
Software and Hardware
Implementation of the RSA

Public Key Cipher

V o l u m e 1 (1)

Paul Brady

B.Sc(Eng), Hons. Dip. E.E.

Submitted to the National Institute for
Higher Education, Dublin for the degree of

Master of Engineering

This research was carried out under the
supervision of Dr. T. Curran in the School
of Electronic Engineering at the National
Institute for Higher Education, Dublin and
at the National Microelectronics Research

Centre, Cork.

This thesis is based on the candidates own
work

September 1988

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to

Dr. Tommy Curran for his expert advice, guidance and
for his infinite patience.

Dr. Sverre Lidholm for his invaluable assistance.

Ericssons and the N.B.S.T for financial support of this
project

The staff and postgraduate students at the N.M.R.C and
N.I.H.E Dublin.

I would also like to thank all the people who helped me
in this endeavour either directly or indirectly.

Contents

0. ABSTRACT i
1. INTRODUCTION 1

1.1 General 1

1.2 Cryptography 2

1.3 Security o f Cryptographic Systems 3

1.4 Cryptographic Systems 5

1.4.1 Public Key Systems 5
1.4.2 Conventional Systems 6

1.4. 2. 2 Transposition Ciphers 7
1.4.2.3 Product Cipher 8

1.4.2.3.1 The Data Encryption Standard
(DES) 8

1.5 Key Management 9

1.6 Implementing Ciphers 10

1.7 Objectives 11

2. PUBLIC KEY SYSTEMS 15
2.1 Introduction 15

2.2 Public Key Ciphers 17

2.2.1 The Knapsack Problem 18
2.2.2 The RSA Cipher 22

2.3 Comparison o f Public Key Ciphers 26

2.4 Microprocessor Implementation o f RSA Cipher 27

2.4.1 Modular Exponentiation 28
2.4.1.1 Results 30

3. MODULAR MULTIPLICATION METHODS 34
3.1 Introduction 34

3.2 Multiplication 35

3.3 Reduction Modulo N 36

3.3.1 Division by repeated shift and subtract 37
3.3.2 Division using KNUTHs algorithm 40
3.3.3 Division using reciprocals. 43

3.4 Blakelys Algorithm. 45

3.5 Encryption Time. 46

3.6 Observations 48

3.7 Possible solutions. 49

4. KEY GENERATION 62
4.1 Introduction 62

4.2 Security o f the RSA cipher 62

4.3 Choice o f Key size 63

4.4 Choice o f Primes. 64

4.5 Generation o f random numbers. 65

4.6 Primality Testing 6 6

4.7 Generating keys. 68

4.9 Effect o f Key Generation on encryption. 68

4.10 Microprocessor Implementation. 69

5. HARDWARE MULTIPLICATION 73
5.1 Introduction 73

5.2 Hardware Multipliers 74

5.2.1 Serial Multipliers 74
5.3.2 Serial/Parallel Multiplier 75

5.3.2.1 Horners Method 7 6
5.3.2.2 Right to Left Factorisation 76

5.3.3 Parallel Multiplier 77
5.3 Speed and space comparison o f multipliers. 78

5.4 Choice o f multiplier. 79

5.5 Modular Multipliers. 81

5.6 Implementation. 83

5.6.1 Discrete Hardware 83
5.6.2 Bit Slice Devices 84
5.6.3 Application Specific Integrated Circuits

(ASICS) 84
5.6.3.1 Gate Array 85
5.6.3.2 Standard Cell 85
5.6.3.3 Full Custom 86

5.7 Choice o f implementation method. 8 6

6. SEMI-CUSTOM IMPLEMENTATION 93
6 .1 Design Criteria 93

6.2 Design Process 93

6.2.1 Concept 93
6.2.2 Block Design 94
6.2.3 Logic Design 94
6.2.4 Circuit Design 95
6.2.5 Layout 96

6.2.6 Fabrication 97
6.3 System Overview 98

6.3 System design 99

6.3.1 Interface Unit 100
6.3.2 Storage Unit 101
6.3.3 Computation Unit. 103
6.3.4 Cascade and Master/Slave Unit. 104
6.3.5 Control Unit 10 6

6.4 D evice Performance 108

6.5 Encryption using the MMD 109

6.6 Further Enhancements 110

7. CONCLUSION 127

REFERENCES 131

Abstract

Title: Software and Hardware Implementation of the RSA
Public Key Cipher.

Author: Paul Brady
Cryptographic systems and their use in communications

are presented. The advantages obtained by the use of a
public key cipher and the importance of this in a
commercial environment are stressed. Two two main public
key ciphers are considered.

The RSA public key cipher is introduced and various
methods for implementing this cipher on a standard, non
dedicated, 8 bit microprocessor are investigated. The
performance of the different algorithms are evaluated and
compared. Various ways of increasing the performance are
considered. The limitations imposed by the performance on
the practical use of the cipher are discussed.

The importance of the key to the security of the
cipher is assessed. Different forms of attack are mentioned
and a procedure for generating keys, which minimise the
probability of a sucessful attack is presented. This
procedure is implemented on a minicomputer. Use of the
method on personal computers or microprocessors is
examined.

Methods for performing multiplication in hardware,
with particular emphasis on the use of these methods in
modular multiplication, are detailed. An algorithm for
performing part of the encryption function in hardware and
the hardware necessary for it is described. Different
methods for implementing the hardware are discussed and one
is choosen. A description of the hardware unit is given.

The design and development of an application specific
integrated circuit (ASIC) to perform key elements of the
encryption function is described. The various stages of the
design process are detailed. The results expected from this
device and its integration into the overall encryption
scheme are presented.

^INTRODUCTION

The use of cryptography to protect confidential
information has a long history. The Romans are certainly
known to have used simple ciphers and one exists today
which is attributed to Julius Caesar. Leonardo DaVinci is
said to have used mirror writing to protect his ideas.
Further details of the users of encryption throughout
history and the methods that they used can be found in
KAHN(1).

Until recently the main users of cryptography were the
military. Commercial institutions did not, in general,
consider it necessary to resort to encryption to protect
information. Any use of cryptography by commercial
institutions did not usually consider the security of the
code or cipher being used. The main objective was to deter
the casual eavesdropper, and not to secure against a
determined attack by experience cryptanalysts.

This attitude of commercial organisations towards
cryptography has undergone a sudden and dramatic change in
recent years. There are two major factors which have
influenced this change. The first is the advent of a
worldwide telecommunications network, and the second is the
increased use of electronic media to transfer and store
information. Electronic information transmitted over the
public telecommunications network must travel by cable,
radio or microwave links, all of which are vulnerable to
eavesdropping. Access to computers can now be obtained by
virtually anyone with a terminal and modem, thus
introducing the risk that confidential data may be exposed
even when it is not in transit. The increasing use of
electronic funds transfer has highlighted the problem not
only of security but of authentication. Security in this
case is insufficient, it is not enough to know that the
data has not been altered between sender and receiver, it
is necessary to verify that the data originated where it
claims. Equally important is that the sender of the data
cannot later disown it.

1.1 GENERAL

1

Traditional means of protecting data usually involve
physical protection of the data itself, for example in a
safe or with a trusted courier. The increased use of
electronic storage renders this approach less effective.
Information stored on magnetic disk or tapes can be
physically protected by restricting access to the devices,
however, when these devices are on line, or when
information is in transit to or from such devices, it is
vulnerable. Ways of protecting data both in storage and in
transit are many but the method that is most widespread is
the use of cryptography.

1.2 CRYPTOGRAPHY

The problem that cryptography seeks to address is that
of a sender A who wishes to send a plaintext message P to a
recipient B over an insecure channel. To do this A first
encrypts the plaintext, using a transformation E, to
produce ciphertext C. This ciphertext is now transmitted
over the insecure channel. The intended recipient B then
decrypts the ciphertext, using a transformation D, to
produce the plaintext P again. This process of encryption
and decryption is shown in Fig. (1.1) and can be described
by the equations :

C = E (P)
P = D(C)

The transformations E and D must therefore have the
property that D(E(P)) = P to allow B to decipher the
message. In most cipher systems the general transformations
are known but the specific transformations, which are
determined by the encryption and decryption keys are not.

The function of the eavesdropper, shown in Fig. (1.1)
is to recover the plaintext without knowing the decryption
key D. Eavesdroppers can be classified into two categories
passive and active. A passive eavesdropper can listen to
and record, but he cannot alter, the data passing through
the insecure channel. An active eavesdropper can
dynamically alter data passing through the channel. He can

2

therefore prevent data from reaching the intended recipient
or he can record messages and send them to B at some later
time. The active form of eavesdropping is particularly
dangerous in electronic funds transfer where messages
crediting an account could be recorded and replayed many
times while messages debiting an account could be prevented
from reaching their destination, this illustrates the need
for verification, not only of the sender, but of the
message itself. Message authentication can be achieved by
inserting some non-repeating information, such as the date
or a message number, into the message prior to encryption.

To recover the plaintext without knowing the
decryption key D the eavesdropper, or cryptanalyst, must
use the information available to him. The worst situation
for the cryptanalyst is if he has a large amount of
ciphertext, a general knowledge of the encryption method
used and some information regarding the message. This
knowledge may only extend as far as knowing the language in
which the message was written or the probability of
occurrence of certain words and phrases. This form of
attack is the weakest and is known as a ciphertext only
attack. If the cryptanalyst knows some plaintext and the
corresponding ciphertext, e.g press releases which are
intercepted in encrypted form which are released later, he
has more information with which to work. This form of
attack is described as a known plaintext attack. The most
favourable situation for the cryptanalyst is when he can
submit messages for encryption and obtain the corresponding
ciphertext. This is called a chosen plaintext attack. To be
considered secure an encryption system must withstand each
of these attacks.

1.3 SECURITY OF CRYPTOGRAPHIC SYSTEMS

The security of a cipher can best be described in
terms of the resources required by the cryptanalyst to
determine the decryption key. Cryptographic systems can be
either absolutely (or unconditionally) secure or they can
be computationally secure. Absolute security implies that,
regardless of the resources available to the cryptanalyst,

3

he has insufficient information to obtain the decryption
key and hence the plaintext. With computationally secure
systems, however, it is possible to obtain the decryption
key provided that sufficient resources are available. The
designer of a computationally secure system must ensure
that encryption and decryption are fast and inexpensive
but that cryptanalysis would require more computational
resources than would be possible to obtain. Computers are
becoming more powerful and less expensive all the time, so
it is necessary to include a very large margin in the
system to allow for future developments. Even with this
large margin computationally secure systems eventually
become insecure, thus information which must remain secure
for a long period of time e.g government archives should
not be encrypted using such a system. All practical
cryptographic systems are computationally secure.

With few exceptions it is not possible to prove that a
cryptographic system is secure. A system is considered
secure if it has withstood a concerted attack by
experienced cryptanalysts for an extended period of time.
This attack would be undertaken under the most favourable
conditions possible. This process of testing the security
of a system is known as certification. The only cipher that
can be proven to be absolutely secure is the one time pad.
In this cipher the plaintext is encrypted using a random
key which is the same length as the plaintext. This system
is absolutely secure as the key is random and never repeats
thus concealing totally the statistical properties of the
plaintext. This cipher is not in widespread use as the
management of keys makes it impractical. To exchange a
plaintext message the sender and receiver must first agree
on a key which is the same length as the plaintext. As this
key exchange requires a secure channel this channel could
be used to transfer the plaintext instead. The use of such
a system is therefore limited to high security diplomatic
links where total security is vital and cost is not a
factor.

4

1.4 CRYPTOGRAPHIC SYSTEMS

Cryptographic systems fall into two main categories,
conventional or single key systems, and public or two key
systems. In a conventional system the encipherment and the
decipherment key are the same, or one can be easily
obtained from the other. Two people who wish to exchange
information thus share a common key. Each pair of users
therefore requires a different key and the number of keys
required for large numbers of user-pairs quickly becomes
unmanageable, i.e for N user pairs the number of keys is
(N2 - N)/2. Before contact is made between two users it is
necessary that they both receive a key and this can be time
consuming for once off or infrequent communication.

1.4.1 Public Key Systems

In public key systems the encipherment key E and the
decipherment key D are different and D cannot easily be
obtained from E. It is therefore possible to make E public
while ensuring that D remains secret. The public keys of
many users could be published regularly as in a telephone
directory. Any person who wishes to send secure information
to a user A need only look up A's public key in the
directory and use it to encrypt the message. The only
person who can now read the message is A as only he knows
the secret decryption key. Contact between user- pairs can
now be established without the need for a secure key
exchange and, if there are N users the number of key pairs
required is also N. The reduced key management problem of
public key ciphers make them attractive for use in a
commercial environment where the number of contacts is
large and constantly changing.

The idea of public key ciphers was introduced by
DIFFIE and HELLMAN(2) in 1976. They did not however give a
practical example of such a system. This paper was soon
followed by two papers, one by MERKLE and HELLMAN(3) and
another by RIVEST, SHAMIR and ADLEMAN(4), both of which
described practical public key cryptosystems. These two
systems were based on a mathematical concept known as a

5

trapdoor function. A trapdoor function is a transformation
that is essentially one way unless some secret information,
the trapdoor, is known. Consider the use of such a
transformation in a cryptographic system. The trapdoor
function is the encryption key which converts the plaintext
into ciphertext. Now to anyone, without the secret
information, this transformation is irreversible. The
secret information is thus the decryption key. The method
proposed by Merkle and Heilman is based on the knapsack
problem while that proposed by Rivest, Shamir and Addleman,
and hence known as the RSA method, is based on the
difficulty of factoring large numbers. These two methods
are the basis of public key cryptography.

1.4.2 Conventional Systems

Unlike public key cryptography, which is of recent
origin conventional encryption systems have a much longer
history. This has led to the development of a large number
of cipher systems being developed. However, along with this
development there has been a parallel increase in methods
of cryptanalysis of such ciphers. The two main groups into
which most ciphers fall are, substitution and transposition
ciphers.

1.4.2.1 Substitution Ciphers

In a substitution cipher each character in the
plaintext is replaced by a character from an alternative
alphabet. The simplest substitution cipher is the Caesar
cipher, named after its reputed inventor Julius Caesar. In
this cipher, shown in Fig. (1.2), the alternative alphabet
is simply the regular alphabet shifted by three places e.g
A becomes D etc. The security of such a system is very low
as once the method of encryption is known it is a simple
matter to cryptanalyse the ciphertext. Variations of this
in which the alternative alphabet differs are similarly
prone to cryptanalysis. One method of solution is to simply
try all possible keys, of which there are only twenty six,
the second method is to attempt a statistical attack. A

6

statistical attack relies on the fact that certain letters
in English appear more often than others e.g E,A. With
sufficient ciphertext it is possible to create a table of
probabilities and match them with standard English. The use
of a large alphabet in a substitution cipher increases its
security as the number of possible keys increases.A
substitution cipher can also be easily broken by a known
plaintext attack.

To increase the security of a substitution cipher more
than one alternative alphabet can be used, under the
control of a key. This is known as a polyalphabetic cipher,
Fig. (1.4) and is much more difficult to solve, as the
probability distribution of letters is now much flatter and
does not resemble standard English. Given sufficient
ciphertext, however, it is possible to solve such a cipher
using a method developed by KASISKI (5) . This method is
based on determining the length of key by looking for
repetitions in the ciphertext. The longer the key,
therefore, the more difficult it is to solve. To increase
the apparent keylength multiple encryption can be used e.g
if the plaintext is encrypted twice, using keys whose
lengths are relatively prime to each other the apparent key
length is the product of the individual keylengths. As the
key length increases the amount of ciphertext required and
the time needed to solve the cipher increase, thus
affording an increasing level of security.

1.4.2.2 Transposition Ciphers

In a transposition cipher the plaintext is split into
fixed length blocks and the letters are rearranged under
the control of a key, as shown in Fig. (1.3). The size of
the block must be large to prevent the cryptanalyst from
trying all possible keys to obtain meaningful plaintext. A
transposition cipher can also be defeated by a statistical
attack. In this method the frequency of occurrence of
common letter pairs e.g TH, QU, IN is used to obtain
transformations which will reunite such pairs. A
transposition cipher is completely vulnerable to a known
plaintext attack.

7

1.4.2.3 Product Cipher

Transposition and substitution ciphers do not possess
adequate security for practical use. They can however be
used together to produce a much stronger cipher known as a
product cipher. A product cipher is of the form ST where S
is a simple substitution cipher on a large alphabet and T
is the transposition of bits within a fixed length block.
Repeated encipherment using a different substitution key
each time produces a strong cipher. One such cipher is the
DES, or Data Encryption Standard (6).

1.4.2.3.1 The Data Encryption Standard (DES)

The National Bureau of Standards in the U.S.A issued a
requirement for an encryption scheme which could be used as
an encryption standard by the Federal authorities. The
result was a product cipher developed by IBM and it is this
which is now the Data Encryption Standard. This cipher uses
a combination of transposition and substitution to achieve
a very high level of security. This cipher, uses a 56 bit
key to perform 16 rounds of encryption on a 64 bit block.
Each round of encryption is a combination of substitution
and transposition. The DES cipher is considered
computationally secure as the only known way of solving it
is to search all possible keys. With 256 , or approximately
1017 possible keys such a search is computationally
infeasible at present. However with the speed and power of
computers increasing all the time the life of the DES will
be short lived, by 1990 it is believed that the DES will be
insecure.

The selection of a standard by the U.S government and
the subsequent availability of inexpensive and secure
encryption methods has helped the use of encryption to
become more widespread. The DES algorithm is available in
the form of a single integrated circuit which can be easily
added to new or existing products U«)The setting up of a
standard also ensures widespread acceptance of the method

8

by commercial organisations and thus enables a large number
of users to communicate with each other.

1.5 KEY MANAGEMENT

The DES is a secure and easily implementable cipher
but it is prone to the same problem of key management that
is common to all conventional cryptosystems. The problem of
key management is two fold. The first is caused by the need
for each user to store secretly all the keys it uses. This
is a major problem for large commercial organisations with
many contacts as the number of keys that must be securely
stored is large. The second problem is one of contact
initiation. A user A wishing to communicate securely with a
user B has first to establish a secret key. This requires a
secure channel, e.g a courier. The setting up of this key
introduces a large time delay before the two users can
communicate. Also if the requirement was only for a single
secure transaction this could be accomplished using the
secure key channel and the cipher need not be used.

Public key ciphers, which will be discussed in more
detail in chapter 2 do not suffer from this key
distribution problem. The public key of all users can be
published or held in a public database. This removes the
need for each user to maintain a large collection of secret
keys, the only key that must be stored is the users secret
decryption key. A user who now wishes to establish a secure
communication channel with another user need only look up
that users public key. This abolishes the need for an
expensive and time consuming secure key channel.

Despite this lack of a key distribution problem public
key ciphers have not yet gained widespread acceptance.
There are several reasons for this. Public key ciphers, in
general involve a more complex process than conventional
ciphers and they are therefore slower. This reduces the
transmission rate that can be obtained over a channel and
rules them out for applications in which high speed
communication is essential. Due to the complexity of the
public key encryption process no single chip solution is
commercially available at present. This makes the inclusion

9

of a such a cipher into a new or existing product much more
difficult than with DES.

Another problem with public key ciphers is that due to
their relative youth there are still doubts regarding their
security. Conventional ciphers such as DES have undergone
extensive attacks by cryptanalysts for an extended period
of time. This is the only sure way of testing the security
of a system. Public key ciphers being relatively new have
not undergone such a period of extensive testing.
Conventional ciphers, such as DES are based on well
understood principles so the prospect of finding a hidden
flaw in such a system is quite small. One public key
cipher, the RSA method, has received extensive attention
since it was proposed in 1978 and has resisted attempts to
render it insecure. This system is now being proposed as a
federal standard (7) • it is accepted semiconductor
manufacturers may produce single chip implementations of
the cipher. This would enable it to be introduced into
products as easily as DES. The problem of key management
would thus be greatly reduced.

1.6 IMPLEMENTING CIPHERS

Methods of implementing ciphers vary according to the
application. Where speed is not a problem encryption and
decryption algorithms can be written in a high level
programming language. This could be used, for example,
before and after long term storage of computer files. This
would remove the need for secure storage of computer
backups etc. For higher speed applications a
microprocessor, programmed in a low level language, can be
used. For higher speeds hardware assisted microprocessors
or dedicated hardware can be used. Cipher systems
implemented in software can be rendered insecure if the
programme itself is violated. The ideal encryption device
is therefore a single chip VLSI device on which the secret
key is stored, perhaps on EPROM, so that is is never
available outside the chip.

I
10

1.7 OBJECTIVES

The objectives of this thesis are two fold. The first
is an investigation into methods of implementing the RSA
public key cipher on a standard microprocessor. The results
of this investigation will determine whether such a system
is practically viable. The second part is an investigation
into the possible uses of hardware to improve the speed and
security of the cipher.
Various methods of hardware encryption are considered and
a solution is chosen. The means of implementing this
system are described and ways of testing it are discussed.

Chapter 2 will discuss public key ciphers. Methods for
producing public key ciphers are described with particular
attention being paid to the RSA method. Different
encryption schemes are compared and the advantages and
disadvantages of each method is discussed. Ways of
determining the security of each and the possible means of
attacking the systems are examined. The importance of the
key to the security is described and the different levels
of security obtainable with different key lengths is
tabulated for the RSA method. Implementation of the RSA
method, in general, and of modular exponentiation, in
particular is considered.

Chapter 3 investigates ways of performing modular
multiplication, which is a vital part of the RSA scheme,
using a standard eight bit microprocessor. Several schemes
are described and flowcharts for each are given. A detailed
timing analysis of each method is performed and graphs of
the relative performance of each are produced. From this
timing analysis the time to encrypt blocks of data of
different lengths is calculated and graphed. The practical
uses of such a system are discussed and ways of improving
the performance of the system are considered.

Chapter 4 considers the problem of key generation in
detail. The importance of the proper choice of key, and the
implications of key choice for security are discussed. A
practical key generation scheme, for use on a personal
computer or a mainframe, is detailed with the aid of
flowcharts. The expected execution time of the programme,

11

and the effect of this on the overall encryption scheme are
considered. Ways of implementing the key generation
algorithm in a low level language, for use on a
microprocessor are discussed.

Chapter 5 details methods for performing multiplication
in hardware with particular emphasis on the use of these
methods in modular multiplication. These methods are
compared and the advantages and disadvantages of each
noted. The tradeoffs inherent in each choice are
considered. A method is chosen for implementation and the
reasons for the choice are given. Various ways of
implementing this choice are discussed and one is chosen.

Chapter 6 describes the design and development of the
hardware unit. The various stages of the design process are
described and the results expected are mentioned. A
description of the hardware unit is given and the test
performed to estimate its performance are given. Testing of
the completed unit is examined. The effect of the hardware
unit on the encryption process, in terms of the time taken
to encrypt various block sizes is discussed.

Chapter 7 is a summary of the result achieved by this
research. The implications of these results are considered
and possible commercial applications are suggested. Further
improvements and refinements are considered and the effect
of continuing advances is speculated upon.

12

Eovesdropper

S e c u re Key C h o n n d

Fig. 1.1 Cryptography in com m unication

P lo in le x t :
Hello T here

b e c o m e s c ip h e rte x t :

KHOORCWKHUH

Fig. 1.2 Caesar cipher

PLAINTEXT

Block

0 1 2 3 4 5 6 7 8 9 10 ii 12

t h e nr e S S a g e i

Key = (2 4 8 12 1 7 5 11 6 10 0 3 9)

Fig. (1 .3) Tronsposition Cipher

PLAINTEXT

A B C
1

; i) i J K L M N 0 3 3 * Î ‘ I \ V
■>

Y Z
!

A lp h a b e t 1

F G H i . K L M N 0 P Q R S T u V X i : ; k f ! (: C E

A lp h a b e t 2

0 P 3 R 5 r i i \ ' V1 > > 2 A B C D E F G ft J K L M N

A lp h a b e t 3

R 3 r i J ' t \i >; 'i 2 A B C D E F G H 1 k K L M N 0 P Q

Key P laintext : MESSAGE
(FOR) Ciphertext : RSJXOXJ

Fig. (1 .4) Polyalphabetic Substitution Cipher

14

2. PUBLIC KEY SYSTEMS

The concept of a public key system was first
introduced by DIFFIE and HELLMAN (2) in 1976. They
considered the problem of key distribution, which is a
major disadvantage of conventional cryptosystems and
limits their widespread use in commercial environments.
Their approach was to find cryptosystems which would
remove the need for a secure channel to exchange keys.
This would eliminate the time consuming and expensive
process of establishing a secure channel between two
parties. Two alternatives were suggested, public key
distribution and public key ciphers.

Public key distribution allows two users A and B to
establish a key, which can then be used in a conventional
encryption algorithm, by communicating over an insecure
channel. This insecure channel can be the channel over
which the conventional cryptosystem will be used. An
eavesdropper listening in on the key establishment
procedure must not be able to obtain sufficient
information to make it computationally feasible to find
the key. DIFFIE and HELLMAN give an example of a public
key distribution system which will be repeated here to
clarify the procedure.

A user, i, who wishes to be included in the public
key distribution scheme must first generate a random
number, r± from a finite field GF (N) i.e a positive
integer less than N. This number is kept secret but the
user publishes the key, which is obtained from r± by
the following relationship:

r lKt = a mod N

where a is a fixed primitive element of GF(N).
Two users, i and j, who wish to initiate secure
communication arrive at a common key, Ki;j using the

2.1 INTRODUCTION

15

rir jKi;j = a mod N

rj ri= (a mod N) mod N

ri(K.) mod N

where rL is known only to user i and Kj is obtained from
the public directory. User j arrives at the same key by
calculating,

rir jK± j = a mod N

rj(K.) mod N

whereas in this case rj is known only to user j and is
obtained from the public key. Users i and j have thus
arrived at a common key without the need for a secure key
channel.

The security of this method relies on the difficulty
of calculating logarithms in a finite field GF(N). For a
cryptanalyst to determine Ki;j it is necessary that he know
ri or rj. These are not available directly as each user
has kept their r number secret. The eavesdropper must
therefore obtain ^ (or rj from the corresponding Ki. Now

r.
Ki = a 1 mod N

therefore
ri = loga(Ki) mod N

The system will be insecure if logarithms are
computationally easy to calculate. The fastest algorithm,
which is applicable for any value of N, is attributed to
KNUTH(8) and has a run time which is 0(N°-5). Thus for
large N (>1050) this is computationally infeasible. Faster
algorithms are available; POHLIG and HELLMAN(10),
ADDLEMAN(11) but these are generally dependent on some

information available in the public directory. For user

16

property of the generator a or the modulus N. The choice
of a and N should be so as to defeat or slow down these
algorithms.

2.2 PUBLIC KEY CIPHERS

A public key cipher, fig. 2.1, differs from
conventional ciphers in that the encryption and
decryption keys are different and it is not
computationally feasible to calculate the decryption key
if the encryption key is known. In a system of this kind
the encryption key can be made public. A user, A, who
wishes to communicate privately with another user B,
obtains B's encryption key from the public directory and
uses it to encrypt the message. B can reply by obtaining
A's encryption key from the public directory. As each
user keeps his decryption key secret only he can decrypt
the message, however anyone with access to the public
directory can send secure information to another party
without the need for a prior agreement on keys.

In a public key system the encryption algorithm, E,
and the decryption algorithm, D, must have the following
properties:

. D(E(P)) = P

. E, D form a distinct pair.

. It is computationally infeasible to calculate D
from E

. It is easy to encrypt and decrypt data if E an D
are known.

The first property ensures that each encryption key has an
inverse, thus allowing the user to decrypt the ciphertext.
The second property ensures that each encryption key has
a unique decryption key. The third property makes it
possible to publish E without compromising the security
of the system, while the fourth minimises the work
necessary for encryption and decryption.

Diffie and Heilman in their original paper did not
propose a practical scheme for implementing a public key

17

cipher. However soon after MERKLE and HELLMAN(3), and
RIVEST, SHAMIR and ADLEMAN(4) proposed practical public
key ciphers. The cipher proposed by Merkle and Heilman is
based on the knapsack problem while that proposed by
Rivest, Shamir and Adleman, and hence known as the RSA
method is based on modular exponentiation and the
difficulty of factoring large numbers.

2.2.1 The Knapsack Problem

The knapsack problem, see Fig. (2.2), is an old
arithmetic problem and can be described as follows. Given
a positive integer C and a vector of elements A = {a^
a2, an} the knapsack problem is to find a subset of A
that sums to C i.e.

n

i=l

where M = {n^.......mn} is a binary vector. The knapsack
problem appears in many commercial applications. For
example a freight company wishing to maximise the value
of cargo carried by boat, truck or air, and given a
finite storage space and a collection of cargo, is faced
with solving the knapsack problem.

The difficulty of solving a given knapsack varies
depending on the elements of A. If the elements of A are
superincreasing i.e if each element a± is greater by one
unit than the sum of all previous ai,s, the solution is
not difficult and such a knapsack is called an easy
knapsack. The simplest example of an easy knapsack is one
based on the binary sequence A = {1,2,4,8,..... } and in
this instance the solution is trivial. The binary vector M
is simply the binary representation of C. Not all
knapsacks are easy to solve, the generalised knapsack
problem is known to belong to the class of problems known
as NP-complete which can not be solved in polynomial time
on a deterministic machine. The best known algorithm for
solving the knapsack problem is attributed to

1 8

SCHROEPPEL (12) and takes 0(2n/2) in time and 0(2n/4) in
memory. This information does not help greatly in
determining how the knapsack problem can be used in
developing a public key cipher as it tells us that at
best a solution to the knapsack problem is trivial while
at worst it is computationally infeasible, for large n.

To make use of the knapsack problem as a public key
cipher Merkle and Heilman constructed a trapdoor by
taking an easy knapsack and transforming it into a hard
knapsack. Anyone not possessing the secret trapdoor
information would find it computationally infeasible to
solve the knapsack, however, with the trapdoor
information the problem can be converted to an easy
knapsack and quickly solved.

To construct a trapdoor knapsack it is first
necessary to form an easy knapsack by choosing a set of
elements A = {a.,_...an} such that A is superincreasing i.e

i-1
ai > S

j ' l
Then choose two large numbers, a modulus, r and, a

multiplier, s that are relatively prime i.e gcd(r,s) = 1.
Use these numbers to calculate the hard knapsack B =
{b1 bn} where bi is :

bt = s . ai mod r

The elements of b are not superincreasing and thus B is a
hard knapsack. This hard knapsack B = {bj_....bn}
constitutes the users public key. All other information,
particularly s,r,A should remain secret.The decryption
key d, which is the multiplicative inverse modulo r of s
i.e ds 1 (mod r), can be calculated and should also
be kept secret.

A user X who wishes to send a secure message M =
{m1...mk}, where m± is a binary digit, to user Y first
breaks the message into n bit blocks. These blocks are
then encrypted using Y's public key producing the

19

ciphertext C where

C
i=l

n

= M.B = y I t l j b i

XI

where B = {bx.....bn) is the public encryption key of Y.
The ciphertext can now be transmitted to Y over an
insecure channel. On receipt of the ciphertext, C, user Y
retrieves the plaintext by applying his secret decryption
key d :

n n
dC = d 'y mibi = ^ dmjbj

i=l i=l

db. = dsai = a± (mod r)

ds = 1 (mod r)

n
dC = m^i (mod r)

i=l
and the problem is to recover m.. . This is now an easy
knapsack problem as the set A = {a-L...... an} is
superincreasing.

The following simple example illustrates the method :

However,

as.

Thus

A = { 1,3,5,10 }
r = 23
s = 9

The easy knapsack A = { 1,3,5,10 } is transformed into the
hard knapsack B .

B = A.s mod r
= (9 mod 23,3*9 mod 23,5*9 mod 23,10*9 mod 23)
= (9, 4, 22, 21)

this is the users encryption key which can be published
in a directory or a public database. The decryption key
can be calculated by solving

20

ds — 1 (mod r)
d*9 = 1 (mod 23)

using Euclids algorithm, resulting in d = 18. This key
should not be disclosed. To encrypt a message M = 7 =
(0111)2 to form ciphertext C use

C = B.M = 9 + 4 + 22 = 3 5 = (100011)2

The ciphertext can be decrypted by using the secret key d
to form the simple knapsack E.

E = dC = 18*35 (mod 23) = 9

This simple knapsack (E,A) can be solved to give M. Such a
knapsack can be solved in linear time.

The security of the knapsack cipher system relies on
the difficulty of solving hard knapsacks. As mentioned
previously the fastest known algorithm can solve an nth
order knapsack in time 0(2n/2) . For this to be
computationally infeasible it is recommended that n be
greater than 100. If n is 100 then the time taken to
solve the hard knapsack, assuming that a single operation
takes one microsecond, is approximately 109 seconds or 32
years. However a large number of processors working in
parallel would reduce this time considerably and this
would have to be considered when choosing n.

The choice of A, r and s is also important to the
security of the cipher. These should be chosen from a
sufficiently large set so that a direct search is not
computationally feasible. For n = 100 Merkle and Heilman
recommend that the numbers be chosen from the following
ranges :

2201 +1 £ r C 2202 _i
2 d ^ r - 2
1 s< % s< 2100

2 100 +1 4 a2 4 2*2ioo

21

3*2100 +1 C a3 ^ 4*2ioo
• * •
* • *•

(2 i _ 1 -l)2ioo + i ^ a± < 2i-i.2ioo

This ensures that each parameter is can have one of 2100
possible values thus defeating a direct search. Note that
as each element of the public key B is less than r they
will require 202 bits each for their representation. Thus
the public key of each user will require approximately
20k bits of storage. An n bit message M when encrypted
will require 202 + log2(100) or 209 bits to represent it.
The message is therefore expanded by a factor of 2.09. If
the ciphertext is to be transmitted over a bandlimited
channel this will result in a halving of transmission rate
when compared with unencrypted transmission.

2.2.2 The RSA Cipher

The RSA public key cipher is based on modular
exponentiation and the difficulty of factoring large
numbers. To encrypt a plaintext message, M, it is first
divided into blocks and then raised to the eth power
modulo N, where e and N are the encryption keys of the
user i.e

C = Me Mod N

The size of the plaintext block should be such that M is
always less than N. To recover the plaintext from the
ciphertext, the ciphertext C is raised to the dth power
modulo N where d is the users decryption key i.e

M = Cd Mod N

Note that as all arithmetic is performed modulo N there is
no data expansion from plaintext to ciphertext.

To make use of this method in a public key cipher the
key parameters e,d,N have to be carefully chosen. Rivest,
Shamir and Adleman recommend the following procedure for
their selection.

22

First choose two large prime numbers p and q. There are
restrictions necessary when choosing such primes to ensure
that the cipher is resistant to cryptanalysis. These
restrictions and the procedures for choosing large primes
will be described in a later chapter. These primes must
be chosen from a large enough set that a direct search is
computationally infeasible. The modulus N is the product
of these two primes:

N = pq

The encryption key, e, can now be chosen to be a large
random number that is relatively prime to (N) where 0(N)
is the Euler totient function of N :

gcd(e, j#(N)) = 1

where gcd is the greatest common divisor. The Euler
totient function of an integer, N, is the number of
integers less than N and relatively prime to N. For a
prime number the Euler totient function is one less than
the prime number itself so

0 (N) = JBT (pq) = (p-1) (q-1)

This is the users encryption key and it can be published,
along with N , in a public directory or database. The
decryption key, d, can be calculated as the multiplicative
inverse of e modulo ^(N) . Such a number exists and is
unique as e is relatively prime to ^(N) . the decryption
key is therefore given by:

ed s 1 (Mod ̂ (N))

This equation can be solved using Euclids algorithm to
find d. This is the decryption key of the user and it
should not be made public. Note that due to the nature of
the cipher e and d are interchangeable and either one can
be made public retaining the other to use as a decryption
key.

23

To test the validity of the RSA cipher it is
necessary to prove that decryption of an encrypted
message will yield the original plaintext i.e

D (E (M)) = M

where D denotes the decryption function and E the
encryption function. For the RSA cipher

E (M) = C = Me Mod N
D (E (M)) = D(C) = Cd Mod N = (Me Mod N) d Mod N

= Med Mod N

ed = 1 (Mod jgf(U))
ed = ki^NJ+l , for some integer k.

kJ3T(N)
D(E(M)) = M.M Mod N

Now for any integer, a, relatively prime to 0(N) Eulers
generalisation of Fermats theorem states that :

jS'(N)
a = 1 (Mod N) , for any integer a.

therefore
D (E (M)) = M (Mod N)

and as M is less than N :

D (E (M)) = M

Thus it is seen that the functions described in the RSA
method do perform encryption and decryption.

As an example of the use of the RSA cipher consider
the following example, note that the numbers involved
here are too small for a practical cipher but the method
is the same.
Choose p and q , the random primes to be:

p = 53, q = 61

and

but
=>

thus

24

Hence the modulus N is 53 * 61 = 3233 and j#(N) the Euler
totient function of N, is 52 * 61 = 3172. To choose e we
select a number in the required range and check to see if
it is relatively prime to ,0(N) . If it is not another
number must be used, let d = 279, which is relatively
prime to 3172, this can be proven using Euclids
algorithm. To find the encryption key e we need to solve
the equation :

d * 279 = 1 (Mod 3172)

this can again be solved using Euclids algorithm. This
results in a value for e of 71. To encrypt the message
RENAISSANCE we first assign numbers to each letter say A
= 00 Z = 25 and then divide the message into 4 digit
blocks. This gives

M = (1704 1300 0818 1800 1302 0426)

To encrypt this message each block is raised to the power
of 71 modulo 3172 giving the ciphertext C

C = (3106 0100 0931 2691 1984 2927)

To recover the plaintext message M the same procedure is
carried out with d = 279 as the exponent.

The security of the RSA cipher relies on the
difficulty of finding d when e and N are known. As d is
the multiplicative inverse of e modulo ^(N) it is
necessary to determine ^(N) . j2f(N) is formed by
subtracting one from each of the prime divisors of N and
forming their product i.e

JT(N) = (p-1) (q-1) = l + N - p - q

If p and q are known 0(N) can be calculated and the
decryption key d can also be found. The problem therefore
reduces to finding the prime factors p, q of N. Factoring
a number into its prime factors is easy when N is small
but becomes increasingly more difficult as N increases.

25

Various factoring algorithms have been suggested and
KNUTH(8) describes some of these in detail. The fastest
known algorithm for factorisation attributed to
SCHROEPPEL and detailed in KNUTH(Q , pp. 380-384) has a
runtime of the order of nr where r is :

(Ln (N) * Ln (Ln (N))) 1/2

Even with this algorithm the time required to factor N,
for large N, is excessive. A table of the time required
to factor N for various sizes of N and assuming that one
operation takes one microsecond is given in Fig. (2.3).
From this table it can be seen that for N greater than
10100 calculating the prime factors is computationally
infeasible. To protect against future increases in the
speed and power of computers Rivest, Shamir and Adleman
recommend choosing N to be 0(10^00) 200 digits. This
would require approximately 3.8*10^ years to factor. This
should provide a secure cipher for a long time regardless
of progress in computer technology. Other methods of
attack are possible (Rivest,Shamir,Adleman(4)) but these
are all believed to be equivalent to factoring N and thus
would require the same computational resources.

2.3 COMPARISON OF PUBLIC KEY CIPHERS

The knapsack method and the RSA method are the main
contenders in the field of public key cryptography. The
knapsack cipher has the advantage that encryption and
decryption are fast as only modular multiplication and
addition are required. The RSA method is more complex
requiring modular exponentiation and this is time
consuming. The public key size required for a knapsack
cipher is approximately 20k bits whereas for the RSA the
key memory required is about 1.2k bits. The RSA cipher
does not expand the data from plaintext to ciphertext as
the plaintext and ciphertext space are the same. This
allows the RSA to be used to authenticate messages by
forming digital signatures. The knapsack cipher does
expand the data and thus it can be used for secrecy or

26

authentication but not both. The ability of the user of an
RSA system to choose the level of security is also an
advantage. There has been doubts cast on the security of
the knapsack cipher,('^which undermines confidence in the
method. The RSA method has, so far, remained secure,
providing the keys are chosen properly. This confidence
in the RSA method and the advantages that a public key
cipher provide when compared to a conventional cipher has
led to it being proposed as a national standard in the
U.S. A (ZIMMERMANN (7)) . The main difficulty with the RSA
cipher is the complexity of the encryption and decryption
process. Using dedicated hardware the DES cipher, a
conventional cipher, has a throughput in the megabits/sec
range. To be successful in a commercial environment the
RSA method must attain a speed comparable to or at least
the same order as the DES. The objective of this report
is to investigate ways of implementing the RSA cipher.

2.4 MICROPROCESSOR IMPLEMENTATION OF RSA CIPHER

The first objective is to investigate the
implementation of the RSA cipher on a microprocessor.
This would be an inexpensive and flexible method of
implementation that would have many commercial
applications. If it is possible to produce a programme
that will enable a reasonable throughput rate it could be
included in many devices already utilising microprocessors
providing a high level of security for a small cost.

The choice of an 8 bit microprocessor for use in
implementing the RSA cipher is based mainly on power, cost
and the availability of a development system. The
microprocessor in common use in the N.I.H.E is the MC6809
from Motorola. This is considered one of the most powerful
8 bit microprocessors due to its flexible addressing
methods and its use of a hardware multiplier. Development
systems for this microprocessor were readily available in
the college, consisting of VAX based assemblers and
simulators, and real time emulators. The suitability of
this processor and the time delay incurred in the
purchase of development systems should an alternative be

27

used, motivated the use of the MC6809 in the
implementation of the RSA cipher. As all 8 bit
microprocessors are basically similar the results obtained
using this microprocessor should be immediately
applicable to other microprocessors.

2.4.1 Modular Exponentiation

The basis of the RSA cipher is modular
exponentiation. As the encryption and decryption
algorithms are similar we need only consider one or the
other. The objective therefore is to find ways of
calculating C where

C = Me Mod N

where N,e,M are of the order of 200 decimal digits or 600
bits. This calculation must be performed on an 8 bit
microprocessor.

To calculate Me, M could simply be multiplied by
itself e times. This requires e multiplications. However
not all of the partial products are necessary. Consider
the case when e is a power of two say e = 16. This would
require 16 multiplications if the simple method above is
used. The number of multiplications can be dramatically
reduced by squaring each partial product i.e forming M,
M2, M 4, M ® , M 1^. This has reduced the number of
multiplications to 4 and in general only Log2 (e)
multiplications are required if e is a power of 2. This
method can be expanded to include any arbitrary e by
using the following algorithm, known as exponentiating by
repeated squaring and multiplying. This method is an
extension of the binary method described by KNUTH(8,
pp.441-443) to numbers of arbitrary radix. This method is
described below:

28

First Multiplication :
Let the result C be equal to M. This carries out the

first multiplication so reduce e by one. A temporary
variable T is needed to hold the partial product and this
should be initialised to M also.

: If e is odd : Let C = C * T and reduce e by one.
: If e is even : Let T = T2 and divide e by two.
: Repeat until e is zero.

To demonstrate the method consider the example M ^ .

First C = M, T = M, e = 36
Then e is even : T = T2 = M2, e = 18

e is even : T = T2 = M 4, e = 9
e is odd : C = C*T = M.M4, e = 8
e is even : T = T2 = M 8, e = 4
e is even : iji _ rp 2 — j j j l 6 e = 2

e is even : T = t 2 = M32, e = 1
e is odd : C = C*T = M5 .M32 /e = 0

The number of multiplications necessary to calculate M^7
is thus 7 which is a large reduction on the 37 required
by the direct method.

To calculate the number of multiplications required
for arbitrary e consider the binary representation of e,
(eg.-.e^). To test if e is odd or even it is only
necessary to determine whether eg, the least significant
bit, is one or zero. A •zero would imply that e is even, a
one that it is odd. In the squaring and multiplying
method described above if e is even we calculate T2 and
divide e by 2 whereas if e is odd we calculate C*T and
decrease e by one. Reducing an odd number by one results
in an even number. Therefore an odd number is equivalent
to an even number followed by an extra multiplication
(C*T) in the above method. The number of times that e can
be divided by two is 1092 • The total number of
multiplications required is log2(e)+D where D is the
number of extra multiplications required because e is
odd. Dividing by two, in binary, is equivalent to

29

shifting right by one bit/ thus the number of times that e
can be odd is equal to the number of ones in the binary
representation of e or the Hamming weight of e. Therefore
the total number of multiplications is given by :

NM = log2 (e) + w(e)

where w(e) is the Hamming weight of e. The worst case
condition is when e contains all ones in which case w(e)
= log2(e) and the number of multiplications required is :

NMmax = 2*log2 (e)

A flowchart describing this exponentiation method is shown
in F i g (2.4).

2.4.1.1 Results

A programme was written in MC680 9 assembly language
to implement the algorithm described in Fig. (2.4). While
it may be possible to compress the programme further the
times given below represent an approximate run time which
would not be significantly altered by variations in
programming techniques. The MC6809 is an 8 bit
microprocessor therefore all calculations are performed
on 8 bit bytes. The worst case time to encrypt a message
M using a key (e,N) in which e and N can be represented
by Nb bytes is C2.0) :

Te = 53 + 2583 (Nb) + 2432 (NB) 2 + 32 (NB) TMod [NB] cycles

where TMo d [NB] is the number of cycles required to
calculate the product of two NB byte numbers modulo a
third Nb byte number.
A cycle is one microsecond on the standard 1MHz
microprocessor. Various methods for performing modular
multiplication and the resulting overall encryption will
now be discussed.

30

E av esd ro p p e r

Pu b lic K e y
D ire c to ry

Fig. 2.1 Public Key Cipher

T
0|

1

u3

°4

0-

Knapsack

Find the set of ai ,s that will sum to S
i.e. fill the knapsack

Fig. 2 .2 The Knapsack problem

31

F
a

c
to

ri
n

g

T
im

e

(
L

o
g

(
S

e
c

)
)

3 5 1

Key Length (Decimal Digits)

Fig (23) Factoring time for various key lengths

C = Me (Mod n)

Variables :

e: Exponent T: Tem porary variable
n: Modulus C: Result
M: Operand

Fig. 2 .4 Modular Exponentiation

33

3. Modular Multiplication Methods

Modular exponentiation requires that modular
multiplications be performed. In the RSA public key cipher
it is necessary to calculate the product AB (mod N) where
A, B, N are positive integers of the order of 100 decimal
digits or 330 bits. Calculations on numbers of this size
cannot be performed directly on a standard microprocessor
whose word size is much smaller than this, typically 8 or
16 bits. It is thus necessary to consider such
calculations as multiple precision calculations. It is
convenient to use the word size of the computer as the
radix for all calculations thus a 336 bit number becomes a
42 digit number on an 8 bit microprocessor such as the
MC6809. It is considered that the multiplication of two
single digit numbers to form a double precision result is
a primitive operation of the microprocessor.

To form the product C = AB (Mod N) two approaches are
possible. The first forms the product C = AB and then
reduces this modulo N to complete the calculation. This
entails the use of memory to store the double length
result prior to its reduction. The second method achieves
the reduction modulo N simultaneously with the formation
of the product AB. This removes the need to store a double
length result as the product is a single length number,
however such methods are generally slower than the former
methods.

The reduction of an m digit number C modulo N where N
is an NB digit number is the remainder when C is divided
by N and is therefore less than N. Multiple precision
division and subtraction are thus needed for reduction.
The process of performing modular multiplication is one of
multiple precision multiplication of two single length
numbers to provide a double length result followed by
multiple precision division and subtraction to reduce this
number modulo N.

3.1 INTRODUCTION

34

3.2 MULTIPLICATION

The conventional 'pen and paper' method for forming
multiple precision products is known as the sum of
products method. In this method the first operand is
multiplied by each digit of the second operand forming a
number of partial products. These partial products are
then shifted and added to obtain the result. As an example
consider multiplying 814639 by 462115 :

Multiplicand: 814639
Multiplier: x 462115

Result: 376456301485

When implementing this method on a computer it is more
efficient in both time and memory to add the partial
products as they are produced instead of storing each
result and adding when all partial products are obtained.

In the general case for numbers of arbitrary radix
consider the product of A = (ag,...a^-i)r and B =
(bg/• • .bs_]_) r where the a^'s and b-^'s are digits in radix
r. The radix r is usually chosen as the word length of the
computer being used e.g r = 256 for an 8 bit
microprocessor such as the MC680 9. The product of A and B
is therefore :

4073195
814639

814639

t-1 s-1

i=0 j=0

This can be written as :

t-1 s-1

i=0 j=0

where Pj_ is the partial product. It can be seen from this
that s*t single precision multiplications are required
along with multiple precision additions.

This algorithm was implemented in assembly language on
the MC6809 microprocessor and a flowchart describing the
programme is shown in Fig.(3.1a). The digits of the
multiple digit numbers A and B were stored in successive
memory locations. A pointer to the operands and the number
of digits contained in each was also kept. This
facilitates the addressing and manipulation of the
operands. The time taken to calculate the product is given
below.

Tmult = 62 + 11 (s+t) + s(45 + 49t) cycles
= 62 + 56s + lit + 49st cycles

In the RSA public key cipher s and t will tend to be the
same as all multiplication is done modulo N, thus the
maximum value for either operand is N. If NB is the number
of digits in N then and if s = t = NB then the
multiplication time is :

TmultfNB] = 62 + 67 (Nb) + 49(NB)2 cycles

The time taken to multiply numbers of differing precision
is shown in Fig. (3.1b) . In this case a clock cycle is
taken as being equal to 1 microsecond as in the standard
MC6809. The area of particular interest, to the RSA
cipher, in this figure is the multiplication of numbers in
the 40 to 80 byte range as this provides a significant
level of security. It can be seen that a multiplication of
this size takes from 80 to 320 milliseconds.

3.3 REDUCTION MODULO N

To represent a number C in modular form it is
necessary to find an integer R such that :

C = R (mod N)

Therefore C = Q.N + R where Q is some integer. This is
equivalent to dividing C by N to obtain a quotient Q and a
remainder. Reduction modulo N is thus very similar to

36

division except that in this case it is the remainder and
not the quotient that is of interest. It is therefore
necessary to consider ways to implement multiple precision
division. Three methods are considered :

1. Division by repeated shift and subtract.
2. Division using KNUTHs algorithm.
3. The calculation of reciprocals and its use in

division.

3.3.1 Division by repeated shift and subtract

The shift and subtract method of division is similar
to the familiar 'pen and paper' division in common use. In
this the quotient is obtained one digit at a time and the
divisor is subtracted from the divisor at decreasing
levels of significance until the calculation is complete.
Two types of division using this method can be defined,
restoring or non-restoring division. In restoring
division, if a trial subtraction is unsuccessful i.e the
partial remainder is less than zero the partial remainder
is restored to its previous value, the divisor is shifted
right and another trial subtraction is made. In
non-restoring division, however, if a trial subtraction is
unsuccessful the partial remainder is not restored instead
the next trial becomes an addition. This has the advantage
that it is not necessary to retain an unmodified version
of the partial remainder or to perform an additional
addition to restore the remainder. Non-restoring division
can easily be implemented when twos complement numbers are
being used, however, when dealing with unsigned integers
the restoring method is preferred. This can be described
as shown below:

Let the dividend C be (cm _^cm_2 .. . eg)2 and let the
divisor N be (dn_^dn_2 . . • dg)2 where and d^ are binary
digits then the algorithm is :

1 . From the divisor N form an m bit number by adding
m-n trailing zeros.

37

N (dn-l^n-2••^O^m-n^m-n-1• • • ^ 2

2. Subtract the divisor N from the dividend C to form
the partial remainder.

If the partial remainder is negative the quotient
bit is zero otherwise it is one. As the quotient
is not required in this application it is not
necessary to store it.

3. If the partial remainder is negative then restore
it by adding N.

4. The divisor is now shifted one bit to the right
and steps (2) to (4) are repeated.

5. The algorithm ends when the divisor has been
shifted m-n times.

As an example of this method consider dividing (11001001)2
by (111)2 .

Ill I 11001001

C = C - N

C = C + N

111
1111 : remainder is negative => Q5=0
1100
111
101

: restore partial remainder
: remainder is positive => Q4=l

1011
111
100 : remainder is positive => Q3=l
1000
111

1 : remainder is positive => Q2=l
10

111
1011 : remainder is negative => Q1=0

38

101 : restore partial remainder
111

1110 : remainder is negative => Q0=0
101 : restore partial remainder

Therefore (11001001)2/(111)2 = (11100)2 plus a remainder
of (101)2 or :

(11001001)2 = (101)2 (Mod (111)2)

This algorithm was implemented in assembly language on an
MC6809 microprocessor. A flow chart of this algorithm is
given in Fig.(3.2a). The run time of the algorithm was :

Td1 = 638 +486(NC-NB) +208(NC-NB)2
+ 8 (Nc -Nb +1)[105 +123(NC-NB)]

= 1478 + 2310(Nq -Nb) + 1192(Nc -Nb)2

where N q is the number of bytes in the dividend C and NB
is the number of bytes in the divisor or modulus N. The
dividend will in the case of the RSA cipher contain a
maximum of twice as many digits as the divisor (it is the
product of two Nb digit numbers) thus Nc = 2NB therefore,

Td1 = 1478 + 2310(Nb) + 1192(NB)2

A table and graph showing the variation of the division
time Td1 for differing values of NB is shown in
Fig.(3.2b). As in the case of multiplication we are
particularly interested in the range from 40 digits to 80
digits and it can be seen that reduction of an integer of
this size takes from 2 to 8 seconds. It is again noted
that one clock cycle is of 1 microsecond duration.

39

3.3.2 Division using KNUTHs algorithm

The disadvantage of the previous method is that it
does not utilise the power of the microprocessor
efficiently. The algorithm deals with bits at a time
whereas the microprocessor can more readily deal with
bytes. An algorithm which can be used with computers of
arbitrary radix is KNUTHs(8) algorithm. The purpose of
this algorithm is to approximate the 'pen and paper'
method of division. Consider the case of an Nq digit
dividend C = (cNc_]_. . . . c q) r divided by an NB digit divisor
N = (dNB_^...dg)r • The first step is to divide the divisor
into the most significant (NB+1) digits of the dividend to
obtain a quotient digit q and a partial remainder P.

q

(dNB—1•*d0)r I (cNc-l'•-cNc-NB-l)qD
P

P is always less than N so the next step uses
P*r + cNc_NB_2 / where r is the radix, as the dividend. The
result of this is to shift P left by one digit and to add
the next most significant digit of the dividend to it.
This is similar to the shift in the previous shift and
subtract method.

The difficulty arises in finding the quotient digit q.
This can not be obtained directly as it involves a
multiple precision division. An approximation to q, call
it qa, can be obtained from the leading digits of the
divisor and the dividend. Thus

qa = int cNc-lb + cNc-2
dNB-l

where int denotes the integer part of. If qa is larger
than r it can be replaced by (r-1) , the largest single
digit number. The accuracy of this approximation to q will
determine how useful the method is. KNUTH(x pp. 255-260)
shows that if the dividend is first normalised so that its
most significant digit is greater than half the radix then

40

qa will always be greater than q but never more than two
greater i.e

q qa ^ q+2 (if cNc_i > int (r/2))

The trial quotient can thus be obtained by dividing a
double digit number by a single digit number to obtain a
single digit approximation qa . Many microprocessors
include such an instruction in their instruction set but
unfortunately the MC6809 does not. This is not a great
disadvantage as such a division can be carried out rapidly
using the shift and subtract method described previously.
When qa is calculated it is multiplied by the divisor N
and subtracted from the dividend.
The complete algorithm is thus :

1. Normalise: Ensure that the most significant digit of
the divisor is greater than half the radix. Multiply
the dividend by the same factor. This can be
accomplished by:

Note that although the normalisation will not affect
the quotient it will affect the remainder and as it
is the remainder which is important in this
application the result will have to be denormalised.

2. Initialise : set a pointer i=Nc-l, the most
significant digit of the dividend.

3. Calculate trial quotient qa . This is obtained from
the most significant digits of the dividend and the
divisor.

*N,

qa = int
Cib + Cj__]_

dNB-l

4. Test qa . Determine if qa is too large. The following
test is a quick method of determining if qa is too
large. It will determine all cases when qa is two

greater than q and most of the cases when qa is one
greater than q.

if qadNB-2 > (cib+ci_1) - qad^jB-! r + C i _3

then
<3a = ^a-1

5. Calculate partial remainder. Multiply qa by N and
subtract from most significant digits of C.

P i = (c i * • *c i-NB) " 3aN

The partial remainder can be stored in the most
significant digits of C i.e.

(c i • • • c^-Ng) — Pi

6. Restore. If qa is one greater than q and is not
detected by step (4) Pj_ will be negative. Reduce qa
by one and restore the partial remainder by adding N
to it.

Pi = Pi+N

7. Decrement pointer i. Repeat steps (3) to (7) until
i = n b

8. Denormalise the remainder to obtain the required
result. The remainder is stored in the Ng least
significant digits of C.

A flow chart describing this algorithm is shown in
Fig.(3.3a). The algorithm was implemented on the MC6809
microprocessor and the run time was as follows:

Td2 = 827 + 561Ng + (Nc-Ng+1) ^701 + 103(Nc-Ng)J

Again as in the previous case if Nq = 2Ng the total worst
case run time is:

Td2 = 1528 + 1365(Ng) + 103(Ng)2 cycles
42

A table and graph showing the division time for varying
block lengths is shown in Fig. (3.3b). The time taken to
divide numbers in the 40 to 80 digit range is from 200ms
to 800ms.

3.3.3 Division using reciprocals.

If the reciprocal of a number can be found then a quotient
can be formed by taking the reciprocal of the divisor and
multiplying the result by the dividend.

Dividend
quotient = ---------

Divisor

This method is especially useful when the divisor is
common to many multiplications. In this case the divisor
can be precalculated thus saving time. In the RSA method
the divisor which is the modulus N will remain constant
throughout the exponentiation process which will require
many modular multiplications and thus divisions by N. Two
methods of obtaining an approximation to the reciprocal of
a number were considered. These are :

1. Divide 2^ by the number N, whose reciprocal is
required, to get a K place approximation to 1/N. The
division in this case can be carried out by any means
available such as the shift and subtract method
described previously or KNUTHs algorithm. The binary
point is assumed to be to the left of the most
significant bit.

2 . Newtons Method.

This requires some initial approximation X q to the
reciprocal 1/N and then to use the iterative algorithm:

X j + 1 = 2 X j - D X j 2

Dividend 1
* _______________

Divisor

43

This algorithm converges rapidly, at a quadratic rate,
to 1/N if the initial approximation to 1/N was 'good'.
If X q is not sufficiently close to 1/N the method may
converge only slowly, if at all.

The speed of the algorithm chosen to calculate the
reciprocal is not a limiting factor as it will only be
calculated once per exponentiation. The first method was
chosen using the shift and subtract division algorithm as
it avoids the problem of convergence and it had already
been coded.

The implementation of the shift and subtract
reciprocal algorithm on the MC6809 is essentially the same
as that of the division programme with the exception that
in this case it is the quotient and not the remainder that
is of interest and this must be stored. The flowchart for
this algorithm is thus the same as for the division
programme and can be seen in Fig. (3.2a) . The time required
to calculate the reciprocal is:

Tr = 1447 + 174(Nc) + 424(Nc)2 cycles.

where Nc is the number of bytes in the dividend. Having
calculated the reciprocal it is necessary to find the
quotient and the remainder. The product C*N-1 needs to be
calculated. As C is typically 2NB bytes long and N -1 is NB
bytes long this would involve a long multiplication
yielding a result of 3 (NB) bytes in length. This level of
accuracy is not required, only integer accuracy is
necessary, thus the multiplication can be considered as
the multiplication of two (NB) byte numbers. This product
should then be multiplied by the divisor N and subtracted
from C to obtain the remainder. Two multiple precision
multiplications are performed.

This algorithm, a flow chart of which is shown in
Fig.(3.4a), was implemented on the MC6809 microprocessor.
The run time of the algorithm is :

Tj}3 = 240 + 101 (Nb) + 2 (T^uit [Nb]) cycles.

44

where NB is the number of bytes in the divisor, N, and
TMultfNB^ the time taken to multiply two NB byte
numbers to form a 2 (NB) byte product using the algorithm
described previously. A table showing the run time for
various lengths of operands is shown in Fig.(3.4b).

3.4 BLAKELYS ALGORITHM.

The methods discussed so far have performed the
modular multiplication in two steps. The first step
multiplied the two operands together forming a double
length product. This product was then reduced by dividing
it by the modulus and keeping the remainder. It is
possible to perform the modular multiplication directly
and an algorithm to do this was described by BLAKELY(9).

Blakelys algorithm is similar to the conventional
bitwise integer multiplication algorithm. In this method
the following steps are carried out:

1. Initialise the result to zero.

2. Test the most significant bit of the first operand.
If it is one add the second operand to the result.

3. Shift the result one bit to the left.

4. Repeat for successively less significant bits of the
first operand. Stop when all the bits have been
tested.

The modular multiplication algorithm developed by Blakely
modifies this basic algorithm to provide modular
multiplication. To do this it is necessary to test the
result after every addition or left shift. If the result
is greater than the required modulus subtract the modulus
from the result and continue. The reduction is thus
performed along with the multiplication. The algorithm is
therefore:

45

1. Initialise the result to zero.

2. Test the most significant bit of the first operand.
If it is one add the second operand to the result.

3. If the result is greater than the modulus N subtract
N from the result.

4. Shift the result to the left by one bit.

5. If the result is greater than N, subtract N from the
result.

6. Repeat steps 2 to 6 for successively less significant
bits of the first operand. Stop when all the bits
have been tested.

A flowchart of this algorithm appears in Fig. (3.5a). A
programme utilising this algorithm was written for the
MC6809 and the run time is given as follows:

TB = 66 + 197(NB) + 768(NB)2 cycles.

where NB is the number of bytes in the modulus. A table
showing the run time of this programme for various values
of Nb is given in Fig. (3.5b) .

3.5 ENCRYPTION TIME.

Various methods for performing modular multiplication
have been described. It is now necessary to determine
overall encryption times using each of these methods. The
encryption algorithm is of the form :

C = Me Mod N

C is the required ciphertext, M is the plaintext, e is the
encryption key and N is the modulus. The length of C,M,e,N
will be Nb bytes where NB is of the order of 40 bytes or

46

more. The exponentiation algorithm has a run time of

Te = 53 + 2583(Nb) + 2432(NB)2 + 3 2 (NB)TM o d [NB] cycles

where TM o d [NB] is the time required to form the product of
two Nb byte numbers modulo a third NB byte number. Four
methods of calculating such a product have been discussed:

A. Methods which form the product and then reduce.

These all multiply using the same algorithm but
reduce modulo N in different ways.

1. Reduction using division by repeated shifting and
subtracting.

2. Reduction using division by KNUTHs algorithm.

3. Reduction using reciprocals.

B. Methods which reduce as the product is being
calculated.

4. BLAKELYS Algorithm

For the first three methods the time required for a
modular multiplication is the combination of the time
required for a conventional multiplication plus the time
for the reduction plus any overheads that are necessary.
For the methods described above the total time for a
modular multiplication is:

1. Shift and subtract
Overheads : 96
TmulttNB] : 62 + 67 (%) + 49(Nb)2
Td1 : 2462 + 1326(NB) + 1192(NB)2

Tmodl = 2620 + 1393(Nb) + 1241(NB)2

47

2. Reciprocal
Overheads : 96
T m u l t W : 62 + 67 (Nb) + 49 (Nb) 2
Td2 : 1528 + 1365(NB) + 103(NB)2

Tmod2 = 1686 + 1432(Nb) + 152(NB)2

3. KNUTHs algorithm
Overheads : 96
Tmult[^B] : 62 + 6 7 (NB) + 49(NB)2
Td3 : 240 + 101(NB) + 2*Tmult[NB]

Tmod3 = 522 + 302(Nb) + 147(NB)2

4. BLAKELYS algorithm.

Tmod4 <=TB> = 66 + 197(Nb) + 7 68(NB)2

Using these results in the equation for exponentiation
will give the overall encryption time for each of the
methods outlined. The results of this are shown in
Fig. (3.6) .

3.6 OBSERVATIONS

With reference to the table in Fig.(3.6) it can be
seen that the fastest way of encrypting is to use the
reciprocal method when performing modular multiplications.
This is followed closely by Knuths algorithm and then by
the shift and subtract and Blakelys algorithm. In their
original paper Rivest, Shamir and Adleman recommend using
key lengths of 200 decimal digits or approximately 80
bytes. From the table it can be seen that the time taken
to encrypt a message of this length is 40 minutes. This
implies a bit rate of 1/4 bps. If keys of lengths of 100
decimal digits or 40 bytes are used the encryption time
reduces to 321 seconds or a bit rate of about 1 bps. This
may be of use in a limited number of applications but as a
general purpose encryption device it is of no value.

48

3.7 POSSIBLE SOLUTIONS.

There are three possible solutions to the speed
problem of the microprocessor based encryption unit which
will be considered.

(1) Reduce the key length even further.

This may be possible in certain instances but as
discussed earlier the security of the RSA method relies
heavily on long key lengths. For medium to high security
applications the key cannot be reduced below 100 decimal
digits without compromising the security of the system.

(2) Find a more efficient algorithm.

More efficient algorithms have been suggested most of
which have been based on the Chinese Remainder Theorem.
These methods e.g (13), will decrease the encryption time
by a factor of four at best. These algorithm could be
implemented on a fast 16 or 32 microprocessor thus
increasing the speed further. However the size of the
necessary reduction in encryption time, a bit rate of 1000
bps at least is required, suggests that a software
solution on its own is not possible.

(3) Implementing the system in hardware.

Several options are available under this heading. The
addition of hardware multipliers and/or accumulators to
the existing microprocessor is one alternative. The
implementation of the complete system in hardware is
another alternative. This approach offers the best
possibility of considerably reducing the encryption time
of the system. The parallelism inherent in the enciphering
algorithm can best be taken advantage of in hardware. The
use of semicustom or full custom integrated circuits could
also reduce the physical size of the system. This approach
will be dealt with in more detail later.

49

A = (a ,.! ... o0)

B = (b,_, ... b0)

C = (c it i- i ... Co)

P = (Pm , PI)

Variables :

A : Multiplier
B : Multiplicand
C : Result
P : Partial result
t : No. of bytes in A
s : No. of bytes in B
P m : MS byte of P
PI : LS byte of P
i,j : Pointers

(3 .1 a) Multiple precision binary m ultiplication

50

Operand Length (Bytes)

Fig (3.1b) Multiple percision binary multiplication
- runtime

51

(Stort 3

Variables :

C : Dividend = (c m_ ,... c o) 2
N : Divisor = (d B_ i... d ^ 2
m : No. of bits in dividend C
n : No. of bits in divisor N
i : pointer

C = C Mod N

Fig. (3 .2 a) Shift and su b tract algorithm

52

Key Length (Bytes)

1: Division usin^ shift and subtract

2: Modular multiplication
(multiplication + division)

Fig. (3.2b) Shift and subtract algorithm
- runtime

f

Q ° r t)

N orm alise
C. N

Initialise
i - Nc - 1

. _ (
■Q

' \ ? /
1 N

C alcu late

9 a
<?„ - r - 1

T est

^ 0

T0

ct1aCT

/ too Y

R esu lt -

(CNB-1 c o>

C End)

 _ N _
C o lcu lo te

p a rtia l
remainder

k
0 ? /

Y

Add b a ck
C - C+N

1OCT

‘’ a " '

Variables :

C : Dividend = (c Nc_ , .. c0)
N : Divisor = (d ^ . . d0)
Nc : No. of bytes in C

Ng : No. of bytes in N
q : Trial quotient

i : Pointer

r : Radix (= 2 5 6)

C = C Mod N

Fig. (3 .3 a) Knuths division algorithm

54

T
im

e

S
e

c

Key Length (Bytes)

1: Reduction (Division
2: Modular Multiplication

Fig. f.3. 3b) Runtime of Jfnut,hs~a.lgor,ithm

55

(stort)

C = C Mod N = C - int [-£ •] .N

Voriobles :

N : Divisor = (d ^ . , ..d0) NB : No. of bytes in divisor
C : Dividend = (c Nc_, ..c 0) Nq : No. of bytes in dividend
N 1 : Reciprocal of divisor T : Tem porary variable

Fig. (3 .4 a) Division by reciprocals

56

Key Length (Bytes)

1: Calculation of reciprocal
2: Multiplication + Division
3: Division

Fig. (3.4b) Division by reciprocals

A = (o,_, ...Qo)
B = (b ,_ , ...bo)

C = (c ,*,.) ...c0)

A : Operand 1
B : Operand 2
C : Result
t : No. of bits in A
s : No. of bits in B
i : Pointer

C = AB Mod N

F ig .(3 .5a) Blakelys algorithm

58

T
i

m
e

Key Length (Bytes)

Fig. (3.5b) Runtime of Blakelys algorithm

59

Key Length (Bytes)

1: Shift' and subtract
2: Reciprocal
3: Knuths algorithm
4: Blakelys algorithm

I f j -
Fig. (3.6bi) °Eneryptiort times

Key Length Method Method Method Method
(Bytes) 1 2 3 4

8 24 3 6 17
10 45 6 10 31
12 76 10 16 52
14 119 16 24 80
16 176 23 33 118
18 248 32 45 165
20 338 43 59 223
22 448 57 76 293
24 578 73 96 378
26 732 92 120 476
28 911 114 146 591
30 1117 139 176 723
32 1352 168 211 873
34 1618 200 249 1042
36 1917 236 292 1232
38 2250 277 339 1443
40 2620 322 391 1678
42 3029 371 448 1937
44 3478 426 510 2221
46 3969 485 578 2531
48 4504 550 652 2869
50 5086 620 731 3236
52 5715 696 817 3633
54 6395 778 910 4061
56 7126 867 1009 4522
58 7911 961 1115 5016
60 8752 1062 1228 5545
62 9651 1171 1348 6109
64 10608 1286 1476 6711
66 11628 1408 1612 7351
68 12710 1538 1756 8031
70 13858 1676 1909 8751
72 15072 1822 2070 9513
74 16356 1976 2239 10318
76 17711 2139 2418 11167
78 19138 2310 2606 12061
80 20640 2490 2804 13003

Method 1 : Shift and subtract
Method 2 : Reciprocal
Method 3 : Knuths algorithm
Method 4 : Blakelys algorithm

Fig. (3.6b) Encryption Times

6 1

4. Key Generation

4.1 INTRODUCTION

Like many cipher systems the security of the RSA
public key cipher is not absolute. The security of the
system relies on the necessity for large computational
resources to break the cipher. This is called computational
security. To evaluate the level of security provided by the
system it is necessary to estimate the computational
resources required to defeat it. If these resources are
excessive then the system can be considered secure. As will
be seen later the RSA cipher allows the user to define the
level of security required for a particular application .

4.2 SECURITY OF THE RSA CIPHER

The security of the RSA cipher is entirely dependent
on the decryption key. An eavesdropper who obtains this
key will be able to decrypt any messages sent to the keys
owner. It is also possible for the eavesdropper to pose as
the owner in any transactions with a third party. In the
RSA cipher the encryption key (e,N) is made public and the
decryption key (d,N) is kept secret. The eavesdropper thus
has access to all the key parameters except d. The
decryption key d is related to the encryption key e by the
following relationship:

ed = 1 (mod ¡6 (N))

where 0 (N) is the Euler totient function of the encryption
modulus N. To calculate d it is thus necessary to know
0 (N) . Other methods of obtaining d e.g by a direct search
of the keyspace, can be prevented by choosing d uniformly
from a large enough set. The Euler totient function of N is
the number of integers less than N and relatively prime to
N. In this case as discussed previously N is the product of
two prime numbers p and q and thus ^T(N) is equal to
(p-1)(q-1) i.e

62

N = pq => 0 (N) = (p-1)(q—1) for p,q prime.

The cryptanalyst must therefore find the prime factors p,q
of N to obtain £f(N). Other methods of calculating the Euler
totient function without knowing p and q may be possible
but RIVEST, SHAMIR and ADLEMAN show that any such method is
equivalent in complexity to factoring N. An attack on the
cipher can thus be reduced to the problem of finding the
prime factors of N. Note that while it is believed that
this is the case this hypothesis has not been proven and a
method may be found which has a complexity less than that
of factoring. The RSA cipher has however withstood attempts
to find such a method since its proposal and thus the
possibility of finding such a method is remote.

4.3 CHOICE OF KEY SIZE

A large number of algorithms exist for finding the prime
factors of a number, n, . A detailed discussion of many
of these algorithms is given in KNUTH(8). The fastest known
algorithm, is attributed to SCHROEPPEL (12.) and has a run
time of order :

(In(In(n))/In(n))1/2
n

If n = 10K , where K is an integer, then the run time is of
the order of :

(K(In(2.3K))/2.3)1/2
10

where n is the number to be factored. The size of n can
thus determine the computational resources necessary to
defeat the cipher. In their original paper Rivest, Shamir
and Adleman recommend choosing N to be of the order of 200
decimal digits. The time required to factor numbers of this
size is 3.8 x 10^ years, at 1 microsecond per instruction.
This provides a large safety margin for increases in the
speed and efficiency of the algorithms.

The choice of the key size also affects the time required
for encryption and decryption. Keys of 200 decimal digits

63

may not be required in many cases and smaller keys would
allow faster encryption times. For example if the key
length was reduced to 100 digits, the factoring time is
reduced to 74 years and the encryption time is reduced from
46 minutes to 6 minutes (see Fig.3.11). The level of
security provided by the cipher and hence the transmission
speed can be chosen to suit the application.

4.4 CHOICE OF PRIMES.

Although finding the prime factors of a number is very
time consuming in the worst case, a bad selection of p and
q may undermine the security of the cipher by allowing
algorithms to exploit properties of the primes. Certain
choices of primes will allow the cipher to be broken by
repeated enciphering (NORRIS and SIMMONS), i.e :

E (E (E (....... E (M))____) = M

where the number of encryptions required is relatively
small (0(10^)). This form of attack can be countered by
choosing p and q to be safe primes, i.e

p = 2px + 1
q = 2q1 + 1

where p,pi,q,qi are odd primes. Other forms of attack are
also feasible if p and q are not carefully chosen (BLAKELY
and BLAKELY).
To protect against these and other forms of attack KNUTH

recommends that the following conditions should be met by
the primes :

1. p and q should not be the same length but should
differ by a few digits.

2. The numbers (p-1) and (q-1) should both have large
prime factors.

3. The greatest common divisor of (p-1) and (q-1) should
be small.

64

In addition to these three guidelines it is also
recommended that p+1 and q+1 should not consist of small
prime factors. KNUTH suggests the following procedure for
choosing primes :

1. Generate a random number r^, with 80 or 81 digits.
2. Search for the first prime number p^ greater than r-j_.
3. Choose another random number r2 with approximately 40

digits.
4. Search for the first prime number, p, greater than r2

which •.

kpi + 1

where k>p2, k is even and k = p^ (Mod 3). This prime,
which will have around 120 digits, can be used in
the key. A similar process can be used to find q.

Before implementing the above algorithm it is necessary to
discuss ways of generating large random numbers and
procedures for testing numbers for primality.

4.5 GENERATION OF RANDOM NUMBERS.

To generate truly random numbers it would be necessary
to monitor a random event, such as the tossing of a coin or
the throwing of a dice, for a fixed period of time. This
approach is not practical, nor is it really necessary, for
most applications. The requirement in most case is to
produce a sequence of numbers which appear random. These
sequences, called psuedo-random sequences, must fulfill two
criteria. The first is that the sequence should not repeat
itself for a long time and the second is that the terms of
the sequence should be uniformally distributed over a given
interval.

The algorithm used for the generation of a sequence of
random numbers is known as the linear congruential method.
In this method the next random number R^+i is determined
from the present number R-j_ using the relationship :

65

Ri+1 = (aR^ + b) Mod m

where the numbers a, b and m, known as the multiplier,
increment and modulus respectively are carefully chosen.
The initial seed number R q has also to be chosen. The
maximum sequence length obtainable is the modulus, m, but
this will only be obtained if the following criteria
(KNUTH) are adhered to :

1. The increment, b, should be relatively prime to the
modulus, m, i.e gcd(b,m) = 1.

2. The number (a-1) should be a multiple of every prime
factor of m i.e if

m = P !XP2yP3Z
where Pi/P2/P3 are prime x,y,z are integers then

a = kpip2p 3
where k is an integer. In the simplest case where
m = p^p2p 3 then a = km.

3. If the modulus, m, is a multiple of 4 then the
increment b must also be a multiple of 4 i.e if
m = 0 (Mod 4) then b =. 0 (Mod 4) .

Once the initial choice of parameters have been chosen the
linear congruential generator is readily implemented in a
high level language. A random number generator of this form
was implemented in FORTRAN on the VAX. A flowchart showing
the programme used to generate the parameters a,b,m is
shown in Fig. (4.1) .

4.6 PRIMALITY TESTING

To determine if a number is prime it is necessary to show
that it has no factors except itself and one. This is
equivalent to the factoring problem on which the security
of the RSA cipher lies and is thus impractical. However
there are methods for determining, with high probability,
if a number is prime or not. These algorithms will, in some
instances indicate that a number is prime when it is
composite. The probability of this occuring can be reduced

66

by sucessive iterations . A detailed discussion of
primality testing is given in KNUTH(8).

The basis of many of the 'probabilistic' primality tests
resides in Fermats theorem which states that :

aP“l (Mod p) = 1

where p is prime and a is any integer that is not a
multiple of p. If the number, p, is composite then the
above relationship may still hold for various values of a.
To determine, with high probability, that p is prime it is
necessary to ensure that the above equation hold for many
different values of a.

Calculation of the above test requires modular
exponentiation and its complexity is thus of the same order
as encryption and decryption using the RSA cipher. To
increase the speed of the test, by reducing the size of the
exponent, SOLOVAY and STRASSEN (15) proposed the following
modification. To test a number p for primality, an integer,
a,is chosen randomly from the range 1 < a < p-1. If p
is prime then it will satisy the following conditions :

1. a and p are relatively prime i.e gcd(a,p) = 1
2. J(a/p) Mod p = a (P“l)/2 Mod p

wher J(a/p) is the Jacobi symbol(5). The propability of a
composite number passing the above tests is 1/2, the test
must therefore be repeated a number of times to reduce the
probability that p is composite to acceptable limits. If p
passes the test H times then the probability that p is
composite is 1/2H . Repeating the test 100 times (H=100), as
recommended by RIVEST, SHAMIR and ADLEMAN, would reduce the
probability that p is composite to negligible levels
(1/2100).

This algorithm for testing prime numbers was implemented
in FORTRAN on a VAX, according to the flowchart shown in
Fig. (4.2)

67

4.7 GENERATING KEYS.

Suitable procedures for generating random numbers and for
testing numbers for primality have been discussed. A key
generation scheme based on these procedures, and using
KNUTHs recomendations will now be given. It is first
necessary to decide on the key length. This will affect the
security of the cipher and the time required for
encryption. A value in the range 100 to 200 decimal digits
is recommended (4) . The following steps should then be
taken.

1. Chose two prime numbers p and q using the procedure
described in section 4.4.
2. The modulus N is the product of p and q i.e N = pq.
3. Choose an encryption (or decryption) key e that is
relatively prime to ^(N) i.e gcd (e,;gf(N)) = 1. This can be
done by generating a random number using the method of
section 4.5 and testing that it is relatively prime to 0 (N)
using Euclids(8) algorithm. If it is not relatively prime
to P'(N) another random number can be generated. This is the
users public key and it can be inserted in the public
directory.
4. Calculate the decryption key, d, as the multiplicative
inverse of e modulo ^f(N) i.e

ed = 1 (Mod ^(N))

This equation can be solved for d using Euclids algorithm.
This number is the secret key of the user and steps should
be taken to ensure that it remains secret.

A flowchart for the above key generation scheme is shown
in Fig. 4.3. This flowchart was implemented in FORTRAN on a
V a x .

4.9 EFFECT OF KEY GENERATION ON ENCRYPTION.

The runtime of the key generation algorithm described
above was of the order of 10 to 20 minutes for keys in the

68

100 digit range on a VAX 11/7 80. The time required on a
personal computer would be larger. The effect of this time
on the overall encryption/decryption process is not
significant as the key is only calculated once per user.
However in some applications short keys (<100 digits) are
used with frequent changing of keys. In this case the time
required to calculate the keys becomes significant and will
affect the overall efficiency of the unit. To overcome this
problem a number of keys could be generated by a powerful
computer, such as a VAX, and downloaded to the encryption
device (a personal computer or dedicated device) on a
regular basis. This would remove the need for the
encryption device to calculate the keys but would increase
the problem of key management.

4.10 MICROPROCESSOR IMPLEMENTATION.

Implementaion of the key generation scheme on a
microprocessor is feasible but suffers from the same
limitations as the use of a personal computer i.e that of
speed. Frequent changing of the keys unless carried out
during some idle period (e.g at night) would be too time
consuming. The use of a dedicated microprocessor to
generate the keys and to perform encryption and decryption
offers security advantages in that the secret key need
never leave the microprocessor and would thus be unknown to
everyone, including the user.

69

(Stört)

M odulus

M - P 1 * P 2

RAND

EUCLID

C o lculote o
- k P 1P 2+ 1

R et
a . t

urn
), M

Q n T)

a : Multiplier k : Integer chosen so that
b : Increm ent kP1P2+1 (Mod 4) = M (Mod 4)
M : Modulus if M (Mod 4) = 0
x : A rbitrary integer > 2

R = (aR + b) Mod M[+i ' i '

Fig. (4 .1) Random Number generator -P a ra m e te rs

70

PRIMETEST

p : Number which is to be tested for prlm olity
i : No. of iterations (probability of p being com posite)
a : Random number in the range [0 , p -1]
t1, t2 Tem porary variables
J (a /p) Jacobi symbol (see text)

Fig. (4 .2) Prim ality Testing

71

FINDKEY SAFEPRIME

p,q : Sofe primes generated using Knuths procedure
N : Encryption modulus.
e : Users public encryption key
d : Users secret decryption key
0 (N) : Euler totient function of N, 0 (N) = (p —1) (q —1)

Fig. (4 .3) Key Generation Scheme

72

5. Hardware Multiplication

The implementation of the RSA public key cipher using
a standard unassisted 8 bit microprocessor and several
software algorithms has been discussed in chapters 2 and
3. It has been shown that the encryption time i.e the time
required to perform modular exponentiation using these
algorithms is too slow by several orders of magnitude for
a practical general purpose encryption device. To achieve
the necessary increase in speed it is necessary to
consider ways of implement at ing part or all of the
encryption algorithm in hardware. Several ways of doing
this were considered :

1. Addition of arithmetic co-processor to the
microprocessor.

2. Use of dedicated hardware multipliers to assist
microprocessor.

Arithmetic co-processors are available for most
standard microprocessors. These co-processors perform
arithmetic functions and pass the results to the main
processor. These processors are usually optimised for
floating point operations. The use of a coprocessor in
modular exponentiation causes the same problems as the use
of the unassisted microprocessor namely that of word
length. The word length recommended for the RSA public key
cipher is of the order of 400 bits. Commercially available
arithmetic coprocessors can not deal directly with word
lengths of this size and they cannot be cascaded. The cost
of these coprocessors rules them out for many
applications.

A dedicated hardware multiplier is a device which
performs only multiplication, unlike the arithmetic co
processor which can perform many other arithmetic
functions. These multipliers deal mainly with signed or
unsigned binary integers. The use of these devices in many
aspects of digital signal processing has produced a wide

5.1 INTRODUCTION

73

variety of such devices.

5.2 HARDWARE MULTIPLIERS

Hardware multipliers perform multiplication using the
'shift and add' algorithm that was discussed previously.
Consider two operands :

A = (an_!,an_2,..... al,a0>2
B = <bm-l'bm-2,.....b l,b 0>2.

where a^ and b^ are binary digits. The product A * B is
given by :

C = A*B = (an_lf......alraQ)2 * (bm -l'...... b l'b 0>2.
n-1 m-1
<E aiZ1 > < E bj2j >
i=0 j=0
n-1 m-1
E E 2 ± + j
i=0 j=0

thus C is the shifted sum of the partial products aj_bj # The
bitwise multiplication of binary digits is equivalent to
logical AND. Multipliers can be divided into three
categories which describe the way in which they implement
the above expression :

1. Serial Multipliers.
2. Serial/Parallel Multipliers.
3. Parallel Multipliers.

5.2.1 Serial Multipliers

In a serial multiplier the operands are input to the device
serially i.e one bit at a time. A diagram for a typical
serial adder is shown in Fig. (5.1). It consists of a
logical AND gate, a full adder with carry feedback and a
temporary n bit storage register, R = (rn-1 rg) . The
AND gate forms the bitwise product of aj_bj ̂ This is added
to least significant bit of the temporary storage
register, rl, and shifted to form the new partial product.

74

Thus

and
rk = rk+l 0 C K s< n-1

where is the input carry bit. The result is obtained by
clocking out the least significant bit of register R every
mth ci0ck cycle.

n-1 m-1
C = Y. 2i <ai Z b j2j >

i=0 j=0

Now the contents of register R at time i are:
m-1

Ri = aj_ ̂ bj2^
j=0

therefore
n-1

c - Y. 2i Ri
i=0

This is most easily seen in an example. Consider A =
(10110) and B = (1011)2- The steps required to multiply
these integers and the contents of the partial result
register at each step is shown in Fig.(5.2). As can be seen
the time required to multiply an n bit number by an m bit
number is m*n clock cycles. The maximum clock speed is
determined by the carry propagation delay Tc .

5.3.2 Serial/Parallel Multiplier

In a serial/parallel multiplier one of the operands is
presented to the device in serial form, the other is
presented in parallel form. There are two possible ways of
implementing such a multiplier :

1. Horners method.
2. Right to left factorisation method.

75

5.3.2.1 Homers Method

In Horners method the product C = A*B, can be written as:

This can be expanded in the form :

C = ((. . (an_ iB) 2 + an_2B) 2 +) 2 + a]_B) 2 + agB

The partial product P-̂ can be defined by the recurrence :

It can be seen from the above expression that the result C
is equal to Pg. A diagram of a circuit to implement this
recurrence is shown in Fig. (5.3). In this circuit an m bit
full adder is required. Also as there are n additions,
there is a possibility of obtaining n carry bits. To
accomadate this it is necessary to include an n bit half
adder. Alternatively a m+n bit full adder could be used.

5.3.2.2 Right to Left Factorisation

The right to left factorisation method removes the
need for a double length i.e (m+n) bit adder. Consider the
product C = A*B which gives :

n-1
C = £ 2iaiB

i=0
Expand this as in Horners method and divide both sides by
2n_1

C / 2 n _ 1 = a n _ ! + 2 _ 1 (a n ^ B + 2 _ 1 (. . . + 2 - 1 (x xB + 2 _ 1 (a 0 B) . .)

Again as in Horners method if we define a partial product
Pj_ by the recurrence :

P - l = 0,

n-1

i=0

i=n, n-1 3, 2 , 1

76

pi+l = 2 lpi + aiB ' i = - 1 / o , 1 , , n-1

This result is similar to the Horner method except for the
order in which it accesses the bits of operand A, from most
significant (MSB) to least significant (LSB) for Horner and
from LSB to MSB for this method. However this method has a
significant advantage in that at any time i, the i least
significant bits of the result are known. This differs from
the Horner in which a carry can propagate throughout all
the bit positions at any time. This allows the use of a
single length (m bits) adder in the circuit. A diagram of
such a circuit appears in Fig.(5.4). This consists of m and
gates, an m bit full adder and a (m+n) bit shift register.
The operand B is presented to the multiplier in parallel
form while A is presented one bit at a time. Both of these
algorithms shift the partial result one bit if a.j_ is 0 and
add B to the partial result if a-j_ is 1.

5.3.3 Parallel Multiplier

In all of the multipliers described so far at least one
of the operands is input to the multiplier in serial form.
However a consideration of the original expression for the
product C = A*B shows that this is not necessary :

n-1 m-1
C = A*B = Y, 2i + j (aibj)

i=0 j=0

The partial products (aj_bj) can be computed independently
and summed. From the above expression it can be seen that
there are (m*n) partial products. It will thus be necessary
to have (m*n) AND gates and (m*n) adders. A diagram of a
typical parallel multiplier is shown in Fig. (5.5). It can
be seen from this that the shift required between partial
products is produce by physical wiring between adders. As
both operands are available to the multiplier in parallel
form the product can be calculated in a single clock cycle.

77

5.3 SPEED AND SPACE COMPARISON OF MULTIPLIERS.

The three types of multipliers described above can be
compared in terms of speed and physical size. The speed of
the multiplier will be determined in terms of n the number
of bits in the operands. For the purpose ofthis comparison
it will be assumed that both operands contain the same
number of bits.

The serial multiplier is the slowest of the multipliers as
it takes 0(n2) clock cycles to calculate the product. In
terms of physical size it is however the smallest as it
only rquires a single bit adder. The temporary register can
be implemented using one of the operand registers. The size
of the multiplier is thus independent of n i.e 0(1) as it
is assumed that operand registers are always available. The
maximum clock speed is limited by propagation delays
within the adder.

The serial/parallel adder can calculate the product in
0 (n) clock cycles. It is thus significantly faster than the
serial adder. In terms of space however, it requires an n
bit full adder, n AND gates and a 2n bit shift register.
The amount of space required is thus 0 (n) . The maximum
clock speed usable with this type of multiplier is
determined by the speed of the adder. The speed of the
adder is limited by the carry propagation time. To
illustrate this consider the addition of A=(0111)2 and
B=(0001)2 :

0111
+ 0001

1000
Addition of the least significant bits produces a carry
into the next bit. This carry when added produces a further
carry into the next bit, and so on until the most
signifcant bit changes. The value of the most significant
is thus dependent on the carry produced in the least
significant bit. If the propagation delay is Tp then the
time required before a valid result is obtained is nTp.
There are ways of reducing this delay, some of which will

78

be described later, however the delay is still a function
of the number of bits in the adder. The maximum clock speed
possible with a serial/parallel adder is thus less than
that of a serial adder and decreases as n increases i.e
fc(max) 1/n.

The parallel multiplier is the fastest of three types as
it can calculate the product in a single clock cycle. The
multiplier however requires n2 AND gates and n2 adder
elements. The space requirements are therefore 0(n2) while
the time is limited only by delays within the circuit
itself. As can be seen from the diagram in Fig. (5.5) the
maximum propagation delay is 0 (nTp), where Tp is the worst
case propagation of the adder.

The three type of multipliers therefore represented
time/space tradeoffs. If speed is of prime importance and
space is not a problem then the parallel multiplier would
be chosen. Conversely if speed is not a problem but space
is the serial multiplier would be the best choice. The
serial/parallel adder is a compromise. To summarise
therefore the multipliers can be compared as follows :

Type Delay Time Space

Serial 0(1) 0 (n2) 0(1)
Serial/Parallei 0 (n) 0 (n) 0 (n)
Parallel 0 (n) 0(1) 0 (n2)

where time is in clock cycles and delay is in term of worst
case adder propagation delay.

5.4 CHOICE OF MULTIPLIER.

To decide on a multiplier it is necessary to consider the
size of operands that will be required. The use of a
keylength of 200 decimal digits, or approximately 600 bits,
is recommended for high security applications. For lower
levels of security, and consequently higher transmission

79

rates, shorter keys i.e 300 bits could be used. The choice
of multiplier should enable differing levels of security to
be offered by allowing multipliers to be cascaded to
produce the bit length, and hence the security level,
required.

The serial multiplier can easily handle the various bit
lengths required. As the cost of hardware is independent of
bit length the cost of such a device would be low. The
speed of the serial multiplier is 0(n2) and thus woud take
0(360000) clock cycles to multiply 600 bit numbers, the
maximum clock speed is limited by the propagation delay of
the adder. The use of very high speed (>10MHz) clocks,
however, causes other problems e.g circuit layout becomes
critical. Thus the clock should be restricted to 10MHz.
This would result in a time of 0(36mS) for the
multiplication. The time required to multiply two 600 bit
numbers using subroutine MULT, described in chapter 3, is
approximately 300mS. The serial multiplier therefore
provides a tenfold increase in speed. This is not however
considered sufficient.

A 600 bit parallel multiplier could produce the result in
one clock cycle, the propagation delay being 0(1200) adder
propagation delays. The space requirement for such a
multiplier is 0(360000) which is excessive. The space, cost
and power requirements of so many elements renders such a
multiplier impractical. The parallel multiplier is not
easily cascaded, to illustrate this consider implementing
an 8x8 bit parallel multiplier using 4x4 bit multipliers. A
diagram of the circuit required is shown in FIG.(5.6). As
can be seen from this figure 4 4x4 bit multipliers, along
with adders are required. It would therefore not be
feasible to implement a parallel multiplier for use with
small key lengths and cascade it for larger keys.

The serial/parallel multiplier offers a compromise in
terms of speed and size and for this reason it was decided
to use this type of multiplier. The time required is 0(n)
i.e 0(600) clock cycles. The hardware cost is 0(600) which

80

is significantly less than that of a parallel multiplier.
Serial/parallel multipliers are also easily cascaded to
produce different word lengths thus allowing the level of
security to be easily chosen. The delay is greater than
that of a serial multiplier, thus a slower clock must be
used. If fast adders were implemented using 'look ahead
carry' techniques, as shown in Fig. (5.7) a clock of 1MHz
could be used. This would result in a multiplication time
of 600uS which is a factor of 500 times greater than
subroutine MULT.

5.5 MODULAR MULTIPLIERS.

The use of a multiplier to assist in the implementation of
the RSA public key encryption algorithm would be of greater
benefit if the multiplier could perform modular
multiplication directly. The most time consuming element of
the encryption algorithm is the calculation of the modular
multiplication A*B mod M. the algorithms described in
chapter 3, with one exception, calculate this producvt in
two steps. First the integer multiplication A*B is
perrformed and then the result is reduced modulo M. Of the
algorithms described in chapter three only BLAKELYs
algorithm performed modular multiplication directly.

As mentioned in chapter 2 BLAKELYs algorithm is a
modification of the 'shift and add' multiplication method.
Consider the expression for the product of two binary
integers A and B to form the product C :

Modification of this expression to produce the modular
product A*B mod M, where M = (mk_i,...., mg) is the
required modulus and 0 < A,B < M, yields :

n-1

n-1
C (mod M) = A*B (mod M) = (̂] (2;’-aj_B mod M)) mod M

i=0

8 1

Comparing this to the 'shift and add' algorithm it can be
seen that it is necessary to reduce each partial product
modulo M and to add the partial products modulo M. To
reduce an integer modulo M it is necessary to compare the
integer to M and if it is greater than M subtract M from it
i.e if P is the integer then :

P mod M = P, 0 P < M
P mod M = P-M, M P < 2M

Note that if P is reduced after every addition then P is
always less than 2*M. A flowchart detailing BLAKELYs
algorithm, with particular reference to hardware
implementation is shown in FIG. (5.8) . From this flowchart
it can be seen that the following hardware is required :

1. An adder
2. Registers to hold, the operands A,B, the

modulus M and the result R.
3. A control unit.

The adder is the main computational unit. It has two input
operands. One of the operands is the result R, the other is
either the operand A or the modulus M, the choice being
governed by the control unit. The modulus register M can
contain -M, in twos complement form, instead of M. The
adder will thus be able to perform the calculation R+A or
R-M, which is all that is required as can be verified by
the flowchart.

The registers are required to hold the operands and
intermediate results throughout the calculation. Again it
can be seen from the flowchart that a shift register is
required for operand B and result R, whereas a standard
register will suffice fo operand A, and modulus M.

The control unit implements the sequence of instructions
described in the flowchart. It requires as inputs the
operand B and a decision on whether R is greater or less
than M. It controls the adder and the outputs and clocking
of the registers.

A block diagram of the hardware described above is shown

82

in FIG. (5.9).

5.6 IMPLEMENTATION.

There are several ways in which the modular multiplication
device can be implemented. The method chosen will depend on
cost, ease of implementation and expansion, physical size
and its ease of integration into the overall encryption
algrithm. the methods of implementation considered were :

1. Discrete hardware using standard SSI and MSI
devices.

2. Implementation using bit-slice computer
techniques.

3. Use of application specific integrated
circuits (ASICS)

5.6.1 Discrete Hardware

The modular multiplication device can be readily
implemented using standard integrated circuit building
blocks. The TTL and CMOS series of logic circuits can
supply all of the required function blocks e.g adders,
shift registers, registers etc. The control unit can be
implemented as a finite state machine using either
hardwired logic i.e NAND, NOR gates and FLIP-FLOPs, or by
using programmable devices such as PROMS, PALS etc. The use
of programmable logic allows the flexibility of changing
the sequence of operations carried out by the control unit
should this be required. The disadvantage of this method is
the space required for its implementation. All of the
building blocks are seperate devices and thus a large
number would be necessary to realise the device. The bit
lengths available with this form of construction are small
generally being 4 or 8 bits and while the structure is
cascadable the size would quickly become excessive.

As discussed earlier the major constraint when using
microprocessors to perform multiplication on large (>100)
bit numbers is the limited data path, usually 8 or 16 bit

83

available to the microprocessor. This necessitates that the
operands be divided into more manageable size with a
subsequent reduction in the speed of operation. The core of
a microprocessor is an arithmetic and logic unit (ALU)
which performs calculations and input and output registers
for the storage and shifting of operands and results. On
any given microprocessor the width of the ALU is
predetermined and cannot be changed.

5.6.2 Bit Slice Devices

Bit-slice devices however seek to implement a single or
multiple bit ALU with the possibility for cascading to
produce any desired bit length. Other bit-slice devices are
available for implementing control sequences. With bit-
slice devices it would be possible to implement an ALU of
sufficient length to perform Blakelys algorithm. The
disadvantage with this approach is similar to that when
using standard logic building blocks namely that of size. At
present most bit-slice dvices deal with 4 bit, although 8
and even 16 bit ¿evices are becoming available but at high
cost. There are also a number of peripheral devices, such
as sequencers which are also required. Therefore a large
number of devices would be required and the cost of the
completed unit would be large. The bit-slice approach is
intended mainly for the Aesign of high speed general purpose
CPUs and as such are generally implemented in TTL or ECL
technology. The power requirements of a large number of
such devices would be excessive.

5.6.3 Application Specific Integrated Circuits (ASICS)

The use of semi or full custom integrated circuits
(ASICS) has a higher initial cost both in terms of design
time and actual production costs. The advantage however is
that a circuit can be tailored to suit the needs of the
encryption device andthe space required should be greatly
reduced. At present there are three major techniques for
integrated circuit design:

84

1. Gate Arrays Design.
2. Standard Cell Design.
3. Full Custom Design.

The use of Gate Array or Standard Cell design is referred
to as ' semicustom' design as part of the design work has
already been carried out by the manufacturer.

5.6.3.1 Gate Array

The Gate Array, also known under various trade names such
as uncommitted logic array (ULA), consist of a two
dimensional array of cells. Each cell consist of a number
of circuit elements e.g. N- anA P channel transistors etc.
The design process entails connecting these cells up so as
to perform the required function. This connection is done
on the metal layer(s) which are not predetermined. As only
one (or two) layer needs to be designed and the rest of the
i.e. is standard this form of semi-custom circuit is the
quickest and least expensive to implement. Many software
design tools are available to aid in this process, many of
which can take a circuit diagram and generate the masks
required for the metal layers automatically.

5.6.3.2 Standard Cell

The standard cell approach is essentially similar to
design using TTL or CMOS building blocks. With this method
a large number of building blocks are predefined e.g logic
gates, flip-flops etc. the designer must lay these out on
the wafer and interconnect them. This is a much more
difficult process than gate array design as there are many
variables. The positioning of the cells ani the
interconnection paths must be determined by the designer.
The level of software tools available for standard cell
layout is not as great as for gate array design. The
advantage of the standard cell over the gate array is that
denser layout, and hence more functions per wafer, is
possible using standard cells.

85

5.6.3.3 Full Custom

Full custom design requires that the designer designs the
complete mask set for the wafer using no predefined cells.
'This is a much more difficult approach than semi-custom as
it requires a detailed knowledge of i.c design and a large
amount of time. This method however produces the densest
layout.

Of the three methods the Gate Array is the least
expensive and easiest to implement, however it is also the
least dense of the methods. The standard cell is more
expensive to design and produce but offers higher density.
The full custom method is the most expensive to produce but
offers the highest density.

5.7 CHOICE OF IMPLEMENTATION METHOD.

The choice of implementation method is determined by
size, cost, and expected volume. The discrete hardware
approach is the least expensive but requires a large amount
of space. A bit slice approach is more expensive and the
amount of space required would compare with the discrete
approach. The use of dedicated integrated circuits offers
the best possibility for space reduction but the cost,
especially in the low volume required for a research
project, is prohibitive.

When this decision was being considered, the National
Board of Science and Technology (N.B.S.T.) were offering
grants to enable researchers avail of the facitilities of
the National Microelectronics Centre (N.M.R.C.), where full
custom and semi-custom integrate circuit design is carried
out. A grant was applied for and granted for the design of
the modular multiplication device at the N.M.R.C. For this
reason it wass decided to design a dedicated integrated
circuit. This process will be described in the next
chapter.

8 6

D -ty p e
Reg.

A : Multiplier (n bits) Cl : Carry in
B : Multiplicand (m bits) CO: Carry out
R : Shift Register

Fig. (5 .1) Serial Multiplier

Clock B R
Cycle 1

1 0 0 0 0 0

2 1 0 0 0 0

3 1 1 0 0 0
4 0 1 1 0 0

5 1 1 0 1 1 0
6

7
8
9
1 0 0 1 0 0 0 0
11

1 2
13
14
15 1 0 1 0 0 0

16
17
18
19
2 0 1 1 1 1 0

A = (10110)
B = (1011)

0

1 0

0 1 0

0 1 0 Result

Fig. (5 .2) Serial Multiplier Example

87

A1

HA

S m + r

B2 B1

- I

FA

S m + 2 Sm+1 Sm S m -1
_::a

HA

S2 S1

A: Multiplier (n bits)
S: Result (m + n bits)

B: Multiplicand (m bits)
FA : Full Adder

HA: Half Adder

Fig. (5 .3) Horners multiplication method

A: Multiplier (n bits)
S: Result (m + n bits)

B: Multiplicand (m bits)
FA : Full Adder

HA: Half Adder

Fig. (5 .4) Right to left factorisation

88

03 02 a , 0 q

P7 P6 P5 P4 P3 P2 P1 PO

A : Multiplier = (a 3.a2.a1(a0)

B : Multiplicand = (63 .62 ,13,,b0)

Fig.(5 .5) Parallel Multiplier

Al

Bl

Al

Bm

Am

Bl

Am

Bm

A»B

A - (Al. A m)
B - (Bl, B m)
Al : LS nfeble o f A
Am : MS nibble of A
Bl : LS nibble o f B
Bm : MS nibble of B

Fig. (5 .6) 8x8 bit m ultiplier using 4x4 bit devices

89

00 O) °2 Jl-1

0 a2
A1 >

+ A2

A1 >

i
A2

A1 >
+

Ci Co
C!

Co
Ci

Co

A : Multiplier - (o ,_ , ...Oq) + : A dder

B : M ultiplicand - (b t _ , . . .b 0) D : D - ty p e r e g is te r

Seria l/Paralle l Multiplier

oo

bo

P ro p a g a tio n
ic G en eratio n

Carry
G en eratio n

S u m m atio n

Co “ Po Cin + Go
C, ■ P, PoCin + P | Go+ Gj
C2 ■ P2P1 PoCin + P2P, Gq+ P2C, + G2
C3 = R3P2P1 PoCin + P3P2P1 C g+ P3P2G1 + P3G2+ G j

Look-ahead carry adder (4 bits)

f lG .(5.7) Serial/Paralle l Multiplier (Carry lo o k -ah ea d adder)

90

C Stoft)

Variables

A: Operand 1
B: Operand 2
M: Negative of

Modulus
C: Bit Counter
R: Result

B(N): MSB of E

Fig. 5 .8 Modified Blokely algorithm

9 1

Cin

D ato
P a th

C ontrol
P o th

A : O perond 1
B : O perand 2 (C o n tro l)
M : M odulus
R : R esult - AB Mod M
C : Bit c o u n te r

Fig. (5 .9) Simplified block diagram

9 2

6. Semi-Custom Implementation

6.1 DESIGN CRITERIA

The function of the modular multiplication device (MMD)
is to perform the modular multiplication required for the
RSA public key cipher using Blakelys algorithm. The device
was designed with regard to certain criteria. The first of
these was that it should interact with the rest of the
encryption algorithm and to this end an interface to
standard 8 bit microprocessors was required, the second
criteria was that the use of different key lengths to
provide different levels of security was also required. It
had to be possible, therefore, to easily change the bit
length that could be used with the MMD.

6.2 DESIGN PROCESS

The design of semi-custom circuits at the NMRC involves a
number of design stages as shown in Fig. 6.1. The major
design stages are :

. Concept

. Block Design

. Logic Design

. Circuit Design

. Layout

. Fabrication

These design stages will be discussed in greater detail
below.

6.2.1 Concept

The first stage of any design work is the concept or idea
stage. In most cases where semi-custom implementation is
considered a circuit has already been designed and
implemented using standard logic and thus the idea has been
proven. In other cases where the circuit is to be
implemented directly on silicon, without a prototype having

93

been constructed using standard logic, the idea is not
proven.

Both of these cases require that at each stage of the
design process the design is simulated and tested to ensure
that it meets the requirements placed on it. If a circuit
has already been prototyped this can be used to predict and
compare responses obtained from simulation. Circuits which
are to be implemented without a prototype require that
results from higher level simulations be used for
comparison and prediction of how the final circuit will
behave.

6.2.2 Block Design

The block design requires that the system to be designed
is broken into a number of functional units, e.g storage,
interface, computation and control , and that the interface
between and function of these units is defined. At this
stage it is necessary to consider how the system can be
divided if it is too large to fit on a single die.

Testing of the block design is carried out using a
register transfer simulator. This deals with units at a
functional or logic level. The input to the register
transfer simulator is a description of the circuit written
in a hardware description language (HDL). These simulators
are event driven and can therefore not be used for detailed
timing analysis. They are used to test the validity of the
design and can also provide test vectors for use in later
simulation and testing.

6.2.3 Logic Design

The logical design is carried out for each of the
functional units described in the block design. This
involves designing the function units using existing
logical functions e.g AND, OR and Flip-Flops. There are
many tradeoffs which can be made at this stage. The major
tradeoff is between size and speed. Implementation of
functions such as adders or counters using serial
techniques will result in a large saving in space but will

94

affect the speed. Similarly if these devices are
implemented using parallel techniques the speed will
increase but so too will the physical size of the device. A
compromise must be reached between the two techniques. The
result of this stage should be a complete circuit diagram
at a logic level of each of the function units.

In the design of the modular multiplication device the
width of the data path, i.e the number of bits that the
device can handle, was not known at this stage. Because of
this all function units that were dependent on the data
path had to be designed on a modular basis to allow easy
expansion when the size of the data path became known.

Testing of the logical design is carried out using the
register transfer simulator. This is carried out at two
levels, the testing of each of the function units
individually and the testing of the complete device.

6.2.4 Circuit Design

Circuit design is the creation of cells which are
necessary for the function units. These cells are created
using elements from the standard cell library available at
the NMRC. Elements that are not present in the standard
cell library have to be designed. The cells are designed on
a bit basis, e.g a one bit shift register , and the inputs
and outputs to each cell placed so as to allow abbutment
of cells to produce longer word lengths. Functions which
are independent of the data path can be designed completely
at this stage.

The result of this stage is a series of modules, at a
higher level than the standard cell elements e.g a shift
register cell or a counter cell, which can be used to
produce the function units necessary. The size of the data
path can also be decided at this stage, this will be
discussed later.

Before testing of the cells can be carried out they must
first be extracted. The cells consist physical shapes at
different levels e.g polysilicon, metal and silicon
dioxide. These shapes must be converted back to electrical
devices such as resistors and transistors. A programme

95

which carries out this function is called an extractor. The
extractor uses relationships between the different layers
to deduce the presence of transistors etc. The electrical
description output by the extractor , which will include
parisitic capacitances and diodes, will be in a format
which can then be used as input to a circuit simulator.

Testing of the circuit design is performed using a
circuit simulator. The two used at the NMRC are SPICE, a
public domain programme developed at the University of
California at Berkely, and SIMON, developed and supplied by
ECAD. Both of these simulators allow detailed timing
analysis to be carried out. SIMON and SPICE are compatible
in many ways, they can both accept the same input file.
However SIMON is optimised for digital logic circuits and
is considerably faster than SPICE when used on these
circuits. These simulators provide accurate predictions of
time delay and waveforms accepted from circuits but they
are very CPU intensive. The time delay involved in
simulating circuits of reasonable size is considerable.

Simulation of the circuit design is carried out at two
levels. The first level is a test of the cell design. The
second level involves connecting cells to obtain function
units and simulation of these units

Circuit design of cells can be carried out using an
interactive layout editor. An example of such an editor is
KIC2, a public domain product, which is available at the
NMRC and at N.I.H.E Dublin.

6.2.5 Layout

Layout is the actual physical design of the integrated
circuit using the cells developed in the previous stage.
The width of the data path is known at this stage and thus
the physical size of all the function units can be
estimated. The first step in the layout process is to
develop a floor plan. This will show the location of all of
the function units in the device and the space occupied by
each of them. Sufficient space must also be left for
routing of interconnections between the function units. The
floor plan will be hierarchical in nature in that function

96

units will consist of cells which in turn will consist of
elements from the standard cell library._This provides for
flexibility in the design of the floor plan as the shape of
the function units can be changed, by rearranging the cells
within it, and thus there are many possible floor plans.

When the floor plan has been completed each of the
function units is constructed from its cells so as to fit
the space allocated to it. The function units are then
placed in their appropriate places and interconnections
between them are made. It is good practice to have all
inputs and outputs to the function units named as this will
enable connections to be automatically checked.
Interconnection is carried out using metal and polysilicon
layers. Layout is performed on an APPLICON CAD system at
the NMRC.

Testing of the completed layout on a physical and an
electrical basis is required. On the physical level it is
necessary to ensure that the layers and shapes conform to
the design rules at the NMRC. These design rules specify
the minimum size of shapes on different layers and the
minimum distances between shapes. The circuit is tested, to
ensure that there are no design rule violations, using
programmes developed at the NMRC.

Electrical testing of the layout is in two forms. The
first is an electrical rule check which ensures that there
are no electrical rule violations, e.g power and ground
rails connected together or signals with different names
connected to one another. The second is the use of a
circuit simulator to test the final circuit. Before this
can be done the circuit must be extracted. The use of
circuit simulators at this level is very time consuming.
For this reason emphasis is placed on testing at the
function unit level and on the electrical rule checker.

The result of this stage is geometrical representation of
the integrated circuit at different levels.

6.2.6 Fabrication

After the layout has been completed masks are made of the
different layers. This involves sizing the layout to its

97

correct size and making positive or negative masks, as
appropriate, of each layer. These masks are used in the
fabrication process. The process used at the NMRC was a 5
micron CMOS p-well process.

6.3 SYSTEM OVERVIEW

The device can be divided into two main sections, the
Data path and the Control path. The Data path contains the
registers for storing the variables , the adder and the
interface to the microprocessor. The Control path contains
the control sequence for implementing Blakelys algorithm,
it should be noticed that the width of the Data path
depends on n, the keylength while the control path is
essentially independent of t h i s . (^

It was not expected that a modular multiplication device
of sufficient size (300 bits) would fit on a single
integrated circuit. It was thus necessary to divide the
device into sections which could be cascaded to produce the
complete device. Two options were considered :

1. Separation of Control and Data paths.
2. Master/Slave device.

The first option involved the design of two separate
integrated circuits, a control circuit and a data circuit.
The control circuit would contain the finite state machine
to implement Blakelys algorithm while the Data circuit
would contain the various registers and adders required.
Again it was expected that the complete data path could not
be contained in a single device, so several identical data
circuits would be required to produce the necessary
wordlength.

The Master/slave approach differs from the first option
in that the control and data paths would not be separated.
Each device would be autonomous, containing its own control
and data path. As a single device would not be sufficient
for the keylengths being used these devices could be
cascaded. When the devices where cascaded the most
significant device, i.e the device which contained the most

98

significant bits of the Data path would be the 'Master',
all other devices being 'Slaves'. The 'Master' device would
make all the decisions e.g whether the result was greater
than the modulus, and pass these to the Slaves. There would
be no physical difference between Master and Slave devices,
each would be selected by the level on an external pin. A
diagram showing several of these devices cascaded is shown
in FIG. (6.3). The labels used in this diagram will be
explained later.

This method was chosen as it does not require that
different devices be produced. The time and resources
necessary to produce two different integrated circuits
could not be justified.

6.3 SYSTEM DESIGN

The proposed device, shown in FIG. (6.4), consists of
several subunits. These subunits are:

1. Interface unit.
2. Storage unit.
3. Computation unit.
4. Cascade and Master/Slave unit.
5. Control Unit.

The interface unit provides the interface between the
modular multiplication device and external circuitry. The
storage unit contains registers to hold the input variables
required by the device and storage for the result obtained.
The computation unit performs all the calculations
necessary to implement Blakelys algorithm. The cascade and
master/slave unit allows for cascading of modular
multiplication devices to produce longer wordlengths. The
control unit is a finite state machine which controls all
the other hardware in the device to perform Blakelys
algorithm.

99

6.3.1 Interface Unit

The purpose of the interface unit is to allow data to be
transferred between the modular multiplication device and
external devices. This interface had to be compatible with
standard 8 bit microprocessors. The interface consists of
an address bus, a data bus and a control bus.

The data bus is an 8 bit wide bi-directional tri-state
bus. Data is loaded into the internal 16 bit registers 8
bits at a time.
The address bus is an input only port to the device which

selects the appropriate register and byte within that
register. The size of the address bus is 3 bits. This
allows the 3 sixteen bit input registers, the sixteen bit
output register and the 8 bit counter to be addressed. The
input registers are write-only and the output register is
read only. The modular multiplication device appears to the
external microprocessor or other circuitry as a block of
contiguous memory locations.

The control bus is a collection of control signals
necessary for the synchronisation of data transfer and for
proper operation of the device. This bus contains the
clock, the read/write signal, the chip select signal and
reset.

The diagram of the interface unit is shown in Fig. 6.5. It
contains an input data selector, an output data selector
and address decoding. The input and output data selectors
are provided by means of multiplexors. Address decoding is
implemented using a 3 to 8 line decoder.

Connections between the device and the external world are
performed by means of input and output buffers. These
differ from internal buffers in their ability to drive
large capacitances. The input and output buffers were
placed around the edge of the integrated circuit.

100

6.3.2 Storage Unit

The storage unit contains four registers to hold the
operands A and B, the modulus M and the result R and also
the bit counter C.
Registers A and M are simple storage registers with tri

state output. The outputs of these registers are connected
to one of the adder input busses.

Register B, also called the control register, is a
parallel in serial out shift register. The only bit of
interest in register B is the most significant bit which is
used by the control algorithm to select between two
alternative actions.
Registers A,B and M are loaded from the external circuitry

via the interface unit.
The result register R is a parallel in parallel out shift

register. Register R is loaded from the output of the
adder. The output of the R register provides the second
operand for the adder. It can also be read by external
circuitry via the interface unit. It must also be possible
to clear register R when required.
The bit counter C is an 8 bit down counter. It is loaded

by the microprocessor with the keylength. This is then used
by the control algorithm to determine the number of
iterations of the control algorithm necessary. The counter
is decremented by the control unit at each iteration until
it is zero. The output from the counter is a signal which
indicates to the control unit that it has reached zero.
Registers A, B and M and counter C appear as write only

memory location to the external microprocessor. Register R
appears as read only. The microprocessor can not,
therefore, read the contents of A, B or M and cannot write
to R.

Logic Design

As the width of the data path was not known the design of
the storage unit was accomplished on a modular basis.
Single bit registers and counters were designed so that
they could be linked together to form longer wordlengths.

101

A logic diagram of a simple register cell used to
implement registers A and M is shown in Fig. 6.6a. The
register used is a standard level triggered D-type.

The circuit design of the A and M registers was
complicated by the lack of a tri-state buffer in the cell
library at the NMRC. This was developed by the NMRC for
this application. The circuit design of registers A and M
is shown in Fig. 6.6b. The basic cell consists of three
standard cells, a D-type register, a tri-state buffer and a
via. The via is included to allow the data bus to pass
through the register and onto other registers. There are
control signals for reseting and loading the register and
and for enabling the output buffers. The register cells
were stacked together to form the complete registers.

The shift register cell used for registers R and B is
shown in Fig. 6.7a. These cells are fully synchronous in
operation. Connection of these cells to form longer
registers requires that an extra circuit, which provides
the control signals, is added for every 8 cells. A logic
diagram of this circuit is shown in Fig. 6.8a.

The shift register cell is shown in Fig. 6.7b. the use
of multiplexors in this design reduces the area when
compared to standard logic. Again vias are included in each
cell to allow the data bus to pass through the register.
The circuit required for each octet of shift register cell
is shown in Fig. 6.8b. This provides the control signals
for the eight cells.

Several options for the implementation of the 8 bit down
counter, C, were considered. These include :

. PLA Implementation

. Parallel feedforward

. Serial feedforward

. Asynchronous Implementation
The use of a PLA for implementing the counter offered
advantages in terms of ease of layout. A parallel
feedforward counter would provide the fastest operation at
the expense of area. The asynchronous implementation is the

102

slowest of the counters considered but occupies the
smallest area. The serial feedforward counter is a
compromise in terms of speed and size and for this reason
it was decided to use this type of counter. A logic diagram
of a single down counter cell is shown in Fig. 6.9a.

The implementation of the counter cell is shown in Fig.
6.9b. Again the extensive use of multiplexors reduces the
physical size of the devices. These cells can be cascaded
to produce a down counter of the required length. A circuit
to determine when the contents of the counter are zero must
also be included.

6.3.3 Computation Unit.

The computation unit contains the adder. This is the only
computation required for Blakelys algorithm. The inputs to
the adder come from register operand register A or modulus
register M and from the result register R. In addition to
this there is a carry input which comes from off chip and
an enable input. The carry input enables the cascading of
devices to produce longer wordlengths and is obtained from
previous stages. The enable signal comes from the control
unit and informs the adder that the two inputs are to be
added. The output of the adder is a 16 bit result, which
can be loaded into register R, and a carry out which is
passed to subsequent stages.

The design of the adder was carried out by the NMRC as it
did not already exist in the cell library. There are many
possible ways of implementing adders and all methods
provide different advantages and disadvantages. The method
chosen is called a Manchester carry chain adder and offers
a compromise in terms of speed and size.

The principle of the Manchester carry chain type adder is
shown in Fig. 6.10. When the adder enable signal is low the
carry out signal is pulled high by the P-transistor, Ql.
When the adder enable signal goes high n-transistor, Q2, is
turned on. If the carry generate signal is high, (Aj_.Bj_,
where A^ and B^ are input bits to the adder) , then
transistor Q3 will turn on discharging the carry output
node. If the carry propagate signal (Aj_+BjJ is high then

1 0 3

transistor Q4 is turned on enabling the carry from the
previous stage to be propagated through to the next stage.

The adder was designed as a 4 bit cascadable unit. The
logic diagram and circuit layout of a 4 bit module are
shown in Fig. 6.11a and 6.11b respectively.

6.3.4 Cascade and Master/Slave Unit.

The Cascade and Master/Slave consists of a number of
small circuits. The signals needed for cascading of devices
are the inputs and outputs of the shift registers R and B
i.e Rin, Bin, Rout, Bout and the carry in, Cin, and carry
out, Cout, of the adder. The adder poses a problem when
cascading as the time required for addition increases as
devices are cascaded. Sufficient time must be allowed for
addition and as there is no way of knowing how many devices
will be cascaded the total addition time is not known.
Several solutions to this problem of addition time were
considered:

1. Set a maximum limit on the number of devices which
can be cascaded. This will determine a maximum
addition time which can be used in all cases.

2. Determine the worst case addition time for a single
device. Multiply this by the number of devices in
cascade and use this to determine the maximum clock
speed that can be used with the device.

3. Construct an extra register on chip which can be
programmed with the number of devices to be cascaded.
This programming can be done at manufacture or
preferably by the end user. The required addition
time is then some function of the number stored in
the register. Alternatively the bit count register C
could be used to determine the addition time. C
contains the number of bits in the keylength which is
N by the number of devices, where N is the data path
width per device.

4. Generate an Addition Complete signal on chip. This
signal is then passed to the next chip where it is
ANDed with its Addition complete signal and passed to

1 0 4

the next chip and so on. The Addition Complete signal
from the most significant chip is then used as an
Addition Finished signal which is passed to all
chips.

The first option while easiest to implement has many
disadvantages. The total addition time would need to be the
worst case for the largest possible number of cascaded
devices. Use of the devices for smaller keylengths would
not produce any increase in speed.
The second option would allow the user to increase the

speed of addition for short keylengths. However the use of
the clock as a controlling device poses some problems. The
first is that in most microprocessor systems the clock is
crystal controlled and as such cannot be varied. Fractions
of the clock could be obtained using dividers but this
requires extra circuitry. Another problem is that there are
clock cycles within the device during which addition is not
performed e.g shifting of registers etc. It is not
necessary to slow these down fo long keylengths and
choosing the clock speed to suit the adder delay would do
this, resulting in a significant increase in multiplication
time.

The use of an extra register to hold the adder delay or
the derivation of that delay from the bit counter overcomes
many of the disadvantages of the previous options. The
register would have to be user programmable to maintain
flexibility. The use of the bit counter would make the
control sequence more complex and hence it would require
more space.

The generation of an Addition Complete signal on chip
differs from previous options in that previous knowledge of
the number of cascaded devices is not required, the total
addition time is the time taken for the Addition Complete
signal to propagate from the least to the most significant
device. The main advantage of this is that the add time is
automatically suited to the number of devices. Its
advantage over the previous method of using the bit counter
is that the control sequence is not as complicated and also
that the Addition complete signal does not have to be based

1 0 5

on the worst case addition time and should thus be faster.
It was therefore decided to chose the final option to

determine the addition time. This resulted in an extra
three pins being required by the device, Addition Complete
In, AIN, Addition Complete Out, AOUT, and Addition
Finished, ADFIN. The addition finished signal, ADFIN, is
used by the control unit to determine when addition is
complete.

The logic diagram of the circuit used and the circuit
layout are shown in Figs. 6.12a and 6.12b.

The Master/Slave unit consists of a number of
multiplexers controlled by the Master/Slave signal. The
first multiplexer selects between the most significant bit
of register B, BOUT, and the signal DIN. The control unit
needs the most significant bit of register B on which to
base a decision. If the device is in Master mode then BOUT
is the most significant bit and this is passed to the
Master control unit and to all other devices via the DOUT
signal. If the device is in Slave mode then the most
significant bit of B is obtained from DIN, which is
connected to DOUT of the Master device. In Slave mode the
device ignores the most significant bit of its own B
register.
The second multiplexer is used in the determination of

sign. The sign of the result is determined by the most
significant bit of the Adder. Therefore if the device is in
Master mode it uses this bit as the sign bit. The master
device also sends the sign bit to all Slave devices via the
Sign Out, SGNO, signal. If the device is in Slave mode it
ignores the most significant bit of its own adder and
obtains the sign bit from the Sign In, SGNI, signal. The
cascading of of Master and Slave devices to produce long
wordlengths is shown in FIG. (6.3).

6.3.5 Control Unit

The Control unit is a finite state machine which controls
all the other hardware in the device. The state machine
implements Blakelys algorithm as can be seen fom the state

1 0 6

diagram of FIG. 6.13. The number of internal states is 16 ,
hence requiring 4 state variables. The control unit also
has 5 inputs and 8 outputs which are :

Inputs :

ADFIN

SIGN

CZ

BI

RUN

The Addition Complete signal from the Master
device. This is used to determine when addition
is finished so that the control sequence can
continue.
The Sign Bit which is also obtained from the
Master device.
An signal produced by the bit counter, C, to
indicate that its contents are zero.
The most significant bit of the control register,
B. This is again obtained from the Master device
and passed to all Slave devices.
The signal which starts the state machine and
hence Blakelys algorithm.

Outputs :

ADEN
SAM

LDR

SR

SB
CLRR

DEC
BUSY

Adder enable.
Select A or M. Selects the output of either the
operand register A or the modulus register M as
input to the adder.
Loads the result register from the output of the
adder.
Shifts the contents of the result register R left
by one bit.
As above but for the B register.
Clear the contents of the result register R to
zero.
Decrement the bit counter C by one.
Signal which indicates that the algorithm is in
progress and that the device is busy.

The state diagram described above implements Blakelys
algorithm on a serial/parallel multiplier as described in
the previous chapter, however several points are worth

1 0 7

noting. There are two major sequences that are carried out.
These are the addition of A and R, and the addition of R
and -M. The test to check if the result is greater than the
modulus is performed by subtracting M from R. If the output
of the adder is negative then R was less than M and no
further action is taken. If however the result was positive
then R was greater than M and so it is replaced by the
output of the adder.

The control unit was implemented using a programmable
logic array(PLA). This produced two advantages over a
dedicated control unit, size and the ease of modifying the
control algorithm should that be necessary.

A block diagram of the PLA used is shown in Fig. 6.14.
This consists of an AND plane, an OR plane and product
terms. Inputs are made to the AND plane and outputs are
taken from the OR plane. Programming of the device is
carried out by placing transistors at the junction of the
AND/OR plane and the product terms. Feedback from the
output to the input is used to implement a state machine.
The size of the PLA is determined by the number of inputs,
the number of outputs and the number of product terms. The
logic equations resulting from the state diagram were
reduced both manually and automatically to minimise the
size of the PLA.

The PLA used is a dynamic type requiring a two phase
clock. Programming of the device requires that transistor
cells be placed in the appropriate location.

6.4 DEVICE PERFORMANCE

The speed of the modular multiplication device is limited
by the carry propagation delay of the adder. Let the carry
propagation delay of a single device be TA . As can be seen
from FIG. (6.13) the control algorithm has 16 possible
internal states, of which 14 lie within the main programme
loop. Three additions are performed per main loop, thus the
loop time is :

1 4 T A + (3 N B / 2) T A

1 0 8

where TA is the minimum clock period, determined by the
carry propagation delay and is the keylength in bytes.
As each device can accomodate 16 bits NB/2 is the number of
devices required for a given keylength.

The main programme loop is carried out 8Nb times.
Initialisation of the device requires that 7 bytes be
loaded into each device, two each for the operand A, the
control register B, the modulus register M and one for the
bit counter C. The total time for the modular
multiplication is therefore :

[(7Nb /2) + 8Nb (14 + (3Nb /2))]TA
= (12Nb2 + 116NB)TA

Simulaion results from the adder show a maximum carry
propagation delay of several hundred nanoseconds. As the
device is designed to work with standard 8 bit
microprocessors a 1MHz clock could be used. This would
produce a multiplication time of :

(12Nb2 + 116Nb) microseconds

A table showing the multiplication time for various values
of Nb is shown in FIG. (6.15) .

Fabrication of the device by the NMRC has just been
completed and testing to verify the above figures has now
to be started.

6.5 ENCRYPTION USING THE MMD

The modular multiplication device can be interfaced to
standard 8 bit microprocessors in the same way as memory.
The only additional requirement is that two bits of i/o
are necessary , one for starting the device (RUN) , the
other for determining that the result is ready (BUSY) . The
devices can be cascaded to produce the desired wordlength,
the ultimate limitation being the carry propagation delay
of the adder and the size of the bit counter C. The time
required for exponentiation, as shown in chapter 2 is given

1 0 9

by :

Te = 53 + 2583Nb + 2432NB2 + 32NB [TM o d [NB]] cycles

where TMod^NB] tbe number of clock cycles for
multiplication of two NB byte numbers modulo a third NB
byte number. Substituting for the multiplication time of
the modular multiplication time into the above equation ,
and assuming a clock frequency of 1MHz, yields :

Te = 53 + 2583Nb + 2432NB2 + 32NB [12NB2+ 116NB]]
= 53 + 2583Nb + 6144Nb2 + 384NB 3

microseconds

A table showing the exponentiation time for various values
of Nb is shown in Fig. (6.16).

For an 80 byte (approx. 200 decimal digits) the use of
the hardware device results in an exponentiation time of
approximately 240 seconds. The fastest software algorithm
(reciprocal), described in chapter 3 has an exponentiation
time of 2500 seconds. An order of magnitude increase in
encryption speed can therefore be expected.

6.6 FURTHER ENHANCEMENTS

The modular multiplication device described here was
implemented in 5 micron CMOS technology at the NMRC. Since
then the NMRC has introduced a 3 micron process. This would
provide a 2.5 fold increase in the space available on chip
with a subsequent increase in the number of bits per
device. There are some commercial processes which are at
1.2 micron densities. This would provide a 17 fold increase
in area.

The design of the circuit could also be changed to
eliminate the need for loading the operands into the device
prior to each multiplication. In the modular exponentiation
algorithm described in chapter 2, only two type of modular

110

multiplications are performed , T = T*T and C = C*T. The
storage of the partial results C and T on-chip may be
possible and this would increase the exponentiation time.

Ill

Concept

Block
Design

Simulate

Logic
Design

Simulate

Circuit
Design

Extract &
Simulate

Layout

Simulate
DRC, ERC

Fabricate

Fig. (6.1) Integrated Circuit Design Process

1 1 2

Data
Bus Address

Bus

AOUT : Addition com ple te out
BOUT : MSB o f con tro l reg is te r B
ROUT : MSB o f resu lt reg is te r R
COUT : C arry ou t from adder
DIN : MSB o f B from M aster Device
SGNI : Sign input
SGNO : Sign ou tp u t
DOUT : MSB o f B from M aster Device
CIN : C arry in from previous s tage
RIN : MSB o f R from previous stoge
BIN : MSB o f B from previous stage
AIN : Addition com ple te from previous stage
R /W : R ea d /w rite signal from m icroprocessor

Fig. (6 .3) Cascading of devices

ITT

Registers:

A: Operond 1
B: Operand 2
M: Modulus
R: Result
C: Bit Counter

Fig. (6 .4) Modular M u ltip lica tion Device

1 1 4

/

Rin Bin Din R\W CS Do 3o A2 A1 AO

Rout M\S Run D7 D6 D5

Fig. (6.4a) Chip layout - Floor Plan

115

External
Interface

A0.A1.A2
I/O O ..I/O 7
R /W
C /S
DinO..Din7
Dout0..15
LDx(L)
LDx(M)

External address bus
External data bus
R ead/W rite signal
Chip select
Internal input data bus
Internal output data bus
Select least significant byte of
Select m ost significant byte o1

Fig. (6 .6 Interface Unit

Internal
Interface

x
x

1 1 6

Input
Data
Bus

D,

D7

RegCell

4 d q —

->C 0 -

D 0

>C Q
R "7

1

A(M)o"

0 Q

>c o
R
7~

A(M), Output
Data
Bus

A(M)7

Load Reset Output
Enable

Fig. (6 .6 a) Logic diagram - Registers A and M

Input

Reset

Load

Vdd

Vss

Output
Enable'

u Li U U lTLj
, .

s s ° i r < ' 3O K &

c
M
1
V

CM1DREGC CM1TRPI

I
A

; S * I° a a O o i 1 1
. , , . n n n

RegCell

Output

Fig. (6 .6 b) Layout of simple register cell

117

d7

SRegCell

De

Do

Load.Shift

Load

Shift

5 F \

5 ^

£>

&

ih

D Q

>C Q
R

D Q

>C Q
R

D 0

t>C Q
RTZ

R(B);

R(B)<

R(B)c

Clock Reset
R(B)_,

Fig. (6 .7 a) Logic diagram - Shift Register R,B

Di
Shift
Load

Load.shift
Q i-1

Vdd _

Vss

Clock

Reset

QiLT □ □' □ LTD" u U Ü" u u u u u
1 ' 1 I 4 5 S * § !°| °|liJ ut u

CM1TRPI CM1TRPI CM1TRPI CM1DFFC

i l l £ I I a I 1 1 t *o a a 0 an n n n.nn. _n_n n_ n n n n n

Fig. (6 .7 b) Shift Register Cell - Layout

118

t>
t >

t>

Shift

Lood

Lood.Shift

To
SRegCells

LDR(LDB)

SR(SB)
One end cell for every
8 SRegCells

Fig. (6 .8 a) End cell for shift registers R, B

Shift

Fig. (6 .8 b) Layout of end cell

Input
Data

Bus

Output
Data
Bus

Fig. (6 .9 a) Logic diagram - Down counter

Di-

Co

Fig. (6 . 9 b) Layout of down counter cell

1 2 0

Vdd

C orry o u t

P : P ro p o g o te
C : G enero te

Principle o f M o n c h e ster c o rry -c h o in

C orry In PO

GO-

Clock

Vdd

_L

\
G1 ■

P 2

■\\ G2 •

PJ5

G J -

T
Vss

Pi - oi XOR bi
Gi - oi ANO b!

4 bit c o rry choin

Fig. (6 .1 0) Manchester corry-cha in

C arry

Out

o -

1 2 1

Fig. (6 .11a) 4 bit adder - logic

oQ bO o1 b1 o 2 b 2 o 3 b 3

C orry lr.

INV2 INV2 INV2 INV2

PC PG PG PG

M M M M

NEXOR NEXOR NEXOR NEXOR

SO S1 S2 S 3

M : M a n c h este r c o rry cell

PC : Generation of propagate and generate terms

Fig. (6.11b) 4 bit adder - layout

C orry O ut

1 2 2

ADEN
D Q

C 0
R A

o - ■ D Q

->C 0

L-g-l

■ = D -
Aout

Cin Ain Clk Reset

ADEN : Adder enable signal from control unit
Ain : Addition com plete signal from previous stage
Aout : Addition com plete signal to next stage
Cin ; Carry in from previous stage

Fig. (6 .12a) Addition Complete circuit

ADEN

Ain

U Li u u u u u i r i i j i_i L i Li

V d d _
3 4 ï S 3 2 ï S 3 2 3 » 2 3 r i r r i i ° * 2 3

C
M
1 CM1NAND3 CM1NAND3 CM12INV CM1DRECC CM1DRECC CM10R2

V ss
N
V

3 i ï 2 2 3 i 2 2 3 3 s 2 5 ! J L l . i 1 . s 2 3. : : , n n n n n n p n n n n n n . n p o n . n n n n n n n n

Clock

Reset

Fig. (6 .12b) Addition com plete circuit
- Layout

1 2 3

Fig. (6 .1 3) S ta te diagram - Blakelys algorithm

124

(6
.1

4
)

B
lock

diagram

of
PLA

Key L e n g th
(B y te s)

M u l t i p l i c a t i o n
Tim e (uS)

Key L e n g th
(B y te s)

M u l t i p l i c a t i o n
Tim e (uS)

2 280 42 26040
4 656 44 28336
6 1128 46 30728
8 1696 48 33216
10 2360 50 35800
12 3120 52 38480
14 3976 54 41256
16 4928 56 44128
18 5976 58 47096
20 7120 60 50160
22 8360 62 53320
24 9696 64 56576
26 11128 66 59928
28 12656 68 63376
30 14280 70 66920
32 16000 72 70560
34 17816 74 74296
36 19728 76 78128
38 21736 78 82056
40 23840 80 86080

F i g . (6 . 15) M u l t i p l i c a t i o n t im e u s in g t h e MMD

Key L e n g th E n c r y p t io n Key L e n g th E n c r y p t io n
(B y te s) T im e (Sec) (B y te s) Time (Sec)

10 1 .0 46 50
12 1 .5 48 56
14 2 .2 50 63
16 3 .1 52 70
18 4 .2 54 78
20 5 .5 56 86
22 7 .1 58 95
24 8 .9 60 105
26 10 62 115
28 13 64 125
30 15 66 137
32 18 68 149
34 22. 70 161
36 25 72 175
38 30 74 189
40 34 76 204
42 39 78 219
44 44 80 236

Fig. (6.16) Encryption time using the MMD

1 2 6

7. Conclusion

An i n v e s t i g a t i o n i n t o t h e im p le m e n t a t io n o f t h e RSA

c i p h e r on a s t a n d a r d 8 b i t m ic r o p r o c e s s o r , t h e M o to r o la

M6809 was c a r r i e d o u t . A program m e f o r m o d u la r

e x p o n e n t i a t i o n , w h ic h i s t h e b a s is o f t h e RSA p u b l i c key

c i p h e r , was w r i t t e n . The a l g o r i t h m used i s known as

e x p o n e n t i a t i o n by r e p e a t e d s q u a r in g and m u l t i p l y i n g . The

ru n t im e o f t h i s a l g o r i t h m was c a l c u l a t e d and was fo u n d t o

be d e p e n d e n t on t h e t im e r e q u i r e d f o r m o d u la r

m u l t i p l i c a t i o n .

Two fo rm s o f m o d u la r m u l t i p l i c a t i o n a l g o r i t h m w ere

i d e n t i f i e d . The f i r s t c a l c u l a t e d t h e p r o d u c t u s in g n o rm a l

a r i t h m e t i c and t h e n c a l c u l a t e d t h e r e s i d u e . The second fo rm

c a l c u l a t e d t h e r e s i d u e s im u l t a n e o u s ly w i t h t h e p r o d u c t .

I n t h e f i r s t t y p e o f a l g o r i t h m t h e f o r m a t i o n o f th e

p r o d u c t d i d n o t ch a n g e , how ever v a r i o u s ways o f c a l c u l a t i n g

t h e r e s id u e s w ere im p le m e n te d w i t h s i g n i f i c a n t d i f f e r e n c e s

i n p e r f o r m a n c e . The s i m i l a r i t y b e tw e e n t h e f o r m a t i o n o f

r e s id u e s and d i v i s i o n a l lo w e d d i v i s i o n a l g o r i t h m , w i t h t h e

em phas is on t h e r e m a in d e r and n o t on t h e q u o t i e n t t o be

u s e d . The m ethods used f o r c a l c u l a t i n g t h e r e s id u e s w e re ,

d i v i s i o n by r e p e a t e d s h i f t and s u b t r a c t , d i v i s i o n by

fo r m in g t h e r e c i p r o c a l and m u l t i p l y i n g and d i v i s i o n u s in g

K n u th s a l g o r i t h m .

The second t y p e o f m o d u la r m u l t i p l i c a t i o n a l g o r i t h m ,

w h ic h c a l c u l a t e d t h e r e s id u e s s im u l t a n e o u s ly w i t h t h e

p r o d u c t was im p le m e n te d i n a s s e m le r la n g u a g e u s in g an

a l g o r i t h m by B l a k e l y , t h e a d v a n ta g e o f t h i s a p p ro a c h i s

t h a t a d o u b le l e n g t h p r o d u c t i s n e v e r fo rm e d , t h e l a r g e s t

number t h a t m ust be d e a l t w i t h i s t w i c e t h e m o d u lu s .

The p e r fo r m a n c e o f a l l o f t h e m o d u la r m u l t i p l i c a t i o n

a l g o r i t h m s , i n te rm s o f t h e i r r u n t im e f o r d i f f e r e n t

m odulus l e n g t h , was e v a l u a t e d . The r e s u l t s showed t h a t

fo r m in g t h e r e c i p r o c a l and m u l t i p l y i n g i s t h e f a s t e s t

m ethod f o l l o w e d c l o s e l y by K n uth s a l g o r i t h m . These a r e th e n

f o l l o w e d by t h e s h i f t and s u b t r a c t a l g o r i t h m nad B l a k e ly s

a l g o r i t h m , b o t h o f w h ic h a r e s i g n i f i c a n t l y s lo w e r th a n

e i t h e r o f t h e f i r s t tw o .

The e n c r y p t i o n t im e u s in g t h e s e m ic r o p r o c e s s o r

127

program m es was fo u n d t o be q u i t e s i g n i f i c a n t . R i v e s t ,

S h am ir and Adlem an i n t h e i r o r i g i n a l p a p e r recommended t h a t

k e y l e n g t h s o f t h e o r d e r o f 200 d e c im a l d i g i t s (o r

a p p r o x im a t e ly 80 b y t e s) s h o u ld be u s e d i f a h ig h l e v e l o f

s e c u r i t y and p r o t e c t i o n a g a in s t f u t u r e d e v e lo p m e n ts i s

r e q u i r e d . The t im e t a k e n t o e n c r y p t messages o f t h i s s i z e

u s in g t h e f a s t e s t o f t h e above s o f t w a r e a l g o r i t h m s i s

a p p r o x im a t e ly 40 m in u te s . T h is i m p l i e s a b i t r a t e o f 1 /4

b i t s p e r se c o n d . I f we re d u c e t h e k ey t o 40 b y t e s (a p p ro x .

100 d e c im a l d i g i t s) th e n t h e e n c r y p t i o n t im e re d u c e s t o 322

seconds o r a b i t r a t e o f one b i t p e r sec o n d .

T h is s lo w t r a n s m is s io n r a t e may be o f some use i n a

l i m i t e d number o f cas es e . g e n c r y p t i o n o f f i l e s p r i o r t o

lo n g te r m s t o r a g e b u t i t i s o f no use f o r a g e n e r a l p u rp o s e

e n c r y p t i o n d e v i c e . S e v e r a l s o l u t i o n s t o t h e p ro b le m w ere

c o n s id e r e d . These w ere :

1 . Reduce t h e key l e n g t h even f u r t h e r (i . e < 4 0 b y te s)

2 . F in d a more e f f i c i e n t a l g o r i t h m .

3 . Im p le m e n t p a r t o f t h e a l g o r i t h m i n h a r d w a r e .

The t h i r d s o l u t i i o n , h a rd w a re im p le m e n t a t io n o f some o f t h e

k e y e le m e n ts o f t h e e n c r y p t i o n p r o c e s s , a p p e a re d t o o f f e r

t h e b e s t chance f o r s i g n i f i c a n t l y r e d u c in g t h e e n c r y p t i o n

t im e and i t was d e c id e d t o f o l l o w t h i s o p t i o n .

The g e n e r a t i o n o f keys f o r use i n t h e RSA c i p h e r was

d e s c r ib e d . The s e c u r i t y o f t h e RSA c i p h e r was shown t o

r e s i d e i n t h e k e y i t s e l f . V a r io u s fo rm s o f a t t a c k s a g a in s t

t h e RSA c i p h e r h a v e a h i g h e r p r o b a b i l i t y o f s u c e e d in g i f

t h e k e y i s n o t chosen c o r r e c t l y . A p r o c e d u r e , d e v e lo p e d by

K n u th , was im p le m e n te d i n FORTRAN on t h e VAX. The ru n t im e

o f t h i s program m e i s s i g n i f i c a n t (15 m in u te s f o r 100 d i g i t

k e y s) and t h e l i m i t a t i o n t h i s p l a c e s on f r e q u e n t c h a n g in g

o f t h e key i s p a r t i c u l a r y s e v e r e i n a p e r s o n a l c o m p u te r o r

m ic r o p r o c e s s o r e n v i r o n m e n t .

An i n v e s t i g a t i o n i n t o t h e v a r i o u s m ethods o f h a rd w a re

m u l t i p l i c a t i o n r e s u l t e d i n t h e c h o ic e o f a s e r i a l / p a r a l l e l

m u l t i p l i e r . I t was t h o u g h t t h a t t h i s o f f e r e d t h e b e s t

com prom ise i n te r m s o f speed and s p a c e . B la k e ly s a l g o r i t h m

a l t h o u g h t h e s lo w e s t o f t h e s o f t w a r e im p le m e n ta t io n s le n d s

1 2 8

i t s e l f , w i t h s m a l l m o d i f i c a t i o n s , t o a h a rd w a re s o l u t i o n .

I t was th u s d e c id e d t h e h a rd w a re s h o u ld im p le m e n t B l a k e ly s

a l g o r i t h m on a s e r i a l / p a r a l l e l m u l t i p l i e r .

T h re e a p p ro a c h e s f o r p r o d u c in g t h e r e q u i r e d h a rd w a re

s o l u t i o n w ere c o n s id e r e d . These w e re , a d e d ic a t e d c i r c u i t

u s i n s t a n d a r d S S I and MSI l o g i c , a c i r c u i t u s in g b i t s l i c e

m ic r o p r o c e s s o r t e c h n iq u e s and t h e d e s ig n o f an a p p l i c a t i o n

s p e c i f i c i n t e g r a t e d c i r c u i t (ASIC) u s in g g a t e a r r a y o r

s t a n d a r d c e l l t e c h n i q u e s .

The im p le m e n t a t io n o f t h e h a rd w a re u s in g a s ta n d a r d

c e l l AS IC was c h o s e n . The re a s o n f o r t h i s c h o ic e was t h e

a v a i l i b i l i t y o f t h e n e c e s s a r y f a c i l i t i e s a t t h e N a t i o n a l

M i c r o e l e c t r o n i c R e s e a rc h C e n tr e (NMRC) and t h e r e c e i p t o f a

g r a n t f ro m t h e N a t i o n a l B o ard f o r S c ie n c e and T e c h n o lo g y

(NBST now E o la s) t o c a r r y o u t t h e w o rk .

The d e s ig n o f t h e i n t e g r a t e d c i r c u i t was c a r r i e d o u t a t

N . I . H . E D u b l in and a t t h e N .M .R .C i n C o rk . A 16 b i t m o d u la r

m u l t i p l i e r b a s e d on B la k e ly s a l g o r i t h m and u s in g a

s e r i a l / p a r a l l e l m u l t i p l i e r was d e s ig n e d . The m u l t i p l i e r was

im p le m e n te d u s in g CMOS s t a n d a r d c e l l s and t h e 5 m ic ro n

p r o c e s s te c h n o lo g y a t t h e N .M .R .C . A f t e r s i m u l a t i o n o f th e

d e s ig n l a y o u t o f t h e d e v ic e was c a r r i e d o u t . F u r t h e r

s i m u l a t i o n and v e r i f i c a t i o n o f t h e d e v ic e w ere n e c e s s a ry

b e f o r e f a b r i c a t i o n o f t h e d e v ic e .

S i m u l a t i o n r e s u l t s f ro m t h e d e v ic e show t h a t an o r d e r o f

m a g n itu d e i n c r e a s e i n e n c r y p t i o n t im e can be e x p e c te d .

F a b r i c a t i o n o f t h e i n t e g r a t e d c i r c u i t has j u s t been

c o m p le te d and t e s t i n g t o v e r i f y t h e s e f i g u r e s has y e t t o be

d o n e .

The in c r e a s e i n speed o f t h e a l g o r i t h m by an o r d e r o f

m a g n i tu d e , w h ic w i l l g i v e a b i t r a t e o f 10bps f o r a 40 b y t e

k e y , i s s t i l l n o t s u f f i c i e n t f o r a g e n e r a l p u rp o s e

e n c r y p t i o n d e v i c e . C o n v e n t io n a l c i p h e r s y s te m s , such as

DES, can a c h ie v e b i t r a t e s i n t h e m e g a b its p e r second

r a n g e . F u r t h e r i n c r e a s e s i n t h e speed o f p u b l i c k e y c ip h e r s

w i l l o c c u r w i t h a d v an ces i n i n t e g r a t e d c i r c u i t t e c h n o lo g y

and w i t h t h e d is c o v e r y o f more e f f i c i e n t a l g o r i t h m s .

A d vances i n i n t e g r a t e d c i r c u i t t e c h n o lo g y w i l l a l l o w a

g r e a t e r d e n s i t y o f d e v ic e s p e r c h ip and th u s t h e

i n t e g r a t i o n o f more o r a l l o f t h e p u b l i c k e y c i p h e r . T h is

129

w o u ld re d u c e t h e b o t t l e n e c k s i n h e r e n t i n t r a n s f e r r i n g

i n f o r m a t i o n t o an f ro m t h e e n c r y p t i o n d e v ic e . D i f f e r e n t

a l g o r i t h m s , more s u i t e d t o h a rd w a re i m p le m e n t a t io n , may

a l s o in c r e a s e t h e o v e r a l l l e v e l o f p e r f o r m a n c e .

U n t i l t h e n t h e b e s t com prom ise w o u ld a p p e a r t o be a

c o m b in a t io n o f p u b l i c and p r i v a t e k e y c i p h e r s . The p u b l i c

k e y c i p h e r c o u ld be u se d t o d i s t r i b u t e s e s s io n key s f o r use

b y a c o n v e n t io n a l c i p h e r , such as DES.

130

REFERENCES

1. KAHN, D

' The C o d e b r e a k e r s ' (M a c m i l la n , 1967)

2 . D IF F I E , W. and HELLMAN, M

'New D i r e c t i o n s i n C r y p t o g r a p h y . ' (IE E E T r a n s . I n f o .

T h e o ry I T - 2 2 , 6 - N o v -1 9 7 6 , p p . 6 4 4 -6 5 4)

3. MERKLE, R. and HELLMAN, M.

' H i d i n g I n f o r m a t i o n and s i g n a t u r e s i n t r a p - d o o r

k n a p s a c k s ' (IE E E TR ans . I n f o . T h e o ry , I T - 2 4 , S e p t -

1978 p p . 5 2 5 -5 3 0

4. R IV E S T, R . , SHAMIR, A . and ADLEMAN, L .

'A M eth od o f o b t a i n i n g d i g i t a l s i g n a t u r e s and p u b l i c -

k e y c r y p t o s y s t e m s ' (Comm. ACM, 2 1 , 2 , F e b -1 9 7 8 , p p .

1 2 0 -1 2 6)

5. DENNING, D . E .

'C r y p t o g r a p h y and d a t a s e c u r i t y ' (A d d is o n -W e s le y

1983)

6. NATIONAL BUREAU OF STANDARDS

'D a t a E n c r y p t io n S t a n d a r d ' (F IP S P u b l i c a t i o n 4 6

J a n -1 9 7 7)

7. ZIMMERMANN, P .

'A p ro p o s e d s t a n d a r d f o r m a t f o r RSA c r y p t o s y s t e m s '

(IE E E C o m p u te r , S e p t - 1 9 8 6 , pp 2 1 - 3 4)

8. KNUTH, D . E .

'T h e A r t o f C om puter Program m ing V o l . 2 S e m in u m e r ic a l

A lg o r i t h m s (A d d is o n -W e s le y , 1981)

9. BLAKELY, G. R.

'A co m p u te r a l g o r i t h m f o r c a l c u l a t i n g t h e p r o d u c t AB

m odulo M' (IE E E T r a n s , c o m p u te rs , V o l . C - 3 2 , No. 5 ,

M a y -1 9 8 3)

10. POHLIG, S. and HELLMAN, M.

'A n im p ro v e a l g o r i t h m f o r c o m p u tin g lo g a r i t h m s o v e r

G F(p) and i t s c r y p t o g r a p h ic s i g n i f i c a n c e ' (IEEE

T r a n s . I n f o . T h e o ry , I T - 2 4 , J a n -1 9 7 8)

11. ADLEMAN, L .

' A S u b e x p o n e n t ia l a l g o r i t h m f o r t h e d i s c r e t e

l o g a r i t h m p ro b le m w i t h a p p l i c a t i o n s t o c r y p t o g r a p h y '

(P r o c . IEEE 2 0 t h Symp. on F o u n d a t io n s o f Com puter

S c ie n c e , O c t . - 1 9 7 9)

131

12. SCHROEPPEL, R and SHAMIR, A.

' A T * (S * * 2) = 0 (2 * * n) t im e / s p a c e t r a d e - o f f f o r

c e r t a i n N P -c o m p le te p r o b le m s ' (P r o c . 2 0 t h IEEE Symp.

on F o u n d a t io n s o f co m p u te r s c ie n c e , O s t -1 9 7 9)

13. QUISQUATER, J and C o u v r e u r , C.

' F a s t D e c ip h e rm e n t A lg o r i t h m f o r RSA p u b l i c - K e y

c r y p t o s y s t e m ' (E l e c t r o n i c L e t t e r s 1 4 - O c t - 1 9 8 2 V o l .

18 No. 2 1 .)

14. BLAKELY, B. and BLAKELY, G.

' S e c u r i t y o f number t h e o r e t i c p u b l i c k ey

c r y p to s y s te m s a g a in s t random a t t a c k ' (C r y p t o l o g i a 4 -

O c t . - 1 9 7 8 , 1 - J a n . - 1 9 7 9 , 2 - A p r i l - 1 9 7 9)

15. NORRIS, M. and SIMMONS, G.

' P r e l i m i n a r y comments on t h e M IT p u b l i c k ey

c r y p t o s y s t e m ' (C r y p t o l o g i a 1 , 4 , 1 9 7 7)

16. SOLOVAY, R. and STRASSEN, V .

' A f a s t M o n t e - C a r lo t e s t f o r p r i m a l i t y '

(SIAM J . C o m p u tin g , 6, 1 , M a r c h -1 9 7 7)

17. CRISP I E , F .

'CMOS C e l l L i b r a r y ' (NMRC, S e p t . - 1 9 8 5)

r
18. WESTERN DIGITAL

'WD2001/Q2 Data Encryption Devices'
(Western D ig ita l Corporation, July-1984)

19. SHAMIR, A. and ZIPPEL, R.
'On the se cu rity o f the Merkle-Hellman cryptographic scheme1 (IEEE
Trans. In fo . Theory, IT-24, 3, May-1980)

20. CURRAN, T. and BRADY, P.
'Research Report (Jan - May 1985) '
(N .I.H .E D ub lin , May-1985)

132

RIN ROUT

cr-
4>

a
QJan
O i3

BIN Reset BOUt

Gout DIN

SGNI

SGNO

M/S

Dout

Gin

Aout

Ain

ADFIN

Busy

Run

Clock

ADDENDUM

Two ways o f implementing the con tro l u n it were considered :

1. Dedicated Design
2. PLA

The dedicated design implemented the contro l u n it using standard lo g ic
gates and f l ip - f lo p s . An in ve s tiga tio n was ca rried out to determine
the space required by th is approach. The lo g ic elements occupied

2
1.7mm . This did not include routing between the devices. A ru le o f
thumb, used at the N.M.R.C, requires tha t an equal amount o f space be
allowed fo r ro u tin g . This resu lted in a to ta l space requirement o f
3.4mm2 .

The PLA is designed on a modular basis. This allows fo r f le x ib i l i t y in

the number o f inp u ts , outputs and product terms th a t can be
accomadated by the PLA. The PLA used is a dynamic type and requires a
clock and precharging. To ease the construction process the PLA was
designed so tha t c e lls could be placed together to form the complete
u n it . Programming o f the AND and OR planes is ca rrie d out by placing a
c e ll (ANDPROG or ORPROG) a t the junc tion o f the AND or OR plane and
the product l in e .

The size o f the PLA (based on 9 inputs, 12 outputs and 21 product
terms) was ca lcu la ted to be 2.5mm . Routing w ith in the contro l u n it
is not required in th is implementation due to the regular nature o f
the PLA.

Choice o f method.

The PLA was chosen as i t requires less space than the d iscre te

vers ion . Another advantage of the PLA is th a t the con tro l a lgorithm
can be m odified, w ithou t a ffe c tin g the size o f the PLA (provid ing the
number o f inpu ts, outputs and product terms remains constan t).

Al. The use of a PLA in the Control Unit.

A2. Control and Data Path.

The modular m u lt ip lic a t io n device could be broken in to two d if fe re n t
areas. The f i r s t was ca lled the data path, as i t involved the storage
and m anipulation o f the data. The second, c a lle d the contro l path,
implemented the con tro l a lgorithm . The reason fo r th is d iv is io n was
th a t some of the functions o f the m u lt ip lic a t io n device were dependent
on the length o f the operands w hile others were no t. The s ize , or
w id th , o f the data path (i . e the number o f b its required fo r the
operands) could be changed to s u it space re s tra in ts whereas the size
o f the con tro l path was fixed and could not be changed.

A3. Width o f Data Path.

One o f the requirements o f the modular m u lt ip lic a t io n device was the
i t should handle as long a key length as po ss ib le . The u ltim a te l im i t
on the key s ize would be determined by the space ava ilab le on the

s il ic o n d ie . The elements o f the data path were there fore designed on
a modular basis, e.g a one b i t s h i f t re g is te r was designed. When a l l
the elements were designed an estimate o f the space required fo r
d if fe re n t key lengths was made. This exercise showed tha t a key length
o f 16 b its was the maximum th a t could be accomadated on the 6 .Inn by

6.1mm d ie .

