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Preface 
 

During the period 1970 - 1990, Japan taught Europe and America the 
importance of quality in manufactured goods. The West learned the hard way: 
markets were quickly lost to companies whose names were hitherto unknown. 
Many long established and well respected Western companies were unable to 
meet the challenge and consequently failed to survive. Those that did were often 
faced with difficult years, as their share of the market shrank. Most companies in 
Europe and America have largely come to terms with this and now realise that 
quality has a vital role in establishing and maintaining customer loyalty. In the 
present climate of opinion, any technology which improves or simply guarantees 
product quality is welcome.  

Machine vision is a relatively new technology, which has much to offer 
manufacturing industry in improving product quality and safety, as well as 
enhancing process efficiency and operational safety. Machine vision owes its 
rising popularity to one major factor: optical sensing is inherently clean, safe  
(because it a non-contacting technology) and very versatile. It is possible to do 
certain things using vision (both human and machine) that no other known 
sensing method can achieve - imagine trying to sense stains, rust or surface 
corrosion by any other means. 

 

 
Designing a machine vision system is like assembling a jigsaw. 

 
Among other component technologies machine vision involves the digitisation, 

manipulation and analysis of images, usually within a computer, a subject which 
is also covered by the terms image processing and computer vision. However, we 
must emphasise that machine vision, computer vision and image processing are 
not synonymous. None is a subset of either of the others. Computer vision is a 
branch of Computer Science, while machine vision is an area of specialisation 
within Systems Engineering. Notice, in particular, the use of the words "Science" 
and "Engineering" here. Machine vision does not necessarily imply the use of a 
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computer; specialised image processing hardware is often used to obtain higher 
processing speeds than a conventional computer can achieve. 

Machine vision system for industry first received serious attention in the mid-
1970s, although the proposal that a video system be used for industrial inspection 
was first made in the 1930s. Throughout the early 1980s, the subject developed 
slowly, with a steady contribution being made by the academic research 
community, but with only limited industrial interest being shown. It seemed in the 
mid-1980s that there would be a major boost to progress, with serious interest 
being shown in vision systems by the major American automobile manufacturers. 
Then, came a period of serious disillusionment in the USA, with a large number 
of small vision companies failing to survive. In the late 1980s and early 1990s, 
interest has grown markedly, due largely to significant progress being made in 
making fast, dedicated image digitisation and processing hardware. In the mid-
1990s, the role of the general purpose processor is being revised, with the modern 
RISC processors offering high processing speed on a standard computing 
platform. Throughout this period, academic workers have been steadily proving 
feasibility in a very wide range of products, representing all of the major branches 
of manufacturing industry.  

 

 
Soon after starting work, machine vision is seen as a confusing jumble of  

disconnected ideas. 
 
Industrial image processing systems, which necessarily form part of a vision 

system, have developed very considerably in the last decade. In addition, there 
have been major advances in other component technologies: image sensors, 
specialised lighting units, lenses and advisor (CAD) programs, which guide a  
vision engineer through the initial stages of the design process. However, systems 
integration remains the key factor for the successful design and operation of a 
machine vision system. 

Having separated the subjects of machine vision and image processing, our first 
task in this book is to introduce the reader to the basic concepts of image 
processing, as they apply to our subject. (Chapter 2) There are numerous 
techniques for manipulating images that are either not used, at all, or are used very 
infrequently in machine vision. Wherever there are problems of computational 
speed, machine vision systems engineers will either seek another solution, or 
avoid the problem entirely. Standard image processing techniques are able to 
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achieve some remarkable results but they could not be described as being 
intelligent. By adding a certain level of intelligence, through the integration of 
image processing software and the AI language Prolog, we are able to do certain 
things that would otherwise be impossible. For example, analysing the image of a 
standard ("analogue") clock, in order to tell the time is one such task that could 
not be solved using "traditional" image processing methods working on their own. 
We shall, therefore, devote much of the discussion in this book to explaining how 
intelligence can be provided to image processing, or alternatively, how Artificial 
Intelligence can be given "eyes".  All of this is done with one goal in mind: to 
improve the prospects for installing machine vision systems in factories. 

 

 
Eventually,  the pieces fit together. However, if one piece is missing, the result 

is imperfect; system integration is incomplete.  
 
There is a serious bottleneck in the design of machine vision systems: a high 

level of skilled man-power is needed to achieve an effective design. To illustrate 
the problem, consider the case of just one organisation, which has over 60000 
products. That company operates a policy which tries to maintain at least 25% of 
its sales on products that are not more than 5 years old. Simple arithmetic shows 
that over 10 new product are being introduced by that one company alone, every 
working day. If we were to use a machine vision system on only 1% of those new 
product lines, we would need to design, build, install and test a new system once 
every 2 weeks. At the moment, the design process typically takes several months 
and there are simply not enough machine vision engineers to provide that kind of  
level of support, even for that one company. We desperately need more well-
educated machine vision systems engineers. We also need improved design tools. 
By claiming that machine vision is a flexible technology, without having the man-
power available to fulfil that boast is simply foolish. Such "overselling" of the 
virtues of machine vision technology was largely responsible for the collapse in 
credibility and confidence in the mid-1980s, to which we referred earlier. We 
need both improved educational material and better engineering tools, if we are to 
meet the challenge that this subject imposes upon us. (Chapter 3) Working in such 
a flexible and potentially beneficial technology carries responsibilities, because it 
is upon our shoulders that its future development and exploitation lies.   

The user interface is all important, since this will either make a system 
acceptable or damn it to certain failure. For this reason, we shall discuss the 
prospects for using multi-media interfaces, including, hypertext, speech synthesis, 
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speech recognition and natural language understanding. In Chapter 4, we also 
discuss the use of multi-camera and multi-processor systems, since it is clear that 
considerable advantage can be obtained from the use of systems that are able to 
communicate information about what they see to each other. 

 

 
System integration is complete; all elements are now in place. The result is 

perfect (machine) vision. 
 
Industrial machine vision systems would be virtually useless if it were not 

possible to control external devices, such as lamps, cameras, lenses, robots, etc. A 
good deal of attention will therefore be paid to this topic. (Chapter 5) We devote a 
whole chapter (Chapter 6) to the task of recognising coloured objects. The 
approach we take here is one which has not always found favour with Colour 
Scientists  - but it works! 

We conclude by discussing several case studies, which may seem to concentrate 
on unimportant tasks, such as recognising playing cards, telling the time, etc. 
However, all of the applications that we discuss in Chapter 7 reflect industrially 
important tasks, in a way which allows us to write freely about the technical 
issues, without violating commercial confidence. 

It is customary in many areas of public writing to use so called gender-neutral 
phrases, such as "he / she", "his / her” , "s/he" etc. We regard these as being both 
clumsy and counter-productive. In this book, we use the words, "he" and "him" in 
the traditional way, to include both sexes, without claiming precedence for either. 
This is done to improve clarity and to avoid placing women after men, as "he / 
she" does. 

While many of the ideas the ideas outlined in this book can be implemented on 
a range of computers, an integrated software package, called PIP (Prolog Image 
Processing), has been designed specifically for this and runs on Macintosh 
computers. Readers who wish to gain access to PIP should contact Bruce 
Batchelor or Andrew Jones at the University of Wales, Cardiff. An interactive 
image processing package for the Windows  environment, without Prolog, has 
also been developed. This is called MvT (Machine Vision Tutorial) and is 
available from Paul Whelan at Dublin City University. For current information on 
our research and the status of the PIP and MvT software packages, please consult 
our WWW sites. 

 
Bruce G. Batchelor 
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Paul F. Whelan 
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1        
 
Basic Concepts 

 
 
 
 
 
As a mature research topic, machine vision dates back to the mid-1960s. Early 

work at a range of institutions, including the National Physical Laboratory (UK), 
SIRA (UK), SRI, MIT and Edinburgh University, demonstrated the potential of 
machine vision in inspection, robotic control and automated assembly. Machine 
vision is an umbrella term used to describe many different types of vision systems, 
but in general, machine vision systems are used in the automated processing, 
analysis and understanding of images in an industrial environment. A more formal 
definition is given as follows: 

 
"The use of devices for optical, non-contact sensing to automatically receive 
and interpret an image of a real scene in order to obtain information and/or 
control machines or processes."                                                      [AVA-85] 

 
Machine vision systems should not necessarily be modelled on, or attempt to 

emulate human vision [HOC-87]. Whereas the analysis of human vision is useful 
to those working in perception psychology and computer vision, it is not as 
relevant to vision engineers trying to solve industrial problems. This does not 
mean that researchers should abandon the goal of trying to develop human-like 
vision systems. As well as the obvious results of such research, the pursuit of such 
goals may result in some useful techniques that can be applied in a more practical 
context. Human analogies, while useful stimulants for ideas, should not be 
followed dogmatically [LEE-89]. The danger in relying on such human driven 
approaches to the development of industrial vision systems is that simpler, and 
perhaps more elegant, solutions may be overlooked.  

1.1 Industrial Vision Systems 
The design of industrial vision systems, see Figure 1.1, requires a broad 

spectrum of techniques and disciplines [BAT-85]. These include electronic 
engineering (hardware and software design), engineering mathematics, physics 
(optics and lighting) and mechanical engineering (since industrial vision systems 
deal with a mainly mechanical world). Detailed descriptions of the techniques and 
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algorithms involved in the analysis, processing and interpretation of digital images 
can be found in a growing number of text books that cover the field of machine 
vision (see Appendix C). A summary of the techniques and issues involved in the 
design of industrial vision systems can be found in a collection of papers on 
industrial machine vision systems collated by Batchelor and Whelan [BAT-94]. 

However, many industrial vision systems continue to be designed from a purely 
software engineering perspective, without consideration for any of the other 
system disciplines. While it is acknowledged that the software engineering task in 
machine vision is a critical one, the other system elements are neglected at our 
peril. No single discipline should be emphasised at the expense of the others. 
Lately, a number of researchers [HAR-92, PAV-92] have argued for the design of 
vision systems to be firmly placed back into a systems engineering framework. 
This arises from the belief that an inadequate amount of vision research deals with 
the genuine design and systems problems involved in the implementation of 
industrial vision systems. [SIM-81] 

One of the reasons for the current growth of machine vision systems in 
manufacturing is the falling cost of computing power. This has led to a spread in 
the technology and has enabled the development of cheaper machine vision 
systems. This, in turn, has enabled medium-sized manufacturing companies to 
consider the option of using machine vision to implement their inspection tasks. 
To a lesser extent, the availability of a well educated work-force, a small 
proportion of which has an awareness of machine vision, has also aided the 
growth, and acceptance, of industrial vision systems.  

The main reason, however, for this growth is strategic. That is the realisation 
within many industries that machine vision is an integral component of a long 
term automation development process, especially when one considers the 
importance of quality in manufacturing. This, combined with the legal liabilities 
involved in the production and sale of defective products, highlights the strategic 
case for the use of machine vision in automated inspection. A similar argument 
applies to the application of vision to robotics and automated assembly. 

The main application areas for industrial vision systems occur in automated 
inspection and measurement and, to a lesser extent, robotic vision. Automated 
visual inspection and measurement systems have, in the past, tended to develop 
faster. In fact, quality control related applications such as inspection, gauging and 
recognition, currently account for well over half of the machine vision market. 
This has been mainly due to the lower cost and the ease of retrofitting such 
inspection systems onto existing production lines, compared to the large capital 
investment involved in developing a completely new robotic work cell and the 
extra uncertainty and risks involved in integrating two new and complex 
technologies. 
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Figure 1.1 Machine vision system components. 

1.1.1 Justification 

Machine vision is maturing as a technology as more engineers are entering the 
field and more companies are availing of its benefits. Many others, however, are 
hesitant or unwilling to commit themselves to using vision, because they fear the 
capital, development, installation and maintenance costs involved. These 
reservations are understandable if they try to justify the investment in terms of the 
primary financial measurements: return on investment, return on capital employed 
and pay-back periods. There are, however, many tangible benefits that can be 
used to justify the investment, such as improved product quality and safety, 
increased productivity, improved operational safety and reduced waste. The 
subsequent reduced warranty and reshipment costs, increased accuracy and 
repeatability, and lower error rate compared to manual inspection are all 
significant benefits. 

For the majority of machine vision applications the cost of the vision system is 
small, relative to the total cost (and overall technology content) of automating a 
new production line [KRU-81]. It is vital that the installation of a machine vision 
system does not hinder the overall operation of the production line. Introducing a 
machine vision system into a production process, without fully considering all the 
implications will result in false expectations of the system’s capabilities [HOL-
84]. (See Appendix A, for a light-hearted look at the opinions and folklore that 
surround machine vision, and Appendix B, for a list of some of the factors 
involved in the design and installation of a vision system.) Some of the key 
questions that must be considered by a manufacturer prior to the commissioning 
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of a new vision system, are given below (see [HOL-84] for a more detailed 
discussion of these issues).  

 
• Will the inclusion of the machine vision system affect the production  

  speed ?  
• Will the manufacturing process have to be modified to accommodate the 

  introduction of the vision system ? 
• Will the production line have to be retrofitted with the automated vision 

  system, or does the vision integrator have total control over the  
  inspection environment ?  
• Will the vision system require custom plant, process and/or environment 

  changes ? 
• As the production demands change, can the vision system be easily  

  reconfigured ? 
• How often will the vision system need to be serviced and can this be  

  accommodated by the overall line service schedule ?  
 
Machine vision inspection systems now appear in every major industrial sector, 

areas such as electronics, automotive, medical, food, and manufacturing 
industries. (See [BAT-94, CHI-82, CHI-88 WAL-88] for a more complete 
discussion of machine vision applications.) Such applications still tend to use 
automated visual inspection as open-loop systems. That is they allow 
manufacturers to inspect every single product, without suffering a loss in product 
throughput, but without having a direct affect on the processing of the product 
itself. As manufacturing technology becomes more complex, there is a growing 
requirement to integrate the inspection process more closely with the overall 
manufacturing process [MCC-92, MCC-93]. This moves the application of 
automated inspection from a quality control to a process control role, that is, from 
defect detection to defect prevention. 

1.1.2 Limitations of Present Systems 

Unfortunately, machine vision has had a rather chequered background. In the 
past, customers have had unrealistic expectations, often fuelled by the vision 
industry. Over the last two decades, some vision integrators have unsuccessfully 
stretched the use of vision systems, to the extent that certain industries have had 
their 'fingers burnt' after receiving false and unrealistic promises and 
disappointing results. However, it must be emphasised that these examples remain 
in the minority. Difficulties were often compounded by the fact that many end 
users did not know how to assess the performance of vision systems [RUM-89].  

It may seem obvious to say that one of the key steps in any automated 
inspection application is to know exactly what you are inspecting [FRE-88]. 
Unfortunately, vision systems will often be applied to products and tasks that are 
outside its original specification, without any appreciation of the different visual 
characteristics of the new application. Therefore, it is important for vision system 
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designers to outline the strengths, and more importantly, the weaknesses of their 
vision systems from the beginning of the design process.  

While the use of machine vision systems in industry has grown in the last few 
years, and continues to be seen as an area of automation with enormous potential, 
it still has a long way to go before it is universally accepted as a standard 
automation tool. Pavlidis [PAV-92] has identified some of the reasons for this 
slow growth and these are summarised below: 

 
• Absence of systematic testing and experimentation. This suggests that  

  machine vision lacks one of the key features of engineering. 
• Researchers are not facing up to how difficult the problem is. 
• No accepted sub-goals. There is a tendency to adopt 'all or nothing'  

  research strategies. 
 
Machine vision systems are not perfect tools and researchers and engineers 

must be aware of the realities of a given application, as well as the ultimate aim of 
the inspection and/or assembly task. For example, the application of vision to 
automated assembly can be impressive to watch, but often deceptive. If one of the 
pieces to be assembled is rotated or moved slightly, then the system may not be 
able to cope with this change in its working environment [LEE-89]. However, if 
the constraints of the system, such as its inability to cope with such environmental 
changes, are made clear, then the system can serve a useful purpose.  

Haralick [HAR-92] emphasises the importance of characterising the 
performance of vision systems and procedures. He makes the point that, whether 
it is called an adaptive, intelligent or a self-learning system, all such systems are 
making estimates. Therefore, there is a need to measure such estimates by the 
application of rigorous engineering performance criteria. He calls for a more 
rigorous approach when discussing system errors and for a systems engineering 
framework that will meet the realities of the manufacturing process. 

There is also a need to educate the customer about vision in a broader context, 
rather than just concentrating on their immediate application needs. This 
education process should be continuous, beginning at the feasibility study stage, 
right up to the final installation, and not just a token gesture undertaken towards 
the end of the installation phase. A customer who has a reasonable knowledge of 
the vision application will be more open to suggesting changes in the process. 
This will be true, especially if the system integrator can show that there is a 
possibility of reducing the complexity of the image analysis (and systems cost), 
thus leading to a better engineered solution.  

Education is vitally important but this is not the total solution, since there is also 
a need for the development of more flexible vision systems that can handle a 
larger class of objects, under less constrained manufacturing conditions. Vision 
engineers should also begin providing standard solutions to automation problems 
and not selling machine vision technology for its own sake. This requires an 
understanding of the problem, at a systems level. Any tendency for vision 
engineers to shy away from the systems problems will reduce the likelihood of a 
successful application implementation. 
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1.1.3 Flexible Manufacturing Systems 

When considering all of manufacturing industry, the presence of 'smart' 
automation is minimal in extent at the moment, although there are high local 
concentrations. It requires new flexible techniques that combine the strengths of 
the work that has been done in the development of industrial material handling 
and automated inspection systems, combined with the growing research into 
assembly strategies. Such systems would avoid the need for substantial retooling 
between product changes, and would enable manufacturing systems to cope with 
an increasing number of product variants [RUM-89]. 

Such systems would also have the flexibility to respond to changes in the 
production line, manufacture or assembly procedures [HOS-90]. Depending on 
the design of a product, additive, multiple-insertion or combinational assembly 
processes are used. With multiple-insertion, the inspection process can be carried 
out at the end of the manufacturing cycle. However, with additive and 
combinational assembly processes, inspection must be carried out on each part, as 
it is inserted. Therefore, visually controlled assembly systems also have the added 
bonus of some form of gross inspection of the product under assembly, even if 
this is only finding the nature and orientation of the parts to be assembled [WAL-
88].  

The majority of industrial assembly systems are either manually operated, or use 
semi-automation to some degree. However, these systems can be unreliable. 
Reasons for such unreliability include the lack of any automated visual feedback 
and/or discrepancies of the human operators. Therefore, such systems tend to be 
expensive to operate. This is especially the case in Western Europe and the US, 
where it is difficult for manufacturers to match the labour costs involved in 
manual assembly, when compared to the Far East and the former Eastern Bloc 
countries. The use of robots in materials handling eliminates the need to have 
human beings performing monotonous, exhausting or hazardous work. This is an 
increasingly important factor, since it is generally becoming socially 
unacceptable1 for people to perform boring, repetitive, 'robot-like' jobs. Hence, 
the need for automated systems is not necessarily about the displacement of 
labour [NEM-95], but is concerned instead with the growing expectations of an 
increasingly educated labour force and economic realities of the industrialised 
world.  

Although the application of robotics and vision to parts assembly has great 
potential [OWE-85, HAR-87] and will strongly influence the competitiveness of 
the European Community, it is currently lacking in European industry [DEL-92]. 
This has been recognised by the European Community through its funding of 
major projects such as ESPRIT, BRITE and more specifically the EUREKA 
projects that fall under the umbrella term FAMOS (a German acronym for flexible 
automated assembly systems). The FAMOS-EUREKA projects have targeted one 

                                                           
1 This is not always the case. There are important social issues at stake here 

[BAT-95]. However, a discussion of these concerns is beyond the scope of this 
book. 
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of the weakest points in Europe's manufacturing industries, with the objective of 
reversing the decline of more than two decades. This is especially relevant to the 
manufacture of products such as cameras, motorcycles and domestic appliances. 
Its aim is to create automated assembly systems which are flexible enough to 
enable manufacturers to change product lines when needed and to produce small 
batches of products efficiently. These projects include participants from a wide 
range of European industries and universities [EUR-89].  

In the past, automated assembly systems have been developed mainly for 
handling high volume production (greater than 100,000 parts per annum), with a 
low number of variants (between 1 and 3 different types). However, current 
production assembly demands include: 

 
• A high degree of flexibility. 
• Wider range of applications with greater numbers of different versions  

 and models. 
• Small batch runs and shorter production times. 75% of applications are  

 in small to medium batches (≤ 50 items). 
• Integrated quality control. 
• Long unmanned operation periods with unmanned transfer vehicles. 
• Ease of integration into the current production line. 
• Ability to handle customised products. 

 
In reporting on a review of the key features of automated assembly systems 

based on 22 German companies, Delchambre [DEL-92] highlights the fact that 
98% of products are made of fewer than 25 parts, and that 90% of parts weigh less 
than 1Kg. 

1.1.4 Process Control 

In the modern manufacturing environment, economy of scope is becoming as 
important as economy of scale. Companies must be able to produce a variety of 
products using a flexible manufacturing system, while maintaining a very high 
level of quality. There is a need to extend the role of machine vision beyond that 
of inspection, to become the key controlling element in a closed loop process. 
Such integration will allow flexible control of the production line, using defect 
information to locate fault sources and allowing automatic feedback for 
adjustment and correction, as well as monitoring the overall efficiency.  

Product lifetimes are being reduced all the time. This, coupled with an ever 
increasing demand for higher quality, is forcing manufacturers to produce a larger 
variety of products, to higher standards, with a much shorter lead time, from 
initial design to a commercial product reaching the market place. Satisfying these 
new manufacturing conditions necessitates the use of flexible automation, with 
better process control and a far higher level of integration. There are considerable 
technological challenges that must be overcome to attain these goals. Machine 
vision should be able to make a significant contribution to their achievement. 
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There are enormous benefits to be attained from integrating vision into the 
process control of Discrete Event Dynamic Systems, (DEDS), producing discrete 
parts or products. This type of integration will make the automated process far 
more flexible, making it easier to accommodate product design changes and the 
introduction of new products, thereby reducing the cost of short manufacturing 
runs. It should allow the control system in a multi-product plant to handle a large 
mix of products, by using appropriate processing and analysis software for each 
product. The vision system will achieve quality assurance through process 
feedback, giving better built-in quality. It will aid in the fine tuning of the process 
thus reducing variance. The vision system can be used to monitor the effects of 
process changes, the introduction of new machines, maintenance, and process 
improvements. It should reduce the response time for the correction of fault 
sources in comparison to the manual equivalent because the integrated system can 
collect and analyse large amounts of data very quickly.  

Such systems should allow defect prevention by monitoring trends and 
generating the appropriate feedback signals for automatic correction of the 
process. However, in some situations, the process monitoring system will merely 
alert the factory personnel, so that they can schedule preventative maintenance, 
before defective products are produced. Adjusting machines before they have any 
serious problems should increase uptime, which is very important in any plant, but 
particularly if a “Just-In-Time” system of manufacturing is employed. In-process 
monitoring will also facilitate automatic and dynamic construction of  inventory, 
allowing reduced buffer storage, product routing (thus improving machine 
utilisation), and general production scheduling. It will free quality assurance 
personnel from time-consuming data collection, processing and interpretation of 
results, allowing them to concentrate on process improvements and manual 
trouble-shooting.  

Vision provides a wealth of information about a process, in comparison with the 
majority of other sensors, which for the most part only provide binary (on/off), 
information and has limited use in generating control signals. Any control system 
has to be well informed to make good control decisions! The parts being 
manufactured are like 'windows' into the process. A control system can use 
machine vision to look through these windows. An intelligent vision-based 
controller using a priori process knowledge, could locate the cause of the 
problem. It may even be able to fix it automatically. Mechanical breakdowns and 
component failures would have to reported to an operator, while parts are re-
routed away from the faulty machines. 

1.2 Systems Engineering 
Machine intelligence is not an exercise in philosophy but an engineering 
project.                                                            [MIC-86] 
 
The aim of this section is to define the current state of machine vision, as seen 

from a systems engineering perspective. An essential part of this is a discussion of 
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some of the research areas that must be studied, in order to advance the 
development of industrial vision systems. The views presented in this section have 
arisen from the authors involvement with machine vision systems engineering, in 
both industry and academia.  

1.2.1 Importance of Context 

During the development of machine vision systems over the last 30 years there 
have been two main approaches. One approach that researchers took was the 
development of general purpose vision systems. (Section 2.9 discusses 
commercial vision systems.) These systems mainly concentrated on the software 
aspect of the vision task, and due to the generality of such systems, vision 
integrators were faced with a wide and varied range of image processing, and to a 
lesser extent, image analysis techniques. The main challenge facing system 
designers is to reduce the complexity of the system, to enable it to carry out the 
required inspection functions, under the tight budgetary and operating conditions 
required by industry. The success of such systems in the manufacturing 
environment have been limited, since they require a significant amount of work 
and reprogramming to get them to perform a practical vision task.  

The second approach is based on generating turn-key vision systems which 
provide total solutions to a given industrial task. These systems have the 
advantage of being tuned to a specific application. They tackle the problem rather 
than trying to fit the task to a collection of software procedures which are looking 
for an application. However, the second approach will only work effectively if the 
designer takes into account the context of the industrial application.  

So, what is meant by the context of a machine vision system? The Collins 
English dictionary definition of “context” is given as "conditions and 
circumstances of an event". For example, one can recognise and understand 
abstract words in the context of a sentence structure with less difficulty when 
compared to viewing/hearing such words in isolation [DRE-86]. This highlights 
the strength and importance of context in trying to make sense of the world 
around us. Likewise, in the successful development of machine vision systems, 
whether inspection or robotic vision, it is necessary to view the problem in its 
entirety. All possible considerations, electronic, optical and mechanical must be 
considered. This is not an easy task, and many vision system designers feel 
uncomfortable dealing with system issues, which are often outside their own area 
of expertise.  

The complexity of a machine vision application is largely a reflection of the 
complexity of the environment in which it finds itself [SIM-81]. Therefore, a 
successful vision application requires a total systems approach and requires a  
range of engineering and practical skills to deal with the complex industrial 
environment. When faced with a specific application requirement, it is always 
well worthwhile analysing the problem from a systems engineering perspective. 
By adopting a systems approach, the maximum use is made of problem-specific 
"contextual" information, derived, for example, from the nature of the product 
being handled, the process used to manufacture it and the special features of the 
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manufacturing environment. Doing this, it is often found that the complexity of 
the application can be reduced. 

Researchers and engineers must also be open to the idea that vision may not be 
the appropriate or ideal approach for the task at hand. Some tasks that the end user 
may see as being a suitable application for machine vision, may in fact be better 
served by using other engineering approaches, such as the use of mechanical 
sensors, optical and electronic transducers. Some of the unsuccessful vision 
applications of the past have been caused by applying vision technology in 
inappropriate ways. For machine vision to become generally accepted by the 
manufacturing community, it must concentrate on tackling the industrial 
problems, rather than try to employ a given technology for its own sake. There are 
considerable benefits in adhering to the Japanese philosophy of restricting the 
tasks to suit the capabilities of the equipment. 

1.2.2 Industrial Examples 

The two case studies discussed in this section illustrate the complexities of 
designing and building an industrial vision system and emphasise how detailed 
knowledge of the application context can simplify the vision system design. The 
purpose of including these case studies here is to explain the development of 
industrial vision systems while concentrating on the systems engineering approach 
to the vision problem, rather than the image analysis and processing routines. 

The first case study outlines the automated on-line inspection of plastic screw-
on bottle tops. At a certain stage during the manufacture, the preformed plastic 
bottle tops are passed through a sealing machine, which inserts a grey plastic seal  
into the bottle top. The product loading station then places the bottle tops, in 
single file, onto the large product placement star-wheel shown in Figure 1.2. This 
transports the bottle tops beneath the camera and lighting inspection head. The 
image of the bottle top is then analysed and an accept/reject decision is made. 
During the analysis stage, the bottle tops are moved into the product unloading 
station. By the time, the bottle tops arrive there, the product has already been 
classified and the unloading station removes the product from the starwheel. It is 
then placed on one of two conveyors depending on whether an accept or reject 
decision has been made. 

Due to tight budgetary constraints and the computational overhead involved in 
colour processing, the use of a colour camera was not a feasible option. This 
difficulty was overcome by placing a motor-controlled colour filter carousel 
between the inspection head and the product placement starwheel (Figure 1.2). 
The carousel places a colour filter in the inspection system’s optical path. The 
selection of the colour filter depends on the colour of the bottle top to be 
inspected. The choice of the filter is under menu control and is selected to achieve 
maximum contrast between the bottle top and its grey seal. Although changing of 
the colour filter is slow compared to the inspection speed of the bottle tops, this is 
not a problem, since the bottle top’s colour only change between batches, and not 
within a given batch cycle. This leaves ample time for the vision system to change 
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the colour filter automatically, based on the menu settings chosen by the line 
operator. 

 
 

E

A

B

C

D

 
 

Figure 1.2 Plastic bottle top handling and inspection system. A. Inspection 
head - camera and lighting unit, B. Colour filter carousel, C. Product 
placement star-wheel, D. Product loading station (This feeds the bottle tops 
from the sealing machine and places them on the star-wheel for inspection) E. 
Image analysis system. 
 
It is often surprising the extent to which a product’s design can be constrained 

to suit the limitations of the vision system, without adversely affecting the 
product’s functionality, aesthetics or the ability to manufacture the product [RED-
91]. Although it can be argued  that this imposes intolerable constraints on the 
product design, these restrictions need not be any more rigid than those imposed 
by good design for 'manufacturability'. For example, in the second case study the 
vision system designers were faced with the task of checking for colour mis-
registration on high quality printed cartons. In this case, the product was slightly 
modified, to simplify the image analysis task. 

The manual method of inspecting for colour mis-registration requires the 
examination of the printed sheets, after they have been cut into individual cartons, 
folded and passed through the gluing stage. Gross registration errors are obvious 
to the inspector after an initial glance at the carton, whereas slight registration 
errors are found by viewing the printer’s registration mark. (This mark is printed 
on a part of the carton that is hidden from consumer, once the carton is assembled. 
See Figure 1.3.) Due to the highly automated nature of the printing process, there 
are few gross registration errors. In practice, the majority of errors are due to 
slight slippages in the printing process. These slight registration errors are difficult 
to find and classify manually. 
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Figure 1.3 Registration symbol for manual inspection. The figure on the left 
indicates correct registration. The figure on the right indicates incorrect 
registration of two overlaid registration marks. 
 
Figure 1.3 shows an example of a manual registration mark, initially printed in 

black on a white background As each new colour is applied to the carton, a new 
registration mark, of the same design but in the new colour, is overlaid on the 
original printed mark. Therefore, if all the colours are registered correctly, they 
produce a single well defined registration mark. However, if any type of mis-
registration occurs, the registration mark for that colour appears shifted with 
respect to the black reference mark. 

The inspection of the original design for the registration mark (Figure 1.3) was  
difficult for the machine vision system to handle. The registration mark is not only 
difficult to describe, but if mis-registration occurs the image becomes more 
complex and hence more difficult for a machine vision system to analyse2.  

In this instance, the product modification simply involved the redesign of the 
registration mark (Figure 1.4). This new registration mark consists of an outer 
black circle which contains a number of solid coloured disks, one for each of the 
subtractive primaries (magenta, yellow and cyan), and a fourth solid disk, 
representing the extra solid colour to be printed (green in this application). This is 
printed on a white background. The black ring is laid down first and acts as the 
registration reference colour. As each colour is applied by the printing process, a 
solid disk of that colour is also printed inside the black reference ring. The offset 
of each of these disks, measured from the centre of the black ring, gives a measure 
of the position for that colour imprint with reference to black. 
 The ability to modify the product to suit the vision system’s capabilities and 
strengths, highlights the benefits of holding detailed discussions with the end user 
during the feasibility study. If the end user is involved from the beginning of the 
design process, the designer may be fortunate to find that the customer is willing 
to consider changes in product presentation which will simplify the vision task. 
This is more likely, of course, if it can be shown that system costs can be reduced 
by doing so. The use of this custom registration mark, developed in conjunction 
with the end user, transformed a potentially difficult and expensive vision task 
into a much simpler one. 

                                                           
2 Humans and machine vision systems often use different recognition criteria. 

Therefore, the two approaches should not be confused. 
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Complete knowledge of the application context cannot always be achieved. 
Therefore, there is a need for vision systems to contain procedures that can deal 
reliably with missing or ambiguous information. Also, in many applications, only 
partial control over the working environment can be realistically achieved. There 
will always be some application specific obstacles that cannot be removed by the 
use of the systems engineering approach to the task [LEE-89]. The trade-off of 
potential usage (i.e. generality of the application and flexibility) versus simplicity 
is an important decision to be made during the design of a machine vision system. 

 

 
 

Figure 1.4 Modified colour registration symbol. The figure on the left 
indicates correct registration. The figure on the right indicates incorrect 
registration of the lower inner disk. 

1.3 Intelligent Vision 
There is more to (machine) vision than meets the eye. 

 
As mentioned earlier, the majority of industrial vision applications are 

concerned with the inspection and/or automated assembly of simple, well defined, 
mass produced goods. Nevertheless this only forms a small proportion of the 
overall manufacturing industry; the majority of manufactured goods are made in 
batches of 50 or less [BAT-91]. Consequently, there is a need to make vision 
systems more flexible to cope with the different demands of small batch 
manufacture, particularly the ability to have a fast application turnaround. 

This points towards the need to develop a new generation of 'intelligent' (or 
adaptive3) industrial vision systems. Intelligence is needed 

 
                                                           

3 The term 'intelligent' can be interpreted in different ways, but it is often taken 
to imply the imparting of human intelligence to a machine. This is not what we are 
necessarily interested in as machine vision designers, but rather the development 
of vision systems that will have the capability of adapting to the changing world 
around it. This may use artificial intelligence techniques but will not necessarily 
depend on them. Some authors prefer to use the term 'adaptive' rather than 
'intelligent', however, the use of the term 'artificial intelligence' is now so 
ingrained in engineering and science communities, for both good and bad reasons, 
that it is not possible to dispense with it entirely. Therefore, it is advisable to 
qualify the use of such a term. 
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• to interpret the description of the object to be recognised 
• to interpret a complex visual scene 
• to plan actions following the recognition process. 
 
It is clear from even simple situations that intelligence and vision are 

intrinsically dependent upon each other. Intelligence needs vision to supply it with 
sensory data. Vision needs intelligence to resolve ambiguities in visual scenes and 
to make high-level judgements about what a complex scene contains. 

To ensure that this new generation of vision systems is flexible, it really is  
necessary to use techniques that can cope with less constrained manufacturing 
environments, through the use of heuristics in conjunction with algorithmic 
procedures. 

There is also a need to develop robotic vision systems which have a more 
adaptive visual feedback capability, such as the ability to manipulate arbitrary 
shapes under visual control [WHE-93]. The development of such adaptive 
visually controlled work cells will accelerate the growth of robotic vision systems 
in industry.  

The development of generic tools to deal with visual cues, such as shape, size, 
colour and texture, must still have a high priority. Indeed, this continues to be one 
of the key research challenges for the future. These generic descriptors will aid in 
the development of machine vision applications, but when faced with a specific 
application the problem should be viewed within a systems engineering 
framework. The use of the 'contextual' information should be maximised to 
simplify the task. For example, in a visually controlled 'pick and place' machine, 
there is often no inherent reason why each item cannot be presented to the 
machine in a predetermined place and orientation. Therefore by mechanically 
restricting the orientation and positioning of the device under inspection, the 
visual inspection task can be simplified. This type of demand may not always be 
unreasonable and should always be pursued [DRE-86].  

To advance from the current generation of machine vision systems to a new, 
more flexible family requires addressing a number of key issues: 

 
• Development of adaptive (intelligent) machine vision systems. 
• Application of a systems engineering approach to industrial vision tasks. 
• Maximise the use of contextual information available from the product, 

  process and application environment. 
• The production of standard solutions to industrial problems. 
• Tackling of sub-goals. 
• Widening the application base. 
• The use of vision in a process and quality control role. 
• Performance characterisation tools. 
• Ability to deal with unclear or missing information. 
• Systematic testing and repeatable experimental results. 
• Generic tools to deal with common analysis features such as  shape, 

  size, colour and texture. 
• Investigation of algorithmic and heuristic procedures.  
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• Flexible, user friendly interfaces. 
• Broader education of the systems issues. 
 
Machine vision can only progress and become fully accepted in manufacturing 

industry, if it employs advances in vision research in a sensible way [PAV-92]. 

1.3.1 Heuristics and Algorithms 

While many of the current industrial applications of machine vision rely on 
implementing algorithmic procedures, the next generation of systems will make 
use of both algorithmic and heuristic approaches. The proper combination of these 
approaches will allow a more flexible approach to problem solving in the 
industrial domain. 

The heuristic approach to problem solving, is regarded by some researchers as a 
soft option, since it is perceived as relying on common sense rather than 
mathematical rigour. However, if often happens that the development of solutions 
based on heuristic techniques is a sensible option, and often the only one ! 

On a practical level, many important and varied industrial vision problems are 
full of peculiarities, that are difficult or even impossible to state mathematically. 
Hence there is a need for alternative approaches. This argument does not imply 
that heuristics are better, or worse, than a given algorithmic approach, but rather 
that the proper use of heuristic methods offers a powerful alternative and should 
always be considered when faced with difficult system design issues [PEA-84, 
TAY-88]. 

A heuristic method, as defined by Silver, Vidal and DeWerra [SIL-80], is a 
"procedure for the solving of well defined mathematical problems by an intuitive 
approach in which the structure of the problem can be interpreted and exploited 
intelligently to obtain a reasonable solution", and is not guaranteed to give an 
optimal solution. They also point out the main motivations for using heuristics, 
and although their paper is concerned with the use of such techniques in an 
operational research environment, these reasons have been generalised and are 
listed below.  

 
• The problem is such that an analytic or iterative solution is unknown. 
• An exact analytic or iterative solution may exist, but the implementation 

  may be computationally expensive and therefore impractical.  
• A heuristic method, may be simpler for the design engineer to  

  understand. 
• For a well-defined problem that can be solved optimally, a heuristic  

  method can be used for learning purposes.  
• A heuristic method may be used as part of an iterative procedure that  

  guarantees the finding of an optimal solution. 
• Heuristics can be used to give a good starting solution in implicit  

  enumeration approaches to a problem. This can help to reduce the  
  computational effort needed to search for an optimal solution. 



 16

 
One of the qualities that a good heuristic procedure should possess includes an 

average performance close to that of the 'optimal' solution (i.e. that is the 
closeness of the solution to optimal, rather than the time taken to compute the 
answer). Of course, such a performance measurement may not be possible in 
many applications, since one of the major reasons for using heuristics in the first 
place is that it may be impossible to find an optimal solution. Therefore, the use of 
heuristics requires quantitative performance measures to decide if the procedure is 
“good enough” (satisfactory). Other key performance considerations include fast 
heuristic execution, a small probability of worst-case performance occurring and 
that the solution should be simply designed and implemented easily and cheaply. 

There are problems relying on a purely heuristic approach: such approaches 
tend to be memory intensive. Moreover uncontrolled searches, if allowed, are time 
consuming. Therefore, heuristic procedures are most often used in applications 
where “intelligence” is more important than speed. For the benefit of the heuristic 
approach to be maximised, it is important for the designer to have an appreciation 
of the theoretical problem under consideration and the systems issues contained in 
it. The use of heuristics is no excuse for a reduction in engineering and scientific 
rigour. 

 
 
 

1.3.2 Artificial Intelligence (AI) Languages 

Artificial intelligence languages are currently found in a wide range of expert 
systems that aid knowledge representation, retrieval and presentation. The main 
families of languages used for AI programming include [ROB-89]: 

 
• Functional application languages (e.g. Lisp) 
• Logic programming languages (e.g. Prolog, Parlog) 
• Object oriented languages (e.g. Prolog++, Smalltalk). 
 
There is no single dominant language for AI applications. As with any 

programming task, the designer should chose the language that will allow him to 
carry out the task with the minimum of effort. In reality, many programmers have 
favourite languages, ones which they feel most comfortable using. The reasons for 
language choice can also be geographical or cultural. For example, Lisp is 
dominant in the US, while Prolog (which was developed in Europe) is commonly 
used in Europe and Japan. In the case of the work outlined in this book the 
authors have used Prolog. (The reasons for choosing this language will be 
outlined in Chapter 3.) However, this does not exclude the implementation of the 
ideas outlined in this book in other languages. 

The ideas behind the integration of AI languages and industrial vision 
applications are more recent. AI based industrial vision applications include: 
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• Automated packing of arbitrary shapes [WHE-93]. 
• The use of expert systems in process control [MCC-93]. 
• The use of expert systems in cake inspection [BAT-91]. 
• Inspection of food [BAT-91]. 

1.4 Book Outline  
Machine vision research and engineering has been discussed in a wide range of  

books and other forums. As a result, it often difficult for an author to find a fresh 
approach to the subject. The aim of this book is to look at the development of 
tools, techniques and systems that will enable vision engineers to design the next 
generation of industrial vision systems. Such systems will have to be more 
adaptive than their predecessors to their environment and for this reason have the 
appearance of intelligence. 

Chapter 2 lays the framework for this discussion, by reviewing the current state 
of machine vision engineering and pays particular attention to basic machine 
vision techniques. This chapter is aimed at readers with minimal prior experience 
of machine vision. More experienced readers will find most of this material 
familiar, although they may wish to use this chapter as a reference to the Prolog+ 
commands used in the remainder of the book. Chapter 3 introduces the reader to 
intelligent image processing. This discussion will include an introduction to 
interactive image processing and the Prolog+ vision language used by the authors 
in the development of intelligent vision systems. A number of Prolog+ programs 
are include to illustrate the power of this approach to image processing and 
analysis.  

Chapter 4 discusses intelligent systems that have been enhanced by expanding 
the basic Prolog+ concepts introduced in the previous chapter. As machine vision 
applications become more complex, the knowledge-based functions will also need 
to be automated. The use of expert systems to aid in the design of a vision systems 
optical arrangement, lighting configuration and even camera selection will 
become commonplace. The ideas behind this knowledge automation are also 
outlined in Chapter 4, which also deals with understanding simple spoken 
expressions and the integration of intelligent multi-camera systems within the 
Prolog+ environment. 

Since machine vision systems interact with a (mainly) mechanical world, the 
need for intelligent control of external devices is a key factor in the overall design 
of the vision system. Chapter 5 introduces a general purpose interface unit, 
developed for use with a flexible inspection cell in conjunction with Prolog+. 
Vision system calibration and a range of general system issues are also discussed 
in this chapter. Chapter 6 introduces the issues involved in colour image 
processing and analysis. It outlines a number of approaches to the colour imaging 
task. Chapter 7 puts the ideas outlined in the previous chapters into practice. A 
number of applications of intelligent vision systems to a range of industrial 
problems including food inspection and automated packing systems are covered. 



 18

There are five appendices. Appendix A presents some of the proverbs, opinions 
and folklore that surround machine vision. While this section is offered in a light-
hearted manner, it encapsulates some important lessons that we have learned but 
which are unfortunately not universally acknowledged or understood. Appendix B 
outlines some of the important factors that must be considered when designing a 
vision system. Appendix C contains a compilation of general reference material, 
useful for machine vision designers. This includes machine and computer vision 
texts, conference proceedings, special issues of relevant  journals, survey and 
review papers, lists of periodicals, journals and magazines relating to machine 
vision and references to a wealth of on-line Internet resources. Appendix D 
outlines the issues relating to a general purpose software implementation of 
Prolog+, while Appendix E summarises the Prolog+ commands used throughout 
this book. Finally, a glossary of machine vision terms is included. 

 
 



 
 

2        
 
Basic Machine Vision Techniques 

 
 
 
 
 
The purpose of this chapter is to outline some of the basic techniques used in 

the development of industrial machine vision systems. These are discussed in 
sufficient detail to understand the key ideas outlined elsewhere in this book. For a 
more detailed explanation of image processing and image analysis techniques, the 
reader should refer to the general reference material in Appendix C. In the 
following discussion we shall frequently indicate the equivalent Prolog+ operators 
for the vision techniques described. (A more detailed discussion of Prolog+ 
operators can be found in Chapter 3 and Appendix E.) Prolog+ commands appear 
in square brackets. In certain cases, sequences of Prolog+ commands are needed 
to perform an operation and these are similarly listed. 

2.1 Representations of Images 
We shall first consider the representation of Monochrome (grey-scale) images. 

Let i and j denote two integers where 1 ≤ i ≤ m and 1 ≤ j ≤ n. In addition, let f(i,j) 
denote an integer function such that 0 ≤ f(i,j) ≤ W. (W denotes the white level in a 
grey-scale image.) An array F will be called a digital image. 

 
 f(1,1), f(1,2), … f(1,n) 
 f(2,1), f(2,2), … f(2,n) 

F  = . . … . 
 . . … . 
 f(m,1), f(m,2), … f(m,n) 

 
An address (i,j) defines a position in F, called a pixel, pel or picture element. 

The elements of F denote the intensities within a number of small rectangular 
regions within a real (i.e. optical) image. (See Figure 2.1) Strictly speaking, f(i,j) 
measures the intensity at a single point but if the corresponding rectangular region 
is small enough, the approximation will be accurate enough for most purposes. 
The array F contains a total of m.n elements and this product is called the spatial 
resolution of F. We may arbitrarily assign intensities according to the following 
scheme:   
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f(i,j) = 0                             black  
0 < f(i,j) ≤ 0.33W              dark grey  
0.33W < f(i,j) ≤ 0.67W     mid-grey  
0.67W < f(i,j) < W             light grey  
f(i,j) = W                             white  

 
Let us consider how much data is required to represent a grey-scale image in 

this form. Each pixel requires the storage of log2(1+W) bits. This assumes that 
(1+W) is an integer power of two. If it is not, then log2(1+W) must be rounded up 
to the next integer. This can be represented using the ceiling function, < …
 >. Thus, a grey-scale image requires the storage of < log2(1+W)> bits. Since there 
are m.n pixels, the total data storage for the entire digital image F is equal to 
m.n.< log2(1+W)> bits. If m = n ≥ 128, and W ≥ 64, we can obtain a good image 
of a human face. Many of the industrial image processing systems in use 
nowadays manipulate images in which m = n = 512 and W = 255. This leads to a 
storage requirement of 256 Kbytes/image. A binary image is one in which only 
two intensity levels, black (0) and white (1), are permitted. This requires the 
storage of m.n bits/image.  

An impression of colour can be conveyed to the eye by superimposing four 
separate imprints. (Cyan, magenta, yellow and black inks are often used in 
printing.) Ciné film operates in a similar way, except that when different colours 
of light, rather than ink, are added together, three components (red, green and 
blue) suffice. Television operates in a similar way to film; the signal from a colour 
television camera may be represented using three components: R = {r(i,j)}; G = 
{g(i,j)}; B = {b(i,j)}, where R, G and B are defined in a similar way to F. The 
vector {r(i,j), g(i,j), b(i,j)} defines the intensity and colour at the point (i,j) in the 
colour image. (Colour image analysis is discussed in more detail in Chapter 6.) 
Multispectral images can also be represented using several monochrome images. 
The total amount of data required to code a colour image with r components is 
equal to m.n.r.< log2(1+W)> bits, where W is simply the maximum signal level on 
each of the channels. 

Ciné film and television will be referred to, in order to explain how moving 
scenes may be represented in digital form. A ciné film is, in effect, a time-sampled 
representation of the original moving scene. Each frame in the film is a standard 
colour, or monochrome image, and can be coded as such. Thus, a monochrome 
ciné film may be represented digitally as a sequence of two-dimensional arrays 
[F1, F2, F3, F4,...]. Each Fi is an m.n array of integers as we defined above, when 
discussing the coding of grey-scale images. If the film is in colour, then each of 
the Fi has three components. In the general case, when we have a sequence of r-
component colour images to code, we require m.n.p.r.< log2(1+W)> bits/image 
sequence, where the spatial resolution is m.n pixels, each spectral channel permits 
(1+W) intensity levels,  there are r spectral channels and p is the total number of 
"stills" in the image sequence.  

We have considered only those image representations which are relevant to the 
understanding of simple image processing and analysis functions. Many 
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alternative methods of coding images are possible but these are not relevant to this 
discussion. (See the general reference material in Appendix C for more 
information on this subject.) 

 

 
Figure 2.1 A digital image consisting of an array of m.n pixels. The pixel in 
the ith row and the jth column has an intensity equal to f(i,j). 

2.2 Elementary Image Processing Functions 
The following notation will be used throughout this section, in which we shall 

concentrate upon grey-scale images, unless otherwise stated. 
 
• i and j are row and column address variables and lie within the ranges:  
 1 ≤ i ≤ m and 1 ≤ j ≤ n. (Figure 2.1) 
• A = {a(i,j)}, B = {b(i,j)} and C = {c(i,j)}.  
• W denotes the white level. 
• g(X) is a function of a single independent variable X. 
• h(X,Y) is a function of two independent variables, X and Y.  
• The assignment operator '←' will be used to define an operation that is 

performed upon one data element. In order to indicate that an operation is to 
be performed upon all pixels within an image, the assignment operator  

 ‘⇐‘ will be used.  
• k, k1, k2, k3 are constants.  
• N(i,j) is that set of pixels arranged around the pixel (i,j) in the following 

way: 
 

(i-1, j-1) (i-1, j) (i-1, j+1) 
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(i, j-1) (i, j) (i, j+1) 
(i+1, j-1) (i+1, j) (i+1, j+1) 

 
Notice that N(i,j) forms a 3x3 set of pixels and is referred to as the 3x3 

neighbourhood of (i,j). In order to simplify some of the definitions, we shall refer 
to the intensities of these pixels using the following notation:  

 
A B C 
D E   F 
G   H I 

 
Ambiguities over the dual use of A, B and C should not be troublesome, as the 

context will make it clear which meaning is intended. The points {(i-1, j-1), (i-1, 
j), (i-1, j+1), (i, j-1), (i, j+1), (i+1, j-1), (i+1, j), (i+1, j+1)} are called the 8-
neighbours of (i, j) and are also said to be 8-connected to (i, j). The points  {(i-1, 
j), (i, j-1), (i, j+1), (i+1, j)} are called the 4-neighbours of (i, j) and are said to be 
4-connected to (i, j).  

2.2.1 Monadic, Point-by-point Operators. 

These operators have  a characteristic equation of the form: 
 
c(i,j) ⇐  g(a(i,j)) or E ⇐ g(E) 

 
Such an operation is performed for all (i,j) in the range [1,m].[1,n]. (See Figure 

2.2). Several examples will now be described. 
 
Intensity shift [acn]  
 

 0 a(i,j) + k < 0
c(i,j) ⇐ a(i,j) + k 0 ≤ a(i,j) + k ≤ W 
 W W < a(i,j) + k 

 
k is a constant, set by the system user. Notice that this definition was carefully 

designed to maintain c(i,j) within the same range as the input, viz. [0,W]. This is 
an example of a process referred to as intensity normalisation. Normalisation is 
important because it permits iterative processing by this and other operators in a 
machine having a limited precision for arithmetic (e.g. 8-bits). Normalisation will 
be used frequently throughout this chapter. 
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Figure 2.2 Monadic point-by-point operator. The (i,j)th pixel in the input 
image has intensity a(i,j). This value is used to calculate c(i,j), the intensity of 
the corresponding pixel in the output image. 
 
Intensity multiply [mcn]     
 

 0 a(i,j) . k < 0
c(i,j) ⇐ a(i,j) . k 0 ≤ a(i,j) . k ≤ W 
 W W < a(i,j) . k 

 
Logarithm [log] 
 

 0 a(i,j) = 0 
c(i,j) ⇐  

 W
L o g a i j

L o g W
.

( ( , ))
( )







 otherwise

 
This definition arbitrarily replaces the infinite value of log(0) by zero, and 

thereby avoids a difficult rescaling problem.  
 
Antilogarithm (exponential) [exp] c(i,j) ⇐ W. exp(a(i,j)) / exp(W) 
 
Negate [neg]    c(i,j) ⇐ W - a(i,j)  
 
Threshold [thr]  
 

 W k1 ≤ a(i,j)  ≤ k2 
c(i,j) ⇐  
 0 otherwise

 
This is an important function, which converts a grey-scale image to a binary 

format. Unfortunately, it is often difficult, or even impossible to find satisfactory 
values for the parameters k1 and k2. 
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Highlight [hil]  
 

 k3 k1 ≤ a(i,j)  ≤ k2 
c(i,j) ⇐   
 a(i,j) otherwise 

 
Squaring [sqr]   c(i,j) ⇐ [ a(i,j) ]2 / W  

2.2.2 Dyadic, Point-by-point Operators  

Dyadic operators have a characteristic equation of the form:  
 
c(i,j) ⇐ h(a(i,j), b(i,j))   
 
There are two input images: A = {a(i,j)} and B = {b(i,j)} (Figure 2.3), while the 

output image is C = {c(i,j)}. It is important to realise that c(i,j) depends upon only 
a(i,j) and b(i,j). Here are some examples of dyadic operators. 

 
Add [add]   c(i,j) ⇐ [ a(i,j) + b(i,j) ] / 2. 
 
Subtract [sub]   c(i,j) ⇐ [ ( a(i,j) - b(i,j) )  + W ] / 2  
 
Multiply [mul]   c(i,j) ⇐ [ a(i,j).b(i,j) ] / W 
 
 

 
Figure 2.3 Dyadic point-by-point operator. The intensities of the (i,j)th pixels 
in the two input images (i.e. a(i,j) and b(i,j)) are combined to calculate the 
intensity, c(i,j), at the corresponding address in the output image. 
 
 
Maximum [max]  c(i,j) ⇐ MAX [ a(i,j), b(i,j) ] 
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When the maximum operator is applied to a pair of binary images, the union 
(OR function) of their white areas is computed. This function may also be used to 
superimpose white writing onto a grey-scale image. 

 
Minimum [min]  c(i,j) ⇐ MIN [ a(i,j), b(i,j) ] 
When A and B are both binary, the intersection (AND function) of their white 

areas is calculated. 

2.2.3 Local Operators  

Figure 2.4 illustrates the principle of the operation of local operators. Notice 
that the intensities of several pixels are combined together, in order to calculate 
the intensity of just one pixel. Amongst the simplest of the local operators are 
those which use a set of 9 pixels arranged in a 3x3 square. These have a 
characteristic equation of the following form:  

 
c(i,j) ⇐ g( a(i-1, j-1), a(i-1, j), a(i-1, j+1), a(i, j-1), a(i, j), a(i, j+1),  
  a(i+1, j-1), a(i+1, j), a(i+1, j+1) ) 
  

where g(.) is a function of 9 variables. This is an example of a local operator 
which uses a 3x3 processing window.  (That is, it computes the value for one pixel 
on the basis of the intensities within a region containing 3x3 pixels. Other local 
operators employ larger windows and we shall discuss these briefly later.) In the 
simplified notation which we introduced earlier, the above definition reduces to: E 
⇐ g(A, B, C, D, E, F, G, H, I). 

2.2.4 Linear Local Operators 

An important sub-set of the local operators is that group which performs a linear 
weighted sum, and which are therefore known as linear local operators. For this 
group, the characteristic equation is: 

 
E  ⇐  k1.(A.W1 + B.W2 + C.W3 + D.W4 + E.W5 + F.W6 + G.W7 + H.W8  
 + I.W9) + k2 
 

where W1, W2,...,W9 are weights, which may be positive, negative or zero. 
Values for the normalisation constants, k1 and k2 are given later. The matrix 
illustrated below is termed the weight matrix and is important, because it 
determines the properties of the linear local operator. 

 
W1 W2 W3 
W4 W5 W6 
W7 W8 W9 
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Figure 2.4 Local operator. In this instance, the intensities of 9 pixels arranged 
in a 3x3 window are combined together. Local operators may be defined 
which uses other, possibly larger windows. The window may, or may not, be 
square and the calculation may involve linear or non-linear processes. 

 
The following rules summarise the behaviour of this type of operator. (They 

exclude the case where all the weights and normalisation constants are zero, since 
this would result in a null image.):  

 
(i) If all weights are either positive or zero, the operator will blur the input 
image. Blurring is referred to as low-pass filtering. Subtracting a blurred image 
from the original results in a highlighting of those points where the intensity is 
changing rapidly and is termed high-pass filtering. 
(ii) If W1 = W2 = W3 = W7 = W8 = W9 = 0, and W4, W5, W6 > 0, then the 
operator blurs along the rows of the image; horizontal features, such as edges 
and streaks, are not affected.   
(iii) If W1 = W4 = W7 = W3 = W6 = W9 = 0, and W2, W5, W8 > 0, then the 
operator blurs along the columns of the image; vertical features are not affected.  
(iv) If W2 = W3 = W4 = W6 = W7 = W8 = 0, and W1, W5, W9 > 0, then the 
operator blurs along the diagonal (top-left to bottom-right). There is no 
smearing along the orthogonal diagonal. 
(v) If the weight matrix can be reduced to a matrix product of the form P.Q, 
where 
 

 0 0 0 
P = V4 V5 V6 
 0 0 0 

 
and 
 

 0 V1 0 
Q = 0 V2 0 
 0 V3 0 

 
the operator is said to be of the "separable" type. The importance of this is that it 
is possible to apply two simpler operators in succession, with weight matrices P 
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and Q, in order to obtain the same effect as that produced by the separable 
operator. 
 (vi) The successive application of linear local operators which use windows 
containing 3x3 pixels produces the same results as linear local operators with 
larger windows. For example, applying that operator which uses the following 
weight matrix  
 

1 1 1 
1 1 1 
1 1 1 

 
twice in succession results in a similar image as that obtained from the 5x5 
operator with the following weight matrix. (For the sake of simplicity, 
normalisation has been ignored here.)   
 

1 2 3 2 1 
2 4 6 4 2 
3 6 9 6 3 
2 4 6 4 2 
1 2 3 2 1 

  
Applying the same 3x3 operator thrice is equivalent to using the following 7x7 
operator 
 

1 3 6 7 6 3 1 
3 9 18 21 18 9 3 
6 18 36 42 36 18 6 
7 21 42 49 42 21 7 
6 18 36 42 36 18 6 
3 9 18 21 18 9 3 
1 3 6 7 6 3 1 

 
Notice that all of these operators are also separable. Hence it would be possible 
to replace the last-mentioned 7x7 operator with four simpler operators: 3x1, 
3x1, 1x3 and 1x3, applied in any order. It is not always possible to replace a 
large-window operator with a succession of 3x3 operators. This becomes 
obvious when one considers, for example, that a 7x7 operator uses 49 weights 
and that three 3x3 operators provide only 27 degrees of freedom. Separation is 
often possible, however, when the larger operator has a weight matrix with 
some redundancy, for example when it is symmetrical.  
 
 
(vii) In order to perform normalisation, the following values are used for k1 and 
k2. 
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 k1 ← 1 / Σ | Wp,q |  
      p,q 
 

 k2 ← [ 1 - Σ Wp,q  / Σ | Wp,q | ].W/2  
         p,q         p,q  
 
(viii) A filter using the following weight matrix performs a local averaging 
function over an 11x11 window [raf(11,11)] .  
 

1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 

 
This produces quite a severe 2-directional blurring effect. Subtracting the 
effects of a blurring operation from the original image generates a picture in 
which spots, streaks and intensity steps are all emphasised. On the other hand, 
large areas of constant or slowly changing intensity become uniformly grey. 
This process is called high-pass filtering, and produces an effect similar to 
unsharp masking, which is familiar to photographers. 

2.2.5 Non-linear Local Operators  

Largest intensity neighbourhood function [lnb] 
 E ⇐ MAX( A, B, C, D, E, F, G, H, I )  

This operator has the effect of spreading bright regions and contracting dark 
ones. 

 
Edge detector [command sequence: lnb, sub]   

E ⇐ MAX( A, B, C, D, E, F, G, H, I ) - E  
This operator is able to highlight edges (i.e. points where the intensity is 

changing rapidly). 
 
Median filter [mdf(5)] 

 E ⇐ FIFTH_LARGEST (A,B,C,D,E,F,G,H,I )  
This filter is particularly useful for reducing the level of noise in an image. 

(Noise is generated from a range of sources, such as video cameras and x-ray 
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detectors, and can be a nuisance if it is not eliminated by hardware or software 
filtering.) 

 
Crack detector1 [lnb, lnb, neg, lnb, lnb, neg] 
This operator is equivalent to applying the above Prolog+ sequence of 

operations and then subtracting the result from the original image. This detector is 
able to detect thin dark streaks and small dark spots in a grey-scale image; it 
ignores other features, such as bright spots and streaks, edges (intensity steps) and 
broad dark streaks. 

 
Roberts edge detector [red] 
The Roberts gradient is calculated using a 2x2 mask. This will determine the 

edge gradient in two diagonal directions (i.e. the cross-differences). 
 
E ⇐ +(A  -  E ) (B  -  D )2 2  
 
The following approximation to the Roberts gradient magnitude is called the 

Modified Roberts operator. This is simpler and faster to implement and it more 
precisely defines the Prolog+ operator red. It is defined as  

 

E ⇐ { | A - E | + | B - D | } / 2   
 
Sobel edge detector [sed] 
This popular operator highlights the edges in an image; points where the 

intensity gradient is high are indicated by bright pixels in the output image. The 
Sobel edge detector uses a 3x3 mask to determine the edge gradient. 

 

[ ] [ ]E ⇐ +(A + 2. B + C) - (G + 2. H + I) (A + 2. D + G) - (C + 2. F + I)
2 2  

 
The following approximation is simpler to implement in software and hardware 

and more precisely defines the Prolog+ operator sed:  
 

E ⇐ { | (A + 2.B + C) - (G + 2.H + I) | +  

  | (A + 2.D + G) - (C + 2.F + I) | } / 6  
 

See Figure 2.5, for a comparison of the Roberts and Sobel edge detector 
operators when applied to a sample monochrome image. Note that, while the 
Roberts operator produces thinner edges, these edges tend to break up in regions 
of high curvature. The primary disadvantage of the Roberts operator is its high 
sensitivity to noise, since fewer pixels are used in the calculation of the edge 

                                                           
1 This is an example of an operator that can be described far better using 

computer notation rather than mathematical notation. 
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gradient. There is also a slight shift in the image, when the Roberts edge detector 
is used. The Sobel edge detector does not produce such a shift. 

 
 

 
 

(a) 
 

    
 

               (b)           (c) 
   

Figure 2.5 Edge detection. (a) Original image. (b) Roberts edge gradient 
(after thresholding). (c) Sobel edge gradient (after thresholding). 
 
 
Prewitt edge detector 
The Prewitt edge-detector is similar to the Sobel operator, but is more sensitive 

to noise as it does not possess the same inherent smoothing. This operator uses the 
two 3x3 shown below to determine the edge gradient, 

 
-1 -1 -1  -1 0 1 
0 0 0  -1 0 1 
1 1 1  -1 0 1 

         P1                     P2 
where P1 and P2 are the values calculated from each mask respectively. The 
Prewitt gradient magnitude is defined as: E P P⇐ +1

2
2

2  
 
Frei and Chen edge detector 
This operator uses the two 3x3 masks shown below to determine the edge 

gradient, 
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-1 -√2 -1  -1  0  1 
0 0 0  -√2 0 √2 
1 √2 1  -1 0 1 

    F1                      F2 
 

where F1 and F2 are the values calculated from each mask respectively. The Frei 
and Chen gradient magnitude is defined as: E F F⇐ +1

2
2

2  
 
Rank filters [mdf, rid] 
The generalised 3x3 rank filter is: 
 
 c(i, j) ⇐ k1.(A′.W1 + B′.W2 + C′.W3 + D′.W4 + E′.W5 + F′.W6 + G′.W7 +  
     H′.W8 +I′.W9) + k2  
 

where     A′ = LARGEST (A, B, C, D, E, F, G, H, I) 
B′ = SECOND_LARGEST (A, B, C, D, E, F, G, H, I) 
C′ = THIRD_LARGEST (A, B, C, D, E, F, G, H, I) 
.. 
I′ = NINTH_LARGEST (A, B, C, D, E, F, G, H, I) 
 

and k1 and k2 are the normalisation constants defines previously. With the 
appropriate choice of weights (W1, W2,...,W9), the rank filter can be used for a 
range of operations including edge detection, noise reduction, edge sharping and 
image enhancement. 

 
Direction codes [dbn] 
This function can be used to detect the direction of the intensity gradient. A 

direction code function DIR_CODE is defined thus: 
 

 1 if A ≥ MAX(B,C,D,F,G,H,I) 
 2 if B ≥ MAX(A,C,D,F,G,H,I) 
 3 if C ≥ MAX(A,B,D,F,G,H,I) 

DIR_CODE(A,B,C,D,F,G,H,I) ⇐ 4 if D ≥ MAX(A,B,C,F,G,H,I) 
 5 if F ≥ MAX(A,B,C,D,G,H,I) 
 6 if G ≥ MAX(A,B,C,D,F,H,I) 
 7 if H ≥ MAX(A,B,C,D,F,G,I) 
 8 if I ≥ MAX(A,B,C,D,F,G,H) 

 
Using this definition the operator dbn may be defined as: 

 
E ⇐ DIR_CODE(A,B,C,D,F,G,H,I) 

2.2.6 N-tuple Operators 
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The N-tuple operators are closely related to the local operators and have a large 
number of linear and non-linear variations. N-tuple operators may be regarded as 
generalised versions of local operators. In order to understand the N-tuple 
operators, let us first consider a linear local operator which uses a large 
processing window, (say r.s pixels) with most of its weights equal to zero. Only N 
of the weights are non-zero, where N << r.s. This is an N-tuple filter. (See Figure 
2.6.) The N-tuple filters are usually designed to detect specific patterns. In this 
role, they are able to locate a simple feature, such as a corner, annulus, the 
numeral "2", in any position etc. However, they are sensitive to changes of 
orientation and scale. The N-tuple can be regarded as a sloppy template, which is 
convolved with the input image.  

Non-linear tuple operators may be defined in a fairly obvious way. For example, 
we may define operators which compute the average, maximum, minimum or 
median values of the intensities of the N pixels covered by the N-tuple. An 
important class of such functions is the morphological operators. (See Sections 
2.4 and 2.5.) Figure 2.7 illustrates the recognition of the numeral '2' using an N-
tuple. Notice how the goodness of fit varies with the shift, tilt, size, and font. 
Another character ('Z' in this case) may give a score that is close to that obtained 
from a '2', thus making these two characters difficult to distinguish reliably. 

2.2.7 Edge Effects 

All local operators and N-tuple filters are susceptible to producing peculiar 
effects around the edges of an image. The reason is simply that, in order to 
calculate the intensity of a point near the edge of an image, we require information 
about pixels outside the image, which of course are simply not present. In order to 
make some attempt at calculating values for the edge pixels, it is necessary to 
make some assumptions, for example that all points outside the image are black, 
or have the same values as the border pixels. This strategy, or whatever one we 
adopt, is perfectly arbitrary and there will be occasions when the edge effects are 
so pronounced that there is nothing that we can do but to remove them by 
masking [edg]. Edge effects are important because they require us to make special 
provisions for them when we try to patch several low-resolution images together. 
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Figure 2.6 An N-tuple filter operates much like a local operator. The only 
difference is that the pixels whose intensities are combined together do not 
form a compact set. A linear N-tuple filter can be regarded as being 
equivalent to a local operator which uses a large window and in which many 
of the weights are zero. 
 
 

 
Figure 2.7  Recognising a numeral '2' using an N-tuple. 

2.2.8 Intensity Histogram [hpi, hgi, hge, hgc] 

The intensity histogram is defined in the following way:  
 
(a)  Let   

 1 a(i,j) = p 
s(p,i,j) ←  

 0 otherwise
 
(b)  Let h(p) be defined thus:  h(p) ← Σ s(p,i,j)  
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                i,j 
 
It is not, in fact, necessary to store each of the s(p,i,j), since the calculation of 

the histogram can be performed as a serial process in which the estimate of h(p) is 
updated iteratively, as we scan through the input image. The cumulative 
histogram, H(p), can be calculated using the following recursive relation:  

 
H(p) = H(p-1) + h(p), where H(0) = h(0). 
 
 Both the cumulative and the standard histograms have a great many uses, as 

will become apparent later. It is possible to calculate various intensity levels 
which indicate the occupancy of the intensity range [pct]. For example, it is a 
simple matter to determine that intensity level, p(k), which when used as a 
threshold parameter ensures that a proportion k of the output image is black, p(k) 
can be calculate using the fact that H(p(k)) = m.n.k. The mean intensity [avg] is 
equal to: 

 
Σ ( h(p).p ) / (m.n) 
 p 
 

while the maximum intensity [gli] is equal to MAX(p | h(p) > 0) and the minimum 
intensity is equal to MIN(p | h(p) > 0)  . 

One of the principal uses of the histogram is in the selection of threshold 
parameters. It is useful to plot h(p) as a function of p. It is often found from this 
graph that a suitable position for the threshold can be related directly to the 
position of the "foot of the hill" or to a "valley" in the histogram.  

An important operator for image enhancement is given by the transformation:  
 
c(i,j) ⇐ [ W.H(a(i,j)) ] / (m.n)  
 
This has the interesting property that the histogram of the output image {c(i,j)} 

is flat, giving rise to the name histogram equalisation [heq] for this operation. 
Notice that histogram equalisation is a data-dependent monadic, point-by-point 
operator.  

An operation known as "local area histogram equalisation” relies upon the 
application of histogram equalisation within a small window. The number of 
pixels in a small window that are darker than the central pixel is counted. This 
number defines the intensity at the equivalent point in the output image. This is a 
powerful filtering technique, which is particularly useful in texture analysis 
applications. (See Section 2.7.) 

 
 
 

2.3 Binary Images 
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For the purposes of this description of binary image processing, it will be 
convenient to assume that a(i,j) and b(i,j) can assume only two values: 0 (black) 
and 1(white). The operator "+" denotes the Boolean OR operation, "•" represents 
the AND operation and where '⊗' denotes the Boolean Exclusive OR operation. 
Let #(i,j) denote the number of white points addressed by N(i,j), including (i,j) 
itself. 

 
Inverse [not]    c(i,j) ⇐ NOT( a(i,j) )  
 
AND white regions [and, min]  c(i,j) ⇐ a(i,j) • b(i,j)  
 
OR [ior, max]    c(i,j) ⇐ a(i,j) + b(i,j)  
 
Exclusive OR [xor] (Find differences between white regions.) 
     c(i,j) ⇐ a(i,j) ⊗ b(i,j) 
     
Expand white areas [exw] 
 
 c(i,j) ⇐ a(i-1, j-1) + a(i-1, j) + a(i-1, j+1) + a(i, j-1) + a(i, j) +  

   a(i, j+1) + a(i+1, j-1) + a(i+1, j) + a(i+1, j+1)  
 
Notice that this is closely related to the local operator lnb defined earlier. This 

equation may be expressed in the simplified notation: E ⇐ A + B + C + D + E + F 
+ G + H + I 

 
Shrink white areas [skw] 
 

c(i,j) ⇐ a(i-1, j-1) • a(i-1, j) • a(i-1, j+1) • a(i, j-1) • a(i, j) •  
       a(i, j+1) • a(i+1, j-1) • a(i+1, j) • a(i+1, j+1)  

 
or more simply c(i,j) ⇐ A • B • C • D • E • F • G • H • I 
  
Edge detector [bed] c(i,j) ⇐ E • NOT(A • B • C • D • F • G • H • I) 
 
Remove isolated white points [wrm]   
 

 1 a(i,j) • (#(i,j) > 1) 
c(i,j) ⇐   
 0 otherwise 

 
 
 
Count white neighbours [cnw]  c(i,j) ⇐ #(a(i,j) = 1). 
Where #(Z) is the number of times Z occurs. Notice that {c(i,j)} is a grey-scale 

image. 
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Connectivity detector [cny]. Consider the following pattern: 
 

1 0 1 
1 X 1 
1 0 1 

 
If X=1, then all of the 1's are 8-connected to each other. Alternatively, if X=0, 

then they are not connected. In this sense, the point marked X is critical for 
connectivity. This is also the case in the following examples: 

 
1 0 0  1 1 0  0 0 1 
0 X 1  0 X 0  1 X 0 
0 0 0  0 0 1  1 0 1 

 
However, those points marked X below are not critical for connectivity, since 

setting X=0 rather than 1 has no effect on the connectivity of the 1's. 
 

1 1 1  0 1 1  0 1 1 
1 X 1  1 X 0  1 X 0 
0 0 1  1 1 1  0 1 1 

 
A connectivity detector shades the output image with 1's to indicate the position 

of those points which are critical for connectivity and which were white in the 
input image. Black points, and those which are not critical for connectivity, are 
mapped to black in the output image.  

 
Euler number [eul]. The Euler number is defined as the number of connected 

components (blobs) minus the number of holes in a binary image. The Euler 
number represents a simple method of counting blobs in a binary image, provided 
they have no holes in them. Alternatively, it can be used to count holes in a given 
object, providing they have no "islands" in them. The reason why this approach is 
used to count blobs, despite the fact that it may seem a little awkward to use, is 
that the Euler number is very easy and fast to calculate. It is also a useful means of 
classifying shapes in an image. The Euler number can be computed by using three 
local operators. Let us define three numbers N1, N2 and N3, where Nα indicates 
the number of times that one of the patterns in the pattern set α (α = 1, 2 or 3) 
occur in the input image. 

 
 
 

0 0  0 0  1 0  0 1 
0 1  1 0  0 0  0 0 

Pattern set 1 (N1) 
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0 1  1 0 
1 0  0 1 

Pattern set 2 (N2) 
 

1 1  1 1  0 1  1 0 
1 0  0 1  1 1  1 1 

Pattern set 3 (N3) 
 

The 8-connected Euler number, where holes and blobs are defined in terms of 
8-connected figures, is defined as: (N1-2.N2-N3)/4. It is possible to calculate the 
4-connected Euler number using a slightly different formula, but this parameter 
can give results which seem to be anomalous when we compare them to the 
observed number of holes and blobs.  

 
Filling holes [blb]. Consider a white blob-like figure containing a hole (lake), 

against a black background. The application of the hole-filling operator will cause 
all of the holes to be filled-in; by setting all pixels in the holes to white. This 
operator will not alter the outer edge of the figure. 

 
Region labelling [ndo]. Consider an image containing a number of separate 

blob-like figures. A region-labelling operator will shade the output image so that 
each blob is given a separate intensity value. We could shade the blobs according 
to the order in which they are found, during a conventional raster scan of the input 
image. Alternatively, the blobs could be shaded according to their areas; the 
biggest blobs becoming the brightest. This is a very useful operator, since it 
allows objects to be separated and analysed individually. (Figure 2.8) Small blobs 
can also be eliminated from an image using this operator. Region labelling can 
also be used to count the number of distinct binary blobs in an image. Unlike the 
Euler number, counting based on region labelling is not effected by the presence 
of holes. 

 
Other methods of detecting/removing small spots. A binary image can be 

represented in terms of a grey-scale image in which only two grey levels, 0 and 
W, are allowed. The result of the application of a conventional low-pass (blurring) 
filter to such an image is a grey-scale image in which there is a larger number of 
possible intensity values. Pixels which were well inside large white areas in the 
input image are mapped to very bright pixels in the output image. Pixels which 
were well inside black areas are mapped to very dark pixels in the output image. 
However, pixels which were inside small white spots in the input image are 
mapped to mid-grey intensity levels (Figure 2.9). Pixels on the edge of large white 
areas are also mapped to mid-grey intensity levels. However, if there is a cluster 
of small spots, which are closely spaced together, some of them may also 
disappear. 
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                    (a)                                               (b) 

 
Figure 2.8  Shading blobs in a binary image (a) according to their areas and 
(b) according to the order in which they are found during a raster scan (left to 
right; top to bottom). 
 

Intensity Scale
Black White

a b c

 
 

Figure 2.9 Using a grey-scale blurring filter to remove noise from a binary 
image. (a) Background points are mapped to black. (b) Edge points are 
mapped to the central part of the intensity range. Thresholding at mid-grey 
has the effect of smoothing the edge of large blobs. (c) Central areas of large 
white blobs are mapped to white. 
 
Based on these observations, the following procedure has been developed. It 

has been found to be effective in distinguishing between small spots and, at the 
same time, achieving a certain amount of edge smoothing of the large bright blobs 
which remain: 

 
raf(11,11), % Low-pass filter using a 11x11 local operator 
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thr(128), % Threshold at mid-grey  

 
This technique is generally easier and faster to implement than the blob shading 

technique described previously. Although it may not achieve the desired result 
exactly, it can be performed at high speed. 

An N-tuple filter having the weight matrix illustrated below, can be combined 
with simple thresholding to distinguish between large and small spots. Assume 
that there are several small white spots within the input image and that they are 
spaced well apart. All pixels within a spot which can be contained within a circle 
of radius three pixels will be mapped to white by this particular filter. Pixels 
within a larger spot will become darker than this. The image is then thresholded at 
white to separate the large and small spots. 

 
   -1 -1 -1    
  -1    -1   
 -1      -1  

-1        -1 
-1    20    -1 
-1        -1 
 -1      -1  
  -1    -1   
   -1 -1 -1    

 
Grass-fire transform and skeleton [gfa, mdl, mid]. Consider a binary image 

containing a single white blob, Figure 2.10. Imagine that a fire is lit at all points 
around the blob’s outer edge and the edges of any holes it may contain. The fire 
will burn inwards, until at some instant, advancing fire lines meet. When this 
occurs, the fire becomes extinguished locally. An output image is generated and is 
shaded in proportion to the time it takes for the fire to reach each point. 
Background pixels are mapped to black. 

The importance of this transform, referred to as the grass-fire transform, lies in 
the fact that it indicates distances to the nearest edge point in the image [BOR-86]. 
It is therefore possible to distinguish thin and fat limbs of a white blob. Those 
points at which the fire lines meet are known as quench points. The set of quench 
points form a "match-stick" figure, usually referred to as a skeleton or medial axis 
transform. These figures can also be generated in a number of different ways 
[GON-87] (Figure 2.11). 

One such approach is described as onion-peeling. Consider a single white blob 
and a "bug" which walks around the blob’s outer edge, removing one pixel at a 
time. No edge pixel is removed, if by doing so we would break the blob into two 
disconnected parts. In addition, no white pixel is removed, if there is only one 
white pixel amongst its 8-neighbours. This simple procedure leads to an 
undesirable effect in those instances when the input blob has holes in it; the 
skeleton which it produces has small loops in it which fit around the holes like a 
tightened noose. More sophisticated algorithms have been devised which avoid 
this problem. 
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Figure 2.10 Grass-fire transform. 
 

 
 

Figure 2.11  Application of the Medial Axis Transform. 
 
Edge smoothing and corner detection. Consider three points B1, B2 and B3 

which are placed close together on the edge of a single blob in a binary image. 
(See Figure 2.12.) The perimeter distance between B1 and B2 is equal to that 
between B2 and B3. Define the point P to be that at the centre of the line joining 
B1 and B3. As the three points now move around the edge of the blob, keeping 
the spacing between them constant, the locus of P traces a smoother path than that 
followed by B2 as it moves around the edge. This forms the basis of a simple edge 
smoothing procedure.  

A related algorithm, for corner detection, shades the edge according to the 
distance between P and B2. This results in an image in which the corners are 
highlighted, while the smoother parts of the image are much darker. 

Many other methods of edge smoothing are possible. For example, we may map 
white pixels which have fewer than, say, three white 8-neighbours to black. This 
has the effect of eliminating “hair” around the edge of a blob-like figure. One of 
the techniques described previously for eliminating small spots offers another 
possibility. A third option is to use the processing sequence: [exw, skw, skw, exw], 
where exw represents expand white areas and skw denotes shrink white areas. 

 
Convex hull [chu]. Consider a single blob in a binary image. The convex hull is 

that area enclosed within the smallest convex polygon which will enclose the 
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shape (Figure 2.13). This can also be described as the region enclosed within an 
elastic string, stretched around the blob. The area enclosed by the convex hull, but 
not within the original blob is called the convex deficiency, which may consist of a 
number of disconnected parts, and includes any holes and indentations. If we 
regard the blob as being like an island, we can understand the logic of referring to 
the former as lakes and the latter as bays. 

2.3.1 Measurements on Binary Images 

To simplify the following explanation, we will confine ourselves to the analysis 
of a binary image containing a single blob. The area of the blob can be measured 
by the total number of object (white) pixels in the image. However, we must first 
define two different types of edge points, in order to measure an object’s 
perimeter. 

 

 
Figure 2.12 Edge smoothing and corner detection. 

 
Figure 2.13 Convex hull of a ‘club’ shape. The lightly shaded region 
indicates the shape’s convex deficiency. 
  
The 4-adjacency convention (Figure 2.14) only allows the four main compass 

points to be used as direction indicators, while 8-adjacency uses all eight possible 
directions. If 4-adjacency convention is applied to the image segment given in 
Figure 2.14(c), then none of the four segments (two horizontal and two vertical) 
will appear as touching, i.e. they are not connected. Using the 8-adjacency 
convention, the segments are now connected, but we have the ambiguity that the 
inside of the shape is connected to the outside. Neither convention is satisfactory, 
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but since 8-adjacency allows diagonally-connected pixels to be represented, it 
leads to a more faithful perimeter measurement. 

Assuming that the 8-adjacency convention is used, we can generated a coded 
description of the blob’s edge. This is referred to as the chain code or Freeman 
code [fcc]. As we trace around the edge of the blob, we generate a number, 0-7, to 
indicate which of the eight possible directions we have taken (i.e. from the centre, 
shaded pixel in Figure 2.14(b)). Let No indicate how many odd-numbered code 
values are produced as we code the blob’s edge, and Ne represent the number of 
even-numbered values found. The perimeter of the blob is given approximately by 
the formula: Ne + √2.No 

This formula will normally suffice for use in those situations where the 
perimeter of a smooth object is to be measured. The centroid of a blob [cgr] 
determines its position within the image and can be calculated using the formulae:  

 
I ← Σ Σ ( a(i,j).i ) / Ni,j     and  J ← Σ Σ ( a(i,j).j ) / Ni,j  
         j   i                           j    i 

where Ni,j ← Σ Σ a(i,j)  
                    j   i 
 
Although we are considering images in which the a(i,j) are equal to 0 (black) or 

1 (white), it is convenient to use a(i,j) as an ordinary arithmetic variable as well.  
 

 1   3 2 1 
2  0  4  0 
 3   5 6 7 

            (a)                           (b) 
 

 
(c) 

 
Figure 2.14 Chain code. (a) 4-adjacency coding convention. (b) 8-adjacency 
coding convention. (c) Image segment. 

2.3.2 Shape Descriptors 

The following are just a few of the numerous shape descriptors that have been 
proposed: 

 
(a) The distance of the furthest point on the edge of the blob from the centroid. 
(b) The distance of the closest point on the edge of the blob from the centroid. 
(c) The number of protuberances, as defined by that circle whose radius is equal 
to the average of the parameters measured in (a) and (b).  
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(d) The distances of points on the edge of the blob from the centroid, as a 
function of angular position. This describes the silhouette in terms of polar co-
ordinates. (This is not a single-valued function.) 
(e) Circularity = Area / Perimeter2. This will tend to zero for irregular shapes 
with ragged boundaries, and has a maximum value (=1/4π) for a circle. 
(f) The number of holes.(Use eul and ndo to count them.) 
(g) The number of bays.  
(h) Euler number. 
(i) The ratio of the areas of the original blob and that of its convex hull. 
(j) The ratio of the areas of the original blob and that of its circumcircle. 
(k) The ratio of the area of the blob to the square of the total limb-length of its 
skeleton.  
(l) Distances between joints and limb ends of the skeleton. 
(m) The ratio of the projections onto the major and minor axes. 

2.4 Binary Mathematical Morphology 
The basic concept involved in mathematical morphology is simple: an image is 

probed with a template shape, called a structuring element, to find where the 
structuring element fits, or does not fit within a given image. [DOU-92] (Figure 
2.15) By marking the locations where the template shape fits, structural 
information, can be gleaned about the image. The structuring elements used in 
practice are usually geometrically simpler than the image they act on, although 
this is not always the case. Common structuring elements include points, point 
pairs, vectors, lines, squares, octagons, discs, rhombi and rings. Since shape is a 
prime carrier of information in machine vision applications, mathematical 
morphology has an important role to play in industrial systems [HAR-87b]. 

The language of binary morphology is derived from that of set theory [HAR-
92b]. General mathematical morphology is normally discussed in terms of 
Euclidean N-space, but in digital image analysis we are only interested in a 
discrete or digitised equivalent in two-space. The following analysis is therefore 
restricted to binary images, in a digital two-dimensional integer space, Z². The 
image set (or scene) under analysis will be denoted by A, with elements a = (a1, 
a2). The shape parameter, or structuring element, that will be applied to scene A 
will be denoted by B, with elements b = (b1, b2). The primary morphological 
operations that we will examine are dilation, erosion, opening and closing. 
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Figure 2.15 A structuring element fitting, B, and not fitting, A, into a given 
image scene X [DOU-92]. 
 
Dilation (also referred to as filling and growing) is the expansion of an image 

set A by a structuring element B. It is formally viewed as the combination of the 
two sets using vector addition of the set elements. The dilation of an image set A 
by a structuring element B, will be denoted A  B, and can be represented as the 
union of translates of the structuring element B [HAR-92b]:  

 

A  B =    Ba 
               a∈A 

where  represents the union of a set of points and the translation of B by point 
a is given by, Ba = { c ∈ Z² | c = b + a for some b ∈ B }. This is best explained by 
visualising a structuring element B moving over an image A in a raster fashion. 
Whenever the origin of the structuring element touches one of the image pixels in 
A, then the entire structuring element is placed at that location. For example, in 
Figure 2.16 the grid image is dilated by a cross-shaped structuring element, 
contained within a 3x3 pixel grid.  

 
 

 
 

Figure 2.16 Dilation of a grid image by a cross structuring element. 
 

Erosion is the dual morphological operation of dilation and is equivalent to the 
shrinking (or reduction) of the image set A by a structuring element B. This is a 
morphological transformation which combines two sets using vector subtraction 
of set elements [HAR-92b]. The erosion of an image set A by a structuring 
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element B, denoted A  B, can be represented as the intersection of the negative 
translates: 

 

A  B =    A-b    
               b∈B 

where  represents the intersection of a set of points. Erosion of the image A by 
B is the set of all points for which B translated to a point x is contained in A. This 
consists of sliding the structuring element B across the image A, and where B is 
fully contained in A (by placing the origin of the structuring element at the point 
x) then x belongs to the eroded image A  B. For example, in Figure 2.17 the grid 
image is eroded by a cross-shaped structuring element, contained within a 3x3 
pixel grid. 

 
 

 
 

Figure 2.17 Erosion of a grid image by a cross structuring element. 
 
A duality relationship exists between certain morphological operators, such as 

erosion and dilation. This means that the equivalent of such an operation can be 
performed by its dual on the complement (negative) image and by taking the 
complement of the result [VOG-89]. Although duals, erosion and dilation 
operations are not inverses of each other. Rather they are related by the following 
duality relationships: 

        _           _ 
( A  B )c = Ac  B and ( A  B )c = Ac  B 
 

Where Ac refers to the complement of the image set A and, 
_ 
B = { x | for some b ∈ B, x = - b } 

 
refers to the reflection of B about the origin. (Serra [SER-82; SER-86] refers to 
this as the transpose of the structuring element.) 

2.4.1 Opening and Closing Operations 
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Erosion and dilation tend to be used in pairs to extract, or impose, structure on 
an image. The most commonly found erosion-dilation pairings occur in the 
opening and closing transformations.  

 
Opening is a combination of erosion and dilation operations that have the effect 

of removing isolated spots in the image set A that are smaller than the structuring 
element B and those sections of the image set A narrower than B. This is also 
viewed as a geometric rounding operation. (Figure 2.18) The opening of the 
image set A by the structuring element B, is denoted A  B, and is defined as (A 

 B)  B. 
 
Closing is the dual morphological operation of opening. This transformation has 

the effect of filling in holes and blocking narrow valleys in the image set A, when 
a structuring element B (of similar size to the holes and valleys) is applied. (Figure 
2.18) The closing of the image set A by the structuring element B, is denoted A  
B, and is defined as (A  B)  B. 

 
 

          
           (a)                                   (b)                                   (c) 

 
Figure 2.18 Application of a 3x3 square structuring element to a binary 
image of a small plant. (a) Original image. (b) Result of morphological 
opening. (c) Result of morphological closing. 
 
One important property that is shared by both the opening and closing 

operations is idempotency. This means that successful reapplication of the 
operations will not change the previously transformed image [HAR-87b]. 
Therefore, A  B = ( A  B )  B and A  B = ( A  B )  B.  

Unfortunately, the application of morphological techniques to industrial tasks, 
which involves complex operations on “real-world” images, can be difficult to 
implement. Practical imaging applications tend to have structuring elements that 
are unpredictable in shape and size. In practice, the ability to manipulate arbitrary 
structuring elements usually relies on their decomposition into component parts. 

2.4.2 Structuring Element Decomposition  
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Some vision systems [DUF-73; STE-78; WAL-88b] can perform basic 
morphological operations very quickly in a parallel and/or pipelined manner. 
Implementations that involve such special purpose hardware tend to be expensive, 
although there are some notable exceptions [WAL-94]. Unfortunately, some of 
these systems impose restrictions on the shape and size of the structuring elements 
that can be handled. Therefore, one of the key problems involved in the 
application of morphological techniques to industrial image analysis is the 
generation and/or decomposition of large structuring elements. Two main 
strategies are used to tackle this problem. 

The first technique is called dilation or serial decomposition. This decomposes 
certain large structuring elements into a sequence of successive erosion and 
dilation operations, each step operating on the preceding result. Unfortunately, the 
decomposition of large structuring elements into smaller ones is not always 
possible. Also, those decompositions that are possible are not always easy to 
identify and implement.  

If a large structuring element B can be decomposed into a chain of dilation 
operations, B = B1  B2  ......  BN (Figure 2.19), then the dilation of the 
image set A by B is given by:  

 
A  B  = A  ( B1  B2  ......  BN) = ((( A  B1)  B2) .... )  BN.  
 

Similarly, using the so-called chain rule [ZHU-86], which states that A  (B  C) 
= (A  B)  C, the erosion of A by B is given by:  

 
A  B = A  ( B1  B2  ......  BN) = ((( A  B1)  B2) .... )  BN. 
 
A second approach to the decomposition problem is based on “breaking up”  the 

structuring element, B, into a union of smaller components, B1, ... , BN. We can 
think of this approach as  'tiling' of the structuring element by sub-structuring 
elements. (Figure 2.20) Since the 'tiles' do not need to be contiguous or aligned, 
any shape can be specified without the need for serial decomposition of the 
structuring element, although the computational cost of this approach is 
proportional to the area of the structuring element [WAL-88b]. This is referred to 
as union or parallel decomposition. Therefore, with B decomposed into a union of 
smaller structuring elements, B = B1  B2  ......  BN, then the dilation of 
an image A by the structuring element B can be rewritten as: 

 
A  B = A  ( B1  B2  ......  BN )   
   = (A  B1)  (A  B2)  ….  (A  BN) 
 
 
 
Likewise, the erosion of A by the structuring element B can be rewritten as: 
 
A  B = A  ( B1  B2  ......  BN )  
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   = (A  B1)  (A  B2)  ......  (A  BN) 
 

 
 

Figure 2.19 Construction of a 7x7 structuring element by successive dilation 
of a 3x3 structuring element. (a) Initial pixel. (b) 3x3 structuring element and 
the result of the first dilation. (c) Result of the second dilation. (d) Result of 
the third dilation [WAL-88b]. 
 

 
Figure 2.20 Tiling of a 9x9 arbitrary structuring element. (a) The initial 9x9 
structuring element. (b) Tiling with nine 3x3 sub-structuring elements [WAL-
88b]. 
 
This makes use of the fact that  A  ( B  C ) = (A  B)  (A  C) [HAR-

87b]. Due to the nature of this decomposition procedure, it is well suited to 
implementation on parallel computer architectures. 

Waltz [WAL-88b] compared these structural element decomposition 
techniques, and showed that the serial approach has a 9:4 speed advantage over its 
parallel equivalent. (This was based on an arbitrarily specified 9x9 pixel 
structuring element, when implemented on a commercially available vision 
system.) However, the parallel approach has a 9:4 advantage in the number of 
degrees of freedom. (Every possible 9x9 structuring element can be achieved with 
the parallel decomposition, but only a small subset can be realised with the serial 
approach.) Although slower than the serial approach, it has the advantage that 
there is no need for serial decomposition of the structuring element. 

Classical parallel and serial methods mainly involve the numerous scanning of 
image pixels and are therefore inefficient when implemented on conventional 
computers. This is so, because the number of scans depends on the total number 
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of pixels (or edge pixels) in the shape to be processed by the morphological 
operator. Although the parallel approach is suited to some customised (parallel) 
architectures, the ability to implement such parallel approaches on serial machines 
is discussed by Vincent [VIN-91]. 

2.5 Grey Scale Morphology 
Binary morphological operations can be extended naturally to process grey 

scale imagery, by the use of neighbourhood minimum and maximum functions 
[HAR-87b]. Heijmans [HEI-91], presents a detailed study of grey scale 
morphological operators, in which he outlines how binary morphological 
operators and thresholding techniques can be used to build a large class of useful 
grey scale morphological operators. Sternberg [STE-86], discusses the application 
of such morphological techniques to industrial inspection tasks. 

In Figure 2.21, a one-dimensional morphological filter, operates on an analogue 
signal (equivalent to a grey scale image). The input signal is represented by the 
thin curve and the output by the thick black curve. In this simple example, the 
structuring element has an approximately parabolic form. In order to calculate a 
value for the output signal, the structuring element is pushed upwards, from below 
the input curve. The height of the top of the structuring element is noted. This 
process is then repeated, by sliding the structuring element sideways. Notice how 
this particular operator attenuates the intensity peak but follows the input signal 
quite accurately everywhere else. Subtracting the output signal from the input 
would produce a result in which the intensity peak is emphasised and all other 
variations would be reduced. 

The effect of the basic morphological operators on two-dimensional grey scale 
images can also be explained in these terms. Imagine the grey scale image as a 
landscape, in which each pixel can be viewed in 3-D. The extra height dimension 
represents the grey scale value of a pixel. We generate new images by passing the 
structuring element above/below this landscape. (See Figure 2.21.)  

 
Grey scale dilation. This is computed as the maximum of translations of the 

grey surface. Grey level dilation of image A by the structuring element B produces an 
image C defined by: 

 
C(r,c) = Max(i,j){ A(r-i, c-j) + B(i,j) } = (A  B)(r,c) 
 

where A, B and C are grey level images. Commonly used grey level structuring 
elements include rods, disks, cones and hemispheres. This operation is commonly 
used to smooth small negative contrast grey level regions in an image. 
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Figure 2.21  A 1-dimensional morphological filter, operating on an analogue 
signal.  
 
Grey scale erosion. The grey value of the erosion at any point is the maximum 

value for which the structuring element centred at that point, still fits entirely within 
the foreground under the surface. This is computed by taking the minimum of the grey 
surface translated by all the points of the structuring element. (Figure 2.21). Grey 
level erosion of  image A by the structuring element B produces an image C defined 
by: 

 
C(r,c) = Min(i,j){ A(r+i, c+j) - B(i,j) } = (A  B)(r,c) 
 
This operation is commonly used to smooth small positive contrast grey level 

regions in an image. 
 
Grey scale opening. This operation is defined as the grey level erosion of the 

image followed by the grey level dilation of the eroded image. That is, it will cut 
down the peaks in the grey level topography to the highest level for which the 
elements fit under the surface.  

 
Grey scale closing. This operation is defined as the grey level dilation of the 

image followed by the grey level erosion of the dilated image. Closing fills in the 
valleys to the maximum level for which the element fails to fit above the surface. For 
a more detailed discussion on binary and grey scale mathematical morphology, 
see Haralick and Shapiro [HAR-92b] and Dougherty [DOU-92]. 

 
 
 

2.6 Global Image Transforms 
An important class of image processing operators is characterised by an 

equation of the form B ⇐ f(A), where A = {a(i,j)} and B = {b(p,q)}. Each 
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element in the output picture, B, is calculated using all or, at least a large 
proportion of the pixels in A. The output image, B, may well look quite different 
from the input image, A. Examples of this class of operators are: lateral shift, 
rotation, warping, Cartesian to Polar co-ordinate conversion, Fourier and Hough 
transforms.  

 
Integrate intensities along image rows [rin].  This operator is rarely of great 

value when used on its own, but can be used with other operators to good effect, 
for example detecting horizontal streaks and edges. The operator is defined 
recursively: 

 
b(i,j) ⇐  b(i,j-1) + a(i,j)/n  where b(0,0) = 0  

 
Row maximum [rox]. This function is often used to detect local intensity 

minima. c(i,j) ⇐  MAX(a(i,j), c(i,j-1))  
 
Geometric transforms. Algorithms exist by which images can be shifted [psh], 

rotated [tur], undergo axis conversion [ctr, rtc], magnified [pex and psq] and 
warped. The reader should note that certain operations, such as rotating a digital 
image, can cause some difficulties because pixels in the input image are not 
mapped exactly to pixels in the output image. This can cause smooth edges to 
appear stepped. To avoid this effect, interpolation may be used, but this has the 
unfortunate effect of blurring edges. (See [BAT-91] for more details.) 

The utility of axis transformations is evident when we are confronted with the 
examination of circular objects, or those displaying a series of concentric arcs, or 
streaks radiating from a fixed point. Inspecting such objects is often made very 
much easier, if we first convert from Cartesian to Polar co-ordinates. Warping is 
also useful in a variety of situations. For example, it is possible to compensate for 
barrel, or pin-cushion distortion in a camera. Geometric distortions introduced by 
a wide-angle lens, or trapezoidal distortion due to viewing the scene from an 
oblique angle can also be corrected. Another possibility is to convert simple 
curves of known shape into straight lines, in order to make subsequent analysis 
easier. 

2.6.1 Hough Transform 

The Hough transform provides a powerful and robust technique for detecting 
lines, circles, ellipses, parabolae, and other curves of pre-defined shape, in a 
binary image. Let us begin our discussion of this fascinating topic, by describing 
the simplest version, the basic Hough Transform, which is intended to detect 
straight lines. Actually, our objective is to locate nearly linear arrangements of 
disconnected white spots and “broken” lines.  Consider that a straight line in the 
input image is defined by the equation r = x.Cos φ + y.Sin φ, where r and φ are 
two unknown parameters, whose values are to be found. Clearly, if this line 
intersects the point (xi, yi), then r = xi.Cos φ + yi.Sin φ can be solved for many 
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different values of (r, φ). So, each white point (xi, yi) in the input image may be 
associated with a set of (r, φ) values. Actually, this set of points forms a sinusoidal 
curve in (r, φ) space. (The latter is called the Hough Transform (HT) image.) 
Since each point in the input image generates such a sinusoidal curve, the whole 
of that image creates a multitude of overlapping sinusoids, in the HT image. In 
many instances, a large number of sinusoidal curves are found to converge on the 
same spot in the HT image. The (r, φ) address of such a point indicates the slope, 
φ, and position, r, of a straight line that can be drawn through a large number of 
white spots in the input image. 

The implementation of the Hough transform for line detection begins by using a 
two-dimensional accumulator array, A(r, φ), to represent quantised (r, φ) space. 
(Clearly, an important choice to be made is the step size for quantising r and φ.  
However, we shall not dwell on such details here.) Assuming that all the elements 
of A(r, φ) are initialised to zero, the Hough Transform is found by computing a set 
S(xi, yi) of (r, φ) pairs satisfying the equation r = xi.Cos φ + yi.Sin φ. Then, for all 
(r, φ) in S(xi, yi), we increment A(r, φ) by one. This process is then repeated for 
all values of i such that the point (xi, yi) in the input image is white. We repeat 
that bright spots in the HT image indicate “linear” sets of spots in the input image. 
Thus, line detection is transformed to the rather simpler task of finding local 
maxima in the accumulator array, A(r, φ). The co-ordinates (r, φ) of such a local 
maximum give the parameters of the equation of the corresponding line in the 
input image. The HT image can be displayed, processed and analysed just like any 
other image, using the operators that are now familiar to us. 

The robustness of the HT techniques arises from the fact that, if part of the line 
is missing, the corresponding peak in the HT image is simply darker. This occurs 
because fewer sinusoidal curves converge on that spot and the corresponding 
accumulator cell is incremented less often. However, unless the line is almost 
completely obliterated, this new darker spot can also be detected. In practice, we 
find that “near straight lines” are transformed into a cluster of points. There is also 
a spreading of the intensity peaks in the HT image, due to noise and quantisation 
effects. In this event, we may conveniently threshold the HT image and then find 
the centroid of the resulting spot, to calculate the parameters of the  straight line in 
the input image. Pitas [PIT-93] gives a more detailed description of this algorithm. 
Figure 2.22 illustrates how this approach can be used to find a line in a noisy 
binary image. 

The Hough transform can also be generalised to detect groups of points lying on 
a curve. In practice, this may not be a trivial task, since the complexity increases 
very rapidly with the number of parameters needed to define the curve. For circle 
detection, we define a circle parametrically as:  r2 = (x - a)2 + (y - b)2 where, (a, b) 
determines the co-ordinates of the centre of the circle and r is its  radius. This 
requires a three-dimensional parameter space, which cannot, of course, be 
represented and processed as a single image. For an arbitrary curve, with no 
simple equation to describe its boundary, a look-up table is used to define the 
relationship between the boundary co-ordinates an orientation and the Hough 
transform parameters. (See [SON-93] for more details.) 
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              (a)                 (b) 

 

 
(c) 

 
Figure 2.22 Hough transform. (a) Original image. (b) Hough transform. (c) 
Inverse Hough transform applied to a single white pixel located at the point of 
maximum intensity in (b). Notice how accurately this process locates the line 
in the input image, despite the presence of a high level of noise. 

2.6.2 Two-dimensional Discrete Fourier Transform 

We have just seen how the transformation of an image into a different domain 
can sometimes make the analysis task easier. Another important operation to 
which this remark applies is the Fourier Transform. Since we are discussing the 
processing of images, we shall discuss the two-dimensional Discrete Fourier 
Transform. This operation allows spatial periodicities in the intensity within an 
image to be investigated, in order to find, amongst other features, the dominant 
frequencies. The two-dimensional Discrete Fourier Transform of an N.N image 
f(x,y) is defined as follows: [GON-87] 
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where 0 ≤ u,v ≤ N-1. The inverse transform of F(u,v) is defined as: 
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where 0 ≤ x,y ≤ N-1. 

Several algorithms have been developed to calculate the two-dimensional 
Discrete Fourier Transform. The simplest makes use of the observation that this is 
a separable transform which can be computed as a sequence of two one-
dimensional transforms. Therefore, we can generate the two-dimensional 
transform by calculating the one-dimensional Discrete Fourier Transform along 
the image rows and then repeating this on the resulting image but, this time, 
operating on the columns. [GON-87] This reduces the computational overhead 
when compared to direct two-dimensional implementations. The sequence of 
operations is as follows: 

 
f(x,y) →  Row Transform  → F1(x,v) →  Column Transform  → F2(u,v) 
 
Although this is still computationally slow compared to other many shape 

measurements, the Fourier transform is quite powerful. It allows the input to be 
represented in the frequency domain, which can be displayed as a pair of images. 
(It is not possible to represent both amplitude and phase using a single 
monochrome image.) Once the processing within the frequency domain is 
complete, the inverse transform can be used to generate a new image in the 
original, so-called, spatial domain. 

The Fourier power, or amplitude, spectrum plays an important role in image 
processing and analysis. This can be displayed, processed and analysed as an 
intensity image. Since the Fourier transform of a real function produces a complex 
function: F(u,v) = R(u,v) + i.I(u,v), the frequency spectrum of the image is the 
magnitude function 

  
F u v R u v I u v( , ) ( , ) ( , )= +2 2  

 
and the power spectrum (spectral density) is defined as P u v F u v( , ) ( , )=

2  
Figure 2.23 illustrates how certain textured features can be highlighted using the 

two-dimensional Discrete Fourier Transform. The image is transformed into the 
frequency domain and an ideal band-pass filter (with a circular symmetry) is 
applied. This has the effect of limiting the frequency information in the image. 
When the inverse transform is calculated, the resultant textured image has a 
different frequency content which can then be analysed. For more details on the 
Fourier transform and its implementations, see [PIT-93] and [GON-87]. 
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     (a)                (b) 

 

  
     (c)                (d) 

 
Figure 2.23 Filtering a textured image in the frequency domain. (a) Original 
textured image. (b) Resultant transformed image in the frequency domain 
after using the two-dimensional Discrete Fourier Transform. (The image is 
the frequency spectrum shown as an intensity function.) (c) Resultant 
frequency domain image after an ideal band-pass filter is applied to image. (d) 
The resultant spatial domain image after the inverse two-dimensional discrete 
Fourier transform is applied to the band-pass filtered image in (c). 

2.7 Texture Analysis 
Texture is observed in the patterns of a wide variety of synthetic and natural 

surfaces (e.g. wood, metal, paint and textiles). If an area of a textured image has a 
large intensity variation then the dominant feature of that area would be texture. If 
this area has little variation in intensity then the dominant feature within the area 
is tone. This is known as the tone-texture concept. Although a precise formal 
definition of texture does not exist, it may be described subjectively using terms 
such as coarse, fine, smooth, granulated, rippled, regular, irregular and linear, 
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and of course these features are used extensively in manual region segmentation. 
There are two main classification techniques for texture: statistical and structural. 

2.7.1 Statistical Approaches 

The statistical approach is well suited to the analysis and classification of 
random or natural textures. A number of different techniques have been 
developed to describe and analyse such textures [HAR-79], a few of which are 
outlined below. 

 
Auto-Correlation Function (ACF) 
 Auto-correlation derives information about the basic 2-D tonal pattern that is 

repeated to yield a given periodic texture. Although useful at times, the ACF has 
severe limitations. It cannot always distinguish between textures, since many 
subjectively different textures have the same ACF, which is defined as follows: 

 
A(δx, δy) = ( Σ  [ I(i, j).I(i + δx, j + δy) ] ) / Σ  [ I(i, j) ]2 
                     i,j                                            i,j 
 

where {I(i, j)} is the image matrix. The variables (i, j) are restricted to lie within a 
specified window outside which the intensity is zero. Incremental shifts of the 
image are given by (δx, δy). It is worth noting that the ACF and the power 
spectral density are Fourier transforms of each other. 

 
Fourier spectral analysis  
The Fourier spectrum is well suited to describing the directionality and period 

of repeated texture patterns, since they give rise to high energy narrow peaks in 
the power spectrum. (See Section 2.6 and Figure 2.23.) Typical Fourier 
descriptors of the power spectrum include: the location of the highest peak, mean,  
and variance and the difference in frequency between the mean and the highest 
value of the spectrum. This approach to texture analysis is often used in 
aerial/satellite and medical image analysis. The main disadvantage of this 
approach is that the procedures are not invariant even, under monotonic 
transforms of its intensity. 

 
Edge Density 
This is a simple technique in which an edge detector or high pass filter is 

applied to the textured image. The result is then thresholded and the edge density 
is measured by the average number of edge pixels per unit area. Two-dimensional, 
or directional filters/edge detectors, may be used as appropriate. 

 
Histogram Features 
This useful approach to texture analysis is based on the intensity histogram of 

all or part of an image. Common histogram features include: moments, entropy 
dispersion, mean (an estimate of the average intensity level), variance (this 



 57

second moment is a measure of the dispersion of the region intensity), mean 
square value or average energy, skewness (the third moment which gives an 
indication of the histograms symmetry) and kurtosis (cluster prominence or 
"peakness"). For example a narrow histogram indicates a low contrast region, 
while two peaks with a well-defined valley between them indicates a region that 
can readily be separated by simple thresholding. 

 
Texture analysis, based solely on the grey scale histogram, suffers from the 

limitation that it provides no information about the relative position of pixels to 
each other. Consider two binary images, where each image has 50% black and 
50% white pixels. One of the images might be a checkerboard pattern, while the 
second one may consist of a salt and pepper noise pattern. These images generate 
exactly the same grey level histogram. Therefore, we cannot distinguish them 
using first order (histogram) statistics alone. This leads us naturally to the 
examination of the co-occurrence approach to texture measurement. 

2.7.2 Co-occurrence Matrix Approach  

The co-occurrence matrix technique is based on the study of second-order grey 
level spatial dependency statistics. This involves the study of the grey level spatial 
interdependence of pixels and their spatial distribution in a local area. Second 
order statistics describe the way grey levels tend to occur together, in pairs and 
therefore provide a description of the type of texture present. A two-dimensional 
histogram of the spatial dependency of the various grey level picture elements 
within a textured image is created. While this technique is quite powerful, it does 
not describe the shape of the primitive patterns making up the given texture. 

The co-occurrence matrix is based on the estimation of the second order joint 
conditional probability density function, f(p,q,d,a), for angular displacements, a, 
equal to 0, 45, 90 and 135 degrees. Let f(p,q,d,a) be the probability of going from 
one pixel with grey level p to another with grey level q, given that the distance 
between them is d and the direction of travel between them is given by the angle 
a. (For Ng grey levels - the size of the co-occurrence matrix will be Ng.Ng.) For 
example, assuming the intensity distribution shown in the sub-image given below, 
we can generate the co-occurrence matrix for d = 1 and a is taken as 0 degrees. 

 
2 3 3 3 
1 1 0 0 
1 1 0 0 
0 0 2 2 
2 2 3 3 

 
Sub-image with 4 grey-levels. 

 
Grey 
Scale 

0 1 2 3 
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0 6 2 1 0 
1 2 4 0 0 
2 1 0 4 2 
3 0 0 2 6 

 
Co-occurrence matrix {f(p,q,1,0)} for the sub-image. 

 
A co-occurrence distribution that changes rapidly with distance, d, indicates a 

fine texture. Since the co-occurrence matrix also depends on the image intensity 
range, it is common practice to normalise the textured image's grey scale prior to 
generating the co-occurrence matrix. This ensures that first-order statistics have 
standard values and avoids confusing the effects of first- and second-order 
statistics of the image.  

A number of texture measures (also referred to as texture attributes) have been 
developed to describe the co-occurrence matrix numerically and allow meaningful 
comparisons between various textures. [HAR-79] (See Figure 2.24.) Although 
these attributes are computationally intensive, they are simple to implement. Some 
sample texture attributes for the co-occurrence matrix are given below. 

 
Energy, or angular second moment, is a measure of the homogeneity of a 

texture.  It is defined thus, 
 
Energy = ΣpΣq[ f(p,q,d,a) ]2  
 

In a uniform image, the co-occurrence matrix will have few entries of large 
magnitude. In this case the Energy attribute will be large.  

 
 
 
 
Entropy  is a measure of the complexity of a texture and is defined thus:  
 
Entropy = - ΣpΣq[ f(p,q,d,a).Log(f(p,q,d,a)) ] 
           

It is commonly found that what a person judges to be a complex image tends to 
have a higher Entropy value than a simple one. 

 
Inertia is the measurement of the moment of inertia of the co-occurrence matrix 

about its main diagonal. This is also referred as the contrast of the textured image. 
This attribute gives an indication of the amount of local variation of intensity 
present in an image.    

 
Inertia =  ΣpΣq[ (p-q)2.f(p,q,d,a) ] 
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(a)                                                             (b) 

 
 Sand Paper 
 f(p,q,1,0) f(p,q,1,90) f(p,q,1,0) f(p,q,1,90) 

Energy (x106) 1.63 1.7 3.49 3.42 
Inertia (x108) 5.4 6.5 .181 .304 

(c) 
 

Figure 2.24 Co-occurrence based texture analysis. (a) Sand texture. (b) Paper 
texture. (c) Texture attributes. 

2.7.3 Structural Approaches  

Certain textures are deterministic in that they consist of identical texels (basic 
texture element), which are placed in a repeating pattern according to some well-
defined but unknown placement rules. To begin the analysis, a texel is isolated by 
identifying a group of pixels having certain invariant properties, which repeat in 
the given image. A texel may be defined by its: grey level, shape, or homogeneity 
of some local property, such as size or orientation. Texel spatial relationships may 
be expressed in terms of adjacency, closest distance and periodicities. 

This approach has a similarity to language; with both image elements and 
grammar, we can generate a syntactic model. A texture is labelled strong if it is 
defined by deterministic placement rules, while a weak texture is one in which the 
texels are placed at random. Measures for placement rules include: edge density, 
run lengths of maximally connected pixels and the number of pixels per unit area 
showing grey levels that are locally maxima or minima relative to their neighbours 

2.7.4 Morphological Texture Analysis 

Textural properties can be obtained from the erosion process (Sections 2.4 and 
2.5) by appropriately parameterizing the structuring element and determining the 
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number of elements of the erosion as a function of the parameters value [DOU-
92]. The number of white pixels of the morphological opening operation as a 
function of the size parameter of the structuring element, H, can determine the 
size distribution of the grains in an image. Granularity of the image F is defined 
as: 

 
 G(d) = 1 - ( #[ F  Hd ] / #F ) 
 

Where Hd is a disk structuring element of diameter d or a line structuring element 
of length d, and #F is the number of elements in F. This measures the proportion 
of pixels participating in grains smaller than d.  

2.8 Implementation Considerations 
Of course, all of the image processing and analysis operators that have been 

mentioned above can be implemented using a conventional programming 
language, such as C or Pascal.  However, it is important to realise that many of the 
algorithms are time-consuming when realised in this way. The monadic, dyadic 
and local operators can all be implemented in time K.m.n seconds, where K is a 
constant that is different for each function and (m,n) define the image resolution. 
However, some of the global operators require O(m2.n2) time. With these points 
in mind, we see that a low-cost, slow but very versatile image processing system 
can be assembled, simply by embedding a frame-store into a conventional desk-
top computer. (A frame-store is a device for digitising video images and 
displaying computer-processed/generated images on a monitor.)  

The monadic operators can be implemented using a look-up table, which can be 
realised simply in a ROM or RAM. The dyadic operators can be implemented 
using a straightforward Arithmetic and Logic Unit (ALU), which is a standard 
item of digital electronic hardware. The linear local operators can be 
implemented, nowadays, using specialised integrated circuits. One manufacturer 
sells a circuit board which can implement an 8x8 linear local operator in real-time 
on a standard video signal. Several companies market a broad range of image 
processing modules that can be plugged together, to form a very fast image 
processing system that can be tailored to the needs of a given application. 
Specialised architectures have been devised for image processing. Among the 
most successful are parallel processors, which may process one row of an image 
at a time (vector processor), or the whole image (array processor). Competing 
with these are systolic array, neural networks and transputer networks. See 
Dougherty and Laplante [DOU-95] for a discussion on the considerations that 
need to be examined in the development of real-time imaging systems. 

2.8.1 Morphological System Implementation 

While no single image processing operation is so important that all others can 
be ignored, it is interesting to consider the implementation of the morphological 
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operators, since it reflects the range of hardware and software techniques that can 
be applied to achieve high speed. 

There are two classical approaches to the implementation of morphological 
techniques on computer architectures, parallel and sequential (serial) methods. 
(See Section 2.4.) Klien and Serra [KLI-72], discuss an early example of one of 
the many commercial computer architectures for digital image processing which 
implement the basic morphological operations: erosion and dilation. 
Morphological operations with 3x3 pixel structuring elements, are easily 
implemented by array architectures, such as CLIP [DUF-73]. Other system 
implementations include Sternberg [STE-78]. Waltz [WAL-88b, WAL-94] 
describes examples of a near real-time implementation of binary morphological 
processing using large (up to 50x50 pixels), arbitrary structuring elements, based 
on commercially available image processing boards. The success of this approach, 
referred to as SKIPSM (Seperated-Kernal Image Processing using Finite State 
Machines), was achieved by reformulating the algorithm in such a way that it 
permitted high-speed hardware implementation. Similar algorithmic methods 
allow fast implementation of these operators in software. 

A number of companies now manufacture industrial vision systems that 
incorporate video rate morphological operations, albeit with a limited range of 
structuring elements. These include Machine Vision Int., Maitre, Synthetic Vision 
Systems, Vicom, Applied Intelligence Systems and Leitz [HAR-87b]. 

2.9 Commercial Devices 
In this section, we discuss generic types of computing sub-systems for machine 

vision, rather than giving details of existing commercial products, since any 
review of current technology would become out of date quite quickly. The 
discussion will concentrate on the computing aspects of machine vision systems, 
rather than the remaining systems issues, such a lighting and optics. Also, there 
are numerous trade magazines that deal with commercial machine vision products. 
(See Appendix C.)  

For the purposes of this book, we have classified commercial systems into three 
main categories: 

 
• Plug-in board-based systems 

  Frame-stores 
  Dedicated function  

• Self-contained vision systems 
• Turn-key systems  

2.9.1 Plug-in Boards: Frame-stores 

The imaging engine in many low-cost machine vision systems consists of a host 
computer working in conjunction with single or multiple plug-in boards. The most 
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common example of these systems consists of a personal computer, or 
workstation, and a frame-store card, which allows an image to be captured from a 
standard CCD camera (array image format) and displayed. Many of the current, 
extensive range of frame-store cards also offer on-board processing. Plug-in 
accelerator cards which enable certain functions to be implemented in real-time 
are available as daughter boards for many frame-stores. Some frame-stores have 
slow-scan capabilities and the ability to interface to line-scan cameras. When used 
in conjunction with the current range of high speed personal computers, such a 
vision system is an attractive option for small to medium applications, of low 
complexity. Certain personal computers/workstations now offer direct video input 
without the need for an additional plug-in frame-store cards. With the growth in 
multimedia applications, it is likely that this will become more commonplace on 
commercial computers. 

Such systems offer a number of significant advantages, most important of which 
is their relatively low cost. Another significant advantage is their ease of use and 
familiarity. This is especially the case when used in conjunction with standard 
personal computers, which have become common place both in the home and the 
workplace. The fact that the host computer for the imaging system is a widely 
available commercial product also widens the base for software applications and 
maximises the use of the frame-store. Many of the software packages available 
today use 'point and click' interaction with the user, making it easy for him to 
investigate image processing ideas. (Unfortunately, the majority of these packages 
are for image processing, rather than image analysis.) The majority of the plug-in 
frame-store boards can be programmed using commonly used high level 
languages, such as C or FORTRAN. This is important, since the use of standard 
programming languages can have a major impact on program development costs. 

A common disadvantage with frame-store cards is that they rely on the power of 
the host computer to do all of the required imaging tasks. Since the host computer 
is generally not tuned for imaging applications, the system operation may be too 
slow, despite the constantly increasing the performance of commercial computers. 
So, for many high speed industrial applications, such systems are not suitable. 
Many machine vision integrators would not consider personal computer systems 
as robust enough for industrial applications. The use of industrial PCs in 
conjunction with a wide range of dedicated processing and interface cards, 
counters this argument, to a certain extent. Despite these disadvantages, the use of 
frame-store plug-in cards offer a low cost introduction to machine vision, and is 
suitable for educating, training, system design and other less-demanding 
applications. 

2.9.2 Plug-in Boards: Dedicated Function 

For greater speed and ability, engineers often turn to plug-in boards which have 
a specific functionality, such as real-time edge detection, binary correlation, and 
convolution. Typically the host computer for such boards would be a VME rack 
fitted with a CPU card. Quite often, such special-purpose boards are pipelined. 
That is, they perform different operations on the image, in a sequential manner, 
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that allows a new image to be captured while the previous image is still 
undergoing processing. The main advantage of such systems is their speed and the 
ability to increase the systems image throughput rate by the addition of extra plug-
boards. The disadvantage of such systems is that they can be difficult to program 
and quite often require programmers with highly specialist skills. There is also a 
significant cost factor involved in the capital equipment, along with the 
application development costs. 

While the majority of dedicated plug-in boards for pipelined systems are tuned 
to deal with array CCD cameras, newer systems have appeared on the market that 
are specifically designed for a line-scan camera. 

2.9.3 Self-contained Systems 

Some system manufactures have taken the option of designing specific machine 
vision engines which are not tuned for a specific application, but rather designed 
for their general functionality. Such systems may be totally self contained and 
ready to install in an industrial environment. That is, they contain the imaging 
optics, camera, imaging engine and interfaces for various mechanical actuators 
and sensors. They differ from turn-key systems in that the software is supplied 
with the self-contained system has yet to be moulded into a form that would solve 
the vision application. Such systems have significant advantages, the main one 
being speed. The majority of self-contained systems are custom designed, 
although they may contain some plug-in boards and are tuned to provide whatever 
functionality is required by the application. The self-contained nature of the 
mechanical and image acquisition and display interfaces is also a significant 
benefit when installing vision systems. However, it can be difficult to add further 
functionality at a later date without upgrading the system. 

2.9.4 Turn-key Systems 

Turn-key vision systems are self-contained machine vision systems, designed 
for a specific industrial use. While some such systems are custom designed, many 
turn-key systems contain commercially available plug-in cards. Turn-key systems 
tend to be designed for a specific market niche, such as can-end inspection, high-
speed print recognition and colour print registration. So, not only is the hardware 
tuned for to deal with high-speed image analysis applications, it is also optimised 
for a specific imaging task. While the other systems discussed usually require 
significant development to produce a final solution for an imaging application, 
turn-key systems are fully developed, although they need to be integrated into the 
industrial environment. This should not be taken lightly, as this can often be a 
difficult task. It may not be possible to find a turn-key system for a specific 
application. 

While we have avoided the discussion of any specific commercial devices, there 
are a number of valuable information sources available, some of these are 
provided by commercial organisations but some of the most valuable are free ! 



 64

(See the Internet resource list in Appendix C.) One commercial resource that is 
well worth considering is Opto*Sense [WHI-94]. This is machine vision 
database that gives details of a large number of machine vision vendors and their 
products and services. 

2.9.5 Software 

As was mentioned earlier, there is a large number of image processing, and 
analysis, packages available, for a wide range of computing platforms. Several of 
these packages are freely available over the Internet. (See Appendix C.) Some of 
these packages are tightly tied to a given vision system, while others are compiled 
for a number of host computers and operating systems. The majority of the 
software packages have interactive imaging tools that allow ideas to be tested 
prior to coding the for efficient operation. For more information on the hardware 
and software aspects of real-time imaging, including a survey of commonly used 
languages, see [DOU-95]. 

2.10 Further Remarks 
The image processing operators described in this chapter have all found 

widespread use in industrial vision systems. Other areas of application for image 
processing may well use additional algorithms to good effect. Two key features of 
industrial image processing systems are the cost and speed of the target system 
(i.e. the one installed in a factory). It is common practice to use a more versatile 
and slower system for problem analysis and prototyping. While the target system 
must continue to operate in an extremely hostile environment. (It may be hot, 
greasy, wet and or dusty.) It must also be tolerant of abuse and neglect. As far as 
possible, the target system should be self-calibrating and able to verify that it is 
"seeing" appropriate images. It should provide enough information to ensure that 
the factory personnel are able to trust it; no machine system should be built that is 
a viewed by the workers as a mysterious black box. Consideration of these factors 
is as much a part of the design process as writing the software. (See Appendices A 
and B.) 
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Intelligent Image Processing 

 
 
 
 
 

3.1 Interactive Image Processing 
 
Simply reading the previous chapter, or any other text on image processing, 

does not, on its own, equip a person to design an effective industrial vision 
system. A person cannot examine a picture by eye and decide what algorithms are 
necessary for filtering, analysing and measuring it. Proof of this is not hard to 
find: try it, but be prepared for disappointment! In the past, many people have 
adopted this approach, only to discover later that, what they were convinced 
would be an effective image processing algorithm, was not reliable and effective 
in practice, or did not work at all. Inspection of an object or scene by eye, 
followed by introspective self-analysis is now totally discredited as a method of 
choosing image processing algorithms for machine vision systems. Over the last 
two decades, this has gradually been accepted as one of the central tenets of the 
machine vision systems development process.  

It is now widely accepted that an interactive “tool-box” is needed, by which a 
person can experiment with image processing algorithms. Facilities of this kind 
were originally developed in the 1970s. One of the earliest interactive image 
processing systems was called SUSIE (Southampton University System for Image 
Evaluation. [BAT-79]) From that, other systems were spawned, notably Autoview 
([BAT-92b], sold in USA by 3M Company, under the name System 77) and VCS. 
[VCS] These systems are all related to one another, in having similar command 
repertoires, although they use different mnemonic command names. The set of 
image processing functions used in the following pages is listed in Appendix E, 
and forms the basis of the Prolog+ language, which we shall describe in this 
chapter. The appropriate mnemonics have also been listed beside the image 
processing functions described in Chapter 2.  

A detailed account of the techniques and benefits of interactive image 
processing is given elsewhere. [BAT-92b] 
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3.1.1 Modus Operandi 

A person working with an interactive image processor sits in front of a 
computer terminal, with either one large, high-resolution screen, or several 
medium-resolution ones. Displayed on the terminal are various text messages and 
at least two images, called the current and alternate images. It is bad practice, 
though all too common, to superimpose the textual data onto the pictures, since 
neither can be seen properly. 

As the user types each command, he sees the results of the corresponding 
operation, displayed on the terminal screen almost instantaneously. For example, 
the user might type the command neg, followed by the “Return” key. (The result 
of this particular operation is that the negative of the current image is computed.) 
The original current image replaces the alternate image, which is discarded. 
(Figure 3.1) The user might type another command, e.g. thr(97,126), which 
specifies numeric parameters, in order to perform thresholding. 

Measurements on images can also be obtained. For example, the user might 
type avr in order to measure the average intensity. The average intensity value is 
printed on the text display for the user to read. Dyadic operations (such as add, 
sub, mul, max and min) use both the current and alternate images. Again, the 
current image is transferred to the alternate image display and the result is 
displayed as the new current image. The image digitise operation (grb), reading a 
picture from archive (disc) store (rea), and image generation (e.g. wgx) all move 
the current image into the alternate image display and put the new image into the 
current image display. At any time during the interactive process, the user can 
press the “Return” key, to interchange the current and alternate images. Thus, the 
user can always undo the last operation performed, since the previous (current) 
image is always retained. (Of course, the dyadic functions, are not exactly 
reversible, because the alternate image is lost.) The user can also examine the 
results of each processing step, since the “before” and “after” images are 
displayed side by side and can be compared directly. As each new command is 
typed, it is recorded in the text display, thereby providing the user with a record of 
the interactive session. 

3.1.2 Prototyping Inspection Systems 

Provided most of the interactive image processing functions take less than one 
second to execute, the user is able to maintain a high level of concentration during 
quite a long session, since he feels as though he is in complete control of the 
machine. Longer execution times than this simply reduce the effectiveness of the 
interaction, although most users can tolerate a few (exotic and infrequently used) 
image processing operators having execution times of 30 seconds. It is good 
practice, when adding new functions, to keep execution times less than 10 
seconds, if at all possible.  
 



 68

 
(a) 

 

C(0)
A(0) 

(discarded)

A(1) = C(0)C(1) = f(C(0))

Before

After

Current Alternate

C(0)
A(0) 

(discarded)

A(1) = C(0)C(1) = f(C(0), A(0))

Before

After

Current Alternate

C(0)Before

After

Current Alternate

A(0) C(0)

A(0)C(0)
A(0) 

(discarded)

A(1) = C(0)

Before

After

Current Alternate

New image

(d) (e)

(c)(b)

 
 

Figure 3.1 How the current and alternate images are changed during 
interactive processing. (a) Command neg. The picture on the top-left, will be 
denoted by P, and is displayed in the current image area, while that on the 
top-right will be called Q and is displayed in the alternate image area. After  
neg has been performed, the negative of P is displayed as the current image. 
Image Q has been discarded and image P is now displayed in the alternate 
image area. (b) Diagrammatic representation of monadic and local operators. 
Examples: neg, thr, lpf, lnb, exw, bed. (c) Dyadic operators. Examples: add, 
sub, mul, max, min. (d) Image digitisation (grb), reading images from disc 
(rea) and image generation (e.g. zer, wgx, hic). (e) Switch images (swi).  
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An experienced user of an interactive system can very often identify what 
processing steps are appropriate for a given application task, in less than an hour. 
We assume here, of course, that a satisfactory solution exists. If it does not, the 
user will in a short time discover that fact. Numerous times during the last two 
decades, representatives of a manufacturing company have visited the authors 
laboratories, bringing with them samples of a certain product that is causing them 
particular concern at that time. Typical product faults reported during such a visit 
are scratches, cracks, stains, malformations, swarf, foreign bodies etc. Very often 
such defects can only be detected visually, although human inspectors are 
unreliable. The purpose of the visit is, of course, to explore the  possibility of 
using a machine vision system to inspect the objects, either during the 
manufacturing process, or just after they have been made. After an initial period 
of experimentation, when the lighting and viewing system is set up, the interactive 
image processor is used to find procedures that are able to perform the inspection. 
In the experience of the authors and many of their colleagues, working in different 
companies, the process of designing / choosing an algorithm using an interactive 
image processor takes only a short time, typically a few hours, or even minutes! 
At the end of the exercise, the experimenter can, of course, be certain that the 
algorithm he has discovered actually works! 

3.1.3 Building Simple Programs 

One important feature of many of the interactive image processing system 
mentioned above is that they allow macros to be written. By combining several 
commands in a macro, new image processing procedures can often be written, 
without the need to program at the pixel level. For example, drawing isopohotes 
(intensity contours), or plotting the intensity profile along a given line, are tasks 
that are ideally suited for implementation using macros. Just as a small repertoire 
of arithmetic operators / functions (+, -, *, /, sin, cos, log, exp, etc.) is sufficient to 
represent a large class of mathematical functions, so a modest set of image 
processing operator can be used to define a much larger collection of macros. 
SUSIE, Autoview and VCS all have macro facilities, which are described in detail 
in [BAT-91]. Although macros have been found to be very useful  in the past, 
they do not provide the full range of facilities needed for certain applications.  

Interactive image processing is regarded, by the authors, as providing an 
essential prelude to the more conventional approach to writing and developing 
vision programs. It must be made clear, however, that interaction cannot fully 
replace the conventional approach to program-writing. Nor is the latter approach 
sufficient on its own, as a means of developing software for vision systems. For 
these reasons, it was decided, some years ago, to search for a way of combining 
the interactive and conventional approach to writing programs, in an attempt to 
provide the benefits of both. As we shall see in the following pages, considerable 
success has been achieved by embedding a collection of image processing 
commands within the Artificial Intelligence language, Prolog. Some systems 
allow programs to be written using a more conventional  language, such as Basic 
or C, with image processing operations being made available in the form of a 
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library of sub-routines. Naturally, the same mnemonics are used for interactive 
and program-mode operation, to make program writing as easy a possible. The 
following is a brief VCS program, which shows image processing operations 
being performed within a Basic program. 

 
100 for i = 1 to 100 % Begin outer loop 
200 grb   % Digitise an image 
300 for j = 1 to 5  % Begin inner loop 
400 lpf   % Low pass filter 
500 next j   % Terminate inner loop 
600 gli min max  % Find the maximum and minimum  
     % intensities 
700  X = max - min  % Compute intensity range 
800 print  “Intensity range =“, X   
     % Print result 
900 next i   % Terminate outer loop 
1000 stop   % Program finished 

 
It is normal practice for the VCS [VCS] user to develop an image processing 

sequence, interactively, then include the newly discovered function sequence 
within a Basic-like program. Several other image processing languages have been 
developed using the same basic idea, but with software founded upon Pascal, 
Fortran, or C. Image processing systems have also been developed around  other 
languages, including APL, Forth, Smalltalk and Lisp.  

3.1.4 Interaction and Prolog 

In this chapter, we shall follow the same general route: embedding image 
processing operations within Prolog. As we hope to show throughout the 
remainder of this book, Prolog provides a powerful and natural mode of 
programming for controlling image processing. Compared to the more 
conventional “imperative” computer languages, such as Basic, Pascal, Fortran, 
and C, the benefits of Prolog are not widely known amongst the general 
population of computer users. 

It was decided very early in the search for a suitable language as a “host” for 
image processing that the benefits of interaction must not be lost. Despite their 
great love of the Macintosh / Windows-style of operating environment, the 
authors are convinced that interactive image processing is still best performed 
using the command-line mode of operation. They have found no real alternative to 
that. Pull-down menus and customised dialogue boxes are undoubtedly useful for 
novice users but are of more limited value for more experienced users, involved in 
prototyping image processing. To appreciate this fully, one has to witness a 
command-line interactive image processor in the hands of an expert user. Better 
still, one has to become an expert user. Selecting items from a pull-down menu is 
slower and generally less convenient when values for arguments have to be 
specified. Of course, a much greater investment of time and effort must be made 
to learn to use a command-line system but the authors maintain that this is well 
worthwhile. Their experience does not support the approach taken in the design of 
many of the user interfaces built into many modern commercial image processing 



 71

packages. Some of these rely almost exclusively on pull-down menus and 
customised dialogue boxes. Image analyst, IP-Lab [IPL], OptiLab [OPT], 
Photoshop [PHO], Image [IMA] and Visilog [VIS] are all in this category. 
Prolog+, the extension to standard Prolog that we shall describe below, permits 
the use of command-line, pull-down menus, customised dialogue boxes and 
screens, and other modes of operation, not yet mentioned. Its primary mode of 
interaction is via command line control, although each user needs, at times, to use 
different interaction tools. Moreover, an expert user can program these himself, 
thereby creating new interface tools, to suit his own or the application 
requirements. 

3.2 Introducing Prolog+ 

The image processing techniques described in the previous chapter are not 
particularly intelligent, in the sense that many potential applications of machine 
vision require greater reasoning power than they can provide. One of the main 
themes of this book is that an intelligent program-controlled image processing 
system can be made, by the simple expedient of embedding image manipulation 
and measurement routines within standard Prolog. For the moment, we may think 
of the image processor as being a hardware peripheral device that is attached to a 
computer running a Prolog program, via a bi-directional, low-bandwidth, serial 
line. (Figure 3.2) The top-level control language for this system will be called 
Prolog+1 and, as we shall see, is able to solve many of the problems that do not 
yield to standard image processing techniques operating alone.  Prolog+ can also 
be implemented using software, with no specialised hardware whatsoever. Many 
high-performance desk-top computers are provided with a video input. For 
example, many of the Macintosh family of computers can be fitted with an “AV” 
card, to provide the ability to digitise images. In addition, a small, cheap, medium-
quality camera [QUC] is available which plugs into the serial (RS422) port of 
virtually any Macintosh computer. A Prolog+ system can be built around these or 
other standard hardware platforms, needing only software to run. It is also 
possible to build a Prolog+ system which controls dedicated electronic hardware 
for fast image processing.   

Since Prolog is a rather unusual computer language, having been devised 
originally for AI work, we shall describe it briefly in the following pages. 
However, to obtain a more comprehensive understanding of this fascinating 
language, the uninitiated reader is urged to refer to the standard textbooks. [CLO-
87, BRA-90] Throughout this book, we shall attempt to justify the choice of 
Prolog as the basis for intelligent image processing, by describing and listing 

                                                           
1 Prolog+ should not be confused with Prolog++, which is an extension of LPA 

MacProlog [MAC], providing Object Oriented Programming (OOP) facilities. 
Hence, it is a trivial matter to extend Prolog+ further, so that it permits OOP 
image processing programs to be written. To date, the authors have not yet 
developed this idea and are not aware of any other work in this area. 
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Prolog+ programs which together solve a range of diverse machine vision 
problems. For the moment, let it suffice to say that many major benefits have been 
obtained through the use of Prolog that could not have been obtained nearly so 
easily using the other languages listed above, except possibly Lisp. The authors 
can report that, in their experience, which now stretches over ten years, no serious 
shortcomings of this approach have come to light. 

 
Macintosh 
Computer

Monitor

RS232Camera

Video

Image 
processor

 
 

Figure 3.2 A simple approach to implementing Prolog+. The Macintosh 
computer is programmed in Prolog. 
 
Prolog+ was originally intended as a vehicle for developing intelligent image 

processing procedures. Prolog+ programs can be written, edited and run, just as 
one would expect using Prolog. It is a superset of standard (Edinburgh) Prolog 
and, is also intended to provide the same interactive image processing facilities as 
SUSIE [BAT-79], Autoview [BAT-92b], SuperVision [INT] and VCS [VCS]. 
Thus, Prolog+ provides facilities for both programmed and interactive image 
processing and is well placed to assist in prototype development and problem 
analysis for industrial vision applications. Hardware implementations of Prolog+ 
are described later in this chapter. (See Appendix D for a discussion on software 
implementation of Prolog+.) In addition, a comprehensive operating environment, 
centred on a version of Prolog+ implemented using LPA MacProlog [MAC], has 
been devised and will be discussed in detail in the following chapter. This 
includes auto-starting, user-extendible pull-down menus, cursor, on-line HELP, 
automatic script generation, replaying recorded speech, speech synthesis, speech 
recognition, advisory programs (“expert systems”) for machine vision system 
designers, and various demonstration packages. In Chapter 4, we shall also 
discuss the use of Prolog+ for Natural Language (NL) understanding, interfacing 
to other languages / software packages and building networks of multi-camera / 
multi-processor machine vision systems. In addition to its ability to perform image 
processing, Prolog+ also provides facilities for controlling a range of external 
hardware devices, such as robots, an (X,Y,θ)-table, cameras (pan, tilt, focus and 
zoom),  relays, solenoids, computer-controlled lighting, etc. and this will be 
discussed in Chapter 5. Apart from analysing data from a video source, Prolog+, 
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used in conjunction with an appropriate hardware interface unit, can sense and act 
upon information derived from a range of other devices: proximity sensors, 
thermocouples, pressure gauges, instruments measuring optical activity, pH and 
salinity, ultra-sonic range sensors, digital micrometers, etc. We shall say more 
about this in Chapter 5, while in Chapter 6, we shall concentrate upon the 
specialised topic of recognising colours specified by name. Again, we shall use 
the Prolog+ language. However, for the moment, we must concentrate upon first 
principles, i.e. the ability of Prolog+ to perform complex image processing 
operations. 

The repertoire of image processing commands embedded within Prolog+ is 
evident from the discussion in the previous chapter and also from Appendix E. 
The list of image processing operators is constantly growing, as new primitives 
are being added.  

3.3 Review of Prolog 
It took one of the authors (B.G.B.) two years to understand why Prolog is 

important and just two weeks to become proficient at using it! The reason why 
Prolog is worth further study is simply that it allows a novel and very natural 
mode of programming to be used. It permits a person to state the nature of a 
solution, rather than how to find one. To understand this, consider the task of 
finding a marriage partner for a given hypothetical man. It is relatively easy to 
specify the basic “requirements”, to a dating agency, in terms such as those listed 
below2: 

 
Sex:  Female 
Age:  [45,55] 
Height:  [150,180] 
Weight:  [45,75] 
Language:  English 

   Personality:  A long list of desirable characteristics might  
     be included here. 
 

Clearly, this list is incomplete but it is sufficiently detailed to allow us to 
illustrate the general principles of what is known as Declarative Programming. 
Writing a Prolog program to find a wife / husband is straightforward and has 
actually been used by dating agencies. Here is the program to find a wife, using 
the very small number of criteria specified above: 

 
find_wife(X) :- 
 person(X),  % Find a person called X 
 sex(X,female), % Is person X female? 

                                                           
2 This list is intended merely to illustrate a point about Prolog; it does not make 

any statement about the absolute desirability of any type of personality, or racial 
characteristics. 
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 age(X,A),  % Find the age, A, of person X 
 A ≥ 45,  % Is person ≥ 45 years old? 
 A ≤ 55,  % Is person ≤ 55 years old? 
 height(X, H),  % Find the height, H, of person X 
 H ≥ 150,  % Is person at least 150cm tall 
 H ≤ 180,  % Is person at most 180cm  tall 
 weight(X,W),  % Find the weight of person X 
 W ≥ 45,  % Does person weigh at least 45 kg 
 W ≤ 75,  % Does person weigh at most 75 kg 
 speaks(X,English). % Does X speak English? 
 must_be(X, [kind, truthful, generous, loving, loyal]). 

   % Obvious meaning3. 
 
Given such a program and a set of stored data about a collection of people, 

Prolog will search the database, to find a suitable match. There is no need to tell 
Prolog how to perform the search. The reader is urged to consider rewriting the 
program using Basic, C, Fortran, or Pascal. The program will take much longer to 
write, will consist of many more lines of code and the result will be altogether 
much less satisfactory, because a person programming a computer in one of these 
languages has to impose an unnatural mode of thought on the problem. Prolog 
programming is very much more natural in its style, since it allows a person to 
think more directly about the type of solution required, rather than how to find it. 
Prolog differs from most other computer languages, such as Pascal, C, Forth, 
APL, Occam, Lisp, Fortran and assembly code, in several very important ways. 

 
(a) Firstly, a Prolog "program"4 does not consist of a sequence of instructions, 
as routines written in these other languages do. Instead, it is a description of 
(part of) the world. For this reason, Prolog is referred to as a declarative 
language, whereas  most other computer languages, military orders, knitting 
patterns, automobile repair manuals, musical scores and culinary recipes are all 
examples of imperative languages. This is a vital difference, which 
distinguishes Prolog (and a very small group of related languages) from the 
well-known conventional languages of Computer Science. 
(b) The "flow of control" in a Prolog program does not follow the normal 
convention of running from top to bottom. We shall see later that the flow is 
just as likely to be in the reverse direction, through a control mechanism called 
back-tracking. 
(c) Through the use of back-tracking, it is possible to make and subsequently 
revise temporary assignments of values to variables. This process is called 

                                                           
3 A suitable definition of must_be might be as follows: 

must_be(_,[]). 
must_be(A, [B|C]) :- 
 personality(A,B), !, must_be(A,C). 

4 The correct term is "application", since a program is, strictly speaking, a 
sequence of instructions. However, we shall continue to use the term "program", 
since this is more familiar to most readers. 
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instantiation / de-instantiation5 and is akin to re-evaluating assumptions made 
earlier in life. Instantiation is performed, in order to try and prove some 
postulate, theorem or statement, which may or may not be true. As far as Prolog 
is concerned, theorem proving is the equivalent process to running or executing 
an imperative language program. 
(d) It is possible to make very general statements in Prolog in a way that is not 
possible in most other languages, such as those listed above. We shall see more 
of this feature later, but for the moment, let us illustrate the point with a simple 
example. In Prolog it is possible to define a relationship, called right in terms of 
another relationship, called left. 
 
 In English: "A is to the right of B if B is to the left of A." 
 In Prolog:  right(A,B) :- left(B,A). 

 
(Read ":-" as "can be proved to be true if" or more succinctly as “if”.) Notice 
that neither A nor B have yet been defined. In other words, we do not need to 
know what A and B are in order to define the relationship right.6  For example, 
A and B might be features of an image such as blob centres or corners. 
Alternatively, A and B may be political “objects”, either people (Hitler and 
Lenin) or policies (National Socialism and Marxism).The point to note is that 
Prolog+ allows the relationships left and right to be applied to any such objects, 
with equal ease.7 
(e) Prolog makes very extensive use of recursion. While, Pascal, C and certain 
other imperative languages also allow recursion, in Prolog it forms an essential 
control mechanism. 
 
Prolog was devised specifically for and has subsequently been applied 

extensively in Artificial Intelligence. It is, for example, one of the prime tools for 
research in Natural Language Understanding [GAZ-89] and has been used for 
such tasks as planning a complex sequence of actions, given applications 
constraints. It excels as a basis for writing rule-based programs for decision-
making and it is a straightforward matter to write expert systems in Prolog. 
However, Prolog is not suitable for writing programs requiring a large amount of 
numerical manipulation. Nor is Prolog appropriate for real-time control, or other 
computational processes requiring frequent processing of interrupts. 

3.3.1 Sample Program 

                                                           
5 The word “instantiation” is derived from the same linguistic root as 

“instance”. Prolog tries to find an instance of some variable(s) which cause the 
given predicate to be true. 

6  left is defined in Section 3.5.5. 
7 Is hitler to the right of lenin? In the political sense, “yes”, while the answer is 

“no”, when we consider at the layout of words in the preceding sentence. 
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This section is intended to refresh the memories of readers who have previously 
encountered Prolog; it is not intended as an introduction for people who have 
never seen the language before. The following program deals with the ancestry 
and ages of members of two fictitious families.  

 
/* The following facts specify in which years certain people were 
born.  
Interpretation: born(roger,1943) means that  
 "roger was born in 1943".  
*/ 
born(roger,1943).  
born(susan,1942).  
born(pamela,1969). 
born(graham,1972).  
born(thomas,1953).  
born(angela,1954). 
born(elizabeth,1985).  
born(john,1986).  
born(marion,1912). 
born(patricia,1911).  
born(gertrude,1870).  
born(david,1868). 
 
/* These facts describe the parent-child relationships which exist 
in the families.  
Interpretation: parent(X,Y) means that  
 "X is a parent of Y".  
*/ 
parent(roger,pamela).  
parent(roger,graham).  
parent(patricia,roger). 
parent(anne,patricia).  
parent(david,patricia).  
parent(marion,susan).  
parent(susan,graham).  
parent(susan,pamela). 
parent(thomas,john).  
parent(angela,john).  
parent(thomas,elizabeth). 
parent(angela,elizabeth). 
 
/* Defining a relationship called "child". Read this as follows:  
 "A is a child of B if  
  B is a parent of A."  
*/ 
child(A,B) :- parent(B,A). 
 
 
 
 
 
 
 
/* Defining a relationship called "older". Read this as follows:  
 "A is older than B if  
  the age of A is X AND  
  the age of B is Y AND 
  X > Y". */ 
older(A,B) :-  
 age(A,X),  
 age(B,Y),  
 X > Y. 



 77

 
/* Defining a relationship "age". Read this as follows: 
 "A has age B if  
  A was born in year X AND  
  it is now year Y AND 
  X ≤ Y AND  
  B is equal to Y - X". */ 
age(A,B) :- 
 born(A,X),  
 date(Y,_,_),  
 X ≤ Y,  
 B is Y - X. 
 
/* The definition of "ancestor" has two clauses. Prolog always 
tries to satisfy the top one first. If this fails, it then tries to 
satisfy the second clause.  
Interpretation: ancestor(A,B) means that  
 "A is an ancestor of B."  
The first clause should be interpreted as follows:  
 "A is an ancestor of B if A is a parent of B".  
*/ 
ancestor(A,B) :- parent(A,B). 
 
/* The second clause should be interpreted as follows:  
 "A is an ancestor of B if  
  A is a parent of Z AND  
  Z is an ancestor of B."  
 Notice the use of recursion here. */ 
ancestor(A,B) :- 
 parent(A,Z),  
 ancestor(Z,B). 
 
/* Definition of "print_descendents".  
 This uses backtracking to find all possible solutions. The 
 first clause always fails but in doing so it prints the 
 descendants and their dates of birth.  
*/ 
print_descendents(A) :- 
 nl,   % New line      
 write('The known descendants of '),  
    % Print a message   
 write(A),  % Print value of A     
 write(' are:'), % Print a message     
 ancestor(A,Z),  % Find Z such that A is ancestor of Z  
 born(Z,Y),  % Z was born in year Y   
 nl,   % New line      
 tab(10),  % 10 white spaces      
 write(Z),  % Print value of Z     
 write(', born '), % Print a message     
 write(Y),  % Print value of Y     
 fail.   % Force back-tracking     
 
% The second clause always succeeds and prints a new line 
print_descendents(_) :- nl. 

3.3.2 Sample Queries 

 
Query:  born(susan, 1942) 
YES 
 

 
Query:  age(marion, Z) 
Z =  77 
YES 
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Query:  born(susan, X) 
X =  1942 
YES 
 
Query:  born(X, 1942) 
X =  susan 
YES 
 
Query:  born(X, Y) 
X =  roger 
Y =  1943 
 
X =  susan 
Y =  1942 
 
X =  pamela 
Y =  1969 
 
X =  graham 
Y =  1972 
 
X =  thomas 
Y =  1953 
 
X =  angela 
Y =  1954 
 
X =  elizabeth 
Y =  1985 
 
X =  john 
Y =  1986 
 
X =  marion 
Y =  1912 
 
X =  patricia 
Y =  1911 
 
X =  gertude 
Y =  1870 
 
X =  david 
Y =  1868 
 
NO MORE SOLUTIONS 
(Notice the alternative 
 solutions generated by 
 this general query.) 
 
 

 
Query:  older(marion, susan) 
YES 
 
Query:  older(susan, marion) 
NO 
(This really means NOT PROVEN) 
 
Query:  child(susan, Z) 
Z =  marion 
YES 
 
Query:  ancestor(susan, Z) 
Z =  graham 
Z =  pamela 
 
NO MORE SOLUTIONS 
(Notice the alternative solutions.) 
 
Query:  ancestor(Z, graham) 
Z =  roger 
Z =  susan 
Z =  patricia 
Z =  anne 
Z =  david 
Z =  marion 
 
NO MORE SOLUTIONS 
 
Query:  print_descendents(marion) 
 
The known descendants of marion are: 
          susan, born 1942 
          graham, born 1972 
          pamela, born 1969 
YES 
 
Query:  print_descendents(anne) 
 
The known descendants of anne are: 
          patricia, born 1911 
          roger, born 1943 
          pamela, born 1969 
          graham, born 1972 
YES 
 
Query:  print_descendents(wilfred) 
The known descendants of wilfred are: 
YES 
(There are no known descendents of 
 wilfred.) 
 

 

3.4 The Nature of Prolog+ 



 79

The reader is reminded that Prolog+ is an extension of standard Prolog, in 
which a rich repertoire of image processing functions is available as a set of built-
in predicates. The way that the image processing predicates operate follows the 
standard pattern established for printing in Prolog (c.f. nl, write, tab). That is, they 
always succeed but are never resatisfied on back-tracking. For example, as a "side 
effect" of trying to satisfy the goal neg, Prolog+ calculates the negative of the 
current image. (Figure 3.1) The blurring operator (low-pass filter, lpf) also acts on 
the current image. The goal thr(125,193) performs thesholding, setting all pixels 
in the current image in the range [125,193] to white and all others to black. The 
goal cwp(Z) always succeeds and instantiates Z to the number of white pixels in 
the current image. However, the goal cwp(15294) will only succeed if there are 
exactly 15294 white pixels in the current image. While Prolog+ is trying to prove 
the compound goal [avr(Z),thr(Z)], Z is instantiated to the average intensity within 
the current image (calculated by avr). This value is then used to define the 
threshold parameter used by thr. With these points in mind, we are ready to 
examine our very first Prolog+ program. 
 
grab_and_threshold :- 
 grb,  % Digitise an image  
 lpf,  % Blur (Low-pass filter)     
 avr(Z),  % Calculate average intensity     
 thr(Z).  % Threshold at average intensity level   

  
Since each sub-goal in this simple program succeeds, the effect is the same as 

we had written a sequence of commands using a conventional (i.e. imperative) 
computer language. The goal grab_and_threshold always succeeds. However, the 
following Prolog+ program is a little more complicated. 

 
big_changes(A) :- 
 repeat,  % Always succeeds on backtracking    
 grb,  % Digitise an image from the camera   
 lpf,  % Perform lpf (low-pass filter)   
 lpf,  % Perform lpf   
 lpf,  % Perform lpf    
 sca(3),  % Retain only 3 bits of each intensity value  
 rea,  % Read image stored during previous cycle  
 swi,  % Switch current & alternate images   
 wri,  % Save the image for the next cycle   
 sub,  % Subtract the two images    
 abs,  % Compute "absolute value" of intensity   
 thr(1),  % Threshold at intensity level 1.    
 cwp(A),  % A is number of white pixels in image    
 A > 100. % Are differences between images significant? 

 
The operator repeat succeeds, as does each of the image processing operators, 

[grb, lpf, … , cwp(A)]. If the test A > 100 then fails, the program back-tracks to 
repeat, since none of the image processing predicates is resatisfied on 
backtracking. (Remember that repeat is always resatisfied on backtracking.) 
Another image is then captured from the camera and the whole image processing 
sequence is repeated. The loop terminates when A exceeds 100. When this 
happens, the goal big_changes(A) succeeds and A is instantiated to the number of 
white pixels in the difference image. The goal big_changes(A) performs the 
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processing sequence [grb,… , cwp(A)] an indefinitely large number of times and 
only succeeds when two consecutive images are found that are significantly 
different from one another. This program could be used as the basis for an 
intruder alarm, which signals when a person enters a restricted area. By adjusting 
the number in the final sub-goal (i.e. A>100), it is possible to tolerate between 
small changes (e.g. a cat wandering in front of the camera) while still being able 
to detect larger objects, such as a person being in view. 

Although image processing commands, such as grb, thr, cwp etc. are always 
satisfied, errors will be signalled if arguments are incorrectly specified. Since 
thr(X) requires one numeric argument, the goal will fail if X is uninstantiated. On 
the other hand, the following compound goal is satisfied [X is 197, thr(X)], as is  
 
 gli(A,B), % Get lower  & upper limits of intensity 
 C is (A+B)/2,  % Average them 

 thr(C).  % Use average value as threshold8 
 
The compound goal [X is 186, Y is 25, thr(X,Y)] fails, since thr fails when its 

second argument is less than the first one,9 while [X is 1587, thr(X)] fails, because 
the parameter (X) is outside the range of acceptable values, i.e. [0,255]. Notice 
that thr has already been used with different numbers of arguments (different 
arities). Throughout this book, we shall use thr with 0, 1 or 2 arguments. Other 
image processing predicates will be treated in the same way. For example, we 
have already used wri (write image to disc) and rea (read image from disc) 
without arguments. We shall also encounter them with a single argument, which is 
instantiated to a string of alpha-numeric characters. Such arguments may be 
generated according to the usual Prolog conventions. For example, the Prolog 
symbol generator, gensym, may be used to create a series of file-names, 
image_file1, image_file2,…, as the following illustration shows:  

 
process_image_sequence :- 
 grb,     % Digitise an image     
 process_image,   % Process the image    
 gensym(image_file,X),  % Generate new symbol name  
 wri(X),      
 process_image_sequence.   % Repeat processing   

 
Notice here that we have “condensed” almost all of the image processing into 

the subsidiary predicate, process_image. Using this approach, a simpler, revised 
version of big_changes may be defined using the subsidiary predicate, process. 

 
big_changes(A) :- 
 process % Listed below   
 cwp(A), % Instantiate A to number of white pixels in image   

                                                           
8 The observant reader will notice that C can be instantiated to an integer 

((A+B) is even) or a decimal value ((A+B) is odd). The effect of the latter is the 
same as if C is first rounded down, before trying to satisfy the goal thr(C). 

9 The image processor signals an error, which causes the failure of the Prolog 
goal, thr(186,25). 
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 A > 100. % Test to see whether differences between images  
  % are large. If not, back-track to process.  
 

where process is defined thus: 
 
process :-  grb, lpf, lpf, lpf, sca(3), rea, swi, wri,  
  sub, abs, thr(1). 

 
The use of subsidiary predicates, such as process_image and process, allows the 

programmer to think at a higher conceptual level and to defer deciding what 
image processing is to be performed until later.  

3.5 Prolog+ Programs 
Now that we have illustrated the basic principles of Prolog+, we are in a 

position to be able to consider more complex programs. In this section, we shall 
present a range of more advanced programs, which illustrate various features of 
Prolog+. It is important to realise that we must always use Prolog+ to describe the 
image generated by the camera, not the object / scene being inspected. The 
importance of this point cannot be over-emphasised. Additional points of general 
interest will be discussed as they arise. 

3.5.1 Recognising Bakewell Tarts 

Consider Figure 3.3, which shows diagrammatic side and plan views of a small 
cake, popular in Britain and which is called a Bakewell tart. Now, let us use 
Prolog+ to describe the image obtained by viewing such a cake from above. 

 
bakewell_tart :- 
 segment_image,  % Convert image to form shown in Fig. 3.3
 outer_edge, % Check the outer edge     
 cherry, % Check the cherry     
 icing. % Check the icing 

 
Programs written in Prolog+ are almost invariably written from the top level 

downwards. In this instance, bakewell_tart was the first predicate to be defined. 
Notice that there are four obvious stages in verifying that the tart is a good one: 

 
(a) Simplify the image (to a 4-level form), using segment_image. 
(b) Check the integrity of the outer edge, using  outer_edge. 
(c) Check the presence, size and placing of the cherry, using cherry. 
(d) Check the icing, using icing. 
 
Even a novice Prolog programmer can understand that bakewell_tart is only 

satisfied if all four of the subsidiary tests succeed. The secondary predicates, 
though not defined yet, are not necessary for us to understand the process of 
recognising a Bakewell tart. Three of these are defined below. (segment_image is 
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not given here, because it is problem specific and would distract us from the main 
point.) 
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Figure 3.3 Critical dimensions of a Bakewell tart. 
 

outer_edge :- 
 thr(1),  % Select outer edge      
 circular. % Standard test for circularity. Defined below   
 
cherry :-  
 thr(1),  % Select outer edge      
 cgr(X1,Y1), % Centroid of outer edge     
 swi,  % Switch images      
 thr(200), % Select cherry      
 swi,  % Switch images - restore image for use later  
 cgr(X2,Y2), % Centroid of the cherry     
 distance([X1,Y1,],[X2,Y2],D),  
   % D is distance [X1,Y1] to [X2,Y2], 
 D < 20.  % Are cherry and outer edge nearly concentric?  
icing :- 
 thr(128), % Select icing    
 rea(mask), % Read annular mask image from disc   
 xor,  % Calculate differences between these images  
 cwp(A),  % Calculate area of white region    
 A > 50.  % Allow a few small defects in icing    
  
circular :- 
 cwp(A),  % Calculate area      
 perimeter(P), % Calculate perimeter.    
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 S is A/(P*P), % Shape factor = Area/(Perimeter^2)    
 S < 0.08. % Min value for S is 1/4*π for a circle   

 
Notice the highly modular approach to Prolog+ programming and the fact that it 

is possible to define what is an "acceptable" Bakewell Tart, in a simple and 
natural way. Apart from the predicate segment_image, whose definition depends 
upon the lighting and camera, the program bakewell_tart is complete. It is able to 
perform a simple yet effective means of inspecting Bakewell tarts. 

3.5.2 Recognising Printed Letters 

The top two layers of a Prolog+ program for recognising printed letters are 
given below: 

 
% Top level predicate for recognising printed letters, which may  
% be either upper or lower case and in any one of three fonts  
letter(X) :- upper_case(X).  % Letter X may be upper case, … 
letter(X) :- lower_case(X).  % … or X may be lower case 
   
upper_case(X) :- 
 font(Y),   % Find what font we are using   
 member(Y,[times,courier,helvetica]),  
    % These 3 fonts are of interest to us  
 recognise_upper_case(X,Y). % X is upper case in font Y   
 
lower_case(X) :- 
 font(Y),   % Find what font we are using   
 member(Y,[times,courier,helvetica]),  
    % These 3 fonts are of interest to us   
 recognise_lower_case(X,Y). % X is lower case in font Y  

  
The complex task of recognising an upper- or lower-case letter in any of the 

three known fonts has been reduced to a total of 156 (=3*2*26) simpler sub-
problems. (A simple declarative definition of the sans serif upper case letter A is 
presented later.) Now, let us consider what changes have to be made if a new font 
(e.g. Palatino) is to be introduced. Two changes have to be made: 

 
(i) the second line in the body of upper_case and lower_case is changed to 
 member(Y,[times,courier,helvetica,palatino]) 
(ii) two new clauses are added for each letter X, one for  
 recognise_upper_case(X,palatino) and another for 
 recognise_lower_case(X,palatino). 

 
If we wanted to add recognition rules for the numeric characters, then 10 new 

clauses would be added, as in (ii). In other words, extending the scope of a 
Prolog+ program is conceptually simple, if rather tedious to accomplish. Here, as 
promised, is a naive but quite effective declarative definition of the sans serif  
upper-case letter A: 

 
recognise_upper_case(a,sans_serif) :- 
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 apex(A), % There is an apex called A10.    
 tee(B),  % There is a tee-joint called B   
 tee(C),  % There is a tee-joint called C   
 line_end(D), % There is a line_end called D   
 line_end(E), % There is a line_end called E   
 above(A,B), % A is above B.      
 above(A,C),      
 about_same_vertical(B,C),     
 about_same_vertical(D,E),    
 above(B,D),    
 above(C,E),    
 connected(A,B),       
 connected(A,C),     
 connected(B,D),     
 connected(C,E),     
 connected(B,C),     
 left(B,C),        
 left(D,E).     

 
The reader should be able to understand the above program without detailed 

knowledge about how the predicates apex, tee, line_end above, 
about_same_vertical, above, connected and right are defined. Figure 3.4 shows 
some of the objects which would be recognised by this program. Obviously, 
recognise_upper_case can be refined by adding further conditions, to eliminate 
some of the more bizarre objects that are recognised by the present definition and 
are shown in Figure 3.4. 

3.5.3 Identifying Table Cutlery 

 The following Prolog+ program identifies items of table cutlery that are viewed 
in silhouette. (It is assumed, for the sake of brevity, that the input image can be 
segmented using simple thresholding.) The top-level predicate is camera_sees(Z) 
and is a general purpose utility that can find any object, given an appropriate 
definition for the subsidiary predicate object_is. In its present somewhat limited 
form, the program recognises only forks and knives; additional clauses for 
object_is are needed to identify other utensils, such as spoons, plates, mats, etc. 
When the query camera_sees(Z) is specified, Z is instantiated to the type of object 
seen by the camera. In practice, there may be many objects visible to the camera 
and the program will progressively analyse each one in turn. Any objects visible 
to the camera that are not recognised are signalled by instantiating Z to the value 
unknown_type, see Figure 3.5. 

 

                                                           
10 The name of a feature, such as an apex or tee-joint, may be the same as its 

address within the image. When using Prolog+, this is often very convenient. 
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Figure 3.4 Objects which are inappropriately recognised as the sans serif 
letter A by the goal recognise_upper_case(a,sans_serif).  
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Figure 3.5 Explaining the operation of two object recognition programs (a)  
object_is(fork). AB is the axis of minimum second moment. Criteria to be 
satisfied, before this object can be accepted as a fork: 150 ≤ X ≤ 450; 25 ≤ Y 
≤ 100; 4 ≤ X/Y ≤ 10; skeleton here has 3-5 limb ends. (b) object_is(knife). AB 
is the axis of minimum second moment. Criteria to be satisfied, before this 
object can be accepted as a fork: 150 ≤ X ≤ 450;  25 ≤ Y ≤ 100; 6 ≤ X/Y ≤ 12; 
skeleton must have exactly 2 limb ends. 
  
% Top level predicate for recognising individual items of table 
% cutlery 
camera_sees(Z) :- 
 grb,  % Digitise an image from the camera    
 segment_image, % Example: [enc, thr(128)] 
 ndo,  % Shade resulting binary image so that each  
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   % blob  has a different intensity   
 wri(temp), % Save image in disc file, named "temp"  
 repeat,  % Begin loop - analyse all blobs in turn 
 next_blob, % Select a blob from the image saved in "temp" 
 object_is(Z), % Identify the blob as an object of type Z 
 finished. % Succeeds only when no more blobs to analyse  
  
% Select one blob from the image stored in disc file “temp”. 
% Remove this blob from the stored image, so that it will not  
% be considered next time. 
next_blob :- 
 rea(temp), % Read image from disc file “temp”  
 gli(_,A), % Identify next blob - i.e. brightest    
 hil(A,A,0), % Remove it from stored image  
 wri(temp), % Save remaining blobs    
 swi,  % Revert to previous version of stored image 
 thr(A,A). % Select one blob      
 
% Recognises individual non-overlapping objects in a binary image. 
object_is(fork) :- % Figure 3.5(a) shows how this clause works 
 mma(X,Y), % Find lengths along major & minor axes (X,Y) 
 X ≥ 150, % Length must be ≥ 150 pixels   
 X ≤ 450, % Length must be ≤ 450 pixels   
 Y ≥ 25,  % Width must be ≥ 25 pixels     
 X ≤ 100, % Width must be ≤ 100 pixels  
 Z is X/Y, % Calculate aspect ratio - whatever  
   % orientation 
 Z ≤ 10,  % Aspect ratio must ≤ 10     
 Z ≥ 4,  % Aspect ratio must be ≥ 4     
 count_limb_ends(N),  
   % Instantiate N to number of limb ends 
 N ≥ 3,  % Skeleton of fork must have ≥ 3 limb ends   
 N ≤ 5.  % Skeleton of fork must have ≤ 5 limb ends   
 
% Add as many clauses here as are needed to recognise each possible  
% type of object. 
object_is(knife) :- % Figure 3.5(b) shows how this clause works 
 mma(X,Y), % Find lengths along major & minor axes (X,Y) 
 X ≥ 150, % Length must be ≥ 150 pixels   
 X ≤ 450, % Length must be ≤ 450 pixels   
 Y ≥ 25,  % Width must be ≥ 25 pixels     
 X ≤ 100, % Width must be ≤ 100 pixels   
 Z is Y/X, % Calculate aspect ratio - whatever  
   % orientation 
 Z ≤ 12,  % Aspect ratio must ≤ 12     
 Z ≥ 6,  % Aspect ratio must be ≥ 6     
 count_limb_ends(2).  
   % Skeleton of a knife has exactly 2 limb ends  
   % Catch-all clause. Object is not recognised 
 
object_is(unknown_type). 
 
 
% Search is finished. Image is black everywhere. 
finished :- 
 rea(temp), % Read image from disc   
 thr(1),  % Threshold stored image     
 cwp(0).  % Succeeds if number of white points = 0   
 
% Count the limb ends on a skeleton (“match-stick”) figure 
count_limb_ends(N) :- 
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 mdl,  % Generate skeleton of the blob   
 cnw,  % Count white neighbours for 3*3 window  
 min,  % Ignore back-ground points     
 thr(2,2), % Select limb ends      
 eul(N).  % Instantiate N to number of limb ends 

3.5.4 Analysing all Visible Objects 

The list of all objects that are visible to the camera can be found using the 
predicate list_all_objects defined thus: 

 
list_all_objects(A) :- 
 grb,    % Same pre-processing … 
 segment_image,   % …  as is used in … 
 ndo,    % …  the predicate … 
 wri(temp),   % …  “camera_sees” 
 find_object_list([],A). % Generate list of objects seen 
  
find_object_list(A,A) :- % Terminating recursion 
 finished.  % Succeeds when no more blobs to  
    % analyse  
 
find_object_list(A,B) :- % Analyse all blobs in the image 
 next_blob,  % Select a blob from the image saved in  
    % "temp" 
 object_is(C),  % Identify the blob as an object of  
    % type C 
 !,   % Do not want to back-track, so include 
    % cut (!) here to make recursion more  
    % efficient 
 find_object_list([C|A],B).  
    % Recursive call to analyse all blobs 

 
This makes use of the fact that object_is is able to recognise an object in the 

presence of other objects, provided that they do not touch or overlap. We will now 
make good use of list_all_objects in performing a much more difficult task, 
namely that of recognising a well-laid table place setting. 

3.5.5 Recognising a Table Place Setting 

The following Prolog+ program can recognise a table place setting with the 
cutlery laid out as shown in Figure 3.6(a). For this program to work properly, we 
must first define additional clauses for the predicate object_is, so that appropriate 
types of object, such as small_knife, tea_spoon, dinner_fork, plate, mat, etc., can 
be recognised. Notice that table_place_setting is defined in standard Prolog, 
without any further use of the image processing built-in predicates. 
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Figure 3.6 Table place settings: (a) Ideal arrangement. Key: 1, dinner_fork; 2, 
mat; 3, dinner_knife; 4, small_knife; 5, soup_spoon; 6, small_fork; 7, 
desert_spoon. (b) Scene that is misrecognised by table_place_setting with the 
original definitions of left and below but which is correctly rejected with the 
revised versions. (c) A scene that is incorrectly recognised by the revised 
version of the program. 
 
table_place_setting :- 
 list_all_objects(A), 
 equal_sets(A, [mat, plate, dinner_knife, small_knife,  
 dinner_fork, small_fork, soup_spoon, desert_spoon]),  
 left(dinner_fork, mat), % Defined below 
 left(mat, dinner_knife), 
 left(dinner_knife, small_knife), 
 left(small_knife, soup_spoon), 
 below(mat, small_fork), 
 below(small_fork, desert_spoon). 
 

For completeness, we now define the predicates left, below and equal_sets. 
These and many other useful “general purpose” predicates like them form part of 
a Prolog+ Library, which augments the basic language. 
 
left(A,B) :- 
 location(A,Xa,_), % Horizontal position of A is Xa 
 location(B,Xb,_), % Horizontal position of B is Xb 
 !,   % Inhibit backtracking 
 Xa < Xb.  % Compare horizontal positions 
 
below(A,B) :- 
 location(A,_,Ya), % Vertical position of A is Ya 
 location(B,_,Yb), % Vertical position of B is Yb 
 !,   % Inhibit backtracking 
 Ya < Yb.  % Compare vertical positions 
 
equal_sets([],[]).  % Terminate recursion 
 
equal_sets([A|B],C) :- % Checking two non-empty lists are  
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    % equal 
 member(A,C),  % A is a member of C 
 cull(A,C,D),  % Delete A from list C. Result is D 
 !,   % Improve efficiency of recursion 
 equal_sets(B,D). % Recursion. Are sets B and D also  
    % equal? 
 
cull(_,[],[]). % Cannot delete anything from empty list 
 
cull(A,[A|B],C) :- % Delete A from list if A is at its head 
 !,  % Improve efficiency of recursion 
 cull(A,B,C). % Repeat until the lists A and B are both  
   % empty 
 
cull(A,[B|C],[B|D]) :-  
   % A is not head of “input” list so work on  
   % tails 
 !,  % Improve efficiency of recursion 
 cull(A,C,D). % Repeat until the lists A & B are both empty 

 
Using these simple definitions, a range of unusual configurations of cutlery and 

china objects is accepted. (See Figure 3.6(b).) To improve matters, we should 
refine our definitions of left and below. When redefining left(A,B), we simply add 
extra conditions, for example that A and B must be at about the same vertical 
position: 

 
left(A,B) :- 
 location(A,Xa,Ya), % Horizontal position of A is Xa 
 location(B,Xb,Yb), % Horizontal position of B is Xb 
 !,   % Inhibit backtracking 
 Xa < Xb,  % Compare horizontal positions 
 about_same(Ya,Yb, 25). % Tolerance level is specified by 3rd  
    % argument 
 
about_same(A,B,C) :- A ≤ B + C. 
about_same(A,B,C) :- A ≥ B - C. 
 
The predicate below is redefined in a similar way: 
 
below(A,B) :- 
 location(A,Xa,Ya), % Vertical position of A is Ya 
 location(B,Xb,Yb), % Vertical position of B is Yb 
 !,   % Inhibit backtracking 
 Ya < Yb.  % Compare vertical positions 
 about_same(Xa,Xb, 25). % Tolerance level is specified by 3rd  
    % argument 
 
In practical application, it would probably be better for the tolerance parameter 

required by about_same (third argument) to be related to the size of the objects to 
be recognised. This would make a program such as table_place_setting more 
robust, by making it size-independent. This modification to our program improves 
matters, but it still recognises certain cutlery arrangements as being valid place 
settings, even though we would probably want to exclude them in practice. 
(Figure 3.6(c))  Clearly, we can go on adding further conditions to our program, 
in order to reduce the number of cutlery arrangements accepted by it. 
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3.6 Abstract Concepts in Prolog+ 
Like its better known ancestor, Prolog+ is a declarative language. As we have 

already explained, this means that the nature of a solution is described by the 
programmer, rather than the algorithmic steps needed to attain it. As a result, it is 
very easy to create new commands in terms of existing ones, change command 
names and alter default values of arguments. By using Prolog+, we also gain the 
advantage of being able to use abstract concepts in our programs. We shall now 
illustrate each of these points in turn. 

3.6.1 Describing a Simple Package 

Consider a simple scene, such as that shown in Figure 3.7, which is intended as 
a model of a cardboard carton, containing some small item such as floppy discs, 
video tape, photographic film, etc. Suppose that a friend has not previously seen 
this article and that you want to tell him about it, so that he can be despatched to 
look for others like it. (At this stage, we shall not enter the difficult debate about 
how we might define the phrase "like it" in formal terms.) Showing the friend this 
diagram is not permitted. Nor is sketching it allowed. The description must be 
purely verbal. A person, is, in effect, able to "program" another person, enabling 
the latter to recognise an article which has been described verbally. One of the 
authors main research goals is to develop techniques for programming a machine 
vision system, using the same natural method of describing objects that we would 
use to "program" a person. The picture in Figure 3.7 could be described in 
Prolog+ in the following way: 

 
picture :- 
 rectangle(A),  % A is a rectangle 
 ellipse(B),  % B is an ellipse 
 encloses(A,B),  % A encloses B 
 text(C,'Qwerty'), % C is the text ‘Qwerty’ 
 inside(C,B),  % C is inside B 
 print_texture(D), % D is “print_texture” (No need to read  
    % it) 
 encloses(A,D),  % A encloses D 
 below(D,B).  % D is below B 

 
In a Prolog+ program, there are no “instructions”, simply tests used to verify or 

refute a predicate.11 Thus, picture can be proved to be true, if each of its 
component sub-goals (i.e. rectangle(A), ellipse(B), encloses(A,B),…, below(D,B)) 
are all true. The image being analysed may contain many rectangles and ellipses 
but the predicate picture is only true if there is at least one rectangle which 
contains an ellipse. (Of, course, other conditions have to be satisfied as well.) 

                                                           
11 Prolog programs can be written in a procedural manner. By this, we mean 

that the sub-goals all succeed, thereby reducing a predicate to a simple sequence 
of operations. However, this is a separate issue which need not concern us here. 



 91

Prolog+ will search the image for rectangle-ellipse pairs which together satisfy the 
encloses relationship, and will then try to satisfy the other subgoals:  text(C, 
'Qwerty'), …, below(D,B) 

 

This is, of course, plain
English text but its
exact meaning is
unimportant for our
present  purpose. What
is important, however,
is that the text is
inside the rectangle
and below the ellipse

This text  is  different
and may even be in a
different language,
That is not at all
important  for our
present  purpose. Only
the texture matters.

Qwerty
This is, of course, plain
English text but its
exact meaning is
unimportant for our
present  purpose. What
is important, however,
is that the text is inside
the rectangle and
below the ellipse

Qwerty
This is, of course, plain
English text but its
exact meaning is
unimportant for our
present  purpose. What
is important, however,
is that the text is inside
the rectangle and
below the ellipse

rectangle(A),

 ellipse(B),

 encloses(A,B),

 text(C,'Qwerty'),

 inside(C,B),

 print_texture(D),

 encloses(A,D),

 below(D,B).

Qwerty
This is, of course, plain
English text but its
exact meaning is
unimportant for our
present  purpose. What
is important, however,
is that the text is inside
the rectangle and
below the ellipse

Qwerty

Qwerty

 
 

Figure 3.7 A simple scene, deliberately contrived to resemble a cardboard 
carton. Showing (part of its) its relationship to the predicate picture. Notice 
that an infinite number of cartons and other images satisfy the constraints 
imposed by the program picture. 

3.6.2 Abstract Spatial Relationships 

The predicates table_place_setting and picture rely upon abstract concepts 
about spatial relationships between pairs of objects in an image. The relationships 
in question are left and below were defined earlier. The predicate encloses is 
clearly related to another important relationship, inside: 

 
encloses(A,B) :- inside(B,A). % A encloses B if B is inside A 

 
while inside can be defined thus. 

 
inside(A,B) :- 
 isolate(A), % Isolate object A 
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 wri,  % Save image until later 
 isolate(B), % Isolate object B 
 rea,  % Recover saved image during “wri” operation 
 sub,  % Subtract images 
 thr(0,0), % Find all black pixels 
 cwp(0).  % There are exactly zero black pixels. 

 
Notice that inside(A,B) creates two binary images, containing objects A and B. 

These images are then compared. If all white pixels in one image (i.e. the one 
containing object B) are also white in the other (containing object A), then we can 
conclude that A is inside B and the goal inside(A,B) succeeds. 

There are, of course, many other abstract relationships that we must define. 
Here are the definitions of a few of them:  

 
% Are objects A and B concentric ? 
concentric(A,B) :- 
 location(A,Xa,Ya), % Could use centroid to define  
    % “location” 
 location(B,Xb,Yb),  % Could use centroid to define “location” 
 near([Xa,Ya],[Xb,Yb],10).  
    % Is distance [Xa,Ya] to [Xb,Yb] ≤ 10  
 
% Are A and B in about the same vertical position ? 
about_same_vertical(A,B) :- 
 location(A,Xa,Ya), % Could use centroid to define  
    % “location” 
 location(B,Xb,Yb),  % Could use centroid to define “location” 
 about_same(Ya,Yb,10). % Is difference in vertical position ≤  
    % 10. 
 
% Test whether object A in the top part of object B (i.e. the  
% bottom-most point in A is above B’s centroid). A must be entirely  
% contained inside B.  
top_of(A,B) :- 
 isolate(A), % Isolate object A 
 dim(_,Ya,_,_), % Bottom of object A 
 isolate(B), % Isolate object B 
 cgr(B,_,Yb), % Could use centroid to define “location” 
 Ya ≤ Yb, % Is bottom point in A above centre of B 
 inside(A,B). 
 
% Are the points [X1,Y1] and [X2,Y2] connected by a continuous set  
% of white pixels ? 
connected(X1,Y1,X2,Y2) :- 
 ndo,   % Shade blobs.  
 pgt(X1,Y1,Z),  % Z is intensity at [X1,Y1] 
 pgt(X2,Y2,Z),  % Z is intensity at [X2,Y2] 
 Z = 255.  % Both pixels are white 
 
% Are regions A and B adjacent ? 
adjacent(A,B) :- 
 isolate(A),  % Isolate region A 
 exw,   % Expand region by 1 pixel 
 wri,   % Save image for use later 
 isolate(B),  % Isolate region A 
 rea,   % Read image A expanded 
 min,   % Logical AND of the 2 images 
 cwp(N),   % Count white points in both images 
 N > 0.   % Are there some?  
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The reader may like to consider how a predicate can be defined which can test 
whether an object in a binary image is vertical. (Figure 3.8. The relevent image 
processing predicate is lmi.) This predicate could be used to prevent 
table_place_setting from detecting scenes like that shown in Figure 3.6(c). 

3.6.3 Geometric Figures 

The predicate rectangle, which is used in the definition of picture, seems to 
refer to a geometric figure, that can be defined in precise mathematical terms. 
(Figure 3.9) In fact, this is not so; human beings use the term “rectangles” much 
more loosely than this. Most people, including mathematicians in their everyday 
lives, would describe a rectangle using the fuzzy concepts of “straight line” and 
“right angle”. Most people are prepared to use these terms to describe a wide 
variety of carelessly drawn objects. (Figure 3.10) We cannot use the familiar 
equation for a straight line (y = m.x + c) directly, when we want to test whether a 
“broken” polygonal arc, or series of spots, could reasonably be regarded as 
forming a straight line. We could use the Hough transform to do this. Another 
approach is exemplified by the predicate straight_line, defined below. This 
provides a simple heuristic for testing whether a 1-pixel wide arc, whose end 
points are [X1,Y1] and [X2,Y2], could reasonably be accepted as being a straight 
line. (See Figure 3.11.) 

 
straight_line([X1,Y1], [X2,Y2]) :- 
 wri,  % Save image for use later 
 zer,  % Create black image 
 vpl((X1,Y1, X2,Y2, 255),  
   % Draw digital straight line 
 neg,  % Negate the image 
 gft,  % Grass fire transform 
 rea,  % Recover saved image 
 min,  % Use original image as mask on grass fire  
   % picture 
 gli(_,Z), % Find maximum intensity (i.e. distance from 
   % line joining [X1,Y1] and [X2, Y2]) 
 Z ≤ 10.  % Is whole arc ≤10 pixels away from this line? 
 

Testing for right angles is easy, once the corner points have been identified. 
(See Section 2.3.) 

 
right_angle(A,B,C,D) :- 
 angle(A,B,P),  % Find angle of line joining A and B 
 angle(C,D,Q),  % Find angle of line joining C and D 
 S is Q - P,  % Find difference in angles 
 about_same(S,90,5). % Check angle difference is in range  
    % [85,95] 
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Figure 3.8 Spatial relationships in Prolog+. 
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Here, at last, is one possible test for rectangles, using the ideas just described. 
 
rectangle(A,B,C,D) :-  
 straight_line(A,B),  % Side AB 
 right_angle(A,B,B,C),  % Corner at point B 
 straight_line(B,C),  % Side BC 
 right_angle(B,C,C,D),  % Corner at point C 
 straight_line(C,D),  % Side CD 
 right_angle(C,D,D,A),  % Corner at point D 
 straight_line(D,A),  % Side DA 
 right_angle(D,A,A,B).  % Corner at point A 

 
 
 

 
 

Figure 3.9 “Rectangles”. 
 

 
 

Figure 3.10 Some of the objects that people call “straight lines” and “right 
angles”. 
 
However, this is not the complete story! There are many other types of object 

that could legitimately be called rectangles. Some of these are illustrated in Figure 
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3.9. Clearly, a general definition of rectangles requires a lot more sophistication 
than we have  space to explain here. Let it suffice to say that each of the objects 
shown in Figure 3.9 could be recognised  by a separate Prolog+ clause. 

 

Penumbra around line joining
[X1,Y1] and [X2,Y2] is created
by the grass-fire transform [gft]

Point of maximum deviation from straight line
is brightest point when ANDed with gft output

[X1,Y1] [X2,Y2]

Line generated by vpl(X1,Y1,X2,Y2,255)
 

 
Figure 3.11 Operation of the predicate straight_line. 

3.7 Implementation of Prolog+ 
Consider Figure 3.12 which shows the block diagram of a system that offers 

one possible implementation of Prolog+. This represents one of the most recent 
stages in a period of evolutionary development that has taken place since 1985. A 
number of other systems combining image processing with Prolog have been 
built. (See Figure 3.13.)  

3.7.1 The # Operator 

The essential feature of Figure 3.12 is that it shows a Prolog program 
controlling a proprietary image processor, the Intelligent Camera [INT]. Figure 
3.14 shows the action that follows, when Prolog encounters a goal of the form # 
en. The # operator performs the following actions: 

 
1. The character string “en” is sent, via the Macintosh computer's modem port, 
to the Intelligent Camera. 
2. The Intelligent Camera interprets the character string “en” as a command and 
performs the appropriate image processing operation (negating all intensities in 
the image.)  
3. When the Intelligent Camera completes the operation en, it signals that it has 
done so, via its serial port, to the control computer running Prolog. 
4. Prolog receives the "command done" signal from the Intelligent Camera and 
interprets it so that the Prolog goal [# en] succeeds. 
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Figure 3.12 One possible implementation of Prolog+, using the Intelligent 
Camera [INT]. The Macintosh computer runs the Prolog+ software. 
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Figure 3.13 Other possible implementations of Prolog+. Each of these 
arrangements has been built, in the past. The earliest successful configuration 
to be used was (a). Most of the authors recent work has been based on (c) and 
(d). 
 
The goal [# ‘tf(128,W)’] is slightly more complex but is dealt with in a similar 

way. The only difference is that the character string “tf(128,W)” is sent to the 
Intelligent Camera. The  # operator is defined in such a way that we may type “# 
tf(128,’W’)” instead. (This alternative form is a little more convenient when we 
write Prolog+ programs.) The goal [# tf(X,'W')] where X is already instantiated to 
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123, is treated in just the same way; the character string transmitted to the 
Intelligent Camera is "tf(123,W)". However, both of the following goals [# 
tf(1234,'W')] and [X is 1234, # tf(X,'W')] will fail, because the Intelligent Camera 
cannot perform the operation. (The first parameter, X, is out of range.) 

Two Prolog+ predicates are provided that can to receive data returned by the 
image processor. These access the local and global memories stored within the 
Intelligent Camera and have the form m(R,V) and g(R,V). The first of these 
instantiates the Prolog+ variable V to the value currently stored in the image 
processor's local memory register number R. The second instantiates V to the 
value stored in the global memory register R . Until recently, these were the only 
means that Prolog+ had of obtaining data about images.  

What we have described thus far in this section will be referred to as Very 
Simple Prolog+, or VSP. Prolog+ contains far more facilities than this but the 
whole of Prolog+ as described so far in this book can be written in terms of VSP. 
The definition of the # operator is dependent upon the particular image processor 
being used. (See [BAT-91] for more details on this operator.) For the moment, the 
reader should note the following points: 

 
(i) Repeating the # operator two or more times has the same effect as including 
it once in a program. In Prolog, this is achieved as follows:  # # A :- # A.  
Hence, # # # # en  and # # en have the same effect as # en. 
(ii) # is never resatisfied on back-tracking. 
(iii) For the convenience of the user, the operator @ is defined to be 
synonymous with #, using the definition @ A :- # A. 
 

en

[0].

IPP

IPP

(a)

va

[0,137].

IPP

IPP

(b)  
 

Figure 3.14 How the Prolog+ system shown in Figure 3.12 responds to two 
typical image processing goals. Data passes between the Prolog host 
computer and the image processor (Intelligent Camera).  Key: P, Prolog host 
computer. IP, Image processor. (a) # en. The image processor returns the list 
[0]. to signal “task done”. (b) # va. The image processor returns the list 
[0,137] to signal “task done” and that the average intensity is 137. 

3.8 Comments 
The idea of integrating image processing within Prolog was conceived in the 

mid-1980s. [BAT-91] Prior to that, a program providing a loose linkage between 
them had been developed. The tight connection between the image processing and 
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Prolog that is implicit in Prolog+ has a distinctively beneficial effect, which is 
more significant than a mere cosmetic change. Indeed, the “ergonomics” of the 
combined software package are much improved, thereby enabling the Prolog+ 
programmer to concentrate better upon the high-level abstract concepts specific to 
the application. While it is possible to  implement Prolog+ using only the ‘#’ 
operator within Very Simple Prolog+ (VSP), closer integration between Prolog 
and the image processing software has distinct advantages, in terms of user 
acceptability. The software outlined in Appendix D was developed very recently 
and does not require the definition of the ‘#’ operator as a prelude to 
implementing the full Prolog+ language. We should not confuse implementation 
details with the fundamental requirements of the language.  

A very important aspect of Prolog+ is that it retains the ability to perform 
interactive image processing as a means of developing algorithms / heuristics for 
machine vision applications. Since interactive image processing has been found to 
be very effective in a wide variety of  industrial applications, this was considered 
to be an essential feature of the language. We shall return to this theme in the 
following chapter, where we explain how interaction is actually achieved.  

The mechanism for invoking image processing operators within Prolog+ 
programs has been described above. Each image processing function is executed 
as a side effect of evaluating a predicate that always succeeds but is never 
resatisfied on backtracking. In this respect, the image processing operators 
resemble the standard Prolog printing predicates: write, nl, tab, etc. Several 
Prolog+ programs have been presented. The ability to describe an object or scene 
that is to be recognised in future is an important aspect of Prolog+ programming. 
This allows a person to work in a natural way. The ability to use abstract symbolic 
relationships in these descriptions is particularly important. A person can, for 
example, define what spatial relationships must exist between objects within an 
image. The ability to define predicates such as left, near, parallel and from there 
develop definitions for general objects, such as “rectangles”, are particularly 
valuable. The program for examining a table place setting (table_place_setting) is 
a good example of Prolog+ code that would be difficult to replace by software 
written in another language. 

The ability of Prolog+ to define synonyms and to represent reciprocal 
relationships (e.g. right and left, below and above, etc.) is valuable, since it makes 
it a trivial, if tedious, task to write a program that is tolerant of human beings who 
are prone to forget / ignore rules about which word to use. A brief outline of the 
implementation of Prolog+ has been given in the pages above.  

 
Several possible methods of implementing Prolog+ have been devised in the 

past: 
 
(a) Using an external hardware device for image processing. This resides 
outside the Prolog host computer and is connected to it via a serial 
(RS232/RS422) line. This external device may, in fact, be another computer, a 
slow dedicated hardware unit, such as the Intelligent Camera, or consist of a fast 
hardware accelerator, controlled by a second computer. 
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(b) As (a), but using a fast parallel line. 
(c) Using a full software implementation. More details are provided of the 
software implementation in Appendix D.  
 
 



 

 
 

4        
 
Enhanced Intelligent Systems 

 
 
 
 
 
Thus far, Prolog+ has been presented simply as a language for intelligent image 

processing. However, this is not a book about image processing per se. Hence, we 
need to place Prolog+ in its proper context, as being just one element within a 
“tool box” containing a number of design aids for industrial vision systems 
engineers. The integrated operating environment, surrounding Prolog+ is just as 
important as the “core” language itself and forms one of four major topics 
discussed in this chapter.  

The second major topic in this chapter is the use of speech to control a Prolog+ 
system. Speech input is seen as being attractive as a means of allowing the user of 
a vision system or robot, to control it, without using a keyboard. Speech input is 
faster and more natural for the user than is a keyboard. In addition, speech input 
keeps both hands free and is less prone to damage by dust and dirt in a factory 
environment. Of course, safeguards are needed to ensure that factory noise does 
not affect the speech recognition system and it may not be possible to use it at all 
in a very noisy plant. Strictly speaking, speech input and natural language 
understanding to accompany it, are part of the environment surrounding Prolog+. 
We have separated these issues in this chapter, simply for convenience. 

In the third part of this chapter, we describe various design aids and discuss 
how they can be interfaced to a Prolog+ system. Among them is a so-called 
Lighting Advisor, which consists of two inter-linked HyperCard stacks and 
provides advice about a wide range of issues relating to the formation of a good 
image, prior to image digitisation and processing. Again, the Lighting Advisor 
effectively forms part of the Prolog+ environment. 

The construction of loosely coupled networks of Prolog+ systems, controlled by 
a single Prolog program forms our final topic in this chapter. These networks can 
have as many as 32 host computers and up to 1024 cameras. 

 
 
 

4.1 Prolog+ Environment: A Tool-box for               
     Machine Vision 
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The Prolog+ environment provides a number of enhancements, extensions and 
utilities to the language described in the previous chapter and which have been 
designed as aids to the design process. The extensions to Prolog+ embodied 
within its operating environment include the following features: 

 
• Library of useful programs, including several demonstrations. The latter are 

intended for education and training purposes.  
• Auto-starting Prolog+ when the computer power is switched on. 
• Interactive operation for prototyping industrial vision systems. 
• Pull-down menus, which can be extended easily by the user, without any 

programming. 
• Command keys, for rapid selection of certain important functions. 
• Graphical display of the pose of a robot in a work cell. 
• Speech Synthesis, for presenting symbolic data to a user in a natural way. 
• On-line HELP and operating data display facilities. 
• Cursor, used for both drawing and interactive investigation of image 

structure. 
• Automatic Script Generation and editing. 
• Linking to other programs, including a HyperCard controller for setting up a 

robot vision work cell. 
• Speech Recognition, which can be used in conjunction with Prolog 

programs that are capable of understanding simple English sentences about a 
domain of limited scope. This topic is discussed in the following section. 

• Design Aids, including a programs which gives advice about lighting and 
viewing techniques.  

 
The ideas discussed in this chapter have all been studied and proved 

experimentally; Prolog+ programs have been written to substantiate all of these 
ideas. Integrating these utilities into a single, harmonious environment is a major 
task and, for this reason, is still under way. 

4.1.1 Defining New Predicate Names 

In Appendix E, we list the mnemonics for the image processing operators that 
are used throughout this book. However, the use of 3-letter mnemonics may not 
be to everyone's taste. Suppose that we wish to define a new name for the image 
processing operator neg. This can be accomplished very simply in the following 
way:  
 negate :- neg. 
 
Either neg or negate may now be used. In the same way, a 2-letter mnemonic 

form may be defined:  
 
 ne :- neg. 
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When we wish to define a new name for an operator, such as thr, which has a 
variable arity1, the situation is slightly more complicated: 

 
threshold(X,Y) :- thr(X,Y). 
threshold(X) :- thr(X).  
threshold :- thr. 

 
In the same way, it is possible to make up an entirely new image processing 

language, or to translate the terms into a foreign (natural) language. Here, for 
example, is a small portion of the translator for an image processor intended for 
use by Welsh speakers: 

 
mwyaf :- biggest. 
ardal_gwyn(X) :- white_area(X). 
anglir :- blur. 

4.1.2 Default Values for Arguments 

It is a simple matter to redefine the default values for arguments of Prolog+ 
image processing operators. Suppose that we wish to define new default values 
for the operator thr: 

 
thr(X) :- thr(X,200). % Previous default value was 255   
thr :- thr(75,125).  % Not defined previously    
thr :- thr(128,255).  % Arbitrary but useful definition   

 
Notice that it is necessary to include one clause for each case to be considered. 

4.1.3 Useful Operators 

A useful “program control” operator, ‘•’, may be defined thus: 
 
0•G. 
N•G :- 
 call(G), 
 M is N -1, 
 M•G. 

 
This operator may be used like a FOR-loop in a conventional programming 

language, since it permits the programmer to order the repetition of an operation 
G. In formal Prolog terms, N•G is a goal, which either succeeds or fails. If G fails 
on any of the N repetitions, then N•G will also fail. N•G succeeds if all N 
repetitions of G succeed. In order to understand the value of the '•' operator, notice 
that the two following definitions of process are identical in their effect: 

 
% First definition, using the ‘•’ operator 
isophotes :- % Draw smoothed intensity contours (isophotes) 

                                                           
1 The arity measures the number of arguments. 
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 3•lpf, % Repeat “lpf” three times 
 sca(3), % Discard 5 least significant bits (keep 3 bits) 
 sed, 
 thr(1). 
 
% Second definition, repeating “lpf” three times 
isophotes :- 
 lpf, lpf, lpf, 
 sca(3), sed, 
 thr(1). 

 
A useful non-linear filter for detecting thin dark streaks (“cracks”) and small 

spots may be defined thus: 
 

crack :-  
 wri,  % Save image until later 
 2•(3•lnb,neg),    
 rea,  % Read image saved earlier 
 sub.  % Subtract images 

 
This is much more compact and rather more easily understood than the 

following equivalent version: 
 
crack :-  
 wri, 
 lnb, lnb, lnb, 
 neg, 
 lnb, lnb, lnb, 
 rea, sub. 

 
The following provides a more general Prolog equivalent of the FOR-loop: 
 
for(A,_,B,_) :-  % Terminate recursion 
 A > B,  % Upper limit of variable exceeded 
 !.  % Do not progress to next clause 
 
for(A,B,C,D(_)) :-    
 call(D(A)), % Try to satisfy goal D(A) 
 E is A + B, % Increment counter, ready for next loop 
 !, for(E,B,C,D(L)).  % Go on to next loop 

 
A typical query using this definition is for(3,2,27, process(_)), which tries to 

satisfy process(I), for I = 3, 5, 7, …, 25, 27.  A Prolog+ predicate, case, roughly 
equivalent to Pascal's CASE operator may be defined in the following way: 

  
case(A,B) :- 
 select_list_element(A,B,C),  % Instantiate C to A-th element  
     % of list B   
 call(C).   % Satisfy goal C 
 
% Fail for all negative values of first argument 
select_list_element(N,_,fail) :- 
 N ≤ 0, !, fail. 
 
% Finish if N is 1. 
select_list_element(1,[A],A). 
 
% What to do if we have not found the N-th element yet 
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select_list_element(A,[B|C],D) :- 
 length(C,N), % Length of the list C is N 
 N > 0,   % Is N > 1? 
 X is A - 1, select_list_element(X,C,D).  
   % Repeat until we find the element we want 
 
% Fail under all other circumstances 
select_list_element(_,_,_) :- fail. 

 
The conditional statement if_then_else may be defined thus: 
 
if_then_else(A,B,C) :- A,!,B.   % If A succeeds, test B.   
if_then_else (A,B,C) :- C.  % A has failed, so test C 
   

The simpler if_then function could of course, be defined in the following way: 
 
if_then(A,B) :- A,!,B.  % If A succeeds, test B.   

 
However, an operator, ('->') may be defined as an alternative: 
 
A -> B :- A,!,B. 

  
The AND operator (&) may be defined in the following way: 

 
op(900,xfy,'&'). % Precedence is 900 and '&' is left associative    
A & B :- A, B. 

 
The usefulness of this operator is simply that to, a naive user, '&' is easier to 

interpret than ','. 
  
The OR operator (or) may be defined in the following way: 

 
op(900,xfy,or).  % Precedence is 900 and is left associative    
A or B :- A ; B. 

 
The if operator can be helpful as an aid to user understanding. It can be defined 

thus 
 
:- op(1200,xfx,if), term_expand( (A if B), A :- B) ). 

 
and can be used in lieu of the Prolog ‘:-’ operator. Here is the program picture 
(see Section 3.6.1) rewritten using the & and if operators. 

 
 
 picture if 
 rectangle(A) & 
 ellipse(B) & 
 encloses(A,B) & 
 text(C,'Qwerty') & 
 inside(C,B) & 
 print_texture(D) & 
 encloses(A,D) & 
 below(D,B). 
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4.1.4 Program Library 

A large number of image processing functions, device control programs, and 
other utilities have been provided to augment the Prolog+ software [BAT-91]. 
This list is constantly being enlarged. A detailed explanation of some of these 
utilities is deferred until Chapters 5 and 6, where we shall discuss the control of 
lighting, electro-mechanical and various and other devices (Chapter 5) and colour 
image processing (Chapter 6). A series of demonstration programs has also been 
developed. (See Table 4.1.) Some of these are described in more detail in Chapter 
7. 

4.1.5 Auto-start 

Prolog+ can be provided with an auto-start facility, by following two simple 
steps:  

 
(i) Place the Prolog+ application software, or its alias, in the “Startup Items” 
folder. The MacProlog software can be located in another folder. When the 
computer power is switched on, the Prolog+ software will load automatically 
and will then be compiled. 
(ii) A start-up goal (called startup_goal) will be initiated if we place the 
following statement in the program: 

‘<LOAD>‘(_) :- startup_goal. 
 

Prolog will try to satisfy the goal startup_goal, which may be used to good  
effect in a variety of ways: 

 
(a) Automatic initialisation of a hardware implementation of Prolog+. 
(b) Calibration of a robot vision system.  
(c) Construction of pull-down menus. (see Section 4.1.7) 
(d) Construction of a pull-down menu, used for speech recognition. (See 
Section 4.2.) 
(e) Automatic entry into interactive mode. 
(f) Automatic entry into a dialogue with a novice user. 
 
 
 
So far, we have assumed that the full MacProlog software is loaded on start-up. 

It is possible, however, to build stand-alone applications which do not have the 
full MacProlog program development environment and these can be started 
automatically in the same way. 

 
 

Demonstration Description 
Packing 2-D objects Packs 2-D objects of arbitrary shape into a space also  

of arbitrary shape.  
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Telling the time Analyses the image of a simple analogue clock and 
finds the time in the format “five to nine”, “twenty past 
six”, etc.  

Dissecting small 
plants 

Demonstrates the dissection of a small plant for 
micropropagation, given a silhouette of the plant.  

Playing cards Calculates the value and suit of both picture and non-
picture playing cards, using a high magnification view 
of the top-left corner of each card.  

Smart burglar alarm Compares image obtained from camera with one 
digitised earlier. If the difference is large enough, the 
program signals an intruder.  

Line drawings Analyses simple line drawings and recognises parallel 
lines and squares.  

Dominoes  Plays dominoes against a virtual robot (i.e. a person 
acting as a robot). (The domino rules are for the game 
3s and 5s’.) Cheating is not allowed since the program 
is not clever enough to cope with devious behaviour.  

Stacking boxes Imagine a stack of boxes with sell-by dates on their 
sides. The program plans the actions of a virtual robot 
which restacks the boxes so that they are placed in date 
order.  

Picking up objects Analyses simple silhouette and decides where to place 
the gripper of a virtual robot. The program indicates 
whether or not it would be safe to lower the gripper, 
and whether the grip would be secure.  

Learning shapes Learns the shapes of simple objects, such as bottles, 
viewed in silhouette.  

Learning colours Learns the proportions of  8 colours plus black and 
white in a series of images. This program is suitable for 
recognising company logos, trademarks, etc. on printed 
cartons. 

 
Table 4.1 Demonstration Programs. (See Chapter 7.)  

 

4.1.6 Interactive Mode 

We have already explained the role and importance of interactive image 
processing for prototyping industrial vision systems. The following program 
provides Prolog+ with an interactive facility: 

 
interactive_mode :- 
 prompt_read([‘Please specify a Prolog+ goal’],X), 
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 not(X = end),   % Exit interactive mode 
 (( X =  end_of_file, swi);  (call(X); # X)),  
 interactive_mode.  % Repeat 
interactive_mode.   % Force the goal to succeed 

 
The third line in the body of the first clause of interactive_mode performs the 

following actions: 
 
(a) If the user pressed the RETURN key in response to prompt_read, X is 
already instantiated to the value end_of_file. The effect is to switch the current 
and alternate images. (Uses the predicate swi.) 
(b) If the user types a non-null character sequence (X), Prolog tries to satisfy the 
goal call(X), which may or may not perform some image processing.  
(c) Prolog tries to satisfy call(X) in the usual way, as if it were a normal Prolog 
goal. (That is, there is no attempt to do any image processing.) Hence, call(X) 
can either succeed or fail. If call(X) happens to succeed, the cycle repeats, 
beginning with the software issuing another invitation to the user to type a 
command.  
(d) If call(X) fails, Prolog sends the character sequence defined by X to the 
image processor. Two actions can follow: either the image processor performs 
the operation X successfully, or it does not and the first clause fails. 

4.1.7 User Extendible Pull-down Menus 

Pull-down menus provide a convenient means by which the user of a computer 
system may order the execution of a range of useful functions. Pull-down menus 
are standard now on a wide range of popular computers and operating systems. 
They are unobtrusive when they are not in use, since they occupy only a narrow 
strip across the top of the computer screen. A single menu heading may allow 
access to a large number of “hidden” commands, which the user does not have to 
remember in order to use them properly. Since it is possible to organise 
hierarchical pull-down menus in MacProlog, it is conceivable that several hundred 
items could be made available via pull-down menus. 

The following menu headings are normally visible in LPA MacProlog: “File”, 
“Edit”, “Search”, “Windows”, “Fonts” and “Eval”. Thus, there is plenty of 
room, across the standard Macintosh screen, to add several more menus to support 
Prolog+. As many as ten special-purpose menus (with single-character headings) 
can be fitted onto a computer with a standard-size screen. If space allows, the 
authors recommend the following menu headings for a Prolog+ system: 

 
• Utility (for a variety of system-related functions). 
• Process (for image-image mapping functions). 
• Analysis (for image measurement and analysis functions). 
• Device (for controlling external devices such as lights and a pick-and-place 

arm). 
• Table (for controlling an (X,Y,θ)-table, or Robot). 
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• Speech - Optional. (Used in conjunction with the speech recognition system. 
See Section 4.2.) 

 
To save space on small-screen computer monitors, it may be more convenient to 

use only the initial letters of the menu names, viz. “U”,“P”, “A”, “D”  and “T” 
and these are the ones we shall use hereafter. Alternatively, special-purpose 
menus can be accommodated, simply by deleting one or more of the standard 
MacProlog menus. For example, the "Fonts" menu can safely be deleted, while 
the functions provided by the "Windows" menu can be performed in other ways. It 
is also possible to develop programs without the "Search" menu, though this is a 
little awkward in practice. It is unwise to delete or alter any of the other standard 
MacProlog menus. By using short names for menu headings (e.g. single letters), 
several more application-specific menus could be provided for Prolog+. To 
provide even greater choice, hierarchical menus can be used in MacProlog. For 
example, the ‘Colour’ sub-menu discussed in Chapter 6 is a fixed sub-menu, 
appearing under the menu headed “Utility” or simply “U”. (Figure 4.1(b).) 

In the standard Prolog+ software, the "P", "A”, "D” and “T”  menus are all 
empty initially. The "U" menu, though not empty, is quite short, with only a few 
entries. (Figure 4.1(a)) The "Extend menu" option under this menu allows the user 
to add items to any of the "U", "P", "A", "D”  and “T”  menus. The dialogue for 
doing this is illustrated in Figure 4.2. Figures 4.3 to 4.6 show menus that have 
been developed in this way. 

Mechanism for Extending Menus 

Adding new items to a menu can be achieved using the MacProlog built-in 
predicate extend_menu. In the Prolog+ software, the tedium of choosing suitable 
arguments for extend_menu is avoided by the use of a pull-down menu. The 
following program defines what action follows the user selecting the item “Extend 
menu” under the “U” menu. Using this facility, he is able to extend any one of the 
user-defined menus: “U”, “P”, “A”, “D” or “T”. (The “S” menu is rather 
different in both form and function and is not intended primarily for use with the 
computer mouse. It is provided instead as a convenience, enabling the speech 
recogniser to operate properly. More will be said about the “S” menu in Section 
4.2.) 

 
 
% This clause is satisfied when the user selects “Extend menu”  
% under the “U” menu.  
'U'('Extend menu') :- 
 scroll_menu(['Which menu do you wish to extend?'],  
 ['U','P','A','D','T'],[],Z), [Y] = Z, 
 prompt_read(['What is the name of the item you wish to add to  
 the ',  Y, ' menu?'],X), 
 prompt_read(['What goal do you wish to be associated with the  
 item ', X, ' in menu ',Y,' ?'],W), extend_menu(Y,[X]), 
 assertz(menu_item(Y,X,W)). 
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(a) 

 

 
(b) 

 
Figure 4.1 The "U"  (Utility) menu. (a) The top part (above “Initialise sound 
replay system”) is fixed. The lower part of the menu was added using the 
“Extend menu” facility. (b) The top part of the “Colour” sub-menu. 
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(a)

(b)

(c)  
 
Figure 4.2 Dialogue for extending the menus. (a) User selects which menu is 
to be extended (b) User names the new menu item, (c) User defines what 
action is to follow when that menu item is selected. 
 
 

 
 

Figure 4.3 Extended “P” (Process) menu. 
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Figure 4.4 Extended “A” (Analysis) menu. 

 
 

 
Figure 4.5 Extended “D” (Device) menu. 

 
The effect of satisfying 'U' ('Extend menu') is to assert one additional clause for 

menu_item. (The reader will recall that assert adds the new clause to the program 
immediately after all of the others already existing.) Notice that menu_item must 
be defined in a data window, otherwise it will not be retained when the user quits 
MacProlog. The following are typical entries in the “New Menus” window 
created by 'U' ('Extend menu'). 

 
menu_item('P', 'Equalize histogram', heq). 
menu_item('P', 'Sobel edge detector', sed). 
menu_item('A', 'Centroid', cgr(_,_)). % Values are printed by “cgr” 
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Figure 4.6 Extended “T” (Table) menu. 

 
The newly added menu item is available for immediate use. However, it is 

necessary to build the user-defined menus whenever the Prolog+ system is 
(re)started. This can be achieved by satisfying the goal build_menus. 

 
build_menus :- 
 menu_item(A,B,C), extend_menu(A,[B]), fail. 
build_menus. 

 
To build the user-defined menus automatically, it is possible to use either 
 
:- build_menus.   % Build the menus after compilation 

 
or   

 
'<LOAD>'(_) :- build_menus.  
   % Build menus after loading Prolog+ software 

  
There is one final addition needed to the Prolog+ software: we must incorporate 

a set of program segments like that following, in order to define what action 
follows when a user-extended menu item is selected. 

 
% What to do when item X is called from the “U” menu  
'U'(X) :-  
 menu_item('U',X,Y), % Consult the database for new menu item 
 call(Y).      % Satisfy the appropriate goal, Y 

 
Similar definitions are needed for each of the other menus: “P”, “A”, “D”  and 

“T”.  

4.1.8 Command Keys 

Pull-down menus are particularly useful for novices but are not always popular, 
particularly with very experienced computer users. To accommodate such people, 
the Prolog+ software is provided with a set of Command Keys.  (See Table 4.2.)  
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Key Function  
A Select all text  in active window * 
B Balance parentheses * 
C Copy highlighted text to clipboard * 
D Find definition of predicate with name specified by highlighted text * 
E Find another copy of character sequence highlighted * 
F Find selected text * 
G Digitise (grab) an image (Standard MacProlog facility disabled) 
H Get HELP for Prolog+ 
I Get information * 
J Plot colour scattergram (See Chapter 6) 
K Compile * 
L Display live video on monitor 
M Extend menu 
N Start / Restart Prolog+ system 
O Switch current and alternate images 
P Purge the I/O port of all data 
Q Not assigned 
R Replace and find text * 
S Select window * 
T Transparent (or interactive) mode 
U Repeat last query * 
V Paste * 
W What to find * 
X Cut highlighted text * 
Y Window details * 
Z Undo last editing change * 
/ Help (MacProlog) 
1 Record command in Journal window 
2 Clear Journal window 
3  Initialise sound replay system 
4 Reset colour processing system (See Chapter 6) 
5 Standard colour recognition filter (See Chapter 6) 
6 Display one image (for photographic recording of results) 
7 Display live image on colour monitor 
8 Switch pseudo-colour display OFF (See Chapter 6) 
9 Switch pseudo-colour display ON (See Chapter 6) 

zero (0) Learn coloured objects (See Chapter 6) 
period (.) Stop goal satisfaction 
equals (=) List named predicate 
minus (-) Cursor on 

 
Table 4.2 Prolog+ command keys. To perform one of the operations listed 
above, the user presses the corresponding key, at the same time as holding the 

 key down. Notice that asterisk (*), denotes a standard MacProlog key 
command. 
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4.1.9 Graphical Display of a Robot Work Cell 

Apart from image processing, Prolog+ is often used for controlling a robot or 
(X,Y,θ)-table. In Chapter 5, we shall discuss this topic again. For the moment, we 
shall simply assert that there is an outstanding requirement for a graphical display 
of a robot work cell. A drawing showing where the robot / table is and which 
lights are ON / OFF is all that is needed.  

The use of HyperCard graphics for simulating a so-called Flexible Inspection 
Cell (FIC) is illustrated in Figure 4.7. The artwork was prepared using MacDraw 
and imported into HyperCard. It is possible to generate animated image sequences 
using HyperCard, which makes the construction of a controller for the FIC easy to 
achieve. HyperCard graphics does not, however, possess the ability to generate 
realistic-looking representations of 3D objects.  

 

 
 
Figure 4.7 HyperCard graphics. The diagram shows a pneumatic pick-and-
place arm, which forms part of the flexible inspection cell. (Also see Figure 
4.8.) When the user clicks on one of the buttons, the arm moves to a new 
position and the diagram changes accordingly.  
 
The particular arrangement shown in Figure 4.8 consists of an array of 

computer-controlled lights, a laser light-stripe generator, a pattern projector, a 
pneumatic pick-and-place arm, an (X,Y,θ)-table and four video cameras. Prolog+ 
programs are used to control the real FIC. Later, we shall see further examples of 
HyperCard graphics, used in the FIC controller. Throughout the remainder of this 
book, we shall discover that the FIC / Prolog+ combination provides a very 
versatile platform for studying and prototyping a wide range of inspection and 
robot guidance tasks. The Flexible Inspection Cell was developed in response to a 
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realisation that traditional machine vision methods are not economic for 
inspecting products that are made in small batches (fewer than about 104 items / 
batch).  The design and construction of the FIC hardware has taken place over a 
period of years, in parallel with and motivating the development of Prolog+. A 
detailed description of the function, control and use of the FIC will be deferred 
until Chapter 5. 

 

 
 
Figure 4.8 HyperCard controller for the Flexible Inspection Cell. Lamps are 
denoted by circles. Notice that some are ON (lamp symbol appears). The 
buttons on the left allow the user to set up a complex lighting pattern using a 
single mouse click. The dark button labelled “Pick & place” causes 
HyperCard to display one of a number of  cards like that shown in Figure 4.7.  

4.1.10 Speech Synthesis and Recorded Speech 

Speech synthesis is valuable both as an aid to understanding the operation 
(“flow”) of a Prolog program [BAT-91] and in providing a natural form for a 
human being to receive certain types of data. For some years, a speech synthesis 
package has been available for use with MacProlog. Another version, capable of 
working under the System 7 operating system, has been developed recently by 
McGowan, at Dublin City University. [MCG-94] The more recent development is 
based upon the standard Macintosh facility known as Speech Manager. This 
imposes certain restrictions: the most notable being that it can cope with strings of 
length not exceeding 256 characters. Several utilities for configuring the speech 
synthesiser were devised by McGowan and can conveniently be operated using a 
pull-down sub-menu, located beneath the “U” or “Utility” menu. Prior to using 
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the speech synthesiser, it is necessary to choose certain voice characteristics, such 
as pitch and speaking rate.  

Any synthesiser which generates speech for the English language must be able 
to cope with non-phonetic spelling. For this reason, a dictionary is often used to 
convert  a phrase like “Hello Sean. It is Tuesday, so you buy some bread” to 
“Hello Shawn. It is Chewsday, so you should by some bred”. 

An alternative, approach is to write all phrases that are to be spoken in phonetic 
form. This makes the program more difficult to write, since phrases that are to be 
spoken have to be to expressed in an unfamiliar “alphabet”. McGowan’s software 
provides a convenient facility which assists the user to convert standard English 
words into phonetic form and then generate utterances for both forms. In this way, 
the user can fairly quickly obtain a reasonably natural spoken phrase to convey 
the meaning he intends. A single Prolog+ predicate, speak(X) is all that is needed 
to operate the speech synthesiser, once it has been initialised. The variable X is 
instantiated to a text string.  

An industrial vision system could make good use of speech output to report its 
status and results. However, this must be used with great care and consideration 
for the user, because any system (or person) that talks incessantly can be very 
irritating indeed. The situation is made even worse by the fact that a synthesised 
voice is imperfect, sounding “tinny”, and may well have a disagreeable accent. An 
inspection system that tells the world, via a loudspeaker, that the objects it is 
examining have all been found to be satisfactory would quickly annoy anyone 
standing nearby. On the other hand, a system that can quickly and succinctly 
summarise its own performance, on demand, would be much more useful. Such a 
system should be able to list the defect types found during, say, the last hour of its 
operation, the number of each defect type and possibly a small number of 
suggestions for corrective action that might be appropriate.  

While speech synthesis is very versatile, the quality of the output is low and 
irritates some users, particularly in situations where a relatively small number of 
utterances are repeated often. In such cases, it may be better to replay pre-
recorded spoken messages. MacProlog can achieve this in a straightforward way, 
although the details will not be given here. 

4.1.11 On-line HELP 

The provision of on-line HELP facilities is, of course, a major feature of much 
of the better commercial software available today. Effective interaction is fast! 
Hence, good HELP facilities are of special importance for an interactive image 
processing system, which is driven by a command-line interpreter and has a large 
repertoire of image processing operators. It is important, for example, that the user 
should be able to find what parameters are required by a given predicate, with a 
minimum of effort and delay. The significance of each parameter, its allowed 
range of variation and default values are all needed. In addition, the HELP 
facilities should provide a detailed description of what each command does and 
the type of image on which it operates. For these reasons, Prolog+ has been 
provided with two different HELP facilities: 
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(i) When the user depresses the ‘ ‘ and ‘=‘ keys  simultaneously, a dialogue 
box is displayed inviting him to type the name of a Prolog+  predicate. When he 
does so, the listing of that predicate is presented in the default output window. 
(ii) When the user depresses the  / H keys  simultaneously, a dialogue box is 
displayed inviting him to specify the name of an image processing command. 
The effect is to display a full description of the command, its use (i.e. suitable 
types of images, the effect, range and default values for each its parameters). 
(Figure 4.9) The user is also invited to choose a suitable stored test image, so 
that he can see the effect of that command for himself. Alternatively, he may 
elect to apply the operator to the current image. He is able to use either default 
values for the operator’s parameters, or values specified by him. In this way, a 
close connection is maintained between the HELP facility and interactive image 
processing. 
 

(a)

(b)  
 
Figure 4.9 User HELP window (a) User initiated the HELP facility using 

/H. The window shown here invites the user to select which group of 
commands he wishes to peruse. (b) User selected the eu command, within the 
enhance group of commands. The text shown here relates to the Intelligent 
Camera implementation of Prolog+. 

4.1.12 Cursor 

It is important that the user should be able to investigate the intensity values in 
certain parts of the image he is viewing. Of course, a mouse, or track-ball, is 
especially convenient for this. The Prolog+ cursor function is provided by the 
predicate cur(X,Y,Z). Initially, all three of its arguments are uninstantiated. As the 
user moves the cursor over the picture being investigated, the X- and Y-co-
ordinates are displayed in the output window, together with the intensity at that 
point. To exit the cursor, the user simply double-clicks the mouse button. The 
effect is to instantiate X, Y and Z, which can then be used in a Prolog+ program. 
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To illustrate this, we present a short program which allows the user to select a 
bright point in the Hough Transform of a given image, reconstruct the straight line 
whose slope and intercept are defined by the co-ordinates of that point and then 
superimpose the line on the original image. This is the inverse Hough Transform 
method mentioned in Section 2.6.1. 

 
interactive_hough_analysis :- 
 wri,   % Save the input image (binary) 
 hough,   % Hough transform  
 message(['Use cursor to select a peak in Hough transform  
 image, visible now']), % Message for the user 
 cur(A,B,_),  % Cursor  
 reconstruct_line(A,B), % Draw a line with slope A &  
    % intercept B 
 rea,   % Recover input image 
 max.   % Superimpose onto original figure 

 
This predicate is particularly useful for interactively investigating the 

significance of the various peaks in the Hough transform image, which is often 
quite complicated in form. Objects in a binary image can be selected easily using 
the cursor. To do this, we need to use a Prolog+ predicate which shades blobs in 
some way. For example, we may use an operator (shade_blobs in the program 
below), which shades each blob according to its size. The blob with the greatest 
area is the brightest, the second biggest blob is the second brightest, etc. 

 
% The following predicate isolates the blob ranked A out of a total 
% of B blobs. 
isolate_blob(A,B) :- 
 count_blobs(B), % Count the white blobs in the image 
 shade_blobs,  % Shade blobs (e.g. according to area) 
 cur(_,_,A),  % User chooses one of the blobs 
 thr(A,A).  % Blob is isolated 

 
The cursor is also useful for such tasks as drawing polygons around objects of 

interest in a grey-scale image. These objects can then be isolated, by simple image 
processing. Here is the program for drawing a convex polygon around a number 
of points defined by the user: 

 
% The first clause is used simply to set up the results image  
draw_polygon(A) :-  
 keep,   % Save input image for use later 
 zer,   % Draw black image 
 wri,   % Save it 
 draw_polygon([],A). % This bit does the real work 
 
draw_polygon(A,B) :- 
 fetch,  % Recover input image 
 cur(X,Y,_), % Interactive cursor 
 rea,  % Get results image  
 vpl(X,Y,X,Y,255),  
   % Add the point found to the results image 
 chu,  % Draw the convex hull 
 blb,  % Fill it (make it a solid white figure) 
 wri,  % Save it again 
 bed,  % Binary edge detector 
 fetch,  % Get original image again 
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 max,  % Superimpose polygon onto original figure 
 yesno([‘Do you want to add any more points?’]), 
 draw_polygon([[X,Y]|A). % Repeat operation.  
 
draw_polygon(A,A). % Everything done.  

 
Of course, it is a straightforward matter to write predicates which draw an 

“open” polygonal curve, or a “closed” hollow polygon.  

4.1.13 Automatic Script Generation and Optimisation 

We have taken considerable pains in the earlier pages to explain that the use of 
interactive image processing is invaluable as a step towards discovering / 
developing a prototype algorithm for a given inspection task. A command 
recorder has been developed which allows the user to keep track of what he has 
typed during an interactive session and thereby develop programs with a 
minimum of effort. The program requires only a minor change to 
interactive_mode and hence need not be discussed in detail. 

Quite a simple Prolog program is able to prune an algorithm search tree, to 
eliminate “dead” branches. This program is based upon the idea of data 
inheritance. To understand this term, recall that each image processing command 
transforms the current, alternate and stored images in a predictable way. For 
example, the command neg generates a new current image from the previous 
current image. Meanwhile, the new alternate image is also derived from (i.e. is 
identical to) the original current image. Other commands behave in a different 
way. Figure 4.10 illustrates, in graphical form, some of the different types of data 
inheritance that the Prolog+ image processing primitives possess. (The situation is 
simplified slightly, for the sake of clarity, but these details need not concern us 
here.) Figure 4.10(c) shows how data inheritance flows in a command sequence 
generated during a sample interactive image processing session. Notice the “dead 
branch” which does not alter the final outcome in any way and can safely be 
removed by pruning. As we indicated earlier, it is possible to write a simple 
Prolog+ program to prune a given command sequence, derived from the 
interactive image processor. The program relies upon the similar ideas to those 
written into the ancestor relationship used in analysing family trees and hence 
requires no further explanation here. 

4.1.14 Linking to Other Programs 

Thus far, we have emphasised the use of Prolog as the host language for image 
processing, although we have taken care to avoid suggesting that we should 
manipulate individual pixels at this level. There are, of course, occasions when 
some language, or application software package, other than Prolog is more 
appropriate. For example, we might want to use a spreadsheet, or a user-generated 
C program to implement certain functions that Prolog cannot do easily. 
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It is possible to interface LPA MacProlog to both C and Pascal programs and 
this facility is well documented elsewhere. [MCG-94] Interfacing MacProlog to 
these two languages is fairly straightforward, using the System 7 operating system 
software of the Macintosh computer. One possible interface for inter-application 
communication on the Macintosh range of computers uses AppleEvents. An 
AppleEvent is a message sent by one application  to another, enabling data and / 
or commands to be transmitted. In theory, it is possible to communicate between 
any two applications which support AppleEvents, including MacProlog, Pascal, 
C, HyperCard, Excel, Lisp and LabView. In order to illustrate the general 
principles, we shall describe how a HyperCard stack can be used to communicate 
with MacProlog. 
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Figure 4.10 Data flow during interactive image processing. (a) Explaining the 
terminology. The squares labelled C0 and A0 represent the current and 
alternate images respectively, just prior to the execution of an image 
processing command. C1 and A1 represent the same images after execution. 
D represents an image stored either on disc or in “scratch-pad” (RAM) 
memory. (b) Data flow models for different kinds of image processing 
functions. (c) Data flow diagram for a short image processing sequence. 
Operations which affect the final result are indicated by shaded squares. 
Notice that the sub-sequence [lpf, lpf, lpf, rea, sub] can safely be deleted, 
since it does not influence the final result. 

Hypercard Controller for a Flexible Inspection Cell  

As we have already explained, the Flexible Inspection Cell consists of an array 
of twelve different lighting units (including a pattern projector and a laser), an 
(X,Y,θ)-table and a pick-and-place arm. (see Figure 4.8) The FIC at Cardiff 
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currently has four different cameras. Setting up the cell is difficult for a 
command-based system, so a HyperCard application (called a stack) was 
developed for this purpose. A very convenient software mechanism for interfacing 
MacProlog and Hypercard has been developed by Stephen Cooper (formally of 
Uppsala University) and is used as the basis of the controller for the FIC. This 
interface software uses AppleEvents for signalling between Prolog and Hypercard 
and has allowed the authors and their colleagues to develop an integrated software 
environment for setting up and controlling the FIC. 

Figure 4.11 shows a series of typical HyperCard screens for controlling the cell. 
(Also see Figure 4.8) Notice that the user is able to instruct the FIC to perform 
certain functions, simply by clicking on hot boxes: buttons. The FIC hardware can 
receive its control signals in one of four ways, (a) directly from Prolog, (b) from 
Prolog, via HyperCard, (c) from HyperCard, via Prolog and (d) directly from 
HyperCard. Eventually, the first option was selected as being the most convenient 
and reliable. 

More will be said about this HyperCard stack in the following chapter. Let it 
suffice for our present discussion to note that one of the (HyperCard) cards is able 
to issue commands (i.e. goals) to Prolog+. (See Figure 4.11(b)) Clicking on the 
HyperCard button labelled “cgr” has exactly the same effect as typing the 
Prolog+ query cgr(X,Y). When the user clicks on this button, the following 
sequence of events occurs: 

 
(i) HyperCard sends an AppleEvent specifying the goal “grb” to MacProlog.  
(ii) The goal cgr(X,Y) is satisfied in the usual way, by Prolog. This instantiates 
X and Y. 
(iii) The values of the newly instantiated variables are returned to the 
application which originated the AppleEvent query (i.e. HyperCard). 
(iv) The values of X and Y are available within HyperCard, for display or 
performing further calculations. 
 
It is possible to specify numeric values using a “slider”. (See, for example, the 

button labelled “Par.” in Figure 4.11(b).) Among its other functions, the slider 
enables threshold parameter values to be specified. In addition, it can be used to 
determine the amount by which a picture is to be shifted (Prolog+ psh command), 
or the increment to the intensity values. (Prolog command acn.) The screen shown 
in Figure 4.11(b) was provided as a utility, enabling a person to set up the FIC and 
then perform a small amount of image processing, without  needing to think in 
terms of Prolog+. The user can switch easily between the HyperCard control stack 
and Prolog+. 
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(a) 

 

 
(b) 

 
Figure 4.11 HyperCard controller for the Flexible Inspection Cell. (a) 
Controlling the (X,Y,θ)-table. The user has access to both coarse and fine 
controls (upper and lower bars) for each axis, labelled X,Y and T. The table 
movements are specified in both absolute units (millimetres) and as 
percentages of total travel (Px, Py and PTheta). (b) Controlling the image 
processor. The user has access to a range of image processing functions, 
simply by clicking on the appropriate button. Where the button label is 
followed by a question mark (e.g. psy?) the image processing function 
requires a numeric parameter, which is determined by the position of the 
slider on the right. 
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A button (in HyperCard) can be provided which automatically loads the 
MacProlog / Prolog+ software, or bring Prolog+ to the foreground. Similar 
facilities have been provided within Prolog+, for automatic loading of HyperCard, 
or switching to that application. The intention when designing this facility was to 
make the user feel that he is dealing with an integrated, “seamless” package. Thus, 
the HyperCard FIC control software is effectively part of the Prolog+ operating 
environment, as far as the user is able to judge. 

4.2 Understanding Simple Spoken Instructions 
Speech input has several attractions as a means of controlling industrial 

systems. It is faster, potentially more accurate and is certainly more natural for the 
user than a keyboard. In addition, speech input keeps both hands free and the 
equipment is less prone to damage by swarf, dust, dirt and splashes, all of which 
abound in a typical factory environment. Of course, safeguards are needed to 
ensure that noise does not disturb the speech recogniser. Indeed, it may not be 
possible to use it at all in a very noisy environment. Nevertheless, there are many 
situations where speech control could be advantageous, if used sensibly. It is not 
our intention to explore these possibilities here, merely to investigate the 
technology 

Speech input and natural language understanding form part of the broad 
environment in which Prolog+ operates and hence discussion of this topic could 
have taken place within the previous section. We have separated these issues, 
since our discussion of speech input involves a good deal of technical detail. The 
reader who wishes to skip this section, can do so in the knowledge that the 
Prolog+ language, which was, of course, developed initially as a tool for image 
processing, is also able to cope with the requirements of acquiring data using 
speech / natural language input. The user interface which we shall describe in this 
section, is fairly modest in its level of sophistication, being typified by the 
dialogues needed for controlling the position of an (X,Y,θ)-table, or moving the 
pieces around on a chess board. Compared to modern techniques for 
understanding Natural Language, our programs may seem naive but are certainly 
feasible in practice. The authors have deliberately aimed at producing a practical, 
realistic method for receiving and acting upon spoken commands. 

4.2.1 Speech Recognition 

There are several speech recognition systems available for users of modern 
desk-top computers. The remarks in this section relate to just one of these: the 
Voice Navigator II system (VN), manufactured by Articulate Systems, Inc. (99 
Erie Street, Cambridge, MA 02139, USA). This is a hardware-software system 
which is connected to a Macintosh computer, via its SCSI port. A software 
version is also available for use with the more modern “AV” family of Macintosh 
computers, which have a speech input facility.  
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 It is important to emphasise that the VN system is only able to recognise words 
that are spoken in isolation; it cannot accommodate continuous speech, although 
some more modern systems do boast this facility. Being restricted to speaking in 
isolated words is, of course, unnatural and slower than speaking normally. While 
the VN system has a vocabulary limited to 200 words, it is possible to perform 
“context switching”, using a spoken command to select and load a new dictionary 
file, appropriate for a different subject (same speaker), or a different speaker 
(same / different subject). Thus, one user (suppose his name is Bruce) can work 
with a vocabulary of 200 words, one of which is Paul. When Bruce says “Paul”, 
the system loads Paul’s dictionary file. Paul now takes over the control of the 
system, and has a working vocabulary of 200 words, one of which is “Bruce”. 
When Paul says “Bruce”, the original dictionary is reloaded and Bruce is able to 
use the system again2. An alternative scheme of operation is for a single user to 
have different dictionaries, corresponding to different subjects of discourse. For 
example, a single user might have four separate dictionaries for controlling the 
lighting, camera, (X,Y-θ)-table and image processor. While these perform entirely 
separate functions, it is possible to switch from, say, the lighting dictionary to the 
dictionary for controlling the (X,Y-θ)-table, simply by saying “table”. The user 
would be able to switch back again, by saying “lights”, or move on to operate the 
image processor, by saying “image”. 

It is easy to train the Voice Navigator II System to respond to a speech 
command, so that it will have the same the effect as choosing an item appearing 
under one of the pull-down menus.  Thus, the VN system provides an alternative 
to normal mouse-operated selection of menu items. (Other modes of operation are 
possible but are not relevant to our present discussion.) The VN system can 
operate with any pull-down menus, including system menus, menus created by 
application software (e.g. MacProlog), and menus programmed by a Prolog+ user, 
with the "Extend menu" option described in Section 4.1.7.  

Suppose that the user wishes to order the Prolog+ system to calculate the 
convex hull of a blob in a binary image and that a pull-down menu has been 
created, which contains the term “Convex Hull”. When training the VN system, 
the speaker is invited to say the phrase “Convex Hull”. This process is repeated a 
total of three times, allowing the system to estimate the range of variation in the 
speaker’s voice. Now, the user might choose to say “Convex Hull”, or to utter 
some other phrase, such as “Rubber Band”, or “Smallest Polygon”. As long as he 
is consistent, the VN system is able to trigger the action associated with the pull-
down menu item “Convex Hull”, whenever that phrase is spoken in the future. 
The authors have trained the VN system to respond to a range of spoken 
commands, such as those listed in Table 4.3.  

 
 
 

                                                           
2 If a speaker that is not known to the VN system tries to use it, the results will 

be very disappointing. There is no effective short-cut which avoids training the 
system properly. 
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a an and 
anticlock_wise by clock_wise 
degrees down down_wards 
eight eighteen eighty 
eleven empty_list fifteen 
fifty five forty 
four fourteen hundred 
i inches left 
left-wards mm move 
nine nineteen ninety 
one pixels platform 
please reposition right 
right_wards rotate seven 
seventeen seventy shift 
six sixteen sixty 
stage table ten 
that the thirteen 
thirty three to 
transfer translate turn 
twelve twenty two 
up up_wards will 
xy-table you zero 

 
Table 4.3 Vocabulary used to by the speech recognition system to control an 
(X,Y,θ)-table. These are the terminal symbols used in the grammar defined in 
Section 4.2. The control terms (“Begin”, “End”, “Cancel”, “Kill”) are not 
included in this table. 
 
It is possible to perform a limited set of image processing functions, without 

touching the keyboard. Greater sophistication is needed, if numeric parameters are 
to be specified for such commands as thresholding, shifting and rotating images.3 
More will be said later in this section about using speech recognition in 
conjunction with a Prolog+ program, to control the position of the (X,Y,θ)-table 
in an FIC. Several features of the Voice Navigator II system make it awkward to 
use in practice: 

 
(a) Homophonous words, such as “to”, “two” (numeral 2) and “too” have to 
be identified before the grammar rules are written, since they are 
indistinguishable to the speech recognition system. 
(b) There is no facility for using synonyms. Thus, “rubber band”, “convex 
polygon” and “smallest polygon”  must all be included explicitly in the pull-

                                                           
3 A few minutes’ thought will show that the way that the integers 0 - 1,000 are 

expressed in English requires the definition of a non-trivial grammar. The analysis 
of phrases representing the integers is well within the capabilities of the Definite 
Clause Grammar (DCG) notation of Prolog, as we shall see later. 
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down menus, if we wish to have the freedom to utter any one of these three 
terms. Synonyms are especially important in view of point (c).   
(c) There is no record / replay facility, to remind the user what spoken phrase he 
used when training the VN system. For example, it is very easy for the user to 
forget that he said “rubber band”, rather than “convex polygon” or “smallest 
polygon”, since they are conceptually associated with each other. 
(d) It can only respond properly, if the utterances it receives consist of well-
pronounced isolated words. 

4.2.2 Natural Language Understanding 

Let us discuss how speech recognition can be used in conjunction with a Prolog 
program that is able to understand a simple form of Natural Language (English). 
Consider the limited task of controlling an (X,Y,θ)-table which moves in response 
to spoken commands. The vocabulary needed to accommodate all user utterances 
that could reasonably be expected as commands for moving the table consists of 
less than 200 words. Table 4.3 lists some of the terms that we might encounter. 
(This list contains 66 items and was compiled from a set of Definite Clause 
Grammar (DCG) rules defining acceptable commands to an (X,Y,θ)-table. These 
grammar rules will be discussed in detail later.) First however, we shall describe 
how the vocabulary defined by a set of grammar rules can be found. This is an 
essential step, before we can discuss how sentences are developed using the 
speech recogniser.  

4.2.3 Automatically Building a Pull-down Menu 

The following Prolog+ program automatically generates a pull-down menu 
(called the “S” menu), containing all of the terminal symbols used in the 
definition of a given grammar. Terminal symbols are those terms enclosed 
between square brackets in a set of grammar rules and collectively define the 
vocabulary used in conjunction with the grammar rules. 

 
% Top level predicate for building the “S” menu  
speech_terms :- menu_builder(0,[]).   
    % Do not confuse with “build_menus” 
 
% Searching the DCG window for terms between square brackets: e.g.  
% [term] 
menu_builder(N,A) :- 
 wsearch('DCGs','[',N,X,Y),  
   % Search for string beginning with ‘[‘ 
 wsearch('DCGs',']',Y,Z,_), % End of string, denoted by ‘]’ 
 X1 is X + 1,    
 wsltxt('DCGs',X1,Z,Q),   
   % Select text between ‘[‘ and ‘]’ 
 ((Q = '', R = empty_list); R = Q), % Ignore empty lists 
 !,  
 menu_builder(Z,[R|A]).   
   % Repeat until window search complete 
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% Add control terms. See note immediately following the end of this  
% clause 
menu_builder(_,L) :- 
 append([begin,end,cancel,‘X’],L,A),   
    % Adding control terms to menu 
 sort(A,B),  % Sort menu items in alphabetical order 
 kill_menu('S'), % Delete any previous offerings 
 install_menu('S',B). % Install menu S using terms in list B 
 
The second clause of menu_builder adds the following control terms to the “S” 

menu. 
 
begin        end         cancel         kill        ‘X’ 
 
Thus, far, the “S” menu does nothing. In order to correct this, we must add the 

following items to our program: 
 
'S'(begin) :- remember(sentence,[]),writenl('Please speak to me'). 
 
/* Notice that we could use the speech synthesiser here, to tell 
the user what to do. In this case, the following clause should be 
used instead of that immediately above. 
'S'(begin) :- remember(sentence,[]),speak('Speak to me slowly and 
clearly'). */ 
 
% What to do when the term “end” is selected from the menu. 
'S'(end) :- 
 recall(sentence, Z),   % Recall sentence 
 writeseq(['The sentence given was:~M',Z]),  
 phrase(sentence,Z),   % Apply the parser 
 writenl('and was parsed successfully and the instruction  
 obeyed'). 
 
/* What to do when the input sentence was not understood and cannot 
be obeyed.  Again, we could use speech synthesis here to good 
effect. */ 
'S'(end) :- writenl('but was NOT understood'). 
 
/* What to do when the term “cancel” is selected from the menu. 
Notice that this deletes the latest word that was added to the 
partially developed sentence . */ 
'S'(cancel) :- 
 recall(sentence, Z),  % Recall partial sentence 
 reverse(Z,Z1),   % Reverse list 
 Z1 = [_|Z2],   % Omit head 
 reverse(Z2,Z3),  % Reverse list again  
 writeseqnl(['Sentence has been reduced to:',Z3]),  
     % Tell the user 
 remember(sentence,Z3).  % Remember rest of the sentence 
 
/* What to do when ‘X’ is selected from the “S” menu. (The user 
might, for example, want to enter a number or an unpronounceable 
data item (e.g. a product code), via the keyboard.) */ 
'S'('X') :- 
 prompt_read(['Enter a valid Prolog term, please'],X), 
 recall(sentence,Y),  % Recall partial sentence 
 append(Y,[X],Z),  % Add new term to sentence 
 remember(sentence,Z).  % Remember enlarged sentence 
 
% What to do when anything else is selected from the “S” menu 
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'S'(X) :- 
 recall(sentence,Y),  % Recall partial sentence 
 append(Y,[X],Z),  % Add new item to the menu 
 remember(sentence,Z).  % Remember enlarged sentence 

 
It is possible to select items from the pull-down menu in the normal manner, 

using the mouse, or by speech control, via the Voice Navigator hardware. The 
“S” menu is intended for use with speech recognition hardware but, if this is not 
available, the ideas can be tested, almost as effectively, using the mouse. It is 
possible to build up sentences by selecting terms from the “S” menu, starting with 
begin and finishing with end. The sequence of operations is as follows: 

 
(i) The user selects begin. This has the effect of clearing the input buffer, as a 
prelude to receiving further  data. 
(ii) The user selects one of the terms in the “S” menu. As each item is selected, 
the term is added to the buffer. In this way, a sentence is gradually built up, 
word by word. 
(iii) At any time, the user can select the term cancel to delete the term added 
most recently. 
(iv) Selecting kill causes the program to terminate and thereby ends the 
dialogue; the partially completed sentence is discarded. 
(v) The user selects end. This has the effect of passing the sentence just entered 
to the parser. This checks that it conforms to the grammar. 
(vi) Assuming that the sentence entered by the user is accepted by the parser, a 
second program extracts the relevant meaning. In the next section, we shall 
illustrate how this can be done for the task of operating an (X,Y,θ)-table.  

4.2.4 Understanding NL Commands for an (X,Y,θ)-table 

In a little while, we shall present set of grammar rule that was devised 
specifically for controlling an (X,Y,θ)-table. However, before we do so, we shall 
briefly explain an important feature of MacProlog that we will be needed to 
understand the meaning of a command. Consider the following grammar rule: 
 
 subject1 --> article, adjective, noun.  
 

The states that phrase may be replaced by article, followed by adjective, 
followed by noun. (We need not bother here with the precise definitions of the 
terms article, adjective, and noun, whose general meanings are obvious.) To 
verify that a given word sequence S conforms to this grammar, we simply apply 
the Prolog+ parser, phrase: 

 
 phrase(subject1,S,_)  % We can safely ignore the  
     % third argument here 

 
This is a standard Prolog goal and either succeeds or fails, in the usual way. Let 

us assume that phrase(subject1,S,_) succeeds. Now, consider the modified 
definition, in which we have added a term enclosed within brackets, {……}. 
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 subject2 -->  article, {goal}, adjective, noun 

 
The term in brackets is evaluated as a Prolog goal during the parsing of 

subject2; the goal phrase(subject2,S,_) will only succeed if goal succeeds and 
subject2 conforms to the given grammar. By embedding portions of Prolog code 
in the middle of language-rule definitions, we are able to extract meaning, as we 
are about to see. Here is the promised grammar for commands which operate an 
(X,Y,θ)-table: 

 
% Grammar rules for the (X,Y,Theta)-table  
sentence --> table_command. 
sentence --> lighting_command.  
   % Possible extension - not defined here 
sentence --> arm_command.  
   % Possible extension - not defined here 
table_command --> 
 {remember(parser_output,[])},  
   % Prolog goal. Store [] in property  
   % “parser_output” 
 courtesy, motion, table1, direction, amount.   
   % Basic grammar rule 
 
% It is always best to respond to politeness!  
courtesy --> 
 [] |    % No courtesy at all  
 [please] |   % Simple courtesy: “please” 
 [will] , [you], [please] | % A bit more elaborate 
 [will],[you] | 
 [please], [will], [you] | 
 [i], [X], [you], [to] | % Example: “I want you to” 
 [i], [X], [that], [you]. % Example:  “I demand that you” 
 
% Verbs: Defining motion  
motion --> [shift] | [move] | [rotate] | [turn] | [reposition] | 
[transfer] | [translate]. 
 
% Noun phrase  
table1 --> [] | article, table2. 
 
% Synonyms for “table”  
table2 --> [table] | [platform] | [xy-table] | [stage]. 
 
% Articles  
article --> [] | [a] | [an] | [the]. 
 
% Directions  
direction --> preposition, [left], {save_parser_output(left)}. 
direction -->[left-wards], {save_parser_output(left)}. 
direction --> preposition, [right], {save_parser_output(right)}. 
direction --> [right_wards], {save_parser_output(right)}. 
direction --> [up], {save_parser_output(up)}. 
direction --> [up_wards], {save_parser_output(up)}. 
direction --> [down], {save_parser_output(down)}. 
direction --> [down_wards], {save_parser_output(down)}. 
direction --> [clock_wise], {save_parser_output(clock_wise)}. 
direction --> [anticlock_wise], save_parser_output(anticlock_wise)}. 
 
% Saving the output from the parser 
save_parser_output(Z) :-  
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 recall(parser_output,X), % Find partial sentence 
 append([Z],X,Y),  % Add a bit more to it 
 remember(parser_output,Y). % Save it for later 
 
% Prepositions. Note the problem of homophonous terms such as “to”  
% and “two”. 
preposition --> [] | [to] | [to], [the]. 
preposition -->  
 [ two],{writenl('Do not worry - I will cope with this 
apparent error')}. 
preposition --> 
 [two], [the],{writenl('Do not worry - I will cope with this 
apparent error')}.                                
 
% How far do we move?  
amount --> numeral, dimension. 
amount --> [by], amount. 
 
% Coping with a common speech recogniser error: confusion of “I”  
% and “by” 
amount --> [i], amount.   
 
% Dimensions  
dimension --> [mm], {save_parser_output(mm)}. 
dimension --> [inches], {save_parser_output(inches)}. 
dimension --> [pixels], {save_parser_output(pixels)}. 
dimension --> [degrees], {degrees}. 
 
% Rule for recognising numbers such as “six hundred and fifty two”  
numeral --> 
 [X], [hundred], [and], [Y], [Z], 
 { phrase(units,[X]), % Note: Parser used inside Prolog  
 phrase(tens,[Y]), % Parser inside Prolog to check “tens” 
 phrase(units,[Z]), % Parser applied to check “units” 
 words_to_digits(X,X1), 
 words_to_digits(Y,Y1), 
 words_to_digits(Z,Z1), 
 concat([X1,Y1, Z1],W1),  
    % Create 3-digit numeral, in form “652” 
 pname(W3,W2), 
 save_parser_output(W3) }.   
 
/*  Rules are required for recognising several other word-sequences 
that are sometime used when naming the integers, in the range 0 - 
999. The following list contains one example of each type: 
 [six, hundred, and, fifty, two] 
 [six, hundred, fifty, two] 
 [six, fifty, two] 
 [six, five, two] 
 [six, hundred, and, eleven] 
 [six, hundred, eleven] 
 [six, eleven] 
 [six, hundred, and, fifty] 
 [six, hundred, fifty] 
 [six, hundred, and, two] 
 [six, hundred, two] 
 [six, hundred] 
 [fifty, two] 
 [fifty] 
 [eleven] 
 [seven] */ 
 
% Basic definitions 
units --> [zero] | [‘O’] | [a] | [one] | …… [nine]. 
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tens --> [ten] | [twenty] | …… [ninety]. 
teens --> [ten] | [eleven] | …… [nineteen]. 
 
% Converting words to numerals  
words_to_digits(no,0).  
words_to_digits(none,0). 
words_to_digits(‘O’,0). % People often say (letter) ‘O’ rather  
    % than ‘zero’ 
words_to_digits(zero,0).  
words_to_digits(a,1). 
words_to_digits(one,1).  
words_to_digits(two,2). 
…… 
words_to_digits(nineteen,19). 
words_to_digits(twenty,2). 
…… 
words_to_digits(ninety,9).  

4.2.5 Sample Sentences 

The following sentences all conform to the grammar defined above. 
 
[please, move, up_wards, fifty, two, mm] 
[i, want, you, to, shift, up_wards, fifty, two, mm] 
[i, demand, that, you, shift, to, the, right, by, four, inches] 
[i, want, you, to, shift, to, the, right, by, one, hundred, and, 
sixty, two, mm] 
[rotate, clock_wise, by, four, hundred, and, two, degrees] 
[rotate, clock_wise, by, twenty, two, degrees] 
[please, turn, clock_wise, by, seventy, two, degrees] 

4.2.6 Interpreting the Parser Output 

We have defined the grammar rules in such a way that, when the parser is 
applied to any valid sentence, the result is a 3-element list, stored in the 
MacProlog property parser_output. To appreciate this, consider the following 
compound goal: 

 
remember(parser_output,[]),  % Initialise parser output list 
X = [please, turn, clock_wise, by, seventy, two, degrees], 
phrase(sentence, X,_),  % Apply the parser 
recall(parser_output,Y)  % Find the parser output 

 
The effect is to instantiate Y to [degrees, 72, clock_wise].  This enables us to 

understand how the “meaning” of a command can be extracted from a sentence. In 
a little while, we shall present a program which interprets the parser output and 
actually moves an (X,Y,θ)-table. This program uses a predicate called 
move(X,Y,Z). Let it suffice for the moment to say that its arguments have the 
following functions: 

 
First argument:  Move along the X-axis, units are specified in millimetres. 
Second argument:  Move along the Y-axis (millimetres). 
Third argument:  Rotate by an angle specified in degrees. 
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Here is the program to interpret the parser output. 
 
interpret :- 
 recall(parser_output,X), % Get the parser output, (a 3- 
     % element list) 
 interpret1(X).   % Now, interpret X 
 
% How to interpret [clock_wise, degrees, numeral] (The 3 elements  
% occur in any order) 
interpret1(A) :- 
 member(clock_wise,A), member(degrees,A),  
 member(X,A), number(X), move(0,0,X).    
     % Rotate the table by X degrees 
 
% How to interpret [anticlock_wise, degrees, numeral] 
interpret1(A) :- 
 member(anticlock_wise,A), member(degrees,A), 
 member(X,A), number(X), X1 is -X, move(0,0,X1). 
 
% How to interpret [left, mm, numeral] 
interpret1(A) :- 
 member(left,A), member(mm,A), member(X,A), 
 number(X), X1 is -X, move(X1,0,0). 
 
% How to interpret [right, mm, numeral] 
interpret1(A) :- 
 member(right,A), member(mm,A), 
 member(X,A), number(X), move(X,0,0). 
 
% How to interpret [up, mm, numeral] 
interpret1(A) :- 
 member(up,A), member(mm,A), member(X,A),  
 number(X), move(0,X,0). 
 
% How to interpret [left, mm, numeral] 
interpret1(A) :- 
 member(down,A), member(mm,A), 
 member(X,A), number(X), X1 is - X, move(0,X1,0). 
 
% What to do if we cannot move the table according to the given  
% command 
interpret1(A) :- message([A,'was not understood']). 

4.2.7 Review 

The following points should be noted: 
 
(i) The Voice Navigator II speech recognition system is able to select any item 
from any pull-down menu. 
(ii) It is possible to construct a pull-down menu (called the “S” menu) from a 
set of grammar rules, using menu_builder. The “S” menu contains a small 
number of control terms (begin, end, cancel, kill, ‘X’), in addition to a list of the 
terminal symbols defined in the grammar. 
(iii) Items from the “S” menu can be selected using either the mouse or the 
speech recogniser. 
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(iv) A set of grammar rules, defining commands for controlling an (X,Y,θ)-
table, has been defined. 
(v) When menu_builder is applied to these rules, an “S” menu is built and 
contains the items listed in Table 4.3. 
(vi) To enter a command for the (X,Y,θ)-table, the user can enter a sequence 
such as: [begin, please, move, up_wards, fifty, two, mm, end ….]. 
(vii) We have explained how the key-words in such a sentence can be extracted. 
The result is a list, such as [up_wards,mm, 52].  
(viii) A set of rules for moving the (X,Y,θ)-table has been defined (predicate 
interpret). These rule use the 3-element key-list as “input”. 
  
In addition to the table controller, the speech recogniser has been used to 

operate the lights in the Flexible Inspection Cell and to perform standard image 
processing functions. It is a notable experience to observe the (X,Y,θ)-table move, 
or the lamps turn ON / OFF, in response to spoken commands, since the user feels 
as though he has great power. While these ideas are still under development, they 
do illustrate the fact that speech recognition, linked to simple grammar-rule 
analysis is both practical and highly attractive, even to computer literate people. 
For these reasons, the authors are convinced that many uses will be found for this 
combination of technologies, in the future.  

4.3 Aids for Designing Vision Systems 
Designing a machine vision system is more complicated than simply choosing 

an image processing algorithm. Selecting an appropriate lighting and viewing 
configuration is of vital importance, before any image processing is ever 
contemplated. The Lighting Advisor described below is one of several design 
tools that have been devised, or are still under development, as part of the general 
drive towards providing assistance for the vision engineers. (Another web version 
of this design tool is also available [WWW-1].) Expert systems, hypermedia 
programs and deductive systems are also being developed for such tasks as 
choosing the appropriate camera, selecting a suitable lens, preparing samples for 
inspection, etc. The one outstanding requirement is for a system that can give 
advice about which are the most appropriate image processing algorithms to 
consider for a given application. While this is still a long way off, one system for 
doing this, within the narrow confines of inspecting objects made by a single 
multi-product manufacturing line has been developed. [CHA-95] 

4.3.1 Lighting Advisor 

The Lighting Advisor is a hypermedia catalogue, describing about 150 different 
lighting and viewing techniques, suitable for industrial machine vision systems. 
The Lighting Advisor is in the form of two interconnected HyperCard stacks. For 
each lighting and viewing technique, there are two cards: one provides notes in 
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the form of plain text, while the other shows the optical layout diagram. The 
Lighting Advisor can also be linked to other HyperCard stacks, such as the 
controller for the Flexible Inspection Cell described in Section 5.5. Additional 
stacks are currently being developed and will eventually include details about 
cameras, references to the technical literature and preparing a sample for visual 
inspection. 

Lighting and viewing are now widely regarded as being of critical importance 
for the successful development of machine vision systems, whether they are being 
used for such tasks as inspection, measurement, grading, sorting, monitoring or 
control for industrial applications. [BAT-85, BIE-91] In the early years of the 
development of interest in Automated Visual Inspection, it was often argued that 
an experimental approach to lighting design was essential. [BAT-80] While this 
point of view is still valid, there is undoubtedly a need for more formal methods 
and suitable computer-based design aids. [BAT-91b, BIE-91, BAT-92] There has 
been a concerted effort recently by several groups to develop software tools by 
which a vision engineer can obtain advice about which lighting and viewing 
techniques are appropriate for a given machine vision task. Advisors for lighting 
and viewing have been developed by Ball Corporation Inc., [PEN-88] Industrial 
Technology Institute, Dearborn, MI  [ITI-89] and one of the present authors 
[BAT-89]. In recent years, very flexible lighting systems have been developed, 
most notably ALIS 600 [DAU-92] and Micro-ALIS prototyping systems. [ALIS] 
Other notable work in this area has been described by Ahlers, who devised feed-
back control systems for industrial lighting units [AHL-91]. The Flexible 
Inspection Cell (FIC) has many of the advantages of the automated ALIS 600 
system and contains a versatile manipulator. [BAT-94b] While the control of the 
FIC will be described in detail in the next chapter, we merely need to note here 
that systems such as these emphasise the need for a program which can assist in 
choosing an appropriate lighting / viewing arrangement. The Lighting Advisor 
should be viewed as being part of a much larger prototyping system (see Figures 
4.12 to 4.19), which will eventually incorporate databases on: 

 
(a) Lighting and viewing techniques. 
(b) Cameras. 
(c) Lenses. 
(d) Sample preparation for easier viewing. 
(e) Image processing techniques. 
(f) Technical literature on machine vision. 
(g) Addresses of suppliers of hardware and software, research institutes. 
 
In the future, it is anticipated that the Lighting Advisor software will also be 

used to control the Flexible Inspection Cell. It is already interfaced to the Prolog+ 
software. It is of interest to note that the possibility of using HyperCard for a 
Lighting Advisor was first considered in 1988 but this approach was soon 
abandoned in favour of one based upon a Prolog program. [BAT-89] The decision 
to revert to HyperCard was made in 1993, following preliminary work by a 
Cardiff student. [WIL-93]. The reason for this was the improved facilities offered 
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by HyperCard, most notably the ability to show high-quality graphics, on a large-
screen display unit. 

Stack Structure 

The Lighting Advisor consists of three interconnected HyperCard stacks called 
“Lighting Advisor”, “Lighting Diagrams” and “Lighting Pictures”. Apart from a 
short preamble, the “Lighting Advisor” stack consists entirely of so-called 
Methods cards, having the form shown in Figure 4.12. The buttons along the 
bottom of the Methods cards have the following functions: 

 
Find Find text. Dialogue box appears. 
Index Go to “Index” Card (Figure 4.13). 
Layout Go to corresponding card in “Lighting Diagrams” stack.  
Print Print the present card 
Begin Go to the first card in the “Lighting Advisor” stack.  
Prev. Go to the previous card seen  
Exit Go to HyperCard “Home” stack 

 
The text fields in the Methods cards are obvious from Figure 4.12. At the time 

of writing, there are over 150 Methods cards, relating to different lighting and 
viewing techniques. This compares with 63 different lighting and viewing 
methods described in a catalogue of such techniques, published 1985. (See [BAT-
85] and [BAT-94b].) Notice that each Method card in the “Lighting Advisor” 
stack is uniquely associated with one card in the “Lighting Diagrams” stack and 
another in the “Lighting Pictures” stack.  Each card in the “Lighting Diagrams” 
stack shows the layout of an optical system, while the “Lighting Pictures” stack 
shows sample images obtained  (see Figure 4.14). 

Search Mechanisms 

Apart from the buttons just described, there are several other ways to navigate, 
in the Lighting Advisor: (a) “Index” card (Figure 4.13); (b) “Map” card (Figure 
4.16); (c) First card in the “Lighting Advisor” stack  (Figure 4.15); (d) Automatic 
text search. 

Each of these will now be described in turn. 
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Figure 4.12 Typical “Method “card from the Lighting Advisor Stack. 
 
 

 
 
Figure 4.13 “Index” card. Top left: Information window. Bottom left: 
Buttons for navigating through this stack or moving to other stacks. Right: 
scroll menu. Clicking on an item in this scroll menu, causes Hypercard to 
move to the corresponding card in the “Lighting Advisor” stack. 
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(a) 
 

 
 

(b) 
 
Figure 4.14 Secondary cards, linked to the card shown in Figure 4.12. (a) 
Card from the “Lighting Diagrams” stack. (b) Corresponding card from the 
“Lighting Pictures” stack. 
“Index” card: 
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The “Index” card is shown in Figure 4.13. In addition to the buttons described 
above for cards in the “Lighting Advisor” stack, there are seven buttons, labelled: 

 
Sample Preparation Go to the “Sample preparation” stack 
Camera Advisor Go to the “Camera Advisor” stack 
Map Go to the “Map” card 
References Go to the “References” stack 
Device Control Go to the “Device Control” stack 
Home Card Go to the Hypercard “Home” stack. 
 
In addition, there is a scroll menu, whose entries correspond to the text field at 

the top-right-hand corner of each of the “Methods” cards in the “Lighting 
Advisor” stack. Clicking on an item in this scroll menu, causes Hypercard to  
move to the corresponding card. 

 
“Map” card: 
See Figure 4.16 It is recommended that the stack structure of any complex 

HyperCard system be modelled, on a card known as a “Stack map”. The map card 
follows this practice and shows how the “Lighting Advisor” and “Lighting 
Diagrams” are inter-linked. Clicking on a card, or stack, causes HyperCard to 
move as appropriate. 

 
First card in the “Lighting Advisor” stack: 
Buttons can conveniently be added to the this card, whenever other stacks are 

added to the system. Templates for the “Camera”, “References” and “Sample 
Preparation” stacks have all been devised. From the first card of the “Lighting 
Advisor” stack, the user can elect to move to a detailed description of the stack 
(via the “Preamble” button), or skip to the Methods cards, describing the various 
lighting / viewing techniques. Of special note here is the invitation to the user to 
indicate his level of experience. While an experienced user can add / modify cards 
in the “Lighting Advisor” and “Lighting Diagrams” stacks, a novice user can 
navigate through the “Lighting Advisor” stack using the automatic text search 
facility. 

 
Automatic text search: 
The automatic text search facility provides a very simple way for a novice user 

to search for items of interest. Consider Figure 4.12. Suppose that the user wishes 
to find more information relating to the word “glinting”. To find another card 
which contains this term, the user simply clicks once on that term, in one of the 
Methods cards. By repeating this exercise, it is possible to find all cards which 
share this term in a very short time. Browsing in this way is, of course, one of the 
strengths of HyperCard. 
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Figure 4.15 The first card in the “Lighting Advisor” stack. Notice the 
presence of several buttons to initiate navigation through this stacks. The 
functions of these  buttons are explained in the text. The user can indicate his 
level of his expertise, by clicking on the button on the lower right. (The 
button label toggles between “Expert” and “Novice”.) 
 
 

 
 
Figure 4.16 “Map” card, showing how the “Lighting Advisor” and “Lighting 
Diagrams” stacks are interconnected.  
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Remarks About the Lighting Advisor 

Throughout this book, we repeatedly emphasise that machine vision is 
concerned with much more than image processing, which is the particular forté of 
Prolog+, as it was originally described in Chapter 3. One of the primary areas that 
requires detailed consideration in any application is that of designing the image 
acquisition sub-system (i.e. lighting, optics, viewing angle and camera). Since 
1985, when the original catalogue of lighting and viewing methods was published, 
a large number of other techniques have been used for machine vision. Rather 
than publish another catalogue in book / paper form, it was decided to write a 
much more comprehensive  lighting advisor program using a modern version of 
HyperCard and link this to Prolog+.  

At the time of writing, there are 150 different lighting / viewing methods 
described in the Lighting Advisor. However, it is not intended to be a static entity; 
as new lighting and viewing methods are devised, its database will grow. Even a 
moderately experienced Hypercard user can do this with ease. There are several 
obvious steps for the future development of the Lighting Advisor: 

 
(a) Restore the inferential power of Prolog, which was present in the earlier 
Lighting Advisor [BAT-89], but which is lacking in the present implementation. 
This would provide a “smart”  dialogue to elicit information from the user about 
the application. A Prolog program can, for example, make useful logical 
inferences: that oily or wet objects glint; that glinting is also called specular 
reflection and that glinting can be cured by using crossed linear polarisers. 
(b) Control the Flexible Inspection Cell. Of course, this facility will only be 
possible for some of the methods represented in the “Lighting Advisor” stack.  
(c) Add descriptions of further lighting and viewing methods to the stack.  
(d) Add further material, to provide a tutorial introduction to lighting and 
viewing methods for industrial applications.  
 
The Lighting Advisor can, of course, be linked to the HyperCard stack which 

controls the FIC and hence forms part of the general Prolog+, environment. Thus, 
a person using Prolog+ can consult the Lighting Advisor, set up the recommended 
lighting configuration and return to Prolog+ simply by clicking the Macintosh 
mouse. The procedure for navigating between these utilities is as follows: 

 
In Prolog+   Select from the “Utility” menu 
In HyperCard (FIC control) Click on button marked “Lighting Advisor” 
In HyperCard (Lighting Advsor) Click on button marked “FIC Control” 
To return to Prolog+  Click on button marked “Prolog+”  
 
It is the authors ultimate ambition to eventually add several other advisory 

programs to the extended Prolog+ system, including a Camera Selection Advisor 
and a Sample Preparation Guide. To date, only the templates for these additional 
facilities have been devised (Figures 4.17-4.19). Collecting the relevant 
information from equipment manufacturers, then restructuring it to form a 
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comprehensive, up-to-date, database, requires greater man-power resources than 
the authors can muster at the moment.  

 

 
 

Figure 4.17 Template for the Camera Advisor.  
 
 

 
 

Figure 4.18 Template for the References database. This will eventually form 
part of a comprehensive hypertext data search facility, for machine vision. 
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Figure 4.19 Template for the Sample Preparation database. 

4.3.2 Other Design Aids for Machine Vision 

The authors long-term research goal is to develop a comprehensive, fully 
integrated,  CAD facility for machine vision systems. There is no doubt that, we 
are very rapidly approaching a bottle-neck on further development of the subject, 
caused by an acute shortage of trained personnel. For this reason, the authors 
believe that the development of good design tools is essential, if the enormous 
potential of machine vision technology is ever to be realised in full. While 
considerable progress has been made already in certain areas, some gaps remain. 
The following is a list of notable achievements by other workers in this general 
field, but which cannot be integrated easily with Prolog+, and outstanding 
“problem” areas requiring further work: 

 
(i) Opto*Sense® is a comprehensive database of commercial systems suppliers 
[WHI-94]. The software runs under the MS-DOS operating system and hence is 
not compatible with the Prolog+ software. 
(ii) A specialised calculator for lens selection has been distributed by the 
Machine Vision Association of the Society of Manufacturing Engineers. 
[MVA] The Machine Vision Lens Selector is in the form of a slide rule, which 
allows the user to find the focal length of a lens, given the object distance and 
field of view. Alternatively, the user can find the f-number from the depth of 
field and desired resolution.  
(iii) A Macintosh desk accessory for lens selection has been devised. [SNY-92] 
Since this runs on the Macintosh computer, it can “co-exist” with the Prolog+ / 
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HyperCard software but does not interface directly to it. The software is in the 
form of a specialised screen-based calculator that can be called by selecting the 
appropriate item from the Apple menu. This program performs the same 
calculations as the slide rule mentioned in (ii). It would not be a major task to 
rewrite this program using Prolog or Hypercard. 
(iv) At least one sophisticated ray-tracing program for the Macintosh computer  
is known to exist [KID]. This program can, of course, “co-exist” with the 
Prolog+ software, but does not interface directly to it. The program is able to 
calculate all of the necessary design parameters for a given optical set-up.  
(v) The basic frame-work for a program which can give advice about which 
camera to use have been developed by two post-graduate students working at 
Cardiff [PET-90, WIL-92] 
(vi) A “general purpose” program which is able to give advice about suitable 
image processing operations for a given application is not yet available.  Some 
progress has been made in this area, for just one specific application area: 
inspecting cakes made in the form of a continuous ribbon. [CHA-95]  

4.4 Multi-camera Systems 
The embodiment of Prolog+ described in Chapter 3 allows the use of only one 

video camera. However, there are many instances when it is useful to be able to 
combine two or more views of an object. (Table 4.4 and Figures 4.20 and 4.21.)  
In this, the last part of this chapter, we shall discuss some of the ways in which we 
can build an intelligent vision system that is able to digitise and process data from 
several cameras.  

4.4.1 Multiplexed-video Systems 

Consider Figure 4.22(a), which shows perhaps the simplest and potentially most 
flexible multi-camera system. We shall refer to this as a Video-Multiplexed (V-M) 
system. Notice the presence of the video multiplexor on the input of the frame-
store, and that the multiplexor is controlled by the image processing computer. 
Many low-cost image processing systems are organised in this way and can 
typically accept up to four cameras. In a V-M system, the images from the various 
cameras can be superimposed, if desired. This facility is not possible with Figure 
4.22(b) and some of the other schemes described below. It is a simple matter to 
add a video multiplexor on the input to any image processor, provided it can 
generate the necessary control signals. (This will be discussed again in Chapter 5.) 
The high flexibility of a V-M system is achieved by performing operations in 
sequence, but of course this reduces its operating speed, compared to the 
concurrent systems about to be described. 

 
 

Application Remarks  
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Packing/depletion  
e.g. cutting leather for  
shoes, bags, etc. 

One camera is used for inspecting leather surface,  
prior to cutting. A “flaw map” is fed to packing  
program. Cutting templates and hide are viewed by  
different cameras.  

Car wash Several cameras are needed to inspect the whole body  
surface before and after the wash. Other cameras are  
needed to monitor the washing process. 

Monitoring bakery, or  
similar continuous-flow  
manufacturing plant 

Several cameras are needed for inspecting the mixing  
and feeding of raw materials, the unbaked dough  
(formed by the extruder), and the product after  
baking, after decoration, before and after cutting,  
during and after packing. 

Brick laying robot Separate views are needed of both sides of wall being  
built, placing of mortar on wall and bricks, cutting of  
bricks. 

“Golden sample” inspection of 
populated printed circuit  
boards 

At least, one camera is needed for each board. (May  
be more, if both high- and low-resolution viewing is  
needed.) 

Pruning plants At least three cameras are needed to obtain all-round  
view. (May be more, if both high- and low-resolution  
viewing is needed.) 

Multi-lane production  
processes 

One camera cannot provide sufficiently high  
resolution. 

Power-press, or similar  
machine 

Separate cameras are needed to monitor material feed,  
inspect dies and to inspect the finished product. 

Painting large complicated  
structures using a robot 

Several cameras are needed, for navigation and for  
inspecting the work-piece before during and after  
spraying.  Cameras may be mounted on robot arm, to  
examine every nook and crevice. 

3D inspection of foreign 
bodies in packaged food. 

Several containers may be filled simultaneously on a  
modern, high-speed production line. Hence jars can 
never be viewed in isolation from one another. (For  
example, arrays of 2*3 jars of tomato sauce may be  
filled at the same time. Two orthogonal views are 
needed to locate a foreign body.) 

Flexible Manufacturing  
System 

FMS is typically left unattended for long periods of  
time. Vision is good means of monitoring progress. 

Monitoring factory (for  
safety hazards) 

Many cameras needed to make sure gangways are  
clear, doors are closed, floor is clean, pallets are  
correctly loaded, stacked boxes are stable, no leaks  
from complex pipe-work installations, etc. 

Robotics Monitoring robot work area for human intruders,  
obstacles which could get in way of the robot. 

 
Table 4.4 Some practical applications of intelligent multi-camera machine 
vision systems. 
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Master

M1 M2 M3 M4

Direction of travel

Slave #1 Slave #5Slave #4
AppleTalk bus

Empty trays Trays with 
empty cups

One cup 
filled

Two cups 
filled

Three cups 
filled

Slave #2 Slave #3

Post-process 
inspection and  

control feedback

Product 
inspection

In-process monitoring, 
inspection and control 

via feed-forward

In process monitoring & 
post-process inspection

Process control via 
feed-forward

 
 

Figure 4.20 Using a multi-camera vision system to monitor a multi-stage 
production process. M1 to M4 are manufacturing machines. 
 
 

Pre-wash inspection 
for aerials, roof 
rack, loose trim, 

scratches etc

Post-wash inspection 
for cleanliness, 
scratches, etc

In-wash process monitoring 
of water spray, shampoo 

delivery, foam levels, 
brushing, drainage, etc.

Overhead cameras (not shown) check for 
position and doors open, no people nearby

Overhead cameras (not shown) 
check for position and doors open

Slave

Master
N.B. Connections to other slaves are not shown

Slave Slave Slave

B
ru

sh
es

 
 

Figure 4.21 Using a multi-camera vision system to monitor a car wash. 
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Figure 4.22 Video-Multiplexed (V-M) system. (a) Video multiplexor. (b) 
Multiplexed image processors using the Intelligent Camera. 

4.4.2 Networked Vision Systems 

Figure 4.23 shows the organisation of a multiple camera vision system in which 
several Prolog+ sub-systems are controlled by a single processor. Interconnection 
is achieved via a standard AppleTalk network. Using this arrangement, up to 
thirty one Slaves can be controlled from a single Prolog program, which will be 
called the Master.  

Each of the Slaves is fully autonomous and runs continuously, using an 
infinitely looping Prolog+ program. It is important to note that we envisage a 
system in which of all of the Slaves are active almost all of the time. A Slave 
might, for example, identify what objects / events it can see and then report to the 
master every few seconds. The Slaves operate completely independently from one 
another; all communication takes place through the Master, which interprets the 
data it receives from the Slave units operating below it and occasionally sends 
them data to control / modify their actions. The arrangement shown in Figure 4.24 
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is even more powerful. Each of the Slaves can control as many as eight image 
processors (for example, Intelligent Cameras), through the use of an RS2324 
multiplexor. Each of the image processors can have several remote image sensing 
heads. (Up to 4 for the Intelligent Camera.) As many as 32 Macintosh computers 
can be connected to a single AppleTalk network. Hence, we realise that data from 
up to 1024 cameras can be processed by the system. 
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Figure 4.23 Organisation of a multiple camera vision system in which several 
Prolog+ sub-systems are controlled by a single processor. 
 
 
 
 

                                                           
4 Although the Macintosh computer uses the RS422 protocol, it is possible to 

operate RS232 devices. 
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Figure 4.24 Enhanced networked vision system. Each of the slaves is a 
Video-Multiplexed (V-M) system and hence can control up to 8 image 
processors, via a multiplexor. 
 
The role of the Master requires some explanation. Since it is not likely to be 

able to respond individually to each signal sent to it by the Slaves, it is right to 
question what this arrangement actually achieves. Decisions can be made locally 
and rapidly by the Slaves, which are themselves intelligent Prolog+ systems. 
Typically, the Slaves would generate performance statistics and report special 
conditions that require the attention of the Master. They merely report in broad, 
symbolic terms what they have found, without giving the Master too much detail.  

 

4.4.3 Master-Slave System Organisation 
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The system illustrated in Figure 4.24 is co-ordinated using AppleEvents, which 
we have encountered already. Using AppleEvents, a Prolog+ program (P1) can 
pass a goal to another Prolog+ program (P2), running on either the same computer 
or another remote machine. This mode of operation places certain limitations 
upon the structure of the software: 

 
(a) The most important point to note is that P1 can pass a query to P2, but only 
if P2 is not already running, i.e. trying to satisfy a goal. If P2 is already trying to 
satisfy a goal G when the query from P1 arrives, the latter will be held in 
obeyance until G has been evaluated. The incoming goal specified by P1 will be 
evaluated after G. 
(b) It is possible for P1 to assert and retract relations in P2’s database, in a 
slightly indirect way. P2 must contain a predicate which does the assertion / 
retraction on P1’s behalf. 
(c) When the goal defined by P1 has been evaluated, P2 can pass results back to 
P1. If these results from P2 do not arrive within a defined time limit, written 
into program P1, the goal in P1 fails. This is a very useful facility, since it 
allows recovery from a deadly embrace. 
 
With these points in mind, we see that it is desirable to employ a passive Prolog 

program which acts as a buffer between programs P1 and P2, so that they 
communicate indirectly with each other. This will be called the Blackboard. By 
the term passive, we mean that the Blackboard does not satisfy goals on its own 
account, only when ordered to do so, by receiving a remote query from another 
Prolog program. The Blackboard contains definitions for only a very small 
number of relations, so that it can assert / retract on behalf of P1 and P2. 

We shall consider a network in which the Master and each Slave is resident on a 
different computer. Each Slave host runs two copies of the MacProlog software: 
one with the Slave program and the other with a copy of the Blackboard program. 
Thus, each Slave has a (passive) Blackboard program dedicated  to it. (See Figure 
4.25(a)) We could also use a common Blackboard to good effect, enabling the 
Master to broadcast information to all Slaves. (See Figure 4.25(b).) However, we 
shall not consider this option any further, since it provides few advantages 
compared to the alternative arrangement and is a potential bottle-neck, limiting the 
speed of the system. 

Figure 4.26 shows the communication paths that we need to consider in a 
Master - multi-Blackboard/Slave system. Before we can discuss this in detail, we 
need to consider how one Prolog application (the local process) can send data to 
another (the remote process). 
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Figure 4.25 Blackboard organisation (a) Blackboard dedicated to the Slave. 
(b) Common Blackboard for all Slaves. 
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Figure 4.26 Communication paths in a Master - multi-Blackboard/Slave 
system. 1. Master uses  remote_asserta(A) to place message for Slave on 
Blackboard. remote_asserta(A) is sent from Master to Blackboard. 2a. Master 
receives message from Slave by sending remote query to Blackboard. 
(Example:  info(X)) 2b. Blackboard satisfes remote query (info(X)) received 
from Master and instantiates X; info(value1) is returned to the Master. 3. 
Slave uses  remote_asserta(B) to place message for Master on Blackboard.  
remote_asserta(A) is sent from Slave to Blackboard. 4a. Slave receives 
message from Master by sending remote query to Blackboard. (Example:  
info(Y)). 4b. Blackboard satisfes remote query (info(Y)) received from Slave 
and instantiates Y; info(value2) is returned to the Slave. 5. Master satisfies  
remote_goal to start the Slave running. remote_goal is sent from Master to 
Slave. 6a. Master tries to satisfy  true, to test whether the Slave is still 
active. 6b. Slave satisfies true, if it is not running another program and signals 
“goal succeeds” to the Master. If the Slave is already running, the timer in 
remote_query (in the Master program) causes remote_machine_running to 
fail. 

4.4.4 Remote Queries 
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The MacProlog built-in predicate remote_query allows the user to pose queries 
via one copy of Prolog (local process) but which are satisfied by another, possibly 
running on a different computer (remote process). This facility is discussed in 
detail in the MacProlog manual. [MAC] remote_query uses the following 
arguments: 

 
A     -     Query to be sent to the remote process. 
B     -     Identification of the remote process. (Derived from the  
 MacProlog built-in predicate ppc_browse. See 

remote_reset, defined below.) 
C     -     Maximum time delay allowed for the remote process to respond 

to the query. 
D     -     List of values returned from the remote process. 

 
The following program segments are useful for running remote queries. 
 
Getting started. Finding the ID number of the target process where remote 

queries will be sent. 
 
remote_reset(A) :- 
 ppc_browse('Select the MacProlog application that you want to  
 use',_,B),  % Get ID for the target process. 
 retractall(index_number(A,_)),  
    % Forget previous ID number 
 assert(index_number(A,B)).  
    % Remember current process ID number 

 
This predicate allows the user to locate any application running on the network 

interactively. The target application is identified by the user, with an interactive 
dialogue generated by ppc_browse. The goal remote_reset(A) associates the label 
A with the ID number of the target application. After satisfying remote_reset(A), 
the Prolog database contains information needed (in index_number) to despatch 
AppleEvents to that application whose “address” is A. It is possible for a user 
working at the Master terminal to locate each of the Slave and Blackboard 
applications on the network, using remote_reset. It is not necessary for the user to 
visit each of the Slaves. Exactly how this can be avoided will be explained later. 

 
Useful operator ( ). This provides a simple syntactic form for remote queries. 

These may be of the form  goal(defined_arguments) or  goal(Results). 
 

 A :-  
 A =.. [_|B], % Analyse arguments 
 B = [C|_], % Get first argument 
 var(C),  % Checking that argument is a variable 
 run(A,[B]), % Run remote query A. Results go into B 
 !.  % Do not allow backtracking to next clause 
 

 A :- run(A,_). % What to do if there are no variable  
   % arguments 
 
% Handling remote queries at simplest level for user. A is query.  
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% B contains results. 
run(A,B) :- 
 index_number(D), % Consult database for ID of target  
    % process 
 remote_query(A,D,600,C), 
    % Arguments are described above 
 prolog_solns(C,B), % Decode solutions found. Not defined 
 !.   % Avoid resatisfaction on backtracking. 

Interactive Operation of the Remote Process 
transparent :-  
 prompt_read(['Please type a goal for the REMOTE process to  
 satisfy'],X),  
 not(X = end), % Terminate interactive session 
  X,  % Do it  
 writeseqnl(['Remote…',X]),  
   % Keep log of what happened during interaction 
 !,  % Make recursion more efficient 
 transparent. % Do it all again 
 
transparent.  % Finish with success 

 
Examples of remote queries : 
 

Local goal  Remote goal Action 
 grb  grb Digitise an image 
 thr(123) thr(123) Threshold image 
 hil(12,34,56)  hil(12,34,56) Highlight intensities 
 avr(X)  avr(P)  Average intensity 
 cgr(X,Y) cgr(P,Q)  Centroid 
 lmi(X,Y,Z)  lmi(P,Q,R) Least MOI 

 
Starting an infinite remote process We might wish to start the following 

remote program which performs process in an endless loop. 
 
remote_goal :- 
 process, % Remote machine has definition of “process” 
 !, remote_goal . 

 
The local goal  remote_goal will start remote_goal running on the remote 

machine. After a period of time defined by the programmer of the local machine, 
 remote_goal succeeds and remote_goal continues running on the remote 

machine. The two machines are now running independently.  
 
Is the remote machine running? Clearly, the local machine needs to know 

whether or not it can communicate with the remote machine again. Here is a 
program which the local machine can run, in order to find out whether or not the 
remote machine is actively trying to satisfy some (unknown) goal or is passively 
waiting for some further instructions from the local machine. 
 
remote_machine_running :- 
 !,  % Avoid resatisfaction on back-tracking 
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 not(  true). % Satisfied if remote machine is NOT running 
 
remote_machine_running.  
   % Remote machine running. Local goal succeeds 

 
The first clause fails if the remote machine does not satisfy  true within a time 

limit defined by remote_query. 
 
Reassign query not understood locally It is possible to reassign any query that 

is not understood by the local machine to the remote machine. Error number 2 in 
MacProlog signals that a goal has no definition. However, by redefining the error 
handler in the following way, it is possible to divert a query to the remote 
machine. 
 
'<ERROR>'(2,A) :-  A. % If error 2, try goal A on remote  
    % machine 
 
'<ERROR>'(2,A) :- abort. % That failed, so we really do have to  
    % give up 
 

Thus far, we have described the mechanism for forcing a remote copy of 
MacProlog to answer a query posed to it by the local process. We now need to 
consider how these ideas can be put to use in organising a Master-Slave message 
signalling system. First, we need to consider the structure and use of the 
Blackboard, since this is central to the proper co-ordination of the Master-Slave 
system. 

4.4.5 Blackboard 

The Blackboard is a passive Prolog program which can receive data from the 
Master or from any Slave, either of which can also consult it at any time. The 
organisation of communication in a Master-Blackboard-Slave system is illustrated 
in Figure 4.26. The Blackboard contains only a few items: 

 
(a) remote_asserta which performs an asserta on behalf of the Master or a 
Slave, neither of which are able to perform this operation directly. (It is not 
possible for the Master or a Slave to issue the remote goal  asserta.) 
Similarly, remote_assertz performs assertz remotely.  
(b) remote_clear_and_assert(A) clears any exisiting relations with the same 
name and arity as A and then asserts A into the Blackboard database. 
(c) remote_retractall(A) retracts all clauses in the Blackboard database that have 
the same arity as A. 
 
Here are the definitions for these predicates. 
 
% Perform “asserta”, on behalf of the Master or a Slave 
remote_asserta(A) :- 
 attach_data(A,'Data window'),  
   % Defines window where “assert” will be done 
 asserta(A). % Assertion on behalf of Master or Slave. 
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% Perform “assertz”, on behalf of the Master or a Slave 
remote_assertz(A) :- 
 attach_data(A,'Data window'),  
   % Defines window where “assert” will be done 
 assertz(A). % Assertion on behalf of Master or Slave. 
 
% Perform “assert” on behalf of the Master or a Slave 
% The following predicate clears any existing relations first. 
remote_clear_and_assert(A) :-  
 A =.. [B|C], % Separate functor and arguments of A 
 length(C,D), % Find how many arguments in A 
 abolish(B,D), % Remove all clauses of arity D with name B  
 attach_data(B,'Data window'),  
   % Defines window where “assert” will be done 
 asserta(A), % Assertion done on behalf of Master or Slave 
 !.  % Avoid backtracking 
 
/* Remote version of “abolish”. The following predicate uses number 
of arguments in A to define the arity. */ 
remote_abolish(A) :- 
 A =.. [B|C], % Separate functor and arguments of A 
 length(C,D), % D is number of arguments in A 
 abolish(B,D). % Remove all clauses of arity D with name B 
 
In addition to the definitions given above, the  Blackboard may contain a large 

number of messages, which are in the process of passing from Master to Slave, or 
vice versa. Examples of these messages will be given later. 

Master and Slave Program Elements 

To avoid confusion, the same predicate names should be used in the Master, 
Slave and Blackboard programs. Thus, both Master and all Slaves should contain 
the following definitions: 

 
remote_asserta(A) :-  remote_asserta(A). 
remote_assertz(A) :-  remote_assertz(A). 
remote_clear_and_assert(A) :-  remote_clear_and_assert(A). 
remote_abolish(A) :-  remote_abolish(A). 

4.4.6 Controlling the Master-Slave System 

We are now in a position to understand how the Master-Slave system can be 
controlled using the Blackboard. We shall discuss the operation of the system step 
by step. 

 

Starting the System 

In order to use the Blackboard properly, both the Master and Slave must be 
running Prolog programs. If a Slave is not already running a query, it can be 
started directly by  the Master. Either run or the  operator can be used to do 
this: 
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 remote_goal  % Remote query (remote_goal) is run by Slave 
 
Notice that, prior to satisfying  remote_goal, we must make sure that 

AppleEvents will be directed to the appropriate Prolog application. This is 
achieved using remote_reset. In order to start a Slave via its Blackboard, we need 
to invoke the  operator twice: 

 
  (  slave_program) 
 
(Since the  operator is right associative, the brackets can be removed without 

altering the meaning.) Of course, for this to work, the  operator and the 
predicate slave_program must be defined in the Blackboard. Either the Master or 
the Blackboard can invoke remote_machine_running at any time, to test whether 
the Slave is still running. 

Stopping a Slave 

The Master can order a given Slave to terminate its activity by placing the 
message stop_slave in the Blackboard’s database. In order to do this, the Master 
should satisfy the local goal  remote_clear_and_assert(stop_slave). 

The following predicate must be defined in the Slave. 
 
stop :- 
  stop_slave, % Consult the Blackboard database 
 remote_abolish(stop_slave),  
   % Clear the stop message from the Blackboard 
 abort.  % Stop whatever we are doing 
 
stop(_).  % No stop message, so carry on running slave 

 
It is also necessary for the programmer to place the goal stop somewhere in his 

program. This is a minor nuisance, but it does allow the programmer of the Slave 
program to terminate the program at the most convenient point in its execution 
cycle. Of course, if he does not do so, the Slave will continue running for ever! 

Passing a Message to the Slave 

In a similar way to that just described, the Master can pass messages and other 
information, via the Blackboard, to the Slave, while the latter is running. This 
permits the Slave to modify its actions, under the command of the Master, while 
both Master and Slave applications are running. For example, the following Slave 
program cycles endlessly (idling mode), until the Master places an appropriate 
“command” in the Blackboard. This command is then “executed’ by the Slave. 

 
slave_program :- 
 message_from_master(A),  
   % Slave consults Blackboard, similar to “stop” 
 call(A), % Perform operation defined in Blackboard 
 !,  % Included for greater efficiency of recursion 
 slave_program. % Do it all again 
 
slave_program :- % Program defined by Master failed. Keep  
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   % idling 
 !,  % Included for greater efficiency of recursion 
 slave_program. % Idle until Blackboard contains a command 
 
The Master can pass messages to the Slave via its Blackboard, at any time, 

using the  operator. 

Receiving Data from a Slave 

It is possible for the Master to receive data directly from a Slave, or indirectly 
via the Blackboard. The latter process is very similar to that just described for 
passing messages in the opposite direction, from the Master to the Slave. There 
follow three short programs showing how data derived from images can be passed 
from the Slave to the Master, via the Blackboard.  

Slave Program 
Slave_program :- 
 beep(3), % Audible signal for the user  
 grb,  % Digitise image 
 gli(A,B), % Get upper & lower intensity limits 
 remote_clear_and_assert(parameters([A,B])), 
   % Place data into Blackboard 
 stop,  % Stop if ordered to do so by Master 
 !,  % Included for more efficient recursion 
 Slave_program  % Do it all again 

Blackboard (Snapshot of Database, Changing Constantly) 
parameters([31, 251]) 
 
master_program :- 
 repeat,  % Begin processing cycle   
 run(parameters(Z),Q), % Consult Blackboard 
 Q = [W], % Decode results (quirk of AppleEvent format) 
 writenl(W), % Write results list for the user to see 
 fail.  % Force backtracking (to “repeat”) 

 
An important point to note here is that the Slave and Master programs are 

unsynchronised. The periods of the program cycles may be similar, or completely 
different. The Slave may be much faster than the Master, or vice versa. However, 
a number representing the Slave program cycle number may be included in the list 
of parameters passed to the Master. We can use the built-in MacProlog predicates 
time, or gensym to provide a “time stamp”. 

Direct communication from a Slave to the Master can be achieved in an obvious 
way. The difference between this and indirect communication is that, in the latter 
case, the Master can do nothing but wait, until the Slave sends the data. Notice 
that the Master program can make use of the timer built into remote_query to 
escape from a deadly embrace. In this event, some of the data from the Slave will 
be lost. 

4.4.7 Crash Recovery 
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The network described above experiences some difficulty, if a Slave goes into a 
tight recursive loop, containing no stop sub-goal. The Master cannot then regain 
control whatever AppleEvent message it sends, either directly to the Slave or via 
its Blackboard. There is a solution to this problem but it requires the construction 
of a small piece of electronic hardware. Recall that the default option for 
(software) interrupts to MacProlog allows goal satisfaction to be terminated by the 
user pressing “ .” (COMMAND / period) on the keyboard. A small, low-cost 
hardware unit can be connected to the Apple Desktop Bus (ADB) so that, on 
receipt of an appropriate signal from the Master, it generates a signal sequence 
equivalent to “ .” being pressed on the Slave keyboard. Thus, to regain control, 
the Master sends an interrupt signal to the Slave ADB, via the hardware unit. (In 
the next chapter we shall describe how a whole range of hardware devices can be 
controlled from a Prolog program.) The action of MacProlog following the receipt 
of an interrupt signal can be programmed using the '<INTERRUPT>' predicate 
[BAT-91b]. The following clause in the Slave database forces the Slave to stop 
whatever it is doing, when the interrupt from the Master arrives: 
 
   '<INTERRUPT>'(_) :- abort. 

Programming the Slave from the Master  

It is important to note that the Master can write complete programs in the 
Slave’s database. This is straightforward if the Slave already contains a definition 
of remote_asserta(A). In this event, the Master can write (and delete) programs in 
the Slave; the master simply satisfies a clause of the form  new_slave_clause.  

4.5 Comments 
In this chapter, we have touched on a number of topics, all of which are 

connected by our desire to make vision systems both more powerful and easier to 
use. The choice of Prolog as the basis for intelligent image processing was made 
as long ago as 1985. The original arguments in support of this choice, rather than, 
say, Lisp, have long been superseded by the experience that we have subsequently 
gained. In other words, we have been able to achieve far more than was ever 
thought possible in those early days of the development of Prolog+. It has been 
possible to develop a flexible environment around MacProlog, to assist vision 
system design engineers. This includes such features as pull-down menus, 
replaying recorded speech, speech recognition, speech synthesis, automatic 
generation and pruning of macros, a rich program library, the ability to link 
Prolog+ to programs written in other languages and commercial packages (e.g. 
HyperCard). Prolog+ can also be extended to control a number of image 
processors in a Master-Slave network. 

However, there are several important aspects of Prolog+ that we have not yet 
been able to develop. It is important to note that MacProlog can itself be extended, 
by linking it to: 
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(a) Flex an Expert System tool-kit [LPA]. 
(b) Prolog++, an Object Oriented Programming package [LPA]. 
(c) Parlog, a parallel declarative language. 
 
There are, in addition, a number of notable programs, written in Prolog, which 

could be advantageous to our work on machine vision. Natural language 
processing, via the medium of Prolog, has been developed to a high level of 
refinement. [GAZ-89] 

 
 
  
 
 



 

 
 

5        
 
Controlling External Devices 

 
 
 
 
 

5.1 Devices and Signals 
 This chapter is based upon the axiom that every industrial vision system must 

be capable of communicating with a range of devices that exist in the world 
outside itself. To be more specific, each machine vision system must be able to 
perform at least three functions:  

 
(i) Sense the electro-magnetic radiation (visible light, IR or UV) emanating 
from the object or scene being examined. 
(ii) Analyse data derived from the camera. 
(iii) Decide what action its associated effector mechanisms should perform. 
 
The authors assert that (iii) is just as important as (i) and (ii), even though few 

books and articles on machine vision, or image processing, even bother to 
mention the topic of controlling external devices. There is a fourth action which 
some, but not all vision systems perform: receiving and analysing data from 
various (non-imaging) sensors, a process which helps to synchronise the vision 
system with other machines. 

In this chapter, we shall discuss various aspects of the general subject of 
interfacing to / from vision systems and will introduce more specific issues, such 
as communications requirements, interfacing standards, designing a “general 
purpose” interface unit, creating user-friendly control software, aligning and 
calibrating a robot vision system. It is impossible, within the small space available 
here, to consider any of these topics in great depth. As a result, we shall merely 
highlight the more important issues involved. In addition, we shall describe one 
particular physical arrangement of lamps, cameras, and mechanical handling 
equipment, which was devised to form a general purpose test bed for studying 
inspection and robot guidance techniques. This is the Flexible Inspection Cell 
(FIC) referred to earlier [BAT-85b]. The FIC will provide the focus for 
illustrating many of the more important general design considerations. 

Referring to Figure 5.1, we see how an industrial machine vision system is 
expected to interact with the external devices surrounding it in a factory. A system 
inspecting objects on a production-line conveyor belt must be able to synchronise 
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its activities to a number of machines, located both up- and down-stream from its 
camera. Whatever the inspection task, it is important that image data be captured 
from the camera at the most appropriate moment in the manufacturing cycle. 
System synchronisation might typically be achieved using a light-beam and 
photo-detector to sense the arrival of parts, travelling along the conveyor. In this 
archetypal system, the accept/reject mechanism can be operated by a simple 2-
level signal. The accept/reject mechanism might be a simple air-jet “blower”, or a 
swinging arm, operated by either a solenoid or pneumatic cylinder. In other 
applications, it may be necessary to use a fixed-function pick-and-place 
manipulator, or even a multi-axis robot, operating under the control of the vision 
system. It might also be necessary to flash a stroboscope lamp, or to acquire and 
then combine two or more images, derived from the same camera but using 
different lighting conditions.  
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Figure 5.1 Archetypal machine vision system for inspecting objects as they 
travel along on a conveyor belt. Notice that the vision system is expected to 
interact with several other machines: a photo-optical (or infra-red) sensor 
which detects when an object is correctly located for examination; the lighting 
control unit; the accept/reject gate; process machines located upstream and 
down-stream 

5.2 Protocols and Signals 
In the past, many different types of device have actually been interfaced, or 

proposed for connection, to vision systems. By inspecting Table 5.1, it is not 
difficult to understand why such a wide range of standardised and ad hoc data-
communications and control protocols have been used or proposed. The list 
includes but is not restricted to the following: 

 
(a) Serial digital data (RS232 / RS 422) used to transfer numeric and  symbolic 
information (e.g. name of defect type, position and orientation of the 
component). 
(b) Parallel digital bus. This may be a simple “unstructured” array of signal 
lines, with / without timing signals, or conform to a well-defined bus standard, 
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such as the IEEE 488 protocol. Both TTL (5 volt) and industrial 24 volt 
standards are popular for parallel I/O. 
(c) Computer bus (parallel). Of particular importance is the bus associated with 
the IBM-compatible PC (such as the PCI bus), while other vision systems use 
the Nubus (Macintosh family), and VME bus. 
(d) Analogue. (Bandwidth, impedance and voltage levels may all vary over a 
wide range. Analogue I/O ports may be balanced or non-balanced.) 
(e) Digital data network. (e.g. Ethernet, AppleTalk, Novell, etc.) Few vision 
systems provide connections to these networks, at the moment. However, it is 
clear that this is an area for future developments. Indeed, we investigate this 
possibility in Chapter 4.  
(f) Video. As far as we are concerned, there are two important video standards: 
RS170 (60Hz field scan, used throughout USA) and CCIR (50Hz field scan; 
widely used in Europe). In addition, there are various high definition television 
standards in use. Notice however that high-definition laser scanners and solid-
state line-scan imaging systems are usually designed individually, without 
reference to internationally agreed standards. 

5.2.1 Interfacing to Commercial Systems 

In this section, we shall briefly review the types of interfaces available on 
existing machine vision systems. A typical example, is provided by the Intelligent 
Camera [INT], which has the following facilities: 

 
(a) Two RS232 ports (connections are made via 9-way D-type connectors). One 
of these allows the host processor to control / program the Intelligent Camera 
and the other to an ancillary device, such as a printer or (X,Y,θ)-table. In 
addition, both D-type connectors provide DC power for external devices. 
(b) One 8-bit parallel I/O port, with opto-isolators (provided via a 25-way D-
type connector). These signal lines permit the camera to drive a stroboscope 
lamp unit. It is also possible to delay image capture and processing until the 
arrival of a “parts present” signal, generated by a proximity sensor. In addition, 
the Intelligent Camera can drive an accept / reject mechanism (e.g. a solenoid, 
air blast, or pick-and-place arm). It is also possible to operate a device, such as a 
warning bell or flashing lamp. Once again, power is made available via the D-
type connector  for driving external devices.  
(c) Video output (BNC connector). This allows the Intelligent Camera to be 
connected to a video monitor, so that a person can watch the image processing 
taking place. 
 
 
 
 

 
Sensor Interface Comments 
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Proximity sensor Single TTL May use micro-switch, optical, 
magnetic, or capacitance sensing. 

Pressure Single TTL, serial 
(RS232), or parallel 

Device may indicate when certain 
pressure limit is passed, or provide a 
string of measurement values. 

Temperature Single, TTL or serial 
(RS232) 

Device may indicate when certain 
temperature limit is passed, or provide a 
string of measurement values. 

Force Single, TTL or serial 
(RS232) 

Device may indicate when certain force 
limit is passed, or provide a string of 
measurement values. 

Gauges, micrometer, 
etc 

Serial Device may indicate when diameter 
limits are violated, or provide a 
measurement value. 

Bar-code reader Serial (RS232) Used for input of product type / identity 
so that vision system can perform 
appropriate inspection function. 

Range Serial (RS232) Range measurement may use radar, 
lidar, IR, or optics for sensing. Device 
may indicate when certain range limit is 
passed, or provide a string of 
measurement values. Particularly useful 
for controlling auto-zoom. 

 
Cameras / Lenses Interface Comments 

Zoom Serial (RS232) Zoom motor requires intelligent 
controller.  

Focus Serial (RS232) Focus motor requires intelligent 
controller.  

Aperture Serial (RS232) Aperture control motor requires 
intelligent controller.  

Pan-and-tilt Serial (RS232) Pan-and-tilt control motors require 
intelligent controller.  

Synchronisation 
trigger 

TTL Some types of camera can initiate their 
scanning cycle on command, rather than 
waiting for synchronising to the video 
“fly wheel”. 

Scan mode Parallel TTL serial 
(RS232) 

Camera controller may have serial or 
parallel interface. 

Filter wheel Serial (RS232) Controller has serial interface. 
 
Table 5.1 The tables list some of the devices that have been interfaced to 
vision systems. Notice that display and input devices needed to support the 
human-computer interface are not included here. The table is divided into 
several parts, indicating families of devices that have been interfaced, or 
proposed for connection, to industrial vision systems. 
Lighting Device Interface Comments 
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Stroboscope lamp 
unit 

Single TTL Used to “freeze” rapidly moving 
objects. Lamp must be synchronised to 
video camera and image capture. 

Lamps (ON / OFF) Mains power Solid-state switch suitable for switching 
lamps ON / OFF. 

Pattern projector Mains power Solid-state switch suitable for switching 
lamps ON / OFF. 

Laser  5 - 12V Used for generating light stripe for 
structured lighting. Simple electronic 
amplifier may be needed to drive laser 
from TTL. 

Multi-LED lighting Multiple TTL Used to provide light-weight 
illumination unit for mounting on robot 
arm. 

Lamps (variable) Serial (RS232) Serial line may be used to provide multi-
level control for an array of lamps. 

 
Mechanical 
Actuators 

Interface Comments 

Solenoid Single line, 24V, 240V, or 
415V 

Often used to operate mechanism for 
deflecting reject parts from conveyor 
belt. 

Pneumatic Single line, 24V, 240V, or 
415V 

Often used to operate mechanism for 
deflecting reject parts from conveyor 
belt. 

(X,Y,Z,θ) -table Serial (RS232) (X,Y,Z,θ)-table may be part of 
machining centre e.g. drilling, milling 
machine, lathe, water-jet, or laser cutter, 
etc. Table may be servo-controlled, or 
stepper motor. 

Multi-axis robot Serial (RS232) Robot may be pneumatic, hydraulic or 
electrical and may form part of a 
complex manufacturing cell, performing 
a range of functions, such as cutting, 
turning, welding, paint spraying, 
soldering, etc. 

 
General Purpose 

Devices 
Interface Comments 

Remote computer Parallel, Serial, SCSI Computer may provide interface to 
LAN, WAN, Ethernet or Internet. Data 
rate may be very high for transferring 
video images. 

Programmable logic 
controller (PLC)  

TTL, 24V PLC may synchronise several other 
machines, as well as the vision system. 

 
Table 5.1 (Cont’d) 

Miscellaneous 
Devices 

Interface Comments 
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Specialist image 
processing equipment 

Video, SCSI, Parallel High-speed processing of images in 
external hardware augments software-
based processing. 

Video recorder / 
player 

Parallel, TTL or serial 
RS232 

Vision system might operate player for 
frame-by frame processing of video 
signal, or for controlling time-lapse 
recording. 

Video monitor TTL, serial (RS232) Scan size, positive/negative image 
display, pseudo colour, superimposition 
of text can all be controlled. 

Alarm bell, buzzer TTL Warning for general alarm. 
Automatic test 
equipment 

Serial (RS232), or Parallel Vision system might adjust brightness / 
scan-size of picture when calibrating 
television  receiver. 

Printer (paper) Serial (RS232) Product statistics. 
Ink-jet / bar-code 
printer 

Serial (RS232) Used for printing product type, grade, 
dimensions, etc. directly on the product. 
Also used for marking defect regions of 
web materials, etc. 

Plant emergency stop TTL or 24V Stops all activity in the manufacturing 
plant if certain dangerous conditions 
have been detected. 

 
Table 5.1 (Cont’d) 

 
Other vision systems have been built which provide direct interfacing to a 

Programmable Logic Controller, or to one of the standard industry interfaces, 
such as IEEE 488, VME, SCSI and Ethernet. Interfacing standards are, of course, 
intended to make the task of the industrial design engineer easier. However, many 
standards interfacing protocols have been defined and much of the equipment 
which fits certain standard interfaces is expensive. It is inevitable that, whichever 
standard has been adopted, some important facility is not provided, in a 
convenient form. It is often cheaper to buy exactly those electro-mechanical 
devices that are needed for a given application and then interface them directly to 
the vision system. While this takes greater effort, researchers, university staff and 
others working in an environment where funds are severely limited may find this 
“do-it-yourself” solution preferable. The authors are in this category and, in their 
research, are attempting to develop “general solutions” to a range of inspection 
and other industrial vision applications. Faced with such a varied range of 
interfacing requirements, connecting vision systems to industrial sensors and 
effectors can be problematical. However, as we shall show, there is an alternative 
approach, which the authors have found to be effective. In Section 5.4 we 
describe a “general purpose” interface module which was designed to allow even 
the simplest computer-based vision system (i.e. one with only a single RS232 
port) to control a range of electro-mechanical, electrical, pneumatic, illumination 
and video devices. First however, we shall explain why the Programmable Logic 
Controller (PLC) does not fit our requirements exactly. 
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5.3 Programmable Logic Controller  
A Programmable Logic Controller (PLC) is a versatile digital electronics 

device, intended for industrial control; a PLC is typically used to co-ordinate the 
operations of a group of machines used in manufacturing. For example, a robot 
might be used to load metal blanks into a power press. At the end of the metal-
forming process are then transferred from the press to either an “accept” or 
“reject” bin, depending upon the decision reached by an automated visual 
inspection system. (Figure 5.2) Even a simple production work-cell like this is 
most likely to contain three machines made by different companies and have 
completely different operation cycles. A PLC is often used in a situation like this, 
to synchronise the three machines, so that they perform their various functions at 
the appropriate times. 

 

Key Events 
 
1. Press being loaded 
2. Pressing operation 
3. Punch and die separate 
4. Digitise an image 
5. Process the image 
6. Signal that part to be rejected or retained during unloading operation 
7. Press being unloaded (Part is placed in "good" or "reject" bin) 
8. Signal cycle to begin again 

6

54

Press

Vision System

Loading / unloading 
mechanism Time

3
21

8
1

3
21

8
1

7

7

7

7

 
 

Figure 5.2 Timing diagram for an hypothetical production cell, in which a 
robot is used to load raw material into a power press. Following the pressing 
operation, the finished parts are examined by a vision system. Defective 
products are transferred by the robot to a “reject” bin. On the other hand, 
“good” products are taken to the “accept” bin by the robot. Notice the need to 
synchronise the three machines, so that appropriate operations are performed 
at each stage in the processing cycle. Rather than interconnecting machines 
like these directly to each other, it is common practice to use a PLC to sense 
the status of each of the machines and to issue appropriate control signals to 
them. Thus, the interconnection diagram resembles a (3-pointed) star, with the 
PLC at the centre. 
 
In order to explain in semi-formal terms what a PLC is, we may, in the first 

instance, think of it as being a “black box”, which has a set of N binary inputs 
(X1, …, XN) and M binary outputs (Y1,…YM) (M ≠ N). Each of the Xi is 
derived from an ON/OFF sensor attached to one of the machines that the PLC is 
intended to control and synchronise. Typically, most, if not all, of the Yj outputs 
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operate a set of control actuators. The output Yj is calculated from the N inputs:  
Yj = Yj(X1, …, XN), j ∈[1,…, M] 

The output vector of the PLC varies with time; the output variables (Y1, …, 
YM) change at discrete time intervals. Suppose that the time is represented in the 
form of a P-bit Boolean vector (Z1, …,ZP). Then, each of the Yi (i = 1, …M) is a 
Boolean function of an (N+P)-bit vector, (X1, …, XN, Z1, …,ZP). While a PLC 
can be implemented easily using a random access memory of size M*(N+P) 
elements, programming it at a low level (i.e. in terms of 0/1 bits) would be very 
tedious and difficult. The task is made very much easier by the use of a computer, 
which allows the input and output signal lines to be assigned symbolic names (e.g. 
start, reset, doors_open, tool_broken, temperature_high etc.). Of course, the 
computer helps the programmer in many other ways (e.g. by providing facilities 
for cut-and-paste, storing programs, programming with subroutines, using FOR-
loops and IF-THEN program statements). 

However, PLCs are more complex than this; a modern device is likely to 
contain a set of timers. In addition, a PLC is often expected to:  

 
(a) accept analogue inputs (The analogue inputs are compared to pre-defined 
limits; if an analogue input is out of some pre-defined range, an internal 
variable, equivalent to one of the Xi inputs described above, is set to logic level 
1.)  
(b) accept input sequences of alphanumeric characters (RS232 signal line) 
(When a pre-defined sequence of characters is detected on the input, an internal 
variable, equivalent to one of the Xi inputs, is set to logic level 1.)  
(c) provide outputs in the form of character sequences. (The PLC contains a 
character-sequence generator which is able to form a string of alpha-numeric 
characters when a certain output variable, equivalent to one of the Yj, is set.) 
 
The PLC is of particular importance to designers of vision systems, because it is 

frequently used for co-ordinating and synchronising machines in a complex 
manufacturing plant. One (or more) of the machines connected to the PLC might 
well be a vision system. In the simplest case, there are just two 2-level signal 
paths between the vision system and the PLC. (See Figure 5.3) One of these 
transmits a signal from the PLC to trigger the vision system, prompting it to 
digitise an image and begin its processing cycle. The other sends a pass/fail signal 
from the vision system to the PLC, which in turn, operates the accept/reject 
mechanism. This last device may be located some way down-stream from the 
camera and must be triggered at the appropriate moment, at the instant when the 
object to be rejected is passing it. (Figure 5.4) In a typical factory application, the 
PLC may also be required to co-ordinate the actions of a large number of very 
varied machines (e.g. robot, metal cutting, moulding, assembly, spraying, coating, 
packing, printing, etc.), using data  derived from a large range of sensors, in 
addition to the vision system. This means that the PLC, not the vision system, may 
be responsible for deciding what to do, in the event of a defective item being 
found.  
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Video Monitor

Intelligent camera

Manufacturing plant

PLC

 
 

Figure 5.3 Connecting a Programmable Logic Controller (PLC) to a vision 
system such as the Intelligent Camera. Notice that the PLC lies at the heart of 
the control system. For this reason, it is difficult to add “intelligence” to such 
a system. 
 
This is in marked contrast to our approach in this book, where we assume that 

the computational processes needed to interpret observations from the sensors are 
integrated with the intelligent interpretation of images, within the vision system. 
The approach implicit in Figure 5.3 is limited in that it does not permit the 
operation of the vision system to be modified easily, by taking note of the state of 
the manufacturing plant. On the other hand, the approach that we advocate in this 
chapter allows various sensor signals to be interpreted within the same symbolic 
reasoning (Prolog+) program as we are use to analyse image data. While the 
primary task of this program, measured purely in terms of computing effort, is 
analysing image data from the camera(s), its other functions (e.g. analysing data 
from the input ports and operating the output effectors) are of equal importance 
for the harmonious operation of the manufacturing. The main advantage of this 
approach is that the full reasoning power of Prolog is available to interpret the 
signals representing the state of the external world. If necessary, the vision system 
can re-evaluate its decisions iteratively. If there is a conflict in the data arising 
from different sensors, this can be particularly valuable. Using a PLC does not 
permit any intelligent reasoning to take place. 
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Figure 5.4 Using a PLC to control an inspection system operating on a 
conveyor belt. Many of the signals entering and leaving the PLC are binary, 
including those on the lines connecting it to the lighting unit, the accept / 
reject mechanism, the safety switch, the machine located down-stream and 
the parts-present transducer. The signal from the belt-speed transducer 
produces a numeric output, while the signal sent to the upstream process 
machines is likely to be symbolic in nature (i.e. conveyed as a string of ASCII 
characters). 

5.4 General Purpose Interface Unit 
In this section, we describe a simple, low-cost interfacing device (Figure 5.5), 

which was developed as an aid for prototyping industrial machine vision systems. 
[BAT-94] The device, which we shall refer to as the MMB unit, provides facilities 
for controlling the following devices, via a single serial (RS232) port. 

 
(a) Ten mains-operated devices, such as lamps, relays, solenoids, or other ON / 
OFF devices. Each individual channel has a current rating of 2.5A (at 240V), 
while the total current rating for all ten lines is 10A. Ten flush-mounted 3-pin 
mains sockets are fitted to the rear of the MMB unit. 
(b) Four 3-port (i.e. simple ON / OFF) pneumatic valves. The connectors for 
these air lines are fitted to the MMB unit’s front panel, while the air input line is 
fitted at the rear. 
(c) Two 5-port pneumatic valves. Each of these is capable of operating a PUSH 
/ PULL cylinder. Again, the connectors for these air lines are fitted to the MMB 
unit’s front panel. 
(d) One 8-way video multiplexor. Nine BNC connectors (8 inputs and one 
output) are fitted to the front of the MMB module. 
(e) Six programmable-speed serial (RS232) communication ports. The 
connectors for these are 9-way D-type connectors, fitted to the MMB front 
panel. 
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(f) Six opto-isolated, 8-way, parallel I/O ports. (Again, the connectors for these 
are 9-way D-type connectors, fitted to the MMB front panel.) 
(g) A laser stripe generator (used for structured lighting). 
(h) A pattern projector. (This is a ruggedised slide projector and is able to 
project patterns from a standard 50mm slide.) 
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Figure 5.5 Internal hardware organisation of the MMB module. This is a 
conventional microprocessor system with a rich set of interfacing chips 
connected to its bus. Some of these, in turn, drive the video multiplexor, 
solid-state relays and pneumatic air valves. All of the parallel I/O lines are 
opto-isolated, for safety. Key: CPU, Central processing unit (Intel 80C86); 
RAM, Random Access Memory (64 Kbytes); ROM, Read Only Memory (128 
Kbytes); PIO, Parallel I/O (Intel 8251); UART, Universal Asynchronous 
Receiver Transmitter (Philips Octal UART SCC 2698B); OI, Opto-Isolator 
(Quad type, NEC 2502-4); SSR, Solid-state relay (RS 348431, rated at 2.5A) 
PV, Pneumatic valve, (Manufacturer, SMC; Model, 3-port valve:  VT307; 
Model for 5-port valve: V25120.) (Design by MW Daley.) 
 
 
In addition, the MMB module provides regulated power at +12V and +5V. 

These power supply lines are useful for driving cameras, lamps and various 
electronic devices connected to it. The MMB module’s control port is connected 
to a host computer, running Prolog+. Hence, all I/O traffic flows via a single 
RS232 line; the MMB module may be regarded as a data funnel, which allows the 
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control port  to collect / distribute data to a large number of other data pathways. 
Using the MMB unit, it is possible for Prolog+ or other programs, which contain 
only the most rudimentary I/O facilities, to operate a range of electro-mechanical 
devices. For example, a HyperCard program can switch lamps and pneumatic air 
lines ON / OFF, control the movements of an (X,Y,θ)-table and select different 
video cameras. The electro-mechanical devices just mentioned form part of the 
Flexible Inspection Cell (FIC), which is described in detail below. Let it suffice 
for the moment to say that the FIC contains a variety of illumination  devices, 
several cameras, an (X,Y,θ)-table and a pneumatic pick-and-place arm, all 
controlled from by Prolog+ program. Neither Hypercard nor MacProlog were 
originally intended to control external devices like these. 

The MMB interface module has also been used in a multi-camera vision system 
in which an image processing module (Intelligent Camera) controls both gantry-
type and SCARA1 robots. (See Section 5.7, Figure 5.11.) A Prolog+ system, 
interfaced to a gantry robot and a simple conveyor belt, has been programmed to 
play dominoes, against a human opponent. Given certain minor changes to the 
program, the FIC could also play dominoes. The FIC was used in the experiments 
on the automated packing of arbitrary shapes reported in Chapter 7. 

5.4.1 Motivation for the Design  

The cost of designing industrial vision systems remains high, despite recent 
advances in software and hardware. The motivation for the design of the MMB 
interface module, originated with our concern for easy interfacing between 
intelligent image processing software on the one hand and a variety of hardware 
modules on the other. As we have seen, the latter range from simple ON / OFF 
devices, such as lamps, pneumatic valves and solenoids, to sophisticated multi-
axis robotic manipulators. The MMB module was designed to act as the interface 
controller for Prolog+, which has only rudimentary I/O facilities. (In its present 
implementation, Prolog+ is only able to operate a single serial, RS232, port.) An 
important aspect of the design is that the MMB module should provide a unified 
high-level software interface for a variety of devices. Of course, operating speed 
is reduced by the data funneling, but in the context of research, training, education 
and prototype development, this is of little significance, compared to ease of use 
and flexibility. Realising this led to the simple design which we shall now 
describe in more detail. 

 

5.4.2 Hardware Organisation 

Figure 5.5 shows the internal organisation of the MMB hardware module. 
During the design, keeping the cost of the MMB at a minimum was regarded as 
being of prime importance. The objective was to achieve minimum cost, while 
                                                           

1 SCARA is the acronym for Selectively Compliant Articulated Robot Arm. 
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maintaining a high level of flexibility. At the heart of the MMB hardware is an 
Intel 8086 micro-processor, connected to a series of serial and parallel interfacing 
chips, including: one 8-channel UART; three 3-port PIO chips2 which is 
connected to one 8-way video multiplexor and sixteen ON / OFF solid-state relays 
capable of switching mains power. Six of the solid-state relays are dedicated to 
operating pneumatic control valves, while another ten are intended to switch 
mains operated devices, such as lamps, solenoids, relays, motors, etc. An 
important safety feature of the MMB unit is the fact that the parallel I/O lines are 
all optically isolated. Figures 5.6 and 5.7 show the layouts of the front and rear 
panels of the MMB unit. Notice that the pneumatic air lines use simple 6mm plug-
in connectors, which make the task of fitting and removing air pipes particularly 
easy. 
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Figure 5.6 Front panel layout of the MMB module. The diagram shows that 
there is adequate space for all of the connectors on the front panel. Indeed, the 
number of connectors could be doubled without undue crowding. 
 
 
 
 

                                                           
2 We have recently realised that these three chips could be replaced by a single 

device. This would simplify the board design and programing, whilst reducing the 
cost. 
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Switched mains out

Air in

Mains in  
 
Figure 5.7 Rear panel layout of the MMB module. Standard recessed 
instrument-panel mains sockets were used. Once again, it is clear that there is 
adequate space for more connectors if needed. 

5.4.3 Programs 

Programs for the MMB can be stored, either in battery-backed random access 
memory (RAM), or in read-only memory (ROM). Of course, the latter can be 
programmed using a conventional ROM-programmer, connected to a standard 
personal computer. Of particular note here is that it is possible to program the 
MMB module so that it can operate in a semi-autonomous manner, thereby 
eliminating the need to control certain useful but tedious tasks using Prolog+. For 
example, a program has been written which automatically initialises the Intelligent 
Camera, on start-up; by pressing the RESET button; or at the command of the host 
processor. Another MMB program initialises the (X,Y,θ)-table controller, while a 
third operates the FIC’s pneumatic pick-and-place arm. The MMB is currently 
programmed in 8086 assembly code. The cross-assembler runs on a personal 
computer but this is removed when the MMB unit is in use, controlling the FIC. 

5.4.4 Digression on Lighting 

Of course, lighting control is well advanced in the theatre, where complex 
lighting patterns and sequences are pre-programmed using sophisticated units, 
capable of switching many kilowatts of power. These are almost invariably ON / 
OFF devices. When we investigated theatre lighting devices, we did not find any 
that satisfied our seemingly more modest needs.  One of the principal objections 
to using theatre lighting was its high cost, which simply reflected the fact that 
these units have facilities which we do not need. More importantly, we did not 
discover a unit that provided good facilities for controlling the lighting from a 
remote device, such as a vision system.  

The MMB module provides only ON / OFF control of lighting. For finer control 
than this, a multi-lamp control unit has been designed. It is capable of operating 
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16 filament lamps, with each lamp having any one of 16 different brightness 
levels. The principle of operation is shown in Figure 5.8.  
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Figure 5.8 Lighting system, providing almost continuously variable control 
of the intensities of 16 filament lamps.(a) Block diagram. The pulse sequence 
generator determines when each of the thyristors fires during the mains power 
cycle; the timing of the output pulses fixes the instant of firing. (b) Thyristor 
firing pattern. (c) Each thyristor is switched on for only part of the mains 
power cycle. The longer it is switched on, the brighter the lamp connected to 
it will be. 
 
Each lamp is controlled via a thyristor switch, which is fired by a pulse that is 

carefully timed to arrive at a certain instant in the mains power cycle. By making 
this pulse arrive early in the cycle, the thyristor will be switched on for longer and 
the lamp will be brighter. It is a simple matter to arrange for an N-bit 
microprocessor to generate suitable pulses for an N thyristor-lamp combinations. 
By multiplexing the microprocessor outputs, an array of M*N lamps can be 
controlled, where M is a small integer. The value of M that can be used in practice 
is limited by the speed of the microprocessor, the cost of the hardware and the 
tolerable power dissipation. In the design that was executed in Cardiff, 16 lamps 
were controlled by an 8-bit microprocessor. (N = 8; M = 2) A more modern 16-bit 
microprocessor, together with other low-cost electronic hardware, could easily 
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generate the switching control signals for 64 lamps (M = 4), although the power 
dissipation might well limit this number. 

It is unlikely that many applications would require the use of as many as 64 
high-energy lamps (> 10W each). However, the development in recent years of 
super-bright LED’s has opened up a new possibility. Moderately priced multi-
LED lighting units are now available and are, of course, often seen on information 
display boards. Special purpose lighting units, based upon the same principles of 
operation, are now available commercially. These may contain several hundred 
LED’s, arranged in some convenient pattern, such as an annulus. (The camera 
lens can view through the central hole.) Since the power requirement for each 
LED is modest, they can be driven directly from standard, cheap electronic 
switching devices. The result is that it is easy to design control circuits for multi-
LED illumination heads, in which each LED can be individually controlled. While 
each LED is an ON / OFF device, an array may contain so many of them that the 
overall effect can be to produce nearly continuous brightness variations as more 
LED’s are switched on. One limitation of using LED’s is the limited number of 
colours available. (Red, yellow and green LED’s are currently sold.)  

Various companies have developed lighting control units which monitor the 
light output from a source and used this information in a feedback control system 
to maintain very nearly constant light levels. R. J. Ahlers designed such a system 
for providing in the primary light source for fibre optic illuminators. [RJA] A 
trivial extension of this idea allows the light level to be determined by an external 
signal, perhaps arising from a vision system. However, these units are not yet 
cheap enough to allow us use a large number in an FIC.  

An alternative to controlling the lighting is provided by a camera whose gain 
can be changed under the control of a signal from an RS232 input port. One such 
camera [Philips VC7105T] achieves this effect by altering the light integration 
time in its CCD image sensing chip. The dynamic range achievable by this 
technique is currently 1000:1. (This ignores the possibility of achieving an even 
greater dynamic range by using an auto-iris lens as well.) Now, it is obvious that, 
by altering the camera gain, the effect is the same as changing the brightness of all 
lamps simultaneously, by the same factor. It is important to notice that adjusting 
the camera gain does not permit the relative brightness of different parts of a 
scene to be modified. However, there is one very useful ploy: digitise several 
images, each obtained using a single lamp switched on, and then add them in the 
appropriate proportions, within an image processor. To do this properly, we need 
to have an accurately calibrated camera. Thus, by sacrificing time, we can achieve 
the same overall effect as would be obtained with many lights being switched on 
simultaneously. 

Finally, we must mention the ALIS lighting systems, made by Dolan Jenner, 
Inc. [ALIS] The ALIS 600 system consists of a light-proof cabinet containing a 
range of lighting devices, of different kinds and arranged at various points around 
the object mounting stage. The whole ALIS 600 system is capable of being 
controlled by computer and hence could, in theory, be operated automatically 
using an image processor. The object mounting stage can be moved using an 
(X,Y,θ)-table. The result is a lighting system that is very similar to the FIC, except 
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that ALIS is far more precise (and expensive!) than the authors “home-made” 
unit. The same company  also sells a set of interconnecting fibre optic and other 
mutually compatible lighting units. They are intended for manual rather than 
automatic adjustment and are collectively known as Micro-ALIS. They are 
intended for use when investigating lighting system design experimentally. 

5.4.5 Languages for Robotics 

A number of specialised languages [MCL, PAL, RAIL, RPL, VAL, CURL, 
AML, JARS] for controlling a robot have been developed, by extending standard 
computer languages, such as PASCAL, Concurrent PASCAL, FORTRAN, LISP, 
BASIC, PL/1 and APL. It is not difficult to envisage how languages such as these 
can be enhanced, by providing a subroutine library for robot control. Apart from  
the obvious functions of moving the robot to a defined pose, robot control 
languages frequently contains facilities for performing appropriate co-ordinate 
transformations. This is important, because it allows the user to control the 
movement of the robot using parameters expressed in terms of world co-ordinates 
(X,Y,Z), arm-joint angles, or a simple pixel address, derived from the vision 
system. The software must also provide facilities for initialising and calibrating 
the system. The reader is referred elsewhere for further details of specialised 
robot-control, languages. [FU-87] The important point to note here is that Prolog+ 
is in good company, having been extended in a similar way. The fundamental 
differences between the imperative languages on the one hand and the declarative 
languages, exemplified by Prolog, is preserved. 

The decision to use Prolog in intelligent machine vision systems was not a 
once-and-for-all choice, forever forsaking the more conventional languages, for 
the simple reason that it is possible to link code written in C and Pascal into 
MacProlog programs. [MAC] Hence any “awkward” functions could be 
programmed using either of these popular languages. So far, this has not been 
necessary. (There is only one notable exception to this: the implementation of 
Prolog+ in software, where C code is used to achieve high efficiency on image 
processing tasks. See Appendix D.) Many of the device control functions that 
might seem, at first, to suggest the use of Pascal or C routines embedded in Prolog 
can be performed instead using the MMB unit. For example, initialising the 
(X,Y,θ)-table controller was accomplished satisfactorily in this way. This is 
hardly surprising when we examine the nature of the task: a small amount of data 
(e.g. a command to a low level device controller) initiates a self-contained task. In 
effect, the assembly code software in the MMB module is able to perform the 
“awkward” operations, such as device control, which we might have assigned to a 
C or Pascal program running on the same computer as Prolog. 

5.5 Flexible Inspection Cell, Design Issues 
Figure 5.9 shows a sketch of the physical layout of the Flexible Inspection Cell. 

The main portion of the frame consists of a cube constructed using 12.5mm black 
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steel tubes, 1m long. The lamps are domestic “spot” lamps, rated at 60W. The 
light-stripe generator consists of a 3mW solid-state diode laser, fitted with a 
cylindrical lens beam expander. The pattern projector is a rugged 50mm slide 
projector and can be fitted with various transparencies, including intensity wedge 
or staircase, single or multiple stripes, “rainbow” patterns, or dot-matrix patterns. 
The (X,Y,θ)-table is driven by stepper motors and has a travel of about 
300*375mm, with a resolution of 2.5µm / step. A pneumatic pick-and-place arm, 
not shown here, allows objects to be repositioned on the table. The same arm can 
also load / unload the table. At the time of writing, the cameras are four remote- 
head units, connected to an Intelligent Camera. Notice that there are two overhead 
cameras, providing wide-field and narrow-field views of the top of the (X,Y,θ)-
table. The (X,Y,θ)-table is driven by three Shinkoh stepper motors, controlled by 
a drive unit supplied by Time and Precision Ltd.  The horizontal (IN/OUT) 
movement of the pneumatic pick-and-place arm used in the FIC is provided by a 
rod-less pneumatic cylinder (stroke 375 mm, manufacturer SMC, Model  
MY1M256-400). A standard pneumatic cylinder with a 60mm stroke provides the 
UP/DOWN movement. The gripper fitted at the time of writing is a simple 
vacuum device, with a circular suction cup, 12mm in diameter.  

5.5.1 Lighting Arrangement 

To reduce reflections, the FIC has a matt-black, rigid steel frame, holding the 
lighting units. The latter consists of the following devices: 

 
(a) Four 60 W filament lamps, around and just above the work-table, to provide 
glancing illumination.  
(b) Four 60 W filament lamps, around the table provide illumination at about 
45° to the vertical axis. 
(c) Two lamps directly above the table and very close to the overhead camera 
provide nearly coaxial illumination and viewing. (An alternative would be to 
use a ring illuminator, located around the lens of the overhead camera.) 
(d) Two 60 W filament lamps, connected in parallel, which cannot shine 
directly onto the table but provide high intensity illumination for a grey sheet of 
material. This enables the side camera3 to view an object on the table with 
either a bright or dark background.  
(e) A rugged slide-projector, which enables the side camera to obtain range 
information. The projector is normally fitted with a 50mm slide, which contains 
a series of broad parallel black-white stripes, although this can be changed 
manually. Among the other interesting possibilities is a slide consisting of a set 
of coloured stripes.  

                                                           
3 That is one whose optical axis is horizontal and views objects on the table 

from the side. 
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(f) A solid-state laser light-stripe generator, fitted immediately above the table. 
This is normally used in conjunction with the oblique camera to generate depth 
maps. The laser can be connected directly to one of the parallel I/O lines. 
(g) Infra-red and ultra-violet lamps can also be fitted to the FIC. 
 
 

76

3

4

1

2

9
11

Laser stripe generator

Projector

Oblique camera

Overhead camera (wide field)

Side camera

10

Overhead camera (narrow field)

95

(X,Y,θ)-table

Dark grey background , 
provides back 
illumination when lamps 
9 are on and dark 
background when lamps 
7 and 8 are on

Matt black tubular 
steel frame

8

 
 

Figure 5.9 Flexible Inspection Cell (FIC).  

5.5.2 Mechanical Handling 

The FIC contains a high-precision (X,Y,θ)-table, driven by standard stepper 
motors and which provides movement control as follows: 

 
(i) X-axis, travel 375 mm, step resolution ± 2.5µm. 
(ii) Y-axis, travel 300 mm,  step resolution ± 2.5µm. 
(iii) θ-axis (rotation), 360° movement, step resolution 0.1°. 
 
The interface card for the (X,Y,θ)-table controller (Digiplan IF5 card) has a 

standard serial (RS232) input port, and has a straightforward and well-defined 
command language. (Table 5.2)  The FIC has been fitted with a pneumatic pick-
and-place arm, arranged so that an object can be place on the table and then 
removed, or simply lifted up, while the table is shifted beneath it. This arm is 
connected to the MMB module, simply by plugging 6mm plastic piping into both 
units. The pick-and-place arm requires the use of the two 5-port switched air lines 
mentioned earlier (One of these operates the in-out movement and the other for 
the up-down movement of the end-effector.) One of the MMB unit’s ON/OFF air 
lines is used to operate a suction gripper. 

 
Command Function 



 179

< 10  Define start / stop speed to be 10 steps s-1 
^ 15  Define acceleration / deceleration rate to be 15  

steps s-2 
X 1000 @ 200 $  Shift 1000 steps in +X direction, at peak rate of 200  

steps s-1 ($ initiates the movement) 
Y-3000 $   Shift 3000 in -X direction 
Z 250 @ 50 $  Rotate by 250 steps at peak speed of 50 steps s-1 
X+ Y- $  Shift in +X and -Y directions previously-programmed  

distance 
X @ 500 G $  Travel continuously in +X direction at constant speed 
Z @ 1000 G $  Rotate continuously in +Z direction at constant angular  

speed 
#   Cancel previous instruction (continuous or indexed  

movement) 
B - 20  Store backlash distance of 20 steps (See next two  

commands) 
X 100 B $  Move in +X direction for 120 units then reverse for 20  

units 
X-100 B $ Move in -X direction. No backlash correction  

necessary when travelling in this direction 
 
Table 5.2 Control language for the Digiplan stepper motor controller. Only 
the most basic operations are described here. More advanced facilities, such 
as defining and storing move sequences, delaying movement until a trigger 
signal arrives on a parallel input port and generating output control signals are 
not included, since they are not required in the FIC. 

5.5.3 Cameras and Lenses 

To be effective, an FIC requires a minimum of three cameras: 
 
(a) Overhead camera, looking vertically downwards, used to view the top 
surface of object(s) on the table. 
(b) Side camera, providing a horizontal view. This camera is also able to 
generate depth maps, when used in conjunction with the pattern projector, fitted 
with a suitable slide. 
(c) Oblique camera, used in conjunction with the laser stripe generator. (In the 
FIC, this camera is used to acquire depth maps of the top surface of the object 
on the table.) 
 
However, there are good reasons for using more than three cameras in an FIC. 

The principal advantage of adding extra cameras is that it is possible to fit them 
with different lenses, in order to achieve different levels of magnification. In 
many applications, it is necessary to locate an object using a camera fitted with a 
wide-angle lens and then take more detailed observations using another camera 
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with a narrow-angle lens. A standard lens, fitted to the overhead camera in the 
FIC can view the whole of the table-top, when it is in its “home” position (i.e. at 
the centre of its range of travel). A second overhead camera, located very close to 
this one but fitted with a narrow-angle lens, may be used to obtain a higher 
magnification and thus to see small detail, which would not be clearly visible to 
the wide-field overhead camera. (Figure 5.10) Notice the offset caused by the fact 
that these cameras are not in the same place. This is an important point and it has a 
significant influence upon the calibration of the system. When a robot vision 
system is first set up, the relative positions of the cameras and mechanical 
handling sub-system are unknown and have to be found by taking measurements 
experimentally.  When there is more than (overhead) camera, this process has to 
be extended, in order to relate their fields of view together. 

5.5.4 MMB-Host Interface Protocol 

The interface between the host computer and the MMB module follows the 
protocol described below. (Also see Table 5.3) 

 
(i) All output from the host computer is sent directly to the currently selected 
serial port, with the exception that the control sequences defined in (iii) are 
trapped by the MMB module and are not transmitted onwards. Notice that the 
serial ports connecting the MMB to satellite devices may operate at a different 
speed from the control port, connecting the MMB to the host processor. 
(ii) All signals received on the currently selected serial port are sent to the host 
computer. Signals received by the MMB module on its other serial ports are 
simply ignored. 
(iii) Control sequences are of the form: ¶ a b {c}, where a is an integer in the 
range [1,8]; b is an integer and c is an optional integer. (See Table 5.3.) All 
characters between “¶” and carriage return are ignored when sending data to the 
serial ports.  
 
A range of special functions (¶ 8 … commands) are available for operating the 

FIC. These special functions are not essential but make the task of writing 
software for the host processor easier. For example, ‘¶ 8 …’  commands have 
been written for initialising the Intelligent Camera, initialising the (X,Y,θ)-table 
and operating the pick-and-place arm from software resident in the MMB module. 

 



 181

5

5

(c)

5

5

Offset due to cameras being 
in different places

Wide-field 
camera's view

Wide-field camera 
(standard / wide-angle lens)

Narrow-field camera 
(telephoto lens)

(X,Y,θ)-table
P

Q

Effective zoom factor = P/Q

(a)

Narrow-field 
camera's view

View from wide-field 
camera

View from 
narrow-field camera 

(b)

 
 
Figure 5.10 Two cameras with different lenses can provide different 
magnifications. (a) Optical arrangement. (b) The wide-field camera views the 
whole object to be examined, in low magnification. From this image, the 
appropriate table-movement parameters are calculated.  (c) After the table and 
the object on it have been shifted, the narrow-field camera can examine a 
selected part of the object in high magnification. 

5.5.5 Additional Remarks 

It must be emphasised that the MMB module was designed to fulfil a range of 
functions; it was not designed specifically to control the present FIC. The module 
has also been used to operate two commercial multi-axis robots: one a SCARA-
type robot, and the other a gantry robot. (Both robots are made by Cybernetic 
Applications Ltd. and are intended for educational use.) The latter has been used 
recently in a student exercise, building a machine that is able to play dominoes 
against a human opponent. Other tasks that the MMB module has performed 
include starting / stopping a conveyor belt and controlling a pneumatic “blower” 
for diverting defective items from a conveyor belt inspection system. The MMB 
module can also be used for such tasks as operating relays, solenoids, warning 
lamps, bells and sensing the arrival of components as they pass the camera during 
inspection.  
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 Argument 
 

 

Function First Second Third Example 
 

Prolog signals to MMB that it  
wants to receive data 

0 Data port required 
(Integer, 1-6) 

None ¶ 0 3 

Divert output to a different 
serial port 

1 Port no. 
(1-7) 

Baud rate 
(e.g. 9600) 

¶ 1 4 9600 
 

Switch video multiplexor 2 Port no. (1-8) None ¶ 2 3 
Switch mains power lines 
on / off 

3 Lamp state vector 
(Hex integer,  
0 - FF) 

None ¶ 3 B4 
 

Switch pneumatic air line 
on / off  

4 Pneumatics state 
vector (Hex  
integer, 0 - F) 

None ¶ 4 9 
 

Superbright LED’s 
(reserved for future) 

5 Lamp state vector 
(Hex integer,  
0 - FF) 

None ¶ 5 7 
 

Send data to parallel port 6 Port no. Hex integer ¶ 6 4 137 
Receive data from 
parallel  port 

7 Port no. None ¶ 7 5 
 

Initialise all ports 8 0 None ¶ 8 0 
Initialise Intelligent Camera 8 1 None ¶ 8 1 
Initialise (X,Y,θ)-table 8 2 None ¶ 8 2 
Switch laser stripe generator 
on / off 

8 3 0 / 1 ¶ 8 3 0 
 

Switch pattern projector 
on/ off 

8 4 0 / 1 ¶ 8 4 1 
 

 
Table 5.3 MMB control signals. 

 
Many software packages have limited I/O capabilities. This statement includes 

both MacProlog and HyperCard, which is discussed in a little while. The MMB 
unit provides a means of interfacing these and similar software packages to a 
range of external devices, which would not otherwise be possible. In situations in 
which operating speed is of less importance than ease of use and versatility, the 
present design provides a low cost solution to a wide range of interfacing 
problems. Although it is conceptually naive, the absence of such a unit, in the 
past, has hindered our research work in machine vision. The component cost of 
the present unit is about £1000 (US$1500). Much of this cost lies in the case, 
connectors, solid-state relays and pneumatic valves. The central electronics unit 
costs under £100 (US$150). Hence, a lower cost unit could easily be made, with a 
subsequent reduction in its functionality. 

5.5.6 HyperCard Control Software for the FIC 
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In Chapter 4, we described how the FIC can be controlled using a HyperCard 
program (“stack”). HyperCard provides an excellent range of set of tools for 
constructing easy-to-use and highly effective human-computer interfaces. The 
HyperCard controller has been developed in such a way that it simplifies the task 
of setting up the (X,Y,θ)-table, lighting, etc. in the FIC, without hindering access 
to all of the features of Prolog+. The HyperCard controller co-exists and co-
operates with Prolog+. For example, the user can specify Prolog+ goals in 
Hypercard; results are returned to HyperCard for viewing by the user. Moreover, 
the user can switch quickly from one program to the other, with a minimum of 
effort. 

As we have seen in Chapter 4, Hypercard can control the FIC in two possible 
ways: by direct control of the I/O port, and via Prolog+. The first of these makes 
use of Hypertext’s (i.e. HyperCard’s programming language) ability to address the 
Macintosh computer’s serial (RS232) ports. The second option uses so-called 
AppleEvents. An AppleEvent is a message that is passed from one Macintosh 
application (e.g. HyperCard) to another (e.g. Prolog). The message may be a 
request for the receiver application to operate in some particular way. For 
example, Hypercard may send MacProlog an AppleEvent which specifies a goal 
(e.g. goal(A,B,C)) that is to be satisfied. If goal(A,B,C) does succeed, the variables 
A, B and C will be instantiated (say A = 1, B = 2, C = 3). The message goal(1,2,3) 
is then despatched by MacProlog, back to HyperCard, which can then perform 
further calculations on the returned values (1,2,3). AppleEvents provide a very 
useful medium for inter-application communication on the Macintosh computer. 
Similar facilities exist, of course, on other computers. The authors have written 
programs to control the FIC using both direct control of the I/O ports by 
Hypercard and by using AppleEvents to specify Prolog+ goals, which in turn 
operate the FIC. 

5.6 Prolog+ Predicates for Device Control 
Standard Prolog contains relatively unsophisticated facilities for controlling 

external devices, compared to those found in many other languages. The inventors 
and early pioneers working with Prolog apparently never envisaged it being used 
to operate devices such as lamps, lasers, (X,Y,θ)-tables, robots, electro-plating 
baths, milling machines, injection moulders, etc. Of necessity, the original 
language did contain facilities for operating a printer and the “output” predicates 
listed in this section follow the lead this provides. 

Consider the Prolog built-in predicate write(X). This always succeeds but is 
never resatisfied on backtracking. Strictly speaking, write(X) is a test, not a 
command; as a side effect of trying to prove that write(X) is true, the printer 
operates and types whatever value X currently has. [CLO-87]. In the same way, 
the predicate lamp(A,B), which forms part of the extension of Prolog+, always 
succeeds but is not resatisfied on backtracking. As a side effect, lamp number A is 
switched to the state indicated by B. (B may be on, off, half-on, or some integer, 
indicating the desired brightness level.) Other predicates controlling the “output” 
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operate in the same way. To see how this is achieved in practice, here is the 
Prolog code for lamp(A,B), which controls a (two-level) lamp: 

 
lamp(A,B) :- 
 lamp_state_vector(C),  
   % Consult database for lamp state vector, C. 
 list_element_set(A,B,C,D),  
   % Set A-th element of list C to value B. D is  
   % the new lighting state vector. 
 retract(lamp_state_vector(C)), 
   % Forget the previous lighting state vector 
 assert(lamp_state_vector(D)),  
   % Remember the new lighting state vector 
 writeseqnl(modem, ['¶3 ',D]),  
   % Command to MMB. See Table 5.3. 
 !.  % Prevent resatisfaction on backtracking 

 
Now, let us consider the “input” predicates. Standard Prolog is provided with 

the built-in predicates read and get and, at first sight, it seems that it would be a 
simple matter to use these to obtain information about the outside world, via the 
MMB module. However, there is an important point to note: Prolog relies upon 
programmed I/O. Hence, all requests for data to be transferred from the MMB 
module must be initiated by Prolog. Here is a suitable data-transfer protocol 
needed for input, expressed in Prolog: 

 
get_data(A,B) :- 
 ticks(C), % Integer P indicates time. Units: 1/60th sec. 
 D is C + 60, % Q is latest time allowed for MMB response 
 writeseqnl(modem, ['¶0 ',A),  
   % ‘¶0’ is test sequence used by Prolog to  
   % sense whether MMB module is ready to receive  
   % data. A indicates what data is requested.  
 mmb_response(D), % Succeeds only if MMB is ready to send data 
 read(modem,B). % Get data from MMB unit. 
 
get_data(_,_) :-  
 beep,  % Audible warning 
 writenl('The MMB Module was not available to send data'),  
 fail.  % Forced fail 
 
% Clause 1 fails, if the time limit has been passed. 
mmb_response(A) :- 
 ticks(C), % C is the time now 
 C > A,  % Is C greater than given time limit, A? 
 !, fail. % Force failure 
 
% Clause 2 succeeds, if the character ‘$’ has been detected 
mmb_response(A) :- 
 serstatus(modem,in,B),  
   % B = number of characters in input buffer 
 B ≥ 1,  % There are some characters to be analysed 
 get(modem,C), % So, let’s see one 
 C = ‘$’, % Is the character ‘$’? 
 !.  % Yes, so the goal succeeds 
 
% Time limit has not been reached & character ‘$’ has not been seen  
% yet - Try again 
mmb_response(A) :-  
 !, % Improve efficiency of recursion 



 185

 mmb_response(A).  
  % Repeat until ‘$’ found or time limit is reached 

 
Following these general principles, a wide range of I/O predicates have been 

defined for controlling the FIC via Prolog+. 

5.7 System Calibration 
Whenever a vision system is intended for use with a multi-axis manipulator (i.e. 

(X,Y,θ)-table, or multi-axis robot), it is vitally important that their co-ordinate 
systems be related to one another, before the system is used. The procedure for 
doing this will be referred to as calibration. To appreciate the importance of this 
calibration for robot vision systems in general, consider the FIC, which, of course, 
has an (X,Y,θ)-table and pick-and-place arm. The FIC is one example of a 2 D 
robot and is functionally equivalent to a SCARA arm. (Figure 5.11(a).) Both of 
these devices are able to move parts around on a flat table and can conveniently 
be guided by a vision system, with a single overhead camera. When the FIC is 
first set up, the position of the camera relative to the (X,Y,θ)-table is unknown. In 
addition, the camera may be skewed relative to the (X,Y,θ)-table, so that their co-
ordinate axes are not parallel. Furthermore, the camera’s magnification is not 
known exactly. Finally, in the case of the FIC, the relative positions of the pick-
and-place arm and the camera are not known exactly. It is obvious that a series of 
parameters must be calculated, so that a point determined in terms of the vision 
system’s co-ordinates can be related to co-ordinates describing the position of the 
(X,Y,θ)-table. An experimental procedure for calibrating the FIC forms the 
subject of discussion in this section. 

There are two possible methods for calibrating the overhead camera of the 
Flexible Inspection Cell. 

 
(a) “Once-and-for-all” calibration, using careful measurement and dead 
reckoning.  
(b) Automatic self-calibration, using some convenient marker to measure the 
movements of the table. 
 
By the former, we mean to imply that the calibration is done only once. It is 

then assumed that the camera, its lens and the table (or robot) base are not moved 
at all. This is a particularly dangerous assumption in any environment, such as a 
factory, where unauthorised tampering is ubiquitous. Even in a research 
laboratory, the dangers of mischievous fingers must be taken into account when 
designing experiments. It is far safer to re-calibrate the machine vision system 
every time that it is used. In a factory, it is good practice to perform the calibration 
procedure at least once during every shift. While it may be possible to bolt the 
camera and table rigidly to the same frame-work, it is often necessary to adjust the 
lens, particularly during cleaning. (Of course, changing the camera zoom, focus 
and aperture controls can all be accomplished accidentally during cleaning.) 
Frequent re-calibration is needed, even in the best controlled environments. 
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Manual calibration is tedious, slow, imprecise and prone to gross errors. On the 
other hand, automatic self-calibration is fast, precise and reliable, provided that 
sensible checks are built into the procedure. In the remainder of this section, we 
shall therefore concentrate upon the self-calibration procedure, restricting our 
discussion to the FIC. A very similar process can be devised for a SCARA robot, 
used in conjunction with an overhead camera. The reader will not be surprised to 
discover that a 3D robot, such as the gantry type (Figure 5.11(b)), requires a more 
complicated procedure. However, this is a straightforward extension of the ideas 
discuss here: we calibrate the system using the overhead and side cameras 
separately. Finally, we relate the pictures for the two cameras together, using 
some suitable target object, which both cameras can see, at the same time. 

5.7.1 FIC Calibration Procedure (Overhead Camera) 

The process consists of a number of distinct steps: 
 
(a) The geometry of the work-space is shown in Figure 5.12. First, it is 
necessary to set up the wide-angle overhead camera manually, so that it is 
focused on the top of the (X,Y,θ)-table and can view the whole of the desired 
field of view. In order to make the best possible use of the available image 
resolution and to avoid over-complicating the image processing, it is suggested 
that the camera should not be able to see much detail outside the disc forming 
the top of the (X,Y,θ)-table. 
(b) Next, a small high-contrast circular marker is placed near the centre of the 
table. This can be done either by hand, or preferably by the pick-and-place arm. 
Suppose that the table is dark, nominally matt black. Then, the marker should be 
nominally white and it should not glint unduly. The lighting should be arranged 
to come from above the table and be diffuse (multi-directional). This will avoid 
casting sharp shadows. The overhead camera is then used to view the table top. 
A straightforward Prolog+ program is then used to analyse the image of the 
marker and find the co-ordinates of its centroid. Let these co-ordinates be 
denoted by (X11,Y11). Notice that these parameters relate to vision system co-
ordinates. 
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Figure 5.11 Two types of multi-joint robot (a) SCARA robot (DP Batchelor). 
(b) Gantry robot. 
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Figure 5.12 Geometry of the work space for calibrating the overhead camera 
in the FIC 
 
(c) The (X,Y,θ)-table is then rotated by 180°. The centroid of the marker is 
recalculated. Suppose that the new co-ordinate values are (X12,Y12). Again, 
these numbers relate to vision system co-ordinates. The centre of the table is 
now at (X1, Y1), where 
 
 (X1, Y1) = (( X11 + X12)/2, ( Y11 + Y12)/2)                     …(5.1) 
 
(d) The table is then moved by a distance Xt along its X axis. (Notice that this 
movement may not be parallel to the x-axis of the vision system.) 
(e) Steps (b) and (c) are repeated. This process yields the new position for the 
centre of the table at (X2,Y2). (In fact, it is not necessary to rotate the table by 
180°. We could, for example, derive all of the relevant parameters using just 
four points (i.e. (X11,Y11), (X12,Y12), (X21,Y21) and (X31,Y31)). However, 
it is conceptually simpler to explain the procedure, in terms of movements of 
the centre of the table.) 
(f) The table is then returned to the original position, as at the end of step (a). 
(g) A procedure akin to steps (b) - (f) is then performed, except that the table is 
now moved an amount Yt along its Y axis and the centre of the table is 
discovered to be at (X3,Y3). 
(h) The axis-transformation equations are therefore 
 

X U
X X

Xt
V

X X
Yt
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
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
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+. .
2 1 3 1

1                                   …(5.2) 
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Y U
Y Y
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Y Y
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



+
−





+. .
2 1 3 1

1                                           …(5.3) 

 
where the position of the centre of the table, according to the table’s co-ordinate 
system, is (U,V), and its position according to the vision system is (X,Y). The 
origin of the table’s co-ordinate system is the centre of the table in step (b). This 
is the point (X1,Y1), in the vision system’s co-ordinate space.  It is 
normally more useful to have the equations rearranged so that the robot co-
ordinates, (U,V), can be calculated from the vision system co-ordinates, (X,Y). 
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Of course, if the table and vision system co-ordinate axes are parallel, these 
equations can be simplified to 
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X X
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V Yt
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1

3 1
                                                  …(5.7) 

 
The general axis-transformation equations are of the form 
 
U = A.X’ + B.Y’               …(5.8) 
V = C.X’ + D.Y’           …(5.9) 
 

where 
 
X’ = X - X1         …(5.10) 
Y’ = Y - Y1         …(5.11) 
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Hence, A, B, C and D can be calculated once, before we begin using the FIC in 

earnest. Thereafter, we simply apply Equations 5.8 - 5.11. Notice that the origin 
(i.e. the (0,0) position) for the (X,Y,θ)-table’s co-ordinate axes is given by the 
position of the centre of the table at the beginning of the calibration procedure. 

5.7.2 Calibration, SCARA and Gantry Robots  
        (Overhead Camera) 

The procedure just described can be modified slightly to calibrate a SCARA or 
gantry robot, used in conjunction with an overhead camera. The changes needed 
for this are fairly obvious and, for this reason, will be described in outline only. 

 
(a) Pick up a white object, called the marker, in the robot’s gripper.  
(b) Use the robot to place the object on a flat, matt black table. The robot 
releases the marker when it is at its “home” position. 
(c) Use the overhead camera to view the marker. (The robot arm is, of course, 
moved out of the sight of the camera.) Digitise an image and locate the centroid 
of the marker. (Co-ordinates: (X11,Y11) 
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(d) Pick up the marker. Rotate the gripper by 180° and then replace the marker 
on the table. 
(e) Repeat step 3. (Marker co-ordinates: (X12,Y12) 
(f) Compute the centre point, between (X11,Y11) and (X12,Y12) using 
Equation 5.1. 
(g). Pick up the marker. Move the robot to position (Xt, 0) relative to its home 
position. Repeat steps (c) to (f). (Marker co-ordinates: (X2,Y2).) 
(h) Pick up the marker. Move the robot to position (0,Yt) relative to its home 
position. Repeat steps (3) to (6). (Marker co-ordinates: (X3,Y3).) 
(i) Use the equations given in the previous section to translate the position 
(X,Y), given in terms of vision system co-ordinates, into co-ordinates defining 
the robot’s position. 
 
This procedure is needed because an overhead camera cannot see an object 

while it is being held in the robot gripper.  

5.7.3 Calibration Procedure (Overhead Narrow-view Camera) 

The calibration procedures just described are suitable for use with either wide-
angle or narrow-angle lenses. However, there is an additional requirement: 
relating the wide and narrow-field cameras to each other. To simplify the analysis, 
let us assume that both cameras 

 
(a)  see a circular white marker, resting on a black table;  
(b)  are aligned so that their co-ordinates axes are parallel;  
(c)  generate digital images with a resolution of Xmax*Ymax pixels; 
(d)  generate digital images which have a 1:1 aspect ratio when a square is  
       being viewed. 

 
Furthermore, we shall assume that the narrow field-of-view is entirely contained 

within the wide one. Suppose that by using the narrow-field camera, we discover 
that the marker is at (Xn,Yn) and has a diameter of Dn, while the equivalent 
figures for the wide-field camera are (Xw,Yw) and Dw. Then, the optical-
magnification ratio of the two cameras is  equal to  R, where 

 
R = Dw/ Dn.                       …(5.16) 
 
The axis-translation equation is given by 
 
(X', Y') = ( (X - Xw)/R + Xn), (Y - Yw)/R + Yn) )                   …(5.17) 
 

where (X',Y') is the position of a point, given in terms of the narrow-field camera, 
and (X,Y) is its position related to the wide-field camera. (Figure 5.13) It is useful 
to locate the centre of the field of view of the narrow-field camera in terms of the 
wide-field camera co-ordinates.  
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This can be achieved by solving the equation  
 
(Xmax/2, Ymax/2) = ( (Xc - Xw)/R + Xn), (Yc - Yw)/R + Yn) )          …(5.18) 
 

for Xc and Yc. The resulting equation is  
 
(Xc, Yc) = ( R.(Xmax/2 - Xn) + Xw), R.(Ymax/2 - Yn) + Yw)    …(5.19) 
 
Suppose that we identify something of interest, using the wide-field camera, and 

then move it, using the (X,Y,θ)-table, so that we can take a more detailed look 
with the narrow-field camera. The procedure for doing this is straightforward. 
(Figures 5.10 and 5.13) Suppose that the wide-field camera has found the object at 
point (Xp,Yp). We simply calculate the table movement by substituting ( (Xp - 
Xc), (Yp - Yc) ) for (X,Y) into Equations 5.4 and 5.5. 
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Figure 5.13 Relating the two overhead cameras together. (a) Wide-field 
camera’s view (light shaded area). The narrow-field camera’s field of view is 
also shown (dark shaded area.) Notice that the white marker disc is visible to 
both cameras. By moving the table by an amount given by the thick black 
arrow, the disc will be (approximately) centred on the narrow-field camera’s 
optical axis. (b) Geometry of the narrow-field camera’s view of the marker. 

 

5.7.4 Calibration Procedure (Side Camera) 
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In one respect, the calibration procedure is simpler for the side camera, since 
objects resting on top of the (X,Y,θ)-table, or held in the gripper of a gantry or 
SCARA robot  are visible. However, there are complications, due to the fact that 
the object can move along the optical axis (Y axis, Figure 5.14) of the side 
camera. This can lead to mis-focussing of the side camera, as well as causing the 
apparent size of the object to vary. These problems can be avoided altogether, if 
we use the overhead camera and (X,Y,θ)-table or robot to fix the object position 
along the Y-axis, before images from the side camera are ever digitised and 
processed. In the arrangement shown in Figure 5.14, the overhead camera locates 
the object in the (X,Y) plane. The table / robot  is then moved, so that the feature 
of particular interest is placed at a known Y-position. The side camera sees object 
features projected onto the (X,Z) plane.  

 
 

Wide-field 
overhead camera

Side camera
Z

X

Y

A B

 
 
Figure 5.14 The side camera has an unknown magnification, if the position of 
the object along the Y-axis is not known. Thus, the object appears to get 
bigger, if it moves from A to B. The overhead camera can provide some help 
in determining the Y-position. However, this is not always possible, because 
suitable “landmark” features might not be visible from both cameras. The 
possible effects of mis-focusing are ignored here. 
 
When the target has been placed in fixed Y-position, it is a trivial matter to 

calibrate the robot vision system. Note, however, that it is advisable to use a 
clearly recognisable target, since the view from the side camera may be far from 
simple. (The gripper of a robot may have brightly polished metal surfaces. The 
side-frame of the (X,Y,θ)-table, slide-way, carriage and θ stepper-motor may all 
be visible, below the table top and are likely to glint to some extent.) There are 
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two obvious ways to simplify the image, by employing a target which generates 
an image with a very high contrast. (a) Use a calibration target with a small 
retroreflective patch stuck to it and arrange for lighting to (appear to) come from 
the side camera. (A small lamp, or LED, placed very close to the side camera will 
suffice.) (b) Use a target which has a bright beacon (fibre optic or LED “point” 
source”) mounted on it. 

The calibration procedure consists of simply moving the (X,Y,θ)-table along the 
X axis only and noting the movement, as observed by the side camera. When a 
robot that is capable of moving in the vertical (Z) direction is being calibrated, the 
target must be moved along both the X and Z axes. The equations relating the 
table / robot movement to the shifts in the image seen by the side camera are 
simple to derive. 

5.8 Picking up a Randomly Placed Object  
      (Overhead Camera) 

The general manipulation task that we shall discuss in this section is that of 
picking up a thin, laminate object, placed on the table in unknown orientation and 
position. For simplicity in our discussion, the table will be assumed to be very 
dark and the object very bright, so that image segmentation can be performed 
easily, perhaps by thresholding, or some other simple process. 

Consider Figure 5.15. The radius of the table is A units. The centre of the table 
can move anywhere within a square of side 2.A units. The camera apparently 
needs to be able to view a square of side 4.A units. This arrangement guarantees 
that the camera can see an object placed on the table, wherever the latter is 
located. It is assumed, of course, that the object lies wholly within the perimeter of 
the circular top of the turn-table. Suppose, however, that the turn-table is always 
moved to the centre of its range of travel, whenever an object upon it is to be 
viewed. Then, the camera need only view a square of side length 2.A units. Of 
course, this enables the camera to sense smaller features than the arrangement 
suggested in Figure 5.15(a). Notice too that the corners of the image can safely be 
ignored. This is important because we have no control over the appearance of the 
corners of the image, which show the slide-way and drive motors of the (X,Y,θ)-
table mechanism. The slide-way might well have brightly polished metallic 
surfaces, which would cause problems due to glinting. The corners of the image 
should therefore be removed by masking, either optically, or by software. 
(Alternatively, a larger black disc, whose radius is at least √2.A units, could be 
fitted to the turn-table mechanism.) Of course, a well-designed program for 
controlling the FIC, should always be aware of the position of the (X,Y,θ)-table. 
In this case, it is not difficult to move the table to the centre of its range of travel, 
every time the object upon it is to be viewed. Notice, however, that this does 
increase the time spent moving the table, since two movements rather than one are 
now needed. Thus, we can make better use of the camera’s finite resolution but at 
the cost of reducing the speed of the system, using a camera with the smaller field 
of view. 
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Figure 5.15 Picking up a randomly placed object, using the overhead camera 
to guide the (X,Y,θ)-table. (a) Viewing an object anywhere on the table, 
which can be located anywhere within its defined limits of travel. (b) Viewing 
an object when the table is always located at the centre of its range of travel. 
The magnification can be increased by a factor of two. 
 
In order to normalise the position and orientation of an object positioned in an 

arbitrary way on the table, we may use the following procedure. (See Figure 5.16) 
 
1. Use the vision system to determine the position and orientation of the object.  
2. Calculate the robot position parameters using the formulae listed in Section 
5.7. 
3. Move the table to the position and orientation found in step 1. 
4. Rotate the table by –θ°. 
5. Optional: Use the vision system to verify that the object position and 
orientation have been correctly normalised. If not, return to step 1. 
 
The co-ordinates of the centroid are, of course, useful for locating the object. 

Let the centroid co-ordinates, as estimated by the vision system, be denoted by 
(X0,Y0). The orientation of the object, relative to some appropriate reference axis, 
will be represented by θ. The value of θ might be found by calculating the 
orientation of the axis of minimum second moment, or of the line joining the 
centroid of the object silhouette to the centroid of the largest “bay”, or “lake”.  
Figure 5.17(a) illustrates the most obvious way to determine the position of the 
object. This involves computing the co-ordinates of its centroid. Alternatively, the 
centre of that line which joins the centroids of the two holes could be used to 
determine the position. Of course, this method will not work if there do not exist 
at least two clearly distinguishable holes. The orientation can be found in a 
number of ways, of which four are illustrated in Figure 5.17(a). The axis of 
minimum second moment is one possibility. A second is provided by finding the 
orientation of the line joining the centroid to the furthest edge point. The line 
joining the centroid of the silhouette to the centroid of the largest hole provides 
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the basis for the third method. The fourth method is similar to the third, except 
that the hole that is furthest from the centroid of the silhouette is used. 
Alternatively, several other techniques, based upon joints and limb ends of the 
skeleton of the silhouette, can be used. It is also possible to derive position. Figure 
5.17(b) illustrates how the skeleton of a rigid blob-like object can provide a 
number of key features by which the position and orientation may be determined. 
For example the centre point of the line joining the skeleton limb-ends B and C, or 
the skeleton joint F would be suitable places to locate a gripper. The orientation of 
the object may be determined from the line BC. A good place to grip a flexible 
object might be to hold it near its limb ends. In this case, a “four-handed” lift, 
with the grippers placed close to limb-ends A, B, C and D would be appropriate. 
Since the use of four grippers might be difficult in practice, a “four-handed” lift 
might use gripping points placed close to A and D. 

 

Random position 
& orientation Orientation normalised Position normalised

Camera's field of view is same 
as the limit of table movement. 

Square 2.A*2.A

Corners can be ignored by 
masking, either optically or 

in software

Turn-table, radius A
(a)

(b) (c) (d)  
 
Figure 5.16 Procedure for picking up a randomly placed object, using the 
overhead camera to guide the (X,Y,θ)-table. (a) The wide-field camera’s field 
of view is a square of side length 2.A. The radius of the circular top of the turn-
table is A and the travel is 2A*2A. (b) Object is in random position and 
orientation. (c) First step: Digitise an image and then determine the orientation 
of the object. Second step: rotate the table to normalise the orientation. (d) Third 
step: Digitise another image and determine the position. Fourth step: Shift the 
table to normalise the position. 
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Figure 5.17 Some suggestions for calculating position and orientation 
parameters for a laminate object viewed in silhouette. 

5.8.1 Program 

The Prolog+ program listed below is able to normalise the position and 
orientation of the biggest white object among several others, distributed at random 
on top of the (X,Y,θ)-table, which is assumed to be black. 

 
locate_and_pick :- 
 home,  % Go to the table’s home position  
 grb,  % Digitise an image from the camera 
 enc,  % Linear stretch of intensity scale  
 thr,  % Threshold at mid grey 
 biggest, % Isolate the biggest blob 
 lmi(_,_,Z), % Find orientation 
 Z1 is -Z*100, % Rescale angle measurement 
 writeseqnl(['Rotate table by',Z1,'degrees']),      
   % Tell user what is happening 
 table(0,0,Z1), % Normalise the orientation. Rotate the table 
 where_is_table, 
   % Tell the user where the table is now 
 grb,  % Digitise an image from the camera 
 enc,  % Linear stretch of intensity scale to range  
   % [black, white]  
 thr,  % Threshold at mid grey 
 biggest, % Isolate the biggest blob 
 cgr(X,Y), % Find centroid co-ordinates 
 convert_table_axes(X,Y,Xt,Yt),   
   % Convert to table coordinates (Xt, Yt) 
 table(Xt,Yt,Z1),  
   % Shift the table to normalise position.   
 grb,  % Digitise another image 
 vpl(128,1,128,256,255), % Draw vert. line through centroid 
 vpl(1,128,256,128,255), % Draw horiz. line through centroid 
 pick.  % Operate pick-and-place arm to pick up object 

 
The operation of locate_and_pick is illustrated in Image 5.1. The reader may 

like to consider how this program can be modified to pick up all the objects on the 
table. 
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5.9 Grippers 
We conclude this chapter with a brief discussion of grippers and how they relate 

to the selection of a suitable grasping point. We shall briefly consider three types 
of gripper: Suction, Magnetic and Multi-finger. 

When discussing Suction and Magnetic grippers, we shall limit our attention to 
objects having flat top surfaces, while for Multi-finger grippers we shall assume 
that the object has sufficiently rough vertical sides to ensure that a friction-based 
gripper can hold the object securely. 

5.9.1 Suction Gripper 

The suction gripper is assumed to be a circular rubber cup. Suppose that its 
diameter is D and that it is being used to pick up smooth flat-topped laminate 
objects. An obvious place to position the gripper is at the centroid of the object 
silhouette. (Figure 5.18) If the gripper is small enough, its whole gripping surface 
will lie within the perimeter of the object. However, if the edge of the gripper 
overlaps that of the object, the grasp will not be secure, since air will leak into the 
suction cup. If the object has any holes, these must also be taken into account. It 
may, of course, be possible to use a small sucker but this does reduce the loads 
that can be lifted. Here is a very simple program to determine whether gripping at 
the centroid is safe. It is assumed that a binary image, representing the object 
silhouette, has already been computed and is stored in the current image. 

 
safe_grasp :-  
 cgr(U,V),  % Centroid is at (U,V) 
 cwp(N),    % How many white pixels in silhouette 
 wri,     % Save image for use later 
 zer,     % Generate black image 
 gripper_size(X),  % Consult database for size of gripper 
 draw_disc(U,V, X, white),      
      % Draw white “guard” disc, at (U,V), radius X 
 rea,     % Recover image of silhouette 
 max,     % OR disc and silhouette images 
 cwp(M),     % Count white points. Compare to earlier value 
 M is N.     % Test for equality of pixel counts 
 

safe_grasp  fails if the disc representing the gripper is not entirely covered by the 
object silhouette. 

5.9.2 Magnetic Gripper 

A magnetic gripper is more tolerant of overlap than the suction type, just 
discussed. Hence, it is possible to draw a “guard disc” that is smaller than the 
gripper itself; provided that the guard disc is entirely covered by the object 
silhouette, the grasp will be secure. (Figure 5.19) Hence, we can use safe_grasp 
again, except that gripper_size yields the radius of the guard disc, not that of the 
gripper itself. Another approach simply counts the number of pixels which lie 
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within the gripper “footprint” but do not lie within the object silhouette. The 
following program is a simple modification of safe_grasp: 

 
safe_grasp1 :-  
 cgr(U,V), % Centroid is at (U,V) 
 wri,  % Save image for use later 
 zer,  % Generate black image 
 gripper_size(X),  
   % Consult database for gripper size  
 draw_disc(U,V, X, white),  % Draw white “guard” disc 
 rea,  % Recover image of silhouette 
 sub,  % OR disc and silhouette images 
 thr(0,100), % Isolate pixels in disc  
 cwp(N),  % Count white pixels 
 M ≤ 100. % We can safely allow 100 pixels overlap  
 

Note that in Image 5.2(d) the circular suction gripper could not grasp this object 
securely, due to air leakage in the small regions enclosed within this circle but not 
within the silhouette. A magnetic gripper placed here and of the same size might 
well be able to do so. 
 

Air leakage
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Laminate object

"Footprint" of suction gripper

 
 
Figure 5.18 Using a suction gripper to hold a flat-topped object. The dark 
circle represents the suction gripper, which is so large that it overlaps the 
outer edge of the object and one of its holes. Since air will leak, via the 
overlap region, this does not provide a safe lifting point. 

5.9.3 Multi-Finger Gripper 

A multi-finger gripper lifts a laminate object by grasping its sides, not its top 
surface as both magnetic and suction grippers do. This means that when the 
gripper is lowered onto the table, the tips of the fingers are actually lower than the 
top of the object that it is about to lift. This presents the potential danger of the 
gripper colliding with the object to be lifted or another object placed nearby. 
However, this can be avoided in a simple and obvious way, by drawing the 
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shadow of the gripper finger tips (or “footprint”) onto the image of the table top. 
In Image 5.2, the fingers are assumed to have rectangular tips. If these footprint 
rectangles do not overlap any white object in the image of the table top, it is safe 
to lower the gripper. Whether or not the grip will be secure depends upon friction, 
the gripping force and the extent of any deformation of either gripper or object to 
be lifted. (Such features cannot, of course, be understood by a vision system.) The 
same technique can be used if the fingers are circular, or there are more than two 
of them. (Also see Section 7.3.4.) 
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Figure 5.19 Using a magnetic gripper to hold a flat-topped object. The 
circular stippled area represents the gripper “footprint”. Unlike the suction 
gripper, the magnetic gripper can tolerate a certain amount of overlap, without 
weakening the grasp unduly. Provided the dark stippled area is entirely 
covered, the grasp will be strong. However, the overlap can cause other 
problems: any object falling within the area labelled “Non-critical overlap” 
will be grasped and may be lifted or just moved a little as the gripper is raised. 

5.9.4 Further Remarks 

When discussing the magnetic gripper, we permitted the gripper to overlap the 
edge of the object silhouette. This is potentially dangerous but the solution is 
exactly the same as for the multi-finger gripper: superimpose the gripper 
“footprint” onto the image and test whether by so doing the gripper will overlap 
any other objects. There are several further factors to be considered. The first is 
the nature of the object itself. Clearly, if the object is not ferromagnetic, a 
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magnetic gripper will not be able to lift it safely. On the other hand, if the object 
has a very rough, pitted, fibrous or “stepped” top surface, a suction gripper will 
not be able to provide a secure grasp. 

If the centroid does not lie within the object silhouette then putting a magnetic 
or suction gripper there is pointless. For this reason, locate_and_pick would have 
to be modified to pick up horseshoes. It does not take much thought to realise that 
there can be no single “all purpose” solution to the task of picking up previously 
unseen objects. The use of Prolog+ allows the best of a finite set of gripping-point 
calculation methods to be sought and used for a given application. No doubt, the 
reader can suggest ways in which the various methods for calculating gripping 
points can be evaluated for their effectiveness. However, it should be understood 
that there is a limited amount that can be done with any vision system. Sooner or 
later, slip sensors, strain gauges and other mechanical sensors, will be needed as 
well, to ensure a firm but not destructive grip. 

Clearly, the success of all vision-based methods for robot guidance depends 
upon the validity of the implicit assumption that the mass distribution of the object 
is nearly uniform. If it is not, there may be a high torque about the gripper when it 
is located at the object centroid. The result may be an insecure grip.  

A multi-finger gripper suffers from these and other problems. One of the most 
important of these is that rigid, non-compliant fingers may not hold a rigid object 
securely. Compliant or rubber-tipped fingers can provide a more secure grasp. 
Calculating whether or not such a grip will be safe enough for practical use is very 
difficult, in the general case. However, in certain restricted cases it would be 
possible to define appropriate tests using Prolog+ programs. For example, the 
grass-fire transform, applied to the silhouette of the object, would provide some 
information about how far a compliant gripper would distort during lifting. This 
would in turn enable the friction forces to be estimated approximately. 

5.10 Summary 
In this chapter, we have discussed the use of Prolog in the unfamiliar role of 

controlling external devices, such as lamps, pneumatic devices, video cameras and 
an (X,Y,θ)-table. This task has been made easier by the use of a specialised 
hardware device, the MMB module. This is a versatile, low cost interfacing unit 
which provides facilities for operating a range of electrical, electro-mechanical, 
illumination and pneumatic devices. The physical layout, control and application 
of a Flexible Inspection Cell (FIC) have been described. The calibration procedure 
for the FIC and its use in a simple robotic task have been explained.  

In the brief space available in this chapter, we have not been able to discuss in 
detail other important matters, such as the calibration of other types of robot (e.g. 
gantry, SCARA, multi-joint articulated arm, serpentine) used in conjunction with 
a visual guidance system. Nor have we been able explain in detail how to set up 
and align the FIC with its several cameras.  

No practical machine vision system ever operates in complete isolation from the 
outside world. At the very least, the vision system must operate a warning bell or 
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lamp. However, a more common requirement is for an inspection system which 
operates some simple accept / reject mechanism, such as a solenoid, air-blast, or 
pick-and-place arm. In another frequently encountered situation, the vision system 
is required to guide some robotic manipulator, such as a multi-axis articulated 
arm, or (X,Y,θ)-table. The latter may form part of a manufacturing device, such as 
a drilling-, milling-, or parts-assembly machine. An increasing number of 
applications are being found where the vision system generates data for a complex 
decision-making system which controls the whole manufacturing plant. 
Management information systems with vision system sensors providing inputs are 
also being installed. The point of this discussion is that every industrial vision 
system must be interfaced to some other machine(s) in the factory. While the latter 
may operate in some non-electrical medium (e.g. optical, mechanical, pneumatic, 
hydraulic, thermal, nuclear, acoustic, x-ray, microwave), they all require electrical 
control signals from the vision system. The interfacing requirements for industrial 
vision systems are very varied and, in this chapter, we have discussed some of 
these. 

Of great importance for designers of machine vision systems is the ability to 
construct prototypes quickly and easily. The Flexible Inspection Cell and general 
purpose interface unit (MMB module) were developed specifically for this 
purpose, as was the HyperCard control software for the FIC. These, or facilities 
like them, are needed for a variety of reasons: 

 
(a) To develop and prove new concepts. 
(b) To act as a platform for the demonstration of new ideas to potential 
customers. 
(c) To act as a vehicle for education and training. 
(d) To provide an immediate “off-the-shelf” solution for a certain restricted 
class of vision applications, where the requirements for processing speed, 
precision of manipulation and image resolution are within defined limits. 
(e) To gain familiarity with new system components (e.g. new lighting units, 
cameras, image processing sub-systems, etc.) in a realistic but controlled 
environment. 
 

 
 



 

 
 

6       
 
Colour Image Recognition 

 
 
 
 
 

6.1 Introduction 
Colour vision is undoubtedly of very great value to an organism; the multitude 

of colours in nature provides ample evidence of this. Brightly coloured flowers 
signal the availability of food to bees. A great number of trees and bushes attract 
birds by displaying bright red fruit, so that the seeds will be carried off to some 
distant location. Butterflies indicate their identity by vivid wing markings. Wasps 
and many snakes warn of their venomous sting / bite with brightly coloured 
bodies. On the other hand, chameleons hide their presence by changing colour, 
while some animals (e.g. certain monkeys) signal sexual readiness, by changing 
the colour of parts of the body. Colour vision is so fundamental to animals and to 
us in our every day lives that we tend to take it for granted. We indicate both 
personality and mood with the clothes that we wear. Many different types of 
entertainment are enhanced by the use of colour. We attempt to make our food 
attractive by the careful balancing and selective use of colour. We reserve special 
coloured signals to warn of danger on the roads, or at sea. Colour is used very 
extensively to attract customer attention in shop, magazine, television and 
hoarding advertisements. Not only is colour vision of great value to human 
beings, it is a source of pleasure and a great many of our artefacts reflect this fact. 
Numerous industrial products are brightly coloured, simply to be attractive and 
eye-catching. The ability that we have to see colour makes our knowledge of the 
world much richer and more enjoyable than it would be if we had simple 
monochrome vision. The range of manufactured products reflects this fact.  It is 
natural, therefore, that we should now perceive a need to examine the colour of 
industrial objects. To date, machine vision has been applied most frequently to 
monochromatic objects, or those in which colour differences are also visible as 
changes in intensity, when they are viewed using a monochrome camera. 

Despite the obvious importance of colour in manufactured goods, machine 
vision systems that can process coloured images have been used only infrequently 
in the past. Colour image processing has received very little attention, as far as 
inspection systems are concerned. Three major reasons have been put forward for 
this. 
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(a) Many industrial artefacts are monochromatic, or nearly so. For example, 
uncoated metal surfaces are usually grey. Plastic mouldings, though often 
coloured, are usually monochromatic. Painting converts a multi-coloured 
surface into one that is monochromatic. There is a large class of applications in 
which variations of hue have no importance whatsoever, since they do not, in 
any way, reflect the fitness of a component to perform its function. 
(b) Some colour inspection problems are inherently very difficult, requiring 
very precise measurement of subtle colour differences. Commercial colour 
image sensors (i.e. cathode ray tube and CCD cameras) are simply too 
imprecise to allow really accurate measurements to be made. Applications that 
demand very precise colour discrimination are to be found in the automobile, 
printing, clothing and food industries. 
(c) Colour image processing equipment is necessarily more complex and more 
expensive than the equivalent monochrome devices. Colour cameras are more 
complicated, lighting has to be better controlled, and a colour image requires 
three times the storage capacity, compared to a monochrome image of the same 
spatial resolution. 
 
The main point to note here is that many people have been discouraged in the 

past from investigating colour image processing systems for industrial inspection. 
We hope to demonstrate that these arguments are no longer valid. The four main 
lessons of this chapter are as follows: 

 
(i) Colour recognition can be very useful and for this reason, should be 
considered for use in a far greater number of industrial applications than 
hitherto. 
(ii) The cost of using colour image processing need not be prohibitively high.   
(iii) There are numerous inspection applications that could benefit from the use 
of “coarse” colour discrimination. Subtlety of colour discrimination is not 
always needed. In business terms, there is a good living to be made from 
designing coarse colour discrimination devices 
(iv) Novel signal processing techniques have recently been devised that make 
the recognition of colours simpler and easier to use than hitherto. 

6.2 Applications of Coarse Colour     
      Discrimination 

In this section, we shall simply list a number of industrial inspection tasks that 
could benefit from the use of rather coarse colour discrimination. Consider first 
the task of verifying that there is a crayon of each desired colour in a cellophane 
pack. Subtlety of colour discrimination is clearly not needed and might well prove 
to be a disadvantage, because it would highlight colour variations that are of no 
interest to us. This is typical of the other tasks that we shall list below.  

A manufacturer of confectionery wishes to verify that each carton contains no 
more than a certain number of sweets (candies) wrapped in red paper / foil. 
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Clearly, it is important to monitor the number of expensive sweets and to maintain 
a good balance of colours (i.e. varieties of sweets). A manufacturer of electrical 
components wishes to inspect “bubble packs” containing coloured connectors. 
(These are frequently red, blue and yellow / green.) A common method of 
packaging that is used for small items like these uses a brightly printed card. A 
transparent “bubble” forms a case for the components, which can frequently move 
about quite freely. A large number of stationery goods, household and do-it-
yourself items are sold in this type of packaging.  

Sensitive paints and adhesive labels are used to indicate whether pharmaceutical 
/ medical products have been opened or exposed to excessively high temperatures. 
Tamper-proof seals on certain food containers change colour when they are 
opened. A certain manufacturer of domestic goods has a requirement for a system 
that can count objects showing the company logo, which is a multi-coloured disc, 
against a high-contrast black, grey or white background.   

Product cartons are often colour coded. For example, products with blue labels 
might be sold by a certain company in Europe, while red-labelled ones, with a 
slightly different specification, are exported to USA. Identifying the colour of the 
labels is of great importance to the pharmaceutical industry, where companies 
supply goods conforming to legally enforceable standards. In many other 
industries, it is important, for economic reasons, to identify and count cartons with 
“Special offer” overprinted labels.  

A visit to a supermarket, or do-it-yourself store, reveals a host of potential  
applications for a colour inspection system. Verifying that containers of corrosive 
chemicals have their tops properly fitted is clearly of importance, in avoiding 
damage to clothing and personal injury. One plastic container that is sold in the 
UK and Ireland holds domestic cleaning fluid and is bright blue with a red top. 
Verifying that such a container has a complete and well fitting top is to the 
advantage of the manufacturer, retailer and customer. The identification of labels 
on bottles, jars, cans and plastic containers is another task that would be made 
easier with colour discrimination. Locating self-adhesive labels, in order to make 
sure that they are located on the side of a container is another task that is made 
easier through the use of colour image processing.  

 Inspecting food products is of very great interest to a large number of 
companies. For example, a company that makes pizzas is interested in monitoring 
the distribution and quantity of tomato, capsicum peppers, olives, mushrooms and 
cheese on the bread base. A certain popular cake is called a Bakewell tart. It 
consists of a small pastry cup, filled with almond paste, is covered in white icing 
(frosting) and has a cherry placed at its centre. Verifying that each tart has a 
cherry at, or near, its centre is a typical food inspection application for a colour 
recognition system. One of the authors (BGB) has been collaborating for several 
years with a company that makes large quantities of cake in the form of 
“unending” strips, with a view to inspecting the decoration patterns [CHA-95]. 
Colour machine vision systems have been applied to situations such as the 
harvesting of fruit and vegetables [LEV-88] and their subsequent grading for sale, 
or processing. Certain foods are often accepted / rejected merely on the grounds 
of their colour. The preference for foods of certain colours has important 
consequences to the food processing industry. It is of interest that some countries 
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have different preferences for the colour of food. For example, British people like 
green apples, Americans like red ones and Italians prefer deep red. Even the 
colours of food packaging have to be carefully considered. For example, blue on 
white is a very popular packaging for dairy produce, because the colours suggest 
the coolness and hygiene of the dairy. The degree to which a product is cooked is 
often indicated by its colour. The food baking and roasting processes have to be 
precisely controlled, to ensure that the products emerge with the right colour. A 
colour sensitive vision system has been developed to monitor how well beef 
steaks have been cooked [KEL-86]. Another colour sensitive system has been 
devised which monitors the fat-to-lean ratio of raw meat. [HOL-92] Some 
applications exist where the lack of colour in a product needs to be checked. For 
example, the presence of minute flecks of bran (red-brown) in white flour can 
have a detrimental effect upon its baking properties. 

6.3 Why is a Banana Yellow? 
"In the absence of an observer, there is no such thing as colour."      [CHA-80] 

 
Let us begin by considering the physics involved in the question. The visible 

part of the electro-magnetic spectrum comprises wavelengths between 0.4 and 0.7 
µm. (Figure 6.1) A light signal containing components with a non-uniform 
mixture of wavelengths will appear to be coloured to a human observer. If the 
energy spectrum is constant for all wavelengths in this range, the observer will 
perceive white light. The non-uniform spectrum of light reaching the eye of a 
human observer from a banana is perceived as being yellow. A similar but slightly 
different spectrum of light emanates from a canary, or lemon. The seemingly 
trivial question at the head of this section has a deeper meaning than we might at 
first think. Many people, when faced with such a question, begin, to think about 
Newton’s demonstration of the multiple-wave composition of white light and the 
fact that bananas reflect light within a certain range of wavelengths, while 
absorbing others. Curiously, most people, even non-scientists, attempt to answer 
this question with reference to the physics of light absorption. However, light rays 
are not actually coloured. So-called “yellow light”, reflected from a banana, 
simply appears to us to be coloured yellow, because the human brain is stimulated 
in a certain way that is different for the way that it is when the eye receives 
“orange light”.  

In fact, a banana is yellow because a lot of people collectively decided to call it 
yellow. As children, we are taught by our parents to associate the sensation of 
looking at lemons, bananas and canaries (and many other yellow things) with the 
word “yellow”. We do not know anything at that age about the physics of 
differential light absorption. Nor do we need to so as adults, to communicate the 
concept of yellow to a person who is learning English for the first time, or to 
children. A ripe banana “is yellow” because a lot of other people persistently call 
it yellow and we have simply learned to do the same. There is no other reason 
than that. In particular, the physics of light has got nothing whatsoever to do with 
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the naming of a colour. Of course, physics can explain very well how our eyes 
receive the particular mixture of wavelengths that we have learned to associate 
with a certain name. 
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Figure 6.1 The visible part of the electro-magnetic spectrum. 
 
From recent research, it appears that our eyes have three different colour 

sensors, although this was disputed by some researchers until quite recently. 
Trichromacity is the idea that any observed colour can be created by mixing three 
different “primary colours”  (whether we are mixing paint or coloured light) and 
was commonplace by the mid-18th century, having been mentioned by an 
anonymous author in 1708. Colour printing, with three colour plates, was 
introduced by J. C. LeBlon, early in the 18th century, who apparently understood 
the additive and subtractive methods of mixing colours. By measuring the colour 
absorption of the human retina at a microscopic scale, it has been possible to 
determine that there are three different types of pigment in the colour sensing 
nerve cells in the retina (called cone cells), with absorption peaks at 0.43 µm, 0.53 
µm and 0.56 µm. It is tempting to identify these peaks in the absorption curves 
with the Blue, Green and Red sensors, respectively. J. Mollon [MOL-90] explains 
that “the use of these mnemonic names has been one of the most pernicious 
obstacles to the proper understanding of colour vision”. He also argues that there 
are two quite distinct colour-recognition mechanisms. However, in the context of 
a discourse on machine colour recognition, such nice points, about the psychology 
and physiology of visual perception, need not concern us unduly. 

Trichromacity is a limitation of our own colour vision and arises, we believe,  
because there are three different types of colour sensor in the retina. However, it is 
trichromacity that has facilitated colour printing, colour photography, colour 
cinema film and colour television. Briefly stated, the central idea of trichromacity 
is that physically different light sources will look the same to us, provided that 
they stimulate the three receptor cells in the same ratios. (Figure 6.2) Thus, a 
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continuous spectrum, derived by passing white light through coloured glass, can 
produce the same sensation as a set of three monochromatic light sources, 
provided that the intensities are chosen appropriately.  

There are also some physiological and psychological disturbances to human 
colour perception that a well designed vision system would avoid. Some of these 
disturbances are outlined below, while others are listed in Table 6.1. 
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Figure 6.2 Spectral sensitivity curves of the cones in the human eye. 
 
 
 
Disease / Chemical Change in colour perception 

Alcoholism Blue defect 
Brain tumour, trauma Red-green or blue-yellow defects 
Malnutrition All colours 
Multiple sclerosis Red-yellow defects 
Caffeine Enhances red sensitivity & reduces blue sensitivity 
Tobacco Red-green defect 
 
Table 6.1 Changes in the human perception of colours resulting from various 
diseases and chemical substances. 
 
Dichroism occurs when two colours are present as peaks in the spectral energy 

distribution curve. One or the other peak dominates, according to the viewing 
conditions. The proximity of vividly painted objects nearby can affect the 
perception of the colour of the paler surface. Metamerism is the term used to 
describe the situation when two surfaces are viewed in the same illumination and 
produce different reflectance spectra but create the impression of being the same 
colour to a human observer. (See Figure 6.3) Chromatic adaptation occurs when 
the brain makes allowances for changes in illumination and subsequently changes 
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in the colour perceived. Dark adaptation effectively switches off the human 
colour sensors and occurs because different retinal sensors (rods) are used from 
those used in day-light (cones). Nocturnal scenes appear to be monochrome, 
because the rods are insensitive to colour variations. It must be remembered that 
the dark-adapted eye is effectively colour blind, although bright points of light 
still appear to be coloured. 
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Figure 6.3 Metamerism. Curves A and B represent the spectra from two 
different surfaces but which appear to be the same colour to a human 
observer. 
 
Human colour vision clearly varies from person to person, and can vary 

considerably at different times in a given person’s life. A significant proportion 
(about 7%) of the population is colour blind, with men being more prone to this 
disability than women. Colour blindness is not always recognised by the sufferer, 
although it can be detected relatively easily, by simple tests.   

A machine vision system would not be subject to such variations in its ability to 
perceive colours. However, we do require that a human being be available 
initially, to define the colours that the machine will subsequently recognise. It is 
important, therefore, that we realise that numerous external factors can alter the 
human perception of colour. Since the “definition” is so subjective, any two 
people are likely to disagree when naming intermediate colours, lying between the 
colour primaries.  With this thought in mind, we begin to appreciate how 
important it is for a colour recognition system is able to learn from a human 
teacher. This is just the approach that we shall take in the latter part of this 
chapter. 

A theory relating to the perception and reproduction of colour, in photography, 
cinema, television and printing, has been developed over many years and 
seemingly forms an integral part of the education for all people who work in these 
areas at a technical level. However, we shall not discuss this theory in detail, since 
to do so would merely introduce a major digression from our main theme. The 
“classical” theory of colour is largely superfluous to our rather specific needs, 
since we are not concerned at all with the fidelity of colour reproduction; we need 
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only a small amount of theory, to put into context the conceptual and practical 
aspects of a relatively new but very powerful technique for colour recognition.  

We are leading the reader towards a technique for recognising colour, that is 
both conceptually straightforward and conforms to the pragmatic, declarative 
approach to programming implicit in Prolog+. 

6.4 Machines for Colour Discrimination 
Apart from the general advantages that a machine vision system has over a 

human inspector, there are certain factors specific to colour inspection that render 
a machine more attractive. In any manufacturing industry, there is constant 
pressure to achieve ever higher production rates and mistakes are inevitably made 
when people work under pressure. This is particularly true, if a colour judgement 
has to be made. If people are asked to discriminate between similar colours, such 
as red and red-orange, they frequently make mistakes. On the other hand, a simple 
opto-electronic system should be able to make more consistent decisions even 
when working at high speed. We shall therefore introduce the topic of optical 
filters before moving on to discuss colour cameras. 

6.4.1 Optical Filters 

Colour discrimination has been widely applied in machine vision systems for a 
number of years, using optical filters. These devices can make a major difference 
to the image contrast derived from a dichromatic scene (i.e. contains just two 
colours, apart from neutral). High performance optical filters are probably still the 
best and most cost-effective method of improving contrast in scenes of this type 
and, for this reason, they will be discussed first. Then, we shall be in a better 
position to understand how information about colour can be obtained from a 
camera. 

Figure 6.4(a) shows the spectral transmission characteristics of members of a 
typical family of optical filters. These are called band-pass filters, since they 
transmit wavelengths between certain limits, while all other wave-lengths, within 
the visible wave band, are heavily attenuated. Other band-filters are available that 
have much narrower and much broader pass bands. (Figure 6.4(b) and 6.4(c).) 
Long-pass and short-pass filters are also sold. (Figure 6.4(d) and 6.4(e).)  So 
called interference filters have a multi-layer sandwich construction and have very 
sharp cut-off characteristics. Unfortunately, they are sensitive to moisture and 
heat, both of which cause them to delaminate, so great care must be taken to 
protect them, particularly in a hostile factory environment. A curious phenomenon 
occurs, if an interference filter is held up to a source of white light. As the filter is 
tilted, relative to the line of sight, it appears to change colour. This characteristic 
can be used to good effect, to fine-tune optical colour filtering systems. 
Interference filters provide excellent colour discrimination capability at a low 
cost. However, they provide fixed colour discrimination and cannot be 
reprogrammed, as we would like. Multi-colour discrimination using interference 
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filters is cumbersome, requiring a carefully calibrated optical bench. In effect, a 
colour camera provides such a facility. (Figures 6.5 and 6.6.) 
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Figure 6.4 Transmission (T) versus wavelength (λ), for various sets of optical 
filters. (a) Middle-spread band-pass filters, (b) Narrow band-pass filters, (c) 
Broad-pass band filters, (d) Long-pass filter, (e) Short-pass filter. 

6.4.2 Colour Cameras 

The traditional cathode-ray tube (vidicon family) colour camera has the 
construction illustrated in Figure 6.5. The optical filters used in a colour camera 
typically have characteristics similar to those shown in Figure 6.2. Compensation 
must be made for the non-constant gain of the light sensing tubes, across the 
visible-light spectrum. In many 3-tube colour cameras, the output consists of three 
parallel lines, called R, G and B, each of which carries a standard monochrome 
video signal. Another standard, called composite video, exists in which the colour 
and intensity information is coded by modulating a high-frequency carrier signal. 
A composite video signal can readily be converted to RGB-format and vice versa. 
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The details of the various video standards need not concern us here and can be 
found elsewhere. [HUT-71]  

A solid-state colour camera can be constructed in a similar way to the CRT 
colour camera illustrated in Figure 6.5, by replacing the CRT sensors with CCD 
image sensors. Alternatively we can make good use of the precise geometry of the 
photo-sensor array; by placing minute patches of optical dye in front of the sensor 
to produce a cheaper colour CCD camera. (Figure 6.6) Some specialised cameras 
exist for use in machine vision systems applications (e.g. cameras with high 
spatial resolution, very high sensitivity, extended spectral response, etc.). 
Although they can produce some very impressive results in certain situations, 
none of these specialised cameras need concern us here, since we assume that a 
perfectly conventional colour camera is used by our vision system. 
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Figure 6.5 Construction of a 3-tube colour camera. 
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Figure 6.6 Colour mask structure for a single chip solid-state colour camera. 
Each shaded rectangle represents a photodetector with a coloured mask 
placed in front of it. R - passes red, G - passes green, B - passes blue. 

6.4.3 Light Sources for Colour Vision 

Images derived from a well lit object are almost invariably much more easily 
processed than those obtained from a scene illuminated using highly variable 
ambient light. Hence, it is important to obtain the optimum illumination, 
appropriate to the given vision task. There is no point in our taking great care to 
design a sophisticated image processor, if we do not exercise the same diligence 
when planning the illumination-optical sub-system. A small amount of effort 
when choosing the lighting might well make the image processing system much 
simpler (see Appendix A). We can express this point in the following rule: 

 
Never compensate for a sloppy approach to the design of the optical / 
illumination sub-system, by increasing the sophistication of the image 
processing. 
 
This maxim is of particular importance when applying colour image processing 

to industrial inspection, because the stability and purity of the lighting can make 
an even greater difference than it does for a monochrome system. The design of 
the illumination sub-system is always of critical importance. Here are some 
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additional rules that we should always bear in mind, when choosing a light source 
for a colour inspection system.  

 
(a) The brightness of the light source should be sufficient for a clear image to be 
obtained. It should be borne in mind that a colour camera is likely to be  
considerably less sensitive than a monochrome camera. 
(b) The light source should not generate excessive amounts of infra-red 
radiation, since this may damage the object being viewed and / or the camera. 
High levels of infra-red radiation can also spoil the image contrast, particularly 
when we are using solid-state cameras. These are particularly sensitive to near 
infra-red radiation. (Wavelengths in the range 0.7 - 1.0 µm.) If in doubt, place 
an IR-blocking filter, between the object being viewed and the camera. Such a 
filter is inexpensive and highly effective. 
(c) The light output from the lamp should not contain large amounts of ultra-
violet radiation, since this can also reduce the image contrast. If in doubt, use a 
UV-blocking filter. 
(d) Keep all optical surfaces clean. This includes the reflectors around the light 
source and the optical windows used on ruggedised enclosures, used to protect 
the camera and light source. 
(e) Use a light source that is stable. The intensity of the light output from a lamp 
usually varies considerably during its life-time. Worse than this, the colour of 
many types of lamp changes, as it ages and as the power supply voltage varies. 
For this reason, it is essential that we use a regulated power supply, with closed-
loop, feed-back control, sensing the light falling on a test target. The latter may 
be a standard surface (e.g. white paper) that is put in place once in a while (e.g. 
once every shift), to recalibrate the optical system. The vision system design 
engineer should always ask the manufacturer for data on lamp ageing. This 
should be available for any high-quality light source.  
(f) Devise some means of calibrating the colour measuring system. Use the 
colour image processing system, if possible, to calibrate itself and its light 
source, by viewing some standard target, which must, of course be stable. 
(g) Do not assume that a lamp that looks as though it is white actually is; our 
eyes have a remarkable ability to compensate for changes in the colour of the 
lighting, so human estimates of lamp colour are very unreliable. Remember, that 
during chromatic adaptation, the brain unconsciously compensates for minor 
changes in the colour of the illumination.  
 
It is obvious that certain light sources yield unnatural colours when illuminating 

certain surfaces. This can occur, for example, if the spectrum of the source is 
discontinuous, or if the spectrum of the lamp is very different from that of a black-
body radiator. Since ultra-violet radiation causes certain materials to fluoresce, 
this can cause unnatural looking colours to appear on some surfaces. 

The NPL Crawford method [PER-91] for calibrating lamps compares the 
spectral power distribution of a test source with a reference source, by dividing 
the spectrum into 6 bands, and integrating the luminance over each band. These 
values are then expressed as percentages of the total luminance. The excess 
deviance over a tolerance for each band is totalled and subtracted from a specified 
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number, to give the value for colour rendering. A similar but more widely 
accepted method for characterising the colour rendering of lamps is the Ra8 index, 
defined by the CIE [CIE-31, PER-91]. The higher the value of the Ra8 index, the 
better the colour rendering. A value for Ra8 of approximately 90 or above is 
usually recommended for accurate colour appraisal. A source with a colour 
temperature of about 6500 K and a colour rendering index Ra8 of 90 or above is 
required for high quality colour vision. However, the British Standards Institute 
has produced a specification for illumination for the assessment of colour (BS 
950). In addition to these requirements, the British Standards Institute specifies 
that the chromaticity and spectral distribution of the source lie within certain 
limits. This specification is intended for very accurate colour appraisal and 
therefore the tolerances given by the specification may, in some cases be relaxed 
slightly. Nevertheless, it serves as a good indication of the requirements of a 
source. Since the specification may not be met directly by certain lamps, or 
combinations of lamps, colour filters may be used to adjust the colour temperature 
of a source. The specific illumination set up chosen for a vision system is 
dependant very much on the situation. 

6.4.4 Colour Standards 

 Many companies develop colour atlases for their own specific needs during 
manufacturing. For example, bakeries, manufacturers of cars, clothing and paint 
all require precise colour control and have well developed colour reference 
systems. For more general use, a colour atlas such as the Munsell Book of Colour 
[MUN] can be useful. The main reasons for using a colour atlas during 
experimentation are convenience, and the stability and objectivity of 
measurement. However, there are also a number of disadvantages, associated with 
the use of a colour atlas. The following points should be borne in mind: 

 
(a) Colour atlases are limited in the number of samples they provide. 
(b) Printed colour atlases are subject to fading and soiling. (Careful handling is 
needed to reduce errors to acceptable levels.) 
(c) Colour atlases are limited by the range of dyes and pigments available. 
(d) They are unable to represent colours of high saturation. 
(e) The lighting must be accurately controlled and stable. Normal room lights 
are not. 
 
An accurate and controlled source of coloured light is a monochromator. This is 

a device, like a spectrometer, in which white light is shone into a prism, or an 
interference grating. This separates the light into its spectral components. A thin 
slit is used to select the a desired narrow band of wavelengths. (See Figure 6.7.) 
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Figure 6.7 A monochromator provides a way of generating coloured light in a 
repeatable way. A human operator has no difficulty in rotating a diffraction 
grating (or prism), so that they can find the limits of named colours. The 
colours that can be produced by this equipment are called spectral colours. 
Notice that there are some colours that cannot be generated in this way, most 
notably purples and gold. 

6.5 Ways of Thinking about Colour 
As explained earlier, it is believed by most researchers that human colour 

perception employs three types of cones in the retina, each being tuned to a 
different part of the visual spectrum. Colour television cameras also contain three 
optical filters, which have been specially designed to approximate the spectral 
response of the cones in the human eye. In this way, the colour response of the 
camera is made to correspond approximately to that of the eye. It should be 
realised that almost all colour cameras used in machine vision systems have been 
designed to have this characteristic, even if their output signals are not displayed 
as images on a monitor. It seemed natural to investigate whether standard colour 
television equipment could be adapted to recognise colours in the same way that 
people do. The transmitted signals derived from a colour camera are formed by 
the encoding the RGB picture information into two parts: luminance, which 
carries the brightness information, and chrominance, which carries the colour 
information. The latter conveys both hue and saturation information. The method 
of coding colour information is different in the NTSC, PAL and SECAM 
broadcast television systems, although the details need not concern us here. 

What is of greater relevance is that, in each of these broadcast standards, all of 
the colour information is carried in the chrominance signal. Without this, only 
information about intensity is carried. We are all familiar with the special effects 
shown on television programmes, especially advertisements, in which a 
monochrome (i.e. black and white) picture, representing some dull, unattractive 
scene, is suddenly transformed into a brilliantly coloured image. This is achieved 
in the editing room, by modifying the chrominance signal. The implication is 
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clear: the information needed for colour perception is contained in the 
chrominance signal, not in the luminance. 

A variety of other representations of colour have been devised, some of which 
are summarised below. In the following discussion R, G and B represent the 
outputs from a colour video camera.  

6.5.1 Opponent Process Representation of Colour 

The Opponent Process Representation emphasises the differences between red 
and green, between yellow and blue, and between black and white. A very simple 
Opponent Process model can be based upon the following transformation of the 
RGB signals. 
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 More complicated transformation models have been proposed in an attempt to 

account for certain psychophysical effects. The Opponent Process Representation 
of colour information is a good way to emphasise the difference between red and 
green regions, blue and yellow regions, and black and white regions in a scene. 
For example, it has been found to be able to discriminate between the green 
pepper and the red tomato on a pizza, and to isolate the black olives. [PER-91] 

6.5.2 YIQ Colour Representation 

Consider the following transformation of the RGB signals: 
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This equation is a simple representation of the NTSC encoding scheme, used in 

American broadcast television. If the so-called chrominance angle, Q, and  
chrominance amplitude, I, are plotted as polar co-ordinates, parts of the IQ plane 
can be identified with colours as classified by human beings. (See Table 6.2.) 
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Colour  Quadrant Number 
Purple 1 
Red, Orange, Yellow 2 
Yellow/Green, Green 3 
Blue, Blue/green 4 

 
 Table 6.2 Associating various colours with regions of the IQ plane.   

6.5.3 HSI, Hue Saturation and Intensity 

A technique for colour image processing that is enjoying increasing popularity, 
is based upon the concepts of hue, saturation and intensity. The HSI 
representation of colour is close to that method of colour description that is used 
by humans. When a  person is asked to describe a colour, it is likely that they 
would first describe the kind of colour (hue), followed by the strength of colour 
(saturation) and the brightness (intensity). 

Hue (H) defines the intrinsic nature of the colour. Different hues result from 
different wavelengths of light stimulating the cones of the retina. In other words, 
hue is related to the name of a colour that a human being might assign. We shall 
see much more of this in the following pages, where we will define the HSI 
parameters in mathematical terms.  A saturated colour (S ≈ 1) is deep, vivid and 
intense, due to the fact that it does not contain colours from other parts of the 
spectrum. Weak or pastel colours (S ≈ 0) have little saturation.  

6.5.4 RGB Colour Space: Colour Triangle 

Consider Figure 6.8, which shows a diagram representing RGB space. The 
cube, defined by the inequality 0 ≤ R,G,B ≤ W, where W is a constant for all three 
signal channels, shows the allowed range of variation of the point (R,G,B). The 
colour triangle, also called the Maxwell triangle is defined as the intersection of 
that plane which passes through the points (W,0,0), (0,W,0) and (0,0,W), with the 
colour cube. Now, the orientation of that line joining the point (R,G,B) to the 
origin can be measured by two angles. An alternative, and much more convenient 
method is to define the orientation of this line by specifying where the vector 
(R,G,B) intersects the colour triangle. (The (R,G,B) vector is extended if 
necessary.) Then, by specifying two parameters (i.e. defining the position of a 
point in the colour triangle), the orientation of the (R,G,B) vector can be fixed. It 
has been found experimentally that all points lying along a given straight line are 
associated with the same sensation of colour in a human being, except that very 
close to the origin (i.e. very dark scenes) there is a loss of perception of colour. 
Hence, all (R,G,B) vectors which project to the same point on the colour triangle 
are associated with the same colour name, as it is assigned by a given person (at a 
given time, under defined lighting conditions). Moreover, points in the colour 
triangle that are very close together are very likely to be associate with the same 
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colour label. These are very important points to note and indicate why the colour 
triangle is so important. 
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Figure 6.8 The colour triangle. 

 
The following points should be noted: 
 

(a) The quantity (R + G + B) is a useful estimate of the intensity as perceived by 
a human being when viewing the same scene as the camera. This is a reflection 
of a principle known to psychologists as Grassman’s Law. [HUT-71] The 
length of the vector, given by R G B2 2 2+ + , is not nearly so useful. 
(b) The colour triangle allows us to use a graphical representation of the 
distribution of colours, showing them in terms of the spatial distribution of 
blobs in an image. This is a particularly valuable aid to our understanding the 
nature and inter-relationship between colours, since we are already very familiar 
with such concepts from our earlier work on monochrome image processing. It 
also permits us to use image processing software, to perform such operations as 
generalising colours, merging colours, performing fine discrimination between 
similar colours, simplifying the boundaries defining the recognition limits of 
specific colours, etc. 
(c) Since the colours perceived by a human being can be related to the 
orientation of the (R,G,B) colour vector, a narrow cone, with its apex at the 
origin, can be drawn to define the limits of a given colour, e.g. “yellow”. The 
intersection of the cone with the colour triangle generates a blob-like figure. 
(d) Not all colours can be represented properly in the colour triangle. 
Trichromaticity is simply a useful working idea, but it does not guarantee that 
perfect colour reproduction, or recognition, is possible using just three primary 
colours. Hutson [HUT-71] says 
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“No three primaries exist for which all of the spectrum and all of the non-
spectral colours can be produced. As a result, the colour triangle cannot 
distinguish between saturated and non-saturated cyans, purples and 
magentas. The situation is not as catastrophic as the chromaticity diagram 
appears to indicate. The colours of everyday scenes are generally rather 
unsaturated and have chromaticities lying near the centre of the chromaticity 
diagram.” 
 
Some colours that are distinguishable by eye are not easily differentiated by a 
colour camera. For example, “gold” and “yellow“ are mapped to the same 
region of the colour triangle. Vivid purple is mapped to magenta, while vivid 
cyan is mapped to a paler (i.e. less saturated) tone. In relative terms, these are 
minor difficulties, and the colour triangle remains one of the most useful 
concepts for colour vision. 
(e) Fully saturated mixtures of two primary colours are found on the outer edges 
of the triangle, whereas the centre of the triangle, where all three primary 
components are balanced, represents white.  We shall refer to the centre of the 
colour triangle as the white point, since it represents neutral (i.e. non-coloured) 
tones. Other, unsaturated colours are represented as points elsewhere within the 
triangle. The hue is represented as the angular position of a point relative to the 
centre of the colour triangle, while the degree of saturation is measured by the 
distance from the centre. 
(f) The following equations relate the HSI parameters to the RGB representation 
and are derived in [GON-92]. For convenience, it is assumed that the RGB 
components have been normalised (W=1). (Also see Figure 6.9.) 
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Figure 6.9 Hue and saturation plotted in the colour triangle. 

6.5.5 1-Dimensional Histograms of RGB Colour Separations 

It is possible to think of the RGB colour representation as being equivalent to 
separate monochrome images, known as the RGB Colour Separations. These can 
be processed individually, in pairs, or combined together in some way, using 
conventional image processing operators, such as those described in Chapter 2. 
One useful method of describing a grey scale image is, of course, the intensity 
histogram and we can apply the same technique to the R, G or B images. Various 
techniques have been devised for measuring the shape of histograms and these can 
quantify skewness, standard deviation, location of the peak. etc. All of these can 
be applied to any one of the three colour separations, resulting in a set of numbers 
describing the colour image. 

Applications such as monitoring the cooking of beef steaks and pizza crust have 
been studied in this way. [KEL-86] Although the histogram analysis technique has 
distinct potential, it gives no indication about the spatial distribution of colours in 
an image. Another important consideration is the fact the this technique is, in no 
obvious way linked, to the human perception of colour, making it difficult to 
interpret the data. 

6.5.6 2-Dimensional Scattergrams  

The method of analysis about to be described provides an alternative, but 
generally less effective method of analysis than those based on the colour triangle. 
Since both methods rely upon the generation and use of 2-dimensional 
scattergrams, there is some possibility of confusion. It must be understood, 
however, that they operate in completely different ways and that we therefore 
need to be careful about our terminology. Later in this chapter, we shall use the 
term colour scattergram. We emphasise that colour scattergrams and 2-
dimensional scattergrams are completely different, and must not be confused. 
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The 2-dimensional scattergrams, about to be defined, are often able to yield 
useful information about the nature and distribution of colours in a scene. This is 
achieved without the specialised hardware needed by certain other methods. 
Figure 6.10 explains how the 2-dimensional scattergram is computed. In order to 
describe, in formal terms, how 2-dimensional scattergrams may be generated, let 
us consider two monochrome images A = {A(i,j)} and B = {B(i,j)}. A third image 
C can be generated as follows: 

 
Rule 1: Make C black (level 0) initially. 
Rule 2: Plot a point of intensity (Z + 1) at the position [A(i,j), B(i,j)] in C, if this 
point is at level Z beforehand. (Notice that Z may equal 0 initially.) 
Rule 3: Repeat Rule 2 for all (i, j) in the image. 
 
 

i

j
a(i,j)

Image A (red)
i

j
b(i,j)

Image B (blue)

a(i,j) 
[red]

b(i,j) 
[blue]

W

W

0

“Blue” region 
in image

“Red” region 
in image

“Magenta” region 
in image

2-dimensional scattergrams

Scan images A and B to generate 
scattergram shown below

 
 

Figure 6.10 Generating the 2-dimensional scattergram. 
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Suppose that image A was generated by the R channel and that image B was 
derived from the G channel. The resulting (R,G)-scattergram can tell us a great 
deal about how the red and green signals are related to one another and therefore 
provide a useful aid to understanding the types colours in the image. It is often 
possible to identify bright spots in a scattergram. (As we saw in Chapter 2, 2-
dimensional scattergrams are also very useful for texture analysis.) 

6.5.7 Colour Scattergrams 

Let us assume that a certain point (i,j) in the scene being viewed yields a colour  
vector (Ri,j, Gi,j, Bi,j). Furthermore, this vector, or its projection, will be assumed 
to intersect the colour triangle at that point defined by the polar co-ordinates (Hi,j, 
Si,j) where Hi,j, Si,j are hue and saturation values calculated using equations (6.3) 
and (6.4). The point to note is that, each address (i,j) in the scene being viewed 
defines a point in the colour triangle. We are now in a position to be able to 
compute the colour scattergram: 

 
Rule 1: Clear the current image. 
Rule 2: Select a point (i,j) in the input image being viewed. 
Rule 3: Compute values for the hue and saturation, using equations (6.3) and 
(6.4), respectively. 
Rule 4: Transform (Hi,j, Si,j) (polar co-ordinates) into Cartesian co-ordinates, 
(i,j). 
Rule 5: Add 1 to the intensity stored at point (i,j) in the current image. (Hard 
limiting occurs if we try to increase the intensity beyond 255.) 
Rule 6: Repeat Rule 5 for all (i,j) in the input scene. 
 
It is clear that dense clusters in the colour scattergram are associated with large 

regions of nearly constant colour. (The colour plates, and the half tone images 
show several examples of colour scattergrams.) A large diffuse cluster usually 
signifies the fact there is a wide variation of colours in the scene being viewed, 
often with colours “melting” into one another. On the other hand, step-wise colour 
changes are typically associated with small clusters that are distinct from one 
another. The colour scattergram is a very useful method of characterising colour 
images and hence has a central role in programming the colour filters described in 
the following section. The reader should be aware of the distinctions between the 
1-dimensional, 2-dimensional and colour scattergrams. Failure to appreciate the 
distinctions will be a severe hindrance to further understanding of colour analysis. 
The differences may be summarised as being variations in how integration is 
performed in the colour cube: 

 
1-dimensional scattergrams: integrate one of the 2-dimensional scattergrams 
along one of its axes. 
2-dimensional scattergrams: integrate along one of the axes in colour space. 
Colour scattergrams: integrate along a series of lines, all radiating from the 
origin in RGB space. 
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6.6 Programmable Colour Filter (PCF) 
The Programmable Colour Filter provides an electronic method of filtering 

colour images. It is fully under software control and as we shall see, is particularly 
well suited to the style of programming embodied in Prolog+. We shall place the 
PCF into the theoretical context that we have just discussed. First, however, we 
shall describe how the PCF may be implemented in electronic hardware. (See 
Figure 6.11.) 
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Figure 6.11 Programmable colour filter, block diagram. The output of a 
colour camera consists of three parallel analogue video signals, called the 
RGB channels. In effect, these signals define three monochrome images, each 
of which generates 6 bits / pixel when digitised. Altogether, the digitised 
RGB signals define a total of 18 bits and these form the address lines entering 
a random access memory, RAM. The latter implements a simple look-up table 
(LUT). The colour filter is programmed by changing the contents of the look-
up table. An image processor might typically use a larger RAM to store 
several look-up tables, which can be selected at will, with additional input 
lines (not shown). 
 
The PCF uses a standard RGB video input from a colour camera and digitises 

each channel with a resolution of n bits. Typically, n = 6. Thus, a total of 3n (18) 
bits of data is available about each pixel and together these 23n (262144) bits 
form the address for a random access memory, RAM. This RAM is assumed to 
have 8 parallel output lines and to have been loaded with suitable values, thereby 
forming a Look Up Table (LUT). By means that we shall discuss later, the 
contents of this LUT can be modified, enabling it to recognise any desired 
combinations of the incoming RGB signals. Thus, the filter can be programmed to 
recognise one, or more, colours. The LUT has a total of capacity of 23n  bytes 
(256Kbytes) of data. Since the output of the LUT consists of 8 parallel lines, it 
can define the intensities in a monochrome video image. 
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Notice that there is no attempt to store a colour image. The digitised RGB video 
signal is processed in real time by the LUT, the output of which can be: 

 
(a) redisplayed as a monochrome image, or 
(b) passed through a set of three further Look Up Tables, providing a pseudo-
colour display, or  
(c) digitised, stored and then processed, exactly as a conventional monochrome 
signal from a camera would be. 
 
The third of these options is particularly interesting, because it provides us with 

a very fast, powerful and convenient extension to a monochrome image 
processing system. The system we are about to describe permits all three of these 
options. (See Figure 6.12.) 
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Figure 6.12 The block diagram of the colour image processing system used 
by the authors in the experiments reported in this chapter. The colour version 
of the Intelligent Camera [INT] consists of a programmable colour filter, 
forming a front-end processor, which supplies signals to a monochrome 
digital image processing system, with a pseudo-colour display unit. Apart 
from its ability to control these two units, the image processor is in other 
respects a standard Intelligent Camera. 

6.6.1 Implementation of the PCF 

One possible implementation of the PCF involves the use of the Intelligent 
Camera [INT, PLU-91]. The colour filter is normally programmed interactively, 
using a dialogue based upon a personal computer. First, a monochrome image is 
digitised and displayed. The user then draws a mask around a region of interest, 
within the input image. Colours in this region are then analysed. The 
(monochrome) intensity histogram is then displayed and the user is invited to 
define intensity limits, based upon his interpretation of the histogram. Pixels 
having intensities lying between these limits will later be taken into account when 
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choosing the contents of the LUT. Pixels generating intensities outside these 
limits will simply be ignored. All pixels within the masked region and whose 
(monochrome) intensities lie between these limits are then analysed and a colour 
scattergram is generated. This typically consists of a set of bright points scattered 
against a dark background. The colour scattergram is displayed in the current 
image. The user then defines one set of colours to be recognised, by interactively 
drawing a closed contour, usually around the main cluster in the colour 
scattergram. Minor clusters and outlier points are normally ignored. (See Image 
6.1.) Finally, the region within the contour drawn by the user is used, by the 
colour filter software, to define the LUT contents. A wide tolerance for the 
colours recognised is obtained, if the user draws a contour larger than the 
dominant cluster in the colour scattergram. A small enclosed region means that a 
smaller set of colours will be recognised. The procedure for programming the 
colour filter is, in our experience, far from easy to use and requires a great deal of 
skill on the part of the user to obtain good results. In its recognition mode, the 
output of the colour filter is in the format of a digitised video signal, representing 
a multi-level grey-scale image. The output “intensities” normally (but not always) 
consists of a set of discrete levels, each one representing a different recognised 
colour. Since the PCF is able to operate in real time on a digitised RGB video 
signal, it does not add to the processing time of any image processing operations. 

6.6.2 Programming the PCF 

Consider Figure 6.13. The position of a point in the colour triangle can be 
specified by the parameters1 U and V, which can be calculated from R, G and B 
using the formulae: 
 
U = (R - G) / [ √2. (R+G +B) ]  
 
and  
 
V = (2.B - R - G) / [ √6. (R+G+B) ] 

 
To see how these equations can be derived, view the colour triangle normally 

(i.e. along the line QPO, the diagonal of the colour cube). When the vector (R,0,0) 
is projected onto the colour triangle, the resultant is a vector Vr of length R√(2/3) 
parallel with the R′ axis. In a similar way, when the vector (0,G,0) is projected 
onto the colour triangle, the result is a vector Vg of length G√(2/3) parallel to the 
G′ axis. Finally, the vector (0,0,B) projected into the colour triangle forms a 
vector Vb of length B√(2/3) parallel to the B′ axis. A given colour observation 
(R,G,B) can therefore be represented by the vector sum (Vr+Vg+Vb). Finally, U 
and V can be calculated, simply by resolving Vr, Vg and Vb along these axes.  

                                                           
1 These parameters are not to be confused with those used in the CIE Uniform 

Chromacity Scale (UCS)-system. 
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Let us now consider the mapping function Γ(.) given by:  
 

Γ((R,G,B)) = ((R - G)/(√2.(R+G +B)), (2.B - R - G)/(√6.(R+G+B))) 
 

Γ(X) projects a general point X = (R,G,B) within the colour cube onto the colour 
triangle. Clearly, there are many values of the colour vector (R,G,B) which give 
identical values for Γ((R,G,B)). The set of points within the colour cube which 
give a constant value for Γ((R,G,B)) all lie along a straight line passing through 
the origin in RGB space (O in Figure 6.13). Let us denote this set by Φ(U,V), 
where ∀X: X ∈ Φ(U,V) → Γ(X) = {U,V}. The colour scattergram is simply an 
image in which the “intensity” at a point {U,V} is given by the number of 
members in the set Φ(U,V). 
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Figure 6.13. Showing the relationship between the RGB- and UV-coordinate 
axes. The vectors R', G'  and B' all lie in the UV-plane, which also contains 
the colour triangle.  
 
 
 
The details of the process of programming the PCF are as follows (see Figures 

6.14 and 6.15): 
 
(i) Project all RGB vectors onto the colour triangle, which of course contains 
the colour scattergram. (Use the Prolog+ predicate plot_scattergram.) 
(ii) Process the colour scattergram, to form a synthetic image, S. (Image S is 
not a “picture of” anything. It is merely a convenient representation of the 
distribution of colours within the input).  
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(iii) Project each point, Y, in image S back into the colour cube. This process is 
called Back-projection. Every vector X, within the colour cube, that shares the 
same values of hue and saturation as Y, is assigned a number equal to the 
intensity at Y. The values stored within the look-up table are obtained by back-
projecting each point within the colour triangle through the colour cube. Any 
points not assigned a value by this rule are given the default value 0 (black). 
 
Back-projection is embodied within the Prolog+ predicate, create_filter. This 

predicate takes as its “input” the set of points lying within an equilateral triangle, 
T, within the current image. (Points outside T are simply ignored.) Triangle T 
corresponds in position to the colour triangle as it is mapped into the current 
image, by applying plot_scattergram. Understanding the details of how 
create_filter works is not essential for using the PCF. It is more important to 
realise that create_filter simply generates a set of values and stores them in the 
LUT. It should be noted that create_filter is able to program the PCF, using any 
image that may be shown to it. This may, be a colour scattergram, derived using 
plot_scattergram, from a complicated coloured scene. The scattergram may be 
“raw” or processed, for example, either by smoothing or removing outliers. 
Alternatively, certain patterns can be created using the image processor as a 
graphics generator and then applying create_filter. (Plate 1) As we shall see later, 
some particularly interesting and useful effects can be produced in this way. 
Access to PCF commands are available in Prolog+, through a set of items in a 
pull-down menu. (See Table 6.3.) 

The standard colour filtering techniques listed in Table 6.3 could satisfy the 
needs of a significant proportion of applications. In many cases, an understanding 
of the theoretical basis of create_filter is unimportant. Certainly, the Prolog+ 
programmer who simply wants to use the PCF to recognise familiar “named” 
colours, such as “yellow”, “orange” or “red” has no need to understand how 
create_filter works, since standard Prolog+ programs already exist. In some 
instances, however, more specific colour recognition is required. For example, it 
may be necessary to train a PCF to recognise application specific colours, such as 
“banana yellow” or “leaf green”. The higher level operators, now embodied in 
Prolog+ programs have greatly simplified the task of training the PCF. Even so, 
the task is somewhat easier and certainly less mysterious, if the user understands 
the theoretical issues involved. 
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Figure 6.14 Programming a colour filter. (a) The first step is to compute the 
colour scattergram. The points lying along OZ are counted. This defines the 
value at Y in the colour scattergram. (b) The colour scattergram is presented 
to the user in the form of a grey-scale image in which intensity indicates how 
many pixels were found of each colour. (c) The second step is to process the 
colour scattergram. The steps represented diagrammatically here are 
thresholding and blob shading, using label_blobs. (d) The colour triangle is 
shown here within the colour cube. The process of programming the colour 
filter is to “back-project” each point, Y, through the colour triangle, so that 
each point lying along the line OY is given the same value as Y. The blobs 
shown in (c) each contain many points of the same intensity. The effect of 
“projecting” a blob through the colour cube is to set all points lying within a 
cone to the same intensity. (e) Two intensity limits (L1 and L2) are specified 
by the user. (L2 may well be set to 255, in which case, it has no practical 
effect.) When the LUT contents are being computed, points within the colour 
triangle are not “back-projected” into either of the two corners, shown shaded 
here. 
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Figure 6.14 (Cont’d). 
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________________________________________________________________________________ 
 
Menu item   Function and Prolog+ predicate name 
________________________________________________________________________________ 
Display one image - for photography Display the current image only. 
Reset colour processing system  Switch to normal (monochrome) mode. 
     [pcf_normal , pseudo_colour(off)] 
Live video image on colour monitor Used to set up colour camera & monitor. 
Pseudo-colour OFF   Switch pseudo-colour OFF. [pseudo_colour(off)] 
Pseudo-colour ON   Switch pseudo-colour ON. [pseudo_colour(on)] 
________________________________________________________________________________ 
All 3 colour channels   Add R,G,B channels; monochrome image processing. 
Red channel   Select RED colour channel for monochrome image input. 
Green channel   Select GREEN colour channel.  
Blue channel   Select BLUE colour channel.  
Digitise 3 colour channels  Half resolution R, G, B colour separations placed  
     in 3 quadrants of one image. [colour_separation] 
Check colour camera light levels  Used during camera set up.  
________________________________________________________________________________ 
Two dimensional colour scattergram 2-D scattergram. User selects pair of colours. 
Colour scattergram   Plot the colour scattergram in the current image. 
      [plot_scattergram] 
Draw colour triangle - reference only Line drawing of colour triangle (draw_triangle). 
________________________________________________________________________________ 
Clear colour filter   [initialise_pcf_lut] 
Colour filter ON   Load file & activate a named colour recognition filter. 
Colour filter OFF   Deactivate colour filter.  
Save colour filter   Give PCF a name and save it. 
Learn colour within region   Learn colour(s) associated with a defined region of  
     the current covered by blob scene. A binary image  
     is used as a mask, to select the area to be used  
     when training the PCF. [learn_with_masking] 
Create PCF from current image   Design colour filter from a binary scattergram in the  
     current image. [create_filter] 
Design PCF by learning  Interactive design of a colour filter. Used for  high  
     precision colour recognition. 
Colour generalisation   Generalise colours. [generalise_colour] 
________________________________________________________________________________ 
“hue” PCF    Filter recognises 256 colours [hue]. 
“hue” PCF plus pseudo-colour  Program “hue” PCF with pseudo-colour ON. 
"Primary" colours   Filter recognises 7 colours: red, green, blue,  
     yellow, cyan, magenta and neutral.  
Saturation PCF   PCF which measures saturation by measuring the  
     distance from the white point in the colour triangle. 
Measure colour similarity  PCF which measures similarity to a single unique  
     colour,  defined as a point in the colour triangle.  
     [colour_similarity1 or 2, selected by user] 
________________________________________________________________________________ 
Approximate colour scattergram  Represent the colour scattergram as a set of  
Rebuild colour scattergram  circles for storage & reconstruction in Prolog+  
________________________________________________________________________________ 
 

Table 6.3 Pull-down menus for operating the colour filter interactively. The 
names of Prolog+ predicates mentioned in the text are given in square 
brackets. 
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6.6.3 Recognising a Single Colour 

Consider a very simple scene consisting of a single spectral colour, for example, 
vivid yellow, with uniform illumination everywhere. What happens when the PCF 
is trained on such an image? The colour scattergram, created during the training 
process, contains a single compact cluster. In its recognition mode, the 
programmed PCF may well be applied to the video signal derived from a more 
complex scene, containing the same shade of yellow and other colours. Only the 
particular shade of yellow encountered during training will be recognised. (Pixels 
of this shade of yellow are shaded white in the output image.) All other colours 
will be ignored. (Shaded black) Very dark and very bright yellow regions will 
also be ignored. (Remember that both upper and lower intensity limits are applied 
during the back-projection process outlined in Figure 6.14. (Take special note of 
Figure 6.14(e).) In the standard Prolog+ predicate, create_filter, the limits are set 
to 32 and 255. This choice of parameter values has not been found to be 
restrictive in any way.) When the PCF designed to recognise a particular shade of 
yellow is applied to a polychromatic scene, only that same shade of yellow will be 
detected; all other colours, including slightly different shades of yellow, will map 
to black. (Plate 2.) 

6.6.4 Noise Effects 

When a PCF that has been trained on one scene and reapplied to the same 
scene, it is often found that the filter output is noisy; some pixels in what appears 
by eye to be a region of uniform colour are mapped to black. (Plate 2) On a live 
video picture, some pixels are seen to scintillate. There are several possible 
reasons for this: 

 
(a) Pixels which generate points in the colour scattergram close to the edge of 
the main cluster, will sometimes be displayed as black. Camera noise adds an 
unavoidable jitter in the values generated at the RGB signal outputs. 
(b) Recall that hard upper and lower intensity limits are defined during training 
of the PCF. Some very dark pixels, below the lower intensity limit will be 
shaded black, even though they are of the particular tone that the PCF is 
supposed to recognise. A similar situation holds around the upper intensity 
limit.  
(c) Specular reflection on wrinkles on the surface of the object being viewed is 
a prime cause of noise-like effects. The very high intensities produced by 
glinting cause black spots to appear in the PCF output image. 
(d) The colour scattergram often consists of a compact cluster, with a diffuse 
“corona”. Outlier points are often specifically excluded, by generating a small 
blob which covers only the dense centre of the cluster, prior to applying 
create_filter. 
(e) Colour edges produce outlier points in the colour scattergram. As a result, 
sharp colour edges may become jagged, in the PCF output image. 
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6.6.5 Recognising Multiple Colours 

The ability to recognise a single colour would be rather limiting. To avoid this 
restriction, there are two additional features of the PCF that we have not yet 
discussed. It is possible to teach the filter progressively, by applying create_filter 
to several different images in succession. This allows training of a PCF  that can 
recognise multiple colours, to progress in manageable steps. For example, the user 
may wish to teach the PCF the general concept of “yellow”, by training it 
successively on examples of grapefruit, bananas, lemons, canaries, etc. 
Alternatively, several blobs, possibly with different intensity values, can be placed 
in the same image, prior to applying create_filter. (See Figure 6.14(d)) 
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Figure 6.15 Data flow during the design and use of a programmable colour 
filter. The role of the mask is explained in Figure 6.20. 
 
In order to distinguish different colours, it is possible to assign the PCF output 

to different levels. For example, the user might arbitrarily assign colours to the 
following intensity levels in the PCF output image: 

 
blue  47 green  115 
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canary yellow  165 lemon yellow 175 
red  215 etc. 

 
It must be emphasised that any such assignment is purely arbitrary. However, 

we shall see, in the next section, that some assignments are more useful than 
others, especially when they are used in conjunction with a pseudo-colour display. 

6.6.6 Pseudo-Colour Display for the PCF 

The role of the pseudo-colour display is illustrated in Figure 6.12. Now, 
consider Figure 6.16. The image that forms the input to the pseudo-colour unit is 
presented to three look-up tables, which define the RGB components in a colour 
image, displayed on a monitor. The contents of the look-up tables can be adjusted 
at will, to provide a pleasing / convenient mapping between intensity and colour. 
(See colour plates.) 
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Figure 6.16 Organisation of the hardware for displaying images in pseudo-
colour. Each box labelled “DAC” represents a digital-to-analogue converter. 
 
The particular pseudo-colour mapping function shown in Plate 1 and Table 6.4, 

has one special merit. When the image sensor output is connected directly to the 
monitor (ctm), the user is able to determine when saturation occurs very easily. 
(The display monitor shows white pixels.)  

Pseudo-colour can be specially helpful when working on colour recognition 
using a PCF. With care, it is often possible (and very useful), to match pseudo-
colours to real colours. For example, all of the “red” points in the input image may 
be mapped by the PCF to a single value, such that, when it is applied to the 
pseudo-colour display, they all appear to be red. Hence, a display, which shows 
only a very few distinct pseudo-colours, can often approximate the original scene, 
which contains innumerable true colours. (Table 6.4) This is very convenient for 
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the user, who can then relate the PCF output directly to the original scene being 
viewed. Several of the images in the colour plates are displayed in this way.  

It may not be possible, or desirable, to use pseudo-colour in this way, if a subtle 
colour discrimination is required. For example, suppose that we wish to separate 
“canary yellow” from “lemon yellow”. In this situation, there is no point in trying 
to make the pseudo-colours reflect the true colours, which are very similar. In this 
case, it is probably better to use quite different pseudo-colours, such as red and 
blue. (Plate 3) 

The Prolog+ predicates for operating the pseudo-colour display system are 
pseudo_colour(on) and pseudo_colour(off). 

 
True colour PCF output level Pseudo-colour displayed 

Very dark 0 Black 
Blue 47 Blue 
Cyan 95 Cyan 
Green 115 Green 
Yellow 160 Yellow 

Red 215 Red 
Magenta 250 Magenta 
Neutral 255 White 

 
Table 6.4 Showing the relationship between the true colours in a scene and 
the PCF output levels, which generate the corresponding pseudo-colours. The 
numbers given in the second column are the approximate values needed by 
the Intelligent Camera, to generate the pseudo-colours given in column three. 

6.6.7 Recent Teaching of the PCF Dominates 

An important feature of the PCF is the fact that the contents of the look-up table 
are defined in a serial manner, so that recently acquired data over-writes older 
information. To illustrate this point, imagine that we are training the PCF to 
recognise the colours of fruit. Suppose that we train first it to recognise lemons 
and that “lemon yellow” is represented by a set Sl of points in the colour 
scattergram. Next, we train the PCF to recognise grapefruit, for which the set of 
scattergram points is Sg. We shall assume (with some experimental evidence to 
support the hypothesis) that Sl and Sg have some common elements. While the 
recognition of grapefruit will be accurate, some parts of a lemon may be 
incorrectly attributed to grapefruit. If the PCF were trained to recognise several 
additional types of yellow fruit, we might well find that Sl contains no members 
that are not also members of other sets. In this event, “lemon yellow” will never 
be identified. (Figure 6.17) Clearly, this raises two important questions: 

 
(a) Is this likely to be a serious problem in practice?  
(b) If so, how can the difficulty be overcome? 
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So far, the authors have not encountered any real difficulty, as a result of this 
phenomenon. However, it must be understood that this effect is problem specific; 
in some applications, it might be troublesome, while in many others, it simply 
does not occur at all. Clearly, it would be possible to write a Prolog+ program that 
is able to warn about the occurrence of scattergram overlap. So far, we have 
ignored the possibility of combining colour recognition with structural (e.g. 
shape) information. We will examine this issue later.  

 

Lemons, [1], invisible 
because this set is 

completely covered by 
more recently acquired data 

points

Grapefruit, [2], 
partially obscurred

Bananas, [4], 
fully visible

Blue

RedGreen

Melons, [3], 
partially obscurred

 
 
Figure 6.17 Recent learning dominates in a PCF. The colour recognition 
system is taught to distinguish several types of yellow fruit. These are 
presented in the following order: 1, lemons; 2, grapefruit; 3, melon’s; 4, 
bananas. Of these, only bananas will be recognised correctly. Other 
information, such as object size and / or shape is needed to resolve this. 

6.6.8 Prolog+ Software for Operating the PCF 

The predicate create_filter is just one of many operators that have been written 
to control the PCF. A range of other facilities is provided in the form of pull-down 
menus. Even when programming the PCF using Prolog+, it is inevitable that there 
will need to be a high degree of interaction between it and the user. For example, 
when programming the filter to recognise “banana yellow”, a human being must 
be available, as a teacher, to define what is / is not “banana yellow”. Moreover, a 
human being can very quickly evaluate a PCF and can easily determine whether it 
achieves its design objective of recognising certain colours and distinguishing 
them from others. Since such processes as these are very difficult to automate, the 
authors devised a set of interactive tools, based on Prolog+, for programming and 
evaluating colour filters. (Figure 6.18) 
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Figure 6.18 The Colour sub-menu, appears under the Utilities menu. 

 

It should be understood that, once the PCF has been programmed, any 
subsequent calls to grb will result in an image being digitised via the PCF. For 
this reason, our programs, which appear later in this chapter, do not appear to 
contain any reference to colour recognition. Colour recognition via the PCF is 
implicit in the grb command. In the same way, a real-time display of live video, 
via the PCF is possible using the command ctm. We repeat the statement that the 
use of the PCF does not reduce the processing speed in any way whatsoever.  

A suitable PCF could be programmed to recognise “yellow” objects, all other 
colours being ignored. To achieve this, the yellow regions in the scene being 
viewed would be mapped to white and other colours to black in the output image. 
Thus, by performing the operation grb, we obtain a binary image. (This process 
takes about 65 ms with our present computer configuration.) Hence, a simple 
program to detect a banana might look something like this: 

 
banana :- 
 grb,   % PCF already programmed to recognise yellow 
 biggest, % Ignore any small spots in PCF output image 
 size(banana), % Check blob size is within limits for banana 
 shape(banana). % Check that blob shape is OK for banana 

 
No doubt, the reader can suggest various techniques for verifying that the shape 

and size of the biggest yellow object are both commensurate with that object 
being a banana. More programs like this will be presented later. It is possible to 
generate a pattern with continuous shading, as a prelude to applying create_filter. 
The Prolog+ sequence [hic(128,92), enc, 3•sqr, create_filter] draws an intensity 
cone centred at the white point in the middle of the colour triangle. The sub-
sequence [enc, 3•sqr] simply rescales the image intensities. The resulting PCF is 
able to provide a crude measure of saturation. In addition to create_filter, there 
are several other dedicated predicates for controlling the PCF.  
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Plot Colour Scattergram  

plot_scattergram plots the colour scattergram in the current image, from the 
RGB colour separations, plus a binary image, which acts as a mask. (The 
significance and use of the mask image will be discussed later.) Prior to 
evaluating plot_scattergram, it is necessary to load four half-resolution, sub-
images into the four quadrants of the current image, as shown below. (See Images 
6.11 and 6.12.) 

 
Red Green 
Blue Mask 

 
The predicate colour_separation does just this. 
 
% The Current Image Initially Contains The Binary Image Which Forms 
% The Mask. 
colour_separation :- 
 shrink(50,50), % reduce image size to 50% along X & Y axes 
 shift(bottom_right),  
   % place in bottom right quadrant of image C. 
  video(red),  % select R video channel 
 grb,  % digitise image 
      shrink(50,50), % reduce image size to 50% along X & Y axes  
 shift(top_left),   
   % place in top left quadrant of image C. 
 video(green),  % select G video channel 
 grb,  % digitise image 
 shrink(50,50), % reduce image size to 50% along X & Y axes 
 shift(top_right),   
   % place in top right quadrant of image C. 
 video(blue),  % select B video channel 
 grb,  % digitise image 
 shrink(50,50), % reduce image size to 50% along X & Y axes 
 
 shift(bottom_left),  
   % place in bottom left quadrant of image C. 
 rea.  % read composite image back into image A 

 
The colour scattergram can then be generated by calling plot_scattergram. 

Notice that plot_scattergram does not alter the contents of the PCF look-up table. 
 

Draw Colour Triangle Outline 

draw_triangle simply draws a geometric figure in the current image, thereby 
providing a means of calibrating the colour scattergram.  

Clear LUT 

 The predicate initialise_pcf sets the contents of all elements in the PCF look-up 
table to zero. 

Store Current LUT 
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store_lut stores the current LUT contents in battery-backed RAM, in a named 
file.  

Reload Stored PCF 

get_lut recovers a stored PCF from battery-backed RAM. 

Reverting to Monochrome Operation 

The predicate pcf_normal switches the PCF back to normal monochrome 
operation. The corresponding LUT effectively computes the function (R+G+B). 

6.6.9 Programming the PCF using the Colour Scattergram 

One naive procedure for programming the PCF is to plot the colour scattergram, 
using plot_scattergram immediately before calling create_filter. However, this is 
not a good idea, for the simple reason that the colour scattergram is a multi-level 
grey-scale image, in which intensity indicates frequency. It is far better to 
threshold the colour scattergram first. This will normally create a set of “blobs”. 
(Image 6.1) Clearly, we would expect that, if the threshold value is well chosen, 
each cluster in the colour scattergram would generate just one major blob, plus 
perhaps a few small satellite blobs representing outliers. The result of applying 
create_filter to a multi-blob image is that all of the colours represented by those 
blobs will be mapped to white. Suppose that we shade the blobs first. A simple 
expedient is to do so using label_blobs, which has the effect of giving each of the 
blobs a different intensity value; big blobs are given high intensity values, while 
small ones become dark. Applying create_filter now will program the PCF to 
discriminate between colours. (Figure 6.19) The output levels generated by the 
PCF are quite arbitrary and can be chosen for the convenience of the user. 
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Figure 6.19 Using label_blobs to distinguish between different colours. (a) 
The PCF derived from this image, by applying create_filter, is unable to 
distinguish red, green blue and yellow. This occurs because all four blobs 
have the same intensity. (b) The PCF derived from this image is able to 
distinguish red, green blue and yellow. This image can be derived from (a) by 
applying label_blobs. 

6.6.10 Programming the PCF by Image Processing 

We may not want to generate the colour scattergram for the whole of the 
camera’s field of view; we may prefer to concentrate instead upon certain regions 
that are of special interest and deliberately ignore others. The definition of 
colour_separation allows the use of a mask image specifically for this purpose. 
The mask simply controls plot_scattergram; pixels that are white in the mask 
image will contribute to the scattergram, while black pixels do not. (Figures 6.15 
and 6.20) The following program trains the PCF to recognise whatever colours are 
“covered” by the white areas of the mask image.  

 
% The mask is in the current image initially 
learn_with_masking :- 
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 colour_separation, % Generate 4 sub images of half  
    % resolution 
 initialise_pcf, % Set all LUT contents to zero 
 plot_scattergram, % Plot colour scattergram in current  
    % image (A) 
 threshold,  % Create binary version of colour  
    % scattergram 
 label_blobs,  % Shade blobs - optional 
 create_filter.  % Set up LUT contents from current  
    % image 

 
In the previous section, we mentioned that it is possible to generate blob-like 

figures by thresholding the colour scattergram. A cluster in the (grey-scale) 
scattergram may give rise to one large blob and several smaller “satellite” blobs. 
The latter can be a nuisance, because they generate “noise” effects. However these 
very small blobs are easy to eliminate, using big_blobs. Here is a program for 
learning the dominant colour in a scene, with automatic noise removal and 
masking. 

 
pcf_with_noise_cleanup :- 
 grb,   % Digitise an image 
 create_binary_image, % Create the mask image in the current  
    % image 
 colour_separation, % Generate 4 sub images of half  
    % resolution 
 initialise_PCF_lut , % Set all LUT contents to zero 
 plot_scattergram , % Plot the colour scattergram 
 blur   % Low pass filter  
 thr(16),  % Fixed value thresholding. Arbitrary  
    % choice 
 big_blobs(20),  % Eliminate blobs with < 20 pixels, 
 3•exw,   % Expand white regions 
 label_blobs,  % Shade blobs according to their sizes 
 create_filter.  % Set up LUT contents from current  
    % image 

6.6.11 “Hue” PCF 

It is evident from the discussion earlier, that the HSI representation of colour 
has considerable merit. The principal reason is that hue can be related to the 
names that we give to colours. It is possible to use the PCF to measure hue, albeit 
with some modification of the term. The hue predicate, defined below programs 
the PCF so that its output gives a measure of hue. (See Plate 1(b).) 

  
hue :- 
 wgx,  % Intensity wedge 
 cartesian_to_polar,  
   % “Bend” wedge into circular pattern 
 hil(0,0,1), % Black causes colour discontinuity when  
   % pseudo-colour is used. Avoid it. 
 hil(255,255,254),  
   % White causes colour discontinuity when  
   % pseudo-colour is used. Avoid it. 
 psh(-64,-64), % Shift image 
 shrink(50,50), % Reduce image size to 50% along X & Y axes 
 psh(0,-36), % Shift image 
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 scroll_menu(['Choose white level parameter?'], ['0', '4',  
 '8', '12', '16', '20', '24', '28', '32'],['24'],X),  
 X =[Y],  % Decode answer from previous line 
 pname(Z,Y), % Convert character string to number 
 draw_disc(128,92,Z,255),  
   % Draw white disc at (128,92), radius = Z 
 create_filter.  
   % Set up LUT contents from current image 
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Figure 6.20 A mask may be used to limit the area of the input image which 
contributes to the colour scattergram. Hence, the PCF will learn to recognise 
only those colours within the region of interest covered by the mask. 
 

The intensity in a circular wedge pattern, like the one generated by the first six 
lines of hue, is proportional to angular position, measured relative to a horizontal 
line through the centre of the colour triangle (co-ordinates (128,92)). Lines 3 and 
4 eliminate values 0 and 255, which are represented by black and white 
respectively in pseudo-colour. If black and white were not suppressed in this way, 
one row of each shade appears at the 3 o’clock position in the colour triangle and 
would cause noise-like effects when the PCF is applied. A white disc is drawn at 
the centre of the colour triangle and is responsible for the PCF mapping neutral 
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shades (very pale, non-saturated colours) into white. For obvious reasons, the 
colour filter generated by hue will be called the “hue PCF”. 

Let P denote the output of the hue PCF and H the value of the hue, as defined 
by Equation 6.3. These two quantities are related as follows: 

 
 P

255
360

H 30) mod 360)= −((   

 
The hue PCF output has a discontinuity in the magenta region of the colour 

triangle. (Plate 1(b)) This can occasionally cause some minor problems, although 
these can often be overcome in a straightforward way. (Plate 3)  

In many situations, the hue PCF is able to provide an adequate basis for colour 
recognition, without the need to resort to learning. (See colour plates.) It should 
be noted that surfaces of the same hue but with different (high) degrees of 
saturation are indistinguishable to this filter. Black and dark grey are mapped to 
black, while brighter neutral shades are mapped to white by the hue PCF. 

Pseudo colour-triangle is a term which will be used to refer to a synthesised 
pattern, superimposed on the colour triangle. (See Plate 1 and Image 6.3.) 
Applying create_filter to a pseudo colour-triangle generates a fixed-function PCF. 
A variety of interesting and useful functions, in addition to measuring hue, can be 
implemented thus. 

6.6.12 Analysing Output of the Hue PCF 

Figure 6.21(b) shows, in diagrammatic form, the histogram of an image 
generated by the hue PCF. (Also see Plate 1(e).) This is an example of what will 
be called a colour histogram. Well defined peaks in the colour histogram indicate 
that the image contains a number of distinct, well-defined colours, rather than 
continuously varying colours, which blend into each other. A series of intensity 
thresholds can then be chosen, so that the PCF output can be quantised into 
discrete levels, thereby enabling the various colours in the input scene to be 
separated. A multi-peak histogram, like that shown in Figure 6.21(b), is easy to 
analyse, either by eye or using a Prolog+ program, to select appropriate threshold 
parameters. Fixed-value thresholding, applied to the PCF output, is “safe”, in the 
sense that the resulting image does not vary significantly with changing 
illumination. This is in sharp contrast to the use of fixed-value thresholding 
applied directly to the camera output. 

Another stratagem is to apply the histogram equalisation operator (heq) to the 
hue PCF output. This often produces a very interesting effect, in which regions of 
nearly constant colour are all “stretched”, so that their colour variations are all 
made more obvious. With some justification, the latter process could be termed 
colour equalisation, since it enhances subtle changes of hue within regions of 
nearly constant colour, while contracting the differences between such regions. 
This can be a powerful tool for observing subtle colour changes in a scene. In a 
similar way, the “linear” contrast enhancement operator (enc) could be applied to 
the PCF output, in lieu of heq. It is certainly well worth investigating both of these 
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possibilities, in practice. Similarly, we might apply various other contrast 
enhancement operators, such as sqr, [neg, sqr, neg], log, exp, etc. to the PCF 
output image. The hue PCF and, as we shall see later, certain other colour filters 
based upon fixed pseudo colour-triangles, are able to yield valuable insight, when 
they are used interactively. In view of this reliance on interaction, it is difficult to 
explain all of the possibilities that exist.  
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Figure 6.21 Colour histogram. (a) Colour scattergram for an hypothetical 
polychromatic scene. There is one cluster in the scattergram for each colour in 
the input scene, including white (neutral). (b) The colour histogram is the 
result of applying hgi to the output of the hue PCF. Placing intensity 
thresholds at A, B, C, D, E provides an excellent basis for separating these 
five colours. 

6.6.13 “Segmented” PCF 
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The hue PCF provides a convenient and straightforward means of analysing 
colour variations. The segmented PCF is even simpler, providing for the 
recognition of only six broad categories of colour (i.e. red, green, blue, yellow, 
cyan and magenta), plus neutral. It does not provide the user with the same 
opportunities for experimentation as the hue PCF does. As a result, it is less 
demanding of the user but it is very coarse in its ability to discriminate colours. 
Nevertheless, it is well worth trying the segmented PCF in the study of any new 
application, since it is very easy to use.  

 The pseudo colour-triangle for the segmented PCF can be generated by 
drawing a series of polygons (using vpl), filling (blb) and shading them (hil). 
(Image 6.3) Finally, the central white disc is drawn using draw_disc. The Prolog+ 
program for drawing the pseudo colour-triangle is straightforward and does not 
warrant detailed attention. 

6.6.14 Measuring Colour Similarity and Saturation 

Given a suitable grey-scale image as input, the predicate create_filter will create 
a PCF that is able to recognise up to 256 different colours. As an example of this, 
suppose that we perform the following sequence of operations. 

 
hic(128,92),  % Draw an intensity cone 
heq,   % Histogram equalisation 
create_filter. 

 
The resulting PCF will produce an image in which the output level indicates the 

degree of saturation. The scale is not quite the same as that defined by Equation 
6.4. Another more accurate approximation of the saturation is provided by the 
predicate saturation, defined thus: 

 
saturation :- 
 zer,  % Black image 
 neg,  % Picture is all white now 
 vpl(128,92,129,92,0),  
   % Draw single black spot at [128,92] 
 gft,  % Grass-fire transform 
 create_filter. % Program the PCF 

 
Next, consider the pseudo colour-triangle shown in Image 6.11(g). Intensity in 

this image measures the Euclidean distance from the centre point of the base of 
the colour triangle. This point corresponds to “archetypal” yellow. Hence, the 
intensity in this pseudo colour-triangle indicates the “yellow-ness” and the output 
of the corresponding PCF indicates how much yellow is present at each point in 
the scene being viewed. Clearly, the same concept can be applied to measure other 
colours, such as red, green, blue, cyan, etc. that can be easily located in the colour 
triangle. 

It is, of course, possible to generalise the idea, so that the distance from any 
arbitrary point, (X,Y), in the colour triangle is represented by the intensity in the 
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pseudo colour-triangle. Perhaps the simplest way of doing this is to draw an 
intensity cone (hic) with its centre at the point (X,Y).  

 
colour_similarity1(X,Y) :- 
 hic(X,Y), % Draw intensity cone centred at (X,Y) 
 sqr,  % Optional. Possibly use other transforms 
 create_filter. % Generate the PCF LUT from the current image 

 
An alternative is to use the grass-fire transform (gft). Notice the similarity 

between the following program and saturation: 
 
colour_similarity2(X,Y) :- 
 zer,  % Create black image 
 neg,  % Negate. Makes image all white 
 vpl(X,Y,X,Y,0),  
   % Make (X,Y) black. 
 gft,  % Grass fire transform 
 create_filter. % Generate the PCF LUT from the current image 
 

When a new image is digitised, the PCF output measures the “similarity” 
between colours in the input scene and that single colour represented by the point 
(X,Y). Image 6.11(g) shows a pseudo colour-triangle for measuring the “purity” 
of the three primary colours R, G and B. 

6.6.15 Detecting Local Colour Changes  

It is possible to extend the ideas implicit in colour_similarity2, so that local 
colour changes in a complex coloured scene are made clearly visible. Here is the 
program for generating a pseudo-random, pseudo colour-triangle. (Image 6.4(a)) 
The parameter, N, defines the complexity of the pattern created in the pseudo 
colour-triangle. An essential feature of the image generated by subtle_colour is 
that the pseudo colour-triangle has a high intensity gradient almost everywhere. 

 
subtle_colour(N) :- 
 zer,  % Generate black image 
 random(N), % N points at random positions in current  
   % image 
 thr(1),  % Remove intensity variations in random image 
 3•exw,  % Ignore dense local clusters. Adjust the  
   % looping parameter to taste 
 condense, % Reduce blobs to their centroids 
 neg,  % Negate 
 gft,  % Grass fire transform 
 enc,  % Enhance contrast in current image 
 create_filter. % Generate the PCF LUT 

 
Let us consider how the subtle_colour PCF might be used. It is best applied to a 

scene which is nearly constant in time and with local changes of colour. Consider, 
for example, the task of printing sheets of paper, or flattened cardboard cartons. 
The pattern on the sheets may be quite complicated and involve a number of 
colours. It is important to understand that each sheet is inspected in exactly the 
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same position and orientation.2 Precise registration is important but it is not 
necessary to assume that the intensity of the lighting is constant in time, provided 
that it does not alter significantly in colour. When the subtle_colour PCF is 
applied to a printed sheet, the result is a monochrome image in which the intensity 
has a complicated pattern, indicating the colour, not brightness, variations. Now, 
suppose that a second sheet, identical  to the first, but with a small local variation 
of colour is examined. The resulting image will be the same as before, except in 
the region of the colour change, where the intensities will be significantly 
different. By subtracting the two PCF output images, the differences in the 
original colour scenes can be highlighted. (See Image 6.4(d-f).) 

The program subtle_colour PCF that may be used to detect colour changes 
simply by subtracting successive pairs of images. Here is a program to do this. 

 
subtle_colour_changes :- 
 grb,   % Digitise an image. PCF already  
    % programmed 
 cpy,   % Copy image A to image B 
 swi(a,c),  % Switch images A and C 
 sub,   % Subtract images A and B 
 abs,   % Absolute value of intensities 
 thr(25),  % Threshold. Adjust level to taste 
 big_blobs(10),  % Remove blobs with <10 pixels. Adjust  
    % to taste 
 cwp(N),   % Count white points 
 N > 25.   % Are differences significant 
 
subtle_colour_changes :- 
 subtle_colour_changes.  
    % Repeat until changes are found 

 
At first sight, it would appear that repeated patterns, such as printed cloth, 

stamps, bank-notes and other roller-printed web products could be inspected using 
the subtle_colour PCF. In practice, however, these particular applications may 
present considerable difficulties, due to the very high precision needed in the 
registration of the two images. A more likely range of applications is likely to be 
found in manufacturing, for example, monitoring the packing of cakes, 
chocolates, pharmaceuticals, toiletries, etc. into boxes, and looking for splashes of 
coloured food materials on pies, packaging, etc.  

6.6.16 Colour Generalisation 

Consider a colour scattergram in which there are six distinct and compact 
clusters. (Image 6.11(j)) This form of scattergram is generated by polychromatic 
scenes in which there are several regions, each containing nearly constant and 
perceptually distinct colours. (Plate 3) After applying thresholding and noise 
reduction to the colour scattergram, there are several small blobs, which can be 
shaded, using the operator label_blobs. A PCF, designed by applying create_filter 
                                                           

2 The technique for detecting colour changes suffers from the same restrictions 
as template matching, to which it is closely related. 
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to an image containing small blobs, will often be rather noisy. In particular, some 
of the points in the original image are mapped to black, incorrectly suggesting that 
they have not been seen beforehand. The reason is that the small blobs do not 
cover all points in the colour scattergram. If we were to make the blobs larger and 
then design a new PCF, the noise level would be reduced. Enlarging the blobs can 
be achieved by applying the lnb operator several times. This can be repeated as 
many times as we like, provided that the blobs do not merge. Here is a program 
which achieves this: 

 
generalise_colour :- 
 wri,  % Save scattergram image 
 thr(1),  % Threshold at level 1. Very dark grey. 
 count(blobs,A), 
   % Count blobs in colour triangle 
 rea,  % Recover image saved earlier 
 generalise_colour(A). 
   % Lower level predicate, defined below. 
 
generalise_colour(A) :- 
 rea,  % Recover image saved earlier 
 lnb,  % Spread bright regions 
 thr(1),  % Threshold at level 1. Very dark grey. 
 count(blobs,N), 
   % Count blobs in colour triangle 
 A is N,  % Check that no. of blobs is unchanged 
 swi,  % Switch images 
 wri,  % Read image saved earlier 
 !,  % Inhibit backtracking 
 generalise_colour(A). 
   % Repeat until blobs touch 
 
generalise_colour(_) :- 
 rea.  % Recover saved image 

 
generalise_colour is applied after the colour scattergram has been generated and 

thresholded and before create_filter is applied. The program sequence is as 
follows. 

 
 plot_scattergram, % Generate the colour scattergram 
 threshold,  % Threshold - creates small blobs 
 label_blobs,  % Shade blobs in some arbitrary way 
 generalise_colour, % Apply colour generalisation 
 create_filter  % Program the PCF 

 
A rather better colour generalisation procedure has been devised around the 

grass-fire transform. (Section 2.3.) This procedure is superior to the version of 
generalise_colour given above, since it does not simply terminate when the first 
two blobs merge as they are being dilated. The process generates a map 
resembling the territorial waters surrounding a group of separate and independent 
island nations. (See Images 6.11(j) and 6.12(b).) The colour triangle is sub-
divided on a nearest neighbour basis and it is possible to place a limit on the 
extent of “territorial waters” surrounding any given “island”. 

It should be understood that when a PCF is designed with colour generalisation 
to distinguish between two colours (e.g. “yellow” and “red”), strange effects may 
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occur when it is applied to other colours (e.g. orange, green or blue). It is good 
practice to apply a PCF with colour generalisation only to those colours that it is 
was designed to discriminate. Colour generalisation is a very useful procedure but 
it does need to be applied intelligently and the results scrutinised carefully. 
Nevertheless, it is particularly useful in reducing “noise” effects, when designing 
PCFs to recognise the colours in polychromatic scenes. (See [BAT-95b] for more 
details.) 

6.7 Colour Recognition in Prolog+ Programs 
We are now in a position to use the PCF for colour recognition and to present 

Prolog+ programs indicating how this facility can be used in practice. For the 
remainder of this chapter, the subtleties of designing PCF’s can safely be ignored. 
Indeed, our programs will not refer explicitly to any of the predicates listed above. 
We simply need to remember that grb and ctm both make implicit use of whatever 
PCF was last programmed. The programs listed below frequently contain 
instructions to switch the pseudo-colour display unit on. This is often of 
considerable help to the user when interpreting images generated with a PCF but 
it has no effect whatsoever on the processing. 

6.7.1 Counting Coloured Objects 

An obvious and important application requirement is that of counting objects 
having a certain range of colours. For example, we might want to count all of the 
“yellow” and “turquoise” objects in a scene, whilst ignoring “orange” and 
“magenta” items. As we shall see, this is often a relatively straightforward task  
and usually does not require the user to program a colour filter explicitly. The 
reason is that the hue filter, or some other standard PCF, will frequently provide 
the necessary discrimination, in conjunction with simple fixed-level thresholding. 
The user can usually decide what threshold levels to use by adopting a simple 
procedure, based upon the colour histogram. Peaks in the colour histogram can 
usually be identified with specific colours in the scene being viewed. For 
example, the simple polychromatic scene in Plate 3(a) generates 6 peaks, which a 
user of the Prolog+ system can identify with little difficulty.  

The Prolog+ program presented below is quite general and is able to 
accommodate several bands of colour. For example, it can count objects which are 
“green”, “yellow”, or “red”. Hence, it could, for example, count tomatoes, at any 
stage of ripeness. It was assumed that the hue PCF, or some similar filter has 
already been programmed. Recall that 256 different colours are recognised by the 
hue PCF; the filter outputs are numbers (i.e. intensities) in the range [0, 255]. 
Hence, we can use integers in this range to represent colours. Using this simple 
notation, a single integer represents a very narrow band of colours. (For 
convenience, we shall refer to this as a “single colour”.) We can extend this 
notation, so that a pair of integers, [P,Q] denotes a broader, continuous range of 
colours, with limits P and Q. In addition, a list of integer pairs will be used to 
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denote a more general (i.e. discontinuous) set of colours. For reasons which will 
soon become apparent, we shall reserve colour 255 for a special purpose. Hence, 
we shall assume that the PCF does not generate any output pixels with intensity 
255. If it does, these pixels will be assigned to level zero and hence may be “lost”. 
(The program works quite happily with the hue PCF, except that neutral shades, 
cannot be counted.) Here is the program for counting coloured objects.  

 
% Instantiates B to the number of objects having the colours  
% specified by the list A. 
count_coloured_objects(A,B) :- 
 create_filter, % Program/load whatever PCF is to be used 
 hil(255,255,0),% Remove any pixels at level 255 
 grb,  % Digitise an image using this filter 
 isolate(A), % Isolate all regions specified by list A 
 remove_noise, % Optional noise removal operator 
 count(blobs,B).% Count regions. Instantiate B 
 
isolate([]) :- thr(255).  
   % Keep all regions with any of specified  
   % colours 
 
isolate([[A,B]|C]) :- % Consider colour band [A,B] 
 hil(A,B,255), % Map pixels in range [A,B] to level 255 
 !,  % Added to improve efficiency of recursion 
 isolate(C). % Repeat for other colour bands, if necessary 

 
[grb, isolate(A)] generates an image consisting of a set of white blobs, 

representing the areas whose colours are included in the “input” list, A. The 
reader might like to contemplate how the above program could be modified to 
count objects of any colour, ignoring those which are of a neutral shade. Another 
variant can be devised, in which colours are specified by name, rather than by 
number. No changes are needed to count_coloured_objects, modifications are 
needed only to isolate. Assuming that the hue PCF is being used, isolate may be 
redefined thus: 

 
isolate([]) :- thr(255).  % Terminate recursion. 
 
% This clause deals with a list of colours, such as 
% [sulphur_yellow, tangerine, cyanide_blue, leaf_green].  
isolate([A|B]) :- 
 colour_limits(A,C,D),  
   % Consult db for limits corresponding to A 
 hil(C,D,255), % Map “yellow” pixels to white 
 !, 
 isolate(B). % Repeat for all colours in tail of list 
 
% This clause deals with single colours 
isolate(A) :-   
 colour_limits(A,B,C), % Consult database for limits (A) 
 thr(B,C).  % Select colours in band [B,C] 
 
% Sample of the database. This clause defines limits for “yellow”  
% in the PCF output 
colour_limits(yellow,135,185). 
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Of course, isolate has a far wider range of applications than has been explained 
so far. The following program counts pink and blue sheep, but only if they have 
green eyes. 

 
count(sheep,A) :- 
 create_filter(hue), % Program the ‘hue’ PCF 
 grb,   % Digitise image. 
 wri(temp),  % Save image for use later 
 isolate([pink, blue]), % Keep pink and blue objects 
 keep(sheep),  % Discard all non-sheep 
 blb,   % Fill any holes (where eyes are) 
 wri(sheep),  % Save for use later 
 rea(temp),  % Recover input image 
 isolate(green), % Keep green objects 
 keep(eyes),  % Discard all non-eyes 
 rea(sheep),  % Recover sheep image 
 touches,  % Keep sheep if they have ≥ 1  
    % green eyes 
 count(blobs,A). % Count the sheep. 

 
It is assumed that keep(sheep) and keep(eyes) are both based upon the size 

and/or shape of blob-like objects in a binary image. touches compares two images: 
if a blob in image A overlaps a blob in image B, the blob in A is retained. If a blob 
in A does not overlap at all with any white pixels in B, then the blob in A is 
discarded. [BAT-91] Defining touches is left as an exercise for the reader. (Hint: 
Use label_blobs, mask one image with the other and make use of recursion to 
identify which blobs have overlap.) Also see Section 3.6.2.  

6.7.2 Recognising a Polychromatic Logo, Program 1 

The familiar logo associated with Apple Computers Inc. contains six nearly 
monochromatic regions. The task that we shall consider is that of recognising 
such a pattern, independently of its scale. The program that we shall discuss first 
simply calculates the proportion of each of the six colours, relative to the total 
coloured area. The estimated proportions are then compared to values determined 
experimentally and written explicitly into the program. Later, we shall describe 
several improvements on this naive approach, adding self-adaptive learning and 
taking the positions of the coloured stripes into account. 

Here is our first program for recognising the Apple Computer logo. 
 
apple_logo:- 
 create_filter(hue), % Program the ‘hue’ PCF 
 grb,   % Digitise image 
 wri,   % Save image for use later 
 thr(1,254),  % Find coloured regions; ignore B & W  
 biggest,  % Find biggest blob. This ignores the  
    % green leaf 
 cwp(N0),  % Measure area of main part of the logo 
 rea,   % Recover original image 
 min,   % Mask to remove black and white areas  
 wri,   % Save masked image for use later 
 thr(13,57),  % Threshold to select magenta 
 cwp(N1),  % Calculate its area 
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 swi,   % Switch current and alternate images 
 thr(57,128),  % Threshold to select blue 
 cwp(N2),  % Calculate its area 
 swi,   % Switch current and alternate images 
 thr(128,185),  % Threshold to select green 
 cwp(N3),  % Calculate its area 
 swi,   % Switch current and alternate images 
 thr(185,206),  % Threshold to select yellow 
 cwp(N4),  % Calculate its area 
 swi,   % Switch current and alternate images 
 thr(206,223),  % Threshold to select orange 
 cwp(N5),  % Calculate its area 
 swi,   % Switch current and alternate images 
 thr(223,250),  % Threshold to select red 
 cwp(N6),  % Calculate its area  
 swi,   % Switch current and alternate images 
 % Calculate proportions of the various colours 
 M1 is 100*N1 // N0, % M1 is percentage of magenta 
 M2 is 100*N2 // N0, % M2 is percentage of blue 
 M3 is 100*N3 // N0, % M3 is percentage of green 
 M4 is 100*N4 // N0, % M4 is percentage of yellow 
 M5 is 100*N5 // N0, % M5 is percentage of orange 
 M6 is 100*N6 // N0, % M6 is percentage of red 
 % Write parameter list for the user to peruse 
 writeseqnl(['Parameter list:',[M1,M2,M3,M4,M5,M6]]), 
 % Calculate Euclidean distance between [M1,M2,M3,M4,M5,M6] &  
 % stored vector  
 euclidean_distance([M1,M2,M3,M4,M5,M6],[16, 13, 13, 19, 18,  
 19],0,Z), 
 writeseqnl(['Distance measure:',Z]), % Tell user how far  
 Z < 100,   % Is distance small enough? 
 writenl('Apple logo was detected'), % Printed message 
 say('Found Apple Logo').  % Spoken message  
 
apple_logo:- 
 writenl(‘Apple logo was NOT visible'),  %Printed message 
 say('Apple Logo NOT found').    % Spoken message 
 
euclidean_distance([],_,A,A) :- !. % First terminating clause 
 
euclidean_distance(_,[],A,A) :- !. % Second terminating clause 
 
euclidean_distance([A|B],[C|D],E,F) :- 
 G is (A-C)*(A-C) + E,  % Sum of squares of differences 
 !, % Included for faster/more efficient recursion 
 euclidean_distance(B,D,G,F).  
  % Repeat until one/both of input lists is empty 

 
The predicate apple_logo is unsophisticated, being intended to recognise the 

Apple Computer logo and no other pattern. The program simply counts the 
proportions of pixels lying within certain colour bands, defined by applying 
various thresholds to the output of the hue PCF. The threshold parameters were 
chosen by finding the valleys in the colour histogram, of the image generated by 
the hue PCF. 

The predicate euclidean_distance calculates the square of the so-called 
Euclidean distance, which is defined as follows. Let X = {Xi, i = 1,…,N} and Y = 
{Yi, i = 1,…,N} be two N-dimensional vectors. Then, the Euclidean distance 
between them is given by D(X,Y), where 
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If X and Y have almost identical values, D(X,Y) is small. In the special case 

when these vectors are identical, D(X,Y) = 0. On the other hand, if  X and Y are 
very different D(X,Y) is large. D(X,Y) therefore measures the dissimilarity 
between X and Y.  

apple_logo succeeds if the measured vector [M1,M2,M3,M4,M5,M6] is very 
similar to the stored reference vector: [16, 13, 13, 19, 18, 19]. The significance of 
[M1,M2,M3,M4,M5,M6] is explained above. The reference vector represents the 
measurements obtained using the same program on a pattern that was known to be 
an (ideal) logo. The idea of comparing the Euclidean distance to a fixed threshold 
is explained in Figure 6.22(a). Later, we shall adopt the more advanced approach 
in which several stored reference vectors are used. 

6.7.3 Recognising a Polychromatic Logo, Program 2 

The following program adopts a slightly more sophisticated approach to that 
explained above. Here, the vertical order of the colour stripes is taken into 
account. The program accepts a pattern as being an Apple Computer logo, if the 
stripes are located in the following order (moving upwards): blue, magenta, red, 
orange, yellow, green. Only differences from the earlier version of the program 
are annotated. 

 
apple_logo :- 
 create_filter(hue), 
 grb, wri, thr(1,254), 
 biggest, cwp(N0), 
 rea, min, wri, 
 thr(13,57), 
 cgr(_,Ymagenta), % Y co-ordinate of magenta band 
 cwp(N1), swi, 
 thr(57,128), 
 cgr(_,Yblue),  % Y co-ordinate of blue band 
 cwp(N2), swi, 
 thr(128,185), 
 cgr(_,Ygreen),  % Y co-ordinate of green band 
 cwp(N3), swi, 
 thr(185,206), 
 cgr(_,Yyellow), % Y co-ordinate of yellow band 
 cwp(N4), swi, 
 thr(206,223), 
 cgr(_,Yorange), % Y co-ordinate of orange band 
 cwp(N5), swi, 
 thr(223,250), 
 cgr(_,Yred),  % Y co-ordinate of red band 
 cwp(N6), swi, 
 M1 is 100*N1 // N0, M2 is 100*N2 // N0, 
 M3 is 100*N3 // N0, M4 is 100*N4 // N0, 
 M5 is 100*N5 // N0, M6 is 100*N6 // N0, 
 writeseqnl(['Parameter list:',[M1,M2,M3,M4,M5,M6]]), 
 Yblue < Ymagenta, writenl('1'), % Blue is below magenta 
 Ymagenta < Yred, writenl('2'), % Magenta is below red 
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 Yred < Yorange, writenl('3'),  % Red is below orange 
 Yorange < Yyellow, writenl('4'),  % Orange is below yellow 
 Yyellow < Ygreen, writenl('5'), % Yellow is below green 
 euclidean_distance([M1,M2,M3,M4,M5,M6],[16, 13, 13, 19, 18,  
 19],0,Z), 
 writeseqnl(['Distance measure:',Z]), 
 Z < 100, 
 writenl('The Apple logo has been detected'), 
 say('Found Apple Logo'), 

 !. 
 
This program is, of course, also specific to this one application; it is necessary 

to write a new program, if objects other than the Apple Computer logo are to be 
detected. The program, can be modified slightly to allow it to recognise scenes in 
which there is a continuous variation of colour, rather like that in a rainbow. For 
example, a program has been written that is able to recognise the 3M Company 
logo, which consists of a multi-coloured disc. 

Let us consider two further points that arise here. The first is that the shapes of 
the coloured bands have been ignored. Given that a crude measure of the shape of 
a blob can be obtained by computing the ratio of its area to the square of its 
perimeter, it is possible to enhance the program given above. The reader might 
like to contemplate how this could be done. (Hint: Add two lines of Prolog+ code 
for each coloured stripe. One computes the shape measure, while the second 
compares its value to stored tolerance limits.) The second point to note is that the 
second version of apple_logo makes no use of the abstract relationship above, 
discussed in Chapter 3. A third and much clearer approach to recognising the 
Apple Computer logo is therefore represented by the program given in the 
following section. 

6.7.4 Recognising a Polychromatic Logo, Program 3 

The two earlier definitions of apple_logo, are both “linear” (procedural) in 
structure. Better programming style is to be seen in the following program which 
performs the same operations as the second definition. 

 
apple_logo :- 
 get_image(N), % Equivalent to first lines of earlier defs. 
 area(red, N, Ared), % Normalised area of red pixels is Ared 
 area(green, N, Agreen), 
 area(yellow, N, Ayellow), 
 area(orange,Aorange), 
 area(magenta, N, Amagenta), 
 area(blue,N, Ablue), 
 check_areas(Amagenta,Ablue,Agreen,Ayellow,Aorange,Ared),  
    % Matching sizes 
 above(green,yellow), % Verifies that green is above yellow  
 above(yellow,orange), 
 above(orange,red), 
 above(red,magenta), 
 above(magenta,blue). 
 
/* “get_image” is identical with the first few lines of the two 
earlier definitions of “apple_logo”. */ 
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get_image(A) :- 
 create_filter(hue), % Program the ‘hue’ PCF 
 grb,  % Recall that “hue” PCF has been programmed 
 wri,  % Save image for use later 
 thr(1,254), % Ignore black & neutral regions 
 biggest, % Keep only the biggest one 
 cwp(A),  % Compute its area 
 rea,  % Read grey-scale image back again 
 min,  % Remove pixels corresponding to non-colours 
 wri.  % Needed by “isolate” (not defined here) 
 
area(A,B,C) :- 
 isolate(A),  
 cwp(D),  % Count number of pixels of colour A 
 C is 100*D/B. % Rescale by dividing by total area of logo 
 
% Performs match between measured sizes and stored values 
check_areas(A,B,C,D,E,F) :- 
 euclidean_distance([A,B,C,D,E,F],[16, 13, 13, 19, 18,  
 19],0,Z), 
 Z < 100.  
 
% Definition of “above” for coloured stripes 
above(A,B) :- 
 isolate(A),  % Isolate pixels of colour A 
 locate(A,_,Xa), % Centroid of colour band A. Not  
    % defined here 
 isolate(B),  % Isolate pixels of colour B 
 locate(B,_,Xb), % Centroid of colour band B 
 Xa > Xb. 
 

The observent reader will note that this definition of above is perfectly standard; 
we have merely annotated it in such a way that its relevance to colour recognition 
is evident. 

6.7.5 Multiple Exemplar Approach to Recognition 

The simple approach to the recognition of coloured objects, exemplified by the 
first two versions of apple_logo, requires that a new Prolog+ program be written 
for every pattern that is to be recognised. A more general program, called 
crude_color_recognition, makes better use of the declarative nature of Prolog+ 
and is listed below. This program calculates the Euclidean distances from the 
measurement vector (X) to a set of stored vectors, held in stored_vector. If any of 
these distance values is less than some pre-defined threshold (taken to be 100 
here), crude_color_recognition will succeed. (The name of this predicate was 
chosen to emphasise the point that a more sophisticated colour recognition 
program will be presented later.) 

 



 256

X2

X1Y1

Y2 T

(a) (b)

X2

X1

X2

X1
(d)

X2

X1
(c)  

 
Figure 6.22 Decision surfaces drawn in two dimensions. (a) A single point 
[Y1,Y2] and distance threshold (T) defines a circular region. Any point 
[X1,X2] which falls inside the shaded area is associated with the decision YES 
(apple_logo succeeds), while all other points are associated with the decision 
NO (apple_logo fails). (b) Several circular sub-regions can be superimposed. 
If [X1, X2] falls inside any circle, the decision is YES. If [X1, X2] falls 
outside all circles, the decision is NO. Notice that we have to store 3 
parameters for each circle. (c) The Nearest Neighbour decision rule. 
Representatives of more than one class are stored. Here, there are just two. A 
point is associated with a certain class, if [X1, X2] is closer to one of the 
stored representatives of that class than it is to all of the representatives of all 
other classes. (d) A modified version of the Nearest Neighbour decision rule. 
The decision is “Don’t know”, if the distance to the nearest neighbour is 
greater than some pre-defined limit. (Also see Figure 7.2.3.)  
 
crude_color_recognition :- 
 create_filter(hue), % Program the ‘hue’ PCF 
 grb,   % Digitise image 
 process;  % Processing, optional, adjust to taste 
 get_parameters(X), % Calculate measurement vector 
 stored_vector(Y), % Consult database.  
 euclidean_distance(X,Y,0,Z),  
    % Z = Euclidean distance between X & Y 
 Z < 100,  % Is Z small enough? Adjust to taste. 
 writenl('Object was recognised'),  
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    % Object similar to stored pattern 
 !.   % Inhibit back-tracking 
 
crude_color_recognition :- 
 writenl('Object was NOT recognised'),  
    % Message to user 
 fail.   % Force failure - object not recognised 
 
% Stored vector, appropriate for recognising the 3M Company logo. 
stored_vector([15, 6, 11, 32, 26]). 

 
There are, of course, many possible ways to define get_parameters. This 

program was presented as if there were only one stored_vector fact in the 
database. Suppose there are more several / many. What effect does this have? 
Figure 6.22(b) demonstrates the potential improvement in power of recognition 
that this provides. The program simply makes use of back-tracking over the three 
lines set in italics to perform a search for a stored reference vector (Y) that is 
sufficiently similar to the  measured vector (X) to satisfy the test Z <100, where Z 
= D(X,Y). If any Y is discovered that satisfies this test, the vector X is recognised 
as belonging to that class of objects represented by the set of stored reference 
vectors. This is the basis of a method of decision making known as a Compound 
Classifier. [BAT-74] So far, we have not indicated how the Y vectors can be 
computed. One possible way is to measure the parameters [M1,M2,M3,M4,M5] 
for each member of a carefully selected set of objects, forming what is known as a 
training set. Another method is to store Y vectors progressively in the database 
(i.e. asserting new stored_vector facts), subject to the constraint that a new fact is 
only added, if it is sufficiently different from all of the vectors already stored. 

In the following section, we describe a program which develops these ideas and 
which permits several classes of object to be represented by vectors stored in the 
database. 

6.7.6 Learning Proportions of Colours in a Scene 

The following program calculates eight parameters measuring the proportions 
of the picture in eight colour bands, ignoring black and neutral. In this respect, it 
is similar in operation to apple_logo. However, these numbers are then used in a 
different way. 

 
% Top level predicate for learning to recognise coloured objects 
learning_coloured_objects :- 
 yesno(['Do you want to initialise the colour recognition  
 filter and database? If in doubt, select YES']), 
 retractall(colour_vector(_,_)),  
    % Initialise the database 
 pseudo_colour(on), % Switch pseudo-colour ON 
 create_filter(hue), % Program the ‘hue’ PCF 
 learn_coloured_objects.  
    % Learning colours. 
 
 
learn_coloured_objects :- 
 ctm,  % Allow user to set up the camera and  
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   % lighting 
 yesno(['Click on YES when you are ready to continue, or  
 select NO to finish']), 
 grb,  % Digitise image. We are using ‘hue’ PCF 
 wri,  % Save the image for use later 
 thr(1,254), % Keep colours only - eliminate black &  
   % neutral 
 big_blobs(50), % Eliminate blobs with less than 50 pixels 
 blb,  % Fill any holes 
 skw,  % Eliminate edge artefacts 
 cwp(N0), % Count total number of white points 
 rea,  % Read image saved earlier 
 min,  % Apply binary image as a mask 
 wri,  % Save masked image for use later 
 thr(1,32), % Keep colours coded by int. in range [1,32] 
 cwp(N1), % Count number of pixels (magenta colour band) 
 swi,  % Switch images 
 thr(33,64), % Keep colours coded by int. in range [33,64] 
 cwp(N2), % Count number of pixels (blue colour band) 
 swi,  % Switch images 
 thr(65,96), % Keep colours coded by int. in range [65,96] 
 cwp(N3), 
 swi,  % Switch images 
 thr(97,128), % Keep colours coded by int. in range [97,128] 
 cwp(N4), % Count number of pixels 
 swi,  % Switch images 
 thr(129,160), % Keep colours coded by int. in range  
   % [129,160] 
 cwp(N5), % Count number of pixels 
 swi,  % Switch images 
 thr(161,192), % Keep colours coded by int. in range  
   % [161,192] 
 cwp(N6), % Count number of pixels 
 swi,  % Switch images 
 thr(193,224), % Keep colours coded by int. in range  
   % [193,224] 
 cwp(N7), % Count number of pixels 
 swi,  % Switch images 
 thr(225,254), % Keep colours coded by int. in range  
   % [225,254] 
 cwp(N8), % Count number of pixels 
 swi,  % Switch images 
 M1 is 100*N1 // N0, M2 is 100*N2 // N0, 
 M3 is 100*N3 // N0, M4 is 100*N4 // N0, 
 M5 is 100*N5 // N0, M6 is 100*N6 // N0, 
 M7 is 100*N7 // N0, M8 is 100*N8 // N0, 
 learn_coloured_objects1([M1,M2,M3,M4,M5,M6,M7,M8],Z), 
 !, 
 learn_coloured_objects(Q). 
 
learn_coloured_objects(_). 
 
learn_coloured_objects1(X,Z) :- 
 colour_vector(A,B),  % Consult database 
 euclidean_distance(X,A,0,Z), % Euclidean distance X to A 
 writeseqnl(['Distance from',B,'is',Z]), 
 Z < 50,    % Is A close enough to X? 
  writeseqnl(['Object was recognised as',B]).  
     % Yes! So tell user so 
 
 
% Failed to recognise the object, so the user guides the program  
% through learning 
learn_coloured_objects1(X,Z) :- 
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 yesno(['No known object has been seen. Do you want to expand  
 the database?']), 
 grb,   % User sees what he is talking about 
 prompt_read(['What do you want to call this object?'],Z), 
 assert(colour_vector(X,Z)).   
    % Add vector to database 
  
 learn_coloured_objects1(_,unknown_object). 

6.7.7 Superior Program for Learning Colour Proportions 

The decision-making mechanism used in the above definition of  
learning_coloured_objects is rather weak. The following program improves 
matters by using the Nearest Neighbour decision rule. [BAT-74] The theoretical 
basis is explained in Figure 6.22(c). (Also see Section 7.2.4.) 
 
 
learning_coloured_objects :- 
 yesno(['Do you want to initialise the colour recognition  
 filter and database? If in doubt, select YES']), 
 retractall(colour_vector(_,_)),  
    % Initialise the database 
 pseudo_colour(on), % Switch pseudo-colour ON 
 create_filter(hue), % Program the “hue” PCF 
 learning_coloured_objects .  
    % Keep going 
 
learning_coloured_objects :- 
 ctm,   % Live video 
 yesno(['Do you want to perform (any more) learning?']), 
 get_parameter_vector(X),  
    % Calculate list of image descriptors,  
    % X 
 learn_coloured_objects1(X,_),  
    % Apply learning  
 !,   % Included for efficient recursion 
 learning_coloured_objects .  
    % Repeat process 
 
learning_coloured_objects. % User indicated learning finished  
 
% Recognition and learning 
learn_coloured_objects1(A,B) :- 
 nnc(A,B,C), % Nearest neighbour classifier  
 B < 100. % Is nearest neighbour distance small enough? 
 
learn_coloured_objects1(X,Z) :- 
 yesno(['No known object has been seen. Do you want to expand  
 the database?']), 
 grb,  % Digitise image. Remind user about object 
 prompt_read(['What do you want to call this object?'],Z),
 assert(colour_vector(X,Z)). 
   % Store details of object in DB 
  
 learn_coloured_objects1(_,unknown).  
   % User decided not to expand database 
 
% Nearest neighbour classifier. (Also see page 309.) 
nnc(_,_,_) :-    
 remember(nnc,[1000000,nothing]),  
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    % Initialise database 
 fail.   % Force this clause to fail 
 
nnc(X,_,_) :- 
 remember(nnc,[1000000,nothing]),  
    % Initialise database 
 colour_vector(Y,Z), % Consult database for descriptor  
    % vector 
 euclidean_distance(X,Y,0,D),  
    % D = Euclidean distance from X to Y 
 recall(nnc,[E,_]), % E = smallest distance encountered so  
    % far 
 E > D,   % Is D smaller than E? 
 remember(nnc,[D,Z]), % It is, save new value & associated  
    % vector 
 fail.   % Force backtracking This clause always  
    % fails 
 
% No more stored vectors to be considered. Return identity of  
% nearest neighbour and distance 
nnc(_,D,X) :- 
 recall(nnc,[D,X]), % Get NN identity (X) and distance D 
 !.   % Not resatisfied on backtracking 

 
The authors have successfully used this learning program to distinguish 

between coloured printed packages. However, some difficulty was encountered, 
when trying to use the program to distinguish certain cartons of this general type, 
since they were found to contain large light brown regions (i.e. cake and pastry) 
and only small areas of other colours (fruit / filling). The program could, of 
course, be modified to look for known proportions of colours within certain 
limited areas of the image, and hence ignore problem regions like this. 

6.7.8 Teaching the PCF by Showing 

Although we have used the hue PCF in Prolog+ programs, we have not yet 
made use of the ability of the colour filter to learn. To understand why this is 
important, consider the task of recognising apples from their colours. It is clearly 
not sufficient to say that apples are always green. Nor are they always red. 
Clearly, the unripe fruit are green and some ripe apples are too. However, the ripe 
fruit can be red, brown (russets), yellow or yellow-green, depending upon the 
variety. It is impossible to define accurately, in words, what is meant by the term 
“apple coloured”. Apart from a set of photographs of apples, there is no known 
object in existence anywhere that contains all of the possible colours that are 
encompassed by this term and no others. In a situation such as this, we have to 
rely upon (machine) learning. We therefore need a Prolog+ program that can 
learn, by progressively updating the contents of the PCF LUT. Such a machine 
should then be able to learn what the concept of “apple coloured” means. 

 The program generates the colour scattergram of the first scene shown to the 
camera. This is then stored and the second scene is analysed, in the same way. 
The new and stored colour scattergrams are then merged (using max) and the 
composite scattergram is stored. Subsequent views are treated in the same way; 
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each new colour scattergram is merged with the previously stored composite 
scattergram and the result is retained for the next learning cycle.  

 
naive_colour_learning :- 
 zer,  % Create all black image 
 wri,  % Initialising intermediate results store 
 naive_colour_learning1,  
   % Auxiliary predicate 
 rea,  % Recover saved image 
 blur,  % Smooth composite colour scattergram-optional 
 thr(8),  % Adjust threshold parameter to taste 
 create_filter. % Program the PCF 
 
naive_colour_learning1 :- 
 grab_3_images, % Digitise RGB colour separations 
 colour_scattergram,  
   % Generated from RGB separations 
 rea,  % Get composite scattergram image 
 max,  % Merge composite and new scattergrams 
 wri.  % Save enhanced composite colour scattergram 
 yesno([‘Do you want to perform more learning’]), 
 !, 
 naive_colour_learning1. 
 
naive_colour_learning1. 

 
It should be noted that this extremely simple learning program does not have 

any provision for synchronising the image acquisition  and learning with external 
events, nor for the user to confirm / cancel self-adaptation. Issues such as these are 
clearly very important in practice but their inclusion here would merely obscure 
the program structure. The algorithm implemented in naive_colour_learning can 
only learn a single colour. It cannot, for example, learn to distinguish between 
apples and bananas, whereas the following program can do so. 

 
% Top level predicate for improved colour learning 
learning_colour :- 
 pseudo_colour(on), % Easier to work with pseudo-colour on 
 ctm,   % Live video, facilitates setting up  
    % the camera 
 ((yesno(['Set up the camera. Do you want to initialise the  
 colour scattergram?']),   
 zer,   % Clear image 
 keep);   % Save image  
 true),   % Force success locally, even if  
    % “yesno” failed 
 repeat,   % Beginning of loop 
 learning_colour1, % Auxiliary predicate where learning is  
    % done 
 ctm,   % Live video 
 not(yesno(['Do you want to perform more learning?'])), 
 ((yesno(['Do you want to use the colour generalisation  
 procedure?']), 
 generalise_colour_recognition);  
    % Optional colour generalisation 
 true).   % Force success locally, even if  
    % “yesno” failed 
 
learning_colour :-  % Finished, so finish off tidily 
 pseudo_colour(off). % Switch pseudo-colour off 
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% Second level predicate 
learning_colour1 :- 
 learning_colour2, % A third level predicate 
 yesno(['A filter for a single colour has been created. Does 
 it achieve a satisfactory discrimination?']), 
  rea,   % Recover image saved 
 get_colour(X),  % Ask user for name / identity no. of 
    % pseudo-colour  
 hil(1,255,X),  % Shade blob to appropriate pseudo- 
    % colour level 
  fetch,   % Get composite scattergram 
 max,   % Superimpose new scattergram on  
    % composite 
 create_filter,  % Program the filter 
 cpy,   % Make copy of composite scattergram 
 ctm,   % Show the user result of new composite  
    % filter  
 yesno(['The single-colour filter has been added (temporarily)  
 to the  existing multi-colour filter Is this OK?']), 
  swi,   % Recover composite scattergram 
 keep,   % Save new composite scattergram 
 !.   % Avoid back-tracking 
 
learning_colour1 :- !. % Force success & avoid back-tracking 
 
% Third level predicate 
learning_colour2 :- 
 grab_3_images,  % Digitise RGB colour separations 
 colour_scattergram, % Generated from RGB separations 
 blur,   % Smoothing  
 thr(32),  % Cut off scattergram tails 
 wri,   % Save the binary scattergram  
 create_filter,  % Program the PCF 
 ctm,   % Live video  
 !.   % Avoid possibility of backtracking 
 
% Find out what pseudo-colour to shade the blobs in the colour  
% triangle 
get_colour(X) :- 
 findall(X,pseudo_colour_value(X,_),Q),  
    % Find list of known colours  
 scroll_menu(['Selecting pseudo-colour to be displayed. Choose  
 just ONE item '], [other | Q],[other],Y), 
 Y = [Z|_],  % Select head if there is more than  
    % item selected 
 not(Z = other), % Abandon this clause if Z = other 
 pseudo_colour_value(Z,X),  
    % Convert from named colour to number 
 !.   % No back-tracking allowed 
 
/* Getting ready for clause 3. Clause 2 simply draws a wedge 
(displayed in pseudo_colour) & a series of vertical black lines to 
indicate which pseudo-colours are already in use. */ 
get_colour(_) :- 
 wgx,   % Intensity wedge 
 pseudo_colour_value(_,Z),  
    % Consult database  
 Z > 0,   % Ignore black - this would cause an  
    % error 
 vpl(Z,1,Z,256,0), % Draw vertical black line 
 fail.   % Go through database. Then force  
    % failure  
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% This clause always follows clause 2. User selects pseudo-colour  
% with the cursor 
get_colour(X) :- 
 pseudo_colour(on), % Switch pseudo-colour ON 
 prompt_read(['Choose a pseudo-colour with the mouse. Avoid  
 the vertical black lines. What do you want to call this  
 colour?'],Y), 
 cur(_,_,X),  % Cursor. User selects colour 
 assert(pseudo_colour_value(Y,X)),  
    % Expand the database 
 pseudo_colour(off), % Switch pseudo-colour OFF 
 !. 
 
% Database converting named colours to numbers 
pseudo_colour_value(red,215).  % Standard colour 
pseudo_colour_value(green,115).  % Standard colour 
pseudo_colour_value(blue,47).  % Standard colour 
pseudo_colour_value(yellow,160).  % Standard colour 
pseudo_colour_value(cyan,95).  % Standard colour 
pseudo_colour_value(magenta,250).  % Standard colour 
pseudo_colour_value(black,0).  % Standard colour 
pseudo_colour_value(white,255).  % Standard colour 
pseudo_colour_value(violet,16).  % Standard colour 
pseudo_colour_value(orange,186).  % Standard colour 
pseudo_colour_value(vanilla_ice_cream,150). % Item added by user 
pseudo_colour_value(cobolt,30).  % Item added by user 

6.7.9 Template Matching of Colour Images 

There is a common requirement in industry to recognise scenes that are repeated 
in time. Consider for example, the task of examining brightly coloured printed 
cartons and containers, such as those used for food products, toiletries, stationery, 
automobile parts, etc. The cartons are moved along, either by indexing, or by 
continuous motion. In the latter case, it often happens that some timing signal can 
be generated to indicate the arrival of the new carton and thereby allow image 
digitisation to be synchronised to the production process. The essential point is 
that, in either situation, the objects being inspected are always viewed in very 
nearly the same orientation and position, lighting and magnification. Template 
matching has traditionally been used in this type of situation, when monochrome 
images are being processed. 

The process of template matching is illustrated in Figure 6.23, and is clearly 
very closely related to N-tuple filtering (Section 2.2.6) and Morphology (Sections 
2.4 and 2.5). Since a PCF maps colour into intensity, it is possible to apply 
template matching to the colour images, as well. The following program performs 
a crude template match, using a stored image, which can be either monochrome, 
or the output of a PCF. 

 
 
template_match :- 
 grb,  % Digitise an image 
 fetch,  % Recover stored mask 
 sub,  % Subtract images 
 avr(X),  % Compute average intensity 
 tolerance_band(P1,P2),  
   % Consult database for tolerance parameters 
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 X ≤ P2,  % Check upper limit 
 X ≥ P1.  % Check lower limit 
 
 

(a) (b)

(c) (d)

(e) (f)  
 

Figure 6.23 Template matching (a) The template. This might consist of 
several disjoint parts, or it might be a single connected shape, possibly 
containing “holes”. (b) Pattern to be compared to the template. (c) By shifting 
the [X,Y] position, the template can be made to fit the pattern exactly. (d) 
When the pattern is made smaller or larger, the template will not fit exactly. 
(e) When the pattern has a different aspect ratio, it will not fit the template 
exactly. (f) When the pattern has been rotated, it will not fit the template 
exactly . 
 
If preferred, the maximum difference of intensity can be used as the criterion for 

establishing a match: 
 
template_match :- 
 grb, 
 fetch, 
 sub, 



 265

 gli(_,X), % Compute maximum intensity difference 
 tolerance_band(P1,P2), 
 X ≤ P2, 
 X ≥ P1. 
 
A third variant is to use the Qth percentile of the intensity difference: 
 
template_match(Q) :- 
 grb,  
 fetch,  
 sub, 
 pct(Q,_), % Threshold at Q’th percentile of int.  
   % difference 
 min,  % Select darkest Q% of the picture 
 gli(_,X), % Find Q’th percentile intensity 
 tolerance_band(P1,P2),  
 X ≤ P2, 
 X ≥ P1. 
 

These three programs are all slightly different variations of the basic template 
matching scheme. However, the following program is fundamentally different, 
since it allows the image to be shifted and rotated before the matching is 
attempted. 

 
template_match(X,Y,Z) :- 
 grb,  % Digitise an image 
 psh(X,Y), % Shift image by [X,Y] 
 tur(Z),  % Rotate image by Z degrees 
 fetch,  % Recover stored mask 
 sub,  % Subtract images 
 avr(X),  % Compute average intensity 
 tolerance_band(P1,P2),  
   % Consult database for tolerance parameters 
 X ≤ P2,  % Check upper limit 
 X ≥ P1.  % Check lower limit 
 

Various methods can be used to calculate the shift and rotation parameters. In 
many instance, of course, the centroid and principal axis (i.e. the axis of minimum 
second moment) could be used to achieve this. Alternatively, certain key features 
could be located first. To illustrate how colour can help to achieve this, consider 
the task of calculating the position and orientation of a red picture playing card. 
(See Image 6.6.) 

 
normalise_card :- 
 grb,  % Digitise image. “hue” PCF programmed 
 wri,  % Save image for use later 
 thr(255), % Select white (i.e. neutral) parts of the  
   % image 
 biggest, % Ignore any smaller bits 
 blb,  % Fill any holes 
 cgr(P,Q), % Centroid 
 rea,  % Recover image stored earlier 
 isolate(red), % Equivalent to “thr(235,254)” 
 biggest, % Isolate red suit symbol at corner of card 
 cwp(U),  % Count white points 
 swi,  % Switch images 
 V is 0.75*U, % 75% of area of red suit symbol 
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 big_blobs(V), % Keeps only 2 suit symbols at corners of  
   % card 
 condense, % Reduce them to single points (centroids) 
 cwp(N),  % Count white points 
 !,  % Avoid backtracking if next goal fails 
 N is 2,  % Check that there are exactly two points 
 get_points([[X1,Y1],[X2,Y2] |_]),  
   % Get co-ordinates of the centroids 
 angle(X1,Y1,X2,Y2,R),  
   % Find angle of line joining [X1,Y1] & [X2,Y2] 
 rea,  % Read image saved earlier again 
 P1 is 128 - P, % Calculate shift along X axis 
 Q1 is 128 - Q, % Calculate shift along Y axis 
 psh(P1,Q1), % Shift image by [P1,Q1] 
 R1 is -R, % Inverse of orientation 
 tur(R1,128,128),  
   % Rotate by -R degrees 
 wri,  % Save image for use again later 
 thr(1),  % Keep everything but black 
 biggest, % Make sure there is only one blob 
 blb,  % Fill any holes in it 
 dim(A,B,C,D), % Find max/min X and Y values 
 A1 is -A +1, % Calculate X shift parameter 
 B1 is -C + 1, % Calculate Y shift parameter 
 C1 is 100*(1- (B - A)/256),  
   % Rescaling parameter for X axis 
 D1 is 100*(1- (D - C)/256),  
   % Rescaling parameter for Y axis 
 rea,  % Recover image saved earlier 
 min,  % Recover image from disc 
 psh(A1,B1), % Shift it by [A1,B1] 
 rescale_axes(C1,D1).  
   % Rescale [X, Y] axes by [C1, D1] 

6.7.10 Using Colour for Object Orientation 

The program listed below was designed to recognise the VISA logo, used on 
credit cards. This consists of a broad blue stripe above the word “VISA”, which is 
printed in blue, with an orange stripe below it. There may well be other 
information in these and other colours on a credit card. In its present form, the 
predicate visa_card uses the ubiquitous hue PCF.  

 
% A naive program for recognising the VISA logo 
visa_card :- 
 grb,  % Digitise an image. “hue’ PCF is being used 
 isolate(blue), % Isolate blue regions, discard all others 
 wri,  % Save image showing blue regions  
 swi,  % Revert to PCF output 
 isolate(orange),  
   % Isolate orange regions, discard all others  
 hin,  % Halve intensities 
 rea,  % Recover image showing blue regions 
 max,  % Superimpose images 
 wri,  % Save image for use later 
 thr(120,130), % Find orange regions again 
 biggest, % Process biggest orange blob only 
 cwp(N),  % Count points in orange stripe 
 lmi(X,Y,Z), % Find its orientation 
 X1 is 128 - X, % Calculate X shift parameter 
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 Y1 is 128 - Y, % Calculate Y shift parameter 
 Z1 is -Z, % Calculate rotation parameter 
 rea,  % Read image saved earlier 
 psh(X1,Y1), % Shift it … 
 tur(Z1), % …and rotate it 
 wri,  % Save image for use later 
 N1 is 0.9*N, % Lower limit: orange stripe size - 10% 
 N2 is 1.1*N, % Upper limit: orange stripe size + 10% 
 thr(1),  % Select all non-black points 
 big_blobs(N1), % Keep blobs with ≥ N1 pixels 
 big_blobs(N2), % Keep blobs with ≤ N2 pixels 
 xor,  % Blue stripe same nominal area as orange  
   % stripe 
 chu,  % Convex hull around blue and orange stripes 
 blb,  % Solid figure enclosing blue & orange stripes 
 rea,  % Recover image saved earlier 
 min,  % Retains blue & orange stripes & word VISA 
 rescale, % Rescale so that the logo fills the image 
 get_parameters(L1),  
   % Calculate parameter list. Example given  
   % below 
 consult_db(L2), 
   % Consult database for reference vector 
 euclidean_distance(L1, L2,0,E),  
   % E is Euclidean distance between L1 & L2 
 writeseqnl(['Euclidean distance =',E]),  
   % Message for user 
 ((E < 5000, % Small difference between L1 & L2 
 writenl('A VISA card was found'));  
   % Announce logo found 
 writenl('No VISA card was found')).  
   % Announce logo was NOT found 
 
% Compute the average intensity in each 64*64 square in the image. 
get_parameters(_) :- 
 remember(par_list,[]),   
   % Initialise list of feature values 
 member(X,[1,65,129,161,193]),  % Select a value for X 
 member(Y,[1,65,129,161,193]),  % Select a value for Y 
 swc(X,Y,32,32),  
   % Place 32*32 processing window at [X,Y] 
 recall(par_list,L),  % Get intermediate results list 
 avr(Z),  % Calculate average intensity 
 remember(par_list,[Z|L]),  
   % Save enlarged intermediate results list 
 fail.  % Step through image 
 
get_parameters(L) :- 
 recall(par_list,L),   % Get result list 
 swc(1, 1, 256, 256).  
   % Reset processing window, 256*256, at [1,1] 
 

In this form, visa_card does not demonstrate good Prolog+ programming style, 
since it is a simple linear list of operations to be performed. The following version 
is probably easier to understand. 

 
visa_card :- 
 grb,  % Digitise image, PCF creates 3-level image 
 wri,  % Save image for use later 
 thr(128,128), % Keep orange pixels; ignore blue for now 
 biggest, % Keep orange stripe in logo only. 
 cwp(N),  % Area of orange stripe in logo is N 
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 normalisation_parameters(X,Y,Z),  
   % Find centroid [X,Y] & orientation, Z 
 rea,  % Recover “raw” image, saved earlier 
  
 size_selector(N),  
   % Keeps blobs with areas = N ± 0.1*N pixels 
 solid_convex_hull,  
   % Draw  solid figure enclosing logo stripes 
 rea,  % Recover image saved earlier 
 min,  % Apply binary image as mask to keep only 2   
   % stripes and word “VISA” in logo  
 translate(X,Y,Z),  
   % Normalise position and orientation of logo 
 rescale, % Rescale so that the logo fills the image 
 recognise(visa_card).  
   % Possible to use template matching here 

 
The first point to note here is that we have assumed that the PCF has been 

specially pre-programmed to recognise only orange (mapped to level 128) and 
blue (level 255). This simple change makes the remainder of the program rather 
easier to understand. Further simplifications are achieved through the use of three 
perfectly standard predicates: normalisation_parameters, translate and rescale. 
Only recognise is specific to this application. Its function is similar to that 
embodied in template_match. 

6.7.11 Approximating an Image by a Set of Overlapping Discs 

Suppose that the colour scattergram of a certain scene has been calculated and 
that we need to find some suitable representation of it, so that, at some time in the 
future, we can reconstruct it. (It will be assumed that we do not have sufficient 
storage space to retain the scattergram in the form of an image.) It is necessary 
therefore to reduce the scattergram to some parametric form. One possible method 
of doing this is to use a set of overlapping discs. (Image 6.7) The parametric 
representation of the scattergram is then in the form of a list of lists, having the 
following structure: [ [X1,Y1,Z1], [X2,Y2,Z2], [X3,Y3,Z3], …, [Xn,Yn,Zn] ], 
where [Xi, Yi] denotes the centre of a white circular disc of radius Zi, i = 1,…,n.  

The program approximate_colour_scattergram calculates these parameters and 
operates according to the procedure explained below. 

 
(i) A scattergram in binary form is first created, by thesholding the colour 
scattergram at some suitable level. (The user might need to adjust the threshold 
parameter experimentally, to obtain the best results. This is usually quite 
straightforward. ) 
(ii) Initialise the parameter list. The initial parameter list could simply be the 
empty list, [ ]. Alternatively, we may wish to extend an existing parameter list, 
for some reason. 
(iii) The grass-fire transform of the binary scattergram image is obtained, using 
the command gft. (See Section 2.3, Figure 2.10) 
(iv) The brightest point in the image is then found. Suppose that its intensity is 
Z and its position is [X,Y].  
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(v) Superimpose a black disc, centred at [X,Y] and with radius Z, onto the 
image. 
(vi) Append [X,Y,Z] to the parameter list. Notice that  [X,Y,Z] defines the disc 
completely. 
(vii) Perform steps (iv) to (vi), until the brightest pixel in the image has an 
intensity less than some pre-defined limit. (This has been arbitrarily set to 3 in 
the program listed below.) 
 
/* Approximate white regions in a binary image by a set of discs, 
which may but need not overlap. Big circles are put into place 
initially, followed by progressively smaller ones.  The grass-fire 
transform is used to find out where large circles can be placed. */ 
approximate_colour_scattergram :- 
 yesno(['Do you want to retain any previously stored details  
 about colour histogram approximations?']), 
 cover_image(A), 
   % Cover white region with black discs 
 asserta(disc_parameters(A)).  
   % Save position & size parameters in database 
 
approximate_colour_scattergram :- 
 retractall(disc_parameters(_)),  
   % Clear the database 
 cover_image(A), 
   % Cover white region with black discs 
 asserta(disc_parameters(A)).  
   % Save position & size parameters in database 
 
/* Perform the approximation. Large discs will be fitted first. A 
is the list of disc position and size parameters. */ 
cover_image(A) :- 
 gft,  % Grass fire transform. 
 wri,  % Save image for use later 
 reduce([],A). % Approx. white regions with overlapping discs 
 
/* This predicate is the one that does the hard work. It 
progressively “nibbles away” the white regions, by superimposing 
black discs onto it. */ 
reduce(A,B) :- 
 rea,  % Get image stored earlier 
 gli(_,Z), % Find maximum intensity 
 Z > 3,  % Ignore very small discs. Adjust to taste 
 thr(Z),  % Threshold at maximum intensity 
 top_left(X,Y), % Get address of top-left most white pixel 
 swi,  % Revert to grey-scale image 
 draw_disc(X,Y,Z,0),  
   % Draw black disc at [X,Y] with radius Z 
 wri,  % Save image  
 reduce([[X,Y,Z]|A],B). 
   % Disc parameters added to list. Continue 
 
reduce(A,A).  % End recursion; no more big discs can be  
   % added 
 
% Sample of the database where disc parameters are stored. 
disc_parameters([[100,100,25], [110,125,30], [95,126,16]]). 
 

Given a parameter list in the same format, rebuild_colour_scattergram  allows 
us to reconstruct the scattergram. The program allows each blob (formed by a set 
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of overlapping circles) in the reconstructed image to be assigned a different 
intensity and then programs the PCF. 

 
% Rebuild the colour scattergram by drawing a set of overlapping  
% discs 
rebuild_colour_scattergram :- 
 disc_parameters(A),  
   % Get disc parameter list from database 
 zer,  % Create black image to initialise the process 
 draw_discs(A), % Draw discs with parameters defined by A 
 yesno(['Do you want to program the colour filter?']), 
 label_blobs, % Shade blobs  
 3•lnb,  % Optional: may make PCF more robust 
 create_filter. % Program the PCF from the current image 
 
rebuild_colour_scattergram.  
   % Force this predicate to succeed 
 
/* Drawing a set of white discs, which may but need not overlap. 
The position and size parameters are defined by the “input” list 
[A|B]. */ 
draw_discs([]). % Terminate recursion, no more discs to draw 
 
draw_discs([A|B]) :- 
 A = [X,Y,Z], % Decompose A into three components 
 draw_disc(X,Y,Z,255),  
   % Draw disc at [X,Y], radius Z, intensity 255 
 !,  % Included for the sake of efficiency of  
   % recursion 
 draw_discs(B). % Repeat, draw all discs defined in database 

6.7.12 Interpreting Resistor and Capacitor Colour Codes 

In developing a Prolog+ program capable of interpreting resistor and capacitor 
colour codes, (Figure 6.24) there are several sub-problems that must be solved. 

 
(a) Obtaining a good image. Resistors are small and shiny. Solder joints can 
cause serious glinting problems. This problem can be solved by paying careful 
attention to the optics and lighting. 
(b) Recognising resistors. In the general case, this is may present considerable 
difficulties, since resistors and capacitors are highly variable in appearance. The 
PCB also forms a highly variable and complex background. However, a great 
deal of help can be obtained by using the fact, that in most cases, the layout of 
the PCB is predictable. In these instances, this sub-problem reduces to a trivial 
level. 
(c) Deciding the component polarity. (i.e. which way round the colour code is to 
be read.) There only two alternatives for resistors and only one option for 
capacitors like that sketched in Figure 6.24. The spacing of the colour bands can 
be of assistance in this decision. 
(d) Identifying the colour code bands. (This and step (e) might be merged.) The 
resistor body may be coloured and must be ignored. In some cases, when the 
colour of the resistor body is known beforehand, this task becomes trivially 
easy. 
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(e) Recognising colours in the code. This is the task for which we might well 
use a colour filter, although there may be some difficulties. This arises because 
some of the code colours are ill suited for automatic recognition using a PCF. 
Brown, grey, silver and gold are especially difficult. It would be possible to 
select a much better set of colours, as far as the colour recognition system is 
concerned, but of course, the whole electronics industry would be reluctant to 
adopt a new standard simply for our benefit ! 
(f) Interpreting the code; calculating the resistance/capacitance value, decoding 
the tolerance and working voltage. 

 
The general unconstrained task of reading resistor/capacitor colour codes 

clearly requires a considerable amount of program intelligence. Since it is not our 
intention here to try to describe a complete solution for this challenging problem, 
let is suffice to say that the combination of colour recognition and intelligent 
image interpretation that is embodied in Prolog+ is exactly what is needed. We 
conclude by presenting a simple little program that performs the last mentioned 
task, (f), of interpreting the resistor colour code. resistor is the top level predicate 
for calculating numeric values, for resistors with only three colour bands. (i.e. 
tolerance = ± 20 %). The goal resistor(brown, black, green, Z) will instantiate Z to 
the resistance, expressed in Kilo-ohms (KΩ). If the computed resistance is not a 
preferred value, resistor will fail. 

  
resistor(A,B,C,D) :- 
 value1(A,A1),  % Interpret Band 1 colour as a number 
 value1(B,B1),  % Interpret Band 2 colour as a number
 value3(C,C1),  % Interpret Band 3 colour as a number 
 !,   % Force failure; not preferred value 
 Z is 10*A1 + B1, % Combine Bands 1 and 2 
    % List of preferred values follows 
 on(Z,[10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51, 
 56,62,68,75,82,91]), 
 D is Z*C1.  % Compute final value  
 
% Interpreting Bands 1 and 2 as numbers 
value1(black,0). value1(brown,1). value1(red,2). value1(orange,3).   
value1(yellow,4). value1(green,5). value1(blue,6).  
value1(violet,7). value1(grey,8). value1(white,9). 
 
 
% Interpreting Band 3 as a number 
value3(silver, 0.00001). value3(gold, 0.0001). value3(black,0.001). 
value3(brown,0.01). value3(red,0.1). value3(orange,1). 
value3(yellow,10). value3(green,100). value3(blue,1000). 

 
The reason for including this program here is to emphasise the general point 

that the interpretation of colour images may well require a high level of intelligent 
activity on the part of the program. In other words, the mere recognition of 
colours, or any other features in an image, is insufficient to meet the needs of 
many inspection and other machine vision tasks. 
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Figure 6.24 Resistor and capacitor colour codes. 

6.8 Discussion and Conclusions 
The results of a series of varied experiments involving colour recognition are 

presented in the coloured plates. Notes describing these applications are given in 
the legends. When working on colour recognition, it is important that we use a 
stable light source. (Image 6.9) There can be a distinct shift of the colour 
perceived by a colour recognition system, if the light source is changed from one 
type of lamp to another.  

Evidence of the importance that we place on colour is to be found in the fact 
that a large proportion of manufactured goods are coloured. Despite this, 
relatively little work to date in machine vision has concentrated on the 
development of industrial inspection systems capable of detecting colour. There 
exists a new and exciting technique for recognising colours, based upon the 
programmable colour filter. The PCF is simple to implement and fast in operation 
and it can perform any task that is possible using the RGB, opponent process, 
YIQ and HSI representations of colour. It is capable of recognising almost all the 
“named” colours that are familiar to us in everyday life. Moreover, it can learn 
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new colours, such as “banana yellow”, “strawberry red”, “cucumber green”, etc. 
A number of programs have been presented that make use of colour recognition in 
a variety of ways, including self-learning. However, it is the use of colour in 
declarative programming that is most exciting. 

Let us perform a simple thought experiment. Suppose that we want you find a 
certain object. Let us call it XXXX. (There are no prizes for guessing what class 
of objects we have in mind) We might describe XXXX in the following way: 

 
1. An XXXX is yellow-green, yellow, or yellow with brown spots. 
2. An XXXX is between 60 and 300 mm long. 
3. An XXXX is between 15 and 60 mm in width. 
4. An XXXX is curved in a simple arc. 
 
Your task now is to find an XXXX. Look around the room where you are 

sitting. Can you see an XXXX? You might find an XXXX in your lunch box ! Of 
course, there are many objects in the universe that conform to rules 2, 3 and 4. A 
small cucumber does, for example. However, there are far fewer objects in 
existence that conform to all four recognition rules. By adding information about 
the colour of an XXXX, we are able to be very much more specific. It is very 
unlikely that, unless you have a banana for lunch today, or you are reading this 
book in the kitchen, that you will find an XXXX. We must not confuse ourselves 
by believing that XXXX and banana are synonymous. Our rules are perfect for 
recognising XXXXs but are prone to producing false positive responses for 
bananas. By using colour, we have simply made the number of false positive 
responses rather smaller. 

In order to emphasise the potential value of colour recognition in declarative 
programming, consider Figure 6.25. Suppose that a “general purpose” machine 
vision system is to be built, to monitor the manufacture and packaging of 
household and industrial chemicals, such as cleaning fluid, polish, detergent, etc. 
A new product line is about to be introduced and will be distributed in bright blue 
plastic containers, with red tops. (See Figure 6.25) Colours on products like these 
are carefully chosen, both to project the corporate image and to provide a warning 
that the fluid in the bottles is corrosive. The task before us is to reprogram the 
supposedly “general purpose” vision system, so that it will recognise the new 
bottles and distinguish them from other types and from malformed bottles. In 
many cases like this, we would like to avoid reprogramming the vision system 
using low-level computer languages, such as C, Pascal, or even Prolog+. Nor do 
we want to have the task of programming a PCF on the factory floor, since this is 
a fairly complicated procedure, requiring skilled labour. We simply want to be 
able to use low-skill labour, communicating with the machine in a way that is both 
natural and straightforward. In Chapter 4 we discussed the rôle of natural 
language for programming machine vision systems. The point to be made here is 
simply that it is legitimate to include terms relating to everyday colours in the 
vocabulary of the language, since the means exists for recognising a wide range of 
tones. A description of the bottle portrayed in Figure 6.25 in constrained English 
might be something like this: 
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1. A is  a red  rectangle  
2. A is at the top of the image.. 
3. A has area Z4  ±10% and height Y4 ± 5%. 
4. B is a blue rectangle  
5. B has area Z3 ±10% and height Y3± 5%. 
6. B is below A. 
7. C is mixed_colour 
8. C has area Z2 and height Y2. 
9. C is below D. etc. 
 
For many purposes, this provides an adequate basis for recognition. The use of 

colour makes the definition much more specific than it would be with only 
monochrome image processing at our disposal. 

 
 

Cap: 
red, 
area = Z4, height = Y4
Bottle shoulders: 
blue, 
area = Z3, height = Y3
Label: 
Mixed red, yellow and black, 
area = Z2, height = Y2

Bottle base: 
blue, 
area = Z1, height = Y1  

 
Figure 6.25 Using colour in declarative programming. The object represented 
diagrammatically here is a plastic bottle containing household bleach. 
 
 



 

 
7 
 
Applications of Intelligent Vision 

 
 
 
 
 

7.1 Recognition of Printed Patterns 
Optical character recognition (OCR) is concerned with the reading of printed 

text by machine. The subject was first studied seriously in the 1960s, when it was 
regarded as a very expensive technology. OCR is now common-place; indeed, it is 
possible to buy a reliable software package that will read laser-quality printed text, 
for a few hundred dollars. 

In this case study, we shall consider the recognition of printed patterns but not 
conventional text. The programs that we shall describe are capable of 
distinguishing printed letters and we shall discuss this particular topic. It should 
be understood, however, that our primary concern is not to re-invent OCR but to 
demonstrate the power of Prolog+. Our research in this area has been motivated 
by the observation that an industrial machine vision system is sometimes required 
to recognise members of just a few well-formed printed patterns. Figure 7.1.1 
illustrates several tasks typical of this type and we shall discuss these in turn. 

7.1.1 Non-picture Playing Cards 

Recognising the playing card suit symbols is straightforward; we simply count 
the number of  bays (i.e. blobs in the convex deficiency). That is, we construct the 
convex hull (Prolog+ operator chu), then apply the blob-fill operator (blb), 
followed by the exclusive OR operator (xor). Finally, we count the blobs. If there 
are four blobs, the card belongs to the “club” suit (♣). If there are 2, the card is a 
“spade” (♠). If there is only one, the card is a “heart” (♥) and if there are none, 
the card is a “diamond” (x). Any other value indicates an error. Here is a Prolog+ 
program for recognising the suit and value of a non-picture playing card. 

  
playing_card :- 
 loa, enc, wri(temp1), thr, neg, big, wri(temp2), cwp(A), 
 B is A//2, swi, ndo, hgi(C), list_elements_greater(C,B,D), 
 length(D,E), V is E - 1, rea(temp2), cvd, cbl(F), suit(F,G), 
 rea(temp1), writeseqnl(['The card is the',V,'of', G]). 
 
suit(4,clubs). 
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suit(2,spades). 
suit(1,hearts). 
suit(0,diamonds). 
suit(_, 'unknown suit'). 

 
The task of recognising the picture cards will be solved by recognising the 

letters A, J, Q and K, and is discussed in Section 7.1.4. 
 

♣♠♥♦ 
 

C D F 8 
☺./ 

A J Q K 
 
Figure 7.1.1 Four typical discrimination tasks,. Each requires choosing 
among a small number of well-defined printed patterns. 

7.1.2 “Stars” 

The “stars” in Figure 7.1.1 can be distinguished almost as easily, as the suit of a 
playing card. The following table shows how this can be achieved. 

 
Character No. of bays No. of lakes 

C 5 5 

D 8 9 

F 6 6 

8 8 8 

 
Notice that this time, however, we must use another measure, the number of 

lakes. The program can be made more robust and we can, of course, distinguish 
more classes of patterns, if we derive more measurements simultaneously. 
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7.1.3 “Smiley Faces” 

Although, the “smiley faces” cannot be distinguished quite so easily, the task is 
nevertheless quite straightforward. Here is the program: 

 
face(A) :- 
 pre_process_face, % Convert to binary form & save image on disc 
 test_face,  % Is this a valid face image ? 
 find_smile(A). % Find facial expression  
 
face('Face not found'). % Image was not a face 
 
pre_process_face :- 
 grb,  % Digitise image 
 enc,  % Enhance contrast 
 thr,  % Threshold  
 neg,  % Negate image 
 blb,  % Fill lakes 
 xor,  % Exclusive OR - to isolate “lakes” 
 wri,  % Save image for use later 
 blb,  % Fill lakes 
 xor,  % Exclusive OR - to isolate “lakes” 
 biggest,  % Isolate largest blob i.e. mouth 
 yxt,  % Interchange X and Y axes 
 keep.  % keep image for further analysis 
 
% Is the image likely to be a face ?  
test_face :- 
 rea,  % Read image saved earlier 
 blb,  % Fill lakes 
 shape_factor(A), % Calculate (Area/Perimeter^2) 
 A > 0.8,  % Is shape factor large enough for  
   % approximate circle? 
 rea,  % Read image again 
 eul(B),  % Euler number 
 B is -2.  % Face has one blob and three lakes 
  
% Calculate the shape factor  
shape_factor(C) :- 
 cwp(A),   % Area 
 perimeter(B),   % Perimeter 
 pi(Pi),   % Pi = 3.14… 
 C is (4*Pi*A)/(B*B).   % 4*pi*Area/Perimeter 
 
% Find expression of mouth 
find_smile(happy) :-  % Mouth turned up - happy 
 fetch,   % Recover image saved earlier 
 rox,   % Row maximum 
 chu,   % Convex hull 
 max,   % Logical OR 
 blb,   % Fill lakes 
 xor,   % Exclusive OR 
 cwp(N),   % Area 
 N ≥ 100.   % Is mouth turned up enough? 
 
% Same as previous clause, except for line 2 
find_smile(sad) :-  
 fetch, 
 lrt,   % Invert X-axis 
 rox, chu, max, blb,  
 xor, cwp(N),  
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 writenl(N),  
 N ≥ 100. 
 
find_smile(neutral).  % Mouth is neither turned up nor down 

 
While the above program was originally intended for recognising the printed 

faces in Figure 7.1.1, it is robust enough to cope with hand-drawn faces, provided 
the outline is a closed contour. (Figure 7.1.2) The reader may like to ponder about 
the changes needed to cope with drawings where this condition is not met. 

 

 
 

Figure 7.1.2 Four hand-drawn face images. 

7.1.4 Alphanumeric Characters 

The task of distinguishing between the following sans serif characters (Arial 
font) can be easily achieved using the numbers of lakes, bays, skeleton limb-ends 
and joints.  

 

A, J, Q, K  
 
For such a simple discrimination task, a person can easily write down the 

feature values, without the use of an image processing system, and then verify that 
they are unique: 

 
Character [Lakes, Bays, Limb-ends, Joints] 

A [1,1,2,2] 
J [0,1,2,0] 
Q [1,2,2,1] 
K [0,3,4,2] 

 
For more complex recognition tasks, requiring the discrimination of more 

character classes, it may well be necessary to employ more measurements. Table 
7.1.1 lists the values of 8 parameters which can distinguish the numerals 0 - 9 in 
Times Roman font. The task of choosing a feature set which can distinguish the 
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26 lower-case, 26 upper-case, numerals 0 - 9, punctuation and special symbols (+, 
£, $, @, &, *, ?, /, etc.) is difficult and is almost certainly beyond the capability of 
a person working unaided. The situation is made worse by the fact that some 
patterns produce measurement vectors which are unstable. For example, the 
number of bays may change, depending upon noise.  

 
 

Pattern Measurements 
Times Roman 

Font 1 2 3 4 5 6 7 8 

0 0 1 0 X X X X X 
1 1 0 2 X X X X 1 
2 1 0 2 1 X X X 2 
3 1 0 2 0 2 3 3 3 
4 0 1 3 X X X X X 
5 1 0 2 0 X X X 2 
6 0 1 1 0 X X X X 
7 1 0 1 X 1 2 2 X 
8 X 2 X X X X X X 
9 0 1 1 1 X X X X 

10 2 1 2 X X 1 X 1 
11 2 0 3 X X 0 X 1 
12 2 0 3 1 X 2 X 1 

 
Table 7.1.1 Recognising the digits 0 - 9 and the compound patterns ‘10’ - 
‘12’, in Times Roman font. X indicates “Don’t Care”. Measurements 1 - 8 
are defined as follows: 1. Euler number. 2. Number of holes (lakes). 3. 
Number of indentations (bays). 4. Equal to 1 if the largest blob in the convex 
deficiency (i.e. bay or lake) is above the second largest. Equal to 0 otherwise. 
5. The number of times the vertical line L1 intersects the character. (See 
Figure 7.1.3) 6. The number of times the vertical line L2 intersects the 
character. (See Figure 7.1.3) 7. The number of times the vertical line L3 
intersects the character. (See Figure 7.1.3) 8. The number of blobs generated 
by the following sequence: rox, xor, skw, exw. 
 
When we try to accommodate a mixture of fonts, the situation quickly becomes 

quite unmanageable. This is why we need to employ learning techniques. Before 
we consider this topic in detail, here is a Prolog+ program which can discriminate 
the numerals  0 - 9, in Times Roman font. (See Figure 7.1.3.) 

Program 
% Top level predicate: recognising well formed printed alpha- 
% numeric characters. 
recognise_alpha_numeric(X) :- 
 alpha_numeric_features(A,B,C,D,E,F,G,H), 
 stored_features(A,B,C,D,E,F,G,H,Q), 
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 writeseqnl([[A,B,C,D,E,F,G,H], ' was classified as ',X]). 
 
% Database: Times Roman font. Other fonts may not be recognised  
% correctly 
stored_features(0,1,0,_,_,_,_,_,zero). 
stored_features(1,0,2,_,_,_,_,1,one). 
stored_features(1,0,2, 1, _,_,_,2,two).      
stored_features(1, 0, 2, 0, 2, 3, 3,3,three).  
stored_features(0, 1, 3, _,_,_,_,_,four).  
stored_features(1, 0,2, 0, _,_,_,2,five). 
stored_features(0, 1, 1, 0, _,_,_,_,six).  
stored_features(1, 0, 1, _, 1, 2, 2,_,seven).  
stored_features(_,2,_,_,_,_,_,_,eight).   
    % Only one feature needed to find ‘8’ 
stored_features(0, 1, 1, 1, _,_,_,_,nine).  
stored_features(_,_,_,_,_,_,_,_,not_known). 
    % Character is not recognised 
 
% Eight “logical” shape features. (i.e. these must match the stored  
% values exactly) 
alpha_numeric_features(A,B,C,D,E,F,G,H) :- 
 wri,  % Save image for future reference 
 eul(A),  % Measurement 1: Euler number 
 holes,  % Isolate lakes (holes) 
 cbl(B),  % Measurement 2. Number of lakes (holes) 
 rea,  % Get stored image back again 
 bays,  % Isolate bays (indentations) 
 cbl(C),  % Measurement 3. Number of bays 
 rea,  % Get stored image back again 
 biggest_bay_top(D), % Measurement 4: Biggest bay above/below 2nd  
   % largest 
 rea,  % Get stored image back again 
 rox,  % Row maximum - form “shadow” 
 xor,  % Exclusive OR - by shadow by removing  
   % original figure 
 skw,  % Shrink white to eliminate any very small  
   % regions present 
 cbl(H),  % Measurement 8: Number of blobs in “shadow” 
 rea,  % Get stored image back again 
 vertical_scan_count(E,F,G). % Measurements 5-7. Vertical slicing 
 
% Count number of times 3 equally spaced vertical slices cut the  
% figure 
vertical_scan_count(P,Q,R) :- 
 normalise,  % Normalise position in centre of image 
 wri,  % Store image 
 dim(A,B,_,_),  % Minimum and maximum X and Y 
 C is (B - A)//4, 
 E is 128 - C, F is 128 + C, 
 zer,  % Black image 
 vpl(E,1,E,255,64), % Draw vertical line left of centre of image 
 vpl(D,1,D,255,128), % Draw vertical line through centre of image 
 vpl(F,1,F,255,192), % Draw vertical line right of centre of image 
 rea,  % Read normalised image 
 min,  % Mask figure and 3 lines 
 wri, thr(64,64), 
 count(blobs,P),  % No. of chords formed by left-hand vertical  
   % line 
 rea, thr(128,128), 
 count(blobs,Q),  % No. of chords formed by central vertical  
   % line 
 rea, thr(192,192), 
 ccount(blobs,R). % No. of chords formed by right-hand vertical  
   % line 
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% Is the biggest blob in the convex deficiency above below the  
% second largest. (Similar to predicate bbt.) 
biggest_bay_top(0) :-  
 chu, % Convex hull 
 max, % Maximum - superimpose convex hull on figure 
 blb, % Fill holes 
 xor, % Exclusive OR: isolate lakes and bays and lakes 
 biggest, % Largest blob 
 cgr(_,Y1), % Find its vertical position 
 xor, % Remove biggest blob in convex deficiency 
 biggest, % Gets second largest blob in convex deficiency 
 cgr(_,Y2) % Find its vertical position 
 (Y1 > Y2, A is 0); A is 1). % Fix “output” value 

 

Measurement 4  
(value 0 for this example)

Measurements 5 - 7 
(Scan lines L1-L3 intersect 
the numeral (3,3,3) times)

Largest bay is below 
second largest bay

Second 
largest bay

Measurement 8 
("Shadow" produces 3 blobs)

3 areas created by shadow

Measurements 2 & 3 
(Lakes & Bays )

L1 L2 L3

Lake

Bay

 
 

Figure 7.1.3 Measurements 2 - 8 for recognising the digits 0 - 9 and the 
compound patterns ‘10’ - ‘12’, in Times Roman font. 

Comments 

An observant reader will have spotted the fact that the set of measurements 
created by alpha_numeric_features is redundant; the number of lakes is equal to 
(1 - E), where E is the Euler number. However, there are some occasions when it 
is useful to know the Euler number. Two lower-case letters, i and j consist of 
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more than one component and the Euler number provides an easy way to 
distinguish these letters from 1 and l. In its present form, however, the program 
could not distinguish i from j, nor 1 from l. The inclusion of the Euler number 
also enables the program to cope with compound patterns, such as 10, 11 and  12. 

Logical and Analogue Shape Measurements 

The predicate recognise_alpha_numeric suffers from a serious problem: the 
measured and stored feature lists must match one another perfectly. Hence, the set 
of features generated by alpha_numeric_features must be exactly the same as one 
of the lists held in stored_features. For this reason, the predicate 
recognise_alpha_numeric behaves in a logical manner, since it requires an exact 
match between measured and stored parameter values. (Of course, “don’t care” 
conditions are allowed under this scheme.)  

In Figure 7.1.4, three analogue measurements are defined for describing the 
alpha-numeric pattern ‘5W’. By the term analogue, we mean that the 
measurements are continuously variable and a perfect match with stored values 
may not be possible 

Recognition Criteria (logical) 
 
One lake 
Five bays 
Two limb ends 
 
Recognition Criteria (analogue) 
 
Aspect ratio (width : height) 
Ratios of areas of lakes (e.g. biggest : second largest) 
Ratio of area of convex hull : area of original figure 
 

Bays

Lake

 
Figure 7.1.4 Logical and analogue measurements for describing the 
compound pattern ‘5W’. Notice that this consists of a singe blob. 
 

7.2 Manipulation of Planar Objects  
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Our objective in what follows is to pick up only those flat laminate objects that 
are known to the vision system, using a visually guided robot. “Unknown” objects 
are to be located and the user warned that moving them would be unsafe. It is 
possible to use any robot which is able to manipulate objects lying on a plane 
table. We shall explain how the Flexible Inspection Cell (FIC) can be used for this 
purpose. However, a SCARA or gantry robot, fitted with an overhead camera 
could be used instead. There are three phases in the operation of such a system: 

 
(a) Calibration. The automatic calibration of a robot vision system which uses 
an overhead camera has already been explained in detail (Section 5.7) and so 
will not be discussed again here.  
(b) Learning. The vision system learns typical values for a set of size and shape 
parameters characterising each class of objects that is to be moved by the robot. 
(c) Recognition. The vision system guides the robot a it picks up objects that are 
similar to those encountered during the learning phase.  

7.2.1 Assumptions 

As usual, a series of assumptions is imposed, to make the problem tractable.  
 
(i) The Flexible Inspection Cell (Section 5.5) will be used to demonstrate the 
ideas outlined below. Remember that the FIC incorporates an (X,Y,θ)-table, a 
pneumatic pick-and-place arm, computer-controlled lighting and an overhead 
camera, which looks vertically downwards, onto the table top.  
(ii) The top surface of the (X,Y,θ)-table is matt black. 
(iii) A set of thin, nominally white laminate objects are placed haphazardly on 
the table top.  
(iv) The objects lying on the table top do not touch, or overlap. 
(v) During the learning phase, a person is able to name each object that the 
system sees. 
(vi) During the recognition phase, the system is expected to work 
autonomously, without any human intervention. However, the user is to be 
informed about unknown objects and those that are considered to be unsafe to 
handle using the robot.  
(vii) Objects that are similar to those seen during training are picked up by the 
robot.  
(viii) Objects that are unlike any seen during training are identified but are not 
picked up by the robot. 
(ix) Some objects would be unsafe to lift because the suction gripper is too large 
and overlaps their sides. Such objects are to be identified but not lifted by the 
robot. 
(x) The FIC has already been calibrated. (See Section 5.7.1.) 
(xi) A simple goal of the form pick(X,Y,Theta,Q) is used to order the FIC to pick 
up an object of type Q, located at [X,Y] and with orientation Theta. It is 
assumed that the label Q indicates where the object is to be placed. Thus, the 
system is able to sort objects, placing them in bins according to their type. 
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(xii) To minimise errors when calculating the positions of an object on the 
table-top, the lights should be placed close to the overhead camera. However, 
care must be taken to avoid glinting. It will be assumed that glinting does not 
occur. 
 
Compared to our naïve expectations, the task that we have just described is 

surprisingly complicated; there are many different aspects of the system behaviour 
which do not immediately come to mind.  

7.2.2 Significance 

Many industrial assembly, and sorting tasks can be solved using the same basic 
arrangement, consisting of an overhead camera to guide a robot that moves an 
object on a flat table top. Consider the task of sorting components made using a 
stamping, moulding, or die-casting machine. It is assumed that the sprue has been 
removed automatically and that a series of different components have fallen in 
random position and orientation onto the table. The visually guided robot could be 
used to sort them, placing each type of product into a separate bin. Objects that 
touch or overlap can be accommodated within the constraints imposed by the 
assumptions listed above. This process consists of two stages: 

 
(i) Two or more touching / overlapping objects together form a single 
“unknown object” that the robot will not try to lift. Thus, identifying them is a 
necessary prelude to step (ii). (It is, of course, a good idea to pick up “known” 
objects first.) 
(ii) The robot can nudge an “unknown object” from the side, to try and separate 
it into objects that it can recognise and handle individually.  
 
The task of identifying shapes is an important prelude to packing. (See Section 

7.3 for a detailed discussion on the issues relating to automated packing systems.) 

7.2.3 Simple Shape Measurements 

In Section 7.1, we described a set of shape measurements, which could be 
used/adopted for the present task. However, the six parameters calculated by the 
predicate measurements, as used in our experiments, are slightly different and are 
defined below. (Also see Figure 7.2.1.) 

 
1. Area of the object silhouette. (Variable A) 
2. Length of the object, measured along the principal axis (i.e. axis of minimum 
second moment). (Variable D1) 
3. Width of the object measured in a direction normal to the principal axis.  
(Variable D2) 
4. The ratio D1/D2. (Variable R) 
5. The area of the convex hull divided by the area of the silhouette. (Variable S) 
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6. The area of the minimum enclosing rectangle, divided by the area of the 
silhouette. (Variable T) 
 

D1

D2

Convex hullInput shape
Minimum enclosing

rectangle

Principal
axis

D1

 
Figure 7.2.1 Parameters calculated by the predicate measurements. 

 
A crude linear rescaling is included in the definitions of A, R, S and T, to make 

sure that each of the measured parameters lies in roughly the same range. Notice 
that variables R, S and T are all size independent, while D1 and D2 all vary with 
object size and optical magnification.  

 
measurements(V) :- 
 rea,  % Read “input” image saved earlier 
 cwp(B),  % Area  of the object silhouette 
 A is B//40,  % Rescaling 
 rea,  % Read “input” image 
 normalise,  % Normalise both position and orientation  
 dim(X1,X2,Y1,Y2), % Dimensions of minimum enclosing rectangle 
 rea,  % Read “input” image 
 chu,  % Convex hull 
 blb,  % Fill it 
 cwp(C),  % Area of convex hull 
 S is (100*C)//B, % Simple arithmetic, including rescaling 
 D1 is X2 - X1, % Length along principal axis 
 D2 is Y2 - Y1, % Width normal to principal axis 
 R is (100*D2)//D1, % Simple arithmetic, including rescaling 
 T is (100*D1*D2)//C,% Simple arithmetic, including rescaling 
 V = [A,D1,D2,R,S,T],% Fix “output” list 
 rea.  % Read “input” image 

 
Figure 7.2.2 shows four objects used to demonstrate the ideas we are 

discussing. The learning program (learn) defined in Section 7.2.5 calls 
measurements and when applied to this image asserts the following facts into the 
database. 

 
object_data([100, 141, 78, 55, 208, 131], 'Conrod'). 
object_data([67, 94, 89, 94, 197, 157], 'Y shape'). 
object_data([97, 123, 110, 89, 190, 182], '3-pointed star'). 
object_data([97, 158, 50, 31, 139, 144], 'Spanner'). 
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It is important to note that learn has been written in such a way that it is a trivial 

matter to compute different or additional shape / size parameters: we simply 
redefine the predicate measurements. No other changes to the program are 
necessary. 

 

 
 

Figure 7.2.2 Four objects for use with learn and recognise. 

7.2.4 Learning and Recognition 

Before we present the learning program, we must spend a little time discussing 
how decisions can be made when a set of imprecise measurements is available. 
When a program such as measurements is applied to a set of objects of the same 
nominal type, the parameter values so obtained are liable to vary. Even if they 
were all identical, quantisation noise would cause some fluctuation of the 
measured values. When we apply measurements in its present form, each object is 
described by a set of six numbers. In more general terms, an object (Q) can be 
described by a vector, X, containing n numbers (X1,  X2, …, Xn). A set of m 
reference vectors, describing archetypal objects of each class, will be stored by 
our program. These will be denoted by Y1, Y2  … , Ym, where Yi =  (Yi,1,  Yi,2, 
…, Yi,n) 

The Yi (i = 1, …, m) describe objects which have been examined by a human 
inspector and are known to be “good” and are typical of their class. (Later, we 
shall see that it is possible to have more than one archetype representing each 
class.) The similarity between two objects represented by vectors X and Yi can be 
assessed by measuring the Euclidean distance (D(X,Yi )) between them:  

 
D(X,Yi ) = √( (X1 - Yi,1)2 + (X2 - Yi,2)2 +… + (Xn - Yi,n)2 ) 
 
The larger D(X,Yi) is, the smaller the similarity is between the shapes they 

represent. Thus, an object of unknown type and which is represented by a vector 
X can be attributed to an appropriate class by finding which of the Y1, Y2  … , 
Ym is closest to  X. This leads us to the idea of a Maximum Similarity Classifier. 
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The more usual name for this is a Nearest Neighbour Classifier (NNC), and is 
explained in diagrammatic terms in Figure 7.2.3. (Also see Figure 6.22.) Each of 
the Yi (i = 1, …, m) is associated with some class label Ci (i = 1, …, m). The 
NNC attributes X to class Ci if D(X,Yi ) ≤  D(X,Yj), (j ≠i, 1, …, m). 

 

Dmax

Y1

Y2

Y3
Y4

Y5

Q

D(Q,Y2) < D(Q,Yi), i ≠ 2,
but D(Q,Y2) > Dmax. So,
Q is classified as unknown

X1

X2

D(P,Y2) < D(X,Yi), i ≠ 2,
and D(X,Y2) ≤ Dmax. So, P is
attributed to the same class as Y2

P

 
 

Figure 7.2.3 Nearest Neighbour Classifier (NNC). 
 
In our simple exercise there is probably no need to store more than one 

reference vector Yi for a given value of Ci. We are considering shapes that are 
very similar to their respective archetypes but are very different from members of 
any other class. However, the NNC does permit this option. In order to select 
suitable values for the Yi in this straightforward application, we simply apply 
measurements to one “good” example of each category of shape that we wish to 
recognise in future. The parameters so obtained are then stored in the Prolog 
database.  This is the basis of the predicate learn, whose listing we are about to 
present. The shape recognition process is accomplished by recognise, which 
implements a simple Nearest Neighbour Classifier. 

7.2.5 Program Listing 

% Learning phase 
learn :- 
 retractall(object_data(_,_)), % Clear the database 
 preprocess,    % Simple image processing 
 analyse_binary_image1.  % Measure each blob in the image 
 
% Recognition phase  
recognise :- 
 preprocess,   % Simple image processing 
 analyse_binary_image2. % Analyse each object/decide what to do 
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% Generate an image in which each blob is given a different  
% intensity  
preprocess :- 
 grb,   % Digitise image 
 enc,   % Enhance contrast 
 thr,   % Threshold 
 neg,   % Negate 
 ndo,   % Shade objects 
 enc,   % Enhance contrast 
 wri(temp1).   % Save image 
  
% Analysing blobs during the learning phase  
analyse_binary_image1 :- 
 select_one_blob,  % Choose one blob for analysis 
 prompt_read(['Object name'],Q),  
    % Ask user for name of that object 
 measurements(V),  % Now measure it 
 assert(object_data(V,Q)), % Save measurements in the database 
 analyse_binary_image1. % Repeat until all blobs have been  
    % analysed 
 
analyse_binary_image1 :- writenl('FINISHED').  
    % No more blobs to be processed 
 
% Analysing blobs during the recognition phase  
analyse_binary_image2 :- 
 select_one_blob,  % Choose one blob for analysis 
 measurements(V),  % Now measure it 
 writeseqnl(['Vector: ', V]),    
    % Message for the user 
 nnc(V,S,Q),   % Nearest neighbour classifier  
 pick_up(Q,_,_,_),  % Robot now picks up the object 
 message(['Object class: ', Q, 'Distance =',S]),   
 nl, nl,   % Message for the user 
 analyse_binary_image2. % Repeat until all blobs have been  
    % analysed 
 
analyse_binary_image2 :- writenl('FINISHED').  
    % No more blobs to be processed 
 
% Selecting one blob from a stored image  
select_one_blob :- 
 rea(temp2),   % Read stored image 
 gli(_,X),   % Find highest intensity in it 
 !,   % Force failure if next sub-goal fails 
 X > 0,   % Any more objects to be analysed? 
 hil(X,X,0),   % Eliminate selected blob from further   
    % consideration 
 rea(temp2),   % Read stored image again  
 swi,   % Switch current and alternate images 
 wri(temp2),   % Save depleted image 
 swi,   % Switch current and alternate images 
 thr(X,X),   % Select the next blob to be analysed 
 wri(temp1).   % Save it 
 
% Normalise position and orientation of blob in binary image. Robot  
% is not moved 
normalise :- 
 lmi(X,Y,Z),  % Centroid, [X,Y]. Orientation, Z 
 X1 is 128 - X, Y1 is 128 - Y, Z1 is -Z, 
 psh(X1,Y1),  % Shift so centroid is at centre of image 
 tur(Z1).  % Rotate so principal axis is horizontal 
  
% Nearest Neighbour Classifier (slight variation compared to page  
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% 263). The first clause initialises the MacProlog property  “nnc” 
nnc(_,_,_) :- 
 remember(nnc,[1000000,'Not known']),  
   % ≥ largest possible distance 
 fail.  
 
% Finding the stored point that is closest to the “input vector” X 
nnc(X,_,_) :- 
 object_data(Y,Z),  % Consult database of stored vectors 
 euclidean_distance(X,Y,0,D),  
    % D= Euclidean dist. between X and Y 
 recall(nnc,[E,_]),  % Find previous minimum 
 E > D,   % Is new values smaller? 
 remember(nnc,[D,Z]), % It is! So, store it for use later 
 fail.   % Backtrack to “object_data” 
 
%  Terminating recursion 
nnc(_,D,X) :- 
 recall(nnc,[D,X]),  % Find minimum distance to stored point 
 D ≤ 20, 
 writeseqnl(['Class: ',X,'Distance to nearest neighbour =',D]), 
 !. 
 
nnc(_,'too large','not known'). 
 
% Euclidean distance (slightly different from page 255).  
euclidean_distance([],_,A,B) :- 
 sqrt(A,B),   % B is square root of A 
 writeseqnl(['Euclidean distance =',B]). 
 
% Second terminating clause  - second “input” list is empty 
euclidean_distance(_,[],A,B) :- 
 sqrt(A,B),   % B is square root of A 
 writeseqnl(['Euclidean distance =',B]). 
 
% Find sum of squares of differences between corresponding elements  
% of 2 input lists 
euclidean_distance([A|B],[C|D],E,F) :- 
 G is (A - C)*(A - C) + E,  % Sum of squares of differences  
 !, 
 euclidean_distance(B,D,G,F). % Repeat until all list elements  
     % done 
 
% Virtual robot. We move the image not the real object  
% What to do when the NNC cannot classify this object.  
pick_up('not known',_,_,_) :- 
 rea(temp1),   % Read saved image of blob 
 normalise,   % Normalise position and orientation 
 vpl(1,128,256,128,128), % Horizontal line through image centre 
 vpl(128,1,128,256,128), % Vertical line through image centre 
 writenl('Robot will not try to pick up an unknown object'). 
 
% Object is of known type and it is safe to lift it with suction  
% gripper  
pick_up(Q,X,Y,Z) :- 
 rea(temp1),   % Read saved image of blob 
 lmi(X,Y,Z),   % Position and orientation 
 normalise,   % Normalise position and orientation 
 cwp(A),   % Count white points 
 draw_sucker,   % Draw “footprint” of the gripper 
 cwp(B),   % Count white points again 
 A is B,   % Is white area same? 
 vpl(1,128,256,128,128), % Horizontal line through image centre  
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 vpl(128,1,128,256,128), % Vertical line through image centre 
 writeseqnl(['Located at:', [X,Y],'Orientation:',Z]),    
 writeseqnl(['Robot will pick up the',Q]).   % Message for user 
 
% Safe lifting is not possible because suction gripper overlaps  
% edge of silhouette 
pick_up(Q,X,Y,Z) :- 
 rea(temp1),   % Read saved image of blob 
 normalise,   % Normalise position and orientation 
 vpl(1,128,256,128,128), % Horizontal line through image centre 
 vpl(128,1,128,256,128), % Vertical line through image centre 
 hin,  % Halve int. to make sucker-disc visible 
 draw_sucker,  % Draw “footprint” of the gripper 
 writeseqnl(['Sucker is too large for safe lifting - robot will 
not pick up the',Q]). 
 
% Draw a white disc to represent the “footprint” of the suction  
% gripper  
draw_sucker :- 
 draw_disc(128,128,6,255).  % Draw white disc, radius 6 pixels. 

7.2.6 Sample Output of Recognition Phase 

 
Vector:  [100, 141, 78, 55, 208, 
130]  
Euclidean distance = 2  
Euclidean distance = 74.12 
Euclidean distance = 81.51  
Class:  Conrod  
Distance to nearest neighbour = 2 
Located at: [190, 178]  
Orientation: 132  
Robot will pick up the Conrod  
 
Vector:  [67, 95, 89, 93, 197, 
157]  
Euclidean distance = 75.89  
Euclidean distance = 2  
Euclidean distance = 118.13  
Class:  Y shape  
Distance to nearest neighbour = 2 
Sucker is too large for safe  
lifting - robot will not pick up 
the Y shape  
 

 
Vector:  [97, 122, 108, 88, 190, 
177] 
Euclidean distance = 70.29  
Euclidean distance = 50.21  
Euclidean distance = 108.04  
Robot will not try to pick up an 
unknown object 
 
Vector:  [98, 159, 50, 31, 139, 
144]  
Euclidean distance = 81.70  
Euclidean distance = 116.68  
Euclidean distance = 0  
Class:  Spanner  
Distance to nearest neighbour = 0  
Located at: [138, 67]  
Orientation: 24  
Robot will pick up the Spanner  
 
FINISHED 
Nº1  yes 

7.3 Packing and Depletion 
The ability to manipulate previously unseen objects under visual control is one 

of the key tasks in the successful implementation of robotic, automated assembly 
and adaptive material handling systems. It is within the context of this framework 
that an industrial vision packing strategy has been developed [WHE-93, WHE-
96]. Its two main components are a geometric packer, based on the principles of 
mathematical morphology [WHE-91], which takes an arbitrary shape in a given 
orientation and puts the shape into place, in that orientation. The second 
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component, a heuristic packer, is concerned with the ordering and alignment of 
shapes prior to applying them to the geometric packer. This component also deals 
with other general considerations, such as the conflict in problem constraints and 
the measurement of packing performance. In addition, it deals with practical 
constraints, such as the effects of the robot gripper on the packing strategy, 
packing in the presence of defective regions, and anisotropy ("grain" in the 
material being handled) and pattern matching considerations. 

Together, these form a flexible strategy that allows the packing of arbitrary 
two-dimensional shapes. While the technique about to be described will pack any 
set of shapes presented to it, the efficiency is critically dependent on the 
application. Therefore, we need to use any clues we may glean from the context 
information, to ensure that we obtain an efficient packing strategy for that 
application. (See Figure 7.3.1.)  

 

 
 

Figure 7.3.1 General packing strategy. 
 
Since simpler packing problems, such as palletising [DOW-85], have been 

shown to be NP-complete [GAR-79], it is clearly impossible to guarantee that we 
will reach an optimal procedure for the more general problem. Hence, our aim has 
been to produce an efficient packing strategy (but not necessarily an optimal 
solution), that is flexible enough for industrial use. 

7.3.1 Geometric Packer Implementation 

The following section outlines the intermediate steps involved in the 
morphological packing of an arbitrary shape. This is denoted by the structuring 
element B. The image scene is denoted by the image set A. The morphological 
operations are also summarised in the image flowchart illustrated in Figure 7.3.2. 
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A detailed description this procedure can be found in [WHE-91]. (Also see 
Section 2.4 for details on morphological imaging techniques.) 

 
Step 1 

Digitise the scene, image set A, and the shape to be packed, B. 
Step 2 

Erode the image scene A, by the structuring element B, to produce the 
erosion residue image C = A  B. Every white pixel in this residue image 
represents a valid packing location. This step will be valid for any choice of 
structuring element origin point. (Conventionally, and to be consistent with 
the ideas discussed in the previous section, the origin will be taken to be the 
structuring element centroid.) 

Step 3 
Scan the erosion residue image, in a raster fashion, for the location of the 
first (top-left) white pixel. This location is denoted by (fitx, fity) in the 
program that follows and corresponds to the first possible packing location of 
B in the scene A, when it is scanned in this way. It has been suggested by 
Haralick [HAR-92] that further erosion of the residue image C by a standard 
3x3 square structuring element, prior to searching for the first packing 
location, would enable control of the spacing between the packed shapes. 
Clearly, the number of pixel stripping operations, on the erosion residue, 
would be related to the spacing between the packed shapes.  

Step 4 
Translate (shift) the shape to be packed, B, to the location (fitx, fity). This 
effectively places B at the co-ordinate of the first possible packing location 
(when the residue image is scanned in a raster fashion). The resultant image 
will be denoted by B(fitx, fity). 

Step 5 
The resultant image from step 4 is subtracted from the original image set A to 
produce a new value for the image set A, therefore effectively packing B into 
the scene. (See Figure 7.3.2.) This can be represented algebraically as 
replacing A by A - B(fitx, fity). 

 
This procedure is applied recursively to the image set A until an attempt to pack 

all the input shapes has been made or no more shapes will fit in the remaining 
space. The reapplication of the transform has no effect on the shapes already 
packed, due to the idempotent nature of this operation. 

7.3.2 Heuristic Packing Techniques 

The heuristic packer determines the orientation and order in which the shapes 
are applied to the geometric packer and operates upon two classes of shapes: 
simple polygons and (irregular) blobs. It is necessary to consider both these 
general shape classes separately, since no single scheme exists for all cases. 
While, the geometric packer is independent of the shape class and application 
context, the heuristic packer is not. 
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Figure 7.3.2 Morphological operations image flowchart. 

Blob Packing 

This section outlines some of the possible heuristics that have been devised to 
deal with two-dimensional binary images of random shape and size, prior to the 
application of the geometric packer. The approach outlined was designed 
specifically for off-line packing but the techniques developed could equally well 
be applied to an on-line packing application. 

All the shapes to be packed are presented simultaneously to the vision system. 
The shapes are then ranked according to their bay sizes; the shape with the largest 
bay is the first to be applied to the geometric packer. Once the shape ordering has 
been decided, it is necessary to orientate each shape so that an efficient local 
packing strategy can be implemented. Four orientation rules are used to align the 
shape to be packed in the scene. 
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The order in which the shapes will be placed by the packer is determined by the 
sort_by_bay predicate defined below. If the area of the largest bay is significant 
compared to the area of the current shape, then the shape is sorted by its largest 
bay size (largest first). Otherwise the shapes are sorted by their size (largest first). 
The bay_rot predicate rotates a shape such that the largest bay is aligned with the 
scene's angle of least moment of inertia. This predicate also ensures that the 
biggest bay is facing into the scene (that is facing to the right and upwards). The 
operation of this predicate is summarised below: 

 
• If object_Y_coordinate > bay_Y_coordinate then rotate shape by 180°  
• If object_Y_coordinate = bay_Y_coordinate and object_X_coordinate  

  > bay_X_coordinate then rotate shape by 180° 
• If object_Y_coordinate = bay_Y_coordinate and object_X_coordinate  

  ≤  bay_X_coordinate then no action required as in correct orientation 
• If object_Y_coordinate < bay_Y_coordinate then no action required as  

  in correct orientation 
 
In the following program, the undefined predicate main_pack finds the valid 

packing location in the erosion residue. The appropriate shape is then placed at 
this location. 

 
packbay:- 
   get_all_shapes,  % Get all shapes to be packed. 
   sort_by_bay,       % Sort shapes by bay size. 
          % Sorted data is stored in new_blob_db db. 
   !,                                                 
   pack_bay_1.   % Pack shapes - largest bay first. 
 
% Main packing co-ordination predicate  
pack_bay_1:-  
   big_bay_first,     % Pack the shapes by bay size. 
   read_shapes,  % View remaining shapes. 
   cwp(N),  % Count image pixels. 
   N > 0,             % If no pixels to process - fail. 
   centre_screen_se,   
   % Place shape in centre of FOV prior to  
   % rotation  
   cwp(SHAPESIZE), % Current shape area. 
   get_shape_parameters(ROUNDNESS,BAYSIZE,BAY_ROUNDNESS), 
   % Current shape parameters.  
   bay_rotate_options(SHAPESIZE,ROUNDNESS,BAYSIZE, 
  BAY_ROUNDNESS),   % Choose rotation procedure.  
   !, pack_bay_1. 
 
pack_bay_1:-           
   performance_meas. % Calculate performance values. 
 
% Shape alignment and rotation after sorting  
 
/* Orientation rule 1: Use this sorting option if the bay size is 
zero and the shape has a roundness <= 1. If the above conditions 
occur then the object is classified as 'round' (i.e. a disk shape) 
and therefore it need not be rotated or aligned. */ 
bay_rotate_options(_,ROUNDNESS,BAYSIZE,_):- 
   BAYSIZE = 0, ROUNDNESS < 1, 
   pack_bay_main.  % Morphological packing. 
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/* Orientation rule 2: Use this sorting option if the largest bay 
size > a quarter of the shape area. Therefore if the bay is large 
the shape is rotated such that the largest bay is at the angle of 
the least MOI of the shape to be packed, ensuring that the bay 
region always points into the main body of the shape to be packed. 
By checking the bay roundness we ensure that we do not rotate the 
image by its bay if the bay is elongated. */ 
bay_rotate_options(SHAPESIZE,_,BAYSIZE,BAY_ROUNDNESS):- 
   BAYSIZE > SHAPESIZE/4, BAY_ROUNDNESS =< 2,  
   bay_rot,                           
   pack_bay_main.  % Morphological packing. 
 
/* Orientation rule 3: Use this sorting option if the bay size > a 
quarter of the shape area. By checking the bay roundness we ensure 
that we do not rotate the image by its bay if the bay is elongated. 
We align the shape with respect to the least MOI of the scene. */ 
bay_rotate_options(SHAPESIZE,_,BAYSIZE,BAY_ROUNDNESS):- 
   BAYSIZE > SHAPESIZE/4, BAY_ROUNDNESS > 2, 
   shape_rot,   % Rotate shape such that it is at  
    % scenes angle of the least MOI. 
   pack_bay_main.  % Morphological packing. 
 
/* Orientation rule 4: Use this sorting option if the bay size <= a 
quarter of the shape area. Therefore if the bay is considered small 
we align the shape with respect to the scenes least MOI. */ 
bay_rotate_options(SHAPESIZE,_,BAYSIZE,_):- 
   shape_rot, 
   pack_bay_main.  % Morphological packing. 
 
% Morphological packing predicate: Using system macros installed in  
% the Intelligent Camera.  
pack_bay_main:- 
   read_structuring_element, 
   $'PACK',     % Erosion residue using system macro call  
  % (indicated by the symbol ‘$’). 
   space_out, % Dilate image by single pixel to make packing  
  % clearer. 
   $'TRES', % Pack original SE. 
   main_pack.   % Place SE onto erosion residue. 
 
Figure 7.3.3 shows the result of packing hand tools into a rectangular tray. The 

shapes were initially presented directly to the geometric packer, without the aid of 
the heuristic packer. (Figure 7.3.3(a).) This has the effect of packing each tool at 
whatever orientation it happened to be in when it was presented to the vision 
system. Figure 7.3.3(b) shows the resultant packing configuration when the 
heuristic packer precedes the geometric packer. Each shape is aligned and 
ordered, before it is applied to the geometric packer. Figure 7.3.3(c) shows the 
packing of the tools into a "random" blob region. The full packing strategy was 
used again here, as in Figure 7.3.3(b). 
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(a) 

 

    
(b)      (c) 

 
Figure 7.3.3 Automated packing of tool shapes. (a) Tools packed in their 
current orientation, (b) tools reorientated for better efficiency, (c) tools 
packed in an irregular scene. 

Polygon Packing 

The previous approach is not efficient, when packing shapes which do not 
contain bays of significant area. Hence, a different packing procedure is used to 
pack simple polygons which do not possess large bays. As before, this procedure 
was designed to work within an off-line packing system but could also be applied 
to on-line packing applications. Unlike the previous approach, however, this 
second procedure has the ability to determine the local packing efficiency for each 
shape and will reorientate it, if necessary, to ensure a more efficient configuration. 
(This local efficiency check could also be applied to the blob packing strategy.) In 
our second sample application, we chose to pack non-uniform box shapes 
(squares and rectangles) into a square scene. (Figure 7.3.4) Once all the shapes 
have been presented to the packing system, they are ordered according to size, 
with the largest shape being packed first. The shapes must then be orientated, 
prior to the application of the geometric packer. 

In the initial versions of this packing procedure, each shape was aligned in such 
a way that its axis of least moment of inertia was matched to that of the scene 
under investigation. However, this method proved unreliable for packing squares, 
because quantisation effects produce a digital image, with a jagged edge. (A 
resolution of 256x256 pixels was used.) Furthermore, a square has no well-
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defined axis of minimum second moment. This can cause errors in the calculation 
of the moment of inertia. The problem was overcome by aligning the longest 
straight edge of the shape to be packed with the longest straight edge of the scene. 
The edge angles for the shape and scene were found by applying an edge 
detection operator, followed by the Hough transform. The latter was used, because 
it is tolerant of local variations in edge straightness. Once the peaks in the Hough 
transform image were enhanced and separated from the background, the largest 
peak was found [BAT-91c]. This peak corresponds, of course, to the longest 
straight edge within the image under investigation, whether it be the shape or the 
scene. Since the position of the peak in Hough space defines the radial and the 
angular position of the longest straight edge, aligning the shape and the scene is 
straightforward. 

Once a polygonal shape has been packed, a local packing efficiency check is 
carried out. This ensures that the number of unpacked regions within the scene is 
kept to a minimum. The shape to be packed is rotated through a number of 
predefined angular positions. After each rotation, the number of unpacked regions 
in the scene is checked. If a single unpacked region is found, then a local optimum 
has been reached. In this case, the local packing efficiency routine is terminated 
and the next shape is examined. Otherwise, the local packing efficiency check is 
continued, ensuring that, when a shape is packed, a minimum number of 
unpacked regions exists. This reduces the chance of producing large voids in the 
packed scene, and improves its overall efficiency of packing. 

 

 
 

Figure 7.3.4 Automated packing of non-uniform boxes in a square tray. 
 
The packing order is determined by the sizes of the shapes to be packed (largest 

first). The rotation of the shapes by the packer is based on the angle of the largest 
face (longest straight side of the polygon) of the unpacked region. The predicate 
shape_face_angles finds the largest face angle and stores it in the face angle 
database. This database also contains a selection of rotational variations for the 
current shape. The face angles are sorted such that the angle of the largest face 
appears at the top of the database. The other entries are modified (by a fixed angle 
rotation factor) versions of this value. The predicate blob_cnt counts the number 
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of "free space blobs", that is the number of blocks of free space available to the 
packer. The polygon packer operates according to the following rules: 

 
• If blob count is 1 then the best fit has occurred, so exit and view the next  

  shape. 
• If blob count is 0 then read the new angle from face angles database  

  and retry.  
• If blob count < local optimum then update blob count and update the  

  local optimal storage buffer before trying the next angle in the face  
  angles database. 

• If blob count ≥ local optimum then try the next angle in database. 
 
polypack:- 
   scene_capture,   % Capture scene to be packed. 
   get_all_shapes,  % Find all the input shapes. 
   poly_pack_1.        % Pack shapes - largest first sorted. 
 
% Main packing co-ordination predicate  
poly_pack_1:- 
   big_shape_first,    % Pack the shapes by SE size. 
   centre_screen_se,  % Centre SE in the field of view. 
   shape_face_angles,  % Find the angle of the largest face. 
   face_angles_db(LONGEST), 
   retract(face_angles_db(LONGEST)), 
    % Recover a face angle database value. 
   turn(LONGEST,A,B),  % Rotates the structuring element about  
    % its centre of gravity, by the angle  
    % recovered from the face angle  
    % database. 
   poly_pack_main,!, 
   poly_pack_1.   % Get the next shape to pack. 
 
poly_pack_1:-     
   performance_meas.    % Calculate performance values. 
 
poly_pack_main:- 
   morph_pack,    % Morphological packing. 
   read_updated_image, blob_cnt.                             
 
% Morphological packing predicate 
morph_pack:- 
   updated_image, 
   $'PACK',     % Erosion residue using system macro  
    % call indicated by the symbol ‘$’. 
   space_out,   % Dilate image by single pixel to   
     % make packing clearer. 
   residue_check,  % No residue exists then try next  
    % angle. No residue indicates that the  
    % shape cannot be packed in current  
    % orientation so quit. 
   $'TRES',            % Pack original SE using a system macro  
   main_pack.          % Place SE onto erosion residue. 

7.3.3 Performance Measures 
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To ensure that we have confidence in the global efficiency of any packing 
strategy, there must be some way of measuring its performance. Traditionally, 
packing performance has been measured by a single number, called the packing 
density [STE-91]. This is the ratio of the total area of all the packed shapes to that 
of the total area of the scene. This is referred to as the worst case analysis packing 
measure. A number of other performance measures have been developed in the 
field of Operational Research, particularly for comparing different heuristics for 
packing rectangular bins by odd-sized boxes. (See [DOW-85] for a review of 
packing procedures used in Operational Research.) These alternative performance 
measurements can be quite useful in well-constrained packing problems, but they 
are of little use in dealing with the packing of arbitrary shapes. [WHE-96]. 

Predicates 

The following predicates evaluate the 'goodness-of-fit' of a given packing 
procedure. The Packing Density is defined as the ratio of the optimal packing area 
(which is the sum of the area of the individual shapes to be packed) to that of the 
area of the convex hull of the packed shapes (minus the area of any scene defects). 
This is a standard packing measurement, and has a maximum value of one. We 
have defined a parameter, called Performance Index, which is a modified version 
of the Packing Density and accounts for unpacked shapes. The Performance Index 
equals Packing Density times the Count Ratio, and has a maximum value of one. 
The Count Ratio is defined as the ratio of the total number of shapes packed to the 
number of original shapes presented to the packing procedure. Another parameter 
that we have defined is Space Usage, and  this equals the ratio of the area of the 
shapes packed to that of the unpacked original shape. This gives us an idea of the 
amount of space unpacked in the original scene. The Space Usage ratio has a 
maximum value of one. This occurs when no space remains unpacked. 

Figure 7.3.5 shows the results of placing (using blob packing techniques) some 
standard household items, such as scissors, keys and pens, into a rectangular tray 
(Figure 7.3.5(a)) and into an irregular scene (Figure 7.3.5(b)). Figure 7.3.6 shows 
the automated packing of simple polygon shapes, i.e. assembling a simple block 
jigsaw. The performance measures for the packing examples discussed in this 
section are shown in Table 7.3.1. 
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(a)     (b) 
 

Figure 7.3.5 Packing items into: (a) a rectangular tray, (b) an irregular scene. 
 

 
 

Figure 7.3.6 Automated packing of simple polygons in a rectangular scene. 
 

Figure 
Number 

Packing 
Density 

Shapes 
Presented 

Shapes 
Packed 

Performance 
Index 

Space 
Usage 

7.3.3(a) 0.36 5 5 0.36 0.25 
7.3.3(b) 0.435 5 5 0.435 0.25 
7.3.3(c) 0.381 5 4 0.305 0.191 

7.3.4 0.86 6 5 0.72 0.735 
7.3.5(a) 0.38 6 6 0.38 0.261 
7.3.5(b) 0.44 6 6 0.44 0.317 

7.3.6 0.81 5 4 0.64 0.566 
7.3.8 0.41 5 3 0.246 0.23 

7.3.9(a) 0.36 5 5 0.36 0.249 
7.3.9(b) 0.511 8 5 0.319 0.381 

 
Table 7.3.1 Comparison of packing configurations using the performance 
measures defined in Section 7.3.3. 

7.3.4 Robot Gripper Considerations 

Any supposedly general purpose strategy for packing must be robust enough to 
cope with a range of different type of material handling systems. For all of the 
applications considered above, we have tacitly assumed that some form of suction 
or magnetic gripper could be used to lift and place the objects during packing. In 
this case, the "foot-print" of the gripper is assumed to lie within the outer edge of 
the shapes being manipulated. (See Section 5.9.) 

Automated material handling systems frequently make use of robotic grippers 
which have two three or more "fingers". This complicates the problem of packing, 



 301

since the gripper requires access to objects within a partially packed scene. 
Therefore, any packing strategy must make allowances for the gripper. The worse 
case position usually (but not always) occurs when the gripper is fully open, just 
after placing an object in position. The problem of gripper access can be dealt 
with very effectively, by the simple expedient of overlaying a gripper template on 
the shape to be packed prior to the application of the geometric packer. (Figure 
7.3.7) The gripper "foot-print" is based on the positions of the fingers in both the 
open and closed positions.  In fact, the convex hull of each of the finger tips in the 
open and closed positions is formed when computing the composite "foot-print". 
This convex hull is indicated by the shaded region in Figure 7.3.7. 

 
 
Figure 7.3.7 Generation of the gripper “footprint” based on the fully open 
and closed positions of a multi-fingered robot gripper. 
 
Figure 7.3.8, shows the result of packing tools into a rectangular tray, taking the 

gripper "foot-print" into account. Although the general blob packing remains the 
same, the procedure’s performance is inevitably weakened when allowance is 
made for the robot gripper. For example, compare Figures 7.3.3(b) and 7.3.8. (See 
Table 7.3.1 for a comparison of the packing performance measures.) Clearly, the 
gripper "foot-prints" indicated in Figure 7.3.8 are not those for the ideal gripping 
positions for these objects. They are used merely to indicate how our packing 
strategy can cope with multi-finger grippers. 

In a practical situation, care must be taken to ensure that any change in the 
shapes of the objects to be packed, due to squeezing by the robot gripper, does not 
adversely effect the packing. The same is true of articulated and other hinged 
objects, such as scissors or pliers, which can change their shape during handling. 
Again, this type of application constraint, could also be dealt with by the 
introduction of suitable heuristic packing rules, and may also be used as a factor 
when calculating the gripping position. 

The strategy outlined above for working with multi-finger grippers does have 
the advantage of allowing the shapes to be unpacked from the scene in any order. 
One possible modification to the approach outlined above, results in a denser 
configuration that, in general, can only be unpacked safely in reverse order. This 
modification consists of packing each shape, taking the robot "foot-print" into 
account, but removing the "foot-print" from the scene prior to the application of 
the next shape. 
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Figure 7.3.8 Tool packing with worse case gripper "foot-print". 

7.3.5 Packing Scenes with Defective Regions 

Any practical automated packing system for use in such industries as leather or 
timber processing must be able to pack "objects" into a scene which may contain 
defective regions. (This is an alternative way of representing the stock cutting 
problem.) The importance of good packing procedures in the leather industry is 
obvious, since the raw material is both expensive and non-recyclable. Our packer 
can readily accommodate defects like these; we simply define the initial scene to 
contain a number of holes. Figure 7.3.9(a) illustrates the effect of packing tools 
into a rectangular tray which contains four small blob-like "defects". By 
comparing the packing configuration shown in Figures 7.3.9(a) and 7.3.3(b) (see 
Table 7.3.1 also), it is clear that the packing is not as tight when defects are taken 
into account. Figure 7.3.9(b) shows the packing of leather templates onto a hide. 
The small blob-like regions indicate the defective areas of the hide. These 
defective regions are not to be included in the leather pieces to be cut. Both of the 
results shown in Figure 7.3.9 indicate the flexibility of the packing strategies 
described. 

 
 

   
(a)     (b) 
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Figure 7.3.9 Packing items into defective regions: (a) Tools into a defective 
tray, (b) Leather template pieces into a leather hide which contains defects. 

7.3.6 Discussion 

The results presented here show the power of the heuristic approach when 
presented with a wide range of problems, including the packing of shapes into 
materials with defective regions. We have attempted to maximise the use of 
application specific information, to produce an efficient packing strategy. The 
example application also outlines a technique that will allow a range of 
performance measures to be computed,  so that different packing procedures can 
be compared. This is necessary due to the fact that the heuristic approach we have 
taken does not guarantee an optimal result. For a more detailed discussion on 
automated packing techniques and systems, the reader is directed to [WHE-96, 
WHE-93 and WHE-91]. 

7.4 Handedness of Mirror-Image Components 

7.4.1 Handedness and Chirality 

We explain how Prolog+ can be used to determine the "handedness" of planar 
objects, such as leather, plastic and fabric components for clothing, bags, 
upholstery, gloves and shoes, using so-called Concavity Trees (CTs) and a number 
of other heuristic techniques. A large number of industrial products are either 
symmetrical, or are sold in mirror-image pairs. In such a case, for every "right 
handed" component, there will be another "left handed" one. Objects which are 
mirror images of each other, but are in all other respects identical, are said to 
differ in their chirality. This quantity is closely related to "handedness" and the 
relationship between them will be defined later. Mirror-image pairs of objects are 
found in many other situations, most notably where they are intended to fit some 
other symmetrical object, most notably the human body. The list of products 
existing as mirror-image pairs is not simply limited to clothing. Many of the 
components of a bicycle, for example, exist in mirror-image pairs. Another use for 
a chirality test is to determine whether a planar object, such as a metal stamping is 
"face up" or "face down". A safety-critical application of this kind was 
encountered by the authors several years ago and was concerned with components 
for automobile brakes.  

Our prime objective in this case study is to present techniques for finding the 
chirality of objects that can be viewed in silhouette. An important secondary goal 
is to introduce the reader to the concepts of concavity trees, which have a range of 
other applications, some of which are explained elsewhere in this chapter. A 
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recursive program for generating concavity trees is listed below and provides a 
good demonstration of Prolog+. 

Relating Chirality and Handedness 

Chirality is an abstract property and does not indicate whether a given piece of 
leather forms part of a left or right shoe, or glove. Chirality has the value left or 
right, and this value is inverted when we pick up an object and turn it over. A 
piece of leather may form part of a right shoe, yet have a chirality value equal to 
left. When that piece of leather is turned over, its chirality values becomes right  
but, of course, it is still a component of a right shoe. (Figure 7.4.1) Thus, chirality 
is a function of posture, not an indicator of intended use. We shall define 
handedness in terms of chirality, in the following way: 

 
% If the object is laying "face up" then the handedness is equal to  
% the chirality 
handedness(U) :-  
 face(up), chirality(U), !. 
 
% If the object is laying "face down", then the handedness is the  
% inverse of the chirality 
handedness(U) :-  
 face(down), chirality(V),  
 (U = left, V = right); (U = right, V = left)), !. 

 
Handedness, defined in this way, is still not sufficient to tell us whether a given 

component forms part of a left or right shoe. We also need a parts list having the 
following general form. 

 
Component  identity 

number 
Handedness of component to make 

 
 right shoe left shoe 

1 right left 
2 left right 

… … … 
10 left right 

 
Such a table can be represented using a set of simple Prolog statements : 
 
% Component A with handedness value of "right" is part of left shoe 
component(left, A,right) :- component(right, A,left), !. 
% Component A with handedness value of "left" is part of left shoe 
component(left, A,left) :- component(right, A,right), !. 
 
% If handedness  = right, comp. 1 is part of right shoe 
component(right, 1,right).  
% If handedness  = left, comp. 2 is part of right shoe 
component(right, 2,left).  
…… 
% If handedness  = left, comp. 10 is part of right shoe 
component(right, 10,left).  
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(a) 

 
(b) 

 
Figure 7.4.1 Chirality and its relationship to handedness and function. (a) 
Mirror image components of leather mittens, all viewed "face up". The group 
on the left, form the left glove and those on the right are parts of the right 
glove. Shading indicates chirality, as it is calculated by the second version of  
chirality. If an object is "turned over", its chirality is reversed but the 
handedness is not and, of course, it remains a component of the same glove, 
so its function is unaltered. (b) Typical objects considered in this case study. 
 
 Now that we have seen the significance of chirality, we shall describe how it 

can be calculated from a concavity tree. First, however, we shall digress briefly, to 
explain the significance and generation of concavity trees. 

7.4.2 Concavity Trees 

There is a general requirement for an inspection process which combines both 
local  and global  information about an object’s shape, within a single integrated 
data structure. It is often necessary to pay detailed attention to a number of small 
regions of a large artefact and then to verify that its overall shape is correct. In 
essence, concavity trees provide a multi-level representation of an object's shape, 
which makes this type of analysis fairly simple. Concavity trees are ideally suited 
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for a variety of industrial inspection tasks, such as inspecting stampings, pressings 
and mouldings, where severe but local defects can occur. Metal-forming tools, 
such as punches and dies are not subject to significant changes in shape during 
normal operation. Hence, the objects produced by them  are likely to be 
dimensionally correct. However, abnormal operation can occur, as a result of 
failure to feed the metal stock properly, through broken or chipped tools or 
displaced tooling. 

There is a specific need for a "general purpose" inspection method which can 
examine piercings (lakes) and indentations (bays), both of which are intended to 
mate with other parts. In many applications, inspection may be achieved with 
relatively low precision, since there is no common fault which can introduce small 
overall errors. (Tool wear can but this accurately predictable and, for this reason, 
need not concern us here.) In this type of situation, parts are either correctly made, 
or are badly malformed locally. Thus, for example, an inspection system might be 
asked to decide whether an object possesses a certain hole, indentation (or spur), 
needed to provide mechanical linkage to another component. A similar inspection 
technique is needed in any industry where a “pastry cutter” is used to form the 
products. Hence, we may expect to see applications of concavity trees in the 
plastics, leather, clothing and food industries, amongst others. 

Concavity Trees have a variety of possible uses, including shape recognition, 
parts assembly and finding object orientation. The one feature of Concavity Trees 
that makes them particularly well suited for discussion in this book is that they 
require the use of recursion, which is, of course, an essential feature of Prolog. 
The use of such a sophisticated  technique for the seemingly straightforward task 
of finding whether a 2D object forms part of a left- or right-handed shoe might 
seem to be unjustified. Certainly, it is possible to find the chirality in other ways, 
for example by shape matching, or comparing the sequences of left-right turns, 
taken as we traverse the perimeter of a blob-like object. These may well be faster 
than the approach based on concavity trees but are unlikely to be as versatile in 
the range of objects they will handle successfully. For the sake of completeness, 
we present alternative methods for finding chirality later. For the moment, 
however, we shall concentrate on concavity trees. 
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Figure 7.4.2 Generating concavity trees. (a) Original shape (S) to be 
analysed. (b) Convex hull of S. The three concavities are represented here as 
black regions. Together, they form the convex deficiency of S. (c) Convex 
hull of each concavity. The numerals indicate the node labels generated by the 
first program. (The nodes are analysed in this order, thereby implementing a 
depth-first search.) (d) Meta-concavities of S. These are the concavities of the 
concavities of S. (e) Concavity tree generated by the first program. The shape 
corresponding to each node in the tree is shaded black. 
 
A Concavity Tree (CT) is an hierarchical tree-like structure, whose nodes 

represent convex polygons. These are of varying sizes and are either “cut out” or 
“stuck in”, beginning with the convex hull of whatever object is to be analysed. 



 308

This cut-and-paste process enables us to approximate a given blob-like object, to 
varying degrees of precision. The tree-like representation of shape is based on the 
idea of a concavity, which is a term intended to encompass both lakes (holes) and 
bays (indentations). Concavities are defined in terms of the dual concepts of 
convex hull and convex deficiency. (Prolog+ operators chu and cvd). The convex 
deficiency is the difference between the filled convex hull of a blob and the blob 
itself. It consists of a number of distinct regions, each of which is a concavity. A 
CT combines both global and local information about shape, in a single integrated 
data structure and it is possible to label its nodes, using as many shape, size and 
position descriptors as we can conveniently measure. In this respect, a CT is much 
more general than any of the other shape description / representation techniques 
that we discuss elsewhere in this book. As we shall see later, an elegant, and very 
short, Prolog+ program can be used to generate a CT from a binary image. In fact, 
this particular program shows Prolog+ off to very good effect. 

Formal Definition 

In the following explanation of how to create concavity trees, we shall find it 
convenient to use the terminology of set  theory. Recall that an object in a binary 
image is a connected set of white points. The idea of a concavity tree can be 
understood most easily with the help of a series of simple diagrams. In Figure 
7.4.2, S denotes the initial blob that is to be represented by a CT. To generate the 
tree, we begin by computing the convex deficiency of S. (In general, the convex 
deficiency will consist of a number of large, disjoint blobs, representing the bays 
and lakes of S and numerous very small regions, created as artefacts of camera 
and quantisation noise.)  Let Q* denote the filled convex hull of any given set, Q. 
Furthermore, let (X⊗Y) be the set of white points formed by computing the 
difference (exclusive OR) between two given sets X and Y. We shall also assume 
that the convex deficiency of S, i.e. the set (S*⊗ S), consists of N distinct blobs, 
which will be denoted by {CS1, CS2, …, CSN}. 

The CSi (i = 1, , …, N) are the concavities of S. We now apply the same type of 
analysis to each of the CSi as we did to S. That is, we compute the convex 
deficiency of each member of the following set: {(CS1*⊗ CS1), (CS2*⊗ CS2), …, 
(CSN*⊗ CSN),}. This process of analysing the blobs within the convex deficiency 
of a given blob is repeated recursively. To terminate recursion, we simply impose 
a lower size (area) limit on the objects which we analyse in this way. The 
concavity tree is used to relate the concavities, concavities of concavities (meta-
concavities), concavities of concavities of concavities (meta-meta-concavities) 
etc. to each other and to S*. 

To understand the CT-generation process in physical terms, let us equip 
ourselves (mentally) with scissors and adhesive tape. To approximate S, we begin 
with a convex shape, S*, and cut out N convex shapes, corresponding to the filled 
convex hulls of the concavities: {CS1*, CS2*, …, CSN*}. We now stick back some 
smaller convex pieces corresponding to the filled convex hulls of each of the 
meta-concavities. Then, we cut out pieces corresponding to the filled convex hulls 
of all of the meta-meta-concavities. Next, we stick back pieces corresponding to 
the filled convex hulls of all of the meta-meta-meta-concavities. This process of 
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alternately cutting out convex shapes and then sticking back other, smaller convex 
shapes continues indefinitely (i.e. until the objects are too small to make it 
worthwhile continuing). (See Figure 7.4.2) 

Generating Concavity Trees 

As we mentioned earlier, the CT is defined recursively. To an experienced 
programmer, the mere whisper of the word “recursion” immediately suggests the 
use of Prolog. However, the program concavity_tree, which is listed below, uses a 
somewhat unusual form of recursion; the predicate analyse_node does not contain 
a direct call to itself but instead contains the line:   

 
eab_modified(E,analyse_node(E)), 

 
This is perfectly legal Prolog programming practice and leads to a very compact 

program for calculating CTs. The reader should understand that 
eab_modified(A,B) tries to satisfy goal B on all blobs in the binary image held in 
file A. The first (recursive) clause of analyse_node measures various shape 
parameters of a given (single) blob, using the undefined “general purpose” 
predicate shape_measurements, and then applies analyse_node to each 8-
connected set in the convex deficiency of that blob. We can use 
shape_measurements to obtain as many shape, size and / or position parameters as 
we wish. We might, for example, choose to derive such measurements as: X-co-
ordinate of centroid; Y-co-ordinate of centroid; area; perimeter; shape factor; area 
of filled convex hull; ratio of area of filled convex hull to the area of the original 
blob; aspect ratio of minimum area rectangle … etc. (See Section 7.2.3.) 

 
Prolog+ contains three standard operators 
 

gob If the stored image is empty, gob fails. 
 Otherwise, select (get) one blob from a stored image. 

The latter is modified by deleting that blob. 
gob_init Used to initialise gob. 
eab(A)  Evaluate goal A for all blobs in the current image 

 
These three predicates had to be modified slightly for the concavity tree 

program; one extra parameter has been added to each one, enabling us to pass the 
name of the “input” image file. The revised definitions are given below. Here is 
the program listing for the CT generator. 

 
% Top level predicate for computing Concavity Trees 
concavity_tree:- 
 retractall(ct_node(_)),  
   % Clear database, ready for new CT 
 psk,  % Push image onto the stack 
 init_gensym(node), % Initialise the symbol generator 
 analyse_node([]), % This bit does all of the hard work 
 pop.  % Restore image 
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/* Define the minimum size of blob to be analysed. Adjust this 
parameter to taste */ 
min_blob_size(50). 
 
/* Analyse one node in the Concavity Tree. The first clause 
contains the indirect recursive call to "analyse_node" */ 
analyse_node(A) :- 
 cwp(C),  % Measure blob area 
 min_blob_size(D), % Consult DB for minimum blob size 
 C ≥ D,  % Is blob large enough to bother with? 
 gensym(node,E), % Name node in CT - standard symbol generator 
 shape_measurements(F), % General shape measurement - undefined  
 cvd,  % Convex deficiency of “input” blob 
 kgr(D),  % Ignore tiny blobs  
 eab_modified(E,analyse_node(E)),  
   % Analyse convex deficiency - recursive 
 writeseqnl(['Blob: ',E, 'Parameters: ',F,'Parent: ', A]), 
 assert(ct_node(E,A,F)). % Assert node data into Prolog DB 
 
analyse_node(A). % Ending recursion. Force goal to succeed 
 
/* Initialise "gob_modified". This is the standard predicate, 
“gob_init,” modified slightly, by adding the parameter A, which 
specifies the name of an image file. */ 
gob_modified_init(A) :- 
 ndo,  % Shade image 
 wri(A).  % Save image in file A 
 
/* Get one blob. Standard Prolog+ predicate, “gob,” modified 
slightly to facilitate recursion. */ 
gob_modified(A,B) :- 
 rea(A),  % Read image file named A 
 gli(_,B),  % Upper intensity limit 
 ((B = 0, !, fail) ; % Fail if no more objects left to analyse  
 (hil(B,B,0),   % Remove next blob to be analysed 
 wri(A),   % Save image with one blob deleted 
 swi,   % Switch images 
 thr(B,B))).  % Isolate next blob for analysis 
 
gob_modified(A,B) :- gob_modified(A,B). 
 
/* Evaluate a named goal, for all blobs in an image. This is the 
standard predicate, “eab”, modified slightly to facilitate 
recursion. A is the name of a file containing a multi-level image 
with several blobs. B is the predicate to be “applied” to all blobs 
in the image in file A. */ 
eab_modified(A,B) :- 
  psk,  % Push image onto the stack 
  gob_modified_init(A) 
   % Initialise, ready for “gob_modified” 
 ->  % Conditional evaluation 
  (gob_modified(A,C), % Get one blob from image held in file A.  
  call(B),  % Satisfy goal specified by B 
  fail).  % Repeat for all blobs in file A 
 
% Goal always succeeds and restores original image 
eab_modified(_,_) :- pop. 

Sample Concavity Trees 

For the sake of illustration, three simple shape / size parameters were calculated 
by shape_measurements, viz area, perimeter and shape factor. In the experiments 
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reported below, these parameters were calculated on the blob and its (meta)-
concavities, not on their convex hulls. The following output was generated by the 
program, given the starting image shown in Figure 7.4.3(a). 

 

 
              (a)             (b) 

 

 
              (c)             (d) 

 

 
 

              (e)             (f) 
 

Figure 7.4.3 Six binary objects to be analysed. Notice that the three "peaks" 
in the bottom-most concavity in (a - c) are at slightly different heights. 
 
 
 
Blob:  node2    % Give arbitrary label to this node 
Parameters:  [2651, 242, 0.571]   
    % [Area, Perimeter, Shape factor] 
Parent:  node1   % Parent of node2 is node1 
 
Blob:  node3  
Parameters:  [1755, 214, 0.485] 
Parent:  node1   % Parent of node3 is node1 
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Blob:  node1  
Parameters:  [17196, 768, 0.367]  
Parent:  node0   % Parent of node1 is node0 
 
Blob:  node5  
Parameters:  [1261, 195, 0.420]  
Parent:  node4   % Parent of node5 is node4 
 
Blob:  node4  
Parameters:  [6095, 530, 0.274]  
Parent:  node0   % Parent of node4 is node0 
 
Blob:  node9  
Parameters:  [904, 154, 0.483]  
Parent:  node8   % Parent of node9 is node8 
 
Blob:  node8  
Parameters:  [4502, 408, 0.341]  
Parent:  node7   % Parent of node8 is node7 
 
Blob:  node7  
Parameters:  [7594, 671, 0.213]  
Parent:  node6   % Parent of node7 is node6 
 
Blob:  node6  
Parameters:  [16310, 1106, 0.168]  
Parent:  node0   % Parent of node6 is node0 
 
Blob:  node0    % node0 is the root of the CT 
Parameters:  [73717, 2433, 0.070]  
Parent:  []   % There is no parent for the root 
 
No.1 : yes   % Goal always succeeds 

 
In addition, a set of facts describing the tree was placed in the database. (This is 

achieved by assert(ct_node(E,A,F)), i.e. the last line of the first clause of 
analyse_node.) 
 
ct_node(node2 , node1,  [2651, 242, 0.571] ). 
ct_node(node3 , node3,  [1755, 214, 0.485]). 
…… 
ct_node(node0 ,[], 73717, 2433, 0.070] ). 

 
The corresponding tree is drawn in Figure 7.4.4(a). 
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Figure 7.4.4 Concavity trees of various objects in Figure 7.4.3. 
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The CT results given in Figure 7.4.4 require some explanation, which is given 
by following table. It should be noted that the numbers inside the circles indicate 
the order in which the nodes of the CT were analysed, while the numbers printed 
beside them indicate the areas of the corresponding shapes. 

 
Input shape Concavity tree Comments 
Fig. 7.4.3(a) Fig. 7.4.4(a) Non-canonical form of CT 
Fig. 7.4.3(a) Fig. 7.4.4(b) Canonical CT (described in next section). 
Fig. 7.4.3(b) Fig. 7.4.4(c) Compare to Fig. 7.4.4(a). Major change in  

CT occurs even though there is a very small  
change in the input shape. 

Fig. 7.4.3(c) Fig. 7.4.4(b) 
or (c) 

Result depends on noise; 3 "peaks" on  
bottom-most indentation of input are  
directly in line. 

Fig. 7.4.3(b) Fig. 7.4.4(d) Canonical CT 
Fig. 7.4.3(d) Fig. 7.4.4(e) Input is smoothed version of Fig. 7.4.3(a) 
Fig. 7.4.3(e) Fig. 7.4.4(f) 4 black nodes correspond to bays that do not  

change as a result of objects touching.  
Fig. 7.4.3(f) Fig. 7.4.4(g) Black nodes remain unchanged whether  

scissors are open or closed. 

Canonical Form of Concavity Trees 

The order in which the nodes are added to the CT is indicated by simple 
identifiers: node0, node1, node2, …. (These names are generated by gennsym.) 
The reader will observe that this ordering reflects the fact that the CT is generated 
using a depth-first search. However, this is only part of the story, since detailed 
examination of the program reveals that the order in which the “children” of a 
given node are analysed is determined by two predicates: gob_modified and 
eab_modified. If we rotate the initial shape to be analysed, the program defined 
above may well generate a CT with its nodes labelled in a different order. So that 
we can make the calculation of chirality easier and to facilitate other important 
operations, such as shape matching, it is better to create CTs in some standard 
way that is independent of orientation. This can be achieved very simply, by 
redefining the predicates gob_modified, eab_modified and gob_modified_init. 
This incurs very little cost, in computational terms. The key is to use the predicate 
big, to select one blob at a time for analysis. Here are revised definitions of these 
three predicates, which use this idea: 

 
% One line has been deleted from "gob_modified_init" 
gob_modified_init(A) :- wri(A). 
 
eab_modified(A,B) :-  psk, wri(A) 
  -> 
 (gob_modified(A), call(B), fail). 
 
eab_modified(_,_) :- pop. 
 
gob_modified(A) :- 
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 rea(A),  % Read image file named A 
 cwp(N),  % Count white pixels in image 
 ((N = 0,!,fail);  % If there are none, then fail 
 (big,  % Select biggest blob for analysis first 
 xor,  % Delete that blob from image to be stored 
 wri(A),  % Save the depleted image 
 swi)).  % Revert to the single blob image 
 
gob_modified(A) :- gob_modified(A). 

 
The higher level predicates, concavity_tree and analyse_node, remain 

unchanged. CTs, generated by the second version of the program, are evaluated 
and the nodes identified in the same order, whatever the orientation of the original 
object; the biggest (meta-) concavities are analysed first. (See Figure 7.4.4(b) and 
(d).) A CT generated in this way is said to be in Canonical Form. There is no 
unique form for a canonical tree and in some situations, it may be preferable to 
use an alternative definition. For example, we might choose instead to list the 
nodes of the tree so that they are in cyclical order, following a clock-wise tour 
around the object perimeter, beginning from some convenient starting point (e.g. 
largest (meta-)concavity). (Figure 7.4.5) 
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Figure 7.4.5 Alternative definition of Canonical Concavity Trees. (a) Input 
blob. (Meta-)concavities are analysed in cyclic (clockwise) order, beginning 
with the largest.  (b) Concavity tree. Numbers in square brackets indicate the 
ranked sizes, at that level in the tree. Thus, node4 [1] is bigger than node6 [2], 
which is bigger than node5 [3]. 
 

Program to find Chirality 
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Normally, we might assume that the concavities are all sufficiently different for 
us to base the test of chirality on them. If this is not the case, we can use the meta-
concavities, meta-meta-concavities etc. instead. The first parameter of 
chirality(A,B) allows us to specify the node whose children are to be compared so 
that we can find the chirality. (Figure 7.4.6) The following program is based on 
the assumption that the first two parameters computed by shape_measurements 
are the [X,Y]-co-ordinates of the centroids of the (meta-)concavities. 

 
% The chirality (Y) of a given shape is defined in terms of angular 
% positions of the (meta-)concavities associated with the children 
% of node X. The chirality is computed on the canonical CT.  
chirality(X,Y) :- 
 findall(M,(ct_node(_,X,M)),Z),  % Z is list of children of node X 
 ct_node(X,_,[X0,Y0|_]),  % Where is node X? 
 Z = [[X1,Y1|_], [X2,Y2|_], [X3,Y3|_] | _],  
 angle(X1,Y1,X0,Y0,A1), % Angle of line twixt [X1,Y] & [X0,Y0] 
 angle(X2,Y2,X0,Y0,A2),  
 angle(X3,Y3,X0,Y0,A3),  
 chirality_database(Y,A1,A2,A3). % Consult database 
 
chirality_database(right,A1,A2,A3) :- rank_order(A1,  A2,  A3). 
chirality_database(right,A1,A2,A3) :- rank_order(A2,  A3,  A1). 
chirality_database(right,A1,A2,A3) :- rank_order(A3,  A1,  A2). 
chirality_database(left,A1,A2,A3) :- rank_order(A1,  A3,  A2). 
chirality_database(left,A1,A2,A3) :- rank_order(A2,  A1,  A3). 
chirality_database(left,A1,A2,A3) :- rank_order(A3,  A2,  A1). 
 
rank_order(A1,  A2,  A3) :- A1 ≤ A2, A2 < A3. 
 
Notice that chirality(A,_) fails if there are fewer than 3 children of node A. An 

important additional point to note is that the program defines chirality for an 
arbitrary node in the CT and that there is no reason why these values should be 
the same. (Figure 7.4.7) 

7.4.3 Properties of Concavity Trees 

In addition to their providing a test for chirality, concavity trees have some 
useful properties, which may be summarised as follows: 

 
1. A concavity tree combines both global and local information in a single, 
integrated structure. 
2. The accuracy of the representation of a given shape is under the control of the 
programmer, who can “prune” the tree to ignore small features, or retain them, 
in order to obtain improved precision. 
3. The nodes all correspond to convex polygons, which are the (filled) convex 
hulls of the (meta-)concavities. 
4. Nodes in odd numbered levels correspond to shapes which are “stuck in”. 
(The root, node0, is taken to be in level 1.) 
5. Nodes in even numbered levels correspond to shapes which are “cut out”. 
6. Each of the nodes in a CT can be labelled, by calculating a set of shape, size  
and position measurements for the corresponding blob and / or its convex hull. 
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In the sample CTs given in Figures 7.4.4, the nodes have been labelled with the 
areas of the (meta-)concavities, not their convex hulls. 
7. Repeated edge features, such as the bays formed between the legs of an 
integrated circuit, are obvious when we inspect the CT, which contains several 
similar sub-trees. 
8. Semi-flexible shapes, such as a pair of scissors, often retain certain nodes / 
sub-trees unchanged when they are flexed. (Figure 7.4.4(g).) 
9. Touching / overlapping objects will often lead to CTs in which certain nodes 
are identical to those generated by each object analysed individually. (Figure 
7.4.4(f)) 
10. The CT can be used to determine the orientation of “difficult” shapes, for 
example, where there is no obvious “long axis”. The angles used to test for 
chirality can also be used to determine orientation. 
11. CTs suffer from two different types of instability, which are described 
below. However, this does not usually lead to serious problems. 
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Angle A2Angle A3

Centroid for Node 1 
Centroid for Node 2 

Largest meta-concavity  
associated with  Node 2

Centroid of 
meta-concavity 
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A3 > A2 > A1 
So chirality is "left"

 
 

Figure 7.4.6 Chirality test based on the first program for chirality. The 
diagram shows the test being applied to Node 1. (Prolog+ goal 
chirality(node1,X)) The input blob is shaded mid-grey. Its largest concavity 
(Node 1) is light grey and its children (meta-concavities, labelled Node 2 - 
Node 4) are very dark grey. Crosses indicate the centroids of this concavity 
and its three meta-concavities. Since A3 < A2 < A1, the chirality is "left". 
Notice however, that the chirality calculated on Node 0 is "right". Hence, the 
goals chirality(node0,right) and chirality(node1,right) both succeed. 
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Figure 7.4.7 Chirality is defined in an arbitrary way, so calling chirality with 
different parameters does not necessarily yield the same results. In this 
example, chirality(node0,right), chirality(node1,left) and chirality(node5, 
right) are all satisfied. (a) "Input" blob, Arrows show the directions of 
decreasing meta-concavity area. (b) Concavity tree, Arrows show the 
clockwise direction. 

Instability 

The two blobs shown in Figure 7.4.3(a) and Figure 7.4.3(b) differ in only one 
small detail: the central "peak" of the bottom-most concavity is lower in Figure 
7.4.3(a) than it is in Figure 7.4.3(b). Hence, the bottom-most concavity of this part 
of the object in Figure 7.4.3(a) gives rise to one meta-concavity and one meta-
meta-concavity. The equivalent sub-tree for Figure 7.4.3(b) has two meta-
concavities. The remaining features (i.e. the other two concavities) of these two 
objects are identical. The concavity trees in Figures 7.4.4(a) and 7.4.4(c) are quite 
different, even though the blobs that they represent are almost identical. This 
illustrates a fundamental feature of CTs, which has far-reaching implications for 
their practical application. In Figure 7.4.3(c), the three "peaks" at the top of the 
bottom-most concavity are aligned exactly. In this situation, it is impossible to 
predict which form the tree will take; it could resemble either Figure 7.4.4(a) or 
(c). In practice, camera and quantisation noise will determine which tree is 
actually generated by the program. For this reason, it is occasionally necessary to 
store and process more than one CT representing each class of "good" objects. 
Instability is caused, of course, whenever two (meta)-concavities are separated by 
only a very narrow channel between the edge of the convex hull and the edge of 
the blob itself. Thus, a simple, sans serif letter 'E' may be viewed as having either 
one or two concavities. (Figure 7.4.8.) If we were to use the CT approach for 
shape recognition, we would, clearly, need to store two or more CTs for each case 
of instability. 
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Figure 7.4.8 Instability in Concavity trees. (a) An E-shaped object in which 
the ends of the three limbs are in line exhibits the first type of instability. (b) 
An object with two (very nearly) identical concavities. Of course, concavity A 
is analysed first. However, either B or C may be analysed next, depending on 
camera and quantisation noise. (c) The canonical CT generated for the shape 
in (b). Notice that there is an ambiguity about the identity of the sub-trees 
corresponding to concavities B and C. This is the second type of instability. 
 
Canonical CTs, generated by the second version of the program, are apparently 

evaluated and labelled in the same order, whatever the orientation of the input 
blob, since the biggest (meta-)concavities are always analysed first. (See Figure 
7.4.4(b) & (d).) However, noise can again cause problems, if two concavities are 
very similar. In Figure 7.4.8(b), for example, there are three concavities, two of 
which are almost identical. In such a case, it is impossible to calculate a unique 
canonical form of the CT, in the way that we have described. We could, of course, 
redefine the concept of a canonical tree, based for example on meta-concavities. 
This second form of instability can be detected very easily by a Prolog+ program, 
which simply hunts for pairs of similar sub-trees in the CT. 

7.4.4 Simpler Tests for Chirality 

While Concavity Trees are very versatile, generating them can be quite time 
consuming. In order to determine chirality, much simpler computational 
techniques will often suffice and can be made to operate much faster. In this 
section, just a few of the many possibilities will be described. 

 

Second Program  

This simplified procedure to determine chirality, is based on a standard Polar-
to-Cartesian co-ordinate mapping. Consider the following program: 
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chirality(right) :- 
 npo, % Normalise position and orientation 
 chf, % Flip horiz. axis if longest vert. section is left 
  % of image centre   
 yxt, % Interchange X and Y co-ordinate axes 
 ptc, % Map from polar to Cartesian co-ordinates 
 yxt, % Interchange X and Y co-ordinate axes 
 rin, % Integrate intensities along rows 
 csh, % Make all columns the same as RHS of the image 
 gli(_,Q), % Peak intensity 
 thr(Q,Q), % Threshold at peak intensity 
 big, % Isolate biggest region at peak intensity, if more  
  % than one 
 cgr(_,Y), % Find its vertical position 
 dgw(_,_,_,A), % Get image size 
 B is int(A/2),  % Find mid-point of image (vertical axis, only) 
 Y < B, % Is peak above centre of image? 
 !. % Do not allow back-tracking 
 
chirality(left). 

 
This procedure on which this based is illustrated in Figure 7.4.9. The task of 

determining chirality is reduced to testing whether or not the peak in the 
integrated intensity profile (Figure 7.4.9(c)) is above or below the centre of the 
image. 

 

 
(a) 

 

 
                                         (b)             (c) 

 
Figure 7.4.9 Chirality test based on the second program for chirality. (a) 
Input image, after npo. (b) After [npo, yxt, ptc]. (c) [rin,plt] applied to (b). 
The program finds the position of the peak integrated intensity. If the peak is 
above the centre of the image, the chirality is taken to be "right". Otherwise it 
is "left". 

Third Program  

This program fixes the orientation and position of the "input" shape using [npo, 
chf] and then tests whether the centroid of the largest concavity (i.e. either a lake 



 321

or a bay) is above or below the middle of the image. (Figure 7.4.10) The operator 
npo has the effect of aligning a blob so that its principal axis lies along the 
horizontal axis, while chf makes sure that its longest vertical section is to the right 
of the centre of the image. N is a control parameter, which allows the user to 
select which concavity is to be used for finding the chirality. 

 
chirality(N,right) :- 
 psk, npo,  
 chf, % Flip horizontal axis if longest vertical section  
  % is left of image centre   
 cvd, big(N), cgr(_,Y), dgw(_,_,_,A),  
  % Centroid of largest concavity 
 B is int(A/2),    % Find mid-point of image (vertical axis, only) 
 Y < B, % Is peak in integrated intensity profile above  
  % centre of image? 
 pop, !.  
 
chirality(left).  
 

 
 
Figure 7.4.10 Chirality test based on the third program for chirality. The 
input image has been normalised, using [npo,chf], so the centroid of the blob 
is at the centre of the image and its principal axis is horizontal. Since the 
centroid of the largest bay is below the centre of the image, the chirality is 
taken to be "left". Notice that the chirality calculated in this way is different 
from that derived by the fourth method. 

Fourth Program  

In certain situations, it may be preferable to base the chirality test on lakes 
(holes), and ignore indentations. (Figure 7.4.11)  

 
chirality(N,right) :- 
 psk, % Put input image onto stack  
 npo, % Normalise position and orientation 
 chf, % Flip horizontal axis if longest vertical section  
  % is left of image centre   
 blb, % Fill lakes (holes) 
 xor, % Exclusive OR - isolates lakes 
 big(N), % Isolate N-th biggest lake.  
 cgr(_,Y), % Find its vertical position 
 dgw(_,_,_,A), % Get image size 
 B is int(A/), % Find mid-point of image (vertical axis, only) 
 Y < B, % Is peak in integrated intensity profile above  
  % centre of image? 
 pop, % Restore input image 
 !. % Do not allow back-tracking 
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chirality(left). 
 

The reader may like to contemplate how the program can be modified to allow 
indentations but not holes to be used as the basis for the chirality test. 

Fifth Program 

In some cases, it is impossible to obtain a reliable estimate of the orientation of 
a component from the principal axis (i.e. axis of minimum second moment), 
which forms the basis of the operators npo and lmi. In this case, it is possible to 
use two bays, two lakes or one lake and one bay to find the orientation first.  The 
following program uses the two largest bays to fix the orientation (Figure 7.4.12) 
Here is the program, which in other respects resembles the second program. 

 
chirality(right) :- 
 nlk,              % Normalise position/orientation using lakes  
               % ranked 1 & 2 
 rin, gli(_,Q), thr(Q,Q),   
 big,     % Isolate biggest region at peak intensity,  
          % if more than one 
 cgr(_,Y),     % Find its vertical position 
 dgw(_,_,_,A),     % Get image size 
 B is int(A/2),    % Find mid-point of image (vertical axis, only) 
 Y < B,     % Is peak in integrated intensity profile  
      % above centre of image? 
 !.     % Do not allow back-tracking 
 
chirality(left). 

 
 

 
 
Figure 7.4.11 Chirality test based on the fourth program for chirality. The 
input image has been normalised, using [npo,chf], so the centroid of the blob 
is at the centre of the image and its principal axis is horizontal. Since the 
centroid of the largest lake is above the centre of the image, the chirality is 
taken to be "right". Notice that the chirality calculated in this way is different 
from that derived by the third method. 
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Figure 7.4.12 Chirality test based on the fifth program for chirality. (a) Input 
image. (b) After nlk has been applied. (c) [rin,plt] applied to (b). The program 
finds the position of the peak integrated intensity. If the peak is above the 
centre of the image, the chirality is taken to be "right". Otherwise it is "left". 

7.5 Telling the Time 
In this case study, the camera views a conventional “analogue” clock. The 

vision system interprets the image of the clock and calculates what time it is. The 
output is given in both digital and symbolic "casual" format. Examples of the 
latter are “twenty past three”, “quarter past eleven” and “ten o’clock”.  

7.5.1 Significance 

Analysing the image of a clock face serves as a model for a number of 
important tasks for manufacturing industry. Although less common than they once 
were, moving-needle meters are still widely used in automobiles, aircraft, 
industrial process control instruments, domestic electricity, water and gas meters. 
A machine vision system might appropriately be used to “read” instruments such 
as these, during calibration and inspection.  

The task of telling the time by analysing the image of an analogue clock is less 
straightforward than might at first be thought. Since both hands move 
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continuously and are linked by gears, the significance of the position of the hour 
hand can only be determined after first locating the minute hand. In addition, there 
are two “discontinuities”, which occur when the minute and hour hands pass the 
12 o’clock position. Furthermore, special provision has to be made for analysing 
the image when the minute and hour hands overlap. The task of telling the time 
can be broken down into several sub-tasks, which is, of course, well-suited to 
Prolog’s multiple-clause structure. 

7.5.2 Simplifying Assumptions 

The following assumptions were made initially, in order to make the problem 
manageable.  

 
(a) The clock face consists of a white circular disc, with a black annulus 
surrounding it. 
(b) The hands have black tips but are white near the centre of the face. 
(c) There is no second hand. 
(d) Black numerals, minute / hour “tick” marks and lettering are tolerated on the 
clock face but they must be thin compared to the hour and minute hands.  
 
Some of these conditions can be relaxed but the general effect is to make the 

program more complicated. Unless we make these, or some other similar 
simplifying assumptions, it seems unlikely that it would be possible to write an 
effective program for telling the time, given any type of clock face. Unusual and 
bizarre clock designs, such as those showing pictorial scenes, animals, cartoon 
characters, etc. are outside the scope of our present discussion, since our theme in 
this book is to describe techniques that are relevant in the context of 
manufacturing industry. 

In certain industrial calibration tasks, it may be possible to move the hands / 
needle of an instrument quite quickly, under software control. This makes one 
particular type of vision algorithm (image subtraction) more attractive than it 
seems when we consider clocks. We shall therefore discuss how several images of 
a clock, obtained over a period of several hours, can be combined. While this 
seems an unreasonable approach when writing a program to tell the time, it is 
nevertheless quite attractive in certain industrial applications. 

7.5.3 Lighting 

It is clearly important to avoid producing shadows (of the rim and hands) and 
glinting (on the hands, front glass). Lighting the clock face with a broad 
illumination source is ideal.  One possible way to do this is to use flood lamps to 
project light onto a board that has been painted matt white. The camera views the 
clock face through a small hole cut in the centre of the board.  
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7.5.4 First Program 

The following program represents our first attempt at writing a program to tell 
the time. It returns the time in both digital and casual formats. 

 
telling_time(H, M, C) :- 
 grb,     % Digitise image 
  yxt,     % Interchange X & Y axes 
  tbt,    % Flip vertical axis 
 crack,    % Non-linear filter & threshold  
 blb,    % Fill black holes 
 cgr(U,V),    % Centroid of clock face 
 xor,    % Isolate face  
 blb,    % Fill black holes 
 xor,    % Isolate hands  
 big_blobs(200),   % Eliminate small blobs (noise)  
 count(blobs,N),   % To check whether hands overlap 
 biggest,    % Select minute hand (larger) 
 cgr(Xm,Xm),    % Find its centroid 
 angle(Xm,Xm,U,V, Mangle),  % Orientation of minute hand 
 ( (N = 2,      % Test whether hands overlap 
  xor,    % No - so select hour hand 
 cgr(Xh,Yh),    % Find its centroid 
 angle(Xh,Yh,U,V,Hangle))   % Orientation of hour hand 
 ;     % Prolog OR operator 
 (Hangle is Mangle) ),  % Do this if hands do overlap 
 A is 60 - Mangle/6,   % Calculate M, floating pt. 
 int(A,M),    % Convert to integer 
 calculate_hour(Hangle, M, H),  % Calculate hours  
 casual_time_conv(H, M, C), % Convert to casual format 
 !.     
 
% Interpret hour hand position, considering minute hand position. 
calculate_hour(Hangle, M, H) :-   
    % Calculate hours when minutes < 30.  
 M < 30, A is (367 - Hangle)/30, int(A,H). 
 
calculate_hour(Hangle, M, H) :-   
    % Calculate hours when minutes ≥ 30 
 M ≥ 30, A is (353 - Hangle)/30, int(A,H). 
 
% Break task of converting to casual time format into twelve small 
% units. 
 
% 0 - 2 mins past hour. Example of output: [six, o_clock] 
casual_time_conv(A, B, C) :-  
 B ≤ 2,     % Check minutes ≤ 2 
 number_to_words(A,D),  % Convert hour to word format 
 C = [D,o_clock].   % Create output list 
 
% 3 - 7 mins past hour. Example of output: [five, past, four] 
casual_time_conv(A,B,C) :- 
 B ≥ 3, B ≤ 7,    % Check minutes  
 number_to_words(A,D),  % Convert hour to word format 
 C = [five,past,D].   % Create output list 
 
% 8 - 12 minutes past the hour. Example: [ten, past, four] 
casual_time_conv(A,B,C) :- 
 B ≥ 8, B ≤ 12, number_to_words(A,D), C = [ten,past,D]. 
 
% 13 - 17 minutes past the hour. Example: [quarter, past, four] 
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casual_time_conv(A,B,C) :- 
 B ≥ 13, B ≤ 17, number_to_words(A,D), C = [quarter,past,D]. 
 
% 18 - 22 minutes past the hour. Example: [twenty, past, four] 
casual_time_conv(A,B,C) :- 
 B ≥ 18, B ≤ 22, number_to_words(A,D), C = [twenty,past,D]. 
 
% 23 - 27 minutes past the hour. Example: [twenty, five, past, 
four] 
casual_time_conv(A,B,C) :- 
 B ≥ 23, B ≤ 27, number_to_words(A,D), C = [twenty,five,past,D]. 
 
% 28 - 32 minutes past the hour. Example: [half, past, four] 
casual_time_conv(A,B,C) :- 
 B ≥ 28, B ≤ 32, number_to_words(A,D), C = [half,past,D]. 
 
% 33 - 37 minutes past the hour. Example: [twenty, five, to, five] 
casual_time_conv(A,B,C) :-  
 B ≥ 33, B ≤ 37, D is A +1, number_to_words(D,E),  
  C = [twenty, five, to,E]. 
 
% 38 - 42 minutes past the hour. Example: [twenty, to, five] 
casual_time_conv(A,B,C) :-  
 B ≥ 38, B ≤ 42, D is A +1, number_to_words(D,E),  
  C = [twenty, to,E]. 
 
% 43 - 47 minutes past the hour. Example: [quarter, to, five] 
casual_time_conv(A,B,C) :-  
 B ≥ 43, B ≤ 47, D is A +1, number_to_words(D,E),  
  C = [quarter, to,E]. 
 
% 48 - 52 minutes past the hour. Example: [ten, to, five] 
casual_time_conv(A,B,C) :-  
 B ≥ 48, B ≤ 52, D is A +1, number_to_words(D,E), C = [ten, to,E]. 
 
% 53 - 57 minutes past the hour. Example: [five, to, five] 
casual_time_conv(A,B,C) :-  
 B ≥ 53, B ≤ 57, D is A +1, number_to_words(D,E),  
  C = [five, to,E]. 
 
% 58 - 60 minutes past the hour. Example: [five, o_clock] 
casual_time_conv(A,B,C) :-  
 B ≥ 58, B ≤ 60, D is A +1, C = [D,o_clock]. 
 
% Converting numbers to words. There are twelve clauses covering 
% cases 1 - 12. 
number_to_words(1, one). 
number_to_words(2, two). 
……     
number_to_words(12,twelve). 
 
 
 

7.5.5 Other Methods 

Relaxing one of the assumptions  The program listed above will work well 
with only the very simplest types of clock face, such as that shown in Image 
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7.5.1(a). For example, it will produce spurious results if any of the following 
apply: 

 
(a) The hands extend to the rim of the face. 
(b) The numerals are of comparable thickness to the hands. 
(c) The hands are black near the centre of the face. 
 
The last mentioned variation in clock face design can be accommodated easily, 

by drawing a small white disc that is concentric with the clock face. To do this, 
we simply replace [cgr(U,V), xor] in telling_time by the following program 
segment: 

 
cgr(U,V),  % As before 
dim(A,B,_,_),  % Find X limits of clock face 
R is 0.25*(B - A), % Make  disc radius = 0.5* face radius.     
xor,  % As before 
draw_disc(U,V,R) % Disc is concentric with face 

 
Further variations in clock-face design can often be accommodated using 

“patches” to accommodate special cases. However, a more fundamental change of 
approach is needed, if we are to produce a more robust program, capable of 
working with a wider variation of clock designs.   

 
Hough Transform The Hough transform can be used to good effect to locate 

the hands on most types of clock. This technique works best on clocks which have 
long straight hands and a face plate that is almost plain. Image 7.5.2 shows how 
the Hough transform can be used to find the orientation of the minute and hour 
hands. Notice that it may be beneficial to apply some other image processing 
operations before the Hough transform is performed, in order to make sure that 
the hands are represented by narrow lines. This has the effect of making the spots 
in the Hough transform image easier to detect reliably, because they are smaller 
and have a higher contrast. 

 
Polar-Cartesian axis transformation. Another elegant approach uses the Polar-

Cartesian axis transformation (ptc, see Image 7.5.3). This operation converts 
concentric circles into parallel horizontal lines and radial features (“wheel 
spokes”) into parallel vertical lines. Thus, the hands of the clock become mapped 
into two vertical dark bars, which can easily be located. It is also a straightforward 
matter to distinguish the minute and hour hands, since the latter produces a shorter 
vertical bar. 

Image 7.5.3(b) illustrates the effect of applying ptc to the original (grey-scale) 
image of a simple clock face. The horizontal axis corresponds to angles measured 
relative to the line joining the face centre to the 12 o’clock position. The vertical 
axis corresponds to distance, measured from the face centre. The minute hand is 
the longer of the two dark grey “fingers”. The dark horizontal band is due to the 
rim of the clock face, while the hour “tick” marks are located beneath it. Notice 
that the operator ptc requires two parameters which define the centre of the polar-
Cartesian axis transformation. This can conveniently and easily be derived from 
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the centroid of the face disc. Slight errors arise as a result of quantisation  noise, 
when calculating the centre of the face. This inevitably leads to a small 
“sinusoidal” wave in the image of the rim. Its effect is not important for our 
application. Image 7.5.3(c) illustrates the result of applying the command 
sequence [yxt, rin, csh, wgx, sub, thr, bed, yxt] applied to (b). This is equivalent to 
integrating the intensity in Image 7.5.3(a) along a series of radii. The major peaks 
here are easy to detect and locate, thereby enabling the clock to be “read”. The 
minor peaks are, of course, due to the hour “tick” marks. Image 7.5.3(d) illustrates 
the original image from a real clock. Notice the fluorescent tips of the hands. It 
would, of course, be possible to increase the image contrast by illuminating with 
ultra-violet light. However, we chose not to do this, so that we could demonstrate 
the method on a more complex visual analysis task. 

 
Image Subtraction One possible method of analysing the clock image that is 

potentially much more robust is to compare it with a face which has no hands. A 
similar effect can be obtained by comparing the clock image with another image, 
obtained some time (at least one hour) before. Then, simple image subtraction, 
allows the hands to be identified easily.  (Image 7.5.4) 

The following program allows an image of the face to be reconstructed, as if the 
clock did not have any hands. This program operates on the assumption that the 
face is bright compared to the hands, the camera and clock are both fixed rigidly 
and the lighting is constant over a 12 hour period. 

 
build_face_image :- timer(0), grb, wri, fail.  
 
build_face_image :- 
 delay,  % Don’t do things too often - reduces noise 
 grb, rea, max, wri, timer(X),  
 X < 12.0,  % Observe clock for  12 hours 
 !,  % Needed to improve program efficiency 
 build_face_image. % Repeat 
 
build_face_image :- rea. % Get clock face image from disc 
 

It is now a straighforward matter to locate the hands. To do this, we simply 
subtract the image created using build_face_image from the picture of the clock. 
Simple thresholding will then isolate the hands. (See Image 7.5.4) 

7.5.6 Concluding Remarks 

The purpose of this case study was to demonstrate that, what may seem to be a 
simple application, may be quite complicated and require the use of AI 
techniques. None of the methods described above is "complete", in being able to 
tell the time correctly for all designs of clock face. Indeed, it is quite to easy to 
contrive special cases where they all fail. While the image subtraction method is 
probably the most robust, it does require that the clock be stationary within the 
camera’s field of view for a long period. As we have pointed out, this is not 
necessarily a serious problem in some industrial instrument calibration tasks. For 
example, suppose that we wish to calibrate an aircraft's barometric altimeter. 
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During calibration, the signal from the transducer (measuring air pressure) going 
into the cockpit display instrument is replaced by one generated electronically. 
The test equipment then moves the instrument needle to a number of pre-set 
positions (e.g. 5000, 10000, 20000 feet, etc.) and the vision system locates the 
needle(s). In this type of application, the image subtraction method will probably 
be acceptable, whereas it would be far too slow for setting the time on clocks. 

7.6 Food and Agricultural Products 

7.6.1 Objective 

In this section, we shall present a series of case studies, demonstrating how 
Prolog+ can be used to ensure that agricultural and food products are well formed, 
safe (i.e. have no large-body contaminants) and are attractive in appearance. 
Outline solutions will be presented, in the hope of convincing the reader that there 
is a large potential for machine vision in the agri-food industry, where there is 
inevitably a high degree of product variability. 

7.6.2 Industrial Relevance 

Since no physical contact is made with the objects being inspected, automated 
visual inspection is inherently and totally hygienic. Furthermore, machine vision 
can be used to examine soft and semi-liquid materials, such as purées of fruit and 
vegetables, tomatoes, uncooked dough, whipped cream, icing, butter etc., without 
any chance of deforming them. Since it is theoretically possible to examine a wide 
variety of features on food products, it would be reasonable to expect that we 
would find machine vision being used extensively throughout the food industry. 
In fact, this is not so. In the past, machine vision has been applied successfully in 
many widely different situations in the “hard” manufacturing industries (e.g. 
automobile, electronics, aircraft and consumer goods). These industries typically 
manufacture objects with close tolerances, often with micron-level accuracy on 
linear dimensions. By way of contrast, the food industry produces artefacts which 
are much more variable; tolerances are measured in terms of millimetres. This has, 
in the past, presented quite severe difficulties for standard (i.e. “non intelligent” ) 
machine vision systems, which are much better suited to verifying that well-
defined products are being made as they should be. It has been found to be much 
more difficult to build machine vision systems which are able to cope with the 
high degree of variability in shape, size and appearance that characterises food 
products. While there is no doubt that this high level variation has hindered the 
acceptance of machine vision technology in the food industry, there has been 
some notable work in the agri-food area. [CHA-95] 

 
• Biscuits, inspecting biscuits.  
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• Bread, analysing texture.  
• Carrots, controlling trimming. 
• Cherries, detecting kernel shells embedded in flesh. 
• Chicken / fish, detecting bones, using x-rays.  
• Chips (french fries), inspecting for black spots. 
• Confectionery, controlling decoration.  
• Fish fingers, counting. 
• Flat fish, controlling trimming.  
• Flour, measuring bran content.  
• Lettuce, harvesting. 
• Loaves, measuring shape and volume. 
• Measuring the thickness of chocolate on confectionery. 
• Meat, measuring fat: lean ratio.  
• Mushrooms, harvesting mushrooms.  
• Potatoes inspecting.  
• Sacramental wafers, inspection. 
• Seeds (e.g. rice, wheat kernels, etc.), sorting. 
 
Chan [CHA-95] provides an overall review of the achievements and potential 

for applying machine vision in the food processing industry. Another notable 
source of information about the need for improved food quality is to be found in 
newspapers. It is all too common to see headlines which report that a foreign 
body, such as a sliver of glass, metal bolt, dead mouse, bird’s skull, or snail, has 
been found in food products, ranging from packaged peanuts and bottled milk to 
loaves and pizza. Numerous cases of foreign body contamination of food products 
are heard in the lower courts, but few cases ever reach the higher courts. It seems 
that in the UK and Ireland, most food manufacturers either settle out of court, or 
are fined in a lower court for selling products which contain dangerous / 
unpleasant foreign bodies. 

We are left with several main conclusions: 
 
(a) Machine vision is ideally suited to inspecting food products since it is totally 
hygienic. 
(b) There remains a major problem of detecting foreign bodies in food. 
(c) There is a continuing problem which manufacturers face, in making 
malformed products which lead to customer dissatisfaction, even though they 
are perfectly safe and nutritious. Such products are sometimes pulped and 
recycled, or simply sold as scrap for animal feed. In both cases there is a loss of 
valuable product and hence profit. 
(d) There are numerous potential (i.e. unsolved) applications of machine vision, 
where the existing technology has been unable to provide a cost effective 
solution. 
(e) In both Europe and USA, even more stringent product safety laws are being 
imposed, particularly on the food and pharmaceutical industries. 
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(f) There has been a distinct reluctance to employ machine vision systems in the 
food industry, on account of the high capital cost of such systems and low profit 
margins in this industry. 
 
The principal reasons why low-tolerance products, such as confectionery, 

loaves, meat pies, pizzas, etc. are difficult to inspect using machine vision are as 
follows: 

 
(i)  It is impossible to guarantee that viewing / lighting angles are optimal, if the 
product shape is changing drastically and unpredictably. 
(ii) There are no firm points (e.g. corners, straight sides, drilled holes, etc.) on 
which to “anchor” measurements.  
(iii) The interpretation of measurements and other  data derived from highly 
variable artefacts requires subtle (i.e. rule-based) analysis.   
 
For these reasons, we need to employ more “intelligent” machine vision 

systems in the food industry than have been used in the “hard” manufacturing 
industries.  

7.6.3 Product Shape, Two-dimensions 

Many mass-produced food products, such as pies, tarts and certain types of loaf 
are made in moulds, while others are extruded and then cut off to a given length. 
The latter is especially popular for making confectionery, since it employs a 
highly reliable continuous manufacturing process, which lends itself very well to 
full automation. Another popular manufacturing technique is to stamp out 
(complicated 2D) shapes from a sheet of soft material, such as dough, using a 
specially shaped knife. In all of these cases, the shape of at least part of the 
product is quite well controlled. However, there are numerous instances of food 
products being made without any constraints, except that they lie on a flat tray. 
For example, (American-style) cookies, macaroons, meringues, Welsh cakes, and 
scones are formed by depositing a preformed (stamped) shape of dough-like 
consistency, or an amorphous “dollop” of a semi-liquid material, onto a flat 
surface where it is baked. As it cooks, the “dollop” takes on a new shape, which 
develops in an unpredictable and uncontrolled way. Croissants, Cornish Pasties, 
and filled pies all have widely varying shapes for this reason. Checking product 
shape, given a binary image representing its silhouette, is one of the most 
important tasks in food inspection. We shall therefore consider this task in some 
detail, beginning with very simple shape checks and progressing to more 
sophisticated methods. 

Image Acquisition 

In order to generate a high-contrast image, which can then be thresholded to 
create a binary image, we can use one of several lighting-viewing techniques. 
[BAT85] 



 332

 
(i) Back lighting, with a light source located behind the object being examined. 
(ii) Front lighting, using an ultra-violet light source and a fluorescent 
background. A UV-blocking filter is placed in front of the camera lens. 
(iii) Front lighting using an ultra-violet light and a UV-absorbent,  non-
fluorescent background. This works only if the object being examined is 
fluorescent. Again, a UV-blocking filter is placed in front of the camera lens. 
(iv) The CONSIGHT structured-lighting system. [HOL-79] This requires that 
the objects being inspected are carried on a smooth conveyor belt. (A chain belt 
would not be appropriate.) 
(v) Off-axis front illumination, using carefully collimated (parallel-beam) light 
sources which shine on the object but not on the background. The latter must be 
placed some considerable distance behind the object, to avoid light falling on its 
surface. 
(vi) Front lighting using coaxial illumination and viewing, and a retro-reflective 
background surface. 
(vii) Front lighting and a highly coloured background. A programmable colour 
filter or a simple optical filter can improve the contrast between the object and 
its background. This technique only works with objects which are not strongly 
coloured.  
(viii) Thermal imaging camera. The object being examined must be hot and no 
external light is required. 
 
The final choice of lighting-viewing method can only be made when the full 

application requirements are known. Let us turn our attention now to algorithmic 
and computational techniques for inspecting silhouettes of food products, 
assuming that a binary image has already been created 

Rectangular and Circular Biscuits 

First, let us discuss how we can inspect rectangular objects such as biscuits. The 
following program will do this quickly and reliably, provided that the straight 
sides of the biscuit lie parallel to the image border. 

 
rectangular_biscuit :- 
 grab_and_process_image, % Generate binary image 
 mar, % Draw minimum  area rectangle 
 max, % Superimpose MAR onto original (binary) image 
 blb, % Fill holes 
 xor, % Isolate differences between MAR & original image 
 3•skw, % Shrink white areas.  
 cwp(0). % Have all white regions disappeared? 

 
rectangular_biscuit succeeds if the object being viewed is nearly rectangular and 
is aligned to the image axes. If the biscuit is rotated, relative to the camera, or the 
biscuit is broken, rectangular_biscuit fails. In many food manufacturing 
applications, it is perfectly reasonable to expect that the objects being inspected 
will arrive in front of the camera in known orientation. (The material cutting and 
mechanical handling arrangements ensure this.) However, if this condition is not 
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satisfied, we simply add one extra step, npo, before the second sub-goal in 
rectangular_biscuit. 

Another method of aligning the silhouette is needed if the alignment assumption 
is invalid and the biscuit is square. One possible way to do this is explained in 
Figure 7.6.1. We identify the top- and left-most points of the biscuit (A and B 
respectively) and then draw two vertical lines to intersect the biscuit at points C 
and D. Notice that the vertical lines through points A, B, C and D are equally 
spaced. The orientation of the biscuit is then determined by that of the line CD. 
We shall use a similar technique when we consider the inspection of slices of 
bread and will describe the program to do this, in detail then. 

 
 

A
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Minimum area rectangle
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Figure 7.6.1 Alignment of a biscuit. 
 
It is a straightforward task to verify that a biscuit, cake, pizza, or pie is nearly 

circular. Here is a program to do this. 
 
circular :- 
 grab_and_process_image, % Generate binary image 
 bed, % Derive edge 
 cwp(A), % Count edge points 
 wri, % Save image for later 
 ccc, % Draw circumcircle 
 3•exw, % Make it thicker. Adjust loop parameter to taste 
 rea, % Recover edge image  
 min, % Apply “thick circumcircle” as a mask on edge image 
 cwp(A). % Do all edge pixels lie within 3 pixels of  
  % circumcircle 

 
A simple alternative to the above scheme will be defined in a little while. This 

second procedure fits an ellipse into the minimum area rectangle (MAR) 
surrounding the blob which is to be tested for circularity. The aspect ratio of this 
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ellipse and the areas of protuberances and indentations, defined by this ellipse, are 
computed. If the aspect ratio is outside defined limits, or the areas of the 
protuberances or indentations are too large, circular fails. 

 
circular :- 
 psk,  % Push image onto stack 
 dim(L,T,R,B),  % Find limits of minimum area rectangle (MAR) 
 zer,  % Draw black image 
 cir(L,T,R,B,255), % Draw ellipse within MAR 
 tsk,  % See image at top of stack 
 sub,  % Subtract images 
 thr(200),  % Isolate areas outside fitted circle 
 cwp(U),  % Count points 
 swi,  % Area of protuberances 
 thr(0,100),  % Isolate areas inside fitted circle 
 cwp(V),  % Area of indentations 
 pop,  % Restore input image whatever the result 
 S is ((R - L)*(R - L)) / ((B - T)*(B - T)),   
   % Squared aspect ratio of MAR 
 circularity_tolerance(U1,V1,W1,W2),  
   % Consult DB for tolerance limits 
 S ≥ W2, % Fails if object is an ellipse, rather than circle 
 S ≤ W1, % Fails if object is an ellipse, rather than circle 
 U ≤ U1, % Fails if area of protuberances is too large 
 V ≥ V1. % Fails if area of indentations is too large 
 
circularity_tolerance(200,202,0.95,1.05).   
   % Database for shape parameters 

 
This second definition of circular could, of course, be extended easily to inspect 

elliptical objects. We simply add npo after the first sub-goal and adjust the aspect-
ratio limits stored in circularity_tolerance (third and fourth parameters). There 
are, of course, many other possible techniques for examining “geometric” shapes 
such as squares, rectangles, circles and ellipses. It must be borne in mind, 
however, that the shapes found in food products bear only a very loose 
resemblance to the mathematical entities which bear the same names. For 
example, a “circular biscuit” is not truly circular in the mathematical sense. 
Nevertheless, inspecting food products with “geometric” shapes is rather simpler 
than some of the other applications that we shall consider later. We could use any 
of the techniques listed below to examine nominally circular food products, which 
have a wide range of variability. 

 
(a) Shape ratio (shf, which is based on the ratio of the area of a blob to the 
square of its perimeter) to examine circular objects.  
(b) Ratio of the area of the convex deficiency [cvd] of a blob to that of the blob 
itself. This detects indentations quickly and easily. Convex shapes, such as 
squares, rectangles, circles and ellipses, all produce a small value for this ratio 
(close to zero). 
(c) Find three edge points and then fit a circle to intersect all of them. Suppose 
that the radius of the fitted circle is R and its centre is at [X,Y]. We then draw a 
circular annulus, centred on [X,Y] with radii R ± K.R, where K is much smaller 
than 1.0 and then test, to make sure that all edge points lie within this annulus. 
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(d) Compare the minimum bounding circle [mbc] with a nominally circular 
object. 
(e) Use the modified version of the Hough transform which can locate circles. 
(f) Compute the differences between the minimum area rectangle [mar] and the 
silhouette. This is suitable for inspecting rectangular objects, such as biscuits, 
with rounded corners. Here is the program code: 
 
rounded_rectangular_biscuits :- 
 grab_and_process_image, % Generate binary image 
 npo,   % Normalise position and orientation 
 cwp(A),   % Area 
 mar, max, blb, xor,  % Isolate corners 
 skw,   % Ignore minor indentations 
 blp(B),   % Measure parameters of all blobs  
 length(B,),   % Check there are 4 rounded corners 
 compare(A,B).   % Simple Prolog test for corners 

Slices of Bread 

Examining the silhouette of a slice of bread is rather more complicated than 
inspecting the simple moulded / pressed shapes found in biscuits (Images 7.6.1 
and 7.6.2). The ideal shape of slices from a lidded tin loaf is square, so that the 
filling of a sandwich does not ooze out at the edges. It is, of course, a simple 
matter to modify the rules described above to inspect the square slices taken from 
a lidded tin loaf. Hence, we shall not discuss this type of loaf in much detail here. 
On the other hand, non-lidded tin loaves are only partially constrained during 
baking and hence are more variable in the shape of the top surface. This makes 
inspecting them a more challenging and interesting task. Of course, there are 
many other types of loaf. The most difficult ones to inspect are those which are 
baked on a flat tray and are therefore totally unconstrained as the dough rises 
during baking. We shall concentrate for the moment upon the non-lidded tin loaf 
and merely illustrate the processing of images from a lidded tin loaf in passing. 

The most complicated part of the task of inspecting a slice taken from a non-
lidded tin loaf is the identification and measurement of appropriate features. Once 
a set of measurements has been derived from a slice, it is a relatively 
straightforward matter to compare them with stored values, using learning and 
recognition rules similar to those outlined in Section 7.2.4. There are several steps 
in the process of deriving suitable measurements: 

 
(a) Locating the base of the slice, calculating and then normalising its 
orientation. (This will provide a reference for subsequent angle measurements.) 
(b) Isolating the straight parts of the sides and calculating their orientations 
relative to each other and to the base. 
(c) Locating the top of the slice and measuring its radius of curvature. 
(d) Isolating and measuring the “overspill”. (This is the upper part of the loaf 
which spreads out as the dough rises, overspilling the rim of the open-top 
baking tin.) 

Locating the Base and Determining Orientation 
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One possible way to determine the orientation of a slice of bread, prior to 
analysing its shape, is to use the Hough transform [huf]. Image 7.6.2 shows the 
Hough transform image derived from the slice silhouette, after the binary edge 
detector operator [bed] has been applied. The location of the brightest point in the 
Hough transform output image (Image 7.6.2(d)) indicates both the position and 
orientation of the bottom edge of the slice. We can, of course, use this information 
to good effect, to normalise the orientation of the image of the slice, since this is 
the longest linear edge segment. Our experience has shown that the Hough 
transform is more accurate in this application than the faster operator, lmi. (Image 
7.6.2(c)) The reason is that the loaf is almost square and has no obvious “long 
axis”. This remark applies particularly to the lidded tin loaf (Image 7.6.1), which 
ideally has a square cross section. 

Another possible technique for determining the orientation of a slice is to 
choose two points on the bottom (nearly straight) edge of the slice. (Image 
7.6.2(k)) We then find the orientation of the line joining those points, using the 
operator ang (c.f. Figure 7.6.1). This technique is rather faster than that based on 
the Hough transform and is sufficiently accurate and reliable, provided that the 
slices are always orientated approximately. Assuming that the orientation of the 
bottom edge of slice does not vary by more than about ±30°, relative to the 
horizontal axis of the image, this method will work reliably. In many industrial 
applications of machine vision, an assumption of this general type is perfectly 
reasonable and reflects reality, where approximate, but not precise, positioning 
and alignment can be guaranteed by simple mechanical means, such as guide rails, 
deflector plates, etc. Assumptions like this often allow much simpler / faster 
computational methods to be used in machine vision. Despite its great popularity 
among image processing specialists, the Hough transform is often far less 
attractive for industrial applications than an alternative heuristic procedure, which 
is often simpler and faster and hence more likely to find its way into an industrial 
machine vision system. 

It often happens, when studying industrial applications of machine vision, that 
problem-specific knowledge allows a simpler and faster heuristic procedure to be 
used, in preference to an algorithmic technique, even though the latter has 
received the benefit of detailed mathematical analysis. We very often find that 
implementation details preclude the use of certain “mathematically proven” 
computational techniques.1 The authors would prefer to use some computationally 
convenient heuristic methods in this particular application, rather than the Hough 
transform, reflecting their conviction that Industrial machine vision should 
properly be regarded as a Systems Engineering discipline and not as part of the 
science of computer vision. 

However, for  the sake of completeness and to demonstrate that Prolog+ is 
sufficiently versatile to accommodate both approaches, we shall present two 
programs with which we can calculate and normalise the orientation of a slice of 

                                                           
1 This is, of course, a dynamic situation, since a procedure that is too expensive 

/ slow to implement now may become more attractive in a few years time, after 
computational and electronic hardware techniques have improved. 
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bread taken from a non-lidded tin loaf, beginning with one based on the Hough 
transform: 

 
normalise_loaf_orientation1 :- 
 psk, skw, xor,  % Edges are left behind 
 huf,   % Hough Transform 
 gli(_,A), thr(A,A), big, cgr(X,Y),   
 dgw(L,T,R,B),   % Image size 
 Z is int(-90*X/(R-L+1)), % Rescale to calculate angle 
 tsk,   % See image at top of the stack 
 tur(Z), % Rotate so strongest linear feature (base) is horizontal 
 pop, % Recover original image 
 swi. % Switch images - normalised image is in current image 

 
The simpler alternative, in which we determine the orientation using two edge 

points may be implemented thus (c.f. Figure 7.6.1): 
 
normalise_loaf_orientation2 :- 
 psk,   % Push image onto stack 
 dim(A,_,B,_),   % Dimensions of loaf 
 X1 is int(0.7*A + 0.3*B), % Vert. scan line towards left of base 
 X2 is int(0.3*A + 0.7*B), % Vert. scan line towards right of base 
 scan(X1,X2,Y1,Y2),  % Intersections of 2 scan lines & edge  
    % of base 
 ang(X1,Y1,X2,Y2,_,Z), % Angle of base w.r.t. horizontal 
 Z1 is int(-Z),  % Negate angle 
 tur(Z1),   % Turn loaf image 
 pop,   % Restore input image 
 swi.   % Switch images  

Locating Straight Sides 

A program will be described which fits a straight line to the linear section of the 
side of a non-lidded tin loaf. Refer again to Image 7.6.2(d), which shows the 
Hough transform derived from the silhouette of a slice. Notice that there are three 
strong, well-defined peaks. We have already located and analysed one of these, to 
find the orientation of the base. The two other peaks correspond to the straight 
sides of the slice and can be analysed in a similar way. Notice that these two peaks 
have approximately equal co-ordinates along the horizontal axis, indicating that 
the lines they represent are almost parallel.  

A procedure can be defined in terms of the Hough transform and which uses a 
set of edge points located on one side of the slice. Of course, this uses a similar 
process to that embodied in normalise_loaf_orientation2 and hence will not be 
described in detail. Instead, we shall concentrate on a third method which uses lmi 
in an unusual way. Although we dismissed using this operator earlier, it can be 
used to good effect provided that we apply it to a section of the edge contour and 
not to the whole slice silhouette.   

 
% Fit a straight line to the linear part of the left-hand-side of  
% the loaf 
loaf_left_side(Z) :- 
 psk,   % Push image onto stack 
 dim(L,T,R,B),   % Dimensions of loaf 
 Y1 is int(T + (B-T)*0.5), % Upper part of linear section 
 Y2 is int(T + (B-T)*0.8), % Centre of linear section 
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 tsk,   % See image at top of stack 
 bve(L,Y1,R,Y1,X1,_,_,_), % Intersection of top scan line with  
    % edge of loaf 
 tsk,   % See image at top of stack, again 
 bve(L,Y2,R,Y2,X2,_,_,_), % Intersection of middle scan with edge 
 zer,   % Black image 
 fld(X1,Y1,X2,Y2),  % Fit straight line to linear part of  
    % left of loaf 
 angle(X1,Y1,X2,Y2,Z), % Calculate angle of this line 
 pop,   % Restore original image 
 swi.   % Switch images 
 
% Fit a straight line to the linear part of the right-hand-side of  
% the loaf 
loaf_right_side(A) :- 
 psk,   % Push image onto stack 
 lrt,   % Flip horizontal axis 
 loaf_left_side(B),  % Fit straight line to edge on LHS  
 A is -B,   % Invert angle as calculated for LHS 
 lrt,   % Flip horizontal axis again 
 pop,   % Restore original image 
 swi.   % Switch images 

Measuring Overspill 

The lines formed by loaf_left_side and loaf_right_side allow us to identify the 
overspill. (Image 7.6.2(g)(h)). We explained earlier that this is the upper part of 
the slice which overhangs the sides of the baking tin.) Thus, the overspill can be 
reduced to two blobs, which can in turn be represented by two sets of simple 
shape parameters, such as area, perimeter, dimensions and aspect ratio. 

Radius of Curvature of Top Edge 

Let us assume, for the sake of simplicity, that the orientation of a slice from a 
non-lidded tin loaf has already been normalised (i.e. the bottom edge is nearly 
parallel to the image border). Using the following program, we can measure the 
radius of the top edge. (Figure 7.6.2) 

 
Figure 7.6.2 Fitting a circle to the top surface of a non-lidded tin loaf, using 
three sample points. 
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loaf_top(X0,Y0,Rad) :- 
 psk,   % Push image onto stack 
 dim(A,_,B,_),   % Dimensions of blob 
 X1 is int(0.8*A + 0.2*B), % X-position: first vertical scan line  
 X2 is int(0.5* (A + B)), % X-position: second vertical scan line  
 X3 is int(0.2*A + 0.8*B), % X-position: third vertical scan line  
 scan_3_lines(X1,X2,X3,Y1,Y2,Y3), % Three vertical scan lines 
 fit_circle(X1,Y1,X2,Y2,X3,Y3, X0,Y0,Rad), 
    % Fit circle to intersections 
 pop,   % Pop image stack  
 swi.   % Switch images 
 
% Find Y intersections of blob with three vertical scan lines given 
% X-positions 
scan_3_lines(X1,X2,X3,Y1,Y2,Y3) :- 
 psk,  % Push image onto stack 
 dgw(L,T,R,B),  % Image dimensions 
 bve(X1,T,X1,B,_,Y1,_,_),  
   % Find intersections with first scan line 
 tsk,  % See image at top of stack (Do not POP) 
 bve(X2,T,X2,B,_,Y2,_,_),  
   % Find intersections with second scan line 
 tsk,  % See image at top of stack (Do not POP) 
 bve(X3,T,X3,B,_,Y3,_,_),  
   % Find intersections with third scan line 
 pop.  % Recover “input” image 
 
% Fit a circle to three points  
fit_circle(X1,Y1,X2,Y2,X3,Y3, X0,Y0,Rad) :- 
 circle(X1,Y1,X2,Y2,X3,Y3, X0,Y0,Rad),  % Defined below 
 L is int(X0 - Rad), R is int(X0+ Rad), 
 T is int(Y0 - Rad), B is int(Y0 + Rad), zer,      
 cir(L,T,R,B,255).    % Draw circle inside rectangle  
 
% Radius R & centre [Px,YPy] of circle through points [Ax,Ay],  
% [Bx,By] & [Cx, Cy] 
circle(Ax,Ay,Bx,By,Cx,Cy,Px,Py,R):- 
  D is 2*(Ay*Cx + By*Ax -By*Cx - Ay*Bx  - Cy*Ax + Cy*Bx), 
 Px is ( By*Ax^2 -  Cy*Ax^2 -  Ay*By^2 + Ay*Cy^2 +  Cy*Bx^2 +   
 By*Ay^2 + Ay*Cx^2 -  By*Cy^2 -  By*Cx^2 -  Ay*Bx^2 +  
 Cy*By^2 -  Cy*Ay^2 )/ D,   
 Py is ( Cx*Ax^2 + Cx*Ay^2 + Ax*Bx^2 -  Cx*Bx^2 + Ax*By^2 - 
 Cx*By^2 -  Bx*Ax^2 -  Bx*Ay^2 -  Ax*Cx^2 + Bx*Cx^2 - 
 Ax*Cy^2 + Bx*Cy^2 ) / D, 
 R is sqrt((Ax - Px)^2  + (Ay - Py)^2). 

7.6.4 Analysing the 3D Structure of an Uncut Loaf 

To conclude this section, we briefly discuss the analysis of the 3-dimensional 
shape of the top surface of a loaf using a so-called Depth Map. This is an image in 
which the "intensity" indicates the height of a surface, not the amount of light 
coming from it. An optical arrangement for generating depth maps is shown in 
Figure 7.6.3. This technique is variously called light stripe sectioning, structured 
lighting and triangulation, and relies on the fact that the loaf is moved 
progressively past the camera and light-stripe generator. The latter can very 
conveniently be built, using a diode laser, fitted with a cylindrical lens. At each X-
position for the loaf, a vector of height-measurement values is created. This vector 
describes the height of that curve formed by the intersection of the top surface of 
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the loaf with a vertical plane. Of course, some parts of a loaf, such as indentations 
in its sides and ends, are obscured. Occlusion can cause difficulties for subsequent 
analysis of the range map. To overcome this, more sophisticated range-
measurement techniques are needed. For example, it is possible to use three, or 
more, laser light-stripe generators and cameras to obtain an "all-round" view of 
loaf sides and top surface. (We cannot, of course, measure the base.) As we shall 
see, minor occlusions can result in black spots appearing in depth maps and these 
require the use of special processing techniques. 

An important point to note is that in Figure 7.6.3(a), the light-stripe generator is 
located directly above the loaf, while the camera views it obliquely. Many articles 
and books, even a wall-poster produced by a learned society show the camera 
placed above the sample and the laser off-set to one side. However, this makes the 
analysis of the data very much more difficult and it is far easier to use the 
arrangement shown in Figure 7.6.3(a). The reason is simple: the light stripe 
effectively forms a section of the object being measured. If a ray produced by the 
laser does not lie in the vertical plane, its point of intersection with the surface is 
not fixed, along the X axis. The reader is therefore strongly urged to use the 
arrangement shown in Figure 7.6.3(a). 

Image 7.6.3(a) and (b) show the light stripe falling on the top surface of a 
round-top bread roll. Of course, we would normally choose to operate any optical 
rig in the dark, in order to avoid interference from highly-variable ambient light. 
However, it is possible to make the light-stripe sectioning technique very robust, 
since the laser generates high-intensity monochromatic light, whereas ordinary 
(i.e. pan-chromatic) room lighting typically has very little energy within the 
narrow pass band of a notch filter placed in front of the camera lens. The image of 
the light-stripe as detected by the camera can easily be processed and the list of 
surface-height values created. The program to do this is straightforward and is 
based on the "crack detector" [crk] and skeletonisation [ske] operators: 

 
% Find list of surface height values for one X-position of sample. 
 
one_row_height_data(L) :- 
        grb,          % Digitise an image 
        neg,          % Negate image, so stripe is dark 
        crk,          % Crack detector finds thin dark features 
        thr(32),      % Threshold - adjust parameter to taste 
        3*exw, 3*skw, % Noise removal 
        ske,          % Skeletonisation 
        rin,          % Integrate intensities along row - finds  
   % where light stripe is. 
        vgt(L).  % Instantiate L to list of height values for  
   % this X-position 
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Figure 7.6.3 Generating depth maps using structured lighting. (a) Optical-
scanning arrangement. (b) Ray geometry. The surface height, H, is given by 
the formula: H = D.L.(1 + tan2(A))/(S.tan(A) + D). (c) Projecting a light 
stripe onto a block on a plane surface. (d) What the camera "sees". The height 
of the "pulse" is D. Using the formula just given, the height of the block (H) 
can be determined. 
 
Another particularly important point to note is that the technique for generating 

depth maps outlined in Figure 7.6.3 is inherently slow; a depth map with N rows 
can be created in N video frame-scan periods. If N = 512 and the frame-scan 
period is 0.040 seconds (PAL / CCIR standard), the depth map can be formed in 
10.24 seconds. This may well be unacceptably long for many industrial 
applications. For example, it would not be possible to perform 100% inspection of 
loaves in a commercial bakery with this method. To overcome this difficulty, 
various other techniques are have been devised, including simultaneously 
projecting a series of (monochrome) light stripes (Image 7.6.4) and multi-coloured 
bands, from which a series of cross-section profiles can be created from a single 
image (Image 7.6.5). However, we shall ignore the problems caused by the slower 
arrangement shown in Figure 7.6.3, since we merely want to illustrate the basic 
principles of depth map generation and analysis. 

Image 7.6.6 shows depth maps derived from a croissant, Cornish pastie (a 
"parcel" of meat and vegetables, wrapped in a pastry case) and a non-lidded tin 
loaf with a "split" at the top. It is possible to calculate intensity contours 
(isophotes) using the following program (also see page 104): 

 
contours :- 
        psk,          % Push image onto the stack for display later 
        raf,          % Filter to make contours a bit smoother 
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        sca(3),  % Reduce number of grey levels to 8. Adjust  
   % parameter to taste 
        sed,          % Edge detector 
        thr(1),       % Threshold - result is binary image 
        pop,          % Recover original image 
        swi.          % Switch images 

 
Since "intensity" in a depth map indicates surface height, the isophotes are also 

height contours, just like the contours of elevation drawn on a map. It is also 
possible to draw both horizontal and vertical height profiles using plotit. 
 
plotit(A) :- 
        psk,       % Push image onto the stack for display later 
        lrt,          % Flip image about horizontal axis 
        psh(A),  % Shift to right by amount A 
        csh,          % Copy RHS to all other columns of image 
        wgx,          % Intensity wedge 
        sub,          % Subtract 
        thr,          % Threshold at mid grey; 
        bed,          % Contour is desired intensity profile 
        pop,          % Recover original image 
        swi.          % Switch images 

 
The observant reader will have notice some black spots in Image 7.6.6(d). 

These are due to occlusion, which occurs when there are steep-sided pits or 
"cliffs" in the surface being measured. It is possible to "fill" these, if they are very 
small, using a fairly simple filter: 

 
% Fill occlusions in depth maps if they are less than 2.A pixels  
% wide / diameter 
 
fill_occulsions(A) :- 
        psk,        % Push image onto the stack for display later 
        thr(0,0),     % Find occlusions 
        wri(temp),    % Save binary image of occlusions 
        swi,          % Revert to grey-scale image 
        A*lnb,      % Expand bright regions to "fill" occlusions 
        rea(temp),    % Recover binary image, showing occlusions 
        min,       % Occlusions appear as shaded islands 
        pop,          % Restore original image 
        max.          % Fill holes with the "shaded islands" 

 
From the depth map generated in this way, it is a straightforward matter to 

derive a range of measurements, of which the following are perhaps the most 
obvious ones: 

 
(i) Maximum height, H0. 
(ii) Area, A(H), above a given height, H. The parameter H is allowed to vary in 
a step-wise manner over a range defined by taking the expected  variations in 
height into account. For example, we might measure A(H1), A(H1-h), A(H1-
2.h), A(H1-3.h), ..., where H1 is the maximum allowed value for H0 and h is a 
small increment, typically 1 - 5 mm. Each of the A(.) can then be compared 
individually to previously measured tolerance limits. Alternatively, we might 
choose to consider the vector { A(H1), A(H1-h), A(H1-2.h), A(H1-3.h), ... } as a 
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complete entity and apply it as the input to some suitable learning process.  
(Image 7.6.6(b) and Section 7.2.4) 
(iii) For some suitable value of the height parameter H, we "slice" the depth 
map. (This is a similar process as that defined for step (ii).) This results in a 
binary image, where white indicates points on the loaf surface that are higher 
than H, while black areas indicate points that are lower. For an ideal non-lidded 
tin loaf, which has a single well-rounded dome-like top "slicing" the depth map 
at say 90% of the maximum height, yields one nearly elliptical blob-like figure. 
We might then compute the position of the centroid of this figure, its aspect 
ratio and the orientation of its longest axis. These parameters can then be 
compared to "ideal" values, either by conventional statistical analysis, or by 
using some multi-parameter learning procedure. 
(iv) The same "slicing" process might be applied to a split-top tin loaf. This type 
of loaf is expected to possess a top with a valley, lying between two elongated 
ridges. Ideally, the result of "slicing" should be a binary image, containing two 
elongated ellipse-like figures. Various tests for symmetry might be applied to 
these contours. Individually, they should be approximately symmetrical, about 
both their long and short axes. Their long axes should be parallel and the 
distance between them should lie within a defined range. Moreover, "ellipses" 
created by "slicing" at different height values, should be concentric. 
(v) The "slicing" process applied to a loaf with a more complex shape might 
well result in a number of distinct blob-like features. For example, a certain type 
of bread roll is made by tying a simple knot in a rope of dough, while another 
kind of roll consists of a short plait. Again, "slicing" the depth map will result in 
the generation of a number of blobs, whose areas, shape and positions can all be 
analysed individually and collectively. 
 
Of course, these rules can all be represented readily in Prolog+. In fact, Prolog+ 

is an ideal language for the task of analysing loaf shape, since the rules for 
recognising an acceptable loaf are likely to be expressed in terms of abstract, ill-
defined quantities,  such as "ellipse", "concentric", "symmetrical". While these 
words are associated with precisely defined mathematical entities, they are used 
here in the informal sense that a non-mathematician would use them. 

In conclusion, we show that depth maps can be precise enough to be useful for 
engineering components. Image 7.6.7 shows a zinc die-cast component, which 
contains several step-like edges. These are visible as sharp intensity gradients in 
the depth map. Notice however, that occlusions occurs, appearing as black 
shadows.   

 



 

 
8 
 
Concluding Remarks 

 
 
 
 
 
Industrial applications of machine vision are extremely varied in their nature 

and requirements. Despite this, it seems to be a universal truth that however fast, 
cheap, or smart we make them, somebody wants a machine vision system that is 
faster, cheaper and smarter than anything that has been made so far. Whichever 
computer and language we chose to use, somebody will want us to use a different 
one. If we have solved a problem for one industry, there is a feeling among some 
people that it has no relevance to another, even though the inherent nature of the 
two tasks are very similar. The converse is also true: if we can solve one problem 
for a certain industry, then, some people believe that we can also solve another, 
whatever its relationship in terms of application requirements.  The authors hope 
that by now the reader will be aware that these are nothing but simple fallacies. 
Machine vision does not necessarily conform to our naive, uninformed 
expectations. Some of the ideas and methods that we have encountered in the 
earlier pages are counter-intuitive. In particular, introspective thought is not a 
viable means of designing vision systems. We cannot design a vision system by 
simply asking ourselves the question "How do I see this pattern?" A lot of people 
have tried this approach and all of them have failed. Introspection simply does not 
work! However, confident that the reader is that he can design a system whilst 
sitting at a desk, without suitable experimentation, it is impossible. Let us make it 
absolutely clear that frustration, disappointment and despair inevitably lie at the 
end of that particular road. How do we know that with such unshakeable 
certainty? The answer is simple: experience and observation. The collective 
experience of the authors is over thirty years and, at no time, have they ever seen 
the "introspective approach" to machine vision system design even come close to 
working effectively. Any speaker, or author of a book or paper who indicates 
otherwise, is simply mistaken or misrepresenting reality. To summarise, we need 
good design tools for machine vision. Prolog+ and its modern implementation, 
PIP, provide one such a facility. 

To date, there have been many thousands of successful industrial applications of 
machine vision and there have been many unsuccessful one too! Like the ancient 
builders of bridges and cathedrals, many of the designers of machine vision 
systems were operating on ad hoc principles. As a result, their designs were based 
on weak foundations and often collapsed. After a number of failures, sometimes 
spectacular, the engineering community has, at last, gained a sense of realism 
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about machine vision and designers are more often inclined now to the view that 
the "system" principles that we have emphasised here are of crucial importance. 
One of the key reasons for these failures has been (and often still is) the innate 
belief that most people have that they are experts on vision. In fact very few 
people really are experts at human vision or at machine vision. Accepting this is 
one of the great steps forward, that a person has to take, in order to become 
proficient at the design process. No electronics engineer would try to analyse the 
behaviour of a circuit without taking detailed measurements with a suitable meter. 
In the same way, no good vision engineer would attempt to analyse images 
without the use of an interactive image processor. 

There is a great shortage of well trained vision systems engineers. A good 
honours degree in Engineering, Electronics, Physics or Computer Science is 
merely the minimal entry qualification for training in this subject. Both authors 
have taught machine vision as an option on Master's degree programmes, and we 
still feel that the graduates are inadequately prepared for the real needs of 
industry. We have also taught numerous short courses (2 - 3 days) and feel that 
even this route leaves engineers with scant knowledge of the real problems that 
they will face as designers of vision systems. Much more effective use could and, 
the authors believe, should be made of the available human resources by 
promoting active collaboration between academic and industrial staff.  

Apart from the urgent need for longer and more concentrated specialist training 
for machine vision systems engineers, there is a requirement for  improved design 
aids. In this book, we have discussed several of these. Interactive image 
processing is central to understanding how images should be processed. A facility 
like Prolog+ is important because it allows engineers to construct prototypes 
quickly and easily. Ready access to a range of tools such as the Lighting Advisor 
is important, to train / remind engineers of techniques which they might otherwise 
forget or ignore. Of course, it is impossible in a book such as this to encompass all 
of the relevant knowledge. All that we can hope to do is to provide the reader with 
a "snap-shot" of what the authors believe to be the important issues at this point in 
time. We have deliberately restricted our attention to industrial applications of 
machine vision. We have stated emphatically on several occasions that this book 
is not about computer vision. The two subjects are quite different, as we have 
taken great pains to point out in Appendix A. The subject of machine vision is 
evolving at a rapid rate and the tools that we have developed are themselves 
evolving. We envisage, for example, that before the end of the decade, it will be 
possible to choose whatever happens to be the most convenient computer 
language, for use at the top level in a prototyping system; it should be possible to 
"plug in" image processing facilities into otherwise perfectly standard languages, 
such as Lisp, C, SmallTalk, Basic and of course, Prolog. The Lighting Advisor 
will no doubt expand in the next few years and the authors hope to extend the 
range of advisory programs that are available. There is an on-going development 
process for these design tools and the authors are particularly anxious to receive 
suggestions, comments, feedback, etc. so that they can be made even more 
effective. Suggestions would also be welcome for further "Proverbs", which 
encapsulate the wisdom needed to design successful machine vision systems. (See 
Appendix A.) 
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What unsolved problems do we envisage will be important in the near future? 
The authors would suggest that the following will be among the most important 
ones: 

 
• Design of an inspection system for the aesthetic appearance, of wood, 

marble, food products, etc. 
• Learning by showing from a "Golden Sample". This will, of necessity, 

require the use of meta-knowledge. To suggest that a person or machine 
accepts that a sample should "look like this example that I am showing you", 
presupposes that there is higher-level knowledge about what constitutes 
acceptable similarity. 

• Declarative programming involving natural language will be refined to a 
much higher level. 

• The user interface will continue to develop and improve, through the use of 
multi-media techniques. Prolog+, for example, should be provided with at 
least rudimentary graphics facilities, to aid feedback to the human operator. 

• Multi-camera / multi-processor systems will become more common-place 
and networking will develop to allow really effective co-operative action 
between vision systems. 

• Closed-loop process-control, through the use of Expert Systems with visual 
inputs, will become more common in manufacturing industry. 

• Techniques will be devised for giving advice about which image processing 
method to use in a given application. 

 
We referred earlier in this chapter to the large number of successful applications 

that have been studied. In Chapter 7, we have illustrated the use of the tools 
described earlier in this book. While such tasks as telling the time and recognising 
playing cards may seem to be remote from industrial applications, they are, in 
fact, models for "real world" industrial applications that we are not at liberty to 
discuss in detail. There are literally thousands of diverse applications that 
designers have had to face in the past. However, we do know that this number is 
minuscule compared to the huge quantity of potential applications. How many 
ways can you find to use your eyes? If we are ever to realise the full potential of 
this fascinating technology, we must have many more properly trained personnel 
and we must develop even better design tools. This book is an attempt to 
encourage both of these objectives. The rewards, in terms of improved methods 
for monitoring and controlling manufacturing processes, could be truly enormous! 
A famous entertainer used the catch-phrase "You ain't seen nuthin yet". This could 
well be our watch-word, as we approach the end of the decade! 
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Appendix A        
 
Proverbs, Opinions and Folklore 

 
 
 
 
 
The following is a list of observations, comments, suggestions, etc. based upon 

our direct and our colleagues’ experiences. It is offered in a light-hearted manner 
but encapsulates some important lessons that we have learned but which are 
unfortunately not universally acknowledged. We hope it is will bring 
enlightenment and promote discussion among our colleagues. By its very nature, 
this list is dynamic and additions to it are always welcome. The current version of 
this list can be found at the following web site: 

 
http://www.eeng.dcu.ie/~whelanp/proverbs/proverbs.html 

General 
There is more to machine vision than meets the eye. 
 A machine vision system does not see things as the human eye does. 
An eye is not a camera. A brain is not a computer. 

Machine vision systems should not necessarily be modelled on, or 
intended to emulate human vision. 

Machine vision is not a scientific discipline.  
Machine vision is not an exercise in philosophy but an engineering 
project. 

No vision system should be required to answer the general question “What is 
this?”  

It is better for vision systems to answer more specific questions, such as 
“Is this widget well made?” Verification (i.e. checking that the widget is 
well made) is better than recognition, where few or no a priori 
assumptions are made. 

Intelligence ≠ Computing power. 
Making the computer more powerful does not necessarily make the 
system smarter. 

 
 
Optimal solutions do not always exist. 
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If they do exist, optimal solutions may be too complex, or impossible to 
find. We should therefore be prepared to search for and accept 
satisfactory solutions, rather than optimal ones. 

Use a standard solution to a vision problem but only if it is sensible to do so. 
Wherever possible we should provide standard solutions to industrial 
problems, since this helps to broaden the application  base. 

Avoid the application of machine vision techniques for their own sake. 
It is vanity on the part of the vision engineer to do so. There are plenty of 
other methods of solution available. Most of them are cheaper than 
vision. 

Defect prevention is better than cure. 
We should consider using vision in closed loop feedback control of the 
manufacturing process. 

Do not rely on second-hand information about the manufacturing process and 
environment.  

The vision engineer should always see the manufacturing process for 
himself. If the customer is unwilling to let the vision engineer into the 
factory, it may be necessary to abandon the application. 

Vision systems need not be fully automatic.  
While it is more usual to use a fully automatic vision system,  it can be 
used instead to enhance images for subsequent human analysis. 

Systems 
No system should be more complicated than it need be. 

This is a reformulation of Occam’s Razor, which in its original form is 
“Entia non multiplicanda sunt.” In its English translation, excessive 
complication is attributed to mere vanity. In colloquial use, this is often 
referred to as the KISS principle. (Keep it simple, stupid.) Simple systems 
are almost always the best in practice. 

All parts of a properly designed machine vision system bear an equal strain. 
Of course, it is impossible to measure strain in any formal sense. The 
point is that no part of a vision system should be made more complicated 
because a sloppy attitude has been adopted during the design of other 
parts. A particularly common error is the tendency to concentrate on the 
image processing, to the detriment of the image acquisition (i.e. pose of 
the object being inspected, lighting, optics and sensor). 

If it matters that we use the Sobel edge detector rather than the Roberts 
operator, then there is something fundamentally wrong, probably the lighting.  

This remark is not about the relative merits of the various edge detection 
operators but is a statement about the need for a broader “systems” 
approach. A common error is to pay much more attention to the image 
processing process but ignore the fact that the image contrast is low 
because the lighting sub-system is poorly designed.  
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The following inequality is always true: Vision-system ≠ PC + Framegrabber + 
Camera + Software. 

To many people, these are the only components needed to build a vision 
system. However, this neglects many important issues: lighting, optics, 
systems integration, mechanical handling, ergonomics and standard 
industrial inspection practice. 

Problem constraints allow the vision engineer to simplify the design. 
By taking systems issues into account, it may well be possible to design a 
simpler, faster, cheaper and more robust system. 

Vision systems can use the same aids as people to reduce task complexity. 
For example, special optical/lighting techniques, X-rays, fluoroscopy, 
multi-spectral imaging, specialised sample preparation can all be used. 

Documentation is an essential part of the system. 
A vision system will not survive for long without sufficient 
documentation. 

Customer 
Whatever software and hardware that a machine vision system uses, the 
customer will want it to be different, so don’t tell them. 

Many customer companies have a policy of using certain types of 
computer hardware / software, which will often conflict with the vision 
system. It is wise to regard the vision system as a closed box. 

The customer must not be allowed to tinker with the system after it is installed. 
The customer should be dissuaded from making internal adjustments to 
the system, since this requires rare and specialised skills (lighting, 
optics, camera, algorithms, systems integration). 

The customer’s company just does not make defective widgets; the vision 
system is simple intended “to improve product quality”. 

Companies are often sensitive about the way that quality (or lack of it) in 
their products is discussed. This must be borne in mind when designing a 
vision system and particularly when reporting developments at 
conferences, in publications, etc.  

Everybody (including the customer) thinks that they are an expert on vision and 
will tell the vision engineer how to design the machine. 

This is, regrettably, one of the great truths. As a result, everybody will 
feel it is their right and duty to tell the vision engineer how to do his job. 
In many instances, prototyping tools need to be used for the specific 
purpose of convincing the customer that his intuitive approach just does 
not work reliably. 

 
The widgets that were provided for the feasibility study were specially cleaned 
and chosen by the customer for the project. 
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Beware of the pernicious habit of some customers who deliberately, or 
through ignorance, select good quality products to show the vision 
company, rather than providing a more representative sample. 

Customer education is an integral part of vision system design. 
A well educated customer can help to reduce the project cost and may 
well help to reach a better system design.  

A little knowledge is a dangerous thing. 
The customer will suggest many changes to the system design if he is 
ignorant of the subtleties which led to the present design. It is best to tell 
the customer all or nothing. For example, the vision engineer should not 
tell the customer that the system uses a camera costing $5000, because 
the latter will know of a camera that costs only $100 but will not 
appreciate the benefits of the more expensive device. 

Financial 
The vision system must pay for itself in 6 months. 

The vision engineer must be prepared to argue against the simple-
minded attitude which attempts to judge the value of a vision system 
solely on financial grounds. When a company buys a vision system, it is 
investing in the improvement of the quality/safety of its products.  

Component cost is not the same thing as system cost. 
By purchasing one relatively expensive component, it may be possible 
make the overall  system cheaper, faster and more reliable.  

Only ten percent of the cost of installing a vision system is directly attributable 
to the requirements of image formation, acquisition and processing.  

The remaining ninety percent of the project cost is due to making the 
system work properly in the factory. 

$1 spent on inspection is worth $10 in improved profits. 
Investing a little in automated visual inspection can lead to significant 
gains in improved efficiency. 

System Specification 
The specification of the vision system is not what the customer wants. 

Do not try to take short cuts in the initial dialogue. The vision engineer 
should be prepared to spend a considerable amount of time finding what 
the customer really wants. 

The system specification must be agreed and fully understood by all concerned. 
All specifications should be in writing with negotiable and non-
negotiable specifications noted before the design proper begins. 

No machine vision system can solve the problem that the customer forgot to 
mention when placing the order. 

Undertake a proper and complete design study for each type of product.  
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The specification of a vision system should indicate its functionality and 
performance. 

It should not be used merely as a marketing tool. 
Beware when the customer says “By the way! We would like to be able to 
inspect these objects as well.”  

We repeat the point just made above: undertake a proper design study 
for each type of product.  

Simple accept/reject labelling is easier than classifying defects by type. 
If the customer wants to classify defects, they should be made aware that 
this could have a major bearing on the cost of the inspection system. 
Detailed classification of defects can greatly increase the speed/cost of 
the vision system. 

It may not be possible to classify defects reliably. 
The classification process may not always be clear-cut. A certain product 
may, for example, have a combination of faults. The vision system 
supplier and customer must agree beforehand what bounds are to be 
imposed on the classification process. 

Specify the operating environment. 
It is relatively easy to make a system that works well in the laboratory. 
However, it is much more difficult to build a target system that will work 
reliably in a hostile factory environment. 

Defect types must be realistically prioritised. 
The ranking of defect types in order of importance can have a major 
influence on the approach taken, and hence the final cost of the solution. 
For example, it may be the case that 90% of defect types can be detected 
for a cost of 90% of the total project budget, whereas detecting the 
remaining 10% of defect types would cost another 90%. (This is an 
example of the 90:90 rule.) 

Choosing Inspection System Design Samples 
Maximise the number of product samples. 

The feasibility study, the target system design process, the testing and 
evaluation of the target system and any demonstrations to the customer 
should all be based on a large number of  representative sample parts. 
These samples should cover the full range of part variability. 

Choose design samples following proper statistical sampling techniques. 
Their selection should be made according to a carefully planned and 
agreed protocol. 

 
 
If necessary, choose inspection samples manually using agreed criteria. 

If samples are chosen manually they will need to be cross-checked to 
ensure that the variation found in manual inspection is minimised. It is 
critical that the vision engineer establishes a reliable training set. 
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The customer said his widgets were made of brass. He did not think to state that 
they are always painted blue and oily. 

To the vision engineer, the surface finish is more important than the 
underlying material. This contrasts sharply with the customer who often 
regards surface finish as being of mere cosmetic value. 

Classify sample defects. 
There are many different ways in which a product can fail to meet its 
criteria. Any specific application knowledge that the customer can add 
concerning the type and origin of the fault, will be useful in the design 
process. 

Vision Company 
A sales-person who says that their company’s vision system can operate in  
uncontrolled lighting is lying. 

No. We are not exaggerating. The human eye cannot. No machine can 
either. 

A happy vision team has (at least) seven players. 
This consists of engineers who specialise in mechanical handling, 
lighting, optics, video sensor technology, electronic hardware, software, 
vision system integration. 

Alternative Solutions 
What a person cannot see, generally cannot be detected by the machine vision 
system. 

The human eye is remarkably adept and versatile. In contrast, a vision 
system is clumsy and unsophisticated, although it may be faster and more 
reliable. It is a good maxim to admit defeat sometimes as this will gain 
customer confidence, in the long term. 

It may be cheaper to hire a person to inspect the widgets. 
However, a machine may be faster, more consistent and reliable. Be 
prepared to argue this point with the customer. 

Machines can do some things better than humans. 
Machines can sense outside the visible spectrum (X-rays, IR, UV). Line-
scan cameras and laser scanners can produce high resolution images 
that cannot be seen directly by the eye. Depending on the technology 
used, a machine vision system would be expected to achieve a 
substantially higher inspection efficiency, and it can theoretically do this 
for 24 hours a day, 7 days a week. Machine vision can also be useful at 
detecting gradual changes in continuous processes that appear over long 
time periods. For example, inspecting gradual colour variations in the 
production of web materials. Such a gradual change in colour is unlikely 
to be detected by a human operator. 
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People can do some things better than machines. 
So far, no machine has been built that can reliably guide a car through 
busy traffic, safely and at speed. No machine can yet judge the aesthetic 
qualities of a person’s dress or a fine painting. 

Even the best human  inspector is  only 70% efficient. 
This is one of the best arguments in favour of  using machine vision. A 
person is easily distracted, for example by a good-looking member of the 
opposite sex walking past. The performance of a human inspector falls as 
a results of boredom, dissatisfaction with employment, distress due to a 
recent argument, illness, fatigue, hunger, discomfort, pain, alcohol and 
drug ingestion. 

Machines can work in situations that people cannot tolerate. 
Machines can work in radioactive, chemical and biological hazards, 
where there are high levels of noise, IR, UV, X-ray and microwave 
radiation, or it is very hot. Machines can tolerate flashing lights, which 
would induce epileptic fits and migraine attacks in people. A camera can 
operate under very high, very low, or suddenly changing pressure, and 
can also be used safely where there is a danger of explosion, or brittle 
materials are likely to shatter suddenly. A camera can be placed close to 
a laser cutter, which would be dangerous to a human being. A person 
cannot inspect the inside of a working jet engine, nor even a drain pipe. 

Human  inspection often comes free. 
Packing and assembly operators can inspect objects without adding 
(significantly) to the overall cost of the manufacturing process. 

Neither a human inspector, nor a fully automated vision system, will always get 
the best results. 

It is sometimes better to employ a person working in symbiosis with a 
machine vision system. 

Mechanical Handling 
However deformed the widgets are, they must all pass through the inspection 
system without jamming. 

If the full range of defective widgets cannot be fed properly through the 
inspection system, then it is of no use whatsoever. It is an irony that one 
of the main aims of automated visual inspection is to preventing jamming 
of a mechanical sub-system, such as an assembly machine.  

If the parts feed mechanism of the inspection system can go wrong, it most 
certainly will and the camera will be crushed. 

Be prepared to sacrifice the camera, lighting and/or optical sub-systems, 
in the event of a failure of the feed mechanism. Design the system 
accordingly. 

Lighting and Optics 
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Many hands make light work. 
… but not very well. However, some people do apply proper engineering 
principles to the design of the optical sub-system and inevitably obtain 
better results. 

The lighting is not constant. 
Lighting is never constant in either time or in space. 

Never use software to compensate for a poor lighting system. 
It is not cost effective and will result in a poor system design. 

It is cheaper to add a light-proof shroud to keep sun-light away from the object 
under inspection than to modify the software. 

Another universal truth which is often forgotten. 
Nothing exceeds the speed of light. 

Any processing that can be done optically will save a lot of computer 
processing later. 

It is all done by mirrors. 
Wishful thinking, in view of the previous remark. 

Image Resolution 
Any feature whose diameter is equal to 0.1% of the width of the camera's field 
of view, requires an image resolution better than 2000x2000. 

Nyquist's Sampling Theorem places a fundamental limit on the image 
resolution. This is often forgotten / ignored by advertisers on broadcast 
television, who frequently place disclaimer notices about their products 
on the screen, using printing that cannot be read properly because it is 
too small The same principal applies to machine vision. 

A (100x100) picture is worth 10000 words.  
The ancients were very astute when they realised that a digital image 
requires the storage and processing of a lot of data. 

One  high-quality image is  better than 5 fuzzy pictures. 
Few people would dispute this point.  

Five fuzzy pictures are better than one high-quality image.  
No! This does not conflict with the previous proverb. It may be cheaper 
and easier to obtain the required information from a small set of low-
resolution images than to process one very high resolution image. For 
example, it may be necessary to see several small features within a large 
scene. In such a case, it might be appropriate, say to use 5 low resolution 
images (e.g. 256*256), rather than one image of much higher resolution 
(e.g. 2000*2000). 

Related Disciplines 
Machine Vision  ≠  Computer  Vision.  
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Machine vision is concerned with Systems Engineering and the solution 
of practical problems,  such as guiding industrial robots, inspection and 
process monitoring. On the other hand, Computer Vision concentrates 
on the concepts and scientific basis of vision . The latter is concerned 
with generic issues and takes inspiration from and is often used to model 
human and animal vision. 

Machine vision research is not a part-time activity for workers in Image 
Processing, Pattern Recognition, or Artificial Intelligence. 

Some people think it is, unfortunately. The solutions they offer to 
industrial inspection problems are, at best, unreliable and over-
complicated, because they are unaware of the broader "systems issues", 
such as image acquisition, QA practices, industrial engineering etc.. 

Environmental Protection 
Protect the machine from the work place. 

A factory is a hostile place, with lots of dirt, tampering fingers, etc. 
Protect the work place from the machine. 

Protect eyes from flashing lights, lasers, etc. Make sure that the 
inspection machine does not shed bits, such as nuts, bolts, etc. to 
contaminate food products, pharmaceuticals, etc. 

It is cheaper to pay for a shroud to enclose strobed light than to pay 
compensation for causing epileptic fits. 

Flashing lights can trigger epileptic fits and migraine attacks. 
The lens may not fit the workman’s camera at home, but he thinks it will. 

Be aware of light fingered workers causing damage by removing pieces 
of equipment. 

"He is a good worker and likes to keep things clean - he washes down all of the 
equipment using a hose-pipe, every afternoon". 

This is quotation from one factory manager about a dedicated, but 
uninformed worker who did not realise the potential damage and danger 
his actions could cause. It is imperative therefore that the vision 
equipment be made safe and robust. 

Adjustment of the camera is achieved using a 1kg hammer. 
Vision engineers will be horrified at this prospect but it may happen. 

 Factories are dirty places. 
The electrical power supply is noisy. The air supply, for pneumatic 
equipment, also carries dirt, moisture and oil. Dirt, dust, moisture, 
fumes, spray, etc. all abound in the local atmosphere. 

Proving and Working with the System in the 
Factory  

Do not assume that the factory workers are computer literate. 
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Software should be designed in such a way that it can be used with 
minimal computer skills. 

The people who will make sure that the machine will not work are standing 
beside it. 

So, the vision engineer should try to persuade them that it is actually in 
their best interests (as well as his) to work in co-operation with the 
treasured vision system, not against it. 

A picture is worth ten thousand words. 
Give the workers a television program to watch. A visual display, 
showing performance statistics of the vision system and explaining its 
operation is well worth having, even though it may not seem to be 
essential.  

People "understand" pictures.  
A visual display is a useful way of building the confidence of factory 
personnel. It is also a valuable diagnostic tool: a person can easily 
recognise whether a sequence of images, showing the operation of the 
vision system is being repeated properly. 

The service schedule of the vision system should be compatible with the 
production line. 

If it is not, the vision system will not fit into the factory environment 
properly. 

For every hour you spend on inspecting products, your smarter competitor 
spends 10 hours improving their process. 

Automated inspection is not always the best way to get the desired 
results. 

Document all experiments to  validate the system. 
All laboratory and on-site trials in the customer's premises should be 
fully documented. This should include details about the hardware and 
software used, parameter settings, optical and lighting set-ups, lens 
distance, aperture settings and mechanical handling features, how the 
products were selected.   

Quantify the system performance. 
The ability of the system to perform to the agreed  specification should be 
demonstrated and quantified. Accuracy, repeatability, robustness, 
feature delectability and tolerance of product variation should all be 
measured and recorded. All demonstrations should be attended by the 
vision application engineer(s) who are ultimately responsible for the 
system design and implementation. 

Results may not be reproducible.  
Wherever possible, the results of all system performance tests should be 
reproducible and statistically characterised as to repeatability. In certain 
applications, for example the inspection of natural products, the 
variation in product characteristics make it difficult to implement this 
approach. 

Align, calibrate and then test the system  before it is used. 
A badly aligned system, or one which has not been calibrated, is likely to 
produce erroneous but seemingly reasonable results. 
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Appendix B        
 

Factors to be Considered when 
Designing a Vision System 

 
 
 

Mechanical Handling 
Motion: Continuous linear; indexed; continuous rotating; sliding; free fall; 

direction; velocity. 

Presentation 
Known or random position; known or random orientation;  arbitrary or limited 

number of attitudes possible when dropped on table; touching; separate; 
overlapping; on table; held in machine chuck; hanging (on chain); stacked; 
palletised; jumbled heap;  jumbled in a bin. 

Will faulty parts feed without jamming?  Number of components/minute; 
separation between components; vibration; physical space available for 
illumination; optics and camera. 

Illumination 
Spectral characteristics: Visible waveband; colour; infra-red; ultra-violet.  
Intensity: Variation with time; lamp ageing; variation when new lamps are fitted; 

power supply variations. 
Spatial distribution: Uniform; patterned (structured); filament shadow; dark spots 

to uneven packing and broken fibres in fibre-optic bundles. 
Temporal variation (short term): Constant; strobed; computer controlled; feed-

back to compensate for falling light output of lamps as they age. 
Polarisation: None; linear; circular. 
Coherence: Incoherent; coherent. 
Illumination optics (also see below): Mirrors; lenses; fibre optics; filters; filters 

and mirrors for heat removal. 
Servicing and maintenance: Lamp life; lamp replacement procedure; cleaning 

optics. 
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Environmental protection: Heat; water; dust; dirt; fumes; splashes etc.; tampering; 
malevolence; theft; ambient light; protecting people from dangerous light 
(lasers & stroboscopes); ionising radiation. 

Optics  
Lenses: Custom or standard; magnification; aperture; focal length; depth of focus; 

resolution (line pairs/mm); aberrations; anamorphic; materials; glass; quartz; 
plastic. 

Filters: Long pass; short pass; band pass; notch; infra-red; ultra-violet; effects of 
heat and moisture. 

Beamsplitters: Pellicle or cube type; vibration. 
Polarisers: Linear; circular; spectral performance. 
Fibre optics: Fibre material; ambient light. 

Image Sensor 
Type: CRT; solid state; laser scanner. 
Camera characteristics: Spatial resolution; sensitivity, dynamic range; 

gamma/linearity; geometric precision; intensity scale fidelity; lag; image 
burn-in; blooming; comet tail effect; noise level; monochrome or colour; 
weight; radiation damage.  

Physical characteristics:  Weight; size; lens mounting; magnetic susceptibility; 
damage by ionising radiation; operating voltages. 

Protection of camera: Heat; infra-red; moisture; vibration; accidental knocks; 
fibre optics. 

Image Processing 
Hardware: Architecture/technology; processor; bus; analog pre-processing; 

analogue to digital converter (ADC); digital pre-processing; image analysis 
and measurement. 

Image coding and representation methods: Array representation of an image; run 
length code; sparse array code. 

Software: Operating system; language. 
Algorithm “intelligence”: Smart; dumb. 

 

System Level 
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Engineering: Robustness; Reliability;  equipment protection; safety of equipment. 
Economic: Direct cost of installation; indirect cost of installation; running costs;  

pay-back period. 
Speed: Throughput rate; delay. 
Human interface: Ease of use; level of skill needed by operator; ease of 

reprogramming for new task; user education; machine driven operating 
dialogue. 

Output type: Qualitative; quantitative; image. 
Performance: Collection of statistics on reject rates; definition of “gold standard” 

for inspection. 
Co-ordination with other machines: Synchronisation; immediate feedback to 

manufacturing plant. 
System test: Calibration; standard test samples; self test; test images in backing 

store files. 
Servicing and maintenance procedures. 
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B.G. Batchelor, Intelligent Image Processing in Prolog, Springer-Verlag (1991). 
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Internet Resources1  

Newsgroups 
alt.3d 

Three-dimensional Imaging   
comp.ai.vision 

Computer Vision    
comp.robotics 

Robotics and Robot Vision   
sci.image.processing 

Scientific Image Processing     
 
 
 
 

Mailing Lists 
vision-list@ads.com 

Computer Vision    
pixel-request@essex.ac.uk 

                                                           
1Although correct at the time the book went to print, these links may change. 
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‘The  Pixel' Digest 
morpho@cwi.nl    

Morphological Digest    

FTP Sites 
mom.spie.org 

International Society for Optical Engineering (SPIE).   
peipa.essex.ac.uk 

Pilot European Image Processing Archive. Also see peipa/info/IP-
tools.review for a review of image processing tools. 

ftp://ftp.wmin.ac.uk/pub/itrg/coloureq.txt 
Colour spaces and colour transforms 

World Wide Web  (URL) 
http://www.cs.cmu.edu/~cil/txtvision.html 

Computer Vision Home Page. This site contains a comprehensive list of 
computer vision research groups on the World Wide Web. It also 
includes topics related to computer vision, conference and symposia 
notifications, frequently asked questions, a list of news groups and 
archives, publications, test images and source code. A very useful source 
of information.  

http://www.eeng.dcu.ie/~whelanp/vsg/vsghp.html 
Vision Systems Group (DCU)  

http://www.vision.auc.dk/LIA/NORVIC/index.html 
NORVIC:  Nordic Research Network in Computer Vision 
 

http://afrodite.lira.dist.unige.it/fullservice.html 
ECVNet  

http://www.vision1.com/links.html 
Vision and Imaging Resource Links 

http://www.epm.ornl.gov/~batsell/imaging.html 
Imaging on the Internet: Scientific/Industrial Resources 

http://www.sme.org/memb/mva.html 
Machine Vision Association of SME (MVA/SME) 

http://piglet.cs.umass.edu:4321/robotics.html 
Robotics Internet Resources 
 

http://www.wiley.com/wileychi/electronic/hipr/ 
HIPR - Hypermedia Image Processing Reference. (Available on CD-
ROM from John Wiley & Sons Ltd.)  

http://arachnid.cs.cf.ac.uk/Lad/text.intro.html 
The Lighting Advisor   

 
http://www.cm.cf.ac.uk/Dave/Vision_lecture/Vision_lecture_c
aller.html 

Vision Systems Courseware 
http://www.cogs.susx.ac.uk/users/davidy/teachvision/ 
vision0.html 

Sussex Computer Vision Teach Files 
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http://www.ph.tn.tudelft.nl/Software/TimWin/timwww2.html 
TIMWIN: A  program for scientific image processing 

http://www.khoros.unm.edu/khoros/ 
The Khoros Page  
 

http://pasture.ecn.purdue.edu/~precetti/ 
Colour Classification Tutorial  

http://www.isc.tamu.edu/~astro/color.html 
Colour Science 

http://www.cis.rit.edu/mcsl/ 
Munsell Color Science Laboratory 
 

http://wwwwhite.media.mit.edu/vismod/imagery/VisionTexture/
vistex.html 

VisTex Vision Texture Database  
http://moralforce.cc.gatech.edu/ 

ARPA Image Database Browser  
http://www.cwi.nl/projects/morphology/ 

The Morphology Digest  
 

http://www.cs.washington.edu/research/vision/pamitc.html 
IEEE - PAMI TC Home Page 

http://www.elsevier.nl:80/section/computer/416/525443/ 
menu.htm 

Image and Vision Computing 
http://scorpions.ifqsc.sc.usp.br/ifsc/ffi/grupos/instrum/ 
visao/meetings/rti.htm 

Real-Time Imaging 
 

http://iris.usc.edu/Information/Iris-Conferences.html 
Computer Vision Conferences 

http://www.rpd.net/Info/conferences/index/ 
Machine_Vision.html 

WWW Virtual Library on Conferences: Machine Vision 

Design Aids 

 Lighting 

ALIS 600 is a sophisticated multi-function lighting system, which provides a 
variety of illumination devices, mounted inside a light-proof cabinet. The lights 
are operated from regulated power supplies and can be switched by a computer. 
 
Micro-ALIS [ALIS] is an experimental tool-kit consisting of a set of useful 
illumination, optical and fibre-optic devices. In addition, there is a set of 
versatile mechanical fixtures for holding lamps, optical devices and samples. 

Optics 
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Sigma 2100 [KID] is a program for designing optical systems from simple 
objectives to complex multi-configuration systems, including zoom lenses, 
switchers, multi-channel lenses, multi-waveband lenses and scanners. 
 
KDP is a general-purpose optical design and analysis program. It has provisions 
for modelling ray-tracing and optimising a wide variety of types of optical 
systems. It has an extensive optical analysis capability which is enhanced by  a 
semi-compiled macro programming language. KDP is free and runs on a PC. 
(KDP, Optical Design Software, Engineering Calculations, 1377 East Windsor 
Road, #317 Glendale, CA 91205, USA. Available via WWW: 
www.kdpoptics.com.) 
 
TracePro is a ray-tracing program for optical analysis. It accounts for optical 
flux as it propagates through a solid model, defined in terms of geometric 
objects, such as spheres, elliptical and conical cylinders and cones, blocks and 
tori. TracePro can calculate absorption, specular reflection, refraction, 
scattering and aperture diffraction effects. (TracePro, Optical Systems Analysis 
Program, Lambda Research Corp., PO Box 1400, Littelton, MA 01460-4400, 
USA.) 
 
Optica has a large collection of data relating to lenses, mirrors, prisms, gratings. 
It provides a full range of geometric ray-tracing functions for designing optical 
systems and components. It is a based on Mathematica. (Optica, Optical Design 
Software, Wolfram Research Inc., 100 Trade Centre Drive, Champaign, IL 
61820-7237, USA.) 
 
Zemax is an optical design program.  
 
OPTICAD provides optical layout and analysis software. (OptiCAD and Zemax, 
Optical Design Software, Focus Software, PO Box 18228,Tucson, AZ 85731-
8228, USA.) 
 
Lens Selector Program. Optimum Vision Ltd., Unit 3a, Penns Road, Petersfield, 
GU32 2EW, UK. 
 
LensVIEW is a compilation of lens design data on CD-ROM.  
 
Machine Vision Lens Selector [MVA] is a slide rule and performs basic lens 
design calculations. 
 
Camera Calculator [SNY-92] is a Macintosh desk-accessory. It solves the 
standard lens formulae, given any sufficient sub-set of variables. It allows the 
user to specify virtually any sub-set of known values for such features as object 
size, object distance, image size, image distance, magnification, depth of field, f 
number, image resolution, and then calculates the unknown values. 
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Lighting-Viewing Subsystem 

HyperCard Lighting Advisor provides a catalogue of over 150 different lighting 
and viewing techniques. For each lighting-viewing technique, there are three 
cards: one provides notes in a fixed-format frame; another shows a sketch of the 
optical layout and the third card provides a sample image obtained using that 
lighting-viewing method. The Lighting Advisor is available on a shareware 
basis.  
 Email : Bruce.Batchelor@cs.cf.ac.uk 
 WWW:  http://www.cs.cf.ac.uk/User/Bruce.Batchelor/   
  and http://www.cs.cf.ac.uk/lad/text.intro.htm 
 FTP:  http://bruce.cs.cf.ac.uk/FTP/Light.sit.hqx 
 
Lighting Science Database [ITI-89], Prolog Lighting Advisor [BAT-89] and 
Lighting Advisor Expert System [PEN-88] all provide a broadly similar 
function to the HyperCard Lighting Advisor. 

Equipment / Software Suppliers 

Opto*Sense [WHI-94] is a comprehensive database of machine vision 
vendors' names and addresses. It runs on a PC. 

Training Courses 

"Success with Vision" is a set of six video tapes, describing the basic principles 
of machine vision system design. (Visual*Sense*Systems, 314 Meadow Wood 
Terrace, Ithaca, NY 14850, USA.) 
 
On-line Training Course in Machine Vision, Automated Vision Systems, 1550 
La Pradera Drive, Campbell, CA 95008-1547, USA.  
 WWW:  http://www.autovis.com/autovis/ 
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Appendix D        
 
PIP - Software Implementation of 
Prolog+ 

 
 
 
This appendix was written in conjunction with Andrew Jones and Ralf Hack 

(University of Wales College of Cardiff). They, together with Stephen Palmer and 
BGB, are the joint authors of PIP. 

D.1 Availability of the PIP Software 

Copies of the PIP software described below may be obtained by contacting:  
Bruce.Batchelor@cs.cf.ac.uk  or Andrew.C.Jones@cs.cf.ac.uk. 

Up-to date information about the status and availability of PIP is available on the 
World Wide Web (http://bruce.cs.cf.ac.uk/bruce/index.html). 

D.2 Introduction 

In this appendix, we describe PIP (mnemonic for Prolog Image Processing), a 
software system for interactive image processing and which provides the ability to 
write Prolog+ programs. PIP runs on an Apple Macintosh computer but differs 
from Prolog+ in two important respects. The first is that PIP performs image 
processing, implemented in software, using the C programming language, 
whereas Prolog+ originally relied on the availability of dedicated image 
processing hardware. The second difference is that, although the present version 
of PIP supports almost all of the Prolog+ commands mentioned elsewhere in this 
book, these are implemented in terms of lower-level Prolog predicates, which 
enable a more flexible approach to image manipulation to be taken. In principle, 
other operating paradigms, such as processing colour and multi-spectral images, 
or maintaining a history of past results using an image stack, are possible in PIP. 

We shall discuss the impact of the Apple Macintosh operating system upon the 
implementation of the image processing functions, and the interface between these 
and the Prolog sub-system. We also explain how the Prolog+ commands have 
been implemented. We will outline the principles upon which the PIP system is 
built, explaining in detail why this particular software-based approach is 
attractive. We shall then describe the infra-structure that has been implemented 
for image processing in which Prolog operates as a “top-level” controller. It is 
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anticipated, however, that the system will not normally be used at this (i.e. infra-
structure) level. One way in which a more accessible command set may be 
realised is to implement Prolog+ commands above this infra-structure. We discuss 
how this has been achieved. While we do not explain in detail how the other 
operating paradigms just mentioned may be implemented, it is fairly obvious how 
this can be achieved. 

D.3 Software for Image Processing 

Using specialised hardware for image processing has the obvious advantage 
over a software implementation that the hardware is tailored to image processing 
and will often give substantially better performance. If a software implementation 
is capable of providing adequate performance for a particular application, then 
such an implementation offers a number of benefits, including the following: 

 
• Apart from initial image capture, no investment in specialised hardware is 

required. Indeed, a complete image processing system may be assembled by 
merely purchasing a standard CCIR/RS320, or RS170, video camera and 
installing the PIP software on a Macintosh computer fitted with a standard 
“AV” (Audio-Video) card. Alternatively, a low cost camera (QuickCam2) 
may be used without any other hardware. (This device is interfaced to the 
computer via the serial port.) A third option is to use scanned images. 

• As a user upgrades his computer, he will obtain a corresponding 
improvement in image processing performance, without incurring the 
additional cost of investing in new hardware. 

• The software can be extended indefinitely, whereas image processing 
hardware is typically packaged in a closed “black box”, providing a 
predetermined range of functions.  

 
It should be clearly understood that Prolog is not an appropriate language for 

implementing “low-level” image processing operations, such as image addition, 
thresholding, filtering, skeletonisation, convex hull, etc. (These are often 
described colloquially as “pixel pushing” operations.) A procedural high-level 
language, or of course, assembly language, is much better suited to rapid, iterative 
processing of large arrays of data. Thus, an essential feature of the PIP system is 
the interface between Prolog and the image processing software. 

D.4 Choice of Hardware and Software Platforms 

We have chosen the Apple Macintosh computer, LPA MacProlog32 and 
Symantec Think C for system development. The software has been tested on 
several Apple computers, including those based on Motorola 680X0 processors 
and the PowerPC family. At the time of writing (October 1996), there is no 
                                                           

2 QuickCam, Connectix Corporation, San Mateo, CA, USA 
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“native code” version of the MacProlog32 software for the PowerPC family, so 
the software runs in emulation mode on these machines. The stand-alone version 
runs successfully under the Macintosh Application Environment 2.0 (Apple 
Computer, Inc.) on a Sun or Hewlett-Packard workstation. Unfortunately, the PIP 
software will not run under the WINDOWS 95 or MS-DOS operating systems. 
However, the promised enhancements to the Executor 2 software3, which 
emulates a Macintosh computer, should make this possible soon. 

We chose to use the Apple Macintosh for a number of reasons. Historically, our 
previous work on Prolog+ has been carried out on Apple Macintosh computers, 
due to the availability of a good implementation of Prolog. The LPA MacProlog 
environment used by the authors provides a full implementation of Prolog, 
user-interface development facilities, the ability to call functions written in C or 
Pascal, and the ability to act upon low-level events, such as activation of a 
window, in a user-defined manner. 

We are using THINK C because this is one of the languages supported by LPA 
MacProlog. The former offers an integrated programming environment, which has 
proved useful in developing and testing image processing functions, before 
attempting to integrate them into the PIP system. 

D.5 Why not Implement Prolog+ Commands Directly? 

Prolog+ is centred mostly around just two images: the current and alternate 
images. In previous implementations of Prolog+, both of these images were 
continually visible on a video (i.e. not the computer) monitor, whereas in PIP, 
they appear in windows on the Macintosh computer screen.  

We elected not to implement C routines which perform Prolog+ functions 
directly. Instead, a new image is created by each image-to-image mapping 
operator (e.g. neg, add, lpf, chu, etc.) and we have provided separate routines for 
such tasks as, disposal of images which are no longer required, creation of 
windows to display images and association of a new image with a window. 

The reasons for this approach include the following: 
 
• It is fairly easy to implement a 2-image (i.e. Prolog+) operating paradigm on 

top of this, by writing appropriate Prolog code. 
• The idea of leaving the source images unchanged is more in keeping with 

the spirit of the Prolog language. 
• It will not always be desirable to have a continuous display of the images 

when the system is working. (The user may, for example, wish to hide 
intermediate results from a customer.) 

                                                           
3 The Executor 2 software is available from Ardi Software, Inc., Suite 4-101, 

1650 University Boulevard, Albuquerque, NM 87102, USA. Also consult the 
following WWW site: http://www.ardi.com 
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• There is freedom to implement and explore other image processing models, 
if desired. (For example, we may wish to defined operations such as add, 
subtract, multiply, etc on 3-component colour images.) 

D.6 Infra-structure for Image Processing Using Prolog 

LPA MacProlog allows the programmer to call functions written in C, or Pascal. 
On the Apple Macintosh family of computers, files have two separate parts: the 
data and resource forks. MacProlog requires that a new code resource be created 
containing the compiled foreign code. Having opened the file containing the 
resource, the call_c (or call_pascal) predicate is used to invoke the required 
function. A collection of 'glue' routines must be linked into the foreign code 
resource, which allow the programmer to access arguments of the call_c routine 
and manipulate the data structures supported by Prolog, such as lists. 

In order to obtain a system which successfully coexists with the Macintosh 
Finder (the Graphical User Interface) and other applications, it was necessary to 
build our own application within the framework provided by Apple Computer, 
Inc. In particular, there is a wide range of Toolbox routines, for managing entities 
such as windows and menus. QuickDraw and offscreen graphics worlds are 
among the facilities provided for creating, manipulating and displaying graphical 
data. Using these features, in a way consistent with the Apple Computer 
Company’s recommendations, should ensure the future portability of the PIP 
system. 

In the following, we shall first consider how images are stored, displayed and 
manipulated in our system, and then consider how the interface between Prolog 
and the C routines is built. 

D.7 Storing, Displaying and Manipulating Images 

It is generally best to avoid accessing the screen display directly on the Apple 
Macintosh computer. Instead, drawing is carried out using QuickDraw routines, 
via a graphics port, which is normally a window. The operating system ensures 
that only visible parts of the window are drawn, and generates update events 
when part of a window needs to be redrawn, perhaps as a result of another 
overlapping window being moved. If a pixel map must be manipulated directly, 
then an offscreen graphics world (GWorld) may be used. One creates an offscreen 
GWorld and draws into it using QuickDraw or accessing the GWorld's pixels 
directly. The result may be copied to the appropriate window, using the 
QuickDraw copyBits routine. In our system, we use an offscreen GWorld to 
represent each image currently in use. Not all of these offscreen GWorlds 
necessarily have a corresponding window, but each image display window in PIP 
does have a corresponding offscreen GWorld. 

Using offscreen GWorlds offers a number of benefits to the programmer: 
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• An offscreen GWorld can be associated with a window for future redrawing, 
as necessary. 

• Whatever the pixel depth of the display, it is possible to make an offscreen 
GWorld of appropriate depth for the image. (So far, the images we have 
dealt with have had a depth of 8 bits per pixel, and our program assumes this 
pixel depth when it creates a new offscreen GWorld.) If a display mode is 
selected in which not all the image colours are available, the copyBits 
routine will select the nearest possible colour from the current palette. 

• It is possible to associate a colour lookup table (CLUT) with an offscreen 
GWorld which is different from the default. This is useful because the 
default Macintosh CLUTs assign white to a pixel value of 0, whereas our 
grey-scale image-processing operations assume a grey-scale gradient, in 
which 0 signifies black. So, in the present PIP system, which deals with 
8-bit grey-scale images, we set the CLUT for a new off-screen GWorld to a 
gradient of 256 grey levels, in which 0 signifies black and 255 signifies 
white. It is not necessary to change the screen CLUT (which would corrupt 
the colours of other items on the screen), since mapping between CLUTs is 
performed automatically by the QuickDraw routines. 

• Since the Macintosh operating system has its own memory management 
routines, memory occupied by an offscreen GWorld may be released as soon 
as it is no longer needed. 

 
Tables D.1 and D.2 illustrate how the above functionality is implemented in our 

C code. Table D.1 contains annotated extracts from the negate_image routine, 
which indicates how a new offscreen GWorld is created and accessed. Table D.2 
contains extracts from update_window, which indicates how an offscreen GWorld 
is associated with a window and how the window is updated. 

D.8 Prolog-C Interface 

Information concerning the current images and windows is stored by the Prolog 
program. In this section we explain how parameters are passed between Prolog 
and the C routines, and then discuss the implementation of the predicates which 
call the C routines and provide the infra-structure for the PIP system. Finally, we 
discuss how user events are handled. 

 
 
 
 
 

Code Comments 
externOSErr negate_image(GWorldPtr  
iml, GworldPtr *im2)  

iml:inputi image; irn2:output image. 

{ …  
GetGWorld(&origPort, &origDev); Store current GWorld for later  

restoration. 
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sourcePM = GetGWorldPixMap(iml); Get input image pixel map (NB This  
contains a reference to the memory  
where the pixels themselves are  
located, and other information.) 

good=LockPixels(sourcePM); Prevent it from moving. 
boundRect=(*iml).portRect; Get boundaries of pixel rnap. 
ctable = GetCTable(129); Obtain the greyscale CLUT. 
errNo = NetGWorld(im2, 8, &boundRect, 
 cTable, nil, 0); 

Create new offscreen GWorld of  
depth 8, with our special CLUT. 

DisposeCTab(cTable); Free memory 
SetGWorld(*im2, nil); Drawing to occur in this new  

GWorld. 
destPM=GetGWorldPixMap(*im2); Obtain the new pixel rnap. 
good=LockPixels(destPM); 
 

 

srcAddr=(unsigned 
char*)GetPixBaseAddr(sourcePM); 

Calculate where pixels are stored  
and prepare to copy the pixels, 

srcRowBytes=(**sourcePM).rowBytes & 
 0x3fff; 

 
 

destAddr=(unsigned 
char*)GetPixBaseAddr(destPM); 

 

destRowBytes=(**destPM).rowBytes &  
0x3fff; 

 

width = boundRect.right - boundRect.left;  
height = boundRect.bottom - 
 boundRect.top; 

 

for (row=0; row<height; row++) Copy pixels negating. NB we  
assume a greyscale image with pixel  
values between 0 and 255 inclusive. 

{  
     srcAddrl=srcAddr;  
     destAddrl=destAddr;  
     for (column=0; column<width;  
     column++) 

 

         *destAddrl++ = 255-(*srcAddrl++);  
          srcAddr=srcAddr+srcRowBytes;  
          destAddr=destAddr+destRowBytes;  
}  
UnlockPixels(destPM); Allow pixel maps to move again. 
UnlockPixels(sourcePM);  
SetGWorld(origPort, origDev); Restore original GWorld (screen). 
… }  

 
Table D.1 The negate_image routine. 

 
Code Comments 

extern OSErr update_window(WindowPtr 
 theWindow) 

 

{ …  
GetGWorld(&origPort, &origDev); Store current GWorld for later  

restoration. 
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theImage=(GWorldPtr) 
GetWRefCon(theWindow); 

Retrieve pointer to offscreen Gworld 
associated with the window  

SetPort(theWindow); Drawing to occur in this window. 
BeginUpdate(theWindow); Indicate to OS that an update event is  
display_in_window(theImage, theWindow); being processed; call the image drawing 
EndUpdate(theWindow); routine; indicate update is complete. 
SetGWorld(origPort, origDev); Restore original GWorld (screen). 
…}  

 
 Table D.2 The update_window routine. 

Passing Parameters 

The routines such as negate_image, described earlier, cannot be called directly 
from Prolog: some pre- and post-processing is required, in order to retrieve and 
set the parameters passed between Prolog and the C routine. A major reason why 
this extra processing is not bundled with each routine is that, in their present form, 
it is fairly easy to write a stand-alone C program that allows the functions to be 
tested and debugged separately, from within the Symantec programming 
environment. A C routine is invoked from LPA MacProlog using a call of the 
form: 

 
call_c(<parameter list>, <resource type>, <resource id>) 

 
In our case we have a single code resource of type 'MINE' and resource id 0. 

We always use a parameter list of the form: 
 
[<input param. list>, <output param. list>, <function no.>, <err. 
code>] 
 
As an example of the implementation of the image processing predicates, 

consider the following extract from our Prolog code: 
 
neg_im(Iml, Im2):-call_c([[Iml],Var,6,Err],'MINE',0), Err=0,  
Var=[Im2], recd_new_im(Im2). 
 
The neg_im predicate only succeeds if the error number were zero; the output 

list should contain a single element (i.e. the value of a pointer to the new image) 
and the Prolog system records that this new image has been created. This kind of 
data is recorded using the properties feature of MacProlog. An example of how 
this feature is used is given below, when considering the implementation of 
Prolog+ commands. 

User Events 

We need to be able to handle the following two kinds of event: 
 
• update events, generated when a window needs to be redrawn; and 
• mouse_down events, when they occur in the close box of the window. 



 386

 
MacProlog provides a way of trapping these events and acting upon them, 

provided that the windows' windowKind is greater than 32. (All windows created 
by our C routines have windowKind 33.) When an update event is received, 
MacProlog calls the user-defined x_update predicate (if any); a mouse-down 
event calls the x_mousedown predicate, etc. As an example, x_update is defined 
thus in our system: 

 
 x_update(Win) :- call_c([[Win], _, 2, _], 'MINE', 0). 
 
When the Prolog system invokes this predicate, the parameter Win is bound to 

the value of a pointer to the window that must be updated. Our x_update code 
calls the C routine which we have written to process update events for the 
specified window. 

D.9 Using Infra-structure Facilities Directly 

To use the infra-structure facilities directly is a somewhat laborious procedure. 
No images are automatically disposed of and an image is only displayed in 
response to an explicit command to do so. The following example illustrates how 
these facilities may be used; the values of pointers to the original and final images 
are returned in variables X and Y respectively: 

 
example(Im,Im4) :- 
 new_im(Im),  % Read new image from disk 
 new_win_for_im_disp(Im,Win,"Original Image",1,50)   
    % Create new window for image titled  
    % "Original Image", with top left hand 
    % corner at (1,50) 
 inop3_im([2,3,2,3,5,3,2,3,2],Im, Iml),  
    % Local operator - blur  
 new_win_for_im_disp(Iml,Winl, "New Image", 320,50),  
    % New window for this image 
 linop3_im([2,3,2,3,5,3,2,3,2],Iml,Im2), 
    % Local operator - blur 
 new_win_im_disp(Im2,Winl),     
    % Display this new image 
 kill_im(Iml),   % Dispose of previous image 
 sobel_im(Im2,Im3), % Sobel edge detector 

 
 
In the case of the image negation function, the call is composed thus: 
 
 call_c([[Iml], Var, 6, Err], 'MINE', O). 
 
A single parameter, the value of the source image pointer, is passed to the C 

routine; the routine binds Var to a single-element list which contains the 
destination image pointer's value; the negation routine is routine number 6, and 
Err will be bound to the error value (which is 0, unless an error occurred). 

Table D.3 contains extracts from the main C routine which chooses the 
appropriate image processing function based on the function number it receives, 
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and passes parameters between the Prolog environment and that function. Table 
D.4 lists predicates forming the image processing infra-structure. 

 
 

Code Comments 
bool main(long argc, void *link())  
{… inListTag=get_arg(1); Get 4 arguments passed by call_c 
outListTag=get_arg(2);  
fNoTag=get_arg(3);  
errNoTag=get_arg(4);   
switch (get_int_val(fNoTag)) Recover the value of the function 
{ … number; call routine which handles 
case 6; the specified function number. 
errNo = do_negate_image(inListTag,  
outListTag); 

 

break;  …  
}  
put_int_val(errNoTag, errNo);  Store error number. 
return SUCCESS;  Return value indicating predicate 

succeeded 
OSErr do_negate_image(cellpo inListTag,  
cellpo, outListTag) 

 

{ …  
lml = (GWorldPtr)get_int_val 
(get_list_head(inListTag)); 

Get 1st (and only) input parameter  
(head of the input list). 

errNo = negate_image(iml, &im2); Call the negate routine. 
outListTag = put_list(outListTag); Create a list to hold output  

parameter(s). 
put_int_val(get_list_head(outListTag), (long)  
im2); 

 

put_nil(get_list_tail(outListTag));  Tail of output list is empty, i.e. the list  
has only one element 

return errNo; Return error number to main routine. 
… }  

 
Table D.3 The main C routine, interfacing with Prolog. 

D.10 Predicates Forming the Image Processing Infra-structure 

It would be undesirable to use the call_c predicate directly in Prolog programs 
for the following reasons: 

 
• The semantics we have imposed upon the call_c predicate are very opaque. 
• When an image processing operation is called, additional processing at the 

Prolog level is required, such as keeping a record of any new images and 
windows that have been created. 

 
The following program segment explains how this can be achieved: 



 388

 
new_win_im_disp(Im3,Winl), 
kill_im(Im2),  
thresh_im(Im3,Im4,15,255), % Pixels with intensities 15 255 are  
    % set to white. All others are black 
new_win_im_disp(Im4,Winl), 
kill_im(Im3). 

 
Predicate Format Description 

new_im(Im) Select a new file (in PICT format) from a dialog box, and  
draw that file's contents into a new image. “Im” points to  
the new image on return from this predicate. 

kill_im (Im) Dispose of the image, freeing the memory it occupied. 
new_win_for_im (Im, Win, 
Name, OffH, OffV) 

Create a new window for the image. New window has  
title Name, & its top left hand corner is located at (OffH,  
OffV) . Win points to the new window on return from this  

new_win_for_im_disp (Im,  
Win, Name, OffH, OffV) 

Perform the same function as new_win_for_im, but  
display the window's contents immediately (rather than  
waiting for an update event). 

new_win_im (Im, Win) Associate the existing window win with new image “Im”. 
new_win_im_disp(Im, 
Win) 

As new_win_im, but display the window's contents  
immediately. 

close_win (Win) Close the window, freeing the memory it occupied. 
copy_im (Iml, Im2) Copy image “Iml” to new image. “Im2” points to this new  

image on return. 
kill_wins_and_ims Dispose of all windows and images currently in use,  

freeing the memory they occupy. 
 
Table D.4 Predicates forming the image processing infra-structure discussed 
in the text. Note: Variables Im, Iml, Im2 and Im3 denote integers which are 
pointers to images; Win denotes an integer which is a pointer to a window. 

D.11 Implementing Prolog+ Commands 

Prolog+ is built essentially around two images: the current and alternate 
images. When a Prolog+ image processing operation occurs, the current image 
will be replaced with the result of the operation, and the alternate image will be 
replaced with the previously current image. These images are displayed 
continuously on a monitor. 

Our predicates implementing these commands use the lower-level predicates 
previously described, and perform additional 'housekeeping', such as disposal of 
old images and maintaining information about the current and alternate images. 
As an example, the following is an implementation of the neg operator: 

 
neg:- 
 recall(curr_im,CurrIm),   % Retrieve present current & … 
 recall(alt_im,AltIm),   % … alternate images & windows   
 recall(curr_win,CurrWin),  % … stored as properties 
 recall(alt_win,AltWin),  
 neg_im(CurrIm,NewIm),   % Negate the image 
 new_win_im_disp(NewIm,CurrWin),   
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     % Display new image in current  
     % window 
 new_win_im_disp(CurrIm,AltWin),  
     % Display previous current  
     % image in the alternate window 
 kill_im(AltIm),   % Dispose of previous alternate  
     % image 
 remember(curr_im,NewIm),  % Store references to new  
     % current … 
 remember(alt_im,CurrIm). % … and alternate images 
 
Other operators are implemented in a broadly similar manner. A complete list of 

Prolog+ operators currently supported by PIP is given in Appendix E. 
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Appendix E       
 
Prolog+ and PIP Commands  

 
 
 
 
 
The predicates listed below are all available on the PIP or Prolog+ systems. PIP 

has a rather larger range of commands than Prolog+ and is being developed 
actively at the University of Wales Cardiff. A few Prolog+ commands are not yet 
available in PIP but are included here, since they will be added very soon.  

 
Image Processing Primitives 

Mnemonic Arity Description 
aad 3 Aspect adjust 
abs 0 "Absolute value" of intensity 
acn 1 Add constant to each intensity value 
add 0 Add current and alternate images 
and 0 Logical AND of corresponding pixels in current & alternate 

images 
ang 6 Orientation and length of line 
avg 1 Average intensity 
bay 0 Bays (indentations) of a blob 
bbt  6 Is biggest bay above second biggest bay? 
bed 1 Edge detector for binary images 
bic 1 Clear A-th bit of intensity of each pixel in current image 
bif 1 Flip the A-th bit of the intensity of each pixel in the current 

image 
big 1 Find A-th biggest blob 
bis 1 Set  A-th bit of intensity of each pixel in current image to 1 
blb 0 Fill holes (lakes) in a binary image 
blk 0 Set every pixel in the image to black (level 0) 
blo 1 Expand the central intensities.  
blp 1 Find blob parameters 
box 5 Set (hollow) rectangle to defined grey level 
bpt 2 Find co-ordinates of centre of bottom-most chord 
bsk 0 Copy image at bottom of stack into current image 
bve 5 Find all points where given vector intersects  edge of  object 
cal 1 Copy each pixel with intensity > A. All  other pixels are  

black 
cbl 1 Count blobs 
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Image Processing Primitives 
Mnemonic Arity Description 

ccc 0 Draw circumcircle of a blob placed at the blob centroid 
cct 1 Concavity tree 
cgr 0 Co-ordinates of  geometric centroid of all white pixels 
chf 0 Flip horizontal axis if longest vertical white chord is to left of 

image centre 
chf 1 Flip hor. axis if longest vertical section is left of image centre 
chu 0 Draw the convex hull around a blob-like object 
cin 0 Column integrate 
cir 5 Set an ellipse to a defined grey level 
clc 0 Column run length coding 
cnw 0 Count number of white 8-neighbours in each 3*3 

neighbourhood 
com 1 Count number of points with different intensities 
con 9 General purpose linear convolution operator based on 3*3  

window 
cox 0 Column maximum 
cpy 0 Copy current image into alternative image 
crk 1 Crack detector 
crp 4 Crop image 
csh 0 Copy intensity horizontally from RHS 
csk 0 Clear image stack 
ctp 0 Cartesian to Polar axis transformation 
cur 4 Cursor 
cvd 0 Convex deficiency 
cwp 1 Count the white points in the current image. 
dab 2 Draw some defined feature (e.g. centroid, principal axis) for 

each blob in image 
dbn 0 Direction of the brightest neighbour 
dcg 0 Draw geometric centroid and print its co-ordinates 
dci 7 Draw centre of the image 
dcl 3 Draw a pair of cross lines through a given point  
dcn 1 Divide each pixel intensity by a constant 
dgw 4 Get image size 
dif 0 Subtract alternate and current images ignoring the sign. 
dil 1 Dilate image along given direction 
dim 4 Extreme X and Y values for all white pixels 
din 0 Double all intensities 
div 0 Divide current image by alternate image 
dlp 2 Difference of low-pass filters 
doc 0 Suspend Prolog and enter HyperCard HELP facility 
dpa 1 Draw principal axis 
dsl 3 Draw straight line given one point on it and its slope 
eab 1 Analyse each blob in turn 
ect 0 Threshold mid-way between minimum & maximum intensity 
edc 3 Euclidean distance between two vectors, specified as lists 
edd 1 Non-linear edge detector 
edg 2 Set the border of width W to grey level G 
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Image Processing Primitives 
Mnemonic Arity Description 

egr 1 Grow the ends of an arc in a binary image 
enc 0 Enhance contrast 
ero 1 Erode image along given direction 
eul 3 Euler number 
exp 0 Exponential intensity transformation 
exw 0 Expand white 
fac 0 Flip the image about its centroid 
fbr 0 Find and remove all blobs touching the border 
fcb 9 Fit circle to three points on a blob 
fcd 4 Fit circle to three points 
fil 5 Set (solid)  rectangle to defined grey level 
fld 4 Fit straight line to data (2 points) 
gft 0 Grass fire transform 
gli 2 Get limits of intensity 
gob 1 Get one blob and delete it from stored image 
gra 0 Gradient, a simple edge detector 
gry 1 Set every pixel in the image to defined level 
hfl 8 Synonymous with blb 
hgc 0 Cumulative histogram 
hge 0 Histogram equalisation 
hgi 1 Intensity histogram 
hgr 0 Horizontal gradient 
hid 0 Horizontal intensity difference operator 
hil 3 Highlight intensities in given range  
him 1 Hide a displayed image 
hin 0 Halve all intensities 
hmx 2 Histogram maximum 
hol 0 Obtain the holes (lakes) of a blob in given binary image 
hpf 0 High pass filter (3*3 window) 
hpi 0 Plot intensity histogram of current image 
huf 0 Hough transform 
iht 2 Inverse Hough transform of given point 
ior 0 OR corresponding pixels in current and alternate images 
itv 0 Enter interactive mode 
jnt 0 Joints (of a skeleton) 
kgr 0 Keep blobs with area greater than defined limit. 
ksm 0 Keep blobs with area smaller than defined limit 
lak 0 Obtain the holes (lakes) of a blob in given binary image 
lat 1 Local averaging with threshold 
lav 1 Local averaging (blurring)  filter. 
lgr 0 Largest gradient of each 3x3 neighbourhood 
lgt 2 Transfer intensities along a line into a Prolog list 
lin 1 Normalise orientation so that longest straight side is 

horizontal 
lme 0 Limb ends (of a skeleton) 
lmi 4 Geometric centroid & orient. of  axis of min. second moment  
lnb 0 Largest neighbour 
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Image Processing Primitives 
Mnemonic Arity Description 

log 0 Logarithmic intensity transformation 
lpc 1 Laplacian operator (4 or 8-neighbour) 
lpf 0 Low Pass (Blurring) Filter (3* window) 
lpt 2 Find co-ordinates of centre of left-most chord 
lrt 0 Left-to-right transform 
lut 1 Apply one of the standard look-up tables to the current image 
mar 0 Draw the minimum-area rectangle 
max 0 Maximum of current and alternate images (pixel by pixel) 
mbc 0 Draw  minimum  bounding circle around a blob 
mcn 1 Multiply each pixel intensity by a constant 
mdf 1 Median filter 
mdl 0 Skeleton. Synonym for ske 
min 0 Minimum of current and alternate images (pixel by pixel) 
mma 2 Find lengths of blob projected onto principal axis and axis 

normal to it 
mul 0 Multiply current image by alternate image 
ndo 0 Numerate (shade) distinct objects in a binary image 
neg 0 Negate image 
nlk 0 Normalise position and orientation using largest and second 

largest lakes 
nlk 5 Normalise position and orientation based on lakes A & B 
nmr 0 Normalise position; put middle of Min. rect. at centre of  

image 
nnc 0 Nearest Neighbour classifier 
not 0 Logical negation of all pixels in a binary image 
npo 3 Normalise position and orientation of a blob in a binary image 
nxy 2 Normalise [X,Y] position; put centroid at centre of the image 
per 1 Perimeter 
pex 2 Picture expand (increase image size) 
pfx 3 Set the pixel whose address is (X, Y) to level G 
pic 8 Save/load named image  
pis 0 Push an image onto the stack 
plt 1 Plot the intensity profile along a specified column 
pop 0 Remove image from top of stack and put it into current image 
psh 2 Picture shift 
psk 0 Push an image onto the stack 
psq 2 Picture squeeze (reduce image size) 
psw 2 Picture shift with wrap around 
ptc 0 Polar  to Cartesian axis transformation 
pth 2 Percentage threshold 
raf 1 Repeated averaging filter 
rbi 0 Recover both current and alternate images from image stack 
rea 1 Read  image 
red 0 Roberts edge detector 
rim  1 Read image from RAM disc 
rlc 0 Row run length coding 
roa 0 Rotate image counterclockwise by 90° 
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Image Processing Primitives 
Mnemonic Arity Description 

roc 0 Rotate image clockwise by 90° 
rpt 2 Find co-ordinates of centre of right-most chord 
rsh 0 Copy intensity vertically from bottom 
sbi 0 Save both current and alternate images on image stack 
sca 1 Reduce number of bits in each intensity value to A 
sco 0 Circular wedge 
sed 0 Sobel edge detector 
set 0 Set every pixel in the image to white (level 255) 
shf 1 Shape factor 
shp 1 Sharpen image 
sim 2 Generate a new image display window 
skw 0 Shrink white regions 
snb 0 Smallest neighbour 
sqr 0 Square all intensities 
sqt 0 Square-root of all intensities 
ssk 0 View (see) the images on the stack 
sub 0 Subtract images 
swi 0 Swap current and alternative image 
tbt 0 Flip the vertical axis of the image 
thr 2 Threshold 
tpt 2 Find co-ordinates of centre of top-most chord 
tsk 0 Copy image at  top of stack into current image 
tur 1 Rotate an image by A degrees about its centre point 

usm 1 Unsharp masking (High pass filter) 
vgr 0 Vertical gradient 
vgt 1 Store grey-levels along RHS of image in a Prolog list 
vid 0 Vertical intensity difference operator 
vpl 5 Draw a digital straight line 
vpt 1 Set intensities along RHS of image to values in Prolog list 
vsk 1 Transfer the A-th image on the stack in the current image 
vsm  0 Vertical smoothing 
wdg 1 Draw an intensity wedge 
wgx 0 Draw an intensity wedge 
wim 1 Save image in RAM disc 
wri 1 Write image in RAM 
wrm 0 Remove isolated white pixels 
xor 0 Exclusive OR of  current and alternate images 
yxt 0 Transpose the image axes 
zer 0 Make image black 
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Synonyms used in this Book 

Predicate Arity Description 
angle 6 Synonym for ang 
bays 0 Synonym for bays 
biggest 0 Synonym for big 
big_blobs 1 Synonym for kgr 
count 2 Similar in operation to cbl but can also counts other features  

e.g. bays, lakes 
crack 0 Synonym for crk 
draw_disc 3 Draw a solid white disc of given radius in a given position 
draw_one_disc 3 Synonym for draw_disc 
fetch 1 Similar in operation to rea(saved_im)  
fit_circle 9 Fit a circle to 3 points 
keep 1 Similar in operation to wri(saved_im)  
label blobs 0 Synonym for ndo 
speak 1 Synonym for utter 
normalise 0 Synonym for npo 

 
 

Colour Image Processing, Partial Listing 
Predicate Arity Description 
colour_ 
scattergram 

0 Calculate the colour scattergram 

colour_ 
similarity 

2 Program the PCF to measure similarity to a defined colour  

create_filter 0 Program the colour filter from the current image 
draw_triangle  Draw outline of the colour triangle in the current image 
generalise_ 
colour 

0 Colour generalisation  

grab_3_images 0 Digitise the RGB colour separations as 3 distinct images 
hue 0 Program the PCF for the hue filter 
initialise_ 
pcf_lut 

0 Set all PCF LUT values to zero (black) initially 

normal_pcf 0 Reset PCF to normal operation for monochrome image 
processing 

pseudo_colour 1 Pseudo-colour on/off 
redness 0 Program the PCF to measure redness 
saturation 0 Program the PCF to measure saturation 
video 1 Select R, G, B or monochrome channel for future grb  

operations 
 
 
 
 
 
 
 

Gauge Predicates [Bat-91] 



 396

Predicate Arity Description 
balloon 5 Get co-ordinates of closest white pixel to a given point. For 

each radius, scan anti-clockwise, starting at 3 o'clock  
position.  

circle 9 Calculate centre & radius of circle passing through 3 given  
points.  

compass 6 Get co-ordinates of first white pixel on circumference of  
circle, given its centre and radius. Start searching at 3 o'clock  
position.  

edge 7 Find position of largest absolute value of gradient along  
given line. 

fan 7 Get co-ordinates of closest white pixel  found in fan-shaped  
search area, given fan position, orientation and spread  
parameter 

gap 8 Get position of minimum & maximum intensity gradient  
along the line joining two given points  

lmn 6 Find position of smallest value of intensity along line defined  
by its two end points 

lmx 6 Find position of largest value of intensity along line defined  
by its two end points 

mid_point 6 Calculate the mid-point of line joining 2 given points.  
perdendicular_ 
bisector 

8 Given 4 points (A, B, C, & D), check that line [C,D] is  
perpendicular to line [A,B] and vice versa. 

protractor 6 Get co-ordinates of the first white pixel encountered along a  
line, given it starting points and orientation.  

triangle 9 Calculate perimeter, perpendicular height and area of  
triangle defined by co-ordinates of its vertices 
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Properties and Relationships Between Objects in Images 
Predicate Description 
about_same Are two numbers about the same. Tolerance is specified by  

user. 
about_same_horizontal Test whether two blobs are at about the same horizontal  

position 
about_same_vertical Test whether two blobs are at about the same vertical  

position 
above Test whether one blob is above another 
adjacent Are two named objects adjacent to one another? 
below Test whether one blob is below another 
bigger Test whether one blob has larger area than another 
brighter Test whether one point is brighter than another 
circular Is given blob approximately circular 
concentric Are centroids of two named objects at same position? 
connected Are two given points parts of the same blob? Are they 8- 

connected? 
contains Test whether one blob is inside another 
convex Is object convex 
darker Test whether one point is darker than another 
encloses Synonym for contains 
inside Test whether one blob is inside another 
left Test whether one blob is to the left of another 
parallel Are two lines defined by their end points parallel? 
right Test whether one blob is to the right of another 
right_angle Are two lines specified by their end points at right angles? 
smaller Test whether one named blob is smaller than another 
straight_line Is arc with specified end points a straight line? 
top_of Is one named object in top part of another named object? 

Operators and Control Predicates 
Operator Description 
 & AND operator (infix)  - can be used in lieu of ',' in compound goals 
 -> Conditional evaluation of a goal 
case Conditional evaluation of list of goals 
for FOR i = N1 STEP N2 UNTIL N3 DO GOAL 
if Use in lieu of ':-' in defining Prolog clauses  (infix operator) 
if_then Conditional evaluation of a goal. Synonymous with '→' operator. 
if_then_else IF P THEN Q ELSE R 
or OR, use in lieu of ';' in definitions of compound goals. (Infix operator) 
• Repeat defined goal a given number of times. (e.g. 6•lpf) 
¶ (prefix) Device control operator. Used to operate MMB interfacing unit 

(A,B) Send given Prolog goal to remote computer. 
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Miscellaneous 
Predicate Description 
cut Use “!,cut” in lieu of “!” when  using speech synthesiser to follow 

program flow 
do_it Performs an operation on behalf of HyperCard. Normally used only  

in conjunction with HyperCard 
fails Use lieu of fail when using speech synthesiser to follow program  

flow 
gob_init Initialise gob 
gob_modified Similar to gob but can be used inside recursive loop 
help Switch to PIP manual (Bring HyperCard to the front) 
recursive_eab Similar to eab but can be used inside recursive loop 
repeats Use in lieu of repeat when using speech synthesiser to follow  

program flow 
utter Use speech synthesiser to say phrase or list of phrases 

Controlling External Devices 
Predicate Description 
all_lights Switch all lights on/off 
aperture Set aperture of selected camera to defined value 
calibrate_axes Calculate mapping function parameters between (X,Y,Theta)-table 

and camera co-ordinates 
camera_state Find camera state-vector 
convert_axes Convert between (X,Y,Theta)-table and camera co-ordinate axes. 
focus Set focus of selected camera to defined value 
grasp Operate FIC gripper (Suction on) 
home Send the (X,Y,theta)-table to its home position. 
in Put pick-and-place arm in the IN position 
input_port Find state of a given input port 
laser Switch the laser light stripe generator on/off 
light Set given lamp to defined brightness level. 
move_to Move (X,Y,Theta)-table to given point and orientation 
nudge Move (X,Y,Theta)-table by a defined amount. 
out Put pick-and-place arm in OUT position 
output_port Set given parallel output port to defined bit pattern 
pan(A) Adjust pan of selected camera. 
pick Pick up object from the (X,Y,Theta)-table using pick-and-place arm 
place Place object on the (X,Y,Theta)-table 
projector(A) Switch the slide projector on/off 
release Release FIC gripper 
select_camera Choose camera 
table_at Where is the (X,Y,Theta)-table? 
tilt(A) Set tilt of selected camera. 
up Put pick-and-place arm in the UP position 
utter(A) Utter the phrase or list of phrases defined by "input" parameter. 
zoom(A) Set zoom of selected camera 
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Glossary of Terms 
 
 

Algorithm, A well-defined set of rules for performing a particular mathematical 
calculation. (c.f. heuristic) 

Aliasing, Phenomenon which gives rise to spurious results if an image is sampled 
at a spatial frequency below the Nyquist limit. 

Analogue to digital converter (ADC), An electronic hardware device which 
converts an analogue voltage into a digital representation of the value of that 
voltage. An ADC is characterised by its resolution (i.e. the number of bits 
used to represent the voltage) and its conversion time. 

Anamorphic mirror. A mirror that produces different magnifications along 
different directions in the image plane. 

Aperture,  The aperture controls the amount of light passing through a lens. The F  
number scale (1.4, 2, 2.8, 4, 5.6, 8, 11, 16) for a standard photographic lens 
reduces the amount of light passing through the lens by half with each step  
increase in the scale. 

Astigmatism, Optical aberration in which, instead of a point image being formed 
of a point object, two short line images are produced at right angles to each 
other. 

Autocollimation. A procedure for collimating an optical instrument with variable 
objective lens and cross hairs. The instrument is directed towards a plane 
mirror and the cross hairs and lens are adjusted so that the cross hairs 
coincide with their reflected image. 

Autocorrelatlon function. See Section 2.7. 
Automatic gain control. Attribute of a circuit (e.g. video amplifier) whose gain is 

automatically adjusted to allow for changes (in ambient light). 
Auto iris lens. Lens whose aperture automatically adjusts itself to allow for 

variations in the ambient light. 
Back focal length. The distance from the rear surface of a lens to its focal plane. 
Beam expander. An optical system for increasing the width of a light beam. 
Beam splitter. A partially silvered or aluminised mirror which splits an incident 

beam of light into a reflected beam and a perpendicular transmitted beam. 
Other forms of beam splitter are also available. 

Binary image. An image in which each pixel can be represented by only the two 
binary digits 0 or 1, (i.e. black or white). (See Chapter 2.) 

Blooming. An effect by which a highly illuminated point image on an image 
sensor spreads out to form a disc; caused by the high intensity of the incident 
beam saturating the image sensor at that point. 

Borescope. A telescope in the form of a straight tube containing a mirror or prism 
used for inspecting cylindrical cavities. Also called endoscope or intrascope. 

Buried channel CCD. Type of CCD with a buried layer of doping material which 
together with the electrodes causes the charge packets to move below the 
surface; giving a high-charge transfer efficiency. 

Byte. Unit of information or memory size equal to eight bits; memory size is 
normally measured in kilobytes (1024 bytes) or megabytes.  
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"C" mount.  This is a 1" diameter threaded standard lens mount. Preferred mount in 
industrial applications due to its size and weight. 

Carbon dioxide laser. A powerful, continuous, infrared laser that can emit several 
hundred watts at a wavelength of 10.6µm. Used for welding and cutting 
applications. 

Chain code (Digital). Code used for describing a curve such as the periphery of an 
object. Each discrete point on the curve is represented by an integer from 0 to 
7, representing the direction of the next point as an angle ranging from 0° to 
315° in 45° steps. (Section 2.3.1) 

Charge coupled photodiode array (CCPD). An image sensor which combines the 
best properties of CCDs (low noise, high clock rate) and photodiode arrays 
(good spectral response, resistance to blooming), i.e. the image sensors are 
photodiodes but the scanning function follows the principles of operation of 
a CCD. 

Charged coupled image sensor. CCD in which each element generates a charge 
proportional to the light intensity falling on it. Associated circuitry moves 
these charges bodily through an analogue shift register on the same chip to 
form a serial representation of the incident image at the output. 

Charge injection device (CID). A charge transfer device used as an image sensor 
in which the image points are accessed by reference to their Cartesian co-
ordinates. CIDs have low dark current, are resistant to blooming but are 
relatively noisy. 

Charge transfer efficiency. Efficiency with which charges are transferred between 
neighbouring locations in a CCD. 

Chromatic aberration. An optical aberration in which the component colours in a 
point source of white light are brought to a focus at different points; caused 
by the variation of the refractive index of the glass with wavelength. 

Classification. An object is classified as belonging to some group or class on the 
basis of the features extracted. (Section 7.2.4) 

Closing is a mathematical morphology operator and consists of a combination of 
erosion and dilation operations. It has the effect of filling in holes and blocking 
narrow valleys in the image set, when a structuring element (of similar size to the 
holes and valleys) is applied. It of is the dual morphological operation of 
opening. (Section 2.4) 

Coherent illumination. Monochromatic light with a definite phase relation 
between different points in space. Applies particularly to laser light. 

Collimator. Optical device for producing a parallel beam of light. 
Colour is the general name for all sensations arising from the activity of the retina 

of the eye and its associated nervous system. Colours vary in three different 
ways: hue, saturation and intensity. (Chapter 6) 

Colour cube refers to a 3-dimensional space in which we plot the RGB colour 
information. (Section 6.5.4) 

Coloured is used to signify an object or scene that has some discernible colour, 
other than neutral, which has low values of saturation. 

Colour scattergram is a graphical representation of the colour variation to be 
found in a scene and consists of a set of points superimposed onto the colour 
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triangle. It is convenient, in practice, to plot the colour scattergram as an 
image, so that it can be filtered, thresholded and processed using the usual 
image processing software. (See Section 6.5.7.) 

Colour temperature. That temperature of a black body which radiates energy with 
the same spectral distribution as that from a given surface. 

Colour triangle is an abstract geometric figure that is useful when analysing and 
discussing colours. Each point in the triangle corresponds to a different 
colour in the scene being viewed. Points that are close together usually have 
similar colours. (See Section 6.5.4.) 

Coma. Optical aberration of an optical system which gives a point object a pear-
shaped image. 

Connectivity. Topological property of a binary image relating to the number of 
'holes', or ‘lakes’, it contains. (Section 2.5) 

Contrast. The difference in light intensity between two adjacent image points, 
normalised by dividing by the sum of those intensities. 

Convex deficiency. The set of points within a convex hull that are not in the object. It 
includes lakes (regions totally enclosed by an object), and bays (regions lying 
between the convex hull perimeter and the object). (Section 2.3) 

Convex hull. Given an arbitrary two-dimensional shape, the perimeter of its 
convex hull could be obtained by stretching a rubber band around the shape. 

Correlation, two-dimensional. An image-processing operation used to search for a 
particular image pattern within a picture, i.e. a template matching operation.  

Cross talk. A process by which an unwanted signal is induced in a circuit because 
of its close proximity to a neighbouring circuit; can be applied to adjacent 
image sensors in a solid-state array. 

Dark current. Current that flows in the output circuit of an image sensor even in 
the absence of illumination. 

Dark-field illumination. A method of microscope illumination in which the 
illuminating beam is a hollow cone of light formed by an opaque stop at the 
centre of the condenser large enough to prevent direct light from entering the 
camera’s objective lens; the specimen is placed at the apex of the cone and is 
seen only with light scattered, diffracted or refracted by the specimen. 

Depth of field. The range of object distances over which a camera gives a 
sufficiently sharp image. 

Depth of focus. The range of image distances over which the image remains sharp 
for a given object distance. 

Descriptive syntactic process. A pattern recognition technique which models an 
object by a set of features and by the spatial relationships between these 
features. (Section 3.5.2) 

Diffraction. Wave phenomenon of light whereby the intensity distribution in a 
wave is spatially redistributed after encountering an obstacle. It accounts for 
the ability of waves to go round corners. 

Diffuser. Translucent material, e.g. polypropylene, used to produce diffuse 
illumination. 

Digital to analogue converter (DAC). A piece of electronic hardware, typically  a 
single chip, used to convert a binary number into an analogue voltage. 
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Digitisation. The conversion of an analogue or continuous waveform (typically 
video) into a sequence of numbers suitable for digital processing. The 
conversion process is accomplished by an analogue to digital converter 
(ADC). 

Dilation. A mathematical morphological operation (also referred to as filling and 
growing) which is concerned with the expansion of an image set by a structuring 
element. (Section 2.4) 

Distortion. Defect of an optical system in which magnification varies with angular 
distance from the axis, causing straight lines to appear curved. 

Dual. The duality relationship that exists between certain morphological operators, 
such as erosion and dilation, means that the equivalent of such an operation can 
be performed by its dual on the complement image and by taking the 
complement of the result. 

Dye laser. A type of tuneable laser in which the active medium is a dye such as 
acridine red, with very large molecules.  

Dye penetrant. A liquid dye used for detecting cracks or surface defects in non-
magnetic materials. 

Dynamic aperture. The effective transverse aperture of a linear image sensor 
which is being mechanically scanned in the transverse direction. 

Dynamic range. A characteristic property of any measuring instrument. It is equal 
to the ratio of the maximum to minimum measurable values of the physical 
quantity which the instrument was designed to measure. 

Edge detection operator. An image-processing operator whose effect is to 
highlight the edges of an image, e.g. Sobel or Roberts edge detection 
operators. (Section 2.2.5) 

Endoscope. A rigid arrangement of optical fibres with an objective at one end and 
an eyepiece at the other. Unlike a fibrescope it cannot be bent and is used for 
direct in-line viewing. 

Erosion. This is the dual morphological operation of dilation and is equivalent to the 
shrinking (or reduction) of the image set by a structuring element. (Section 2.4) 

Euler number. Topological property of a binary image equal to the number of 
distinct 'blobs' minus the number of 'holes'. 

Extension tubes  Hollow, cylindrical "C" mount devices that can be used to increase 
the distance between the sensor and the lens, thereby altering its working 
distance. 

Fast Fourier transform (FFT). A particularly fast algorithm for computing the 
Discrete Fourier transform of a digitised signal. The signal can be a function 
of distance or time. 

Feature extraction is the extraction of image features which are characteristic of 
the object and which will be used in the classification process.  

Fibrescope. An arrangement of optical fibres with an objective at one end and an 
eyepiece at the other; unlike the endoscope the instrument can be bent as 
required, to view inaccessible objects . 

Field. A complete scan of a TV picture using either odd (or even) numbered lines, 
i.e. a complete frame consists of two interlaced fields. 

Field curvature. Aberration of an optical system causing the surface of sharpest 
focus to be curved. 
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Field of view. Described by an angle of arc from side-to-side and top-to-bottom of the 
scene viewed through a lens of a specific format. It is directly related to the lens 
focal length and the camera image format. 

Filters (Optical) can be used to absorb light of a given wavelength before it reaches 
the image sensor. Correct use of filters can help to simplify the image 
processing. The main types of filters used are colour filters, but polarising filters 
are frequently used to reduce specular reflection. (Section 6.4.1) 

Fluorescence. A process in which a material absorbs electromagnetic radiation at 
one wavelength and emits it at another, longer wavelength. 

Fluorescence microscope. A type of compound microscope in which the specimen 
on being illuminated by ultraviolet or blue radiation fluoresces and is then 
viewed in the normal way. 

Fluorescent lamp. An example of a cheap non-directional light source. Diffuse, 
therefore minimising the amount of shadow. 

Flying spot laser scanner. A device used for optical inspection where very fine 
detail is required. It consists of a laser beam which is made to scan the object 
by mechanical, or electromechanical means, the reflected light being 
collected by a suitable photodetector. 

Focal length. Distance from focal point to principal point of a lens or mirror. 
Focal point, focus. Point at which rays parallel to the axis of an optical system 

converge or from which they appear to diverge. Most optical systems have 
two principal foci produced by rays incident from the left and from the right. 

Frame. One complete TV picture usually representing a snapshot of a moving 
scene with an effective exposure time of 1/25’th (Europe) or 1/30’th (USA) 
of a second. 

Frame-store. An electronic memory used for storing one or more digital 
representations of an image. The storage process must be fast enough to 
occur in real-time. 

Frame transfer. A term applied to a particular type of CCD image sensor which 
has special scanning circuitry to minimise image smear. 

Fresnel lens. A thin lens constructed in the form of a series of stepped concentric 
segments thus giving the optical properties of a thick lens. 

Gallium arsenide laser. A laser that emits infrared radiation (λ = 900 nm) at right 
angles to a junction region in gallium arsenide. Can be modulated directly at 
microwave frequencies. Cryogenic cooling is required. 

Gamma correction. The photo-electrical response I of some TV cameras is a non-
linear function of the incident light intensity E of the form: I = const.Eγ. Any 
attempt to correct for this non-linearity using either hardware or software is 
called gamma correction. 

Geometric transform. Type of image processing operator in which the 
transformed image is essentially recognisable but is in some way rotated, 
distorted or warped. (Section 2.6) 

Grey scale. A numerical representation of intensity in which black is usually 
represented by 0, white by some fixed maximum number (e.g. 255) and 
shades of grey by intermediate numbers. 
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Helium-neon laser. Low-power laser in which the lasing medium is a mixture of 
helium and neon. 

Heuristic. A heuristic method is a "procedure for the solving of well defined 
mathematical problems by an intuitive approach in which the structure of the 
problem can be interpreted and exploited intelligently to obtain a reasonable 
solution" [SIL-80]. (c.f. algorithm) 

HSI Hue, Saturation and Intensity. This is a convenient method of describing 
colour and is an alternative to the RGB representation, from which the HSI 
parameters can be calculated. 

Hue is the component in the description of colour, which, in effect, defines the 
name of a colour. Although the terms yellow, red, violet, etc. are defined 
subjectively, they can be related to the measurement of hue. 

Image acquisition is concerned with the generation of a two dimensional array of 
integer values representing the brightness function of the actual scene at 
discrete spatial intervals. A frame-store is used for capturing video image. 

Image analysis is concerned with the extraction of explicit information regarding 
the contents of the image. 

Image format. Describes the diameter of the light sensitive area of an imager. Possible 
formats: 1/2", 2/3" and 1". 

Image interpretation is concerned with making some decision, based on the 
information gleaned from image analysis. 

Image processing, The principal objective of image processing is to process a 
given image, so that it is more suitable for a specific application. The term is 
also used in a generic sense, to include Image Analysis and Image 
Enhancement. 

Image transform. An image processing operator in which each pixel is replaced 
by a function of, many or, all of the pixels in the original image, e.g. 
autocorrelation. 

Incandescent lamps (Common bulb). Simple cheap light source. Relies on hot 
filament. Gives directional illumination which causes shadows. Emits a lot of 
infra-red. Not commonly used in industrial applications. 

Incoherent illumination. Light in which the phase relation between different 
points in space varies randomly. 

Infrared (IR). Term applied to that part of the electromagnetic spectrum 
containing wavelengths which are longer than those for visible red light but 
shorter than microwaves. 

Integration. Solid state sensors are examples of integrating detectors, i.e. each 
photosensor will accumulate light during a time interval specified by electronic 
timing signals. For an array device this is generally done for the whole frame 
time. The resultant signal is proportional to the light level and the exposure time. 
Therefore, if we expose the sensor quickly, then a higher light level needs to be 
supplied. 

Intensity. This quantity measures the amount of light reflected from a surface. 
Intensity is not sensitive to colour. (The term is also used to signify the value 
associated with a given pixel in a digital image. The value of the intensity at 
a given point may be measured, by a camera, or computed.) 
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Interferometer. An instrument in which a beam of coherent or partially coherent 
light is split into two separate beams which travel different paths before 
being reunited to form an interference pattern. Used for very accurate 
measurement of distance. 

Interlaced scanning. A method for scanning TV images whereby a complete 
frame is scanned by first scanning the odd-numbered lines followed by the 
interlaced even-numbered lines. Also see field and frame. 

Interline transfer. A term applied to a particular type of CCD image sensor which 
has special scanning circuitry to minimise image smear. 

Laser. Acronym for “Light Amplification by Stimulated Emission of Radiation”, a 
device which produces a highly coherent, parallel beam of monochromatic 
light. 

Light Emitting Diodes. LED's are often used for illumination in machine vision 
applications. They provide long life, a fairly even beam of low intensity light and 
high efficiency. 

Linear array. Solid-state array in which the photosensitive elements lie along a 
line. 

Line pairs per mm. Unit of spatial frequency; often used to describe the resolving 
power of a lens. For example, a good lens can resolve 100 line pairs per mm. 

Local operator. An image-processing operator in which each pixel is replaced by 
a function of its neighbouring pixels. (Section 2.2.3) 

Look-up table (LUT). A table of numbers stored in a digital memory used for 
quick reference. Often used to speed up computer software. 

Machine vision The use of devices for optical, non-contact sensing to automatically 
receive and interpret an image of a real scene in order to obtain information 
and/or control machines or processes [AVA-85]. 

Mathematical morphology, involves the probing of an image with a template 
shape, which is called a structuring element, to quantify the manner in which 
the structuring element fits (or does not fit) within a given  image. 
(Sections 2.4 and 2.5) 

Matrix-matrix mapping. General class of image-processing operations in which 
the matrix representing the result of the operation is a function of the matrix 
representing the original image. (Section 2.2) 

Microprocessor. The central processing unit of a microcomputer, normally 
fabricated as a large scale integrated circuit. 

Modulation transfer function. Modulus of optical transfer function. 
Moiré fringes or patterns. Pattern of lines which appears when two patterns of 

closely spaced lines are superimposed at an appropriate angle. 
Monadic point-by-point operator. Image processing operator which acts on only 

one image. Each pixel in the transformed image is obtained from operations 
on only the corresponding pixel in the original image. 

Monochromatic is used in this book to refer to either light, or the scene being 
viewed. Monochromatic light contains electro-magnetic radiation of a single 
wavelength. The term is also used to describe light having a narrow range of 
wavelengths. For example, that pair of narrow spectral bands giving light 
from a sodium lamp its characteristic yellow colour would be referred to as 
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being monochromatic. Surfaces that reflect/emit light with a narrower 
spectrum would also be referred to as being monochromatic. 

Monochrome is used to refer to images. (The term monochromatic refers to light, 
or the scene being viewed.) A monochrome image contains no information 
about colour. The signal from an RGB colour camera generates three 
separate images, each of which is referred to as being monochrome. In effect, 
these measure the amount of red, green and blue light in a coloured scene. A 
colour image can be represented, for the purposes of display, printing, or 
digital processing, by three monochrome images, called its colour 
separations. 

Neutral is used to signify an object or scene that has is composed only of grey, 
white or black regions. It does not have any colours such as yellow, red, etc. 
The page of this book appears to be neutral when viewed in natural (i.e. 
white) light. 

N-tuple operator. An image processing operator in which each pixel is replaced 
by a function of only a selected few (N) of its neighbouring pixels. (Section 
2.2.5) 

Nyquist limit. Spatial frequency equal to half the sampling frequency. If an image 
falls on a solid-state array of element spacing d, the image is said to be 
sampled at a spatial frequency of 1/d. The Nyquist limit is 1/(2d) and using 
this array it would be impossible to discern spatial detail having a frequency 
greater than 1/(2d) . 

Opening is a combination of erosion and dilation operations that have the effect of 
removing isolated points in the image set smaller than the structuring element 
and those sections of the image set narrower than the structuring element. 
(Section 2.4.1) 

Optical aberration. Any deviation from perfect image formation by an optical 
system. 

Optical character recognition. A branch of technology concerned with the 
automatic optical scanning of printed words and their subsequent recognition 
by machine. 

Optical transfer function. A complex function of spatial frequency characterising 
an optical system. It gives a numerical measure, in amplitude and phase, of 
the extent to which the contrast of object details of a given spatial frequency 
is degraded in the process of forming the image. 

Parallel processor. Computer which has a large number of identical processors 
each of which can operate on data (such as a digital image) at the same time. 

Phosphor. A luminescent material, normally used in cathode ray tubes, which 
partially converts the energy of an incident electron beam into light energy. 

Photodiode. A semiconductor diode in which the reverse or leakage current varies 
with light intensity. 

Photodiode array. Solid-state array in which the photosensitive elements consist 
of photodiodes. 

Photomultiplier. A very sensitive light detector, capable of detecting a single 
photon. It consists of a light-sensitive cathode, together with a series of 
dynodes and an anode, in an evacuated glass envelope. 
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Pixel (Pel). Picture element; the smallest addressable section of a digital image. 
Within the pixel boundaries the grey level or colour of the image can be 
considered constant. 

Polarised light. Light beam with an electric field vector vibrating in one plane 
only. 

Polar vector representation. Code used for describing a curve such as the 
periphery of an object. Each “break point” on a piece-wise linear curve is 
represented by the polar co-ordinates of the next point with the current point 
as origin. 

Polychromatic A polychromatic scene contains a number of monochromatic 
regions, each one being clearly distinct from all of the others. This is a 
specialised use in this book. (Section 6.7) 

Programmable Colour Filter (PCF) is the term used in this book to refer to a real-
time video filtering device, consisting of a look-up table, implemented in a 
random access memory, RAM, whose inputs are the digitised RGB  signals. 
The contents of the look-up table are generated from a monochrome image. 
The output of a PCF is a monochrome video image, but this may often be 
displayed to good effect using  pseudo-colour. (Section 6.6) 

Pseudo colour-triangle is a computer generated image, superimposed onto the 
colour triangle. A series of very useful programmable colour filters can be 
generated by creating pseudo colour-triangles (using an image processor, or 
graphics program) and then applying the Prolog+ program create_filter. 
(Section 6.6.10) 

Quartz halogen lamp. An intense source of white light produced by an electrically 
heated tungsten filament enclosed in a quartz envelope which contains a 
halogen vapour, e.g. iodine at low pressure. 

Raster scan. The simplest way of scanning an image in which the scanning 
electron beam starts at the top of the image and proceeds sequentially 
scanning one line at a time until it reaches the bottom. 

Real-time. A process which in some way models a real, live event is said to take 
place in real-time, if it occurs at the same rate as the real process. For 
example a frame-store works in real-time if it is able to store digits 
representing an image at the rate at which they are supplied by an ADC. 

Refraction. Change of direction of a ray of light when passing from one 
transparent medium to another. 

Resolution (of a digital image). The number of rows and columns. 
Resolution (of an optical system). The smallest angular separation of two object 

points which produces two distinguishable image points. 
Retrofocus lens. Compound lens system consisting of a diverging lens followed 

by a converging lens (reverse of telephoto principle); this gives a back focal 
length which is greater than the true focal length, facilitating convenient 
camera design. 

Retrorelective tape. Adhesive tape with a special coating which returns an 
incident beam of light along its path of incidence. 

RGB (Red, Green and Blue). Both photoconductive and solid-state (CCD) colour 
video cameras use three sets of photo-detectors, behind red, green and blue 
optical filters. Hence, both types of camera generate RGB signals naturally. 
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Roberts' edge detection operator. See Section 2.2. 
Robot. The formal definition that is generally accepted as defining the functionality of 

a robot was drawn up by the Robot Institute of America in 1979 and states that a 
robot is "a reprogrammable multi-functional manipulator designed to move 
material, parts, tools or specialised devices through variable programmed 
motions for the performance of a variety of tasks". 

Run code. A mathematical representation of image, in which each segment of a 
line scan along, which the grey-level or colour does not change, is 
represented by the number of pixels in that segment, together with its shade 
of grey or colour. 

Saturation. Colourfulness, or strength of colour. A highly saturated red means that 
light from only the red part of the spectrum is present. On the other hand, 
pink is non-saturated, having a considerable amount of white light mixed 
with red. (Section 6.5.3) 

Segmentation is a process that divides an image into its constituent parts or 
objects. It is a grouping process which identifies regions in the image as 
being similar, with respect to some defined criterion.. 

Serial processor. Computer with one processor which performs all operations 
sequentially. Most current computers are of this type. 

Sobel edge detection operator. See Section 2.2. 
Solid-state array. Type of image sensor fabricated normally in the form of a 

linear, or rectangular, array of photosensitive elements, constituting a single 
integrated circuit. 

Spatial frequency. Optical term used as a measure of the amount of detail in an 
object or image; usually measured as a number of lines per mm. 

Speckle. A phenomenon in which the scattering of coherent light by a rough 
surface, or inhomogeneous medium, generates an interference pattern of 
random intensity distribution, giving the surface or medium a granular 
appearance. 

Specular reflection. Reflection of light in which the angle of incidence is equal 
 to the angle of reflection. This gives rise to glinting. 

Spherical aberration. Optical aberration produced by lenses or mirrors with 
spherical surfaces. Rays of light parallel to the optic axis, but at different 
distances from it, are brought to a focus at different points. 

Surface channel CCD. Type of CCD in which the potential distribution used to 
confine the charge packets is created by the electrode voltages only. This 
gives a poor transfer efficiency. 

Synchronisation (synch) pulse. Synchronisation pulses accompany a video signal, 
to trigger certain crucial events such as the start of a line scan. 

Telecentric. A telescopic system whose aperture stop is located at one of the foci 
of the objective. Such a system is made to accept only collimated light. 

Telephoto lens. A lens for imaging distant objects. It is designed to be compact so 
that the distance from the front of the lens to the image plane is less than the 
focal length of the lens. 

Template. Ideal representation of an object to be found in an image. 
Template Matching. Technique for shape matching, which involves the translation 

of the template to every possible position in the image and finding a measure 
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of the match between the prototype (template) and the image at that position. 
If the match is within a specified range then the object is assumed to be 
present. 

Thresholding. An image-processing operation which converts a monochrome 
image into a binary image by setting all those pixels above a certain 
threshold to 1 (white) and all those pixels below that threshold to 0 (black). 

Translucent. Permitting partial passage of light. 
Trichromacity. Idea that any observed colour can be created by mixing  three 

different “primary” colours. These may be derived by mixing paint or 
coloured light.  

Tungsten filament lamp Non-uniform “point” source of light which gives low 
intensity illumination. 

Two-dimensional scattergrams. Derived by plotting one colour component against 
another. For example, we might plot the amount of red light against the 
amount of blue light, on a point-by-point basis, for a polychromatic scene. 

Two-dimensional array. Solid-state array in which the photosensitive elements are 
arranged in a rectangular array. 

Ultraviolet. Term applied to that part of the electromagnetic spectrum containing 
radiation in the wavelength range of approximately 400 nm to 5 nm, i.e. 
between visible blue light and X-rays. 

Video. Pertaining to visual information. Normally used to describe the output 
signal of any kind of TV camera. 

Vidicon. Generic term for a family of photoconductive camera tubes using a 
transparent signal plate and a low-velocity scanning electron beam. 
Advantages include small size and simplicity. 

Vignetting. Dark shadows around the corners of the image “seen” by a video camera, 
due to insufficient coverage by the lens, e.g. a 2/3" lens used on a 1" format 
sensor. 

Weight matrix. A matrix of constant coefficients multiplying the pixel intensities 
in the definition of a local or N-tuple operator. (Section 2.2.4) 

Woods glass. A type of glass that transmits ultraviolet radiation well but is 
relatively opaque to visible radiation. 

Xenon lamp. High intensity arc discharge bulb. Light from it resembles daylight. Fast 
response - suitable for strobe lights. Although commonly used, these lamps have 
a number of dangers associated with them. These include: ultra-violet emissions, 
high flash rates (which can induce photo-sensitive epilepsy), and they require 
high wattage power supplies (e.g. 14.4W at a 10Hz flash rate). 

YAG laser. Yttrium-aluminium-garnet laser. Infrared laser in which the active 
material consists of neodymium ions in an yttrium-aluminium-garnet crystal; 
it can provide a continuous power output of several watts. 

Additional Glossary Material 
The Photonics Dictionary, Photonics Spectra. 
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  Covers high-technology optics, lasers, fibre optics, electro-optics, imaging 
and optical computing. 

Digital Image Processing [BAX-94] 
  Includes a glossary of image processing terms. 
Precision Digital Images Corporation glossary of terms. 
  Hardware orientated Online glossary 
  http://www.precisionimages.com/gloss.htm 
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Index of Predicates, Operators and 
Grammar Rules 
 
 
 
'<ERROR>'/2, 154 
'<INTERRUPT>'/1, 158 
'<LOAD>'/1, 106 
-> operator (infix), 105 
• operator (infix), 103 

 operator (prefix), 152 
'S'/1, 128 
'U'/1, 110, 113 
 
about_same/3, 89 
about_same_vertical/2, 92 
above/2, 255 
adjacent/2, 92 
age/2, 77 
alpha_numeric_features/8, 280 
analyse_binary_image1/0, 288 
analyse_binary_image2/0, 288 
analyse_node/1, 310 
ancestor/2, 77 
anglir/0, 103 
apple_logo/0, 251, 253, 254 
approximate_colour_scattergram/0, 269 
ardal_gwyn/1, 103 
area/3, 255 
 
bakewell_tart/0, 81 
banana/0, 237 
bay_rotate_options/4, 295 
below/2, 88, 89 
big_changes/1, 79, 81 
biggest_bay_top/1, 281 
born/2, 76 
build_face_image/0, 328 
build_menus/0, 113 
 
camera_sees/1, 86 
case/2, 104 
casual_time/3, 325 
check_areas/6, 255 
cherry/0, 82 
child/2, 76 

chirality/2, 316, 320, 321, 322 
chirality_database/4, 316 
circle/9, 339 
circular/0, 83, 333, 334 
circularity_tolerance/4, 334 
colour_separation/0, 238 
colour_similarity1/2, 246 
colour_similarity2/2, 246 
component/3, 305 
concavity_tree/0, 310 
concentric/2, 92 
connected/4, 92 
contours/0, 342 
count/2, 251 
count_coloured_objects/2, 250 
count_limb_ends/1, 87 
cover_image/1, 269 
crack/1, 104 
crude_color_reconition/0, 256 
ct_node/3, 312 
cull/3, 89 
 
disc_parameters/1, 270 
draw_discs/1, 270 
draw_polygon/1, 119 
draw_sucker/0, 290 
 
eab_modified/2, 310 
encloses/2, 91 
equal_sets/2, 88 
euclidean_distance/4, 252, 289 
 
face/1, 277 
fill_occlusions/1, 342 
find_object_list/2, 87 
find_smile/1, 277 
find_wife/1, 74 
finished/0, 87 
fit_circle/9, 339 
for/4, 104 
 
generalise_colour/0, 248 
get_colour/1, 262 
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get_data/2, 184 
get_image/1, 255 
get_parameters/1, 267 
gob_modified/1, 310, 314 
grab_and_threshold/0, 79 
 
handedness/1, 304 
hue/0, 241 
 
icing/0, 83 
if operator (infix), 105 
if_then/2, 105 
if_then_else/3, 105 
inside/2, 92 
interactive_hough_analysis/0, 119 
interactive_mode/0, 108 
interpret/0, 133 
interpret1/1, 133 
isolate//1, 250 
isolate_blob/2, 119 
isophotes/0, 104 
 
lamp/2, 184 
learn/0, 288 
learn_with_masking/0, 241 
learning_colour/0, 261 
learning_colour1/0, 262 
learning_colour2/0, 262 
learning_coloured objects/0, 257, 259 
left/2, 88, 89 
list_all_objects/1, 87 
loaf_left_side/1, 338 
loaf_right_side/1, 338 
loaf_top/3, 339 
locate_and_pick/0, 197 
lower_case/1, 83 
 
master_program/0, 157 
measurements/1, 285 
menu_builder/2, 127 
menu_item/3, 112 
min_blob_size/1, 310 
mmb_response/1, 184 
morph_pack/0, 298 
must_be/2, 74 
mwyaf/0, 103 
 

 
naive_colour_learning/0, 261 
ne/0, 103 
neg/0, 389 

negate/0, 102 
next_blob/0, 86 
nnc/3, 260, 289 
normalise/0, 289 
normalise_card/0, 265 
normalise_loaf_orientation1/0, 337 
normalise_loaf_orientation2/0, 337 
number_to_words/2, 326 
 
object_data/2, 286 
object_is/1, 86 
older//2, 77 
one_row_height_data/1, 341 
outer_edge/0, 82 
 
packbay/0, 294 
pack_bay_1/0, 294 
pack_bay_main/0, 295 
parameters/1, 157 
pcf_with_noise_cleanup/0, 241 
pick_up/0, 289 
picture/0, 90, 106 
playing_card/0, 275 
plotit/1, 342 
polypack/0, 298 
poly_pack_1/0, 298 
poly_pack_main/0, 298 
preprocess/0, 288 
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Chapter 5 - Legends for the Half Tone 
Images 

 
 
Image 5.1 Operation of locate_and_pick. (a) Original scene showing 6 
objects. (b) The largest object (“club”) has been identified. Its axis of 
minimum second moment has been calculated and the centroid has been 
located. The table has been rotated and shifted to normalise both orientation 
and position. The suction gripper of the pick-and-place arm is then lowered at 
the point indicated by the crossed lines. (c) Second largest object (sickle-
shaped wrench) has been located. (Notice the small circular feature to the left 
of the white disc. This is one of four screws holding the table top in place.) 
(d) The third object to be picked up is the pair of scissors. (e) The fourth 
object to be picked up is the white disc. In this case, the orientation 
measurement is meaningless. (f) The fifth object to be picked up is a V-
shaped plastic component. The rectangular component remaining is an 
electrical connector and cannot be grasped with this type of gripper. 
 
Image 5.2 Attempting to pick up an automobile connecting rod (con-rod). (a) 
Silhouette of the con-rod after thresholding and noise removal. (b) Centroid 
and axis of minimum second moment. (c) Orientation determined by joining 
the centroid of the silhouette to the centroid off the largest “bay”. It is purely 
fortuitous that this method of determining orientation very nearly coincides 
with that obtained using the axis of minimum second moment. (d) Circular 
suction gripper, represented here by a circle located at the centroid of the 
silhouette. (e) After normalising both position and orientation, a 2-finger 
gripper can be used to lift the con-rod. The two white bars have been drawn 
here to represent the gripper footprints on the object plane. 

 



  



  

 



  

 

Chapter 6 - Legends for the Half Tone 
Images 

 
 
Image 6.1 Colour analysis of a multi-colour scene using various techniques. 
(a) Monochrome image. The original artwork consisted of 6 well-defined and 
well-separated colours. (b) Image derived by digitising the R channel. (c) G 
channel. (d) B channel. (e) Colour scattergram, thresholded at level 128. (f) 
Thresholded at level 4. (g) Thresholded at level 2. (h) Thresholded at level 1. 
(i) [lnb, thr(4), big_blobs(20)] applied to the colour scattergram. (Compare to 
(e).) (j) Colour generalisation applied to image (h). (k) 2-dimensional colour 
scattergram. Vertical axis, R. Horizontal axis, G. (l) 2-dimensional colour 
scattergram. Vertical axis, G. Horizontal axis, B. 
 
Image 6.2 Colour scattergrams of various natural objects. In each case, 
thresholding and a noise-reduction filter has been applied, to remove outlier 
points. (a) Green foliage (lime tree). (b) Courgette. (c) Cucumber. (d) Banana 
(e) Corn cob. (f) Red apple. 
 
Image 6.3 Using computer-generated pseudo colour-triangles to pre-program 
the PCF. (Also see Image 6.11.) (a) The circular wedge which forms the basis 
of the hue filter. The pseudo-colour display of this image (with a white disc 
superimposed) is shown in Plate 1(b). (b) A PCF generated from this image 
distinguishes between neutral (mapped to black) and coloured regions 
(mapped to white). (c) Segmentation of the colour triangle. The wedge shaped 
sectors are all of equal area. This filter performs a very crude discrimination 
of six primary colours (red, magenta, blue, cyan, green, yellow) and neutral. 
Compare this to Plate 1(b). (d) Superimposing a colour scattergram derived 
from a scene containing red, yellow and green regions onto the pseudo 
colour-triangle explains why the PCF derived from (c) does always not 
distinguish between the primary colours very accurately. The blob at the left 
of centre corresponds to green and overlaps the boundary of two sectors in 
(c). (e) A colour triangle shaded so that the intensity indicates distance from 
its centre. The PCF derived from this image, by applying create_filter, 
provides a measurement of saturation and hence forms the basis of the 
saturation PCF. (Also see Plate 1(c).) (f) The saturation detection filter based 
on (e) was used to analyse a scene containing four different yellow regions. 
Bright areas are close to saturation. 
 



  

 
 
Image 6.4 Detecting subtle, local colour changes in a complex scene that is 
fixed in space. (a) Pseudo colour-triangle. This image was generated by 
scattering a number of points at random in a binary image. The image was 
negated and the grass-fire transform [gft] applied. (b) Monochrome image 
derived from a children’s game. Notice the very faint dark triangle, just to the 
right of the word kite in the top-right corner. This is the defect referred to 
below. (c) The PCF derived from (a) by using create_filter and applied to the 
scene without the defect. (d) The same PCF applied to the scene with the 
defect. Notice how the defect stands out here. (e) Images (c) and (d) 
subtracted and the resulting image thresholded. (f) Image (e) after noise 
removal. 
 
Image 6.5 Compound colour scattergrams, corresponding to more than one 
colour. (a) Scattergram corresponding to two different shades of yellow 
(black blobs) and red (white blob). Notice that the red scattergram is 
fragmented into one large blob and several very small ones. (b) Colour 
separation achieved by a filter that was trained on the colour scattergram 
shown in (a) . The black spots are due to noise and indicate that the blobs in 
(b) are too small. The input image consisted of a red rectangle at the bottom 
left, a yellow rectangle at the bottom right and another yellow rectangle, of a 
slightly different shade, at the top. (c) The colour triangle shown in (b) was 
processed by expanding the blobs (separately) using [6•exw]. (d) Colour 
separation achieved by the PCF obtained from the colour triangle in (e). 
Notice that the noise level is much reduced, compared to (b). (e) Colour 
scattergams for two different shades of yellow (merged into a single blob at 
the centre bottom), red (bottom right), green (left of centre) and blue (above 
left of centre). (f) Colour generalisation procedure applied to the colour 
triangle in (e). Notice the very small region at the bottom right. This arises 
because the noise removal procedure was imperfect. 
 
Image 6.6 Using colour to determine the orientation of a picture playing card. 
(a) Monochrome image. (b) Colour separation. (c) Thresholded output of the 
hue PCF. (d) The orientation of the line that joins the centroids of the two 
largest blobs in (c) determines the orientation of the card. 
 
Image 6.7 Representing a colour scattergram by a set of overlapping discs. 
(a) Colour scattergram derived from the logo of a well-known company. This 
logo consists of six well-defined and well-separated colours. The scattergram 
has been converted to binary form by thresholding and a simple noise 
removal procedure has been applied, to remove very small white regions. The 
outline of the colour scattergram has been omitted here and in (b), for 
convenience. (b) Approximating the colour scattergram by a set of 12 circles. 
 
 



  

Image 6.8 Recognising the colours of wires on a UK standard mains plug. (a) 
Monochrome image. The wire connecting to the terminal at the bottom-left 
(neutral wire) is blue. That one connecting to the brass terminal on the right 
(live, only partially in view) is brown. The wire connecting to the top terminal 
(earth wire) has yellow and green stripes. The body of the plug is matt white. 
(b) PCF output. (c) Multi-level thresholding and noise removal applied to 
image (b) isolates the three coloured wires.   
 
Image 6.9  Showing how the colour scattergram shows the effects of varying 
the colour of illumination. The scene being viewed was a piece of white 
paper, under the following lighting conditions: 1. 8-foot fluorescent tube, type 
Philips 125W/36. The colour scattergram forms a single very compact cluster. 
(Upper white blob.) 2. Fluorescent desk lamp, type Osram 11W/41. Again the 
colour scattergram forms a single compact cluster. (Lower white blob.) 3. 
Volpi 150W fibre optic light source, bulb type Philips EFR A1/232. The 
colour scattergram  is virtually identical to that generated for case (1). 4. 
Filament desk lamp. 60W bulb. Once again, the colour scattergram forms a 
single compact cluster. (Black blob) 
 
Image 6.10 Pattern with a continuously varying colour, resembling a 
rainbow. (The original artwork was the logo of a well-known company.) (a) 
Colour scattergram. (b) After thresholding and noise removal. 
 
Image 6.11 Inspecting coloured packaging. The original image is shown in 
Plate 3(a). (a) Sum of the three colour channel outputs (R+G+B). (b) Top-left: 
Image derived by digitising the R channel. Top-right: G channel. Bottom-left: 
B channel. (c) 2-dimensional scattergram. Horizontal axis: G channel. 
Vertical axis: R channel. (d) Histogram of the R channel output. (e) Pseudo 
colour-triangle for measuring purity of the primary colours (R, G & B). (f) 
Histogram of the output of a PCF which measures purity of the primary 
colours. (g) Pseudo colour-triangle for measuring yellow-ness. (h) Histogram 
of the output of the PCF derived from (g). (i) Output of the filter described in 
(g). (j) Thresholded colour scattergram (black) and the watershed, which 
forms the basis of the colour generalisation procedure (white). In effect, the 
blobs in the colour scattergram are extended until they fill the cells defined by 
the watershed.  
 
Image 6.12 Examining dress fabric. The original colour image is shown in 
Plate 4(a). (a) Top-left: Image derived by digitising the R channel. Top-right: 
G channel. Bottom-left: B channel. (b) Colour scattergram (black spots). The 
white lines indicate the watershed contours separating the black spots. The 
areas they enclose define the blobs generated during colour generalisation. 
 



  



  



  



  



  



  



  



  



  



  

 



  

Chapter 6 - Legends for the Colour 
Plates 

 
 
Plate 1 (a) Pseudo-colour applied to: top, intensity stair-case (The black and 
white stripes correspond to levels 0 (zero) and 255, respectively.) bottom,  
intensity wedge (operator wgx). (b) Pseudo colour-triangle, formed by 
generating an intensity wedge and then using the Cartesian-to-polar 
transformation. (ctp) The radius of the central white disc (24 pixels here) can 
be varied at will. (c) Pseudo colour-triangle, forming the basis of a filter for 
measuring saturation. (d) Analysing the image of a set of 6 pencil erasers 
within a transparent "bubble" pack. (Unprocessed video image) (e) Colour 
histogram. The peaks in this histogram correspond to the following objects / 
surfaces (from left to right): blue background, blue erasers, green eraser, 
yellow eraser, orange-red background stripe, red eraser.  (f) Output of the hue 
colour filter. (White disc radius = 24.) 
 
Plate 2 (a) Analysing a scene containing three similar shades of yellow that 
are just distinguishable by the human eye. (Photographic copy of the original 
artwork) (b) Colour scattergram. (Pseudo-colour display on.) The general 
concept "yellow" would be represented by a blob that encloses all three of 
these small spots. (c) Output of the colour filter derived from (b). (d) 
Analysing the image of a small electronics component (black with shiny silver 
printing), in a transparent plastic bag. The bag has red printing on it and is 
resting on a white background. (Unprocessed video image) (e) Output of the 
hue colour filter. (White disc radius = 24.) (f) Binary image, obtained by 
thresholding (e). (Pseudo-colour display on.) 
 
Plate 3 (a) Coloured stripes from the packaging of a well-known domestic 
product. (Unprocessed video image.) (b) Output of the hue colour filter. (c) 
Colour scattergram, superimposed on the pseudo colour-triangle. Notice that 
the white blob at the 3 o'clock position straddles the sharp transition between 
red and violet in the pseudo colour-triangle. This is the reason that the red 
stripe in the input image generates a noisy pattern in (b). (d) A new pseudo 
colour-triangle was created by flipping the hue pseudo colour-triangle about 
its vertical axis. A colour filter was then generated in the usual way. Since 
there is no sharp transition across the blob at 3 o'clock, the red stripe does not 
create a noisy pattern, as it did in (b). Although the colour filter outputs 
corresponding to the red and orange-red stripes are similar, they can be 
separated reliably, using simple thresholding. (e) Analysing a scene 
containing four children's building bricks. (Unprocessed video image) (f) 
Output of the hue colour filter. (White disc radius = 24.) 
 
Plate 4 (a) Analysing colours on a piece of dress fabric. (Unprocessed video 
image.) (b) Output of the hue colour filter. (White disc radius = 16.) (c) 



  

Unprocessed video image of a quiche. (d) Output of the hue colour filter 
applied to (c). (e) Simulated product package. (f) Key lettering isolated from 
(e).  
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Plate 3 



  

 
 

 

 

 

 
 

Plate 4 



 

 

Chapter 7 - Legends for the Half Tone 
Images 

 
 
Image 7.5.1 Using filtering and thesholding to analyse a simple clock, which 
produces a high contrast between the hands and a plain face. (a) Original 
image. (b) The image processing sequence [wri, 2•(3•lnb, neg)), rea, sub, 
thr(140)] was applied to (a). (c) [blb,xor] was applied to (b). (d) [blb, xor] 
was applied to (c). (e) Only blobs with an area in excess of 200 pixels have 
been retained. (f) [2•skw,2•exw] was applied to (e). 
 
Image 7.5.2 The Hough transform applied to simulated and real clock faces. 
(a) Original image of a simple clock (simulated). (b) [enc, thr] applied to (a). 
(c) [huf, neg,  sqr] applied to (a). The sub-sequence [neg, sqr] was used 
simply to improve visibility of some of the minor detail. (d) The two major 
peaks in (c) were detected automatically and the corresponding lines 
reconstructed. This shows that these peaks correspond to the minute and hour 
hands. (e) The medial axis transformation [ske, mdl] applied to (b). (f) [huf, 
neg,  sqr] applied to (e). Notice that the peaks are better defined than in (c). 
(g) Same processing as in (d) but this time applied to (f). (h) The Hough 
transform method was applied to locate the minute hand on the real clock. 
Although the minute hand has been correctly located, the fluorescent tip of 
the hour hand makes this method unreliable. 
 
Image 7.5.3 The Polar-to-Cartesian axis transformation [ptc] applied to a 
simulated and real clock faces. (a) Original (grey-scale) image of a simple 
clock face. (b) The operator ptc applied to (a). (c) The command sequence 
[yxt, rin, csh, wgx, sub, thr, bed, yxt] applied to (b). (d) Original image from a 
real clock. (e) ptc applied to (d). (f) As in (c), processing applied to (d). (g) 
Another clock design. (h) ptc applied to (g). The minute and hour hands are 
responsible for the two major peaks. (i) As in (c), processing applied to (h). 
 
Image 7.5.4 (a) Original clock face. (b) Circular scan which intersects the 
hands but avoids the printing on the face. (c) Intensity plotted against angular 
position around the circular scan in (b). (d) The hour “tick” marks can be 
identified easily, using a circular scan, followed by simple filtering and 
thresholding. The image shown here was obtained using the Cartesian-to-
polar co-ordinate axis transformation. (e) Difference image obtained by 
subtracting two images of the clock, taken at [9:10] and at [9:37]. (f) Multi-
level thresholding produces a “cleaner” picture which is easy to analyse. (g) 
Image of the face of the clock, without the hands (obtained using the max 
operator, applied to two images, taken at [9:10] and [9:37]). (h) Difference 
image, obtained by subtracting the image in (g) from the (unprocessed) image 
of the clock taken, at [9:41]. (i) Simple thresholding applied to (h).  



  

 
Image 7.6.1 Inspecting bread slices from a lidded tin loaf. (a) Silhouette of 
the slice. (b) Axis of minimum second moment [dpa]. (c) Slice after 
reorientation, so that the principal axis is vertical. (d) Difference between the 
minimum enclosing rectangle and (c). (e) A similar result to (d) can be 
obtained by computing the convex deficiency of (a). [cvd] 
 
Image 7.6.2 Analysing the silhouette of a slice of bread from a non-lidded tin 
loaf. (a) Silhouette. (b) Outer edge. [bed] (c) Centroid and principal axis (axis 
of minimum second moment) [dpa]. (d) Hough transform [bed,huf]. (e) 
Hough transform image enhanced for easier viewing [bed,huf,sqr,neg]. (f) 
Line corresponding to brightest point in (d). Inverse Hough transform applied. 
(g) Three lines obtain by applying the inverse Hough transform to the three 
principal peaks in (d). (h) Overspill found from lines drawn in (g). (i) Points 
of high curvature (corners) are highlighted. (j) Corners have been used to 
"cut" the edge contour. (k) After removing very small blobs in (j). The three 
straight segments and curved top of the slice have been isolated. 
 
Image 7.6.3 Projecting a single light stripe onto a bread roll, using a diode 
laser.(a) Image obtained in ambient light. (b) Improved image obtained in 
darkened room. (c) Light stripe has been reduced to one-pixel wide arc. (Note 
discontinuities) 
 
Image 7.6.4 Projecting many (white) light stripes onto a bread roll. 
 
Image 7.6.5 Projecting coloured light stripes onto a bread roll. (a) Original 
image. There were 4 light stripes in a repeating pattern. (b) Edge contours 
derived from (a). 
 
Image 7.6.6 Depth maps. (a) Depth map of a croissant. (b) sca(3) applied to 
(a) reveals the height contours. (c) Intensity plot. (d) Cornish pastie. (e) 
Intensity plot (horizontal section). (f) Intensity plot (vertical section). (g) 
Depth map of a loaf. (h) Height contours of (g). (i) Intensity plot of (g). 
 
Image 7.6.7 Structured lighting applied to an engineering component (zinc 
die-casting). (a) Depth map. (b) Height profile, across horizontal line in (a). 
(c) Height contours. 
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