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Abstract

The exponential increase in the volume and sensitivity of data transmitted over
electronic media has resulted 1n a corresponding increase in attempts to secure
these mherently 1nsecure transmissions Numerous networking protocols and
associated mechanisms have been used but implementing distributed systems 1s
a notoriously error prone exercise Attempts to ensure the relevant properties
are present in distributed systems can be made by the application of formal
methods However this application of formal methods 1s made to the specifica-
tion of a distributed system, not 1ts actual implementation Typically, a wide
gulf exists between the specification of a distributed system and 1ts actual imple-
mentation, and this gulf can result in the introduction of potentially devastating
errors A method of bridging this gulf 1s required 1n order that the application of
formal methods to distributed systems can become more widespread and more
accessible We propose a general purpose programming language that 1s based
on one of the more popular formal notations used to specify distributed sys-
tems, the m-calculus With this approach we allow the integration of complex
sequenttal computations into w-calculus specifications of distributed systems to
produce systems that are capable of execution in a distributed and concurrent
fashion The implementation of this proposal 1s facihitated by destgning the
language such that fragments of Java code can be integrated into a w-calculus

framework
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Chapter 1

Introduction

Formal Methods are the applied mathematics of software development “For-
mal Methods bring to software and hardware design the same advantages that
other engineering endeavours have exploited mathematical analysis based on
models1” (Butler, Caldwell, Carreno, Holloway & Miner 1995) The use of For-
mal Methods allows software developers to create models of the systems that
they intend to implement and then to reason about this models - proving that
certain properties hold true for the systems

Formal Methods, as the name suggests, are a broad and diverse collection
of technmiques that “are sohdly based on mathematical logic systems and precise
rules of inference” (Black, Hall, Jones & Windley 1996) A Formal Method
usually consists of a language that can be used to describe the system that 1s
to be implemented, as well as a set of axioms and rules that allow properties
of the system to be proved While the concepts behind the various Formal
Methods, and the notations that they use to describe the systems, vary mas-
sively from Formal Method to Formal Method, as does the domain for which
the specaific Formal Method 1s suitable, their purpose remains the same, “the
fundamental goal of Formal Methods 1s to capture requirements, designs, and
implementations i a mathematically based model that can be analysed 1n a
rigorous manner” (Butler, Caldwell, Carreno, Holloway & Miner 1998)

The overall goal of the conception and application of Formal Methods, both
as a group and individually, 1s to improve the standard of software delivered
by increasing the ability of those implementing software systems to design their
systems 1 sufficient detail and to prove that these systems possess the desired
properties

While individual Formal Methods may be only very recently conceived, the
concept of a Formal Method on the whole 1s not new Formal Methods have
been around for some time and have yielded impressive results in fields such



as micro-chip design, aviation and aerospace (Butler et al 1995, Butler et al
1998, JPL nd, Heitmeyer 1998) amongst others Projects in which Formal
Methods have been employed have seen reduced costs, increased rehability and
more predictable delivery dates Taking into account the benefits that Formal
Methods can bring to a project one could be forgiven for expecting that the
application of Formal Methods would be the industry standard in the software
development world This, however, 1s not the case - their application 1s the
exception not the rule

The traditional reason for the non-application of Formal methods 1s cost
(Hall 1990) It 1s widely held that 1t takes time, money and expertise to train
people 1n the apphcation of Formal Methods to software development and in
the actual application 1tself With most software projects being highly cost
and time sensitive Formal Methods are often overlooked in an attempt to keep
within the constraints of a project’s budget If, however, the application of
Formal Methods in software projects was not as costly then, perhaps, they may
not be as frequently overlooked

One such possible mechanmsm for reducing the difficulty, and therefore cost,
of applying Formal Methods could, possibly, be to bridge the gap between the
paradigms used 1n the design of the software systems and those that are used
in the implementation of those systems Currently such a gap exists as the
programming languages used in the implementation of software systems are
largely procedural or object-oriented in nature while the Formal Methods used to
specify the systems often are based on umque paradigms which are irreconcilable
with those of the programming languages used in the implementation of the
specified systems

11 Objectives

Proposed 1s a programmung language that 1s based on a popular Formal Method
- the w-calculus It 1s hoped that this programming language will exhubit all the
recognisable qualities of the Formal Method in question in addition to being
usable, robust, expressive and providing a high level of support for distributed
computing It 1s desired that by possessing these properties that this program-
ming language will make Formal Methods more accessible and increase their
likelihood of being used

1.2 Outline of the thesis

» Chapter one Introduction to the research



Chapter two Introduction to the w-calculus as well as vanants and ex-

tensions of 1t

Chapter three This chapter presents a number of existing related 1m-
plementations

Chapter four The design and theory of the programming language 1s
presented 1n this chapter

Chapter five The implementation behind the design and theory 1s ex-
plained 1n this chapter

Chapter six This chapter contains a number of example systems 1mpl-

mented 1n this programming language

Chapter seven The conclusions of this research



Chapter 2

Background:

The m and Spi calculus

2.1 The mn-calculus

In the Jate 1980s a unique form of distributed systems were becoming increas-
ngly common-place and important, but the nature of these distributed systems
differed sigmificantly from the traditional distributed systems This new breed
of distributed system was not static with regard to topology, 1t was contin-
ually changing Links between agents in the systems would grow and die mn
a seemngly organic fashion and these caused traditional modelling notations
for distributed systems to struggle with this new strain of concurrent system
This hmitation of existing tools for modelling concurrent systems led Robin
Milner, Joachim Parrow and David Walker to devise a process algebra called
the m-calculus The w-calculus 1s heavily influenced by Milners earher work
on CCS (Milner 1989) and 1t retains many positive aspects of CCS and also
adds, amongst other things, the notion of mobihity Mobility being the ability
of systems to grow and alter dynamically during their execution Due to the
umque nature of the w-calculus, 1t 1s quite capable of capturing the essence of
these systems that were dubbed Mobile Systems A mobile system tends to be
distributed across a network and involves the concurrent execution of a number

of agents, agents between who links can move

211 Introducing the m-calculus

As seemingly demanded by any modelling tool for mobile systems the basic
computational operation in the 7-calculus 1s the exchange of a communications

link between processes It 1s this capability to send hinks from one process to



another that sets the w-calculus apart from other process algebras, such as CCS
and CSP (Hoare 1985), which do not allow the communication of hinks, and 1t 1s
only by receiving a link that a process can acquire a capability to interact with
processes which were previously unknown to 1t In the example system, Figure
2 1, process A and process C are both connected to process B but not to each
other, however they wish to be linked together This can be achieved by the
creation of a link z by one of the processes, lets say process A After creation
1t 1s sent over z to process B who forwards 1t onto process C on y Now both
process A and process C know of the link z and they can now interact with each
other without an intermediary party An act of “learming” has taken place and
two previously unconnected processes are now hinked It 1s this moving of links
that earns the m-calculus the title of calculus of mobile systems

(B (=9

Figure 21 Learning processes

In the w-calculus there 1s the notion of a name and the intricacies of this
notion contribute sigmficantly to the expressive powers of the w-calculus A
name 1s the most primitive entity in the 7-calculus and 1s atomic 1n nature, 1 e
1t has no structure A name represents a link, or a channel, between processes
but a name also 1s the data that is transmitted on these channels This dual
nature of names 1s what allows the extrusion of scope’ of names 1n the 7-calculus,
and 1t 1s this scope extrusion that allows new links to be learnt by processes

A m-calculus process can be thought of as a collection of w-calculus actions
that combined achieve a specific task By grouping a number of processes to-
gether and allowing them to interact the w-calculus allows systems to accomplish
their goals While this may seem very sumplistic the 7-calculus 1s more expres-
sive than 1t first appears and it has been shown that the A-calculus can be
represented 1n 1ts entirety within the 7-calculus (Milner 1993)

When mobility and mobile computing are usually discussed the 1dea of mo-
bile devices 1s what 1s generally thought of However the concept of mobility
1s not limited to devices that can be moved, mobility also covers the notion

1Scope extrusion 1s a concept vital to the m-calculus and will be explained later in this
section



of a series of stationary devices, between which links grow, die and are passed
about The m-calculus 1s capability of handling both forms of mobility, however

~
1ts primary applications have been 1n scenarios similar to the latter

212 Syntax and Semantics
Syntax

It 1s assumed 1n the w-calculus that there 1s an infinite number of names and 1n
the following section lower-case letters are used to represent names Also, while
the m-calculus has no concept of process names, upper-case letters are used to
indicate processes

There are a limited number of actions that a w-calculus process can perform,
and these are collectively referred to as action prefizes, (@) Action prefixes can
be assembled to form processes, and processes can be further assembled to form
larger processes This construction of processes from action prefixes and larger
processes from sub-processes 1s governed by the syntax of the m-calculus

Action Prefixes
o = z(z) Input prefix, z 1s received on z

Tz Output prefix, z 1s sent on z

An unobservable action

Processes

P = 0 Null process
aP Prefix
P+Q Sum
P|Q Composition
[x==y]P Match
(vx)P Restriction
'P Replication

e Null process The empty process, 1t cannot perform any actions

e Prefix The process P 1s prefixed by one of the valid prefixes - input,
output or an unobservable action

e Sum Interaction can occur with either P or Q but not both Sum 1s
often also referred to as the choice operator

e Parallel composition Represents the combined behaviour of the pro-
cesses P and Q executing concurrently Processes running 1n parallel can
interact with each other, or wath third party processes, or a combination
of both



e Match If z 1s equal to y then the process behaves as P, otherwise 1t
blocks, 1e does nothing

» Restriction (wz)P behaves as P, but with the name 7 being local to P
and only P

o Replication The process P 1s equivalent to P | /P In other words /P
behaves as an infinite number of instances of P all executing 1n parallel

to one another

Free and bound names

In both z(y) P and (vy)P both the names z and y are bound within the scope of
P A name 1s said to be bound 1n a process 1f 1t, 1s etther (1) a binding occurrence,
1e z(y) or (vy), or (1) 1t 1s within the scope of a binding occurrence A bound
name can only be referenced from within the scope of 1its binding occurrence
and as such 1t cannot be used to communicate with a process that lies outside
this binding occurrence, unless 1ts scope 15 extruded to include that process

A name 1s a free name 1f 1t 15 not a bound one The free names of a process,
P, are denoted by fn(P), and the bound names are denoted bn(P)

When interaction occurs between processes a substitution generally occurs
A substitution is a function from names to names {z/y} indicates a substitution
that replaces y with z and leaves all other names untouched

eg z(y) P |T20 =5 P{z/fy}
P{z/y} behaves as P with all occurrences of y replaced by z, alpha-conversion
of already existing occurrences of z may be necessary Alpha-conversion being
the conversion of a process by renaming elements of that process 1n a consistent
manner

Structural Congruence

1t 1s necessary to be able to equate processes that differ only 1n terms of organisa-
tion A method of 1dentifying processes which represent the same computations
18 required, 1e @y 0 | a(x) 0 and by O | b(z) O are intwitively the same and
should be 1dentified as such This 1s achieved 1n the mw-calculus via structural
congruence, = Structural congruence 1dentifies only processes where 1t 1s clear
from their structure that they are the same

Structural congruence 1s defined as the smallest congruence that satisfies the
following rules

1 If Q can be obtained by alpha-conversion of P, then P = Q

2 (a) Commutatinity of parallel composition, P | Q = Q | P



(b) Associativity of parallel composition, (P | Q) |[R=P | (Q |R)
(c) Commutativity of sum, P+ Q=Q + P
(d) Associativity of sum, (P + Q)+ R=P + (Q + R)

3 Scope extrusion laws

(vx)0=0
Intuitively these two terms are equivalent as since there 1s nothing to
restrict 1n ¢ then the presence of a restriction operator cannot have
an effect on 0

(v )(P|Q) =P (vx)Qif x ¢ fn(P)
If a name 1s not free 1 a process then the act of restricting, or not
restricting, the name on that process will not have an effect on that
process

(vx)(P+ Q) =P + (vx)Q1if x ¢ fn(P)
If a name 1s not free 1 a process then the act of restricting, or not
restricting, the name on that process will not have an effect on that
process

(vx)la==y]P = [a==y}{(vx)Pifx #a,x#y
If a restriction does not operator on elements of a match operator

then the positioning of the restriction relative to the match will not
have an impact of the behaviour of the match operation

Semantics

In the same manner as most process algebra the operational semantics of the 7-
calculus 1s given via a reduction semantics The following semantics are specified
using reduction semantics Reduction semantics 1s a method of formal seman-
tic specification which works by transforming complex expressions into simpler
ones Each step 1n this process 1s called a reduction’ and once an expression 1s
fully reduced and the reduction process has terminated then the expression 1s
saxd to be 1n 1ts normal form A complex expression 1s equivalent to its reduced
form, and this reduced form 1s simpler to reason about
The rules of this reduction semantics are



PP=P,P2%5Q Q=¢

[Struct] FICN o
[Prefix] m
i
[Par] o
P|Q—P|Q
P p
[Sum)] a
P+Q— P
com L Wp 9By
P|Q D P'{z/y}| Q'
P2 P, zdo
[Res] T
(vz)P — (vz)P'
a !
(Match] P—P
[z==z]P — P’

Repl 75— PP

Explanations

1

[Struct] If the occurrence of an action causes the process P to reduce to
the process @, then a process that 1s structurally congruent to P can be
reduced to a process that 1s structurally congruent to @ on the occurrence

of the same action

[Prefix] A process that 1s prefixed by an action reduces to that process
after the occurrence of the specific action

[Par] If a process, P, can reduce to another process, P’, after the occur-
rence of an action then P can reduce to P’ regardless of what processes

are running concurrent to 1t when that action, o, occurs

[Sum] If a process, P, can reduce to another process, P’ after the occur-
rence of an action then the sum of P and any other processes will reduce
to P’ on the occurrence of &

[Com] If a process P reduces to P’ on an mput action on a specific name
and 1f the process ¢ reduces to @’ on an output action on that same



name then P in parallel to @ will reduce to P’ in parallel to @’ after an

unobservable action occurs

6 [Res] If P reduces to the process P’ on an action, and the name x 1s not
involved 1n this action, then the reduction will still occur if the name s
restricted in both processes

7 [Match] If a process reduces to another process on an action, then this
reduction will still occur 1if the names being compared are the same Oth-

erwise nothing will happen

8 [Rep] A replicated process reduces to that same replicated process with
a non-replicated mstance of the same process in parallel

213 Basic Examples

Consider the process

Simple 1/0 Za 0| a(b) bv0 | z(y) 5z 0

The above procé‘ss 15 comprised of three sub-processes, and although the =-
calculus processes are not named for this explanation we will refer to them as
P, Q and R, as read from left to right In all three sub-processes the names «
and a are free, all occurrences of £ and a in the three sub-processes all refer to
the same names It 18 these free names that allow the interaction of P and R
(over the name z) to occur, hkewise for the interaction of P and @ (over the
name a

The act of reading a name over another name 1s said to bind that name in
the process that follows the input action For example in the process R the
action z(y) binds the name y 1n the remainder of the process, §z 0 In reahty
the name y will never actually be used in the remainder of the process as y 1s
only a placeholder that indicates where the name read in on the channel z 1n
the action z(y) should be substituted in the process

It 1s worth noting at this stage that in the original m-calculus the act of
exchanging a name over a channel 1s a synchronous one - for every input there
must be a corresponding output and vice versa and without the correspond-
g action any attempt to mput or output will ssmply block until there 1s a
corresponding action

In order for the process to reach its final state there must be a certain amount
of interaction between processes These interactions proceed as follows

10



EaOIa(_b)BvO\:c(y)ﬂzO LAY
0]a(b)bv0|az0 =
0jzv0|0

The reason that the above processes could nteract successfully 1s that they
shared a certain amount of knowledge of names If the information that was
shared was restricted between specific processes then the execution would have
been quite different The following process 1s virtually 1dentical to the previous
one except that the name z 1s restricted to the process P and Q, that 1s the
name z that appears in P and Q 1s a different z to the one 1n process R

Restriction (vz)(Za 0| a(b) 0)| z(y) 32 0

Since the occurrence of z 1n P|() 1s a different = to the one in R no interaction
18 possible This restriction of names allows the creation of private channels
between processes, a feature that proves invaluable for when dealing with con-
current, distnibuted systems The real value of how the w-calculus handles
restriction of names 1s only appreciated when one considers the unique concept

of scope extrusion

Scope extrusion (vy) ((va) (z(m) | yz) | y(p) Po)

In the above example the process z(m) can be considered as a resource, the
process yz can be considered an access control unit for the resource and the
process y(p) Po can be viewed as an agent wishing to access the resource, Figure
22

Rescource

Figure 2 2 Resource Access Control

The resource 1n question can only be accessed via the name z, the only
entities that imtially are included in the scope of this name are the ACU and
the resource 1tself but by sending the name z over the name y the scope of the
name z can be extruded to include the User process The User process can now
access the resource 1n question, Figure 2 3

Scope extruded (vy)(vz)(z(m) | 0) | To)
The notions of access control and resources play a major part in concurrent

i1



L
Rescource X User

Figure 2 3 Resource Access Control

computing and the ease with which the z-calculus allows these 1deas to be
expressed highhghts once again the benefits of using the m-calculus when dealing
with concurrent and distributed systems

In any real world concurrent system there 1s always a possibility that either
one thing or another will happen, that a choice will be needed to be made
between certain actions Choices like these can be expressed in the w-calculus
via the choice (+) operator

Choice P+ @

In the above process either process P or (J 1s started and the choice of which
process to start 1s made 1n a non-determimstic fashion, that 1s the result of the
operation cannot be predicted before 1ts execution Choosing a process in a
completely arbitrary manner 1s of limuted use and as a result it 1s much more
common to see a guarded choice expression

Guarded Choice Za P+ Fa @ + w(b) R

Once again the above expression will result in either process P, ¢} or R being
started, however in this case the choice 15 not a non-deterministic one, but rather
15 based on which action occurs first Za, Ja or w(b) Whichever action completes
first results 1n the associated process being started A guarded choice expression
consists of an arbitrary number of possible branches of execution, or choice
options For example in Ta P + Ja @ + w(b) R there are three possibilities
za P, §a @ and w(b) R Exactly one of these options must be executed, and
mnteraction between options 1s not permitted, 1 e 1n the process z(a) P + Tb Q,
the reduction to {b/a}P + Q cannot occur

Should the same action occur in more than one place in an expression, a
non-determumstic choice 1s made between these options should the associated
action prove successful Any combination of input and output actions are vahd
as prefixes to processes in a choice expression and these prefixes are said to
“guard” the respective processes

A concurrent system can sometimes involve multiple copies of the same pro-

12



cess running 1n parallel Sometimes the number of instances may be an arbitrary
one, one that cannot be known 1n advance, and a mechamsm to capture this
behaviour 1s required This mechanism comes 1n the form of the rephcation op-
erator, (!} A process that 1s rephcated behaves as if there are an infinite number
of copies of the process ready to run at any stage, once one starts another 1s
mmmediately ready to start A replicated process 'P can be expanded to P|'P

Rephication(1) 'Ta | z(b) P | z(c) Q

The execution of the above process could proceed as
'ZTa | z(b) P | z(c) @ —

Za | 'Za | z(b) P | z(c) @ —

Ta | Ta | 'Ta | 3(®) P | 2(c) Q —

0| %Za|'Ta | Plafb) | z(c) Q —

010 'Za | Pla/s} | @{a/c)

Think back to the access control example, 1t only worked for one connection
from a user to the resource, this 1s not a reahistic system A more realistic system
is one 1n which multiple users want to make multiple separate connections to

the resource

Replication(2) (vy)(((va)(z(m) P | yz) |(vo)("y(p) Po))

Multiple users, 'y(p) o, are now able to access the resource by means of mul-
tiple, access control process/resource parings, '(vz)(z(m) | ¥z) Each time a
user process kicks off another one 15 ready to take 1ts place Each rephcated user
process recerves 1ts own private channel for commumcating with the resource
as the entire access control/resource process 1s replicated including the restric-
tion As a result the system can now handle multiple users making multiple

connections to the resource

(vy)('(va)(z(m) P | gz) | '(vo)(y(p) Po))

__>

(vy)((vz)(z(m) P | gz) | '(vz)(z(m) P | gz) | '(vo)(y(p) Po))

__>

(vy)((vz)(2(m) P | gz} 1 '(vz)(z(m) P [ gz} | (v)(y(p) Pq) | '(vo(y(p) Fo))
._>

(vy)((v2)(z(m) P | 0) | "(vz)(z(m) P | yz) | (vg)(zg) | '(vo(y(p) Po))

T,

(vy)(v2)((vq)(P{g/m} | 0) | "(va)(z(m) P | §z) | 0| "(vo(y(p) Po))

IR

(v)(v2)({vq)(P{g/m}) | '(vz)(z(m) P | gz) | '(vo(y(p) Po))

13



214 Example

Imagine a system mvolving an arbitrary number of users which can access an
arbitrary number of printers Users wish to print only one job at a time and do
not care which printer performs the task Printers can only handle one job at a
time and following completion of one job are ready to print another one Users
must pay per print job and bilhing 1s performed by routing all print requests
through a central access control umt (ACU)

s

O—~+— ACU "5

=

M Printers N users

Figure 2 4 Printer example

The following 15 a w-calculus specification for the above system

System = (vy)(vz)(\User | ACU | ﬁ,;loprznter(z))
User = (va)(vk)(Ta a(c) ¢k 0)

Printer(s) = (va)(§a a(e)) Prnter(y)

ACU = z(b) y(c) be ACU

n—1
This example introduces a syntactic shortcut of the m-calculus, II,—o In

this example there will be n printers runming in parallel in the system, and
rather than writing (Printer(1) | Printer(2) | | Printer(n)) 1t 1s much more
convenlent to write Ii—:lo, which 1s merely shorthand for the more lengthy and
complex expression nvolving n printers in parallel being explicitly described
Another form of syntactic sugaring 1s also introduced 1n this example, that 1s the

use of parametenised processes, e g Printer()) Parameterisation of processes

14



allows a generic definition of a process to be used 1n many specific cases where
the only differences between the instances of the process 1s the value of the
parameter(s) suppled to 1t

Another new concept introduced 1n this example 1s the notion of tail recur-
sion, e g Printer(y) = (vq)(yq q(e)) Printer(3) The occurrence of Printer at
the end of this expression 1s referred to as tail recursion Tail recursion captures
the 1dea that once a process has finished executing 1t may be required to return
to 1ts original state and be ready to execute again

The system consists of three entities - users, printers and an Access Control
Umit (ACU) Users cannot immediately interact directly with printers, they must
first go through the ACU A channel z 1s shared by the User processes and the
ACU, hkewise another channel y 1s shared by Printer processes and the ACU
User processes in the System process are rephcated to reflect the possibility of
many users

The first thing that a User process does 1s extend the scope of the name a
to include the ACU by sending this name over the channel z This name will be
used for all future communications with the ACU Next the user reads another
name 1 over the channel ¢ This new name, ¢, will be used to transmit the
print job, represented by the name k, to the printer, as the name ¢ 1s known to
both the printer and the user

A Printer process creates a name ¢, this name 1s the name that will ultimately
be used to receive the print job from the user Once a print job 1s received 1t 18
deemed to be printed A printer process sends the name ¢ to the ACU via the
shared name y It then waits to receive a name on the channel ¢ This name,
once recerved, 1s the print job that should be printed Once this print job 1s
printed the printer 1s ready to receive more jobs

The ACU process 1s designed to allow users and printers to eventually inter-
act It reads the relevant information from both users and printers and passes
the relevant information onto the correct parties
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Printer example reduction

Letn = 2

(vz)(y)("User | ACU | printer(1l) |printer(2))

!

(vz)(vy)((vwp)(Tw w(c) Ep 0) | 'User | z(b) y(c) bc ACU
[(vim)ym m(e) prmter(l)|prznter(2))
7 l
(vz)(vy)((vwp)(w(c) ep 0) | WUser | y(c) We ACU
] |(vm)ym m(e) printer(1)|printer(2))
(vz)(vy)((vwp)(w(c) cp 0) | 'User | (vm)(wm ACU

|m(e) printer (1)|printer(2)))

2

z)(vy){((vwpm)(mp 0) | 'User | ACU
|m{e) printer(1)|printer(2))

(vz)(vy)('User | ACU|p1‘mter(1)|prmt(f(2))
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2.2 Extensions and variations of the m-calculus

Following the publication of the initial research on the w-calculus many aca-
demics recogmsed the benefits of the m-calculus and much further research was
undertaken 1nto the w-calculus, a fact which 1s quickly apparent from the sheer
volume of publications now available on the field A large proportion of this
research mvolved the creation of variants and extensions of the w-calculus The
creators of these variants and extensions felt that the modifications that they
made, which were sometimes major and sometimes minor, either did the same
as the m-calculus only better/neater/quicker/etc or that the m-calculus was a
sub-set of their creation which did all that the 7-calculus could and more Many
such extensions exist, some were short-lived and not widespreadly recognised or
adopted by some become more established Four of the more well known exten-
sions/vanants are the Fusion calculus (Parrow & Victor 1998), the Join calculus
(Fournet & Gonthier 1996), the Ambient calculus (Parrow & Victor 1998) , and
the Spa calculus

221 The Fusion calculus

The Fusion calculus 1s an extension to the w-calculus that was devised by Parrow
and Victor (Parrow & Victor 1998) The goal of the Fusion calculus was to
create an extension to the m-calculus that sumplifies the m-calculus and allows
simpler modelling of systems that involve shared state For the main part this
was achieved by the addition of a mechanmism which allows the updating and
mamtaining of state and enforces symmetry between input and output actions
This mechanism 15 provided by the addition of a new class of action called
”fusions” The Fusion calculus also proved popular and 1t too has spawned

extensions and variations of 1ts own

The Join Calculus

Fournet and Gonthier (Fournet & Gonthier 1996) aimed to create an extension
of the m-calculus that retains the expressivity of the w-calculus, more specifi-
cally the asynchronous summation free m-calculus This extension was to be
more amenable than the w-calculus to being used as the basic of a complete
implementation of a distributed programming language They believed that the
w-calculus n 1ts original form was not implementable, and that 1t would be nec-
essary to bring the specification notation down a few levels closer to that of a
programmung language before 1t could be implemented The Join calculus also
proved to be popular and extensions and implementations of 1t exist
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222 The Sp1 calculus

The Sp1 calculus was created by Abadi and Gordon (Abadi & Gordon 1997) as
an extension to the m-calculus that was specifically designed with the task of
umplementing security protocols m mind They believed that the inclusion of
cryptographic primitives and operations in the syntax and semantics of the -
calculus would make the Spi calculus much more capable of modelling security

related systems

223 The Ambient calculus

The creators of the Ambient calculus, Cardelli and Gordon (Cardeth & Gordon
1998), beleved that existing process calculi were neglecting what they felt was
a central concept of mobility - the mobility of processes They believed that the
ability for agents to migrate from location to location was key to any mobility
orientated process calculi, and that this migration should occur 1n a clearly
defined and controlled manner This migration 1s provided by a construct which
represents location - the ambient

While a detailed examination of all, or even some, of the w-calculus exten-
sions and variations that exist 18 beyond the scope of this document, a detailed
examination of one such extension will be given for a sense of completeness
This extension 1s the Spi calculus There were a number of reasons why the Sp1
calculus was chosen to be examined 1n more depth

1 The Sp1 calculus features the addition of sequential computations, albeit
lmited sequential computations, to the syntax and semantics of the =-
calculus

2 With the exception of the addition of the mechamsm for performing se-
quential computations the syntax and semantics of the Spi calculus 1s
largely 1dentical to that of the m-calculus

3 The Spi1 calculus 1s used to model systems involving security protocols, the
implementation of secunty protocols is ultimately one of the target uses

of w

2 3 The Sp1 calculus

231 Introducing the Spi calculus

The Sp1 calculus 1s an extension of the 7-calculus The primary purpose of the
Sp1 calculus 1s the description and analysis of cryptographic protocols While
the w-calculus allowed an abstract overview of a protocol, the Sp1 calculus allows
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a much more detailed view of a cryptographic protocol To facilitate this more
detailed approach to cryptography a full complement of cryptographic primitives
are provided 1n the Spi calculus, including

Symmetric encryption Symmetric encryption 1s the encryption and de-
cryption of data using a secret key The same key 1s used both for the
encryption and the decryption

Asymmetric encryption Asymmetric encryption mnvolves the use of key
pairs for the encryption and decryption of data Data encrypted with one
part of a key pair can only be decrypted with the corresponding part of
that pair, and vice versa One part of the key pair 1s kept secret, the
“private” key, while the other s freely distributed, the “public” key

Hashing A hash function 1s a mathematical one-way function When data
18 hashed a cryptographically unique value of a fixed length 1s acquired
This value 18 different for each different input data, and the same input
data will always yield the same hash

For the purposes of this document the Spr calculus 1s, 1n essence, 1dentical to
the m-calculus bar the addition of cryptographic primitives to the syntax of the
m-calculus The concepts of names, channels and processes remain the same and
any valid w-calculus specification 1s also a vahd Sp1 calculus one

The Sp1 calculus 1s particular swited to specifying security protocols as its
“model of protocols takes into account the possibility of attacks but does not
require writing explicit specifications for an attack” (Abad1 & Gordon 1997)
Anyone famihar with security protocols and formal methods will instantly recog-
nise the benefits of this property of the Sp1 calculus, by avoiding the need to
exphcitly define the capabilities of attackers one avoids the dangers of missing
capabilities of the attacker This property combined with the rest of the prop-
erties of the m-calculus make the Spi calculus a very useful tool for describing

securlty protocols

232 Syntax additions

The syntax of the Sp: calculus 1s virtually 1dentical to that of the m-calculus
except for the addition of cryptographic primitives These additions come 1n
two forms, those concerned with terms, and those concerned with processes

In the w-calculus there are only names, operations can only be performed on
names, however this 1s not the case in the Sp1 calculus While the #-calculus

refers to names, the Sp1 calculus refers to terms, where a term 1s
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MN,L = n a name
{M}n Symmetric encryption
H(M) Hashing
M* The public part of a key-pair
M~ The private part of a key-pair
{IM|}n Asymmetric encryption
[{M})n Private-key signature

The other addition to the syntax is the set of actions that can prefix a

process

o =

case L of {z}y m P Symmetric decryption
case L of {|z|}» m P Asymmetric decryption
case N of [{z}]ar n P Signature checking

1 Symmetric encryption If a process wishes to send some data, M, to
another process and 1t requires that the data 1s encrypted using some sort
of symmetric cipher under a specific key, n, this 1s represented by writing
{M}n
Example d(m) e{m}x
The name m 15 read over the channel d This name 1s encrypted using a
symmetric cipher with the name £ as the key, and the cipher-text resulting
from this operation 1s then sent over the channel ¢

2 Hashing The result of hashing, or digesting, a name 1s term H(M)
Example d{(m) ¢(H(m))
The name m 1s read over the channel d This name 1s then hashed and

the resulting hash 1s send over the channel ¢

3 Public key A key-pair comprises of a shared and a secret part, or a public
and private part A key-pair in the Sp1 calculus 1s represented by a single

name so some method of accessing both parts 1s needed
Example (vk)(dk™)

A key-pair k 1s created and then the public part of that key pair, k¥, 1s
sent over the channel d

4 Private key Both parts of a key pair need to be accessed even though
the public part 1s generally the only part that 1s passed around
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Example ((vk)(dk™)

A key-pair k 1s created and then the private part of that key pair, k7, 1s
sent over the channel d Care should be taken that the private parts of
keys are kept secret

Asymmetric encryption {| M|}y represents the encryption of the term
M under the public key N The result of this action can be sent and

recelved on channels as any other name, could be
Example d{(m) ¢{|m|}«

The name m 1s read over the channel d and 1s then encrypted with the
public-key & and the resulting cipher-text 1s transmitted over the name ¢

Private key signature The signing of data involves the encryption of
the data using the private-key This data can only be decrypted by using
the associated public-key and the act of successful decrypting the data
using the public-key ensures that 1t was, 1n fact, “signed” by the relevant

party
Example d(m) c[{{m})
The name m 1s read in over the channel ¢, this name 1s then signed using

the private key k and the resulting signature 1s then sent over the channel

c

Asymmetric decryption In case M of {|z|}n wn P, of M 15 n fact
the result of encrypting a name with the relevant public-key then 1t will be
of the form {|O|}n, this value of O, 1e the decrypted data, 1s substituted
for all occurrences of z in P If 1t 15 not then this action blocks indefinitely

Example d(m) case m of {|z|}» in dz

The term m 1s read 1n over the name d, an attempt 1s made to decrypt the
name using the key n, if this attempt succeeds then the resulting plain-text

1S sent, over the name d

Symmetric decryption In case M of {z} mn P, if M 1s 1n fact
the result of encrypting a name with the key & then 1t will be of the
form {O}w, this value of O, 1e the decrypted data, 15 substituted for all
occurrences of z 1 P If 1t 18 not then this action blocks indefinitely

Example d(m) case m of {z}, 1 dz

The name m 1s read 1n over the name d, an attempt 1s made to decrypt the
name using the key n, if this attempt succeeds then the resulting plain-text

1S sent over the name d

21



9 Signature checking Checking a signature 1s much like asymmetric de-
cryption except that the key used to decrypt the data 1s a public key rather
than a private key Bar this difference, and the syntactic difference, sig-
nature checking 1s the same as asymmetric decryption

233 Cryptographic assumptions

The creators of the Sp1 calculus made some sigmificant, yet reasonable assump-
tions with regard to cryptographic primitives and operations

¢ For data encrypted with a symmetric cipher, 1t 1s assumed that the only
way to decrypt that data 1s to know the correct key

e For data encrypted with an asymmetric cipher, 1t 15 assumed that the only
way to decrypt that data 1s to know the corresponding private key

S

e That sufficient redundancy 1s present 1n messages so that 1t can be detected
if a cipher-text was encrypted with a specific key

e That the data used to create a hash cannot be recovered from the hash

¢ That no two distinct pieces of data will yield the same hash

That a private-key cannot be obtained from 1ts public-key

234 Operational semantics

The semantics of the 7-calculus are a sub-set of the semantics of the Spi calculus
and everything valid 1n the m-calculus 1s also valid 1n the Sp1 calculus There are,
however, three additional rules in the operational semantics of the Spi calculus

- L={M}y
[SymDec] case L of {z}n in P — P{M/z}

[AsymDec] — {IM\}N-‘-
y case L of {|zl}n~ wn P — P{M/x}
L=[{M}n"
[StgCheck] case L of [{z}]nyT 1 P — P{M/z}
Explanations

! [SymDec] If a term, L, 1s the result of encrypting the term, M, with a
symmetric cipher and the key N, then the result 1s the process P, with all
occurrences of z replaced by M
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2 [AsymDec] If a term, L, 1s the result of encrypting the term, M, with an
asymmetric cipher such as RSA and the public part of the key pair N, the
result 15 the process P with all occurrences of z replaced with M

3 [S1gCheck] If a term, L, 1s the result of the term M being signed with
the private part of the key-pair N then the process P continues with all
occurrences of z being replaced by M ~

235 Example

Consider the printer example given 1 section 2 14, the w-calculus example
Suppose that 1t was a requirement, for whatever reason, of this system that
all jobs sent from users to printers must be encrypted The following 1s a Spi
calculus system that achieves this

n—1
System = (VK i,y ) (vzy)('User | ACU | I,=oPrinter(1))

User = (vayKu)(#{lal}k+ aov T{|Kul}k+ scu ale)
case cof {z}k, mZ{y}k, 0

Printer(y) = (Vqu)(y{lql}K+ACU §{|Kp|}K+ACU q(d)
case dof {Kp}k ,inq(e) caseeof{p}k,in0

ACU = (VK oy)(x{m) m(n)casenof {|Kn|} Kk 4opin
y(d) d(e)caseeof {| Ka|} K goptn

, d{Kn}k,md ACU)

The topology of this system remains unchanged, the different processes are
connected 1n the same way and they learn of channels in the same manner and
order However, the interaction between the different processes 1s significantly
more complex as keys and encrypted data are exchanged in an effort to ensure
secrecy

At the top level the system has only one change - all User and Printers now
know the public key belonging to the ACU This will allow all Users and Printers
to encrypt their transmussion to the ACU and allow the secure exchange of keys
for use with symmetric ciphers

An mstance of the User process wants to set up a channel and a key that
will be used to transmit securely the print job to the printer This set-up 1s
achieved by sending a channel to the ACU, and by then sending a session key,
also encrypted, to the ACU on this channel It then receives a channel which has
been encrypted with the session key and 1t 1s on this channel that the encrypted
print Job will be sent directly to the printer
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A printer process also wants to establish the session key and a channel on
which 1t will receive the print job It also does this by sending a channel and a
session key, both encrypted, to the ACU It then receives back from the ACU
another session key which 1s encrypted with the key that was sent to the ACU
It 1s this session key that will be used to decrypt the print job once 1t 1s recerved
on the channel that was sent to the ACU Once a printer has dealt with the
recerved print job 1t returns to 1ts initial state, ready to complete the procedure
all over again

The ACU process 1s easily the most complex of all the processes in the system
as 1t has to interact with both User and Printer processes to facilitate the secure
exchange of channels and the establishment of session keys

The first step of the ACU process 1s to recelve a name from the User process
Using this name another name 1s read from the User This name 1s the session
key for this user session that was generated by the User and was encrypted
using the public key of the ACU Once this session key has been received and
decrypted the ACU reads a name from the Printer process Similarly another
name 1s read then from the Printer using this name This name 1s the session
key for the printer session Using this printer session-key the user session-key
1s encrypted and then sent on the channel that 1s shared between the ACU and
the printer Once this occurs this same shared name 1s sent to the User process
so that the User process can communicate with the Printer

Once the ACU process 1s fimished the ACU process also returns to its mitial

state ready to facilitate more transactions between users and printers

2.4 Conclusions

By now the expressive capabihities of the w-calculus should be clear A large
range of powerful constructs and operations are available in the w-calculus
However concepts such as rephcation, channels and the m-calculus approach
to interaction between concurrently execution processes, which are ssmple and
transparent to use 1n the w-calculus are not present in conventional programming
languages and would prove rather cumbersome and troublesome to implement
and use 1n these conventional programmung languages While these absent el-
ements could possibly be written as components and plugged 1into some of the
conventional programming languages and the functionality of the constructs
may be approximated, an unbridgeable gulf between the syntax and semantics
of the m-calculus and those of the conventional programming language even
with the added functionality would still exaist This gulf and the problem that it
poses for the task of comparing w-calculus specifications with their implementa-

tions 1n» conventional programming languages creates a niche for programming
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languages which are based directly on the 7-calculus and 1its derivatives

2.5 Further Reading

The m-calculus

The theory behind the 7-calculus 1s massive This mntroduction 1s intended only
to give a brief overview of the syntax, semantics and purpose of the w-calculus
and entire sections of the 7-calculus have been omitted as they are beyond the
scope of this document In order for any reader to get a true understanding of
the m-calculus 1t would be necessary to read one or more of the following texts

(increasing complexity)

o An Introduction to the pi1-Calculus(Parrow 2001)

The Polyadic pi-Calculus A Tutorial(Milner 1993)

o Commumcating and Mobile Systems The Pi-calculus(Milner 1999)

A Calculus of Mobile Processes Parts I and II(Milner, Parrow & Walker
1989)

The m-calculus A Theory of Mobile Processes{Sangiorg: & Walker 2001)

The Sp1 calculus

As the Spi calculus 1s based upon the w-calculus a full understanding of the
w-calculus 1s required before moving on to the Sp1 calculus The theory behind
the Sp1 calculus 1s considerable and a lot of the important aspects of the Sp
calculus haven’t even been mentioned in this document If a reader desired a
greater knowledge of the Spi1 calculus the following texts would be a good place
to start

» A Calculus for Cryptographic Protocols The Sp1 Calculus(Abadi & Gordon
1997)

o A Calculus for Cryptographic Protocols The Sp: Calculus(SRC Tech
report)(Abadi & Gordon 1998)
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Chapter 3

/

Related Research

Following the publication of the imitial research on the 7-calculus many deriva-
tives of the m-calculus quickly emerged (Cardeth & Gordon 1998, Parrow &
Victor 1998, Fournet & Gonthier 1996), and after some time implementations
of the w-calculus, and these derivatives, began to appear While all of these 1m-
plementations are, in some way, each unique with regard to how they approach
the implementation of their underlying process calculus, 1t 1s possible to group
the vast majority of these implementations into one of three categories based on
various classification criteria Most of these implementations are based on the
sr-calculus, although some were 1nspired by more exotic variants or extensions
of the w-calculus

The creation of these classification criteria occurred as the research nto
related work was taking place It was felt that these particular classification
criteria would allow the fundamental differences between implementations to
be determined and for the implementations to be subsequently grouped accord-
ingly into categories Following the examination of related research 1t became
clear that these classification criteria resulted in implementations falling into
one of three categories Before stating what the three categornes are the clas-
sification criteria will be examined and justified The classification criteria for

these implementations are

Syntax

When 1nspecting the syntax of a language that 1s supposedly based on the
m-calculus the primary concern 1s whether or not the syntax 1s stmilar to
that of the w-calculus If they are similar there will be a visual hikeness be-
tween the m-calculus and the implementation, 1e they will look the same
It was felt that this was important so that a comparison between specifi-
cation and implementation would be as simple as possible and without a
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need for translation

Semantics

An examination of the semantics of a w-calculus inspired language should,
ideally, reveal a sigmficant resemblance to those of the w-calculus The
closer the semantics of a language to the semantics of the w-calculus, the
more similar the behaviour of the language will be to the behaviour of the
m-calculus, 1 e they will act the same The importance of this property 1s
due to the desire to simplify the comparison process

Mobality

The w-calculus concept of mobility 15 just one approach to mobility and
various implementations mcorporate a different process calculus concept
of mobility rather than that of the w-calculus How an implementation
handles mobility has a sigmificant impact on 1ts ties to the #-calculus

Synchronous vs asynchronous communications

The communication of data over channels can be done 1n one of two ways,
n a synchronous fashion, or 1n an asynchronous manner Versions of the
w-calculus exist that are either synchronous or asynchronous in nature
Simularly implementations of the 7-calculus differ on this depending on
which version of the w-calculus they are based on

Dastribution

Some 1mplementations of the 7-calculus were designed to be used 1n the
implementation of distributed systems and as such constructs, operators
and environmental features were provided to allow this distribution Some
implementations were only meant for use in systems whose execution
would occur entirely on one host These distribution oriented languages
are closer in spirit to the w-calculus The absence/presence of support
for distribution 18 an easily determined classification criterion, and given
that the m-calculus 1s 1ntended for use 1n modelling distributed systems,

an important one

Sequential computations

The n-calculus does not provide a mechanmsm for performing complex
sequential computations such as cryptographic operations or even text
manipulation Such a mechanism 1s necessary to be present 1n an im-
plementation of the w-calculus for that implementation to be of use in a
real world scenario, however such a mechanism 1s not always provided by
implementations of the w-calculus
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The majority of implementations fall into one of three mam categories when
classified using the above criteria
Category 1
A programming language belonging to category one 1s capable of perform-
ing complex sequential computations 1n a simple and transparent manner
However 1s not designed for use in implementing distributed systems and
1t 15 not strictly based on the n-calculus

Category 2

A category two programming language 1s syntactically and semantically
sumilar to the w-calculus but 1t 1s not capable of performing sequential
computations 1n a sumple fashion nor 1s 1t intended for use 1n 1mplementing
distributed systems

Category 3

Category three programming languages are syntactically and semantically
sumilar to the m-calculus and are also meant to be used 1n 1mplementing
distributed systems However they are not capable of performing complex
sequential computations

A representative implementation from each will be examined in detail
e From category one - JPiccola (Nierstrasz, Achermann & Kneubuehl nd)
e From category two - Pict (Pierce & Turner 2000a)

» And from category three - Nomadic Pict (Wojciechowsk: & Sewell 1999)
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3.1 JPiccola

JPiccola (Nierstrasz et al nd) 1s a language designed for constructing appli-
cations from existing software components that are already wrnitten in another
programmung language All actual work 1s achieved via this host language, Java,
and JPiccola sumply provides a framework for hinking these components The
reasoning behind this 1s that existing methods of creating pluggable component
architectures lack flexibility and limut designers to particular architectural styles
and component models

The core of JPiccola does not provide any programming language features,
only some mechamsms which facilitate the composition of components to create
applications These mechamsms are related to aspects of the w-calculus, namely
agents and channels Obwiously since these mechamsms only allow the struc-
turing of components and the communications between them, some method of
performing actual computations 1s required JPiccola provides this by means
of a Host programming language, the Java programming language By wrnting
wrappers around Java code 1t 1s possible to access the functionality of the Java
programming language In order to simphfy the task of performing compu-
tations JPiccola provides some basic data types, such as strings, integers and
Booleans, along with some basic control structures These are provided via
standard JPiccola modules which perform the required wrappings

JPiccola differs from the #-calculus in terms of both syntax and semantics
However, the m-calculus concept of mobility, static agents yet dynamic links
between them, 1s present in JPiccola JPiccola 1s also not distributed 1n na-
ture, and all communications over channels 1n 1t are asynchronous in nature
JPiccolas main strength comes from 1ts ability to perform complex sequential
computations via a “host” language, namely the Java prograrmmning language

311 Forms and Services

Central to JPiccola 1s the concept of a form A form in JPiccola consists of a
series of name-value bindings and services that allow. these forms to be invoked

eg
person =
name = ‘‘john doe’’
age = 31
printName \
println ‘‘Name °’' 4+ name

printDetails
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print ‘‘Name ’’ + name
Age '’ + age

(31

printin

person printName ()
person printDetails()

The above JPiccola code creates a form, person, which contains two name-
value bindings and two services The two services, printName and printDetasls,
are then invoked to yield the output
Name john doe
Name john doe Age 31

Much like inheritance 1n object-oriented languages forms can extend other
forms, thereby gaimng the services and name-value bindings of other forms
student =

person
stuno = 99999999

printDetails
print ‘‘Name '’ + person name
print ‘‘ Age ’’ + person age
println ‘¢ ID No ’' + stuno

student printName ()
student printDetails ()

The form student can access all the name-value bindings created 1in the
person form, and 1t can also access all the services that person provides Name-
value bindings must be explicitly referenced while services do not Services can
also be overridden, e g the printDetaus service in the student form

312 Concurrency and Interaction

JPiccola 1s heavily influenced by the w-calculus and as such interaction and
concurrency in JPiccola 1s achieved 1n a manner similar to that of the n-calculus

Concurrency 1 JPiccola 1s achieved by invoking run on a service, this causes
the service in question to be executed 1n parallel to the rest of the invoking entity

€eg
run (do student printDetails())
run (do person printDetails())

This code sets the two services, student printDetails and person printDetals,
running concurrently to the invoking service The result of the above will be the
printing of both sets of details to the screen in an arbitrary order Obviously
services that can be more complex are possible to be invoked in a concurrent
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fashion, and no bounds are placed on how deep nested concurrent invocations
can be

When dealing with multiple agents runming concurrently the 1ssue arises of
communication and interaction between these agents JPiccola once again turns
to the m-calculus for the solution The concept of a channel was introduced
to JPiccola, and agents can communmcate with each other over these Channel
communications in JPiccola are done 1n an asynchronous~fash10n Any attempts
to send information on a channel are deemed to have succeeded 1instantly and do
not block, while reads are done 1n a blocking fashion JPiccola channels allow
only the communication of forms, but since everything in JPiccola 1s a form this

1s not a problem

€eg
¢ = newChannel()

run (do println ¢ receive())

run (do c send (‘‘hey from over here’’))

313 The Host language

JPiccola has no built in means of performing computations, rather 1t delegates
all computations to a host language, Java Everything that 1s possible in the
Java programming language can be achieved 1n JPiccola by means of wrappers
Wrappers for the most common data-types are supphed with JPiccola, and 1t 1s
via these wrappers that the “built-in” types like numbers, strings and Booleans
are supplied In order to access other types of Java objects 1t 1s necessary to use
the Host class service This service returns a form and all functions available
to the Java object are available as services that can be invoked on the form

cg
dig = Host class (‘‘java security MessageDigest’’) getlnstance (‘‘SHAL1'")

dig update (‘‘thisisastring’’ getBytes())
res = dig digest ()

By combining this method of utilising the Java programming language along
with JPiccolas built 1n control structures and array access methods, the full
expressivity of the Java programming language can be accessed and used

{

314 JPiccola Summary

For some time there has been some concern with regard to the manner in which
the Java programming language handles communications and interactions be-
tween concurrently executing threads JPiccola manages to overcome this prob-

lem with the addition of channels This addition ensures that all interaction
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between concurrent agents 1s achieved in a transparent fashion As JPiccola
also allows the full computational power of the Java programming language to
be harnessed 1t could be argued that 1t 1s possible to achieve more 1n 1t than in
pure Java This ability to include Java code 1n JPiccola programs, albeit 1n a
round about manner, 1s one of the distinguishing features of JPiccola and 1t 1s
this capability that ensures that JPiccola 1s actually of some use to program-
mers

While JPiccola allows access to the capabilities of the Java programming
language, and while 1t also includes certain aspects of the w-calculus, 1t 15 vi-
sually simlar to neither This, combined with the mummal influence of the
m-calculus seems to have had on 1t, means that JPiccola’s value to the formal
methods community, and more specifically to those concerned with implement-
ing w-calculus specifications, 1s rather limited It could also be argued that for
what JPiccola does, that 1t 1s overly complex

However the most significant drawback of JPiccola 1s that 1t does not cater
for distributed systems JPiccola 1s primarily designed for users implement-
ing stand-alone applications, which may perhaps be concurrent in nature The
primary concern of the w-calculus 1s the specification of protocols and 1nterac-
tion between distributed entities and as such the 7-calculus 1s of hmted use
with regard to systems that will only be executed on a single machine The
non-distributed nature of JPiccola significantly reduces its attraction to those
mnvolved in the specification and implementation of distributed systems

Classification of JPiccola

Syntax Not similar to w-calculus

Semantics Not similar to w-calculus

Mobility m-calculus mobility present

Channels Asynchronous

Distributed No

Sequential computations | via “host” language, expressive and powerful
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3.2 Pict

Pict was developed by B Pierce and D Turner in the late 1990°s(Pierce &
Turner 20006, Pierce 1997) as an experiment to see what a language based on the
m-calculus would look like The 1dea behind Pict was to design and implement a
high level language purely 1n terms of the m-calculus and as such Pict 1s mtended
to be to the w-calculus what Lisp (Seibel 2005), ML (Paulson 1996) or Haskell
(Thompson 1999) are to the A-calculus (Thompson 1999) As would be expected
goals, Pict 1s very similar, syntactically and semantically to the w-calculus
Another result of this intention 1s that the traditional w-calculus form of mobility
15 present 1 Pict However this intention 1s also the source of one of the major
problems with Pict - 1ts inability to perform complex sequential computations
Sequential computations in Pict are achieved via Pict’s own notation, which
15, 1n effect, an extension to the m-calculus Finally, hike JPiccola, Pict 1s not
distributed in nature and channel communications are asynchronous

Code written 1 Pict 1s visually very similar to w-calculus specifications and
concepts present 1n the n-calculus are, for the most part, present in Pict This
allows nearly everything possible in the w-calculus to be done in Pict Pict 1s
a completely self-contained language which allows everything, communications
and computations, to be achieved 1n 1ts own notation This umque notation 1s,
simultaneously, one of the strengths and weaknesses of Pict

Pict code 1s compiled into C code, and from C into executables Once com-
piled, these strongly typed programs run in a uniprocessor *NIX environment

~

like any other traditional C programs

321 Processes and channels

N

In Pict, much like 1n the 7-calculus, everything 1s arranged in terms of processes

Also mm a similar manner to the w-calculus 1s the construction of processes

Processes are made up of a number of actions and a number of sub-processes,
and the arrangement of these sub-processes and actions 1s done i a fashion
simlar to that of the m-calculus Pict also allows the concurrent execution of
an arbitrary number of processes

Example

run(print ' “ hello’’ | print'‘* world’’)

The Pict version of the standard Hello world example program 1s a process
which 1nvolves the parallel execution of two sub-processes - one that prints
“hello” and one that prints “world” However, as would be expected of two
processes executing 1n parallel without any form of interaction, the ordering of
the output 1s non-determimstic - one time 1t may say “hello world”, the next 1t
may say “world hello” As can be seen processes 1n Pict are invoked by enclosing
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them 1n parentheses and separating them with the parallel operator, “|”, after

“
having prefixed the entire expression with the keyword run Even at this early
stage 1t 1s quite obvious of the syntactic and semantic similarities between Pict
and the m-calculus

Processes in Pict have, like their 7-calculus equivalents, only one method
of inter-process 1nteraction available to them - channels Channels in Pict are
notably different to channels 1n the conventional w-calculus as Pict channels are
both asynchronous in nature and strongly typed Each channel may be used
to send and receive values of only one type, and this restriction removes the
possibility of implementing some very reasonable and useful programs This
restriction does reduce the expressiveness of Pict but 1t 1s claimed that not
restricting 1t would have resulted in major implementation 1ssues(Pierce &
Turner 20005, Pierce 1997) Asynchronous channels still allow the communica-
tion of data between processes, but have a slightly reduced capacity for allowing
processes to synchromise their execution

Example
new x []

run (x?[] = print'‘*Hello world'' | x'[])

There 1s another Pict version of the Hello World example program This
version also consists of two sub-processes running concurrently, however tn this
case one of the sub-processes prints “Hello World!” after receiving data on a
channel, while the other sub-processes simply invokes the other by outputting
on the shared channel

In Pict there 1s a distinction between names and channels, and creating a
new channel requires an explicit declaration of 1ts 1dentifier and 1ts type, 1 e the
type of data that will be transmitted on 1t In the above example the channel
z 15 created and 1t 15 given a type of [], this means that the channel will not
actually carry any data, but rather will only be used to “invoke” the printing

process

Example
new x "~ String

run (x?y = print'y | x!'‘“ Hello World’’)

The previous Hello world example logically leads onto this one In this
version not only 18 the sub-process that prints the message invoked by another
sub-process but the data that 1t 1s to print 1s also sent to 1t by the mvoking
channel action In the above example the channel z 1s created with the capability
of transmitting data of type String and only data of type string, any attempt
to do otherwise will cause a compilation error

Example.
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new x ~ String Y
new q "~ String
run (q'x | qy = y'*‘hello world’’ | x?a = print'a)

The communication of channels from one process to another 1s also allowed
in Pict, this allows processes to learn of new channels and introduces the con-
cept of mobility to Pict In this example a channel 1s received by one of the
sub-processes and then this channel 1s used to communicate with a previously
unavailable process The result of this example 1s the same as the others, the
printing of “hello world” to the screen

322 Bultin types

A number of built-in types are included 1in Pict, including the most commonly
used types, strings, integers and Booleans The usual operations can be per-
formed on these types, but these operations are performed 1n a umque Pict
fashion

Integers

{
Integers in Pict are considered to be processes that are “located” at specific
channels The values of these numbers can be gained by querying these processes
over the channels

Example !
new r " Int
run (+'{2 3 (rchan r)] | r?x = print1'x)

In the above example the numbers 2 and 3 are to be thought of as processes
located at the channels £ and 8, while r 1s thought of as channel to a process
which sums 1ts arguments and then makes the result, in this case 5 available on
the channel » Other operations, such as multiplication, division, subtraction,
etc, etc, are available using the same op'[abw] notation Integers in Pict are
printed via the print: command, rather than the print command which 1s only
used with strings

Strings

Normal String operations are possible in Pict, these include

Concatenation
new x " String

run( x'“‘hello’’ | x'* world’’ | x?a = x?b = print!( b a))

1The use of the keyword rchan 1s not directly related to Integers but rather to process
defimtions Channels used with defined processes can sometimes be required to be of a special
type, rchan forces a normal channel to act as one of these special channels
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In this concatenation example, the final sub-process reads two strings in over
the channel z, and then prints the result of joimng these two strings together,
“hello world”

Sub-Stringing

new x "~ String

run( x'‘‘hello world test’’ | x?a = print'(string sub a 0 11))
The ability to obtain sub-strings from strings is an operation that 1s vital

to any implementation of strings, Pict’s implementation of Strings does provide

this capability via the string sub command, which takes the string and the start

and end index of the sub-string to be gotten from the string in question

Sub-String tests
Sometimes when dealing with strings 1s 1t necessary to test if a string contains
a certain sub-string, Pict implementation of Strings allows this by using the

string m command

new x " String
run( x'‘‘hello world test'’ | x?a = 1f( string 1n ‘‘hello’’ a)
then print!‘‘There’’ else print''‘Not there’’)

This example also introduces one of the control structures present in Pict, the
if statement If statements 1n Pict can include an arbitrary number of else-if
options This additional control structure compliments those already present in

the m-calculus

Other types

These examples are by no means mntended to be an exhaustive explanation of
the built-in types in Pict, rather a brief introductory glance at how certain
operations are performed 1in Pict It 1s intended to give an impression of how
tasks are completed 1n Pict, rather than detail all the available operations and
primitives as Pict provides a large number of buiit-in types, and allows a vast
array of operations to be performed on these types

Other built-in types include

e Booleans

Lists

e Characters

Floats

Bytes
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s Queues
e Arrays

o GUI related types

323 Process definitions

Pict allows the explicit definmition of processes, much hke a function call in an
object oriented language these defimtions reduce the amount of code 1n programs
and make 1t much more convenient to write larger programs

Example
def whatlsMax ¢ "Int = c?a = ¢?b = 1f(>>a b) then c'a else c'b

new f " Int ;
run( whatIsMax'f | f'3 | f'4 | f?a = printi'a)

Process definitions save both time and effort when writing Pict programs
and of course should be used wherever there 1s duplication of code

324 Pict Summary

Pict 1s an invaluable experiment 1n the investigation into languages based on the
w-calculus It looks and behaves 1n a very similar manner to the w-calculus and
the essential concepts of the w-calculus, such as processes, channels and names,
are present n Pict, albert 1n a shightly altered form

It 15 these shghtly altered forms that somewhat reduce the usefulness of Pict,
the strongly typed, asynchronous channels restrict the set of implementable
systems, and greatly complicate some of the remaiming possible systems

One of the key features of Pict 1s that everything 1t does, 1t does via 1its
own notation - no host languages or the like are used All communications and
computations are achieved via this unique notation However there are negative
aspects to this approach The notation used 1s somewhat complex and counter-
intuitive 1 places and 1s also rather limted in what can be achieved, basic
computations and GUI related programs are possible but some implementations
would be far beyond the capabilities of Pict, eg a complex cryptographic
computation

Pict has substantial theory and documentation behind 1t, which makes 1t not
only a good introduction to programmng languages based on the w-calculus, but
also to the m-calculus 1tself However the lack of support for distributed systems
and communications in Pict means that Pict 1s not the most useful language to

use when 1mplementing concurrent and distnbuted n-calculus specified systems

37



Classification of Pict

/
Syntax Comparable to the n-calculus
Semantics Comparable to w-calculus
Mobility w-calculus mobility present
Channels Asynchronous
Distributed No
Sequential computations | Limited

3.3 Nomadic Pict

Nomadic Pict (Wojciechowsk & Sewell 1999) was developed by Wojciechowsk,
Sewell and Pierce in 2000 It 1s intended to be a programming language that
1s based on the n-calculus that allows the concurrent and distributed execution
of systems that are implemented 1n 1t Nomadic Pict 1s built on the program-
ming language Pict and Pict primitives are used to express computations within
Nomadic Pict agents

Nomadic Pict uses agents as the building blocks for systems Agents can be
viewed as collections of communications and computations required to achieve
specific goals These agents are mobile and can “migrate” from one host machine
to another

As Pict 15 used for all computations in Nomadic Pict, the only aspect of
Nomadic Pict not previously covered 15 the communication of agents, both dis-
tributed and non-distnbuted The additions and alterations to Nomadic Pict
can be grouped mnto two main sections Agents, Sites & Migration, and Channel
Actions

Although Nomadic Pict 1s based on Pict, the syntax and semantics have
been so drastically altered that the syntax and semantics of Nomadic Pict are
no longer simular to those of the 7-calculus Furthermore, changes to how the
asynchronous channels of Pict operate, the traditional m-calculus form of mo-
bility 1s absent 1n Nomadic Pict However, a form of mobihity 1s present, the
form of mobility that arises from the ability of agents to re-locate from one
point of execution to another Nomadic Pict, being based on Pict, inherits the
problems associated with Pict’s approach to sequential computations - 1t can-
not perform complex sequential computations However, unlike Pict, Nomadic
Pict 1s distributed 1n nature and agents of a system can be executed 1n an arbi-
trary, concurrent, and distributed manner In short, Nomadic Pict draws more
from other process calculi than 1t does from the w-calculus, namely the Ambient
calculus (Cardelh & Gordon 1998)

38



331 Agents, Sites and Migration

\

Three concepts not present 1n standard Pict are introduced into Nomadic Pict
in order to facihitate distribution communications - agents, sites and mugration
An agent 1n Nomadic Pict 1s a unit of executing code and each umt has a distinct
name, which refers to a body comprised Nomadic Pict/standard Pict actions
Since systems implemented 1n Nomadic Pict will be distributed amongst many
machines in an arbitrary fashion, some method of representing the possible
locations of aspects of the systems 1s required, each possible location 1s called
a site Communication between different agents residing in different sites 1s
possible though not 1n the n-calculus sense, however a different form of mobihty
1s also available in Nomadic Pict Agents in Nomadic Pict have the capability
of magrating from one site to another, they can change the machine on which
they are executed

Example

program param [ Site Site] =

(

val siteOne

il

(get-site 0)
val siteTwo = (get-site 1)

new answer ~ String

agent homeBody =

(

agent deserter =

(

migrate to siteTwo
(print ' SiteTwo up and runnming’’|
<one@siteOne>answer ' hey from siteTwo’’)

)

(print'* SiteOne up and running’’
|answer?]l = print!'l)

)

i ())

This example demonstrates the majonity of the additions to Pict that com-
prise Nomadic Pict, as sites, agents, migration and one form of inter-agent
channel communications are all covered 1n 1t The above system 1s 1ntended to
be run on two separate sites, or Nomadic Pict virtual machines The system
1s started from one site and the agent homeBody remains on this site where
1t prints a message and will eventually print another message once 1t has been
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received from the agent deserter The deserter agent migrates to the second
site where 1t prints 1ts message to the screen and then transmits a message back
to the homeBody agent that 1s still running on the first site

A site 1n Nomadic Pict represents a specific instance of the Nomadic Pict
virtual machine These various instances may be running on the same machine,
or on many distributed machines, the topology of the system does not affect 1ts
execution Information on the location of sites 1s gathered from a configuration
file, and this information 1s used to ensure that agents migrate to the correct
machines

Agents 1n Nomadic Pict are assigned umque names The combination of
an agent name and a site name makes up the complete 1dentifier of an agent,
and 1t 18 this complete name that 1s used when agents are commumicating It 1s
possible for multiple instances of the same agents to run 1n a system, both on the
same site and on different sites For example, in the above system the complete
dentifiers of the two agents are homeBody@siteOne and deserter@site Two

332 Channel Actions
Channel Output

Complete 1dentifiers are important in Nomadic Pict because of the manner 1n
which 1t performs inter-agent communications In the 7 — calculus, and indeed
2 Pict, there 18 only one way 1n which to transmit data on channels, however
in Nomadic Pict there are five ways in which this can be achieved

1 zly Behaves as the standard Pict send
2 aflocal < a> z'ythen Pelse @ Conditional transmission of y on z
3 <a>zly y sent on z to agent a on this site
4 <aQs>z2y y sent on z to agent a on site s
5 zQaly Output on z to
agent a
Explanations

1 x'y Transmits the name y 1n a non-blocking manner on the channel z This
form of channel output does not work for inter-agent communications, but
rather only for communications between processes in the same agent

2 1flocal < a > x'y then P else Q If the agent a resides on the same site as
the agent that 1s attempting to transmt the name y on z, the transmission
occurs successfully and then the process P 1s started, 1f the agent a 1s not
on the same site then no communication occurs and the processes @ 18
started \
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3 < a> x'yIfthe agent a 15 on the same site as the agent that 1s attempting
to transmit the name y on z then the action succeeds, 1f 1t 1s not on the
same site then 1t fails silently, 1e blocks

4 < a@s > x'y If the agent a 15 on the site s then the output action succeeds,
if the agent e 1s not on that site the output actions fails and nothing
happens

5 x@a'y This particular type of output action differs from all the others 1n
that 1t 15 not an 1mplemented low-level primitive in Nomadic Pict, but
rather 1t 15 a high-level construct that requires a specific implementa-
tion of 1t to be included 1n a system that attempted to perform location-
mdependent output The creators of Nomadic Pict have included two such
implementations that can be used

Consider the Nomadic Pict example give above, one occurrence of an inter-agent
communzcation action occurs, and the line

<one@siteOne>answer ! ' ‘ Hey from siteTwo’’

could have been replaced with one of four other possibilities The following
ilustrates the alternative possibilities and highhghts the effects of using them
to replace this hine

¢ answer'“Hey from siteTwo"

This form of output 1s only smtable for inter-agent communications and

as such this attempt at output fails

e iflocal < homeBody > answer'“Hey from siteTwo"” then () else ()

While this form of output 1s suitable for inter-agent communications, it 1s
only suitable for communications between agents that reside on the same
host, however the failure of the output action 1s not a complete failure as
this failure 1s detected and results 1n an alternative branch of execution
being pursued

s < homeBody > answer'“Hey from siteTwo"

This form of output 15 suitable for intra-agent communications, 1t 1s only
suitable for communications between agents that reside on the same host
Should the intended recipient not reside on the same host, this action fails

silently

» answer@homeBody'“Hey from site Two"

This 1s a location independent output action It 1s intended to deliver
the message to the agent in question regardless of the site on which the
sending agent 1s located
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Channel Input

While there are a number of ways in which data can be sent on a channel
1m Nomadic Pict, there are only two ways 1n which data can be read from a
channel One way to do so 1s in the same manner in which channel input
actions are performed n standard Pict The other method for reading from
channels nvolves the possibility of a read timing out A process waits for a
predetermined amount of time for data to be available on a speafic channel and
if no such data becomes available then alternative actions are performed

wait x?y=print’'‘‘ Value received’’
timeout 100 —> print'‘‘No value received’’

In the above fragment of Nomadic Pict code, the process will wait for 100
seconds for a value to be read on the channel z If a name 1s read before the
time expires then the message “Value received” 1s printed, if none 1s recerved

then the alternative course of action 1s taken and “No value received” 1s printed

333 Nomadic Pict Summary

Nomadic Pict 1s an extension of Pict and, like Pict, 1t 1s very similar to the
m-calculus in terms of intended semantics Since 1t 1s an extension of Pict 1t
also retains all the capabilities of Pict with regard to performing sequential
computations However Nomadic Pict has a distinct advantage over Pict 1n
that 1t 15 distributed in nature Nomadic Pict 15 a completely self-contained
distributed programming language that 1s based, loosely, on a derivative of
the m-calculus and as such 1s a valuable tool for those concerned with formal
methods

However as Nomadic Pict 1s so closely bound to Pict it also retains a lot of
the difficulties associated with Pict The strongly typed asynchronous channels
still discount a lot of useful systems that, while possible 1n the w-calculus, are
not possible in Nomadic Pict The limited number of primitives, and possible
operations, on these primitives also himits what can be achieved 1n this language

Nomadic Picts unique approach to channels, distribution of agents, and
inter-agent commumnication also raises some questions An agent wishing to
communicate with another arbitrary agent must not only know a channel that
18 also known to the other agent, 1t must also have explicit knowledge of the
other agent, and imphait knowledge of 1ts location These extra restrictions on
inter-agent communications drastically hmit the usefulness of this language

Classification of Nomadic Pict
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Syntax Not similar to the w-calculus

Semantics Not similar to the mw-calculus

Mobility m-calculus mobility absent,
alternative form present

Channels Asynchronous

Distributed yes

Sequential computations | Limited
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3.4 Summary

While nearly all implementations of a process calculi are valuable to those wish-
g to learn more about process calculi and formal methods, the usefulness of
a lot of these implementations to those concerned with actually implementing
distributed systems 1s rather imited

The major limuiting factor of most implementations 1s their non-distributed
nature, most of the implementations are designed so that systems written 1n
them will run on only one machine In the world of security protocols this
approach 1s almost useless as security protocols are only required for the trans-
mission of data between multiple machines -

Yet another significant limiting attribute of the majority of implementations
15 the poor expressive capabilities of some of the languages with regard to sequen-
tial computations The bulk of the languages choose to perform all sequential
computations through primitives and operations of their design, however these
languages tend not to have the number, or diversity, of primitives or operations,
required to implement complex and computational intensive systems

Combined these limiting factors results 1n existing 1mplementations of lan-
guages based on the 7-calculus being of little real-world use, what 1s required 15 a
language that 1s both based on the w-calculus and that 1s also highly expressive

35 Conclusions

The language presented in the following sections 1s one that 1s syntactically and
semantically very similar to the w-calculus It 1s one in which the traditional #-
calculus concept of mobility 1s present, and 1s one 1n which all communications
are synchronous i nature It supports the distribution of systems written 1n
1t, and 1t allows the arbitrary deployment of distributed systems It also pro-
vides a mechamsm for performing complex sequential computations in a manner
reconcilable with the m-calculus
Once the language design(chapter four) and the language :mplementation(chapter

five) have been outlined and explained @ wll be rated against the classification

criteria described 1n this chapter

Desired Classification of
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Syntax

Very similar to the w-calculus

Semantics Very similar to the w-calculus
Mobality w-calculus mobility present
Channels Synchronous

Distributed yes

Sequential computations

Powerful and expressive
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Chapter 4

w - The language

Distributed systems are becoming increasingly commonplace The use of formal
notations and their assoctated formal methods, such as the w-calculus, and its
derivatives, 1n ensuring that these distributed systems are in fact secure 1s also
becoming more routine and established Yet no programmng language that 1s
suitably usable, expressive, distribution oriented and incorporates the w-calculus
notion of mobility, exists and as such there 1s a niche for such a programming
language that 1s based on the w-calculus

Such a language would have to satisfy two criteria The first being that 1t
should have a close relationship with the w-calculus The second being that 1t
should be capable of implementing distributed systems 1n a simple and trans-
parent manner In order to fulfil these two end goals a series of sub-goals must
be satisfied

The typical distributed system requires that a number of complex opera-
tions be performed These complex operations, such as the generation of keys,
encryption and decryption of data, hashing, creating and vernifying signatures,
transmission of data, etc, are complex and computationally intensive Vari-
ous programmung languages contain a number of cryptographic and networking
primitives and operations that greatly sumphfy the programming of these dis-
tributed systems While the w-calculus 1s computationally complete and 1t 1s
theoretically possible to express cryptographic operations in 1t, 1t would be 1m-
practical to do so given the size and number of 7-calculus statements that would
be required The addition of mechanisms for performing these cryptographic
operations to the communications capabilities of the m-calculus would yield the
desired result - a powerful and expressive programming language based on the
m-calculus suitable for use in implementing distributed systems

So 1n order for a language to be “capable of implementing distributed systems
1n a sumple and transparent manner”, 1t must provide an apparatus for handling
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the distributed nature of the target systems while also supplying mechanisms
for performing complex operations R

It 1s also desired that the programming language 1s closely modelled on the
m-calculus, that 1t looks and acts 1n a manner similar to the w-calculus, while
also being computationally more usable This close modelling may allow the
application of the formal techniques associated with the w-calculus 1 order
to verify the correctness of protocols In other words, despite any additions
required 1n order for the implementation of distributed systems, the syntax and
semantics of the programming language must be as similar as possible to those of
the w-calculus Further still, this similarity must be attained 1n a manner which
will allow the language to be closely coupled with extensions of the w-calculus,
such as the Spi-calculus, and not just the core calculus itself

Central to achieving the desired syntactic and semantic similarities between
this language and the w-calculus 1s the integration of computations into the
communications aspect of systems This integration 1s made possible by the
dual nature of data 1tems i this programmmng language In one form these
data 1tems exist as names, and 1n the communications aspect they can be used
in the transmission of names either as the transmitter, or that which 1s being
transmitted While 1n their other form they are sumply objects in an object-
oriented programming language An object created in the computational code
and be brought into the communications code and transformed into a name,
and hkewsse, a name created in the communications code can be pushed mnto a
computation and transformed into an object This dual nature of data 1tems 1s
a pivotal concept 1n this language, and as such 1s vital to the understanding of
1ts syntax and semantics

At first glance the completion of these two goals appears to be somewhat
mutually exclusive The presence of mechamsms for performing complex com-
putations would seem to be at odds with maintaining the syntax and semantics
of the m-calculus It 1s felt that the language, w, should achieve both these
goals An attempt was made to satisfy these goals via the language definition
and the implementation of w The design and structure of the programming
language ensured the similarities between 1t and the n-calculus were present,
and also solved the problem of reconciling a mechamsm for performing compu-
tations with the syntax and semantics of the m-calculus The 1ssues related to
the distributed nature of the programming language were resolved via the actual
implementation of the programming language, as were some aspects of integrat-
g sequential computations into the syntax and semantics of the m-calculus
Those requirements that were satisfied via the first approach are covered in this
chapter, while those that were solved by the second method are covered in a

later chapter
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41 What is w?

The w-calculus 1s computationally complete, that 1s, 1t 15 theoretically possible
to perform any computation using only the existing syntax and semantics of
the m-calculus However there 1s a massive difference between computability
and usability, and while 1t 1s theoretically possible to, for example, compute
the result of encrypting some data using existing w-calculus features 1t most
certainly 1sn’t realistic to do so

w (var-p1) 1s the result of an attempt to facilitate the performing of sequential
computations, simply and transparently, in a w-calculus influenced framework
It 1s hoped that w could be viewed as the w-calculus with computations Or
given that the set of sequential computations available in the Spi-calculus 1s a
subset of those available 1n w, 1t 15 also hoped that 1t could be viewed as the
Spi-calculus with a broader range of sequential computing capabilities

411 Abstract Syntax and Semantics of @

A goal central to the success of w 1s the concept of a close coupling between
the specification language, the m-calculus, and the implementation language, w
itself Obviously 1n order to ensure that w looks and acts 1n a manner akin to
the m-calculus 1t must have a syntax and semantics that are similar to those
of the m-calculus However, as the w-calculus 1s a specification tool and w 1s
a programming language, 1t 1s inevitable that the actual syntax and semantics
of w will be more complex than that of the w-calculus - brackets, commas,
braces, colons and the like all become, unfortunately, necessary As such at thus
stage the abstract syntax of w will be used 1n any comparisons made with the
m-calculus The concrete syntax of @ will be given later

This abstract syntax can then be used for the initial analysis and comparison
between the m-calculus and @ After inspecting the syntax and semantics of @
1t should become clear that a w system will look and behave similarly to its

original w-calculus specification
Abstract syntax

In the following description of the @ syntax we let m, n range over names, z,y

range over varlables, and let f, g range over the set of valid function 1dentifiers
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Terms
LMN = n name

X variable

Output Action
a = N<M> Output action

Input Action

g = N(M) Input action
Processes
PQ = aP Input prefix

B8P Output prefix

TP Unobservable prefix

P Replication

(vn)P Restriction of channels

(f(L1 Lp)(zy z,))P Restriction of non-channels

1e performing a sequential

computation
P|Q Composition
aP +aQ Guarded sum
[N==N1P +Q Match
0 Null process

Explanation

1 Input prefix The relevant input action 1s performed, and the process

continues as P with any necessary substitutions being made in P

2 Output prefix The relevant output action 1s performed, and the process
continues as P

3 Unobservable prefix An unobservable interaction occurs and the pro-

cess continues as P

4 Rephcation The process /P 1s equivalent to P | /P In other words /P
behaves as an arbitrary number of instances of P all executing in parallel
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to one another

Restriction of channels Create a new name, n, of type channel and
binds 1t 1n P

Restriction of non-channels Creation of names of the type non-
channel 1s acmeved by the execution of sequential computations In this
form of restriction f 1s a computation It takes a series of input terms
Ly, L,,, which it pushes down into the computation i question which
yields a series of names These produced names then replace the series of

nput variables z;, ,z, 1n P

Parallel Composition Both the processes P and @ are executed con-
currently These processes can interact with each other and with other
processes

Guarded sum Interaction can happen with esther P or Q but not both
Which process 1s started depends entirely on which 1nput action occurs
first

Match If the N 1s equal to NV’ then the process behaves as P, otherwise
the next option in the Match statement 1s processed, this may be another
match condition or the default process, @

Null process The empty process, it cannot do anything

Structural Congruence

As can be mmagined 1t 1s very possible to construct two processes that behave in

an 1dentical fashion but yet are syntactically dissimilar A structural congruence

1s used to equate these processes that intwitively represent the same process

Two processes P and @ are said to be structurally congruent, =,1f P = Q can

be inferred from the axioms listed below, and by alpha conversion These axioms

allow manipulation of term structure and are not rehant on the semantics of

the language
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SC-SUM-ASSOC P, + (P, + P;) = (P, + P2) + P
SC-SUM-COM P+P=FP+Ph
SC-SUM-INACT P+0=P

SC-COM-ASSOC  P,|(Ps|P;) = (Pi|P)|Ps
SC-COM-COMM P,|P, = P,|P,

SC-COM-INACT P|0 = P

SC-REP P = P|'P

SC-RES (vm)(vn)P = (vn){ym)P
SC-RES-INACT  (vn)0 =0

SC-RES-COMP  (vn)(Pi|P;) = Pi|(vn) Py, if n ¢ fn(Py)
SC-MATCH [n==n]P = P

Discussion

A brief visual comparison between the abstract syntax of w, given above, and
the syntax of the m-calculus, given in section 2 1 2, clearly shows the sumilarities
between the two syntaxes By and large the syntax of w 1s almost 1dentical to
that of the m-calculus, bar the addition of variables, and could even be mistaken
for the syntax of a variant of the traditional synchronous w-calculus, in particular
the Spi-calculus, rather than an implementation of 1t

Systems are still orgamsed as a series of processes running m parallel, pro-
cesses are still constructed from a series of valid actions, and processes can still
be replicated The actions available to be performed by a process remain the
same, (names can be sent and received on channels and internal reaction can
occur 1n a process), as do the methods for invoking other processes, (choices
can be made between processes, processes can be executed concurrently and
processes can be invoked only after an equality test 1s satisfied)

For reasons that will be outhned at a later stage 1t was necessary to break
names nto two categories - channels and nor'l-channels As such names in @
are either of type channel or of type data The difference being that names
of type data do not have the capability to commumcate other names, while
names of type channel do Due to the complications introduced by the ability
to communicate names at run-time 1t was felt that the type checking would be
more suited to run-time rather than compile time

As can be seen the syntax of @ differs from that of the w-calculus 1n only a few
places The first, and most significant, being the introduction of a rudimentary
typing system and the addition of a second form of restriction The next, and
less significant, difference 1s the imposition of a constraint on summations in
w In @ all summations must be guarded summations, and furthermore these

guards must always be input actions, the reasoning behind the restrictions on
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summations 1s explained later i this chapter The final difference between
the syntax of @ and that of the w-calculus 1s the addition of the notion of a
“default” process 1n a match statement That 1s, should all the match conditions
1n a match statement fail then there 1s a process present that will be invoked in
this case The impact of these new elements will be discussed 1n section 411
However, this stmilanty in syntax only shows that the two look the same, 1n
order to demonstrate that they act in the same way the semantics of @ must

be examined

Operational Semantics

P=r P——+Q, Q=

[Struct]

P
Prefi —a =
Prefbd 0P S p
PP
[Par] a
PlQ—F|Q
/ $<ﬂ>
[Com] P _; F, ok if z 15 of type channel

P|Q wny (P'{n/y}l Q)

[Match 1} [ac:-——x]P N P

)

(Res1] P P zda
S
° (va)P -2 (va) P!
[Res2
DU Lo em)P D (vig ) P{EE)
OqP —a—1-> P
[Sum] P aj
a1 P + a9@QQ — P
Explanations

1 [Struct] If the occurrence of an action causes the process P to reduce to

52



the process @), then a process that is structurally congruent to P can be
reduced to a process that 1s structurally congruent to @ on the occurrence
of the same action

[Prefix] A process that 1s prefixed by an action reduces to that process

after the occurrence of the specific action

[Par] If a process, P, can reduce to another process, P’, after the occur-
rence of an action then P will reduce to P’ regardless of what processes

are running concurrent to 1t when that action, a, occurs

[Com) If a process P reduces to P’ on an input action on a specific name,
which 1s of type channel and 1if the process @ reduces to )’ on an output
action on that same name then P 1n parallel to @ will reduce to P’ 1n

parallel to )’ after an unobservable action occurs

[Matchl] A process prefixed by a match statement will reduce to the
process 1f the names are the same

[Match2] A process prefixed by a match statement n parallel with an-
other process will reduce to the other process if the names are not the

same

[Res1] If P reduces to the process P’ on an action, and the name z 15 not
involved 1n this action, then the reduction will only occur if the name z 1s
restricted in both processes

[Res2] f 1s a computation A computation uses a series of mput terms to
create a specified number of names Once created these names replaces
all occurrences of the indicated variables in the remainder of the process

[Suml] If a process, P, can reduce to another process, P’, after the occur-
rence of an input action then the sum of P and any other processes can
reduce to P’ on the occurrence of that input action

If a comparison 1s made between the semantics of w outlined above and the

semantics of the w-calculus given in chapter two, 1t becomes immediately obvious

that these two sets of semantic rules are sitmilar The differences between them

anise from the constraints placed on summations, the insistence that names used

to transmit other names are of type channel, and the addition of an additional

rule for the restriction of names of type non-channel The impact of these

differences will also de discussed in section 41 1

In fact the semantics of w are so close to those of the traditional 7-calculus

that they could easily be mstaken from the semantics of a vanant of the n-

calculus rather than those of a programming language based on 1t As desired
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the addition of mechamsms for performing complex sequential computations has
had minimal impact in the syntax and semantics of @

This similarity of semantics 18 much more important than any syntactic
similarities as 1t 18 more important that w and the w-calculus act the same than
they look the same

Syntactic and semantic differences

Considerable efforts were made to ensure that @ and the w-calculus lock and
behave 1n a comparable fashion However divergences between the two were
mescapable and the two do in fact differ on three 1ssues

Difference One - Summation

Some variants of the m-calculus permit summations of an unguarded nature to
occur, unguarded meaning that processes occurring in summation need not be
prefixed by an action, e g P + @ However more variants of the w-calculus use
guarded sums 1nstead of unguarded sums as the theory behind the w-calculus 1s
simphified somewhat by this decision(Parrow 2001) As the choice as to which
process 15 started 1n an unguarded summation 1s a non-determimstic choice,
unguarded summations would be of little use in a real world programming lan-
guage where totally random actions of this kind are rarely desired, and often
discouraged As such the constraint that all summations must be guarded was
immposed on summations in w

However guarded summations are not without their implementation 1ssues
Guarded sums are often said to be “unrealistic from an mmplementation per-
spective” (Parrow 2001), as the decision as to which guard in a summation
occurs can prove to be a non-irivial problem The problem results from at-
tempting to match mnput actions to output actions when both types of action
are conditional This, combined with multiple summations in parallel, results
n the general form of guarded summations not being a realistic operation from
an implementation point of view In particular in a distributed environment, 1f
summations in which mixed guards are allowed to occur 1n parallel to each other,
it 1s possible, that no action will occur No reahstic method of implementing
a mixed guarded summation that 1s stable, rehable, and whose behaviour was
guaranteed, exists Consequentially 1t was decided that the only vahd guards
for statements 1n a summation in w would be input prefixes, in other words
output actions are always guaranteed to occur, while the completion of 1nput
actions can be conditional

A quick comparison between the relevant aspects of both syntaxes and se-

mantics reveals that this difference 1s not a major one, but rather merely a
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minor restriction placed on what constitutes a valid summation 1n w By plac-
ing this restriction on the guards of a summation this impossible problem of
mixed guards 1s avoided with the minimum loss of expressiveness In fact
nearly all systems involving mixed guards in a summation can be re-written
to include only input guards The exceptions arising when both “ends” of a
communication are both i summations In these scenarios the original be-
haviour can not be approximated using only input guards However this loss of
expressivity 1s not an overly significant one and only occurs 1n systems such as
@ P + by) Q)| (a(z) R + bw S)

Difference Two - Typing

The major difference between the syntax and, more importantly, the semantics
of the w-calculus and of w 1s the introduction of a rudimentary typing system
to w

The w typing system divides all names 1n a w system into two types -
those names that have the capability of acting as channels, and the names
that do not have this capability While only names that have the capability
of acting as channels can be used to communicate other names, names of both
types can be communicated on channels This typing system was imposed
solely for implementation reasons, and the imposition of 1t greatly simplified
the implementation of w This typing system does however have an effect on
the flexibility of w Greater attention must be paid to the use of channels than
1 the w-calculus 1 order to avoid run-time errors

With regard to the semantics of w, the typing system only affects two of the
semantic rules - the new rule that governs the restriction of fresh non-channel
names and the one related to the interaction of concurrent processes over a
specific channel The former rule was required to be added to the set of semantic
rules 1n order that fresh names of type non-channel could be created In the
latter the changes to the corresponding w-calculus rule are even more minor
- it now nsists that all names used for commumcating other names between
processes be of the type channel, 1e that they have the capability of acting as
a channel, a simple and obvious requirement

This difference between the syntax and semantics of the m-calculus and @,
the addition of a typing system, does not result in @ and the 7-calculus being
wrreconcilable, far from it 1n fact as any m-calculus specification can be rewritten

1 @ 1f one uses only w names of type channel
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Difference Three - Inline Code

The final syntactic and semantic difference between w and the w-calculus 1s ws
ability to “inline code” into the communications aspect of @ processes This
“mlining of code” refers to the capability of w processes to perform complex
sequential computations in a sumple, transparent and intuitive fashion, 1e via
the restriction of non-channels operator This capability has such a sigmficant
impact on w that 1t will be covered in great detail in section 4 2 1

412 Concrete Syntax

One of the primary uses of an abstract syntax s to allow properties of a language,
or a program written in that language, to be reasoned about In this case less 1s
indeed more and the less detail that appears 1n an abstract syntax the simpler
the reasoning process 1s However this high level description of the form of a
language 1s not a sufficient blueprint to use in implementing both the language
and programs written in that langnage As such a more fine grained syntax
1s required This syntax 1s known as a concrete syntax Generally speaking a
concrete syntax could be viewed as the abstract syntax with the addition of
keywords, dehmuters, scope boundaries, constructs for process abstraction and
other real world syntactic necessities It 1s also common for a rule that appears
in the abstract syntax to be broken down into more than one syntactic rule in
the concrete syntax

As would be expected, and as can be seen below, the concrete syntactic
rules of w are many times more complex, and many times more numerous, than
their abstract counterparts However, while this concrete syntax may be more
detailed and complex than the associated abstract syntax, a simple reduction
and merging process can yield the abstract syntax from these concrete syntactic
rules
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Syntactic Rules

System

Imports
TopLevelProcess

ExplicitProcess

Process
ProcessBody

ProcessReference
ProcessInvocation
ProcessChoice
MatchStart

ProcessStm

ChannelDec
JavaCode

SimpleChoice
ChannelAction

JavaReference
name
ProcessId

List
nullProcess
JavaBlock

code
where

N o9
]

indicates that

i

[ Imports | TopLevelProcess (ExplicitProcess |
JavaBlock)*

"{” (javaPackageName ”,”)+

"System” processId ”{” (ChannelDec ” ”)*
ProcessInvocation ”}”

?Process” processId ”(” [ list | ”)

?{”" ProcessBody "}”

ProcessBody | ProcessReference
(ProcessStm)* ( ProcessInvocation |
ProcessChoice | MatchStart | nullProcess )
Processld " (” [list] 7)”

"(" [ "1 ] Process ( "[" [ " ] Process )* ”)”
("+” ”(”ChannelAction ProcessInvocation”)”)+
("[" name "==" name ”]” ProcessInvocation)+
ProcessInvocation

(ChannelDec | JavaCode | StmpleChoice |
ChannelAction) ” ”

”Channel” list

"<”(code | JavaReference) ”>" ”(” [ ist | )"
(" [hst ] 7)”

list 7 (” name ”)”

» name ”)”

name ”(
name ” <” name " >"

name | ProcessId

lowerCaseLetter (alphaNumeric)*
upperCaseLetter (alphaNumeric)*

null — name (”,”

0
”Code” kb (11 [ ]lst ] ):)n »(n [llst] 3))” ” {” Code ”}”

name )*

Java code enclosed 1n ” /&” and " &/”

“the contents are a literal

e [ ] indicates that the contents are optional

¢ + one or more of the preceding statement

)

e * zero or more of the preceding statement
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¢ | choice between statements

4.2 w features

421 Sequential Computations

The absence of the promised mechamsm for performing complex sequential com-
putations may have been noticed by this stage However this perceived absence
15 a result of the subtle manner in which the mechanism has been added to
w A mechamsm for performing sequential computations 1s present 1 w, as
whenever a name of type non-channel 1s created 1t 1s created as a result of a
sequential computation As such the body of the second restriction operator,
[RES2], generally will consist of “inline code”, or a reference to a collection of
such code, that will yield the necessary fresh name(s) given a, possibly empty,
sequence of existing names

The minimal impact of the addition of this mechamsm to @ 1s a direct
consequence of the separation of the commumnications aspect of w from the
computations part of 1t Paradoxically complete separation of computations
and communications allowed the seamless integration of them and the benefits
of this complete separation of communications and computations are not limited
to allowing the mechanism to be added with only inconsequential alterations to
the semantics of w, the benefits are, in fact, varied and far-reaching

One of the more obvious advantages of the separation of computational code
from communications related code 1s that this separation allows the separate
development of both aspects of a system Separate development of computa-
tions and commumcations allows them to be developed 1n a correct and proper
manner, testing the result of a complex computation vfhen that computation
1s embedded 1n the middle of a highly complex protocol can be problematic at
best Separate development can help to ensure that not only does the protocol
operate as desired but the sequential computations act as expected In effect the
development of a @ system could be viewed as two separate development tasks,
each with different goals which are achieved using two different programming
languages This simplification of the development process can yield sigmficant
savings in time and effort for reasonable s1zed projects

Yet another benefit of developing the computational side of a system sep-
arate to the communications aspect of that system 1s that the development of
both need not be done by the same individual(s) People completely unfamihar
with formal methods, the w-calculus, distributed systems, and indeed even of
w, can develop the bulk of the computational aspects of a system, leaving more
experienced, and expensive, people with less work required to merge the compu-
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tations and communications, thus reducing the cost of implementing systems

Complete separation of communications and computations allows the mech-
anism for performing these sequential computations to be added to w without
“polluting” the syntax and semantics of w with regard to the m-calculus It 1s
this unique approach to performing sequential computations in a language based
on the 7-calculus that allows the syntax and semantics of the commumnications
aspects of w to be kept as sumple as possible

The sequential computations 1n @ are completed by using an “embedded
language”, that 1s fragments of the Java programming are used to perform
the necessary calculations By using Java as the embedded language even the
most complex sequential computations can be performed in w While the Java
programming language was the language chosen 1n this case, it would have been
possible to have used any programming language 1n 1ts place

Another benefit of using smppets of Java code to perform sequential compu-
tations arises from Java being such a popular and famlar language which will
accelerate the w learmng curve

It was necessary to place certain restrictions on what can be achieved 1n
Java to ensure that the w-calculus model 1s not invalidated Obwviously the
actual integration of Java fragments into the communications part of w, and
the 1imposition of restrictions on these Java fragments, 1s rather complex and as
such 1s covered in the implementation chapter

Finally, the complete separation of computations from communications re-
sults 1n 1mplementations of systems that are very readable and understandable,
which 1s 1deal for comparing @ 1mplementations to w-calculus specifications

As previously mentioned the integration of the two disjoint aspects of @ 1s
achieved, in part, by the dual nature of data items 1n @ They can be either
names or objects depending on the context mn which they are viewed n This
ability to pull objects up from sequential computations and transform them into
names for use 1n communications, and hkewise the ability to push names into
computations and transform them into usable objects, 1s what makes sequential
computations possible, and powerful in @ However this duality of data 1tems
1 @ does have the consequence of causing names to be stateful - a concept not

present 1n the w-calculus

422 Mobility and Channels

The concept of mobility 1s a common one 1n process calcull Mobility of one
form or another exists 1n most process calculi and the introduction of the con-
cept of mobility was an attempt to capture the dynamic nature of distributed

concurrent, systems
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Mobility comes 1n many guises, the two main forms being mobile agents and
mobile inks When the notion of mobility was being mulled over some choose
to percetve mobility as series of agents that were free to migrate from machine
to machine while maintain the same links between these processes Others
choose to imagine a world in which the agents of a system remained fixed in
position but the links between these agents were constantly changing It 1s this
latter form of mobility that 1s present in the w-calculus, and 1t 1s this form of
mobihty that 1s also present in w While the argument could be made that the
presence of both forms of mobility 1n @w would be beneficial, implementation
1ssues surrounding the migration of processes put this 1dea beyond the reach of
this implementation

Obviously since the mobility property stems from the links, or channels, in
a system, the implementation of these links 1s of vital importance and every
endeavour must be made to ensure that the operation of this links is as close
as possible to theirr behaviour 1in the w-calculus First and foremost channels
should be allowed to be shared amongst agents of a system, they should be able
to be learnt by agents that did not previously know of them - in other words
they should facilitate the m-calculus concept of mobility Secondly, 1t should not
be necessary to know which agent 1s “at the other end” of the link It should
be possible to send a message on a channel without knowing which agent, 1f
any, 1s “listening” on the other end Finally, channels should be synchronous
in nature The majonty of implementations of the n-calculus (Nierstrasz et al
nd, Wojciechowski & Sewell 1999, Pierce & Turner 2000a) 1nsist on forcing
channels to operate 1n an asynchronous nature which restricts the usefulness of
channels somewhat sigmficantly Channels in w operate 1n a fashion 1dentical
to the behaviour of their monadic w-calculus cousins

423 Daistribution of w systems

Implementations of systems specified 1n the w-calculus are generally intended
to be deployed 1n a distributed fashion This necessity was recognsed at an
early stage in the development of w and as such w caters for such distributed
and concurrent systems by providing a mechanism for deploying systems 1n an
arbitrary distributed manner

This mechanism 1s provided via the low levels of the implementation of w
rather than via any language construct or feature of the language Since the
apparatus that provides the distribution of w systems exists in the implemen-
tation of @ 1t 15 more fitting to postpone detailed discussion on this feature
of w until the actual implementation of @ 1s delved 1nto in greater detail m a
later chapter However 1t 1s worth mentioning at this stage that w allows the
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distribution of processes 1n a system Processes 1n a system do not know the
location of the other processes in that system, in fact they do not know what
processes even exist 1n that system It 1s the implementation of channels 1n @
that facilitates the distribution of processes 1n a w system

43 Example System

In general a @ system consists of a System, one or more Pracesses and possibly
some Java Code blocks, where a Java Code block is a mechanism for the sumple
and quick re-use of sequential computations - much like a method 1n Java
The System specifies which of the Processes are at the top-level, 1e must be
started by their environment A Process may perform various actions, start
other Processes and 1nvoke Java Code

The following 15 a very basic w System, 1t allows two users to communicate
over shared channels While this example 1s very simplistic 1t does demonstrate
various key aspects of w - replication, sequential computations, communication
over channels, and the integration of Java code into =, while also giving a “feel”
for what can be accomplished in w

The Ytalk system consists of two top-level processes that must be started
by their environment Writhin the scope of these two processes are two channels
that the processes will use to communicate on FEach of these two top-level
processes start two more processes, but this time in a rephcated fashion, one
process for reading messages, one process for sending messages These two
common processes both perform the necessary channel actions and Java actions

to allow the two users to communicate with each other

431 Abstract syntax

(vab) (('(Freadnssg (/(msg) b < msg >) | (a(msg) forintrag(msg)()))
[("(b(msg) Frimtrsg(msg)() | ((freaamsg()(msg) @ < msg >)))

432 Concrete syntax - Code
System Ytalk

{

Channel a,b

(ProcessA(a,b)!ProcessA(b,a))
}

Process ProcessA (1n,out)

{

/*Start a sub—process to handle incoming messages
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*and another one for outgoing messagesx/

('SendMessage (out ) j' ReadMessage(1n))

}
Process SendMessage(out)
{
/+*Input message via Java—code and then send 1tx/
<readMessage>()(msg)
out<msg>
0
}
Process ReadMessage(1n)
{
/*Input message via channel and then
*print 1t via Java—codex/
1n (msg)
<printMessage>(msg) ()
0
}
Code readMessage () ( message}
{
J&
try
{
InputStreamReader 1sr = new InputStreamReader ( System in ),
LineNumberReader Inr = new LineNumberReader{ 1sr ),
message = new String(Inr readLine ()),
}
catch (Exception e)
{
e printStackTrace (),
)
&/
}
Code printMessage(message)()
{
J&
1f {message getClass () getName() equals (‘‘java lang String’'’))
{
System out print{‘‘Other '’),
System out println ({String)message),
}
&/
}
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Explanation

The YTalk system consists of two top-level process instances, both of which are
mstances of ProcessA that must be started by therr environment, 1e by the
users that wish to use them Within the scope of the system are two channels
that will be used by the two halves of the system to communicate on

As can been seen 1 the above example possibilities for errors to occur in
sequential computations exist If an error should occur this results in the process
that 15 performing the sequential computation to block, 1 e 1t ceases to execute

The bodies of these two top-level processes are identical, they both start
another two processes SendMessage and ReadMessage 1n a rephcated fashion,
that 1s an arbitrary number of instances of these processes are started depending
on demand

The purpose of the SendMessage process 1s to use a Java-code fragment to
obtain a message from the standard input and to “pull up” this object from the
Java-code 1nto the communications code and to then transmt this new name
on one of the shared channels This shared channel will link 'this instance of
SendMessage to an mstance of ReadMessage 1n the other half of the system

The ReadMessage process reads a name 1n over a channel, which links to
an mstance of SendMessage 1n the other half of the system This name 1s then
“pushed 1nto” a sequential computation that transforms the name back into the
original message and outputs 1t to the standard output

During the execution of the system the actual work will be achieved by the
1nteractions between various instances of the replicated processes, SendMessage
and ReadMessage, over the channels that are shared between the two halves of
the system, the ProcessA half and the ProcessB half

4 4 Language design decisions

Implementing a programming language requires that a series of decisions and
compromises be made on the way from the nitial conception of the desired
properties of the language to the final result yielded at the end of the process
The design and implementation of w was no different 1n this respect Decisions
and compromuses were necessary at both the language design and the language

immplementation phases

441 Sequential Computations

One of the first decisions that had to be made with regard to the language
design of w was related to the mechamsm that was to be provided by w for
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performing sequential computations Two approaches to providing this mecha-
nism were considered The first approach that was considered was the creation
of a notation that would encompass all aspects of performing sequential com-
putations in w This approach would have resulted 1n all aspects of w systems
falling under one set of syntactic and semantics rules, as well as imposing tighter
controls on the actions possible to be performed 1n sequential computations

However the implementation cost of this approach meant that an alternative
approach to providing the mechanism for performing sequential computations
was required This alternative approach involved the re-use of an existing pro-
gramming language for performing the sequential computations in w While
this alternative approach may not have been the oniginally desired approach, 1t
15 felt that 1t still allows the primary goals of w to be achieved

A complication that resulted from this decision was reconciling the strongly
typed Java programming language and the weakly typed communications aspect
of w The only approach to solving this problem that could be found what to
equate names to the superset of objects that are available 1n Java, and to equate
channels to a speaific type of object This approach facilitates the reconciliation
of the two conflicting typing systems and allows the integration of computational
code 1n the communications code with only the mimmum of impact to the
desired syntax and semantics of w

442 Names and channels

In @ not every name can act as a channel, names must be exphatly dectared as
channels 1If they are required to act as channels However 1n the w-calculus each
and every name may act as a channel This disconnect between « and the -
calculus 1s perhaps one of the most sigmficant compromises that was required to
be made 1n the design of-the w language It was originally desired that all names
1 w would have the capability to act as channels but a direct consequence of the
decision made with respect to sequential computations was that a mechanism
for allowing this could not be devised
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Chapter 5

w - The implementation

The syntax and semantics of @, as previously described, outline the appearance
of w processes and systems, and the interaction that may occur between a
series of these processes when they are constructed as a w system While the
formulation of these syntactic and semantic rules 1s a sigmficant milestone 1n the
development process of the w programming language, 1t forms merely one half
of the entire set of deliverables necessary for the creation of the w programmung
language The second half of the development process revolves around the actual
implementation of the language, which 1s the transformation of the definition of
the implementation and 1ts execution provided by the semantics 1nto a concrete
and complete programming language

The mmplementation of zo must take into account a number of requirements
1 addition to those implicit to any programming language with the previously
described syntax and semantics These additional requirements contribute sig-
nificantly to the complexity of the final implementation and this complexity
1s reflected 1n the size of the implementation and the number of technologies
required to create 1t

The w 1mplementation must supply a mechanism to transform valid @ code
into an executable form, and 1t must provide an environment in which the
execution of this code can take place To further complicated matters one of the
demands made of w 1s that 1t should allow the creation of modularised systems,
systems which can be distributed and concurrently executed Further still,
the functionality should be provided which allows real-time communications to
occur between these various components of these distributed and concurrently
executing systems Given the desire for the channel based communications to
be synchronous 1n nature real-time communications are a requirement

This implementation, which should satisfy the above requirements, consists
of two main parts - the compiler and the runtime hbraries Both these aspects
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are required for the generation of systems that are structured in the required
fashion and behave in the desired manner The compiler generates code that
creates such systems, and this generated code relies heavily on the hibraries to
provide the necessary functionality, as well as aspects of the runtime environ-
ment

As the w implementation 1s large and rather complex, and not every part of it
15 directly related to providing the desired functionality of the language Assuch
a prudent approach to the examination and discussion of the implementation
of the w programming language 1s the description of each aspect of the desired
functionahty followed by an explanation of how these aspects were provided,
rather than an investigation into the operation of the programmng language 1n

1ts entirety

5.1 Required Functionality

The topic of investigation n this section 1s not the structure of w processes
and systems, nor the behaviour of these entities, but rather the underlying in-
frastructure that facihitates the creation and operation of these processes and
systems - the portion of & that 1s “under the hood” so to speak Thus infrastruc-
ture can be divided 1n a few main categories - distribution, processes, channels,

computations and the environment

511 Distribution

One of the primary desired properties of a o system 1s that 1t should be capable
of being executed 1n a distributed fashion Components of a system should be
able to be deployed 1n an arbitrary topographical arrangement and 1t should be
possible to make the decision as to this arrangement at run-time rather than at
compile time In order to cater for these requirements a number of sub goals
are required to be satisfied

For a w system to be capable to be distributed over a series of machines 1t
must first be possible to 1dentify and separate the various parts of the system
that could be distributed As such 1t 1s required the executable modules yielded
by the compilation of a @ system must be independently executable The only
dependency that one module, or node 1n the system, should have on another
node 1s to facilitate the completion of the synchronous communications between
processes

If a w system, when operating 1n a distributed fashion, consisted of merely a
number of standalone apphcations, each executing in complete and utter 1sola-
tion, then the act of distributing a system would be a pointless one As touched
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upon above, each “site” 1n a distributed w system must to able to interact with
other sites, that 1s the capability for inter-site communications must be present
The importance of communications between sites 1n a w system cannot be over-
stated as 1t forms one of the lynch-pins of the execution of w systems It 1s worth
mentioning that each “site” 1n a distributed executing a w system 1s simply a
w process that resides at the top of the systems process hierarchy

512 Processes

w systems are constructed using processes as the basic umt of construction
A logical extension of this 1s that the basic unit of execution for w systems
should be the process The execution of @ systems 1s completely process ori-
ented and every single 1tem that can be executed 1s a process Therefore the w
implementation must provide a means to transform the source for a process into
an executable object While the behaviours exhibited by processes are merely
consequences of the semantics that define them, the 1ssues surrounding incor-
porating these semantic rules into the @ implementation 15 a non-trivial task
and deserves further mention

In addition, one of the properties that makes the w syntax and semantics
so powerful and expresstve 1s the ability to concurrently execute processes, 1 e
allowing processes to run in parallel Obwviously the underlying implementation
of w also has to support this notion of concurrently executing processes, whether
this execution 1s occurring on one machine, or 1s distributed over a series of
machines p

Replication 15 a massively useful tool in the theory behind the w-calculus
and the w programming language The abihity to have an infimte number of
1dentical copies of a process, and to have each required 1nstance runming just
as you need 1t, allows the expression of processes that are otherwise complex,
lengthy and error-prone, in a few lines of stmple, self-explanatory code However
serious 1ssues surrounding the implementation of this form of replication are
immediately obvious Overcoming these obstacles while still maintaining the
concept of replication 1s most certainly a non-trivial task

The abiity to have concurrent execution of processes, the provision of a
mechanism to replicate these processes, the possibility of distributing these pro-
cesses, and the capability for inter site communications are not the only require-
ments of the @ infrastructure Processes also have to be able to interact with
each other without knowing of each other, 1e there should be knowledge-less
inter-process communications, which 1s that a process should not be concerned
with what process 1s on the other end of a link, but rather 1t should be satisfied
that there 1s another end to the ink This requirement, 1n conjunction with the
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necessity for hnks 1n @ systems to grow and die m a seemingly organic manner
demands a complete and reliable implementation of these links - channels

513 Channels

Channels are the workhorse of the © implementation They provide mecha-
msms that supply a sigmficant proportion of the functionality required of the
w 1mplementation Virtually every aspect of the w implementation that 1s not
directly concerned with the execution of processes and the performance of com-
putations 1s provided, either partially or completely, by the implementation of
channels '

Chief amongst the solutions provided by channels 1s the solution to the
problem of distribution As previously mentioned in this section, support for
distribution 18 a key requirement of the w implementation and w channels
provide practically all of the functionality required to support this distribution
of systems As a mechanism for the provision of distribution 1n w systems the
1mplementation of channels must facilitate communications between the various

processes that will comprise a @ system

Figure 51 Growth of a system

One of the key purposes of channel based communications 1s to enable the
growth of links 1n a system between processes of that system, for example Fig
51 w channels, hke their m-calculus cousins, must be capable of both trans-
mitting other channels and also of being transmitted themselves By possessing
both these properties w channels can make the seemingly organic expansion,
and reduction, of connections in @ systems possible

All communications between processes in a w system must occur via w chan-
nels Consequently the implementation of these channels must be robust and
reliable Data cannot be lost, communications cannot be left half completed,
and the behaviour of these channels must be consistent The fact that @ chan-
nels are synchronous 1n nature, as well as the availability of the choice operator
In @, means that the possibility of partially completed communications 1s a very

/
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real obstacle, one which must be overcome if the implementation of channels 1s
to be usable 1n any fashion Another logical conclusion, given the importance
of channels to the @ 1mplementation, 1s that w channels must be stable and
robust Channels must be capable of coping with high levels of usage and sigmf-
icant loads and they must also remain operational even under the most extreme
of conditions

Another noteworthy aspect of channels 1s that at any one time during the
hfetime of a channel multiple read requests may be made of a channel, while
simultaneously multiple write requests may also be being made Synchronous
channels can, by definition, only accommodate one read and one write request
at a time It 1s therefore a requirement of the implementation of channels that
1t can accommodate multiple read and write requests occurring simultaneously
and that 1t can process these requests in a non-deterministic and guaranteed
fashion, Fig 5 2 However, further constraints are placed upon the operation of
channels m that the operation of these channels must always be deadlock free
When a channel 1s used 1n conjunction with a summation m w a read operation
can effectively be “backed out of® That 1s a process can indicate 1ts readiness
to recieve information on a specific channel and then revoke that indication
should another channel complete a read operation first Deadlocks could occur
if the implementation of channels did not restrict the conditions under which
processes are “backed out of” as a process could, potentially, back out of all
read operations and be left 1dle with no possibility of resuming execution, 1e
deadlocked

Vs L1 |
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Figure 5 2 Processing of requests

Additionally the operation of these channels must be as transparent as pos-
sible, and that their operation must appear intuitive to someone famihar with
traditional w-calculus channels While these requirements may seem quite triv-
1al, they are stil] necessary to allow the complete @ 1mplementation to remain

comparable to the m-calculus
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514 Computations

Additionally, what use are mechamsms for allowing concurrent, distributed and
replhcated processes, and methods that facilitate the communications between
these processes, without a way 1in which to carry out calculations - to have some-
thing to communicate Some purpose must be given to these communicating
distributed processes The final task 1s to allow computations to occur, and to
facilitate the communication of the results of these computations between the

various processes

515 Environment

w systems execute 1n the Java execution environment However this execution
environment “as 1s” 15 not sufficient to meet the requirements of executing @
systems Additional demands such as the mtial setup and synchromsation and
also the termination and clean-up of z systems are made of the execution envi-
ronment These demands must be met by providing a @ execution environment
which sits on top of the Java environment This new execution environment is
also responsible for enforcing the @ communications model

516 Summary

Taking the required functionality outlined above into account, the exammnation
of the w 1mplementation will focus of the following topics

e Channels and the distribution of processes

e Channels and the synchronisation between processes

e Channels and the communications between processes

¢ Channels and the summations 1n processes

e Processes and the execution of these processes in a concurrent fashion

e The rephcation of processes

e The invocation of processes

e Performing sequential computations via in-liming methods and code blocks

e The execution environment and the mnitial setup and synchronisation of
processes and channels

e Termination of systems in the execution environment
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¢ Security, enforcement of w communication restrictions 1n the execution
environment, 1 e channels are the only available mechamsm for commu-

nication between processes

5.2 Prowvision of Required Functionality

521 Channels

When considering how best to 1mplement distribution m @ 1t 1s worth reflecting
on what exactly will be distributed and how the distributed entities will inter-
act In a w system the distributable entities are the top-level processes of that
system, where a top-level process 15 one which resides at the root of the process
hierarchy, one which 1s invoked by a user rather than another process These
top-level processes, and 1ndeed all processes, can interact with other processes
1n two possible ways Firstly, a process may invoke other processes The invoca-
tion of another process results 1n that process executing on the same site as the
“parent” process and as such this form of interaction 1s not concerned with the
distribution of systems as only the invocation to top-level processes can affect
the topology of a system It was originally desired that all processes in a w
system could be distributed in an arbitrary manner regardless of their position
in the processes herarchy for a system The management of this fine grained
process distribution would have to be either manually managed via configura-
tion files or dynamically managed by a distributed load balancing mechanism
On the grounds that the first approach would be too cumbersome and awkward
and the second approach too complex and beyond the scope of this work the
more restrictive, and realistic, approach of only allowing top-level processes to
determine the topology of the system was the approach taken However the sec-
ond form of interaction, communications over channels, 1s very much concerned
with distributed interaction as the processes communicating over these channels
may be residing on separate host machines, Fig 5 3

Machine 1 Machine 2

I

P1 P2

Figure 53 Distributed nteraction

Seeimng as channels are an 1intricate part of every communication between
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possibly distributed processes it seems only fitting that the onus should be
placed on channels to faciitate this distribution In order to make these dis-
tributed communications possible a channel must be visible to all processes that
are required to use it, and the physical location of the actual channel, (for 1t
must reside somewhere), should have no 1mpact, on how the various distributed
processes interact with 1t

Java RMI

The interaction between applcations runmng 1n a distributed fashion has be-
come so commonplace that Sun Micro-Systems extended the Java programming
language to include a technology called Java Remote Method Invocation, or
Java RMI Java RMI 1s heavily used in the facihitation of communications over
channels 1n @ and as such a brief overview of Java RMI 1s required!

In Java RMI remote objects are created by servers and the server makes
references to these remote objects available These references may be passed
around the distributed apphcation and clients can use these references to invoke
methods on the remote objects as 1f they were local objects For a client to
use a reference to a remote object 1t must first obtain the reference by one of
two methods It can get a copy of the reference by either looking the abject
up 1n Java RMD’s simple naming service known as rmaregistry, or by receiving
the reference as an argument or as a return value Once the remote object’s
reference has been obtained 1t can be passed around applications just like any
other object, and more importantly this reference behaves as 1f 1t was the actual
remote object itself Java RMI provides the mechamsms necessary for the server
and clients to communicate and consequently allow the reference to behave as
the remote object

Channels and Java RMI

Java RMI provides a mechamsm for remote objects to appear local via refer-
ences, and also provides two ways to discover references to these remote objects
This 15 exactly what 1s required to 1mplement w channels The use of multiple
immutable references which all refer to the same remote object allows the w
n\lodel of distribution to be implemented 1n a transparent and intuitive manner
The ability to obtain references either by lookup or by parameter passing also
permits the fundamental differences between top-level processes and all other
processes to be overcome, that 1s that top-level processes are started by the

user and not another process and as such cannot obtain references to remote

!More detalled information on Java RMI can be obtamned on the website
http //java sun com/products/jdk/rmi/
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objects by parameter passing All in all Java RMI 1s a vital tool requred for
the implementation of w channels

By using Java RMI 1n the implementation of w channels and by making the
Java class that represents o channels implement the Remote object interface
the task of allowing distributed processes to teract 1s greatly ssmphfied Pro-
cesses now use local references to remote objects, which represent channels, to
communicate with each other Therefore from the perspective of a process there
are no remote interaction occurring, merely the invocation of methods on local
objects

Example

Process A creates a channel C Process A then obtains a reference to this newly
created remote object which 1t then sends over an existing channel to Process
B Both Process A and Process B can now use their corresponding references
to the remote object, which represents channel C, to interact with each other,
Fig 5 4

Machme 1 Machine 2

@ = reference to channel @ = remote channel object

Figure 54 Distributed interaction

In the above example the remote channel object C’ 1s shown to reside on a
specific machine, Machine 1 This 15 because the process in which the channel
associated with this remote channel object was created also resided on Machine
1 The remote channel object will reside on this machine until termination of
the system or Java RMI'’s garbage collection removes 1t

One of the advantages of w channels being accessible as references, and as 1f
they were local objects, 1s the ease in which 1nter-process communications can
be implemented When a process wishes to write some data to a @ channel
1t simply invokes the write method of the local reference and supphes 1t with
the relevant data, Fig 55 The underlying Java RMI mechanisms handle the
transmssion of the data to the actual remote object
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Machine 1 Machine 2

Figure 55 A Write Request
Likewise when a process wishes to read data from a channel 1t calls the read
method of the local reference which will return data when it 1s available, Fig
56 Again Java RMI deals with the actual transmission of data from the remote
object

Machine 1 @ Machine 2
b
\[\ C

ob
o y

Figure 56 A Read Request

The previous description of inter-process commumcations over channels was
a sumplification It proved a useful example to outline the rough concepts behind
w channels However further issues surrounding the communications between
processes over channels exist Amongst these 1ssues 15 the implementation of
the synchronous nature of w channels Given this synchronous nature 1t 1s an
obvious necessity that when a read request 1s made of a channel that there must
be a corresponding write request, 1 € something must have put the data on the
channel m the first place, and if no data 1s present then the read request 1s forced
to wait for some to become available In an asynchronous implementation of
channels this would be the only requirement made of channels with regard to
their behaviour, that 1s 1n order for a read operation to complete there must
be data present There would be no restrictions placed on write operations,
they would merely write their data to the channel regardless of whether there

1s a corresponding read operation ready to complete the transaction or not and
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continue on. However W channels are synchronous in nature and as such it
is essential for a write operation to occur that there must be a corresponding
read operation ready to occur as well. In short no channel operation can occur
without the opposite operation also occurring on the same channel, Fig 5.7.
This problem is solved using a series of locks and notifies on the Java objects
used to implement channels. Further detail of this solution is provided later in

this chapter.

Write
Request / a

BLOCKS

Figure 5.7: Synchronous operation of channels

However the behaviour of channels is further complicated as a result of the
possibility that multiple read and write requests may be made of a channel at
the same time, Fig 5.8. The implementation of channels must allow multiple
requests of both kinds to be made simultaneously and to process these requests
in pairs, one read and one write, and also maintain a queue of requests that

remain to be processed.

Write Read

Figure 5.8: Multiple Requests

The first requirement in implementing the read and write methods of w
channel is that only one request of either type may be active at any one time.
That us a read operation cannot be occurring at the same time that a write
operation is occurring and vice versa. Likewise only one read request may
be occurring at any one time, and only one write operation can occur at the
same time. Conveniently the Java programming language provides a mechanism

to ensure that this happens, the synchronize statement. The contents of both
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summation, a(z)P + b(z)Q, means that the invocation of processes depends on
the occurrence of associated actions, a(z) occurning starts P and b(z) occurring
starts () The problem arses here from the fact that the above read algo-
rithm does not provide a mechanism for a read operation to “back out” without
completing and 1ndicating that the operation has successfully completed This
mechanism 1s necessary 1n order to avold undefined and unexpected behavioural
consequences Out of all the input actions 1n a guarded summation exactly one
of these actions should be allowed to complete and the remainder of the input
actions should be able to “back out” without having any negative effects on the
behaviour of the system This new mechamsm 1s catered for by the provision of
a conditionalRead method 1n channels which should be used 1n summations

Conditional Read algorithm
Synchronize readLock

Synchronize actionLock
1f data present
set task done

else
walt on actionLock
set task done

1f ' stopped

wait until stopped

1f task done by me
notify on actionLock

Conditional reads from w channels require the use of two additional classes
- the Task class and the Reader class Both of these classes play pivotal roles
in allowing conditional reads to occur The use of the Reader class 1s nec-
essary to orchestrate the multiple blocking requests to be made of numerous
channels which are required to allow conditional reads to occur Some way of
multi-threading these requests 1s necessary and the Reader class provides this
functionality

The reasoming behind the necessity and functionality of the Task classes 1s
rather more complex In brief the Task class 1s responsible for determimng
which input action 1s the one that will occur, 1t 1s also responsible for informing
that input action that 1t should occur and finally the Task class 1s responsible

for terminating all reader threads successful or otherwise

522 Processes

Given that in @ the implementation of channels 1s responsible for providing
the functionality required for communications and synchronisation between the
distributed processes of systems the only topics that are related to processes that
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methods are enclosed in synchronize statements and this ensures that the desired
behaviour 1s provided In addition the synchronize statement also provides the
automatic queuing of other requests

The second priority 1n 1mplementing these methods 1s to ensure that on
completion of a channel operation that both read and write methods complete
at the same time regardless of which request was made first There are two
possible orderings of the requests and each one must be catered for

Write first, read second

The write method sets the data and then waits for the data to be read
The read method gets the data, indicates that the data has been read and
both methods complete

Read first, write second

The read method attempts to get the data, none 1s present so 1t must
wait for some to be made available The write method now sets the data,
1t indicates that the data has been set which results in the read method
waking and reading the data Finally the read method indicates that the
data has been read and both methods complete

In both these scenarios the following algorithms result in the desired be-
haviour, these algorithms were produced as the result of much analysis of the
problem at hand and many prototypical implementations, in hindsight time
and effort could have been saved by timely consultation of literature related to
concurrent programming

Write algorithm

Synchronize writeLock

Synchronize actionLock
set data
noti1fy on actionLock
walt on actionLock

Read algorithm
Synchromze readLock
Synchronmize actionLock
1f data present
get data
else
walt on actionLock
get data
notify on actionLock

Using only the above algorithms as the basis for an implementation of the
read and write methods of @ channels would suffice were 1t not for the presence

of guarded summations 1n the syntax and scmantics of w If we recall a guarded
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remain to be discussed are how processes execute concurrently, how processes
are replicated and an explanation of the different ways in which @ processes
can be mvoked

Concurrent Execution

Concurrent execution 1n w involves the execution of an arbitrary number of
process 1n parallel Given that the primary intended use of @ 1s 1n the imple-
mentation of distributed systems, 1t 15 extremely likely that each site 1n a @
system will play host to a number of processes, all of which are required to be
running in parallel to each other, some method of multi-threading the execution
of these processes 1s necessary Once again the Java programming language
provides a mechanism which aides us in overcoming yet another problem The
Java programming language provides a way to create multiple threads, where a
thread 15 a single distinct strand of execution, and to have these threads execut-
ing concurrently By making each process in @ a Java thread and by starting
these threads 1in a concurrent manner 1t 1s possible for the concurrent execution
of processes to occur in w However given the nature of Java multithreading
this would not be considered “true” concurrency from a w-calculus perspective,
however to the user 1t would appear so

Traditionally a problem existed with having multiple threads executing cur-
rently 1n Java These threads lacked a guaranteed and rehable method to com-
municate and synchromse with other threads However the use of w channels
i the Java multi-threaded environment has solved both the problems of com-

munications and synchronisation between concurrently executing threads

Replication

Replication 1n the strictest w-calculus interpretation is not feasible from an 1m-
plementation point of view The idea of an arbitrary, possibly infinite, number
of instances of a specific process all ready to run, 1n fact all running and merely
waiting to interact with other processes, Fig 5 9, 1s not a concept that 1s recon-
cilable with real world computing and computers As a result 1t was necessary
to umplement replication differently This different approach to implementing
replication still results 1n the same casual observable behavioural properties but
a more realistic approach was necessary to achieve these properties Instead of
having an arbitrary number of processes ready for execution w replication only
ever has exactly one more mstance that what 1s presently needed executing
This approach allows the replication process to behave 1n the same manner but
1t 1S not as resource 1ntensive

This approach 1s made possible as a result of the manner 1n which the Java
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Figure 5 9 Pi-calculus rephcation

threads that represent @ processes are generated Since each thread 1s tailored
specifically to each individual process it 1s possible to add the capabihity for
replication to each process by ensuring that each mnstance of a replicated process
invokes exactly one other instance of 1tself after 1t performs 1ts first action, be 1t
an mput, an output or a Java action, Fig 5 10 This results in there always being
one more mstance of a process running than 1s currently required By always
having one more than necessary future demand for interaction with additional
mstances of a process 1s always catered for However this approach does result in
1ssues surrounding the termination of w systems, these 1ssues will be investigated

later

Process start time

Figure 5 10 @ replication

Invocation

There are a number of different scenarios in which a process may invoke, or
start, another process A process may be started as the only “chuld” process of
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another process, or a process may be started in a replicated fashion, or a process
may be started (and possibly replicated) in parallel to a series of other processes
These scenarios for starting processes have been previously explained, but the
workings of two additional scenarios in which processes may be started have not
yet been touched upon - starting processes via a choice statement and starting
processes via a match statement

Match start

A match statement consists of a number of condition statements, each with an
associated process invocation statement and also a default process invocation
statement The conditions are evaluated from left to night and the first condi-
tion statement that 1s satisfied has its associated process invocation statement
performed Should none of the condition statements be satisfied then the default
process invocation 1s performed

When a condition statement 18 being evaluated the actual testing of equahty
of names 1s done by reference not by value As such condition statements, and
indeed match statements, are mainly of use when comparing channel names as

opposed to non-channel names

Choice start

The choice statement 1s a very useful and powerful statement It allows the
execution of a system to be affected by the occurrence, or non-occurrence, of
various input actions A choice statement consists of a number of input actions,
and each mnput action has an associated process mmvocation statement Once
one of these mnput actions occurs, and only one of them can ever occur, the
process invocation statement assoclated with the input action 1s performed
This triggers a whole new set of process mnstances to be started The possibly
complex task of implementing choice statements was greatly simplified as a
result of the manner 1n which w channels were implemented By using the
conditional read functionality of w channels and the existing functionality for
mvoking processes the implementation of mput guarded summations in w was

achieved

523 Computations

The ability to integrate strongly typed computations into an untyped commu-
nications framework 1s one of the main attractions of the @ 1mplementation
While these computations can be performed 1n one of two ways, inline or code-
blocks, the majority of the issues surrounding computations are common to

both
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The major 1ssue that anses from this mtegration 1s the typing problem,
the communications code 1s untyped - where everything 1s a name, and the
computational code, written in Java, which can contain any combination of
types from a very rich set of types This problem 1s overcome by using more
features of the Java problem language - class casts and the Serializable 1nterface

When a name 1s passed 1n a computation 1n w the Java code contained 1n
the computation can access the name as a Serwalizable object Also, regardless
of what the computation does, all names created in the communications code
are also Seralizable objects As the only other way to create a name 1s to create
a channel, and all channels are also Serializable This ensures that all objects
mn the commumnications code are only ever of one type - Serializable This allows
the strongly typed aspect of computations to be reconciled with the untyped
communications

This of course requires the Java code 1nside a computation to cast 1ts param-
eters into more varied types Achieving any task of worth in a Java program that
works solely with Serializable objects would be rather difficult On first glance
this may seern like a serous problem as the possibility for class cast exceptions
exists However on closer mnspection the risk 1s no greater than extracting and
using the various elements of a heterogeneous Java Vector - care must simply

be taken 1n wrniting and testing systems and processes

Names, distribution and consistency f

When a name 1s created, either by a sequential computation or by creating a
new channel, and communicated amongst various distributed processes the task
of ensuring the consistency of this name across these sites becomes a formidable
one A far simpler and neater solution to the problem of ensuring consistency
of names across remote sites 1s to mnsist that all names are immutable By doing
so the functionality to reflect changes in names made 1n one site on all other
sites 1s not required Now once a name 1s created 1t cannot be changed, 1t can
be “forgotten” and replaced but never changed

In order to enforce this policy of immutable names 1t 1s necessary to take a
snapshot of all names that a computation can access, for 1t 1s only 1n a com-
putation that the possibility of altering names arises, before the computation
15 performed, and restoring this snapshot after the computation has been com-
pleted, Fig 5 11 An additional beneficial consequence of this approach 1s that
no unexpected side effects can arise from the computation of calculatlonsJ
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Figure 5 11 Storing and restoring names

Failure and fault tolerance

A process m a w system can fail for a number of reasons, these include network
1ssues, 1/O problems, and exceptions and errors thrown from Java fragments
The result of a process falling 1s the same regardless of the reason for failure
- the process blocks More specifically the process in question terminates and
frees any resources that 1t may be using However the process 1s no longer 1n a
state to interact further with other processes in the system It 1s possible that
the lack of these further interactions will have no effect on the other processes
in the system, however 1t 1s more likely that the non-occurrence of channel
output/input as a result of the termination of the failed process will cause other
processes 1n the system to block, 1e to wait indefinitely on specific channel
actions These blocking processes will cause the system to halt No mechanism
for the notafication of such failures nor the recovery from such failures exists

524 The Environment

In order to allow the execution of w systems 1t i1s necessary to provide an
execution environment The w execution environment is responsible for the
mitial pre-execution setup of systems and for the post execution termination of
the various sites as well as enforcing the communications model These setup
and termination phases rely on the use of a hightweight centrahsed application,
the location of which 1s known to all top-level processes
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Setup

Before a w system can begin execution some setup 1s requred This setup
1s mainly concerned with the channels that are shared amongst the top-level
processes Since these top-level processes cannot receive references to the remote
objects that represent channels by parameter passing they must obtain these
references by the look-up method instead In order to look-up a reference 1t
1s necessary to know the site on which the remote object resides Once this
information 1s known the actual act of look-up is rather simple The nitial
setup phase of the execution of a w system deals with the distribution of this
information to the various concerned top-level processes However, before the
information about the actual physical location of channels can be dealt out the
responsibility for these channels must first be allocated Ths allocation 1s done
using a specific allocation algorithm which takes mto account a number of factors
before allocating responsibility for a channel These factors include whether
the process uses the channel, whether the process 1s replicated, and the existing
load on the site that hosts the process Preference 1s given to non-replicated
processes with mimimal loading of their sites that use the channel in question
Once all the setup information has been distributed the actual execution of the

system can begin

Termination

Termination 1n w 18 not so much concerned with the termination of individual
processes but rather with the complete termination of all execution on a specific
site Since a site may be responsible for channels that otheé processes are using
even though there are no more active processes on the site, 1t 15 necessary for
all sites to remain “up” until all the sites 1n a system are all inactive When
this happens all the sites that make up a system can “come down” There 1s,
however, one exception That 15 a site that plays host to a top-level process
that 1s replicated and not responsible for any channels that are shared at the
highest level may terminate once all processes executing on that site fimish
The migration of channels from site to site was briefly considered but was

dismissed as the cost of implementing this would far outweigh the value of 1t

Security

In the w-calculus the only method for communicating between processes 1s by
the use of channels It 1s therefore a necessity that in @ that the only way that
processes can communicate 1s also by the use of channels This commumcation
model needs to be enforced at a low level and 1s done so by implementing a

Java sccurity manager that momtors and regulates all network connections and
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commumnicates and ensures that nothing 1s done to breach the desired communi-
cations model The Security manager class has available to 1t the signatures of
all methods involved 1n any attempt to perform network I/0 and by examining
the collection of signatures involved 1n any attempt to perform network I/Q the
security manager class can prevent undesired network I/0

5.3 Language Implementation Decisions

As would be expected once the core language design decisions were made and the
design of the language 1mplementation started a number of decisions regarding
the language implementation were required to be made Wlile most of the
design decisions resulted 1n the features in question being incorporated into the
implementation some compromises were required to be made around a number
of 18sues

531 Channel migration and termination

As has been previously explained when a channel 1s created the Java RMI
remote object that represents the channel 1s hosted on the machine on which
the creating process resides A feature that was onginally desired for the w
implementation was the ability for channels to effectively migrate from one host
to another This would allow a ssmpler and more robust to the termination of a
site 1n a @ system As 1t stands all sites in a w system must signal their desire
to terminate before a single site can do so This 15 to ensure that channels that
1n use by processes on different sites are not affected by the termination of a
specific site If channels were able to migrate from one site this problem would
be avoided However due to implementation difficulties surrounding this feature
1t had to be descoped from the project

532 SyncServer

Presently there 1s a requirement for a central minm-server 1n each w system to
facihitate synchromsation at system imtiahisation and termination Currently
a ”syncserver” 1s required to aid 1n the communication of information related
to top-level channels amongst the various top-level process during imitialisation
and 1n establishing agreement as to when a system can terminate completely
While allowing the migration of channels as previously described would remove
the requirement for the SyncServer n system termination, in the present design
of the @ implementation there would still be a need for 1t 1n the imtiahsation
of w systems While no mechamsm which would avoid the requirement for a
SyncServer during system mnitialisation was 1dentified 1t would be desired 1if the
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need for this central server could be avoided, however 1t 1s distinctly possible
that this may not be feasible

533 Channels and Security

During the 1mitial design phase of the w language implementation the 1dea of
attempting to secure, using various cryptographic protocols, communications
occurring over channels arose However 1t was realised that a secure system,
one written using established security protocols, would be secure regardless of
the medium used to transmit information between elements of the system and
as such there was no real requirement to encrypt data transmitted on channels

mn w

534 Process migration

In the present w 1mplementation processes execute on the same hosts as the
processes that invoke them Some 1nvestigation nto balancing the execution
load of these processes amongst the various hosts that constitute a w system
was originally undertaken It was determined following this investigation that
the functionality required to facilitate this migration of processes would require
considerable effort and may 1n fact introduce some security related issues into
w systems As such the concept of process migration was removed from the
design of the w language implementation

54 1w and the classification criteria

As both the w language and 1ts implementation have now been presented 1t
1s now possible to examine the w language aganst the classification criteria
outlined 1n chapter three

541 Syntax and Semantics

It was desired that the syntax and semantics of the 7-calculus and that of w
would be similar While they are quite similar there are a number of divergences
between the two These differences, which have been previously discussed, do
not however make the syntax and semantics of both to be irreconcilable

542 Mobihty

The n-calculus concept of mobility allows processes 1n a system to dynamically
learn of new links between elements of that system at run-time This mechanism

18 present 1n w and central to the operation of w
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543 Synchronous vs asynchronous communications

Communications over channels can be performed 1n either a synchronous or
asynchronous fashion While the implementation of asynchronous channels
would have be sigmficantly simpler than implementing synchronous channels
the extra effort was deemed necessary and as such the @ channel implementa-

tion 1s synchronous 1n nature

544 Dastribution

@ supports distributed systems However the manner in which these systems
may be distributed 1s restricted As previously explained the decision as to the
distribution of a system must be made with respect to top-level processes and
cannot be made at a lower level While this should not negatively affect the

execution of w systems 1t does restrict how @ systems can be distributed

545 Sequential computations

w allows even the most complex sequential computation to be performed 1n 1t
via the use of fragments of the Java programming language Whle this achieves
the goal of providing a mechanism for performing sequential computations 1t 1s
not the most pleasing of solutions As described 1n the language design decisions
1t would be preferred if the same level of support for sequential computations
could provided but via a new notation more fitting to @

5.5 w and the classification categories

Given the classification categories laid out 1n chapter three and given the results
yielded when examining w against the classification criteria also laid out 1n
chapter three 1t becomes apparent that w does not fit mnto any of the three
categories previously 1dentified As such the classification categories presented
i chapter three must be extended to allow the categorisation of w

Category 4

A programming language belonging to category four 1s syntactically and
semantically similar to the w-calculus It provides a high level of sup-
port for the implementation of distributed systems and 1t also provides a
mechanism for performing complex sequential computations Communi-
cations over channels 1n a category four programming language occur 1n a

synchronous manner and also facilitate the w-calculus concept of mobility
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Chapter 6 ’

w examples

When previously examining the various aspects of the w language, they have
been examined 1n 1solation In order to obtain a true understanding of how
these various components of @ can be used together and how they interact with
one another 1t 1s necessary to observe larger, richer example systems !In the
following example systems the following aspects of w will be amongst those used
and examined

» Replicated top level processes

Use of sequential computations via code blocks

Use of sequential computations via inline code statements

Replicated mnvocation of standard processes

Invocation of standard processes

Channel operations - input and ocutput

e Summations - process choice

1A guide to compiling, debugging and deploying @ system 1s supplied in the appendices
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6.1 Example 1 - Certificate Authority

The goal of this w system (A full histing of code for this system 1s 1n appendix
B), 1s to provide an 1mplementation of a system that allows X509 certificates
to be requested by an arbitrary number of chents, and for these requests to be
fulfilled by the 1ssuing of certificates by a central static entity - a Certificate

Authority
Certificate
Authority
Certificate
request Ceruficate

Client 1

Certificate
Certificate
request

Client
N

Figure 6 1 Abstract behaviour of example System 1

This type of system lends itself to demonstrating various aspects of the w

language, in particular the replication of top-level processes, the replication of

standard processes, sequential computations and basic channel operations

The communications part of this system, the processes and their interactions,

1s rather simple and consists of only four processes, one of which 1s the System

process
1System Sys

2

3 Channel a

4

5 (CertAuth(a)['ChentCreateCert(a))
6}

7Process CertAuth(cert)

s {

] <getInfo>()(filename, passphrase )
10 <getIssuer>(filename, passphrase )(ca)
1 ('Issuer(cert,ca))

12}

13 Process Issuer{in, 1ssuer)

14 {

15 in(channel)

18 channel{certRequest )

17 <issueCert>(1ssuer, certRequest )(cert)
18 channel<cert>

19 0

20 }
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21
22
23
24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
41
42

43

44

45

Process ClientCreateCert(chan)

{

<loadCACert>()( cacert )
<createCertificateAndRequest >(){client ,req)

Channel tmp

chan<tmp>

tmp<req>

tmp(cert )
<storeClient>{cert,client,cacert)()
0

}

As would be expected the first step 1n both branches of execution are con-
cerned with set-up and 1mtialisation The CertAuth process uses two sequential
computations to load and configure the data that 1s required so that a reph-
cated process that will handle all the certificate requests can be mnvoked The
first of these sequential computations, mvoked from line 9, prompts a user to
enter the location of the encrypted data store that contains all relevant keys and
certificates required to operate the CertAuth, and 1t also prompts the user for
the passphrase that will allow the data store to be decrypted and its contents
used

Listing Code-block called from line 9
Code getInfo ()(fn,pp)

{
/&
LineNumberReader Inr =
new LineNumberReader(new InputStreamReader {System 1n)},
System out println(‘‘Enter the ca name’’'),
fn = Inr readLine (),
System out println (‘‘Enter the passphrase’’),
pp = Inr readLine(),
&/
}

Once these pieces of data have been obtained 1t 1s necessary to load and
decrypt the data store (Line 10) 1n order to create the entity required to actually
1ssue certificates The invoked sequential computation creates a simple CA
object and then uses this object to create the object which will be used to 1ssue
certificates This separation of CA and 1ssuer 1s present as while there will be
multiple 1nstances of 1ssuers, as the process that uses them 1s replicated, 1t 18
desired that there 1s only ever one actual CA This separation becomes more

relevant 1n systems which include functionality for certificate revocation

Listing Code-block called from line 10
Code getlIssuer(fn,pp)(i1ssuer)

{
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6 J&

47 CA theCA = new CA((String)fn,(String)pp),
48 Certlssuer ca = theCA createlssuer (),

49

s0 1Ssuer = ca,
51 &/
52}

Once this sequential computation has been completed the CertAuth pro-
cess starts a replication Issuer processes (line 11) It 1s instances of this Issuer
process that mteract with instances of the replicated chent process, ClientCre-
ateCert, 1n order to facihitate the actual requesting and 1ssuing of certificates

The operation and interaction of these two processes occurs as follows

The ChentCreateCert process loads the certificate belonging to the Certafi-
cate Authonty, which was distributed out-of-band, using a sequential compu-
tation (line 23) The sequential computation prompts the user for the location
of the CAs certificate which 1t then loads as a byte[] and pushes back up nto
the communications The certificate 1s loaded as a byte[] as opposed to a java
Certificate object because of the requirement that all objects pushed into the
communications code be serializable This 1s not checked at compile time but
would rather mamfest itself as a runtime error as there 1s no type checking of

this kind, 1 e what can be communicated on channels, at compile time

Listing Code-block called from line 23
s3Code loadCACert()(cert)
64 {
55 [&
56 String filename = Chient getCAFileName (),
s1 bytef] cert.bytes = Client loadCACert(filename),

58 cert = cert_bytes,
59 &/
60 }

Once the certificate belonging to the certificate authority has been loaded

the next step 1s for the client process to create the actual certificate request that
will be sent to the CA (line 24) >

Listing Code-block called from hine 24
61 Code createCertificateAndRequest (){client,req}
62 {
63 [&
64 Client ¢ = new Client (),
65 byte[] name = Client getName(),
66 String pwd = Chent getChallenge (),
67 byte[] tmp = ¢ generateCertificateRequest (name,pwd),
68
es client = c,
70 req = tmp,
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71

72

73
74
75
76
77
78
79
80
81
82
83
84

85

86

87

&/
}

In order to create the certificate request 1t 1s first necessary to get the fully
qualfied name of the intended subject of the certificate that 1s being requested
via a method in the Chent class (ine 65) Following this 1s 1t necessary to
obtain a challenge password A challenge password 1s used n the attributes of
the certificate request 1n order to supply user credentials with the request (line
66) Once this has been obtained from the user the Chent class 1s then again
used to both generate the certificate request and the associated RSA key-par
(hne 67) The functionality for this 1s supplied i a series of Java class files
that were specifically written for this example Following this the newly created
chent object and the certificate request are pushed back into the communications
code

The communications aspect of this code then creates and distributes a chan-
nel that will be used solely for this transaction (line 26) Once created and sent,
this channel 1s then used to send the certificate request created on hine 24 to the
certificate authority All that remains for the client to do 1s to read back the
1ssued certificate, 1f 1t was 1ssued (line 29) and to then store the certificate along
with the associated key-pair (line 30) The method that stores this information
has to obtain both the location 1n which to store 1t (line 82) and the passphrase
that will be used to protect the sensitive information (hine 83)

Listing Code-block called from line 30
Code storeChient(cert,client,cacert)()
{
/&
byte[] theCACert = (byte{]) cacert,
byte{] theCert = (byte{]) cert,
Chient ¢ = (Chlient)chient,

\

¢ setCertificate (theCert,theCACert),

String pp = Chient getPassPhrase (),

String fn = Chlient getFilename(),

¢ store(pp,fn),

&/
}

On the other side of the transaction the Issuer process reads (line 15) the
“session” channel that was sent by the ChentCreateCert on line 26 The Issuer
process then reads the certificate request (line 16) Once read this certificate

request 1s pushed mto a sequential computation (ine 17)

Listing Code-block called from line 17

Code 1ssueCert(1ssuer,request )(cert)

{
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84

J&
Certlssuer 1 = (Certlssuer)issuer,
byte[] req = {byte[]) request,

cert = 1 processCertificateRequest (req),

&/
}
After the certificate 1s created 1t 15 then sent back to the ChentCreateCert pro-
cess

The replicated nature of the ClientCreateCert process and the Issuer process

in this system allows this certificate request/issue cycle to occur as often as
required

6.2 Example 2 - Certificate Authority and Ser-

vice Provider

This example 2 builds upon the previous example by taking the certificate 1s-
suing infrastructure and using 1t to enable authentication and security in a dis-
tributed system This new system allows client processes to request the services
of a service provider 1n a secure and mutually authenticated manner

In this example system there are three main types of entity - the Certificate
Authority, the Service provider and the chient The certificate authority 1ssues
certificates both for the clients and for the Service provider It also facihitates
the distribution of the certificate associated with the Service provider The
Service provider nteracts with the Certaficate authority to obtain a certificate
and 1t then uses this certificate 1n a cryptographic protocol which provides the
mechanism for the required mutual authentication with clients and for the secure
exchange of a session key

The clhient aspect of the system 18 sphit into two parts One part requests
and obtains certificates from the certificate authority and the other part uses
this certificate in the protocol used to secure communications with the Service

provider

621 The processes

In order to reuse the processes from the previous examples only a minor change
was required to be made to the CertAuth process, and 1n order to accommodate
the new behavioural requirements of the system two new top-level processes and

some new top-level channels were required

2A full listing of code for this system 1s 1n appendix C
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Figure 6 2 Example 2

95 System Sys

96 { A\
97 Channel a,b,c,w

s8 (CertAuth(a,b,c)|'ClhientCreateCert(a)]|

99 ServiceProvider (b,w) [t ClientServiceRequest (c,w))
100 }

101

102 Process CertAuth(cert,spCert,spCertOut)

103 {

14 <getlnfo>()(filename, passphrase)

105 <createCA>(filename, passphrase )(ca)

106 <getlssuer>(ca){1)

107

108 ('Issuer(cert,1}|ServiceProviderIssuer (spCert,1,spCertOut))
109 }

110

111 Process ServiceProviderIssuer (in, 1ssuer,out)

12z {

ns n(channel)

114 channel(certRequest )

115 <1ssueCert>{1ssuer,certRequest )(cert)

11e  channel<cert >

n7  (!DistributeCert (out,cert))

1s}

119 -

120 Process ChientServiceRequest (cert, work)

1214

122 <loadCACert>()(cacert )

123 <loadSelf>(cacert)(self)

124

1258 cert (spCert)

126

127 <verifyCertlssuer>(cacert,spCert )()

128

120 <createClientRequest >(spCert,self)(packetl, randA)
130

13t Channel chan
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132 work<chan>

133

13¢ <getOwnCert>(self )(ownCert )

135 chan<ownCert >

136 chan<packetl >

137

138 chan(packet2)

139 <processServiceResponse>(packet2 ,spCert,self,randA){packetd)
140 chan<packet3 >

141

192 chan(encKey)

143 chan(servicel)

144 chan(service2)

145

1ue  <extractKey >(spCert ,encKey, self)(key)

147

148 <whichService >(servicel,service2)(service)
149

150  Channel chan

151 service<chan>

152 chan(resp)

153

166 </&System out println({String)resp),&/>(resp)()
155 0

156 }

157

158 Process ServiceProvider (chan, work)

159 {

160 <loadCACert>(){ cacert)

161

162 <createCertificateAndRequestSP>(cacert ){sp,req)
163

164  Channel tmp

186 chan<tmp>

166

167 tmp<req>

168

169 tmp(cert)

170

11 <setCertificate >(cert,sp,cacert)(newSP)

172 (' Servicer (work,newSP))

173 }

174

175 Process Servicer {work, self)

176 {

177 work(channel)

178 channel(chientCert)

179 channel (pacl)

180

181 <processClientRequest>(clientCert pacl self)(randA)
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182
183
184
185
186
187
188
189
190
191
192
183

194

<createServiceResponse>(chentCert,self ,randA)(pac2,randB)
channel<pac2>

channel(res)
<processClientResponse>(clientCert,self,res, randB)(encKey, key)
channel<encKey>

Channel servicel,service2
channel<servicel >
channel<service2>

+(servicel (a)(Servicel(a)))+(service2(b)(Service2(b)))
}

Now 1nstead of starting only a replicated Issuer process the CertAuth pro-
cess also starts an mnstance of a ServiceProwiderIssuer (lne 108) This Seruvice-
Prownderlssuer process‘ (line 111) 1s 1dentical to the Issuer process that has been
documented m the previous example with the exception the process invocation
statement that appears at the end of 1t (lne 117) Instead of merely receiving
the certificate request from a Service Provider and sending the 1ssued certificate
back to 1t, this process now invokes a replicated process (line 120) whose sole
function 1s to output the certificate that was 1ssued to the Service provider on
a channel that 1s known by all entities 1n the system This mechanism uses
lazy evaluation to fill the channel with an infimte number of certificates This
distribution of the Service providers certificate 1s required for the successful ex-
ecution of the cryptographic protocol that will be used between the client that
1s requesting services and the service provider that 1s providing them

As the procedure for the requesting and 1ssuing of certificates has previously
been explained the remaining 1tem of interest 1n this example 1s the interaction
between the Service provider and the Chent process that requests 1ts services

The first task for a ServicePrownider to complete 1s the requesting and obtain-
ing of a certificate from the certificate authority This 1s done 1n a very sumilar
manner as the requesting of a chents certificate, lines 160 to 171 Once the cer-
tificate has been requested and obtained the actual interactions between service

provider and client begin via the replicated 1nvocation of a Servicer process on
line 172

6 22 The protocol

The authentication protocol that 1s used 1n this example 1s a well documented
(Schneier 1996) three-way protocol that makes extensive use of the X509 cer-
tificates previously 1ssued

In the following protocol 3

3In this verston of the protocol the need for timestamps has been ehminated and as such
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R; indicates the random number generated by =

T, indicates the time stamp generated by z

Ix mdicates the identity of X

C, indicates the X509 certificate belonging to

D,(N) 1s the result of encrypting N with the private key belonging to z

E;(N) 1s the result of encrypting N with the public key belonging to
Before this protocol can be used the certificate of the service provider must

be distributed to all entities that wish to communicate with 1t, this 1s done
by means of the replicated process that 1s invoked 1n the ServiceProwiderlssuer
process

Step 1

The chent(CSR) generates a random number, a time stamp and some
random data This random data is encrypted using the public key of the
service provider(SP) which 15 extracted from the distributed certificate
Once this 15 done the random number, the time stamp, the 1dentity of
the service provider, and the encrypted data are all encrypted using the
private key of the chient, this effectively signs the entire block of data In
the system this 1s done 1n one sequential computation called from line 129
Once this 18 created the certificate of the chient and the encrypted/signed
data 1s sent to the service provider, line 136

Chent — Service provider, Ccsr, Dosr(M), where
M= (Tcsr;Rcsra ISP; ESP(d))

Step 2

When the service provider receives the encrypted block of data from the
client along with 1ts certificate the first thing the service provider must
do 1s to verify the certificate was 1ssued by the correct CA Once this test
occurs the service provider then decrypts the data using the public key
extracted from the certificate belonging to the client Following this the
service provider must check that the value Isp 1s 1n fact 1ts own 1dentity,
and that the data Egsp(d) can be decrypted using 1ts own private key If
these tests are successful the Service provider generates a random number
and time stamp of 1ts own and uses these to construct a message that
consists of 1ts time stamp, 1ts random number, the 1dentity of the clent,
the random number of the client and some random data encrypted with the
public key of the chient This message 1s then encrypted with the private
key of the service provider and sent back to the chent, line 183 Ths

all timestamps are 0
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processing of the received data and the creation of the data packet that

15 to be returned to the clhient takes place 1n two sequential computations,
lines 181 and 182

Service Provider — Chent, Dsp(M'), where
M' = (Tsp,Rsp,Icsr, Rosr, Ecsr(d))

Step 3

The client, on receipt of the encrypted data, line 138, decrypts the message
and verifies the value of Icsr and Resp and also that 1t can decrypt
Ecsr(d) If these tests are successful then the chent encrypts the random
number Rgp with 1ts private key, and returns 1t to the service provider,
line 140 The processing of the data received from the service provider
and the creation of the packet that will be returned to 1t occurs on line
139

Chent —» Service provider, Desgp(Rsp)

Step 4

Finally the service provider decrypts the data and verifies the value of
Rsp, ine 186 After this stage mutual authentication has occurred

Following the occurrence of the authentication protocol the service provider
creates a session key, also 1n the sequential computation 1nvoked from line 186
In the same sequential computation the session key 1s encrypted with the public
key of the chient and signed with the private key of the service provider This
encrypted and signed key 1s then sent to the chent process along with two newly
created channels

6 23 The service request

Once the client receives the encrypted session key, 1t decrypts and verifies 1t to
yield a usable session key (ine 146) The chent process has also received two
channels from the service provider - each channel representing a service that
the service provider provides The client prompts the user as to which service
1t wishes to avail of, line 148 The selection of the user dictates which channel
1s used, that therefore which service 1s requested Once the service 1s requested,
this 1s done by sending a channel over the relevant channel, the client process
waits for a response from the service, hne 152, and then prints the response to
the screen For the purposes of this example the services that were requested
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were kept to therr most absolute simplest - 1e simple strings are returned for
each request

The interesting aspect of a service request takes place on the service providers
part of the interaction On hne 193 the service provider makes use of a summa-
tion statement - 1n a summation the course of execution of the system depends
entirely on which mput action in the statement occurs The guards in this sum-
mation are mput actions involving the two channels that were sent to the chent
process The client process responds on one of these channels depending on
which service 1t wishes to request As such the process that the service provider
mnvokes depends which channel action occurs Should the client respond on the
channel associated with service one then the service provider starts the process
that represents service one, ikewise for service two

The rephcated nature of the ServiceProuider process and the ChentSer-
viceRequest process 1n this system allows this service requesting/granting cycle

to occur as often as required
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6 3 Developing w systems

In the above examples the following steps to developing the systems were fol-

lowed

1

A 7-calculus specification for the system was wntten Ths specification
captured all the processes that would make up the system and the inter-

actions over channels that would occur between them

A detailed description of each process that would be part of the system
was made This description outlined the sequential computations that
would be required te be processed so that the relevant information would
be available to send on channels An input/output contract was developed
for each sequential computation, 1e given input information of a various
format the sequential computation would guarantee output of a particular

format

The various sequential computations were sorted into logical groupings
and Java classes were created for each grouping The bulk of the processing
that makes up the sequential computations was placed into these classes to
mimimise the complexity of the statements 1n the w processes themselves

Once written the Java classes were umt tested to ensure that they met
the input/output contract previously arrived at for them

A stripped down version of the w system was written This stripped down
version only contained communications code Following the implementa-
tion of this version of the system the w code for it would be manually
compared to the pi-calculus specification to informally ensure that the
specification and implementation matched Ideally a formal process for
the verification of implementation against specification would have been
performed at this stage However the development of such a process fell
outside the scope of this project and could therefore not be performed

The various sequential computation 1nvocations required were added to
the communications code These invocations were added at the points
identified 1n the process analysis phase

The entire w system would then be compiled Following the successful
compilation of the @ system, 1t would then be deployed to a test environ-
ment and executed to ensure that the system behaved as expected
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631 Reuse n @ systems

Once a w system has been written aspects of it can be reused If 1dentical
functional requirements are made of processes m two separate systems then the
same process can be used in both systems The process in question 1s siumply
written in a separate file and included 1n the compilation of both systems ¢
Likewise 1f 1dentical requirements are made of sequential computations these
can be expressed as CodeBlocks and these can then be included in multiple @

systems

4The compilation of w systems is detailed 1n the appendices
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6.4 Conclusions

In the previous examples the majority of the functionality of the w programming
language have been used and demonstrated and the process for writing systems

using the w programming language has also been covered
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Chapter 7

Conclusions

The goal of this research was to develop a programming language that was based
on the 7-calculus The nature of this programming language was intended to
allow 1t to be used as a general purpose programming language although 1ts
primary use was to be in the implementation of large scale distributed systems

A number of objectives had to be completed 1in order to develop such a
programming language The first was that a syntax and semantics that were
similar to those of the m-calculus had to be devised The next objective, which
was achieved 1n tandem with the first, was that a mechamsm for performing
complex sequential computations had to be integrated into the syntax and se-
mantics of the programming language 1n such a manner as to allow the syntax
and semantics of the programming language to still be reconcilable with those
of the 7-calculus

Another objective was that systems written in this programming language
should be capable of being distributed with the mimmum amount of effort and
the maximum amount of transparency to the developer as possible This re-
quired the provision of mechamsms to enable distribution of systems at the
lowest levels of the programming language By providing a high level of support
and by doing 1t at a low level this objective was achieved

Following 1nvestigation into the w-calculus and existing 1mplementations
based on 1t a set of additional desired qualities for the new language were de-
vised These additional properties became objectives 1n theirr own right that
had to be satisfied by the language

The final, and arguable the most important, object was that the language
devised should be simple to use and easy to understand This last objective had
consequences for all aspects of the programming language, ranging from having
to have a clear and concise syntax and semantics to ensuring that the compiler
was easy to use and that the deployment process for systems written in this
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language was simple to follow

Overall 1t 15 felt that these objectives were achieved and that a usable, com-
putationally powerfully programming language that 1s capable of supporting
large scale distributed systems was produced, and that this programming lan-
guage was based on the n-calculus

7.1 Further work

While all the desired properties were incorporated into the language and while
all the objectives, major and miuor, of the language were completed 1t 15 felt
that certain areas of the language could be expanded upon 1n further work

711 Sequential Computation notation

It could be desirable to extend the syntax and semantics of @ to include a nota-
tion that could be used 1n performing sequential computations in @ This could
be beneficial as 1t may result in a ssmpler, and more controllable, mechanism
for performing sequential computations and could also make the integration of
the separate communications and computation aspects of & cleaner and more
elegant

712 Compiler support

As 1t stands compilation, debugging and deployment of w systems must be done
via the command line The integration of the w language into & development en-
vironment would increase the ease with which the coding, compiling, debugging
and deployment of w could be achieved The development of such an environ-
ment, or the development of a series of plug-ins for an existing environment,
would be a significant addition to w
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Appendix A

Building and using w

A.1 Bulding the w compiler and libraries

The source for the w distribution 1s divided 1nto three categories - the javacc
code for the compiler, the Java code used by this compiler and the Java code
which makes up the libraries that are used during run time To buld the entire
w distribution all three categories of code must be built i different ways and
the generated output files must then be bundled up into a jar file which will be
the @ distribution !

To build the compiler and libraries the following steps can be followed or the
included makefile can be used

1 Compile the java code used by the compiler (this and all other compilation
steps should be performed from the root of the source directory)

(a) javac varpi/helpers/* java
2 Compile the runtime lhibraries

(a) javac varpi/imp/classServer/* java

(

)
b) javac varpi/imp/* java
(¢) rmic varpr imp 1Channel
)

(d) rmic varpr imp 1Task
3 Compile the compiler

(a) mkdir varpi/parser

In order to build the w distribution JDK1 4 x and Javacc 2 1 must be 1nstalled on the
system

104



(b) javacc parser j)

(c) javac varpi/parser/* java
4 Prepare the jar file

(a) jar cvf varp: jar varpi/imp/* class varpi/imp/classServer/* class varpi/helpers/* class
varpi/parser/* class
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A.2 Using the w compiler/Building a @ system

1 (Optional) If an java classes have been wnitten that will be used by the @
system being built then these classes must first be compiled

2 The varp: source files must be compiled In order to do this the names of
these files are suppled to the @ compiler The only restriction place on
the order in which these filenames are passed to the compiler 1s that the
first file name must be that of the file that contains the w System process

The usage of the w compiler 1s

Java -cp <varpi jar location> varp: parser Parser -sync <sname> -debug
<filenames>

where

s <warp: jor location> 1s the location of the jar file built that represents
the w distribution

o <smame> 15 what the syncServer for the generated system should be
called

e <filenames> are the filenames of all the w source files

When using the w compiler the -debug switch 1s optional and 1ts use sumply
results 1n additional debug information being generated and included m
the system which will be displayed at runtime

3 The successful compilation of a w system results in the g\e\:neratlon of a
number of java classes The final compulsory step i the compilation of a
w system 1nvolves the compilation of these generated java files In order
for this compilation to success the jar file built for the w distribution and
any external java classes required must be included in the classpath The
compulation 1s performed by typing javac * java from the directory from

the working directory

4 (Optional) If desired the class files resulting from the compilation of the
generated java files can be packaged into a jar file for ease of distribution
This step 1s recommended
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A.3 Running a w system

1 Dastribute required files

In order to run the w system on numerous distributed hosts 1t 1s necessary
for the Iibraries for both the @ distribution and for the system in question
to be present on each of the machines that will form part of the system
This distribution 1s done ”out of band”

2 Rmiregistry

As the @ distribution makes use of Java RMI remote objects 1t 1s required
that an instance of the rmiregistry is running on each host machine Ad-
ditionally the location of the jar file for the @ distribution must be in the
classpath for the rmiregistry

3 SyncServer running

Each w system requires a w syncServer to be runmng The compiler
of a w system results in the generation of a tailored syncServer This
generated syncServer has the sname name as that which 1s supphed to the
w compiled via the -syncServer switch The invocation of a syncServer
1s a sumple process as syncServer only requires a single argument - the

number of a free port on the host machine
Usage java -cp <location of w jar> <syncServer name> <port>
where
o <location of w jar> 1s the location of the jar file for the w distribu-
tion
e <syncServer> 1s the name of the syncServer class
e <port> 18 the number of a free port on the host machine It 1s also
required that the port immediately above this port 1s also free
4 Top level processes started

A w system, when compiled, will generated a number of java classes which
contain a public stat void mam method One such class 1s generated for
each top level process in the system These generated executable classes
are named the same as the top level processes but with the word ”Starter”
attached to the end of the name

In order for the execution of a @ system to commence each top level
process, bar replicated top-level processes, must first be started The
manner of doing so 1s 1dentical for each top level process

107



java -cp <classpath> <tlpSterter> <port> <jar> <ssip> <ssport> <local
p >

where
e <classpath> 15 the classpath required to run the program, 1t must

include the location of the w distmbution jar, the jar file for this

system, and any external java classes required

o <tlpStarter> 1s the name of the executable class file to run (top level
process name plus the string ”Starter”

s <port>1s the number of a free port on the host machine
e <jar> 1s the location of the w distribution jar file
® <sswp> 18 the 1p address of the sync server

e <ssport> 15 the number of the port on which the syncServer 1s lis-

tening

e <local 1p > 15 the local 1p address

By starting the rmiregistry and each of the top-level processes as detailed
above the execution of the w system in question should begin Termunation of
the system 1s handled automatically by the system
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Appendix B

Example 1 code

B.1 w@ code
1{

2 pki =,

3 Java security cert =,
4 Java security x,

5 Javax crypto spec *,
6 Javax crypto =,

9System Sys
10{
11 Channel a

12

13 (CertAuth(a)|'ChentCreateCert(a})
14}

15

16 Process CertAuth{cert)

17 {

18 <getInfo>()(filename, passphrase)
19 <getlssuer>(filename,passphrase )(1)
20

21 ('Issuer(cert,1))

22}

23

24 Process Issuer{(in, 1ssuer)

25 {

26 1n(channel)

27 channel(certRequest )

28 <issueCert>(1ssuer,certRequest )(cert)
20 channel<cert>

so O

a1}

32
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33Code 1ssueCert(1ssuer ,request)(cert)

34 {
s [&
e Certlssuer 1 = (Certlssuer)issuer,

s7 byte[] req = (byte[]) request,

38
39 cert = 1 processCertificateRequest (req),
w0 &/

ar}

42

43Code getlssuer(fn,pp)(1ssuer)

aa {

s [&

46 CA theCA = new CA(({String)fn,(String)pp),
a7 Certlssuer 1 = theCA createlssuer (),

8
49 1ssuer = 1,

50 &/

51}

52

s3Code getInfo ()(fn,pp)

54 {

55 [&

56 try

57 {

58 LineNumberReader Inr =

59 new LineNumberReader(new InputStreamReader (System in)),
60 System out println(” Enter the ca name”),

81 fn = Inr readLine(),

62 System out println(” Enter the passphrase”),
63 pp = Inr readLine (),

64}

65 catch (Exception e)

66

67 e printStackTrace (),

68 }

69 &/

70}

71

72

713 Process ClientCreateCert(chan)

74 {

75 <loadCACert>()(cacert)

76 <createCertificateAndRequest >(}(client  req)
77

78  Channel tmp

79 chan<tmp>

80

81 tmp<req>

82
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s3 tmp(cert)

s5 <storeClient>(cert,client, cacert)()

ss 0

87}

88

89 Code loadCACert(}(cert)

00 {

91 [&

92 String filename = Chient getCAFileName (),

93 byte[] cert_bytes = Chent loadCACert{filename),
94 cert = cert_bytes,

95 &/

96 }

97

98

99 Code createCertificateAndRequest ()(client,req)
100 {

w01 f&

102 Chent ¢ = new Chient (),

103 byte[] name = Chient getName(},

104

105 byte[] tmp = ¢ generateCertificateRequest (name),
106

107 chent = ¢,

108 req = tmp,

100 &/

110}

111

1n2Code storeChient(cert,client,cacert)()

113 {

s [&
115 byte[] theCACert = (byte[}) cacert,
116

117 byte[] theCert = (byte[]) cert,

118  Client ¢ = (Chient)client,

119

120 ¢ setCertificate(theCert,theCACert),
121

122 String pp = Chient getPassPhrase(),
122 String fn = Chent getFilename(),
124

125 ¢ store{pp,fn),

126 &/

127 }
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B 2 Java code

B21 CA java

1package pkr,

2

s1mport pki x,

4

simport java securilty cert x*,
s1mport java security =x,

7import jJavax crypto spec x,
s1mport javax crypto x,

simport java 10 *,

wimport 1a1k pkcs pkesl0 CertificateRequest
1mmimport 1a1k asnl structures =,
12z1mport 1a1k asnl *,

13

1a1mport java util *,

1simport java math #*,

16

17

1spublic class CA 1mplements Serializable
18 {

20 private KeyPair m.keys,

21 private Xb09Certificate m_cert,
22 private String m_filename,

23

24 public CA(String filename,String pp)

25 {

26 m_filename = filename,

27 loadlnfo(pp),

28}

29

3o public PublicKey getPublic ()
a1 {

32 return m_keys getPublic (),
33}

34

35 public X509Certificate getCert ()
36 {

37 return me.cert,

38}

39

40 public void loadInfo(String pp)

a1 {

42 try

43 {

44 FilelnputStream fis =

45 new FilelnputStream (m_filename + ” 1nfo”),
46

a7 int b= fi1s read (),
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48
49
50
51
52
53
54
55
56
57
58
59
60
81
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79

83
84
85
88
87
88
B89
90
91
92
23
94
85
96

07

public static void generateAndStore(String passphrase, String filename)

{

ByteArrayOutputStream baos = new ByteArrayOutputStream (),

while( b '= -1)
{
baos write(b},
b= fi1s read (),

}
/ /DECRYPT

byte[] 1v.bytes = ”this 1s the 1v” getBytes (),
pp getBytes(), 0, 8, "DES”),

SecretKeySpec sks = new SecretKeySpec(

IvParameterSpec ap

Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding” ),
SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),

= new IvParameterSpec(i1v_bytes, 0, 8 },

¢ 1n1t (Cipher DECRYPTMODE, sks, ap, sr),

byte[] final_bytes

ByteArraylnputStrea
ObjectInputStream

m.keys (KeyPair)

m.cert

}

catch (Exception e)

{

= ¢ doFinal(baos to

m bais = new ByteArraylnputStream(final_bytes),
o1s = new ObjectInputStream(bais),

o1s readObject (),

e printStackTrace (),

}

try

{

String seed = new
seed += System cu

SecureRandom sec.random = new SecureRandom(seed getBytes()),

KeyPairGenerator k
key-gen 1nitiahize
KeyPair key.pair =

Name n = new Name(
n addRDN(ObjectID
n addRDN(ObjectID
n addRDN{ ObjectID
n addRDN( ObjectID

String (),
rrentTimeMilhs (),

ey_gen = KeyPairGenerator getlnstance{”RSA”),

(512, sec_random},

ByteArray ()),

{X509Certificate)ors readObject (),

key_gen generateKeyPair (),

)

country, "IE”),
locality, "DUBLIN”),

organization ,”DCU"),

orgamizationalUnit

113
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98

99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

129
130
131
132
133
134
135
136
187
138
139
140
141
142
143
144
145
146

147

}

n addRDN(ObjectID commonName ,” CA”),

1a1k x509 X509Certificate cert = new 1aik x509 X509Certificate(),
cert setlssuerDN(n}),

cert setSubjectDN(n),

cert setPublicKey(key_pair getPublic()),

cert setSerialNumber(new Biglnteger (?000000000001™)),
GregorianCalendar date = (GregorianCalendar)Calendar getlnstance (),

date add(Calendar MONIH, -1),

cert setValidNotBefore(date getTime()),

date add(Calendar MONIH, 5),

cert setValidNotAfter(date getTime()),

cert sign (AlgorithmID shalWithRSAEncryption, key._pair getPrivate ()),

ByteArrayOutputStream baos = new ByteArrayOutputStream (),
ObjectOutputStream oos = new ObjectOutputStream{baos),

oos writeObject{key.pair),

oos writeObject{cert),

System out println{cert getClass () getName()),
oos close (),

byte[] 1v_-bytes = *this 1s the 1v? getBytes (),
SecretKeySpec sks = new SecretKeySpec(passphrase getBytes(), 0, 8, "DES”),
IvParameterSpec ap = new IvParameterSpec{(iv_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),
¢ 11t (Cipher ENCRYPTMODE, sks, ap, sr),

byte[] final_-bytes = ¢ doFinal(baos toByteArray ()),

FileOutputStream fos = new FileOutputStream(filename + ” 1nfo” ),
fos write(final_bytes),

fos close (),

fos = new FileQutputStream(filename + ” crt”),
fos write(cert toByteArray()),
fos close (),

File f = new File(filename + ” crl”},
f createNewFile (),

catch ( Exception e)

{

e printStackTrace (),
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148
149 public static void printCAlnfo(String passphrase, String filename)

wo

151 try

152 {

153 FileInputStream fis = new FileInputStream(filename + ” 1nfo”),
154

155 it b = fis read (),

166

157 ByteArrayOutputStream baos = new ByteArrayOutputStream (),
158

159 while( b '= —1)

160 {

161 baos write(b),

162 b= fis read (),

163 }

164 / /DECRYPT

165 byte[] 1v_bytes = "this 1s the 1v” getBytes(),

166 SecretKeySpec sks = new SecretKeySpec(passphrase getBytes(), 0, 8, "DES”"),
167 IvParameterSpec ap = new IvParameterSpec(1v_bytes, 0, 8 ),
168

169 Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),

170 SecureRandom sr = new SecureRandom(® This 1s a very bad seed” getBytes()),
1m ¢ 1mt (Cipher DECRYPTMODE, sks, ap, sr),

172

173 byte[] final_bytes = ¢ doFinal(baos toByteArray()),

174

175 ByteArraylnputStream bais = new ByteArrayInputStream{final_bytes},
176 ObjectInputStream o1s = new ObjectInputStream(bais),

177

178 KeyPair kp = (KeyPair)ois readObject (),

179 Object cert = o1s readObject (),

180 System out println(cert getClass () getName()),

181

182 System out println(’ 7,

183 System out println(cert),

184 System out println(® ),

185 }

186 catch(Exception e)

187 {

188 e printStackTrace ()},

189 }

190}

191

192 public Certlssuer createlssuer ()

193 {

194 return new Certlssuer(m_keys, m_cert),
196}

106

197 public static void mamn(String args|[])
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w8 |

199 CA generateAndStore (args [0], args{1l]),
200 CA printCAlnfo(args[0], args{l]),
200}

202 }
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. B 22 Certlssuer java
1
2package pki,
3
simport pki *,
5
simport jJjava security x*,
7import Javax crypto spec x*,
simport javax crypto x,
si1mport jJava 10 *,
wimport 1a1k pkes pkesl0 CertificateRequest,
1mimport 1atk asnl structures x, /
121mport taik asnl x,
131mport Java security cert *,
14
1s1mport java util x,
1s1mport java math =,
17
1spublic class Certlssuer 1mplements Serializable
19 {
20 private KeyPair m_keys,
21 private X509Certificate m_cert,
22

23 public Certlssuer(KeyPair keys, X509Certificate cert)

2¢ |

25 m.keys = keys,

26 m.cert = cert,

21}

28 !
20 public PubhcKey getPublic ()

a0 {

3 return m._keys getPublic (),
32}

33

34 public X509Certificate getCert ()
35 {

36 return me.cert,

sv }

38

3s public byte[] processCertificateRequest (byte[] request)

w0 { ‘

41 try

42 {

43 CertificateRequest cert_-request = new CertificateRequest (request},
44

15 Name subject = cert_request getSubject ()},

16 PublicKey pk = cert.request getPublicKey (),

47 N

18 String 1 = new String ()},

40 I += System currentTimeMilhis (),
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50
61
52
53
54
55
56
87
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72

73

75
76

77

79

80}

}

SecureRandom sr = new SecureRandom(I getBytes()),
String serial = new String (),
seri1al += sr nextLong(),

1ark x509 X509Certificate t_cert

= new 1a1k x509 X509Certificate(m.cert getEncoded ()),
1a1k asnl structures Name 1ssuer

= (1a1k asnl structures Name)t.cert getSubjectDN (),

1ark x509 X509Certificate cert = new 1ark x509 X509Certificate(),

cert setIssuerDN(1ssuer),

cert setSubjectDN(subject),

cert setPublicKey(pk),

cert setSermalNumber(new Biglnteger(serial}),

GregorianCalendar date = (GregorianCalendar)Calendar getlnstance(),

date add{Calendar MONIH, —1),
cert setValidNotBefore(date getTime()),
date add{Calendar MONTH, 5},
cert setValidNotAfter(date getTime()),

cert sign{AlgorithmID shalWithRSAEncryption, m_keys getPrivate ()},

return cert toByteArray (),

catch (Exception e)

{
}

e printStackTrace (),

return null,
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B 23 Clent java

1package pki,

2

simport pki *,

4

simport java security x,
simport javax crypto spec *,
71mport javax crypto x,
simport java 10 *,

ermport 1ar1k pkcs pkcsl0 CertificateRequest
101mport 1airk asnl structures *,
nimport 1a1k asnl =*,

1z1mport java security cert x,
13

14public class Client implements Serializable

15 {

16 private KeyPair m_keys = null,

17 private X509Certificate m-cert = null,
18 private X509Certificate ca_cert = null,

20 public Client ()

2zt o

22 //Case 1
23}

24

25 public Client(String passphrase, String filename, String cafilename)

26 |

27 try

28 {

20 FileInputSiream fis = new FilelnputStream{filename + ” crt”),
30 ByteArrayOutputStream bt = new ByteArrayOutputStream (),
31

32 int b = fis read (),

33

34 while ( b '= —1)

35 {

38 bt wnte(b),(

37 b = fis read (),

38 }

39

0 fis close(),

a1 bt close (),

42

43 byte[] cert.bytes = bt toByteArray (),

44 fis = new FilelnputStream(cafilename +” crt”),
45 bt = new ByteArrayOutputStream (),

46

a7 b = fis read (),

48

49 while ( b '= —-1)
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&0
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
e8
2]
70
71
72
73
74

75

77
78
79
BO
81
82
83
84
85
BB
87
88
89
20
91
92
93
94
85

96

08

99

bt write(b),
b = fis read (),

} -

fis close (),
bt close (),

byte [] cacert_bytes = bt toByteArray (),
fis = new FilelnputStream(filename + ” key”),
bt = new ByteArrayOutputStream (),

b = fis read (),

while( b '= ~1)
{
bt write{b),
b = fis read (),

}

byte{] 1v_bytes = "this 1s the 1v” getBytes (),
SecretKeySpec sks = new SecretKeySpec(passphrase getBytes(), 0, 8, "DES”),
IvParameterSpec ap = new IvParameterSpec(1v_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),
¢ 1n1t (Cipher DECRYPTMODE, sks, ap, sr),

byte[] final_-bytes = ¢ doFinal(bt toByteArray ()),

ByteArraylnputStream bais = new ByteArrayInputStream(final_bytes),
ObjectInputStream o1s = new ObjectInputStream(bais),

KeyPair kp = (KeyPair)ois readObject (),

CertificateFactory cf = CertificateFactory getInstance(”X509”),
ByteArraylnputStream cbais = new ByteArraylnputStream (cert_bytes),
X509Certificate cert = (X509Certificate)cf generateCertificate(cbais),

cbals = new ByteArraylnputStream (cacert_bytes},
X509Certificate cacert = (X509Certificate)cf generateCertificate(cbais),

cert verify(cacert getPublicKey ()),

m.cert = cert,
m_keys = kp,
ca.cert = cacert,
}
catch (Exception e)
{

e printStackTrace (),
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w1}
102

103 public Client(byte[] certBytes, byte[] keypair, String passphrase)

e {

105 try

106 {

107 byte[] 1v_bytes = "this 1s the 1v” getBytes (),

108 SecretKeySpec sks = new SecretKeySpec(passphrase getBytes(), 0, 8, "DES”),
109 IvParameterSpec ap = new IvParameterSpec(iv_bytes, 0, 8 )},

110

11 Cipher ¢ = Cipher getInstance(” DES/CBC/PKCS5Padding”),

112 SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),
13 ¢ 1n1t {Cipher DECRYPTMODE, sks, ap, sr),

114

15 byte[] final_bytes = ¢ doFinal(keypair),

1186

17 ByteArrayInputStream bais = new ByteArraylnputStream (final_bytes),

18 ObjectInputStream o1s = new ObjectInputStream( bais ),

119

120 KeyPair kp = (KeyPair}o1s readObject(),

121 CertificateFactory cf = CertificateFactory getInstance(” X509"),

122 ByteArraylnputStream cbais = new ByteArrayIlnputStream (certBytes),

123 X509Certificate cert = (X509Certificate)cf generateCertificate(cbais),
124

125 m_cert = cert,

126 m_keys = kp,

127 }

128 catch (Exception e)

120 {

130 e printStackTrace (),

131 }

132}

133

134 public KeyPair generateKeyPair(int len)

135 {

136 try

137 {

138 String seed = new String (),

139 seed += System currentTimeMillis (),

140 SecureRandom sec.random = new SecureRandom(seed getBytes({)),
141

142 KeyPairGenerator key_gen = KeyPairGenerator getInstance("RSA”),
143 key-gen 1nitialize (len, sec.random),

144 m_keys = key.gen generateKeyPair(),

145

146 }

147 catch (Exception e)

148 {

149 e printStackTrace ()
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150
151
152
153
154
155
166
157
158
159
160
161
162
163
164

165

173
174
175
176
177
178
179
180
181
182
183

184

190
191
192
193
104
195
196
197

198

return m_keys,

public byte[] generateCertificateRequest (byte[] name)

{

try

{

}

1f{m_keys == null)
{

generateKeyPair(512),

}

Name n = new Name(name}),

CertificateRequest ¢ = new CertificateRequest (m_keys getPublic(),n),
¢ sign (AlgonthmID shalWithRSAEncryption, m_keys getPrivate ()),
byte [] bytes = ¢ toByteArray (),

return bytes,

catch (Exception e)

{

e printStackTrace (),
return null,

public void setCertificate(byte{] ¢, byte[] ca)

{

public void setCertificate(X509Certificate ¢, X509Certificate ca) throws Exception

{

try

{

}

CertificateFactory cf = CertificateFactory getinstance(”X509"),
ByteArraylnputStream bais = new ByteArraylnputStream(c),
X509Certificate cert = (X509Certificate)cf generateCertificate (bais),

bais = new ByteArraylnputStream (ca),

X509Certificate cacert = ( X509Certificate)cf generateCertificate(bais),

setCertificate (cert,cacert),

catch (Exception e)

{

C

e printStackTrace (),

verify (ca getPublicKey ()), -
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200
201
202
203
204
205
2086
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
2383
234
2356
236
237
238
239
240
241
242
243
244
2456
248
247
248

249

1f( ¢ getPublicKey () equals(m_keys getPublic()))
{
m_cert = c,
}
else
{

throw new Exception(”Invalid cert”),

}

\

public void store(String passphrase, String prefix)

{

try

{

i1f (m_keys '= null)

{

}

ByteArrayOutputStream baos = new ByteArrayOutputStream (),
ObjectOutputStream oos = new ObjectOutputStream (baos),

oos writeObject(m_keys}),
oos close ()},

SecretKeySpec new.sks = new SecretKeySpec( passphrase getBytes(), 0, 8, "DES”),
SecureRandom sr = new SecureRandom(” this 15 a very bad seed” getBytes()),
byte[] 1v_bytes = ”"this 1s the 1v” getBytes (),

IvParameterSpec ap = new IvParameterSpec{i1v_bytes,0,8),
Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
¢ 1mit {Cipher ENCRYPTMODE, new_sks,ap,sr),

byte[] bytes = ¢ doFinal({baos toByteArray ()),

FileOutputStream fos = new FileOQutputStream( new String ( prefix + ” key”)),
fos write(bytes),
fos close (),

if ( m_cert '= null)

{

}

FileOutputStream fos = new FileOutputStream( new String( prefix + 7 crt”)),
fos write(m-cert getEncoded ()),
fos close (),

catch (Exception e)

{

e

}

printStackTrace (),
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250
251
252
253
254
255
256

257

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

F+-E]

public X509Certificate getCert ()

{

return m.cert,

public KeyPair getKeys ()

{

return m.keys,

public static byte{] loadCACert(String filename)

{

try

{

}

FilelnputStream fis = new FileInputStream(filename + ” crt”},
ByteArrayOutputStream bt = new ByteArrayOQutputStream (),

int b = fis read (),
while( b '= -1) N

{

bt write(b),
b = fis read(),

fis close (),
bt close (),
byte{] cert_.bytes = bt toByteArray (),

return cert_bytes,

catch (Exception e)

{

e printStackTrace (),
return null,

public static String getCAFileName()

{

try

{

LineNumberReader Inr =

new LineNumberReader{new InputStreamReader (System 1n)),
System out printin(” Enter the location of the CA certificate ),
String cacertfilename = lor readLine (),
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300
301
302
303
304
305
306
307
308
309
310
311

312

314
3156
316
317
318
3190
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
348
347
348

349

}

return cacertfilename,

catch (Exception e)

{

e printStackTrace (),
return null,

public static byte[] getName()

{

try

{

}

LineNumberReader Inr =
new LineNumberReader(new InputStreamReader (System 1n)},

System out println(” Enter country code e g IE”),
String cc = Inr readLine(),
System out printin(” Enter locality e g Dublin”),
String loc = Inr readLine(),
System out println(” Enter organization e g DCU”),
String org = Inr readLine (),

System out println(”Enter organtzational unit e g POSIGRAD"),

String unit = inr readLine(},
System out println{”Enter common name e g John Doe”),
String cn = lnr readLine (},

Name name = new Name(),

name addRDN(ObjectID country, cc},

name addRDN(ObjectID locality, loc),

name addRDN(ObjectID organization ,org),

name addRDN(ObjectID organizationalUnit ,unmit),
name addRDN(ObjectID commonName ,cn),

return name getEncoded (),

catch (Exception e)

{
}

e printStackTrace (),

return null,

public static String getPassPhrase()

{

try

{

LineNumberReader Inr =
new LineNumberReader(new InputStreamReader (System 1n)),
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350 System out println(” Enter your passphrase ”),
361 String pp = Inr readLine(),

352

353 return pp,

354 }

355 catch (Exception e)

356 {

357 return null,

358 }

s}

360

361  public static String getFilename()

s6z |

363 try

364 {

365 LineNumberReader Inr =

368 new LineNumberReader(new InputStreamReader (System in)),
367

368

369 System out println(” Enter the prefix for all client files ),
370 String pp = lnr readLine (),

371

372 return pp,

373 }

374 catch (Exception e)

375 {

376 return null,

377 }

378}

378 }
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Appendix C

Example 2 code

C.1 w code

C.2 w code
1{

2pkr *,

3java security cert x,
4)Java security =,
sJavax crypto spec «x,
6Javax crypto =,

7}

8

9 System Sys

10 {

11 Channel a,b,c,w

12

13 {CertAuth(a,b,c)|'ChentCreateCert(a)

14 | ServiceProvider (b,w)|! ChentServiceRequest {¢c,w))
15}

16
17 Process CertAuth(cert ,spCert,spCertQOut)

18 {

19 <getInfo>()(filename,passphrase)

20 <createCA>(filename,passphrase)(ca)

21 <getlssuer>(ca)(1)

22

23 ('Issuer(cert,1)}|ServiceProviderIssuer (spCert,1,spCertOut))

24 }

25 L

26 Process Issuer(in, 1ssuer)

27 {

28 1n{channel)

29
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so channel(certRequest )

31

32 <issueCert>(1ssuer,certRequest )(cert)
33

3¢ channel<cert >

35 0

38}

37

38 Process ServiceProviderIssuer (1n, 1ssuer,out)
30 {

40 1n(channel)

41

42 channel(certRequest )

43

144 <assueCert>(1ssuer,certRequest ){cert)
45

46 channel<cert>

47 ('DistributeCert (out,cert))

48}

49

so Process DistributeCert (out,cert)

51 {

s2  out<lcert>

s3 0

54}

55

66 Process ServiceProvider (chan,work)

67 {

58 <loadCACert>()(cacert)

59

60 <createCertificateAndRequestSP>(cacert)(sp,req)
61

62 Channel tmp

63 chan<tmp>

64

65 tmp<req>

66

67 tmp(cert)

68

o <setCertificate>(cert,sp,cacert)(newSP)
70 ('Servicer (work,newSP)}

7}

72

73Process Servicer (work,self)

74 {

75 work{channel)

76 channel(clientCert)

77 channel (pacl)

78

79 <processChientRequest >(chientCert,pacl,self)(randA)
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80
81 <createServiceResponse>(clientCert,self,randA)(pac2,randB)
82

83 channel<pac2>

84

ss channel(res)

86

87 <processClientResponse>(clientCert,self,res,randB)(encKey,key)
88

89 channel<encKey>

20

o1 Channel servicel, service2

92

93 channel<servicel>

94 channel<service2>

85

96 +(servicel (a)(Servicel(a}))+(service2(b)(Service2(b)))
97}

98

99 Process Servicel(in)

100 {

101

102

103

104 }

105

<createResponsel >{)(res)
in<res >
0

106 Process Service2(1in)

107 {

108
109

110

<createResponsel >()(res)
In<res >
0

11}

112
113 Process ClientCreateCert(chan)

114 {

1

-

5
116
117
118
119
120
121
122
123
124
125
126
127
128

128

<loadCACert>()(cacert )

<createCertificateAndRequest >()(client ,req)

Channel tmp
chan<tmp>

tmp<req>
tmp(cert)

<setCertificate>(cert,client,cacert){newClient)
<storeChient>(newChient ) ()
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130 }

131

132 Process ClientServiceRequest (cert, work)
133 {

13¢  <loadCACert>()(cacert)

135 <loadSelf>(cacert)}(self)

136

137 cert (spCert)

138

139 <verifyCertlssuer>(cacert,spCert)()
140

[/ Start Protocol

uz  <createChentRequest >(spCert,self){packetl, randA)

143

144 Channel chan

145

146 work<chan>

147

148 <getOwnCert>(self)(ownCert)

146 chan<ownCert>

150 chan<packetl >

151

152 chan(packet2)

153

154 <processServiceResponse>(packet2 ,spCert,self,randA)(packetd)
155

156 chan<packet3 >

157

158 chan(encKey)

159

160 chan(servicel)

161 chan(service2)

162

163 <extractKey >(spCert,encKey, self )(key)
164

165 <whichService>(servicel ,service2)(service)
166

167 Channel chan

168

169 service<chan>

170

1 chan(resp)

172

173 </&System out println((String)resp),&/>(resp)()
179 0

175 }

176

177 Code whichService (s1,s2)(s)

178 {

e &
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180 1f(Client chooseFirst())

181 8 = sl,

182 else

1838 8§ = 82,

188 &/

185 }

186

187 Code extractKey (spCert ,encKey,s}(k)
188 {

188 J&

10 Client ¢ = (Chient)s,

191

192 byte[] ks = ¢ extractKey ((byte[])spCert,(byte[])encKey},

193

194 k = ks,
105 &/
196 }

197

198 Code processServiceResponse (pac,cert,self, rand)(returnPac)

199 {

200 [&

201 Client ¢ = (Chient)}self,
202

203 returnPac = ¢ createClientResponse ({(byte[]) cert,(byte[]) pac,(Long)rand},
208 &/

205 }

206

207 Code getOwnCert (self}(cert)

208 {

200 J&

210 PkiBase base = (PkiBase)self,

211

212 cert = base getCertBytes (),

213 &/

214 }

215

216 Code createClientRequest ( provider,self)({packet, rand)
217 {

218 [&

210 Client ¢ = (Chent)self,

220 Long | = new Long({System currentTimeMilhs ()},

221

222 packet = ¢ createRequest((byte[]) provider,1),

223 rand = 1,
224 &/

225 }

226

227Code verifyCertlssuer(cacert,spCert)()

228 {

220 &
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230 Chent verifyCertlssuer((byte[]) cacert,(byte[])spCert}),
2m &/

232 }

233

234 Code loadSelf(cacert)({self)

236 {

238 [&

237 String pp = Chient getPassPhrase(),

238 String fn Client getFilename(),

239

2490 Client ¢ = new Chent (pp,fn,{byte[])cacert),

241

222 self = ¢,
243 &/

244 }

245

246 Code 1ssueCert(1ssuer,request)(cert}

247 {
248 (&
249 Certlssuer 1 = (Certlssuer)issuer,

250  byte[] req = (byte[]) request,

251

252 cert = 1 processCertificateRequest (req),
263 &/

254 }

255

256 Code 1ssureCert (1ssuer,req)(cert)

257 {
258 &
259 Certlssuer 1 = (Certlssuer)issuer,

260 byte[] the-request = (byte[])req,

261

262 cert = processCertificateRequest {the_request),
263 &/

264 }

266

266 Code getlssuer(ca)(1ssuer)

267 {

268 Jf&

269 CA theCA = (CA)ca,

270 Certlssuer 1 = theCA createlssuer (),
271

272 1SSuer = 1,

2rs &/

274 }

275

276 Code createCA{fn,pp)(ca)

277 {

278 J&

270 CA theCA = new CA((String)fn (String)pp),
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280 ca = theCA,

281 &/

282 }

283

284 Code getlnfo ()(fn,pp)

285 {

288 [&

287 try

288 {

289 LineNumberReader Inr =

290 new LineNumberReader(new InputStreamReader(System 1n)),
201 System out println(” Enter the ca name”),
292 fno = Inr readLine(),

203 System out println(” Enter the passphrase”),
294 pp = lInr readLine (),

205}

208 catch(Exception e)

207 {

298 e printStackTrace (),

200}

so0 &/

301}

302

303 Code createResponsel (}(res)

304 {

s05  J&

308 res = new String (”RES1”),
sor &/

308 }

309

310Code createResponse2 ()(res)

311 {

a2 /&

313 res = new String(”RES2”),
314 &/

315 }

318

217Code processClientResponse(cert,self,pac,rand)(ekey, key)

318 {

319 /&

320 SP sp = (SP)self,
321

322 byte[] keyBytes = sp processChientResponse((byte[]) cert,(byte[]) pac,(Long)rand},
323

324 ekey = sp encryptKeyBytes((byte[]) cert,keyBytes),

325 key = keyBytes,

sz &/

327 }

328

a20Code createServiceResponse (cc,s,rA)(p,rB)
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330 {

a1 [&

sz SP sp = (SP)s,

333 Long 1 = new Long({System currentTimeMilhis ()},

334

333 p = sp createServiceResponse ((Long)rA,l,(byte[])cc),

336 rB =1,

ss7 &/

338 }

339 ’

310Code processClientRequest(clientCert, packet,self)(randA)

341 {

32 [&

sa3 SP sp = (SP)self,

341 randA = sp processClientRequest (( byte[]) packet ,(byte[]) clientCert),
315 &/ )

346 }

347

sasCode createCertificateAndRequestSP(ca)(ret,req)

349 {

350 [&

351 SP sp = new SP((byte[])ca),
352

353 byte[] tmp = sp generateCertificateRequest (),

354
355 ret = sp,

356 req = tmp,

s &/

358 }

359

sso Code loadCACert()(cert)
361 {

se2  [&

se3 String filename = Client getCAFileName (),
sea  byte[] cert.bytes = Chient loadCACert(filename),

365 cert = cert.bytes,
66 &/

367 }

368

369

370Code createCertificateAndRequest (}{client,req)
a1 {

arz J&

373  Client ¢ = new Chient (),

374 byte[] name = Client getName(),

375

376 byte[] tmp = ¢ generateCertificateRequest (name},
377

378 client = ¢,

sr9  req = tmp,
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380 &/

381}

382

ss3Code setCertificate(cert,client,cacert){newClient)
384 {

s [&

ses  try

a7

388 byte [] theCACert = (byte[]) cacert,
389

390 byte[] theCert = (byte[]) cert,
3n PkiBase ¢ = (PkiBase)chent,
302

393 ¢ setCertificate (theCert,theCACert),
394

396 newChient = c,

38}

se7 catch(Exception e)

se8

399 e printStackTrace (),

w00 }

w01 &/

402}

403

404 Code storeClient{chient }()

405 {

w6 [&

501 Chient ¢ = (Client)client,

408

408 String pp = Client getPassPhrase(),
a10 String fn = Chent getFilename(),

an
a12 ¢ store(pp,fn),
as &/

414}
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C.3 Java code

C31 CAjava
1package pki,

2

simport pki *,

4

simport jJava security cert x,

slmport java security x,

7import javax crypto spec x,

simport javax crypto x*,

simport java 10 *,

1mport 1aik pkcs pkesi0 CertificateRequest,
nimport 1aik asnl structures =,
1z1mport tairk asnl =x,

13

1i1mport java util x,

1simport java math %,

16

17

1spublic class CA implements Serializable
194

20 private KeyPair m_keys,

21 private X509Certificate me_cert,

22 private String m_filename,

23

24 public CA(String filename, String pp)

25 {

26 m.-filename = filename,

27 loadInfo(pp),

28}

29

30 public PubhcKey getPublic ()
31 {

32 return m-keys getPublic (),
3}

34

35 public X509Certificate getCert ()
36 {

37 return m.cert

8}

39

10 public void loadInfo(String pp)

a |

42 try

43 {

44 FileInputStream fis =

45 new FilelnputStream (m_filename + ” info”),
48

a7 int b = fi1s read ()
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48
49
50
51
52
53
54
55
56
57
58
59
60
61
82
83
64
65
66
67
68
69
70
71

72

74
75
76
77

78

82
83
84
85
86
87
88
89
90
21
92
93
94
98
96

a7

public static void generateAndStore(String passphrase, String filename)

{

}

ByteArrayOutputStream baos = new ByteArrayOutputStream (},

while( b '= -1)
{
baos write(b),
= fis read (),

}
/ /DECRYPT

byte[] 1v.bytes = ”"this 1s the 1v” getBytes (),

SecretKeySpec sks = new SecretKeySpec(pp getBytes(), 0, 8, "DES”),

IvParameterSpec ap = new IvParameterSpec(1iv_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance{”DES/CBC/PKCS5Padding”},

SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),

¢ 1nit (Cipher DECRYPTMODE, sks, ap, sr),

byte[] final_bytes = ¢ doFinal(baos toByteArray ()),

ByteArraylnputStream bais = new ByteArraylnputStream(final.bytes),

ObjectInputStream oi1s = new ObjectInputStream(bais),

m_keys = {KeyPair)ois readObject ()},

m_cert (X509Certificate) o1s readObject (),

It

catch (Exception e)

{

e printStackTrace (),

try

{

String seed = new String(),
seed += System currentTimeMilhis ()},

SecureRandom sec.random = new SecureRandom(seed getBytes()),

KeyPairGenerator key.gen = KeyPairGenerator getlnstance(”RSA”},
key-gen 1nitialize (512, sec_random}),
KeyParr key-pair = key-gen generateKeyPair(),
(
Name n = new Name(),
n addRDN( QObjectID country, "IE”),
addRDN{ObjectID locality, "DUBLIN”),
addRDN{ ObjectID organization ,”DCU”),
addRDN( ObjectID organizationalUmt ,”PG”}),
addRDN{ ObjectID commonName ,"CA"),

s o0 =55 2
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88

89
100
101
102
103
104
105
106
107
108
100
110
111
112

113

118
116
117
118
119
120

121

123
124
125
126
127
128
129
130
131
132
133

134

136
137
138
139
140
141
142
143
144
145

146

1aak x509 X509Certificate cert = new 1aik x509 X509Certificate(),
cert setlssuerDN(n},

cert setSubjectDN(n),

cert setPublicKey(key_pair getPublic()),

cert setSerialNumber({new Biglnteger (?000000000001")),
GregorianCalendar date = (GregorianCalendar)Calendar getInstance(),

date add(Calendar MONIH, —1),

cert setValidNotBefore(date getTime()),

date add(Calendar MONTH, §5),

cert setValidNotAfter(date getTime()),

cert si1gn (AlgorithmID shalWithRSAEncryption, key-pair getPrivate ()),

ByteArrayOutputStream baos = new ByteArrayOutputStream (),
ObjectOutputStream oos = new ObjectOutputStream(baos),

oos writeObject(key_pair),

oos writeObject(cert ),

System out println(cert getClass () getName()),
ocos close (),

byte[] 1v_bytes = ”this 1s the 1v” getBytes(),
SecretKeySpec sks = new SecretKeySpec{passphrase getBytes{), 0, 8, "DES"),
IvParameterSpec ap = new IvParameterSpec(i1v_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This 15 a very bad seed” getBytes()),
¢ 1ni1t (Cipher ENCRYPT'MODE, sks, ap, sr),

byte[] final_bytes = ¢ doFinal(baos toByteArray ()),

FileQutputStream fos = new FileOutputStream(filename + ” info” ),
fos write(final_bytes),
fos close (),

fos = new FileOutputStream(filename + ” crt”),
fos write(cert toByteArray ()),
fos close (),

File f = new File(filename + ” cr!l”),
f createNewFile (),

catch (Exception e)

e printStackTrace (),
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148
149
150
151
162
158
154

155

157
158
159
160
161
162
163

164

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
180
191
192
193
164
195
196

197

public static void printCAlnfo(String passphrase, String filename)

try

FileInputStream fis = new FileInputStream (filename + ” 1nfo”),
int b = fis read (),
ByteArrayOutputStream baos = new ByteArrayOutputStream (),

while( b '= -1}
{
baos write(b),
b= fi1s read (),
}
/ /DECRYPT
byte[] 1v_bytes = ”this 1s the 1v” getBytes (),
SecretKeySpec sks = new SecretKeySpec(passphrase getBytes(), 0, 8, "DES”),
IvParameterSpec ap = new IvParameterSpec(1iv_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),
¢ 1mit (Cipher DECRYPTMODE, sks, ap, sr),

byte[] final.bytes = ¢ doFinal(baos toByteArray ()},

ByteArraylnputStream bais = new ByteArraylnputStream(final_bytes),
ObjectInputStream o1s = new ObjectInputStream(bais),

KeyPair kp = (KeyPair)ois readObject (),
Object cert = o1s readObject (),
System out println(cert getClass () getName()),

System out printin{’ ),
System out printin(cert),
System out println( ”,

catch (Exception e)

e printStackTrace (),

public Certlssuer createlssuer ()

return new Certlssuer(m_keys, m.cert),
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198
19e  public static void mamn(String args(})
200 |

201 CA generateAndStore{args[0], args{1}]),
202 CA printCAlnfo(args (0}, args{1]),
203}

204 }
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C 32 Certlssuer java

1 package pki,

2

simport pkr *,

1

simport java security =x,
eéimport javax crypto spec x,
7import javax crypto x,
simport jJava 10 x, 13
oimport 1a1k pkcs pkesl0 CertificateRequest,
io1mport 1a1k asnl structures x*,
nimport 1atk asnl =*,
121mport java security cert x,
13
11mport java util =*,
1i51mport jJava math x,
16
izpublic class Certlssuer 1mplements Serializable
18 {
19 private KeyPair m_keys,
20 prnivate X509Certificate m_cert,
21

22 public Certlssuer(KeyPair keys, X509Certificate cert)

23 {

24 m.keys = keys,

25 m_cert = cert, N
26}

27

28 public PublicKey getPublic()

20

30 return m_keys getPublic (),
a1}

32

33 public X509Certificate getCert ()
¢ {

35 return me-_cert,

s}

37

38  public byte[] processCertificateRequest (byte [] request)

30 {

40 try .

11 {

42 CertificateRequest cert_-request = new CertificateRequest (request),
43

11 Name subject = cert_request getSubject (),
15 PublicKey pk = cert_request getPublicKey (),
6

47 String | = new String (),

48 ] += System currentTimeMilhis (),

49
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50
51
52
53
54
33
56
57
58
59
60
61
62
63
84
65
66
67
68
69
70
71

72

74
75

76

78

79}

}

SecureRandom sr = new SecureRandom(l getBytes()),
String serial = new String (),
serial += sr nextLong(),

1ark x509 X509Certificate t_cert =

new 1a1k x509 X509Certificate{m_cert getEncoded ()),
1atk asnl structures Name issuer =

{ra1k asnl structures Name)t.cert getSubjectDN (),

1a1tk x509 X509Certificate cert = new 1a1k x509 X509Certificate(),

cert setlssuerDN(i1ssuer),

cert setSubjectDN(subject),

cert setPublicKey(pk),

cert setSerialNumber(new Biglnteger(serial)),

GregorianCalendar date = (GregorianCalendar) Calendar getInstance (),
date add(Calendar MONTH, -1),

cert setValidNotBefore(date getTime()),

date add(Calendar MONIH, 5},

cert setValidNotAfter(date getTime()),

cert sign{AlgorithmID shalWithRSAEncryption, m.keys getPrivate ()),

return cert toByteArray (),

catch (Exception ¢)

{
}

e printStackTrace (},

return null,
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C 33 Chent java

1package pki,

2

simport pki *,

4

simport java security x,

s1mport Java security i1nterfaces x,

rimport javax crypto spec *,

simport javax crypto »,

e1mport java 10 *,

wimport 1atk pkcs pkecsl) CertificateRequest,
nimport 1atk asnl structures *,

iz1mport 1aik asnl =,

131mport java security cert x,

14

1spublic class Chent 1mplements Serializable, PkiBase
16 {

17 private KeyPair m.keys = null,

18 private X509Certificate m.cert = null,

19 private X509Certificate ca-cert = null,
20

21 publhic Chent(){}

22

23 public Chent(String passphrase, String filename, String cafn)

2¢ |

25 try {

26 FileInputStream fis = new FileInputStream(cafn+ ” crt”),
27 ByteArrayOutputStream bt = new ByteArrayOutputStream (),
28

29 int b = fis read ()},

30

31 while ( b '= -1)

32 {

33 bt write(b),

34 b = fis read (),

35 }

36

37 fis close (),

as bt close (),

39 \

40 byte{] cacert_bytes = bt toByteArray (),

41

42 fis = new FilelnputStream(filename + ” crt”),
43 bt = new ByteArrayOutputStream (),

44

45 b = fis read (),

46

47 while ( b '= -1)

48 {

40, bt write(b),
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50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
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86
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98

94
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97
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}

catch (Exception e){e printStackTrace (),}

b = fis read (),

fis close (),
bt close (),

byte[] cert.bytes = bt toByteArray (),

fis = new FilelnputStream(filename + ” key”),
bt = new ByteArrayOutputStream (),

b = fis read (),

while{( b '= —1)
{
bt write(b),
b = fis read (),

byte[] 1v_bytes = "this 1s the 1v” getBytes (),
SecretKeySpec sks = new SecretKeySpec{ passphrase getBytes(), 0, 8, ”"DES”),
IvParameterSpec ap = new IvParameterSpec(1v_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),
¢ 1n1t {Cipher DECRYPTMODE, sks, ap, sr),

byte[] final_bytes = ¢ doFinal(bt toByteArray ()),

ByteArrayInputStream bals = new ByteArrayInputStream (final_bytes),
ObjectInputStream o1s = new ObjectInputStream(bais},

KeyPair kp = (KeyPair)ois readObject (),

CertificateFactory cf = CertificateFactory getlnstance(”X509"),
ByteArraylnputStream cbais = new ByteArraylnputStream (cert-bytes),
X509Certificate cert = (X509Certificate)cf generateCertificate(cbais}),

cbais = new ByteArraylnputStream(cacert.bytes),
X509Certificate cacert = (X509Certificate)cf generateCertificate(cbais),

cert verify{cacert getPublicKey()),

m-cert = cert,
m.keys = kp,
ca-cert = cacert,

public Client (String passphrase, String filename, byte[] cacert_bytes)
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147
148

149

try

{

FileInputStream fis = new FilelnputStream(filename + ” c¢rt”),
ByteArrayOutputStream bt = new ByteArrayOutputStream (),

int b = fis read (),

while( b '= —1)
{
bt write(b),
b = fis read (),

}

fis close (),
bt close (),

byte[] cert_-bytes = bt toByteArray (),

fis = new FileInputStream(filename + ” key”),
bt = new ByteArrayOutputStream (),

b = fis read (),

while{( b '= —1)
{
bt wnite(b),
b = fis read(),

}

byte[] 1v.bytes = "this 1s the iv” getBytes(),
SecretKeySpec sks = new SecretKeySpec(passphrase getBytes(), 0, 8, "DES”),
IvParameterSpec ap = new IvParameterSpec(iv_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes()),
c 1n1t (Cipher DECRYPTMODE, sks, ap, sr),

byte[] final-bytes = ¢ doFinal(bt toByteArray ()),

ByteArrayInputStream bais = new ByteArrayInputStream (final.bytes),
ObjectInputStream oi1s = new ObjectInputStream(bais),

KeyPair kp = (KeyPair)oi1s readObject (),

CertificateFactory c¢f = CertificateFactory getlnstance(”X509”),
ByteArraylnputStream cbais = new ByteArraylnputStream (cert_bytes}),
X509Certificate cert = (X509Certificate)cf generateCertificate(cbais),

cbais = new ByteArraylnputStream (cacert.bytes),
X509Certificate cacert = (X509Certificate)cf generateCertificate{cbais),
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}

cert verify(cacert getPublicKey ()},

m_cert = cert,
m.keys = kp,
ca_cert = cacert,

catch (Exception e)

{

e printStackTrace (),

public Client(byte[] certBytes, byte[] keypair, String passphrase)

{

try

{

}

byte[] 1v-bytes = ”this 1s the 1v” getBytes (),
SecretKeySpec sks = new SecretKeySpec(passphrase getBytes(), 0, 8, ”DES"),
IvParameterSpec ap = new IvParameterSpec{1iv_bytes, 0, 8 ),

Cipher ¢ = Cipher getlnstance{” DES/CBC/PKCS5Padding”),
SecureRandom sr = new SecureRandom(” This 1s a very bad seed” getBytes(}),
¢ 1n1t {Cipher DECRYPTMODE, sks, ap, sr),

byte[] final.bytes = ¢ doFinal(keypair),

ByteArraylnputStream bais = new ByteArraylnputStream(final_bytes},
ObjectlnputStream o01s = new ObjectInputStream{bais),

KeyPair kp = (KeyPair)ois readObject (),

CertificateFactory cf = CertificateFactory getInstance(”X509”),
ByteArraylnputStream cbais = new ByteArraylnputStream (certBytes),
X509Certificate cert = (X509Certificate)cf generateCertificate(cbais),

m-cert = cert,
m.keys = kp,

catch ( Exception e)

{
}

e printStackTrace (),

public KeyPair generateKeyPair(int len)

{

try

{

String seed = new String(),
seed += System currentTimeMillis(),
SecureRandom sec.random = new SecureRandom(seed getBytes()),
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202
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207
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208
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214
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218
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220
221
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224
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228
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236
237
238
239
240
241
242
243
244
245
246
247

248

}

KeyPairGenerator key_gen = KeyPairGenerator getlnstance(”RSA”),
key.gen 1nmitialize(len, sec_random},
m.keys = key_gen generateKeyPair(),

catch (Exception ¢)

{
}

e printStackTrace (),

return m-_keys,

public byte[] generateCertificateRequest (byte[] name)

{
try
{
1f (m_keys == null)
{
generateKeyPair (1028),
}

}

Name n = new Name(name),

CertificateRequest ¢ = new CertificateRequest (m_keys getPublic(),n),
¢ sign (AlgorithmID shalWithRSAEncryption,m_keys getPrivate ()),

byte [] bytes = ¢ toByteArray (),

return bytes,

catch (Exception e)

{

e printStackTrace {),
return null,

}
}
public void setCertificate(byte[] ¢, byte[] ca)
{
try
{
CertificateFactory c¢f = CertificateFactory getInstance(”X509"),
ByteArraylnputStream bais = new ByteArrayInputStream(c),
X509Certificate cert = ( X509Certificate)cf generateCertificate (bais),
bais = new ByteArraylnputStream(ca),
X509Certificate cacert = (X509Certificate)cf generateCertificate(bais),
setCertificate (cert,cacert),
}

catch (Exception e)

{
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2056
296
297
298

200

e printStackTrace (),

pubhic static void verifyCertIssuer(byte[] cabytes, byte[] bytes) throws Exception

{

CertificateFactory cf = CertificateFactory getlnstance(”X509”),
ByteArraylnputStream bais = new ByteArraylnputStream (cabytes),
X509Certificate cacert = (X509Certificate)cf generateCertificate(bais),

bais = new ByteArraylnputStream (bytes),
X509Certificate cert = (X509Certificate)cf generateCertificate(bars),

cert verify(cacert getPublicKey ()},

public void setCertificate(X509Certificate ¢, X509Certificate ca) throws Exception

{

¢ verify(ca getPublhicKey ()),

if { ¢ getPublicKey ()} equals(m_keys getPublic()))
{

m_cert = ¢,

}

else

{

throw new Exception(” Invalid cert”),

}

public void store{String passphrase, String prefix)

{

try

{

1f (m_keys '= null)

{
ByteArrayOutputStream baos = new ByteArrayOutputStream (),
ObjectOutputStream oos = new ObjectOutputStream(baos),

oos writeObject(m-keys),
oos close (),

SecretKeySpec new.sks = new SecretKeySpec( passphrase getBytes(), 0, 8, "DES"),
SecureRandom sr = new SecureRandom(” this 15 a very bad seed” getBytes()),

byte[] 1v_bytes “this 1s the 1v” getBytes(),

IvParameterSpec ap = new IvParameterSpec(iv.bytes,0,8),
Cipher ¢ = Cipher getlnstance(”DES/CBC/PKCS5Padding”),
¢ 1n1t(Cipher ENCRYPTMODE, new_sks ,ap,sr),
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-

5
316
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339
340
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342
343
344
345
346
347
348

349

byte[] bytes = ¢ doFinal(baos toByteArray ()),

FileQutputStream fos = new FileOutputStream( new String( prefix + ” key”)},
fos write(bytes),
fos close (),

1f { m_cert '= null)

{

FileOutputStream fos = new FileOutputStream( new String( prefix + ” crt")),
fos write{m.cert getEncoded()),
fos close (),

}

catch (Exception e)

{

e printStackTrace (),

public byte[] getCertBytes()
{

try

{

return getCert () getEncoded (),

}

catch (Exception e)

{

e printStackTrace (),
return null,

public X509Certificate getCert ()
{

return m-.cert,

public KeyPair getKeys ()

{

return m_keys,

public static byte[] loadCACert(String filename)

{

try

{

FilelnputStream fis = new FilelnputStream(filename + ” crt”),
ByteArrayOutputStream bt = new ByteArrayOutputStream (),
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399

int b = fis read (),
while( b '= -1}
bt write(b),
b = fis read (),
fis close (),
bt close (),
byte [] cert_bytes bt toByteArray (),
return cert-bytes,

catch ( Exception e)

e printStackTrace (),
return null,

public static String getCAFileName ()

LineNumberReader Inr =
new LineNumberReader(new InputStreamReader (System 1n)),

System out println{” Enter the location of the CA certificate "),

Inr readLine (),

String cacertfilename
return cacertfilename,

catch (Exception e)

e printStackTrace (),
return null,

public static byte[] getName()

LineNumberReader Inr =
new LineNumberReader(new InputStreamReader (System 1in)),

System out printin{” Enter country code
Inr readLine (),



400 System out println(”Enter locality e g Dubln”),

401 String loc = Inr readLine (),

402 System out println(” Enter organization e g DCU"),
403 String org = Inr readLine (),

404 System out println(” Enter organizational unit e g POSIGRAD”),
405 String unit = Inr readLine(),

406 System out println(” Enter common name e g John Doe”),
07 String cn = Inr readLine(),

108

409 Name name = new Name(),

410 name addRDN(ObjectID country, cc),

411 name addRDN(ObjectID locality, loc),

412 name addRDN(ObjectID organization ,org),

413 name addRDN(ObjectID organizationalUnit ,unit),

414 name addRDN(ObjectID commonName ,cn),

415

416 return name getEncoded (),

417 }

418 catch (Exception e)

a19 {

420 e printStackTrace (),

a21 }

422 return null,

423}

424

425 public static String getPassPhrase()

126 {

427 try

428 {

429 LineNumberReader Inr = new LineNumberReader(new InputStreamReader (System 1n)},
430

431 System out println(” Enter your passphrase ”),
432 String pp = Inr readLine(),

433

434 return pp,

435 }

436 catch (Exception e)

437 {

438 return null,

439 }

a0 }

441

442 public static String getFilename()

13 {

444 try N

445 {

146 LineNumberReader Inr = new LineNumberReader{new InputStreamReader (System 1n}),
447

148 System out println(” Enter the prefix for all client files ”),

440 String pp = inr readLine (),
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470
471
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474
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404

496
497
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499

return pp,
}
catch (Exception e)
{
return null,
}
}
public byte[] createRequest{byte[] serviceCertBytes, Long 1)
{
try
{
CertificateFactory <f = CertificateFactory getlnstance(”X509"),
ByteArraylnputStream bais = new ByteArraylnputStream (serviceCertBytes ),
X509Cert1ficate cert = (X509Certificate)cf generateCertificate(bais),
ByteArrayOutputStream baos = new ByteArrayOutputStream (),
DataOutputStream dos = new DataOutputStream(baos),
dos writelnt (0),
dos writeLong (! longValue()),
Principal n = (Principal)cert getSubjectDN (),
System out printin{n getName()),
dos writeUTF(n getName()),
byte|] data = (new String(”data”}) getBytes (),
byte {] encData = Enc encryptData(data,cert getPublicKey ()),
dos writelnt (encData length),
dos write(encData, 0, encData length),
dos close (),
byte [] to-enc = baos toByteArray (),
byte [] to.return = Enc encryptData(to.enc,m._keys getPrivate ()),
return to-.return,
}
catch (Exception e)
{
e printStackTrace (),
}

return null,
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500
500 public byte[] createClientResponse(byte[] serviceCertBytes, byte[] packet, Long randA)

s02 |

503 try ~

504 { !
505 CertificateFactory cf = CertificateFactory getInstance(”X509”),
506 ByteArraylnputStream bais = new ByteArraylnputStream (serviceCertBytes),
507 X509Certificate cert = (X509Certificate)cf generateCertificate(bais),
508

509 byte [] decData = Enc decryptData(packet,cert getPublicKey ()),
510 bais = new ByteArraylnputStream (decData ),

511 DatalnputStream dis = new DatalnputStream(bais),

512

513 Long randB = new Long(dis readLong()),

514 System out println(randB),

515

518 String 1b= dis readUTF (),

517 String 1a= dis readUTF (),

518

519 Long randATest = new Long{dis readLong{()),

520

521 int lenEnc = dis readInt (),

522 byte [] encData = new byte[lenEnc], ‘

523 dis read(encData,0,lenEnc),

524

525 byte [] dummyData = Enc decryptData(encData,m.keys getPrivate ()),
526 sun security x509 X500Name testla

527 = (sun security x509 X500Name)m_cert getSubjectDN (),

528 sun security x509 X500Name testlb

529 = (sun security x509 X500Name)cert getSubjectDN (),

530

531 1f ("1b equals{testIb getName()))

532 throw new Exception ("NAMES NOT EQUAL"),

533

534 1f (12 equals(testla getName()))

535 throw new Exception ("NAMES NOT BQUAL”),

536

537 1f (‘randATest equals(randA))

538 throw new Exception ("RANDOM CHALLENGE FAILED”),

539

540 ByteArrayOutputStream baos = new ByteArrayOutputStream (),

541 DataOutputStream dos = new DataOutputStream(baos},

542

543 dos writeLong(randB longValue (})),

544 dos close (),

545

546 byte[] to.return = Enc encryptData(baos toByteArray ()}, m.keys getPrivate (}),
547

548 return to.return,

549 }
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catch (Exception e)

{

e printStackTrace (},

}

return null,

}
public byte[] extractKey(byte[] serviceCertBytes, byte[] encKey)
{
try
{
CertificateFactory cf = CertificateFactory getlnstance(”X509”),
ByteArraylnputStream bais = new ByteArraylnputStream(serviceCertBytes ),
X509Certificate cert = (X509Certificate)cf generateCertificate(bais),
byte [] decData = Enc decryptData(encKey,cert getPublicKey()),
byte[} to.return = Enc decryptData(decData,m._keys getPrivate ()),
byte[] to-return = ¢ doFinal(decData),
return to.return,
}
catch (Exception e)
{
e printStackTrace (),
}
return null,
}
public static boolean chooseFirst()
{
try
{

System out println(”Use service one (Y/N) "),
LineNumberReader Inr = new LineNumberReader(new InputStreamReader (System 1n)),
String resp = Inr readLine(),

while ('((resp equalsignoreCase(”Y”))||(resp equalslgnoreCase("N”))))
{

System out println(”Use service one (Y/N) ”),

resp = Inr readLine (),

1f (resp equalslgnoreCase(”Y”))
return true,

else
return false,
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600 catch (Exception e)
601 {

602 e printStackTrace (),
603 }

604

605 return true,

606 }

607 }
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C34

SP java

1package pki,

2
s1mport
4
simport
s1mport
71mport
si1mport
eg1mport
io1mport
1nimport
1iz1mport
13
1apublic
15 {

16 priv
17 priv
18 priv

pkr *,

Java security x,

javax crypto spec x,

jJavax crypto =x*,

java 10 *,

ratk pkes pkesl0 CertificateRequest,
1a1k asnl structures x*,

1a1k asnl x,

Java security cert =,

class SP implements Serializable,PkiBase

ate KeyPair m.keys = null,
ate X509Certificate m_cert = null,
ate X509Certificate ca.cert = null,

20 public SP(byte[] ca_cert.bytes)

a |

22 try

23 {

24 CertificateFactory cf = CertificateFactory getInstance(”X509”),
25 ByteArrayInputStream bals = new ByteArraylnputStream (ca-.cert.bytes),
26 ca_cert = { X509Certificate)cf generateCertificate(bais),

27 }

28 catch (Exception e)

29 {

30 e printStackTrace (),

31 }

2}

33

3¢ public KeyPair generateKeyPair{(int len)

35 {

36 try

37 {

38 String seed = new String (),

39 seed += System currentTimeMilhis (),

0 SecureRandom sec_random = new SecureRandom(seed getBytes()),

41

42 KeyPairGenerator key.gen = KeyPairGenerator getInstance("RSA”),
43 key-gen 1nitialize (len, sec.random),

44 m._keys = key_gen generateKeyPair(),

45 }

46 catch (Exception e)

47 {

a8 e printStackTrace (), N
49 }
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99

return m.keys,

}
public byte[] generateCertificateRequest ()
{
try
{
1f (m_keys == null)
{
generateKeyPair(1028),
}

Name n = new Name(this getName()),
CertificateRequest ¢ = new CertificateRequest (m_keys getPublic(),n),
¢ sign (AlgorithmID shalWithRSAEncryption, m_keys getPrivate ()),

byte[] bytes = ¢ toByteArray (),

return bytes,

}

catch (Exception e)

{

e printStackTrace (},
return null,
} \
}

public void setCertificate(byte[] ¢, byte[] ca)

{
try
{
CertificateFactory c¢f = CertificateFactory getlnstance(”X509"),
ByteArraylnputStream bais = new ByteArrayInputStream (c),
X509Certificate cert = (X509Certificate)cf generateCertificate(bais},
bais = new ByteArraylnputStream{ca}),
X509Certificate cacert = (X509Certificate)cf generateCertificate(bais),
setCertificate (cert,cacert),
}
catch (Exception e)
{
e printStackTrace (),
}
}

pubhic void setCertificate (X509Certificate ¢, X509Certificate ca) throws Exception

{
c verify(ca getPublicKey ()),

1f ( ¢ getPubhicKey () equals(m_keys getPubhic(}))
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100 {

101 m.cert = ¢,

102 }

103 else

104 {

105 throw new Exception(”Invalid cert”),
106 }

w7}

108

e public byte[] getCertBytes (}

o {

111 try

12 {

113 return getCert (} getEncoded (),
114 }

1

-
@

catch (Exception e)

116 {

117 e printStackTrace (),
118 return null,

119 }

120}

121

122 public X509Certificate getCert ()
123 {

124 return m.cert,

125}

126

127 pubhic KeyPair getKeys ()

128 {

129 return m_keys,
130}

131

132 public static byte[] loadCACert(String filename)
138 {

134 try

135 {

138 FileInputStream fis = new FilelnputStream (filename + ” crt”),
137 ByteArrayOutputStream bt = new ByteArrayOutputStream (),
138

139 mt b = fi1s read (),

140

141 while( b '= ~1)

142 {

143 bt write(b),

144 b = fis read (),

145 }

146

147 fis close (},

148 bt close (),
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184
185
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169
170
171
172
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174
175
176
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178
180
181
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183
184
185
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190
191
192
193
194
185
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197
198

1909

byte [} cert.bytes = bt toByteArray (),

return cert_-bytes,

}

catch (Exception e)

{

e printStackTrace (),

return null,

}
}
public static String getCAFileName ()
{
try
{
LineNumberReader Inr = new LineNumberReader(new InputStreamReader(System in)),
System out println(” Enter the location of the CA certificate "),
String cacertfitename = Inr readLine(),
return cacertfilename,
}

catch (Exception e)
{
e printStackTrace (),

return null,

public static byte[] getName()

{
try
{

LineNumberReader Inr =
new LineNumberReader(new InputStreamReader (System 1n)),

String cc = "1e”,

String loc = ”"Dubhn?”,

String org = "DCU”,

String unit = ”PostGrad”,

String c¢cn = ”"Example Service Provider”,

Name name = new Name(),

name addRDN{ObjectlD country, cc),

name addRDN(ObjectID locality, loc}),

name addRDN(ObjectID organization ,org),

name addRDN{(ObjectID organmizationalUnit ,umt),
name addRDN(ObjectID commonName ,cn),

return name getEncoded (),
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204
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207
208
209
210
211
212
213
214
215
216
217
218
219
220

221

227
228
229
230
231
232
233
234
235
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237
238
239
240

243

243
244
245
246
247
248

249

catch (Exception e)

{

e printStackTrace (),
}
return null,

public static String getPassPhrase()

{

try

{

LimeNumberReader Inr =
new LineNumberReader(new InputStreamReader (System 1n)},

System out println(” Enter your passphrase ),
String pp = Inr readLine (),

return pp,

}

catch (Exception e)

{

return null,

public static String getFilename()

{

try

{

LineNumberReader Inr =
new LineNumberReader(new InputStreamReader (System 1in)},

System out printin(” Enter the prefix for all client files "),
String pp = lnr readLine (),

return pp,

}

catch (Exception e)

{

return null,

public byte[] encryptKeyBytes(byte{] clientCertBytes, byte[] keyBytes)

{

try

{

CertificateFactory cf = CertificateFactory getlnstance(”X509”),
ByteArraylnputStream bais = new ByteArrayInputStream (clientCertBytes),
X509Certificate cert = (X509Certificate)cf generateCertificate(bais),
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251 byte ] encData = Enc encryptData(keyBytes,cert getPublicKey ()),
252 byte[] to-return = Enc encryptData{encData,m_keys getPrivate ()),
253 return to_return,

254 }

255 catch {Exception e)

256 {

257 e printStackTrace (),

258 }

259

260 return null,

261}

262

263 public byte[] processClientResponse(byte[] clientCertBytes, byte[] packet, Long randB)

264 {

265 try

266 {

267 CertificateFactory c¢f = CertificateFactory getlnstance{”X509"},
268 ByteArraylnputStream bals = new ByteArrayInputStream (clientCertBytes),
269 X509Certificate cert = (X509Certificate)cf generateCertificate(bals},
270

271 byte [} decData = Enc decryptData{packet,cert getPublicKey ()),
272

273 bais = new ByteArrayInputStream (decData),

274 DatalnputStream dis = new DatalnputStream(bais),

275

276 Long testRandB = new Long{dis readLong()),

277

278 1f ('testRandB equals (randB))

270 throw new Exception ("RANDOMS NOT THE SAME” ),

280

281 SecureRandom random = SecureRandom getInstance(”SHAIPRNG”),
282 byte [| key = new byte[I6],

283 random setSeed(System currentTimeMilhis()),

284

285 random nextBytes (key),

286

287 return key,

288 }

289 catch ( Exception e)

290 {

201 e printStackTrace (},

202 }

293

294 return null,

206}

208

207  public byte[] createServiceResponse (Long randA, Long randB, byte[] clientCertBytes)
208 {
299 try
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300 {

301 CertificateFactory cf = CertificateFactory getInstance(”X509”},

302 ByteArraylnputStream bais = new ByteArraylnputStream (clientCertBytes),

303 X509Certificate cert = (X509Certificate)cf generateCertificate(bais),

304

305 byte [] encData = Enc encryptData(randB toString () getBytes(),cert getPublicKey ()),
306 ByteArrayQOutputStream baos = new ByteArrayOutputStream (),

307 DataOutputStream dos = new DataOutputStream(baos),

308

309 sun security x509 X500Name 1b = (sun security x509 X500Name)m-.cert getSubjectDN (),
310 sun security x509 X500Name i1a = (sun security x509 X500Name)cert getSubjectDN (),
311

312 dos writeLong(randB longValue {}),

313 System out println(randB),

314 -

315 dos writeUTF(1b getName()),

316

317 dos writeUTF(1a getName()),

318

319 dos writeLong(randA longValue ()),

320

321 dos writelnt (encData length),

322 dos write(encData ,0,encData length },

323

324 dos close (),

326

325 byte[] to.return = Enc encryptData(baos toByteArray (), m_keys getPrivate (}),
327 return to_return,

328

329 |}

330 catch ( Exception e)

331 {

332 e printStackTrace (),

333 return null,

334 }

335 }

336
337  public Long processClientRequest (byte[] request, byte[] clientCertBytes)

338 {

339 try

340 {

341 CertificateFactory c¢f = CertificateFactory getInstance(”X509”),

342 ByteArraylnputStream bais = new ByteArraylnputStream(clientCertBytes),
343 X509Certificate cert = (X509Certificate)cf generateCertificate(bais),
344

345 byte[] decData = Enc decryptData(request,cert getPublicKey ()},

346 ByteArraylnputStream enclin = new ByteArraylnputStream {request),

347 DatalnputStream encDis = new DatalnputStream(encln),

348

340 bais = new ByteArrayInputStream (decData),
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350 DatalnputStream dis = new DatalnputStream(bais),

351

352 int ta = dis readlnt (),

353

854 long | = dis readLong(),

355

356 String 1b= dis readUTF(},

457

358 sun security x509 X500Name toTest

350 = (sun security x509 X500Name)m.cert getSubjectDN (),
360

361 1f ("1b equals(toTest getName()))

362 throw new Exception ("NOT MEANT FOR ME" ),
363

364 int len2 = dis readlnt (),

365

366 byte [] encData = new byte[len2],

367

368 dis read{encData,0,len2},

369

370 byte [] dummyData = Enc decryptData(encData,m_keys getPrivate ()),
371 return new Long(1),

372 }

373 catch (Exception e)

374 {

a75 e printStackTrace (),

378 }

377 return null,

3718}

379 }
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C 35 PkiBase java

1package pki,

2

simport Java security *,

s1mport javax crypto spec =,

s1mport javax crypto x,

simport java 10 *,

7import 3aik pkcs pkesl0 CertificateRequest ,
simport 1ai1k asnl structures x,

simport 1aik asnl x,

wimport java security cert =,

11

1zpublic 1nterface PkiBase extends Serializable
13 {

14 public void setCertificate(byte[] c, byte[] ca),
15

16 public byte[] getCertBytes (),

17}
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C36 Encjava

1package pki,

2

simport java security x,

a1mport java security interfaces x,
simport javax crypto spec x*,
simport javax crypto =,

7import java 10 *,

simport 1a1k pkcs pkcsl0 CertificateRequest,
gimport 1aitk asnl structures x,
wimport 1aik asnl *,
1m1mport java security cert =,

12
13public class Enc

14{

15 public static byte[] decryptData(byte[] data, Key k} throws Exception
18 |

17 int blocksize = 32,

18

19 ByteArraylnputStream bais = new ByteArraylnputStream (data),

20 ObjectlnputStream o01s = new ObjectInputStream{bais),

21

22 Object o = o1s readObject(),

23 Cipher ¢ = Cipher getInstance(”RSA”},
24 ¢ 1ni1t (Cipher DECRYPTMODE, k ),

25

26 ByteArrayOutputStream baos = new ByteArrayOutputStream (),
27

28 while(o '= null)

20 {

30 byte [] bytes = (byte[])o,

31

32 byte [] decData = ¢ doFinal(bytes),
33

34 baos write (decData ,0,decData length),
35

36 iry

37 {

38 o = o1s readObject (),

39 }

40 catch (Exception e)

41 {

42 o = null,

43 }

44 }

45 return baos toByteArray (),

.}

47
4  public static byte[] encryptData(byte[] data, Key k) throws Exception

49 {
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50
51
52
53
54
55
56
67
58
69
60
61
62
63
64
65
66
67
68

69

int blocksize = 32,

ByteArrayOutputStream baos =
ObjectOutputStream o0o0s = new

new ByteArrayOutputStream (),
ObjectOutputStream(baos ),

Cipher ¢ = Cipher getInstance(”RSA”),

¢ n1t (Cipher ENCRYPTMODE, k
int count = 0,

for(count = 0, count < (data

{

)

length — blocksize ), count += blocksize)

byte [} encData = ¢ doFinal(data,count,blocksize),

oos writeObject(encData),

}

byte[] final_data = ¢ doFinal(data,count,(data length — count)),

oos writeObject(final_data),
return baos toByteArray ()},
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