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Abstract

Iron is an essential nutrient for m ost bacteria It is a  crucial m etal o f  m any m etallo- 

enzym es and functions m  im portant biological system s m am ly as the cofactor o f  

redox enzym es B acteria m ust acquire iron from  the environm ent where the m etal is 

m ainly found in the fem e  iron state, w hich is very insoluble In  addition, they m ust 

m aintain iron hom eostasis One m echanism  used by bacteria  for the acquisition o f  

iron is the production o f  siderophores, w hich are low  m olecular w eight chelators w ith 

affinity and specificity for fem e  iron and w hich are form ed and secreted under iron 

deplete conditions

The regulation o f  iron w as studied in Sinorhizobium  m eh lo ti, w hich is a free-living 

Gram -negative bacteria  found in soil and also as an endosym biont o f  M edicago sativa  

(alfalfa) A  hom ologue o f  the fem e  uptake protein  (Fur), w hich regulates the uptake 

o f  iron in m ost G ram -negative bacteria, w as identified and characterised How ever, 

the results suggest that in S  m ehloti, Fur does not function as an iron response 

regulator but actually regulates m anganese uptake A nother protein, the hom ologue o f 

the transcriptional iron regulator R irA  in R hizobium  legum m osarum  was identified 

and characterised in S  m ehlo ti as the new  general regulator o f  iron responsive genes 

Results show ed that RirA, under iron replete conditions, dow nregulates the 

rhizobactin 1021 siderophore biosynthesis genes and also the gene encoding the outer 

m em brane receptor o f  the chelator In addition, R irA  was found to dow nregulate and 

upregulate respectively sm c02726  and d ppA l, genes involved in haem  acquisition, 

indicating that the regulator can function both  as an  activator and a repressor Also, 

results show ed the upregulation o f  rhbG , a pu tative rh izobactin  1021 siderophore 

gene by lu teohn, a flavonoid produced by alfalfa, under iron deplete and also under 

iron replete conditions
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1.1. Introduction

Iron is an essential nutrient for all bacteria with the only known exceptions being 

lactobacilh and Borelha burgdorferi (Archibald, 1983, Posey et a1 , 2000) It is a 

crucial metal as it functions m important biological systems m ainly as the cofactor 

o f  redox enzymes and it is a constituent o f  numerous enzymes and proteins These 

include components o f  the respiratory chain, such as cytochrom es and cytochrome 

oxidase, o f  the tricarboxylic acid cycle (acomtase, succinate dehydrogenase) and o f  

the oxidative defense systems (catalase, peroxidase, superoxide dismutase)

However, acquiring and utilising iron can be problem atic for a bacterial cell Firstly, 

despite being the fourth most abundant elem ent on earth, iron is oxidised very 

rapidly in the air and thus is m ainly available in the environm ent in the ferric iron 

state (Fe3+), which is very insoluble Therefore, to acquire iron, bacteria have had to 

overcom e its insolubility

Secondly, even if bacteria can acquire the metal, iron has two antagonist roles in the 

cell Iron can prom ote oxidative damage through the Fenton reaction in which iron 

catalyses the formation o f  hydroxy radicals that can damage DNA and cause 

mutation On the other hand, iron can be a protector from oxidative damage, 

preventing it for example through the action o f  superoxide dismutases, which 

remove hydroxyl radicals and which require, iron as a cofactor

Consequently, iron hom eostasis, which is the equilibrium  between uptake, 

intracellular utilisation and storage, is regulated in bacteria at the iron uptake level 

The iron level m ust be carefully controlled and it must only be present in appropriate 

amounts to avoid any toxic effects resulting from a high concentration o f  the metal 

An unwanted release o f iron from the cellular iron handling mechanism can result in 

lethal reactions
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Therefore, bacteria must ensure that the level o f  free iron remains at extremely low 

levels while ensuring that there is the necessary amount o f iron bound to iron storage 

proteins The organism has to ensure that the iron inside the cell cannot openly 

interact with reactive oxygen species Reactive oxygen species are partially reduced 

derivatives o f  m olecular oxygen that are produced as a natural consequence o f  

aerobic metabolism (Fndovich et a l , 1995) The reduction products o f  oxygen, 

namely superoxide and hydrogen peroxide, could interact with iron reactions shown 

below producing highly reactive and extremely dam aging hydroxyl radicals

Iron reduction O 2  +Fe3+—>Fe2++ 0 2

Fenton reaction Fe2++H202—►Fe3++OH~+HO (2)

Haber-W eiss reaction (1) + (2) O 2  + H 2 O 2  —► HO + OH-  + O 2

Fe catalysis

1.2. Iron acquisition systems

Bacteria have overcom e the problem o f  iron insolubility by developing a variety o f  

iron uptake systems The understanding o f these m echanism s has greatly improved 

as microbial iron acquisition has been widely studied over the last twenty years It 

can be concluded that bacterial iron acquisition from the environm ent occurs via 

three main different strategies

Bacteria have the ability to produce small m olecular weight metal chelators called 

siderophores that can acquire ferric iron from the environm ent Alternatively, 

bacteria can bind directly to iron transport m acrom olecules and acquire the ferric 

iron from them in a host and, finally, they are able to acquire ferrous iron from the 

environm ent through the ferrous iron transport system, term ed the Feo system

3



Each organism does not always have the ability to use each o f  these three 

mechanism s, but o f course the more accom plished it is in iron acquisition the more 

diversified will be the environm ents it can live in

1 2 1  Iron acquisition from siderovhores

The most common system by which bacteria acquire iron is the siderophore iron 

uptake system Siderophores are low m olecular weight chelators with affinity and 

specificity for ferric iron and are formed and secreted under iron deplete conditions 

M ore than 500 siderophores have been identified so far (Drechsel et a l , 1998)

The common model for iron uptake through the use o f  siderophores is summarized 

in Fig 1 1 The siderophore is produced in the cytoplasm and then secreted into the 

environm ent with the assistance o f specialised transport proteins The export part o f 

the system still rem ains unclear Only in the case o f  enterobactm, has the export 

transport protein, called EntS, been characterised (Furrer et a l , 2002) Then, once in 

the environment, the siderophore solubilises and then binds to the fem e iron 

Subsequently, the metallo-protein complex binds and goes through the specialised 

outer m em brane receptor for the siderophore Because the siderophores (70-100kDa) 

are too large to go through the porins (capacity <60 kDa) present in the membrane 

(Nikaido et a l , 1996), under iron deplete conditions, the bacteria express receptors 

specific for siderophores, which are anchored in the outer mem brane These proteins 

are not present under iron replete conditions, to lim it their use by antibiotics or 

bacteriophages to gain entry to the bacteria The passage o f  the siderophore through 

the receptor proteins is achieved with the help o f an energy transducing system 

composed o f TonB, ExbB, and ExbD

Following this, the iron-siderophore is shuttled through the periplasm  to its cognate 

perm ease in the inner mem brane via a periplasm ic protein It then crosses the inner 

m em brane with the help o f  ABC (ATP Binding Cassette) transporters, which are 

composed o f  two identical or hom ogenous m em brane perm eases and two ATP
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binding identical units present on the inner face o f  the membrane (Koster et a l., 

2001).

Once, in the cytoplasm, the ferric iron is reduced to its ferrous state (Fe2+) by 

reductases (Hantke et a l., 2002) and so iron is released from the siderophore due to 

the poor affinity between the siderophore and ferrous iron. The siderophore is then 

reused or degraded according to the species but there again, this part o f  the 

mechanism also still remains unclear and further investigation is needed.

O uter membrane 
Receptor

Export
Periplasmic 

Binding protein

ATP-Binding cassette 
proteins ideropho

Reductases

Degradation o r Reuse of 
siderophore

Fig 1.1: Schem atic o f the siderophore iron uptake system  in gram -negative 
bacteria
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In 2004, a new family o f  transport proteins was identified in a variety o f  bacteria 

including Sinorhizobium meliloti and Pseudomonas aeruginosa  (O Cuiv et al., 

2004). The S. meliloti siderophore, rhizobactin 1021, is structurally sim ilar to 

aerobactin, transported in Escherichia coli via the IutA outer membrane receptor and 

the FhuCDB inner membrane transport system. O Cuiv et a l  (2004) showed that the 

permease RhtX could substitute for the ABC transporter FhuCDB to transport 

rhizobactin 1021 in E. coli. In addition, a hom ologue o f  RhtX termed FptX in the 

pathogen P. aeruginosa  was found proximal to genes that function in iron uptake via 

the siderophore pyochelin and was shown to be a transporter o f  pyochelin. RhtX and 

FptX would appear to be members o f a novel family o f  permeases that function as 

single subunit transporters o f  siderophores and are not o f  the ABC transporter class.

While most bacteria can produce their own siderophores in most cases they can also 

utilise exogenous siderophores produced by other bacteria. For example, E. coli can 

utilise as many as eight different m etallo-siderophore complexes with four o f  them 

being produced by other organisms: coprogen, rhodotorulic acid, ferrioxamine, and 

ferrichrome. This is accomplished via the six different receptors it can produce on its 

outer membrane (Fig 1.2).

Fig 1.2: Schem atic representation o f siderophore-m ediated iron uptake system s 
in E. coli K-12.
Note that the TonB-ExbB-ExbD complex energises and interacts with all the OM receptors 

shown (not just FepA). (Andrews et a l , 2003)
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12  2 Iron acquisition by bacteria in a host

Direct acquisition o f  iron from host proteins is the mechanism mainly used by 

pathogens They have to compete with iron transport m olecules in the host for the 

limited iron that is available Indeed, in order to reduce the level o f iron available, 

the host produces iron-binding proteins (lactoferrins or transferrins) in response to 

the pathogens’ locations in the host It also produces haem and haemoglobin binding 

proteins, called haemopexin and haptoglobin, which limit even more the 

accessibility by bacteria to iron

1 2  2 1  Iron uptake fro m  glycoproteins

The iron binding proteins transferrin, contained in human serum, and lactofem n,, 

contained in mucosoal secretions and leukocytes, are host glycoproteins that 

considerably limit the concentration o f  iron available to invading pathogens

Transferrin and lactofem n receptors have been identified in bacteria such as 

Neisseria  species (Com elissen et a l , 1994) Indeed, m em bers o f  some fam ilies such 

as the N eissenaceae can overcom e the problem  o f iron depletion by being able to 

acquire transferrin-iron even if  they are not capable o f  producing siderophores 

Much o f  the study o f  the use o f  transferrin as an iron source has been done in 

Neisseria meningitidis due to its importance in this pathogen The uptake o f  iron is 

achieved through the production o f  bi-partite receptors composed o f two different 

proteins, TbpA and TbpB for the binding o f transferrin and LbpA and LbpB for 

lactofem n Both sets o f  proteins are iron-regulated and are present on the outer 

m em brane TbpA is hom ologous to LbpA and TbpB to LbpB However, some 

important differences in regard to physiochem ical, antigenic, and immunogenic 

properties o f  the proteins in each set make them quite distinctive For example, 

TbpB is a lipoprotein, which is m ainly exposed on the surface o f the cell TbpB is 

also capable o f  discrim inating between transferrin and Fe-transfem n Expression o f 

TbpB is not always necessary TbpA dem onstrates some sim ilarities to the family o f
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TonB-dependent siderophore receptors Yet, unlike them, the bacterial transferrin 

receptor has to remove iron from transferrin at the cell surface The uptake o f the 

ferric iron is dependent on the same energy transducing system as the siderophores 

and the transport through the periplasm and the inner m em brane is dependent on a 

periplasm ic binding protein and A BC permease system

1 2  2 2 Haem Iron uptake

Many bacteria have developed outer m em brane receptors for haem, the nchest 

source o f  iron in mammals in order to release it in the cell For pathogens, haem is 

clearly an important source o f  iron that can be found throughout the body at low 

concentrations and under different forms Free haem is bound to hemopexin in 

serum while hemoglobin binds to haptoglobin Bacteria are able to transport haem 

delivered as haem, haem-hem opexin, hemoglobin and finally hemoglobin- 

haptoglobin The mechanism used by the bacteria to acquire these m olecules is, to a 

certain extent, sim ilar to the mechanism used for the uptake o f  siderophores

The current mechanism proposed (Com elissen et a l , 1994) is that the glycoprotein 

binds to the receptor on the membrane o f  the bacteria The ferric iron is removed 

from the iron protein and then transported through the periplasm with the help o f  a 

periplasm ic protein and then crosses the cytoplasm via a membrane permease 

system

A new mechanism to acquire iron from haem was recently discovered in P 

aeruginosa  (W andersm an et a l , 2000) and P fluorescens  (Idei et a l , 1999) A 

protein called HasA (haem acquisition system) is released by bacteria and acquires 

the haem bound to the haemoglobin It then chaperones the haem to the outer 

m em brane receptor HasR
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1 2 3  Fe2+~ transport system

Under anaerobic conditions, ferrous iron can be available To acquire it, a transport 

system is generated by the three genes feoA B C  in E coh  (Kammler et a l , 1993) 

feoA  and fe o C  are tw o genes encoding proteins with a small molecular weight below 

10 kDa Their function is still unclear but the mutation o f  the two genes feoA  and 

feo B  showed a strongly reduced ferrous iron uptake phenotype feo B  encodes an 84- 

kDa cytoplasmic m em brane protein with a nucleotide-bindm g m otif situated at the 

N-term inus necessary for ferrous iron uptake

This indicates that ferrous iron uptake is driven by ATP hydrolysis Also, fe o  

m utants were derepressed for many Fur regulated genes indicating that ferrous iron 

transport contributes under iron oxic conditions to the iron supply o f  the cells 

(Becker et a l , 1985)
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1 2 4 Iron acquisition by plants

Iron is an essential nutrient for plants and vital for a variety o f  cellular functions 

M obilisation o f  iron by plants is achieved by two different strategies dividing plants 

into two groups Dicotyledons and non-grass m onocotyledons employ reductive and 

proton-prom oted processes reducing ferric iron to ferrous iron (Strategy I) The other 

group o f plants, gram inaceous plants (grasses) secrete plant-borne chelators or 

phytosiderophores (Strategy II)

1 2  4 1  Strategy I

Dicotyledons and non-grass m onocotyledons reduce ferric iron before uptake (Fig 

1 3 strategy I) The roots o f dicotyledonous plants have been shown to have a short 

zone that can be extended under iron deplete conditions and where ferric chelates are 

reduced (Romheld et a l , 1986) Bacterial siderophores m ay also serve as substrates 

for this reduction The process is mediated by a plasm a m em brane-bound redox 

system Analysis o f  m utants defective in ferric chelate reductase activity has proven 

that this step is essential for iron acquisition (Yi et a l , 1996) This mechanism 

involves the initial reduction o f  fem e iron by a plasm a membrane bound ferric lron- 

chelate reductase Then the ferrous iron is transported through the root epidermal 

cell mem brane

Both the reduction o f  ferric iron and the transport o f  ferrous iron are improved under 

iron deplete conditions The dicotyledons and non-grass m onocotyledons acidify the 

rhizosphere, which is thought to occur as a result o f  an ATP-dependent pump that 

extrudes protons into the rhizosphere lowering the rhizosphere pH and so improving 

the solubility o f  fem e iron (W elkie et a l , 1993)
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1.2.4.2 Strategy II

Under iron deplete conditions, grasses (Poaceae) produce and secrete 

phytosiderophores. They also induce a high affinity uptake system for iron - 

phytosiderophores that transport the com plex into the root (M a et a l , 1995). This is 

considered to be the most efficient strategy for plant iron acquisition. So, after 

forming a complex with the plant iron - phytosiderophores, iron is taken up by a 

transporter specific for the iron - siderophore complex (Fig 1.3: strategy II.) 

(Rômheld et a l ,  1986). A transporter mediating the uptake o f  phytosiderophores has 

recently been identified (Curie et al., 2001). Splitting o f  the chelate, by ligand

exchange or some other mechanisms, occurs within the cell.

Fig 1.3. M echanism s o f iron  u p tak e  by p lan ts.
In strategy I plants (e.g. Arabidopsis, pea and tomato), ferric iron chelates are reduced before the 
ferrous iron is transported across the plasma membrane. Strategy II plants (e.g. barley, maize and 
rice) release siderophores capable o f  solubilising external ferric iron and then transport the iron - 
siderophore complex into the cell. (PS: phytosiderophore) (Schmidt et al., 2003).
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1.3. Iron storage

Because o f  the toxicity o f  iron in the cell, bacteria had to develop a way to store iron 

acquired from the environm ent in a safe and bioavailable form within iron storage 

proteins (Andrews et a l , 1998) Thus, iron storage proteins play a key role in iron 

metabolism Their ability to sequester this elem ent gives them  the dual function o f  

providing a storage o f  the metal ion and o f  precluding its undesirable reactivity 

towards oxygen, leading to the production o f  highly hazardous reactive oxygen 

species

Three different forms o f  iron storage protein have been identified and characterised

- The archetypal ferritins, also found in eukaryotes

- The haem containing bacterioferritins, only found in eubactena

- The Dps proteins

These three categories o f  proteins are distantly related and so share structural and 

functional similarities

The large ferritins and bacterioferritins with a m olecular weight around 500 kDa can 

hold between 2000 and 3000 iron atoms per 24-m er while the Dps proteins, which 

are small with a m olecular weight o f 250 kDa, can only store around 500 iron atoms 

per 1 2 -mer

1 3 1  Ferritins and bacterioferritins

Ferritin is found m prokaryotes and eukaryotes and has been well characterised since 

its discovery This holoprotein is constituted in general by 24 subunits which form 

the protein shell harbouring the ferric iron mineral core (Harrison et a l , 1996) If  the 

protein acquires the iron in its reduced state, it is then oxidised and stored in its 

ferric form Indeed, specific sites w ithin the ferritin m olecules called the ferroxidase
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centre catalyse the ferrioxidation step These sites are located within the central 

regions o f  the individual subunits

M utation o f  the ferritin A gene (ftnA ) in E  coli resulted in a -5 0 %  reduction in 

stationary-phase cellular iron content following growth under iron-sufficient 

conditions and a reduced rate o f  growth under iron-restricted conditions (Abdul- 

Tehram et a l , 1999) This suggests that the function o f  FtnA is to accum ulate iron 

during post-exponential growth in the presence o f excess iron for use as an 

intracellular iron source during subsequent growth under iron deplete conditions No 

role could be discovered for FtnA in iron detoxification or redox stress resistance, 

although am plification o f the ftn A  gene reduces the sensitivity o f  fu r  (ferric uptake 

regulation) m utants to redox stress (Touati et a l , 1995) /

Ferritins are part o f  a large superfam ily o f  proteins, which includes another group o f  

iron-storage protein the m em bers o f  which were identified in bacteria and which 

were therefore called bactenoferritins (Stiefel et al, 1979, Andrews et a l , 1998) 

Despite their name, bactenoferritins are not restricted to bacteria They were also 

found in a eukaryote (Carrano et a l , 1996) Although bactenoferritins were 

discovered a decade before ferritins and are more widespread in bacteria than 

ferritins, a lot about their physiological role rem ains to be learned

Bactenoferritins m am  striking feature is the presence o f  haem in the form o f  lron- 

protoporphyrin IX There are norm ally 12 haem groups per 24-m er located at each 

o f  the 12 two-fold interfaces between subunits The haem is positioned within a 

pocket towards the inner surface o f  the protein shell, with the haem being exposed to 

the inner cavity However, the role o f  the haem rem ains unknown, but the presence 

o f  haem is more than likely central in distinguishing the function o f  the haem-free 

ferritins from that o f  the bactenoferritins

M any bfr genes are associated with a gene (bfd) encoding a [2Fe-2S] ferrodoxin 

known as Bfd (the bactenofem tin-associated ferrodoxin) This protein is somewhat 

similar to FhuF, which is thought to be involved in intracellular reduction o f
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ferrichrome The bfd  gene is iron regulated and taken with evidence that it interacts 

specifically with B fr and that Bfd contains a Fe-S domain, it suggests a role for Bfd 

in iron release from Bfr (Quail et a l , 1996, Garg et al, 1996) No phenotypes are 

linked to the m utation o f  bfr in E  coh

13  2 Dps proteins
\

Another iron storage protein is the non specific DN A-binding protein named Dps 

(DNA-binding proteins from starved cells) that protects DNA from cleavage caused 

by reactive oxygen species such as the hydroxyl radicals produced during oxidation 

o f  ferrous iron by H 2 O 2  (M artinez et a l , 1997) It is another im portant component 

that protects against oxidative and nutritional stress These proteins bind to DNA in 

stationary phase and protect it from oxidative damage (Almiron et a l , 1992) E coh  

Dps was recently shown to possess iron and H 2 O 2  detoxification capacity, and this 

novel property was proposed to act in concert with physical association with DNA to 

achieve its protection against oxidative hydroxy radicals (Zhao et a l , 2002) Indeed, 

work on Dps o f  E coh  has demonstrated that the protein can also store iron It has a 

preference for H 2 O 2  as the oxidant, w ith O 2  being rather a poor alternative This 

suggests that the prim ary role o f  Dps in E  coh  is to protect DNA against the 

combined action o f  ferrous iron and H 2 O 2  m the production o f the hydroxy free 

radical (Zhao et a l , 2002) Thus, Dps probably does not have a strict function in iron 

storage

Redox- and iron-induced hom ologues o f  Dps were found in other bacteria and an 

iron-storing Dps-like protein was discovered in different bacteria including Listeria  

monocytogenes (Bozzi et a l , 1997) and elsewhere W hether the Dps-like proteins 

from other bacteria also function m ainly as DN A-protecting anti-redox agents 

rem ains to be proven
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1.4. Iron regulation

As explained before, the bacteria have to ensure that as little free iron as possible is 

present in the cell Therefore, iron uptake has to be tighly regulated Control o f  gene 

expression can be at the transcriptional and at the posttranscriptional level A variety 

o f  general and specific regulators are employed in order that the bacteria only use 

the necessary and m ost efficient mechanisms to acquire iron

1 4 1  Ferric uptake regulator (FUR)

1 4  1 1  Introduction

The main and m ost im portant transcriptional regulator o f  the iron response in gram- 

negative bacteria is the F em e Uptake Regulator (Fur)

The gene encoding this protein was first discovered m 1978 through its mutation in 

Salmonella typhimurium  that resulted in the constitutive expression o f  all the genes 

involved in the iron uptake acquisition pathw ays o f  the organism (Ernst et a l , 1978) 

Three years later, Hantke generated the same m utation in E coh  Mutants 

constitutive for the expression o f  beta-galactosidase were selected in an fliuA-lac  

fusion strains Outer m em brane receptors and the transport o f siderophores were 

produced constitutively in such strains They w ere term ed fu r  m utants and in these 

fu r  mutant strains the synthesis o f  a 17-kDa protein was decreased (Hantke et a l ,

1981)

Subsequently, the fu r  gene was cloned (Hantke e t a l , 1984), m apped (Bagg et a l , 

1985), sequenced (Schaffer et a l , 1985) and the protein it encodes purified (W ee et 

a l , 1988) The fu r  gene, like those for m ost transcriptional regulators, is small 

encoding a 148 amino-acid protein with a 17-kDa m olecular weight The Fur protein 

was isolated in a single step by immobilised m etal-ion affinity chrom atography over 

zinc lm inodiacetate agarose The yield o f  Fur protein was determined to be 

approxim ative^  130 mg for 1  litre o f  culture grown
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W ithin the bacterial genomes available now, Fur hom ologues have been identified in 

a num ber o f  cases However, the protein has been studied in relatively few species 

Structural analysis o f  Fur and its DNA binding properties have been m ost 

extensively studied in E  coh  (De Lorenzo et a l , 1987, 1988), P aeruginosa  (Prince 

et a l , 1993) and Bacillus subtihs  (Baichoo et a l , 2002), whereas analyses o f  fu r  

mutants and the identification o f  genes under Fur control have also been studied in 

several other organisms as well Interestingly, m ost o f  these Fur hom ologues 

complement or partially com plem ent E coh  Fur in an E  coh fu r  m utant

In contrast to most o f the known transcriptional regulators, Fur is a very abundant 

protein Unlike LacI and Trp with respectively an estimation o f  10 to 20 and 50 to 

300 copies per cell (G ilbert et a l , 1966, Kelley et a l , 1982), the E coh  Fur levels 

determined were o f  5,000 molecules during the exponential phase and 10,000 Fur 

molecules after oxidative stress (Hantke, 2001) Backing these results, in Vibrio 

cholerae , Fur was found at approxim atively 2,500 m olecules during the log phase, 

which increases to 7,500 Fur at stationary phase (W atm ck et a l , 1997) The high 

amount o f  Fur could be explained by the fact that Fur tends to polymerise along the 

DNA Also, it could be necessary for the large num ber o f  genes that are controlled 

by Fur in E coh  Finally, Fur could as well play a role as a ferrous iron ‘buffer5 

binding free ferrous iron in the cell (Andrews et a l , 2003)

1 4 1 2  Fur regulon

\
To this point, as many as ninety genes have been found to be regulated by Fur (Fig 

1 4) All the proteins in the outer m em brane o f E  coh  that are derepressed in fu r  

m utants are receptors for siderophores From the 90 genes, as many as 60 code for 

the biosynthesis and transport o f  siderophores and about 18 are for cytoplasm ic 

proteins involved in m etabolism, proteins o f  iron m etabolism  and proteins o f  

oxidative stress response
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In general, Fur can down regulate iron metabolism genes directly; for instance, Fur 

regulates the reductase fh u F  gene in E. coli. The protein can also indirectly down 

regulate genes through its regulation o f  specific transcriptional regulators. For 

example, PchR, an AraC-like transcriptional regulator in P. aeruginosa , is Fur 

regulated. This protein, itself, up regulates JptA , a gene that encodes the outer 

membrane receptor for pyochelin (Heinrichs et al., 1996).

Furthermore, it was shown recently (M assé et a l ., 2003) that Fur can indirectly up 

regulate genes at the posttranscriptional level through its regulation o f a small RNA. 

RyhB is Fur regulated and it functions in down regulation o f  genes involved in iron 

metabolism by binding to their m essenger RNA thus inhibiting their translation. This 

level o f regulation will be discussed in a later section.

Fur Regulon

Fur Regulator

directly indirectly

f  \
Specific ran  sert plumai regulator* Smalt K.NAs

iron transport - AraC transcripti anal régulai or -RyhB in £. coli
and hi o synthesis of 
sidt3 tiphores a a  PchR

Repeal Oui a  membrane
scquenccs receptar

iP. Ltcttiyituis c(t

?
i em brace *mm*
?i>tor ~ 1 <

Translation inhibited

Fig 1.4: Different levels o f regulation by the ferric uptake regulator Fur
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Recently (Delany et a l , 2004) promoters o f  N  meningitidis predicted to have Fur- 

binding boxes were selected for the study o f  the m olecular interactions between Fur 

and the prom oter regions o f  genes expected to play an important role in survival and 

pathogenesis Interestingly, it was shown that Fur can act not only as a repressor, but 

also as an activator o f  gene expression both in vivo and in vitro  Fur bound to 

operators located upstream o f  three prom oters that are positively regulated in vivo by 

Fur and iron This experiment thus demonstrated that Fur could act as a positive 

transcriptional regulator

Also, in H  pylori, Lee et al (2004) investigated the global gene regulation by Fur in 

response to iron Using proteom e profiles, 93 protein spots were found to be up- or 

down-regulated more than 2-fold by either a fu r  mutation or iron-depletion Eleven 

o f  these proteins were found to be activated by Fur, five responded to iron and the 

others were not iron-responsive Seven different types o f gene regulation via Fur and 

iron were identified These findings demonstrate again that while the Fur protein can 

function as a classical transcriptional repressor, it can also function as an activator

The investigation o f  fu r  hom ologues in the rhizobia is discussed in detail in a later 

section
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1 4 1 3  Fur regulation

The accepted working model for Fur function describes how  when bound to ferrous 

iron, Fur conform ation changes and the dim er then binds the prom oter region o f  the 

gene it regulates on a target DNA sequence call the ‘Fur box’ thus repressing 

transcription A lternatively, when iron is lim iting in the cell, bacteria use what iron 

they have left to ensure their supply to essential proteins and thus no iron is left to 

form the ferrous iron - Fur complex The affinity o f  iron for Fur is quite w eak and so 

bacterial ceils can remove the iron from Fur and can thus up regulate genes required 

for the ‘iron deplete’ state (Fig 1 5) It is generally assumed that Fur binding blocks 

access o f RNA polym erase to the prom oter to repress transcription, but this has not 

been demonstrated directly

In both the presence and absence o f  ferrous iron in solution, Fur appears to be a 

dimer (Coy et a l , 1991, M ichaud-Soret et a l , 1997, Neilands et a l , 1991) A model 

was suggested in which the protein has been proposed to have two dom ains (Coy et 

a l , 1991, Stojiljkovic et a l , 1995) The C-terminal region o f  Fur is responsible for 

dim ensation and metal binding w hereas the N-term inal region is involved in DNA 

recognition and binding
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Fig 1.5: M odel o f regulation by the transcriptional regulator Fur

1.4.1.4 Fur binding

The purification o f  Fur facilitated the investigation o f  its activity as a DNA binding 

repressor in vitro . The ability o f  Fur to form a complex with iron or other metal ions 

and to bind upstream o f  the iron regulated aerobactin biosynthesis genes was shown 

by Baggs and Neilands (1987). Purified Fur was used to identify by footprinting the 

precise sequence within the promotor region bound by the regulator. In the presence 

o f  a num ber o f  divalent heavy metals (M n2+, Fe2+? Co2+, Cu2+’ Cd2+, and partially 

with Zn2+), Fur binds primarily to a DNA sequence o f  31 bp within the promoter 

region.

Both manganese and cobalt can most efficiently replace iron. Therefore, in general, 

manganese is used to mimic iron (as iron oxidises in the air) during experiments. 

The absence o f  divalent metal ions decreases dram atically the D N A -binding ability
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o f  the repressor The sequence o f  the operator extends from 7 bases upstream o f  the 

-3 5  sequence to the bp 1 o f  the -1 0  region

Analysis by electron and atomic force m icroscopes (Le cam et a l , 1994) showed 

that the Fur-DNA complexes display a well-ordered structure indicating that protein 

coating is probably periodic and that the arrangem ent along the DNA m olecule is 

likely helical

In several cases, Fur-binding sites consist o f  two or more adjacent or overlapping 

‘iron boxes’ suggesting the binding o f  several Fur dimers To illustrate this, the 

aerobactin biosynthesis operon prom oter (.Paer) is o f  particular interest Paer is bound 

by the protein at three different sites in the prom oter region depending on Fur 

concentrations Fur dimers firstly bind to a high affinity site, stim ulating further Fur 

binding at adjacent and weaker sites in a way that seems to result in Fur 

polymerisation along the DNA duplex This extensive occupation o f the promoter by 

Fur was revealed to spread over 100-bp

DNA recognition by Fur has been controversial and is not yet conclusively 

understood The interaction o f the Fur protein-Fe2+ complex with the DNA has been 

characterised with diverse techniques for several prom oters o f  E coh  and other 

genera These studies have revealed that every iron-dependent prom oter contains a 

target DNA sequence with different degrees o f  similarity to a palindromic 5 ’- 

G A T A A T G A T A A T C A T T A T C -3’, 19 bp consensus box Studies in vivo 

confirmed that this sequence cloned downstream from a heterologous prom oter is 

sufficient for Fur mediated repression (Calderwood et a l , 1988) Searches have 

yielded one prom oter that m atches the Fur box consensus exactly (Baichoo et a l , 

2002), with 14- or 15-bp m atches out o f  19 being more typical and 11-bp accepted 

as a minimum match (Ochsner et a l , 1996, Tsolis et a l , 1995, Baichoo et a l , 2002) 

Sequence similarity to a ‘Fur box’ consensus within promoter regions o f  genes is 

taken as ab initio  evidence for regulation by Fur However, it is necessary to explain 

how such a relatively small dimer interacts with such an extended operator region
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Fig 1.6: Fur binding site.
The 19-bp consensus Fur binding site for E. coli and various models o f  recognition are shown. The 
top sequence shows the consensus Fur binding site. The classical model shows each monomer 
binding a 9-bp inverted repeat (shown as arrows) o f  the consensus, with an A:T base pair in between. 
The lower right sequence depicts the hexamer model with the unit o f  recognition being the sequence 
5'-GATAAT-3' (shown as arrows). It is uncertain how Fur would bind this sequence; some have 
suggested that each hexamer is recognized by a single dimer. (Lavrar et a l 2003).

Firstly (as shown in Fig 1.6), it was proposed by Bagg et a l  (1987) that Fur 

recognises the sequence as a 9-bp inverted repeat separated by a single base pair. 

However, more recent studies from Escolar et a l  (1998, 2000) reinterpreted the 

consensus as the combination o f  three hexameric units o f  the sim pler model 5 ’- 

G A TA A T-3’ (hexam er model). The data showed that at least three adjacent 

hexamers were required for initial binding and that additional hexamers increased 

the affinity o f  Fur for the sequence. This is a very attractive possibility because it 

would perm it the generation o f  repertoires o f  binding sites o f  varying extensions and 

affinities, as shown in Fig 1.7, which would allow Fur to act on some prom oters as a 

very specific regulator and in others as a more general co-regulator.
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Fig 1 7 M odels for Fur-DNA interactions
A represents the overlapping-dimer binding model In this model, each monomer (shown as an oval) 
binds an inverted hexamer, shown as an arrow, with two dimers required for binding the 19-bp 
consensus C G base pair spacers are shown in bold B shows the 7-1-7 model, as recently described 
(Baichoo et al , 2002) The arrows represent the inverted 7-mer recognized by each monomer o f  the 
dimer The bold bases represent the base separating each 7-mer in a unit C is an application o f  the 
overlapping-dimer binding model to an extended binding site C G base pair spacers are shown in 
bold Numbers 1, 2, and 3 refer to dimers 1, 2, and 3 (Baichoo et a l , 2002)

1 4 1 5  Regulation o f  the Fur protein

The regulation o f  Fur is complex Fur is considered to be the general iron regulator 

in E coh  However, a special relationship exists between iron metabolism and 

oxidative stress As already described, while iron is a crucial nutrient for living cells, 

the Fenton reaction on the other hand leads iron to form hydroxyl radicals which can 

be damaging to cellular components To prevent such damage, bacteria have 

developed regulatory pathways to ensure that iron uptake occurs to the level 

necessary to fulfill the physiological requirem ent o f the cell while lim iting iron 

toxicity

Touati et al (1995) isolated fu r  deletion mutants and highlighted their sensitivity to 

hydrogen peroxide and the increase in m utations and oxidative damage to DNA 

These results imply that Fur also plays a role in the defense against oxidative stress
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Zheng et al (1999) showed that the regulation o f  Fur by OxyR and SoxRS directly 

reflects the chemistry between iron and reactive oxygen species

OxyR, which senses elevated levels o f hydrogen peroxide, binds to the fu r  promoter 

and induces ten-fold the expression o f  transcripts encoding Fur The OxyR binding 

site is directly upstream o f the -3 5  region o f  the promoter, which is an arrangement 

that has been observed at other OxyR-activated promoters

SoxR and SoxS, on the other hand modulate the response to superoxide-generating 

compounds and activate the expression o f  a transcript encoding both flavodoxin and 

Fur Flavodoxin is encoded by the fld A  gene and is located upstream o f  fu r  in the 

bicistronic fld A -fu r  operon Flavodoxin is a flavin-containing protein involved in 

redox chemistry An induction by ten fold o f the expression o f  the transcript is 

achieved by SoxS binding to the prom oter region o f fldA  Furthermore, SoxR 

activation is the result o f  the oxidation o f  the [2Fe-2S]2+ center by superoxide The 

activation o f  SoxR up regulates the transcription o f  soxS , then, the protein SoxS 

activates fu r

The fu r  gene is also autoregulated by its own gene product m E coh  In this case, 

Fur binds weakly to its own prom oter via a Fur box situated in the fldA -fur  

intergemc region, with a binding affinity that is lower than the one for the aerobactin 

prom oter (De Lorenzo et a l , 1987) Furthermore, computational analyses have 

identified a 21 bp sequence closely hom ologous to known CAP (catabohte activator 

protein)-bm ding sites upstream o f  the fu r  prom oter Finally, M ar A could also bind in 

the fld A -fu r  region In summary, the complexity o f  the fu r  regulation suggests that 

Fur controls m ore than iron acquisition systems

1 4 1 6  Fur mutagenesis

In order to study the control o f  the Fur regulator, m utagenesis o f  fu r  has been 

undertaken Different approaches have been taken to construct fu r  m utant bacterial
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strains For example, E  coli, Klebsiella pneum oniae , P aeruginosa , Serratia  

marcescens , Vibrio anguiUarum  and Yersinia enterohtica  were m utated by 

spontaneous m utation while E coli, Shigella flexneri and Vibrio cholerae fu r  

mutants were made by msertional mutagenesis and finally Vibrio vulnificus was 

mutated by internal deletion

Another interesting way to obtain such m utations is based on the isolation o f  

m utants by positive selection as previously described by Silver et a l (1972), and 

adapted for the isolation o f  fu r  m utants in E coli K12, Klebsiella  and Serratia  

(Hantke, 1987) The selective medium contains a relatively low concentration o f  

M g2+ but an adequate supply o f  M n2+ In the selective medium, this imbalance 

between Mg 2+ and M n2+ leads to relatively high concentrations o f  M n2+ inside the
2_i_

cell It was observed that Mn represses the iron transport systems and induces a 

positively regulated iron-dependent gene From these observations it seems possible 

that m anganese directly interacts with the Fur protein, thus leading to a repression o f  

the iron transport system s However, an indirect mechanism is also possible where 

iron is mobilised in the cell by M n2+, thus leading to a high concentration o f free 

ferrous iron and to a repression o f the iron transport systems W hatever the 

mechanism o f  manganese action is, the constitutive m utants were not repressed by 

M n2+ and this allowed the cells to grow, thus providing a positive selection 

mechanism

Results obtained in some bacterial species suggest that Fur plays cellular role m 

addition to its role in iron hom eostasis Indeed, the fu r  gene m utation appears to *bé̂  " ~ 

lethal in Neisseria  and V anguiUarum

1 4 1 7  Pleiotrophic function  o f  Fur

The Fur m odulon includes several genes playing a role in iron uptake such as 

siderophore biosynthesis and siderophore transport as well as genes that do not play 

an evident role in iron uptake Indeed, looking at Fur regulated genes, it can be noted
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that this regulator also controls functions that are not obviously related to iron 

m etabolism These include cellular processes as varied as the acid shock response 

(Hall et a l , 1996), chem otaxis (Karjalainen et a l , 1991) and production o f toxins 

and other virulence factors (Litwin et a l , 1993)

The growth defects o f  fu r  m utants o f  E  coh , P aeruginosa , V cholerae and 

Yersinia pestis  suggest that fu r  may regulate vital functions in these organisms E  

coh  and V cholerae fu r  m utants have lost the ability to grow aerobically with small 

dicarboxylic acids as carbon sources (Hantke et a l , 1987) These characteristics and 

potential catabolite-activator protein binding sites in the prom oter region o f  some fu r  

genes suggest that Fur m ay participate in the regulation o f  a broad array o f  genes 

involved in basic cellular metabolism In some instances, Fur appears to act through 

and in conjunction with other regulatory proteins Both the strain backgrounds and 

the type o f  f u r  mutation may affect the degree o f  regulatory and physiological 

defects

1 4 1 8  Other general iron regulators

Fur is certainly the best-known and characterised iron-responsive transcriptional 

regulator that acts as the general iron regulator o f m ost gram-negative bacteria and 

o f  the gram -positive bacteria with a low GC content

However, in 2002, a new transcriptional iron regulator was identified in R 

leguminosarum  (Todd et a l , 2002) This protein called RirA, rhizobial iron 

regulator, is responsible for the control o f  num erous iron responsive genes such as 

those involved in the biosynthesis o f  the siderophore vicibactin RirA would also 

seem to be a general iron regulator (A Johnson, personal com m unication) but more 

analysis has to be carried out to confirm this

In addition, in Gram-positive bacteria with a high GC content another regulator 

called DtxR is responsible for iron hom eostasis This family o f  proteins, named after
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the diphtheria toxin repressor, is only distantly related to the gram-negative iron- 

dependent regulator Fur and binds a different DNA operator sequence The 

diphtheria toxin repressor (DtxR) originally recognised as a repressor o f the gene 

that encodes diphtena toxin is now known to function as a general regulator o f  

metabolism in gram -positive bacteria such as Corynebacterium diphthenae  In this 

bacterium, functions down regulated by iron are production o f diphteria toxin, 

synthesis o f  the corynebactin siderophore, transport o f  the siderophore, and 

utilisation o f iron from haem Although the physiological role o f  DtxR in C 

diphthenae  is sim ilar to that o f  the fem e uptake regulator protein (Fur), D txR differs 

from Fur in structure and cannot substitute for Fur in function Hom ologues o f DtxR 

are being detected increasingly (Feese et a l , 2001)

In mycobacteria, M ycobacterium tuberculosis contains as many as four such iron- 

dependent regulators IdeR is the only protein for which experimental evidence o f  a 

role in iron binding and DNA binding exists (Schmitt et a l , 1995) It contains 

extensive similarity to the D txR family In addition, M  tuberculosis contains two 

genes, fu r  A  and fu r B , that encode proteins more sim ilar to E  coh  Fur Finally, there 

is SirR, putatively described as an iron-dependent regulator based on similarity to 

SirR from Staphylococcus epidermidis (Hill et a l , 1998) The iron-responsive 

regulatory protein encoded by ideR , hom ologue o f  the dtxR  gene from C 

diphthenae , is the best characterised protein It has been functionally characterised 

both in vitro and in vivo The role o f  IdeR in the repression o f  siderophore 

production was shown with the construction o f  an ideR  m utant o f M ycobacterium  

smegmatis (Dussurget et a l , 1996) This m utant produces siderophore when grown 

in high- or low-iron media, dem onstrating the requirem ent for IdeR to repress 

siderophore production under high-iron conditions However, not surprisingly in 

light o f the presence o f  fu r A ,fu r B , and sirR  in M  sm egm atis, the m utant was still 

capable o f  upregulating siderophore production under low-iron conditions, 

suggesting the presence o f  a second iron-sensing regulator in M  smegmatis
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1 4  2 Specific  transcriptional regulation

In iron acquisition systems, three mam categories o f  positive transcriptional 

regulators have been identified so far There are the alternative sigma factors, 

classical two component sensory transduction systems and, finally, AraC-like 

proteins These system s function in a more specific way than Fur The AraC-like 

mechanism o f  regulation is o f  particular interest in regard to the iron response in S  

mehloti

1 4  2 1  AraC-like transcriptional regulators

AraC transcriptional regulators are called so, based on hom ology to a 99 ammo acid 

sequence o f  the first m em ber o f  this family discovered, AraC from E coh  which 

regulates arabm ose (Sheppard et a l , 1967) The 99 amm o acids m otif is found 

comm only in the C-terminal, though it can sometimes be located at the N-term inal 

(CafR and Rob from E  coh) or in the central domain (Ada from E coh  and S  

typhimurium) These regulators o f  the AraC family are usually small, like most 

transcriptional regulators, with a size between 250 to 300 residues long

The first m em ber o f  the AraC family was identified in 1966 by Sheppart et al in E  

coh  M ost o f  the members o f  this family are positive transcriptional regulators with 

so far two exceptions, the AraC protein from E  coh  which can act both as a repressor 

and as a positive regulator (Tobin et a l , 1987, Shleif et a l , 1992) on different 

prom oters or on the same prom oter depending on the presence or the absence o f  

appropriate effectors and YbtA from Y  pestis , which has an uncertain mode o f  

action (Fetherston et a l , 1996) AraC-like regulators have their DNA binding 

domain predicted to be organised as a helix turn helix m otif located on the C- 

terminal In general, transcription o f the regulatory gene is divergent from the 

gene(s) they regulate
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These proteins are involved in the regulation o f  three mam functions

♦ Carbon metabolism controlling the degradation o f  sugars with for instance, 

AraC for arabmose or M elR and M smR for melibiose

♦ Some A raC-hke regulators control genes that are involved in pathogenesis 

They may be required for the stimulation o f  the synthesis o f  proteins playing a role 

in adhesion to epithelial tissues, such as fimbriae, components o f the cell capsule, 

and mvasins Some m em bers o f  this fam ily control the production o f  other virulence 

factors such as siderophores

♦ Finally, some regulators function in the response to stressors, such as 

oxidative stress (SoxS from E  cob  and S  typhim urium ) (Am abile-Cuevas et a l , 

1991, Wu et a l ,  1991)
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1.4.2.2 The AraCprotein:

AraC, a DNA-binding protein is a transcriptional regulator controlling the 

expression o f  the genes in the arabinose operon. E. coli can grow and utilise 

arabinose as its sole source o f carbon and energy. The enzyme activity necessary to 

convert arabinose into a component o f  the pentose phosphate shunt is significant and 

the levels o f  the enzymes have to be regulated.

Four transcriptional units are involved in the utilisation o f  L-arabinose (Fig 1.8):

- araBAD  (Englesberg et al. , 1962) which encode three enzymes involved in 

the catabolism o f  L-arabinose

- araE  and araFG H  encoding proteins involved in the transport o f  L- 

arabinose (Brown et al., 1972; Stoner et al., 1983).

- araC, encoding the regulator AraC that transcriptionally controls these 

genes and autoregulates its own synthesis (Lee et al., 1981).

Fig 1.8: O rgan isa tion  o f the  genes o f the  L -a rab in o se  operon
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14 2 3 The DNA looping phenomenon

As shown in Fig 1 9, in the absence o f arabinose, the AraC dimer binds the two ha lf 

sites o f  the DNA called Ii and O 2  separated by 210 bp, one m onom er o f the AraC 

dimer for each ha lf site That way, the formation o f  a loop occurs and prevents the 

transcription from P araBAD and from Parac  The loop interferes with the access o f  

RNA polymerase to the two promoters in the looping region and also stops the 

DNA-binding domain o f  AraC binding to I2

However, in the presence o f arabinose, a conform ational change o f the protein 

occurs and instead o f  form ing a loop, AraC binds to the adjacent half sites Ii and I2  

on the DNA so that transcription from Parac and PamBAD is promoted through direct 

interactions o f  AraC with the RNA polym erase

The ara  promoters are also regulated at the transcription level by the catabolite 

activator protein CAP which stimulates the transcription from the araBAD  promoter 

in an AraC dependent m anner Part o f  this stimulation is due to CAP breaking the 

repression loop generated between O 2  and Ii and part is independent o f  looping

1 4 2 4 The light sw itch mechanism

AraC is a homodim er, which m ainly forms dimers in solution To operate, the AraC 

protein possesses two distinct domains that function independently in protein 

chimeras and that are connected by a flexible linker The N-term inus o f  the protein 

permits AraC to form dimers and this is the domain that binds to the inducer, L- 

arabinose The C-terminal domain is the domain that binds to the prom oter regions 

o f  the genes it regulates

Another interesting feature o f  AraC is its light switch mechanism (Fig 1 9) The 

m echanism  o f  action o f  the protein is dependent on the presence or absence o f  the 

inducer Following chrystallography o f  AraC in the presence or absence o f  arabinose
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(Soisson et al., 1997), Schleif (2003) proposed a mechanism for the regulator 

explaining the effect arabinose could have on the protein shift from looping to 

binding to the close ha lf sites Ii and I2 . This mechanism is based on the difference in 

the structure o f AraC depending on the presence o f  arabinose. When the inducer is 

absent, the N-term inal arms o f  the protein bind the C-terminal DNA binding 

domains to hold them in a state where the protein prefers the loop. However, in the 

presence o f  arabinose, the arms are pulled o ff  the C-terminal domains inducing them 

to bind to the adjacent Ii and I2  and initiating transcription (Saviola et a l , 1998).

+ Arabinose 
V

Fig 1.9: L igh t sw itch m echanism  o f the  A raC  p ro te in  in E. coli
Binding o f  AraC in trans to the 02 and // half-sites to form a DNA loop in the absence o f  arabinose 
and its binding cis to the l\ and 12 half sites in the presence o f  arabinose that leads to unlooping and 
induction o f  pBad and transient derepression o f  pc and the light-switch mechanism (Schleif et al 
2003)

AraC can strongly activate transcription only when the promoter-proximal ha lf site 

is overlapping the -3 5  region o f  a promoter. Furthermore, it has been shown that the 

position o f  the promoter distal ha lf site is important in order to achieve an optimal 

activation by AraC (Reeder et a l , 1993).
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14 2 5 AraC-hke Iron regulators

So far, four examples o f  AraC- like regulators with a role in iron regulation have 

been published One o f those is RhrA (Lynch et a l , 2001) described in this thesis 

while the other three proteins are involved in siderophore production and transport in 

important gram -negative pathogens

AlcR in Bordetella pertussis and  Bordetella bronchiseptica

The first o f  these AraC-like transcriptional regulators is AlcR, which is found in 

both B pertussis  and B bronchiseptica  Both species are pathogens that inhabit the 

respiratory m ucosae o f  hum ans and non-human m am m als Under iron deplete 

conditions, they produce a siderophore called alcaligm

The biosynthesis genes o f  alcaligm are in the alcABCD E  operon and its outer 

membrane receptor is encoded by fauA  In 1998, Beaum ont and Pradel (1998) 

identified and characterised AlcR This protein was found to regulate the 

biosynthesis o f  the siderophore and o f  its outer m em brane receptor The gene 

encoding the regulator is located downstream  from the biosynthesis genes and is part 

o f  the alcABCD E  operon

The iron starvation stress response is regulated at the transcriptional level by the 

m etallo-Fur complex and therefore, as with m ost siderophores in gram -negative 

bacteria, alcaligm biosynthesis and its receptor are down regulated by Fur under iron 

replete conditions

In addition to being iron and Fur regulated, the ale  operon was also shown to be 

alcaligm and AlcR dependent Bnckm an et a l (2002) have shown that the activation 

o f  the transcription o f  the ale operon by A lcR  can occur at extremely low 

concentrations o f  alcaligm  inducer So, the siderophore is a vital participant along
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with A lcR  in a positive autogenous control circuit regulating its own production and 

transport

AlcR expression is itse lf down regulated m ainly by Fur acting at the alcABCD ER  

operon but also at the secondary prom oter-operator in the alcR  upstream region 

However, there is no evidence so far for negative auto regulation o f  AlcR

YbtA in Y pestis

The second example o f  an AraC transcriptional regulator is YbtA in Yersinia pestis , 

the causative agent o f  plague Under iron deplete conditions, Y  pestis  produce a 

siderophore called yersiniabactin or yersiniaphore (Fetherston et a l , 1995, Wake et 

a l , 1975) This siderophore is also produced by Y  enterohtica  and for which, 

confusingly, a separate nom enclature for hom ologous genes has been used in the 

literature

The biosynthesis genes o f  the siderophore have not yet been identified with certainty 

but it was determined that irp2 , which encodes a 190 kDa iron regulated high 

molecular weight protein called HM W 2 found in yersinia species is involved 

(Carmel et a l, 1989, Fetherston et a l , 1995, Guilvout et a l, 1993) This gene is part 

o f  what is more than likely the yersiniabactin biosynthesis operon (Carmel et al 

1992, Fetherston et a l , 1995) p sn  encodes the outer m em brane receptor for both 

pesticin and yersiniabactin

YbtA controls the expression o f  the siderophore yersiniabactin biosynthesis protein 

encoded by irp2 and the expression o f  its outer m em brane protein encoded by psn  

Expression o f  these genes is Fur and iron regulated but the full induction also 

requires YbtA and probably also its siderophore, as the mutation o f  irp2 decreases 

the expression o f  p sn  It could be that the siderophore acts as a positive signal 

molecule and directly binds to YbtA to activate transcription
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Fetherston et a l (1996) identified inverted repeats in the psn  prom oter region, which 

were putative candidates for YbtA binding sites These repeats are located 48 and 6 8  

bp upstream from the transcriptional start site (Rakin et a l , 1994) and the promoter- 

proxim al repeat overlaps the -3 5  region M utation o f the prom oter-distal repeat in 

psn  led to a decrease in but not a total loss o f  prom oter activity

In addition to the regulation o f  the outer m em brane receptor, YbtA also regulates the 

biosynthesis genes o f  yerm abactin A ybtA  m utation resulted in reduced expression 

o f the receptor and o f  the putative biosynthetic genes Furthermore, a sequence 

nearly identical to the repeats found in the p sn  prom oter region were also identified 

in the prom oter region o f the irp2 operon

Finally, YbtA is a negative regulator o f  its own expression Interestingly, there are 

two sequences resem bling a putative YbtA-binding ha lf site located downstream o f  

the -1 0  region o f  the ybtA  prom oter It is possible that activation versus repression 

o f YbtA may be determined by the location o f  its putative binding sites (-10 versus -  

35 regions)

PchR in  P. aerug inosa

The third example o f  an AraC like regulator o f  iron responsive genes that has been 

investigated to date is PchR in P aeruginosa  This organism is a versatile Gram- 

negative bacterium that is found ubiquitously Patients with cystic fibrosis, bum  

victims, individuals with cancer, and patients requiring extensive stays in intensive 

care units are particularly at risk o f  disease resulting from P aeruginosa  infection 

This bacterium  produces tw o siderophores under iron deplete conditions, pyoverdin 

and pyochelin Both have been shown to contribute to the virulence o f  the pathogen 

(Cox e t a l , 1982)

The outer m em brane receptor for pyochelin is encoded by fp tA  The expression o f  

fp tA  is Fur regulated (Ochsner et a l , 1996) as is the biosynthesis o f  pyochelin
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through the regulation o f the two operons pchD C BA  (Serino et a l , 1997) and 

pchE F G H l (Reim mann et a l , 1998) Those genes are also positively regulated by 

PchR, an AraC-type regulatory protein encoded by pchR , which is itself Fur 

regulated (Heinrichs et a l , 1996, Ochsner et a l , 1996)

The positive regulation o f JptA  through PchR was shown through the mutation o f 

pchR  and this is also dependent on the presence o f  pyochehn

Two partially conserved heptam enc repeats were identified upstream o f  JptA  in the -  

35 region and could be putative binding sites for PchR The same repeats sites were 

also identified upstream o f  pchR  suggesting that PchR is likely to bind to these 

repeats

Comparison o f  AraC4ike iron response regulators in pathogenic bacteria

B pertusis, Y  pestis  and P aeruginosa  have num erous striking similarities in 

relation to their AraC-type iron regulators but also some differences The three 

systems are Fur regulated with similar siderophores, outer m em brane receptors and 

regulators The three AraC-like regulators positively activate the expression o f  the 

siderophore bisynthesis genes and o f  the outer m em brane receptors under iron 

deplete conditions, activation being reported to be siderophore dependent in the 

three cases

The involvement o f  the siderophore is not well understood Some suggested that the 

m olecule would bind directly to the transcriptional regulator This is however 

unlikely B nckm an et al (2002) have another theory Their study on A lcR resulted 

in the loss o f the inducer requirem ent suggesting that the natural level o f  AlcR 

expression is a determinant for the controlled induction o f  AlcR-mediated 

transcriptional activation by the siderophore They hypothesise that in the case o f  B  

bronchiseptica , an inactive A lcR protein conform ation exists in equilibrium  with an 

active AlcR conform ation that is competent for transcriptional initiation The
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postulated role o f  the siderophore would be to shift that equilibrium toward the 

active AlcR conform ation by binding to the inactive regulator protein 

Overproduction o f  the regulator protein would also be predicted to increase the 

concentration o f  the active conform ation, thus suppressing the requirem ent for the 

inducer This is not the first time that this observation o f  siderophore-dependent 

expression o f siderophore receptor synthesis was observed (Gensberg et a l , 1992) 

In P aeruginosa , the bacterium  devotes its energy to synthesising the molecules for 

the m ost efficient iron uptake system in a given environm ent So, in a particular 

situation, the siderophore that is the most successful in chelating iron when coming 

back into the cell will upregulate the transcription o f the genes related to the 

adequate production and transport o f  the siderophore

An important difference between YbtA and PchR is that in Y pestis, mutations m 

siderophore production do not affect expression from the psn  gene prom oter and 

YbtA does not appear to be converted from an activator to a repressor in the absence 

o f  siderophore (Gensburg et a l , 1992, Heinrichs and Poole, 1996, Fetherston et a l , 

1996)

Finally, in the case o f  YbtA and PchR, the regulator is also able to negatively 

autoregulate itself So far, this feature did not appear significantly in the 

investigation o f A lcR This negative regulation would allow the cell to maintain a 

somewhat constant and low level o f  activator in order to retain the capacity to 

control the target genes (Heinrichs et a l , 1996)
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1 4 3  Post transcnptional regulation o f  iron responsive senes

M ost literature regarding bacterial iron acquisition suggests that it is controlled 

m ainly at the transcriptional level by the general well-characterised Fur protein 

Indeed, until recently, it was thought that posttranscriptional regulation was limited 

to a small num ber o f  genes, but this view is changing

It is now clear that posttranscriptional control o f  gene expression, including genes 

involved in iron acquisition in bacteria, is more important than originally thought 

Identification and characterisation o f  new global post transcriptional regulators 

along with a better understanding o f the m echanism s o f sRNAs (small RNAs) have 

led to the identification o f  a high num ber o f  genes subject to post transcriptional 

regulation This has helped to elucidate some gene control mysteries such as the one 

regarding the positive regulation o f  m em bers o f  the Fur regulon by the Fur repressor 

in E coli

1 4  3 1 The Hfq protein

A m ajor regulator involved in posttranscriptional regulation is the Hfq protein The 

Hfq regulator, also called HF-1 (Host Factor I) was first identified in 1968 as a host 

factor required for the replication o f Q-Beta RNA bacteriophage (Franze de 

Fernandez, 1968) This therm ostable protein with a m olecular weight o f 11 2 kD is 

encoded by the hfq gene situated at 94 8  min on the E  coli chrom osomal map 

(Kajitani et a l , 1994, B lattner et a l , 1993) The different Hfq hom ologues identified 

m bacteria show that the protein is strikingly conserved and is an abundant protein 

that is found prim arily in the cytoplasm with the ribosomes at a copy num ber 

between 30,000 and 60,000 It works by binding strongly to single-stranded RNAs 

that are rich in As and Us (M oller et a l , 2002, Zhang et a l , 2002)
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The importance o f  Hfq was highlighted by the disruption o f its gene, which affects 

the expression o f  many genes, activating or repressing the activity o f over 50 

proteins Its m utation causes pronounced pleiotropic effects including decreased 

growth rates and yields, decreased negative supercoiling o f  plasm ids in stationary 

phase, increased cell size, osmosensitivity, oxidation o f  carbon sources, and 

sensitivity to ultraviolet light (Tsui et a l , 1994, M uffler e t a l ,  1997)

Also, it was recently discovered that a hom ologue o f  E  coh  Hfq in P aeruginosa  

can functionally com plem ent Hfq in an £  coh hfq  m utant (Sonnleitner, 2002)

Nearly four decades after its discovery, it is now established that Hfq is an RNA 

binding protein required for the degradation o f  some RNA transcripts and the 

efficient translation o f  others (Kajitani et a l , 1994, Azam et a l , 2000) Hfq targets 

several mRNAs for degradation by binding to poly(A) regions and stimulating 

poly(A) adenylation (H ajnsdorf and Regmer, 2000) It also represses mRNA 

translation by preventing ribosom e binding as observed for ompA  mRNA (Vytvytska 

et a l , 2000) Furthermore, Hfq has been shown to interact with several small- 

untranslated regulatory m olecules also called nboregulators, for instance, OxyS, 

DsrA, Rpra and Spot42, and is required for RNA regulation o f the sigm a S gene by 

OxyS, DsrA and RprA (Zhang et al, 1998, M ajdalam  et a l , 2001, W assarman et a l , 

2001)

1 4  3 2 Indirect regulation by the binding o f  Hfq to sRNA

Exposure to hydrogen peroxide can induce the synthesis o f  the sRNA OxyS, a 

general regulator that activates and represses the expression o f  m ultiple genes and 

acts also as an antim utator that protects cells against DNA damage (A ltuvia et a l , 

1998, Zhang et a l , 1998) OxyS RNA repression o f  flilA  is achieved through two 

base pairm g-interactions (Altuvia et a l , 1998, Argam an et a f  2000) One site 

overlaps the ribosom e-binding site and a second site resides w ithin the coding 

sequence o f  the JhlA  RNA The OxyS K N A-fhlA  mRNA base pairing prevents
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ribosome binding and thus represses translation (Fig 1.10). The mechanism o f  OxyS 

RNA repression is less clear, but has been shown to require the RNA binding protein 

Hfq (Zhang et al., 1998).

Translation Repression

ßtla mRNA
OxyS RNA 5’

Ribosom e
Oxidative Stress

I I I I I I I I I I

RBS

Fig 1.10: T ran sla tio n  rep ression  m odel w ith  sRNAs

DsrA is a sRNA that regulates the translation o f  two global regulatory proteins in E. 

coli. DsrA activates the translation o f  RpoS while repressing the translation o f  H-NS 

in the same way that OxyS regulates the translation o f fh lA . At low temperature, 

DsrA increases the translation o f  RpoS by binding to the com plementary sequence in 

the 5’-untranslated region o f  the rpoS  mRNA (Lease et a l , 1998; M ajdalani et a l ,  

2001; Brescia et a l ,  2003). This binding leads to the formation o f  an alternative 

secondary structure in the rpoS  mRNA that is translationally active (Fig 1.11).

F ig  1.11: T ran sla tio n  ac tivation  m odel w ith  sRN A s
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Small RNAs have also been shown to function in the regulation o f  the iron response. 

In particular, RyhB plays a role in the response o f E. coli to iron stress, where it 

promotes the degradation o f  target transcripts such as sodB  (M assé et a l ,  2002).

mRNA Degradation

o
sodB  mRNA

O
RhyB RNA 5 * 

I T I I I I  M I I I M

Low iron

I Rib o nuclease

Fig 1.12: sodB  m RN A  d eg rad a tio n  m odel fo r R yhB  sRN As

Finally, another possible m echanism  for sRNA action could involve the action o f  

ribonuclease with the sRNA inhibiting its access by binding to and stabilising the 

mRNA (Storz et a l ,  2004) (Fig 1.13).

mRNA Stability

I

sRNA 5 ’
I I I I I I I I I I I I I

Ribonuclease

5 ’
S tress

Fig 1.13: m RN A  stab ility  m odel w ith  sRN A s
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14 3 3 The role o f Hfq in iron uptake regulation

Hfq could be a significantly important protein in the regulation o f  iron uptake 

W ashi et al (1999) have demonstrated that an E  coh hfq cat m utant causes an 

increase in the level o f  expression o f  the outer m em brane proteins FepA and FhuA, 

which are two o f  the proteins involved in the transport o f  iron in E  coh  As a result 

o f  this hfq mutation, iron accum ulates in the cell leading to the appearance o f  

hydroxyl radicals and to an increased sensitivity o f  the cell toward hydroxyl radicals 

This suggests that under iron deplete conditions, Hfq is a negative regulator o f the 

iron transport proteins FepA and FhuA

The way Hfq regulates FepA and FhuA still rem ains to be understood However, 

another outer m em brane protein OmpA is also negatively regulated by Hfq As 

explained before, the regulator binds to ompA  mRNA and regulates its stability by 

com peting with the ribosom e and allowing the cleavage o f  the mRNA by RNase E 

A similar mechanism could occur for the regulation o f  the stability o f  the two iron 

transport outer m em brane proteins It is likely that Hfq regulates these two outer 

m em brane proteins at the post-transcriptional level, in fact, only these two outer 

membrane iron transport receptors are Hfq regulated while they all are Fur 

regulated, suggesting that Hfq functions independently o f Fur, post transcriptionally

The literature shows that a num ber o f genes are up regulated by Fur The first 

example o f  this unexpected regulation was the positive Fur control o f  iron regulated 

superoxide dism utase encoded by sodB  Superoxide dism utase functions to lessen 

the load o f hydroxyl radicals in the cell, which are a source o f  oxidative damage Fur 

mediated positive regulation was subsequently discovered for other proteins, such as 

the ferritins Bfr and Ftn, aconitase AcnA, and fumarase FumC No Fur box was 

located in the prom oter regions o f  these genes

A recent study o f the sodB  prom oter showed clearly that the m RNA is post- 

transcriptionally regulated (Dubrac et a l , 2000) In a fu r  mutant, sodB  m RNA half-
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life is about five mm, while in the wild type it is fourteen min Results o f promoter- 

deletion analysis indicate that a palindrom e and an A U -nch RNA region in the 

untranslated part o f  the sodB  m RNA are im portant for Fur-dependent stabilization 

The m ystery o f  this regulation remained until sRNA was discovered

indeed, with the identification and characterisation o f  the sRNA RyhB M asse et al

(2002) were able to demonstrate that under iron deplete conditions, Hfq together 

with RyhB, a Fur regulated small RNA, down regulate the level o f some proteins, 

with some o f  them  related to iron acquisition and m etabolism  So far, six genes 

targeted by RyhB have been identified Two o f  them  clearly encode the iron-storage 

proteins, ferritin and bactenoferntin , thus releasing the iron bound to these proteins 

into the cytoplasm These proteins have the purpose o f  preventing iron-dependent 

damage by rem oving free iron from the cytoplasm  and are also used as a source o f  

iron under iron deplete conditions This stored iron can also help to repair damaged 

iron - containing proteins and repress oxidative damage As well, three enzymes 

from the TCA cycle are down regulated by RyhB succinate dehydrogenase encoded 

by the sdh operon, aconitase encoded by acnA, and fumarase encoded by^wm^

M asse et a l (2003) also established that RyhB causes the rapid degradation o f  its 

mRNA targets in a m anner dependent on RN ase E In addition, RyhB itself is 

unstable under conditions o f  normal transcription when its transcripts are being 

m ade and rapidly degraded in an RNase E dependent m anner M asse5s initial model 

was that stress signals cause induction o f  RyhB Then, Hfq binds to the sRNA 

efficiently defending it from degradation by ribonuclease and presenting it to its 

targets, Moll et a l (2003) observed that RyhB sRNA has a h a lf  life >30 min in E  

coh  wild type while its stability is drastically dropped in a hfq  m utant strain to 

fifteen m inutes Hfq also binds to the target mRNAs like sodB  mRNA (Geissm ann et 

a l , 2004) It is not clear i f  Hfq leaves the sRNA-mRNA com plex but either way, the 

complex is then rapidly degraded It could be that the binding o f Hfq to the RNA 

blocks access to RnaseE since the RNase E and Hfq recognition sites are m atching 

Hfq binding to RNA occurs particularly at AU-rich single stranded regions as does
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RNase E. The finding that RyhB is rapidly consumed during use provides a 

mechanism for the rapid recovery from iron starvation, and provides a clear 

demonstration o f  the use o f  a small RNA as a reversible regulatory switch.

Geissmann et al. (2004) have described the m echanism  o f  interaction between RyhB 

and Hfq as shown in Fig 1.14.
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Fig 1.14: M odel o f sodB m R N A -H fq-R yhB  in te rac tion .
Hfq binds with high affinity to sodB mRNA, via an A/U-rich sequence preceding stem- loop b. This 
binding causes the mRNA to adopt a structure in which stem-loop b, which follows the Hfq-binding 
site, is opened out to give a large loop containing the translation start codon, which lies within the 
sequence complementary to RyhB. The stem o f stem-loop b starts with the ribosome-binding site. In 
conditions o f  iron deficiency (Fur inactivated), RyhB is produced and is stabilised by binding to Hfq. 
RyhB interacts with sodB mRNA by base pairing in the region containing the complementary 
sequence. This base pairing both modifies the structure o f  the RNA molecule and blocks translation. 
Changes in the structure o f  stem-loop b may lead to the release o f  Hfq. The block o f  translation and 
the structural change render the RNA molecule susceptible to RNase cleavages. Numbering starts at 
the transcription start site. The translation start site o f  sodB is indicated by an arrow. Hfq-binding 
sites are shown in red, and sequences complementary between sodB and RyhB are shown in green. 
Regions affected by Hfq binding are shown in bold (Geissmann et al., 2004).
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Finally, the fu r  m RNA itself was identified as a target for negative 

posttranscnptional regulation by Hfq (Vecerek et a l , 2003) The synthesis o f the 

transcriptional regulator Fur is inversely correlated with the synthesis o f Hfq This 

new level o f  iron acquisition control could explain how E  coh  doubles its iron 

content during the transition from exponential to stationary phase (Abdul-Tehran 1 et 

a l , 1999) The Hfq-mediated inhibition o f  Fur synthesis and the reduced half-life in 

an hfq+ background could suggest a mechanism o f  Hfq action for fu r  mRNA 

identical to the one for ompA  mRNA with Hfq binding to the mRNA in a way that 

the degradation with RNase E is facilitated

1 4  3 4 Other examples o f  iron responsive p o s t transcriptional

regulation

Similar m echanism s exist at the posttranscnptional level o f  regulation between the 

eukaryotes and prokaryotes regarding the regulation o f  iron uptake, one o f  which 

involves aconitase In eukaryotes, two isozymes o f  aconitase are available In its 

[4Fe-4S] cluster form, cytosolic aconitase has the same activity as the mitochondrial 

enzyme but in its apoform, the protein called IRP (iron regulatory protein) binds 

specific mRNAs, either to stabilize the m RNA or to block its translation (Beinert et 

a l , 1996) In fact, under iron deplete conditions, the enzyme looses its [4Fe-4S] 

cluster, thus loosing its activity and so is now  able to bind to m RNA (Cairo et a l , 

2002, Eisenstein et a l , 2000)

In prokaryotes, the apoforms o f  aconitases from E coh  and B subtihs  were found to 

be involved in translational regulation (Alen et a l , 1999, Tang et a l , 1999) E  coh  

contains two m ajor isozymes o f  aconitase, aconitase A and aconitase B (Jordan et 

a l , 1999) Aconitase B is the m ajor aconitase o f  the TCA cycle whereas aconitase A 

is a stress-induced enzyme (Varghese et a l , 2003) The apoform s o f  both o f the E  

coh  enzymes and the B subtihs  enzyme have been shown to specifically bind their 

related m RNAs, apparently in order to enhance translation (Alen et a l , 1999, Tang 

et a l , 1999) Some results indicate that E  coh  aconitases m ay regulate sodA , which
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encodes a superoxide dismutase, at the post-transcriptional level (Tang et a l , 2002) 

Also, strains lacking both aconitases are hypersensitive to redox-stress agents such 

as hydrogen peroxide raising the question o f  whether these enzymes may control 

expression o f  additional target genes Analysis o f the activities o f aconitase A and B 

under conditions o f  oxidative stress and iron depletion suggests that aconitase B is 

demetallated in a non-oxidative manner, indicating that its cluster occupancy is 

related to the iron status o f  the cell (Varguese et a l , 2003) If this is the case, then 

the proportion o f aconitase B able to bind RNA (apo-aconitase) may be directly 

related to the cellular iron status In addition, results suggest that posttranscriptional 

regulation by the level o f  iron also occurs in other bacteria such as Xanthom onas 

campestris (W ilson et a l , 1998) and in P aeruginosa  (Somerville et a l , 1999)

Another example o f  posttranscriptional regulation is in Vibrio aguillarum , in which 

RNAoc was the first antisense RNA reported to be involved in iron regulation 

(Salinas et a l , 1992) In V anguiUarum , regulation is governed by both negative and 

positive factors (Tolm asky et a l , 1995) The negative regulators are Fur and RNA oc 

(Tolmasky et a l , 1994, W aldbeser et a l , 1993, 1995)

RNAoc is a 650 bp RNA encoded in the fa tB  coding region in the com plementary 

strand and which is preferentially expressed under iron replete conditions RNAoc 

transcription is Fur regulated, while iron plays a role in increasing the RN A a 

stability (Chen et a l , 1996) In addition, the iron transport o f  the siderophore 

anguibactin is encoded by the fa tA , fa tB , fa tC , and fa tD  genes FatA is the receptor 

for ferric anguibactin complexes (Actis et a l , 1995), FatB is a m em brane-located 

lipoprotein that shares domain hom ology with periplasm ic binding proteins (Actis et 

a l , 1995) and FatC and FatD are cytoplasmic integral m em brane proteins (Koster et 

a l ,  1991) The presence o f RNAoc results in a reduction o f FatA and FatB 

expression, probably by interaction between the polycistronic f a t  D C  BA  mRNA and 

RNAoc (W aldbeser et a l ,  1993, W aldbeser et a l ,  1995) This change appears to 

enhance processing upstream o f  the fa tA  coding region, resulting in a concom itant 

inhibition o f  FatA synthesis and a degradation o f  the fa tB  region in this m RNA 

(W aldbeser et a l , 1993, W aldbeser et a l , 1995)
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Finally, the last example o f post transcriptional regulation in iron acquisition can be 

found in Bradyrhizobium japom cum  in the Fur-1 ike transcriptional regulator Irr 

which under iron replete conditions is inactivated due to

binding to ferrochelatase (Ham za et a l , 2000, Qi et a l , 1999, Qi et a l , 2002) This 

will be discussed in m ore detail in the section 5 6  2
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1.5. Rhizobia iron uptake and the legume symbiosis
1.5.1 Introduction

Rhizobia belong to the alpha-proteobacteria group. Many o f  the genera in the group 

have little in common apart from their ability to induce N 2-fixing nodules. Examples 

are shown in Table I. The rhizobia can interact with plants inducing nodules 

wherein the bacteria convert atm ospheric nitrogen into ammonia. This then becomes 

a source o f  nitrogen for the plant.

The symbiosis between plants and rhizobia is largely limited to legumes. The 

species name o f  the m icrosym bionts indicates in most cases the corresponding host 

plant nodulated. Symbiosis is a species-specific process but the degree o f  host 

specificity is quite different among rhizobia (Young et al., 1989).

The acquisition o f  iron by these genera is very important, as iron is an important 

constituent o f  the nitrogenase complex, that catalyses nitrogen fixation. Also 

bacteroids (nitrogen endosymbionts) have an important requirem ent for iron due 

their respiratory mechanism employing abundant cytochromes and other electron 

donors, each with their own iron centers (Delgado et a l., 1998)

T ab le  1.1: E xam ple  o f species an d  b iovars o f rh izob ia

R hizobial s tra in /species H ost legum es

Sinorhizobium meliloti Alfalfa

Rhizobium leguminosarum  bv. viciae 

Rhizobium leguminosarum  bv. phaseoli

Peas, lentils, vetches 

Beans

Bradyrhizobium japonicum Soybeans

Rhizobium japonicum Soybeans
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15  2 Infection and nodulation o f plants by rhizobia

The infection o f legumes by rhizobia is a complex process diagramm atically 

represented in Fig 1 15 The symbiosis is initiated when flavonoids and other plant 

compounds induce the bacteria to produce a m olecular signal, the Nod factor, which 

stimulates cell divisions in the root, resulting in nodule organogenesis

When the Rhizobium  has received the signal, it attaches itse lf to the root o f  the 

legume usually at young growing root hairs Once on the root surface, the bacterium 

generates damage leading to root hair branching, deform ing and curling The young 

root hairs can be curled sufficiently to entrap bacterial cells in a pocket o f host cell 

wall

Initiation o f  infection then involves structural alterations o f  the root hair cell wall 

The mechanism o f  hydrolysis o f  the cel! wall rem ains unclear, it could either involve 

an enzymatic reaction o f  the bacterium or the use o f  plant m echanism s such as those 

used when epidermal cells grow out into root hairs

Once the plant wall is hydrolysed, the Rhizobium  enters the plant by invagination 

o f  the root cell wall to form an incipient tubule which extends by tip growth This 

tubule, the infection thread, grows down the inside o f the root hair and into the body 

o f  the root hair cell (epidermal cell) Rhizobia inside the infection thread replicate 

keeping the tubule filled with bacteria I f  the infection thread exits the epidermal 

cell, it does so by fusing with the distal cell wall, resulting in the release o f bacteria 

into the intercellular space between the epidermal cell and the underlying cell layer 

Invagination and tip growth, sim ilar to that seen at the beginning o f  infection thread 

growth, occurs at the underlying cell wall and a bacteria-filled thread propagates 

further towards the inner root cortex (Van Spronsen et a l , 1994) The inward- 

growing infection thread network and the outward-growing nodule eventually meet 

Branching o f  the thread occurs and it then enters the nodule prim ordium  ensuring
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that a sufficient num ber o f  nodule cells are colonized Bacteria eventually exit the 

infection thread network, thereby entering the cytoplasm  o f  nodule cells They then 

differentiate into bacteroids and fix atm ospheric nitrogen (Gage et a l , 2000, Oke et 

a l ,  1999)

In various rhizobial species, common and host specific nod  genes  have been 

identified determining infection and nodulation o f  specific hosts (reviewed by Fisher 

et a l , 1992) With the exception o f  nodD , which is constitutively expressed, none o f  

the nod  genes are expressed in free-living cultured cells Expression is induced upon 

exposure to plant exudates (M ulligan et a l , 1985) and this induction is dependent on 

NodD M any o f  the inducing molecules that have been purified from plant exudates 

have been identified as flavonoids, three ringed aromatic compounds In alfalfa, the 

m ost active inducers are flavones such as luteolin The proteins NodA, NodB and 

NodC are required for both root hair curling and cell division, while NodFE, NodH 

and NodLM N , which are involved in host selection affect the location and tightness 

o f  root hair curling and the efficiency and persistence o f  cell division (reviewed by 

Long et a l , 1989) The basic structure o f N od factors seems to be a (3-1,4- linked 

oligom er o f N-acetylglucosam ine with an N-acyl n-substitution on the non-reducing 

end (Fisher et a l , 1992) Individual rhizobial strains m ay m ake a family o f factors 

that vary slightly m length and/or substitution Substitutions usually differ when 

factors from different species are compared, which m ay account for host range 

distinctions between species and biovars o f rhizobia

After the initiation o f  infection, bacteria m ust com plete the penetration and 

subsequent release into the host cells This process requires the presence o f specific 

bacterial surface components and plant components that include amongst them 

neutral glucans, lipopolysaccharides and charged heteropolysaccharide Possible 

roles for the extracellular polysaccharides include signaling, osmotic regulation, 

recognition and defense, which function to present and/ or disguise the bacterium 

during invasion W ithin plant cells, the bacteria differentiate to form bacteroids,
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which are essentially subcellular organelles w ithin which conditions are optimized 

for the expression, protection and function o f  the m trogenase enzyme

In Rhizobium , the genes for nitrogen fixation are generally divided into two groups 

the n i f  genes refer to those with homologues in free-living nitrogen fixing organisms 

such as Klebsiella , while f ix  genes refer to those required for symbiotic nitrogen 

fixation, but whose function is not known to be analogous to any free living system 

The symbiotic activation o f  the m f  genes is dependent on NifA (Szeto et a l , 1987) 

Redox-dependent control o f  mfA  expression occurs in response to fix L  and f ix J  

which encode a two-com ponent regulatory system that is oxygen responsive 

(M errick et a l , 1992)
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1.6. The importance of iron in rhizobia

In the Rhizobium -legum e associations, there is a m assive demand for iron, the 

nodule being a veritable magnet for the metal The single most abundant protein that 

the plant host makes in the nodule is leghaemoglobin, an iron protein This is 

required to buffer oxygen and protect the oxygen labile nitrogenase complex In the 

bacteria, nitrogenase and nitrogenase reductase contain FeS clusters and the former 

has the cofactor FeM oCo at the active site for N 2  reduction (Johnston et a l , 2001)

1 6 1  The requirement for iron during nodule formation

The availability o f  iron in the soil depends upon pH  and oxygen content Its 

availability can affect the initiation o f  symbiosis To start nodulation, the bacterium 

must first come into contact with the root o f the appropriate legum inous host 

Therefore, one limiting factor for the start o f  nodulation is the abundance o f the 

bacterium  in the rhizosphere A bacterium , which can compete effectively for the 

limited iron available, will have a competitive advantage and consequently will 

predominate over those that are less com petitive Siderophore iron uptake may 

confer a selective advantage in soils with a low amount o f  bioavailable iron The 

ability to use xenosiderophores (those produced by other organisms) is also an 

advantage Rhizobia have usually developed specific siderophore iron uptake 

systems which function in the free-living state and which allow efficient 

colonisation o f  the rhizosphere

Iron depletion was found to decrease nodule num ber and nodule m ass in a num ber o f 

legumes Peanuts, which are grown under iron deplete conditions in calcareous soils 

fail to nodulate until given foliar iron application Plants treated with exogenous iron 

produce a greater num ber o f  excisable nodules and carry greater nodule mass 

compared to untreated plants The m echanism  by which iron affects nodule num ber 

and mass is unknown, however, it was suggested that the iron deficiency exerts a
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greater effect on the rhizobia which were consequently unable to acquire adequate 

amounts o f  iron from the plant (O ’Hara et a l , 1988)

1 6 2  The role o f  iron in nodule function

Bacteroids are enclosed in a membrane that is derived from the plant plasm a 

membrane term ed the peribacteroid m em brane M ore than one bacteroid m ay be 

enclosed by a single membrane generating a peribacteroid unit or symbiosome

Nodules differ in m orphology and vascularisation depending on the plant host and 

they can therefore be grouped into two distinct groups determinate and 

indeterminate nodules

A determinate nodule is ephemeral and lasts days or a few weeks It has a short, 

predestined life-span Consequently, new nodules are being formed as the root 

grows m the soil and others are being lost on older parts o f the root system Soybean 

nodules are o f this type The nodule is a spherical elaboration o f  the ground tissue 

system in the root cortex and has a specialised anatom y

The second nodule type is illustrated by several legumes including alfalfa, clover 

and pea which form indeterm inate nodules These are called indeterminate in that 

m eristematic activity is theoretically unlimited This type o f  nodule is more 

elongated compared to the determinate type and is tum escent In this case, the 

nodule has an apical meristem which functions for many months, continuously 

producing new cells, which become infected with bacteria from older cells These 

nodules have a much m ore extensive vascular system which surrounds the nitrogen- 

fixing parenchym a that occupy the center o f  the nodule
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1 6 2 1  Nitrogenase

The enzyme nitrogenase catalyses the conversion o f nitrogen gas to amm onia in 

nitrogen-fixing organisms This enzyme consists o f  two m etalloproteins and is 

highly conserved in sequence and structure among nitrogen-fixing bacteria In 

legumes it only occurs w ithin the bacteroids The reaction requires hydrogen as well 

as energy from ATP The nitrogenase complex is sensitive to oxygen, becoming 

inactivated when exposed to it This is not a problem  with free-living, anaerobic 

nitrogen-fixing bacteria such as some Clostridium  species Free-living aerobic 

bacteria have a variety o f  different m echanism s for protecting the nitrogenase 

complex, including high rates o f  m etabolism  and physical barriers Azotobacter 

overcom es the oxygen problem by having the highest rate o f  respiration o f  any 

organism, thus m aintaining a low level o f  oxygen in its cells

1 6  2 2 Leghaemoglobin and  haem biosynthesis

In the Rhizobium -legume symbiosis, oxygen levels in the nodule are controlled with 

leghaemoglobin This iron-containing protein has a sim ilar function to that o f 

haemoglobin 1 e it binds to oxygen It provides sufficient oxygen for the metabolic 

functions o f  the bacteroids but prevents the accum ulation o f  free oxygen that would 

destroy the activity o f  nitrogenase Leghaem oglobin seemed to be a truly symbiotic 

protein with the apoleghaem oglobin synthesised by the plant and the haem  moiety 

synthesised by the bacterium

However, a B japom cum  haem m utant defective in 5-aminoIevulinic acid (ALA) 

synthase enzyme that is involved in the first step o f  bacterial haem synthesis was 

found to form fully effective nodules on soybeans (Guerm ot et a l , 1986) This result 

was in contrast to previous results for a S  m ehloti hemA  mutant, which was shown 

to form nodules that were incapable o f  nitrogen fixation on alfalfa (Leong et a l ,

1982)
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O ’Brian (1996) tried to find an explanation for these conflicting results It is now 

known that the plant produces the haem for leghaemoglobin On the other hand, 

rhizobia synthesise haem that is used for example in the cytochromes o f  the 

bacteroids The difference in phenotypes is simply that, in B japom cum , the host 

supplies the bacteria with the necessary ALA to allow them to grow, whereas with S  

mehloti, ALA is either not made accessible to S  m ehloti or it is not taken up 

(M cGinnis et a l , 1995) Therefore, S  mehloti is starved and cannot survive because 

o f  their failure to make any haem for its own respiration

1 6 2  3 Ferritin

As said before, ferritin, an iron storage protein, is present in eukaryotes and 

prokaryotes Ko et al (1987) showed an inverse correlation between the age o f  the 

nodule and the amount o f  ferritin present Phytoferritin has also been found to 

disappear with the appearance o f  leghaemoglobin

1 6 3 Iron  uptake in  the nodule

The demand for iron is high in the nodule However, the way bacteroids get their 

supply o f iron while in the nodule is still not clear

The role o f  siderophores in iron uptake in the nodule was studied using well- 

characterised strains and m utants o f  S  m ehloti and R leguminosarum  bv viciae

In each case, it was concluded that the siderophore was not contributing to the iron 

supply in the bacteroid (Lynch et a l , 2001)

This implies that novel m echanism s exist to supply iron in the nodule In 1996, 

W ittenberg et a l reported that most iron in the nodule was between the bacteroids 

and the peri bacteroid m em brane bound to m olecules appearing to be o f  bacterial 

origin It could be that this siderophore-like protein is only expressed in the
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bacteroid (Fisher et a l , 1994) Recent studies using macroarrays have identified 

nine new genes induced in m ature nitrogen-fixing bacteroids (Ampe et a l , 2003)

Alternatively, the bacteroid could acquire iron by taking up ferrous iron, which 

would not necessitate a siderophore Indeed, the environm ent around the bacteroids, 

which in oxygen deplete conditions due to leghaemoglobin would be expected to 

contain ferrous iron, and the peribacteroid membrane which possesses a fem -chelate 

reductase could provide ferrous iron (LeVier et a l , 1996)
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1 6 4 Siderophore mediated iron transport in rhizobia

As discussed before, m ost iron is acquired by the bacteria through the use o f 

siderophores The developm ent o f  the CAS assay by Schwyn et al (1987) has 

greatly helped in the identification o f  bacterial siderophore production One 

interesting discovery was that B japom cum  does not produce any siderophore that 

can be detected by the assay (Guerinot et a l , 1990) in comparison, Rhizobium  and 

Sinorhizobium  species produce siderophores o f  which vicibactm  and rhizobactin 

1 0 2 1  are the m ost extensively chracterised

1 6  4 1  The R leguminosarum siderophore vicibactm

R leguminosarum  biovar viciae produces a novel hydroxam ate siderophore termed 

vicibactm (Dilworth et a l , 1998) Vicibactm is transported in R leguminosarum  by 

a system similar to the Fhu system in E  coh  Eight genes, vbsG SO , vbsADL, vbsC  

and vbsP  were identified as genes involved in the biosynthesis o f  vicibactm  (Carter 

et a l , 2002) Upstream o f those genes is fltuA , which encodes the outer membrane 

receptor used by this siderophore (Stevens et a l , 1999)

1 6 4 2 S  m eliloti siderophores Rhizobactin and  Rhizobactin 1021

Two different siderophores have been identified and characterized in S  meliloti One 

is produced by S  meliloti 1021, which was nam ed rhizobactin 1021 (Persm ark et al 

1993) while rhizobactin is produced by S  meliloti DM4 (Smith et a l , 1985)

Rhizobactin 1021 is chem ically sim ilar to aerobactin and schizokinen (Fig 1 16) 

Schinokinen, a siderophore produced by B m egatenum  is identical in its core 

structure to rhizobactin 1 0 2 1 , which differs only by the presence o f  an unusual fatty 

acid attachm ent, a (E)-2-decanoic acid residue (Persm ark et al 1993) A erobactin is 

produced by Aerom onas sp and various strains o f pathogenic E  coh  and Shigella  

sp Aerobactin, which is structurally sim ilar to rhizobactin 1021, is a known
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virulence factor and has been found to be an important virulence determinant even in 

strains that produce other siderophores (Der Vartanian, 1988).

Fig 1.16: C hem ical s tru c tu re  o f sideropho res

Reigh et a l  (1993) identified a mutant defective in the synthesis and uptake o f  

rhizobactin 1021. Later, the rhizobactin operon was characterised by Lynch et al. 

(2001). They identified eight genes involved in the regulation, biosynthesis, and 

transport o f  rhizobactin 1021. Six o f  these genes, named rhbABCD EF , function in 

the biosynthesis o f  the siderophore and were shown to constitute an operon that is 

repressed under iron-replete conditions. rhtA  encodes the outer mem brane receptor 

protein for the siderophore. Finally, rhrA encodes an AraC-like transcriptional 

regulator that up regulates genes involved in the biosynthesis and the transport o f  the 

siderophore under iron deplete conditions. The cluster o f genes is located on the 

pSym a megaplasmid o f  S. m eliloti 2011.
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1 6  5 Iron Regulation in Rhizobia

1 6 5 1  Fur studies in rhizobia

The Fur protein has been studied in two m em bers o f  the rhizobia The 

Bradyrhizobium japom cum  fu r  gene was identified based on functional 

complementation o f  an E  coh  m utant (Hamza et a l , 1999) This transcriptional 

regulator was also characterized in R legum mosarum  (W exler et a l , 2003)

The results presented by W exler et al (2003) and Ham za et a l (1999) for 

respectively R legum m osarum  and B japom cum  suggest that in contrast to the other 

genera the regulation o f  many iron-responsive genes m the rhizobia is not mediated 

by Fur This indicates that Fur is not in those cases a general regulator but more a 

specific one for a few iron regulated genes

1 6 5 2 The fur gene o f  R legummosarum

The fu r  gene o f  R legum mosarum  was identified by De luca et al in 1998 as a 

single copy gene present on the chrom osome It was first suggested that a mutation 

o f  the gene was lethal to R legum mosarum  (De luca et a l , 1998) as previously seen 

in other bacteria However, W exler et a l (2003) finally obtained a fu r  m utant by 

allelic exchange The R legum m osarum  fu r  m utant was found through mobility shift 

assays, to be unaffected for the control o f  iron responsive genes On the other hand, 

purified R legum mosarum  Fur was able to bind to a canonical ‘Fur box 5 and could 

partially com plem ent an E  coh fu r  mutant

Also, in the R legummosarum  genome, there are no ‘Fur boxes’ found 5’ o f  putative 

prom oter sequences in the expected regions

However, recently, Diaz-M ireles et a l (2004) showed that mutation o f  the f u r  gene, 

in the presence o f  Mn2+, causes high-level expression o f the sitABCD  operon, which
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is responsible o f the transport o f Mn Indeed, m obility shift assays showed that the 

purified R legum m osarum  Fur protein could bind to at least two regions near the 

sitABCD  prom oter region even if  this DMA has no conventional consensus Fur- 

binding sequences (Fur boxes) These results suggest that Fur is in fact a Mur 

(manganese uptake regulator), which acts as a M n2+ responsive transcriptional 

regulator even if its gene product resem bles Fur

1 6 5  3 The fur gene o f  B japonicum

The fu r  gene was also identified in a single copy on the chrom osom e o f  B 

japonicum  by Ham za et al (1999) In this organism, Fur controls the expression o f  

irr which is a transcriptional regulator controlling the biosynthesis o f  haem (Hamza 

et a l , 2000) Also, B japonicum  Fur was able to com plem ent an E coh fu r  mutant 

and its hom ology to E  coh fu r  indicates that the cloned B japonicum  DNA encodes 

a structural and functional hom ologue o f Fur Therefore, this complementation also 

suggests that the B japonicum  Fur can down regulate genes in vivo Further 

experiments were carried out to confirm this E  coh  extract containing 

overexpressed B japonicum  Fur were used to show that the protein can bind to a 

canonical ‘Fur box’ in the presence o f  M n2+, a metal mim icking ferrous iron 

(Hamza et a l , 1999, 2000, Friedman et a l , 2003)

In addition, Friedman et a l (2003) showed that B japonicum  Fur for the first time 

binds to a sequence disparate from the Fur box consensus It binds a DNA sequence 

in the prom oter o f  irr that differs from the Fur box and to which E coh  Fur cannot 

bind (Hamza et a l , 1998) B japonicum  Fur can m aximally protect a 30-bp region in 

DNase I footprinting analysis including three imperfect direct repeat hexamers 

Alignm ent o f the Fur box consensus to the 30-bp protected region o f  the irr 

prom oter does not give a better match than 7 o f  19 residues and, this low m atch is 

predicted to occur with very high frequency (9 x 105  sites/strand for a genome o f  9 x 

106 bp), and so cannot be the basis o f  a binding site for Fur

2 j
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Friedman et al (2003) showed that the affinity o f  B japom cum  Fur for its target 

DNA increases in the presence o f  the metal DNase I footprinting demonstrated that 

the binding by B japom cum  Fur to its binding site w ithin the irr promoter is ferrous 

iron- dependent

1 6  6 RirA studies in the rhizobia

In most cases, in bacteria, the biosynthesis genes o f  siderophores are iron responsive 

genes, the chelator being only produced under iron deplete conditions R 

leguminosarum  is no exception (W orsley et a l , 2000) However, if  siderophore 

expression is usually repressed in gram negative bacteria by the ferric uptake 

regulator Fur, this is not the case in R leguminosarum

In R leguminosarum, a new  transcriptional regulator called RirA (Rhizobial Iron 

Regulator) was identified (Todd et a l , 2002) It seems to be a gene involved in iron 

regulation as a knock out mutation up regulates a num ber o f  genes involved in iron 

metabolism

Therefore, in R legum inosarum , it has been shown that Fur plays a less important 

role than m m ost other gram -negative organisms M oreover, Todd et a l work (2 0 0 2 ) 

have shown that in R leguminosarum, the n r  A  m utation affects the expression o f all 

prom oters that are found to have an increased level o f  transcription under low iron 

conditions Indeed, the gene mutation results in the high-level constitutive 

expression o f at least eight operons whose transcription is normally iron-responsive 

and whose products are involved in the synthesis and uptake o f  vicibactm  or in the 

uptake o f  haem and other iron sources n r  A  transcription is increased two fold under 

iron replete conditions Also, the R leguminosarum  RirA N-term mal region shows 

significant m atches with other transcriptional regulators suggesting that this is the 

DNA-binding domain o f  the protein (Todd et a l , 2002)
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1 6 7  Specific transcriptional regulators in the rhizobia

1 6  71  R pol in R  legum inosarum

In R legum inosarum , studies revealed that the transcription o f  genes encoding the 

siderophore have an absolute requirem ent for a gene denoted rpo l, located upstream 

from the vicibactin biosynthesis genes (Yeoman et a l , 1999) From sequence 

analysis, Rpol appears to be a m em ber o f the ECF (extra cytoplasmic factors) sigma 

factors o f  RNA polym erase but its mechanism o f  action still has to be determined 

rpo l itself is up regulated under iron deplete conditions (Yeoman et a l , 1999) and by 

a mechanism involving RirA (Todd et a l , 2003)

The R leguminosarum vbs operons involved in vicibactin biosynthesis are regulated 

by at least three different systems o f gene control, distinguishable by their response 

to the availability o f  iron in the medium and the need for a functional Rpol factor 

W ith the exception o f  vbsP , the vbs genes are transcribed at higher levels under iron 

deplete conditions Rpol is necessary for the expression o f vbsGSO  and vbsADL  

(Yeoman et a l , 1999) and binds the prom oter regions o f  the vbsGSO  and vbsADL  

operons (Yeoman et a l , 2003) In contrast, expression o f vbsC  is iron regulated, but 

the adjacent rp o l is not involved in its transcription

1 6 7 2 Irr in B  japom cum

Regulation o f  iron hom eostasis in bacteria has focused on Fur However, Irr (iron 

response regulator) from the bacterium  B  japom cum  mediates iron control o f  haem 

biosynthesis Irr was identified in 1998 (Hamza et a l , 1998) Irr from B  japom cum  

is a Fur like protein but still quite different from Fur For instance, its gene 

expression is iron regulated while fu r  is essentially constitutive Iron represses the 

irr gene m oderately at the transcriptional level and strongly at the level o f  protein 

turnover (Ham za et a l , 1998, Qi et a l , 1999) The latter mechanism involves lron-
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dependent binding o f  haem to a haem regulatory m otif o f  the Irr protein, which is 

necessary for its degradation (Qi et a l , 1999) As a result, irr mRNA is reduced but 

is detectable under high iron conditions, while protein levels are undetectable 

Ham za et a l (2000) showed that irr is Fur regulated, m obility shift assays showing 

that Fur binds to its prom oter region However, irr  can respond to iron in a fu r  

m utant strain B japom cum  must have a m echanism  for sensing and responding to 

the cellular iron level in addition to Fur Haem  mediates iron-dependent degradation 

o f Irr (Qi et a l , 1999) and so haem may be the form o f  iron to which Irr responds

Ham za (1998) isolated an irr m utant, which under iron deplete conditions 

accumulated protoporphyrin, a precursor o f  haem biosynthesis and which showed 

high expression o f  hem B encoding  a haem synthesis enzyme The hem A  gene is also 

controlled by iron (Page et a l , 1994), but is regulated by Fur (Hamza et a l , 2000) 

B japom cum  is the only organism described so far containing a Fur-1 ike protein in 

addition to a traditional Fur involved m iron m etabolism  (Hamza et a l , 1999)

1 6 7 3  A dditional uncharacterised iron regulators in Rhizobia

Analysis o f  R leguminosarum  and B japom cum  suggest the presence o f further 

unidentified iron regulators

A laboratory strain o f  R leguminosarum  was found to have acquired a mutation  that 

affected iron responsive gene regulation (De luca et a l , 1998) Although the 

phenotype associated with this strain was sim ilar to the one described for a rirA 

mutant, the mutation was not located in this gene (Todd et a l , 2 0 0 2 )

A palindromic repeat sequence was identified between the hmuR  and hm uT  genes o f  

B japom cum  that function in haem utilisation M utagenesis o f  the repeat sequence 

led to a drastic reduction in hm uT  and hmuR  gene expression The reduction in 

expression was shown to be unrelated to the activity o f  the Irr or Fur protein, 

suggesting regulation by an as yet unidentified regulator (Nienaber et a l , 2001)
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1.7. Summary

This thesis is dedicated to the study o f  iron regulation in S  mehloti 2 0 1 1  using the 

siderophore mediated iron uptake system as the mam focus

In m ost gram -negative bacteria, the general iron regulation is mediated through the 

ferric uptake regulator Fur, however, a new kind o f  iron regulator was identified in 

another m em ber o f  rhizobia R legum inosarum  and denoted the rhizobial iron 

regulator RirA (Todd et a l , 2002) The hom ologues o f  these two proteins were 

identified and characterised in S  m ehloti and the results o f  these studies are 

described respectively in chapter 3 and 4

In addition, specific regulation o f  iron uptake can occur Previous work (Lynch et 

a l , 2 0 0 1 ) has shown that the rhizobactin 1 0 2 1  uptake system is also regulated by the 

AraC-like transcriptional regulator RhrA Furthermore, post transcriptional 

regulation o f  the outer m em brane receptor encoded by rhtA apparently takes place 

(O ’ Connell, personal com m unication) An analysis o f  the regulation by RhrA and o f  

its binding was performed and is described in chapter 4

Finally, S  mehloti is an agriculturally important soil bacteria forming a nitrogen- 

fixing symbioses with alfalfa, which is known to be subject to luteolm regulation via 

the N odD genes Recently, it has been shown that flavonoids can affect the 

expression o f  genes which are not the nod  genes and in the absence o f  ‘Nod box’ m 

their prom oter regions (Perret et a l , 1999, Chen et a l 2000) Thus, the luteolin 

regulation o f  the genes involved in the siderophore regulon was assessed and this 

w ork is described in chapter 5
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Chapter 2: 

Materials and Methods
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2.1 Bacterial strains and plasmids

The bacterial strains, primer sequences and plasm ids used in this study are described 

in tables 2.1, 2.2 and 2.3 respectively.

T ab le  2.1: B ac teria l s tra in s

S tra in Phenotype/G enotype Sou rce/R eference

S inorhizobium  m elilo ti 

2011

201 \rhbA62  

201 \rhbG 25

2 0 1 1 StrR

201 \rhrA26  

201 \rhtA45  

201 \rhbA62  

201 \rirA2  

E scherichia coli 

D H 5a

JM 109

XL 1-blue

Wild type, Nod+ Fix+

Tn5 lac insertion in rhbA 

G212 lacZ  mutant with Tn51 acZ  

insertion in rhbG

Spontaneous high level streptomycin

resistant derivative

Tn5lac insertion in rhrA

Tn5 lac insertion in rhtA

Tn5lac insertion in rhbA

Kanamycin insertion in rirA

M eade et al., 1982 

Lynch et a l., 2001 

Lynch et a l., 2001

6  Cuiv, PhD Thesis

(2003)

Lynch et a l., 2001 

Lynch et a l., 2001 

Lynch et a l., 2001 

This study

Bethesda ResearchF', re c A l, hsdR M  (rKi2 -mKi2 +), 

su p E U , <|> SOlac ZAM15, M lacZYA- 

argF) U169

recA l endA l gyrA96 thi-1 hsdR l 7 Stratagene 

(ric-mK+X supE44, re lA l .(lac 

proA B +) [F ' traD36 proAB  l a c f Z  

AM /5].

recA 7, hsdR  17 (rKi2 -mKi2 +)? supEAA, Stratagene 

lac, [F ' .proA B + lacF, lacZAM 15  

7 n l0  (TetR )]
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S tra in P henotype/G enotype Sou rce/R eference

XL 10-gold Tet R ,A(m crA)183  , A (mcrCB- 

hsdSMR-mrv)173, endA l, supE44, 

thi-1, recA l, gyrA96, relA l, lac 

H te[F ' proAB  l a c f Z  A M  15 TnlO  

(TetR ) Amy Cam R ]

Stratagene

Rosetta blue EndA, hsdR 1 7(v̂ \2~^k.\2+), supE44, 

thi-1, recA l, gyrA96, re I A, lac [F* 

pro A +B+lacP ZA M l 5 : :Tn 10(TetR)] 

pRARE

Novagen

H1681 Thr, se,r JhuA, lacy, rpsL, galK, 

hsdR, mcrA, yfrwF::LAMpLacMU 

fur-31 zbf::TnlO

Braun et al. (1990)

IN V aF F", re c A l , /w d /n 7 (rKi2 -niKi2 +) 

supE44 , <\>mac Z5M 15, A(lacZYA- 

argF) U169

Invitrogen
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Table 2.2: Primers

Prim er name
Prim er sequence (5*^3*)

Gene m utation

rirA -F

rirA-R

KanNcoI-F

K anNcoI-R

Fur-F

Fur-R

KanBss-F

KanBss-R

Prom oter probes

F-rhrAW T

R-rhrAW T

F-rhrA M l

F-N coIpO Tl

F-EcoR IpO Tl

R-BgJIIR2

R -B glIIR lR 2

F-BglIIR2

F-BglII+6

CTCGAG TCG CCG AGG CCC ATT CCT TCT 

ACTAGT GAA GTC GGC TGT AAA CGG TAT GCG 

CCATGG GAC GTT GTA AAA CGA CGG CCA GTG 

CCATGG GGA AAC AGC TAT GAC CAT GAT TAC G 

ACC ATT CCC CCG GTT ACG CTG ATC 

CGT CGG CCT CGC TCA AGG AGT C 

GCGCGC GAC GTT GTA AAA CGA CGG CCA GTG 

GCGCGC GGA AAC AGC TAT GAC CAT GAT TAC G

CCC. AAGCTT CCC TGG AGG CGT CCT ATC GCC 

AAAA CTGCAG GGC AAC ATT GTC TGA CGA TAA ACA TG 

TTT AAGCTT TAC TGT CTT AAT GAG GTT CGC TCA C 

CAGT CCATGG GCA AAT GGG ATT GGC 

CG GAATTC ATT ATT TGT AGA GCT CAT CC 

GA AGATCT CTC ATT AAG ACA GTA GCG AAC GC 

GA AGATCT GCA TTT TCG AGA GAG GCG ATA GG 

GA AGATCT TCA CAT CCA AGC CGT TCA CCG C 

GA AGATCT GTT CGC TCA CAT CCA AGC CGT TC 

M obility S h ift  A ssay

M SARHTX-F CGGGATCC CCT ATC GCC TCT CTC GAA AAT GC 

CGGGATCC CGA AAA CTG CCA CTG CCC GGC 

CGGGATCC GGA CCA GTC CTT TGA AAG TGT TGG 

CGGGATCC GTT TTC TTA TGT GAC GAA AAT AAG GC 

CGGGATCC CCC GCG ACA CTA GCC AAG GGG 

CGGGATCC CCG GCT CTC CTC TTT GCG AAC C 

CGGGATCC GTC GTG CGC CAG CCT TTC CTG 

CGGGATCC T GCC CAT AA CGC CCC CTG CGC

M SARHTX-R

M SAhem e-F

M SAhem e-R

M SAsitA-F

M SAsitA-R

M SArhra-F

M SArhra-R
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Primer name
Prim er sequence (5f^ 3 f)

M SAfhuF-F CGGGATCC CGG AAC GAT AGG CCA TAA TCG GG

M SAfhuF-R CGGGATCC TCC CCA GCC ACT GCC CAG CG

Protein C loning

RhrA60-F CCATGG AGACAATCCGACCG

RhrA60-R G G ATCCAGCGGCGGCTGCCAG

Fur60-F CCATGG AGAG CCAGA GCAA GAA TCG GA TCG

Fur60-R GGATCC GTC CTTGCGCTTCCGGCAATAG

Real-tim e R T-P C R

RhbA-F ATG CCG GCC GAT TTA GCC

RhbA-R: TCG CGT CTT TCC TGT CGG

RhtA-F CT ATGGAATTGGCAACTACTC

RhtA-R CGATGATCTCAACGGCAAGC

RhrA-F TGC CAG CGA CAG GGA AAC G

RhrA-R: ATG GAG ACA ATC CGA CCG

dppA l-F: CAC TAC TCT CTT GGC AGC G

dpp A l-R ACG GCT GTA AAC GGT ATG CG

rirA-F: GCG TCT GAC GAA GCA AAC C

rirA-R GCG TCT GAC GAA GCA AAC

16S rRNA-F: ACT TGA GAG TTT GAT CCT GGC

16S rRNA-F: TCT TTC CCC CGA AGG GCT C

npt-F: CGC AGG TTC TCCGGC CGC

npt-R: CTG CGC AAG GAA CGC CCG

Smc02726-F: ATGCTCAACCGGCATCATCGCCTGGC

Sm c02726-R: CG CG ACG ATCTTCTTCAGCACGGTCG
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Table 2.3: Plasmids

P lasm id D escrip tion Sou rce/R eference

pO T l W ide-host-range gfp  promoter-probe

plasmid, G m R 

pM P220 W ide-host-range 1 acZ  promoter-probe

plasmid; K n i R

pC R 2.1 PCR Cloning Vector: A m pR, K m R, lacZa

pUC4K Am pR, Source o f  KmR cassette

pBR322 TecR, Source o f  TecRcassette

pJQ200sk+ Gm R, sacB, mob

pRK600 CmR, pRK2013 Nm ::Tn9, provides

transfer functions 

pSTBlue-1 Cloning Vector: A m pR, KmR, lacZa

pQE60 High copy num ber expression vector

pRARE Cm R (ArgU, arg W, ile X, glyT, leuW,

proL) to improve overexpression yield

Allaway et al., 

(2001)
Spaink et al., (1987)

Invitrogen

Amersham

Pharmacia

Roche

Quandt et al., (1993) 

Finan et al., 1986

Novagen

Qlgen

Novagen

pCR2.1 D erived vectors

pTAFur 500 bp N coI/Bam H I product encoding This study

Sm c02510 for overexpression 

pTARhrA 1 Kb bp NcoI/BamHR  product encoding This study

RhrA for overexpression 

pTAKanNcoI Km R cassette as an N co l  fragment This study

pTAFurM  2.2 Kb bp B am H I/N otl fragm ent encoding This study

for Smc02510 for m utagenesis 

pTARirAM  2.2 Kb bp X hol/Spe l fragm ent encoding This study

for RirA for mutagenesis
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Plasmid Description Sou rce/Reference

PSTblue-1 Derived vectors

pSTfur 2.2 Kb bp Bam H I/N otl fragm ent encoding

for Sm c02510 for m utagenesis 

pSTfurTec Tec gene inserted into the B ssH Il site o f

sm c02510 in pSTfur

pJQ200ks+ Derived vectors

pJQrirA 2.2 Kb bp X ho l/Spe l  fragm ent in

pJQ200ks+ encoding for RirA for 

mutagenesis

pJQrirAK Kanamycin cassette in the N c o l  site o f

rirA in pJQrirA 

pJQnrfA 2.2 Kb bp Spel/N o tl fragment in

pJQ200ks+ encoding for NrfA for 

mutagenesis

pJQnrfAK Kanamycin cassette in the B ssH Il site o f

rirA in pJQnrfA 

pJQFurTc 3.6 Kb bp Spel/N otl fragm ent in

pJQ200ks+ encoding for Smc02510 with a 

tetracycline cassette into the BssHIl site o f 

the gene for m utagenesis

pO T l Derived vectors

pW T H ind lll/P stl prom oter region o f  rh tX  in 

pO Tl
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Plasm id D escrip tion Sou rce/R eference

pM l H ind ffl/P stl  prom oter region o f  rh tX  in 

pOT 1 without first repeat

This study

pEN2 H indlll/P stI  promoter region o f rh tX  in 

pO Tl without sec repeat

This study

pEN3 H indlll/P stI  prom oter region o f  rh tX  in 

pOT 1 without both repeats

This study

pEN4 H indlll/P stI  prom oter region o f  rh tX  in 

pO Tl with extended intergenic region 

between the repeats

pQ E 60 D erived vectors

This study

pRhrA60 N coI/Bam H I fragment encoding RhrA 

cloned into pQE60 for overexpression

This study

pFur60 N coI/B am H I fragm ent encoding 

Smc02510 cloned into pQE60 for 

overexpression

This study
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2.2 Microbiological Media

Solid complex media contained 15 g/L Oxoid N o  3 agar Tryptone and yeast extract 

were from Oxoid Other chemicals were from  Sigma Chemicals Co Ltd and BD H  

Chemicals Ltd A ll chemicals were analar grade A ll  m inim al and low  iron media

were prepared in ultra pure water D istilled water was used to prepare complex

media and sterilisation was achieved by autoclaving at 15 lb /in2 for 20 min

♦ TY  Medium (Beringer, 1974)

Used fo r the routine culturing o f S mehloti strains

Tryptone 5 g

Yeast extract 3 g

CaCl2 2H20  0 7 g

Adjusted to pH7 0 w ith  NaOH and volume brought to 1 1 w ith  dH20  The solution 

was then sterilised by autoclaving

♦ Luria  Bertam Broth (LB ) (Sambrook et a l . 1989)

Used for the routine culturing o f  E coh strains

Tryptone 10 g

Yeast extract 5 g

NaCl 1 0 g

Adjusted to pH 7 0 w ith  NaOH and volume brought to 1 1 w ith  dH20  The solution 

was then sterilised by autoclaving
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♦ Psi broth

A fte r making LB  and autoclaving as described above, MgSC>4 and KC1 were added 

to final concentrations o f  4 m M  and 10 m M  respectively

♦ SOB Medium

Tryptone 10 g

Yeast extract 5 g

NaCl 10g

KC1 2 5 m M

d H 20  11

pH 7 0

A fte r autoclaving, the solution was allowed to cool to 55°C and sterile solutions o f  

M gC h (1M ) and M g2S0 4  (1M ) were added to final concentrations o f  10 m M

♦ SOC Medium

A fte r making SOB as above, 7 2 m l o f  50% sterile glucose was added to give a final 

concentration o f 20 m M

♦ Jensen Plant Media (Jensen. 1942)

Used for nodulation analysis o f medicago sativa 

Agar No 3 7 5 g

dH20  550 m l

Follow ing autoclaving solutions o f  K 2HP0 4 , M g SO 4 and NaCl were added to a final 

concentration o f 0 2 % also added was CaHP0 4  to a final concentration o f 0 1 % and

75



FeCh to a fina l concentration o f  0 01 % Each o f  these solutions was autoclaved 

separately

♦ MacConkev Medium

Used for the (3-galactosidase assay

Mac Conkey agar N°3 51 5 g

The powder was dissolved in 1 1 dFhO and the solution was then sterilised by 

autoclavmg

♦ Low  iron Media

A ll low  iron media were prepared w ith  ultra pure water and supplemented w ith  the 

appropriate concentration o f  2,2’-d ipyridyl

2.3 Solutions and Buffers

♦ TE Buffe r

Tns-HC l 

Na2-ED TA 

pH 8 0

10 m M

1 m M

♦ TES Buffer

Tns-HC l 

Na2-EDTA 

NaCl 

pH 8 0

50 m M

10 m M

1 m M
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♦ STET Buffer ( Holmes and Ouiglev, 1981)

Tris-H C l 50 m M  (5 m l o f  a IM  solution)

Na2-ED TA  50 m M  (10 ml o f  0 5 M  solution)

Triton X - 100 5 % (v/v)

Sucrose 8 % (w /v)

dU iO  to 100 ml

pH 8 0

♦ Solutions fo r the 1.2.3 Plasmid D N A  preparation method (B irm boim  and 

Dolv. 1979)

Solution 1

Glucose lm l (0 5 M  solution)

Tris-HC l 0 25 ml (o f a 1M  solution)

Na2-E D TA  1 m l (o f 0 1 M  solution)

dH20  to 10 m l

Solution 2

NaOH 

SDS 

dH20

Made up every month and

Solution 3

Potassium acetate 3 M  

pH 4 8

2 m l (o f 1 M  solution)

1 m l (o f 10 %  solution) 

to 10 m l 

stored at room temperature
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To 60 m l o f  5 M  potassium acetate, 11 5 m l o f  glacial acetic acid and 28 5 ml o f  

dH20 was added The resulting solution was 3 M  w ith  respect to potassium and 5 M  

w ith  respect to acetate

♦ 50X Tris acetate (TA B ) Buffer

EDTA 100 ml (o f 0 5 M  solution)

Glacial acetic acid 57 1 m l

Tris 242 g

dH20  to 1 1

pH 8 0

Diluted to IX  w ith  dH20  before use

♦ 6X Gel Loading dye

Bromophenol Blue 0 25 %

Xylene Cyanol 0 25 %

Fico ll (Type 400) 15 %

Made in dH20  and stored at room temperature fo llow ing  autoclaving

♦ Solutions for Competent Cells

TB Buffer for competent cells (Inoue et aL, 1990)

Pipes lO m M

CaCl2 15 m M

KC I 250 m M

pH w ith  KO H  6 7
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Once the pH had been adjusted, M nC l2 was added to a final concentration o f  55 

m M  The solution was then filte r sterilised through a 0 45 jam sterile filte r and stored 

at 4°C

TFB1 B u ffe r f o r  competent cells

RbC! 100 m M

M nC l2 50 m M

Potassium acetate 30 m M

CaCl2 10 m M

Glycerol 15 %

pH 5 8

The solution was filte r sterilised through a 0 45 jxm sterile filte r and stored at 4°C

TFB2 B u ffe r f o r  competent cells

MOPS 10 m M

RbCl 10 m M

CaCl2 75 m M

Glycerol 15%

pH w ith  KO H  6 8

The solution was filte r sterilised through a 0 45 \xm sterile filte r and stored at 4°C
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♦ Solutions for Southern Blot Analysis

20XSSC

NaCl

Trisodium citrate 

pH  

dH20  

Denaturing solution

NaCl

NaOH

dH20

Neutralising solution

NaCl

Tris

pH

dH20

Washing Buffer

Maleic A c id  

NaCl 

Tween 20 

pH 

dH20

175 83 g

88 2 g

7 0  

to 1 1

87 66 g

20 g

to 1 1

87 66 g

121 1 g 

8 0  

to 1 1

1161g

8 7 6 g  

0 3% (v/v)

7 5 (w ith  solid NaOH) 

to 1 1
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Maleic Acid Buffer

M aleic A c id  

NaCl 

pH 

dH20

11 61 g

8 76 g

7 5 (w ith  solid NaOH) 

to 1 1

Detection Buffer

Tris

NaCl

pH

dH20

12 11 g

5 84 g 

9 5  

to 1 1

Denhardt’s solution (SOX)

Ficoll (Type 400) 5 g

Polyvinylpyrrolidone 5 g

BSA (Pentax Fraction V ) 5 g

dH20  500 m l

Salmon Sperm DNA

Salmon sperm D N A  was dissolved in water at a concentration o f  10 mg/m l, and 

mixed until dissolved The D N A  was sheared by passing it several times through an 

18-gauge hypodermic needle The D N A  was boiled for 10 mm, dispensed into small 

aliquots and stored at -20°C
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Prehybridisation solution

SSC 6X

0 5 % (w /v) 

5X

SDS

Denhart’ s solution

Salmon Sperm (10 mg/m l) 1 ml

Salmon sperm D N A  was prepared as the prehybridisation solution by boiling fo r 5 

mm and ch illing  quickly in an ice water bath

Hybridisation solution

Hybridisation solution was prepared as the prehybridisation solution above and 

denatured labelled probe was added

10 X  Block stock solution

The blocking reagent was dissolved under constant stirring in Maleic acid buffer and 

heated to 65°C The solution remained opaque To prepare 1 X  blocking solution, 

the blocking stock was diluted w ith  Maleic acid buffer

The antibody was centrifuged at 10,000 rpm for 5 m in before each use The antibody 

was diluted 1 5000 (150 m U/m l) in blocking solution

B locking Reagent 10 % (w /v)

♦ Antibody Solution
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♦ Solution for SDS/gel electrophoresis

Separating gel

10% 12% 15%

dH20 4 1 ml 3 4 ml 2 4 ml

1.5 M Tris-HCl, pH 8 8 2 5 ml 2 5 m l 2 5 ml

20 % (w/v) SDS 0 05 m l 0 05 ml 0 05 m l

Acrylamide/Bis-acrylamide (30 % / 0 8

% w/v)

3 3 m l 4 0 ml 5 0 m l

10 % (w/v) ammonium persulfate 0 05 ml 0 05 m l 0 05 m l

TEMED 0 005 m l 0 005 ml 0 005 ml

Total 10 005 m l 10 005 ml 10 005 ml

Stacking gel

dH20 3 075 ml

0 5 M Tns-HCl, pH 6 8 1 25 m l

20 % (w/v) SDS 0 025 ml

Acrylamide/Bis-acrylamide (30 % 

/0 8 %  w/v)

0 67 m l

10 % (w/v) ammonium persulfate 0 025 ml

TEMED 0 005 ml

Total 5 05 ml

The ammonium persulfate must be prepared on the day
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5 X  Running Buffer

Tris Base 

Glycine 

SDS 

pH 8 3

Add dH20  to 1 1

Sample Buffer

dH20  4 0 m l

0 5 M  Tns-H C l 1 0 m l

Glycerol 0 8 ml

10%  SDS 16 ml

p-mercaptoethanol 0 4 ml

0 05 % (w /v) Bromophenol blue 0 2 m l

The samples have to be diluted at least 1 4 and heated at 95°C for 5 min prior to 

loading

Staining solution

Acetic acid 100 m l

dH20  450 ml

Methanol 450 m l

Bromophenol blue 2 5 g

15 g 

72 g 

5 g
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Destaining solution

Acetic acid 10 ml

dH20

Methanol

450 m l

450 ml

♦ Solutions for protein overexpression and purification

Lysis buffer for overexpression o f RhrA

150 m M  potassium/Acetate 

10 m M  Tris-acetate (pH 7 4)

1 m M  ED TA

Buffers for purification under denaturing conditions 

Lysis buffer (1 1)

100 m M  NaH2P 04 

10 m M  Tris Cl 

8 M  urea

13 8 g

1 2 g

480 5 g

Adjust pH to 8 0 using NaOH

Wash buffer (1 1)

100 m M  NaH2P 0 4 

10 m M  Tris Cl 

8 M  urea

13 8 g

1 2 g

480 5 g

Adjust pH to 6 3 using HCl
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Elution buffers (1 1)

100 m M  NaH2P 04 

10 m M  Tris Cl 

8 M  urea

13 8 g

12g

480 5 g

Adjust pH to 4 5 using HC1

Due to the dissociation o f urea, the buffers should be adjusted immediately prior to 

use Do not autoclave

Buffers for purification under native conditions 

Lysis buffer (1 1)

50 m M  NaH2P 0 4 

300 m M  NaCi 

10 m M  imidazole

6 90 g 

17 54 g

0 68 g

Adjust pH to 8 0 using NaOH

Wash buffer (1 1)

50 m M  NaH 2P 04 

300 mM  NaCl 

150 m M  imidazole

6 90 g 

17 54 g 

1 36 g

Adjust pH to 8 0 using NaOH
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Elution buffer (1 1)

50 m M  NaH2P 0 4 6 90 g

300 m M  NaCl 17 54 g

250 m M  imidazole 17 0 0g

Adjust pH to 8 0 using NaOH

♦ Solutions for Electrophorectic m ob ility  shift assay fEM SA)

PolydldC stock

PolydldC was aliquoted in 1 mg/ml stocks in polydldC  d ilu tion buffer (10 ml TE 

w ith  200 \i\ 5M  NaCl)

5 X  Binding Buffer for Fur EMSA (Ochsner et a l , 1995)

bis-tris Borate (pH 7 5) 50 m M

KCI 200 m M

MgSC>4 1 m M

Glycerol 10 %

Add before use

PolydldC 50 |j,g/ml

BSA 0 1 mg/ml

MnSC>4 0 1 m M
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10 X  Running Buffer for Fur EMSA (Ochsner et a l , 1995)

bis-tris Borate (pH 7 5) 200 m M

Due to rapid oxidation, M nS 04 was added on the day to a concentration o f  0 1 m M

4 X  Binding Buffer for RhrA EMSA (Hendrickson et a l , 1984)

Tris-acetate (pH 7 4) 40 m M

lO O m M K C l 200 m M

ED TA 4 m M

Glycerol 20 %

Add before use BSA 50 fig/m l

DTT 1 m M

PolydldC 50 jag/ml

10X TBE Running Buffer for RhrA EMSA

Tris 108 g

Boric Acid  55 g

0 5 M  E D T A  (pH 8 0) 40 ml

♦ Solution fo r M ille r assay 

LacZ buffer

Na2H P 0 4 16 1 g

NaH2P 04 5 5g

KC1 0 75g

M gS 04 0 246g

Mercaptoethanol 2 7 m l

D H 20  1 L
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♦ Solution for native electrophoresis gel fo r EM SA

The formula used to calculate the volume o f Accugel [40% (29 1) Acrylam ide 

Bisacrylamide solution] used to prepare a gel o f  a given percentage is as fo llows

- V a= volume o f  accugel to be used (m l)

- V t= Total volume o f  gel casting solution required (m l)

- X =  %  gel desired

Va=iYtXx)
40

Solution

4% 5% 8%

Accugel 5 0 ml 6 2 m l 10 0 m l

lOx TBE for RhrA EMSA /  lOx 

Fur EMSA Running buffer

5 0 ml 5 0 m l 5 0 m l

dihO (Ultrapure) 39 9 ml 38 7 ml 34 9 ml

Total 50 ml 50 m l 50 ml

Then 5 j i l  o f  1 M  D TT was added to the gel m ixture followed by 50 mg o f

ammonium persulfate and 15 \i\ o f  TEM ED  The gel m ixture swirled brie fly and 

poured into the gel mould The comb was then inserted and the gel allowed to set for 

at least 45 mm

2.4 Antibiotics

Antib io tics used were from Sigma A ld rich  Co Ltd A ntib io tics were prepared to a 

concentration o f  100 mg/m l and stored in the dark at -20°C unless otherwise 

indicated
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♦ Ampicilhn was prepared in dl-bO and used at a final concentration o f  100 

|ig/m l in solid and liqu id  broth for E coh

♦  Chloramphenicol was prepared in ethanol and used at a final 

concentration o f  20 |xg/ml in both solid and liqu id  media

♦  Tetracycline was prepared in 50% ethanol at a concentration o f  10 mg/ml 

Tetracycline was used at a final concentration o f  10 fig/m  1 fo r S mehloti and E  coh 

in both liqu id  and solid media

♦  Kanamycin was prepared in dT^O For S m ehloti, kanamycin was used at 

a final concentration o f  100 ng/m l m solid media and 50 jig /m l in liqu id  broth For 

E coh , kanamycin was used at a final concentration o f  30 |xg/ml in both solid and 

liquid media

♦ Gen ta m i on was prepared in dH20 For S m ehloti and E coh gentamicin 

was used at a final concentration o f  20 ng/m l in both solid and liqu id  media

♦  Streptomycin was prepared in dH20  and used at a final concentration o f  1 

mg/ml in solid media for S mehloti

2.5 Storing and culturing bacteria

Strains were stored as glycerol stocks A  1 m l aliquot o f a late log phase culture was 

added to 0 5 m l o f  sterile 80 % glycerol m a microfuge, which was then m ixed and 

stored at -20°C A  duplicate set o f  long term stocks were stored at -80°C Where 

hosts are harbouring plasmids, the appropriate antibiotic was added to the stock 

medium W orking stocks were stored on plate at 4°C
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2.6 Plasmid preparation method by the 1,2,3 Method.

This method was described by B im boim  and D oly (1979) A  1 5 m l aliquot o f  a 

bacterial culture grown in selective media was pelleted at 13,000 rpm in a microfuge 

and the supernatant was removed The pellet was resuspended by vortexing in 200 

\x\ o f  solution 1 and was then left for 5 min at room temperature Then 200 |i l o f  

solution 2 was added, the tube was mixed by inversion and placed on ice for 5 mm 

Then 200 ^1 o f  solution 3 was added, the tube was mixed by inversion and placed on 

ice for 10 min A  clot o f  chromosomal D N A  formed and was pelleted by 

centrifugation at 13,000 rpm in a microfuge for 10 mm The supernatant was then 

placed in a fresh tube and 600 |xl o f  phenol chloroform  isoamylalcohol (25 24 1) was 

added and mixed by vortexing A fte r centrifugation at 13,000 rpm for 5 min the 

aqueous layer was removed to a fresh tube and equal volume o f  isopropanol was 

added A fte r m ixing, the tube was incubated at room temperature for 10 min Then 

the tube was centrifuged at 13,000 rpm for 10 m in to pellet the plasmid D N A The 

pellet was washed w ith  70% ethanol, dried b rie fly  in a vacuum dryer and 

resuspended in 50 (il o f  TE buffer Plasmid D N A  was stored at 4°C

2.7 Plasmid Preparation By the Rapid Boiling Method.

This method was described by Holmes and Quigley (1981) and used instead o f  the 

1,2,3 procedure outlined above for the screening o f  large numbers o f  transformants 

A  1 5 ml aliquot o f  an overnight culture was spun at 13,000 rpm in a microfuge for 5 

min and the supernatant removed The pellet was resuspended in 350 jal o f  STET 

buffer A  20 j i l  aliquot o f  10 mg/ml lysozyme solution (prepared fresh in STET 

buffer) was added and the microfuge tube incubated at 30°C fo r 10 min The tube 

was then placed in a bo iling  water bath for 60 sec and then spun at 13,000 rpm, for 

10 min The supernatant was removed to a fresh tube and an equal volume o f  

isopropanol was added The tube was left at room temperature fo r 10 m in and then 

the plasmid D N A  was pelleted by centrifugation at 13,000 rpm fo r 10 min The
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ppllpt w^s w^shecj w ith  70 % ethanol, dried b rie fly  in a vacuum dryer and then
1 i (

^ftsplvefjl in 50 p i p f  TE buffer Plasrpid D N A  was stored at 4°C
t

t

2.8 Preparation of total genomic DNA from S. meliloti

A 1 5 ml aliquot o f early stationary phase culture o f  &  m elilo ti \yas pelleted at

13,000 rpm fo r 5 min The cells were washed w ith  1 5 m l o f  TES buffer and 

resuspended in 700 ^1 o f  TE buffer Lysozyme solution (20mg/ml in TE) was 

prepared freshly and 50 ^1 was added and the suspension was incubated at 30°C for 

20 min A  sarkosyl/pronase solution (10% sarkosyl in TE containing 5 mg/ml 

pronase) was prepared and 50 ¿il was added and the suspension incubated at 37°C 

for one hr Lysis was evident by an increase in the viscosity o f  the suspension 

Sodium acetate (70 ¿il o f  a 3 M  solution) was added and mixed gently Then 600 |al 

o f  phenol chloroform isoamylalcohol (25 24 1) was added and the suspension was 

mixed slow ly by inversion for 5 mm A fte r centrifugation at 13,000 rpm for 5 min 

the aqueous phase was removed to a fresh centrifuge tube and 600 p.1 o f  phenol 

chloroform isoamylalcohol (25 24 1) was added again and mixed slow ly by 

inversion for 5 min Fo llow ing centrifugation at 13,000 rpm for 5 mm, the 

supernatant was removed to a fresh centrifuge tube Phenol extraction was carried 

out by adding 700 \i\ o f  chloroform isoamyalcohol (24 1), m ixing by inversion fo r 5 

min, and by centrifugation at 13,000 rpm fo r 5 mm The aqueous layer was removed 

to a fresh microfuge tube and the D N A  was precipitated w ith  an equal volume o f  

isopropanol and was evident in the suspension as a coiled thread The microfuge 

tube was spun at 13,000 rpm for 10 m in to pellet the D N A  The pellet was washed 

tw ice w ith  70% ethanol, air-dried and dissolved in 200 \i\ o f  TE buffer Genomic 

D N A  was stored at 4°C
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2.9 Agarose gel electrophoresis for DNA 
characterisation

D N A  was analysed by agarose gel electrophoresis Gels were prepared by dissolving 

agarose in 1 X  TAB  buffer to the required concentration (typ ica lly 0 7-2 0 %) and 

boiling until the solution became translucent The 1 X  TA B  buffer was also used as 

the running buffer A  tracker dye was incorporated into D N A  samples to facilitate 

loading o f  samples M im -gels were frequently run at 140 Volts for 20-30 mm or 

until the tracker dye had migrated the required distance while  maxi gels were 

frequently run at 40 Volts overnight Gels were stained by immersing in a bath o f  

ethidium bromide for 20 min and then destained by immersing in a water bath for 10 

min Gels were then visualised on a U V  transillum inator and photographed using a 

U V  image analyser

2.10 Phenol/Chloroform extraction and ethanol 
precipitation

Phenol/chloroform extraction and ethanol precipitation was carried out to 

concentrate nucleic acid samples or change the buffers in which a sample was 

dissolved An equal volume o f  phenol/chloroform/isoamyl alcohol (25 24 1) was 

added to the D N A solution, mixed by vortexmg and centrifuged fo r 5 min at 13,000 

rpm The upper aqueous phase was removed, taking care not to take any material 

from the mterphase, this was placed in a sterile microfuge tube A n  equal volume o f  

chloroform/isoamyl alcohol (24 1) was added to the aqueous phase, vortexed as 

before and centrifuged fo r 5 min at 13,000 rpm Again the upper aqueous phase was 

removed to a fresh tube One-tenth volume o f  3 M  sodium acetate (pH 5 2) was 

added to the solution o f D N A , mixed and then 2 volumes o f 100 % (v/v) ethanol 

were added This m ixture was vortexed and incubated at room temperatures for 5 

mm The D N A  samples were then centrifuged for 30 min at 12,000 rpm at 4°C, the 

supernatant was removed and pellets were washed w ith  1 m l 70 % (v/v) ethanol to 

remove excess salts The tube was centrifuged for 5 m in at 10,000 rpm, the
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supernatant was removed and pellets were air dried for approximately 10 min 

Pellets were resuspended in an appropriate volume o f  sterile Tris-EDTA (TE) (pH 

8 0) or dH20

2.11 Restriction digestion of DNA

The restriction enzymes used were supplied w ith  incubation buffers at a 

concentration o f 10X (working concentration IX )  D N A  was digested w ith  

restriction endonucleases fo r identification purposes or to linearise or cut fragments 

from a plasmid D N A  digests were performed by adding

- 200 ng -  1 |ig  o f  D N A  (Final concentration o f  <300 ng/p.1)

- l|x l o f  enzyme/jig o f  D N A  solution (10 U)

-1 0  X  buffer to a fina l concentration o f  IX

- dH20  to the fina l volume required

The reaction was gently mixed, centrifuged, and then incubated for 2 hrs at the 

optimum enzyme temperature (between 37°C and 50°C, usually 37°C)

2.12 PCR and TA Cloning of PCR Products.

Standard PCR reaction M ixtu re

Template D N A i n i

Primers (0 6nm/p,l) 1 p.1 o f  each

B uffe r (1 OX) 5 #xl

dNTP M ix  (10 m M )

Sterile dH20 40 |xl

RedTaq D N A  polymerase i j d

Total 50jxl
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Standard PCR Program

Stage 1:

Step 1: 95°C for 10 min

Stage 2:

Step 1: 95°C for 1 min

Step 2: Annealing temperature fo r 30 sec

Step 3: 72°C for 1 min fo r every Kb to be synthesised.

(Stage 2 was repeated for 30 cycles)

Stage 3:

Step 1: 95°C for 10 min

PCR products were routinely cloned using Original T A  cloning K it vector pCR2.1 

from Invitrogen. The diagram below shows the concept behind the T A  cloning 

method (Fig 2.1).

3’ 5’ 3’ 5'

Vector PCR
Product Vector

5’ 3’ 5' 3’

F ig  2.1: P rinc ip le  o f T A  cloning

The method is dependent on the fact that thermostable polymerases like Taq D N A  

polymerase lack 3’-5' exonuclease activity, leave 3' A-overhangs. PCR products 

generated w ith  Taq D N A  polymerase have a high efficiency o f  cloning in the TA  

cloning system. Other thermostable polymerases like Vent and Pfu , which have 3'-5' 

exonuclease activity, do not leave 3’ A-overhangs.
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PCR products were am plified using a standard PCR reaction m ixture and using 

RedTaq D N A poiymerase from Sigma. They were subsequently ligated w ith  the T A  

pCR2.1 vector. The ligation was set as follows:

Fresh PCR product 1 ¿il

PCR2.1 Vector (25 ng /jil) 2 \i\

10 X  Ligation Buffer 1 ji l

Sterile dH20  5 |nl

T4 D N A ligase (4.0 Weiss U) 1 ul 

Total volume lO jxl

The reaction was then incubated at room temperature overnight. Follow ing 

incubation, 2-5 \i\ o f  the ligation was used to transform either E. co li DH5a cells 

prepared by the high efficiency method or E. co li IN VaF ' one shot competent cells 

that were supplied w ith  the TA  cloning kit.

To transform IN V aF ' cells, the cells were first thawed on ice. Then 2 jxl o f  p- 

mercaptoethanol (0.5 M ) was added and mixed gently w ith  the pipette tip. Between 

2-5jxl o f  the ligation reaction m ixture was added to the cells and mixed gently w ith  

the pipette tip. The cells were incubated on ice fo r 20 m in and then 250 |xl o f  SOC 

medium was added. The cells were incubated at 37°C for 1 hr. A  50 \l\ aliquot o f  the 

transformation mixture was plated on LB  agar containing am picillin  (100 |ig/m l) and 

X-gal to select the transformants and to test for a-complementation o f  the p- 

galactosidase. In addition to an am picillin  resistance gene the T A  pCR2.1 vector also 

carries a kanamycin resistance gene. Kanamycin (30 jug/ml) was thus added to select 

for transformants instead o f  am picillin  when PCR products am plified from 

am picillin  resistant plasmids were being cloned.
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2.13 Additional enzymatic reactions

RNase

RNase that was free o f  DNase was dissolved at a concentration o f 10 mg/ml in 10 

m M  Tris-HCI (pH 7 5) and 15 m M  NaCl The solution was then dispensed mto 

aliquots and stored at -20°C

Klenow reaction

The reaction was incubated at room temperature fo r 1 hr The reaction m ixture was 

then phenol extracted to remove the enzyme and the D N A  was ethanol precipitated

Klenow labelling reaction

Probes were prepared as fo llows Restricted D N A  was boiled for 5 min and then 

chilled on ice water A  labelling reaction was then set up as fo llows

D N A

DNTPs (0 5 m M ) 

Klenow B uffe r (1 OX) 

Sterile dH20  

K lenow  (0 5U/ |il)

3 ji l

4 (il 

1^1

18 |il

1 p,l o f  each

D N A

DNTPs labelling m ix 

Hexanucleotide m ix

K lenow enzyme

15 |il

2 \i\

2 nl 

l | i l
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As longer incubation times resulted in an increase in labelling efficiency, the 

m ixture was generally incubated for up to 20 hours The probe was denatured by 

boiling for 10 mm and ch illing  quickly on wet ice

2.14 Preparation of ethidium bromide

A  10 mg/ml stock solution o f  ethidium bromide was prepared by dissolution in 

dH20 The solution was stored in the dark at 4°C A  100 jal aliquot o f this stock 

solution was added to 1 1 o f  dH20  for staining agarose gels Gloves were worn at all 

times when handling solutions containing ethidium bromide Ethidium bromide 

waste was collected and filtered through a deactivating filte r (Schleicher and 

Schuell) The clear liqu id  was disposed o f  norm ally and the solids contained in the 

filte r were incinerated

2.15 Isolation of DNA from agarose gels

D N A  was purified from agarose gels using a D N A  gel purification k it (Eppendorf) 

The k it was used according to the manufactures instructions B rie fly , the gel slice 

were excised w ith a sterile scalpel and weighed Three volumes o f gel solubilising 

buffer were added and the tube was incubated at 55°C until the gel slice had 

completely dissolved One volume o f isopropanol was added to the tube and mixed 

vigorously Then, 800 pi o f  the solution was transferred into a spin cup and spun at

13,000 rpm for 1 m in The flow  through was discarded and 750 p i o f  washing 

solution was added and spun for a further mm at 13,000 rpm The flow  through was 

again discarded and the cup was again spun at 13,000 rpm for 2 mm The spin cup 

was transferred to a fresh microfuge tube and 30 pi o f  TE was added The cup was 

then spun at 13,000 rpm for 1 min to elute the D N A

2.16 Preparation of high efficiency competent cells.

This method was described by Inoue et a l (1990) A  frozen stock o f the appropriate 

E coh strain was thawed, streaked on LB  agar and incubated at 37°C overnight 

Approx 10-12 large colonies were removed w ith  an inoculating loop and inoculated
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in 250 ml o f  SOB medium in a 2 1 baffled flask The culture was grown at 18°C w ith  

vigorous shaking (200-250 rpm) until ODóooof 0 6 was reached The flask was then 

placed on ice for 10 min The culture was transferred to a 250 m l centrifuge bottle 

and spun in a Beckmann J2-21 centrifuge at 5,000 rpm and 4°C for 5 mm The pellet 

was resuspended in 80 ml o f  ice-cold TB buffer, placed on ice for 10 min and spun 

down as before The cell pellet was gently resuspended in 20 ml o f ice-cold TB 

buffer and DM SO was added slow ly w ith  gentle sw irling to a fina l concentration o f 

7% A fte r incubation in an ice bath for 10 min the cell suspension was dispensed in

1 ml aliquots into m icrofuge tubes The cells were then flash frozen in liqu id 

nitrogen and stored at -80°C  Cells prepared in this manner frequently gave 

transformation efficiencies o f  the order o f  108-109 transformants/jig D N A  which is 

comparable w ith  those attainable by electroporation

2.17 Transformation of high efficiency competent 
cells.

A  microfuge tube o f  cells prepared according to the procedure outlined in section

2 16 was allowed to thaw on ice and a 1-5 pi aliquot o f  plasmid preparation was 

added to 200 [i\ o f  the competent cells The contents o f  the tube were brie fly  mixed 

and incubated on ice fo r 30 min The cells were heat shocked at 42°C for 30 sec and 

then transferred back onto ice for 2 mm Then 0 8 m l o f SOC medium was added 

and the cells were incubated at 37°C w ith  vigorous shaking for 1 hr A  100 pi 

aliquot o f  the resulting transformation m ixture was plated on appropriate selective 

media and the plates were incubated at 37°C overnight

2.18 Preparation of competent cells by RbCI 
treatment

A  frozen stock o f  the appropriate E coh strain was thawed, streaked on LB  agar and 

incubated at 37°C overnight A  single colony was picked and a 10 ml LB broth was 

inoculated and incubated at 37°C overnight One m l o f  the overnight culture was 

added to 100 ml o f LB  broth and grown shaking at 37°C until and ODóoo o f  0 5 was
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reached The flask was then placed on ice for 5 min The culture was transferred to a 

centrifugation bottle and spun in a Beckman J2-21 centrifuge at 5,000 rpm and 4°C 

fo r 5 m in The cell pellet was carefully resuspended m 30 m l o f  ice cold TFB buffer, 

incubated on ice fo r 90 m in and spun down as before The cell pellet was gently 

resuspended in 4 m l o f ice cold TFB2 and the cell suspension was dispensed in 1 ml 

aliquots into sterile microfuge tubes The cells were then flash frozen in liqu id  

nitrogen and stored at -80°C

2.19 Transformation of competent cells prepared by 
RbCI treatment

A  microfuge tube o f  cells prepared according to the procedure outlined in section 

2 18 was allowed to thaw on ice and a 10 p i aliquot o f  the ligation or plasmid was 

added to 100 pi o f  the competent cells The contents o f  the tube were brie fly  mixed 

and incubated on ice fo r 20 min The cells were heat shocked at 42°C for 90 sec and 

then transferred back onto ice for 2 min Then 0 5 m l o f  Psi broth medium was 

added and the cells were incubated at 37°C w ith  vigorous shaking for 60 to 90 mm 

A  100-200 pi aliquot o f  the resulting transformation m ixture was plated on an 

appropriate selective medium and the plates were incubated at 37°C overnight

2.20 Bacterial conjugation by triparental mating

S mehloti was grown to late log phase in TY , while  E coh donors were grown to 

m id log phase in LB  broth E coh donors (0 75 m l) were mixed w ith  an E coh (0 75 

m l) strain carrying the m obilising plasmid pRK600 The mixture was then pelleted 

at 13,000 rpm for 3 min, resuspended in 100 pi o f  fresh LB  and then spotted onto the 

centre o f  an LB  plate Fo llow ing incubation overnight at 37°C, the bacteria were 

resuspended in 3 m l o f  LB  broth Then 0 75 m l o f  the mated bacterial donor and 

helper cultures was mixed w ith  0 75 m l o f  the S mehloti recipient culture and the 

m ixture was pelleted as above The pellet was resuspended in lOOpl o f  T Y  broth and 

spotted onto the centre o f  a T Y  plate Fo llow ing incubation overnight, the bacteria 

were resuspended in 2 ml o f T Y  broth and dilutions were plated on appropriate
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selective media As controls, the donor m ix and the recipient strain were spotted 

separately on agar plates and carried through the procedure as outlined above Donor 

and recipient strains were then plated on the appropriate selective media

2.21 Southern blot analysis

Follow ing electrophoresis, the gel was stained in a bath o f  ethidium bromide and 

photographed The D N A  was denatured by immersing the gel in a denaturing 

solution and agitating gently at room temperature fo r 1 hr The gel was subsequently 

immersed in a neutralising solution, and incubated w ith  gentle agitation at room 

temperature fo r 1 hr A  gel tray was inverted in a bath o f  20 X  SSC, and a sheet o f  

Whatman 3 M M  paper cut to the w ith  o f  the gel was soaked in the 20 X  SSC and 

placed on top o f  the gel tray, w ith  the ends dipping into the solution form ing a w ick  

A ir  bubbles were removed by gently ro lling  the Whatman paper w ith  a glass rod 

The gel was inverted and placed gently on top o f  the Whatman paper A  piece o f 

nitrocellulose filte r cut exactly to the size o f  the gel was placed onto the surface o f  2 

X  SSC and allowed to soak from beneath The filte r was immersed in the solution 

for a further 2 min, and then placed on top o f the gel A ir  bubbles were removed as 

described above Three pieces o f Whatman paper were cut to the size o f the gel and 

two o f  them were soaked in 2 X  SSC and placed on top o f  the filte r The third piece 

was then placed on top A ir  bubbles were removes as described above A  stack o f 

paper towels approx 20 cm high was placed on top o f  the Whatman paper, ensuring 

that the towels did not come m contact w ith the wicks, and a weight was placed on 

top The transfer o f  D N A  was allowed to proceed for approxim ative^ 12-24 hrs 

(See Fig 2 2)

1 0 1



Transfer buffer

Fig  2.2: Southern B lo t trans fe r o f the D N A  from  the agarose gel to  the 
n itrocellu lose membrane.

Follow ing the completion o f  the transfer, the paper towels and the Whatman paper 

on top o f  the gel were removed and the gel and the filte r were placed gel side up on 

a dry sheet o f  Whatman paper. The positions o f  the wells were marked on the filte r, 

which was then soaked for 5 min in 6 X  SSC. The filte r was allowed to dry at room 

temperature for 1 hr and it was subsequently placed between two sheets o f  Whatman 

paper and baked at 80°C for 2 hrs to irreversibly bind the D N A to the filte r. The 

filte r was then wrapped in Whatman paper and stored until required.

The filte r was placed in ro ller bottles and at least 20 m l o f  prehybridisation solution 

was added per 100 cm2 o f filte r. The filte r was incubated w hile  rotating for 1 hr. The 

prehybridisation solution was removed and hybridisation solution was added. The 

filte r was incubated rotating for at least 16 hrs. Follow ing hybridisation, the filte r 

was washed tw ice at room temperature w ith  2 X  SSC / 0.1 % SDS for 5 min. The 

filters were subsequently washed tw ice at 65°C w ith  periodic agitation w ith  0.1 X  

S S C /0.1 %SDS for 30 min.



Immunological detection was performed using the D IG  D N A  labelling and 

Detection K it from Roche B rie fly , a 100 cm2 filte r was washed in washing buffer 

for 5 m in The filte r was then incubated in 100 m l o f  blocking solution, which was 

prepared freshly fo r at least 1 hr Then, the filte r was incubated for 20 mm w ith  20 

m l o f  antibody solution The filte r was washed tw ice fo r 15 m in w ith  washing buffer 

and then equilibrated for 5 min in 20 ml o f  detection buffer The filte r was incubated 

w ith  10 m l o f colour substrate solution and incubated in the dark until colour 

development was complete The colour reaction was stopped by washing w ith  TE 

buffer

2.22 Surface sterilisation of Medicago sativa

Medicago sativa seeds were washed w ith  sterile water and then stood in ethanol for 

5 mm The ethanol was poured o f f  and the seeds were again washed in sterile water 

The water was poured o f f  and the seeds were again washed w ith  sterile water The 

water was poured o f f  and the seeds were washed in domestic bleach for 10 mm The 

bleach was then poured o f f  and the seeds were washed four times w ith  sterile water 

The seeds were then spread on T Y  plates and incubated at room temperature in the 

dark for two days

2.23 Nodulation Analysis of Medicago sativa

Two day old seedlings were transferred to Jensen medium and inoculated w ith  

approx 105 S mehloti by streaking on the surface o f  the media The plants were 

incubated fo r 30 days, after which they were observed for nodulation and assayed 

fo r nitrogen fixation

2.24 Analysis of nitrogen fixation by gas 
chromatography

Nitrogen fixation was assayed by the acetylene reduction assay (Wacek and B rill, 

1976) Nodules were excised and placed into a sterile suba sealed vessel The
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atmosphere was then made 10 % w ith  respect to acetylene Acetylene reduction was 

determined by gas chromatography using a Poropak N  column and a flame 

ionisation detector fo llow ing  a 24 hrs incubation period The injector temperature 

was 70°C and then the oven temperature was 120°C

2.25 Protein overexpression

Recombinant protein overexpression was carried out w ith  E coh strains harbouring 

the lacP  mutation to produce enough lac repressor to e ffic iently block transcription 

The E coh expression cultures were grown in LB  broth Overnight cultures were 

used to inoculate 100 ml LB  broth supplemented w ith  the appropriate antibiotics 

The culture was grown until the OD600 reached 0 3-0 6

The culture was then induced w ith  IPTG to a suitable final concentration The 

culture was incubated for the appropriate time depending on the protein 

overexpressed A  sample or the whole culture was harvested by centrifugation at

6,000 rpm for 5 min The pellets were kept for as long as a month at -20°C 

A  culture grown in the same conditions but w ithout induction was used as a negative 

control

2.26 Purification.

The pellet was resuspended in sonication buffer and sonicated on ice for the 

adequate time The lysate was centrifuged at 10,000 rpm for 20 min (at 4°C for 

native preps) to pellet the cellu lar debris The correct amount o f  resin was added to 

the clear lysate The final m ixture was shaken on a belly dancer at 4°C fo r native 

preps and at room temperature for denatured preps for 1 hr The m ixture was then 

centrifuged at 10,000 rpm fo r 1 mm The flo w  through was saved for SDS-PAGE 

analysis o f  the purification The resin was then washed tw ice w ith  the adequate 

volume o f washing buffer, each wash was saved and every time the pellet was 

centrifuged fo r 1 mm Finally, the protein was eluted 3 times w ith  elution buffer, the 

eluates were collected to be analysed by SDS-PAGE and then pooled together before 

further treatment
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2.27 Preparation of dialysis tubing

The dialysis tubes were rinsed in d istilled water and placed in a beaker filled  w ith 

distilled water One spatula o f  E D TA  was added to it  The water was heated until 

ebullition and then boiled for a further 2 m in The liqu id  was allowed to cool down 

and then removed The tubes were then nnsed w ith  more d istilled water, the tubes 

were stored in water at 4°C until utilisation

2.28 Protein SDS-PAGE electrophoresis

A protein gel electrophoresis system was used in this study Glass plates were 

washed w ith  detergent, rinsed firs t w ith  tap water and then w ith  dP^O and fina lly  

wiped in one direction w ith  tissue soaked w ith  70 % ethanol The gasket was placed 

about the ridged plate, the plates were put together and secured w ith  clamps The 

depth o f  the resolving gel was marked on the outer plate The resolving gel was then 

poured to w ith in  2 cm o f the top o f the larger plate and overlaid w ith isopropanol 

When set, the isopropanol was removed and the stacking gel was poured A  clean 

comb was inserted and the gel was allowed to polymerise fo r 45 min-1 hr The 

electrophoresis tank was filled  w ith  1 X  running buffer to the level o f  the horizontal 

rubber gasket A fte r polymerisation the gaskets, clamp, stands and comb were 

removed Unpolymerised gel was removed by gently rinsing the wells w ith  dFhO, 

the wells were then straightened using a loading tip  The prepoured gels were 

lowered into the buffer at an angle to exclude air bubbles from the gel buffer 

interface The gel plates were fixed firm ly  in place w ith  the notched plate 

innermost The chamber formed by the inner plates was filled  w ith  IX  running 

Buffer, the samples were loaded and the electrodes were attached The gels were 

electrophoresed at a constant current o f 25 m A  per gel When complete the plates 

were removed, separated and the gel was stained in Coomassie blue Staining 

took place for 30 mm, agitating constantly The gel was then placed in destain in 

destainmg buffer w ith  constant agitation, un til all background staining was removed 

The destainmg buffer was changed as it became saturated w ith  stain
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2.29 Electrophoretic Mobility Shift Assay (EMSA) or 
Bandshift Assay

Preparation o f the probes

The probes were made by PCR using genomics preps from E coh H I 681 and S 

mehloti 2011 as templates The PCR products were cut by the Bam H I enzyme 

(generating 5' protruding ends suitable for the subsequent labelling reaction w ith  T4 

polynucleotide kinase) The cut PCR products were then dephosphorylated 

Removal o f  5' phosphate groups was carried out by treatment o f D N A  w ith  C a lf 

Intestinal Phosphatase (CIP) D NAs (< 100 ng/pl) were dephosphorylated using C1P 

in a 100 pi volume (CIP was added at 1 U  / 100 pmoles for cohesive term ini) The 

solution was mixed gently and incubated for 30 m in at 37°C This was followed by 

an enzyme denaturation step achieved by heating to 75°C for 10 min D N A  was then 

purified by phenol/chloroform extraction and ethanol precipitation

The labelling reaction was performed by adding

- 30 pmol o f  substrate D N A  containing 5 '-hydroxyl term ini 

-1 0  X  kinase buffer to give a final concentration o f  1 X

- 50 pmol o fy -32P dATP (4000 C i/m m ol, 10 m C i/m l)

- 20 U T4 polynucleotide kinase

- dH20  to a fina l reaction volume o f 50 pi

D N A  (30 pmoles) X  pi

B u ffe r (1 O X) 

y-32P dATP

T4 polynucleotide kinase (5 U /p l)

H 20

Total 16 66 nl

1 66 pi 

5 00 pi 

1 33 pi 

X  pi
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The reaction was incubated at 37°C for 40 m in Then 0 3 pi o f  0 5 M  ED TA  were 

added and the m ixture mixed, after which end-labeled oligonucleotides were 

purified away from incorporated labeled nucleotides by spin-column 

chromatography through M icroSpin™  G-25 columns essentially according to 

manufacturer’ s specifications (Amersham Pharmacia Biotech) or by ethanol 

precipitation

Binding reaction

F u r EMSA binding reaction

The binding o f purified proteins or extracts to labeled D N A  probe was performed in 

a reaction comprising

Binding M ix

Binding reaction buffer (5 X )

Non-specific competitor D N A  poly d l-dC  (1 jag/(xl) 

BSA (1 mg/m l)

Total

Binding reaction

Binding M ix  7 jLtl

32P-labeled D N A  probe (20,000 cpm /jil) 1 p.1

Purified protein/Extract X  pi

Tris/H C l pH8 0 X jd

Total 20 |il

4 pi 

lpl 
2 ul 

7 pi
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A  control reaction lacking purified proteins/extracts but containing all other 

components o f  the binding reaction was also set up The reaction components were 

mixed gently and incubated at 30°C at room temperature fo r 20-25 mm The samples 

were then loaded onto a 5 % polyacrylamide gel One extra lane w ith  Bromophenol 

blue was also added so that the leading edge o f  the gel was visualised The gels were 

were firs t prerun for 20 mm at 200 Volts and then for 2-2 5 hrs at 200 Volts

RhrA EMSA binding reaction

The binding o f purified proteins or extracts to labeled D N A  probe was performed in 

a reaction comprising

Binding M ix

B inding reaction buffer (4 X )

Non-specific competitor D N A  poly dl-dC  (1 |xg/(xl) 

BSA (1 mg/m l)

Total

Binding reaction

Binding M ix  9 |il

32P-labeled D N A  probe (20,000 cpm /jil) 1 |il

Proteins Extract X  ji l

Somcation buffer X  til

Total 20 |xl

A  control reaction lacking purified proteins/extracts but containing all other 

components o f  the binding reaction was also set up The reaction components were 

mixed gently and incubated at room temperature for 20-25 min The samples were 

then loaded onto a 5 % polyacrylamide gel One extra lane w ith  Bromophenol blue 

was also added so that the leading edge o f  the gel was visualised The gels were firs t 

prerun fo r 20 mm at 140 Volts and then for 1-1 5 hrs at 140 Volts

5 \i\

2 \i\

2 ul 

9 ul
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2.30 Gel drying and autoradiography

A fte r electrophoresis, the buffer was poured out o f  the electrophoresis tank and the 

plates disassembled A  piece o f  Whatmann 3 M M  filte r paper (cut to size) was 

placed on top o f  the gel, avoiding air bubbles and the paper lifted gently w ith  the gel 

attached to it  This was then covered w ith  cling film  and placed in a vacuum gel 

dryer, w ith  the gel facing up The gel was dried at 80°C for 2 hrs Once dry, the gel 

was placed in a cassette and exposed to X -ray film  in the dark fo r at least 12 hrs at - 

80°C The film  was developed using a Xomat developing machine

2.31 Protein determination using the Bicinchoninic 
acid assay (BCA)

♦ Preparation o f  standard curve as outlined bv Smith et a l (1985)

This assay utilised the micro-plate protocol described in the Pierce k it insert Fresh 

bovine serum albumin (BSA) was diluted from the stock (2 m g/m l) The diluent was 

the buffer in which the protein was assayed D ilutions used were in the range o f 

2000-20 |ig/m l

♦ Preparation o f  the working reagent

A  1 50 d ilu tion was made o f  the BC A working solutions B to A  Then, 25 \i\ o f  

control (buffer used fo r blank) or sample was pipetted into the appropriate 

m icrow ell To this, 200 \i\ o f  W R was added The solution was then shaken for 30 

sec The plate was covered and incubated at 37°C fo r 30 m in A fte r incubation, the 

m icro w e ll plate was dried and allowed to cool at room temperature The colour 

generated from the reaction was measured at 560 nm Absorbance readings obtained 

for unknown concentrations o f  protein were determined from the standard curve A ll
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standards and unknown samples were assayed in trip licate From the data obtained, a 

standard curve was constructed, the equation o f  which, can be calculated and used to 

determine the concentration o f the protein content o f  the sample being investigated

2.32 RNA extraction from bacterial cells

50 ml o f culture was grown in LB  and the cells were pelleted by centrifuging in a 

microfuge at maximum  speed for 5 min The bacteria were then resuspended in 

R N A W iz (1 m l R N A W iz for 2 5 OD600 U ) by simply pipetting vigorously several 

times The samples homogenised in R N A W IZ  can be stored at -20°C  or -80°C  for 

up to a month The homogenate was then incubated at room temperature for 5 mm to 

dissociate the nucleoproteins from the nucleic acids Then, 0 2 X  o f  the starting 

volume o f  chloroform was added to the homogenate The chloroform should not 

contain isoamyl alcohol or other additives The sample was covered and shaken 

vigorously for approxim ative^ 20 sec and incubated at room temperature for 10 

mm The mixture was then centrifuged at 10,000 rpm fo r 15 mm at 4°C The mixture 

separated into 3 phases, the colourless upper aqueous phase (containing the RNA), 

the semi-solid interphase (containing most o f  the D N A ), and the lower organic 

phase) W ithout disturbing the interphase, the aqueous phase was carefully 

transferred into a clean RNase-free tube 0 5 X  o f  the starting volume o f  RNase free 

water was added and the resulting volume mixed w ell Then, lx-starting volume o f  

isopropanol was added, w ell m ixed and incubated at room temperature for 10 mm 

The solution was then centrifuged at maximum speed fo r 15 mm at 4°C to pellet the 

R N A The supernatant was discarded The pellet was air dried for about 10 mm It is 

important not to let the pellet dry completely as this w ill make it  d ifficu lt to 

resuspend As well, it  is not recommended to dry it  under vacuum w ith 

centrifugation The R N A  was then resuspended in an appropriate amount o f  RNase 

free water (~150 pl/50 ml o f  culture) It was b rie ftly  subjected to vortex or 

repeatedly pipetted to aid resuspension and i f  necessary heated to ~60°C
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2.33 RNA analysis by gel electrophoresis

In order to ascertain the integrity o f R N A, isolated samples were run on 1 5 % (w /v) 

agarose gels The appropriate amount o f  agarose was dissolved in DEPC-treated 

H 2O and prepared according to the previous section The R N A  samples (1 jil)  were 

prepared fo r electrophoresis by adding 3 pi o f  R N A  sample buffer and made up to 

15 p i in DEPC-treated H 2O The samples were heated to 65°C for 10 mm prio r to 

loading on the gei The gel was run in 1 X  TAE  As ethidium bromide is included in 

the R N A  sample buffer the gels did not require further staining and could be 

visualised directly on a U V  trans-illum inator

2.34 Quantification of mRNA

The quantitation o f m R N A for the measurement o f  gene expression was performed 

in a two-step procedure In the firs t step, cD N A was prepared from R N A by reverse 

transcription using random hexamers as primers During the second step, cD N A  was 

amplified by real time PCR Real-time PCR is increasingly being adopted for RNA 

quantification based on its ab ility  to detect the amount o f  PCR product present at 

every cycle (1 e in real time), as opposed to the endpoint detection by conventional 

PCR methods, thus a llow ing the real time progress o f  the reaction, especially its 

exponential phase to be viewed The real time PCR approach is based on the 

detection and quantification o f  a fluorescent reporter, where the signal increases in 

direct proportion to the amount o f  PCR product in a reaction SYBR green was the 

flurorescent reporter employed SYBR green binds the double stranded PCR product 

in a sequence independent manner and w il l not bind single stranded D N A  (1 e 

primers) The real-time system was used for comparative gene expression analysis, 

normalising w ith  house keeping genes

Because PCR can even detect a single molecule o f  D N A , R N A  samples were 

digested w ith  Deoxyribonuclease I (DNasel) which is an endonuclease isolated from  

bovine pancreas that digests double and single stranded D N A  into oligo and
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mononucleotides This was necessary as no current R N A  isolation procedure 

removes 100 % o f the D N A

♦ Preparation o f  R N A  fo r RT-PCR

Ten-fold serial dilutions o f  total RNA were treated w ith  A m plifica tion  Grade 

DNasel according to the fo llow ing  procedure The DNase-treated R N A  and 

untreated controls were assayed by RT-PCR N o loss in RT-PCR sensitivity was 

detected w ith  DNase-treatment, indicating that the k it components do not interfere 

w ith  RT-PCR and that they are free from significant RNase activ ity

To an RNase-free PCR tube, was added

The reaction was then incubated for 15 mm at room temperature Then, lp l  o f  stop 

solution was added before heating to prevent metal (Mg/Ca) ion catalysed hydrolysis 

o f  the RNA Finally, the reaction was then chilled on ice fo r 5 min

♦ Reverse transcription fRT)

This is the process whereby m RNA is transcribed into cD N A using a reverse 

transcriptase, in this case M oloney Leukemia V irus reverse transcriptase (M -M L V  

RT) In itia lly , 2 pi o f  random hexamers was added to 2 \ig  R N A  and the volume 

brought up to 10 |i l w ith  DEPC H 20  The m ixture was heated to 70°C for 5 min, to 

destabilise secondary m R N A structures, and then placed on ice Then, the reagents 

listed below were added in the fo llow ing  order

2 pg RNA sample diluted in DEPC H 20

10 X  Reaction buffer

A m plifica tion  Grade DNase I (1 U/jul)

8 pi 

lp l 

lp l
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Reverse Transcriptase buffer (5 X ) 

dNTP m ix (20 m M )

M gC l2 (25 m M )

BSA (4 pg/pl)

8 pi 

l p l  

4 pi 

l p l

1 pi

2 pi 

13 pi

RNasin nbonuclease inh ib itor 

M -M L V  reverse transcriptase (200 U /p l) 

DEPC H 20

The reactions were placed in a Hybaid thermocycler at 37°C for 1 hr and 92°C for 

two mm followed by storage at 4°C

♦ Real time PCR

12 5 pi o f  SYBR Green PCR Master m ix containing Taq D N A  polymerase, dNTPs, 

M gC l2, and SYBR Green I dye was used Each reaction w ith  a total volume o f  25 p i 

was set up as fo llows

Samples were quantififed using the Rotor Gene™ 3000 m ultip lex system (Corbett 

research) under the fo llow ing  therm o-cycling conditions

cD N A

SYBR Green 

Nuclease free H20  

Forward prim er (0 4 pM ) 

Reverse prim er (0 4 pM )

2 pi 

12 5 pi

8 5 pi

l p l

i ^ i
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First cycle (Denature) 95°C for 15 rhin 1 cycle

Second cycle (Cycling)

Third cycle (hold) 

Final cycle (melt)

95°C for 20 sec

50°C for 30 sec 50 cycles

95°C for 30 sec

60°C fo r 1 min 1 cycle

50-99°C rising by 1°C each step, waiting fo r 15 sec on 

firs t step, then 5 sec fo r each step afterwards
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2.35 Miller Assay

The method used was described by M ille r (1972) A  1 m l aliquot o f  culture to be 

tested was centrifuged at 5,000 rpm in a m icrofuge tube for 5 min and the ceil pellet 

was resuspended in 0 75 m l o f  Z buffer The cells were permeabilised by the 

addition o f 100 ¿il o f  chloroform and 50 p i o f  0 1 % SDS The tube was vortexed for 

10 sec and then equilibrated at 30°C for 5 mm The reaction was started by the 

addition o f  0 2 m l o f ONPG (4 mg/ml in Z buffer, prepared fresh) and the tube was 

vortexed again for 10 sec The reaction was timed fo r 10-20 mm and then stopped by 

the addition o f 0 375 m l o f  1 M  Na2CC>3 The cells were then pelleted by 

centrifugation at 13, 000 rpm in a microfuge tube and OD420 o f  the supernatant 

recorded (3-galactosidase activ ity was calculated using the equation below

M ille r units =  OD420 x 1000 

V  x T x ODeoo

OD420 = the absorbance o f  the supernatant at 420 nm 

OD6oo “  tha absorbance o f  the culture at 600 nm 

V = the volume o f  the culture used in ml 

T = the time o f  the reaction in min

2.36 GFP-UV expression

Qualitative green fluorescent protein-ultraviolet (G FP-UV) expression o f  cultures 

grown on T Y  broth was evaluated by visualisation o f  cultures under bright and U V

light using a microscope 100X objective w ith  o il For quantitative measurements o f

fluorescence o f  GFP-UV in cultures, cultures were grown in T Y  broth medium

supplemented w ith  gentamicin 15 ¿ig/ml and w ith  2,2'- d ipyridy l i f  under iron

deplete conditions (250 |iM  fo r S mehloti 2 0 \\rh rA 2 6  and 300 jxM fo r S mehloti 

2011 and 2 0 \\r irA 2 )  When the culture reached late exponential phase, 100 j i l  was
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transferred to m icrotiter plates (three cultures were grown per condition and readings 

were done m triplicate), and fluorescence was evaluated w ith  a luminescence 

spectrometer LB  50 using a 490 nm excitation and 520 nm emission Cell optical 

density at 600 nm was measured Quantitative fluorescence was determined 

according to Tang et a l (1999)

2.37 Iron nutrition bioassays to detect siderophore 
utilisation

Siderophore utilisation bioassays (O Cuiv, 2003) were performed in media prepared 

w ith  ultra pure water ands supplemented w ith  the appropriate concentration o f 2,2’ 

d ipyridyl Molten agar (1 5 % w ith  Oxoid N°1 purified technical agar) prepared in 

25 ml aliquots, was inoculated w ith  200 (il o f  stationary phase culture and the 

appropriate concentration o f  2,2’ d ipyridyl usually 300 jiM  for S m ehloti, and the 

mixtures were poured into sterile plates Wells were cut out o f  the solid media, and 

50 \i\ o f  the test solutions were pipetted into the wells Growth was allowed to 

proceed for 24 to 48 hours, and plates were then examined for haloes o f  bacterial 

growth surrounding wells bearing test solutions

Test solutions (concentrated culture supernatants) were prepared by adding 2,2’ 

d ipyridyl to the appropriate concentration to broth, usually 300 yM  fo r S mehloti, 

and then inoculating w ith  the relevant strain Growth was allowed to proceed until 

late log phase The culture was transferred into 1 5 m l aliquots to microfuge tubes 

and centrifuged at 13,000 rpm for 3 mm to pellet the cells Cell free supernants were 

transferred to fresh tubes and concentrated in a vacuum dryer set to high 

temperature, and then resuspended in one-tenth the orig inal volume w ith  ultra pure 

water The samples were then pooled, filte r sterilised through a 0 45 pm filte r and 

stored in the dark at -20°C
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2.38 Molecular maker used for the different reactions

1Kb ladder used fo r southern blot and D N A  agarose gels and protein standard 

markers used for SDS-PAGE gels.

Da S igm a M 4038
205,000----

116 ,0 0 0-----
97,400-----
84.00 0-----
66.00 0------

55.00 0-----
45.00 0----

36.00 0----

29.00 0-----
24.00 0---- '

20,1 GO-

14, 200- 
6,500-

NEB
1Kb DNA Ladder (N 3232G)

1000 bp

500 bp

Invitrogen 
bP 15615-016

1 2 , 2 1 6
11 • ' - -• i n i ftn

 6 1 08
 50SG
 4 0 7 2

—  3 0 5 4

 2 0 3 6

 1 636

-----10 18

 506  51 7
 396

162
1 44
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Chapter 3: 

Identification and 

characterisation of the fur gene in 

Sinorhizobium meliloti
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3.1 Introduction

The availability o f iron to rhizobia free-liv ing in the soil is potentially lim iting  due to 

the inso lub ility o f  fem e iron and also because rhizobia have to compete w ith  other 

microorganisms to acquire the available iron S mehloti 2011 produces one known 

siderophore, rhizobactm 1021 that has been shown to be inessential for symbiotic 

nitrogen fixation (Lynch et a l , 2001) It is like ly  to contribute to the competitiveness 

o f  the bacterium when free liv ing  in the soil Furthermore, rhizobia in symbiosis 

display a high requirement for iron, as many o f  the proteins involved in nitrogen 

fixation require the metal as a cofactor

In many gram-negative bacteria, the ferric uptake regulator (Fur) protein controls the 

production o f siderophores playing a dentral role in the control o f  genes involved in 

iron homeostasis Because iron is an important metal in the agriculturally important 

symbiosis between alfalfa and its n itrogen-fixing endosymbiont S m ehloti, the role 

o f Fur was investigated in the organism The aim o f  the investigation was to 

understand the role o f  Fur in the regulation o f  iron acquisition systems, including 

rhizobactm 1021 in the context o f  maintaining an overall balance o f  iron w ith in  the 

cell

Analysis o f  the rhizobactm operon has revealed the presence o f  10 ORF’ s which 

have been shown to be or to have a high probability o f being, functional genes The 

characterization o f the ORF’ s was undertaken by mutation and by bioinformatic 

analysis Six o f the ORF’ s showed homology to siderophore biosynthesis genes and 

were designated rhbA, B, C, D , E, and F  respectively The protein products o f two 

further ORF’ s showed homology to an A raC-like transcriptional regulator and to a 

siderophore outer membrane receptor and were designated rhrA  and rhtA  

respectively (Lynch et a l , 2001 and PhD Thesis, 1999) The protein product o f  the 

ninth ORF, designated rhbG , showed homology to siderophore biosynthesis proteins 

but as yet, no function as been assigned to it  The final ORF was recently

119



characterized as a permease and named rh tX (O Cuiv et a l 2004). Fig 3.1 shows the 

positions and orientations o f  the above mentioned genes.

Legend:

Permease 

B  Siderophore B iosynthesis 

CH AraC type regulator 

G  Outer membrane receptor

Fig 3 .1 :  Organisation of the rhizobactin 10 2 1 regulon

Fur in E. co li binds under iron replete conditions to the promoter regions o f  the 

regulated genes on an operator sequence called the ‘ Fur box’ . It was decided to 

search the genome o f  S. m elilo ti in order to identify the Fur homologue. The gene 

was then cloned into an expression vector to overexpress and purify  the protein. Its 

functionality was checked by assessing its complementation o f  an E. co li f u r  mutant. 

The protein was overproduced w ith  the aim o f  characterising the promoter regions 

bound by the regulator by the electrophoretic m ob ility  shift assay (EM SA).
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3.2 Identification of the Fur homologue in S. meliloti
3 21  Blast analysis

Smc02510 was identified as the S m eliloti Fur homologue by BlastX analysis using 

the N C B I database The protein encoded by Smc02510 is 42% identical to the one 

encoded by E coh K12 f u r  and was therefore the primary candidate to be the 

functional Fur homologue (Fig 3 2)

* 20 * 40 * 60 * 80
co ll  |rD N »T A u\^nF |L lA M pD Q H V S ^D R A ,ID |G E E S G 9A ^yvA jQ FD D A ffir^& G  76
m elilo ti HSQSKNI^ELEGAGBRQSkABW^Bg-JsEllHBAKEBDATBsBsBBiTlsALEOQBtoBABjA 82

6 U  G64VT R IL6LE 1H A H R  6 6 L fVYR L G6V RH FE

* 100 * 120 * 140 *
E co ll KSVffiL!TQQH^ncflDC|KnSI]gs^RBRnKHElR&[Nys9YfflGHCAEGDCREDEEAHEGK 148
S m elilo ti T A ® A D A E ^ H ^ TBpH Rsi W Il iH Ê If l iI| RBEB CRKRKD------------------  142

___________ PE KBDHLI 6 G VIEF DIE Q EIAA G L H L LY ______

Fig 3  2 . Amino acid sequence alignments of F u r from S meliloti 2 0 11  
(SmcO2510) and F u r from E . coh K 12 .

Recently, several Fur-like proteins have been identified that are not functional Fur 

homologues, but instead are involved in the maintenance o f zinc homeostasis 

(Gaballa et a l , 1998, Patzer et a l , 1998), manganese-dependent response to 

oxidative stress (Bsat et a l , 1998) or iron-dependent regulation o f haem biosynthesis 

(Hamza et a l , 1998) Additional f u r -like  genes have been identified from genome 

sequencing and from screens fo r genes involved in pathogenesis (C am illi et a l , 

1995, Wang et a l , 1996) There now appears to be a fam ily  o f  Fur proteins that are 

functionally diverse, but are all involved in metal-dependent regulation As a 

consequence, it  was not unexpected to obtain more than one Fur candidate from the 

Blast analysis

From the S' m eliloti genome, two additional proteins were also identified as Fur -  

like proteins
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♦ W ith 28% identity: Smc00329, which is a homologue o f  Irr (Iron response 

regulator) in B. japonicum . Irr regulates haem (Hamze et a l , 1998). Identified and 

characterised in B. japonicum , this protein may be the most divergent o f the Fur-like 

proteins described so far in that it is only active under metal lim itation and contains a 

single cysteine residue rather than the m ultip le cysteines found in the other proteins. 

Moreover, i r r  gene expression is strongly regulated by iron whereas f u r  is essentially 

constitutive,

♦ W ith 31% identity: Smc04242, which encodes Zur, which is a putative 

zinc uptake regulator.

3.2.2 Smc02510: The p rim ary  fu r  homologue in  S. m e lilo ti

Smc02510 is a 429 bp gene present as a single copy on the chromosome (Fig 3.3). 

Located downstream from the f u r  gene, an ABC  transporter system encoded by the 

sitABCD  operon is present and was characterised by Platero et a l  (2003) as a 

manganese transport system.

429 bp sitA sitB sitC sitD

fur

Fig  3.3: C hrom osom al location o f f u r

In the intergenic region between f u r  and sitABCD  a putative ‘ Fur box’ was identified 

(Fig. 3.4).
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‘Fur Box’
S. meliloti 2 0 11 : G C A A A T G C T T C T C A T T T G C
E. coli: G A T A A T G A T A A T C A T T A T C

G  A A T G  T  T C A T T  C

Fig. 3.4: Alignment of the putative S. meliloti ‘ Fu r Box’ to the E. coli ‘ F u r box’ 
consensus sequence.

3.3 Cloning of S. meliloti fur.

The development o f  recombinant D N A  technology has made feasible the 

overexpression o f  proteins in E. coli. However, each gene presents unique 

challenges for its overproduction and it is often necessary to optimise the regulatory 

elements and growth conditions for high-level expression. D ifferent vectors are 

available w ith  a variety o f  features.

pQE, a series o f  commercial vectors w ith prominent advantages have been w idely 

used for overexpression o f  proteins in the cytoplasm o f  E. coli. They contain a 

powerful expression cassette composed o f a phage T5 promoter, two lac  operator 

sequences, a synthetic ribosome binding site (RBS), and an optimised codon 

sequence MRGSH6GS at the N-terminus o f  the target protein to improve expression 

up to as much as 50% o f  total cellular protein (Fig 3.5). It was decided to use pQE60 

from Qiagen that would a llow  the overexpression o f  the Fur protein w ith a His tag 

fused to its C-terminal.
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F ig  3.5: pQE60 map (Q iagen)

The fu r  gene from S. m e lilo ti 2011 was amplified from S. m elilo ti genomic D N A  by 

PCR. The restriction sites N co l and B am H I sites were incorporated into the forward 

and reverse primers respectively having the fo llow ing  sequences :

♦ Fur60-F  :

CCATGG AG AG C C A G A G C AA G A ATC G G A TC G

♦ Fur60-R  :

GGATCC GTC CTTG CG CTTCCG GCAATAG

The ATG  in the restriction site o f  N co l was used as the start codon for Fur. The 

amplified fragment extends from the start codon to the final codon before the stop 

codon allow ing a 6 histidine tag to be added to the C-terminus o f the recombinant 

Fur (Fig 3.6). The cloning strategy is outlined in Fig 3.7. This 438-bp fragment 

generated by PCR was cloned into the pCR2.1 vector. The Ncol-Bam H l fragment 

carrying the PCR-generated product was subcloned into the expression vector 

pQE60. pQE60 is a high copy number plasmid that allows high-level regulated 

expression o f  C- terminal 6xHis-tagged proteins in E. coli.
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PQE-60

EcoRI/RBS Ncol BamHI 6xHi s

GA AGATCT TAA

Fur - 6xH is

Fig 3.6 : C lon ing  o f  the f u r  gene in to  the m u ltip le  c lon ing site o f  pQE60
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The Polymerase Chain Reaction (PCR) program used is described in the Table 3.1 .

Table 3 .1 :  P C R  Reaction Conditions for the amplification of the S. meliloti fur 
gene.

P C R  Conditions

Annealing Temperature 66°C 

Annealing Time 1 min 

Extension Time 72°C for 1 min

Follow ing the cloning, the resulting vector, designated pFur60, was transformed into 

E. co li X L  10 gold fo r overexpression and purification and E. co li H I 681 to check 

the functionality o f  the recombinant protein and to assess E. co li fu r  

complementation.
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3.4 Complementation of an E. coli fur mutant
I

< 1 /
Many Gram-negative bacterial species possess a f u r  system w ith  close enough

homology to allow  the complementation o f  a f u r  mutation in E co li (L itw in  et a l ,

1992, W ooldnge et a l , 1994, Yamamoto et a l , 1997 and Bereswill et a l , 1998)

The complementation assay was used to determine i f  the recombinant protein S

mehloti Fur was functionally active despite the presence o f  the His-tag and also i f

the protein functions in a sim ilar way to E coli Fur The importance o f contro lling

iron intake has led to the conservation o f  f u r  regulation in a wide spectrum o f

bacteria

In order to discover whether or not, Fur from S mehloti binds to the canonical Fur 

box, a Fur complementation on an E coli fu r  mutant was thus performed

For the complementation assay, E co li H I 681 carrying a mutation in the fu r  gene 

was used It also possesses the lac gene under the control o f the promoter o f  the fu r -  

regulated f t iu F  gene encoding a ferric hydroxamate uptake protein This promoter 

contains the canonical ‘Fur box’
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McConkev Agar +2,2’-D McConkev Agar +FeCK

3.4.1 Principle o f  the complementation assay

F ig  3.8: P rinc ip le  o f the com plem entation assay 

The principle o f  the assay is that:

♦ The strain used carries a mutation in the endogenous f u r  gene and relies 

on an introduced fu r  gene fo r Fur activity.

♦ U nder iron  deplete cond itions, i.e. in the presence o f  2,2 '-dipyridyl, no 

ferrous iron is available to act as a cofactor for Fur and thus the repressor 

cannot bind to the promoter region o f  the E. co li fh u F  gene g iving rise to red 

colonies (Fig 3.8).

♦ However, under iron  replete cond itions, the ferrous iron can bind to the 

transcriptional repressor. I f  it is functional, the dimer can then bind to the 

f l iu F  promoter region, g iving rise to white colonies or in some cases, i f  the 

complementation is only partial, to pink colonies (Fig 3.8).
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3.4.2 Results

E. co li H I 681 bearing either pFur60 or pQE60 (the empty vector as a negative 

control) were plated onto am picillin  MacConkey agar containing either 200 jxM 2 ,2 - 

d ipyridyl or 0.1 m M  FeCh and incubated overnight at 37°C.

The plates showed that under iron replete conditions, the induction o f  pFur60 

resulted in the production o f  S. m elilo ti Fur that had bound to the E. co li fh u F  

promoter g iving rise to pink colonies (Fig 3.9, 3.10 and Table 3.2).

Table 3.2: Complementation Assay results

Strain M cConkey A gar +  F eC l3 M cConkey A gar +  2 ,2 f- 
dipyridyl

E. coli H 16 8 1 +  pFur60 Pink Red

E. coli H 16 8 1 +  pQE60 Red Red

. . ^  .....
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F ig  3.9: F u r com plem entation on M e Conkey A g a r supplemented w ith  FeCh 
(iron  replete conditions).

On the left, colonies from a culture of E. coli HI681 containing pQE60 induced with IPTG at a 
concentration of 0.1 mM for four hrs; on the right, colonies from a culture of E. coli HI681 
containing pFur60 induced with IPTG at a concentration of 0.1 mM for four hrs.

F ig  3.10: F u r com plem entation on M e Conkey A ga r supplemented w ith  2,2 '- 
d ip y r id y l ( iron  deplete conditions).

On the left, colonies from a culture of E. coli HI681 containing pQE60 induced with IPTG at a 
concentration of 0.1 mM for four hrs; on the right, colonies from a culture of E. coli HI 681 
containing pFur60 induced with IPTG at a concentration of 0.1 mM for four hrs.
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Therefore, the complementation showed that the recombinant S mehloti Fur w ith 

the His-tag is a functional protein The protein was able to bind partially to the 

promoter region o f  the E cob f l iu F  gene

3.5. Overexpression of S. meliloti Fur in E. coli XL10 
gold.

In order to perform the m ob ility  shift assay to investigate the physical interaction 

between S mehloti Fur and the promoters it regulates, the regulator had to be 

produced in enough quantity that a band shift could be detected

To overexpress the transcriptional regulator from  pFur60, an E cob strain harboring 

a laclq mutation is desirable For the fo llow ing  work, it  was decided to use E cob 

X L  10 gold

A  series o f different expression conditions were assessed to optimise the 

recombinant protein induction and to obtain the highest possible yield o f the protein

A  time course was undertaken to determine the optimum length o f  time for culture 

growth at 37°C after induction w ith  IPTG Gradients o f  different lengths o f  

sonication and different concentrations o f  IPTG were used to determinate the 

optimal conditions In each case, the optim isation was carried out under native and 

denaturing conditions Indeed, often the amount o f  native proteins lost under certain 

conditions, due for example to the formation o f inclusion bodies, can be appreciated 

by comparing the amount o f  recombinant protein detected under native and 

denaturing conditions

3 51 Optimisation o f the time of induction

To optimise the expression o f  the recombinant Fur, a time-course analysis o f the 

level o f  protein expression fo llow ing  induction was carried out This was done on a
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small scale (culture volume). The use o f  small-scale expression cultures provides a 

rapid way to judge the effects o f  varied growth conditions on expression levels and 

the so lubility  o f  recombinant proteins. Induction was undertaken w ith  IPTG at 0.1 

m M , which was optimised as described below.

The level o f  expression o f  S. m e lilo ti Fur over a period o f  six hrs post induction was 

analysed to determine the optimum time post induction for culture growth. Proteins 

were prepared under denaturing and native conditions and analysed by SDS-PAGE 

(Fig 3.11 and Fig 3.12).

F ig 3.11: SDS-PAGE gel loaded w ith  pro te in  prepara tions fro m  E. co li X L10  
Gold, pFUR60: T im e course o f expression o f F u r under denatu ring  
conditions.

Lane 1: Ladder
Lane 2: Non induced at time 0
Lane 3: Induced at time 0
Lane 4: Non induced after 1 hr
Lane 5: Induced after 1 hr
Lane 6: Non induced after 2 hrs
Lane 7: Induced after 2 hrs
Lane 8: Non induced at time after 4 hrs
Lane 9: Induced after 4 hrs
Lane 10: Non induced at time after 6 hrs
Lane 11 : Induced after 6 hrs
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1 2  3 4 5 6 7 8 9  10 11

Fig  3.12: SDS-PAGE gel loaded w ith  pro te in  prepara tions from  E. co li X L10  
G old, pFUR60: T im e course o f expression o f F u r  under native conditions.

Lane 1: Ladder
Lane 2: Non induced at time 0
Lane 3: Induced at time 0
Lane 4: Non induced after 1 hr
Lane 5: Induced after 1 hr
Lane 6: Non induced after 2 hrs
Lane 7: Induced after 2 hrs
Lane 8: Non induced at time after 4 hrs
Lane 9: Induced after 4 hrs
Lane 10: Non induced at time after 6 hrs
Lane 11 : Induced after 6 hrs

It was decided that a time o f  four hrs growth post induction was g iving the best 

results under native conditions. As well, there is not a noticeable difference between 

the yield o f  proteins obtained under native and denaturing conditions, which would 

suggest that the S. m e lilo ti Fur is a stable protein and is not subject to the formation 

o f  inclusion bodies.

3.5.2 Optim isation o f  the concentration o f  IP T G

The expression o f  the recombinant Fur was induced w ith  IPTG. However, the 

inducer can present disadvantages, one o f  which is its tox ic ity  to the cell. IPTG does 

influence E. co li metabolism substantially, altering both the synthesis o f  certain
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proteins and the specific growth rate (Kosinski et a l., 1992). Indeed, a strong IPTG- 

induced expression o f  recombinant genes often inhibits cellular growth. This growth 

inh ib ition is suggested to be caused by a perturbed balance o f  protein synthesis after 

induction. The strong increase o f  induced m RN A affects general cellular 

maintenance by causing a reduced synthesis o f  proteins necessary fo r growth and 

reproduction (V ind et a l., 1993; Dong et a l., 1995; Rinas, 1996). Dong et a l  (1995) 

have shown the rapid inh ib ition o f  ribosomal R N A synthesis, and even the 

degradation o f ribosomes after a strong induction by IPTG.

It is thus important to lim it the concentration o f  inducer used to start the expression 

o f  the recombinant proteins to the m inim um necessary. Protein yields obtained four 

hrs post induction, from a gradient o f  0.05 to 1 m M  IPTG for the induction o f  the 

culture, were compared under native and denaturing conditions (Fig 3.13 and Fig 

3.14).

1 2 3 4 5 6 7

F ig  3.13: SDS-PAGE gel loaded w ith  pro te in  prepara tions from  E. c o li X L10  
G old, pFUR60: O ptim isa tion  o f the concentration o f IP T G  fo r  m in i prep 
under dena tu ring  conditions.

Lane 1 : Ladder
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Lane 2: Non induced
Lane 3: Induced with 1PTG at a concentration of 0.05 mM 
Lane 4: Induced with IPTG at a concentration of 0.10 mM 
Lane 5: Induced with IPTG at a concentration of 0.25 mM 
Lane 6: Induced with IPTG at a concentration of 0.50 mM 
Lane 7: Induced with IPTG at a concentration of 1.00 mM

Fig 3.14: SDS-PAGE gel loaded with protein preparations from E. coli XL10 
Gold, pFUR60: Optim isation o f the concentration o f IPTG for mini prep 
under native conditions.

Lane 1: Ladder 
Lane 2: Non-induced
Lane 3: Induced with IPTG at a concentration of 0.05 mM 
Lane 4: Induced with IPTG at a concentration of 0.10 mM 
Lane 5: Induced with IPTG at a concentration of 0.25 mM 
Lane 6: Induced with IPTG at a concentration of 0.50 mM 
Lane 7: Induced with IPTG at a concentration of 1.00 mM

The results showed no detectable difference in protein levels following induction 

with the different concentrations o f  IPTG. W hile a concentration o f  0.05 mM IPTG 

was shown to be sufficient for induction, it was decided to use 0.1 mM in
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subsequent experiments This concentration is well below that which has been 

shown to cause toxicity

3 5 3  O ptim isation o f  the tim e o f  som cation

Finally, the last optim isation was for the sonication time used to lyse the cells during 

protein preparation Sonication for too long under native conditions would perturb 

the quaternary structure o f  the protein while on the other hand, it has to be long 

enough to break down the E coh  envelope to release recom binant proteins from the 

cytoplasm

The sonication was performed using a 3 mm micro-tip somcator (Somes & M aterials 

Inc ) using 2 0 sec, 40 kHz pulses D ifferent tim es o f sonication were applied to the 

bacterial cells, which w ere carefully kept on ice and the results compared (Fig 3 15 

and 3 16)
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Fig 3.15: SDS-PAGE gel loaded with protein preparations from E. coli XL10 
Gold, pFUR60: Optim isation o f  the time o f  sonication for mini preps 
under native conditions. Sam ples were induced with 0.1 mM IPTG.

Lane 1: Ladder 
Lane 2: No sonication 
Lane 3: 20 s sonication time 
Lane 4: 40 s sonication time 
Lane 5: 60 s sonication time 
Lane 6: 80 s sonication time 
Lane 7: 100 s sonication time
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1 2 3 4 5 6 7

Fig 3.16: SDS-PAGE gel loaded with protein preparations from E. coli XL10 
Gold, pFUR60: Optim isation o f the tim e o f sonication for mini preps 
under denaturing conditions.

Lane 1 : Ladder 
Lane 2: No sonication 
Lane 3: 20 s sonication time 
Lane 4: 40 s sonication time 
Lane 5: 60 s sonication time 
Lane 6: 80 s sonication time 
Lane 7: 100 s sonication time

W hile 20 seconds is sufficient under denaturing conditions, 40 seconds is the 

minimal length o f  sonication tim e necessary to extract the native recom binant S. 

meliloti Fur.
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As the goal is to purify a large amount o f  recom binant protein, Fur was also 

produced in large scale ( 1 0 0  ml) and the somcation had to be optimised for such a 

volume
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1 2 3 4 5 6

Fig 3.17: SDS-PAGE gel loaded with protein preparations from E. coli XL10  
Gold, pFUR60: Optim isation o f the tim e o f sonication for large preps 
under native conditions

Lane 1: Ladder
Lane 2: Protein prep induced with 0 s for sonication time 
Lane 3: Protein prep induced with 30 s for sonication time 
Lane 4: Protein prep induced with 60 s for sonication time 
Lane 5: Protein prep induced with 90 s for sonication time 
Lane 6: Protein prep induced with 120 s for sonication time

A sonication o f  1 min is necessary to extract S. meliloti Fur from large scale 

cultures.
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3.5.4 Conclusion

Following the optim isation procedures described for length o f  growth period after 

IPTG induction, IPTG concentration used for induction and sonication, it was 

concluded that induction with 0.1 mM  IPTG followed by growth for 4 hrs was 

optimum. For small scale studies using 1.5 ml cultures, 40 seconds sonication was 

used while 1  min sonication was used for 1 0 0  ml cultures.

After optimisation o f  the overexpression, it can be said using a density program that 

the native S. meliloti recom binant Fur represents about 15 % o f  the total protein 

content o f  E. coli XL10 gold, pFur60 (Fig 3.18).

1 2 3

Fig 3.18: SDS-PAGE gel loaded with protein preparations from E. coli XL10 
Gold, pFUR60: S. meliloti recom binant Fur expressed under native 
conditions

Lane 1 : ladder
Lane2: Non induced culture
Lane 3: Induced culture
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3.6 Purification of the Fur protein by IMAC 
(Immobilised metal affinity chromatography)

3 61 Principle o f IMAC

IMAC involves the affinity binding o f  His-tagged proteins to the nickel ions 

immobilized on a m atrix The imidazole ring is the part o f  the histidine structure, 

which binds to the nickel ions immobilized by the matrix Therefore, imidazole itself 

can also bind to the nickel ions and disrupt the binding o f  histidine residues, thus 

releasing a tagged protein One m ajor consideration in the purification o f  proteins is 

the concentration o f  imidazole used (Fig 3 19)

Fig 3 19 Chem ical structures o f histidine and im idazole

Since the S  mehloti recom binant Fur was intended for use in mobility shift assays 

and so was needed in the native state, the recom binant protein was purified from an 

E coh  protein extract in which the protein was released from the cells under native 

conditions
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There is no general protocol for purifying a protein under native conditions, as each 

protein has different requirem ents However, some general suggestions found in the 

literature helped to  optimise the native purification o f  S  m ehloti Fur (M akrides et 

a l , 1996)

3 6 2 Optimisation o f the buffers for I  MAC

All buffers should have sufficient ionic strength to prevent nonspecific interactions 

between proteins and the resin an d so  a salt concentration o f  300 m M  NaCl was used 

in the sonication, wash, and elution buffers

Because a low concentration o f  imidazole in the lysis and wash buffers minimize 

non-specific binding and reduces the amount o f  contam inating proteins, 10 mM 

imidazole was added to the sonication buffer For the washing buffers a higher 

concentration had to be added To determinate the appropriate concentration o f  

imidazole, different concentrations were added to the protein extracts to determine 

the highest concentration o f  imidazole that can be applied to the column without 

precipitating the recom binant protein (Fig 3 20)
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Fig 3.20: 15 % SDS polyacrylam ide gel. Native protein preparations from E . 
coli XL10 Gold, pFur60 analysed by addition o f washing buffers with a 
gradient o f imidazole concentrations.

Lane 1: Ladder 
Lane 2: 5 mM Imidazole 
Lane 3: 10 mM Imidazole 
Lane 4: 25 mM Imidazole 
Lane 5: 50 mM Imidazole 
Lane 6: 75 mM Imidazole 
Lane 7: 100 mM Imidazole 
Lane 8: 150 mM Imidazole 
Lane 9: 200 mM Imidazole 
Lane 10: 225 mM Imidazole 
Lane 11: 250 mM Imidazole

A concentration o f  150 mM imidazole was chosen, as it does not precipitate the 

recom binant Fur while competing with a lot o f  the non-specific proteins that have 

bound to the resin.

Finally, 250 mM imidazole was the concentration o f  imidazole chosen to precipitate 

the recom binant protein.
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3 63  Optimised purification protocol

After sonication o f  the bacterial cells in lysis buffer, 5 ml (250 \i\ for a small scale 

preparation) o f  the resulting solution was added to a universal bottle containing 1  ml 

(100 \i\ for a small scale preparation) o f  an IDA metal resin (Invitrogen) charged 

with nickel Binding o f  the protein resulted from the binding o f  the 6 xHis-tag 

attached to Fur to the nickel This was promoted by shaking the universal at 4°C for 

one hr This step promotes the efficient binding o f  the His-tagged recom binant 

protein especially in case the His-tag is not fully accessible or if the concentration o f  

Fur in the lysate is low Then, the resin was washed tw ice with 5 ml (200 |il for a 

small scale preparation) o f  the washing buffer, containing 150 m M  imidazole, and 

finally eluted three tim es with 2 5 ml (50 \i\ for a small scale preparation) o f the 

elution buffer, containing 250 m M  imidazole The eluted proteins were pooled 

together

An example o f  the results o f  a recom binant S  m ehloti Fur purification carried out in 

large scale is shown in Fig 3 21
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1 2 3 4 5 6 7 8

Fig 3.21: 15 % SDS polyacrylam ide gel following purification o f native Fur 
protein and IM AC purification o f recom binant His-tagged-Fur.

Lane 1: Ladder
Lane 2: Fur native preparation
Lane 3: Wash through
Lane 4: Wash 1 with 150 mM Imidazole
Lane 5: Wash 2 with 150 mM Imidazole
Lane 6: Elution 1 with 250 mM Imidazole
Lane 7: Elution 2 with 250 mM Imidazole
Lane 8: Elution 3 with 250 mM Imidazole

Following the purification, a Dialysis was then performed to remove the imidazole 

as it could affect the perform ance o f  the mobility shift assay. S. meliloti Fur was

dialysed overnight at 4°C against 20 mM  Tris/HCl pH 8  0 and stored at -20 °C.

Purified Fur was prepared in this way for the mobility gel shift assays.
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3.7 Electrophoretic Mobility Shift Assay (EMSA)

The mobility shift assays were performed with the aim o f  determining the binding 

activities o f  the purified recom binant Fur from S. meliloti to different S. meliloti 

promoters known to be iron responsive. The analysis o f  the transcriptional regulator 

was mainly concentrated on investigating its role in the regulation o f  the genes 

involved in rhizobactin 1 0 2 1  mediated iron uptake.

The DNA probes for the mobility shift assay were prepared by PCR and the regions 

amplified are indicated in Fig 3.22.

Positive control Iron responsive genes

(3)
rhrA

rhtA
< ►

(4) I Smc02726 \

Fur Au to regulation / 
Adjacent transport

(1) (2) rhtX I rh b A B C D E F
»ysicm.................

fhu <— — ► <----► (5) 1 sitABCD

0

Fig 3.22: DNA p robes fo r m obility  sh ift assay.
The amplified regions are shown (<-») for the fhuF promoter region of E. coli, a positive control (1), 
iron responsive promoters from S. meliloti (2,3 and 4) and the promoter region of the fur gene in S. 
meliloti (5).

The prom oter region o f  fh u F  was amplified to be used as a positive control. From 

the com plementation described in section 3.4.2, it is known that S. meliloti Fur binds 

the fh u F  prom oter and thus this mobility shift assay would dem onstrate that the 

experimental conditions are correct.

RNase Protection Assays (RPA) carried out previously (Lynch et a l ., 2001) have 

shown that the operon rhtXrhbABCD EF  which encodes the rhizobactin 1021 

perm ease and biosynthesis genes, are iron responsive. Thus, the binding o f  Fur to the
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prom oter o f this operon was investigated Also, the outer m em brane receptor 

encoded by rhtA is known to be iron responsive and therefore the m tergenic region 

between rhrA  and rhtA  was also investigated for Fur binding

Also, the prom oter region o f  smc02726, a gene encoding the outer m embrane 

receptor for haem utilisation in S  mehloti, which was characterised by another 

m ember o f the research group (Paraic O Cuiv, unpublished data) was investigated

Finally, regulators are found to be autoregulatory in many cases In E coh, Fur 

expression is constitutive However, E  coh  Fur can bind weakly to its own prom oter 

and downregulate its expression Also, the regulator often regulates adjacent genes 

Thus, the m tergenic region o f fur-sitABC D  was amplified to be used as a probe
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The double stranded oligonucleotide probes were amplified by PCR and labelled as 

described in chapter 2. Specific primers as shown below were designed to amplify 

different promoter regions o f  E. coli H I681 and S. meliloti 2011. After amplification 

from genomic DNA, the PCR products were purified and visualised by agarose gel 

electrophoresis. The resulting PCR products range from 100 to 250 bp:

Promoter sequence upstream fhuF:

MSAfhuF-F:

C G G G A T C C  CGG AAC GAT AGG CCA TAA TCG GG 

M SAfhuF-R:

C G G G A T C C  TCC CCA GCC ACT GCC CAG CG

C G G G A T C C C G G A A C G A T A G G C C A T A A T C G G G A T A G T A A T C T A A A T G
A T A A T G A T T G C T A A T C A T A G C G A T A G G T T T A C C C G A T A G C A A G G G A T
T T A T C T G G C T T G C A A A T G A T A A A A A T T A T C A T A T G A T A T T G G T T A T C A  
TTATC A A T G A A A G A G A T G A A A T C A T G T T G C A A C G T A C G C T G G G C A G T
G G C T G G G G A G G A T C C C G __________________________________________________
Probe length: 205bp. Highlighted in orange is the E. coli Fur Box and purple the 
Bam H I sites used in labelling the probe.

Promoter sequence upstream rh tX :

M SARHTX-F:

C G G G A T C C  CCT ATC GCC TCT CTC GAA AAT GC 

M SARHTX-R:

C G G G A T C C  CGA AAA CTG CCA CTG CCC GGC

C G G G A T C C C C T A T C G C C T C T C T C G A A A A T G C G T T C G C T A C T G T C T T A  
A T G A G G T T C G C T C A C A T C C A A G C C G T T C A C C G C A C G T C C A T T T A A A G  
A T G  ACC i G C A AC A C T C  ATG T T T  A T ( G T C  A G A C  A A T G T T G C C G G G C  A G T
G G C A G T T T T C G G G A T C C C G _______________________________________________
Probe length: 160 bp. Highlighted in orange is the E. coli Fur Box and purple the 
Bam H I sites used in labelling the probe.

Intergenic sequence between rhrA and rh tA :

M SArhra-F:

C G G G A T C C  GTC GTG CGC CAG CCT TTC CTG
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MSArhra-R:

C G G G A T C C  T GCC CA T AA CGC CCC CTG CGC

C G G G A T C C G T C G T G C G C C A G C C T T T C C T G T T G A C G T T C G C A T G C G T C
C A A A T G A G G T T C G C C A T T A T C C A A G C G G C G A A C A C C C T T A G C C C A T A
A A A C A T G A C T T A A A T A G T C T T G T A T T G G C A A T T T G C C C G C C C A C C G G
C A G C G G C A A T T G T T T T C T G G T G C G C A G G G G G C G T T A T G G G C A G G A T
C C C G _________________________________________________________________________
Probe length: 191 bp. Highlighted in orange is the E. coli Fur Box and purple the 
Bam H l sites used in labelling the probe.

Promoter sequence smc02726:

M SAheme-F:

C G G G A T C C  GGA CCA GTC CTT TGA AAG TGT TGG 

M SAheme-R:

C G G G A T C C  GTT TTC TTA TGT GAC GAA AAT AAG GC

CG G G A TC C G G A C C A G T C C T T T G A A A G T G T T G G C C G G G C T T  j C T G T T  
G A G C G G CG A A C TC A A G G G C T G G C T G G G C A G T G C G G A A T T G G G C A A G  
G C G A T C T A T T T G C G C C T T A T T T T C G T C A C A T A A G A A A A C G G A T C C C G

Probe length: 139bp. Highlighted in orange is the E. coli Fur Box and purple the 
Bam H I sites used in labelling the probe.

Intergenic sequence between fur and sitA:

MSAsitA-F:

C G G G A T C C  CCC GCG ACA CTA GCC AAG GGG 

M SAsitA-R:

C G G G A T C C  CCG GCT CTC CTC TTT GCG AAC C

C G G G A T C C C C C G C G A C A C T A G C C A A G G G G A C A C C T T T T G G A A A T A G  
C T  A G T T G  C  A A AT G C T T C T  C A T T T  G C A T T G  A C T T  A T G C  A G A C C  A T T C G  
C C T A C C C A T A T T A T G G T T C G C A A A G A G G A G A G C C G G G G A T C C C G

Probe length: 137bp. Highlighted in orange is the E. coli Fur Box and purple the 
Bam H I sites used in labelling the probe.

The PCR program used is described in the Table 3.3.
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Table 3.3: PCR Reaction Conditions for the am plification o f the different 
probes.

PCR Conditions

Annealing Tem perature 64°C 

Annealing Time 1 min 

Extension Time 72°C for 1 min

Cell extracts for m obility shift assays

In addition to using purified Fur, EM SAs were also conducted with cell extracts 

containing overexpressed Fur.

Cell extracts were prepared from E.coli XL 10 Gold carrying the following plasmids: 

Bearing the vector pQE60 and which was induced for 4 hrs with a 

concentration o f  IPTG o f 0.1 mM. This was used as the negative control 

instead o f  a non-induced culture o f  pFur60 as the latter could lead to a 

leaky expression o f  the protein.

Bearing the vector pFUR60 and which was induced for 4 hrs with a 

concentration o f  IPTG o f 0.1 mM. In this sample, the recom binant S. 

meliloti Fur is overexpressed.
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3.7.1 EMSA with purified Fur

To check the conditions o f  the experim ent and confirm the previous results, that S. 

meliloti Fur binds to the prom oter region o f  E. coli fh u F , different concentrations o f  

purified Fur were mixed with fliu F  promoter region probes (Fig 3.23).

1 2 3 4 5

Probes

F ig  3.23: E M S A  w ith  p u rifie d  F u r and the p rom o te r region o f J h u F
Lane 1: Negative control containing no protein but only binding buffer
Lane 2: 15 of Fur with binding buffer
Lane 3 : 30 îM of Fur with binding buffer
Lane 4: 75 ¿iM of Fur with binding buffer
Lane 5: 150 îM of Fur with binding buffer

A band shift was observed with as little as 15 |iM  o f  purified Fur. The protein 

concentrations were calculated using the BCA assay method as described in chapter 

2. S. meliloti Fur bound to the probe confirming that the mobility shift assay is 

performed under the right conditions and that the recom binant protein can bind to an 

E. coli ‘Fur box’. Thus, S. meliloti Fur functions heterologously in E. coli as a ferric 

uptake regulator.
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Given the evidence that the purified S. meliloti Fur was capable o f  binding a Fur 

box, its action was tested on several prom oter regions o f  S. meliloti genes that are 

expressed in an iron-regulated fashion.

The DNA binding activity o f  S. meliloti Fur was investigated using a DNA fragment 

containing the promoter region o f rhtXrhbABCD EF  (Fig 3.27), the prom oter region 

o f  the heme receptor sm c02726  (Fig 3.24), the intergenic region rhrA-rhtA  (Fig 

3.25), and finally the intergenic region (fur-sitA) (Fig 3.26).

1 2 3 4 5

F ig 3.24: E M S A  w ith  p u rified  F u r and the region from  the heme receptor
sm c02726

Lane 1: Negative control containing no protein, only binding buffer
Lane 2: 15 pM of Fur with binding buffer
Lane 3: 30 pM of Fur with binding buffer
Lane 4: 75 pM of Fur with binding buffer
Lane 5: 150 pM of Fur with binding buffer
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1 2 3 4 5

Fig 3.25: E M S A  w ith  p u rified  F u r and the in tergenie region between rh rA  and 
rh tA

Lane 1 : Negative control containing no protein but only binding buffer
Lane 2: 15 jiM of Fur with binding buffer
Lane 3: 30 |iM of Fur with binding buffer
Lane 4: 75 jiM of Fur with binding buffer
Lane 5: 150 (iM of Fur with binding buffer
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1 2 3 4 5

Fig 3.26: E M S A  w ith  p u rifie d  F u r and the region upstream o f rh tX
Lane 1: Negative control containing no protein, only binding buffer
Lane 2: 15 of Fur with binding buffer
Lane 3: 30 of Fur with binding buffer
Lane 4: 75 of Fur with binding buffer
Lane 5: 150 \iM of Fur with binding buffer
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1 2 3 4 5

Fig  3.27: E M S A  w ith  p u rified  F u r and the in tergenie region between f u r  and
s i t A

Lane 1: Negative control containing no protein, only binding buffer
Lane 2: 15 pM of Fur with binding buffer
Lane 3: 30 of Fur with binding buffer
Lane 4: 75 jiM of Fur with binding buffer
Lane 5: 150 îM of Fur with binding buffer
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The heme transport and the siderophore m ediated uptake systems are among the 

most prominent iron-regulated products o f  S  m ehloti However, the results showed 

that promoters o f the siderophore biosynthesis genes and o f  the gene encoding its 

outer m em brane receptor along with the heme receptor were not affected by S  

m ehloti Fur in the mobility shift assay

However, the DNA fragm ent containing the m tergemc region o f fur-sitA  and with as 

little as 15 jliM  o f  purified Fur was clearly shifted in the gel retardation assay and 

thus appeared to be bound by S  m ehloti Fur Interestingly, the fur-sitA  fragm ent was 

shifted to two positions The weakest band, which corresponds to a larger band shift, 

could be the result o f  the polym erisation o f Fur on the probe The putative Fur box 

(63% identity) that is present in the m tergemc region could be the binding site o f  S  

mehloti Fur

3 72  EMSA with cell extracts containing overexpressed Fur

The binding o f  S  m ehloti Fur was reassessed in the prom oter region o f fh u F  with the 

use o f E  coh  XL 10 extracts and the results are shown in Fig 3 28 E  coh  XL 10 

Gold does not carry a fu r  mutation and thus the E  coh  XL 10 Gold extracts from 

cells carrying the empty pQE60 vector were included to control that any band shift 

observed was not the result o f  the binding o f  E  coh  Fur and not the overexpressed S  

mehloti Fur
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1 2 3 4 5 6 7 8

F ig 3.28: E M S A  w ith  E. co li extracts from  ceils ca rry in g  e ither pQE60 o r 
pFUR60 and the region upstream  f h u F

Extract used: extract from E. coli with pQE60 induced for four hrs with IPTG at a concentration of 
0.1 mM

Lane 1: Negative control containing no protein but only binding buffer
Lane 2: 1 ¿d of E. coli extract with binding buffer
Lane 3: 2 \i\ of E. coli extract with binding buffer
Lane 4: 5 (il of E. coli extract with binding buffer
Lane 5: 10 1̂ of E. coli extract with binding buffer

Extract used: extract from E. coli with pFur60 induced for four hrs with IPTG at a concentration of 
O.i mM

Lane 6: Negative control containing no protein but only binding buffer
Lane 7: 1 |il of E. coli extract with binding buffer
Lane 8: 2 jxl of E. coli extract with binding buffer
Lane 9: 5 |xl of E. coli extract with binding buffer
Lane 10: 10 (il of E. coli extract with binding buffer

The results observed confirmed those obtained with the purified S. meliloti Fur. A 

band shift was detected with E. coli XL 10 Gold extract transform ed with pFUR60. 

However, no band shift was detected with E. coli XL 10 Gold, pQE60. This proved 

that the band shift observed was specific to S. meliloti Fur.
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The results o f the binding o f S. meliloti Fur to the intergenic region o ffur-sitA were

also confirmed (Fig 3.29).

Fig 3.29: E M S A  w ith  E. co li extracts fro m  cells ca rry in g  e ithe r pQE60 o r 
pFUR60 and the in tergenic region between f u r  and sitA

Extract used: extract from E. coli with pQE60 induced for four hrs with IPTG at a concentration of 
0.1 mM

Lane 1: Negative control containing no protein but only binding buffer
Lane 2: 1 |il of E. coli extract with binding buffer
Lane 3: 2 (il of E. coli extract with binding buffer
Lane 4: 5 ¿il of E. coli extract with binding buffer
Lane 5: 10 \x\ of E. coli extract with binding buffer

Extract used: extract from E. coli with pFur60 induced for four hrs with IPTG at a concentration of 
0.1 mM

Lane 6: Negative control containing no protein but only binding buffer
Lane 7: 1 \i\ of E. coli extract with binding buffer
Lane 8: 2 of E. coli extract with binding buffer
Lane 9: 5 1̂ of E. coli extract with binding buffer
Lane 10: 10 y\ of E. coli extract with binding buffer
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3.8 Discussion

This chapter was directed to the investigation o f iron regulation o f  S  m ehloti 

through the identification and characterisation o f a Fur hom ologue Earlier work on 

iron hom eostasis suggested that the mechanism o f  iron regulation in rhizobia might 

differ from other gram -negative bacteria This has previously been determined to be 

the case in two other m em bers o f  rhizobia, R leguminosarum  and B japom cum  

(W exler et a l , 2003, N ienaber et a l , 2001)

The putative fu r  gene was identified by Blast analysis o f  the S  mehloti genome, 

which showed a Fur hom ologue sm c02510  w ith 41%  identity to E  coh  K12 Fur 

The gene encoding this protein is present as a single copy on the chrom osom e o f  the 

bacterium The E coh  Fur protein has been studied in detail and analysis o f  chimeric 

proteins, carrying parts o f  the regulator, indicated that the DNA binding properties 

are mediated by the N-terminal domain o f  the protein, whereas the C-termmal 

dom ain catalyzes dimerization and binding o f  the iron cofactor (Stojiljkovic et a l , 

1995) The fact that both the putative iron binding site HHDH as well as other 

stretches o f  ammo acids within the C-terminal and N-term inal domain were highly 

conserved in the S  mehloti protein provides evidence for a function sim ilar to its 

homologue in E coh

The functional com plem entation o f  the fu r  m utation in E  coh  confirmed that the S  

mehloti fu r  gene is. functionally active and interacts with the Fur binding site 

preceding the fhaV  prom oter The partial com plem entation o f  Fur activity in E coh  

H I681 could be explained by differences in the DNA binding site For example, 

another member o f  the rhizobia, B japom cum  provided the first example where a 

Fur protein binds to DNA m a different way to the usual Fur-6Fur box’ DN A binding 

activity (Friedman et a l , 2003) The B japom cum  Fur binds to a DNA sequence to 

which E  coh  Fur cannot bind In the results reported here, the interaction was strong 

enough to allow  the study o f  the influence o f  iron on regulation and to reveal that the 

partial suppression o f  LacZ activity mediated by the Fur from S  m ehloti was
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completely abolished under conditions o f  iron deprivation This result provided 

strong evidence that the S  m ehloti protein works in a way sim ilar to the Fur proteins 

o f  other bacteria and that iron represses E coh fh u F  suggesting that S  mehloti Fur 

binds to ferrous iron This result is o f  particular interest given the roles o f  the genes 

regulated by Fur in S  mehloti and discussed below The ability o f  S  mehloti Fur to 

bind in vitro to the prom oter region o f  E  coh ftiu F  containing canonical Fur boxes 

was also examined The m obility shift assay confirmed the complementation o f E  

coh  H I681 and strongly suggested that S  mehloti Fur binds to Fur boxes Similar 

results were obtained with B japonicum  and R leguminosarum  Fur hom ologues, 

which were also able to respectively com plem ent and partially com plem ent an E  

coh fu r  m utant and which can both bind to a canonical ‘Fur box’ (Ham za et o l , 

1999, W exler et a l , 2003)

Following this com plementation, S  mehloti Fur was overexpressed and purified by 

IMAC Then, the DNA binding interaction o f  Fur to the prom oter region o f iron 

responsive genes was analysed Interestingly, Fur did not regulate the biosynthesis 

o f  the rhizobactin 1 0 2 1  siderophore, its perm ease or its outer m embrane receptor 

Neither, did it regulate the haem receptor o f  S  m ehloti However, Fur binds to the 

intergenic region between fu r  and the sitABCD  operon, which was originally thought 

to be involved in iron acquisition However, Platero et a l (2003) dem onstrated that 

S  mehloti m utants in sitB  and sitD  were deficient in ferric iron transport and 

suggested that sitABCD  are ABC transporters involved in m anganese transport and 

not iron as assum ed The genome o f  S  mehloti reveals the putative fu r  gene next to 

the sitABCD  genes and in the opposite orientation Upstream regions share a perfect 

palindromic sequence TGCAA ATG XX XX X-CA TTTGCA Platero et a l (2003) 

suggested a coordinately regulated mechanism for fu r  and sitABC D  transcription

It is only recently that transport systems for m anganese have been identified Two 

main transport m echanism s are dedicated to this task There are the N ram p proteins 

(natural resistance-associated m acrophage proteins) that are important for 

controlling bacterial replication and for trafficking metal ions between intracellular 

com partm ents The bacterial N ram p hom ologues identified to date all appear to
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function as M n2+ and to a lesser degree, Fe2+ uptake transporters under physiological 

conditions and are named M ntH for proton (H4)-dependent Mn transport (Kehres et 

a l , 2000, M akui et al, 2000) The second m echanism  is the ABC-type Mn permease 

system Characterisation o f  this now large family o f  perm eases shows that members 

o f  the family can transport m anganese and in some cases iron and / or zinc A 

GenBank search shows this class to be extrem ely widespread with about tw ice as 

many examples as the M ntH class S  mehloti Sit ABCD belongs to this class o f 

transporter (Platero et a l , 2003, 2004) The m obility shift assays and the 

complementation suggested that S  m ehloti Fur can regulate sitABCD  o f  S mehloti 

and fl iu F  from E  coh  and that these genes are repressed respectively by M n2+ and by 

Fe2+ Because the chelator 2 ,2’-dipyridyl binds to Fe2+ and to Mn2+, it cannot be 

known whether S  mehloti Fur binds prim arily to iron or to manganese The partial 

complementation could be due to the fact that Fur binds more specifically to 

manganese than to iron

To date, m anganese uptake has been found to be regulated by two mam regulators, 

Fur and M ntR Fur was extensively reviewed in the first chapter, MntR, is the 

common name o f a group for DtxR-like proteins recently identified and including 

ScaR from Streptococcus gordonu  (Jakubovics et a l , 2000), TroR from T pallidum  

(Posey et a l , 1999) and M ntR from S  aureus (Horsburgh et a l , 2002), B subtihs  

(Que et a l , 2000) and E coh  (Patzer et a l , 2001) These m etallorepressor proteins 

all function as M n2+- dependent transcriptional repressors o f  genes encoding each 

type o f m anganese transporter W hen intracellular levels o f  M n 2 + rise, the DtxR-like 

proteins bind to an M ntR binding m otif in the prom oter region o f the genes and limit 

transcription However, an analysis o f  the genome o f  S  mehloti did not identify any 

M ntR hom ologues

Identification o f  the regulator o f  some ABC manganese perm ease operons was 

easier in cases in which the putative transcriptional regulator is encoded adjacent to 

or within the operon (Kehres et a l , 2003) This is the case for example for SirR in 

Staphylococcus epidermidis that is adjacent to the m anganese transport system
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encoded by sitABC  (Hill et a l , 1998) This is also the situation in S  m ehloti for 

sitABCD, which is adjacent to fu r

Other workers have reported that Fur can regulate the transport o f manganese in 

different organisms First o f  all, in E  coli, the large conventional Fur regulon 

contains three genes involved in m anganese transport sodA, m ntH  and sitABCD  (Fee 

et a l , 1990, Patzer et a l , 2001) Also, Fur regulates sitABCD  and m ntH  in 

Salmonella enterica  (Kehres et a l , 2000,2002(a), 2002(b)) It is also interesting to 

see that in Yersinia pestis, Fur is required for repression o f  YfeABCD ; encoding an 

ABC transporter system for both iron and manganese and the expression o f  this 

operon can be either repressed by Fe2+or Mn2+(Bearden et a l , 1998, 1999) All these 

transport systems are o f  the same family o f  ABC transporters as sitABC D  in S  

meliloti Yet, it is not well understood clearly w hy transporters involved in 

manganese acquisition should also be repressed by iron Also, recently, in R  

leguminosarum, the Fur-1 ike protein was characterised as being a M ur (M anganese 

uptake regulator)

The results presented here suggested that Fur in S  mehloti is implicated to a greater 

extent in manganese acquisition regulation and thus could m ore logically be called a 

M ur (M anganese uptake regulator) Indeed, so far, it does not regulate any gene 

involved in ferric iron uptake but solely in manganese acquisition N o other 

manganese regulator was identified by homology for the m aintenance o f m anganese 

homeostasis in S  mehloti The findings o f  this investigation agree with recent 

publications from two other groups (Platero et a l , 2004, Chao et a l , 2004) They 

found through the use o f  m icroarrays and reporter gene fusions that the Fur-1 ike 

protein in S  m ehloti is a M ur and regulates the sitABCD  operon encoding the 

m anganese transport system but also the ferrous iron transport system Yet, through 

the use o f  m icroarrays, Chao et a l found that the com plete rhizobactin 1021 

synthesis operon and the heme receptor encoded by sm c02726  is down regulated in 

an S  mehloti fu r  m utant They suggested that the derepression o f the sitABCD  

operon led to an increase in intracellular M n2+ and / or Fe2+ concentration, which in 

turn caused the down regulation o f  the iron utilisation systems However, the
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m obility shift assay performed here contest the ability o f  S  mehloti Fur to bind to 

the prom oter region o f  those genes and thus their suggestion m ight still be correct 

but Fur would not be the transcriptional regulator responsible for the repression o f 

the iron uptake m echanism s

This is not the first time that a m em ber o f  the Fur family appears to be having 

another function than the regulation o f  iron acquisition Fur is predom inantly an 

iron-dependent transcriptional regulator o f  genes involved in iron hom eostasis, 

however its role is not restricted to that and it can for example regulate genes in 

response to acid pH (Hall et a l , 1996) Also, in the characterisation o f  Fur, it has 

been demonstrated that M n2+ can be used to mimic Fe2+ for Fur binding M n2+ works 

as effectively (Schrum et a l , 1993) and there is no basis for assuming that iron is 

necessarily the relevant cofactor for Fur in every case (Kehres et a l , 2003) 

However, there is a risk o f m isinterpretation o f  the results as so far in vitro binding 

experiments are the only results used to identify the co-repressor Chao et al (2004) 

strongly suggested that S  m ehloti Fur is a M n2+dependent repressor which supports 

the view  that the manganese used in the m obility shift assay is the right Fur co-factor 

dimetal Also, recent work in R leguminosarum  has found that the ability o f the Fur- 

hke protein M ur to bind to a canonical Fur box is dependent on iron, not manganese 

(Diaz-M ireles et a l , 2004) However, Mur, which regulates the expression o f  the 

sitABCD  operon m R legum inosarum , is an active repressor in the presence o f  

m anganese but has no repressive effect in the presence o f  iron A sim ilar mechanism 

could be the case for S  mehloti

It also emerged over recent years that there exists a family o f  functionally diverse 

Fur-1 ike proteins Genes encoding proteins o f this family have been identified 

including Zur in E  coh involved in the m aintenance o f  zinc hom eostasis (Gaballa et 

a l , 1998), PerR in B subtihs  regulating the manganese response to oxidative stress 

(Bsat et a l , 1998) and Irr which is involved in iron regulation in B japonicum  

However, these regulators are distinct from Fur For example, the B japonicum  irr 

gene (Ham za et a l , 1998) is related to but is distinct from Fur (29% identical at the 

amino acid level to Fur o f  P aeruginosa)
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Rhizobial Fur is therefore quite atypical, playing either no role or a much less 

important role in iron acquisition than hom ologues in other gram-negative bacteria 

In B japonicum , Fur shares the regulation o f  iron with Irr, and in addition to binding 

to known Fur boxes binds to additional DNA sequences (Friedman et a l , 2003) In 

R legumrnosarum, Fur does not seem to bind the prom oter sequences o f  many Fe- 

responsive operons that are involved- in iron acquisition (W exler at a l , 2003) 

Finally, M esorhizobium loti does not have any Fur protein homologue

It is thus clear that the regulation o f  iron responsive gene regulation in rhizobia is 

notably different from other gram -negative bacteria In the cases studied to date, 

with the exception o f the rhizobia and Brucella , Fur is a general regulator o f  iron 

acquisition The analysis o f  Fur-DNA binding interactions in S  mehloti has shown 

that Fur does not regulate operons usually subject to iron regulation but does 

regulate at least one m anganese acquisition system A new type o f transcriptional 

regulator RirA (Rhizobial Iron Regulator Activator) was identified recently in R  

legumrnosarum  RirA regulates the expression o f  iron responsive operons in this 

organism It is interesting to notice that M  loti, S  m ehloti and B abortis each 

possesses homologues o f  RirA
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Chapter 4:

Identification and 

characterisation of rirA and of 

rhrA in Sinorhizobium meliloti
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4.1 Introduction

The previous chapter focussed on the global fem e uptake regulator (Fur) hom ologue 

in S  mehloti given its expected role in regulating iron uptake

However, the results reported in chapter 3 suggested that Fur is not a regulator o f 

fem e iron uptake but o f manganese uptake in this organism Recently, a new type o f  

iron regulator, called RirA, was identified in R leguminosarum  The mutation o f  the 

n r  A gene affects the transcription o f  m any genes in response to iron availability It 

was thus decided to identify the hom ologue o f  this gene in S  mehloti and to 

investigate the role o f  this regulator concentrating on the role played by S  mehloti 

RirA m regulating the genes involved in the rhizobactin 1021 mediated iron uptake 

system

Also, rhizobactin 1021 biosynthesis and transport is known to be regulated by 

another more specific AraC-like transcriptional regulator, RhrA (Lynch et a l , 2001)

In this chapter, a parallel investigation o f  negative regulation by RirA and positive 

regulation by RhrA o f  the siderophore biosynthesis genes and the receptor gene is 

reported
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4.2 Identification of the rirA gene in S. meliloti 2011 
and Analysis of its encoded product

To identify the rirA homologue, the sequence o f  RirA from R. leguminosarum  was 

used to perform a BLASTP, which compares an amino acid query sequence against 

a protein sequence database o f  the S. meliloti 2011 genome.

Four proteins were obtained from the blast: SM c02238, Smc02267 and Smb20994 

with respectively 34 %, 26 % and 29 % sim ilarity and, with 84 % similarity, 

SM c00785, the closest hom ologue o f  RirA in S. meliloti 2011 (Table 4.1).

T able  4.1: B lastP  resu lts  w ith  R . legum inosarum  R irA  as the  q u e ry  sequence

B lastP  results: H it D escrip tion

rirA SM c00785 AA (154 aa)

CONSERVED HYPOTHETICAL PROTEIN

Begin position End position Begin position End position

1 432 1 143

Blast score 617

Expect value 5e-66

Identity 84%

Positive 92%

The hit concerns 89% o f  the query sequence and 92% o f  SM c00785_AA

In the S. meliloti annotated genome (Galibert e ta l ., 2001), SM c00785  was originally 

termed aau3 , as it was thought to specify a protein involved in acetoacetate 

utilization (Charles et al., 1997). However, aau3 is, in fact, elsewhere in the genome 

and SM c00785  had so far no known function (Todd et a l., 2002).

An interesting feature o f  this region o f  the genome is that the gene immediately 

downstream  o f  smc00785, d p p A l , encodes a hom ologue to an heme-transporter 

involved in iron uptake (Table 4.2). S. m eliloti dppA l is homologue to R.
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leguminosarum dppA, which is part o f  the dppABC D F  operon. Those genes are 

required to transport dipeptides in bacteria, dpp  mutants, in R. legum inosarum , were 

severely affected in the import o f  delta-am inolevulinic acid (ALA), a heme 

precursor (Carter et a l., 2002).

T able: 4.2: Iron  A BC tra n s p o r te r  w ith  hom ology to  D p p A l o f S. m eliloti

Protein Organism Accession Homology
DppAl (Heme-binding 
protein)

Rhizobium leguminosarum bv. 
viciae

CAC35511 75 % identity 

85 % similarity
DppA I (Heme-binding 
lipoprotein)

Haemophilus influenzae NP 439013 50 % identity 

69 % similarity

The deduced protein product (SM c00785) o f  rirA has very close hom ologues (Fig 

4.1) in R. leguminosarum  (84 % identity) and Agrobacterium tumefaciens (85 %  

identity). In A. tumefaciens, the gene was also erroneously termed aau3, and, as in S. 

meliloti, is adjacent to a gene that is likely to specify an inorganic Fe3+ transporter. 

O ther homologues o f  RirA also occur in M esorhizobium loti (65% identity) and in 

Brucella suis and Brucella melitensis, which are not members o f  the rhizobia, but 

which also have RirA-like proteins (6 6 % identity in both cases) o f no known 

function. Todd et al. (2002) noted that the corresponding gene in Brucella  is 

separated by two ORFs from a hom ologue o f  a bacterioferritin gene. These are the 

only hom ologues o f  RirA found in the genomes sequenced to date.

By perform ing a BLASTP program on S .. m eliloti RirA using the NCBI database o f 

protein sequences (Altschul et a l , 1997), it was also concluded that RirA is part o f  

the family o f  proteins called RrF2. These are small proteins o f  12 to 18 KDa, which 

seem to contain a signal sequence, and may represent a family o f  probable 

transcriptional regulators. M ost RrF2 proteins possess 3 cysteines in their C- 

terminal (Fig 4.1). The cysteine could be the site to which the ferric iron, being the 

cofactor, binds to the transcriptional regulator, which would allow RirA to bind to 

the prom oter region o f  the gene it regulates.
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20
s. melilot : MRLTKQTNYAVRMLMYCAANGE
R. legumin : 

tumefac :
WRLT KQTNYAVRMLMYCAAN DG

A. MRLT KQTNYAVRMLMYCAAN EG
M. loti : MRLT RQTNYAMRILMYCAAN ND
B. meliten : MRLT RQTNYAIRMLMYCAAN DG

MRLT4QTNYA6R6LMYCAAN LSRIPEIA AY VSELFLFKILQPL GLVETVRGRNGGVRL 4 I3LFDW4VTE

83
03
83
83
83

S. melilot : DSl 
R. legumin : DS
A. tumefac : DS 
M. loti : Es|
B. meliten :

* 160
EEPVRPQTSAA-----
T GE PAYRKPAIVAPAA
DTE MPKIAALPAA
DMLERRAPAA------
DEMEAPRIAS------

F MAECFEo CPLVDSC LN AIR ALNAFF VL Y3l D6V ARP 6 LLG6o o

154
160
156
153
153

Fig 4.1: C om parison  o f S. m elilo ti R irA  (SM c00785) to o th e r  R irA  hom ologues.
The S. meliloti RirA protein is aligned with very close homologues from R. leguminosarum, A. 
tumefaciens, M. loti, and B. melitensis. The orange circle shows the three C-terminal cysteines 
characteristic of RrF2 proteins.
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4.3 Mutation of Smc00785, the rirA homologue in S. 
meliloti 2011

After the identification o f  the S  mehloti rirA hom ologue Smc00785, which was 

subsequently called S  m ehloti rirA, a m ajor objective was to mutate the gene with 

the use o f  a kanamycin cassette and to investigate the phenotype o f the mutant

The method used involved cloning the cassette into the S  mehloti rirA  hom ologue 

gene m E coh  The m utated gene was then m obilised to S  mehloti m a suicide 

vector Selection was made for a single recom bination that left the vector integrated 

in the S  mehloti genome A second recom bination event was then selected, 

expelling the vector and leaving the cassette inserted in the genome

This method is facilitated by the use o f  a pJQ200sk (Quandt and Hynes, 1993), a 

suicide vector perm itting m obilisation and gene replacem ent in a wide range o f  

Gram negative bacteria This vector was used to insert fragments via recombination 

into the chrom osome o f  S  mehloti 2011 This vector possesses a gentamicin 

resistance marker, a m ultiple cloning site from pB luescnpt ks+ (see Fig 4 2) and a 

mob (oriT) site, which facilitates the m obilization into S  m ehloti Finally, the sacB  

gene is lethal in a wide range o f  Gram negative bacteria when grown on media 

containing 5% sucrose, and thus permits a positive selection for the loss o f  the 

vector, which occurs during the second recom bination event shown in the 

m utagenesis sheme in Fig 4 3
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BssH IT
T7 Promotor Sac l BstX ! Sac III I I

N ot I
| tag I Xba I

TTGTAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGAGCTCCACCGCGGTGGCGGCCGCTCTAGA.
M 1 3 20Tm rieTbnK lino site T /p r im e r b n d  ’iq site SK primer bmdsng sit<13 20 prim e» b in d in g  site t !  p rim er B in din g

Hinc (I
8 s p l0 6  I A c t I

Spt* i ^ornH I Sma I Pst I Ijco R ! IjcoKV Hind III ( j |a | S a il Xho I

primer binding site. 
Apa i
E co0109 I ipro II <P" I

lo'nH' r : r  r K \  i r  i i t - i
.ACTAGTGGATCCCCCGGGCTGCAGGAATTCGATATCAAGCTTATCJATACCGTCGACCTCGAGGGGGGGCCCGGTACC. . .

.SK primer binding s it?  KS primer binding site

T3 Promoter
i t

ssH II ^  1
. . . CAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCC

! primer binding srfe

| h-ool '( fragment

M 13 Reverse primer b inding site

MCS

t n J

Fig 4.2: M ap  and  M ultip le  cloning site (M C S) o f p JQ 200sk  (Q u a n d t an d  H ynes, 
1993), gm ; gentam icin  resistance, t ra ;  tra n sfe r.
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Fig 4.3: Recom bination event scheme.
A’, B’, C1 denote the copies of A, B, C cloned into the pJQ200sk vector. The kanamycin resistance 
cassette is inserted in B' (A). The sites of recombination events are indicated (X).
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The targeted mutation was made using a kanamycin resistance cassette from pUC4K 

(Vieira and M essing, 1982). This cassette is flanked by sites for five com m only used 

restriction enzymes EcoRI, BamHI, Sail, H incII and P stI  (See Fig. 4.4). The 

presence o f  these sites enables the cassette to be cloned into sim ilar restriction sites, 

or sites that are cleaved by restriction enzymes that produce compatible ends to the 

enzymes bounding the cassette. Because transcriptional regulators are generally 

small genes that usually only have suitable restriction sites for uncommon restriction 

enzymes, the kanamycin cassette had to be amplified by PCR from pUC4K 

incorporating new restriction sites in the primers.

EcoRI 396 G'AATT C

Fig 4.4: M ap  o f  pU C 4K  (V ie ira  and Messing, 1982) w ith  kanam ycin resistance 
cassette.
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F ig 4.5: r irA  gene in the S. m e lilo ti genome

A restriction analysis was carried out o f  the rirA region o f  S. meliloti (see Fig 4.5) to 

find a suitable restriction site to insert the kanamycin resistance cassette (see Fig 

4.6). The enzymes that only cut the smc00785  gene once are shown in Fig 4.6. The 

sequence analysis o f  rirA revealed the presence o f  a unique N c o l  site within the gene

into which the kanamycin resistance cassette could be inserted.
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Fig 4 6 Enzymes that only cut the rirA gene once

Two primers rirA-F  and rirA-R  were designed to amplify an approxim ative^ 2 0 Kb 

region o f  the S  mehloti 2011 genome encoding n r  A , with the N c o l  site centrally 

located The forward prim er rirA -F was designed so as to incorporate a unique X h o l  

site into the PCR product The reverse prim er rirA -R  was designed to incorporate a 

unique Sp e l  site into the PCR product The unique S p e l  and X h o l  sites in the PCR 

product were added to allow for the subsequent directional cloning o f  the 2 0 Kb 

fragm ent into pJQ200sk

Total genomic DNA was prepared from S  m ehloti 2011 and used as the tem plate 

DNA in the PCR reaction Following optim isation o f  the PCR reaction, a specific 

2 0 Kb PCR product was obtained and cloned into the pCR2 1 vector The 2 0 Kb 

fragment was restricted from pCR2 1 as an X hol/Spe l fragm ent and cloned 

directionally into pJQ200sk The kanamycin cassette was amplified as an N co l 

fragm ent and inserted into the unique N c o l  site o f  the pJQ200sk rirA plasmid

The diagram in Fig 4 7 summaries the strategy used to construct the final clone, 

called pRirA200K

PCR Conditions

# PCR reaction fo r  the amplification o f  rirA with its fla k in g  regions fro m  a 

genomic p rep  o f  S  m ehloti 2011

The prim ers used to amplify nrA  and its flanking sequences on each side {Xhol/Spel 

fragment) were

n rA -F CTCGAG TCG CCG AGG CCC ATT CCT TCT G 

X h o l

n rA -R  ACTAGT GAA GTC GGC TGT AAA CGG TAT GCG

S pel
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The PCR program o f the reaction is summarised in Table 4.3.

Table 4.3: PCR Reaction Conditions for the am plification o f the S. m eliloti rirA  

and its flanking regions.

PCR Conditions

Annealing Tem perature 6 8 °C 

Annealing Time 1 min 

Extension Time 72° C for 3 min

# PCR reaction fo r  the amplification o f  the kanamycin cassette fro m  

pUC4K:

The primers used to amplify the kanamycin resistance cassette from pUC4K as an 

N c o l  fragment were:

K anN coI-F: CCATGG GAC GTT GTA AAA CGA CGG CCA GTG 

N c o l

K anN coI-R: CCATGG GGA AAC AGC TAT GAC CAT GAT TAC G 

N c o l

The PCR program o f  the reaction is summ arised in Table 4.4.
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Table 4.4: PCR Reaction Conditions for the am plification o f the kanamycin 

resistance cassette from pUC4K

PCR Conditions

Annealing Tem perature 64°C 

Annealing Time 1 min 

Extension Time 72°C for 1.5 min
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Total genomic DNA 
from S. meli loti 2011

Xhol
Q =

PCR

XhoJ/Spel digestion o f pJQ200sk smc00785

i " i
Cloned into pCR2.1

Ncol
T .  1 r - - - ■

Ncol

Cloned into pCR2.1

X holS pel 
digestion to insert 

die smc00785 fragment 
into pJQ200sk

I
Xhol

c  )

Ncol
digestion to insert 

the kanamycin cassette

Fig. 4.7: Strategy for the mutation o f S. meliloti rirA (smc00785) gene
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The plasm id was introduced into S  mehloti 2011 by tnparental m ating and 

transconjugants were selected on TY containing streptom ycin and gentamicin 

Second recom binants were selected by growing a clone that had undergone a single 

first recombination without antibiotic selection in TY broth until early stationary 

phase and then plating on TY agar containing 5 % sucrose and kanamycin 

Individual colonies were then screened for kanamycin resistance and gentamicin 

sensitivity

Confirmation o f the n r  A  mutation

The m utation o f rirA  was confirmed using PCR by a comparison o f  the PCR 

products obtained from S  m ehloti 2011 and from the m utant strain S  mehloti 

201 lr/r^42 following the am plification o f  the rirA  region The region would be 

around 1 4 Kb larger due to the insertion o f  the kanamycin resistance cassette (Fig 

4 8 ) The mutant was named S  m ehloti 201 \rirA2
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3454 bp 
2036 bp

Fig 4.8: P C R  to confirm  m u ta tion  o f  th e  ch rom osom al rirA  gene 
Lane 1: 1 Kb ladder
Lane 2: Chromosomal prep from S. meliloti 2011
Lane 3: rirA PCR using rirA-F and rirA-R on S. meliloti 2011
Lane 4: Chromosomal prep from S. meliloti 201 \rirA2
Lane 5: rirA PCR using rirA-F and rirA-R on S. meliloti 201 \rirA2
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The mutation was also confirmed by Southern hybridisation. The genomic sequence 

in the region encoding rirA was examined to identify restriction sites that were 

deemed suitable for the confirm ation o f  the potential m utant by Southern 

hybridisation analysis. The kanamycin resistance cassette was inserted into an N co l  

site encoded within a 5.9 Kb X hol-X ho l fragm ent (Fig 4.9) as an N co l  fragment. 

Digestion o f  the m utant genomic DNA would generate one fragment with an X h o l  

digestion (Fig 4.10). The plasmid pRirA200K was labeled and used as a probe.

Xhol ■5173 N col 
___I___

860 X hol
 j — _>

X hol Digestion

5900

pR irA 2 00 K - ■ H i
kanr

Fig. 4.9: The region encoding r irA  in  S. m e lilo ti showing the X h o l  and N c o l 
restric tion  sites and the fragm ent sizes tha t w ou ld  hybrid ise  w ith  the 
pR irA 2 00 K  probe.

The labeled probe is indicated in red, while the kanamycin resistance cassette is highlighted in 
green. Regions of homology between the labeled probe and the digested fragments are indicted.
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-5173 -1200 -200 -860

Xhol N col 
I _

X h o l N co l 
 I I____

X h o l
- I  — - >

X hol Digestion
1 }

-6 3 7 3 -1 0 6 0

>  -4-

pRirA200K

k a r i

Fig. 4.10: The region encoding rirA in a potential mutant showing the X h o l  and 
N col restriction sites and the fragm ent sizes that would hybridise with the 
pRirA200K probe.

The labeled probe is indicated in red, while the kanamycin resistance cassette is highlighted in 
green. Regions of homology between the labeled probe and the digested fragments are indicated.

Genomic DNA was prepared from S. meliloti 2011 and the potential m utant and then 

restricted with X h o l , transferred to nitrocellulose and probes with labeled plasmid as 

described in chapter 2. Examination o f  the hybridization result indicated that the 

kanamycin cassette had integrated correctly into the chrom osome (Fig 4.11).
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F ig  4. 11: Southern hybrid isa tion  analysis o f  the S. m e lilo ti 2011 and S. m e lilo ti 
2011rirA2  co n firm ing  the co rrect insertion  o f the kanam ycin resistance 
cassette.

Lane 1: 1 Kb Ladder 
Lane 2: S. meliloti 2011 Xhol 
Lane 3: none
Lane 4: S. meliloti 2011 rirA2 Xhol



4.4 Phenotypic Analysis Of the S. meliloti rirA mutant

One role o f  the general regulator Fur in, for example E coh , is to down regulate the 

expression o f  the siderophore However, as shown in the previous chapter, this is not 

the case for the Fur hom ologue in S  m ehloti It was hypothesised that RirA could 

fulfil this function Having constructed the S  mehloti rirA mutant, it was possible to 

determine the function o f  the gene, with regard to the regulation o f  the iron response, 

by comparison with the wild type This was undertaken by investigating prim arily 

the production and utilisation o f  rhizobactin 1021 Initially, the production o f  

rhizobactin 1 0 2 1  was examined by the plate bioassay
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4.4.1 The siderophore plate bioassay

The siderophore plate bioassay is based on the promotion o f  bacterial growth by 

siderophores in a medium where traces o f  iron are removed by an iron chelator. The 

bioassay was carried out with TY medium in which a chelator, 2,2’-dipyridyl, was 

added to remove any trace o f free iron and wells were made in the medium to place 

the different control and siderophore preparations (Fig. 4.12).

Fig. 4.12: S ide ropho re  P la te  A ssay
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Siderophore preparations were made from the following sources

♦ S  m ehloti 2011 grown under iron replete conditions in which no 

siderophore is expected to be produced

♦ S  meliloti 2011 grown under iron deplete conditions in which 

under iron stress, the bacteria will produce the siderophore

♦ S  mehloti 201 \ nrA 2  grown under iron replete conditions, in 

which case, it will be assessed whether RirA regulates the rhizobactin 

1 0 2 1  biosynthesis operon

Thus, these three siderophore preparations, plus a solution o f  ferric chloride as a 

positive control were placed in different wells made m the TY m edia supplemented 

with 2,2'-dipyndyl The medium was seeded with 200 jil o f  a late logarithmic culture 

o f  201 \rhbA 62 , a siderophore biosynthesis mutant
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4.4.2 Phenotypic analysis o f  S. m eliloti 2011x\xK2 by the siderophore 

pla te bioassay

Fig 4.13: S ide ropho re  p late  bioassay
A: FeCl3
B: Iron replete conditions, S. meliloti 2011 siderophore preparation 
Ç: Iron deplete conditions, S. meliloti 2011 siderophore preparation 
D: Iron replete conditions, S. meliloti 201 \rirA2 siderophore preparation
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As expected in the negative control, the siderophore preparation from iron replete 

grown S  mehloti 2011, no halo o f  S  meliloti 201 \rhbA62  growth was observed as 

the strain could not grow in the presence o f  the iron chelator This was in contrast to 

the preparation o f  the same strain grown under iron deplete conditions In the 

positive control, fem e chloride, the siderophore biosynthesis m utant could utilise the 

abundant-inorganic-iron producing a halo o f  growth around the control well With 

the siderophore preparation o f  interest from S  m ehloti 201 \n rA 2  grown under iron 

replete conditions, a halo o f  growth surrounded the well implying that S' m ehloti 

2 0 1 1 r/r^ 2  is able to produce the rhizobactin 1 0 2 1  siderophore despite the presence 

o f  iron It can be concluded that RirA from m ehloti is involved in the regulation 

by iron o f  the production o f  rhizobactin 1 0 2 1 , which was constitutively produced in 

the rirA m utant even under iron replete conditions The next step was to consider if 

RirA was acting at the transcriptional level binding directly under iron replete 

conditions to the prom oter region o f  the rhizobactin 1 0 2 1  biosynthesis gene cluster
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4.5 In vivo genetic manipulations to analyse the iron 
responsive rhizobactin 1021 biosynthesis operon.

4 5 1  Principle and  design o f  the probes

The approach taken to investigate the binding o f RirA in vivo  was to construct 

prom oter probes with the prom oter region upstream o f  rh tX  (Fig 3 1) fused to a 

reporter gene Those prom oter probes would also allow an investigation o f the role 

o f RhrA, the AraC-like activator, under iron deplete conditions regarding the 

activation o f the siderophore genes

Thus, in order to examine the binding o f  the two transcriptional regulators RirA and 

RhrA, a plasm id-based prom oter probe vector pOT-1 was used (Fig 4 14) Its 

reporter gene is gfpuv, which has a 18-fold increase in fluorescence relative to the 

wild-type gfp  but retains the latter’s excitation and emission m axim a o f  495 and 510 

nm respectively (Crameri et a l , 1995) This vector was chosen as it is a small broad 

host range vector with a medium copy num ber, which thus limits any possible 

titration effect, which could occur especially with RhrA that m ay be present in low 

abundance in the cell Also, the vector is m obihsable and is stably m aintained in 

Gram-negative bacteria Finally, its gentamicin resistance makes it suitable for 

studies in S  mehloti
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GmR

omega 

pOT forward 

H in d  i l l  (4076)

Ah a 1 (4052)

< la \ (4046) 

P a c 1<4042) 

S ail <4032) 

X bal (4025) 

h n e  I (4020) 

P a c 1(4012) 

S m u 1 (4003) 

P\tI (3999) 

tS’ffiii I (3991) 

rbs-gfp 

pOT Reverse 

Gfp-UV

pOTl
5278 bp

mob

rep

rrnB

B

i960

Sma I  Sira I

RBS P* t l

CATTTTTTCT TCCTCCACTA GTGGATCCCC CGGGCTGCAG CCCGGGCTTA 
6DULAAAAGA AGGAGGTGAT CACCTAGGGG GCCCGACGTC GGGCCCGAAT 

X b a l  P a c  I

P a c I  Pmal S a i l  C lm I  X b a l

4010 ATTAAAGTTT AAACTCTAGA TGTCGACTTA ATTAATCGAT ATCTAGATCC
TAA7TTCAAA TTTGAGATCT ACAGCTGAA? TAATTAGCTA TAGATCTAGG 

H in d : : 1

4060 GGTGATTGAT TGAGCAAGCT T
CCACTAACTA ACTCGTTCGA A

Fig. 4.14: M ap o fp O T l

A. pOT-1 has the gfpuv reporter gene flanked by the omega and rrnB transcriptional 
terminators. An artificial ribosomal binding site (RBS) was introduced to the 5’ primer to
gfpuv.

B. The polylinker of pOT-1.
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To investigate the binding o f  RirA and RhrA, the upstream region o f  

rhtXrhbABCD EF  was fused to the reporter gene. Usually, as explained in chapter 

one, AraC-transcriptional regulators bind as dimers to the promoter regions on 17-bp 

repeats separated by 4-bp. Two repeats GTTCGC with an inter region o f  15 bp are 

found upstream o f  the operon and look like good candidates for the binding o f  RhrA. 

In order to confirm those predictions different m utations o f  the sequence were made 

(Fig 4.15).

A -

Promoter region

C C CT GGAG6C 6TC C TATC GC C TC T C TC GAAAAT Gc[Öt TCGc| tACT G

t c t t a a t g a g | g tt c g c | t c a c a t c c ä a g c c g t t c a c c g c a c g t c c a t

T TAAAGATGAC GGCAACAC T CAT GT TTAT C GT CAGACAAT GT T GC C

Legend :

Permease

Siderophore Biosynthesis

B-

B g lF }
pEN3

i i m
pEN4

Fig 4.15: Design o f the p rom o te r probes
A: The rhtXpromoter region. The two repeats upstream of rhtX are framed. B: Plasmid constructs in 
which the R1 and R2 repeats have been altered.
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Five clones were constructed with different variations o f  the prom oter region o f  the 

operon cloned into pO Tl

- pW T  The wild type prom oter region sequence with the two binding sites 

present was cloned into the multiple cloning site o f  the vector as a HindHI- 

P stl  fragment

- p M l The upstream region with the sequence excluding the distal repeat 

was cloned into the m ultiple cloning site o f  the vector as a H ind lll-P stl 

fragment

- pEN 2 The proxim al repeat was rem oved but the distal repeat conserved

- pEN 3 The two repeats and their intergenic region were rem oved from the 

prom oter region

- pEN 4 An extra 6  bases was added by inserting a BglH  site between the 

two repeats

Construction o f  pW T and pM l was straightforward and involved a single PCR For 

the construction o f  pEN2, pEN3, pEN4, it was necessary to undertake two PCR 

steps using pW T as tem plate DNA as described in Fig 4 16 for pEN2 for example, 

and then to undertake a three fragm ent ligation to jo in  the two PCR products 

together and ligate them  to the vector

To do so, the region that had to be conserved was amplified from pW T as two 

separate fragm ents an N col -  B g lll  fragm ent (PCR 1) and a B glll-E coR I  fragment 

(PCR 2) B g lll  which had no site in the region o f  interest, was used to replace the 

deleted region Once the PCR was perform ed and then the product cleaned, it was 

restricted with the appropriate restriction enzym es and ligated with the NcoI-EcoRI 

restricted pO T l vector and the transform ants were then selected on medium 

containing gentam icin
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r h tX  Promoter region

Ncol %
P rim e r-F o rw a rd P rim er-F o rw ard

p-W T

P C R  1

(NcoI-BgllT)

Prim  e r -R everse 

M-------
EcoRl

B g i l l EcoRl

P C R  2 

(Bglll-EcoRl)

Fig 4.16: The PCRs perform ed on p W T  fo r  the clon ing o f pEN2

The following prim ers were designed for the am plification o f  the rh tX  prom oter 

region and for the m utagenesis o f  that region:

P rim ers fo r  the construction o f pW T : Inse rtion  o f the upstream  sequence o f 

rh tX  in p O T l as H in d ll l /P s t I  fragm ent

H i n d i I I

AAGCTTCCCT GGAGGCGTCC TATCGCCTCT CTCGAAAATG CfGTTCGCfTAC
----------  fmmmMm’M',
TGTCTTAATG AG^GTTCGC^TC ACATCCAAGC CGTTCACCGC ACGTCCATTTWM/M/dr/Mar/jr/tk ____
AAAGATGACG GCAACACTCA TGTTTATCGT CAGACAATGT TGCC|CTGCAC

P s t I
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F-rhrAW T:

CCC AAGCTT CCC TGG AGG CGT CCT ATC GCC 

R-rhrAW T:

AAAA CTGCAG GGC AAC ATT GTC TGA CGA TAA ACA TG

The PCR products were amplified, cleaned, restricted with H ind ffl/P stl and inserted 

in pOT 1, which had been restricted with HindHI/Pstl.

Primers for the construction o f pM l: Insertion o f the upstream sequence o f  

rhtX  from downstream  o f the distal repeat R1 in pQ T l as H indlll/PstI 

fragm ent

H i n d i I I

AAGCTTI TAC TGTCTTAATG A G G I T C G C T C  ACATCCAAGC CGTTCACCGC

ACGTCCATTT ACAGAATTAC TCCAAGCGAG TGTAGGTTCG GCAAGTGGCG
TGCAGGTAAA AAAGATGACG GCAACACTCA TGTTTATCGT CAGACAATGT
TGCC CTGCAC

P s t I

F-rhrA M l:

TTT AAGCTT TAC TGT CTT A A T GAG GTT CGC TCA C 

R-rhrAW T

AAAA CTGCAG GGC AAC ATT GTC TGA CGA TAA ACA TG

The PCR products were amplified, cleaned, restricted with H indH I/Pstl and inserted 

in pO T l, which had been restricted with H indlll/PstI.
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Specific prim ers were designed for the amplification o f  the specific fragments o f  p- 

WT to mutate the prom oter region o f  rh tX  cloned into p-W T. The following 

sequences and prim ers summ arise the different strategies employed:

Primers for the construction o f P-EN2: Prom oter probe w here the proximal 

repeat o f the rhtX promoter region o f p-W T is removed:

H i n d i I I
r/j&r/M /Æ /Æ /Æ /Æ ^A

AAGCTTCCCT GGAGGCGTCC TATCGCCTCT CTCGAAAATG O GTTCG QTA C

B g l l l

TGTCTTAATG AG ||[ . || TC ACATCCAAGC CGTTCACCGC ACGTCCATTT

AAAGATGACG GCAACACTCA TGTTTATCGT CAGACAATGT TGCdjCTGCAG
P s t I

♦ PCR 1:

F -N co Ip O T l:

C A G T CCATGG GCA AAT GGG ATT GGC 

R -B gIIIR 2 :

GA AGATCT CTC ATT AAG ACA GTA GCG AAC GC

♦ PCR 2:

F-B glIIR 2:

GA AGATCT TCA CAT CCA AGC CGT TCA CCG C 

R -E coR I pO T -1:

CG GAATTC ATT ATT TGT AGA GCT CAT CC
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Prim ers for the construction o f P-EN3: prom oter probe w here both repeats the 

region from the proximal to the distal repeats o f the rhtX promoter region o f p- 

W T are removed:

H i n d i I I

AAGCTT(CCCT GGAGGCGTCC TA TC G C C TC T CTCGAAAATG C || I  TC

ACATCCAAGC CG TTCACCGC A C G T C C A TT T  AAAGATGACG GCAACAC TC A
TG T TT A T C G T  CAGACAATGT TG C C____

PstI
♦ PCR 1:

F-NcoIpOT-1:

C A G T CCATGG GCA A A T GGG ATT GGC 

R -BglIIR lR 2:

GA AGATCT GCA TTT TCG AGA GAG GCG ATA GG 

♦ PCR 2:

F-BglIIR2:

GA AGATCT TCA CAT CCA AGC CGT TCA CCG C 

R-EcoRIpOT-1:

CG GAA'ITC ATT ATT TGT AGA GCT CAT CC
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Primers for the construction o f P-EN4: Prom oter probe where an additional six 
bases where added upstream o f the proximal repeat o f the rhtX  prom oter
region o f p-W T:

H i n d i I I_____________________________________________   ■WM/W/W/W/M'M'a
AAGCTTlCCCT GGAGGCGTCC TA TC G C C TC T CTCGAAAATG ClGTTCGCpTAC

B g l l l

TG TC TTA A TG  AG I I I  "ij G T T C G ^T C  ACATCCAAGC CGTTCACCGC
1 I V /W /jr/M /M /M /M /M

A C G TC C A TTT
AAAGATGACG G CAACACTCA T G T TT A T C G T  CAGACAATGT TGCC CTGCAG

♦ PCR 1:
F-NcoIpOT-1:

CA G T CCATGG GCA AAT GGG ATT GGC 

R-BglIIR2:

GA AGATCT TCA CAT CCA AGC CGT TCA CCG C

♦ PCR 2:

F-BglII+6:

GA AGATCT GTT CGC TCA CAT CCA AGC CGT TC 

R-EcoRIpOT-1:

CG ( i A AT TC ATT ATT TGT AGA GCT CAT CC

P s t I
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The PCR reaction program was the same for all the fragments amplified and is 

summarised in the following Table 4.4:

Table 4.4: PCR Reaction Conditions for the am plification o f the 5. meliloti 

upstream region o f rhtXrhbABCDEF .

PCR Conditions

Annealing Tem perature 6 8 °C 

Annealing Time 1 min 

Extension Time 72°C for 1 min

The constructed plasm ids were then mobilised into three different strains:

- S. meliloti 2011

- S. meliloti 201 \rirA2, a rirA mutant

- S. meliloti 201 \rhrA26, a rhrA mutant

The analysis o f  the quantitative level o f  GFP activity was based on the method used 

by Tang et al. (1999). TY in this case was used as the blank and the S. meliloti strain 

carrying the empty vector pO Tl as the control. The relative fluorescence intensity 

(//?) was calculated based on the following formula:

I r —I abs /OD600-Ic/ODc

W here Ic is the IabS o f  S. meliloti carrying the empty vector; ODc is the OD 6 0 0  o f  S. 

meliloti carrying the empty vector.
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4.5.2 Expression o f  the GFP reporter fu se d  to w ild  type and  m utated  

rhtXrhbABCDEF prom oter sequences and  m easured in the w ild  type, rirA 

and  rhrA26 backgrounds

First, the binding activity o f  RirA to the prom oter region was investigated under iron 

replete conditions with 2011 [pO Tl] and 2011n'M 2 [pO Tl] were used as negative 

controls. A comparison o f  the GFP level was m ade between S. meliloti 2011 [pWT] 

and S. meliloti 201 \rirA2  [pWT]. The cultures were grown to late exponential phase 

and their GFP activity measured (Fig 4.17) as explained in chapter 2.

¿,100.0%  -] 

t> 80.0% -
C3

Ch
'rz 60.0% -
€«-t
£  40.0% -
CJ)CS
I  20.0% -
u

£  0 .0 % -

Fig 4.17: GFP activity o f  S. meliloti 2011[pW T] vs. 2011/7/^42 [pWT] under iron 
replete conditions.

100.0%

pWT pWT
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The results indicate an increased level o f  the reporter gene expression in the rirA2  

mutant. The levels o f  fluorescence, normalised with the strain containing the empty 

vector, were calculated to have a 9 fold-increase in S. meliloti 2011 r irA l  [pWT] 

compared to S. meliloti 2011 [pWT]. The results were also confirmed by examining 

the culture under a m icroscope. A drop o f  each culture was placed on a slide and the 

culture flamed in order to fix the moving bacteria.

The slides were then viewed under bright light and UV light (Fig 4.18, Fig 4.19).

Fig 4.18: Culture o f S. meliloti 2011 [pO Tl] (A and B) and 5. meliloti 2011 
[pWT] (C and D) under bright light to confirm the presence o f the bacteria  
(A and C) and UV light for green fluorescent protein (B and D). 
M agnification 1000 X.
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Fig 4.19: Culture o f S. meliloti 2011rirA2 [pO T l] (A and B) and S. meliloti 
2011rirA2 [pWT] (C and D) under bright light to confirm the presence o f  
the bacteria (A and C) and UV light for green fluorescent protein (B and 
D). M agnification 1000 X.

These findings demonstrate that under iron replete conditions, the gfp  gene is only 

expressed in the rirA2  mutant S. meliloti 201 \rirA 2  [pWT], The plasmid pW T 

contains the iron-responsive rh tX  prom oter region, fused to a gfp  reporter gene in the 

wide-host-range promoter-probe plasmid pO T l. This suggests that the S. meliloti 

rirA m utant is defective in the iron dependent repression o f  the expression o f  the 

operon rhtXrhbABCD EF  and thus the production o f  the siderophore rhizobactin 

1021 is under the control o f  RirA. Therefore, under iron replete conditions, this 

regulator represses the expression o f  the biosynthesis genes at the transcriptional 

level, possibly binding directly to the prom oter region o f  the gene it down regulates.
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Following the outcome o f  the previous experiment, the promoter probe plasmids 

with deletions in the prom oter region were used to attem pt to isolate a putative 

binding site for RirA. Each o f  the prom oter probe plasm ids was conjugated into S. 

m eliloti 2011 were grown under iron replete conditions until late exponential phase 

and then examined for GFP activity.
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pMl
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n
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0 .0%
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pEN4

ig 4.20: GFP activity o f the different prom oter probes under iron replete 
conditions in S. meliloti 2011.
(because it has the higher level relative level of fluorescence under iron replete conditions: 
100% was given to 201 \rirA2 pWT)

GFP activity was only detected in S. meliloti 2011 [pM l]. The levels o f  

fluorescence, normalised with the strain containing the empty vector, were 

calculated to have a 14 fold-increase in S. meliloti 2011 [pM l] compared to S. 

meliloti 2011 [pWT]. Since pM l is deleted for 35-bp o f  the sequence (See Fig 4.15), 

this indicates that some or all o f  the first 35-bp o f the sequence cloned in pW T is 

involved in the binding o f  RirA (See Fig 4.20).
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RhrA is the activator o f  the rhtXrhbABCD EF  promoter under iron deplete 

conditions. The activation by RhrA o f  the mutated prom oter was therefore 

investigated. Each o f  the plasm ids carrying m utated prom oters was conjugated into 

S. meliloti 2011, grown under iron deplete conditions until late exponential phase 

and examined for GFP activity. The results are shown in Fig 4.21.
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Fig 4.21: GFP activity o f the mutated prom oter fusions under iron deplete 
conditions in S. meliloti 2011. The negative control was S . meliloti 2011 
2011r/rry426 for which none o f the prom oter probes gave any GFP activity.

These findings demonstrate that under iron deplete conditions, the gfp  gene is only 

highly expressed in S. meliloti 2011 [pWT] and S. meliloti 2011 [pM l]. The plasmid 

pW T contains the iron responsive rhtXrhbABCD EF  prom oter region, fused to a gfp  

reporter gene in the wide-host-range promoter-probe plasmid pO Tl and the plasmid 

pM l contains the iron responsive rh tX  promoter region, fused to a gfp  reporter gene 

but with 35-bp o f  the upstream region removed resulting in the removal o f  the distal 

repeat sequence. This suggests that the distal repeat is not necessary for RhrA 

activation o f  the promoter, although the level o f  activation was shifted lower in the 

case o f  p M l, suggesting that its presence may affect the efficiency o f  activation. In 

the cases o f  pEN2, pEN3 and pEN4, no activation was detected. pEN2 and pEN3 

both lack the proximal repeat, while pEN4 has an insertion that disrupts the base
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sequence beside the proxim al repeat The results imply that the proximal repeat is 

critical in the activation by RhrA o f  the reporter under iron deplete conditions
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4.6 Analysis of the level of transcript of iron 
responsive genes using Real time RT-PCR

Real tim e RT-PCR can be used as an alternative to the RNase Protection assay or 

Northern hybridisation to analyse gene expression and was utilized to investigate 

RhrA and RirA regulation at the RNA level

Real-time RT-PCR is a technique that has been w idely used to estimate the levels o f  

expression o f genes, especially in eukaryotes An optim ised real-tim e RT-PCR assay 

is almost as reproducible as a real-tim e PCR assay However, the critical issues 

defining the reliability o f  the obtained data are the choice o f  the housekeeping gene 

and RNA sample preparation An ideal housekeeping gene should have the same 

level o f expression under different conditions o f  growth For eukaryotes, stably 

expressed housekeeping genes such as beta-actin can be used as standards to 

perform a quantification o f  gene expression (Bustm et a l , 2000) Unfortunately, for 

bacteria no such stably expressed gene is really known To date, the most widely 

and housekeeping gene is 16s rRNA (Neretin et a l , 2003) Accurate quantification 

o f  RNA species is still difficult with prokaryotes because o f the absence o f a reliable 

standardised house keeping genes

For some applications, such as the influence o f  iron deplete and replete 

conditions, a relative quantification is sufficient (Klein, 2002) In those cases, the 

developm ent o f accurate RNA standards can be avoided by using a com parative 

quantification method The method is based on the ratio between the amount o f 

target molecule and a reference molecule This normalised value can then be used to 

compare differential gene expression in different samples

The real-tim e RT-PCR used in this work is based on a non-specific detection system 

The standard m ethod for non-specific detection is a double stranded DNA 

intercalating dye that fluoresces once bound to the DNA The m ost com m only used
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dye is SYBR Green rM I. This dye binds to all double stranded DNA molecules 

emitting a fluorescent signal on binding.

Specific prim ers (Table 4.5) were designed to amplify the S. meliloti genes shown in 

Table 4.5 and to study their levels o f  expression under different conditions o f  growth 

and in different S. meliloti strains. The size o f  the DNA sequences amplified by the 

primers was between 150-200 bp, which is the optimal size for real-time RT-PCR.

Table 4.5: Real time R T -P C R  primers

Gene Primers
rhbA RhbA-F: ATG CCG GCC GAT TTA GCC 

RhbA-R: TCG CGT CTT TCC TGT CGG
rhtA RhtA-F: CTATGGAATTGGCAACTACTC 

RhtA-R: CG AT GAT CTC A ACGGC AAGC
rhrA RhrA-F: TGC CAG CGA CAG GGA AAC G 

RhrA-R: ATG GAG ACA ATC CGA CCG
dppA l dppA l-F : CAC TAC TCT CTT GGC AGC G 

dppA l-R : ACG GCT GTA AAC GGT ATG CG
rirA rirA-F: GCG TCT GAC GAA GCA AAC C 

rirA-R: GCG TCT GAC GAA GCA AAC
Smc02726 Smc02726-F : TG CTCAACCGGCATCATCGCCTGGC 

Smc02726-R: CG CGACGATCTTCTTCAGCACGGTC
16S rRNA 16S rRNA-F: ACT TGA GAG TTT GAT CCT GGC 

16S rRNA-F: TCT TTC CCC CGA AGG GCT C
npt npt-F : CGC AGG TTC TCCGGC CGC 

npt-R: CTG CGC AAG GAA CGC CCG

The prim ers’ specifities and efficiencies were checked by PCR am plification using 

S. meliloti genomic DNA as template.

Prior to the RT-reaction, a DNase treatm ent was perform ed on the RNA preparations 

to eliminate any contam inating DNA from the RNA preparations. Real tim e RT 

reactions were set up as described in chapter 2. The npt gene from the transposon 

Tn5 and 16S rRNA gene were used as housekeeping genes because they are 

considered as stable references (Lynch et al., 2001; Neretin et al., 2003). The
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dF/dT

amplification program consisted o f  1 cycle o f  95°C for 15 minutes followed by 50 

cycles o f  95°C with 20-s hold, a specified annealing tem perature o f  56°C with 30-s 

hold and 72°C with 30-s hold. The generation o f specific PCR products was 

confirmed by melting curve analysis and gel electrophoresis. Each quantitative real­

time RT-PCR experim ent was performed in triplicate.

Fig 4.22 shows the melting curve analysis o f  the rirA gene o f  S. meliloti exposed 

under iron replete conditions as an example. The melting curve shows a single peak 

with a melting tem perature above 80°C. Peaks with a m elting tem perature below the 

value are usually prim er-dim er extensions.

Temperature

Fig 4.22: M elting tem perature curve o f the rirA gene o f S. meliloti grown under 
iron replete conditions

The results o f  the melting curve were confirmed by gel electrophoresis with the 

expected size o f  the product, which is 150 bp (Fig 4.23).
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201 bp 
154 bp

■  |

Fig 4.23: 2% agarose DNA gel electrophoresis of the PCR product using primers 
for rirA

Lane 1: Ladder

Lane 2: Real-time RT-PCR product of rirA
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In som e cases, the m elting curve show ed a peak at a low er tem perature than  that 

o f  the specific PCR product, often below  70°C This w as probably the result o f  

the form ation o f  pnm er-d im ers In m ost cases, the problem s w ere abolished by 

d iluting the concentration o f  prim ers from  a concentration o f  4 (iM to a 

concentration o f  0 4 j i M  A  prim er concentration that is too high can increase the 

yield o f  non-specific products In o ther cases, how ever, the dilution o f  the 

prim ers or the optim isation o f  the annealing tem perature was not enough and 

new  prim ers had to be designed for som e genes The m agnesium  chloride 

concentration could also be a  factor affecting the form ation o f  prim er-dim ers or 

unspecific products, how ever as it is part o f  the SY BR G reen M aster m ix, it 

w ould have been difficult to  vary the concentration and optim ise it

For the analysis o f  the level o f  transcripts o f  iron-responsive genes, relative 

quantification, w hich is the m ost w idely  used technique in real-tim e RT PCR, 

was used For th is m ethod o f  quantification, an endogenous control was 

am plified from  the sam ple as well as the gene(s) o f  interest By using an 

endogenous control as an active reference, quantification o f  an m RN A  target can 

be norm alised for rem oving errors caused by slight variation in PC R efficiencies 

betw een sam ples and different am ounts o f  tem plate The endogenous control was 

com pared to C t (C t first cycle at w hich the fluorescent signal obtained during 

real-tim e RT- PC R  is significantly h igher than the background signal) values and 

the follow ing equations used

A C t=  endogenous C t -  Gene o f interest C t  

A A C t =  A C t o f sample - A C t o f calibrator 

Am ount of target normalised to a control and relative to a calibrator =

2(A A Ct)
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4.6.1 Regulation o f  rirA as detected by real time RT-PCR.

G iven the possible role o f  R irA  in regulating iron uptake, the effects o f  iron on 

the expression o f  rirA  itse lf w ere determ ined. To do this, a real-tim e RT-PC R 

was perform ed com paring the level o f  m RN A  o f  rirA  in S. m eliloti under iron 

deplete and replete conditions. In this experim ent, the housekeeping gene chosen 

w as npt.

1.3%

rirA
(F e-)

Fig 4.24: In  vivo analysis o f  the iron regulation o f rirA by R eal-T im e PC R
(Fe+): Iron replete condition (Fe-): Iron deplete condition

The real-tim e R T -PC R  (Fig 4.24) clearly  show ed that the expression o f  rirA  is 

iron regulated. The expression o f  the gene is undoubtedly dow n regulated under 

iron deplete conditions com pared to iron replete, w ith a level o f  transcripts near
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4.6.2 Iron regulation o f  rhbA  and  rhtA  as detected  by real time 

RT-PCR.

The effect o f  iron was also determ ined on the expression o f  S. m eliloti genes that 

are potentially regulated by RirA. To do this, a real-tim e R T -PC R  was perform ed 

com paring the level o f  m R N A  o f  rhbA  and rhtA, w hich are genes involved in the 

siderophore m ediated iron uptake system  under iron deplete and replete 

conditions in S. m eliloti 2011. In this experim ent, the housekeeping gene chosen 

was npt.

Fig 4.25: In  vivo analysis o f  the iron regulation o f  rhbA  and rhtA  by Real- 
Tim e PC R

(Fe+): Iron replete condition (Fe-): Iron deplete condition

The real-tim e R T-PC R  (Fig 4.25) confirm ed that the expression o f  the 

biosynthesis gene rhbA  and the gene encoding the rhizobactin  1021 outer 

m em brane receptor, rhtA  are iron regulated.
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4.6.3 The role o f RirA in regulation o f the iron response

Follow ing confirm ation o f  iron regulation o f  selected genes, it w as decided to 

analyse the expression o f  genes involved in iron acquisition regarding potential 

R irA  regulation.

In view  o f  the results o f  chapter 3 w here it w as show n that the siderophore 

m ediated iron acquisition system  is not regulated by Fur, the expression o f  rhbA, 

a gene involved in the b iosynthesis o f  rh izobactin  and o f  rhtA , its outer 

m em brane receptor w ere com pared betw een S. m eliloti 2011 and 201 \rirA 2  

using 16S rRNA  as the house keeping gene.

Fig 4.26: In vivo analysis of R irA  regulation of rhbA and rhtA in S. meliloti 
2011 by  R ea l-T im e P C R

As show n in Fig 4.26, rhbA  and rhtA  are clearly dow n regulated by the RirA 

protein under iron replete conditions. The results o f  the real-tim e RT PC R shows 

respectively a 15 and 33-fold decrease o f  the expression o f  the genes in the w ild 

type under iron replete conditions com pared to the rirA2  m utant.

U sing the sam e conditions as for rhbA  and rhtA , the expression o f  d p p A l was 

analysed regarding a possible R irA  regulation. The gene denoted d p p A l is 

situated im m ediately dow nstream  o f  the rirA  gene and encodes a hom ologue o f
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an A BC transporter involved in hem e transport (C arter et a l., 1992). Because 

transcriptional regulators often regulate genes adjacent to them , the expression o f  

d p p A l  was com pared betw een S. m eliloti 2011 and 2 0 \\r irA 2 .  A lso, chapter 3 

results dem onstrated that Fur is not regulating sm c02726 , the gene encoding the 

hem e receptor, the expression o f  the gene was also com pared betw een the w ild 

type and the rirA2  m utant.
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Fig 4.27: In  vivo analysis o f  RirA regulation o f  dppAl and smc02726 in S. 
meliloti 2011 by R eal-T im e PCR

The result show n in Fig 4.27 show ed that under iron replete conditions, 

sm c02726  is dow n regulated by R irA  w ith a 24-fold decrease in the wild type 

com pared to the rirA2  m utant. The fact that R irA  regulates genes involved in 

siderophore-m ediated iron uptake system  and in the hem e iron uptake system  

suggests that RirA  can be the general iron regulator o f  S. m eliloti. H ow ever, the 

results for the d p p A l  gene w ere unexpected. The iron A BC transporter 

hom ologue d p p A l , w hich is adjacent to rirA , is up regulated under iron replete 

conditions by the regulator. This suggested that RirA , in som e cases is a  negative 

transcriptional regulator w hile in the case o f  d p p A l  is a  positive regulator.
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4.6.4 Regulation o f RhrA as detected by real time RT-PCR

G iven the know n role o f  RhrA  in regulating the siderophore m ediated iron uptake 

system  (Lynch et al., 2001), the effects o f  iron on the expression o f  rhrA  itse lf 

were determ ined. To do this, a  real-tim e R T-PC R  was perform ed com paring the 

level o f  m RN A  o f  rhrA  in S. m eliloti under iron deplete and replete conditions. In 

this experim ent, the housekeeping gene chosen was npt.
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Fig 4.28: Analysis of the iron regulation of rhrA by Real-Time PCR
(Fe+): Iron replete condition (Fe-): Iron deplete condition

The real-tim e R T-PC R  (Fig 4.28) show ed that the rhrA  transcript is present 

under iron replete conditions. Surprisingly, the expression o f  the gene appears to 

be iron regulated with a  higher concentration o f  transcript under iron replete 

conditions com pared to iron deplete conditions. The expression o f  the gene is 

dow n regulated under iron deplete conditions w ith a 3-fold decrease.

100.0%

rhrA rhrA
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4.6.5 Transcriptional regulation by RhrA under iron deplete  

conditions

U sing real-tim e RT-PC R, w ith npt as the housekeeping gene, it was also possible 

to investigate and confirm  the role o f  RhrA  as a transcriptional activator 

com paring the level o f  transcripts o f  rhbA  and rhtA  in the w ild type com pared to 

the rhrA  m utant under iron deplete conditions.
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Fig 4.29: In  vivo analysis o f  R hrA  regulation o f  rhbA and rhtA  in S. meliloti 
2011 by R eal-T im e PC R

The real-tim e R T-PC R  results confirm  the regulation by RhrA o f  the 

biosynthesis gene rhbA  o f  rhizobactin 1021 and o f  its outer m em brane receptor 

gene rhtA  as was suggested by RN ase protection assays (Lynch et al., 2001). The 

only difference in the tw o results is that, as detected by real tim e R T-PC R, the 

transcription o f  the siderophore biosynthesis gene and its outer m em brane 

receptor gene are not com pletely abolished under iron replete conditions.
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4.7 DNA binding by RhrA

A  m obility shift assay w as perform ed w ith  the aim  o f  investigating the b inding o f  

RhrA  to the upstream  region o f  the rh izobactin  1021 biosynthesis genes and o f  

the outer m em brane receptor encoded by  rh tA , results that w ere already 

suggested by the real-tim e R T -PC R  assay

The first step w as to overproduce the A raC -transcnptional regulator P rotein 

purification w as not attem pted due to the poor yield  o f  protein obtained as a 

result o f  the poor stability and solubity o f  this fam ily o f  transcriptional regulator 

The protein extracts w ere therefore used to  perform  the m obility shift assay

4 7 1  C loning and  expression o f  RhrA

The S  m ehloti rhrA  gene, w hich encodes a 35 K D a protein, w as cloned using the 

same approach as for the S  m ehloti fu r  hom ologue (C hapter 3) The gene was 

am plified by PC R from  genom ic D N A  from  S  m ehlo ti 2011 N c o l  and B am H I  

sites were incorporated into the forw ard and reverse prim ers respectively The 

am plified fragm ent extends from  the start codon o f  rhrA  to the codon before the 

term ination codon o f  th is gene This 950-bp fragm ent generated by  PC R  was 

cloned into the pC R 2 1 vector The N col-B am H l fragm ent carrying the entire 

PC R -generated fragm ent w as subsequently  sub cloned into the expression vector 

pQ E60 This recom binant plasm id, designated pR hrA 60, w as used to transform  

E  coh  XL 10 gold and R osetta B lue

The strategy o f  the rhrA  cloning into pQ E60 is sum m arised in  Fig 4 30
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The conditions of the PCR reaction to amplify the rhrA gene were as follows:

Prim ers:
♦ RhrA60-F:
CC A TG G  A G A C A A TC C G A C C G
♦ RhrA60-R:
G G A TC C A G C G G C G G C TG C C A G

The PCR program  used is sum m arised in Table 4.6.

Table 4.6: PCR Reaction C onditions for the am plification o f  the S. m elilo ti rhrA  

gene.

PCR Conditions

A nnealing Tem perature 55°C 

A nnealing T im e 1 m in 

E xtension Tim e 72°C for 1 m in

2 2 0



Problem s w ere encountered w ith  the over expression o f  rhrA  probably because 

o f  the properties o f  this protein, w hich is a m em ber o f  a fam ily o f  proteins 

renow ned for being insoluble and unstable To solve the difficulty o f  insolubility, 

a  low er grow th tem perature o f  30°C was used Indeed, w hen produced under 

optim um  grow th conditions, the overexpression o f  R hrA  gave rise to the 

form ation o f  inclusion bodies, w hich are form ed through the accum ulation o f  

folded interm ediates The use o f  30°C tem perature perm itted  the protein to fold 

properly and thus to  reduce the form ation o f  inclusion bodies Also, the strain E  

coh  R osetta B lue w as used as it is designed to enhance the expression o f  proteins 

that contain codons rarely used m  E  coh  It supplies tR N A s for 6 rare codons, 

AU A, AG G, AG A, CU A, CCC, GG A, on a  com patible chloram phenicol- 

resistant plasm id called pR A R E A n analysis o f  rhrA  regarding codon usage 

m dicated that it possesses 8 3%  o f  rare codons, w hich is quite above the average 

(Novy et a l , 1999) The yield o f  R hrA  obtained w ith  X L 10 gold even under 

denaturing conditions w as low  and thus R osetta blue w as used as an alternative 

Also, tim e courses w ere undertaken to optim ise the tem perature o f  grow th and 

the length o f  grow th tim e after induction w ith  IPTG  G radients o f  different 

lengths o f  sonication (im portant due to the poor stability o f  the protein) and 

different concentrations o f  IPTG  w ere used to determ inate the optim al conditions 

for high yields o f  protein

It w as determ ined that the optim ised protocol for the overexpression o f  RhrA  

w as as follow s E  coh  R osetta B lue carrying pR hrA 60 w as inoculated into LB 

containing 100 jig/ml o f  am picilhn  (to m aintain the pR hrA 60 plasm id) and 30 

jig/ml o f  chloram phenicol (to m aintain the pRA RE plasm id) and w ere grow n at 

30°C until the O D 6 0 0  reaches 0 4 to 0 6 IPTG  w as added to a final concentration 

o f  0 05 m M , and the cultures w ere grow n for an additional 6 hours A  1 5 ml 

aliquot o f  the cells was then pelleted  and resuspended in 250 |il o f  lysis buffer as 

described in  chapter 2 The cells w ere kept on ice and w ere sonicated for 20 

seconds Finally, the cellu lar debris w as pelleted at 10,000 rpm  for 10 m inutes 

and the rem aining supernatant w as stored at -20°C
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Fig 4.31 shows the results o f  a  tim e course experim ent o f  the protein extract 

prepared under denaturing conditions and expressed under optim al conditions. It 

w as concluded that extract should be harvested six hours after induction.

1 2 3 4 5 6 7 8 9  10 11

Fig 4.31: 15%  SDS polyacrylam ide gel electrophoresis o f extract o f cells 
overexpressing R hrA  prepared under denaturing conditions

Lane 1: Ladder
Lane 2: Non-induced at time 0 
Lane 3 : Induced at time 0 
Lane 4: Non-induced after 2 hours 
Lane 5: Induced after 2 hours 
Lane 6: Non-induced after 4 hours 
Lane 7: Induced after 4 hours 
Lane 8: Non-induced after 6 hours 
Lane 9: Induced after 6 hours 
Lane 8: Non-induced after 8 hours 
Lane 9: Induced after 8 hours

2 2 2



Fig 4.32 shows RhrA  prepared under native conditions from  cells grow n under 

optim al conditions. The protein  looks slightly b igger on the gel than its 35 K D a 

due to the 6xH is-tagged fused to its C -term inal. A  densitom etry analysis has 

show n that the native RhrA  represents 4.8%  o f  the total protein content. 

U ltim ately, the H is tag w as not exploited for protein purification.

1 2 3

Fig 4.32: 15% SDS polyacrylam ide gel electrophoresis o f  extracts containing  
R hrA  protein that had been prepared under native conditions

Lane 1: ladder
Lane2: pRhrA60 non-induced 
Lane 3: pRhrA60 induced
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4.7.2 M obility  Sh ift A ssay using pro te in  extracts containing  

overexpressed RhrA

The RhrA  m obility shift assay was undertaken using the region upstream  o f  rh tX  

and the rhrA-rhtA  intergenic region w ith extracts from  E. coli R osetta Blue 

containing pRhrA 60.

The synthesis o f  the DN A  probes and their labelling was perform ed in the sam e 

w ay as for the m obility shift assay carried out for the S. m elilo ti recom binant Fur. 

Two o f  the probes used for the Fur EM SA  w ere used in this experim ent (See 

Chapter 3):

Probe 1: Intergenic sequence betw een rhtX  and the open reading  

fram e o f orf2

C G G  G A T C C C C T A T C G C C T C T C T C G A A A A T G C  T A C T G T C T
T A A T G A G  T C A C A T C C A A G C C G T T C A C C G C A C G T C C A T T T
A A A G A T G A C G G C A A C A C T C A T G T T T A T C G T C A G A C A A T G T T G C C G  
G G C A G T G G C A G T T T T C G G G A T C C C G

H ighlighted in orange are the putative RhrA  repeat binding sites and underlined, 
the 6-bp repeat present upstream  rh tX  and in the intergenic region rhrA-rhtA  and 
purple the B am H I  sites used in labelling the probe

Probe 2: Intergenic sequence betw een rhrA  and rhtA

C G G G A T C C G T C G T G C G C C A G C C T T T C C T G T T G A C  A T G C G
T C C A A A T G A G  C A T T A T C C A A G C G G C G A A C A C C C T T A G C C
C A T A A A A C A T G A C T T A A A T A G T C T T G T A T T G G C A A T T T G C C C G C C  
C A C C G G C A G C G G C A A T T G T T T T C T G G T G C G C A G G G G G C G T T A T G
G G C A G G A T C C C G  _ _ _ _  _ _ _ _ _ _ _ _ _
H ighlighted in orange are the putative R hrA  repeat binding sites and underlined, 
the 6-bp repeat present upstream  rh tX  and in the intergenic region rhrA-rhtA  and 
purple the B am H I  sites used in labelling the probe
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The conditions of the mobility shift assay were as described in chapter 2.

The negative controls, w hich are the D N A  probes on their ow n in the binding 

buffer or the probes in the b inding buffer but also w ith an E. coli extract w ith 

pQ E60 induced, show ed no band shift (Fig. 4.33: lane 1,2,3 and 5).

How ever, in Fig 4.33, in the lane 4 and 6, w hich are the probes w ith extracts o f  

E. coli w ith pR hrA 60 induced, a band shift can be observed show ing physical 

evidence o f  RhrA  binding to the region upstream  rh tX  (Lane4) and in the 

intergenic region betw een rhrA  and rhtA  (Lane 6).

1 2 3 4 5 6

Fig  4.33: M ob ility  sh ift assay  w ith  e x tra c ts  c o n ta in in g  R h rA
Negative controls
Lane 1: Probe 1 + Binding Buffer
Lane 2: Probe 2 + Binding Buffer
Probe 1: Probe upstream rhtx
Lane 3: pQE60 IPTG induced + Binding Buffer + Probe
Lane 4: pRhrA60 IPTG induced + Binding Buffer + Probe
Probe 2: Probe intergenic region rhrA-rhtA
Lane 5: pQE60 IPTG induced + Binding Buffer + Probe
Lane 6: pRhrA60 IPTG induced + Binding Buffer + Probe
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The m obility  shift assay provided physical evidence o f  the binding o f  R hrA  to 

the prom oter region o f  rh tX rhbA B C D E F  and in the m tergem c region betw een 

rhrA  and rhtA
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4.8 Effect of the rirA2 mutation on symbiotic 
performance

S  m ehloti 2011 induces nodule form ation and enters into a  nitrogen fixing 

sym biosis w ith  M edicago sativa  (alfalfa) The effect o f  the rirA  m utation in the 

m utant strain  2 0 \\r ir A 2  on  plants w as exam ined The effect o f  S  m ehloti 2011 

on plants w as exam ined as a positive control U ninoculated plants were 

exam ined as a negative control

W ith the help o f  D r O Cuiv, follow ing a th irty-day incubation, the plants w ere 

analysed to determ ine i f  the m utants had nodulated  All the plants exam ined 

showed nodule form ation The nodules had a reddish hue indicating the presence 

o f  leghaem oglobin The nodules w ere sim ilar to those produced by  S  m ehloti 

2011 The uninoculated plants did not show  any nodule form ation N o difference 

w as observed betw een plants indicating that the rirA  m utation was not having a 

noticeable effect on sym biosis
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4.9 Discussion

Chapter 4 results suggest that in S  m ehloti, a new  type o f  transcriptional 

regulator denoted R irA  regulates the acquisition o f  iron This is the second 

m em ber o f  this Rhizobial Iron R egulator (R irA ) fam ily discovered after the one 

found in R legum inosarum  by Todd et a l (2002)

Previously, it was concluded in chapter three that Fur, w hich is the m am  general 

iron regulator in gram -negative bacteria, did not fulfil th is function in S  m ehloti 

In addition, no hom ologue o f  D txR , the o ther general bacterial iron regulator 

found in bacteria, w as found in S  m ehloti Thus, the w ork  w as directed to the 

hom ologue o f  R irA  from  R legum inosarum, w hich was identified in S  m ehloti 

by blast analysis w ith  a high hom ology o f  88%

S  m ehlo ti R irA  show s a  lot o f  hom ology to the protein  fam ily denoted Rrf2 To 

date, there has been little study o f  this fam ily o f  transcriptional regulators They 

have a helix turn helix m o tif  but nothing is know n about the DN A  sequence they 

bind to and w hether or no t they need a  cofactor A n interesting characteristic o f  

this fam ily is three cysteines present on the C-term inal o f  its m em bers This site 

could be w here the ferrous iron binds to the protein and possib ly  acts as a  

cofactor

In order to find out about its function the gene w as m utated  to study its putative 

role in iron regulation The siderophore plate bioassay show ed that in the rirA  

m utant, the siderophore rhizobactin  1021 is constitutively produced The result 

w as confirm ed by the use o f  prom oter probes They w ere constructed in p O T l, 

clom ng the prom oter reg ion  o f  rh tX rhbA B C D E F  upstream  o f  a G FP reporter 

gene The different constructs w ere m obilised into the S  m ehlo ti 2011 w ild type 

but also in  201 \rirA 2  W hen com paring the GFP activity  em itted by pW T, 

carrying the in tact prom oter region, m obilised into 2011 and into 2 0 \\r irA 2  

under iron replete conditions, some G FP activity  w as observed solely in the rirA  

m utant suggesting that in the presence o f  iron, R irA  dow n regulates at the 

transcriptional level the expression o f  the siderophore This m ay occur by
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binding to the prom oter region o f  the rh izobactin  biosynthesis operon A lso, a 

35-bp D N A  sequence w as identified to be necessary  for the action o f  R irA  Its 

deletion results in the constitutive expression o f  GFP To find out m ore about the 

genes regulated  by RirA , analyse o f  the transcrip tion o f  iron responsive genes 

w ere perform ed w ith  the help o f  real-tim e R T -PC R  rhbA  and rhtA  were found to 

be iron regulated through RirA  Thus, R irA  is the repressor o f  the siderophore 

m ediated iron uptake system  These results are sim ilar to the ones obtained in R  

legum inosarum , in w hich biosynthesis o f  the siderophore vicibactin  and its outer 

m em brane receptor are dow n regulated by RirA  under iron replete conditions

In view  o f  the results o f  chapter 3, the regulation by R irA  o f  the hem e receptor 

encoded by sm c02726  w as assessed B ecause the gene adjacent to rirA, dp p A l 

encodes an iron transporter protein  hom ologue, its regulation w as also exam ined 

The hem e transporter w as found to be dow n regulated by R irA  under iron replete 

conditions, a result that is sim ilar to the one observed in R legum inosarum  

where the genes involved m  hem e uptake Qimu and tonB) are regulated by RirA 

Furtherm ore, the iron responsive expression o f  sm c02726  w as observed in S  

m ehloti Rm 818 (unpublished data), a  strain that is cured o f  the pSym A  

m egaplasm id and therefore lacks rhrA, the gene encoding the A raC -like activator 

o f  the rhizobactin  1021 biosynthesis and transport genes This result is significant 

in that it decouples the iron responsive activity  o f  rirA  from  the effect o f  R hrA  

On the o ther hand, surprisingly, d p p A l w as found to be up regulated  This result 

show s that as w ell as being a repressor, R irA  can also act as a positive regulator

For R irA  up regulation, R irA  could act either directly or indirectly, as is the case 

for Fur For exam ple, the fem e  uptake regulator Fur is m ainly know n 'to  act as a  

negative transcriptional regulator, how ever, recently, it w as show n to also act as 

a  positive transcriptional regulator (D elany el a l , 2004) In som e cases, Fur also 

indirectly up regulates the expression o f  genes v ia a sm all R N A  ryhB, w hich 

itse lf  negatively regulates genes at the posttranscnptional level

The real-tim e R T -PC R  experim ents have show n that R irA  is iron regulated and 

abundantly  present under iron replete conditions One hypothesis is that the 

regulator m ight autoregulate itse lf U nder iron replete conditions, the ferrous iron
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present in the cell m ight bind to the m olecule acting as a cofactor This alteration 

o f  conform ation m ight result in the protein  b inding to its prom oter region and 

upregulating its expression On the other hand, under iron deplete conditions, 

because o f  the absence o f  ferrous iron, a  different conform ation o f  the regulator 

appears and thus, the expression o f  rirA  is considerably decreased A s 

previously, m entioned th is change o f  conform ation could happen by the iron 

binding to the 3 cysteines present o f  the C-term m al This is, for exam ple, the 

case for the regulatory functioning o f  FNR, the transcriptional regulator o f  

anaerobic respiration o f  E  coh  Indeed, the interconversion o f  both  form s o f  the 

protein  appears to be regulated by the availability  o f  O 2  but also by  the binding 

o f  ferrous iron to the cysteine residues (Trageser et a l , 1989)

It is also likely that the regulator acts in the sam e w ay as the Fur and D txR  

proteins dow n regulating genes directly by  binding to their prom oter regions 

Indeed, the fact that the regulation o f  R irA  is not restricted to the siderophore 

system  suggests that R irA  is a general iron regulator, like those proteins RirA  

also appears to  be the general iron response regulator in R legum inosarum  (Todd 

et a l 2002) In contrast, in B ja p o m cu m , it has been found that an additional 

protein, Irr, functions along w ith Fur m  the iron response (H am za et a l , 2000) 

There is no obvious reason why som e rhizobia have recruited R irA  as an 

alternative to Fur as the general iron response regulator

A parallel investigation w as undertaken o f  R hrA , an A raC -transcnptional 

activator encoded dow nstream  from  the siderophore biosynthesis genes and 

upstream  from  the outer m em brane receptor genes Sim ilar sets o f  repeats were 

identified upstream  from  rh tX rhbA B C D E F  and in the m tergem c reg ion  o f  rhrA- 

rhtA  (Fig 4 34), tw o prom oters know n to be activated by RhrA  (Lynch et a l , 

2001)
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Region upstream  rhtX :
W M M 0/M /Æ W /Æ /W /JKL W /W /W /W /M /M W /M /jr/TA

g c Ig t t c g c It a c t g t c t t a a t g a g i g t t c g c i t c
W /jr/jr/jr/Æ /Æ /Æ /Æ /Æ V & A  VÆ /Æ 'W /Æ /Æ /Æ /m W /Â ^

Intergenic region rhrA-rhtA:

Fig 4.34: Region o f the putative R hrA  binding repeats upstream  from  rh tX  
and in the intergenic region o f rhrA-rhtA .
The binding sites are framed and the 6-bp additional repeats between the two regions are 
underlined.

The results o f  the levels o f  GFP activity  suggested that in S. m elilo ti, under iron 

deplete conditions, the expression o f  the operon rhtX rhbA B C D E F  and thus the 

production o f  the siderophore rhizobactin  1021 is dependent on the presence o f  

the proxim al repeat in the prom oter reg ion  o f  the biosynthesis cluster. A lso, no 

GFP activity was detected for S. m eliloti 2011 [pEN4] even i f  the proxim al 

repeat w as present but m oved by the insertion o f  a  B g lll  site. Interestingly, both 

putative RhrA  repeats can be found in the intergenic region betw een rhrA  and 

rhtA. A dditionally, the 6-bp upstream  the proxim al repeat upstream  from  rh tX  

and the 6-bp o f  the proxim al repeat upstream  from  rhtA  are identical (Fig 4.34). 

In pEN 4, a B g lll  site w as inserted betw een those 6 bases and the proxim al repeat 

upstream  from  rhtX. It is thus possible that this 6-bp are involved in the binding 

o f  RhrA  and the d isruption o f  the continuity  betw een the 6-bp sequence 

underlined in Fig 4.34 and the proxim al repeat in pEN 4 abolishes the binding site 

o f  RhrA.

A nalysis o f  the m R N A  o f  rhbA  and rhtA  show ed that the transcriptional regulator 

is strongly involved in their regulation, up regulating their expression under iron 

deplete conditions. These results confirm ed the RN A se protection assays carried 

out on these genes (Lynch et a l , 2001). The only difference betw een those 

results is that Lynch et al. (2001) results concluded that under iron replete 

conditions no transcripts o f  those genes could be detected w hich differs from  the
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results from  the real-tim e R T -PC R  assays O ne explanation is that under iron 

replete conditions, the cell still needs to balance its iron concentration and w hile 

it is abundantly available in the environm ent, it m ight still produce a m inor 

am ount o f  siderophore to  take up the am ount o f  iron the cell uses m  redox 

reactions and in the production o f  proteins and enzym es

Som e results observed w ith R hrA  are sim ilar to the ones observed w ith PchR, 

Y btA  and A lcR  In the four cases, the siderophore biosynthesis genes and outer 

m em brane receptors are regulated by A raC -hke regulators under iron deplete 

conditions A lso, as is the case for YbtA , the presence o f  the proxim al repeat 

seem s to be crucial for the binding o f  the transcriptional regulator H ow ever, 

some differences can be observed PchR , Y btA  and A lcR  activation w ere 

reported to be siderophore dependent or partially  dependent in all cases 

H ow ever, D r O Cuiv, a  m em ber o f  this group has show n that under iron deplete 

conditions, in an S  m ehlo ti siderophore b iosynthesis m utant, the outer m em brane 

receptor R htA  is still expressed This clearly show  that the activation o f  RhrA  is 

not dependent on the presence o f  rh izobactin  1021 A lso, at least in tw o cases, 

for YbtA  and PchR, the regulator is also able to negatively autoregulate itse lf 

How ever, from  the results o f  th is chapter, contrary to these tw o A raC -hke 

regulators, R hrA  seem s to be m ore abundant under iron replete conditions

The overall aim  o f  this thesis w as to determ ine how  S  m ehlo ti responds to 

changes in iron availability, and in particular, how  S  m ehloti regulates the 

siderophore m ediated iron uptake system  O ur analysis o f  iron-dependent gene 

expression in S  m ehloti has revealed that the rh izobactin  1021 biosynthesis 

genes, as well its outer m em brane receptor, w hose expression w as in each case 

recogm sed to be iron regulated are regulated, by a regulatory  m echanism  

involving both  R irA  and R hrA  I f  R irA  is solely present under iron replete 

conditions, R hrA  is present under both iron replete and deplete conditions One 

possible m echanism  is that by binding to the prom oter region o f  iron-regulated 

genes, R irA  prevents the b inding o f  R hrA  Indeed, i f  a 3 5-bp D N A  sequence was 

identified as w here R irA  binds, how ever, there is no evidence that th is is the 

com plete b inding sequence or that R irA  acts as a m onom er and not a  m ultim er It 

is thus possible that R irA  could prevent the b inding o f  R hrA  binding to the
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sequence at its proxim al repeat, w hich appears to be the m ost im portant U nder 

iron replete conditions, ferrous iron could bind to R irA  putatively on  the 3 

cysteines present o f  its C-term m al and so positively auto regulating the 

expression o f  its gene w hile the absence o f  iron could lead to a  change in the 

conform ation o f  R irA  that w ould  then be dow n regulated  In this case, w ith  the 

cell being deficient in R irA , R hrA  could bind to the prom oter regions o f  

rhtX rhbA B C D E F  and rhtA  provoking the positively  regulation o f  those genes
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Chapter 5:

Luteolin regulation of the 

siderophore biosynthesis gene 

rhbG in Sinorhizobium meliloti
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5.1 Introduction

S. m eliloti is an agriculturally im portant soil bacterium  that is capable o f  form ing 

a nitrogen-fixing sym biosis w ith legum inous plant host alfalfa (M edicago  

truncatula). The exchange o f  m olecular signals betw een the host and the 

bacterium  controls the nodulation process by w hich S. m eliloti invade the plant 

roots. Flavonoids, w hich are released by plants and w hich accum ulate in the 

rhizosphere are the first o f  those signals. M ore than 4000 different flavonoids 

have been identified in plants, and a particular subset o f  them  is involved in 

m ediating host specificity in the legum es (Perret et a l., 2000). The flavonoid 

specific to alfalfa that function as a  signal to S. m elilo ti is luteolin (Fig 5.1).

Fig 5.1: C hem ical structure o f luteolin , the inducer released from  M. 
truncatula

The proposed m echanism  involves luteolin diffusing into the bacteria where it 

interacts w ith N odD  proteins, w hich are m em bers o f  the LysR  fam ily o f  

transcriptional regulators. The flavonoid then triggers a signal transduction 

cascade that controls the infection process (B roughton et a l , 2000; Perret et a l , 

2000). Even in the absence o f  flavonoids, tetram eric N odD  binds to a conserved 

49 bp m o tif (N od-box) that is found in the prom oters o f  nodulation (nod, nol and 

noQ) genes (Feng et a l., 2003). N evertheless, com patible flavonoids are required
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for the activation o f  rad -lo c i (Fisher and Long, 1993) M ost nodulation genes 

that are expressed in a flavonoid- and N odD -dependent m anner are involved m 

the synthesis o f  strain-specific lipochito-oligosacchandes called N od-factors that 

are essential for the initial infection o f  root-hairs by the bacteria A lthough 

flavonoids and N od-factors represent the first set o f  m olecular signals 

exchanged, o ther signals are required for successful invasion o f  the host and 

ultim ately d ifferentiation o f  infecting rhizobia m to functional m trogen-fixm g 

bacteroids (B roughton et a l , 2000, Perret et a l , 2000)

R ecent literature has established that surprisingly, flavonoids could affect the 

expression o f  several genes, w hich are not am ong the nod  genes and do not 

possess a ‘N od b o x ’ in their prom oter regions (Perret et a l , 1999, Chen et a l 

2000) A  short tim e ago, A m pe et a l (2003) reported w ith the help o f  m acro­

arrays that five S  m ehloti genes involved m  iron m etabolism  are significantly 

induced by lu teolin  Interestingly, one o f  those genes are related to iron 

m etabolism  rhbG  w hich is a gene thought to be involved in the biosynthesis o f  

the S  m ehloti siderophore (Lynch et a l , 2001) rhbG  is located distal to the rhtA  

gene in the rh izobactin  1021 regulon (Fig 3 1 in chapter 3)

It w as decided to investigate further the regulation o f  rhbG , w hich based on 

biom form atics analysis m ay be coding fo r the lipid tail o f  rh izobactin  1021 

Therefore, the activity o f  an  rhbG  lac fusion was investigated under iron deplete 

and replete conditions and w ith  and w ithout lu teolin  to determ ine how  the 

expression o f  th is gene is controlled
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5.2 in vivo analysis of the luteolin regulation of 
rhbG under iron deplete and replete conditions.

A n rhbG -Tn5lacZ  m utant strain was previously generated in our laboratory by 

transposon insertion (Lynch, PhD thesis, 1999) and called 201 \rhbG 25  This 

strain carries the Tn5 lacZ  transposon inserted in the chrom osom al copy o f  the 

rhbG  gene in the correct orientation The m utant w as constructed using S  

m ehloti G212, deletion m utant o f  S  m ehloti 2011 (G lazebrook et a l , 1989) (3- 

galactosidase assays w ere perform ed as described in chapter 2, to determ ine the 

expression o f  the gene under different conditions o f  grow th S  m ehloti G212 was 

used as a  negative control The bacteria w ere grow n m  TY  m edia under iron 

deplete and replete conditions and m both  cases m  the absence and in  the 

presence o f  lu teolin  (The concentrations o f  2 ,2 '-d ipyndyl was 300 |iM  and o f  

luteolin 10^M ) W hen added w ith  luteolin, w hich is prepared in m ethanol, 2,2'- 

dipyridyl w as resuspended in m ethanol instead o f  ethanol, as the addition o f  the 

two solvents to the m edia resulted in the appearance o f  a  precipitate
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A P-galactosidase assay w as carried out according to the M iller protocol (1972) 

w ith som e m odifications based on M ulligan et al. (1985) w hereby w hen no 

yellow  colour appear, the reaction w as stopped after 20 m inutes.

Table 5.1: p-galactosidase activity results o f  S. m elilo ti  G 212 and S. m elilo ti 
G 212rlibG 25  under iron deplete and replete conditions and in the absence  
and presence o f  the inducer, luteolin.

p-galactosidase activity Standard error  
(M iller Unit)

Iro n  replete cond itions
S. m eliloti G212 
S. m elilo ti G 2\2rhbG 25

3.3 "7- 3.3 
11.61 V- 1.41

Iron replete conditions w ith the addition o f luteolin
S. m eliloti G212 
S. m eliloti G 2\2rhbG 25

1.81 V- 0.10
253.50 +/- 2.73

Iron deplete conditions
S. m eliloti G212 
S. m eliloti G 2\2rhbG 25

3.50 +/- 0.69 
381.69 +/ - 93.90

Iron deplete conditions w ith  the addition o f luteolin
S. m eliloti G212 
S. m eliloti G 2\2rhbG 25

2.92 +/- 0.10 
763.12 +/ - 61.64

The basal level o f  endogenous p-galactosidase activ ity  in the S. m elilo ti strain 

G212 is, as expected, low  and is not affected by the plant exudates or by the 

different iron conditions.

A low  level o f  expression w as detected in S. m eliloti 2 0 \\rh b G 2 5  under iron 

replete conditions but a 3 3-fold expression increase w as seen under iron deplete 

conditions (Table 5.1). This im plies that rhbG  is iron regulated.

A lso, under iron replete conditions, the behaviour o f  the P-galactosidase activity 

w as exam ined in the presence o f  luteolin. The level o f  p-galactosidase activity in 

the m utant S. m eliloti strain 2 0 \\rh b G 2 5  is also relatively low  but is 

considerably increased in the presence o f  luteolin. W hen com paring the 

expression levels w ith and w ithout luteolin, a 22-fold expression increase can be 

detected in the presence o f  luteolin (Fig 5.2).
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Fig 5.2: p-galactosidase activity (M iller U) under iron replete conditions in 
the presence and absence o f  luteolin o f  G212 and G212rhbG25.

The sam e com parison done under iron deplete conditions show s that the level o f  

expression is also increased in the presence o f  luteolin  but only 2-fold (Fig 5.3). 

These results suggest that the expression o f  rhbG  is under positive regulation by 

luteolin and that this regulation is achieved through a com plex and unknow n 

m echanism . Luteolin usually regulates genes indirectly through N odD  but no 

‘N od box’ was detected in the prom oter region o f  rhbG.
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5.3 Influence of the rhbG2B mutation on symbiotic 
performance

The effect o f  the rhbG  m utation in the m utant stram  Q 2\2rhbG 25  on M edicago  

sativa  (alfalfa) p lants w as exam ined Inoculation o f  plants w ith S  m ehloti 2011 

was exam ined as a positive control U nm oculated plants w ere exam ined as a 

negative control Plant teste w ere earned  out w ith  the help  o f  D r O Cuiv

Follow ing a thirty-day incubation, the plants w ere analysed to determ ine i f  the 

m utants had nodulated A ll the plants exam ined show ed nodule form ation The 

nodules had a reddish hue indicating the presence o f  leghaem oglobin The 

nodules were sim ilar to those produced by S  m ehlo ti 2011 The um noculated 

plants did not show  any nodule form ation N o difference was observed betw een 

plants indicating that the rhbG  m utation was not having a noticeable effect on 

sym biosis
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5.4 Discussion

The results o f  th is chapter clearly  show ed the iron  and lu teohn regulation o f  

rhbG

B ased on bioinform atics analysis, the gene is thought to encode the lipid tail o f  

the rhizobactin  1021 siderophore and thus the iron response o f  its expression was 

expected, -as b iosynthesis o f  the siderophore -is upregulated under iron 

deprivation In addition, the p lan t test show ed that the expression o f  rhbG  is not 

crucial for plant nodulation This observation concurs w ith  the results observed 

w ith siderophore biosynthesis m utants for w hich no difference w as observed 

m trogen-fixing ability in acetylene reduction w as observed com pared to the w ild 

type (Lynch et a l , 2001) C om petition studies betw een S  m ehloti 2011 and 

2 0 \\rh b G 2 5  w ould a llow  an assessm ent o f  the im portance o f  the lipid tail 

encoded by rhbG

Its is also very interesting to observe a significant increase in the expression o f  

rhbG  under iron replete conditions and to a m ore m oderate extent under iron 

deplete conditions in the presence o f  the p lan t flavonoid luteolm  w hich confirm s 

the m acroarray results from  A m pe et a l (2003) The difference in fold increase 

in rhbG  could be that the lim it o f  rhizobactin  1021 expression in the presence o f  

the flavonoid under iron deprivation w as reached leading to a sm aller fold 

increase com pared to the expression under iron replete conditions

To date, the best understood signalling function o f  flavonoids involves the 

transcriptional regulation o f  the n od  genes In S  mehloti, w hich possesses three 

nodD  genes, the proteins N o d D l and N odD 2 are know n to be activated by 

luteolm  and to bind the ‘N od b o x ’ but analysis o f  the prom oter region o f  rhbG  

d id not show  any ‘N od  b o x ’

H ow ever, som e isoflavonoids are know n to play m olecular roles beyond the 

enhancem ent o f  nod-gene transcrip tion For exam ple, daidzem  regulates the 

expression o f  two genetic loci that are apparently  unrelated to nod  genes in
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Rhizobium  fre d n  (Sadow sky et a l , 1988) A lso, it has been established that 

flavonoids could affect the expression o f  genes, w hich are not the n od  genes and 

w ithout the presence o f  a ‘N od b o x ’ in  their prom oter regions (Perret et a l , 1999, 

Chen et al 2000) and it seem s to also be the case that luteolm  affects genes that 

are not directly involved in nodulation

The reason for the involvem ent o f  luteolm  in iron acquisition is unclear 

H ow ever, it is know n that interactions can occur betw een bac tena  and plant roots 

that can be beneficial to the plant For instance, p lants can profit from  bactenally  

induced grow th prom otion and protection against pathogens

Studies have show n that luteolm  release from  alfalfa induces a positive 

chem otaxis in S  m ehloti (C aetano-A nolles et a l , 1988, D harm atilake et a l , 

1992) A lso, the flavonoids, luteolm  and quercetin, have a very definite 

prom otive effect on grow th o f  S  m ehlo ti in a m im m al m edium  (H artw ig et a l , 

1991) One w ay to prom ote this grow th could be by prom oting an increase in the 

expression o f  the siderophore rh izobactin  1021 under iron replete and deplete 

conditions The increase in the production o f  rh izobactin  1021 w ould  m ake S  

m ehloti m ore com petitive and thus present in h igher concentration leading to a 

m ore efficient sym biotic relationship betw een S  m ehlo ti and alfalfa

Also, i f  the bacterium  grow s better, it could com pete m ore efficiently w ith  other 

organism s such as pathogens Previous studies show s that siderophores can be 

im plicated in the induction o f  resistance such as in  A rabidopsis (V an Loon et a l , 

1998), in tobacco (M aurhofer et a l , 1994) and in radish (Leem an et a l , 1996) 

The rhizobactin  1021 siderophore present in high concentration could chelate the 

iron available and thereby deprive pathogens o f  essential iron Thus, the 

extensive colonisation o f  the plant by  S  m ehloti could prevent pathogens from  

establishing them selves on  or in the alfalfa
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