.5 Contour Plots

Included are contour plots (Figure 2.5, 2.6), generated by Mathematica, to illustrate 

the paths of integration followed.

The first row in each set shows the level curves for the function f ( z \  A) —the 

shading is in grey levels, running from black to white with increasing height. Thus 

the hills and valleys are clearly depicted and there can be no confusion as to the 

regions within which it is permissible to locate a contour of integration. The second 

set gives the lines of steepest descent through the upper saddle and also the lines of 

steepest descent through the lower saddle, which in the case of

/ (2 ;A )  =  - A § ( z - z 3/3 );  (2.103)

are located at zu =  1  and z l =  — 1 respectively. By deformation and truncation of 

these lines, the actual contour of integration is found. Possible choices of truncation 

point, z*, are obtained using

/(«*; A) =  R/(z*; A) +  iQ f ( z u; A). (2.104)

This is a cubic function and so has at most 3 distinct roots which are indicated in 

Tables 2.2 and 2.5.

2.3.6 Results

Appearing in Table 2 . 1  are the results of the application of the method of Nikishov 

and Ritus throughout the complex plane. It also contains the values of Ai(A) as 

given by Mathematica to enable comparison.The rows labelled lz u: contribution’ 

refer to the sum of the first seven terms of D(A) as given by (2 .5 3 ).

The computations were first performed for A with - 7r < Q\ <  0. Thus zu =  1  

and z l =  — 1 . On moving through 6\  =  0, if these values are retained then Ai(A)

2.3 E xam ple: A iry ’s I n te g r a l_________________________________________ 45
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Ox =-jt O x = -2f **=-!

2 1 0 1 2 2 1 0 1 2  2 1 0 1 2  2 1 0 1 2

3 2 1 0 1 2 3  3 2 1 0 1 2 3  3 2 1 0 1 2 3  3 2 1 0 1 2 3

Note that m each of the plots the contour of integration, C, runs from the valley 
at —7r/ 3  — Q\/2 to the valley at 7r/ 3  -  9\/2

Figure 2  5 Contour plots generated by Mathematica for the Airy Ai function
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n   29tt
V* “ Is- / I  ,  307T

~  48
n  317T

“  48
fl  2k

A 3

3 2 1 0 1 2 3  3 2 1 0 1 2 3  3 2 1 0 1 2 3  3 2 1 0 1 2 3

3 2 1 0 1 2 3  3 2 1 0 1 2 3  3 2 1 0 1 2 3  3 2 1 0 1 2 3

2 1 0 1 2  2 1 0 1 2

9x = 34k
48

a   35 t^ “ IT >3   36tt^ - 18-

Figure 2  6  Contour plots generated by Mathematica m a neighbourhood of the
2tt 
3Stokes line at 9\ — —



2 3 E x am p le  A iry ’s In te g ra l 48

oII 0 000062542563 z u leading behaviour
0 000062032034 contribution
0 000062032015 Mathematica

9X =  ±7r/3 - 0  073942120126 
=fz0 171146794183

zu leading behaviour

- 0  072426620907 
=fz0 171686345183

z u contribution

- 8  396688747172xl0-24 
±z6  64708077080xl0-24

z l leading behaviour

- 0  072426620907 
T*0 171686345183

Combined contribution

- 0  072426691399 
TiO 171686344417

Mathematica

ex =  ± tt / 2 51 917042554542 
±zl2 355100049351

zu leading behaviour

52 148519846152 
± z l 2  781413599925

z u contribution

1 307176850410xl0“8 
lpt1 458490447628xl0“8

z l leading behaviour

52 148519859223 
=Lzl2 781413585340

Combined contribution

52 148548097165 
±zl2 781410572676

Mathematica

0A =  ± 2 tt/3 481 302385175849 
Ti277 880061642886

leading behaviour

485 804343969079 
=fz280 479268764036

z u contribution

0 000031271281 
=h0 000054163448

z l leading behaviour

0  0000310160168 
±z0 000053721317

z l contribution

485 804374985096 
=f*280 479215042721

Combined contribution

485 804768687663 
T^280 479478161225

Mathematica

Table 2  1  Numerical results using the method of Nikishov & Ritus
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0 \ =  —2tt/3 - 1 2

1 
>-

 II 1 to ±1 807339494452021854 
-lO  298035818991660762

0  0 0
-B0 596071637983321523

CO1II - 2 1
0 a =  O - 1 2

COII"*1 - 2 1
Ox =  t t / 2 ±1 807339494452021854 

-HO 298035818991660762
0  0 0
-lO  596071637983321523

6 \  =  2tt/3 - 1 2

Table 2  2  Possible choices of for Ai(A) with z u =  1 , z l =  — 1

could be computed from

Al^  = ~ È k j e_AÌ(z_z3/3)dz (2105)
for convenience Otherwise,

Ai(A) =  [  e- A§(z- z3/3) dz, ( 2  106)
2m Jc

is used and zu =  —I, z l =  1 Either way, the numerical results remain the same 

Note that in the special case arg A =  0 only the upper saddle z  =  1 contributes 

If R (A) as presented m ( 2  37) is used, it causes an error This can be seen from 

the contour plot—notice how the portion of the lines of steepest descent which tend 

to and return from infinity along the real axis cancel each other exactly as far as 

the point + 1  However, the point z* is determined as 2 * — — 1 If this is used to 

truncate the contour through z — 1 the integral between z =  — 1  and z  =  1  will be 

included in the calculations exactly once and will lead to a non-zero imaginary part 

for Ai(A) The situation can be rectified by using the expression described in § 2  2 7 

instead

It is obvious from the results that the method loses effectiveness as the distance 

from a Stokes line increases The greatest improvement obtained by adding in the 

contribution from z l takes place at the Stokes line at arg A =  ^  and the worst case 

is at arg A — |  as expected, as this is an anti-Stokes line and thus is as far from 

a Stokes line as possible Tables 2  3, 2  4 and 2  5 illustrate the optimal behaviour 

of the method when restricted to a neighbourhood of the Stokes line The value of 

2 * changes smoothly and allows the recessive term to change gradually Once again 

values of Ai(A) from Mathematica are provided for comparison
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ex =  29tt/48 1 -370 6276671 -  *133 1113229 z u leading behaviour

-373 5163729 -  zl35 3694464 z u contribution

0 0000138331 -  iQ 0000885048 z l leading behaviour

-373 5163591 -  zl35 3695350 Combined contribution

-373 5161175 -  «135 3695642 Mathematica

9\ =  30tt/48 -220 4092148 -  z422 5408136 z u leading behaviour

-221 5875025 -  z426 8303696 z u contribution

0 0000440166 -  tO 0000647097 z l leading behaviour

-221 5874585 -  z426 8304343 Combined contribution

-221 5871741 -  z426 8305220 Mathematica

> II CO
 

)—
1 OO 147 4868145 -  z514 0174263 z u leading behaviour

149 3683830 -  «518 6491798 z u contribution

0 0000024505 -  zO 0000691970 z l leading behaviour

149 3683854 -  z518 6498873 Combined contribution

149 3687734 -  i518 6493631 Mathematica
COCMII<< 481 3023852 -  z277 8800616 z u leading behaviour

485 8043440 -  i280 4792688 z u contribution

0 0000312713 +  iO 0000541634 z l leading behaviour

485 8043750 -  z280 4792150 Combined contribution

485 8047687 -  i280 4794782 Mathematica

Table 2  3 Numerical results m a neighbourhood of the Stokes line at Q\ =  y  

2 3.7 Conclusions 7

The method of Nikishov and Ritus, together with the modifications mentioned here, 

provides a means of exponentially improving classical asymptotic estimates by ex

plicitly defining the function which switches on and off the recessive term 6 As 

discussed m §13 2  this can be of vital importance analytically in physical applica

tions For instance, an application is mentioned by Nikishov and Ritus[52] involving 

a charged particle in a constant electric field The solutions of the wave equations 

modelling the problem reduce to parabolic cylinder functions which describe not

6A similar result had been provided by Berry in 1989 and is discussed in §3 5 but this was not 
known by Nikishov and Ritus at the time of publication
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0X =  33tt/48 518 5556393 +  zl29 2813851 z u leading behaviour

523 8475567 +  zl29 9677756 zu contribution

0 0000294367 -  zO 0000627151 z l leading behaviour

523 8475862 +  zl29 9677130 Combined contribution

523 8479335 +  zl29 9675451 Mathematica

ex =  34?r/48 255 7264715 +  z402 1503861 z u leading behaviour

258 8521919 +  z405 3155911 z u contribution

0 0000340321 -  zO 0000704741 z l leading behaviour

258 8522259 +  z405 3155206 Combined contribution

258 8525500 +  z405 3153454 Mathematica

ex =  35?r/48 -7 0  0360463 +  z387 5286365 z u leading behaviour

-6 9  5248069 +  z391 1593909 z u contribution

0 0000835394 -  zO 0000322726 z l leading behaviour

-6 9  5247234 +  z391 1593586 Combined contribution

-6 9  5245557 +  z391 1591437 Mathematica

Table 2  4 Numerical results in a neighbourhood of the Stokes line at 6X =  
(contd )

0X =  29?r/48 - 1  478417909175557322 +z0 321729440194093884
Qx =  3 0 tt /4 8 - 1  383165218671339198 +i0 288119081799804959ì

II 
!

CO
 

h-
1

O
O -1  264285567867270114 +i0 223564244429849712

6\ =  27r/3 - 1
6X =  33tt/4 8 - 1  264285567867270114 - iO  223564244429849712
6X =  34tt/48 - 1  383165218671339198 -*0 288119081799804959
6x =  35tt/48 - 1  478417909175557322 - iO  321729440194093884

Table 2 5 Values of z* chosen in a neighbourhood of the Stokes line

only the motion of the charged particle in the field but also the production of par

ticle pairs by the field If the electric field is weak, then the latter is represented 

by exponentially small terms m the asymptotic expansion of the parabolic cylinder 

function Thus the ability to describe the appearance of these terms is of great 

interest Not only that but the ‘width’ of the region across which the switching on 

of the recessive term takes place, determines the formation length or time of the 

pair production process
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However, one drawback of the method is that it is not clear at what point one 

should halt when including higher order terms in D (A) as given by (2 53) In other 

words, the exact relationship between the truncation of the contour Cui at and 

the truncation of the asymptotic series arising from the saddle zu is unknown This 

hampers the numerical precision of the method One remedy may be to change 

the criteria involved in determining z* The concept of truncating the contour of 

integration through one saddle in order to incorporate the contribution of a second 

saddle would seem to have potential in terms of numerically improving the basic 

asymptotic estimates given by the method of steepest descent and a more sensible 

point of truncation may be all that is needed

Further comments are made on this method in Chapter 3, §3 4 where it is com

pared to the method developed by Berry and Howls These include a brief descrip

tion of a Borel-plane representation of the former, which may help in the under

standing of the process of contour deformation and truncation used



Chapter 3

Berry & Howls Approach

3.1 T h e  S add lepo in t M e th o d  o f B e rry  &; H ow ls

B y considering integrals of the form

/* (A) =  [  g(z)e~xM  dz,  (3 1)
'JC'k{6\)

where A is the large asym ptotic parameter, Ck{@\) 1S an infinite contour of steepest 

descent of —Af ( z )  through the sim ple saddlepoint zk and f ( z )  and g(z) are analytic  

functions at least in a region including Ck(9a ),1 Berry and Howls [5] produced a 

refinement of the traditional saddlepoint m ethod which generates hyperasym ptotic  

results by taking into account exponentially sm all contributions from the other sim 

ple saddles through which the contour does not pass This was prom pted by the  

divergence of the asym ptotic series associated w ith a single saddlepoint It was seen  

as necessary evidence to conclude that such a series contains inform ation about the 

asym ptotic series which could be obtained by considering contours through differ

ent saddles Instead of resumm mg the remainder of the divergent series, following  

optim al truncation, the tail is expressed in term s of integrals through certain other 

saddles, term ed ‘adjacent saddles’, chosen according to a topological rule, thus al

lowing the integral to be determ ined to an accuracy greater than that of the least 

term  m the series

T he m am  steps leading to the sequence of hyperseries obtained by Berry and 

Howls are recounted briefly but using a slight variation on the notation appearing  

m their 1991 paper In order to ease the transition to m ulti-dim ensional integrals

1 Notice that here we are considering phase functions of the special form —Af(z) in contrast to 
+f(z, A) of Chapter 2—having chosen to retain the notation of the authors for simplicity

53
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later on, functions are expressed in terms of the more natural variable 5, where the 

As plane denotes the Borel plane2, as in Howls’ 1998 publication [29]

B y extracting the algebraic prefactor and exponential dependence at the saddle, zk, 

the function Xfc(A) can be defined

p — ̂ fk
4 (A )  =  — t-2 * (A )  w ith f k = f ( z k) (3 2)

A 2

Then a change of variable,

S = f (z )  -  fk, (3 3)

is m ade so that \s\ varies from 0 to oo on the contour C*, w ith arg s =  — arg A = —9\ 

Thus, for each value of s there are two values of z  2+(s) and z _ (s ) , and Tk(A) can 

be w ritten as

( p m .  -  ^ « l u
Jo I /'(*+(«)) /'(*-(«)) Jooe-̂A

A 5e-AsA  kG(s)ds,  (3 4)
L

where

and

< * > = $ |

<36>
The notation A kG(s) can then be viewed as indicating a discontinuity of G(s)  across 

a cut running from the singularity at s = 0 to  oo W riting this as a contour integral

{ P ^ - T T T l )  = - L^ <f  Ml/(^+(s)) f  iz - ( s) ) ) 2 niS2 Jrzk f ( z ) - f k ~ s

leads to

A k G ( s )  =  - ^ < f  AfeG(eK" (3 8)
27TZS2 J pfc £ —  S

where Fzk is the infinite anticlockwise loop surrounding the contour and is its 

counterpart m the £-plane encircling the ray from £ =  0 to infinity T he latter can  

be legitim ately obtained by expanding a closed contoui around the pole at s so long 

as it encounters no other singularities in the £-plane (see Figure 3 1) Rem em ber

!See Chapter 5 for explanation
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that as Tzk surrounds Ck it must encompass both values ¿+(s) and z_(s) and so to 

allow the integral along Tk the same facility, the function A kG must be contained 

withm the integrand

The denominator of (3 7) can be binomially expanded to give

AfcG(s) - 27TZ
r N - 1 AkG({)sr- i

I

A *G(£)s"-*
r* ̂  <f+t ' Jr,. £n+

On substituting (3 9) into (3 4), 2* (A) becomes

•°°e""A A§e"As

* ( ' - 0
dti (3 9)

Tk

If

Tkr

then

r
(A )= /

Jo 2tvi

,N-g A A » g ( f ) ,  _  

r* 7̂ 0 Jrk (l - |)

- I

ooe A Ar+|e-AS J- A*G(f)s’
27TZ /■/r* :r+- ds,

™ - § £ + £ j [
ooe~t6\

i I
JTk

A *G(£) ds

ds

(3 10) 

(3 11)

(3 12)

Further manipulation of Tkr yields

r(r + \) r  akG(z)
Tkr — 27TZ /J Be

which, upon reinstating the original variables, would lead to 

Tkr =  V » 1 dz
(r ~ § ) '  I  9 {z)

2m ■>Bzk (f ( z) - /fc)r+t

(3 13)

(3 14)

The contour Vk has now been shrunk to a small positive loop, B^  surrounding £ =  0 

for calculation—this corresponds to Bzk m the original z-plane, a small positive loop 

surrounding saddle zk An examination of the remainder term m (3 1 2 ),

rooe~ie\ /*
S‘ <A-K » = ^ i  i

A *G(fl df  ds. (3 15)
r* £"+* (l - |)

suggests deforming the contour of integration into a union of arcs at infinity and 

similar contours, r m, surrounding the only other singularities of A*<?(£) which occur 

at the images of the other saddles, z m, m the £-plane

At r l6 a
e A5s^  2j I

/ r ,

AfcG(0
d £ d s  (3 16)
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(7nm taking the value 0 01 1 depending on the relative orientations m which Tk and

 __= K
A (fm—fk) A Fk mr m are traversed ) Then the transform ation s =  x(f^_f  ̂ =  t 0 — i s  made, yielding

M K  N) =  Y .  I "  f  A*G(Oe_* (f~/m+A) de ̂
2 «  t r '  Jo 1 ~ x f ^  Jrmm fem

(3 17)

(after som e m anipulation) A definite sim ilarity is detected between the formula  

Tfc(A), as given by (3 4), and the second integral m the expression for R^i A, N)  In 

fact, if the loop contour Tm m the latter is collapsed onto the line running from  

£ =  0 to 00 and the discontinuity A m(AfcG (f)) taken across it, then th is im plies 3

1 v—  ̂(— f 00 (  1/ \
= i ^ r- G d *  <318>

so that (3 1) can be written as

The latter resurgence formula (3 19) can then be iterated, illustrating the occurence  

of m ultiple scattering paths between adjacent saddles and creating a series o f hy- 

perseries, each of which contains fewer term s The final expansion takes the form

-ah ( N0-1 N'~l N*~l
Ik(A) = 1 ( ^  + E E  TmrKkmjr "b E E E  rLpr k̂mp,r

\  r= 0  m  r —0 m p r =  0

p —A f k

= ( i i 0 +  ^  +  ) (3 20)A2

where Tjr are the coefficients of the primitive asym ptotic series associated with  

saddle z3 The K kjn j,r represent universal hyperterm m ant integrals which depend  

only on the values of the sm gulant and the point of truncation and are therefore 

independent of the particular form of integral investigated A numerical exam ple is 

given m §3 4

3.2 In c o rp o ra tin g  F in ite  E n d p o in ts

Howls extended the saddlepom t m ethod of §3 1 to include integrals having a finite 

endpoint [28] There are two separate cases to  consider— those where the endpoint 

is itse lf a saddlepom t and those where it is not

'Refer to appendix for details
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m

r k

Figure 3 1  Contours of integration in £-plane §3 1  

3 2 1 Quadratic Dependence

Determination of the hyperasymptotic scheme follows the same steps as before but 

again the notation used m [28] has been changed slightly The first case to be 

considered is

h / 2 (A) = [  g { z ) e ~ Xf ( -z )  d z ,  (3 2 1 )
JCh/2{Sx)

where Ck/2(6\)  is a contour starting at the saddle z k and running along a steepest 

descent path to infinity in a valley of 3ft{—A[ f  {z) — f  (zk)]} To start, the exponential 

dependence at the saddle, z k, is extracted
e —A/fc

4 / 2 (A) =  — r T k/2(A), f k =  f ( z k )  (3 22)
2 A2

The change of variable

s =  /(* ) -  f k  (3 23)

is performed as before giving two values of z  to each s, z+(s) and 2 _(s), because of 

the local quadratic behaviour of f ( z )  — fk but only one of these, say z+(s), lies on 

Cjfe/ 2  Then 7 i/ 2 (A) becomes

nooe~*ex / / \\ /*ooe_,eA
Tk/2(A) =  2 /  A ^  + \  y d s  -  2  /  \ H ~ XsA kG(s)ds, (3 24) 

J o  /(2 + W ) J o
where again

, 9{z(s)) ,o okV
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but now

A*G(s|" (3 26)
representing its value on the upper side of the cut only Using

9{z+(s)) _  1 /  g{z) 97x
/'(2+(s)) ’ ( }

AjfcG(s) can be written as

A*G (a) =  ~ ~ r <f (3 28)
4ms 2 Jrk/2 £2 — 52

The contour P^/2 is an infinite loop around the path of steepest descent C* /2 and r /̂2

is its im age m the £-plane If the denom inator of the latter is expanded bmomially,

then Tk/2(A) takes the form

Tk,2(A) =  ^  +  R k/2{A, iV) (3 29)
n ^ 2 7'— 0

with

r(| + 1) / AfcG ( 0
r(t/2)r = Y r

(§ - I)' / »(*) —dz, (3 30)
2m JBzk (f{z)  -  /*)§+>  

i i fc/2(A,iV) =  Xe - Ass H /  f fcG(e) (3 31)/rfe/2^ + 2(l-(|)2)

The contour Tjt/2 is then deformed exactly as before— to a union of arcs at infinity  

and contours Fm corresponding to the doubly-m fim te contours of steepest descent 

through the adjacent saddles Finally the change of variables

S =  A( fm -  f k) =  (3 32)

leads to

W I  = E ¥ ^ E  r  — ' f = T m ( - f - )  d„, (3 33)A2 2m ^  (AFkm)* Jo 1 - V ^ W

using Tm as m (3 19) Again a hyperasym ptotic scheme can be obtained by iterating  

th is resurgence formula



3.2.2 Linear Dependence

The integral m this case takes the form

Ie(X) =  [  g ( z ) e - W  dZt ( 3  3 4 )
Jce(9x)

where Ce(9\) is a steepest descent path from ze to a valley of 5R{—A[/(z) — f ( z e)}} 

The function Te(A) is defined by

/ e(A) =  ^ T e ( A ) ,  U =  f ( z e), (3 35)

then a change of variable,

5 = f { z )  -  fe, (3 36)

is made, allowing 5  to vary from 0 to 0 0  along Ce with arg s =  — arg A However 

it should be noted that this time the transformation is smgle-valued as z e is not

a stationary point of f ( z )  and so the latter depends on z e linearly Thus Te(A)

becomes
pooe~‘td̂ ( { \\ pooe~t6̂

Te(X) =  /  Xe~Xs!t}. \  ds =  /  Xe~XsG(s)ds  (3 37) 
Jo f'(z(s)) Jo

and the function G(s) so defined can be written as a contour integral

3 2 In co rp o ra tin g  F in ite  E n d p o in ts ___________________________________ 59

<338)
because m this case

ff(z(s)) _ J_ / 9(z) , ,, ,Qx
f ( z ( s ) )  2 m  J Tze f ( z )  -  f e - s

The denominator of the former is binomially expanded as before and the result 

substituted into Te(A) to give
N ~  1 T

Te(X) =  Y ,  1 7  +  N ) (3 4°)A7
r — 0

where
T(r +  1 ) f  G(f) r ! /  g(z)
2̂ ~~ J B( * =  2^ JBze ( f ( z )  -  f ey + i  z  (3 41)

<342)
Following the pattern of the previous sections, Tze and Pe are infinite loops m the 

z and £-planes respectively, whereas Bze and B£ are small loops surrounding ze

and

I
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and f  =  0 (see Figure 3 2 ) As the divergence of an endpoint expansion is still 

attributable to the existence of saddles of f ( z ), the contour Te is deformed as before 

and then following another variable change

A(/m -  fe) AFe

the resurgence formula emerges as 

N - 1 y
XT 2m 2 j o i —r=0 m  A -Tern ^ e

(3 43)

T 1 ('— I')7'"1 f°° vN- xl2e~v / v \

^ A)  =  E f  +  ^ E M M /  1— — (344)Ar 2 * 1 ^  \n f ! L +2 Jo 1 - T r Z  \FemJ

f)/ A

------------- >---------
r  e

Figure 3 2  Contours of integration m £-plane §3 2  2

3.3 O rd in a ry  D iffe re n tia l E q u atio n s

The initial hyperasymptotic investigations of Berry and Howls [4] dealt instead with 

the solutions of ordinary differential equations of Schrodmger type,

d2y(z ’ X) =  \ 2Z ( z ) y ( z , \ ) ,  (3 45)
dz

where one transition point dominates, A being the large asymptotic param eter A 

formal asymptotic series for y was found by substituting into the equation and the 

terms of this series could then be exploited by a resurgence formula of Dmgle [17] 

in the form of an exact representation relating the later to the early terms
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where F  is the ‘singulant’ (a natural variable for the problem ),

F(z) = 2 \ £ z U ( ) d C ,  (3 48)

and Fj 7 its value at transition point z3 At first sight, such a relationship between the 

term s m an expansion seems to be astounding, however closer exam ination reveals it 

to be, m fact, inevitable This is because, although each of the two ‘wave’ solutions 

satisfies the equation formally by itself, m order to reflect the existence of the other 

‘wave’ m the solution, it must diverge and contain all the necessary inform ation m  

its divergent tail to describe the early term s of the other series

The procedure undertaken was to truncate the original series at its least term, 

apply the resurgence formula to the term s m the remainder series, then perform  

Borel sum m ation on the latter— that is, replace the factorial by its integral repre

sentation, interchange the sum m ation and integration and evaluate the sum  Such a 

resum m ation generates an asym ptotic series which itse lf requires resum m ation and 

thus the process becom es iterative It was originally hoped that such a sequence of 

£ hyperseries ’ would converge to the exact solution Unfortunately, th is was not the  

case, as the hyperseries becom e successively shorter and so the encoded inform ation  

they contain is finite Thus the ultim ate error is finite (and non-zero) and is found 

to  be of order e -^1* 21̂ 2) ^  In fact, the first term of each successive hyperseries is 

only half the size of the last term m the previous one The resulting schem e is

_ F  /N o - 1  N i ~ l  N 2- 1 \

V(z) = ^ f- Y ( - i y Y r( F ) + Y ( - i y Y r(F)Kr l + Y ( - l ) r Yr(F)Kr2 +
^ M V r = 0  r= 0  7^0 ) F_

=  4 ^ - ( ^ o  +  ^ i + - f f 2 +  )  (3 49)
Z*{z) v J

where K rj are hyperterm m ant integrals as before However, th is should be viewed as 

a less general result than that obtained from the integral representation of functions 

m which m any exponentials can be involved, the asym ptotic series corresponding to  

each of which is different

It is possible to construct a hyperasym ptotic scheme o f arbitrary accuracy, but 

as the truncations of the series are no longer optim al, this m ay result m representing  

Y  (F ) by large term s which cancel each other out and becom es its downfall O ptim al 

hyperasym ptotic schemes such as the one above actually sacrifice u ltim ate accuracy
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for immediate improvement at each stage In this sense, the choice of truncations 

here is not the best In terms of globally minimising the error, Olde Daalhuis and 

Olver have proposed other schemes yielding better estimates [61], [57]

In fact, since the introduction of the concept of hyperasymptotics much work has 

been undertaken m the area of differential equations (see [61], [55], [56], [58], [50], [57] 

for details) Principal contributions have come m particular from Olde Daalhuis— 

for instance m his new integral representation of the hypertermmant functions which 

allowed them to be computed to arbitrary presision using convergent expansions 

Although extreme numerical precision is not the mam motive for the investi

gation in [4], a numerical example (computation of the Airy Ai and Bi  functions) 

was given to illustrate the workings of the method These computations have been 

supplemented here (Tables 3 1, 3 2) to compare to the results obtained by the Nik- 

lshov and Ritus method It should be noted that the Stokes phenomenon is also 

quite naturally taken care of by the method Comparing the results with those from 

Mathematica illustrates how well the method works m all sectors of the complex 

plane—at Stokes and anti-Stokes lines alike

3.4  C om parison  o f R esults  

3 4 1 Application of Method

A study of Airy’s Ai function

involves only two saddlepoints and thus the only possible scattering path bounces 

back and forth between them In fact as this function is a solution of the second 

order equation

it can be seen that the differential equation method dealing with two exponentials 

presented m §3 3 can be regarded as a special case of the saddlepoint method and 

hence the computational details proceed m parallel

Starting with the integral method, it is obvious that f ( z )  =  z -  z 3/ 3, g(z) =  1 

and the saddles of f ( z )  occur at z l =  + 1 , z2 =  - 1  The contour C which runs

(3 50)

d2y / d \ 2 =  \ y , (3 51)



from ooe^"7̂ 3-^ 8^ 2) to ooe^7r//3_arg A/2̂ can easily be deformed into Ci, the infinite 

contour of steepest descent through z 1, as required As z 2 is the only adjacent 

saddle, the scattering path becomes

Iteration 0 1 2  3
Saddle z 1 z 2 z 1 z 2

The smgulant F12 =  f 2—fi =  —4/3 and the optimal truncation points are calculated 

using

N 0 =  Int|A§F12|, Nn =  Int|iVTl_1/21 (3 52)

The coefficients T\r are given by

*r(r + l /6 )r (r  +  5/6) co
Tlr = ----27 ^ F [2---- ( 3 53)

and because of the existence of only two saddles a symmetry condition implies that 

the coefficients T2r are equivalent except for a difference m sign Finally, is set 

equal to 0  as the orientation of the contour does not change as it is deformed to an 

arc through z 2

Viewing Ai(A) as a solution of (3 51) allows it to be written as

_ i  00

Ai (A) =  ^ ^ - £ ( - 1  )ryr, (3 54)
V 7”—0

where the Yr can be determined by

T(3r +  1/2)
r ( 2 7 F ) r T ( r  +  l ) T ( r  + 1 / 2 )  ’ 0 ’  ̂ j

and F — 2  J X(,1 2̂d^ — 4A3/2/3  is the smgulant The previous values of |A| and 

9X =  arg A in §2 3 4 have been retained and optimal truncation points can be found 

using

N 0 =  In t|F |, Nn =  In t( |F |/ 2 n) (3 56)

Alternatively various ‘connection’ formulae could be used to relate Y(\F\e™) and 

y ( |F |e i27r) to 1 ^(|F|) and so on, to perform the computations as Q\ varies, as shown 

in [4]
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3 4 2 Numerical results

Presented m Tables 3 1 and 3 2 are the numerical results using initially only a first 

approxim ation to the asym ptotic behaviour, followed by the superasym ptotic4 ap

proxim ation and then the first hyperasym ptotic correction to the latter Thereafter 

the improvem ent m precision slows down and approaches the ultim ate accuracy of 

the m ethod after just four correction term s (A^ =  1) In fact, in the neighbourhood  

of the Stokes line, it has been claim ed that the rapid sw itching on of the subdom i- 

nant exponential is m ostly accounted for by the first term inant integral, w ith  further 

hyperasym ptotic contributions varying only m inim ally Included also in Tables 3 1 

and 3 2 are the corresponding values of A i(z) given by Mathematica for com parison  

In the case of the integral, the necessary and K ^ r  are given by

K i,r =  ¿ 5 -  (3  57)

yoo Q-u^No-r-1
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p oo  Q - u j y l \ o - r - L

/  „ dv,  (3 58)^  27T*A®"o/2i£o-r , A3/2Fi2

w ith Fw — f 2 — f i  as before, whereas for the differential equation

(  — ro o  e - £ £ / V 0 - r - l

K r i =
r°° p-Çt/Vo-r-l

: L  (3 59)27tF n° ....................... pr

These were com puted using the formula [4]

K rl{F,N0) = — eFr(No — r ) r (r  — N 0 + 1, F)
¿7f

( _ l ) r + 1 /  ^ 0- r - 2 ( _ l ) m  | \

= S M e E i ( f ) “  E  > (3 6°)\ m=0 /
Ei denoting the exponential integral function All calculations were again performed 

using Mathematica

3.4.3 Contours of Integration

In order to compare and contrast the contour deform ation procedures used above 

to those of Nikishov and Ritus, consider the integral

I u W =  [  g(z)e~Xf{z) dz, (3 61)
Jcu{ox)

see Chapter 1, §1 3 2 for explanation



3 4 C om parison  o f R esu lts 65

1

oII< 0 0000625425625759612 e-A3 /2 /iA-i/4
27TZ

e-F/ 2A-l/4
2v/7T

0 0000620320147233227 e-A3 /2 /lA-l/4 u  
2m 0

e-F/2A-l/4 ¿y 
2 v̂ F ^ 0

0 0000620320150783723 2m
e_F/2 A_i/4 ( fj , L7 A 

2 v̂ F 1 ^ 0  + -Hi)
0 0000620320150783730 Mathematica

> II H- w|̂ -0 073942120126304068 

TiO 171146794182805249

e-^3 /2 /iA-i/4
27TZ

e-F/2A-l/4 
2 /̂tt

-0 072426691902033771 

TiO 171686343032197913

e-A3 /2 /i^-I/4
I n  ' ^

e-F/2A-l/4
2 0 F ^

-0 072426691398953331 

=R0 171686344417311019
2„  ( « 0  +  U x)

- 0  0724266913989531661 

=Fz0  171686344417313801

Mathematica

fcl<M
-HII•< 51 9170425545421703 

±«12 3551000493512328
2iri

e-F/2A-l/4
2yfn

52 1485479377104457 

±212 7814098581669323

e-v^/iA - 1 / 4 rr 
2 «  H 0

e-F/2A-l/4 ¿y 
2 v/tF ^ 0

52 1485480971646300 

± il2  7814105726754200

e-A3 /2 /l^-l/4  ̂ t j j  \
2m i - « 0  +  -Hl)

e-^/2A-l/4  ̂ £/ ^
2 ^  1 ^ 0  +  n i )

52 1485480971654727 

± il2  7814105726762697

Mathematica

-H1!< 481 302385175849426 

=pz277 880061642885611

e- XW‘hx-in
2m

e-F/2A-!/4
2V/7T

485 804749623305981 

=F«280 479502968614454

e-A3 /2 /iA-i/4 u  
' ..2 ,, 0

e- F / 2 A - 1 / 4 ¿j 
2 ^  0

485 804768687640302 

=r 280 479478161216877

e-^A A -V /rT  , rr s 
2m +  Hl)

e-F/2A~ 1 / 4 ( TT \ TJ \ 2\fn +  t i l )

485 804768687662914 

T*280 479478161225457

Mathematica

Table 3 1  Results obtained by Berry & Howls methods as described in §3 1 and 
§3 3 respectively
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n _ 29tt
^A -  Is" -37 0 .6 2 76 67 05 64 13 —¿133.111322920124

e-A3/2/i A-Ì /4 
27ri

-37 3 .5 1 6 1 0 6 8 1 3 3 6 4 —¿135.369563154830 2- - • «0

-3 7 3 .5 1 6 1 1 7 5 7 8 4 3 7 —¿135.369564185098 e~A3/22̂ ~ 1/4 (Ho +  Hi)

-37 3 .5 1 6 1 1 7 4 9 2 3 4 0 —¿135.369564189327 Mathematica

A _ 307T
^A —  48 -22 0 .4 0 9 2 1 4 8 4 9 3 4 6 —¿422.540813560316 e-*3/2/U-i/4

27TZ

-22 1 .5 8 71 61 79 83 04 —¿426.830532179161
e_A3/2/lA_i/4

27ri

-22 1 .5 8 7 1 7 4 1 4 7 9 7 9 —¿426.830521945929 '■““ » r “ ' ( » . + « )

-2 2 1 .5 8 7 1 7 4 0 6 3 8 7 8 —¿426.830522040900 Mathematica

r\ _ 317T
A — “48" 147 .486814464210—¿514.017426296724

e-A3/2/l A-l/4 
27ri

149 .368775848683—¿518.649385689418
e-^3/2/iA-1/4 rr 

2 «

149 .368773420264—¿518.649362969244
e-A3/2/1A~l/4 , j j  j j  >.

2 Tri ("0 +  fll)

149 .368773409203—¿518.649363148191 Mathematica

n _ 27T
ĉ a -  t 4 81 .30 2 38 51 75 84 9 —¿277.880061642886

e-*8/!/iA-i/< 
27ri

4 85 .80 4 74 96 23 30 6 —¿280.479502968614
e-X3/2/l A-l/4

2« H o

4 85 .80 4 76 86 87 64 0 —¿280.479478161217
e-A3/2/lA-l/4 , *

2«  (ilo +  Hi)

4 85 .80 4 76 86 87 66 3 —¿280.479478161225 Mathematica

n _ 33tt
^A -  Is" 5 1 8 .8 9 5 5 5 6 3 9 2 9 6 3 -H 1 2 9 .281385091142

e-*3/2fia->/4 
27ri

5 2 3 .8 4 7 9 3 1 5 8 8 5 7 ^ 1 2 9 .9 6 7 5 3 8 4 2 7 5 6 6
e-X3/2/i a -1/4

2« H 0

5 23 .847952479029+ ¿ 129 .967547684581 e“^3//2/l A*1/4 /" rr . rr \2« ( H 0 +  Hi)

523.84793354067-t-¿129.9675450610755 Mathematica
f) _ 347T
^A -  Ig- 2 5 5 .7 26 4 7 1 5 4 3 0 4 8 -H 4 0 2 .150386067874

e-A3/2/i A"l/4 
27ri

2 58 .852503070834+ ¿ 405 .315377359406
e_X3/2/iA-l/4

2« 0

258.852518115912+1*405 .315371780892
e-A3/2/iA-l/4 , „  .

2« (Ho +  Hi)

2 58 .852550043745+ ¿ 405 .315345422031 Mathematica
p _ 35tt
^A -  Is" -70 .036046348025+ ¿ 387 .528636476278

e-A3/2/iA-i/4 
27ri

-69 .524572815398+ ¿ 391 .159218800450 e-*3/2/iA-i/4 u  
27TÌ ^ 0

-69 .524568325100+ ¿ 391 .159143695088
g-A3/2/! A~l/4 / t t  t t  \

2ttì.... v 0 +  #l)

-69 .52 4555688085+ ¿ 391 .159143695088 Mathematica

Table 3.2: R esults obtained by Berry & Howls integral m ethod in a neighbourhood  
of the Stokes line.
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where Cu is the infinite contour of steepest descent through the upper saddle, z u 

Following the method of §3 1 , Iu(A) can be written as

4(A) =  ^  A5e-As— !—r <f <%ds (3 62)
v A W o  2ms* Jr„ Z ~  « V

However, instead of expanding the denominator appearing in the second integral, 

truncating the resulting infinite series and then continuously deforming the contour 

of the remainder term, the idea would be to truncate the contour Tu at some point £* 

(see Figure 3 3) and move onto another contour T/ associated with the lower saddle 

z l, following the direction of the arrows shown, and so incorporate the contribution 

of z l The choice of £* is such to minimise its distance from T( in exactly the same 

vein as before but this time working withm the £-plane

r

u

Figure 3 3 Contour truncation m the £-plane 

3 4 4 Conclusions

As can be seen from the tables, the addition of even only the first hyperasymptotic 

correction term greatly improves the estimates This remains true throughout the 

complex domain (i e as arg A varies) in contrast to the results using the method 

of Nikishov and Ritus as presented m §2 3 6  At higher levels of hyperasymptotics, 

where another re-expansion of the remainder is undertaken, the estimates should 

further improve, albeit more slowly The method of Nikishov and Ritus essentially
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corresponds to a single re-expanion and therefore the sam e numerical precision can  

not be expected

It should also be remembered that these approxim ations are for large A and yet 

the value of |A| chosen was m erely 5 2414827884177932413, further dem onstrating  

the power of these m ethods

3.5  S m o o th in g  o f Stokes D isco n tin u ities

Because the Stokes phenom enon involves the behaviour of sm all exponentials hiding  

behind larger ones, the framework of exponential asym ptotics is necessary for its 

study— the power-law accuracy of Poincare’s definition of an asym ptotic expansion  

is inadequate Thus the determ ination of exact m ultipliers for the recessive term s 

m an asym ptotic expansion goes hand in hand w ith an understanding of the Stokes 

phenom enon Across a Stokes lme, the line of m axim al dom inance of one expo

nential over another, the m ultiplier of the sm all exponential changes rapidly The  

conventional view was that this change was discontinuous, the m ultiplier, 5 , having  

a value 5  =  5 , say, on one side of the line, 5  =  5  +  1 on the other and 5  =  5 - f  |  

on the line itself Having said that, it was thought incongruous that such a discon

tinuity should creep into the representation of analytic, sm ooth functions Then in 

1989, Berry dispelled the m ist, that Stokes spoke of, surrounding the problem  and 

by optim ally truncating the dom inant series expansion, then controlling the expo

nentially small term s m its remainder, he discovered that the transition is in fact 

continuous and universal m form and is given by the error function

/ a
e“ ' 2 dt with a  =  QF/(2$tF)t ,  (3 63)

OO
where F  is the singulant as before [3] In the case of the asym ptotic approxim ation  

of y(X,  A), the lowest order approxim ation incorporating both  exponentials can be 

w ritten as

y{X,  A) ~  M+(X,  A)e^+W  +  iS(X,  A) M . { X ,  A (3 64)

where >  %l<f>_(X)) It is necessary however, only to consider the series

relating to the dom inant exponential as the subdom inant series will be born from
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the tail of the former Thus the procedure followed was to investigate
00

y(X ,X) =  M+{X,X)eX4’̂ x '>Y ,ar , oq =  1, ar oc Ar , (3 65)
r=0

using Dingle’s result on the late terms

M_(r- ßy
r —> oo, (3 6 6 )r 27rM+Fr-0-1’

where ¡3 is a parameter of order 1 , whose value depends on the origin of the dominant 

exponential This gives
oo

y «  M + e ^  Y ,  ar +  iM _Sn(F)eA,i- , (3 67)
r=0

where Sn(F) can be written as

-i r°° i«-/5ef(i-t)
SniF) =  ^ l  (368)

according to the technique of Borel summation Truncating the series near its least 

term turns out to be the crucial step, as the stationary point of the integral m Sn

then almost coincides with its pole so that Sn(F) becomes, after some manipulation,

>ZF/{2RF)ii n *
>n(F ) «  - r  /

j  — OO
e t2 dt

i(2ir » F ) - i  |F r a c t [ |F M  +  fi -  a  -  |  J e - ( 9 F >2 / ^ ( 3  69)

where a  is defined by n — 1  =  In t(|F | +  a) and is thus of order 1  The change m the 

Stokes multiplier is then given by the dominant real part of Sn

S(a)  =  -5 -  r  e _ i 2  d t. a =  ^ F / ( 2R F ) l2 (3 70) 
V 71' J -oo

To confirm this theory, Berry attempts to detect the multiplier numerically for 

both the Dawson integral and the integral representation of the Airy Bi  function 

The experimental results obtained are m excellent agreement with the theoretical 

prediction, improving as | F  | increases

3.6 E r f  vs. E rfc

As can be seen m §3 5 above, Berry found the Stokes multiplier to contain an 

error function, whereas Nikishov and Ritus show it to be an expression involving
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a complementary error function and an apparent contradiction emerges However, 

this can be resolved by a closer examination of the situation Nikishov and Ritus 

[52] employ the following definitions as found m [1]

erf (z) =  27t"^ f  e~s2ds , (3 71)
J  o

POO

erfc (2 ) =  27r_i / e~s2ds , (3 72)
J z

whereas when Berry [3] refers to the error function he is using the alternative defi

nition

erf# (z) =  7r-  ̂ f  e~s2ds (3 73)
J —oo

In fact, erf# (z) =  erfc [ ~ z ) j 2 It is also important to notice that the error function 

mentioned by Berry is the change m the Stokes multiplier across a Stokes line, 

while the complementary error function arising m the formulae of Nikishov and 

Ritus describes a part of the Stokes multiplier but is not so easily quantified For 

instance, m the case of Ai(A), the multiplier would be given by S  =  w =t |erfc(ui) 

where both w and w depend on z* (see §2 2 7)

The difference in argument m the erfc term affects the range over which the

change in the multiplier occurs This may be explained by the fact that the trun

cation of the integral at z* does not correspond to optimal truncation of the series 

In any case it is interesting to observe how the multiplier emerges as easily from the 

‘ta il5 of the integral as it does from the ‘tail’ of the series

3 .7  N a tu ra l V ariab les

While investigating the behaviour of the solutions of Airy’s equation

%  =  Ay(A), (3 74)

as | A| “>oo [48], Meyer extols the virtues of the ‘natural metric’

pX
S =  J  C^C =  2A§/3 (3 75)

From a scientific point of view, the most important characteristic of the solutions 

of (3 74) is their wavelike structure Thus he claims the natural metric plays a 

fundamental role as its inherent multivaluedness provides the most effective means
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of capturing such a structure and, moreover, it actually m easures distance m units of 

the local wavelength In fact, if y(A) is transformed to y(s) in the original equation  

(3 74) (or in a more general instance), then its waveform becom es more distinct and 

any confusion m the classification of turning points versus singular points disappears 

as both have becom e singular under the transform ation He also com m ents on how 

the natural m etric plays the role of a first ‘instalm ent’ in the accurate determ ination  

of an exact wavelength for the case of strictly periodic solutions of wave equations 

and thus is a useful analytical tool In conclusion, by using th is new ‘variable’, the 

non-uniform ity of the asym ptotic approxim ation, which initially seem ed daunting, 

can be explained quite elegantly, w ith the Stokes phenom enon playing a key role 

The im portance of such a variable is illustrated by the role the sm gulant, F ,  

plays m the hyperasym ptotic scheme for differential equations outlined in §3 3 and 

the role AF*m play for the integral m ethods m §3 1, §3 2 Hence it can be argued 

that the m ethods presented in this chapter which operate m the Borel plane, As, are 

m aking use of the natural m etric to  uncover the wavelike structure of the integral 

solutions and thus encounter the advantages m entioned above



Chapter 4 

M ultidim ensional Integrals: An  
Introduction

4.1  In tro d u c tio n

The purpose of this chapter is to review existing work on asymptotics of multidi

mensional integrals, before developing our own methods in Chapters 5 and 6

Many techniques exist for finding the asymptotic behaviour of single integrals 

Different approaches have been used for different classes of integrals However, when 

it comes to applying these techniques to integrals of higher dimensions most text- 

books cleverly avoid the question The most one is likely to find is a brief treatment 

of higher dimensional integrals of Laplace or Fourier type This is because of the 

difficulties introduced by the consideration of several complex variables, whereas the 

analysis of several real variables carries over much more easily from the analysis of 

a single real variable Interesting phenomena which were not encountered in one 

dimension now appear—some as a result of the increasing complexity of the un

derlying geometry of the problem Also the computational effort now required to 

calculate coefficients, once the form of the expansion is known, spirals Despite these 

obstacles, an interest in the asymptotic expansion of multidimensional integrals has 

sprung up in recent years motivated by their natural role in the explanation of 

physical phenomena—even infinite-dimensional integrals have been known to occur 

m statistical mechanics and quantum field theory where mstantons are represented 

by small exponential terms Reducing the integral to a single integral by a suitable 

transformation or viewing it as a repeated integral seem to be the favourite means 

of proceeding

72



4 2 P re lim in a rie s 73

4 .2  P re lim in a rie s

Though the investigation of multidimensional integrals has been taken m different 

directions by different authors, there are some definitions and theorems which are 

needed again and again

C ritic a l P o in ts  Critical point of the first kind A stationary point of the real

valued function / ( t), t  G D, is a point t° m V  or on its boundary at which the 

gradient of /  vanishes i e v / ( t ° )  =  0  or equivalently

g(t°)= - f t o - 0  (4.)

A stationary point is said to be non-degenerate if the Hessian matrix i e A  =  

is non-singular at t°, i e det^4 |t=t°7  ̂ 0

Critical point of the second kind this is a point, t°, on the boundary of V  at 

which v / ( t ° )  0 , but at which / ,  treated as a function of a single variable, has a

stationary point

Critical point of the third kind this is a point on the boundary of V  where V  has 

a discontmuously turning tangent and so corner critical points can result 

There are also other types of critical points which can arise but they are not discussed 

here or in subsequent sections These would be cases where, for instance, instead of 

having isolated critical points the function could exhibit a ridge or curve of

critical points

M m im ax  C o n to u r [22] Let 7 * be a smooth curve/contour m the complex plane, 

z° e  7 * and f ( z )  a function which is analytic m the neighbourhood of 7 * Suppose 

Mry* =  maxze7* 5ft/(z) is attained only at the point z° If z° is either a saddle point 

or an endpoint of the contour, then 7 * cannot be moved into a domain of smaller 

values of 5ft/(z) 1 e it is impossible to find another contour 7  such that

M7  =  max5ft/(z) < rnax5ftf ( z )  — Mr  (4 2)

Therefore, the contour 7 * which passes through the saddle point z° has the minimax 

property

M7* =  minmax5ft/(z), (4 3)
y  ZG7 '
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where 7 ' is any contour such that the integral along it and 7  are equal 

Likewise, for an analytic function / ( z), z E Rn, if P  is an n-dimensional smooth 

compact manifold then V* denotes a minimax manifold if

V* =  mm max5R/(z), (4 4)

where A is the set of all manifolds having the same boundary as the original manifold 

of integration, V

M o rse ’s L em m a [83] Let t° € Rn be a nondegenerate stationary point of the 

C°° real-valued function / ( t) Then there exist neighbourhoods £/, V  of the points 

y  =  0 , t  =  t° and a diffeomorphism h U —> V  of class C°° such that

( f  °h ) {y )  =  f { t° )  +  ^ { A y ,y ) ,  (4 5)

where A  is the Hessian matrix at t° and ( , ) is the inner product in Rn Furthermore 

the Jacobian of the transformation satisfies

d(tu , i n) =  1 (46)
y= 0d(yu iVn)

Or more simply, if t 0 is a non-degenerate stationary point of / ( t) then by a change 

of variables t  =  0 (y), / ( t) can be reduced locally to the form

/(*) = /(to) + (47)
j=i

where /¿i, , \in are the eigenvalues of /"(to)

R eso lu tio n  o f M u ltip le  In teg ra ls  [83] Let i] be a bounded domain containing 

the origin 0 m Rn and let 0(£i, , tn) be a C 2-function in Ct Denote by M  and m

the supremum and infimum of <f) m Q, respectively If 

(i) can be covered by the family of surfaces determined by

, t n) = r i m  <  r  <  Af, (4 8 )

m such a way that through each point (¿i, , t n) of Q there passes one, and only

one, surface, and

(1 1) the gradient =  ( ^ 1 5 , 0 in) is nowhere zero on 0 (i1} , i n) =  r  for

r  € (m, M ), then for any continuous function 'ip in Q the multiple integral
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can be reduced to  the  single in teg ra l

>MPlVl

I  =  /  h(r) d r , (4  10)
J m

w here h(r)  is the  surface in teg ra l given by

Mr)=L n W f i'to' (411)
da  being the surface element on (j) =  r  and | y  0  | =  y / 4>\ +  +  (¡>fn

L eray -G el’fand  d ifferential form  [22] The differential form cos is a form of degree 

n — 1 such that

ds Acjs =  dti A dt2 A A dtn 1 (4  12)

It is uniquely defined on the level set Tc s(t) — c if y s ( t )  ̂  0  on this set At the

points of r c for which d s /d t 3 ^  0 , ujs is given as

“ • ( * > = a  A * & w % , A  A d t ’  <4 1 3 >

The Leray-Gel’fand form has a simple geometric meaning

"•(t) = i ^ l l ’ (414)

where a (t)  is the area on the hypersurface s(t) — c

Cauchy’s integral formula and the definition of a power series expansion can be

extended to functions of several complex variables Here the case of two complex

variables only is considered for ease of notation In the following, the neighbourhood 

of (zj, z%) referred to is that of the bidisc

V  -  { z  £  C 2 \z\ -  z \ |  <  e, \z2 -  z 21 <  e )  (4  15)

C au ch y ’s In te g ra l T heorem  [42] If /  is holomorphic in a neighbourhood V f of 

(z j, z2) then for all (zx, z 2) in this neighbourhood the following holds

«-■ *» -  ( ¿ ) 2 / i  * dC! (416)
lc A’A ’ denotes the exterior product



Pow er Series E xpansion  [42] A function / ,  holomorphic in P ',  has a power series 

expansion

} { z i , z 2) =  y ^ d jk i z i  -  z°i y { z 2 -  z$)k, (4 17)

where the coefficients a3k are given by

(¿) (4i8>
4 .3  D o u b le  In te g ra ls  o f Lap lace T y p e  

4 3 1 Reduction to Single Integral

Wong [83] discusses double integrals of Laplace type, which arise, for instance, in 

problems of the diffraction theory of optics

I{x) =  J J  g ( t i , t 2)exf(tl'i2) dti dt2, (4 19)

where a: is a large positive parameter, / ,  g are real-valued C°° functions m the 

closure of V  and I(x) converges absolutely for all large values of x First it is shown 

how the dominant contribution in the asymptotic expansion of I(x)  comes from the 

points where / ( ¿ i , ¿2 ) attains its absolute maximum Suppose, for simplicity, this 

maximum is zero and occurs only at (0,0) If (0,0) is an interior point then

|(°,°) = ̂ (°. °) = 0 (420)

Having eliminated the cross-product term, t xt 2 by a transformation, the Maclaurin 

expansion of / ( t i , t 2) is of the form

f i t u h )  =  1 4 ( 0 , 0 ^  +  1 4 ( 0 ,0 ) ^ +  £  ¿ ¿ ( 0 ’° ) ^  +
z+j—3

=  +  ^ 2 [1  +  Q{t 1 ^ 2 )], (4 2 1 )

with f ^ (0 ,0 ) ,  |^ r ( 0 ,0) both negative and P , Q power series m t \ , t 2 satisfying

P ( 0 , 0 ) =  Q(0 , 0) =  0 (4 2 2 )

Then the change of variables

Ui =  ¿i[l +  P ( i l5i2)]2, u2 =  t 2[l +  Q {t1)t2) p , (4 23)

4 3 D ouble In teg ra ls  of Laplace T y p e _________________________________76
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is used in the integral so that

W u h )  =  S ( 0 ,0 ) u ?  +  ^ 4 ( 0 ,0 ) u l  (4 24)
O t\ O t2

V  is the image of V  and  ̂  ̂ =  1  Writing

G (m i, u2) = g (* i,* 2 ) - f / i l ’ H > ^ ( u i , u 2) =  | - 4 ( 0 , 0 ) ^  +  ^ 4 (0 ,0 )« 1 ,  (4 25)
0 ^ 1  > ^ 2  ) Ot I Ot2

gives

I(x) =  j j  G(ui, u2)exF ÛUU2̂ du\ du2 (4 26)

Then the method of resolution of multiple integrals leads to the following result

I(x)  =  [  h(r)eXT dr , h(r) =  [  G(ui>u2) ^  ^  ^7 ^
■'"* J m w ) = r \/(f| ) 2 + ( | | ) 2

a  being the arc length of F ( ui , u2) =  r , m =  m in { /( ii,t 2 ) (¿1 ^ 2 ) € V'}  After 

some manipulation, h(r) can be expanded as

fe(r) ~  r * T  1  3 2 , ' r - >  0+, (4 28)
\/0̂ (°’O)ati(0’0) l’̂ N

where btJ can be expressed in terms of derivatives of / ,^  (e g bQQ — 7r^(0 , 0)) Then

applying Watson’s Lemma to the integral I(x) gives

/ ( » ) -  , 1  E ^ r ( t+ A t 1}» (42Q)
\ / 0 ( O’O) 0 ( 0’0) ,jeN X

In terms of the original variables of f { t \ , t 2), the leading term becomes

OflT 1

I(x)  ~  —  5 (0 ,0 ) |d e t/" (0 ,0 )r5 e l/(0-0) (4 30)
X

(where det /"(0 ,0 ) denotes )2) |(o,o>) Wong also shows how a critical

point (0,0) of f ( t i , t 2) on the boundary of V  results in

oo

I (x ) ~  oo, (4 31)
5 = 0

I(x)  ~  - 5 (0 ,0 ) |d e t/" (0 ,0 )r* e l/(o-°\ (4 32)
X

with leading term
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whereas a maximum at (0,0) on the boundary of V  but at which v /(0 ?  0) 7  ̂ 0 gives 

J(x) ~ tf!+t re->0 0, (4 33)
ij€N

with first term

xi+j+-2

I(x) ~  0 ) e ^ 0,0̂ x 2 ( 4  3 4 )

(where k is a term involving the curvature of the boundary at (0,0)) The latter 

type of critical point arises as a result of the restriction of the function / ( ¿ i ,^ )  to 

the boundary of the domain V  The other types of critical points which can arise 

are not discussed here

4.3 2 Transformation to Repeated Integrals

Bleistein and Handelsman [9] adopt a different approach while dealing with double 

Laplace integrals Again the behaviour of equation (4 19) is considered, where the
i

domain, V , is now assumed to be finite, simply connected and bounded by a smooth 

curve T and /(¿ 1 , ¿2 ), g(t i, ¿2 ) are sufficiently differentiable as before As anticipated, 

the asymptotic results depend on those points in the closure of V  at which /  achieves 

its absolute maximum They are interested initially only in the case where such 

points are interior t° =  (^ ,¿ 2 ) ^  there is more than one such point, the domain 

can be subdivided into regions each of which contain only one such point So it is 

assumed that

(4 35)

and that V /  1S nonzero elsewhere in V  Then the local behaviour of /  is considered

f ( t i , t 2) =  f ( t t ° 2) +  t ° ) {tl 2 * ° ) 2  +  4 ){t 1 -  t°){t2 - 1°2)

d2f /j.0 ¿0\ (̂ 2 — ¿2)‘ 
dt2

+ (4 36)

The method used reduces I(x)  to an integral of canonical form in which f ( t \ , t 2) is 

replaced by a quadratic function by setting

QTAQ  =  A =  diag(Ai, A2 ), AiA2 — det A, (4 37)
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where A  is the Hessian matrix at Then v =  (v i7v2) and /(v) are introduced

by

(t -  t ° f  =  Q R v t , 7(v) =  / ( t° )  -  /(* ) (4 38)

So near v =  0 (l e t  — t°),

(4 39)/(v) ~ -jiyl + vl)

—for this to hold outside a neighbourhood of v =  0 , the following transformation is 

made

u  =  («1 , u2), u, =  h,(v),  |u2| = h \  +  h% =  2 /(v ) ,
hi  =  vi +  o(|v|), h2 -  v2 +  o(|v|), |v| —> 0

(4 40)

Thus

I(x) =  J  J  p(t(u i,ii 2 ))
d(tu t2)
d(uu u2)

e 2(uî +u2) dm  du* (4 41)

where V  is the image of V  Using the divergence theorem it can then be shown 

that the behaviour of this integral is dominated by the critical point at (0 , 0 ) giving

J (® )~ é , / W^ÿ(t(0l0))
d{tu t2) I
d(uu u2) |(0(0) j  j-pi

Then according to the following lemma of Bleistein and Handelsman 

L em m a If u  =  0 is an interior point of V ' then as x  -* oo

I I  6 ^u i du2 =  —  +  o(x m), (4 43)

for any m,

the integral becomes

27T
I(x)  ~  — e:c/(ti ’t°)5 ( t( 0 , 0 ))

x
d(tu t2)
d(ui, u2) (0,0)

0 +0'g M

dt2 dtidt2
1 »
2

(4 44)

m terms of the original variables Note how the result is independent of the selection 

of h \ , h2 Boundary extrema are also looked at m a similar fashion and the same
j

results arrived at as Wong
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4.3.3 Alternative Transformation

Dingle [17] has shown how a convergent series S(x) =  J 2 asxS maY be converted 

into an integral representation in terms of more familiar series in order to determine 

its asymptotic power series But he also recognised that it may not be possible, in 

doing so, to find an integral operator of a single variable As a result, he remarks on 

the importance of determining a means of deriving asymptotic expansions of double 

integrals of the form

where either f ( t i , t 2) or g ( t i , t 2) can depend on the asymptotic parameter x and 

f { t h h )  tends to —oo along the boundary of V  Although the procedure he de-

mtegral, he realises that the rapid increase in the number of partial derivatives re-

mtractably cumbersome Therefore, he advocates that such double integration be 

avoided where possible1

Suppose that f ( t i , t 2) has a stationary point at (0,0) so that

Only the constant term /  (0,0) and the quadratic group are kept in exponential form 

for the integration and it makes sense to transform the quadratic group as follows

(4  45)

tails encounters no major difficulties compared to his method of expanding a single

quired to obtain more than the first two terms of the expansion renders the method

(4  46)

Thus by Taylor’s theorem f ( t u t2) can be written as

■+
(4  47)

(4  48 )

to give

(4 49)
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Taylor’s theorem is also used on both the slowly varying factor g { t \ , t2) and what is 

‘left over’ as such from the exponential

exp
[Ì (i?0 (o’o) + 3i'i2̂ (o,o) + 3M ' ö ^ (o’o)+iW (o’o)) +

(4  50)

the variables are transformed to 11 , t 2 and the subsequent expansions then multiplied 

together A tedious integration from — oo to oo over ¿i and t2 successively, eventually 

leads to the result

27rê 0,0)
g { t iM ) e JW2) dtx dt2 =  - ------------rv

( “ ( 0 0  “ (äS;)2) 1(0.0))
t ( Q o +  Q 2 +  ) j (4  51)

with

Q o  =  $(0,0), 

Q2 —

(4  52)

&L) _ 3 £ 1 * 1 ]  +dt? ódt?dh* j +
24(-(0©-(Ä)’)|„t,)

( I 7 7 ) (  "  30 0 )  + 30 0  ( 0  2^ f 0  + 3 (ö ^ fe )

4 - e2/  io a3/  a3/  i o (  dsf \ 2 1  o a2/  a2/  a4/ >\ , Ì'1~ I ó¿i2áí2á£2í vöiiöi22y dt^dt?dt{dtl J j (4  53)

and so on

4 .4  H ig h e r  D im en s io n a l In teg ra ls  o f Lap lace T y p e

Although Wong states that his approach of reducing a given 2-dimensional integral 

to a single integral carries through to higher dimensions, he chooses instead to adopt 

a method not unlike the approach of Bleistem and Handelsman to determine the 

asymptotic expansion in this case In fact, it could be said that all treatments of 

higher dimensional Laplace type integrals to be found m the standard literature 2  

seem to converge to an application of Morse’s Lemma and it is assumed that this 

has been discovered to be the most advantageous means of proceeding Some of the 

variations on this procedure are detailed briefly m what follows Despite the fact 

that the analysis of higher dimensional integrals is more complicated than before,

!More recent developments are discussed in §4 6



4 4 H igher D im ensional In teg ra ls  of Laplace T ype 82

it is important to mathematically investigate their behaviour as they do appear in 

physical problems such as that of the scattering of radiation by obstacles

Wong [83] considers higher dimensional integrals of the form

I ( x ) =  f  g(t)ex^ d t ,  (4 54)
Jv

where x is a large positive parameter, V  is a domain m Rn and / ,  g are real valued 

C°° functions m V  It is assumed that I(x)  converges absolutely for all x > x° 

and the Hessian matrix, A =  ( ^ ^ ) | t=t0, is negative definite (thus / ( t)  has a 

maximum at t° only) Again it is shown that the dominant contribution to the 

asymptotic expansion comes from Vq, the neighbourhood of the maximum t° Vq is 

chosen so that the Morse Lemma can be applied, l e there exists a diffeomorphism 

h £1 —> Vq, with y =  0  G £7 such that t  =  h(y) gives

I(x) =  ex^ t0} f  G(y)e_? ^ "= ^ I?/? dy  (4 55)
J  n

with Q =  h~l (T>o) and G(y) =  g(h(y))  det hf(y) Then using Taylor’s theorem

G (y) =  E  ¿ ^ “G (°)y“ +  i?p, Rp = y i ± iDaG(S)ya, £ € fi, (4 56)
|a|<p M=P

where p is the point of truncation of the series Termwise integration leads to 

I{x) =  es /<t0>
_\a\<p

+  [  £>“G (0 y “e -5 E ”- * ^  dy
! , Jn

Using the identity

/ > - ■ * - { iW > ^

(4 57)

2

it can be shown that

m odd 
2 m even

(4 58)

p~ i
I(x) ~  e ^ t0  ̂^  x -^ o o , (4 59)

fc=0

where

^ E V g (O), (4 60)
lab*
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and if any of the a t m a  =  (a i, , a n) is odd then
(«+!)

da =  0, otherwise da =  ^ T ^ ^  (4 61)

The leading term of the above expansion is given by

I{x) ~  j  2 <?(t0)| det (4 62)

As in the case of a double Laplace integral, if the maximum t° is on the boundary 

of X>, the dominant contribution is one-half of the latter approximation Finally, the 

case in which the maximum is at a boundary point t° at which ^  0  can be

investigated using a repeated application of the divergence theorem to give
(n+l)

' « - ¡ S r ’d ) 1 (<63)

The method of Bleistem and Handelsman, outlined above for double integrals, can 

also be used to deal with integrals of higher dimensions [9] Again equation (4 54) 

is investigated where I? is a simply connected domain with boundary T, an (n — 1 )- 

dimensional hypersurface Initially it is assumed that the absolute maximum is 

achieved only at the interior point t  =  t° so that v / ( t ° )  =  0 Then

/ ( t ) - / ( t ° ) « i ( t - t V ( t - t ° ) T, (4 64)

where A =  ( ^ ^ j ( t 0)), t , j  =  1 , 2 , ,n, the Hessian matrix at t 0 If Q is an

orthogonal matrix which diagonahses A then
n

QlAQ =  A =  diag(Ai, , An), det A  =  J J  A, (4 65)
i=i

As before (equations (4 37)-(4 39)), the variables are transformed m the following 

way

(t -  t°)T =  QR v t , R  =  diag(|Ax|_i , ,|An|"5), /(v )  =  /( t° )  -  / ( t )  «  v,

(4 6 6 )

near v =  0 Again choose ux such that

U =  (« 1 , , un), ut =  ht{v), £ " = 1  %  =  2 7 >

h, =  vt +  o(|v|), |v| —»• 0 ,
(4 67)



for i =  1 , , n Then I(x)  can be written as

J(x) =  el/(t°> /  G 0 (u )e - fu u du, (4 6 8 )
Jv

with

Go(u) =  5 o(t(u)) J (u ), J{u) =  (4 69)w(mi, ,u„)
To find the asymptotic behaviour of I (x )y the n-dimensional analog of the result in 

equation (4 43) is used by noting that if u  =  0 lies m the interior of a domain £>, 

then

| e ~ i u u d u ~  , x —> oo (4 70)

This leads to 771—1
I(x)  ~  el/(t0) ^ (2 7 r)? a ;- t- - ’GJ(0), (4 71)

J=0

where Gj(O) =  ~  V i Go|u=o The first term of the series would be given by

e*/(t) / 2^
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2 .0r  —  Sb(t") (4 72)2 \  X

Once again, critical points which occur on the boundary and boundary maxima at 

which v / ( t ° )  /  0 are considered and the same results are obtained as by Wong 

However, critical points of other types are not discussed

While considering the integral in (4 54), Fedoryuk [22] merely reduces / ( t) in a small 

neighbourhood of the maximum, t°, using Morse’s Lemma so that

/ ( t )  =  /( t° )  +  (4 73)
J=l

He then rewrites the integral as

e*/(t0) f  g(y^e%T,j = lV’3yj dy, (4 74)
Jv

where V is a cube \yj\ < 6, 1 < j  <  n, and states that all that remains is to apply 

the 1 -dimensional Laplace method sequentially with respect to each y3



4.5  M u lt iv a r ia te  S ad d lep o in t M e th o d

In his treatment of the multivariate saddlepoint method, Fedoryuk [21] remarks on 

the increased difficulty of selecting which saddles are needed to provide the dominant 

contribution to the asymptotic expansion of the integral

[  g(z)eA/(z) dz, (4 75)
Jv

where V  is an n-dimensional smooth manifold and z £  Cn He maintains there 

are no general rules to be followed Using a mmimax manifold as the surface of 

integration, he verifies that the max^x?* 5R/(z) is attained either at a saddle of / ( z) 

or on the boundary of the manifold It is then shown (drawing heavily on topology 

theory) how
i °°

Z(A) ~  a ! a ^ ° ° >  ( 4 7 6 )k=0

if maxzGp 5R/(z) is attained only at z°, and how the leading term of this expansion 

is given by

m  ~  ( f )  2 ff(z0 ) e ^ ° ) [d e t( - /" ( z ° ) ) ] - l  (4 77)

Some ambiguity again arises in the choice of branch of the square root but it es

sentially depends on the deformation of V  As m the 1-dimensional case, if the

manifold of integration encounters more than one saddle then the asymptotics of 

the integral equal the sum of contributions of the saddles (Only simple saddles have 

been considered m order to be able to make use of Morse’s Lemma )

Once again, the use of steepest descent surfaces would obviate the need for 

justification of the saddle point method and allow precision estimates of the error 

to be obtained Briefly treating the many dimensional method of steepest descent, 

Fedoryuk comments that although for higher than two dimensions the geometric 

visualisation is immediately lost, the principles remain the same Calling on a 

theorem due to Poincare, he claims that if the boundary curve of a n-dimensional 

manifold is kept fixed as the manifold of integration is deformed, then /(A) remains 

unchanged—this follows from the idea of the evaluation of a contour integral being 

path independent once the endpoints are fixed Again using Morse’s Lemma, the 

phase function /(z )  can be reduced locally to a sum of squares and then the Laplace 

method for many dimensional integrals applies He also shows by counterexample,
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how in the case of the maximum of 3R/(z) being achieved on the boundary but not 

at a saddle, the asymptotics of the integral cannot be computed as before

4 .6  R ecen t W o rk

Several people have already looked at the problem of computing the asymptotic 

behaviour of multidimensional integrals The possibility of extending the saddle- 

point method and steepest descent theory to integrals of higher dimensions is one 

path which has already been investigated, building on the work of Fedoryuk The 

techniques used require quite an understanding of the topology of the problem and 

thus add a certain theoretical sophistication to the investigation that would not have 

been observed in the single integral case In the following some of the work that has 

been undertaken is reviewed

In his 1978 thesis, Saxton [74] represented the solution of the n — p equation,

y {n){x) -  Y  arxry (r){x) =  0, (4 78)
r=0

in terms of a p-tuple integral (drawing on a result of Spitzer [76]) and found its 

leading asymptotic behaviour a s x -> o o  This entailed substituting the integral

n
oo f'OQ

/  z ^ z ?  Zppesxzi dzi dz2 dzp,
Jo

(4 79)

into the original equation, then using integration by parts and recurrence relations to 

find a t in terms of az A power series solution could thus be found Initially the n — 1  

case was investigated, then integrated to deduce the n — 2  case and by induction the 

n — p  case could be determined Riemann’s saddle point method could then be used 

to compute the leading asymptotic behaviour, having determined when saddles or 

endpoints contribute Finding a complete expansion would be possible theoretically, 

using Debye’s steepest descent method, but would be considerably more involved 

(Allowing the asymptotic parameter, x, to become complex introduces no added 

difficulty) The importance of finding the asymptotic behaviour of such solutions 

accurately can be seen in the occurence of these differential equations both in the 

fluid dynamics and magnetohydrodynamics problems of theoretical mechanics and 

m the deficiency index problem for symmetric differential operators of pure mathe

matics where leading order terms are adequate [45], [24], [19], [6 8 ] Obviously there
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are alternative methods for finding the asymptotic expansion of y(x) directly from

the differential equation, including the standard WKB approach, but such results 

for the particular applications of interest to Saxton were not well-known at the time 

Paris and Kaminski have jointly published papers on the asymptotics of a class 

of Laplace-type, double and triple integrals with an isolated, though possibly degen

erate, critical point at the origin [37], [38] Their double integral method involves 

representing

( /  polynomial in t u t 2) as iterated Mellin-Barnes integrals and using residue theory 

and Newton polygons of /(¿ i, ¿2 ) (see Figure 4 1 ) to find the asymptotics Thus they 

avoided the difficulties encountered by representing I(x)  as an integral transform 

of a function defined by an integral over a lower dimensional object, as is often 

attem pted To start, } ( t \ , t 2) is written as

(with g { t ^ t 2) =  1 , Cp =  1 in this case and Si given by =  1  — ^  Thus

the dimensionality of the integral now depends on the number of terms m the phase

are computed by consecutively shifting the contours of integration left or right as 

appropriate The relationship between the asymptotic scales of x in the expansion

are noted The triple integral approach follows along the same lines except now 

there is an extra gamma function with contributing poles to be considered Also

(4 80)

k
f { t h h )  — —(t\ H- cpt™pt2p + ¿ 2 )* (4 81)

p = 1

and the formula

(4 82)

is used on each factor

(4 83)

For instance, with one internal point ( 1  e k =  1)

x~SlT dr (4 84)

function and not the dimensionality of the original integral The contributions to 

the asymptotic expansion of the integral from the poles of the gamma functions

and the features of the Newton diagram (such as remoteness, which is given by —
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Figure 4 1  An example of a Newton polygon [37] for / ( ¿ i ,^ ) ,  where m  and n
represent the indices of t x and t 2 respectively

the relationship between the geometry of the Newton diagram and the form of the 

asymptotic expansion is more complicated Otherwise, increasing the dimension of 

the integral to 3 or higher requires little modification of the double integral method 

This latter method can be applied to finding the asymptotic behaviour of the 

p-tuple integral solution of

p
y ^ { x )  -  ^  arxry ^ ( x )  =  0 (4 85)

r-o

As it involves only one internal point, it is not too tedious to arrive at the same

result as Saxton [74], as is shown m §4 7 1

A study of double integrals with nearly coincident saddlepomts was undertaken 

by Ursell [82] and he speaks of the difficulties m extending the method of steepest 

descent from single to double integrals He points out that surfaces of steepest 

descent can be generated by curves of steepest descent though these surfaces do 

not remain steepest surfaces under an analytic transformation, whereas curves do 

Thus, he argues, there is little advantage in constructing steepest surfaces Even 

when the surface of steepest descent has been constructed, the difficulty remains m 

combining it with other surfaces to render it equivalent to the original surface of 

integration, as does the difficulty of identifying which saddlepoint contributions are
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relevant Poincare’s theorem is also cited by Ursell, to claim that in the case of a 

2 -d surface the integral is independent of the surface spanning the boundary curve, 

assuming the integrand is an analytic function

Kammski [33] has also looked at the possibility of extending the saddlepomt 

and steepest descent methods to higher dimensions To parallel the 1-d case of the 

saddlepomt method, the integral

I ( \ ) =  [  g(Zl, , z n)ex« z' ’ '*"Uzi dzn (4 8 6 )
Jv

is reduced to one over an appropriately small domain m a neighbourhood of the 

saddle while accumulating errors of exponentially small order, but to do this in 

higher dimensions requires homology theory to be called on Using the 1-d technique 

of setting

Z ( f ( z u z 2) - f ( z 01 ,z°2) ) = 0  (4 87)

(where z° is a saddle) to find a steepest descent surface, will yield an analytic variety 

of real dimension In — 1  while a steepest descent surface has dimension 2  (n — 1 ) 

Thus the construction of a unique surface of steepest descent is not possible by this 

process (This non-uniqueness property can also be seen from the fact that steepest 

descent surfaces in C \  n >  2 , are not preserved under holomorphic m appings) 

However, this could in practice be turned to advantage as it means that a convenient 

surface of descent can be used instead Kammski outlines an approach to construct 

such a surface by computing its co-ordmate plane traces

P '( a , 0 ) is the steepest descent curve of f (z i^z2) through z\ =  z \ , and 

V f(0 , t )  i s  the steepest curve through z2 =  z2

Another paper of Kaminski’s [34] involves appropriately determining exponen

tially small terms for inclusion in the asymptotic expansion of oscillatory double 

integrals,

J(A) =  I L  eA/(zi,z2) dzx dz2j ( 4  8 8 )

for which he turned again to the use of surfaces of steepest descent He points out 

here how Pham ’s deformation of R2 to a sum of Lefschetz thimbles (see Figure 4 2 ) 

closely parallels the steepest descent method in theory But Pham has given no 

indication of how to perform it practically—the idea being to replace the domain
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of integration by a sum of integration cycles, on each of which the imaginary part 

of the phase function is constant, the real part decreasing and only a single critical 

point of the phase is contained Kaminski uses instead an idea of Fedoryuk’s which

Figure 4 2 Sketch of a Lefschetz thimble [29]

examines trajectories of the system of equations

( i t ’ lu> lu> I t )  =  "  v  K /(u i, VU U2, V2) with Z i = U i  +  IVi, Z2 =  U2 +  IV2,

(4 89)

to construct surfaces of steepest descent (again closely resembling what is done in 

the planar situation) Here the parameter t is a non-negative real number so that 

9£/(ui(i), ^i(t), ^(¿)) decreases with increasing t  He defines a saddle {z^z®)

to be accessible from V  if there exists a trajectory issuing from T> such that

(z u 4 )  =  } im { ( u i { t ) , v 1(t) ,u2( t) ,v2(t)) (u i(0),u i(0),u 2 (0), v2(0)) € V }  (4 90)t—>00

Then he proposes that if (zj, z\)  is the sole critical point accessible from V  but ^ V 1 

the surface E containing (zj, z2) is uniquely determined and can be obtained by the 

co-ordmatewise approach He goes on to seek a parametnsation (a, r)  of E so that

the phase function f { z \ ,  z2) can be expressed in the form

‘constant - a 2 - r 2 ’ (Morse’s Lemma),

again parallelling what happens in the planar situation As a result of the deforma

tion process, a volume enclosed by V , E and the sides , F4  has been created
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arising from the trajectories issuing from the edges of V  (see Figure 4 3, where the 

arrows indicate the orientations induced on the different faces) This gives
4

I ( \ )  =  Iv ( \ )  =  Iz ( \ ) - J 2 i fM )  (4 91)
1=1

(an intuitive observation requiring rigorous justification) The contributions of 

Ipt (A) amount to contributions to /(A) made by boundary stationary points and 

corner points of V , but the exponential improvement was achieved by including the 

decaying term /e(A)

Figure 4 3 Volume enclosed by trajectories arising from edges of V  [34]

4 .7  A p p lic a tio n  to  D iffe re n tia l E quations

4.7.1 Spitzer Integral

Although the 2 -dimensional integral solution of the differential equation,
2

y(n\ x )  — arxrŷ r\ x )  =  0, (4 92)
r=0

proposed by Saxton [74] does not strictly fit into the class of integrals suggested by 

Kaminski and Pans [37], [38] for their method, the same procedure can be followed



This just serves to illustrate that the method actually works for a slighty wider class 

of Laplace integrals

n
oo

g{tu t 2)e~tttut2'x} dti dt2, x oo, (4 93)
_

though the limitation that f ( t i , t 2,x)  can only have a single critical point at the 

origin still applies 3  If n is even, then the double integral

n
oo

ii1 i“2 e_xil i2~ +i2) dtx dt2 (4 94)
„

is a particular solution of the aforementioned differential equation, where a\  and a 2 

are related to the coefficients by

Go =  (ot\ +  l)(c^2 "I- 1)) d\ — (ail +  1) H- (0 : 2  +  2), a2 =  1 (4 95)

Whereas if n is odd, the relationship is given by

—clq =  (oil -{- l)(oi2 +  1), —&i =  (ax +  1) +  (o;2 +  2), o>2 — 1 (4 96)

The variables of integration are assumed to be real m this case, then the phase

function has a single critical point within the domain of integration occurring at the 

origin and the identity

i rl0° 7T
e_2 =  27n j  r (T)z~TdT. larS zl < 2 ’ (4 97)

can be used on the factor e~ l £ l i 2  m the integrand giving

n oo 1 /MOO

t ° H ? e ~ ^ +tV —  r  {T){xtlt2)~TdTdUdt2 (4 98)
27T2 7 - 2 oo

Exchanging the order of integration leads to

1 PICO po o  po o

y{x) =  2 ^ J  J J o  e - ' q tV~T dt2)V(T){x)-T dr (4 99)

Initially consider
poo

/  (4 100)
J o

3The eifect of this restriction is to ensure that the algebraic expansion obtained by the method
is not dominated by contributions from other saddlepoint in the domain
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Let w =  ^ e n  t®1 T =  ( n w ) ~ ^  and ^  =  t” 1 =  (ra / ; ) ” « 1 This would give

A* 00 POO
I e” i i”i“l“T dr =  j  e~w(nw)~^~ —

Jo Jo ( ™ 0  “
11 r°°<*1- t — n + 1  j 

/Jo

.__________ _ a; — r — n+ 1
n « I e~ww n dw

n i±^ r ° ( i ± ^ )  (4 lo i)

Similarly

J \ - ^ h ^ ~ TdT = (-

Thus y(a;) can be written as

+ a2 - 7" (4 102)

v(x) = £  n - ^ r ( r ) r ( i ± ^ ) r ( l ± ^ ) ( r d r  (4 103)

It is easily verified that the integral converges when the inequality

I argx |< ( l  — ^  (4 104)

is satisfied (Here x is real but could be considered to be complex once these restric

tions on arg x hold ) Setting r  =  peld m the integrand, an estimate of the dominant 

real part of the logarithm of the integrand can be shown to be

H ) pcosfllogp, (4 105)

which tends to oo as p tends to oo (n > 2 ) Thus the asymptotic behaviour of the 

integral is governed by the poles which arise m displacing the contour of integration 

to the right Poles of r ( 1+f̂ ~T) occur at

L t .Ql ~ T  =  - k ,  k =  0 , 1 , 2 , , (4106)
n

giving =  1  +  q:i +  nk Likewise poles of r ( 1+f̂ ~ r ) occur when

r =  1  +  a.2 +  nk (4 107)

Thus the asymptotics of y(x) as x —> oo are obtained as

y(x)  ~  n “,+»2‘ " [ r(  1 + <*i+ wfc)r(“2 ~nk) r T ^-CH-cn +nk)
h
+  r ( l + a 2 + n fc)r( ^ - nfc) n - ji;^ 2 a;-<1+a2+n*;)] , (4 108)
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whose leading behaviour is given by

y{x) ~  n ^ _ 1 r ( l  +  a 1 ) r ( s ^ 2 i)a ;-(1+ai) +  n “ _ 1 r ( l  +  a 2 ) r ( 2 i ^ ) ;E-(1+“*)

(4 109)

Similarly, it can be shown that for the p-tuple integral

n o o  POO

/  t ? e - xtit> *p-iW+‘S+ +i?> dti dt2 dtp, (4 110)
J  00 JO j 0

the dominant behaviour is

v

r = 1
i i  r ( ^ )

_i=l,t/r
X “(l+Ckr) (4111)

And the full asymptotic expansion in this case is given by 

''„¿(E,̂  a.-(p-l)ar)-(fc+p-l)Ŷ  il
k'

y{x) ~  ^ n " ( S , ^ “.-(p -iK )-(fc+P-1 ) ^ i - i ^ r ( l  +  0 !r +nfc)

- ( l + a T+ n k ) ^  112)

r —1

Such a p-tuple integral is the solution of the equation

y{n]{x) -  ] r a rz V r)(z) =  0 ,
r=0

the a* being related to the a* by

k 31 J p - k - i  p - k

(-i)\ = E E  E  n̂ p-fc-r+i+jr+ > + 1)
Ji=0 j 2 = 0  Jp_ k=0 r= 1

(4 113)

(4 114)

4.7,2 Molins Integral

Now consider instead a different type of nth order equation, consisting only of the 

highest derivative and an arbitrary positive integer power multiplying the unknown 

function Again it is shown how a classical multiple integral representation can be 

treated by Paris and Kaminski’s method

In 1876, Molins [49] found solutions, y(x)> for the equation

y^n\ x )  — x py (x )  =  0 (4 115)



of the form

r r  i  t p 1 + ^ e s x { i l h  i'’)^ ' ^ (il+i2+ + t " ) d t 1 d t 2 d t p ,
J o  J o  J o

(4 116)

where s is a root of sn+p =  1  Considering the particular double integral

nOO j 2 1
^ 1 +^ ^ 1 +^ e “x(ilt2)^ - ^ (fl+i2) dh dt2, (4 117)

.

which solves

y ^ n \ x )  — x 2 y ( x )  =  0, (4 118)

the same procedure is followed as in §4 7 1  Again the only critical point of

f { t u h , x )  =  x{ t i t2) ^  +  ^ ( * i  +  f2 ) (4119)

lying within the domain of integration for real ¿i, t2, occurs at the origin First of 

all, the identity
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e ~ z
i rlo° 7T

—  J ^ T ( r ) z - Tdr, | argz| < —, z ?  0 (4 120)

is applied to e~x^it2̂ ^ Thus, having exchanged the order of integration, y(x) 

becomes

1 rl°° r°° 1 | 1 —  r  p o o  1 . 2 - t  .

v{x) = — j  [J fx +»+>e-^ *!][J  f2 +2e~^+rt2 dt2]V{r)x^ dr

° (4121)
The inner integrals are examined in turn substituting w\ =  ^ ¿ 1  gives

[ ° °  C + 1^ e ~ ^  dtx =  (n +  2 ) t e i r  (± g )  , (4 1 2 2 )
Jo

and substituting w2 =  ^ ¿ 2  yields

r ° °  , ■ 2- t , 9_
/  i '  n+2e~*+it2 dt2 =  (n 4 - 2 ) ^ r  , (4 123)
Jo

enabling y(x) to be written as

-| nlCQ

V[X) =  2m U n + 2 ) m T  ^  r  (^ l)  (4 124>

This integral converges whenever

(4I25)



holds, which it does for all x G R However, for r  =  pel6 with |0| < the dominant 

real part of the logarithm of the integrand is given by
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)V n + 2/ pcosfllogp, as p —t o o  (4 126)

y(x)  ~  (n +  2 ) ^ ^ { r ( ( n  +  2 )A: +  l ) r ( i ^ ^ ) a ; - ( " + 2 ) fc- 1

As ( 1  — ^ _ )  >  0, the contour of integration is again displaced to the right to 

determine the asymptotic behaviour of the integral as x —¥ oo Contributions to the 

expansion arise when poles of either T or T ( ^ )  are crossed These occur

at

^  = m  =  ^  <4127>
(i e r  =  (n +  2)k + 1 , r  =  (n 4- 2)k +  2) Vk G N 

Hence the expansion of y(x) is

i - i f

k

+ r( (n  +  2)k +  2 )r x - (a+2^~2} (4 128)

Likewise, if y(x) is the p-tuple integral

n o o  POO , 1 1 ,____2  1 _ L _ P _  1 .

/ ij n+pt2 "+p tp "+'’e-x(<1<2 i,,) ;̂ (il+i2+ +t’) d h d t 2 dtp,
Jo

(4 129)

it becomes

S(I) = i / . J"+ (s)r(s) r ( g ) *
(4 130)

Again it can be shown that the dominant part of the logarithm of the integrand

tends to oo as |r | —¥ oo Thus when the contour is displaced to the right, poles of

the integrand will occur at

r  =  (n +  p)k +  1, r  =  ( n + p ) k  +  2, , r  =  (n +  p)k + p , Vk G N (4 131)

The asymptotic behaviour of y(x) as x —> oo is then given by

~  £ f . ,  ( « + P) S .  ■ # ( » + p) n r - w  r  ( ^ S ^ )

*F((n +  p)k +  i)x~l'n+v')k~t
(4 132)



Chapter 5 

M ultidim ensional M ethods

5.1 A na logue  o f N ik ish o v  &; R itu s ’ M e th o d

The method outlined m Chapter 2  can be extended further to deal with multidi

mensional integrals The class of integrals to be studied is of the form

where z £ Cn and S  is an unbounded n-dimensional surface where 5R/(z, A) —> — oo 

as |z| —>• oo on S  For ease of notation, the procedure will be detailed for double 

integrals only Although the computations become more cumbersome as the dimen

sion increases, there should be no other added complexity Again, the number of 

saddlepomts of /(z , A) is initially restricted to two, they are denoted by z u =  (2 “, z%) 

and z l — (z[, z l2) and both are assumed to be interior simple saddles As the domain 

of integration is infinite, the different types of boundary critical points are automat

ically excluded and the occurrence of a ridge of critical points will not be discussed 

here

As in the single integral case, the Stokes phenomenon occurs whenever

or A — As Following the discussion of §4 5 and §4 6 , it is assumed that m the 

neighbourhood of A5 , it is possible to deform the surface S  to a surface of steepest 

descent S S D U> through z u only or to a combination of a surface of steepest descent 

through z u and z l respectively, S S D u +  SSDi  The latter is denoted Sui S S D U and

(5 1)

S ( /( z uIA ) - / ( z i,A)) =  0 (5 2)

SSDi  meeting at infinity at a ‘boundary’ along which 9ft/(z, A) —> — 0 0  as before
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Though such a deformation is possible m principle, it can be difficult m practice, 

but the fact that a surface of steepest descent through a saddle, z u say, is no longer 

uniquely defined by

3 ( /(z , A) -  f ( z u, A)) =  0, (5 3)

aids the deformation somewhat, as any suitable surface can be used

To determine a Stokes multiplier as such m the case of this double integral, the 

surface Sui is divided in two

Sui =  ¿>it* +  $*i (5 4)

where begins in a valley with 3R(/(z, A) — / ( z u, A)) < 0, as does S S D U, but ends 

at a finite boundary through some point z* and S*i starts at this same boundary but 

joins the surface of steepest descent through z l to end m a valley of the integrand 

where 5ft(/(z, A) — f ( z \  A)) < 0 It is assumed that no extra critical points appear 

on this boundary as a result of the restriction of / ( z, A) there z* must satisfy the 

equations

3/(z*,A ) =  3 / ( z “,A), f t f ( z * , \ )  =  $ t f (z l, \ ) ,  (5 5)

but again these fail to specify z* uniquely and the boundary of truncation must be 

chosen from an analysis of the actual surfaces used for a particular function Then 

D ( A) and R (A) can be defined by

1(A) =  D { \ ) + R { \ )

=  A f  ef(-z'x)dz +  A f  e/(z’A)dz (5 6 )
J S*i

In order to find explicit expressions for D(A) and R (A), the Taylor series of / ( z, A) 

about z u and z l respectively are employed m a manner similar to that of the single 

integral case

5 1 . 1 Dominant Term

From above

D(X) =  A f  ef{z'x)dz =  e9 /(z“-A) I  eUf{z'x)dz (5 7)
«/ Su* J Su*

The integral is then of Laplace type and using
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R/(z, A) =  R i / ( z“, A) +  52/{/(*"= dz\
d2 f

+  (zi -  z \ ) ( z 2 -  z l)

+
dz \dz 2

{¿2 ~ Z2Y d2f
dzo -f }. (5 8)
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the process shown m §4 3 3 can be applied giving

iA  2 7 ^ “-A)
D(  A)

( (dl fVf  _  ( _ a ^ ]2) \
V \a^àiJ \dzidz2J ) ,UJ

1/2 (5 9)

5 1 . 2 Recessive Term

This time

/(M) = /(z',A) + (Z! -  z [ f  a 2/
dz\

(z2 -  4 ) 2 d2f + (5 10)
2  dz\

is employed The same reasoning is used as in § 2  1  2  and a substitution similar to 

that of §4 3 3,

u =  Z\ — z 1: — (z2 — zl2) +
(Zi -  z[) d̂z\z2

dz%

(5 11)

is performed in order to split the integral into a product of two Gaussian-type 

integrals—again an application of Morse’s Lemma But now the finite boundary in 

R (A) means the introduction of a complementary error function term Suppose for 

convenience that the finite boundary through z* is chosen parallel to the z2 -axis, so 

that z 2 runs from — oc to oo but z\  now runs from z{  to oo, then

iA  7r e^zi,A)
R{  A) ±----------------

( ( a2l a2l ( d2f )A )\ 9zf \dzidz2> J i)

Ŷ erfc(wi). (5 12)

W\ =  ±t(Zi — z[)
§LL -  / i
dz\ \ dz\z<i' ' dz

1/2

(5 13)

Whereas, if the boundary is instead chosen to be parallel to the zi-axis with z\ 

taking values from —oo to oo and z2 restricted to values between z 2 and oo then

% A 7re^zi,A)
R(  A) 1/2 erfc(w;2) (5 14)
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5 13 Remarks

All the extensions and discussions of § 2  2  apply to the method given for double 

integrals It is assumed in the following that the finite boundary through z* has 

been chosen parallel to the z2-axis

For instance, if

I ( X )  =  A  j  g(z ) ,

and g { z u), g ( z l) are both non-zero, then

D {  A)

m

i A  2ir g ( z u) e ^ zit,A)

±

d2fd*f  /  d*f ]2\ \
i d zidz2J J zJ  

zA 7r g(zl) e f (zl’V

1/2

( ( -  ( Q2f \2\ \y dzj \dzidz2' ) zi)

rfc(wi)

(5 16)

(5 17)

(5 18)

In the event that z*  coincides with either z u or z l , the expressions for D ( A) and 

R ( A) become

iA 7r ef(zU’x)
D { A) ~  ±-

R { A) ~  ± -

aHPf _ / a2/ x2A
dzf dz% 'dz\dz2 ' J

i A  7r e-^zU,A)

1 32
(5 19)

- ± iA ir e-̂zi,A)
d2f \2\ 2 /<P±d2f _  ( d2f \9\
z\dz2* ) u \dzl~dzl \dz1dz2' )( d2f Q2y dzf dz£ ^dz\dz2 y z

iA 27rê ,̂Â zA 7re-̂zi,A)/9(A) ~  Zl-----------------------------j— =h

— e rfc ^ i) , (5 20)

f&f _  (.A2!. )2^
j  dz\ ' dz\dz2 ' J

2 ( Q2f Q 2
z u

( d2f
\dzXdz2) J

1 1 2

iA 7r ê z* ,Â 
ii(A) ~ ± -----------------------------r erfc(wi);

(a* f e y  _  / a2/
y dz\ dz\ v dz\dz2' J

(5 21)

(5 22)

respectively, using the result of Wong m §4 3 1 for a stationary point on a boundary

Finally, higher order terms for D ( A) can be calculated m the same way as before 

by simply retaining more terms of the Taylor series for / ( z, A) as shown m §4 3 3, 

and the number of saddlepomts taken into account can also be increased, yielding 

unwieldy expressions involving erfc terms analagous to those of § 2  2  5



5.2 A p p lic a tio n  to  D o u b le  A ir y  In te g ra l

5 2 A p p lica tio n  to  D ouble A iry  I n te g r a l_____________________________ 101

To illustrate the workings of the m ethod, a product of Airy Ai integrals, hereafter 

term ed the D ouble Airy integral, is considered m order to compare the numerical 

results obtained to those using H owls5 m ethod, which is discussed below Thus

1(A) =  Ai(aiA)A i(/3iA) =  - A^ 3 J  J  (5 23)

where S  is a 2-dim ensional surface infinite in extent m both com plex variables, w ith  

u and v both  running from ooe“ T to  o o e t  T his integral has 4 saddlepom ts lying  

at (1 ,1 ), (—1 ,1 ), (1, —1) and ( - 1 , - 1 )  However, only the contributions supplied  

by the first two are considered here

z “ =  (1 ,1 ), z' =  ( - 1 ,1 )  (5 24)
i

U sing such a product of Airy functions allows the results to  be tested against 

tabled values and so provides som e verification of the numerical accuracy of the 

m ethod A is allowed to rotate in the com plex plane, but its m agnitude remains 

fixed |A3/ 21 =  10, a  and ¡3 are also fixed a  =  0 3, /? =  0 7 The results are shown  

m Table 5 1 where the row labelled izu contribution’ refers to the sum  of the first 

six term s m the series expansion about z u As for the single integral, the value 

of z* gives no indication of how m any term s beyond the leading term  of D ( A) are 

necessary for an optim al numerical value

W hen 6\ =  0 or B\ — it can be seen that S ( / ( z w, A) — f { z \  A)) =  0, as for 

ordinary Ai(A) At these values, z* can be chosen to equal z l and so, taking into  

account the contribution from z* on the boundary, the sam e pattern arises as for 

the single integral when 0  ̂ =  0, only the contribution from z u survives but when  

9\ =  both contributions combine to produce the result

5.3 H o w ls ’ M u ltid im e n s io n a l M e th o d

Howls [29] has gone beyond the work of earlier authors by exponentially im proving 

the asym ptotic expansion of m ultidim ensional integrals and has provided a m eans 

of doing so which follows on naturally from his single integral approach Initially  

the introduction of higher dim ensions would seem to pose m any problems However, 

the final result shows some of these to be merely artificial
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> II 0 0 00006097105 zu leading behaviour
0 00005864181 zu contribution
0 00005844867 Mathematica

0X = ± ¥ 18 8229116541  

=r 32 6022393322
zu leading behaviour

19 9731333915  

=Fz34 5944818204
zu contribution

0 59051785874  

^ 0  34093564470

z l contribution

20 5646689337  

=Fz34 9360050249
Combined contribution

20 4216057189  

=fz34 6862765258
Mathematica

Table 5 1 Values of /(A ) com puted using the m ethod of §5 1

Let

4 (A )  =  / g(z)e~xf{z) dz, (5 25)
Jsk

where the rc-dimensional surface, «S*, is doubly infinite m extent in all com plex vari

ables, running between specified valleys at infinity where 5R{—A (/(z )  — / ( z k))} <  0, 

and zk is a sim ple saddle Paralleling the single integral case in §3 1, T^(A) is de

fined by extracting the exponential dependence and algebraic prefactor at the saddle 

point which gives

p * ̂  £fz
h { A) =  —rn-Tk(X) w ith / ( z k) = f k (5 26)

As

Then a new variable, 5, is defined by

S =  / ( z) -  A , (5 27)

so that on the hypersurface S k, s varies from 0 to 00 Thus the variables of integra

tion can be transformed to a new set including s, defining a form u  by

dzi A dz2 A A dzn = ds Aw, (5 28)

which can then be written as

dzi A dz2 A A dzn
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(7fc(s), which denotes a surface where s  = constant, is term ed a vanishing cycle1 

and Sk is effectively a Lefschetz thim ble (see Figure 4 .2)). This allows T^(A) to be 

w ritten as
rooe~ie>̂

Tk{ A) =  /  \ $ e ~ XsA  k G{s)ds,  (5.30)
J o

A kG(s) =  f  g{ z)w, (5.31)
J 7*00

reducing the integral /&(A) to a single dim ensional Laplace integral. As the Borel 

and Laplace transforms are m utually inverse, A kG(s) is the Borel transform of the 

integral /¿(A) and the s-plane on which the study is now concentrated, is the Borel 

plane. Such a transform ation of the m ultidim ensional integral is analagous to the use 

of the theorem  given in §4.2 for the resolution of m ultiple integrals. The function  

A kG(s) is holomorphic in the 5-plane in the neighbourhood of the im age of the  

saddle z k and is singular at the other critical points of the phase function / ( z ). So 

if A kG(s) were to be expanded in powers of s, it would have a radius of convergence 

up to the nearest singularity which lies on the sam e Riem ann sheet of Sk . But 

beyond this, the series diverges. This again illustrates the idea of the existence of 

other saddles being the cause of the divergence of the series. However, a saddle, zm, 

m ust be directly visible from zfc, that is, it must lie on the sam e Riem ann sheet, 

in order for it to  make a contribution. This visibility condition is equivalent to  the 

adjacency condition of one dimension. The next step then is to deform the contour 

7fc(s) surrounding the saddlepoint zk to the neighbourhood of the saddle zm and to  

determ ine the type of singularity A *G (s) has at th is saddle. Thus the effect of a 

27r cycle on the deform ation of the contour must be studied and it can be seen that 

there is a fundam ental difference between even and odd dimensions:

7m(rmei<*+2’ >) =  ( - l ) n7ro(rme^). (5.32)

To achieve this, the topological studies of Pham  [70] are drawn on and the Picard- 

Lefschetz formula leads to a result:

7*(rme ^ +2")) =  7k(rrae * )  +  ( ~ l ) n^ ' 2N(k,  m )7m(rme‘* )> (5.33)

1Let X  c  Cn, A c  X. A p-dimensional chain, 7 , on X  is a linear combination with integral
coefficients of many p-dimensional chain elements each of which is a p-dimensional orientable
manifold. A chain, 7 , on X  is said to be a ‘cycle mod A’ (a relative cycle) if d7  is contained in A. 
Then a relative cycle, 7 , is called a vanishing cycle if it contracts to a point (i.e. vanishes) as A 
contracts to the origin [21].
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where N (k ,m )  £  N is called the intersection number of the vanishing cyles 7  ̂ and 

7m An expansion for A kG(s) m powers of s is eventually arrived at

OO rp

A ‘G W = 5 f < ? V " 5"  (534)

However, starting with (5 30), m aking use of Cauchy’s integral theorem  and pro

ceeding as m §3 1, it can be seen that

which in turn implies that T*(A) can be written as

= f  r (5 36)
¿ ' R i  J 0 J r k s — 5

where Tk is the infinite loop surrounding £ =  0 (see Figure 3 1) Then by bm om ially  

expanding the denom inator of the second integral to  finite order, the coefficients of 

the asym ptotic expansion with respect to k can be found

T iA 1 - V ? k  +  ^  f W W  A *G(e) j r j ,  ( ^ 7 )
k i ) ~ ^ y  2m J0 L e N+H i - i )  ( }

where
^  _ r (^ +  f)  /  A t G(() Jf , cntA

k r ~  2 m  f B( f + f  ( ^

or m term s of the original variables

_  (r +  |  — l ) 1 f  g(z) ^  ,C on\
kr ~ n f  ( f! \ ( \r+^ ( )

(Bzk being the n-dim ensional ball surrounding zk) To finish, the contour r* is

deformed to a union of arcs at infinity and similar contours Tm around the other

singularities The integral along the arcs at infinity vanishes, leaving the remainder

to be w ritten as a sum over the Fm contours This, along w ith the transform ation

v£ v 1/(£ — f m)
- -  s Jm), (5 40)

A Fkm A A Fkm

allows Tjt(A) to be written as follows
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Then the contour Tm is collapsed onto the ray from f  =  0 to oo and the discontinuity 

Am(AkG) is taken as in §3.1 (see appendix for further details). A self-similarity has 

thus been introduced into the integral leading to the resurgence formula

It can be noted that any explicit reference to the dimensionality of the integrand has 

dropped out but is incorporated into the Tki Tm factors—yielding the same result as 

in (3.19). The same process can then be applied to the Tm factor. That is, it can be 

expanded to finite order having its remainder expressed in terms of the other saddles 

on the same Riemann sheet. This leads to a hyperasymptotic scheme exactly as in 

§3.1, again with universal hyperterminant integrals which depend only on the point 

at which the series is truncated and the effective distance between saddles.

Some changes have been made to the overall approach. In order to numerically 

optimise the algorithm and globally minimise the remainder, Howls has introduced 

different criteria after Olde Daalhuis [57] for the truncation of each hyperseries:

shortest directed path of M  steps in the 5-plane, between singularities 
starting at z;{ starting at z k 

Ni =  max{0, N0 -  |AFfcm|},

N2 =  max{0,N i  -  |AFm/|} (5.43)

and so on, where M  represents the current hyperasymptotic iteration. Also, the 

factors (—1)7*™ have now been replaced by Pkm where

, , f 1 if zm is adjacent to z k /r ,lp‘"l = { 0 otherwise (5'44)

This reduces the determination of an exact expression for the remainder to the

calculation of the Pkm—which can be achieved by numerically solving a system of

algebraic equations. The graphical techniques which can be used in one dimension 

to determine the adjacency of saddles are now redundant and have been replaced 

by an algebraic process.

The most interesting points to note from this multidimensional method are

• First of all, how the geometry, analysis and asymptotics of the problem com

bine to produce the result.
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0 00005603064518 (a0)ie~x3/2f i
47r2

0 00005832352792 (afrie-*3'2]i tt 
4jt2 n °

0 00005844795344

0 00005844866001 **>»£r h (Ho +  H1 + H2)

0 00005844866596 {ai3)x r h (Ho +  Hi +  H2 +  H3)

0 00005844866651 Mathematica

Table 5 2 Values of Ai(a3 A)Ai(/?3 A) with 9\ =  0 [29]

• Secondly, how despite the difficulties introduced initially by the higher di

mensions, little effect is had on the final form of the remainder term when 

compared to Howls’ results for a single integral

• How the Stokes phenomenon is also accounted for quite naturally by the

method

• Finally, how the method hmges on expressing the function in terms of the 

singularity structure of its Borel transform—the advantage of this technique 

is that it applies equally well to classes of differential equations as to inte

grals [57]

5 3 1 E xam p le* D o u b le  A ir y  In te g ra l

The method described above was applied to the Double Airy integral m [29], with a

and p  fixed as before and the results obtained are those m Table 5 2 Transforming 

the variables using s =  / ( z) — /*, leads to the appearance of cuts in the 5-plane 

as expected, but m this case they are colhnear Thus care must be taken to indent 

the cut from one saddle above others When calculating the N s, it was found that 

although two saddles, zm and zz, may be adjacent, the contribution from z l could 

be zero at a particular level of hyperasymptotics because it may lie too far from 

zm, relatively speaking, to contribute numerically This does not interfere, however, 

with it making a contribution at a later stage
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5 .4  Conclusions

As can be seen above, an application of the extended method of Nikishov and Ritus 

to a higher dimensional integral can require tedious computation and much care 

m the choice of steepest descent surfaces and points of truncation, z* Matters 

may be improved by borrowing the approach of reducing the original integral to 

a single integral m the Borel plane and following the suggestions of §3 4 3 to then 

truncate the contour at a point £* m the £-plane However, this would still require 

establishing various criteria for the definition of £*

Again it should be noted that while §5 1 presents a method that can provide a 

means of exponentially improving traditional asymptotic estimates by taking into 

account the appearance of exponentially small terms it can not compete with the 

numerical precision of a hyperasymptotic scheme



Chapter 6 

Extensions

6.1 In te g ra ls  w ith  one F in ite  B o u n d a ry

The methods of §3.2 and §5.3 are now combined to form a method capable of finding 

the asymptotic expansion of multidimensional integrals over a semi-infinite surface; 

that is, one which is finitely bounded in one direction. Once again only two cases 

are considered here—integrals which exhibit a quadratic dependence at the finite 

boundary due to a saddlepoint of / ( z) occurring on the boundary and those which 

exhibit a linear dependence due to the consideration of a point on the boundary 

which is not a saddle but whose contribution may be relevant to the expansion. 

This mirrors the discussion of §3.2.1 and §3.2.2. As before, the contributions from 

any extra crtitical points which may arise as a consequence of restricting / ( z) to 

the boundary will not be considered here. Nor is the case where a ridge of critical 

points appears discussed.

6.1 .1  Q u a d ra tic  D ep en den ce

Integrals of the form

4/2  (A) =  [  </(z) e_A/(z) dz, (6.1)
J $k/2

are investigated. The n-dimensional surface, Sk/2, starts at an (n — l)-dimensional 

surface through the simple saddle z k and runs to infinity in a specified valley of 

5ft{—A(/(z) — fk)}- For example, if Sk/ 2 is 2-dimensional then it starts at a line 

through z k. Again Pham ’s result that such a hypersurface with quadratic critical 

points can be deformed into a chain of hypersurfaces each of which encounters

108



a single saddle is used1, but it must be remarked that, while this is possible in 

principle, it may be very difficult m practice The popular procedure of reducing 

a multidimensional integral to a single integral of Laplace type as mentioned in 

Chapter 4 is revisited here Defining Tk/2(A) by

e-^fk
hi2(X) =  ^ f Tk/2(X) (6 2)

gives

Tfc/2(A) =  2 f  A?5(z) e~xW ~ M  dz (6 3)
^k/2

Once more s — /(z) — f k, which allows s to vary from 0 to oo on S k/2j and oj is 

defined as m (5 29) so that

Tk/2{A) =  2Ai /  e~XsA kG(s)ds ,  (6 4)
J 0

dzx A d z 2 A A dzn
u) =  --------------------------- , (6 5)

dS Ik/2(S)

A kG(s) =  f  g(z{s))uj , (6 6)
Afe/2(s)

although 7 ^ / 2  can no longer be termed a vanishing cycle as it is not closed (see 

Figure 6 1) Hence the Picard-Lefschetz formula cannot be applied directly

To give some interpretation to the form aco n s id e r how it acts for a 1-dimensional 

integral the substitution s =  f ( z )  — f k implies

ds . dz 1
&  = / w  “  i i  = W )  <67)

6 1 In teg ra ls  w ith  one F in ite  B o u n d a ry ______________________________109

Thus if

then

and lettmg

G(s) =  g ( z ( s ) ) ^  (6 9)

dz
ds 7fc/2(a]

(6 10)

1It has been assumed that this is still valid when the original hypersurface has a finite boundary 
in one direction
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k /2

Figure 6 1 Sketch of the analogue of a ‘Lefschetz thimble’ when a saddle point 
appears on a boundary of the surface of integration

gives

A kG { s ) =  f g(z(s ))w  (6 11)
Jlk/2 (5)

In the case of a saddle appearing at the endpomt, 7 *7 2 (5 ) is a single point whereas

for an interior saddle 7 ^(5 ) is a pair of points, so that

dz+ dz-  .
" = -5?-*-' (612)

returning

<613>
as m Chapter 3 However to will play no further part m determining the terms of 

the asymptotic expansion

Instead the representation

=  (614)
Jbs f  2 — S2

is used and expanded to give

Tv2{x)*  1
2W o  [ ¿ 'J b , /r,/â +i(l-(|)i) 7

(6 15)
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where the contours specified are as m Chapter 3 Then
T V - 1

Tk/2(\ )  =  y ^ 7̂  +  R k/2( \ , N ) ,  ( 6  16)
r=0

with

r(A) = ^  I  (6 17)

The expression for T^/2)r can be manipulated to give

r ( §  +  f ) I  a * g ( 0
"(k /2 ) r  ~  27Tl J B i fS  + 7 d f

d  +  i - i V i  </(*) dz (6 19)
27ri Jnzk U ( z ) ~  fa)* + 2

Using the argument that the adjacent saddles alone3  are the cause of the series5 

divergence, Tk/2 is deformed into a union of arcs at infinity and paths Fm around the 

other singularities of AfcG(£) As this deformation takes place m the 1 -dimensional 

f-plane, it is permitted exactly as before [5],[28],[29] and the inability of the Picard- 

Lefschetz formula to describe the deformation of the 7 ^ / 2  is not as damaging as it 

first seemed

w k n ) = ^  r ' " v » - s i + s - ' 5 > i ) ~ -  i  ( 0  , d (ds ,
2 ™Jo ^  /rm ^ +2(l-(f)2)

(6 20)

decays at infinity faster that j|j.

subject to the conditions

(I) ^
(I I ) AjfcG(£) possesses no singularities other than at the saddles,

(I I I ) f  =  0  only at the image of the saddle in the region of defoimation 

Employing the now familiar change of variables s — yields an expression in

volving an integral term similar to the definition of T* / 2  Thus the formula

Rk/2{x’N)  =  r  ( j ~ )  to ,  (6  21)2 m  „  (AF*™) T  «/„ 1 -  V Fkm I

2It has been assumed that the integral converges as the contour is shrunk to a neighbourhood 
of £ — 0 as is the case for analagous integrals in Chapters 3 and 5

3It has been assumed that no other singularities anse, for instance, due to the lestriction of 
/ ( z) to the boundary
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is arrived at and has the exact same form as the remainder term given m §3 2 1, 

illustrating again how little the dimension of the original integral effects the final 

result

When searching for a hypersurface of steepest descent, some discussions of Chap

ter 4 should be remembered—merely setting ^?{A(/(z) — /*.)} =  0 is not enough to 

specify a unique surface However, it is assumed that this equation is satisfied 

on any Sk or <Sfc/2 This also effects the categorisation of adjacent saddles as the 

Stokes phenomenon can now occur whenever z k and zm lie m a region in which 

^{A (/m — fk)} — 0 although the hypersurface of steepest descent chosen may not 

now contain both z k and z m}

6.1 2 L in e a r D ep en den ce

The procedure to be presented here closely follows that of the previous section In 

this case, the integrals are of the form

where Se again has a finite boundary, this time passing through the point ze, which 

is not a saddle of / ( z), and then runs to infinity m a valley of A(/(z) — f e)} 

The mam steps involve using

(6 22)

s =  / ( z ) -  fe (6 23)

(6 24)

to rewrite G(s) as

whose contour integral representation is given by

(6 25)

(6 26)

Then

re(A) = ̂ - ^ ■  + Re(X,N) (6 27)

with
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and

R^ N ) = ^ X \ ^ m  L  t ■ = ^ Tm ( - r ) d"' <629>
m  A i^em ''O 1 AFem \  *em  /

having used 5 =  Tm refers to the expansion about a saddle zm as in §5 3

6.2 A pplication  to Single Integrals

Once the method has been successfully extended to determine the contributions of 

finite endpoints, integrals of the form
ro o  poo  poo

y(X) =  I /  /  z f 'z “2 z “»e-xziz> *»-iW+*?+ +Ẑ d z i dz2 dzp,
J o  J o  J o

(6 30)

which are solutions of

2/n)( A ) - £ < a V r)(A )= 0 , (6 31)
r=0

can be investigated further (see §4 6, §4 7 1) As a preliminary example, the differ

ential equation

%  + xt \  + y = Q (6 32)
is considered Noting that a0 =  — 1, ax =  — 1 gives =  0 (as —a0 =  a \  +  1) and

together with n =  3, p =  1 the solution is seen to be given by
po o

y(A) =  / e_Â ~ ^3dC (6 33)
J o

To verify that this satisfies the equation, differentiate y(A) with respect to A to yield

±  < ■ « , (6  34)

S  =  - / " V * ' “ ’ *  (6 3 5 )

then integrate the latter by parts with respect to C,

d3y =  
dX3

and substitute into the equation

poo
/  {1 -  AC}e-AC" i i3dC, (6 36)

J o

Before the method of §6 1 2 (or indeed §3 2 2) can be applied, the transformation 

z — A~^C 1S made so that y(A) is of the required form
poo fOO

y(X) =  Xi e - x3/^z+z3^ d z  =  A* /  e~x3/2f^ d z  (6 37)
J o  J o



6 2 A p p lica tio n  to  Single In teg ra ls 114

Figure 6 2 Contour plots generated by Mathematica for y(X) m (6 37)

To locate the saddles of /(z ), f f(z) =  1 + z 2 is set equal to zero giving z 1 =  i, z2 =  —%

Hence the origin, z e =  0, is a linear endpoint and the contour of integration can be 

deformed into the line of steepest descent, Cej which runs from 0 to oo with direction 

— arg A/2 =  — 0A/2 Thus, m the case of A e R  , Ce is just the real positive axis 

Now define

Fe 1 =  h  -  fe =  / ( I )  -  /(O) =  2z/3, (6 38)

Fe2 =  h  -  fe =  / ( - l )  -  /(o ) =  -2 i /3  (6 39)

Saddles z1 and z 2 are adjacent to z e if there exists a 0\ such that A3/2Fel and A3/2Fe2 

are real and positive Here both saddles are adjacent and are actually equidistant 

from z e so the order m which they are encountered becomes irrelevant The first 

order approximation from the endpoint, then its optimally truncated series and
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finally the first hyperasymptotic iteration are computed As z l and z 2 are also 

mutually adjacent, after the first iteration both scattering paths alternate from one 

saddle to the other

Ter can be determined using either (3 41) or Dingle’s formula for the asymptotic 

expansion of an integral at a linear limit of integration [17] Similarly, Tlr and T2r 

can be determined from (3 14) or Dingle’s expansion due to an interior stationary 

point

(_i)f r(i + £)
Ter —  r— ;--------— T even, Ter — 0 r  odd,3ir(l + 5)

% - r - 2 m  -  r ) r a  + r )  _  ( - l ) T ( l  -  r ) r a  +  r )
Tlr ~  r(| -3r)r(l +  2r)(3ï)2r’ 2r “ T ( | -  3r)r(l + 2r)(3î)2r

(6 40)

(Note that the Ter obtained here are exactly those coefficients of x obtained m §4 7 1 

as would be expected )

The series are truncated optimally so the truncation points are calculated from

JVo =  Int e l =  (641)

and the hyperterminant integral needed is now given by

r°° -r-\

Wo T
( -1  )7«m * 2

Krm =  --------r----n------r  /   r----dv
2 m \ 3^ LF e m  r + 2  " 'o  1  X3/2Fi

( — 1 )lem+N0-r
=  --------- — ------------e T(N0 -  r  +  i)  T(r -  iV0 +  §, - M F em)(6 42)

where m  takes the values 1 and 2 and j ei =  j e2 =  0 However, if 9ftA3/2 > 0 holds, 

(6 37) can be solved m terms of generalised hypergeometric and Bessel functions

À ̂
y (A) =  ^■(4v/3tt(J_1/3(2A§ /3) -  J 1/3(2A§/3)) +  9A§ ^ ( 1 ,4 /3 ,5 /3 ,  - x s/9))

(6 43)

This provides a means of putting the results obtained here m perspective as such— 

at least when 9\ < y  Mathematical  tabled values of the special functions were 

used to do this Various values of 9\ were used as before but |A| was kept fixed 

at 8 32033529220761645812 so that |A|? =  24, giving NQ =  16 and Ni — 5 

As N% =  1 the hyperasymptotic scheme automatically halts after just 3 iterations
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Numerical results are presented in Table 6 1 Contour plots for the function are given 

m Figure 6 2—the first row represents the hills and valleys, the shading becoming 

darker as the valleys deepen, the second row shows the constant phase contours 

or lines of steepest decent passing through z e and the third, the lines of steepest 

descent which pass through either z 1 or z 2

Consider now the second order differential equation

S + 4 + - « -  <««>

for which a solution of the form

POO

y ( A) = A /  e ~ x ^ z + z 2 / 2 ) d z  (6 45)
J o

exists This integral has a single saddle point at z 1 =  —1, which is adjacent to the 

endpoint z e =  0 Hence m this case, the hyperasymptotic scheme would halt after 

the first iteration as the corresponding expression for y ( A) is exact at this level and 

no greater precision could be achieved

It should be noted that recent methods providing hyperasymptotic results for 

solutions of nth order differential equations, namely that of Olde Daalhuis [57], could 

also be applied to the differential equations discussed above However, as these m 

turn rely on finding an integral representation for the remainder of the asymptotic 

expansion of the solution of such an equation, an approach which starts with the 

integral representation of the solution can be useful m practice In any case, the 

procedure detailed here provides a convenient alternative

6.3  A p p lic a tio n  to  D o u b le  In te g ra ls

As an example of a double integral, consider

rOC poo

y ( X )  =  / / e~x^ 2~ ^ +^dC\  ^(2 , (6 46)
J o  J o

which is a solution of the third order equation
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0A  =  O 0 1201874641922840
e- A 3/ 2/ e

A
0 1197834257208534 e - * 3 /2 /e r r  

A 0

0 1197834373363305

0 1197834373363271 Special Functions

0A  =  ± | 0 0600937320961420 

T i O  1040853972069505

e- ^ / 2 /e
A

0 0603010550704043 

=r 0 1044609380518612

e - * 3 /2 /e r r  
A 0

0 0603106051922058 

=PzO 1044609154785759

\ 3/ 2 f

0 0603106051921960 

=Fz0 1044609154785703

Special Functions
-HII■< 00

=r 0 1201874641922840

e- A 3 /2 / e
A

- 0  0004159673400131 

TtO 1201732028915344

e - * 3 /2 /e r r  
A h 0

- 0  0004159521093458 

=r 0 1201732029536831

- 0  0004169609858941 

T^O 1201605547873280

Special Functions

«1”-HIf<< - 0  0600937320961420 

TiO 1040853972069505

e - ^ 3 /2 /e
A

- 0  0598917128604267 

TiO 1037354896265854

e - * 3 /2 / e r r  
A 0

- 0  0598917030785903 

T i O  1037354952741313

A3/2f

Tabic 6 1 Values of y(X) m (6 37) obtained using the method of §6 1 2
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As before, a transformation is necessary m order to apply the method of §6 1 1 In 

this case, Z i = ( i / \ ,  z2 =  ( 2 /A glvmg
P OO POO

y (A) =  A2 / /  e- A3(ziZ2+s(z' +z' ))dz1 dz2 (6 48)
J o  J o

It might appear that this integral does not fit into the class specified m §6 1 1, 

because the boundary restricts the domain to be ‘quarterly’-mfimte as opposed to 

semi-infinite But if a little extra care is taken when calculating the contribution 

from the origin, which lies on this boundary, an application of the method is possible 

The saddles of / ( z) are those points which satisfy =  0 and =  0 simulta

neously Hence, there are 4 saddles

z° =  (0,0), z 1 =  ( - 1 , - 1 ) ,  z2 =  ( ( - l ) 1/3, - ( - l f 3), z3 =  (—( - l ) 2/3, ( —I)1/3)

To start, the surface of integration is deformed into a surface of steepest descent 

though the origin On such a surface, *So/2 ) z takes values from 0 to 0 0  with 0Z =  —6\ 

For instance, when 9\ — 0, ¿>0 / 2  the original surface of integration Expressions 

for Tlr , T2r, T3r are best found using Dingle’s formula for the contribution of a 

quadratically behaving interior stationary point of a double integral [17]

T„ = 3* = li, = M-l)'r(3r + l)
3*+ir(r + l)r(r + l)

However, this formula does not apply m the determination of T(o/2 )r because, firstly, 

the saddle no longer lies m the interior of the domain of integration and secondly,
92/ a 2/

(0,0) dz2
=  0, (6 50)

(0,0)d z f

which is not permitted As d^ / Z2  ̂ =  1, z° is still a non-degenerate simple

saddle [22] but it is better to use either the method of residues with Cauchy’s integral 

theorem as shown in §4 2 or the Mellm-Barnes approach of §4 7 1 to compute its 

associated asymptotic expansion

Using the latter, it should be noted that m this case the sequences of poles arising 

from r ( 1+an1~r ) and r ( 1+̂ 2~T-) coincide as a x — a 2 =  0 and instead of two sequences 

of simple poles, there is now just one sequence of double poles and the coefficients 

in the expansion thus take the form

2 r ( l  +  ¥  )(«(1 +  f ) - 1 l°g3 -  log A -  | f ( l  +  §})
- ------------ y p p  + s)------------- reven'

T(o/2)r =  0 r odd (6 51)
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The appearance of a log A term m what should be the ‘coefficients’ of A“ r / "2 should 

be noted This provides an added complication as the theory described precludes 

such a possibility However, the procedure will be followed as normal to see how the 

method fares m such a situation

Calculating FQx =  F02 =  F0s =  1/3, shows that 5sFq3 =  0, for any 7 , and it 

emerges that the Stokes phenomenon occurs between any pair of saddles However, 

this is not enough to guarantee adjacency—the Riemann sheet structure must also 

be investigated Using the numerical solution of a set of algebraic equations as 

advocated by Howls [29] presents problems m this case, due to the cancellations 

caused by the equivalence of the coefficients Tjr and singulants F0j, j  £ {1,2,3} 

This would seem to indicate that the saddles z1, z 2  and z 3 are on different Riemann 

sheets so while each is adjacent to z° independently, none of the three are adjacent 

to each other Also note that for the first stage of hyperasymptotics, the saddles 

z1, z2 and z3  are equidistant (F0i =  F0 2  =  F 0 3  =  1/3), so the order in which the 

scattering takes place is irrelevant

The calculations then proceed exactly as before 9\ was allowed to change, but 

|A| was fixed at 2 88449914061481676 giving |A| 3  =  24 Retaining the principle of 

optimal truncation of the series as m Chapter 3, gives No =  Int|2A3 F0*| =  16, where 

V  represents the nearest of the adjacent saddles on the first iteration It should 

be noted here that the cuts in the £-plane from points corresponding to z1, z 2 and 

z 3  are collmear as $sF0 1 =  3=F0 2  =  $sFq3 Thus the cuts must be suitably oriented 

and indented to avoid collision of the contours Tx, r 2 and To calculate N x, the 

formula

M  =  Int;--------------„  n ( 6  52)
1  +  mm/G{ii2 ,3 }{|Foi/Fj*|}

would normally be used, with V  now representing the nearest of the adjacent saddles 

on the second iteration So, in this case, as FX2 =  FXs =  F2 3  =  0, N\ is estimated as

*  = '"‘r n ^ T i w  = 8 (6 53)

To have some means of judging the numerical results, y ( A) is expressed m terms of 

special functions for ¿RA3 / 2 > 0 Thus

y (A) — g e A 6̂ A2 7T2 / f i / 6 (A3 / 6 ) +  — 2 F2 (1 ,1, 4 /3 ,5 /3 , — A3 /3) ( 6  54)
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and can be evaluated at various values of A using Mathematica once again (Table 

6.2). Though the method provides the asymptotic behaviour for A —> oo, note that 

it performs quite well even for a small value of A and given the occurrence of the log A 

term. This would seem to suggest that the method could be modified to encompass 

such integrals and perhaps then provide an improvement on the results given here.

As a second example, consider the differential equation

< « «

It can be shown that
p o o  po o

y (A) =  A /  /  e - ^ ZiZi+L̂ +z^ d z 1 dz2 (6.56)
J o  J o

is a solution of (6.55). This integral has 8 saddles in all, including one at the origin.

In general, the number of saddlepoints of the phase function increases with the

order of the equation. Though the computations become more laborious, there is 

no corresponding increase in complexity and the method presented holds its own. 

(However, in this case a log A term can again be expected to arise in the coefficients 

of A- r /2 in the asymptotic expansion about the critical point at the origin following 

the pattern of the last example and the fact that again g(z) =  1.)

Finally, consider the integral of Airy function type

\  r o c  poo

y ( \ )  =  - J L J  ^  e-*3/2 (*i / 3 + z 2 -zf/3) dz\ dz2, (6.57)

to which again the method of §6.1.1 could be applied. This function may appear to 

be somewhat artificial in that it is merely the product of the two single integrals

\  1 / 2  ro o

1 ' • (6.58)

\  1 / 2  po o

Jfe(A) =  7T~ /  e~x3/^ +z^ d z 2, (6.59)27T2 Ji

but this allows the exact value to be calculated. Such an example also provides 

a straightforward illustration of the method as the added difficulties encountered 

above do not appear. There are four saddlepoints to be considered, lying at

Z1 =  (1,1), Z2 =  (1 ,-1 ), z 3 =  (-1 ,1 ), z 4 =  ( - 1 , - 1 ) ,
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0A =  O 0 687871479288769824454 2e-*3/2/e
A

0 696550992033125308126 2e“ 3̂/2/e ^
A ^0

0 696646142433125308126

0 696654651845139212467 Special Functions

-HII 0 686474954177173143209 

=F*0 186733459819158871226

2e-^3/2/e
A

0 685808036741310913772 

TzO 196146517138103218913

2e-x3/2/e rr 
A ^0

0 685922141115760157830 

T ïO 19613714709623620390

0 685915998194536778197 

=r 0 196107551103553694091

Special Functions

> II H- 0 658340299294836994228 

TiO 414192618454221752454

2e-*3/2/e
A

0 646835599419599448626 

=r 0 412484984285808136829

2e-^3̂ 2/e rr 
A ^0

0 64685362905957297288 

=r 0 41242342126402132344

2-sZÇ lL(Ho +  iii)

0 646956061017119725217 

TiO 412379641156346251997

Special Functions

-Hn■< 0 544564671445902781512 

TiO 687871479288769824454

2e-^3/2/Ê
A

0 550265433862849879651 

=r 0 672825376271963250515

2e-^3/2/e rj
A ^0

0 55031437135578314291 

=r 0 67272187396407376680

+  Hi)

Table 6 2 Values of y (A) m (6 48) obtained using the method of §6 1 1
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the first of which appears on the boundary. The coefficients of the expansions about 

each of the saddles z 1, z 2 and z 3 could be calculated using D ingle’s formula for 

interior stationary points of double integrals [17]. W hile for z 4, the relevant formula 

to  find the expansion about the endpoint of each of the single integrals could be 

used and then the expansions m ultiplied together. Having done this, the subsequent 

com putations proceed as normal.

6 .4  L o g a rith m ic  S ingu larities

In this section the occurence of a logarithm ic term in the function g(z) is investi

gated. For sim plicity and in order to ease the geom etric visualisation of the problem, 

the investigation is carried out for a single integral. However, the sam e technique  

should be valid for integrals of any finite dim ension. Integrals of the form

/(A ) =  [  g{z)e~xf{z) dz, (6.60)
J c k{ex )

where Ck{0\) is an infinite contour of steepest descent as in (3.1), are considered. The  

presence of a logarithm ic expression in g(z ), log(z — z l) say, m eans the introduction  

of a cut in the com plex z-plane running from z l to oo. The cut is chosen to lie along  

a steepest descent path, Ci{0\ ), from z l to  a valley of 5ft{—A( f (z)  — / / ) } ,  assum ing  

to  start that z l does not lie on Ck(0\).

Once again

4 (A )  =  —-j—T*(A), h  = f ( z k), ft =  f ( z l) (6.61)
A 2

and the change of variables,

S =  f ( z )  -  f k, (6.62)

is made. Thus the logarithm ic cut in the z-plane becom es a cut in the s-plane. As 

it is still valid to write

AtG(s} = J S £ t@ L  _  =  - ± r  I  (6.63)
l  /  (^+(5)) /  (^-(S)) J ‘l i r i s 2 J r k f  — s

the truncated expansion of Tk(A) remains unchanged with

(̂* 2)! jf 9(z)Tkr = —  <f --------— ------ r dz. (6.64)
2m  J bl  ( f (z)  -  f k)r+*
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The remainder term, however, undergoes a slight alteration:

'  A  kG (0

t N+H i - f)

2 « Jo Jr, ŵ+5 (l - |)
=  J?ifcm(A , iV ) + JRw(A,Ar), (6.65)

where T/ is an infinite contour surrounding the extra cut arising from the logarith

m ic term. Substitu ting s = in the first term, R km(X,N),  and collapsing the
A r k m

loop contours Tm onto their corresponding cuts, gives rise to  the appearance of the  

Tm factors as before. The contour involving Tj, however, requires a separate

investigation.

First Fkl = fi —f k is defined and the substitution , 5 =  is m ade in R ki(X, N).  

This yields

R k M , N )  = - — "-- i f  y  26/ <f A kG ( O e - W - fl+h)dtdv ,  (6.66)
2mXNFkl 1 Jo 1 -  *W, Jr‘

w ith 7m taking a value of 0 or 1 depending on the orientation of Tki. In the sam e  

m anner as for the singularities arising from the adjacent saddles, the loop contour, 

T/, will be collapsed onto the cut corresponding to the logarithm ic singularity at z l 

and the discontinuity of the integrand across the cut is determ ined. This is easier 

to  do in term s of the original variables, so reinstating

£ = f ( z )  -  fk, J-Z =  f ' (z) (6.67)

gives

cf  AkG ( ^ e ~ ^ {i~f,+h)d^ = <fi g { z ) e ~ ^ (nz)~f,)dz, (6.68)
J r t J r z ,

where Tzi is an infinite loop surrounding the cut from z l— a z-plane analogue of T*. 

If g(z) is of the form

g(z) = g(z)  +  c0 log(z -  z l), (6.69)

where g(z) is analytic, then the discontinuity of the integrand on the right-hand side 

of (6.68) can be calculated to be

27ricoe“ ^ 7(/W _/,), (6.70)
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using

log(H e,w,+2,r)

Thus

W , N )  = ■1)Ikl

f ( W l% (6 71)

~ 9 ( W % (6 72)

log(|z|e*^ — z l) +  2m (6 73)

i  - V  !■

/  2 m c 0e ~ t l ^ ~fl)d z d v
xfu Jci{ex)2 m \NF^+1 Jo 

\ N F i ,  1 J o  1 ~ \ F h  J c , ( e x ) * k i

: - 1 N T r f i ? 5 ( f ) *  (.74)
2 io 1 -  t k : \ * k i jX  N F kt * J o 1 XFt i

This leads to

1 v-^ r°° pN~l^ u (  y \

R t { x ' N )  = (ft^)
+ t ^  r  p ^ L T ( ^ \  i t /  (6 75)

X N F ^  * J o  1 -  X F l ,  \ * k l /

The integral,

Tl [ 4 - )  =  f  t t *  ^ (/W h)dz  (6 76)
kl / JCi{9\) “klF i

is a Laplace type integral whose maximum occurs at the finite endpomt z l Thus it 

can be expanded in a manner similar to that of §3 2 2 Lettmg

1 m  = i m  (6 77)

gives

/  \  r °oe v i r ooe luv

Tl f e ) =  I  ^ r m e' ^ dt =  L  (6 78)

where 6V represents the argument of pr- Then writing
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results m

/  v \  i  v [ r ^  H { i ) tT ^  r H (ç) tM ^

u ) = 2^y. ^  “ i § i — d(+i e * v ^ T i di

If
\ M — l rp /

V  \  J - l r  , ^  {  V

dt 

(6 80)

r= 0 ' Fkl

then

1 r e ( v \  - * - t  I  H ( O t r r' /  1
T "  = ¡S /„ U ) e i  T ^ J ( d t - ^  I ,  (/w

(6 82)

and

The contour, Fj, m the remainder term, can m turn be deformed to similar contours 

about the singularities arising from any adjacent saddles This illustrates that the 

presence of a logarithmic term does not interfere with the iteration process which 

obtains a hyperasymptotic scheme The new hyperterminant integrals,

K u , = ^ r f f ^ z d„, («84,
2 Jo  ^  

t

though taking a slightly different form to the

r°° v n -t~ie-v
K.km ,r 2iri\NF̂ m - XFkm

possess the same universal properties of previous hypertermmants—depending only 

on the effective distance between singularities and the point of truncation of the 

series Thus the hyperasymptotic scheme becomes

0-aa /Wo-i / Ni-l Mi-1

4(A) -  — — V  TkrK ktr +  V  V  TmrK kmtr +  V  TlrK klt,
Aî \ r = Î  \ m  r=0 7=Î

o  A/fc
=  — — {Ho +  iJi +  ) (6 86)À2

Each time a scattering from a saddle, zm, to z l occurs, the contribution has coef

ficients Tir However, because of the presence of H(£) m place of Àfc(?(£) m Rly 

the contributions arising from a scattering m the opposite direction are no longer 

exactly of the form Tm Nevertheless, they are very computable
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In order to compute the new hypertermmant integrals in a practical application the 

formula

^  _ (-l̂ 'co f°° i'N~T—2e-,/ ^
Kkl,r — N —r — -  /  1 vXNF% r 0 1 - Ì F -

=  1 ’ A1/2 - e - Fr(iV -  r  -  l /2 ) r ( r  -  N  -  3/2, -X F kl) (6 87)

can be used

6 4 1 E x a m p le

As an example, consider

/ oo

log { z  -  (2 +  2i)}e_Az2dz (6 88)

-OO

This can be integrated directly giving a complicated expression involving series of 

special functions However, the method of §6 4 will give the asymptotic behaviour 

as A —̂ oo, which is shown to be m good agreement with the exact values, even 

for small A Here |A| was chosen as 1, as Mathematica experienced problems while 

computing the exact solution for larger values of |A|

The function, f ( z )  =  z 2, has one saddlepomt, z l =  0, and the original contour 

of integration is, in fact, a contour of steepest descent through z 1 The coefficients 

m the expansion about this saddle are given by

T10 = r(|) log(—2 — 2i),(l-r)F(l) 
+ 1) 2r (2 +

Tir =  0 r odd, (6 89)
Tlr r(§ + 1) 2r (2 + 2i y  r even’

using (6 64), whereas the coefficients 7}r are of the form

(—l)r(2r — l)11
lT 2r+1(2 + 2*)2r+1 ’  ̂ ^ 

with z l — 2 +  2î m (6 82) The optimal truncation points for the series are calculated 

as

N q — Int|AFii| — 8, Mi — Int
l  +  \Fu/Ft l \ 2 4 (691)

following the theory of [5], [28] However, as acknowledged m §3 3 such formula do 

not attain levels of overall numerical precision that compete with estimates of Olver
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Figure 6 3 Contour plots generated by Mathematica for /(A) in (6 88)

and Olde Daalhuis [61],[57] and so these could be improved in that sense Table 

6 3 shows the numerical results obtained and Figure 6 3 shows the contour plots for 

9\ > 0, while the second row gives the lines of steepest descent through z l and z l

6.5 F u rth e r  Extensions

The method of §5 3 could be adapted m order to contend with integrals of the more 

general form

4(A) =  f  g ( z ) e ~ f ^ d z  (6 92)
Jsk

In this case, Sk is a doubly-mfimte surface between valleys of 9ft{—(/(z , A)—/(z*, A))} 

Obviously the phase function — A/(z) considered to date excludes certain classes of 

integrals from investigation 

To start Tk(A) is defined by

4(A) =  e-'*7i(A), (6 93)

where /* now denotes / ( z k, A) The transformation of variables

sA =  f ( z , \ ) - f k, (6 94)
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fcl<N1II 4 .2561486058 -¿1.6499551239 e
A1/2

4.2151144047 -¿1.6909893249 e~Â i u  
Al/2

4.2145274918 -¿1.6915762379 ^ ( H o  + H,)

4.2119063541 -¿1.6939479707 Special Functions

0A =  - f 3.6840840492 -¿2.6953065843 e-^/i
A1/2

3.6264238099 -¿2.6939688671 e~*/i u  
Xl/2 ^0

3.6264187980 -¿2.6938821467 £ £ ( # 0  +  Hi)

3.6238749772 -¿2.6913152768 Special Functions

1II 2 .8609552530 -¿3.5569773553 e-A/i
A1/2

2.8225050631 -¿3.5152920756 e~xfi u  
A1/2 0

2.8225517005 -¿3.5152729451 +  Hi)

2.8243011704 -¿3.5128800611 Special Functions

OII 1.8428570841 -¿4.1762459976 e-*/i
A1/2

1.8454529591 -¿4.1209018867 e~xh  zj 
Xl/2 ^0

1.8454816517 -¿4.1209262304 + Hi)

1.8477574452 -¿4.1218181846 Special Functions

II 0 .6991712505 -¿4.5109103768 e-^/i
A 1/ 2

0.7389661165 -¿4.4742401976 e~xh u  
xi/2 ^0

0.7389594992 -¿4.4742708795 + Hi)

0.7388787276 -z4 .4763455480 Special Functions

> II w|̂ -0 .4921619484  -¿4.5381636685 e - A / i
A1/2

-0 .4389987502  -¿4.5394233052 e- */i zu 
A1/ 2 ^0

-0 .4309259999  -¿4 .5394312936 e- ^ ( H 0 +  Hi)

-0 .4407658088  -¿4.5400774865 Special Functions

®A =  f -1 .6499551239  -¿4.2561486058 e - A / i

A 1/ 2

-1 .5989294357  -¿4.2711249696 e - A / i  7u 
A l /2  ^ 0

-1 .5989488805  -¿4.2711444144 ^ ( # 0  +  H i)

— 1.6138731921 -*4.2922305376 Special Functions

Table 6.3: Values of 7(A) obtained using the m ethod of §6.4 w ith |A| =  1.
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dz\ A dz2 A A dzT
uu

takes place so that

W Ads\
(6 95)

Ik (5 a )

roc
T k W =  /  e -5*A hG(sx)dsx, (6 96)

Jo

with

A kG(sx) =  (  g{z)uj (6 97)
Ik(sa)

It should be noted that sx varies from 0 to oc on S k as before but now arg sx =  0 

and again 7*:(sa) denotes a hypersurface where 5a =  constant Using the residue 

theorem would give

n t  \ 1 I  A k G i taK 1" ^  , c n o ^sA 2 AkG(sx) =  —  <b —  ------------d£xi (6 98)
¿ni JTk 5a -  Â

yielding

Tk(X) =  J -  r  2 ¿ 6  (6 99)
Jo Jrk SA — 5A

(all A dependence having been incorporated m the variable 5a) Expanding  ̂

results in

W )  -  | T „  + i  f  f  (« « » )
J”—0 Â V /

with the J-'kr being recovered as easily as before

1 r  '+j-i / a*g(&) j
Tt' = ¿ ¿ I  e * *

!'(’■ + f) / a.Gfo) „

= T T T ^ f W 1'2 (6101)7 szfe ( / ( Z, A) -  /fc)r+2

As for the remainder term

^ (A>iV) =  h [ e~SXs"+"~l l k st ) d^  (6 102)

the contour can be deformed following exactly the same procedure as in §5 3, but 

the problem lies in finding a suitable transformation of the form sx oc £U/F km (with 

Fkm =  / ( zm, A) — f ( z k,X)) and this has not yet been done As the dependence 

on the asymptotic parameter, A, is contained withm the 5a and terms it is no
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longer a simple m atter to find ^  and proceed as before If this were achieved, it 

would again allow the late terms m this particular case to be related to the early 

terms of the series expansion corresponding to the saddle zm, thus giving rise to the 

appearance of the term

poo 00
Tm(v) =  /  e - t -A m G fa )  d& =  V T mr, ( 6  103)

J ° r=0

m Rk(A, N ), with the assumption that, despite that extra complications arising from 

implicit dependence of /  on A, the only singularities of A*;G(£a) occur at the images 

of the saddles of /  as before However, as can be seen from the examples given 

m § 6  2 and § 6  3, it is often possible to transform / ( z, A) to obtain a form A/(z) 

rendering such an adaptation of Howls method unnecessary

Up to this point, only the contributions from simple saddles have been consid

ered The incorporation of contributions from higher order non-degenerate saddles 

can also be accomplished quite easily, where a saddle, zfc, of order p  is a point at 

which

U  -  - f i  =0, V , < „  (6104,
zk d z 2 zk d z n zk

Remember that for such a saddle there are 2p lines of steepest descent and ascent 

passing through the point as discussed m §1 4 5 and so there is a choice of steepest 

descent directions It is assumed that a particular direction/orientation for the 

contour/surface of mtegraton is specified at the outset A brief acccount of the 

mam steps is given here

Let z k be an interior saddle of order 3 Then the transformation s =  /(z )  — /&, 

would give 3 values of z to each s because of cubic dependence on / ( z) — fk on z 

However, only two of these will lie on the surface Sk chosen Then

■A fkP n  — *Jk

4(A) =  /  g(z )e -XfM d z  =  ^ r f k(\ ) ,  ( 6  105)
Jsk A 3

/‘00e-lflA

Tk( A) =  / A ^e~AsA kG{s)ds ,  ( 6  106)
Jo

and AfcG(s), the value of the integral of the original integrand over a vanishing cycle, 

7*(s), can be written as

A kG{s) =  ^  <f AkG® ?  3 d£, ( 6  107)
2ms  3 Jrk s — s
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in this case Tk is the infinite contour surrounding the cut from £ =  0 which arises 

as a consequence of the saddle zk exactly as before Expanding the denominator of 

( 6  107) leads to

‘ooe-HA \ Asr - -  A x e - -  AkG ( 0 s r~1+i? , /  AkG(t)  a ™ *(A) = JQ ----=n=----+<P -v
r = 0 . r *  C +?  Jr k ^ ( l - § )

( 6  108)

The coefficients of A r then become

(r +  f  - 1  y  r g(z)
Thr — (i  ------- — ------ 2n" dz ( 6  109)

J b  t ( f ( z ) - h Y^  K J2m  J Bzk (/(z) - A)r+
Evaluation of the remainder term relies on the deformation of to similar contours, 

Pm, about various adjacent saddles as before If these are also of order 3, then there 

will be 3 directions of steepest descent for each But bearing m mind the valleys 

between which the original surface Sk runs, it should be possible to determine the 

directions of the Tm uniquely Thus the remainder term becomes

1 v N~le~u ~ /  v \
<6110>

m the case where the adjacent saddles are also of order 3 This can be iterated 

to form a hyperasymptotic scheme Notice that the hyperterminant integrals are 

exactly the same as for a simple saddle However, if the adjacent saddles are not of

the same order, the hyperterminant integrals will change slightly but there should

be no added difficulty m iterating the process

Likewise, if a saddle of order 3 appears on a finite boundary of the original surface 

of integration, a similar process is followed The mam difference arises as a result 

of the following changes in the formulae

e~*h _ e-Ah  rooe-OA
4 ( A )  =  — s-T t/2(A) =  — s -  /  3 A ^e-A‘A*G(S) ds  (6  111)3A 3 3A 3 Jo

and

A*G (S) =  7— X (6 112)67n s 3 J £3 — S3

where AkG{s) is now the value of the integral of the original integrand over 7 ^/2 (s) 

The coefficients in the series expansion of Tk/2(X) are given by

Tt(k/2)r —_ ( §  +  T  “ I)'  /  $(*)
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and the remainder term now takes the form

Bj(A,JV) =  - i -  /  1/1 ‘e " , Tm ( i v,  (6 114)

the Tm terms referring to adjacent interior saddles of order 3

6.6  Conclusions

Various procedures have been discussed in an effort to extend the method of §5 3 

to deal with a larger class of integrals It is clear from the results that the method 

is quite robust and lends well to such modification While certain success has been 

enjoyed, there is much to be done to extend the method m other directions and to 

make rigorous the suggestions outlined above It is worthwhile remembering while 

doing this, that the Borel-plane approach applied here allows the results to carry 

over to solutions of classes of differential equations and thus serve a dual purpose



A ppendix A  

Singularities of Aj,G

Given

A kG(s) =  f  g{ z)w, (A 1)

suppose A kG(s) has a singularity at s =  sm due to a simple critical point and let

s - s m =  rme10 (A 2)

m the neighbourhood of sm Using the result of the Picard-Lefschetz formula applied 

to vanishing cycles

7k(rme ^ +27r)) =  7*(rme*) +  ( ~ l ) n^ 2N(k, rn)l m {rm^ ) ,  (A 3)

(where N (k ,m )  is an integer), AkG has the form

A kG(rme«*+2̂ )  =  A *G(rrae**) +  /  g(z)uj

=  A*G(rme*) +  Am(AkG(rme^)) (A 4)

Also using

7m i r m e ' ^ )  =  (—l) n7m(rme^), (A 5)

gives
\  Am(A*G(rme1̂ )) if n is even, A J A f c G L e ^  =  m\ k »  ,
I  -  Am(AkG{rmel<l>)) if n is odd

Therefore, if n is even, consider

A*G(rme‘^ )  -  ^  log (rme«*+^ )  Am(A*G(rme * ^ 2')))

=  A kG(rme,(l>) +  Am(AkG(rme'*)) -  ( ^ -  log (rme^) +  1) Am(A*G(rme^))ZTTX
=  At G (rme*) -  log (rme*) Am(At G (rme^)) (A 7)
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Thus AkG(s) — log (s) Am(A*;G(s)) is a holomorphic function in the neighbour-
27r i

hood of sm and it can be deduced that

AkG{s) =  b i log (s _  Sm) H^ { s ) + H ^ {s)' (A 8)

where h )lL(s), Hj®(s) are holomorphic functions near s =  s,

On the other hand, if n is odd, only a in  rotation returns the direction of transversal 

of the vanishing cycle to its original orientation Then

A kG(rme < ^ )  =  AfcG (rme ^ +2*>) +  A m(AkG(rme ^ + 2̂ ))

=  A tG (rrae^) +  Am(A*G(rme**)) -  Am(AkG{rme*))

=  AkG(rme^) (A 9)

Writing

A*G(rme^) =  ^ [AkG(rme^) +  A*G(rme!«+2̂ )]

[A*G(rrae**) -  A*G(rme‘<*+2'>)] , (A 10)

the first bracket is even with respect to a change of <j> by 2n whereas the second is 

odd Therefore, the former is holomorphic near s =  sm and the latter is effectively 

a holomorphic function multiplied by a square root singularity 1 e

AfcG(s -  sm) =  +  E ® (s ) ,  (A 11)

where E^l(s),  are holomorphic functions near s =  sm
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