Designing Role-Based View for Object-Relational Databases

Ling Wang

B.Sc.

A thesis submitted for the degree of

MASTER OF SCIENCES

to the

DCU

Dublin City University

School of Computing

Supervisor: Mark Roantree

June 2003

Declaration

I hereby certify that this material, which | now submit for assessment on the programme of study
leading to the award of M.Sc. is entirely my own work and has not been taken from the work of
others save and to the extent that such work has been cited and acknowledged within the text of

my work.

Signed -———- A ~Nl
Student ID 51186403

Date June 2003

Acknowledgments

I would like to express my sincere thanks to my supervisor Dr. Mark Roantree, for his help, interest

and encouragement over the last sixteen months.

I own a large debt of thanks to the members of Interoperable Systems Group, who was always
willing to discuss my problems with technical support and proof-reading. Dalen Kambur, Damir

Becarevic and Gerald O’Connor, your help make this thesis possible.

I would like to acknowledge the significant input of Jianming Zou. On many occasions | must
have bored him by talking about my research problems | were having with the thesis, but he
always listened and made be believe that | could do it. | would like to thank him for his patience,

encouragement and faith in me.

Finally, this thesis is dedicated to my parents.

Designing Role-Based View for Object-Relational Databases Ling Wang

Abstract

In a federated database system, a view mechanism is crucial since it is used to define exportable
subsets of data; to perform a virtual restructuring dataset; and to construct the integrated schema.
The view service in federated database systems must be capable of retaining as much semantic
information as possible. The object-oriented (0-0) model was considered the suitable canonical
data model since it meets the original criteria for canonical model selection. However, with the
emergence of stronger object-relational (0-R) model, there is a clear argument for using an O-
R canonical model in the federation. Hence, research should now focus on the development of
semantically powerful view mechanism for the newer model. Meanwhile, the availability of real
0-R technologies offers researchers the opportunity to develop different forms of view mechanisms.

The concept of roles has been widely studied in 0-0 modelling and development. The role model
represents some characteristics that the traditional 0-0 model lacked, such as object migration,
multiple occurrences and context-dependent access. While many forms of 0-0 views were designed
for the 0-0 canonical model, one option was to extend the 0-0 model to incorporate a role model.
In a role model, the real entity is modelled in the form of a role rather than an object. An object
represents the permanent properties of an entity is a root object; and an object represents the

temporary properties of an entity is a role object.

The contribution of this research is to design a view system that employees the concept of roles
for the 0-R canonical model in a federated database system. In this thesis, an examination of the
current 0-R metamodel is provided first in order to provide an environment for recognising the role-
view metadata and measuring the view performance; then a Roleview Definition Language (RDL)
is introduced, along with the semantics for defining virtual classes and generating virtual extents;
finally, a working prototype is provided to prove the role-based view system is implementable and

the syntax is semantically correct.

Contents

Declaration
Acknowledgments
Abstract

1 Introduction

1.1 A Federated Database ATChITECTUTE ..o
1.2 ODJeCt-Oriented VIBWS i
1.3 Object-Oriented R 018 S i
1.3 1 ROIE F AU S ettt bbbt
1.3.2 ROIE U S@ 0 €ttt sttt sttt eb e et s e et s et e et s e en et ne e
1.4 Motivation & CONrIDULION ot st be s s sresbens
1.4.1 Issues Regarding TerminOlOgy it
15 Conclusions & DiSSErtatioNL @Y 0 UL .o ieisestee e sestere e sesenens

2 Related Research

2.1 EXtended Sm alltalk ..o
2.2 DOOR/IMM ettt bbbt ea bttt n et
2.3 GAlIIBO ettt bbb en s
2.4 SUMMATY OF AN AIY SIS ittt ettt nenes
2.5 L OMNCIUSTON S ittt h s s

3 Extending the O-R Metamodel
3.1 The Object-Relational M tam 0d el ..o
3.1.1 Object-Relational T Y P S ettt snne
3.1.2 Object-Relational Tables ...
3.1.3 Object-Relational VIiBW S.....ccoiiiiiiiiiisi s
3.1.4 Object-Relational TV iggerS .ttt

3.15 SUM M ATY o

12

15

18

19

21

21

22

25

27

28

29

CONTENTS

3.2 Extending the 0-R Metamodel

3.2.1 Role-Based View M etamodel

3.2.2 Metamodel EXTENSTONS .ottt
3.2.3 Implementing the Metamodel EXteNSiONS i
3.3 ConcluSiONS. .o

Designing Role-Based Views for O-R Databases

4.1 Introduction....cocvvcicieececeeeeeee

4.2 Defining Role-BasedViews

4.2.1 Role-Based View Semantics
4.2.2 Role-Based View Definition Syntax

4.2.3 Role-Based View Definition Examples

4.2.4 Generating Extents for Virtual Classes ...

4.3 Restructuring O perations.............

4.3.1 Class Level Operations..........

4.3.2 Object Level Operations

44 Conclusions

Implementation

5.1 Server Implementation.......ccoceeeenne

5.1.1 Defining O-R Meta-UDTs

5.1.2 Defining Roleview Meta-UD Ts

5.2 Defining Roles

52.1 Parsing RD L e

5.2.2 Building Roleview Processor

5.3 Experiments

5.4 Conclusions

Conclusions

6.1 ThesSis SUM M ATY .o

6.2 Further Research...eveenne.

Roleview Metamodel DDL

RDL Grammar

RDL Role Declaration Class

RDL Roleview Declaration Class

RDL Main Class

29
29
30
32

34

35
35
36
36
37
39
41
44
44
46

47

49
49
50
51
53
53
54
55

59

60
60

61

66

71

76

79

90

List of Figures

11

1.2

1.3

1.4

21

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

51

5.2

5.3

5.4

5.5

5.6

Five-Level Architecture of FDBS
Website Schema with Role Extensions

Image Schema......

Image Schema wi

Extended Smalltalk & Our Approach
DOOR/MM & Our Approach

Galileo & Our Approach

Object-Relational
Object-Relational
Object-Relational
Object-Relational
Object-Relational
Roleview Metamo
Object-Relational
Object-Relational

Object-Relational

Web Design Schema
Roleview Examples
ImageView with Extents

TextView with Extents

Prototype Overview

Virtual O-R & Roleview Meta-UDTs

Parse RDL Using
Roleview Definitio
Roleview Processo

Display Roleviews

th Role Extensions

Metamodel OVEIVIEWccocoiieeeecieete ettt
TYPES M ETAUATA .ot
Tables Metadata

VIEWS M LA ALA ..ciiiieciciieicete et
Triggers Metadata. ...
del

Metamodel & Extensions

Roleviews Metadata

Presentation of Roleview Metamodel

ANTLR 2.7, 2 ettt aeere e
NS TN RD L ittt ettt b st sbesae e e see e
r Execution

vi

12

15

17

22

24

26

28

29

30

31

32

33

39

40

43

44

49

51

54

55

57

58

List of Tables

4.1 Scope Issues

36

Chapter 1

Introduction

The concept of federated database systems is where heterogeneous databases can communicate
with each other through an interface provided by a canonical model. A federated database system
is structured as follows: data resides in heterogeneous databases or information systems; each
participating database schema is translated to a canonical model named the component schema;
view schemas are defined as subsets of the component schema, and shared with other databases
or information systems; view schemas are exported to a global or federated server where they
are integrated to form multiple global or federated schema. With a highly flexible architecture,
the federated database systems not only provide location transparency but contain advantages
of conventional view systems such as a virtual restructuring of the physical datasets to meet the

requirements of different users.

Many federated database systems development tasks have been addressed, including schema trans-
lation, access control, negotiation and schema integration [SL90]. A view mechanism is crucial
since it is used to define exportable subsets of data; to perform a virtual restructuring dataset;
and to construct the integrated schema. The view service in federated database systems must
be capable of retaining as much semantic information as possible, for example it should retain

information regarding inheritance and associations between classes.

As the form of object-oriented (O-O) federated database system [BE96] is a specialised form of
federated database systems, ODMG model [CB97], the standard model for 0-0 databases, is used
to represent the component schema in many proposals [PBE95, BE96, Rad96, KR01, RKBO01],
However, as the popularity of the ODMG model declines, and with the emergence of stronger
object-relational (0-R) models (Oracle 9i for example), there are now genuine options for canon-
ical models using the original criteria for canonical model selection [SCGS91]. Hence, research
should now focus on the development of semantically powerful view mechanism for the newer
model. Meanwhile, the availability of real 0-R technologies such as Oracle 9i offers researchers the

opportunity to develop different forms of view mechanisms.

1.1 A Federated Database Architecture

Sheth and Larson [SL90] proposed a five-level architecture for federated database systems (FDBS)
which is now widely accepted standard architecture for these systems. The five-level architecture
is illustrated in figure 1.1:

* Local Layer. The local schema contains each participating databases or information sys-

tems. It describes the logical schema of an autonomous database which may be unaware of

CHAPTER1. INTRODUCTION 2

External Schema External Schema External Schema
(User Data Model) (User Data Model) (User Data Model) External Layer
Federated Schema Federated Schema
(Global View) (Global View) Federated Layer
Export Schema Export Schema Export Schema Export Laver
(Qbject-Relational Vii Ibject-Relational Vieve Ibject-Relational V p y
Component Schema Component Schema
(Object-Relational Model) (Object-Relational Model) Component Layer
Local Schema Local Schema Local Layer

Figure 1.1: Five-Level Architecture of FDBS.

the existence of federated database operations [SL90].

« Component Layer. The component schema contains the transformed local schema and
is presented in terms of the canonical model. The O-R model is considered the canonical
model since it meets the original criteria for canonical model selection [SCGS91]. It plays
two specific roles: the transformation of data from local schema representation to the O-R
representation; and the retrieval and updating of data in the local schema. The O-R model
that the component schema presents must supply a powerful view mechanism in order to
build the exportable schema. Although the current O-R view mechanism does not fully
support the semantic relativism metric [SCGS91], it provides an opportunity to develop a
richer and powerful view service.

« Export Layer. Not all data of a component schema may be available to the federation and
its users. The export schema represents a subset of a component schema that is available to
the federation [SL90]. An export schema is considered local view schema, which is shared with
other databases or information systems. The view mechanism performs virtual restructuring
datasets of component schema. A filtering process is used for checking queries and enforcing

access restrictions on specific data in order to define views.

 Federated Layer. The federated schema is an integration of multiple export schemas.
Hence, a federated schema is also considered global view schema. Data from the export
schema is merged using a constructing processor to form the federated schema or global
schema. The view mechanism plays an important role of constructing the integrated schema.
Command decomposing and data merging are the functionalities that the view mechanism
must supply. Our research currently deals with the issue of local view schema, defining the
federated schema is for further research.

« External Layer. The external schema contains a subset of the federated schema by using
filtering processor (if required). In this schema, a further data model transformation is
required for the purpose of translating the global schema to an end-user preferred data
model. Since the Extensible Markup Language (XML) [GroOIl] represents a standard for
encoding an distributing data portable across various platforms, it is an option that the data

is modelled in the XML format in the external schema.

CHAPTER 1 INTRODUCTION 3

O Entity/ Root O Rode <0> Multiple Role

Figure 1.2: Website Schema with Role Extensions.
1.2 Object-Oriented Views

In a FDBS, a view mechanism must contain powerful features because it is used to define exportable
schemas; to perform virtual restructuring of datasets; and to integrate global or federated schemas.
Different forms of 0-0 views [SLT91, Run92, SAD94] try to provide the semantic restructuring
power for canonical model requirements [SCGS91]. Although there is no standard solution to
properly address the metamodel or behaviour issues, the 0-0 view mechanisms provide the rigidity
that satisfies the requirements of canonical model in a FDBS. Those features are examined as the
following:

* Base class and virtual class are separated. The issue of placement is a great concern if a
defined virtual class is included in the base hierarchy. In a class hierarchy, each class has
its own extent and no overlap exists between class extents. However, with the virtual class
inside the class hierarchy, it is not possible to ensure that query results are disjoint. A
separated hierarchy of base and virtual classes must exist in the 0-0 model. Thus, any view
mechanisms for 0-R databases should maintain a separate hierarchy for the 0-R base and

virtual types.

e Object preserving semantics is used to represent 0-0 views. These semantics are used to
bind the base and virtual classes and perform updates. With object preserving semantics,
persistent references are generated for base classes only. It guarantees correct mappings
between virtual and base objects, and subsequently provides a reliable update mechanism.
Where references to virtual objects are required, the base references are used.

* A view is considered a virtual schema rather than a virtual class. A FDBS requires its view
mechanism retain as much semantic information as possible. This requirement emerged from
the study on FDBS in [SCGS91]. Hence, most researchers defined an 0-0 view as a virtual
schema rather than a virtual class. It is more powerful if it permits multiple classes with a
single view. While defining the 0-0 view mechanism, a proposed query is used to generate

the extents for included virtual classes.

CHAPTER 1 INTRODUCTION 4

1.3 Object-Oriented Roles

W hile defining a view mechanism for the 0-0 data model, one option is to extend the data model
to incorporate a role model. The real world entity is modelled in the form of a role rather than an
object. In this section, we describe the concept of a role and demonstrate the semantic power that
the 0-0 data model cannot represent. Figure 1.2 presents an sample schema with role extensions.
A web document is represented by WebDocument class in the website schema. It is composed of
classes Image, Layer and Text. A Layer class associates with classes Image, Text and Flash. An
Image class is the root class of role classes ImgMap and Animatedlmg. In other words, an Image
object is allowed to be view as an ImgMap object and an Animatedimg object at the same time.
The role class Animatedimg is represented as a multiple role class, where the multiple occurrences
of a single role object is allowed. It associates with Flash class while an Animatedimg object
participating in a Flash object. The Text class is also a root class of role class AnimatedTxt
because we assume a Text object is considered an AnimatedTxt role when it appears in a Flash
object. In this sample schema, there are two root classes exists, which are Image class and Text
class, along with three role (including multiple role) classes, which are ImgMap, Animatedimg and
AnimatedT xt.

The Role data model, an extension of the network model, is credited as the first data model that
introduced an explicit notion of roles [BD77]. A role is a concept that lacks semantic rigidity. For
a concept to be a role, it is always in a relationship with other roles or entities; and represents only
the extrinsic properties of the real-world entity. Individuals can enter and leave the extent of the
concept without losing their identities [FBCP01]. On the other hand, a natural type (e.g. class or
type) is characterised by semantic rigidity, it represents the intrinsic properties of the real-world
entity. An individual of a natural type cannot drop its type without losing its identity. A role
is considered the temporary aspect of a natural type. For example, in figure 1.2, Animatedimg
is defined as a role since to be an Animatedimg the appearance in a Flash is required, and the
disappearance does not lead to a loss of its root identity. In other words, an Image object still
exists even though it does not play a role of Animatedimg. On the contrary, Image is a natural
type, because an Image object will always remain an Image and being an Image is independent of
the existence of any relationships.

1.3.1 Role Features

Many features of roles have been identified in last decade, some conflicting with others, so that
there is no single definition of a role [SteOO], The following are the most important features of roles
that have been widely accepted:

« Roles can be acquired and abandoned dynamically. A role represents the extrinsic features
of an object due to its participation in an event, and it is created when the participation
begins. If the object stops participating, the role may cease to exist and all its properties and
behaviour no longer hold. For example, in figure 1.2, an Image object is allowed to play an
ImgMap role originally, and gain a new role Animatelmg later, while retaining the first role.
It is also allowed that an Image object loses its ImgMap role and gains an Animatedimg role.

« Each role of an object has its own properties and behaviour. A role is used to represent one
specific state of a multi-faceted object, The properties and behaviour that the role holds,
presents only the extrinsic aspects of the object. In figure 1.2, root class Image and role
classes ImgMap and Animatedimg represent different properties and behaviour.

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Image Schema.

* An object may play different roles simultaneously. This is one of the most broadly accepted
properties of the role concept. Since a role is usually regarded as a special ‘type’, it amounts
to the multiple classification of objects. Instead of exclusive and permanent relationships, the
relationship between an object and its role is dynamic and temporary. The typical example

is that an Image object plays role ImgMap and role Animatedimg at the same time.

¢« An object may play the same role several times. This is fundamental concept in the real world
with an example being a student registering at several universities. Unlike with different
roles however, it does not correspond to multiple classification. This situation is described
as multiple occurrences [GSR96]. The main reason for distinguishing multiple occurrences
in the same role is that each occurrence of the object in a role is associated with a different
state. For example, in figure 1.2, an Animatedimg role object appears with different rotation

in different Flash objects.

¢ A role can be transferred between different objects. It is useful to let a concrete role be
dropped by one object, and picked up by other objects, or even to specify the properties of a
concrete role without naming a particular role player. For example, the ImgMap role can be
transferred from one Image object to another Image object. Note that many role features are
transferred without changing, while others must be re-computed in light of the new entity
playing the role. For example, in figure 1.2, if the rotation of an Image is “+90° for being
an Animatedimg role , then the rotation property must be recomputed should that role be
transferred.

1.3.2 Role Usage

The role concept was proposed as a way to overcome the limitations of classical object models.
It captures evolutionary aspects of real-world objects that cannot be modelled by time-dependent
property values and that are not well captured by the generalisation relationship [DPZ02]. Follow-

ing are the examinations of how the notion of roles relax those limitations:

e Object Migration. Consider the sample schema presented in figure 1.3, where an Image

object cannot be modelled as an Animatedimg object if it is originally defined as an ImgMap

CHAPTER 1. INTRODUCTION 6

| 1 Entity / Root CZD Role Multiple Role

Figure 1.4: Image Schema with Role Extensions.

object. In the 0-0 model, each object is identified by a unique object identifier. Hence,
an Image object IISG" is identified by different identifiers when it moves from being an
Animatedlmg object to an ImgMap object. This problem is resolved by using the role concept
in object modelling. Figure 1.4 illustrates that Image is specified as an object (root) class,
and ImgMap and Animatedlmg are two role classes of Image class. According to the feature
of the roles, an object can acquire or abandon the roles dynamically without changing the
identity of that object. Image */5G’ now can be represented by an Image object with an

ImgMap role in the beginning; and with an extra role Animatedimg afterwards.

e Multiple Occurrences. In the real world, it is possible that multiple occurrences of the
same object exist. Considering the previous example again, Image object IISG’is an animated
image and represented as an instance of Animatedimg class. However, it later participates
in another Flash object as an animated image. In the 0-0 model, an object becomes an
instance more than once of the same class is not possible. One of the role features is that
an object can play the same role many times simultaneously. Hence, in figure I.j., Image
‘/iSG" is represented as an Image object with one Animatedlmg role, where allows multiple
occurrences. In other words, representing the same object as more than one instance of the
same class (role class) is possible.

e Context-dependent Access. The 0-0 model has no ability to view a multi-faceted object
in a particular perspective [DPZ02]. Considering the previous example again, if Image object
IISG" is specified as an ImgMap object, it can never be viewed as an Animatedimg object.
This obstacle is released with the concept of roles. In figure 1.4, Image ‘TSG’ is allowed to

be observed separately either as an ImgMap role or an Animatedimg role.

1.4 Motivation & Contribution

In a FDBS architecture, it is necessary for each participating system to provide a description
(view definition) of its shareable data in a semantically rich manner. The 0-0 model offers some

semantic power by defining object views. However, a role mechanism may provide a flexibility while

CHAPTER 1. INTRODUCTION 7

retaining the expressive qualities. The original criteria for canonical model selection [SCGS91] has
shown that an object based model is the most suitable data model. The O-R model, another object
based data model, has been strongly developed in last few years, and there is a clear argument
for using an O-R canonical model because of its increasing similarity to 0-0 model and its more
widespread acceptance (Note: In this research, we regard the latest version of Oracle to be the O-R
standard). In the O-R model, similar objects are grouped into a type, which defines the structure
and behaviour of its instances. Types are organised into a type hierarchy, where the structure
and behaviour of several types can be abstracted into a common supertype. Generalisation and
specialisation are the common properties of the O-R model. The collection type in the O-R model
is used to represent the aggregation and composition relationships. While defining a type in the
O-R model, the method is declared to implement the behaviour that users want objects of that
type to perform [OraOl]. Furthermore, the view mechanism supplied by the O-R model provides
an opportunity to develop a richer and more powerful view service to meet the canonical model
requirements.

The 0-0 model and the O-R model present similar suitability as canonical models in the federa-
tion. In our research, the O-R model is considered the canonical model because it provides new
experiments. The motivation of our research is to define a new view system which is based on the
concept of roles in the O-R data model. Our contribution is 2-fold: to examine the deployment
of the latest O-R model (both as a model and metamodel) and to specify and implement a view
mechanism which is role-based. With the examination of the model, we outline its suitability to
meet the canonical model requirements, and also clarify the possibility of extending its metamodel
to facilitate roles. Specifically, an extended Structured Query Language (SQL:1999) [GP99] is used
to provide the specifications and mappings to support restructuring, and to generate extents for
the virtual classes of view mechanism.

1.4.1 Issues Regarding Terminology

This research describes the deployment of a role-based view system for O-R databases. It provides
a new look at an alternate view mechanism, which is based on the O-R industry standard. A
relation is the only possible structure in the relational data model. Hence, a base relation is used
to refer to a relation containing physical data, and a virtual relation is a relation derived using a
query on base or virtual schema. The relational model handles real world entities by modelling
them as relations. The flat feature of the relational model makes it impossible to handle complex
objects and object hierarchy. However, the object models (0-0 and O-R) contains complex objects
and a view may involve the construction of a single virtual object of multiple virtual objects. Some

researchers regard a view as a single virtual class, and others regard a view as a virtual schema.

In our research, a view is regarded as a virtual schema to meet the original criteria of canonical
model in FDBS. The term of roleview is used to represent a new O-R view mechanism that
contains multiple virtual classes. The term of root is used to specify the static component of the
view, which presents the intrinsic properties of an object, and role is the term that specifies the

dynamic component of that view, which presents the extrinsic properties.

1.5 Conclusions & Dissertation Layout

In this chapter a general introduction to FDBS is provided, together with the functionalities that
the view mechanism must provide. The existing 0-0 view mechanisms present three main features,

which are base class and virtual class must be separated; object preserving semantics is used to

CHAPTER 1 INTRODUCTION 8

represent the views; a view is a virtual schema style rather than a virtual class style. We also
studied the notion of role concept and role usage. The O-R model is regarded as the canonical
model since its popularity is growing, and finally the concept of roles is used to build a new view
mechanism rather than the traditional 0-0 views.

In chapter 2, we examine some projects that have implemented the role concept in practice. The
contribution and limitations of each project are listed, while the differences to our approach are

also clarified.

In chapter 3, we analyse the current O-R metamodel. A full description of the metaclasses are
presented. Before extending the metamodel, a study of our view metamodel is introduced. The
extended metamodel provides the capability of recognising roles and roleviews. Finally, we briefly

describe the extended metamodel.

In chapter 4, we present our view model. The semantic issues are discussed and a complete
specification is provided. The extended SQL:1999 is used to define the mechanism, and a view

display system uses the methodology for extents to display views.

In chapter 5, we introduce the details of prototype and the experiments are provided. In chapter

6 we conclude the thesis and discuss the future work.

Chapter 2

Related Research

0-0 modelling and development have been widely studied in research and developed in industry.
However, there are still some problems requiring for solutions. One of these problems, the lack of
adequate object evolution mechanisms, also knowing as role modelling, has attracted the attention
of many researchers. Different proposals for extending the traditional object model with role
mechanisms have been published. As our view system is built on the base of role concept, it is
necessary to study the existing role proposals and present a comparison of their features. In this
chapter we clarify the differences between those proposals and our solution. Furthermore, we list

the functional requirements that a suitable view mechanism of federated systems must represent.

For many years object roles have been studied in 0-0 literature. Some researchers concentrated
on theoretical aspects [RS91, ABG093, SteOO, DPZ02], while others focused on implementation
[GSR96, Won98, AAGOO, JHPS02]. In this chapter, we take a close look at some recent projects
which represent roles in practice. Each project is studied according to the following criteria: the
contributions and the limitations, the context of roles and views (if present) and the beneficial
features that we may use. All examples illustrated in this chapter are based on the schema in
figure 1.4.

2.1 Extended Smalltalk

Gottlob et al. [GSR96] extended the existing 0-0 programming language Smalltalk by adding
classes such as ObjectWithRoles and RoleType to support the role mechanism similar to OBD
[KS91]. The root of the role hierarchy is represented as a subclass of ObjectW ithRoles, and every
role type is specified as a subclass of RoleType. The object migration and context-dependent access
issues are relaxed in this approach. The prime contribution of the work is that multiple occurrences
is enabled by defining a new type QualifiedRoleType. With that type, it is possible to model
a real world entity that has several occurrences of one single role. To be able to distinguish the
different occurrences of a role type of a single object, the occurrence has to be uniquely identified
via a qualifying attribute. The following examples illustrate the definitions of object with role

extensions in Extended Smalltalk.

Example 2.1 Smalltalk Root Definition.
/1 Root Type Definition
ObjectWithRoles /| start the root type definition

subclass: #Image /] root Image is a subclass of ObjectWithRoles

CHAPTER 2. RELATED RESEARCH 10

instanceVariableNames: ‘img-id name size resolution content
background source’

classVariableNames: 1’ // variables at the classlevel are null

poolDictionaries: 1’ /'l string of pool names

category: ‘ImageView’. /| category name string

/| Root Object Definition

ISG <= Image new. /| create a new object of Image type
ISG img-id: 1001. /'] assign values to instance variables
ISG name: “ISG"
ISG size: ‘ 60k
ISG resolution: “ 144p -
ISG content: * logo\
ISG background: ‘white”’.

ISG source: 1c:\\Graphics\\’

In example 2.1, root type and root object are defined. The root type Image is defined as a subclass
of ObjectWithRoles. The root class represents the supertype in a role hierarchy named ImageView,
and it is also provided as a parameter in addition to the role-specific instance variables. The root
object ISG is defined by sending the message Image new. The definitions of role type and role
object are illustrated in example 2.2.

Example 2.2 Smalltalk Role Definition.

/' Role Type Definition

RoleType /| start the role type definition
defRoleType: #ImgMap /1 ImgMap is a subclass of RoleType
instance VariableNames: ‘map-name shape href coordinates target’
classVariableNames: 1’ // variables at the class level are null
poolDictionaries: 1° /'l string of pool names
category: ‘ImageView’ // category name string

roleSuperType: #Image. [/ specify its root type

/1 Role Object Definition
/| create new role object, which corresponds to ISG root object
ISGImgMap <- ImgMap newRoleOf: ISG.
ISGImgMap map-name: fsg-ban’. // assign values to instance variables
ISGImgMap shape: ‘oval’.
ISGImgMap href: lwww.google,com .
ISGImgMap coordinates: {125, 50}.

ISGImgMap target: ‘elf”.

http://www.google

CHAPTER 2. RELATED RESEARCH 11

The role type definition starts with the message defRoleType, and roleSuperType is used to
present the supertype in the role hierarchy. In the previous example, class Image is specified as
the supertype of role type ImgMap. The supertype of a role type could be a subclass of RoleType
or ObjectOfRoles. In other words, a role can be played by either a root or another role. While
defining a role object, the message newRoleOf is used for representing an object as the ancestor of
the new role type instance. In this case, role object 1ISGImgMap is played by the root object ISG.

Example 2.3 Smalltalk QualifiedRole Definition.

/ I QualifiedRole Type Definition

QualifiedRoleType /| start the qualified role type definition

/1 AnimatedImg is a subclass of QualifiedRoleType
defQualifiedRole Type: # Animatedimg
instanceVariableNames: width height coordinates rotation tween scale’
class VariableNames: 1” // variables at the class level are null
poolDictionaries: *’ /'] string of pool names
category: TmageView’ // category name string
roleSuperType: #Image // specify its root type
classOfQualifying Obj: #Flash. /'l specify the qualifier

/1 QualifiedRole Object Definition

isgLogo <- Flash new name: fsgJogo’. /'] create a new object of Flash

/'l create new qualified role object, which is qualified by isgLogo object

AnimatedLisg <- Animatedlmg newRoleOf: ISG qualifiedBy: isgLogo.

trLogo <- Flash new name: IkrJ,0ogo’. /'] create a new object of Flash
/'l create new qualified role object, which is qualified by trLogo object

AnimatedL.tr <- Animatedlmg newRoleOf: ISG qualifiedBy: trLogo.

In the final example, the qualified role type and object are defined. The attribute clssOfQuali-
fyingODbj is provided as a parameter in addition to the role-specific instance variables and instance
methods. The method newRoleOf: anObject qualifiedBy: qualifyingObj is predefined for
creating new qualified role objects.

Extended Smalltalk supports creating new objects based on the role concept rather than implement-
ing this concept with the current 0-0 model. The authors try to model objects in an object-role
format rather than in 0-0 format. However, our focus is on how to restructure or review the
defined objects, which have been stored in 0-R databases. Although this proposal resolves many
issues that the traditional 0-0 model presents, the role definition is based on one single individual
object. Each root object or role object is generated individually. However, we concentrate on
generating a collection of objects with the capability of restructuring in a new view system. The
term of multirole in our approach is used to address the issue that QualifiedRoleType resolved.
Figure 2.1 represents the differences between Extended Smalltalk and our approach. The premier
difference is that Extended Smalltalk concentrated on extending the 0-0 model at the local layer;

and we focus on developing a new view service at the view layer by extending the 0-R metamodel.

CHAPTER 2. RELATED RESEARCH 12

View Layer

«-QB Schema ! Repository Schem; DB Schema Repository Schema,
Smalltalk defined Relati D Oracle 9/ defined
Object Instances .metadata t*pes_ _ e'atlona ata & metadata jypes Local Layer
Object Instances
Extended metadata types Extended metadata types
(ObjectWithRoles, RoleType, (Roleview, Root, Role,
QualifiedRoleTvpe), MultiRole)
Object-Oriented Database Object-Relational (Oracle 9/) Database
Extended Smalltalk Our Approach

Figure 2.1: Extended Smalltalk & Our Approach.

22 DOOR/MM

Wong et al. proposed a dynamic object-oriented database programming language with role and
multimedia extensions [Won98]. The three contributions are: supporting object migration; extend-
ing multimedia objects with the notion of roles; and integrating views and roles.

The issue of object migration is resolved by representing roles with the role class names and their
values instead of the global unique identifier. Representing roles with a unique identifier offers
the following advantage: it distinguishes a role from other roles; it recognises a role as the same
role even if its state is changed; it models class migration by adding and deleting roles to an
object. However, this unique role identifier scheme still causes problems like dangling references
and historical information representation if we allow a reference to a role [WCL97). For example,
if a manager position is replaced by another person, all references to the manager should change
to the new manager (who is represented by a different role identifier). Hence, a role object is

represented by the combination between role class name and role object value in this approach.

The issue of multiple instantiation is not discussed explicitly. Authors only specify a boolean
expression in order to distinguish multiple occurrences. In the case of multiple roles satisfying the

expression, the system will only return one of them for the sake of simplicity and efficiency.
A newly designed language, the DOOR database programming language (DL), is used to define
the roles. Following are the key constructs:
1. (make < class > £subclass-of ...)
2. (make < virtual-view > existing-instances ...)
3. (make < materialised-view > existing-instances ...)
4. (make an-existing-object-class “slot 1...)
5. (make an-existing-role-class an-existing-instance “slot 1 ...)
The keyword make is used to create a class (either object class or role class), a virtual view,

a materialised view, an object, or a role. These constructors are represented by the following

examples, which are based on the schema in figure 1.4

CHAPTER 2. RELATED RESEARCH

Example 2.4 DOOR/MM Root Definition.

/'l Root Class Definition

(define <Image> /| start the root class definition
(make <class>

/| specify the attributes

slots (list ‘img”id name Size ‘resolution ‘content ‘background ‘source)

‘label ‘“<Image>7) /1 specify the label of root class

/1 Root Object Definition
(define 1SG /| start the root object definition
(make <Image>

img-id 1001 /'] assign values to root attributes
name “1SG”
Size “60k”
‘resolution “444p~
‘content “logo”
‘background ‘white”

‘source ‘c:\\Graphics\\’)

In example 2.4, root class and root object are defined separately.

root class and the second part is used to create a root object.

Example 2.5 DOOR/MM Role Definition.

/'l Role Class Definition

(define <ImgMap> /Istart the role class definition
/1 it is defined as a subclass of Role

(make <class> %subclass-of (list <Role>)

First make is used to create

player-domains (list <Image>) /'] specify its root class

/| specify the role class attributes
slots (list ‘map_name ‘shape ‘href ‘coordinates ‘target)

‘label ‘<ImgMap>7) /| specify the label of role class

/IRole Object Definition
(define ISGImgMap /'] start the role object definition
(make <ImgMap> ISG /| specify its root object

‘map-name ‘isg-ban” // assign values to role attributes

CHAPTER 2. RELATED RESEARCH 14

'shape “oval”
‘href “www.google.com”
‘coordinates {125, 50}

target ‘Self’)

In example 2.5, ImgMap is defined as a role class which is considered the subclass of Role. The
message player_domains is used to specify the root class. In the role object definition, 1SG is used
to specify the root object which is corresponded to the role object 1ISGImgMap.

In DOOR/MM, views are modelled as multiple representations and abstractions of a multimedia
object. Roles are modelled as an object-based specialisation of a multimedia object for dynamic
extension, as well as integrating the heterogeneous types of information in the 0-0 model. In other
words, objects and roles (but not views) are regarded as logical entities, and its views are regarded
as virtual representations of these logical entities [Won98]. The view definition in this approach is
represented by the following example.

Example 2.6 DOOR/MM View Definition.
(define 1SG-view /'] start the view definition
(make <virtual-view> (list ISG) /1 specify the base root object
img-id 1001 /'l retrieve the attributes
‘name “1SG”
Size “60k”
‘resolution “144p

‘content “1ogo’)

(define 1ISGImgMap-view // start the view definition
(make <virtual-view> (list ISGImgMap) /'l specify the base role object
‘map-name ‘isg-ban” // retrieve the attributes

‘href “Wwww.google.com’)

As example 2.6 illustrates, a view is specified as a virtual entity of a root or role object. Hence,
ISG-view represents root object ISG; and ISGImgMap-view is a virtual representation of role object
ISGImgMap. While defining views in DOOR/M M, some attributes of base root or role object are
allowed to be hid. Each view definition is based on one single object (root or role). However, in
our approach, we regard a view as a wrapper of many related logical objects. Although the authors
claim that a view may be defined by extracting the abstract and references from other views to
represent multifaceted features of a multimedia object, there is no prototype or implementation
supported. We differ from this approach by providing a role-based virtual schema rather than just
a concept of single root or role. Figure 2.2 represents the differences between DOOR/MM and
our approach. DOOR/MM defines a new object-role model at the local layer and the multimedia-
object views are specified based on single root or role object; and the metamodel issue is not
properly addressed. Our approach extends the existing 0-R metamodel in order to support the
view definitions at the view layer.

CHAPTER 2. RELATED RESEARCH 15

View Layer

-DR Rr.hftma ! Repository Schema, Repository Schema.

Oracle 9/ defined

Relational Data & Local Layer

i i f i metadataj”pes
Multimedia Objectm DL deflneq metadata _ Object Instances - 7P
Instances 1 types (Object, Role, View) Extended metadata types
(Roleview, Root, Role,
MultiRole) []
Object-Oriented Multimedia Database Object-Relational (Oracle 91 Database
DOOR/MM Our Approach

Figure 2.2: DOOR/MM & Our Approach.

2.3 Galileo

Albano et al. focused on developing views for 0-0 databases with the semantics of viewing op-
erations in the context of Galileo 97, which is a strongly typed database programming language
and supports objects with role concept [AAGOO]. In Galileo 97, operators are defined in order to
create the root and roles : mkT is used to construct the object of type T, inS extends dynamically
an object with a new subtype S of T, without changing its identity, but with the possibility of
changing its behaviour; inS adds a new role to an object, and returns a reference to this new role
of that object. An object expression in Galileo 97 always denotes one specific role of an object.
The root and role definitions are illustrated by the following examples.

Example 2.7 Galileo Root Definition.
/1 Root Type Definition
let rec type Image <-> [// start the root type definition
imgJid: int; /1 specify the root attributes
name: string;
size: string;
resolution: string;
content: string;
background: string;

source: string j

/1 Root Object Definition

let ISG := mkimage (// create a root object ISG
[img-id := 1001; // assign values to root attributes
name := ‘1SG”}
size := *“60k™
resolution := “144-P’i

content := “logo™;

CHAPTER 2. RELATED RESEARCH 16

background := ‘Wwhite”;

source := ‘c:\\Graphics\\"])

In example 2.7, the root type and root object are defined. The root type is defined by passing
the message let rec type and the root object definition starts with the operator mkimage. The
following example illustrates the role type and role object definitions. The role type is defined as
a subtype of Image. The operator inlmgMap is used to create a role object which is played by ISG

object.

Example 2.8 Galileo Role Definition.
/IRole Type Definition
let rec type ImgMap <-> is Image and [// start the role type definition
map-name: string; /| specify the attributes
shape: string;
href: string;
coordinates: integer array;

target: string]

/IRole Object Definition
/'l create role object, specify its root object ISG
let ISGasimgMap := inlmgMap (ISG,
[map-name := ‘isg-ban’} /| assign values to role attributes
shape := ‘oval’;
href := “Wwww.google.com”;
coordinates := {125, 50};

target := ‘self”])

In Galileo, authors assert that the role mechanism canot cope with the related problem of giving
different views of the same object without affecting its behaviour. The object with role extensions
are introduced as real objects that have been explicitly constructed using the mk or in operators,
and the views are defined as virtual objects that change objects interface. A virtual object has the
same identity as the base object; if it is based on a combination of several objects, then its identity
is a combination of the identities of base objects. A virtual object can add, remove, and rename
fields of its base object, moreover a virtual object can have its own instance variables, which are

accessed by its own methods.

The view definition in Galileo starts at the class level. The view type specifies the structure of
virtual object, and the constructors, such as project, rename, extend and times, build virtual

objects. Example 2.9 demonstrates the view definition.

CHAPTER 2. RELATED RESEARCH

View Layer
Rrftonnft | Repository Schema \ DB Srhama ! Repository Schema
! Galileo 97 defined metadata L L
Object 1 types (Object, Role) ocal Layer

"

Instances = z o " Extended metadata types
L \;ten ed metadata types (Roleview, Root, Role,
(View) | MultiRole)

n

Object-Oriented Database Object-Relational (Oracle 9i) Database

Galileo Our Approach

Figure 2.3: Galileo & Our Approach.

Example 2.9 Galileo View Definition.
/1 View Type Definition
let type ImgView :=

<Image> view [// specify the base object type, view is type constructor
name; /| attributes list
size;
resolution;

content]

/1 Vitural Object Definition

/1 virtual object of ISG, which is defined as an object of Image type,

let ISGImgView :=

ISG project [// specify the base object, project is restructure operator
name; /'] selected attributes
size;
resolution;

content]

/1 virtual object of ISG, which has been extended with the role type ImgMap.

let ISGImgMapView :=
(ISG as ImgMap) project [// base object ISG is extended as ImgMap

map-name;

href]

17

CHAPTER 2. RELATED RESEARCH 18

Authors state that roles and views are common since they both allow an object to be extended.
However, roles considered object extensions may modify the behaviour of the original object
whereas views do not modify its behaviour. The contribution of this proposal is the clarifica-
tion of the relationship between roles and views, and the different semantics of method overriding

and evaluation in views and roles. The essential differences between roles and views are:

» The set of roles of an object is part of the object itself, and the object can be tested with the
predicate isalso to find out which role it has; while a view is conceptually external to the
object.

¢ Adding a new role to an object transforms its type into a subtype, while the corresponding

view operation extend produces an object whose type may not be related to the original one.

* The behaviour of an object changes when it gains a new role, while it is not affected by the

creation of a new virtual object.

Although some view operations are specified in this proposal, which present more flexibility than
the DOOR/MM proposal, the view is still based on one single object rather than a collection of
objects. Furthermore, the premise of defining a view is that the object has to be well specified
with role extensions by using Galileo 97. In other words, if the stored object is not modelled in
the object-role format, the view of that object cannot be implemented and view operators have
no use. Figure 2.3 represents the differences between this approach and our solution. The object
view specified in Galileo is based on the extension of object-role moel, which is defined by Galileo
97; and it is the virtual representation of single object. We differ because we extend the standard
O-R model with a standard database programming language SQL: 1999 to define the O-R view as

virtual schema.

2.4 Summary of Analysis

The role proposals described in this chapter provide different aspects of the role concept, while
some of them also discusses the view mechanisms which integrated with roles. In general, there
are few broad role features emerged from those definitions:

* A root object plays many role objects at the same time. All the proposals agree that a root
object plays many role objects at the same time. The benefits of this feature is that instead
of the permanent relationship presented in 0-0 model, the relationship between a root object
and role object is dynamic and flexible. In the real world, there is a possibility that an object
does not associate with any roles currently, instead being a potential player in the future.
For example, a person object may play a role of student eventually. None of the proposals

pay any attention to this possibility, whereas it should be possible in a roleview system.

e Multiple occurrences of roles should be permitted. Both Extended Smalltalk and DOOR/MM
discussed this issue, with the latter providing only an expression to distinguish multiple
occurrences. Extended Smalltalk represents this issue by defining a new type which is tightly
associated with a qualifier type. Multiple occurrence is also a key task in our approach.
A role type multirole is defined to support multiple instantiation without the associated
qualifier type specification. In our appraoch, a multirole is considered another form of role

rather than a totally different role format, which Extended Smalltalk represented.

CHAPTER 2. RELATED RESEARCH 19

* A root object acquires and abandons a role object dynamically. While abandoning a role
object, the root object still exists. The deletion of a root object causes the deletion of its
role objects. All of the proposals present a loosed coupled relationship between root and
roles. A root object is allowed to add or remove its role objects dynamically This dynamic
property comes close to object migration or dynamic re-classification. All of the proposals
address that a role cannot be defined unless its root exists in the database schema. In other
words, the role existence depends on its root. The root object will not lose its identity when
its roles are removed from the schema; conversely, a role object is lost when its root object

is deleted from the schema.

2.5 Conclusions

In this chapter, some of the major research projects on roles are examined. According to the
emerged key characteristics, together with the analysis of the 0-0 view mechanisms from chapter
one, we provide the functional requirements for a suitable federated view mechanism. These
requirements are summarised as the following:

* A roleview is a wrapper of root and roles, which are considered virtual classes. A roleview
is defined as a virtual schema rather than a single virtual class. The view mechanism in
DOOR/MM is one multimedia-object based. Although the authors assert that the schema-
based view is supported also, there is no prototype or implementation provided. The view
mechanism in Galileo is also one object based. A view is defined as a virtual root or role. Such
representations do not meet the requirements from the study of federated database systems
[SCGS91]. In order to retain as much semantic information as possible, our view system

wraps multiple related virtual classes (root and role) to represent the underlying schema.

e Object-preserving semantics is an issue. The role projects we studied in this chapter aim to
extending the 0-0 model with role extensions. Hence, object-generating semantics is used to
identify the new mechanism. In Extended Smalltalk and Galileo, a unique identifier identifies
the role object; in DOOR/MM, the combination of role class name and a pivotal role object
value is the role object identifier. On the other hand, object-preserving semantics is an evident
in some 0-0 view mechanisms, such as Cocoon [SLR+94] and Multiview [Run92], where
views are defined as the virtual entities of existing objects. In our approach, the roleview is
composed of many virtual classes. It is possible that the root object and the role object base
on one single entity. In this case, the ambiguities are caused if the identifiers of the virtual
objects (root object and role object) are both specified by the object-preserving semantics. A
solution to this issue is provided in chapter four, where transient-object-generating semantics
is used to identify the role object and object-preserving semantics is used to identify the root
object.

e A clear semantics must be provided to generate the view extent. In DOOR/MM, the view
mechanism is defined at the object level. Each view definition is considered one single virtual
multimedia object. In Galileo, although a view type is defined at the class level, each view
object is generated individually. A constructor is provided to generate a single view object
rather than collection of view objects in DOOR/MM and Galileo. However, generating the
view extent is an issue in some 0-0 view proposals, where a view is considered virtual schema
[SAD94, Run92]. A query is proposed to generate the extents of the virtual classes. However,
it is necessary to display a number of classes for which one class determines the extents of all

connected classes. In our approach, a roleview is also considered virtual schema. Hence, the

CHAPTER 2. RELATED RESEARCH 20

questions about generating extents arise, such as how to generate the extent of each virtual
class; how to join these extents and generate the extent for the entire virtual schema; and
how to avoid the overlap between each virtual class extent. A clear semantics is provided
in the roleview definition in order to clarify the extents specifications. A full description of

business rule and semantics are introduced in chapter four.

At this point, our roleview system must provide these functional requirements, along with present-
ing role features listed in the summary of analysis. Before the new view system is introduced in
chapter four, it is necessary to study and extend the existing O-R metamodel in order to support

our roleview metaclasses.

Chapter 3

Extending the O-R Metamodel

Most of the latest versions of relational databases, such as Oracle, Sybase and Informix extend
the relational model with new constructors to support objects. In general, these databases have
appeared in the market before the approval of the standard, hence the current version of O-
R databases do not fully support the SQL:1999 [GP99] specification. In our research, Oracle9i
[OraOl], the latest version of the Oracle database, is considered the standard model because it
supports most features of the SQL:1999 specification. The purpose of this research is to specify a
role-based view system in O-R databases, hence, it is necessary to examine the O-R metamodel to
see how it might support roles. If not, it is necessary to extend the metamodel which will support
the roleview definition and store new metadata in the schema repository. From now on we will

refer to Oracle9i as the O-R database and Oracle9« metamodel as the standard O-R metamodel.

3.1 The Object-Relational Metamodel

As an amalgamation of relational and 0-0 data models, the O-R model is complex. Many ap-
plications need access to the complex structures through metadata. A metadata model provides
interfaces for extracting complete definitions of logical database objects. The O-R database stores
metadata in the schema repository as static tables and views [OraOl]. The base tables store
information about the database and only the vendor may access these tables. However, views
summarise and display the information stored in the base tables and decode the base tables into
useful information for metadata queries. Users are allowed to observe metatables by accessing
these views.

Figure 8.1 presents an overview of the O-R metamodel. In an O-R metamodel, a schema is
a collection of structured data or schema objects. Schema objects (named as ALL.OBJECTS in
the schema repository) are created and manipulated by SQL and stored as metadata. Schema
objects include many structures, such as types, tables, views, triggers, sequences, stored procedures,
indexes, synonyms, clusters and database links etc. Our research focuses on the study of the
logical structure of databases, hence the schema objects which relate to the physical structures not
discussed. A full version of O-R metamodel analysis is presented in [Wan02a]. The relevant schema
objects are classified in four sections: types, tables, views and triggers. In figure 3.1, ALL_OBJECTS
plays the role of container, holding all schema objects in the database. ALLOTYPES, ALL_TABLES,
ALL_VIEWS and ALL_TRIGGERS represent different types of objects.

21

CHAPTER 3. EXTENDING THE O-R METAMODEL 22

Figure 3.1: Object-Relational Metamodel Overview.

3.1.1 Object-Relational Types

A fully structured O-R model must present some cornerstone characteristics, including base type
extension, inheritance and complex objects [SM96]. The O-R metamodel represents those charac-

teristics as object extensions, which is discussed as following [OraOl]:

¢ In an O-R model, users are allowed to specify an user-defined data type (UDT), according
to the required built-in datatypes. This feature makes it easier for developers to work with
complex data such as image, audio and video. An UDT stores structured data in its natural
form and allow applications to retrieve it in that form. An instance of an UDT is an object,
which is identified by a unique object identifier (OID). Objects in O-R model are not isolated,
they link each other through association, inheritance and aggregation/composition.

« UDTs are organised into a type hierarchy, where the structure and behaviour of several UDTs
can be abstracted into a common supertype. A single inheritance model is supported: the
subtype can be derived from only one parent type. It inherits all the attributes and methods
of its direct supertype. A subtype can add new attributes and methods, and may override any
of the inherited methods. Furthermore, a subtype can itself be refined by defining another

subtype which derives from it, thus building up type hierarchies.

« A rich collection of complex objects are supported using collection types: varray and nested
table. A varray is an ordered collection of elements and stored as opaque object like RAW or

CHAPTER 3. EXTENDING THE O-R METAMODEL 23

CLOB. A nested table is an unordered set of data elements, all of the same datatype. It is a
natural way to implement aggregation or composition, which is not specified in the SQL: 1999
specification. Collection types whose elements are themselves directly or indirectly another
collection type, build up multi-level collection types. Both single-level collection types and
multi-level collection types can be used with columns in a table or with object attributes in

object tables.

Figure 3.2 provides an overview of major types-metadata contained in the O-R metamodel. In this
section, we also discuss how the object extensions of O-R model are represented in the metamodel.

For a full description of how to access the O-R metadata, please refer to [0’C02].

« ALL_TYPES. ALL.TYPES is used to represent all the UDTs defined at the database schema.
An UDT is an abstraction of a real-world entity and has three components: name, attributes
(viewed from ALL_TYPE_ATTRS) and methods (viewed from ALL_TYPE_METHODS). It is a tem-
plate, whereas an instantiated type is called an object. An UDT provides only the structure,
and the extents are stored in object tables (viewed from ALL_OBJECT.TABLES) for the purpose
of manipulation. An object can be retrieved into an object view (viewed from ALL.VIEWS)
according to users’ requirements. An object view (or typed view) is regarded as a vir-
tual object table, where each row in the view is an object. A column object (viewed from
ALL_TAB_COLUMNS) is used to describe an UDT occupied table column.

¢« ALL_TYPE_ATTRS. The attributes of an UDT model represent the structure and state
of the real-world entity. Attributes are either built-in types such as varchar2, integer,
BLOB or other UDTs (viewed from ALL.TYPES). Hence, there are dual relationships between
ALL_TYPE_ATTRS and ALL UDTS: an UDT is a composition of attributes and methods; an
attribute also associates with an UDT because of its data type; an attribute can be a REF

type (viewed from ALL_REFS), which represents the association between two UDTs.

e ALL_TYPE_METHODS. The methods of an UDT are functions or procedures written in
PL/SQL or Java and stored in the database, or written in a language and stored externally.
Methods implement operations that the application performs on the real-world entity. A
method is allowed to take some arguments as parameters (viewed from ALL METHOD_PARAMS)
and may return results (viewed from ALL_METHOD RESULTS) if it is defined as a function.

They fall into three categories: member method, static method and comparison method.

e« ALL_ METHOD_PARAMS. Each method of an UDT is allowed to have zero or many
parameters. The datatype of a parameter is either a built-in type or more complex, an UDT
(viewed from ALL.TYPES).

¢« ALL_METHOD_RESULTS. The difference between a function and a procedure is that
function returns values but procedure does not. If users specify the method as a function,
the valuable results will be returned to the system. The result of a method may associate
with ALL.TYPES also because its datatype is allowed to be either a built-in type or a complex
UDT.

« ALL_COLL_TYPES. A collection type is another form of UDT, as it represents a collection
of complex objects. A collection type describes a data unit made up of an indefinite number
of elements, all of the same data type. The collection types include array types (viewed
from ALL.VARRAYS) and table types (viewed from ALL_NESTED_TABLES). ALL_COLL_TYPES
provides the abstract structure of collection types.

CHAPTER 3. EXTENDING THE O-R METAMODEL

0.1 0.1
ALL OBJECT TABLES
ALL TYPES
OWNER :VARCHAR2
TYPE NAME: VARCHAR2
TYPE_OID: RAW

Viewed From < TYPE_CODE: VARCHAR2
Figure 3.3 . ATTRIBUTES: NUMBER
I be definedby ~ METHODS: NUMBER

FINAL : VARCHAR2
SUPERTYPE_OWNER: VARCHAI

\é:enl;ngom 0. SUPERTYPE NAME : VARCHAR2
9 ! - LOCAL_ATTRIBUTES: NUMBER
. LOCAL_METHODS: NUMBER
Typed View TYPEID : RAW
ALL VIEWS
:datatype of
contains
l*
' ALL TYPE ATTRS
ALL TYPE METHODS OWNER: VARCHAR2

TYPE NAME: VARCHAR2

ATTR NAME:VARCHAR

ATTR_TYPE_MODE: VARCHAR2

ATTR TYPE OWNER : VARCHAR2
contains ALL_TYPE_NAME : VARCHAR2

ATR_NO: NUMBER

INHERITED: VARCHAR2

OWNER: VARCHAR2
TYPE_NAME : VARCHAR2
METHOD_NAME: VARCHAR2
METHOD_NO: NUMBER
METHOD_TYPE: VARCHAR2
PARAMETERS : NUMBER
RESULTS: NUMBER

FINAL: VARCHAR2

OVERRIDING : VARCHAR2 his
INHERITED : VARCHAR2 ALL COLL TYPES ALL REFS
OWNER : VARCHAR2 0.1
TYPE_NAME : VARCHAR2
ALL METHOD PARAMS COLL TYPE : VARCHAR2 Viewed From
OWNER : VA<CHAR?2 UPPER_BOUND : NUMBER Figure 3.3

ELEM_TYPE_MOD : VARCHAR2
ELEM_TYPE_OWNER : VARCHAR2
ELEM TYPE NAME : VARCHAR2

TYPE NAME : VARCHAR2
METHOD_NAME: VARCHAR2

METHOD_NO: NUMBER ,
PARAM_NAME: VARCHAR2 0.1 _ 0.1 be storecT
PARAM_NO: NUMBER be defined as

PARAM_MODE: VARCHAR2 ALL VARRAYS
PARAM_TYPE_MODE: VARCHAR2 OWNER: VARCHAR2
Eﬁ&:m_gggﬂ\fm‘g BV-XQCRHC:'?RZI 1% PARENT_TABLE_NAME: VARCHAR2

PARENT TABLE COLUMN: VARCHAR2
TYPE_OWNER: VARCHAR?2
TYPE_NAME : VARCHAR2
LOB_NAME: VARCHAR

ALL METHOD RESULTS RETURN TYPE:VARCHAR2
OWNER : VARCHAR2
TYPE_NAME : VARCHAR2

METHOD_NAME: VARCHAR2 _contains_
METHOD_NO: NUMBER
RESULT_TYPE_MOD : VARCHAR?2 0.1 -be storne

RESULT_TYPE_OWNER : VARCHAR2

RESULT TYPE NAME : VARCHAR2 | ALL NESTED TABLES

OWNER: VARCHAR2
TABLE NAME: VARCHAR2
TABLE_TYPE_OWNER: VARCHAR2
% TABLE_TYPE_NAME: VARCHAR2
L PARENT_TABLE_NAME : VARCHAR2
PARENT_TABLE_COLUMN : VARCHAR2
RETURN TYPE: VARCHAR2

Figure 3.2: Object-Relational Types Metadata.

CHAPTER 3. EXTENDING THE 0-R METAMODEL 25

« ALL_VARRAYS. A varray is an ordered set of data elements. Users must specify the
maximum number of elements while defining a varray. If it is sufficiently large, the built-in
type BLOB can be used to store such varray. A varray can be used as the datatype of a column
of table (viewed from ALL TAB COLUMNS). If a varray is involved in a multi-level collection
type, it is possible that the varray associates with other varrays or nested tables (viewed from
ALL.NESTED.TABLES).

* ALL_NESTED_TABLES. A nested table is an unordered set of elements, all of the same
data type. It has a single column, and the type of that column is either a built-in type or an
UDT. If the column in a nested table is an UDT, the table can also be viewed as a multi-
column table, with a column for each attribute of the UDT. A nested table may associates
with other nested tables or varrays (viewed from ALL.VARRAYS) and build up a multi-level

collection type.

3.1.2 Ohbject-Relational Tables

As the basic unit of data storage in the O-R model, tables hold all of the user-accessible data. A
definition of a table includes: table name, column name, column datatype, column width or scale
and precision (if datatype is NUMBER). Integrity constraints and triggers can also be defined for a
table. Object table is a special kind of table that holds objects and provides a relational view of
the attributes of those objects. Objects that appear in object tables are called row objects; and
objects appear in table columns or as attributes of other objects are called column objects. In this
section, an overview of metadata for O-R tables (figure 3.3) is represented. We also discuss how

the object extensions are embedded the relational base.

e ALL_ALL_TABLES. ALL ALL TABLES contains all relational tables that store the rela-
tional format of data, and all object tables that store user-defined objects in the schema
database. It is an aggregation between ALL.TABLES and ALL_OBJECT_TABLES.

« ALL_TABLES. All relational tables can be viewed at ALL.TABLES. A table is composed of
at least one table column (viewed from ALL_TAB_COLUMNS), and specified by some constraints
(viewed from ALL.CONSTRAINTS). A trigger (viewed from ALL_TRIGGERS) usually associates
with tables. As an important mechanism in the O-R model, relational views (viewed from
ALL.VIEWS) are created on the base of tables.

e ALL_OBJECT_TABLES. As stated previously, an UDT only defines the structure of
entity. As the O-R database uses object table to hold objects, it provides a tabular view
of an UDT (viewed from ALL.TYPES). An object table is also composed of table columns
(viewed from ALL TAB _COLUMNS). The pre-requisite to object table definition is that the base
UDT must be defined and stored in the schema. An object table can be viewed in two
ways: a single column table in which each row is an object, perform 0-0 operations or a
multi-column table in which each attribute ofthe UDT occupies a column, perform relational
operations [OraOl]. The first representation allows objects to be accessed through an 0-0
application; and the latter representation allows objects to meet the relational format, which
are accessed as relational data. In an object table, objects that occupy complete rows are
considered as row objects; object that occupy table columns in a larger row, or are attributes
of other objects, are viewed as column objects. Object tables are the overlap between the
0-0 concept and relational data model. The real-world entity is defined as UDT which is
similar to a class in the 0-0 model, and stored in a tabular format which the relational model
recognises.

CHAPTER 3. EXTENDING THE 0-R METAMODEL

OWNER :VARCHAR2

TABLE NAME : VARCHAR2
NUM_ROWS : NUMBER
OBJECT_ID_TYPE : VARCHAR2
TABLE_TYPE_OWNER : VARCHAR2
TABLE_TYPE : VARCHAR2

NESTED : VARCHAR2

OWNER : VARCHAR2
CONSTRAINT_NAME : VARCHAR2
CONSTRAINTTYPE : VARCHAR2
TABLE_NAME : VARCHAR2
R_OWNER : VARCHAR2
R_CONSTRAINT_NAME : VARCHAR2
DEFERRABLE : VARCHAR2
VALIDATED : VARCHAR2

involves

Figure 3.3: Object-Relational Tables Metadata.

stores

OWNER : VARCHAR2
CONSTRAINT_NAME : VARCHAR2
TABLEJVIAME : VARCHAR2
COLUMN_NAME: VARCHAR2
POSITION : NUMBER

Viewed From
Figure 3.2

A

CHAPTER 3. EXTENDING THE 0-R METAMODEL 27

« ALL_TAB_COLUMNS. Both relational tables and object tables are composed of columns.
Each table requires at least one column. The datatype of each column is allowed to be a built-
in type or an UDT (viewed from ALL.TYPES) or a collection type (viewed from ALL.VARRAYS
or ALL.NESTED.TABLES). If an object table is viewed as a multi-column table, then each table
column stores the corresponding attribute of the UDT (viewed from ALL_TYPE_ATTRS). It is
possible that a table column is a REF datatype (viewed from ALL.REFS) for the purpose of
referencing another object. A column is allowed to associate with constraints (viewed from
ALL_CONS_COLUMNS) and triggers (viewed from ALL_TRIGGER_COLS).

« ALL_REFS. AREFis alogical pointer to a row object. It is specified while defining an UDT.
The reason for discussing REF in O-R tables section, rather than 0-R types section is that it
is the link between two objects, not object structures. In other words, a REF is represented
as an object table column (viewed from ALL _CONS _COLUMNS). REFs model the associations
between objects, especially many-to-one relationships in order to reduce the need for foreign
keys. An easy navigation between objects is provided by this mechanism. ALL.REFS stores

the information of object table columns that references to other UDTs.

« ALL-CONSTRAINTS. The O-R database uses integrity constraints to prevent invalid
data entry into tables. Users are allowed to define integrity constraints to enforce the business
rules which must be associated with the information in the database. An integrity constraint
is defined for tables (viewed from ALL_TABLES) and stored in the schema repository. It can
also be applied to a view (viewed from ALL.VIEWS). Each integrity constraints of a table or a
view includes many constraint columns (viewed from ALL_CONS_COLUMNS), which clarify the
individual constraint.

¢« ALL-CONS-COLUMNS. While specifying a table column, an integrity constraint is as-
sociated according to users requirements. For tables, an integrity constraint (viewed from
ALL.CONSTRAINTS) imposes rules only on the column (viewed from ALL TAB COLUMNS) in

which it is defined.

3.1.3 Object-Relational Views

A view mechanism is an important feature of the O-R model. Like a table, a view is composed
of columns (viewed from ALL_TAB_COLUMNS); unlike a table, a view does not allocate any storage
space, nor does a view actually contain data or objects. Rather, a view is defined by query
extracts and derives data or objects from tables that the view references. In this section we focus
on discussing object views, which is the conjunction between relational data and object based
applications. Figure 3.4 provides an overview of metadata included in this section. The relational
view is defined as untyped view and the object view is named as typed view in the O-R model. We

discuss them separately although they are represented by one class ALL_VIEWS.

e Untyped View. An untyped view presents the relational view and can be thought of
as a virtual table. Users are allowed to use it in most places where base tables (viewed
from ALL.TABLES) can be used, also may query it with some restrictions (viewed from
ALL_CONSTRAINTS) as the subsets of table constraints. While specifying the restrictions on a
table, users cannot define a constraint on a column whose datatype is an UDT. Views also

associate with triggers with some restriction (viewed from ALL_TRIGGERS).

e Typed View. A typed view is an extension of the relational view mechanism. It is useful

in prototyping or transitioning to 0-0 applications because the data in the view can be

CHAPTER 3. EXTENDING THE 0-R METAMODEL 28

Figure 3.4: Object-Relational Views Metadata.

taken from relational tables and accessed as if the table were defined as an object table
[OraOl]. A typed view is also a virtual representation of UDT (viewed from ALL.TYPES). It
is thought of as a virtual object table. The extent of typed view is generated with selecting
objects from the base UDT extent stored at object tables. While specifying a typed view,
it is the responsibility of users to define OID as a combination of columns in the defining

select(typically this will be a combination of primary keys used in the query).

3.1.4 Object-Relational Triggers

Triggers (figure 3.5) are user-defined procedures that execute implicitly when an INSERT, UPDATE,
or DELETE statement is issued against the associated table (viewed from ALL_TABLES), against a
view (viewed from ALL_VIEWS), or when database system actions occur [OraOl]. Triggers are similar
to stored procedures. However, procedures and triggers differ in the way that they are invoked. A
procedure is explicitly executed by a user, application, or trigger. Triggers are implicitly fired by
the system when a triggering event occurs, no matter which user is connected or which application
is being used.

Although, users cannot explicitly define triggers on views, they can be defined for the underlying
based tables referenced by the view. The O-R database supports the definition of logical constraints
on views. User can write normal INSERT, UPDATE, and DELETE statements against the views.
INSTEAD OF triggers are activated for each row of the view that gets modified.

e ALL_TRIGGERS. ALL.TRIGGERS is used to describe all the triggers have been defined at
the database schema. Its basic parts, such as event or statement, restriction and action are
represented by the attributes.

¢« ALL_TRIGGER_COLS. ALL TRIGGER _COLS is used to describe the use of columns in

triggers or in triggers on tables, which is associated with table columns.

CHAPTER 3. EXTENDING THE 0-R METAMODEL 29

Figure 3.5: Object-Relational Triggers Metadata.

3.1.5 Summary

The 0-R metamodel provides a better understanding of 0-R data model. It specifies interde-
pendencies among concepts used to build an O-R schema, some inherent constraints, and abstract
syntax of corresponding data description statements. As stated previously, the metamodel supports
the object extensions of the 0-R model, such as object types, collection types and type hierarchy.
Furthermore, object tables and object views, the intersection between 0-0 model and relational
model are supported also. Although the metadata of a role-based view system is not provided in
the metamodel, it offers us the opportunity to develop different forms of view mechanism. The
next step is to extend the metamodel with the metadata constructs needed to specify a role-based

view mechanism.

3.2 Extending the O-R Metamodel

In this section, we provide extensions to the 0-R metamodel. A metamodel of our role-based view
system is presented first; then we present an extended 0-R metamodel; and finally, the implemen-
tation is briefly introduced. Note that only the major issues about the metamodel extensions are
covered due to the thesis length limit. For a full description of how to extend the 0-R metamodel,
please refers to [Wan02b].

3.2.1 Role-Based View Metamodel

The purpose of this section is to present the metamodel of the role-based view system and provide
a better understanding of our view model. An UML class diagram tool is used to present the
metamodel in an 0-0 perspective (figure 3.6). There are five metaclasses existing in our role-
based view metamodel: Roleview class is composed of Root and Role classes; each Root class or
Role class is composed of A ttribute and Method classes. The details of each metaclass and the

relationships between them are now presented:

¢ Roleview Class. This is the container for the root and role classes. An aggregation relar
tionship exists between the Roleview and Role class. A Role is part of Roleview but it is
possible that a Roleview exists without the existence of Role class. However, a Roleview

does not exist if the Root class is not included. Both the Root class and Role class are

CHAPTER 3. EXTENDING THE O-R METAMODEL 30

Attribute
Root AttrJD : number
RootJD : number has 1* Attr_Name : String
Root_Name: String Attr_Type_Mode : Stri_ng
contains Attributes: number Attr_Type_Name : String
Methods : number o* Attr_Owner: String
’ Attr No : number
L Met:hod
Roleview MethodJD : number
; . Method_Nam e: String
RoleviewJD : number —
; . Gtri has Method_Ov/ner: String
Roleview_Name: String Method No : number
{bag} Method_Ty|pe : String
) Parameters : String
) 0.~ multirole Result: Striing
contains
Role
RoleJD: number 0./
0.: Role_Name: String h
Root: String as

IsMultiple: String
Attributes: number
Methods: number

Figure 3.6: Roleview Metamodel.

composed of Attribute and Method classes, which are discussed later. A Roleview instance

is identified by a system-generated OID represented by attribute Roleview.ID.

« Root Class. A Root class is composed of Attribute and Method class. There is a one-to-
many relationship between Root class and Role class. A Root instance may associate with
many Role instances; but a Role instance only associates with one single Root instance. In
this association, if the instance of Role class is a multirole, it allows multiple occurrences
of the same Role instance to occur. The keyword bag represents this situation. A Root

instance is identified by a system-generated Root.ID.

« Role Class. This isthe class that represents the structure of all defined role objects. A Role
class is composed of both A ttribute and Method class. The attribute IsM ultiple represents
the type of Role instance, which is either a multirole or a normal (single) role. Each Role
instance is identified by an unique identifier Role_ID.

e« Attribute Class. This class is used to represent the properties of Root or Role classes. The
attribute Attr_Owner specifies that it associates with a Root or Role class. The Attribute
class presents the state of root or role class as the ALL_ATTRIBUTES metaclass presents the
state of UDT in the O-R metamodel. An ATTRIBUTE instance is identified by a system-
generated Attr.ID.

e Method Class. This class is used to represent the functions or procedures in which a Root
or Role instance performs behaviour. The attribute Method.Owner is used to specify that it
associates with a Root or Role class. The Method class presents the behaviour of root or role
class as the ALL.METHODS metaclass presents the UDTs behaviour in the O-R metamodel. A
Method instance is allowed to take some parameters and may return results as well. It is also
identified by a system-generated Method.ID.

3.2.2 Metamodel Extensions

W hile extending the current O-R metamodel with the additional metaclasses, it was important to
specify the relationships between the new classes and the original metaclasses. Figure 3.7 presents

CHAPTER 3 EXTENDING THE 0-R METAMODEL 31

Figure 3.7: Object-Relational Metamodel & Extensions.

an overview of the extended metamodel. The extension metaclasses have a prefix IsysJ for clarity.

The relationships between the role-based view metaclasses and the 0-R metaclasses are clarified.

Figure 3.8 presents the role-based views metadata section from an implementational perspective.
The datatype of each attributes is now converted to SQL: 1999 datatypes and the role-based view
metaclasses are linked to the 0-R metaclasses represented at other sections. Each metaclass of the
role-based view metamodel is discussed separately.

« Sys_Roleview. The sys.Roleview class is a logical structure that refers all objects in
a role-based view. Since ALL.OBJECTS is defined as the logical structure of schema ob-
jects, sys_Roleview is viewed as the extra content of ALL OBJECTS. Each sys_Roleview
is identified by a system generated Roleview_ID, as with any other schema object in the
metamodel. As figure 3.7 shows ALL_OBJECTS is now the aggregation of sys_Roleview,
ALL_TYPES, ALL_TABLES, ALL.VIEWS and ALL_TRIGGERS. A root is the static part of a role-
based view, hence it is necessary to specify a pointer to that root. The attribute Root
represents the reference.

¢ Sys_Root. A sys_Root can be viewed as a virtual representation of an existing UDT with
the intrinsic properties. In the O-R schema repository, UDTs can be seen in the ALLOTYPES
view. Hence, a specified sys_Root must be based on an underlying UDT. However, it is
possible that an existing UDT is not associated with any sys.Root class. It is supported
that one single UDT is specified in several sys Root classes, which are associated with
different sys.Roleview classes, according to different requirements. For example, ifan UDT
Person is specified in a root class in one roleview Professional_View; it can also appear in

the root class of roleview Academic.View. In sys_Root metaclass, the attribute Type.Ref

CHAPTER 3. EXTENDING THE 0-R METAMODEL

«ys_Root
Root_Name: VARCHAR2
Type_Ref: REF ALLJYPES
SuperType: VARCHAR2
Attributes: NUMBER
Methods: NUMBER

has

32

sys_Attribute
Attr_Name : VARCHAR2
AttriDwner : VARCHAR2
Type_Attr_Ref: REF ALL_ATTRS

l *
0x '
associates references
sys_Method
Method_Name: VARCHAR2
Roleview ID : RAW has Method Owner: VARCHAR2
Roleview_Name : VARCHAR2 Type_Method_Ref: REF ALL METHODS ALL_TYPE ATTRS
Root : REF sys_Root) {bag} 0x
associates (-) :
io *= multirole references
sys_Role Vi dF
i iewed From
contains Role_RID : RAW ALL TYPE METHODS Figure 3.2
Role_Name: VARCHAR2 :
Type_Ref: REF ALL_TYPES has

3.2.3

Root: VARCHAR2
IsMultiple : VARCHAR2
Attributes: NUMBER
Methods: NUMBER

Figure 3.8: Object-Relational Roleviews Metadata.

is a REF datatype, which references the base UDT. Because each type is organised into type
hierarchy in the O-R model, there is a possibility that a sys_Root based UDT is the subtype
in a type hierarchy. Hence, the attribute SuperType is used to store the name of supertype
or null value if the base type has no supertype. Compared with the Root class represented
in figure 3.6, sys_Root metaclass loses the attribute Root_ID. The reason we remove this
attribute is that a sys_Root is the virtual representation of an existing UDT and does not
contain any objects. The object preserving semantics is used to maintain the same unique
identifier.

SysJFtole. The metaclass sys.Role is a virtual representation of an existing UDT with the
extrinsic properties. Like sys.Root, a sys_Role is also based on an existing UDT and tightly
depends on its existence. If the UDT that sys.Role based does not exist, the specification of
sys_Role has no use. On the other hand, it is possible that an existing UDT is not associated
with any sys.Role. One single UDT is allowed to be specified in several sys_Role classes of
different sys_Roleview classes. For example, UDT Student may be specified in a role class
of roleview Professional_View and Academic.View. The attribute Type_Ref is used to
reference the base UDT. A sys.Role object is identified by the object preserving semantics
along with a system-generated transient OID Role_RID.

Sys_Attribute. Asys.Attribute class represents the property ofthe sys_Root or sys_Role
class. Classes sys_Root and sys.Role are virtual representations of existing UDTs, hence,
there is no physical data existing in sys_Attribute class. We specify a mappings between
sys.Attribute and ALL_TYPE_ATTRS, where the physical data can be found.

Sys_Method. A sys.Method represents the function or procedure the sys_Root or sys_Role
class contains. Since the methods of an UDT have been stored in the schema repository, the
sys.Method needs only to reference the stored method rather than define a new method.
There is also a mappings specified between sys.Method and ALL_TYPE_METHODS.

Implementing the Metamodel Extensions

In reality, the role-based view metaclasses must be defined as new meta-UDTs and stored in the

schema repository along with other existing meta-UDTs. Object references are used to express the

CHAPTER 3. EXTENDING THE 0-R METAMODEL 33

Object Table sys_Roleview_ObJTab (of sys.Roleview)
RoleviewJD Roleview_Name Root Column RoleList (of sys_RolelLlst (as table of
REF sy«_R’le))

RAW (16) VARCHAR? (30) references REF
(PK) sys_Root_ObjTab

references sys_Role_ObjTab

Object Table sys_Root_ObjTab (of sys_Root)

Root_Name Type_Ref SuperType Attributes Methods RoleList Rool_Attribute Root_Method
VARCHAR2 references VARCHAR NUMBER NUMBER NESTED TABLE NESTED TABLE NESTED TABLE
(30) (P-K) sys_OracleType_View 2(30) sys_RoleList sys_AtttrList sys_MethodList

Object Tabls sys_Role_ObJTab (of sys_Role)

Role_RID Role_Name Type_Ref Root IsMultiple Attributes Methods Role_Attribute Role_Method
RAW (16) VARCHAR2 references references VARCHAR NUMBER NUMBER NESTED TABLE NESTED TABLE
(30) (P.K) sys_OracleType_View sys_Root_ObjTab 2(3) sys_AttrList sys_MethodList

Column Role_Attribute / Column Root_Attributo (of sys_AttrList (at table of sys_Attribute))
Attr_Name Attr_Owner Type_Attr_Ref

VARCHAR2 (30) (P.K) VARCHAR?2 (30) (P.K) references sys_OracleType_Attr_View

Column Role_Method / Column Root_Method (of >ys_MethodList (as table of sys.Method))

Method_Name Method_Owner Type Method Ref

VARCHAR?2 (30) (P.K) VARCHAR?2 (30) (P.K) references sys_OracleType_Method_View

Figure 3.9: Object-Relational Presentation of Roleview Metamodel.

relationships between them; and collection types model the multi-value attributes. Furthermore,
an O-R perspective is presented in order to store and manipulate the meta-objects. The standard
data definition language is used to define the meta-UDTs. There are two steps to complete the
implementation of metamodel extensions, with a fully described prototype provided in Appendix
A.

1. The O-R Meta-UDTs Definitions. The O-R model stores metadata in the schema repository
as static tables and views. The base tables store information about the associated database
and users are not allowed to access these tables. It is necessary for our approach to place
a number of ‘virtual’ UDTs that represent the structure of the O-R metamodel. Hence,
sys_OracleType is specified to represent the existing UDT structure, sys_OracleType_Attr
presents the structure of UDT attributes and sys_OracleType_Method presents the UDT
methods structure. Furthermore, we must specify the corresponding meta-object tables based
on the existing O-R meta-views in order to query and manipulate the meta-objects. As the
result, the metadata presented in the O-R meta-views can be accessed and referenced through
the meta-tables we defined.

2. The Role-Based View Meta-UDTs Definitions. We now define the role-based view meta-
UDTs which represent the metamodel extensions. There are five new meta-UDTs: sys_Roleview,
sys.Root, sys_Role, sys_Attribute and sys.Method. It is very important to specify a
clear mappings between these new meta-UDTs and the virtual UDTs defined previously.
For example, the attribute Type-Ref of sys.Root references sys_OracleType and attribute
Type_Attr__Ref of sys_Attribute references sys_OracleType_Attr. Once the new meta-
UDTs are defined completely, it is necessary to specify the corresponding meta-object tables
which store and manipulate the roleview meta-objects. Figure 3.9 illustrates the role-based
view meta-UDTs in an O-R perspective. A full description of the metamodel implementation

is discussed in chapter 5.

CHAPTER 3. EXTENDING THE O-R METAMODEL 34

3.3 Conclusions

One of the functions of this thesis is to examine the latest version of O-R metamodel. The O-R
model is complex and the examination of its metamodel provides a better understanding of how it
works. An O-R metamodel contains the meta objects stored in the schema repository. It is divided
into four sections: O-R types, O-R tables, O-R views and O-R triggers. Extending the relational
model with object extensions is one of the characteristics of the O-R model. It is represented
at the O-R types section by providing some new features, such as allowing user to define new
object types; using collection types to present rich object collection; and group object types into
type hierarchy. In the O-R metamodel, the structure of UDTs are specified at the O-R types
section, while object storage is represented at the O-R tables section. Object table, a new object
type, is defined to store the 0-0 concept based UDTs in a tabular format which the relational
model recognises. It is the overlap between the 0-0 concept and the relational model. Object
tables provide a relational perspective for the 0-0 based UDTs, and on the other hand, O-R
views provide an object perspective for the relational data. In the O-R views section, object views
present the functionality that abstracts the relational data in an 0-0 format. The O-R triggers

section present the object extensions of the relational triggers.

The major contribution of this thesis is to define a role-based view mechanism in the O-R model.
However, the current O-R metamodel does not support role-based view metadata. Hence, it
is necessary to extend the metamodel with extra metaclasses in order to model the new object
types. The extended O-R metamodel is also introduced in this chapter. There are two steps to
complete the extensions: first is to discuss the role-based view metamodel; second is to specify the
relationships between the existing O-R metaclasses and the new metaclasses. While introducing
the role-based view metamodel, an UML design tool is used to represent the structure and each
individual metaclass is discussed. An extension is provided by clearly specify the associations
between existing metaclasses and new defined metaclasses. Once the concept and semantics are

discussed, we offer a brief introduction of implementing the extended metamodel.

Chapter 4

Designing Role-Based Views for
O-R Databases

In this chapter a role-based view mechanism is described. Throughout the rest of this chapter
and in subsequent chapters, it is assumed that ‘virtual schema’, ‘view schema’, ‘roleview’ and
‘subschema’ have the same meaning, i.e. they refer to a role-based view, and each term may be

used while describing how a role-based view is created and stored in 0-R databases.

In 84.1 a general introduction of a roleview is provided. A roleview is a subschema as it includes
multiple virtual classes. The specification of virtual classes are also introduced. In 84.2 the seman-
tics and syntax of roleview are presented, along with the generation of roleview extents. In 84.3,
we introduce a number of restructuring operators which are used to derive new virtual classes or

manipulate the virtual class objects. Finally, some conclusions are offered in 8§4.4.

4.1 Introduction

The view mechanism in a FDBS must retain as much semantic information as possible in order to
meet the original criteria for canonical model selection [SCGS91]. The perception of a view is that
of a subschema, possibly containing multiple virtual classes. In our role-based view system, the root
and role classes are virtual classes, composed of existing UDTs. A virtual class is automatically
constructed and stored in the schema repository when roleview is processed. An existing UDT
may be used by multiple virtual classes in multiple roleviews. In an O-R database, a single schema
comprises multiple UDTs, while the extended model includes multiple roleviews and virtual classes.
The relationships between the database schema, base UDT, view schema, root class and role class
are illustrated in table 4-1-

While specifying virtual classes of a roleview, there are two allowable restructuring options: pro-
jection and selection [Wan03]. The projection option is used to select certain attributes from the
base UDT as the virtual attributes while discarding other UDT attributes. It is expressed by the
select clause. In the O-R model, an UDT is used to present the structure of an entity and an
extent is a collection objects of the same UDT. These objects are stored in an object table for
the purpose of query or manipulation. The selection is used to select objects from the base UDT
extent to form the extent of virtual classes. This operation consists of selecting rows of object

tables which satisfies certain conditions, and it is expressed by the where clause.

35

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 36

Entity A Entity B Relationship Description
DB Schema Base UDT 1-n A database schema comprises many UDTSs.
DB Schema Roleview 1-n A roleview is a subset of the base schema,
many are defined using one database
schema.
DB Schema Virtual Class 1-n A database schema comprises multiple
(Root Class & Role Class) virtual classes although never it directly
references them.
ubT Virtual Class m-n An UDT may be redefined In multiple virtual
(Root Class & Role Class) classes; and more than one UDTs are used

to form a single virtual class.

Roleview Base UDT m- n An UDT may participate in multiple
roleviews, and any roleview may associate
with more than one UDT.

Roleview Root Class 1-1 Each roleview only contain one single root
class. A root class only belongs to one
roleview.

Roleview Role Class 1-n A roleview may contains multiple role
classes. Each role class only belong to one
roleview.

Table 4.1: Scope Issues.
4.2 Defining Role-Based Views

Traditionally, a view definition is a data definition statement which incorporates a data manipula-
tion command. For example, a view structure is defined, a query is used to specify the structure
and to generate the extents of the virtual classes, and the entire view definition is stored in the
database. This standard is maintained by providing our role-based view declaration, but is ex-
tended to allow multiple class redefinitions, in order to construct a subschema of multiple virtual
classes. A form of extended SQL:1999 is needed where the new object type roleview is added to
the list of existing object types such as type and table. The keyword create roleview indicates
that virtual schema and its components must be constructed and stored in the schema repository
Before defining the role-based view in an 0-R database, it should be ensured that the O-R meta-
model has been extended with role-based view metaclasses. The proposed roleview mechanism is
based on clear semantics. The 0-R model uses UDTs to describe the real-world entities, and this
concept is extended by using virtual classes to describe the virtual entities. There are three steps
to design a roleview specification language: understanding the semantics; the syntax to define the
roleviews; and the generation of the extents.

42,1 Role-Based View Semantics

A roleview is a named collection of virtual classes based on the defined UDTs in the database
schema. Those UDTs may be connected either through inheritance or associations. The name
of the roleview, the names of all virtual UDTs (root and role classes) and base UDTs must be
explicit in the roleview definition. Furthermore, the structure of each virtual UDT must be clearly

specified in the roleview definition. The semantics of roleviews are as follows:

e Each virtual class is based on an existing UDT, with virtual meta-types and meta-objects
stored in the schema repository. It is users’ responsibility to ensure the existence of base
UDTs. The system will throw an error exception if the base UDTs cannot be found in the
schema repository. In the O-R model, UDTs are organised into a type hierarchy, where the
structure and behaviour of several UDTs can be abstracted into a common supertype. Hence,

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 37

it is possible that a virtual class is based on an UDT which is a subtype in a type hierarchy.
If that UDT in a root class, we assume that the root class also inherits the properties and
behaviour from the supertype of its base UDT. If that UDT in a role class, the role class

does not inherits the properties and behaviour from the supertype of its base UDT.

¢ A roleview contains multiple virtual classes. The root and role classes are virtual represen-
tations of existing UDTs. An object defines the permanent properties in a root object, while
each role object defines some of its transient properties. In other words, a root and role class

present different characteristics of a real-world entity.

* A roleview contains only one root class, while the number of role classes is infinite. The root
class is a static component of the roleview while a role class is dynamic. The roleview is
deleted if its root class is dropped from the database while it does not lose its identity if one
of its role class is dropped.

* A root object may play multiple role objects or the same role object multiple times. A role
object cannot exist without its root object. Deleting a root object implies deleting all of its

role objects.

* An object preserving semantics is used to identify the root object. No new identifiers are
constructed as a result of a new root object. Where a root class is derived from a base
UDT, the base UDT identifier is used, and the onus is on the roleview mechanism to provide
access to the root class. Every attribute and relationship property in the roleview schema is
connected to the base UDT equivalent.

e The role object is identified by a compound identifier which comprises the object identifier
of the base UDT and a system generated transient role object identifier. While defining root
and role classes, it is possible that the base UDTs are either link to each other or not. In the
first case, it is not necessary to use the object preserving semantics in a role object because
its root object has the same object identifier as its base UDT, and this UDT links to the
role base UDT through either inheritance or association relationship. In the second case, we
must use the object preserving semantics to identify the role object, otherwise, there is no
any references to specify the link between a role object and its base UDT object. For the
purpose of simplicity and non-ambiguity, we use a compound identifier to identify the role
objects. The object preserving semantics is used to mapping the role object to its base UDT
object; and the object generating semantics is used to represent the dynamic feature of roles.

The system only generate the transient identifier at the run time rather than compile time.

¢ Derived attributes and relationships must connect to existing attributes and relationships.
The root and role classes are the virtual classes of the base UDT. There are no new attributes
or relationships generated in the roleview definition.

4.2.2 Role-Based View Definition Syntax

We now provide a syntax for defining roleviews. There are two elements involved in defining
a virtual schema: first it is necessary to define the structure of the newly defined schema; and
second, it is necessary to specify queries which are used to select objects from the base schema,
which generate an extent for each virtual class. In the first case, it is necessary to provide the
names of base UDTs and the properties contained within those virtual classes. In the latter case,
it is necessary to identify the queries and ensure there is no overlap between each extent. The
create roleview declaration is used to define virtual schema, and in this chapter a full BNF

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 38

grammar is provided for this extension to SQL:1999, and the practice of numbering production
rules has been adopted to aid later explanations. The top level of format is illustrated in definition
1, and in definition 2 and definition 3 the expansions are provided. Note that a form of BNF
used by the ANTLR [Ant03] parser library is employed, as this was used to construct the parser
developer for this research. It is described in full in chapter 5 together with details of prototype

and experiments. An earlier version of view definition syntax is presented in [WRO03].

Definition 1 Roleview Statement.
‘create” ‘roleview™ roleview-name: ldentifier “as”
rooLdcl

(role-dcl)*

In the statement shown in definition i, there are two portions, and a strict ordering exists so that
they must be specified according to their ordering in the definition. The root class must be specified
first in the definition, and the role classes are specified afterwards. According to the definition,
only one root class exists in the statement, while zero or more role declarations are allowed in the
statement. The ‘(rule)*' format indicates this option. In definition 2, more details regarding root
and role declarations are illustrated.

Definition 2 Root & Role Statement,
root-dcl:
‘root”

qualifier-dcl

role-dcl:
‘role | multirole ™

qualifier-dcl

In this definition, root_dcl and role_dcl are illustrated, along with a sub-declaration quali-
fier_dcl which is used by both declarations. The root declaration uses the root keyword followed
by a qualified_dcl declaration. The role declaration starts with the optional keyword role or
multirole, followed by a qualified_dcl declaration. The keyword multirole indicates multiple

occurrences, while the keyword role indicates the single occurrence.
Definition 3 Production Rules,
qualifier-dcl:

class-name: ldentifier “of”’type-name: ldentifier “is”

sqLdcl

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 39

Figure 4.1: Web Design Schema.

In the statement of qualifier_dcl, an identifier is used to specify the name of root class or role
class, followed by the keyword of and another identifier which indicates the name of existing UDT.
This declaration is finished by the substatement sql_dcl. The sql_dcl expression performs the
select. ..from. ..where. .. statement in SQL:1999. The select... substatement is used to
restructuring the properties by projection option; the from. .. substatement is used to specify the
underlying UDTs; the where... substatement deals with restricting the extent of UDTs by the
selection condition.

4.2.3 Role-Based View Definition Examples

Throughout the remainder of the thesis, the pragmatics of roleviews are demonstrated through a
number of examples. In this section, we provide the initial examples of how to define a roleview. In
figure 4-1, a web design schema is presented and in figure 4-2 two roleview schema are illustrated
which are based on the web design schema. As figure 4-1 shown, a WebDocument is composed
of Image, Text and Layer UDTs. A Layer UDT associates with Image and Text UDTs. An
Image UDT is the supertype of ImgMap and Animatedlmg. A Layer UDT also associates with
UDT Flash and Animatedimg. UDT Image, ImgMap and Animatedimg are grouped into a type
hierarchy and the subtypes inherits the properties and behaviour from its supertype. There are
two subschema defined on the base of sample schema: ImageView (figure 4‘%(0")) and TextView
(figure 4-2(b)). The roleview ImageView represents the entity Image with all of its different aspects.
The permanent properties are structured into root class ImgRoot, which is based on UDT Image;

and the transient properties are structured into role class ImagMapRole based on UDT ImgMap

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 40

L., 1UDT I. .1 Root C D Role 1 J RoleView

Figure 4.2: Roleview Examples.

and AnimatedimgRole based on UDT Animatedimg. In this roleview, the associations between
base UDTs are also derived, root ImgRoot links to UDT Layer and role AnimatedimgRole links
to UDT Flash. The roleview TextView represents the Text entity and its role AnimatedTxtRole.
We assume that a Text object plays a role of animated text when it appears in a Flash object.
Hence, the Text UDT is the base for both root and role classes. The derived association is divided

into the association between root class with UDT Layer and role class with UDT Flash.

Note that there are two options for generating extents for root and role classes: either retrieve the
entire extent of the underlying UDT; or select only the subset of extent through the projection
option. Since we concentrate on defining the roleview structure in this section, the root and role
extents are simply generated by retrieving the entire extents of based UDTs. A full discussion on
extents is provided in section 4-2.4-

Example 4.1 ImageView Definition,
create roleview ImageView as
root ImgRoot of Image is (

select *

from Image-ObjTab)

role ImgMapRole of ImageMap is (

select map-name, shape, href

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 41

from, ImgMap- ObjTab)
multirole AnimatedimgRole of Animatedimg is (
select rotation, tween, scale, flajref

from Animatedimg_ObjTab);

In example || a roleview is comprised by three base UDTs: Image, ImgMap and Animatedimg. Al-
though the processing of a roleview definition is not covered until later in this chapter, it is possible
to explain what happens with this sample definition. A new roleview ImageView definition will
be stored in the schema repository. The ImageView defines one root ImgRoot and the two roles
ImgMapRole and AnimatedlimgRole. The latter is a multirole where multiple occurrences are
allowed. The appropriate properties are easily retrieved from the metadata repository, with new
role metadata generated and stored in the extended 0-R schema repository. ImgRoot, ImgMapRole
and AnimatedlimgRole are based on previously defined UDTs, and ImgMapRole and AnimatedIim-
gRole are restructured using the projection option. The derived relationship is represented by the
attribute fla_ref.

The previous example illustrates that the root and role classes may be based on different UDTs.
However, it is also possible for the root and role classes to be based on a single UDT provided
that attribute sets are disjoint. Figure 4.2(b) illustrates this option, where a Text object links to

a Flash object, it actually plays a temporary role as animated text.

Example 4.2 TextView Definition,

create roleview TextView as

root TxtRoot of Text is (
select text-id,format, font, color, style, layer.ref
from Text-ObjTab)

role AnimatedTxtRole of Text is (
select tween, scale, transform, rotation, flasL.ref

from TexL.ObjTab);

In example 4-2, root TxtRoot and role AnimatedTxtRole are based on a single UDT Text. The
associations between UDT Layer, Text and Flash are derived by root class and role classes:
attribute layer_ref specified in the root declaration; attribute flash_ref specified in the role
declaration.

In a real world scenario, it is possible that an object exists only with its intrinsic properties and
acquires a transient role afterward. A typical example is where a person becomes an employee at
some point in time. Thus, it is possible to define a roleview with a root but no role specifications
and later restructure the roleview with adding a role specification.

4.2.4 Generating Extents for Virtual Classes

As stated previously, a roleview definition includes defining the structure and generating the ex-
tents for virtual classes. In the last section, we provide clear semantics for defining the structure of
roleview and the virtual classes. It is a complex issue while generating the extents for each individ-
ual virtual class and ensuring no-duplication or ambiguities between each extent. The semantics
of generating extents are as follows:

CHAPTER 4 DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 42

¢ The extent of each virtual class is generated separately. In a roleview, a query is used to
specify the structure and generate the extent for the virtual class. Multiple queries exist
because multiple virtual classes are included in a roleview definition. The extent of each
virtual class is generated individually after the structure is defined. The projection option
presented by the where clause is used to filter the base UDT objects and generate the extents
as result. 1f no where clause is specified, the entire extents for the underlying UDTs are used

to create the extents of the virtual classes.

* To generate the extent for a role class, it is necessary to take the extent of the base UDT,
and apply some predicate to generate the virtual extent. Where a virtual class is a role class,
an extent is generated for the role class and its root class. In our roleview schema, each root
class may have multiple role classes. Hence, the root extent contains the extents of all its
role classes by default. For example, the extent of role class Student contains 2 objects and
the extent of role class Employee contains 1 object, then the extent of their root class Person

contains those 3 objects automatically.

e A root class is also a virtual class of base UDT, hence, the extent of the root class is generated
by applying the project option to its base UDT extent. In addition, it is expressed by the
union of the extents of all of role classes. In order to eliminate the overlap in the union, a filter
function distinct() must be applied to the root class. It is similar to that of distinct query in
SQL:1999. The expression of root extent is: Eroot = distinct (E(Proot) U E(Prolel™ u

Arole2n ese U E’proleinl

The next step is to generate extents for virtual classes using the semantics. Example 4-3 generates
the specific extent of the roleview from example 4-1-

Example 4.3 ImageView Definition with Extent,
create roleview Image View as
root ImgRoot of Image is (
select *
from Image-ObjTab
where name = ‘Fischir”®
role ImgMapRole of ImageMap is (
select map-name, shape, href
from ImgMap-ObjTab
where map_name = ~cu.ban’ or shape = ‘rectangle*,)
multirole AnimatedimgRole of Animatedimg is (
select rotation, tween, scale, flajref
from Animatedimg”ObjTab

where tween != fshape’J;

Figure 4-8 illustrates how the extents of root and role classes are generated for example 4-8- The

non-shaded columns and rows are not part of the view specification but are part of base UDTs.

1The projection option is expressed by P(), which is applied to the virtual class specification.

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 43

Image_ObjTab (of Image)

_hjmg id jdze layerjef
co I1SG 60k 144p logo none c\\ 500
1002 Fischar 120k 72p banner black e:\img\\ 508
1003 DCU 20k 72p banner white e:\img\\ 501
1004 ISG 60k 144p — Qo c:\ 500
o Layer
(bag)
Flash
rotation)
isg_ban rectangle www.computing.dcu.le/~isg auto motion 72 isgjogo
dcu_ban oval www.dcu.ie cew shape 144 dcujogo
ca_web oval Www.sina.com auto motion 72 trjogo
ImgMap_ObjTab (of ImgMap) Animatedimg_ObjTab (of Animatedimg)
i 1 Root 1 I Role i | UDT L__ J RoleView

Figure 4.3: ImageView with Extents.

The multirole AnimatedimgRole {auto,motion} is represented using two rows. There are two
role objects in the ImgMapRole class (which gets its extent from the ImgMap_ObjTab object table)
and one object in the AnimatelImgRole class. These three objects are part of the root extent by
default. In addition, the Image named as Fischer’ is selected as root object according to the
root specification. Hence, the root extent includes 4 objects. The extent for root class ImgRoot is
generated as follows: EImgRoot= E(PImgRoot) U E(PImgMapRole) U E(PAnimatedimgRole)

In the illustrated roleview definition, it is allowed that a root class and its role class may be based
on a single UDT. Example 44 expands the definition shown in example 4-2with a where clause,
and figure 4-4 illustrates the result.

Example 4.4 TextView Definition with Extent,

create roleview TextView as

root TxtRoot of Text is (
select text-id, format, font, color, style, layer-ref
from Text-ObjTab
where text.id = ‘2002~

role AnimatedTxtRole of Text is (
select tween, scale, transform, rotation, fla~ref
from Text-ObjTab

where tween = fmotion} or tween = 'shape',);

The extent of UDT Text is divided into TxtRoot extent and AnimatedTxtRole extent. According
to the root specification, there is one Text object is selected as the root object. According to the
role specification, there are two Text objects are selected into the role extent. As stated previously,
these two objects are part of the root extent by default. The root object Text ‘2002’ does not
play role AnimatedTxtRole currently; hence there are three root objects in the root extent. The
expression of root extent is: ETxtRoot= E(PXxtRoot) U E(PAnimatedXxtRole)

http://www.computlng.dcu.le/~isg
http://www.dcu.ie
http://www.sina.com

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES

Text_ObjTab (of Text)

textjd format font color layerjef tween scale transform rotation
2001 none arial black 500 motion 72 none auto
2002 heading 2 arial red 501 null null null null
2003 preformatted verdana orange 508 shape 72 none ccw
textjd format on, color styla layer_ref
2001 none arial black arial 500 _ |
2002 heading 2 arial red roman
2003 preformatted verdana orange arial 508
tween scale transform rotation
motion 72 none auto Isgjogo
null null null null null
shape 72 none cew trjogo
Root L _| roe [=O0 uor RoleView
Figure 4.4: TextView with Extents.
4.3 Restructuring Operations

44

flash_ref
isgjogo
null

trjogo

Layer

Flash

In this section, restructuring operations that modify the structure of a roleview are described.

The operations fall into two catalogues:
of restructuring roleviews, which are rename, add and drop operators.
to restructure the defined UDT in SQL:1999.

class level and object level. There are three operations
They are originally used

We modify these operators and allow them to

restructure the virtual classes of roleview. There are also three operations that manipulate role

objects, which are acquire, abandon and migrate operators. Each operator is expressed in BNF

format and followed by an example.

4.3.1 Class Level Operations

The formal expression of class level restructuring operations are represented in definition 4-

Definition 4 Class Level Restructuring Operations.
“alter” ‘roleview” roleview-name: Identifier
rename_ope \

addLope |

drop-ope

rename-ope:
‘rename” ‘root \ role” oldLclass"name: Identifier “as” new-class-name:
adcLope:

“add” (role-adcLdcl) *

Identifier

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 45

role-addLdcl:
‘role | multirole”class-name: Identifier “of type-name: ldentifier “is”

(sgqLdcl)2

drop-ope:

“drop ” (role-drop-dcl) *

role-drop.dcl:

‘role | multirole” class-name: Identifier

Note that the keyword alter is used to emphasise the alteration of a roleview. The three possible
expressions are all optional.

* rename

The rename expression is used to rename the virtual classes. There are two arguments: the first is
the existing virtual class identifier and the second is a new virtual class identifier. If the new virtual
class identifier already exists in the extended schema repository, an error message will be generated.
A simple example is given in example 4-5. While a virtual class is renamed, the metadata stored

in the schema repository is automatically updated.

Example 4.5 Rename Operation,
alter roleview ImageView

rename role AnimatedimgRole as Frame

e add

The add expression is used to allow the root class to require role classes. The keyword role or
multirole clarify the type of role class. Note that a sql_dcl substatement is used to construct
the class structure and generate the extents, which is similar with the specification of role class
in a roleview. For example, root ImgRoot requires a new role class LogoRole, which is based on
existing UDT Image. Example 4-6 illustrates this operation. Each statement contains multiple

operations. However, if one operation fails, the system will rollback and unstore the updates.

Example 4.6 Add Operation,
alter roleview ImageView
add role LogoRole of Image is (

select type, size from Imagt-ObjTab)

2The sql.dcl expression has been discussed at the section §4.2.2.

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 46

e drop

The drop expression allows the root class to remove its role classes. The keyword role ormultirole
is used to clarify role type. Like add operation, each statement allows multiple drop operations
to be executed. One failure causes the rollback of the whole statement. This operation is only
employed to role class, because dropping the root class results the roleview lost its identity. The
drop operation is illustrated in example 47

Example 4.7 Drop Operation,

alter roleview Image View

drop role LogoRole

4.3.2 Object Level Operations

There are three object level operations are employed to the roleview definitions. They offer a
flexibility that a root object may acquire or abandon its role object; and a role object may be
transferred between different root object. It is not an option that a root or role object can be
transferred between different roleviews.

e acquire

Definition 5 Acquire Operation.
“acquire” ‘role | multirole” class-name: Identifier
‘from” ‘roleview” roleview-name: ldentifier

‘where” ‘root”sqLcondition

The acquire operator is used to update a role extent by placing a new object into a role extent
(and root extent by default). Note that substatement sql_condition is imported from SQL: 1999
where clause [GP99]. It is also possible to acquire a new multirole by using the acquire multirole

command. An informal expression is shown in example 4-8-
Example 4.8 Root Object Acquire Role Object.
acquire role ImgMapRole

from roleview ImageView

where root ImgRoot.img_id *'1003
e abandon

Definition 6 Abandon Operation.
“abandon” ‘role | multirole” class-name: ldentifier
‘from” “roleview” roleview-name: ldentifier

‘Where” “root” sqLcondition

CHAPTER 4. DESIGNING ROLE-BASED VIEWS FOR O-R DATABASES 47

The abandon operator is executed when a root object does not play a role object anymore. A root
object cannot be dropped unless its base UDT is removed from database schema. The substatement

sql.condition is also reused from SQL:1999. Example 4.9 shows the syntax.

Example 4.9 Abandon Role Object from Root Object.
abandon role ImgMapRole
from roleview ImageView

where root ImgRoot.img_id - ‘1003’

Once again, there are two important conditions that guarantee this operation succeeds: the root
“1003” exists in the root extent; and it definitely has an ImgMap role. Otherwise, an error message
will be generated.

e migrate

Definition 7 Migrate Operation.
‘migrate” ‘role class-name: Identifier
‘from” ‘roleview” roleview-name: Identifier
‘Where” ‘root” sqLcondition

“to””sqLcondition

The Migrate operator permits the changing of a root object while retaining all role information.
Under normal circumstances this requires a number of operations to delete all root and role data,
and then add new root and role data [GSR96]. This isnot necessary where a new object ‘replaceslan
existing one. For the purpose of simplicity and efficiency, only single role object can be transferred.
It is not supported that the movement of multirole object. Again, the sqLcondition is imported
from SQL:1999, it provides the same functions that where condition presents. Following is an
example of migrate operation.

Example 4.10 Migrate Role Object.
migrate role ImgMapRole
from roleview ImageView
where root ImgRoot.name = ‘ISG’

to ImgRoot.name = DCU’;

4.4 Conclusions

In this chapter the deployment of a role-based view system for O-R databases was presented, it is
the major contribution of this thesis. In an O-R model, the real world entity is represented by an
UDT, each schema is composed by many UDTs. Correspondingly, the virtual entity is represented
by a role or root class, which is the virtual class of existing UDT; and each roleview is composed by
many virtual classes. The relationships between base schema, UDT, roleview and virtual classes
were illustrated in this chapter.

CHAPTER 4 DESIGNING ROLE-BASED VIEWS FOR 0-R DATABASES 48

The semantics of defining a roleview were discussed before providing the syntax. In general, it
falls into two catalogues: the rules for specifying individual virtual class and the rules for wrapping
multiple virtual classes together. A virtual class cannot be specified unless the base UDT has
been defined and stored in the database. The roleview is considered virtual schema, only one
root class exists whereas the number of roles class is infinite. A root object is identified by object
preserving semantics, and the identifier of a role object combines the base UDT object identifier
and a system generated transient identifier. The definition of a roleview is completed by defining
the structure and generating the extents for the included virtual classes. The syntax is expressed
in a formal BNF format and followed by the real examples. The generation for virtual extents
is represented by providing a clear semantics first, and extending the previous examples with the

extent specifications.

In the last section, we provided number of restructuring operations that allow a roleview to be
modified and manipulated. The operations fall into two catalogues: class level and object level. At
the class level, a roleview is restructured by renaming the virtual class, adding or deleting virtual
classes. At the object level, a root object can acquire or abandon its role objects, a defined role

object is allowed to be transferred between different root object in a roleview.

At this point, we have offered the roleview concept and semantics of defining roleview, along with
the O-R metamodel extensions introduced in last chapter. The implementation of the roleview

mechanism is discussed in chapter 5.

Chapter 5

Implementation

One of the goals of this research is to deploy a role-based view system for O-R databases. Since
the current O-R metamodel does not support the roleview, the first step of the implementation is
to extend the metamodel with extra metaclasses. These metaclasses must be stored in the schema
repository, along with existing metaclasses. The next step is to define the Roleview Definition
Language (RDL) in BNF format and use ANTLR to parse the grammar; and generate the semantic
actions for each of the production rules. The third step is to specify the roleview examples using
RDL and store the metadata in the database. All of the roleview examples provided in this thesis

are defined and stored in the O-R database and are thus all syntactically correct.

The prototype system is composed of a server side and client side prototype, it is illustrated in
figure 5.1. The server side prototype extends the O-R metamodel; and the client side prototype
validates RDL and stores the metadata in the schema repository. The details of building a server
side prototype is provided in 85.1. In 85.2 a discussion on client side prototype is presented. In

85.3 details of experiments are described, and in 85.4, some conclusions are drawn.

5.1 Server Implementation

The server side prototype aims to extend the O-R metamodel with roleview metadata. The extra
metaclasses and meta-objects must be stored in the schema repository along with the existing
metaclasses and meta-objects. In reality, the server side prototype is divided into two sections:
virtual O-R meta-UDT definitions and roleview meta-UDT definitions.

Figure 5.1: Prototype Overview.

49

CHAPTER 5 IMPLEMENTATION 50

5.1.1 Defining O-R Meta-UDTs

As stated previously, the O-R metadata is stored in the schema repository as static tables and views.
The base meta-tables store information about the associated database and only the vendor may
access these meta-tables. Hence, it is necessary for our approach to place a number of virtual meta-
UDTs that represent the metamodel. These virtual meta-UDTs are defined by using SQL: 1999
data definition language.

According to the extended metamodel presented in chapter 3, the roleview metamode] associates
with Type, TypeMAttribute and Type.Method. They can be observed in meta-views ALL_TYPES,
ALL _TYPE_ATTRS and ALL TYPE _METHODS. Hence, the first step is to define the UDTs which copy
the structure of O-R Type, Type_Attribute and Type.Method. The following script presents how
to construct a virtual UDT for O-R Type:

create type sys.OracleType as object (
Type_Name varchar2(30),
Type_0OID raw (16),
Typecode varchar2(30),
Attributes number,
Methods number,
Final varchar2(3),
SuperType_Owner varchar2(30),
SuperType.Name varchar2(30),
Local_Attributes number,
Local_Methods number);

The next step is to create an object view for the virtual meta-UDT. As stated previously, the
metadata can only be seen in the relational metarviews. Hence, it is necessary to abstract the
relational view into an 0-0 format, where the tabular data is represented by an OID like any other
objects. In an O-R model, the object view provides this functionality. The script of creating object
view for sys.OracleType is presented as the follows:

create view sys_OracleType_View of sys.OracleType
with object identifier (Type_OID) as
select Type_Name, Type_ 0ID, Typecode, Attributes,
Methods, Final, SuperType_Owner, SuperType_Name,
Local,Attributes, Local Methods
from ALL.TYPES;

The last step is to create the object table for the virtual meta- UDT, and update object table by
retrieving the meta-objects represented in the object view. The object view generated in last step
is only a virtual 0-0 representation of metadata, it is not possible that other meta-objects can
access or link those meta-objects. Hence, we must create the meta-object table which physically
store the meta-objects. As the result, the ‘unaccessiblelrelational metadata is represented in an
0-0 format and can be accessed by other meta-objects. The script of creating object table for
sys.OracleType is presented as the follows:

CHAPTERS. IMPLEMENTATION 51

* Oracle SQL4Plus

wFile. Ed
SQL*Plus: Release 9.2.0.1.0 - Production on Thu Jun 12 19:43:05 2003

~Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Connected to:

Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JSeruer Release 9.2.0.1.0 - Production

'SQL> SELECT TYPE_NAME FROM USER_TVPES;
TVPE_NAME

ISVS ATTRIBUTE
SVSJJITTRLIST
SVSJ1ETHOD
SVSJ1ETHODLIST
SVSJJRACLETVPE
SVS_ORACLETVPE_ATTR
SVS_ORACLETVPE_METHOD
SVSJIOLE
SYSJTOLELIST
SYS_ROLEUIEW

SVS ROOT

11 rous selected.

soL> 1

Figure 5.2: Virtual O-R & Roleview Meta-UDTs.

create table sys_OracleType_ObjTab of sys_OracleType (
Type.Name primary key);

insert into sys_OracleType_ObjTab
select * from sys_OracleType_View;

Other virtual O-R meta-UDTs, sys_OracleType_Attribute and sys_OracleType_Method are
defined following the same procedure. The full script is presented in Appendix A.

5.1.2 Defining Roleview Meta-UDTs

As the extended metamodel presented in chapter 3, there are 5 meta-UDTs acquired: sys_Roleview,
sys_Root, sys.Role, sys.Attribute and sys_Method. While defining roleview meta-UDTs, it is
important to specify the relationships between the new meta-UDTs and the virtual O-R meta-
UDTs. In the extended O-R metamodel, sys_Root and sys_Role associate with sys.OracleType;
sys_Attribute links to sys_OracleType_Attr, and sys_Method links to sys_OracleType_Method.
The association between the meta-UDTs is described by a built-in datatype REF. The script of
defining roleview meta-UDTs is presented as the follows:

create type sys_Attribute as object (

CHAPTER 5. IMPLEMENTATION 52

Attr_Name varchar2(30),

Attr_Owner varchar2(30),

Type_Attr_Ref REF sys_OracleType_Attr);
create type sys_Method as object (

Method_Name varchar2(30),

Method.Owner varchar2(30),

Type_Method_Ref REF sys_OracleType_Method);
create type sys.AttrList as table of sys_Attribute;
create type sys.MethodList as table of sys.Method;
create type sys_Role as object (

Role.RID RAW(16),

Role.Name varchar2(30),

Type_Ref REF sys_OracleType,

Root REF sys_Root,

IsMultiple varchar2(30),

A ttributes number,

Methods number,

Role_ Attribute sys.A ttrList,

Role_Method sys.MethodList);
create or replace type sys_Root as object (

Root_Name varchar2(30),

Type_Ref REF sys.OracleType,

SuperType varchar2(30),

A ttributes number,

Methods number,

RoleList sys RoleList,

Root.Attribute sys_AttrList,

Root_Method sys_MethodList);
create type sys.RoleList as table of REF sys_Role;
create type sys.Roleview as object (

Roleview_Name varchar2(30),

Roleview_ID raw (16),

Root REF sys.Root);

Note that there are three collection types are defined in the script, they are used to represent the
collection of meta-objects. As figure 5.2 illustrated, 5 roleview meta-UDTs are defined and stored
in the schema repository, along with 3 virtual O-R meta-UDTs. In addition, 3 collection UDTs

CHAPTER 5. IMPLEMENTATION 53
are defined to complete the extensions. As the result, there are 11 meta-types are defined in the
server side prototype.

Since the roleview meta-UDTs model the structure of roleview meta-objects, it is necessary to
define the roleview meta-object tables that store the roleview meta-objects. The script of defining

object tables for the roleview meta-types is presented as the follows:
create table sys_Root_ObjTab of sys.Root (

primary key (Root_Name),

Type_Ref references sys_OracleType_ObjTab)

nested table RoleList store as sys_Roles,

nested table Root.Attribute store as sys.Root,Attributes,

nested table Root_Method store as sys.Root.Methods;
create table sys_Role_ObjTab of sys.Role (

primary key (Role_RID, Role.Name),

Type_Ref references sys_OracleType_ObjTab,

Root references sys_Root_ObjTab)

nested table Role_Attribute store as sys_Role_Attributes,

nested table Role_Method store as sys_Role_Methods;
create table sys_Attribute_ObjTab of sys_Attribute (

primary key (Attr.Name, Attr_Owner),

Type_Attr_Ref references sys_OracleType_Attr_ObjTab);
create table sys_Method_ObjTab of sys_Method (

primary key (Method_Name, Method.Owner),

Type_Method_Ref references sys_OracleType_Method ObjTab);
create table sys_Roleview_ObjTab of sys _Roleview (

primary key (Roleview.ID),

Root references sys_Root_ObjTab);

5.2 Defining Roles

The client side prototype is also divided into two sections: parsing RDL and building roleview
processor. Some background technologies such as ANTLR, Oracle JDBC Thin Driver and JDK
are required to complete the prototype. These technologies are introduced briefly along with the
prototype details.

5.2.1 Parsing RDL

RDL is specified in BNF format and parsed by ANTLR 2.7.2 in the client side prototype. The
latest version of ANTLR can be obtained at www .antlr.org. ANTLR is a parser and translator

tools that lets one define language grammar in either ANTLR or AST syntax. It is more than just

http://www.antlr.org

CHAPTER 5. IMPLEMENTATION 54

Directory of D:\createRoleuieu\RoleuiewDefinition\src

10/04/2003 16:22 <DIR>

10/04/2003 16:22 <DIR>

05/04/2003 20:30 <DIR> con i

22/04/2003 11:21 3,666 t.g

18/04/2003 12:41 1,038 run.class .

22/04/2003 11:22 8,110 L.java !

22/04/2003 11:22 8,202 P.java

22/04/2003 11:22 396 PTokenTypes.java

22/04/2003 11:22 316 PTokenTypes.txt

18/04/2003 12:41 5,218 L.class

18/04/2003 12:41 607 PTokenTypes.class \Z

18/04/2003 12:41 5,437 P.class

22/04/2003 11:21 862 run.java Mg
10 File(s) 33,852 bytes Lnfy-

3 Dir<s) 1,294,958,592 bytes free

D:\createRoleuieu\RolegieuDefinition\src>java antlr.Tool t.g
ANTLR Parser Generator Uersion 2.7.2 1989-2003 jGuru.com .

D:\createRolegieu\RolegieuDefinition\src> 1

Figure 5.3: Parse RDL Using ANTLR 2.7.2.

a grammar definition language, however, the tools provided allow one to implement the ANTLR
defined grammar by automatically generating lexers and parser in either Java or Sather [Ant03].
In our prototype, ANTLR is used to parse RDL and generated the Java files, which represent the

lexers and parsers. Note that RDL must be saved as a .g file and execute with command line:

java antlr.Tool Filename

If an error occurs while validating RDL production rules, the programme is terminated by throwing
an exception. |If the validation is successful, the parsers and lexers are generated. Since RDL
contains 1 parser and 1 lexer, there are 3 Java files and 1 Text file generated. Figure 5.3represents

the results of parsing RDL. The detailed RDL is provided in Appendix B.

5.2.2 Building Roleview Processor

This task is completed by specifying Java programme which takes the RDL variables and stores

them to the pre-defined meta-tables. There are 2 class libraries required:
e Oracle JDBC Thin Driver 3.0

Oracle JDBC is a standard Java interface for connecting from Java to databases. JDBC Thin
driver provides the power and flexibility to use dynamic SQL statements in Java programmes
[OraOl]. Using JDBC, a calling programme can construct SQL statements at runtime. The JDBC
programme is compiled and run like any other Java programme. No analysis or checking of the
SQL 9tatements is performed. Any errors that are made in SQL code raise runtime errors. The
latest version JDBC 3.0 provides two types of drivers, which are Thin driver and OCI. The reason
we chose the Thin driver is that it is a 100% pure Java driver, and targeted for Oracle JDBC

applets but can be used for applications as well. Because it is written entirely in Java, this driver

CHAPTER 5. IMPLEMENTATION 55

input.tKt - Notepad

create roleview imgview as
root imgRoot of |ma(];e is (.
select * from Image_objTab)
role imgMapRole of imgMap i$. .
select map _name, position from imgMap_objTab)
multirole AnimateimgRole of Animatedlmg is (=)
select rotate, tween, flaRef from Animatedimg_objTab);

create roleview Txtview as
root TxtRoot of Text is (

select text id, format, font, sizes, layRef from Text_objTab)
role AnimatedTxtRole of Text is

select color, style, flaRef from Text objTab);

Figure 5.4: Roleview Definitions in RDL.

is platform-independent. It does not require any additional Oracle software on the client side.
Oracle JDBC Thin driver can be obtained at www.oracle.com. In our prototype, Oracle JDBC

Thin driver is used as the class library for building the roleview processor.

« JDK 14

JDK 1.4 is downloaded from www.java.sun.com. It is considered a class library that provides
environments for creating and editing Java source code, and compiling and debugging programmes.
In our prototype, jdkl .4\jre\lib directory is set in the PATH variables because it contains the
Java Runtime facilities that are used when users execute a Java programme. The Java Runtime

takes care of retrieving what it needs from the archive when the program executes.

To store the roleivew metadata in the schema repository, a roleview processor is programmed that
takes the roleview definitions as input, connect to the database, pass the roleview metadata to
PL/SQL Engine and finally store the metadata to the meta-tables. In our prototype, there are 3
Java classes specified in the processor. The detailed code are provided in Appendix C, D and E.

5.3 Experiments

All of the roleview examples provided in this thesis are defined and stored in the schema repository.
The premise of designing these roleview examples is that a Web Design Schema has been defined
in the database. The base schema is defined by using SQL:1999 in Oracle9i Release 9.2.0.1.0
database. The script of defining the schema is represented as the follows:

create type Layer as object (
layer_id number,
name varchar2(30),
width integer,
height integer,
visible varchar2(30),

background varchar2(30));

http://www.oracle.com
http://www.java.sun.com

CHAPTER 5.

IMPLEMENTATION

create type Flash as object (

flash.id number,

name varchar2(30),

type varchar2(30),

size varchar2(30),
background varchar2(30),
rate varchar2(30),

publishedBy varchar2(30));

create type Image as object (

create type

create type Animatedlmg under

img.id number,

name varchar2(30),

size integer,

resolution varchar2(30),
content CLOB,

background varchar2(30),

source varchar2(30),

layRef REF Layer) not final;

ImgMap under Image (
map.name varchar2(30),
shape varchar2(30),
href varchar2(30),
coordinates integer,

target varchar2(30));

width varchar2(30),
height varchar2(30),
coordinates integer,
rotation integer,
tween varchar2(30),
scale boolean,

flaRef REF Flash);

create type Text as object (

text.id number,
format varchar2(30),

size integer,

Image (

CHAPTER 5. IMPLEMENTATION 57

jD:\createRoleuieu\RoleuieuDefinition\src>jaua antlr.Tool t.g
ANTLF. Parser Generator Uersion 2.7.2 1989-2003 jGuru.con

D: \createRoleuiew\RoleviewDefinition\src>jauac jaua

D:\createRolevieu\RoleviewDefinition\src>jaua run
sys_ftttribute_ObjTab insert is completed.
sys_itoot_OfojTab insert is completed.
sys_fittribute_ObjTab insert is completed.
sys_Attribute_ObjTab insert is completed.
sys_Root update is completed.

Roleuiew Created.

sys_Attribute _ObjTab insert is completed.
sys_Root_ObjTab insert is completed.
sys_fittribute_ObjTab insert is completed.
|sys_Root update is completed.

Roleview Created.

ID: \createRoleuieu\RoleuiewDefinition\src>na

Figure 5.5: Roleview Processor Execution.

content CLOB,

color varchar2(30),

style varchar2(30),

tween varchar2(30),

scale varchar2(30),

transform varhcar2(30),

rotation varchar2(30),

layRef REF Layer,

flaRef REF Flash);
create table Layer.ObjTab ofLayer;
create table Flash.ObjTab ofFlash;
create table Image_ObjTabof Image;
create table ImgMap_ObjTab of ImgMap;
create table Animatedimg_ObjTab of Animatedimg;
create table Text_ObjTab of Text;

The roleviGw schema ImageView and TextView are defined as the virtual representations of base
schema. Although the experiments were conducted within a laboratory environment, they demon-
strate that the deployment of role-based views for O-R databases is syntactically correct. Figure

5.4 illustrates the roleview definitions. In ImgView definition, the base UDTs, Image, ImgMap and

CHAPTER 5. IMPLEMENTATION 58

SQL*Plus: Release 9.2.0.1.0 - Production on Sun Jun 1 15:31:13 2003
Copyright (c) 1982, 2002, Oracle Corporation, fill rights reserved.
Connected to:

Oracle9i Enterprise Edition Release 9.2.0.3.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options

JSeruer Release 9.2.0.3.0 - Production

?

SQL> select Roleuiew Nane from sysRoleuiewObjTab;

ROLEUIEW NAME

IMGUIEW
TXTUIEW

SQL> select Rootnane fron sysRootObjTab;
ROOT NAME

IMGROOT
TXTROOT

SQL> select Rolenane, IsMultiple fron sysRoleObjTab;

ROLE NAME ISMULTIPLE
IMGMAPROLE false
ANIMATEIMGROLE true
ANIMATEDTXTROLE false

SQL>

Figure 5.6: Display Roleviews.

Animatedlmg have been stored in the schema repository and the object tables, Image_ObjTab,
ImgMap_ObjTab and Animatedimg_ObjTab contain the objects. Note that there are no any new
attributes specified in root or role specifications, every attributes of virtual class must be retrieved
from the base UDTs. In TxtView definition, both root class TxtRoot and role class AnimatedTx-

tRole are based on one UDT Text.

A roleview definition may be complex and long because it includes multiple virtual class specifi-
cations. RDL allows multiple roleview definitions to be saved at one single file as input for the
purpose of easy maintaining. In figure 5.4, ImageView and TextView are specified in one single

file, however, the roleview processor only process one definition at a time.

Once a roleview is defined, the roleview processor takes the roleview definition as input and store
the roleview metadata in the meta-tables. Figure 5.5 illustrates that the roleview examples have
been successfully executed. Note that the roleview definition is processed in order. While executing
a roleview definition, if one of the insertion or update is failed, the processor will rollback the SQL

queries and throws an error message.

CHAPTER 5. IMPLEMENTATION 59

Figure 5.6 illustrates the stored roleview metadata, which displays the result of roleview processor.
In meta-table sys_Roleview_Objtab, ImgView and TxtView are stored; ImgRoot and TxtRoot are
stored in meta-table sys_Root_ObjTab; and sys_Role_ObjTab stores metarobjects ImgMapRole,
AnimatedimgRole and AnimatedTxtRole. In this thesis, we only provide some simple SQL queries
to display the roleview definitions, which are represented as the follows. A more sophisticated
roleview query system is presented in [0’C03].

Example 5.1 Query Root of a roleview.
select Root.Root-Name
from sys-Roleview-ObjTab r

where r.Roleview-Name = ImgView?’

Example 5.2 Query Roles of a root,
select role. *
from sys-Root-ObjTab root, TABLE (root.RoleList) role

where root.Root-Name = 'TxtView?

Example 5.3 Query Roles of a roleview.

select re.Role-Name

from sys-Roleview-ObjTab rw, sys-RooLObjTab rt, TABLE(rt.RoleList) re
where rw.Roleview-Name = ’ImgView’

and rw.Root.Root-Name = rt.Root-Name;

5.4 Conclusions

The deployment of the roleview system is represented by a working prototype. It includes the
server side and client side implementations. The server side prototype is used to extend the O-R
metamodel with roleview metaclasses; and the client side prototype is composed of RDL an a
roleview processor.

The server side prototype is built by defining the virtual O-R meta-UDTs and roleview meta-
UDTs in the schema repository. The scripts of meta-UDTs were represented and key issues were
highlighted. At the client side, RDL grammar was parsed by using ANTLR parser, a roleview
processor was built to store the roleview metadata to the pre-defined meta-tables. The technologies
were introduced in order to provide a better understanding of the prototype. Finally, we offered
the experiments which demonstrate the concept of roleview are implementable, and the semantics
are syntactically correct.

Chapter 6

Conclusions

The aim of this research was to demonstrate that a standard such as the O-R model could be used
as a basis for defining roleviews. Unlike other federated database research, one of the objectives of
this research was to reuse the existing data model and concepts, and thereby, eliminate the need
to define a new proprietary model. A second objective was to deploy a roleview system for O-R
databases, rather than a traditional 0-0 view mechanism. In this chapter a review of the thesis is

presented in 86.1; and options for further research are discussed in 8§6.2.

6.1 Thesis Summary

In chapter one, an introduction to federated database systems was presented. The Sheth and
Larson architecture adopted by many researchers was described. In federated database systems,
a view mechanism is crucial as it is used, to define exportable subsets of data; to perform a
virtual restructuring of data; and to construct the integrated schema. Hence, a federated view
must be formed in a semantic rich manner. In the last decade many researchers defined different
forms of 0-0 views since the 0-0 model was considered the suitable canonical model before the
emergence of the O-R model. The rigidity of existing 0-0 view mechanisms was discussed in this
chapter. While defining 0-0 views for the object model, one option was to extend the data model
to incorporate a role model. The concept of a role was introduced, along with the role features
and role usage. The current O-R model has no facility to provide a rich view mechanism, but it
provides an opportunity to develop the role-based view mechanism. The aim of this research was
to employ the role concept, enhance its capabilities to construct a view schema, and demonstrate
the usability of this idea through a working prototype and series of experiments using the O-R
model.

One of the problems in 0-0 modelling was the lack of adequate object evolution mechanisms,
also knowing as role modelling. The notion of roles presented many features that the traditional
0-0 model lacked, such as object migration, multiple occurrences and contest-dependent access.
In chapter two, an examination and comparison of some of the existing 0-0 role projects were
presented. The output from this critical analysis provided the requirements for the design of a

role-based view mechanism for this research.

One objective was to implement the view language and display services in order to prove that the
roleview schema could be constructed, and to provide an environment for testing views. Hence,
the extensions to the O-R metamodel was described in chapter three. Before extending the O-R

metamodel, it was necessary to examine the existing metamodel and clarify the possibility for role

60

CHAPTER 6. CONCLUSIONS 61

extensions. The examination of O-R metamodel was presented first, along with the analysis of
the role-based view metamodel. In the process of extending the O-R metamodel, the discussions
on associating metaclasses were emphasised. The output from this work was the capability of

representing roles as an extended metamodel.

The major contribution of this thesis was to define a view definition language. RDL was presented
in chapter four. One objective in designing RDL was the need to define the export schema (localised
view). These schemas may be built by wrapping multiple virtual classes. Hence, it was necessary
to clarify the semantics. Another objective was to query and display the view schema, hence,
the demonstration of generating virtual class extents was also necessary. The method for defining
virtual extents was presented, along with the semantics of how view processing takes place. An
exportable schema in the federated database system may require restructuring operations, and

thus, some class and object level restructuring operations were introduced.

The concept of role-based view system, and the syntax of RDL were proved by implementing
a working prototype. In chapter five, the details of prototype implementation was provided. All
examples illustrated in this thesis were constructed and queried to test the performance of roleview
schema, and to provide data for future research.

6.2 Further Research

The O-R model is a new model, which is based on the relational model, while demonstrating the
complex capabilities of the 0-0 model. It has been strongly developed in last few years, and
there is a clear argument for using an O-R canonical model because of its increasing similarity to
0-0 model and its more widespread acceptance. Moreover, using the O-R model in the federated
database systems provides new experiments that the traditional 0-0 model lacked. Since it is a
new experiment, many further research are waiting for the exploration. Outlined below are primary
areas for future work.

¢ Behaviour

One of the strengths of O-R model is the ability to incorporate behaviour into an object’s UDT
definition. The semantics of objects and their operations can be encapsulated within the UDT
rather than buried in application programme code. The behaviour of an object is represented
by method in the O-R model. It can be written in either PL/SQL or any other programming
languages. Methods written in PL/SQL or Java are stored in the database; methods written in
other languages such as C are stored with the application programme. In the latter case, a view
mechanism cannot incorporate an object’s operations since it cannot access the behaviour. In the
first case, although the methods can be accessed, they are not fully implemented in the current
version of O-R model. From a federated perspective, incorporating behaviours with views is a great
challenge. Currently, one member of Interoperable Systems Group (ISG) focus on studying the
behaviour of federated views [KRO1]. The performance of roles will be improved if the behaviour

is added to the roleview model.
¢ Integration

The objective of this research is to develop a semantic rich view system for the O-R model, which
is considered the suitable canonical model in the federated database systems. As stated previously,
a federated view must provide the functionalities for define export schema (localised view) and

CHAPTER 6. CONCLUSIONS 62

federated schema (global view). In this thesis, a powerful localised view is defined by using RDL.
However, the issue of schema integration was not covered. In comparison to building exportable
schema, the federated schema requires complex restructuring and integration operations. Hence,
further research can be carried on at the area of extending the roleview system to facilitate vari-
ous integration operations, which allow the federated system to combine roleviews from separate

databases or information systems.

* Delegation

Delegation is an important concept to enrich the 0-0 model on the concept and implementation
levels. One essential motivation to introduce delegation is to be seen in the shortcomings of
inheritance to model certain aspects of the real world entity. There is a remarkable amount of
work on 0-0 model which represents delegation [BD96, Mal95, FraOO]. However, the current O-R
model does not represent this extensional inheritance feature. In this thesis, a role-based view
system is designed from an implementation point of view, which allows the O-R model to support
the concept of delegation. Hence, it is necessary to carry on the further research at the area of
studying delegation from a concept point of view.

Bibliography

[AAGOO]

[ABG093]

[Ant03]

[BD77]

[BDY6]

[BE96]

[CB97]

[DPZ02]

[FBCPO1]

[FraOO]

[GPY9]

[GroOl]

[GSR96]

[JHPS02]

Albanoand, A., Antognoni, A. and Ghelli, G., View Operations on Objects with
Roles for a Statically Typed Database Language, in Knowledge and Data Engineer-
ing, vol. 12(4), pp. 548-567, 2000.

Albano, A. et al.,, An Object Data Model with Roles, in The 19th Conference on Very
Large Databases, pp. 39-51, Dublin, Ireland, 1993.

ANTLR, Complete Language Translation Solutions, jGuru, 2003, URL www.antlr.
org.

Bachman, C. and Daya, M., The Role Concept in Data Models, in The Third Interna-
tional Conference on Very Large DataBases, pp. 464-476, Tokyo, Japan, October 6-8,
1977.

Bardou, D. and Dony, C., Split Objects: A Disciplined Use of Delegation within Ob-
jects, in Conference on Object-Oriented Programming, Systems, Languages and Appli-
cations, OOPSLA 96, pp. 122-137, New York, United States, 1996.

Bukhres, O. and EImagarmid, A., Object-Oriented Multidatabas Systems, Prentice Hall,
1996.

Cattell, R. and Barry, D., The Object Database Standard: ODMG 2.0, Morgan Kauf-
mann, 1997.

Dahchour, M., Pirotte, A. and Ziméanyi, E., A Generic Role Model for Dynamic Ob-
jects, in The 14th Advanced Information Systems Engineering ntemational Conference,
CAISE’02, Toronto, Canada, May 27-31, 2002.

Fan, J. et al., Representing Roles and Purpose, in First International Conference on
Knowledge Capture, K-Cap™01, Victoria, B.C., Canada, October 21-23, 2001.

Frank, U., Delegation: An Important Concept for the Appropriate Design of Object
Models, in Object-Oriented Programming, vol. 13(3), pp. 13-18, 2000.

Gulutzan, P. and Pelzer, T., SQL-99 Complete, Really An Example-Based Reference
Manual of the New Standard, R&D Books Miller Freeman, Inc., 1999.

Group, W. S. W., XML Schema, in , 2001, URL www.w3c.org.

Gottlob, G., Schrefl, M. and Réck, B., Extending Object-Oriented Systems with Roles,
in ACM Transactions on Information Systems, vol. 14(3), pp. 268-296, 1996.

Jodlowski, A. et al., Objects and Roles in the Stack-Based Approach, in The 13th
International Workshop on Database and Expert Systems Applications, DEXA 02, pp.
514-523, Aix En Provence, France, 2002.

63

http://www.antlr
http://www.w3c.org

BIBLIOGRAPHY 64

[KRO1]

[KS91]

[Mal95]

[0°C02]

[0°C03]

[OraOl]

[PBE95]

[Rad96]

[RKBO1]

[RS91]

[Run92]

[SAD94]

[SCGS91]

[SL90]

[SLR+94]

Kambur, D. and Roantree, M., Using Stored Behaviour in Object-Oriented Databases,
in The \th International Workshop Engineering of Federated Information Systems,
EFI1S2001, pp. 61-69, Berlin, Germany, October 9-10, 2001.

Kappel, G. and Schrefi, M., Object/Behaviour Diagrams, in Proceedings of the 7th
International Conference on Data Engineering, IEEE Computer Society Press, Kobe,
Japan, 1991.

Malenfant, J., On the Semantic Diversity of Delegation-Based Programming Lan-
guages, in Conference on Object-Oriented Programming, Systems, Languages and Ap-
plications, OOPSLA 95, pp. 215-230, New York, United States, 1995.

O’Connor, G., A Metamodel Interface of Object-Relational Databases, Tech. Rep.
ISG-02-07, Dublin City University, Glasnevin, Dublin 9, Ireland, 2002, URL www.
computing.dcu.ie/~isg.

O’Connor, G., A Metadata Interface to Access Extended O-R Meta-Information, Tech.
Rep. 1SG-02-13, Dublin City University, Glasnevin, Dublin 9, Ireland, 2003, URL www.
computing.dcu.ie/~isg/.

Oracle, Oracle9i Database Concepts Releasel (9.0.1), A88856-02, 2001.

Pitoura, E., Bukhres, O. and Elmagarmid, A., Object Orientation in Multidatabase
Systems, in ACM Computing Surveys, vol. 27(2), pp. 141-195, 1995.

Radeke, E., Extending ODMG for Federated Database Systems, in The 7th Interna-
tional Workshop on Databases and Export Systems Applications, DEXA 96, pp. 304-
319, Zurich, Switzerland, 1996.

Roantree, M., Kennedy, J. and Barclay, P., Integrating View Schemata Using an Ex-
tended Object Definition Language, in The 9th International IFCIS Conference on
Cooperative Information Systems, CooplS 2001, pp. 150-162, Trento, Italy, September
5-7, 2001.

Richardson, J. and Schwarz, P., Aspects: Extending Objects to Support Multiple,
Independent Roles, in Clifford, J. and King, R., eds., The ACM SIGMOD International
Conference on Management of Data, SIGMOD 91, pp. 298-307, Denver, Colorado, May
29-31, 1991.

Rundensteiner, E., Multiview: A Methodology for Supporting Multiple Views in
Object-Oriented Databases, in The 18th International Conference on Very Larger
Databases, VLDB™2, pp. 187-198, Vancouver, Canada, 1992.

Santos, C. D., Abiteboul, S. and Delobel, C., Virtual Schema and Bases, in Proceedings
of the International Conference on Extensive Data Base Technology, EDBT94, PP-
81-94, Springer-Verlag, Cambridge, U.K., 1994,

Saltor, F., Castellanos, M. and Garcia-Solaco, M., Suitability of Data Model as Canon-
ical Models for Federated Databases, in ACM SIGMOD Record, 1991.

Sheth, A. and Larson, J., Federated Database Systems for Managing Distributed, Het-
erogeneous and Autonomous Databases, in ACM Computing Surveys, vol. 22(3), pp.
183-236, 1990.

Scholl, M. H. et al., The COCOON Object Model, Tech. Rep. 211, ETH Zdrich, De-
partment Informatik, 1994.

BIBLIOGRAPHY 65

[SLT91]

[SM96]

[SteOO]

[Wan02a]

[Wan02b]

[Wan03]

[WCL97]

[Won98]

[WRO03]

Scholl, M., Laasch, C. and Tresch, M., Updatable Views in Object-Oriened Databases,
in Proceedings of the 2nd International Conference on Deductive and Object-Oriented
Daabases, pp. 189-207, Springer Verlag, 1991.

Stonebraker, M. and Moore, D., Object-Relaional DBMSs The Next Great Wave, ~or-
gan Kaufmann Publishers, Inc., 1996.

Steimann, F., On the representation of roles in object-oriented and conceptual mod-
elling, in Data Knowledge Engineering, vol. 35(1), pp. 83-106, 2000.

Wang, L., An Analysis of Object-Relaional Model, Tech. Rep. 1SG-02-06, Dublin City

University, Glasnevin, Dublin 9, Ireland, 2002, URL www.computing.dcu.ie/~isg/.

Wang, L., Extending the Object-Relational Metamodel to Facilitate the Definition of
Roles, Tech. Rep. 1SG-02-11, Dublin City University, Glasnevin, Dublin 9, Ireland,
2002.

Wang, L., Designing Roles for Object-Relational Databases, Tech. Rep. 1SG-03-02,
Dublin City University, Glasnevin Dublin 9, 2003, URL www.computing.duc.ie/
~isg/.

Wong, R., Chau, H. and Lochovsky, F., A Data Model and Semantics of Objects with
Dynamic Roles, in The 13th International Conference on Data Engineering, pp. 402-
411, 1997.

Wong, R., Heterogeous and Multifaceted Multimedia Objects in DOOR/MM: A Roles-
Based Approach with Views, in Parallel and Distributed Computing, vol. 56, pp. 235-
250, 1998.

Wang, L. and Roantree, M., Desigining Role-Based View for Object-Relational
Databases, in The 5th International Workshop Engineering Federated Information Sys-
tems, EF1S03, Coventry, UK, 2003.

http://www.computing.dcu.ie/~isg/
http://www.computing.duc.ie/

Appendix A

Roleview Metamodel DDL

Frkxkxdxkrk Oracle Meta-UDTs Definitions **#x*xkdrsk
create type sys.OracleType as object (
Type_Name varchar2(30),

Type.OID raw (16),

Typecode varchar2(30),

A ttributes number,

Methods number,

SuperType_Owner varchar2(30),

SuperType_Name varchar2(30),

Local.Attributes number,

Local.Methods number);

create type sys_OracleType_Attr as object (
Type_Name varchar2(30),
Attr.Name varchar2(30),
Attr_Type_Mod varchar2(30),
Attr_Type_Owner varchar2(30),
Attr_Type_Name varchar2(30),
Length number,

Precision number,

Scale number,

Character_Set_Name varchar2(30),
Attr_No number,

Inherited varchar2(3));

APPENDIX A. ROLEVIEW METAMCDEL DOL

create type sys_OracleType_Method as object (
Type_Name varchar2(30),

Method_Name varchar2(30),

Method.No number,

Method_Type varchar2(30),

Parameters number,

Results number,

Inherited varchar2(3));

create view sys_OracleType_View of sys.OracleType
with object identifier (Type.Name) as

select Type Name, Type 0ID, Typecode, A ttributes,

Methods, SuperType_Owner, SuperType”Name, Local.Attributes,

Local*Methods

from USER.TYPES;

create view sys_OracleType_Attr_View of
sys_OracleType_Attr with object identifier (Type_Name,
Attr.Name) as

select Type_Name, Attr_Name, Attr_Type_Mod,
Attr_Type_Owner, Attr_Type_Name, Length,

Precision, Scale, Character_Set_Name, Attr.No, Inherited

from USER_TYPE_ATTRS;

create view sys_OracleType_Method_View of
sys_OracleType_Method with object identifier (Type_Name,
Method_Name) as

select Type_Name, Method.Name, Method_No,

Method_Type, Parameters, Results, Inherited

from USER.TYPE.METHODS;

create table sys_OracleType_ObjTab of sys_OracleType (

Type®Name primary key);

create table sys_OracleType_Attr_ObjTab of sys_OracleType_ Attr

(

APPENDIX A. ROLEVIEW METAMODEL DDL

primary key (Type_Name, Attr_Name));

create table sys_OracleType_Method_ObjTab of sys_OracleType_Method

(primary key (Type_Name, Method.Name));

FhxkxxkxE* Insert metadata to Oracle Meta-UDTs **xxkxdrsk
insert into sys_OracleType_ObjTab

select * from sys_OracleType_View;

insert into sys_OracleType_Attr_ObjTab

select * from sys_OracleType_Attr_View;

insert into sys_OracleType_Method_ObjTab

select * from sys_QracleType_Hethod_View;

Frdkkkkxx*k Roleview Meta-UDTs Definitions *xkxkskxksk
create type sys_Attribute as object (

Attr_Name varchar2(30),

Attr.Owner varchar2(30),

Type_Attr_Ref REF sys_OracleType_Attr);

create type sys.Method as object (
Method_Name varchar2(30),
Method_Owner varchar2(30),

Type_Method_Ref REF sys_OracleType_Method);

create type sys.AttrList as table of sys_Attribute;

create type sys_MethodList as table of sys.Method;

create type sys.Root;

/

create type sys_Role as object (
Role.RID RAW(16),

Role_Name varchar2(30),

APPENDIX A. ROLEVIEW METAVIODHEL DCL

Type.Ref REF sys_OracleType,
Root REF sys_Root,
IsMultiple varchar2(30),

A ttributes number,

Methods number,
Role_Attribute sys_AttrList,

Role_Method sys_MethodList);

create type sys_RoleList as table of REF sys_Role;

create or replace type sys_Root as object (
Root_Name varchar2(30),

Type_Ref REF sys_OracleType,

SuperType varchar2(30),

Attributes number,

Methods number,

RoleList sys.RoleList,

Root.Attribute sys_AttrList,

Root.Method sys_MethodList);

create type sys_Roleview as object (

Roleview_Name varchar2(30),

Roleview_ID raw (16),

Root REF sys_Root);

/

create table sys Root ObjTab of sys.Root (

primary key (Root_Name),

Type.Ref references sys_OracleType_0bjTab)

nested table RoleList store as sys.Roles,

nested table Root_Attribute store as sys_Root_Attributes,

nested table Root_Method store as sys_Root_Methods;

create table sys_Role_0bjTab of sys_Role (
primary key (Role.RID, Role.Name),

Type.Ref references sys_OracleType_ObjTab,

APPENDIX A. ROLEVIEW METAVIODEL. DDL 70

Root references sys_Root_ObjTab)
nested table Role_Attribute store as sys_Role_Attributes,

nested table Role_Method store as sys_Role_Methods;

create table sys_Attribute_ObjTab of sys.Attribute (
primary key (Attr_Name, Attr_Owner),

Type_Attr_Ref references sys_OracleType_Attr_0bjTab);

create table sys_Method _ObjTab of sys_Method (
primary key (Method_Name, Method.Owner),

Type_Method_Ref references sys_OracleType_Method_0bjTab);

create table sys_Roleview_0bjTab of sys_Roleview (
primary key (Roleview_ID),

Root references sys_Root_ObjTab);

Appendix B

RDL Grammar

R R B

Roleview definition grammar for parsing and creating the role-based

subschema in an 0-R database

*hkkkhkhkhkkkhkhkkkhkhhkkkhkhhkkkhkhkkkhkhhkkkhkhhkkhkkhkhkkkhkhhkkkhkhkkhkkhhkkkhkhhkkkhkhkkhkkhkhkkikhhkkkihkkkikiixk I

/1 import java package which includes the user-defined classes

import com.linkToJDBC.*;

PO

Class: P

Extends: Parser

Date: April 2003

Author: Ling Wang

Desc: Roleview is defined in BNF syntax, then parsed and

translated by Antor-2.7.2. The definition is an extension of SQL: 1999

***J

class P extends Parser;
options {
k * 1;
>

/1 begins by declaring global schema objects

com.linkToJDBC.RoleDeclaration rd = new com.linkToJDBC.RoleDeclarationO;

com.linkToJDBC.ConnectToLing ¢ = new com.linkToJDBC.ConnectToLingO;

71

APPENDIX B. RDL GRAMMAR 72

Il PR (i)
/1 In a specification, one of more definitins are allowed, they are executed separately

specification

(definition)+

BECF

/1 PR (2)

/1 Only one type of construct is allowed: a roleview schema and it is terminated by a semicolon
(SEMI)

definition

rd = new com.linkToJDBC.RoleDeclarationO ;
¢ = new com.linkToJDBC.ConnectToLingO ;
>
(roleview _dcl SEMI)
{
c.startO0 ;
>
}
/I PR (4)
/1 The roleview specification
roleview_dcl

("create" "roleview" roleview.name "as"
"root" root.name "of" rootType.name "is" root_sql
(role.dclh)*
|

Il PR (4a)

/1 The token is read and stored in memory

roleview_name

rrfIDENTIFIER

{

APPENDIX B. RDL GRAMMAR

c .setRoleViewName (r.getText ());

>

)
/1 PR (4b)
/1 The token is read and stored in memory

root_name

rrIDENTIFIER

{

c .setRootName (r.getText());

Il PR (4c)

/1 The token is read and stored in memory

rootType_name

rrIDENTIFIER
{
c.setRootTypeName (r.getText());

>

)
Il PR (4d)
/1 The role specification, which is allowed to be multiple

role.dcl

role.prefix role_name "of" roleType.name "
{
c.setRoleDeclaration(rd);
>
}
11 PR (4d_a)
/1 Clarify the type of role

role.prefix

"role" {rd.setlsM ultiple(false);}

is

role_sql

73

APPENDIX B. RDL GRAMMAR

"multirole” {rd.setlsM ultiple (true);}

}
/I PR (4d_b)

/1 The token is read and stored in memory

role_name

rriDENTIFIER

{
rd.setRoleName (r.getText());
>
)
/1 PR (4d_c)

/1 The token is read and stored in memory

roleType_name

rrIDENTIFIER
{
rd.setRoleTypeName (r.getText());
>
}
I/ PR (4d_d)
/1 Role SQL statement is read as a record and stored in memory

role_sql

s : STATEMENT

rd.setSql (s.getText());
>
|
/1 PR (4e_a)
/! Root SQL statement is read as a record and stored in memory

root_sql

APPENDIX B. RDL GRAMMAR

n:STATEMENT
{
c.setRootSql(n.getText());
>
)+
9
j*
Class: L

Extends: Lexer
Date: April 2003
Author: Ling Wang

Desc: Antlr-2.7.2 lexer specification of the parser class

xxxxxxxxx

class L extends Lexer;
/1l Tokens

IDENTIFIER

(fa,..z’ | (k,..<Z} I | |V | V)+

/1 Tokens as a record

STATEMENT

(CC Py bor (R 1 f\n> 1<)+
|
/1 Whitespace

W8

(“*1P s\t | “\r> f\n> { newline(); > 1| “\n’
i newline(); >)
{$setType(Token.SKIP) ;> /lignore this token
)
/1 Punctuation

SEMI

Appendix C

RDL Role Declaration Class

y***

* Class: RoleDeclaration

* Desc: read the role token, specified in class ConnectToLing

* Author: Ling Wang

* Date: April 2003
*********H********************HHH*HHH****H**HHHHHHHHHHHHj
/1 import the library, including the user-defined package

package com.linkToJDBC;

import java.sql.*;

import java.util.*;

import java.io.*;

import java.lang.*;

public class RoleDeclaration {
private String roleName;
private String roleTypeName;
private String roleSql;
private int numberOfAttr;
private Vector attrs = new VectorO;

private boolean isMultiple;

/1 constructor
public RoleDeclaration Q {
roleName = null;

roleTypeName = null;

76

APPENDIX C. RDL ROLE DECLARATION CLASS

roleSql = null;

isMultiple = false;

/1 overload

public RoleDeclaration (RoleDeclaration r)
roleName = r .getRoleNameO ;
roleTypeName « r .getRoleTypeNameO ;
roleSql =r.getSqlO;

isMultiple = r .getlsM ultipleO ;

/1 overload
public RoleDeclaration (String r, String t,
String sql) {

roleName = r .toUpperCaseO ;
roleTypeName =t .toUpperCaseO ;
isMultiple = m;
roleSql * sql;

>

public String getRoleName () {

return roleName;

public String getRoleTypeName () {

return roleTypeName;

public String getSql () {

return roleSql;

public int getNumberOfAttr () {

return numberOfAfttr;

public Vector getAttrs () {

return attrs;

public boolean getlsMultiple () {

return isMultiple;

boolean m,

7

APPENDIX C. RDL ROLE DECLARATION CLASS

}

public void setRoleName (String role) {
roleName *=role.toUpperCase () ;

>

public void setRoleTypeName (String type) {
roleTypeName = type.toUpperCase();

>

public void setlsM ultiple (boolean m) {
isMultiple * m;

>

public void setNumberOfAttr (int number) {
numberOfAttr * number;

}

public void setAttrs (Vector lists){
attrs = lists;

>

/1 remove unwanted token

public void setSql (String sql) {
String tmp = sql.replace(*)*, * ’);

roleSql = tmp.replace(f(*, f 1);

Appendix D

RDL Roleview Declaration Class

Nk*kkhkhkkkkkhkkhkkhkkhkhkhkhk *kk * *kk *kk * *kk *kk * *kk *kk *

Class: ConnectToLing

Desc: read the token and store the token in pre-defined meta-tables.

Author: Ling Wang

Date: April 2003
H***HHH***H****H****H***HH****H****H*HHHHHHHHHHHHj
/1 import the library and user-defined package

package com _XinkToJDBC;

import java.sql.*;

import java.util_Vector;

import java.util_Random;

import java.sqgl.Types;

public class ConnectToLing {
private String rootSql;
private String url = "jdbc:oracle:thin:@ kiwi.isg.computing.dcu.ie:1521:kiwi"
private String user = "lwang";
private String pwd « "lwang";
private Connection con;
private Statement stmt;
private Statement rootStmt;
private Statement roleStmt;
private Statement attrStmt;
private Statement updateRootStmt;

private Statement roleviewStmt;

79

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

private String roleviewName;

private String rootName;

private String rootTypeName;

private String rootSuperTypeName;

private int numberOfAttr,;

private Vector roleDecList = new VectorO;

private Vector attrList * new VectorO;

/1 connect to database
private void connectionDBO throws Exception {
Class.forName("'oracle.jdbc.driver.OracleDriver™);
con * DriverManager.getConnection(url, user, pwd);
}
/1 close to database
private void closeDBO throws Exception {
con.close();
}
/] set token to be upper case in order to query in SQL
public void setRoleViewName(String s) {
roleviewName = s;
roleviewName * roleviewName.toUpperCaseO;
>
/1 set token to be upper case in order to query in SQL

public void setRootName(String s) {

rootName S;
rootName = rootName.toUpperCaseO ;
>

/] set token to be upper case in order to query in SQL

public void setRootTypeName(String s) {

rootTypeName S;

rootTypeName = rootTypeName.toUpperCaseO;

>
/1 trim the token and can be recognised by JDBC
public void setRootSql(String s) {

String tmp = s.replace(*)*, * 3);

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

rootSql = tmp.replace(f(,, * });

>

/1 insert a new RoleDeclaration to the vector

public void setRoleDeclaration(RoleDeclaration rd) {

roleDecList.add(new RoleDeclaration(rd));

>

/1 write into meta table sys_Roleview

private void writeToSys_roleview () throws Exception {
roleviewStmt = con.createStatement();
/1 generate the OID for each roleview
String rid = generateObjectlDO ;
/] string stores the query for updating
StringBuffer insert = new StringBuffer();
insert.append("insert into sys_roleview_ObjTab \n

select iH);
insert.append(roleviewName);
insert.append("*, ');
insert.append(rid);
insert.append ("', REF(c)\n from sys_Root_ObjTab c
where \n ");

insert.append("c.Root.Name = '");
insert.append(rootName + ");
insert.append("\n");
/1 add into the batch file, only execute when ’commit’ called
roleviewStmt.addBatch(insert.toStringO);
int [] counts = roleviewStmt.executeBatchO ;

>

/1 write into meta table sys_Root

private void writeToSys.root() throws Exception {
stmt = con.createStatement();
rootStmt = con.createStatementQ ;
/] string stores the supertype of root based UDT
StringBuffer sql = new StringBufferO ;
sql.append("select supertype_name from user_types

where type.name = ,");

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

sql.append(rootTypeName + "; ;
/1 execute the query
ResultSet rs = stmt.executeQuery(sql.toString());
/'l retrieve the results
while (rs.nextO) {
rootSuperTypeName = rs.getString("SUPERTYPE_NAME");
>
/1 close the query statement
stmt.close();
/] string stores the query of updating meta table
StringBuffer firstRow = new StringBuffer();
firstRow.append("insert into sys _Root _ObjTab \n
select *");
firstRow.append(rootName);
firstRow.append("*, REF(c), *");
firstRow.append(rootSuperTypeName + "’, ");
firstRow.append(numberOfAttr +
", 0, sys_RoleList(), sys.AttrList(), sys_MethodList()");
firstRow.append("\n from sys,OracleType_0ObjTab ¢ \n
where c.Type.Name = ,n);
firstRow.append(rootTypeName);
firstRow.append("; \n");
/] insert the first row sys_Root
rootStmt.executeUpdate(firstRow.toString0);
/1 string stores the query for updating nested tables
for (int i = 0; i < attrList.size(); i++) {
StringBuffer nstTables ~ new StringBuffer();
nstTables.append(
"insert into table (\n select Root_Attribute from
sys_Root_ObjTab r \n");
nstTables.append("where r.Root_ Name = 1");
nstTables.append(rootName + "*) \n");
nstTables.append(“"select ,M);
nstTables.append((String) attrList.elementAt(i)

+ ,N);

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

nstTables.append(rootTypeName +
REF(c) from sys_OracleType_ Attr_ObjTab ¢ \n");
nstTables.append("where c.Attr.Name = *");
nstTables.append((String) attrL ist.elementAt(i)
+ and c.Type_Name = ,");
nstTables.append(rootTypeName);
nstT ables.append("1\n");
/1 execute the nested table updating
rootStmt.executeUpdate(nstTables.toString());
}
System.out.printin("sys_Root_0bjTab insert is
completed.");
>
/1 update meta table sys_Root after sys_Role insertion completes.
private void updateSys.Root() throws Exception {
updateRootStmt = con.createStatement();
/1 loop of vector stores as role tokens.
for (int i =0; i <roleDecList.size(); i++) {
RoleDeclaration r = (RoleDeclaration) roleDecList.get(i);
/1 string stores the updating query
StringBuffer nstTables = new StringBuffer();
nstTables.append(
"insert into table (\n select RoleList from
sys_Root_0bjTab r \n");
nstTables.append("where r.Root_ Name = '");
nstTables.append(rootName + "™) \n");
nstTables.append("select REF(c) ");
nstTables.append ("from sys_Role_0bjTab ¢ \n
where c.Role_Name = '");
nstTables.append(r.getRoleName() + ",");
nstTables.append("\n");
/1 execute the update
updateRootStmt.executeUpdate(nstTables.toStringO);
>

System.out.printin("sys_Root update is completed.");

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

}

/] write into meta table sys_role
private void writeToSys_role() throws Exception {
/1 loop of size of vector stores roles
for (int i * 0; i < roleDecList.size(); i++) {
RoleDeclaration r = (RoleDeclaration) roleDecList.get(i)
roleStmt « con.createStatement();
/] string stores the update query of first row of meta table
StringBuffer firstRow = new StringBuffer();
firstRow.append("insert into sys_Role_ObjTab \n
select '");
firstRow.append(r getRoieName();
FfirstRow.append("}, REF(0), REF(r), *9;
firstRow.append(r.getlsMultipleO) ;
firstRow.append(C™, ');
firstRow.append(r._getNumberOfAttrQ +
", 0, sys.AttrList(), sys_MethodList()");
firstRow.append(
"\n from sys_OracleType_ObjTab o, sys_Root_ObjTab
r \n where o0.Type_Name = ,n);
firstRow.append(r.getRoleTypeName());
firstRow.append("* and r.Root_Name * *");
firstRow.append(rootName + ",n);
firstRow.append("\n");
/] execute the update for first row
roleStmt.executeUpdate(firstRow.toString());
/1 for the purpose of insert nested tables
for (int j = 0; j < attrList.sizeQ ; j++) {
/] string stores the query
StringBuffer nstTables = new StringBuffer();
nstTables.append(
"insert into table (\n select Role_Attribute
from sys_Role_QbjTab r \n");
nstTables.append("where r.Role_Name = ,n);

nstTables.append(r.getRoieName() + "’) \n");

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

nstTables.append("select *");
nstTables.append((String) attrL ist.elementAt(j)
+ >,
nstTables.append(r.getRoleTypeName() +

REF(c) from sys_OracleType_Attr_ObjTab ¢
\n");
nstTables.append("where c.Attr_Name = *");
nstTables.append((String) attrL ist.elementAt())
+ "> and c.Type.Name = "");
nstTables.append(r.getRoleTypeName());
nstTables.append(™ \n");

/1 execute the nested tables update

roleStmt.executeUpdate(nstTables.toString());

>
/] write into meta table sys_Attribute
private void writeToSys_attribute(String name, String
typeName, String sql) throws Exception {
stmt = con.createStatement();
attrStmt * con.createStatement();
/1 execute the query that retrieve the metadata
ResultSet rs = stmt.executeQuery(sql);
ResultSetMetaData rsmd = rs .getMetaDataQ ;
numberOfAttr = rsmd.getColumnCount();
/1 insert queries
for (int i * 1; i <= numberOfAttr; i++) {
attrList.add(rsmd.getColumnLabel(i));
/] string stores the query
String inst = "insert into sys_Attribute_ObjTab
select 7
StringBuffer insert = new StringBuffer();
insert.append(inst);
insert.append(rsmd.getColumnLabel(i));

insert.append("}, ,n);

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

>

insert.append(name);
insert.append(
REF(s) from sys_OracleType_Attr_ObjTab
where s.Attr_Name = *");
insert.append(rsmd.getColumnLabel(i));
insert.append("* and s.Type_Name = '");
insert.append(typeName + "’");
/1 add to the batch file
attrStmt.addBatch(insert.toString0O);
>
/1 execute till ‘commit’ is called
int[] updateCounts = attrStm t.executeBatchO ;
/1 close the statement of retrieving metadata
stmt.close();
System.out.printin("sys_Attribute_ObjTab insert is

completed.");

/] write into meta table sys_method

private void writeToSys_method() {>

/1 the only public method be called from ANTLR specification

public void start() {

/1 catch all the execeptions throwed by private methods
try {
connectionDBO;
copyOracleMetaO ;
con.setAutoComm it(false);
writeToSys_attribute(rootName, rootTypeName,
rootSql.toString());
writeToSys.root();
for (int i =0; i <roleDecList.sizeQ ; i++) {
RoleDeclaration roles = (RoleDeclaration)
roleDecList.get(i);
writeToSys_attribute(roles.getRoleName(),
roles.getRoleTypeNameO ,

roles.getSqlQ);

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

roles.setNumberOfAttr(numberOfAttr);
roles.setA ttrs(attrList);
>
writeToSys_role();
updateSysJloot();
writeToSys_roleview ();
con.commit(); // start execute all statements
con.setAutoCommit(true);
System.out.printin("Roleview Created. \n");
}catch (Exception ex) {
System, err .println (ex.getMessageO);
/1if any of statements is failed, rollback all insertions
try {
con.rollback();
System.out.println("The transaction is rolled
back.\n");
}catch (SQLException s) {
System.err.print(s.getMessage());

}

>finally {

try {

if (attrStmt != null) {

attrStmt.close();

if (rootStmt !'= null) {

rootStmt.close();

if (roleStmt = null) {

roleStmt.close();

if (updateRootStmt !'= null) {

updateRootStmt.close();

if (roleviewStmt != null) {

roleviewStmt.close();

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS

>

I

>
closeDBO;
}catch (Exception e) {

e.printStackTraceO ;

generate OID for roleview

private String generateObjectiDO {

>

StringBuffer uid = new StringBuffer();
Random random = new RandomO;
String roleviewld = null;
/1 set this random to be 32 bit binary
for (int i =0; i < 4; i++) {
int tmp = random .nextInt();
uid.append(Integer.toHexString(tmp));
>
roleviewld = uid.toStringO ;

return roleviewld;

/1 copy the new values from Oracle meta tables to sys_OracleType_Objtab,

/1 sys_OracleType_Attr_ObjTab and sys_OracleType_Method_ObjTab;

private void copyOracleMeta () throws Exception{

stmt = con.createStatement();

/Il update the meta table sys_OracleType

StringBuffer oracleType = new StringBuffer();
oracleType.append("insert into sys_OracleType_ObjTab\n");
oracleType.append("select * from sys_OracleType_View\n");
oracleType.append("where type_name not

in (\n");

oracleType.append("select type.name from sys_OracleType_0bjTab)");
/1 update the meta table sys_OracleType_Attr

StringBuffer oracleTypeAttr = new StringBuffer();
oracleTypeAttr.append("insert into sys_OracleType_Attr_ObjTab\n");

oracleTypeAttr.append("select * from sys_OracleType_Attr_View\n");

APPENDIX D. RDL ROLEVIEW DECLARATION CLASS 89

oracleTypeAttr.append("where (type.name, attr_name) not

in (\n");

oracleTypeAttr.append(‘'select type.name, attr_name

from sys OracleType Attr_ObjTab)');

// update the meta table sys_OracleType_Method

StringBuffer oracleTypeMethod = new StringBuffer();
oracleTypeMethod.append("insert into sys_OracleType_Method_ObjTab\n");
oracleTypeMethod.append(''select * from sys_OracleType_Method_View\n");
oracleTypeMethod.append(*'where (type_name, method_name)

not in (\n");

oracleTypeMethod.append("select type_name, method_name

from sys_OracleType_Method_ObjTab)™);
stmt.executeUpdate(oracleType.toStringQ);
stmt.executeUpdate(oracleTypeAttr .toString0);
stmt.executeUpdate(oracleTypeMethod.toString0);

stmt.close();

Appendix E

RDL Main Class

y**

Class: run

Desc: executable main class
Author: Ling Wang

Date: April 2003

H K A K K A KK A K KA K KA KK AR KA KK XX KA XK XX K AKX KA X KA X KA XK XX H XKy

import java.io.*;

class run{
public static void main(String[] args) {
/1 read the input from a saved file
File f = new File("D:\\createRoleview\\RoleviewDefinition\\input.txt");

FilelnputStream finput = null;

try {
finput = new FilelnputStream(f);

}catch (Exception e) {
System.err._printIn(exception: " + e);

>

try {
L lexer = new L(new DatalnputStream(finput));
// call ANTLR specification
P parser = new P(lexer);
parser._specificationO ;

}catch (Exception ex) {

90

APPENDIXE. RDL MAIN CLASS

ex.printStackTrace();

