

Intelligent Vision
Systems for Industry

Bruce G. Batchelor and Paul F. Whelan

Intelligent Vision Systems
for Industry

Bruce G. Batchelor
University of Wales, Cardiff

Paul F. Whelan
Dublin City University

© Bruce G. Batchelor, Paul F. Whelan 2002

To Caroline, Brian and Phyllis.

Paul

Finally, brothers, whatever is true, whatever is noble, whatever is right,

whatever is pure, whatever is lovely, whatever is admirable - if anything is
excellent or praise worthy - think about such things. Letter to Philippians IV

For my dear wife, Eleanor, our children, Helen and David, my Mother, Ingrid,

and late Father, Ernest.

 Bruce

V

Preface

During the period 1970 - 1990, Japan taught Europe and America the
importance of quality in manufactured goods. The West learned the hard way:
markets were quickly lost to companies whose names were hitherto unknown.
Many long established and well respected Western companies were unable to
meet the challenge and consequently failed to survive. Those that did were often
faced with difficult years, as their share of the market shrank. Most companies in
Europe and America have largely come to terms with this and now realise that
quality has a vital role in establishing and maintaining customer loyalty. In the
present climate of opinion, any technology which improves or simply guarantees
product quality is welcome.

Machine vision is a relatively new technology, which has much to offer
manufacturing industry in improving product quality and safety, as well as
enhancing process efficiency and operational safety. Machine vision owes its
rising popularity to one major factor: optical sensing is inherently clean, safe
(because it a non-contacting technology) and very versatile. It is possible to do
certain things using vision (both human and machine) that no other known
sensing method can achieve - imagine trying to sense stains, rust or surface
corrosion by any other means.

Designing a machine vision system is like assembling a jigsaw.

Among other component technologies machine vision involves the digitisation,

manipulation and analysis of images, usually within a computer, a subject which
is also covered by the terms image processing and computer vision. However, we
must emphasise that machine vision, computer vision and image processing are
not synonymous. None is a subset of either of the others. Computer vision is a
branch of Computer Science, while machine vision is an area of specialisation
within Systems Engineering. Notice, in particular, the use of the words "Science"
and "Engineering" here. Machine vision does not necessarily imply the use of a

VI

computer; specialised image processing hardware is often used to obtain higher
processing speeds than a conventional computer can achieve.

Machine vision system for industry first received serious attention in the mid-
1970s, although the proposal that a video system be used for industrial inspection
was first made in the 1930s. Throughout the early 1980s, the subject developed
slowly, with a steady contribution being made by the academic research
community, but with only limited industrial interest being shown. It seemed in the
mid-1980s that there would be a major boost to progress, with serious interest
being shown in vision systems by the major American automobile manufacturers.
Then, came a period of serious disillusionment in the USA, with a large number
of small vision companies failing to survive. In the late 1980s and early 1990s,
interest has grown markedly, due largely to significant progress being made in
making fast, dedicated image digitisation and processing hardware. In the mid-
1990s, the role of the general purpose processor is being revised, with the modern
RISC processors offering high processing speed on a standard computing
platform. Throughout this period, academic workers have been steadily proving
feasibility in a very wide range of products, representing all of the major branches
of manufacturing industry.

Soon after starting work, machine vision is seen as a confusing jumble of

disconnected ideas.

Industrial image processing systems, which necessarily form part of a vision

system, have developed very considerably in the last decade. In addition, there
have been major advances in other component technologies: image sensors,
specialised lighting units, lenses and advisor (CAD) programs, which guide a
vision engineer through the initial stages of the design process. However, systems
integration remains the key factor for the successful design and operation of a
machine vision system.

Having separated the subjects of machine vision and image processing, our first
task in this book is to introduce the reader to the basic concepts of image
processing, as they apply to our subject. (Chapter 2) There are numerous
techniques for manipulating images that are either not used, at all, or are used very
infrequently in machine vision. Wherever there are problems of computational
speed, machine vision systems engineers will either seek another solution, or
avoid the problem entirely. Standard image processing techniques are able to

VII

achieve some remarkable results but they could not be described as being
intelligent. By adding a certain level of intelligence, through the integration of
image processing software and the AI language Prolog, we are able to do certain
things that would otherwise be impossible. For example, analysing the image of a
standard ("analogue") clock, in order to tell the time is one such task that could
not be solved using "traditional" image processing methods working on their own.
We shall, therefore, devote much of the discussion in this book to explaining how
intelligence can be provided to image processing, or alternatively, how Artificial
Intelligence can be given "eyes". All of this is done with one goal in mind: to
improve the prospects for installing machine vision systems in factories.

Eventually, the pieces fit together. However, if one piece is missing, the result

is imperfect; system integration is incomplete.

There is a serious bottleneck in the design of machine vision systems: a high

level of skilled man-power is needed to achieve an effective design. To illustrate
the problem, consider the case of just one organisation, which has over 60000
products. That company operates a policy which tries to maintain at least 25% of
its sales on products that are not more than 5 years old. Simple arithmetic shows
that over 10 new product are being introduced by that one company alone, every
working day. If we were to use a machine vision system on only 1% of those new
product lines, we would need to design, build, install and test a new system once
every 2 weeks. At the moment, the design process typically takes several months
and there are simply not enough machine vision engineers to provide that kind of
level of support, even for that one company. We desperately need more well-
educated machine vision systems engineers. We also need improved design tools.
By claiming that machine vision is a flexible technology, without having the man-
power available to fulfil that boast is simply foolish. Such "overselling" of the
virtues of machine vision technology was largely responsible for the collapse in
credibility and confidence in the mid-1980s, to which we referred earlier. We
need both improved educational material and better engineering tools, if we are to
meet the challenge that this subject imposes upon us. (Chapter 3) Working in such
a flexible and potentially beneficial technology carries responsibilities, because it
is upon our shoulders that its future development and exploitation lies.

The user interface is all important, since this will either make a system
acceptable or damn it to certain failure. For this reason, we shall discuss the
prospects for using multi-media interfaces, including, hypertext, speech synthesis,

VIII

speech recognition and natural language understanding. In Chapter 4, we also
discuss the use of multi-camera and multi-processor systems, since it is clear that
considerable advantage can be obtained from the use of systems that are able to
communicate information about what they see to each other.

System integration is complete; all elements are now in place. The result is

perfect (machine) vision.

Industrial machine vision systems would be virtually useless if it were not

possible to control external devices, such as lamps, cameras, lenses, robots, etc. A
good deal of attention will therefore be paid to this topic. (Chapter 5) We devote a
whole chapter (Chapter 6) to the task of recognising coloured objects. The
approach we take here is one which has not always found favour with Colour
Scientists - but it works!

We conclude by discussing several case studies, which may seem to concentrate
on unimportant tasks, such as recognising playing cards, telling the time, etc.
However, all of the applications that we discuss in Chapter 7 reflect industrially
important tasks, in a way which allows us to write freely about the technical
issues, without violating commercial confidence.

It is customary in many areas of public writing to use so called gender-neutral
phrases, such as "he / she", "his / her” , "s/he" etc. We regard these as being both
clumsy and counter-productive. In this book, we use the words, "he" and "him" in
the traditional way, to include both sexes, without claiming precedence for either.
This is done to improve clarity and to avoid placing women after men, as "he /
she" does.

While many of the ideas the ideas outlined in this book can be implemented on
a range of computers, an integrated software package, called PIP (Prolog Image
Processing), has been designed specifically for this and runs on Macintosh
computers. Readers who wish to gain access to PIP should contact Bruce
Batchelor or Andrew Jones at the University of Wales, Cardiff. An interactive
image processing package for the Windows environment, without Prolog, has
also been developed. This is called MvT (Machine Vision Tutorial) and is
available from Paul Whelan at Dublin City University. For current information on
our research and the status of the PIP and MvT software packages, please consult
our WWW sites.

Bruce G. Batchelor
Department of Computer Science

Paul F. Whelan
School of Electronic Engineering

IX

PO Box 916, University of Wales
Cardiff, CF2 3XF, Wales
UK

Dublin City University
Glasnevin, Dublin 9

Ireland

bruce@cs.cf.ac.uk
http://www.cs.cf.ac.uk/

 whelanp@eeng.dcu.ie

http://www.eeng.dcu.ie/~whelanp/home

X

XI

Acknowledgements

It is our pleasure to acknowledge and thank all of the many people who have
helped us to formulate our ideas through many fruitful discussions and who have
given us so much encouragement. These include Frederick Waltz, Mike Snyder,
John Chan, Nicky Johns, Derek Molloy, Don Braggins, Robert Churchhouse and
Nick Fiddian.

We also wish to thank the following for their specific help and encouragement:

• Clive Spenser, Logic Programming Associates Ltd., London, England, UK

for kindly supplying several copies of MacProlog for use in our software
development program.

• Andrew Jones and Ralf Hack for their contribution to Appendix D.
• Andrew Jones, Ralf Hack, Steve Palmer and Eric Griffiths for their

contribution to the development of the PIP software package.
• Michael Daley for developing the MMB interfacing hardware.
• Stephen Cooper, formally of Uppsala University, for his design for the

interface between MacProlog and Hypercard.
• Tommy McGowan for his work in developing the Prolog speech synthesis

interface.
• Ken McClannon for his work on machine vision in process control.
• John Miller and his colleagues for porting the Lighting Advisor to the

DOS/Windows platforms.
• Mark Graves for his Darkroom program which acted as the inspiration for

the Machine Vision Tutorial (MvT) software package.
• Prof. Charles McCorkell, Head of the School of Electronic Engineering,

Dublin City University, for his support of the Vision Systems Laboratory at
Dublin City University and for enabling Bruce Batchelor to visit Dublin on a
regular basis.

• The Commission of the European Union (Agro-Industry Research
Programme) for their financial support, which helped to develop the Prolog
Image Processing (PIP) software (Grant no AIR2-CT93-1054).

• Eolas (Forbairt) and the British Council, whose financial support enabled us
to establish the initial link between the University of Wales and Dublin City
University.

Many of the ideas that are outlined in this book were formed during our time

working with industry. Therefore we would like to acknowledge all our industrial
colleagues and thank them for their permission to use some of the material cited in
this book. Special thanks are due to Nicholas Pinfield of Springer-Verlag for his
commitment to this book.

XII

Apple, Macintosh and the Apple logo are registered trademarks of Apple
Computer, Inc.
3M and the 3M logo are registered trademarks of the 3M Company.
VISA and the VISA logo are registered trademarks of VISA International.
DOS and Windows are registered trademarks of Microsoft Corporation.

Hypercard is a product of Apple Computer, Inc.
MacProlog is a product of Logic Programming Associates Ltd.
Intelligent Camera is a product of Image Inspection Ltd.
VCS is a product of Vision Dynamics Ltd.

XIII

Table of Contents

1 Basic Concepts ...1
1.1 Industrial Vision Systems..1

1.1.1 Justification...3
1.1.2 Limitations of Present Systems...4
1.1.3 Flexible Manufacturing Systems ..6
1.1.4 Process Control...7

1.2 Systems Engineering ...9
1.2.1 Importance of Context ..9
1.2.2 Industrial Examples ..10

1.3 Intelligent Vision...13
1.3.1 Heuristics and Algorithms ..15
1.3.2 Artificial Intelligence (AI) Languages..17

1.4 Book Outline ...17

2 Basic Machine Vision Techniques ..19
2.1 Representations of Images..19
2.2 Elementary Image Processing Functions..21

2.2.1 Monadic, Point-by-point Operators. ...22
2.2.2 Dyadic, Point-by-point Operators...24
2.2.3 Local Operators ..25
2.2.4 Linear Local Operators ...25
2.2.5 Non-linear Local Operators ..28
2.2.6 N-tuple Operators ...32
2.2.7 Edge Effects..32
2.2.8 Intensity Histogram ..33

2.3 Binary Images...35
2.3.1 Measurements on Binary Images..41
2.3.2 Shape Descriptors ...43

2.4 Binary Mathematical Morphology ...43
2.4.1 Opening and Closing Operations..46
2.4.2 Structuring Element Decomposition...47

2.5 Grey Scale Morphology ...49
2.6 Global Image Transforms...51

2.6.1 Hough Transform ...51
2.6.2 Two-dimensional Discrete Fourier Transform53

2.7 Texture Analysis...56
2.7.1 Statistical Approaches ..56
2.7.2 Co-occurrence Matrix Approach ..57
2.7.3 Structural Approaches ..59
2.7.4 Morphological Texture Analysis ..60

2.8 Implementation Considerations..60

XIV

2.8.1 Morphological System Implementation..61
2.9 Commercial Devices ..61

2.9.1 Plug-in Boards: Frame-stores ...62
2.9.2 Plug-in Boards: Dedicated Function...63
2.9.3 Self-contained Systems...63
2.9.4 Turn-key Systems ...64
2.9.5 Software..64

2.10 Further Remarks ...64

3 Intelligent Image Processing ...66
3.1 Interactive Image Processing..66

3.1.1 Modus Operandi ...67
3.1.2 Prototyping Inspection Systems ...67
3.1.3 Building Simple Programs..69
3.1.4 Interaction and Prolog ..70

3.2 Introducing Prolog+ ...71
3.3 Review of Prolog..73

3.3.1 Sample Program ...76
3.3.2 Sample Queries...78

3.4 The Nature of Prolog+..79
3.5 Prolog+ Programs...81

3.5.1 Recognising Bakewell Tarts ...81
3.5.2 Recognising Printed Letters..83
3.5.3 Identifying Table Cutlery ...84
3.5.4 Analysing all Visible Objects ...87
3.5.5 Recognising a Table Place Setting ...87

3.6 Abstract Concepts in Prolog+...90
3.6.1 Describing a Simple Package ...90
3.6.2 Abstract Spatial Relationships..91
3.6.3 Geometric Figures ..93

3.7 Implementation of Prolog+ ..96
3.7.1 The # Operator..96

3.8 Comments...99

4 Enhanced Intelligent Systems ...101
4.1 Prolog+ Environment: A Tool-box for Machine Vision102

4.1.1 Defining New Predicate Names..102
4.1.2 Default Values for Arguments..103
4.1.3 Useful Operators...103
4.1.4 Program Library ...106
4.1.5 Auto-start ..106
4.1.6 Interactive Mode...108
4.1.7 User Extendible Pull-down Menus...108

Mechanism for Extending Menus...109
4.1.8 Command Keys ..113
4.1.9 Graphical Display of a Robot Work Cell115
4.1.10 Speech Synthesis and Recorded Speech...................................116

XV

4.1.11 On-line HELP...117
4.1.12 Cursor ...118
4.1.13 Automatic Script Generation and Optimisation........................120
4.1.14 Linking to Other Programs ...120

Hypercard Controller for a Flexible Inspection Cell122
4.2 Understanding Simple Spoken Instructions124

4.2.1 Speech Recognition ..124
4.2.2 Natural Language Understanding...127
4.2.3 Automatically Building a Pull-down Menu................................127
4.2.4 Understanding NL Commands for an (X,Y,θ)-table129
4.2.5 Sample Sentences ...132
4.2.6 Interpreting the Parser Output ..132
4.2.7 Review..133

4.3 Aids for Designing Vision Systems ...134
4.3.1 Lighting Advisor ..135

Stack Structure..136
Search Mechanisms ..136
Remarks About the Lighting Advisor...141

4.3.2 Other Design Aids for Machine Vision143
4.4 Multi-camera Systems ..144

4.4.1 Multiplexed-video Systems ..144
4.4.2 Networked Vision Systems...147
4.4.3 Master-Slave System Organisation...150
4.4.4 Remote Queries ..152

Interactive Operation of the Remote Process..................................153
4.4.5 Blackboard..154

Master and Slave Program Elements ..155
4.4.6 Controlling the Master-Slave System...155

Starting the System ...156
Stopping a Slave ...156
Passing a Message to the Slave...156
Receiving Data from a Slave ..157
Slave Program...157
Blackboard (Snapshot of Database, Changing Constantly)157

4.4.7 Crash Recovery...158
Programming the Slave from the Master ..158

4.5 Comments...158

5 Controlling External Devices..160
5.1 Devices and Signals..160
5.2 Protocols and Signals ...161

5.2.1 Interfacing to Commercial Systems..162
5.3 Programmable Logic Controller...166
5.4 General Purpose Interface Unit ..169

5.4.1 Motivation for the Design...171
5.4.2 Hardware Organisation...172

XVI

5.4.3 Programs...173
5.4.4 Digression on Lighting ...173
5.4.5 Languages for Robotics ..176

5.5 Flexible Inspection Cell, Design Issues..177
5.5.1 Lighting Arrangement ..177
5.5.2 Mechanical Handling..178
5.5.3 Cameras and Lenses ...179
5.5.4 MMB-Host Interface Protocol..180
5.5.5 Additional Remarks ..181
5.5.6 HyperCard Control Software for the FIC183

5.6 Prolog+ Predicates for Device Control ..183
5.7 System Calibration ...185

5.7.1 FIC Calibration Procedure (Overhead Camera)186
5.7.2 Calibration, SCARA and Gantry Robots (Overhead Camera) ...190
5.7.3 Calibration Procedure (Overhead Narrow-view Camera)191
5.7.4 Calibration Procedure (Side Camera) ...193

5.8 Picking up a Randomly Placed Object (Overhead Camera)...............194
5.8.1 Program ..197

5.9 Grippers..198
5.9.1 Suction Gripper ..198
5.9.2 Magnetic Gripper..198
5.9.3 Multi-Finger Gripper ..199
5.9.4 Further Remarks ...200

5.10 Summary ..201

6 Colour Image Recognition ...203
6.1 Introduction ..203
6.2 Applications of Coarse Colour Discrimination204
6.3 Why is a Banana Yellow? ..206
6.4 Machines for Colour Discrimination..210

6.4.1 Optical Filters ...210
6.4.2 Colour Cameras ..212
6.4.3 Light Sources for Colour Vision ..213
6.4.4 Colour Standards ..215

6.5 Ways of Thinking about Colour...216
6.5.1 Opponent Process Representation of Colour..............................217
6.5.2 YIQ Colour Representation ..217
6.5.3 HSI, Hue Saturation and Intensity ..218
6.5.4 RGB Colour Space: Colour Triangle..218
6.5.5 1-Dimensional Histograms of RGB Colour Separations221
6.5.6 2-Dimensional Scattergrams...221
6.5.7 Colour Scattergrams ...223

6.6 Programmable Colour Filter (PCF) ..224
6.6.1 Implementation of the PCF...225
6.6.2 Programming the PCF ..226
6.6.3 Recognising a Single Colour ..232
6.6.4 Noise Effects ..232

XVII

6.6.5 Recognising Multiple Colours..233
6.6.6 Pseudo-Colour Display for the PCF ...234
6.6.7 Recent Teaching of the PCF Dominates.....................................235
6.6.8 Prolog+ Software for Operating the PCF236

Plot Colour Scattergram..238
Draw Colour Triangle Outline ..239
Clear LUT...239
Store Current LUT..239
Reload Stored PCF..239
Reverting to Monochrome Operation ...239

6.6.9 Programming the PCF using the Colour Scattergram.................239
6.6.10 Programming the PCF by Image Processing240
6.6.11 “Hue” PCF..241
6.6.12 Analysing Output of the Hue PCF..243
6.6.13 “Segmented” PCF...245
6.6.14 Measuring Colour Similarity and Saturation245
6.6.15 Detecting Local Colour Changes..246
6.6.16 Colour Generalisation...247

6.7 Colour Recognition in Prolog+ Programs ..249
6.7.1 Counting Coloured Objects ..249
6.7.2 Recognising a Polychromatic Logo, Program 1251
6.7.3 Recognising a Polychromatic Logo, Program 2253
6.7.4 Recognising a Polychromatic Logo, Program 3254
6.7.5 Multiple Exemplar Approach to Recognition.............................255
6.7.6 Learning Proportions of Colours in a Scene...............................257
6.7.7 Superior Program for Learning Colour Proportions...................259
6.7.8 Teaching the PCF by Showing ...260
6.7.9 Template Matching of Colour Images ..263
6.7.10 Using Colour for Object Orientation ..266
6.7.11 Approximating an Image by a Set of Overlapping Discs268
6.7.12 Interpreting Resistor and Capacitor Colour Codes270

6.8 Discussion and Conclusions...272

7 Applications of Intelligent Vision ..275
7.1 Recognition of Printed Patterns..275

7.1.1 Non-picture Playing Cards ...275
7.1.2 “Stars”...276
7.1.3 “Smiley Faces” ...277
7.1.4 Alphanumeric Characters ...278

Program...279
Comments ...281
Logical and Analogue Shape Measurements282

7.2 Manipulation of Planar Objects..283
7.2.1 Assumptions ...283
7.2.2 Significance ..284
7.2.3 Simple Shape Measurements ..284
7.2.4 Learning and Recognition ..286

XVIII

7.2.5 Program Listing ..288
7.2.6 Sample Output of Recognition Phase ...290

7.3 Packing and Depletion..291
7.3.1 Geometric Packer Implementation ...292
7.3.2 Heuristic Packing Techniques ..293

Blob Packing...294
Polygon Packing ...296

7.3.3 Performance Measures ...299
Predicates ..299

7.3.4 Robot Gripper Considerations ..301
7.3.5 Packing Scenes with Defective Regions.....................................302
7.3.6 Discussion...303

7.4 Handedness of Mirror-Image Components ..303
7.4.1 Handedness and Chirality ...303

Relating Chirality and Handedness...304
7.4.2 Concavity Trees..306

Formal Definition ...308
Generating Concavity Trees ...309
Sample Concavity Trees ...311
Canonical Form of Concavity Trees ...314
Program to find Chirality ..316

7.4.3 Properties of Concavity Trees ..316
Instability ..318

7.4.4 Simpler Tests for Chirality ...319
Second Program..320
Third Program...321
Fourth Program...321
Fifth Program..322

7.5 Telling the Time ...323
7.5.1 Significance ..323
7.5.2 Simplifying Assumptions ...324
7.5.3 Lighting ..324
7.5.4 First Program ..325
7.5.5 Other Methods ..327
7.5.6 Concluding Remarks ..328

7.6 Food and Agricultural Products ...329
7.6.1 Objective...329
7.6.2 Industrial Relevance ...329
7.6.3 Product Shape, Two-dimensions ..331

Image Acquisition...332
Rectangular and Circular Biscuits ..332
Slices of Bread ..335
Locating the Base and Determining Orientation.............................336
Locating Straight Sides ...337
Measuring Overspill ...338
Radius of Curvature of Top Edge ...338

7.6.4 Analysing the 3D Structure of an Uncut Loaf340

XIX

8 Concluding Remarks ..345

References...348

A Proverbs, Opinions and Folklore..355

B Factors to be Considered when Designing a Vision System366

C General Reference Material..369

D PIP - Software Implementation of Prolog+379

E Prolog+ and PIP Commands...390

Glossary of Terms..399

Index of Predicates, Operators and Grammar Rules.............................411

Index ...414

1

Basic Concepts

As a mature research topic, machine vision dates back to the mid-1960s. Early

work at a range of institutions, including the National Physical Laboratory (UK),
SIRA (UK), SRI, MIT and Edinburgh University, demonstrated the potential of
machine vision in inspection, robotic control and automated assembly. Machine
vision is an umbrella term used to describe many different types of vision systems,
but in general, machine vision systems are used in the automated processing,
analysis and understanding of images in an industrial environment. A more formal
definition is given as follows:

"The use of devices for optical, non-contact sensing to automatically receive
and interpret an image of a real scene in order to obtain information and/or
control machines or processes." [AVA-85]

Machine vision systems should not necessarily be modelled on, or attempt to

emulate human vision [HOC-87]. Whereas the analysis of human vision is useful
to those working in perception psychology and computer vision, it is not as
relevant to vision engineers trying to solve industrial problems. This does not
mean that researchers should abandon the goal of trying to develop human-like
vision systems. As well as the obvious results of such research, the pursuit of such
goals may result in some useful techniques that can be applied in a more practical
context. Human analogies, while useful stimulants for ideas, should not be
followed dogmatically [LEE-89]. The danger in relying on such human driven
approaches to the development of industrial vision systems is that simpler, and
perhaps more elegant, solutions may be overlooked.

1.1 Industrial Vision Systems
The design of industrial vision systems, see Figure 1.1, requires a broad

spectrum of techniques and disciplines [BAT-85]. These include electronic
engineering (hardware and software design), engineering mathematics, physics
(optics and lighting) and mechanical engineering (since industrial vision systems
deal with a mainly mechanical world). Detailed descriptions of the techniques and

 2

algorithms involved in the analysis, processing and interpretation of digital images
can be found in a growing number of text books that cover the field of machine
vision (see Appendix C). A summary of the techniques and issues involved in the
design of industrial vision systems can be found in a collection of papers on
industrial machine vision systems collated by Batchelor and Whelan [BAT-94].

However, many industrial vision systems continue to be designed from a purely
software engineering perspective, without consideration for any of the other
system disciplines. While it is acknowledged that the software engineering task in
machine vision is a critical one, the other system elements are neglected at our
peril. No single discipline should be emphasised at the expense of the others.
Lately, a number of researchers [HAR-92, PAV-92] have argued for the design of
vision systems to be firmly placed back into a systems engineering framework.
This arises from the belief that an inadequate amount of vision research deals with
the genuine design and systems problems involved in the implementation of
industrial vision systems. [SIM-81]

One of the reasons for the current growth of machine vision systems in
manufacturing is the falling cost of computing power. This has led to a spread in
the technology and has enabled the development of cheaper machine vision
systems. This, in turn, has enabled medium-sized manufacturing companies to
consider the option of using machine vision to implement their inspection tasks.
To a lesser extent, the availability of a well educated work-force, a small
proportion of which has an awareness of machine vision, has also aided the
growth, and acceptance, of industrial vision systems.

The main reason, however, for this growth is strategic. That is the realisation
within many industries that machine vision is an integral component of a long
term automation development process, especially when one considers the
importance of quality in manufacturing. This, combined with the legal liabilities
involved in the production and sale of defective products, highlights the strategic
case for the use of machine vision in automated inspection. A similar argument
applies to the application of vision to robotics and automated assembly.

The main application areas for industrial vision systems occur in automated
inspection and measurement and, to a lesser extent, robotic vision. Automated
visual inspection and measurement systems have, in the past, tended to develop
faster. In fact, quality control related applications such as inspection, gauging and
recognition, currently account for well over half of the machine vision market.
This has been mainly due to the lower cost and the ease of retrofitting such
inspection systems onto existing production lines, compared to the large capital
investment involved in developing a completely new robotic work cell and the
extra uncertainty and risks involved in integrating two new and complex
technologies.

 3

Image Interpretation and
Mechanical Interface

Image Processing
and Analysis

Image Sensor

Lighting and Optics

Part Feeding and
Mechanical Interface

Data
Flow

Feedback
Path

Figure 1.1 Machine vision system components.

1.1.1 Justification

Machine vision is maturing as a technology as more engineers are entering the
field and more companies are availing of its benefits. Many others, however, are
hesitant or unwilling to commit themselves to using vision, because they fear the
capital, development, installation and maintenance costs involved. These
reservations are understandable if they try to justify the investment in terms of the
primary financial measurements: return on investment, return on capital employed
and pay-back periods. There are, however, many tangible benefits that can be
used to justify the investment, such as improved product quality and safety,
increased productivity, improved operational safety and reduced waste. The
subsequent reduced warranty and reshipment costs, increased accuracy and
repeatability, and lower error rate compared to manual inspection are all
significant benefits.

For the majority of machine vision applications the cost of the vision system is
small, relative to the total cost (and overall technology content) of automating a
new production line [KRU-81]. It is vital that the installation of a machine vision
system does not hinder the overall operation of the production line. Introducing a
machine vision system into a production process, without fully considering all the
implications will result in false expectations of the system’s capabilities [HOL-
84]. (See Appendix A, for a light-hearted look at the opinions and folklore that
surround machine vision, and Appendix B, for a list of some of the factors
involved in the design and installation of a vision system.) Some of the key
questions that must be considered by a manufacturer prior to the commissioning

 4

of a new vision system, are given below (see [HOL-84] for a more detailed
discussion of these issues).

• Will the inclusion of the machine vision system affect the production

 speed ?
• Will the manufacturing process have to be modified to accommodate the

 introduction of the vision system ?
• Will the production line have to be retrofitted with the automated vision

 system, or does the vision integrator have total control over the
 inspection environment ?
• Will the vision system require custom plant, process and/or environment

 changes ?
• As the production demands change, can the vision system be easily

 reconfigured ?
• How often will the vision system need to be serviced and can this be

 accommodated by the overall line service schedule ?

Machine vision inspection systems now appear in every major industrial sector,

areas such as electronics, automotive, medical, food, and manufacturing
industries. (See [BAT-94, CHI-82, CHI-88 WAL-88] for a more complete
discussion of machine vision applications.) Such applications still tend to use
automated visual inspection as open-loop systems. That is they allow
manufacturers to inspect every single product, without suffering a loss in product
throughput, but without having a direct affect on the processing of the product
itself. As manufacturing technology becomes more complex, there is a growing
requirement to integrate the inspection process more closely with the overall
manufacturing process [MCC-92, MCC-93]. This moves the application of
automated inspection from a quality control to a process control role, that is, from
defect detection to defect prevention.

1.1.2 Limitations of Present Systems

Unfortunately, machine vision has had a rather chequered background. In the
past, customers have had unrealistic expectations, often fuelled by the vision
industry. Over the last two decades, some vision integrators have unsuccessfully
stretched the use of vision systems, to the extent that certain industries have had
their 'fingers burnt' after receiving false and unrealistic promises and
disappointing results. However, it must be emphasised that these examples remain
in the minority. Difficulties were often compounded by the fact that many end
users did not know how to assess the performance of vision systems [RUM-89].

It may seem obvious to say that one of the key steps in any automated
inspection application is to know exactly what you are inspecting [FRE-88].
Unfortunately, vision systems will often be applied to products and tasks that are
outside its original specification, without any appreciation of the different visual
characteristics of the new application. Therefore, it is important for vision system

 5

designers to outline the strengths, and more importantly, the weaknesses of their
vision systems from the beginning of the design process.

While the use of machine vision systems in industry has grown in the last few
years, and continues to be seen as an area of automation with enormous potential,
it still has a long way to go before it is universally accepted as a standard
automation tool. Pavlidis [PAV-92] has identified some of the reasons for this
slow growth and these are summarised below:

• Absence of systematic testing and experimentation. This suggests that

 machine vision lacks one of the key features of engineering.
• Researchers are not facing up to how difficult the problem is.
• No accepted sub-goals. There is a tendency to adopt 'all or nothing'

 research strategies.

Machine vision systems are not perfect tools and researchers and engineers

must be aware of the realities of a given application, as well as the ultimate aim of
the inspection and/or assembly task. For example, the application of vision to
automated assembly can be impressive to watch, but often deceptive. If one of the
pieces to be assembled is rotated or moved slightly, then the system may not be
able to cope with this change in its working environment [LEE-89]. However, if
the constraints of the system, such as its inability to cope with such environmental
changes, are made clear, then the system can serve a useful purpose.

Haralick [HAR-92] emphasises the importance of characterising the
performance of vision systems and procedures. He makes the point that, whether
it is called an adaptive, intelligent or a self-learning system, all such systems are
making estimates. Therefore, there is a need to measure such estimates by the
application of rigorous engineering performance criteria. He calls for a more
rigorous approach when discussing system errors and for a systems engineering
framework that will meet the realities of the manufacturing process.

There is also a need to educate the customer about vision in a broader context,
rather than just concentrating on their immediate application needs. This
education process should be continuous, beginning at the feasibility study stage,
right up to the final installation, and not just a token gesture undertaken towards
the end of the installation phase. A customer who has a reasonable knowledge of
the vision application will be more open to suggesting changes in the process.
This will be true, especially if the system integrator can show that there is a
possibility of reducing the complexity of the image analysis (and systems cost),
thus leading to a better engineered solution.

Education is vitally important but this is not the total solution, since there is also
a need for the development of more flexible vision systems that can handle a
larger class of objects, under less constrained manufacturing conditions. Vision
engineers should also begin providing standard solutions to automation problems
and not selling machine vision technology for its own sake. This requires an
understanding of the problem, at a systems level. Any tendency for vision
engineers to shy away from the systems problems will reduce the likelihood of a
successful application implementation.

 6

1.1.3 Flexible Manufacturing Systems

When considering all of manufacturing industry, the presence of 'smart'
automation is minimal in extent at the moment, although there are high local
concentrations. It requires new flexible techniques that combine the strengths of
the work that has been done in the development of industrial material handling
and automated inspection systems, combined with the growing research into
assembly strategies. Such systems would avoid the need for substantial retooling
between product changes, and would enable manufacturing systems to cope with
an increasing number of product variants [RUM-89].

Such systems would also have the flexibility to respond to changes in the
production line, manufacture or assembly procedures [HOS-90]. Depending on
the design of a product, additive, multiple-insertion or combinational assembly
processes are used. With multiple-insertion, the inspection process can be carried
out at the end of the manufacturing cycle. However, with additive and
combinational assembly processes, inspection must be carried out on each part, as
it is inserted. Therefore, visually controlled assembly systems also have the added
bonus of some form of gross inspection of the product under assembly, even if
this is only finding the nature and orientation of the parts to be assembled [WAL-
88].

The majority of industrial assembly systems are either manually operated, or use
semi-automation to some degree. However, these systems can be unreliable.
Reasons for such unreliability include the lack of any automated visual feedback
and/or discrepancies of the human operators. Therefore, such systems tend to be
expensive to operate. This is especially the case in Western Europe and the US,
where it is difficult for manufacturers to match the labour costs involved in
manual assembly, when compared to the Far East and the former Eastern Bloc
countries. The use of robots in materials handling eliminates the need to have
human beings performing monotonous, exhausting or hazardous work. This is an
increasingly important factor, since it is generally becoming socially
unacceptable1 for people to perform boring, repetitive, 'robot-like' jobs. Hence,
the need for automated systems is not necessarily about the displacement of
labour [NEM-95], but is concerned instead with the growing expectations of an
increasingly educated labour force and economic realities of the industrialised
world.

Although the application of robotics and vision to parts assembly has great
potential [OWE-85, HAR-87] and will strongly influence the competitiveness of
the European Community, it is currently lacking in European industry [DEL-92].
This has been recognised by the European Community through its funding of
major projects such as ESPRIT, BRITE and more specifically the EUREKA
projects that fall under the umbrella term FAMOS (a German acronym for flexible
automated assembly systems). The FAMOS-EUREKA projects have targeted one

1 This is not always the case. There are important social issues at stake here

[BAT-95]. However, a discussion of these concerns is beyond the scope of this
book.

 7

of the weakest points in Europe's manufacturing industries, with the objective of
reversing the decline of more than two decades. This is especially relevant to the
manufacture of products such as cameras, motorcycles and domestic appliances.
Its aim is to create automated assembly systems which are flexible enough to
enable manufacturers to change product lines when needed and to produce small
batches of products efficiently. These projects include participants from a wide
range of European industries and universities [EUR-89].

In the past, automated assembly systems have been developed mainly for
handling high volume production (greater than 100,000 parts per annum), with a
low number of variants (between 1 and 3 different types). However, current
production assembly demands include:

• A high degree of flexibility.
• Wider range of applications with greater numbers of different versions

 and models.
• Small batch runs and shorter production times. 75% of applications are

 in small to medium batches (≤ 50 items).
• Integrated quality control.
• Long unmanned operation periods with unmanned transfer vehicles.
• Ease of integration into the current production line.
• Ability to handle customised products.

In reporting on a review of the key features of automated assembly systems

based on 22 German companies, Delchambre [DEL-92] highlights the fact that
98% of products are made of fewer than 25 parts, and that 90% of parts weigh less
than 1Kg.

1.1.4 Process Control

In the modern manufacturing environment, economy of scope is becoming as
important as economy of scale. Companies must be able to produce a variety of
products using a flexible manufacturing system, while maintaining a very high
level of quality. There is a need to extend the role of machine vision beyond that
of inspection, to become the key controlling element in a closed loop process.
Such integration will allow flexible control of the production line, using defect
information to locate fault sources and allowing automatic feedback for
adjustment and correction, as well as monitoring the overall efficiency.

Product lifetimes are being reduced all the time. This, coupled with an ever
increasing demand for higher quality, is forcing manufacturers to produce a larger
variety of products, to higher standards, with a much shorter lead time, from
initial design to a commercial product reaching the market place. Satisfying these
new manufacturing conditions necessitates the use of flexible automation, with
better process control and a far higher level of integration. There are considerable
technological challenges that must be overcome to attain these goals. Machine
vision should be able to make a significant contribution to their achievement.

 8

There are enormous benefits to be attained from integrating vision into the
process control of Discrete Event Dynamic Systems, (DEDS), producing discrete
parts or products. This type of integration will make the automated process far
more flexible, making it easier to accommodate product design changes and the
introduction of new products, thereby reducing the cost of short manufacturing
runs. It should allow the control system in a multi-product plant to handle a large
mix of products, by using appropriate processing and analysis software for each
product. The vision system will achieve quality assurance through process
feedback, giving better built-in quality. It will aid in the fine tuning of the process
thus reducing variance. The vision system can be used to monitor the effects of
process changes, the introduction of new machines, maintenance, and process
improvements. It should reduce the response time for the correction of fault
sources in comparison to the manual equivalent because the integrated system can
collect and analyse large amounts of data very quickly.

Such systems should allow defect prevention by monitoring trends and
generating the appropriate feedback signals for automatic correction of the
process. However, in some situations, the process monitoring system will merely
alert the factory personnel, so that they can schedule preventative maintenance,
before defective products are produced. Adjusting machines before they have any
serious problems should increase uptime, which is very important in any plant, but
particularly if a “Just-In-Time” system of manufacturing is employed. In-process
monitoring will also facilitate automatic and dynamic construction of inventory,
allowing reduced buffer storage, product routing (thus improving machine
utilisation), and general production scheduling. It will free quality assurance
personnel from time-consuming data collection, processing and interpretation of
results, allowing them to concentrate on process improvements and manual
trouble-shooting.

Vision provides a wealth of information about a process, in comparison with the
majority of other sensors, which for the most part only provide binary (on/off),
information and has limited use in generating control signals. Any control system
has to be well informed to make good control decisions! The parts being
manufactured are like 'windows' into the process. A control system can use
machine vision to look through these windows. An intelligent vision-based
controller using a priori process knowledge, could locate the cause of the
problem. It may even be able to fix it automatically. Mechanical breakdowns and
component failures would have to reported to an operator, while parts are re-
routed away from the faulty machines.

1.2 Systems Engineering
Machine intelligence is not an exercise in philosophy but an engineering
project. [MIC-86]

The aim of this section is to define the current state of machine vision, as seen

from a systems engineering perspective. An essential part of this is a discussion of

 9

some of the research areas that must be studied, in order to advance the
development of industrial vision systems. The views presented in this section have
arisen from the authors involvement with machine vision systems engineering, in
both industry and academia.

1.2.1 Importance of Context

During the development of machine vision systems over the last 30 years there
have been two main approaches. One approach that researchers took was the
development of general purpose vision systems. (Section 2.9 discusses
commercial vision systems.) These systems mainly concentrated on the software
aspect of the vision task, and due to the generality of such systems, vision
integrators were faced with a wide and varied range of image processing, and to a
lesser extent, image analysis techniques. The main challenge facing system
designers is to reduce the complexity of the system, to enable it to carry out the
required inspection functions, under the tight budgetary and operating conditions
required by industry. The success of such systems in the manufacturing
environment have been limited, since they require a significant amount of work
and reprogramming to get them to perform a practical vision task.

The second approach is based on generating turn-key vision systems which
provide total solutions to a given industrial task. These systems have the
advantage of being tuned to a specific application. They tackle the problem rather
than trying to fit the task to a collection of software procedures which are looking
for an application. However, the second approach will only work effectively if the
designer takes into account the context of the industrial application.

So, what is meant by the context of a machine vision system? The Collins
English dictionary definition of “context” is given as "conditions and
circumstances of an event". For example, one can recognise and understand
abstract words in the context of a sentence structure with less difficulty when
compared to viewing/hearing such words in isolation [DRE-86]. This highlights
the strength and importance of context in trying to make sense of the world
around us. Likewise, in the successful development of machine vision systems,
whether inspection or robotic vision, it is necessary to view the problem in its
entirety. All possible considerations, electronic, optical and mechanical must be
considered. This is not an easy task, and many vision system designers feel
uncomfortable dealing with system issues, which are often outside their own area
of expertise.

The complexity of a machine vision application is largely a reflection of the
complexity of the environment in which it finds itself [SIM-81]. Therefore, a
successful vision application requires a total systems approach and requires a
range of engineering and practical skills to deal with the complex industrial
environment. When faced with a specific application requirement, it is always
well worthwhile analysing the problem from a systems engineering perspective.
By adopting a systems approach, the maximum use is made of problem-specific
"contextual" information, derived, for example, from the nature of the product
being handled, the process used to manufacture it and the special features of the

 10

manufacturing environment. Doing this, it is often found that the complexity of
the application can be reduced.

Researchers and engineers must also be open to the idea that vision may not be
the appropriate or ideal approach for the task at hand. Some tasks that the end user
may see as being a suitable application for machine vision, may in fact be better
served by using other engineering approaches, such as the use of mechanical
sensors, optical and electronic transducers. Some of the unsuccessful vision
applications of the past have been caused by applying vision technology in
inappropriate ways. For machine vision to become generally accepted by the
manufacturing community, it must concentrate on tackling the industrial
problems, rather than try to employ a given technology for its own sake. There are
considerable benefits in adhering to the Japanese philosophy of restricting the
tasks to suit the capabilities of the equipment.

1.2.2 Industrial Examples

The two case studies discussed in this section illustrate the complexities of
designing and building an industrial vision system and emphasise how detailed
knowledge of the application context can simplify the vision system design. The
purpose of including these case studies here is to explain the development of
industrial vision systems while concentrating on the systems engineering approach
to the vision problem, rather than the image analysis and processing routines.

The first case study outlines the automated on-line inspection of plastic screw-
on bottle tops. At a certain stage during the manufacture, the preformed plastic
bottle tops are passed through a sealing machine, which inserts a grey plastic seal
into the bottle top. The product loading station then places the bottle tops, in
single file, onto the large product placement star-wheel shown in Figure 1.2. This
transports the bottle tops beneath the camera and lighting inspection head. The
image of the bottle top is then analysed and an accept/reject decision is made.
During the analysis stage, the bottle tops are moved into the product unloading
station. By the time, the bottle tops arrive there, the product has already been
classified and the unloading station removes the product from the starwheel. It is
then placed on one of two conveyors depending on whether an accept or reject
decision has been made.

Due to tight budgetary constraints and the computational overhead involved in
colour processing, the use of a colour camera was not a feasible option. This
difficulty was overcome by placing a motor-controlled colour filter carousel
between the inspection head and the product placement starwheel (Figure 1.2).
The carousel places a colour filter in the inspection system’s optical path. The
selection of the colour filter depends on the colour of the bottle top to be
inspected. The choice of the filter is under menu control and is selected to achieve
maximum contrast between the bottle top and its grey seal. Although changing of
the colour filter is slow compared to the inspection speed of the bottle tops, this is
not a problem, since the bottle top’s colour only change between batches, and not
within a given batch cycle. This leaves ample time for the vision system to change

 11

the colour filter automatically, based on the menu settings chosen by the line
operator.

E

A

B

C

D

Figure 1.2 Plastic bottle top handling and inspection system. A. Inspection
head - camera and lighting unit, B. Colour filter carousel, C. Product
placement star-wheel, D. Product loading station (This feeds the bottle tops
from the sealing machine and places them on the star-wheel for inspection) E.
Image analysis system.

It is often surprising the extent to which a product’s design can be constrained

to suit the limitations of the vision system, without adversely affecting the
product’s functionality, aesthetics or the ability to manufacture the product [RED-
91]. Although it can be argued that this imposes intolerable constraints on the
product design, these restrictions need not be any more rigid than those imposed
by good design for 'manufacturability'. For example, in the second case study the
vision system designers were faced with the task of checking for colour mis-
registration on high quality printed cartons. In this case, the product was slightly
modified, to simplify the image analysis task.

The manual method of inspecting for colour mis-registration requires the
examination of the printed sheets, after they have been cut into individual cartons,
folded and passed through the gluing stage. Gross registration errors are obvious
to the inspector after an initial glance at the carton, whereas slight registration
errors are found by viewing the printer’s registration mark. (This mark is printed
on a part of the carton that is hidden from consumer, once the carton is assembled.
See Figure 1.3.) Due to the highly automated nature of the printing process, there
are few gross registration errors. In practice, the majority of errors are due to
slight slippages in the printing process. These slight registration errors are difficult
to find and classify manually.

 12

Figure 1.3 Registration symbol for manual inspection. The figure on the left
indicates correct registration. The figure on the right indicates incorrect
registration of two overlaid registration marks.

Figure 1.3 shows an example of a manual registration mark, initially printed in

black on a white background As each new colour is applied to the carton, a new
registration mark, of the same design but in the new colour, is overlaid on the
original printed mark. Therefore, if all the colours are registered correctly, they
produce a single well defined registration mark. However, if any type of mis-
registration occurs, the registration mark for that colour appears shifted with
respect to the black reference mark.

The inspection of the original design for the registration mark (Figure 1.3) was
difficult for the machine vision system to handle. The registration mark is not only
difficult to describe, but if mis-registration occurs the image becomes more
complex and hence more difficult for a machine vision system to analyse2.

In this instance, the product modification simply involved the redesign of the
registration mark (Figure 1.4). This new registration mark consists of an outer
black circle which contains a number of solid coloured disks, one for each of the
subtractive primaries (magenta, yellow and cyan), and a fourth solid disk,
representing the extra solid colour to be printed (green in this application). This is
printed on a white background. The black ring is laid down first and acts as the
registration reference colour. As each colour is applied by the printing process, a
solid disk of that colour is also printed inside the black reference ring. The offset
of each of these disks, measured from the centre of the black ring, gives a measure
of the position for that colour imprint with reference to black.
 The ability to modify the product to suit the vision system’s capabilities and
strengths, highlights the benefits of holding detailed discussions with the end user
during the feasibility study. If the end user is involved from the beginning of the
design process, the designer may be fortunate to find that the customer is willing
to consider changes in product presentation which will simplify the vision task.
This is more likely, of course, if it can be shown that system costs can be reduced
by doing so. The use of this custom registration mark, developed in conjunction
with the end user, transformed a potentially difficult and expensive vision task
into a much simpler one.

2 Humans and machine vision systems often use different recognition criteria.

Therefore, the two approaches should not be confused.

 13

Complete knowledge of the application context cannot always be achieved.
Therefore, there is a need for vision systems to contain procedures that can deal
reliably with missing or ambiguous information. Also, in many applications, only
partial control over the working environment can be realistically achieved. There
will always be some application specific obstacles that cannot be removed by the
use of the systems engineering approach to the task [LEE-89]. The trade-off of
potential usage (i.e. generality of the application and flexibility) versus simplicity
is an important decision to be made during the design of a machine vision system.

Figure 1.4 Modified colour registration symbol. The figure on the left
indicates correct registration. The figure on the right indicates incorrect
registration of the lower inner disk.

1.3 Intelligent Vision
There is more to (machine) vision than meets the eye.

As mentioned earlier, the majority of industrial vision applications are

concerned with the inspection and/or automated assembly of simple, well defined,
mass produced goods. Nevertheless this only forms a small proportion of the
overall manufacturing industry; the majority of manufactured goods are made in
batches of 50 or less [BAT-91]. Consequently, there is a need to make vision
systems more flexible to cope with the different demands of small batch
manufacture, particularly the ability to have a fast application turnaround.

This points towards the need to develop a new generation of 'intelligent' (or
adaptive3) industrial vision systems. Intelligence is needed

3 The term 'intelligent' can be interpreted in different ways, but it is often taken
to imply the imparting of human intelligence to a machine. This is not what we are
necessarily interested in as machine vision designers, but rather the development
of vision systems that will have the capability of adapting to the changing world
around it. This may use artificial intelligence techniques but will not necessarily
depend on them. Some authors prefer to use the term 'adaptive' rather than
'intelligent', however, the use of the term 'artificial intelligence' is now so
ingrained in engineering and science communities, for both good and bad reasons,
that it is not possible to dispense with it entirely. Therefore, it is advisable to
qualify the use of such a term.

 14

• to interpret the description of the object to be recognised
• to interpret a complex visual scene
• to plan actions following the recognition process.

It is clear from even simple situations that intelligence and vision are

intrinsically dependent upon each other. Intelligence needs vision to supply it with
sensory data. Vision needs intelligence to resolve ambiguities in visual scenes and
to make high-level judgements about what a complex scene contains.

To ensure that this new generation of vision systems is flexible, it really is
necessary to use techniques that can cope with less constrained manufacturing
environments, through the use of heuristics in conjunction with algorithmic
procedures.

There is also a need to develop robotic vision systems which have a more
adaptive visual feedback capability, such as the ability to manipulate arbitrary
shapes under visual control [WHE-93]. The development of such adaptive
visually controlled work cells will accelerate the growth of robotic vision systems
in industry.

The development of generic tools to deal with visual cues, such as shape, size,
colour and texture, must still have a high priority. Indeed, this continues to be one
of the key research challenges for the future. These generic descriptors will aid in
the development of machine vision applications, but when faced with a specific
application the problem should be viewed within a systems engineering
framework. The use of the 'contextual' information should be maximised to
simplify the task. For example, in a visually controlled 'pick and place' machine,
there is often no inherent reason why each item cannot be presented to the
machine in a predetermined place and orientation. Therefore by mechanically
restricting the orientation and positioning of the device under inspection, the
visual inspection task can be simplified. This type of demand may not always be
unreasonable and should always be pursued [DRE-86].

To advance from the current generation of machine vision systems to a new,
more flexible family requires addressing a number of key issues:

• Development of adaptive (intelligent) machine vision systems.
• Application of a systems engineering approach to industrial vision tasks.
• Maximise the use of contextual information available from the product,

 process and application environment.
• The production of standard solutions to industrial problems.
• Tackling of sub-goals.
• Widening the application base.
• The use of vision in a process and quality control role.
• Performance characterisation tools.
• Ability to deal with unclear or missing information.
• Systematic testing and repeatable experimental results.
• Generic tools to deal with common analysis features such as shape,

 size, colour and texture.
• Investigation of algorithmic and heuristic procedures.

 15

• Flexible, user friendly interfaces.
• Broader education of the systems issues.

Machine vision can only progress and become fully accepted in manufacturing

industry, if it employs advances in vision research in a sensible way [PAV-92].

1.3.1 Heuristics and Algorithms

While many of the current industrial applications of machine vision rely on
implementing algorithmic procedures, the next generation of systems will make
use of both algorithmic and heuristic approaches. The proper combination of these
approaches will allow a more flexible approach to problem solving in the
industrial domain.

The heuristic approach to problem solving, is regarded by some researchers as a
soft option, since it is perceived as relying on common sense rather than
mathematical rigour. However, if often happens that the development of solutions
based on heuristic techniques is a sensible option, and often the only one !

On a practical level, many important and varied industrial vision problems are
full of peculiarities, that are difficult or even impossible to state mathematically.
Hence there is a need for alternative approaches. This argument does not imply
that heuristics are better, or worse, than a given algorithmic approach, but rather
that the proper use of heuristic methods offers a powerful alternative and should
always be considered when faced with difficult system design issues [PEA-84,
TAY-88].

A heuristic method, as defined by Silver, Vidal and DeWerra [SIL-80], is a
"procedure for the solving of well defined mathematical problems by an intuitive
approach in which the structure of the problem can be interpreted and exploited
intelligently to obtain a reasonable solution", and is not guaranteed to give an
optimal solution. They also point out the main motivations for using heuristics,
and although their paper is concerned with the use of such techniques in an
operational research environment, these reasons have been generalised and are
listed below.

• The problem is such that an analytic or iterative solution is unknown.
• An exact analytic or iterative solution may exist, but the implementation

 may be computationally expensive and therefore impractical.
• A heuristic method, may be simpler for the design engineer to

 understand.
• For a well-defined problem that can be solved optimally, a heuristic

 method can be used for learning purposes.
• A heuristic method may be used as part of an iterative procedure that

 guarantees the finding of an optimal solution.
• Heuristics can be used to give a good starting solution in implicit

 enumeration approaches to a problem. This can help to reduce the
 computational effort needed to search for an optimal solution.

 16

One of the qualities that a good heuristic procedure should possess includes an

average performance close to that of the 'optimal' solution (i.e. that is the
closeness of the solution to optimal, rather than the time taken to compute the
answer). Of course, such a performance measurement may not be possible in
many applications, since one of the major reasons for using heuristics in the first
place is that it may be impossible to find an optimal solution. Therefore, the use of
heuristics requires quantitative performance measures to decide if the procedure is
“good enough” (satisfactory). Other key performance considerations include fast
heuristic execution, a small probability of worst-case performance occurring and
that the solution should be simply designed and implemented easily and cheaply.

There are problems relying on a purely heuristic approach: such approaches
tend to be memory intensive. Moreover uncontrolled searches, if allowed, are time
consuming. Therefore, heuristic procedures are most often used in applications
where “intelligence” is more important than speed. For the benefit of the heuristic
approach to be maximised, it is important for the designer to have an appreciation
of the theoretical problem under consideration and the systems issues contained in
it. The use of heuristics is no excuse for a reduction in engineering and scientific
rigour.

1.3.2 Artificial Intelligence (AI) Languages

Artificial intelligence languages are currently found in a wide range of expert
systems that aid knowledge representation, retrieval and presentation. The main
families of languages used for AI programming include [ROB-89]:

• Functional application languages (e.g. Lisp)
• Logic programming languages (e.g. Prolog, Parlog)
• Object oriented languages (e.g. Prolog++, Smalltalk).

There is no single dominant language for AI applications. As with any

programming task, the designer should chose the language that will allow him to
carry out the task with the minimum of effort. In reality, many programmers have
favourite languages, ones which they feel most comfortable using. The reasons for
language choice can also be geographical or cultural. For example, Lisp is
dominant in the US, while Prolog (which was developed in Europe) is commonly
used in Europe and Japan. In the case of the work outlined in this book the
authors have used Prolog. (The reasons for choosing this language will be
outlined in Chapter 3.) However, this does not exclude the implementation of the
ideas outlined in this book in other languages.

The ideas behind the integration of AI languages and industrial vision
applications are more recent. AI based industrial vision applications include:

 17

• Automated packing of arbitrary shapes [WHE-93].
• The use of expert systems in process control [MCC-93].
• The use of expert systems in cake inspection [BAT-91].
• Inspection of food [BAT-91].

1.4 Book Outline
Machine vision research and engineering has been discussed in a wide range of

books and other forums. As a result, it often difficult for an author to find a fresh
approach to the subject. The aim of this book is to look at the development of
tools, techniques and systems that will enable vision engineers to design the next
generation of industrial vision systems. Such systems will have to be more
adaptive than their predecessors to their environment and for this reason have the
appearance of intelligence.

Chapter 2 lays the framework for this discussion, by reviewing the current state
of machine vision engineering and pays particular attention to basic machine
vision techniques. This chapter is aimed at readers with minimal prior experience
of machine vision. More experienced readers will find most of this material
familiar, although they may wish to use this chapter as a reference to the Prolog+
commands used in the remainder of the book. Chapter 3 introduces the reader to
intelligent image processing. This discussion will include an introduction to
interactive image processing and the Prolog+ vision language used by the authors
in the development of intelligent vision systems. A number of Prolog+ programs
are include to illustrate the power of this approach to image processing and
analysis.

Chapter 4 discusses intelligent systems that have been enhanced by expanding
the basic Prolog+ concepts introduced in the previous chapter. As machine vision
applications become more complex, the knowledge-based functions will also need
to be automated. The use of expert systems to aid in the design of a vision systems
optical arrangement, lighting configuration and even camera selection will
become commonplace. The ideas behind this knowledge automation are also
outlined in Chapter 4, which also deals with understanding simple spoken
expressions and the integration of intelligent multi-camera systems within the
Prolog+ environment.

Since machine vision systems interact with a (mainly) mechanical world, the
need for intelligent control of external devices is a key factor in the overall design
of the vision system. Chapter 5 introduces a general purpose interface unit,
developed for use with a flexible inspection cell in conjunction with Prolog+.
Vision system calibration and a range of general system issues are also discussed
in this chapter. Chapter 6 introduces the issues involved in colour image
processing and analysis. It outlines a number of approaches to the colour imaging
task. Chapter 7 puts the ideas outlined in the previous chapters into practice. A
number of applications of intelligent vision systems to a range of industrial
problems including food inspection and automated packing systems are covered.

 18

There are five appendices. Appendix A presents some of the proverbs, opinions
and folklore that surround machine vision. While this section is offered in a light-
hearted manner, it encapsulates some important lessons that we have learned but
which are unfortunately not universally acknowledged or understood. Appendix B
outlines some of the important factors that must be considered when designing a
vision system. Appendix C contains a compilation of general reference material,
useful for machine vision designers. This includes machine and computer vision
texts, conference proceedings, special issues of relevant journals, survey and
review papers, lists of periodicals, journals and magazines relating to machine
vision and references to a wealth of on-line Internet resources. Appendix D
outlines the issues relating to a general purpose software implementation of
Prolog+, while Appendix E summarises the Prolog+ commands used throughout
this book. Finally, a glossary of machine vision terms is included.

2

Basic Machine Vision Techniques

The purpose of this chapter is to outline some of the basic techniques used in

the development of industrial machine vision systems. These are discussed in
sufficient detail to understand the key ideas outlined elsewhere in this book. For a
more detailed explanation of image processing and image analysis techniques, the
reader should refer to the general reference material in Appendix C. In the
following discussion we shall frequently indicate the equivalent Prolog+ operators
for the vision techniques described. (A more detailed discussion of Prolog+
operators can be found in Chapter 3 and Appendix E.) Prolog+ commands appear
in square brackets. In certain cases, sequences of Prolog+ commands are needed
to perform an operation and these are similarly listed.

2.1 Representations of Images
We shall first consider the representation of Monochrome (grey-scale) images.

Let i and j denote two integers where 1 ≤ i ≤ m and 1 ≤ j ≤ n. In addition, let f(i,j)
denote an integer function such that 0 ≤ f(i,j) ≤ W. (W denotes the white level in a
grey-scale image.) An array F will be called a digital image.

 f(1,1), f(1,2), … f(1,n)
 f(2,1), f(2,2), … f(2,n)

F = . . … .
 . . … .
 f(m,1), f(m,2), … f(m,n)

An address (i,j) defines a position in F, called a pixel, pel or picture element.

The elements of F denote the intensities within a number of small rectangular
regions within a real (i.e. optical) image. (See Figure 2.1) Strictly speaking, f(i,j)
measures the intensity at a single point but if the corresponding rectangular region
is small enough, the approximation will be accurate enough for most purposes.
The array F contains a total of m.n elements and this product is called the spatial
resolution of F. We may arbitrarily assign intensities according to the following
scheme:

 20

f(i,j) = 0 black
0 < f(i,j) ≤ 0.33W dark grey
0.33W < f(i,j) ≤ 0.67W mid-grey
0.67W < f(i,j) < W light grey
f(i,j) = W white

Let us consider how much data is required to represent a grey-scale image in

this form. Each pixel requires the storage of log2(1+W) bits. This assumes that
(1+W) is an integer power of two. If it is not, then log2(1+W) must be rounded up
to the next integer. This can be represented using the ceiling function, < …
 >. Thus, a grey-scale image requires the storage of < log2(1+W)> bits. Since there
are m.n pixels, the total data storage for the entire digital image F is equal to
m.n.< log2(1+W)> bits. If m = n ≥ 128, and W ≥ 64, we can obtain a good image
of a human face. Many of the industrial image processing systems in use
nowadays manipulate images in which m = n = 512 and W = 255. This leads to a
storage requirement of 256 Kbytes/image. A binary image is one in which only
two intensity levels, black (0) and white (1), are permitted. This requires the
storage of m.n bits/image.

An impression of colour can be conveyed to the eye by superimposing four
separate imprints. (Cyan, magenta, yellow and black inks are often used in
printing.) Ciné film operates in a similar way, except that when different colours
of light, rather than ink, are added together, three components (red, green and
blue) suffice. Television operates in a similar way to film; the signal from a colour
television camera may be represented using three components: R = {r(i,j)}; G =
{g(i,j)}; B = {b(i,j)}, where R, G and B are defined in a similar way to F. The
vector {r(i,j), g(i,j), b(i,j)} defines the intensity and colour at the point (i,j) in the
colour image. (Colour image analysis is discussed in more detail in Chapter 6.)
Multispectral images can also be represented using several monochrome images.
The total amount of data required to code a colour image with r components is
equal to m.n.r.< log2(1+W)> bits, where W is simply the maximum signal level on
each of the channels.

Ciné film and television will be referred to, in order to explain how moving
scenes may be represented in digital form. A ciné film is, in effect, a time-sampled
representation of the original moving scene. Each frame in the film is a standard
colour, or monochrome image, and can be coded as such. Thus, a monochrome
ciné film may be represented digitally as a sequence of two-dimensional arrays
[F1, F2, F3, F4,...]. Each Fi is an m.n array of integers as we defined above, when
discussing the coding of grey-scale images. If the film is in colour, then each of
the Fi has three components. In the general case, when we have a sequence of r-
component colour images to code, we require m.n.p.r.< log2(1+W)> bits/image
sequence, where the spatial resolution is m.n pixels, each spectral channel permits
(1+W) intensity levels, there are r spectral channels and p is the total number of
"stills" in the image sequence.

We have considered only those image representations which are relevant to the
understanding of simple image processing and analysis functions. Many

 21

alternative methods of coding images are possible but these are not relevant to this
discussion. (See the general reference material in Appendix C for more
information on this subject.)

Figure 2.1 A digital image consisting of an array of m.n pixels. The pixel in
the ith row and the jth column has an intensity equal to f(i,j).

2.2 Elementary Image Processing Functions
The following notation will be used throughout this section, in which we shall

concentrate upon grey-scale images, unless otherwise stated.

• i and j are row and column address variables and lie within the ranges:
 1 ≤ i ≤ m and 1 ≤ j ≤ n. (Figure 2.1)
• A = {a(i,j)}, B = {b(i,j)} and C = {c(i,j)}.
• W denotes the white level.
• g(X) is a function of a single independent variable X.
• h(X,Y) is a function of two independent variables, X and Y.
• The assignment operator '←' will be used to define an operation that is

performed upon one data element. In order to indicate that an operation is to
be performed upon all pixels within an image, the assignment operator

 ‘⇐‘ will be used.
• k, k1, k2, k3 are constants.
• N(i,j) is that set of pixels arranged around the pixel (i,j) in the following

way:

(i-1, j-1) (i-1, j) (i-1, j+1)

 22

(i, j-1) (i, j) (i, j+1)
(i+1, j-1) (i+1, j) (i+1, j+1)

Notice that N(i,j) forms a 3x3 set of pixels and is referred to as the 3x3

neighbourhood of (i,j). In order to simplify some of the definitions, we shall refer
to the intensities of these pixels using the following notation:

A B C
D E F
G H I

Ambiguities over the dual use of A, B and C should not be troublesome, as the

context will make it clear which meaning is intended. The points {(i-1, j-1), (i-1,
j), (i-1, j+1), (i, j-1), (i, j+1), (i+1, j-1), (i+1, j), (i+1, j+1)} are called the 8-
neighbours of (i, j) and are also said to be 8-connected to (i, j). The points {(i-1,
j), (i, j-1), (i, j+1), (i+1, j)} are called the 4-neighbours of (i, j) and are said to be
4-connected to (i, j).

2.2.1 Monadic, Point-by-point Operators.

These operators have a characteristic equation of the form:

c(i,j) ⇐ g(a(i,j)) or E ⇐ g(E)

Such an operation is performed for all (i,j) in the range [1,m].[1,n]. (See Figure

2.2). Several examples will now be described.

Intensity shift [acn]

 0 a(i,j) + k < 0
c(i,j) ⇐ a(i,j) + k 0 ≤ a(i,j) + k ≤ W
 W W < a(i,j) + k

k is a constant, set by the system user. Notice that this definition was carefully

designed to maintain c(i,j) within the same range as the input, viz. [0,W]. This is
an example of a process referred to as intensity normalisation. Normalisation is
important because it permits iterative processing by this and other operators in a
machine having a limited precision for arithmetic (e.g. 8-bits). Normalisation will
be used frequently throughout this chapter.

 23

Figure 2.2 Monadic point-by-point operator. The (i,j)th pixel in the input
image has intensity a(i,j). This value is used to calculate c(i,j), the intensity of
the corresponding pixel in the output image.

Intensity multiply [mcn]

 0 a(i,j) . k < 0
c(i,j) ⇐ a(i,j) . k 0 ≤ a(i,j) . k ≤ W
 W W < a(i,j) . k

Logarithm [log]

 0 a(i,j) = 0
c(i,j) ⇐

 W
L o g a i j

L o g W
.

((,))
()







 otherwise

This definition arbitrarily replaces the infinite value of log(0) by zero, and

thereby avoids a difficult rescaling problem.

Antilogarithm (exponential) [exp] c(i,j) ⇐ W. exp(a(i,j)) / exp(W)

Negate [neg] c(i,j) ⇐ W - a(i,j)

Threshold [thr]

 W k1 ≤ a(i,j) ≤ k2
c(i,j) ⇐
 0 otherwise

This is an important function, which converts a grey-scale image to a binary

format. Unfortunately, it is often difficult, or even impossible to find satisfactory
values for the parameters k1 and k2.

 24

Highlight [hil]

 k3 k1 ≤ a(i,j) ≤ k2
c(i,j) ⇐
 a(i,j) otherwise

Squaring [sqr] c(i,j) ⇐ [a(i,j)]2 / W

2.2.2 Dyadic, Point-by-point Operators

Dyadic operators have a characteristic equation of the form:

c(i,j) ⇐ h(a(i,j), b(i,j))

There are two input images: A = {a(i,j)} and B = {b(i,j)} (Figure 2.3), while the

output image is C = {c(i,j)}. It is important to realise that c(i,j) depends upon only
a(i,j) and b(i,j). Here are some examples of dyadic operators.

Add [add] c(i,j) ⇐ [a(i,j) + b(i,j)] / 2.

Subtract [sub] c(i,j) ⇐ [(a(i,j) - b(i,j)) + W] / 2

Multiply [mul] c(i,j) ⇐ [a(i,j).b(i,j)] / W

Figure 2.3 Dyadic point-by-point operator. The intensities of the (i,j)th pixels
in the two input images (i.e. a(i,j) and b(i,j)) are combined to calculate the
intensity, c(i,j), at the corresponding address in the output image.

Maximum [max] c(i,j) ⇐ MAX [a(i,j), b(i,j)]

 25

When the maximum operator is applied to a pair of binary images, the union
(OR function) of their white areas is computed. This function may also be used to
superimpose white writing onto a grey-scale image.

Minimum [min] c(i,j) ⇐ MIN [a(i,j), b(i,j)]
When A and B are both binary, the intersection (AND function) of their white

areas is calculated.

2.2.3 Local Operators

Figure 2.4 illustrates the principle of the operation of local operators. Notice
that the intensities of several pixels are combined together, in order to calculate
the intensity of just one pixel. Amongst the simplest of the local operators are
those which use a set of 9 pixels arranged in a 3x3 square. These have a
characteristic equation of the following form:

c(i,j) ⇐ g(a(i-1, j-1), a(i-1, j), a(i-1, j+1), a(i, j-1), a(i, j), a(i, j+1),
 a(i+1, j-1), a(i+1, j), a(i+1, j+1))

where g(.) is a function of 9 variables. This is an example of a local operator
which uses a 3x3 processing window. (That is, it computes the value for one pixel
on the basis of the intensities within a region containing 3x3 pixels. Other local
operators employ larger windows and we shall discuss these briefly later.) In the
simplified notation which we introduced earlier, the above definition reduces to: E
⇐ g(A, B, C, D, E, F, G, H, I).

2.2.4 Linear Local Operators

An important sub-set of the local operators is that group which performs a linear
weighted sum, and which are therefore known as linear local operators. For this
group, the characteristic equation is:

E ⇐ k1.(A.W1 + B.W2 + C.W3 + D.W4 + E.W5 + F.W6 + G.W7 + H.W8
 + I.W9) + k2

where W1, W2,...,W9 are weights, which may be positive, negative or zero.
Values for the normalisation constants, k1 and k2 are given later. The matrix
illustrated below is termed the weight matrix and is important, because it
determines the properties of the linear local operator.

W1 W2 W3
W4 W5 W6
W7 W8 W9

 26

Figure 2.4 Local operator. In this instance, the intensities of 9 pixels arranged
in a 3x3 window are combined together. Local operators may be defined
which uses other, possibly larger windows. The window may, or may not, be
square and the calculation may involve linear or non-linear processes.

The following rules summarise the behaviour of this type of operator. (They

exclude the case where all the weights and normalisation constants are zero, since
this would result in a null image.):

(i) If all weights are either positive or zero, the operator will blur the input
image. Blurring is referred to as low-pass filtering. Subtracting a blurred image
from the original results in a highlighting of those points where the intensity is
changing rapidly and is termed high-pass filtering.
(ii) If W1 = W2 = W3 = W7 = W8 = W9 = 0, and W4, W5, W6 > 0, then the
operator blurs along the rows of the image; horizontal features, such as edges
and streaks, are not affected.
(iii) If W1 = W4 = W7 = W3 = W6 = W9 = 0, and W2, W5, W8 > 0, then the
operator blurs along the columns of the image; vertical features are not affected.
(iv) If W2 = W3 = W4 = W6 = W7 = W8 = 0, and W1, W5, W9 > 0, then the
operator blurs along the diagonal (top-left to bottom-right). There is no
smearing along the orthogonal diagonal.
(v) If the weight matrix can be reduced to a matrix product of the form P.Q,
where

 0 0 0
P = V4 V5 V6
 0 0 0

and

 0 V1 0
Q = 0 V2 0
 0 V3 0

the operator is said to be of the "separable" type. The importance of this is that it
is possible to apply two simpler operators in succession, with weight matrices P

 27

and Q, in order to obtain the same effect as that produced by the separable
operator.
 (vi) The successive application of linear local operators which use windows
containing 3x3 pixels produces the same results as linear local operators with
larger windows. For example, applying that operator which uses the following
weight matrix

1 1 1
1 1 1
1 1 1

twice in succession results in a similar image as that obtained from the 5x5
operator with the following weight matrix. (For the sake of simplicity,
normalisation has been ignored here.)

1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

Applying the same 3x3 operator thrice is equivalent to using the following 7x7
operator

1 3 6 7 6 3 1
3 9 18 21 18 9 3
6 18 36 42 36 18 6
7 21 42 49 42 21 7
6 18 36 42 36 18 6
3 9 18 21 18 9 3
1 3 6 7 6 3 1

Notice that all of these operators are also separable. Hence it would be possible
to replace the last-mentioned 7x7 operator with four simpler operators: 3x1,
3x1, 1x3 and 1x3, applied in any order. It is not always possible to replace a
large-window operator with a succession of 3x3 operators. This becomes
obvious when one considers, for example, that a 7x7 operator uses 49 weights
and that three 3x3 operators provide only 27 degrees of freedom. Separation is
often possible, however, when the larger operator has a weight matrix with
some redundancy, for example when it is symmetrical.

(vii) In order to perform normalisation, the following values are used for k1 and
k2.

 28

 k1 ← 1 / Σ | Wp,q |
 p,q

 k2 ← [1 - Σ Wp,q / Σ | Wp,q |].W/2
 p,q p,q

(viii) A filter using the following weight matrix performs a local averaging
function over an 11x11 window [raf(11,11)] .

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

This produces quite a severe 2-directional blurring effect. Subtracting the
effects of a blurring operation from the original image generates a picture in
which spots, streaks and intensity steps are all emphasised. On the other hand,
large areas of constant or slowly changing intensity become uniformly grey.
This process is called high-pass filtering, and produces an effect similar to
unsharp masking, which is familiar to photographers.

2.2.5 Non-linear Local Operators

Largest intensity neighbourhood function [lnb]
 E ⇐ MAX(A, B, C, D, E, F, G, H, I)

This operator has the effect of spreading bright regions and contracting dark
ones.

Edge detector [command sequence: lnb, sub]

E ⇐ MAX(A, B, C, D, E, F, G, H, I) - E
This operator is able to highlight edges (i.e. points where the intensity is

changing rapidly).

Median filter [mdf(5)]

 E ⇐ FIFTH_LARGEST (A,B,C,D,E,F,G,H,I)
This filter is particularly useful for reducing the level of noise in an image.

(Noise is generated from a range of sources, such as video cameras and x-ray

 29

detectors, and can be a nuisance if it is not eliminated by hardware or software
filtering.)

Crack detector1 [lnb, lnb, neg, lnb, lnb, neg]
This operator is equivalent to applying the above Prolog+ sequence of

operations and then subtracting the result from the original image. This detector is
able to detect thin dark streaks and small dark spots in a grey-scale image; it
ignores other features, such as bright spots and streaks, edges (intensity steps) and
broad dark streaks.

Roberts edge detector [red]
The Roberts gradient is calculated using a 2x2 mask. This will determine the

edge gradient in two diagonal directions (i.e. the cross-differences).

E ⇐ +(A - E) (B - D)2 2

The following approximation to the Roberts gradient magnitude is called the

Modified Roberts operator. This is simpler and faster to implement and it more
precisely defines the Prolog+ operator red. It is defined as

E ⇐ { | A - E | + | B - D | } / 2

Sobel edge detector [sed]
This popular operator highlights the edges in an image; points where the

intensity gradient is high are indicated by bright pixels in the output image. The
Sobel edge detector uses a 3x3 mask to determine the edge gradient.

[] []E ⇐ +(A + 2. B + C) - (G + 2. H + I) (A + 2. D + G) - (C + 2. F + I)
2 2

The following approximation is simpler to implement in software and hardware

and more precisely defines the Prolog+ operator sed:

E ⇐ { | (A + 2.B + C) - (G + 2.H + I) | +

 | (A + 2.D + G) - (C + 2.F + I) | } / 6

See Figure 2.5, for a comparison of the Roberts and Sobel edge detector
operators when applied to a sample monochrome image. Note that, while the
Roberts operator produces thinner edges, these edges tend to break up in regions
of high curvature. The primary disadvantage of the Roberts operator is its high
sensitivity to noise, since fewer pixels are used in the calculation of the edge

1 This is an example of an operator that can be described far better using

computer notation rather than mathematical notation.

 30

gradient. There is also a slight shift in the image, when the Roberts edge detector
is used. The Sobel edge detector does not produce such a shift.

(a)

 (b) (c)

Figure 2.5 Edge detection. (a) Original image. (b) Roberts edge gradient
(after thresholding). (c) Sobel edge gradient (after thresholding).

Prewitt edge detector
The Prewitt edge-detector is similar to the Sobel operator, but is more sensitive

to noise as it does not possess the same inherent smoothing. This operator uses the
two 3x3 shown below to determine the edge gradient,

-1 -1 -1 -1 0 1
0 0 0 -1 0 1
1 1 1 -1 0 1

 P1 P2
where P1 and P2 are the values calculated from each mask respectively. The
Prewitt gradient magnitude is defined as: E P P⇐ +1

2
2

2

Frei and Chen edge detector
This operator uses the two 3x3 masks shown below to determine the edge

gradient,

 31

-1 -√2 -1 -1 0 1
0 0 0 -√2 0 √2
1 √2 1 -1 0 1

 F1 F2

where F1 and F2 are the values calculated from each mask respectively. The Frei
and Chen gradient magnitude is defined as: E F F⇐ +1

2
2

2

Rank filters [mdf, rid]
The generalised 3x3 rank filter is:

 c(i, j) ⇐ k1.(A′.W1 + B′.W2 + C′.W3 + D′.W4 + E′.W5 + F′.W6 + G′.W7 +
 H′.W8 +I′.W9) + k2

where A′ = LARGEST (A, B, C, D, E, F, G, H, I)
B′ = SECOND_LARGEST (A, B, C, D, E, F, G, H, I)
C′ = THIRD_LARGEST (A, B, C, D, E, F, G, H, I)
..
I′ = NINTH_LARGEST (A, B, C, D, E, F, G, H, I)

and k1 and k2 are the normalisation constants defines previously. With the
appropriate choice of weights (W1, W2,...,W9), the rank filter can be used for a
range of operations including edge detection, noise reduction, edge sharping and
image enhancement.

Direction codes [dbn]
This function can be used to detect the direction of the intensity gradient. A

direction code function DIR_CODE is defined thus:

 1 if A ≥ MAX(B,C,D,F,G,H,I)
 2 if B ≥ MAX(A,C,D,F,G,H,I)
 3 if C ≥ MAX(A,B,D,F,G,H,I)

DIR_CODE(A,B,C,D,F,G,H,I) ⇐ 4 if D ≥ MAX(A,B,C,F,G,H,I)
 5 if F ≥ MAX(A,B,C,D,G,H,I)
 6 if G ≥ MAX(A,B,C,D,F,H,I)
 7 if H ≥ MAX(A,B,C,D,F,G,I)
 8 if I ≥ MAX(A,B,C,D,F,G,H)

Using this definition the operator dbn may be defined as:

E ⇐ DIR_CODE(A,B,C,D,F,G,H,I)

2.2.6 N-tuple Operators

 32

The N-tuple operators are closely related to the local operators and have a large
number of linear and non-linear variations. N-tuple operators may be regarded as
generalised versions of local operators. In order to understand the N-tuple
operators, let us first consider a linear local operator which uses a large
processing window, (say r.s pixels) with most of its weights equal to zero. Only N
of the weights are non-zero, where N << r.s. This is an N-tuple filter. (See Figure
2.6.) The N-tuple filters are usually designed to detect specific patterns. In this
role, they are able to locate a simple feature, such as a corner, annulus, the
numeral "2", in any position etc. However, they are sensitive to changes of
orientation and scale. The N-tuple can be regarded as a sloppy template, which is
convolved with the input image.

Non-linear tuple operators may be defined in a fairly obvious way. For example,
we may define operators which compute the average, maximum, minimum or
median values of the intensities of the N pixels covered by the N-tuple. An
important class of such functions is the morphological operators. (See Sections
2.4 and 2.5.) Figure 2.7 illustrates the recognition of the numeral '2' using an N-
tuple. Notice how the goodness of fit varies with the shift, tilt, size, and font.
Another character ('Z' in this case) may give a score that is close to that obtained
from a '2', thus making these two characters difficult to distinguish reliably.

2.2.7 Edge Effects

All local operators and N-tuple filters are susceptible to producing peculiar
effects around the edges of an image. The reason is simply that, in order to
calculate the intensity of a point near the edge of an image, we require information
about pixels outside the image, which of course are simply not present. In order to
make some attempt at calculating values for the edge pixels, it is necessary to
make some assumptions, for example that all points outside the image are black,
or have the same values as the border pixels. This strategy, or whatever one we
adopt, is perfectly arbitrary and there will be occasions when the edge effects are
so pronounced that there is nothing that we can do but to remove them by
masking [edg]. Edge effects are important because they require us to make special
provisions for them when we try to patch several low-resolution images together.

 33

Figure 2.6 An N-tuple filter operates much like a local operator. The only
difference is that the pixels whose intensities are combined together do not
form a compact set. A linear N-tuple filter can be regarded as being
equivalent to a local operator which uses a large window and in which many
of the weights are zero.

Figure 2.7 Recognising a numeral '2' using an N-tuple.

2.2.8 Intensity Histogram [hpi, hgi, hge, hgc]

The intensity histogram is defined in the following way:

(a) Let

 1 a(i,j) = p
s(p,i,j) ←

 0 otherwise

(b) Let h(p) be defined thus: h(p) ← Σ s(p,i,j)

 34

 i,j

It is not, in fact, necessary to store each of the s(p,i,j), since the calculation of

the histogram can be performed as a serial process in which the estimate of h(p) is
updated iteratively, as we scan through the input image. The cumulative
histogram, H(p), can be calculated using the following recursive relation:

H(p) = H(p-1) + h(p), where H(0) = h(0).

 Both the cumulative and the standard histograms have a great many uses, as

will become apparent later. It is possible to calculate various intensity levels
which indicate the occupancy of the intensity range [pct]. For example, it is a
simple matter to determine that intensity level, p(k), which when used as a
threshold parameter ensures that a proportion k of the output image is black, p(k)
can be calculate using the fact that H(p(k)) = m.n.k. The mean intensity [avg] is
equal to:

Σ (h(p).p) / (m.n)
 p

while the maximum intensity [gli] is equal to MAX(p | h(p) > 0) and the minimum
intensity is equal to MIN(p | h(p) > 0) .

One of the principal uses of the histogram is in the selection of threshold
parameters. It is useful to plot h(p) as a function of p. It is often found from this
graph that a suitable position for the threshold can be related directly to the
position of the "foot of the hill" or to a "valley" in the histogram.

An important operator for image enhancement is given by the transformation:

c(i,j) ⇐ [W.H(a(i,j))] / (m.n)

This has the interesting property that the histogram of the output image {c(i,j)}

is flat, giving rise to the name histogram equalisation [heq] for this operation.
Notice that histogram equalisation is a data-dependent monadic, point-by-point
operator.

An operation known as "local area histogram equalisation” relies upon the
application of histogram equalisation within a small window. The number of
pixels in a small window that are darker than the central pixel is counted. This
number defines the intensity at the equivalent point in the output image. This is a
powerful filtering technique, which is particularly useful in texture analysis
applications. (See Section 2.7.)

2.3 Binary Images

 35

For the purposes of this description of binary image processing, it will be
convenient to assume that a(i,j) and b(i,j) can assume only two values: 0 (black)
and 1(white). The operator "+" denotes the Boolean OR operation, "•" represents
the AND operation and where '⊗' denotes the Boolean Exclusive OR operation.
Let #(i,j) denote the number of white points addressed by N(i,j), including (i,j)
itself.

Inverse [not] c(i,j) ⇐ NOT(a(i,j))

AND white regions [and, min] c(i,j) ⇐ a(i,j) • b(i,j)

OR [ior, max] c(i,j) ⇐ a(i,j) + b(i,j)

Exclusive OR [xor] (Find differences between white regions.)
 c(i,j) ⇐ a(i,j) ⊗ b(i,j)

Expand white areas [exw]

 c(i,j) ⇐ a(i-1, j-1) + a(i-1, j) + a(i-1, j+1) + a(i, j-1) + a(i, j) +

 a(i, j+1) + a(i+1, j-1) + a(i+1, j) + a(i+1, j+1)

Notice that this is closely related to the local operator lnb defined earlier. This

equation may be expressed in the simplified notation: E ⇐ A + B + C + D + E + F
+ G + H + I

Shrink white areas [skw]

c(i,j) ⇐ a(i-1, j-1) • a(i-1, j) • a(i-1, j+1) • a(i, j-1) • a(i, j) •
 a(i, j+1) • a(i+1, j-1) • a(i+1, j) • a(i+1, j+1)

or more simply c(i,j) ⇐ A • B • C • D • E • F • G • H • I

Edge detector [bed] c(i,j) ⇐ E • NOT(A • B • C • D • F • G • H • I)

Remove isolated white points [wrm]

 1 a(i,j) • (#(i,j) > 1)
c(i,j) ⇐
 0 otherwise

Count white neighbours [cnw] c(i,j) ⇐ #(a(i,j) = 1).
Where #(Z) is the number of times Z occurs. Notice that {c(i,j)} is a grey-scale

image.

 36

Connectivity detector [cny]. Consider the following pattern:

1 0 1
1 X 1
1 0 1

If X=1, then all of the 1's are 8-connected to each other. Alternatively, if X=0,

then they are not connected. In this sense, the point marked X is critical for
connectivity. This is also the case in the following examples:

1 0 0 1 1 0 0 0 1
0 X 1 0 X 0 1 X 0
0 0 0 0 0 1 1 0 1

However, those points marked X below are not critical for connectivity, since

setting X=0 rather than 1 has no effect on the connectivity of the 1's.

1 1 1 0 1 1 0 1 1
1 X 1 1 X 0 1 X 0
0 0 1 1 1 1 0 1 1

A connectivity detector shades the output image with 1's to indicate the position

of those points which are critical for connectivity and which were white in the
input image. Black points, and those which are not critical for connectivity, are
mapped to black in the output image.

Euler number [eul]. The Euler number is defined as the number of connected

components (blobs) minus the number of holes in a binary image. The Euler
number represents a simple method of counting blobs in a binary image, provided
they have no holes in them. Alternatively, it can be used to count holes in a given
object, providing they have no "islands" in them. The reason why this approach is
used to count blobs, despite the fact that it may seem a little awkward to use, is
that the Euler number is very easy and fast to calculate. It is also a useful means of
classifying shapes in an image. The Euler number can be computed by using three
local operators. Let us define three numbers N1, N2 and N3, where Nα indicates
the number of times that one of the patterns in the pattern set α (α = 1, 2 or 3)
occur in the input image.

0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0

Pattern set 1 (N1)

 37

0 1 1 0
1 0 0 1

Pattern set 2 (N2)

1 1 1 1 0 1 1 0
1 0 0 1 1 1 1 1

Pattern set 3 (N3)

The 8-connected Euler number, where holes and blobs are defined in terms of
8-connected figures, is defined as: (N1-2.N2-N3)/4. It is possible to calculate the
4-connected Euler number using a slightly different formula, but this parameter
can give results which seem to be anomalous when we compare them to the
observed number of holes and blobs.

Filling holes [blb]. Consider a white blob-like figure containing a hole (lake),

against a black background. The application of the hole-filling operator will cause
all of the holes to be filled-in; by setting all pixels in the holes to white. This
operator will not alter the outer edge of the figure.

Region labelling [ndo]. Consider an image containing a number of separate

blob-like figures. A region-labelling operator will shade the output image so that
each blob is given a separate intensity value. We could shade the blobs according
to the order in which they are found, during a conventional raster scan of the input
image. Alternatively, the blobs could be shaded according to their areas; the
biggest blobs becoming the brightest. This is a very useful operator, since it
allows objects to be separated and analysed individually. (Figure 2.8) Small blobs
can also be eliminated from an image using this operator. Region labelling can
also be used to count the number of distinct binary blobs in an image. Unlike the
Euler number, counting based on region labelling is not effected by the presence
of holes.

Other methods of detecting/removing small spots. A binary image can be

represented in terms of a grey-scale image in which only two grey levels, 0 and
W, are allowed. The result of the application of a conventional low-pass (blurring)
filter to such an image is a grey-scale image in which there is a larger number of
possible intensity values. Pixels which were well inside large white areas in the
input image are mapped to very bright pixels in the output image. Pixels which
were well inside black areas are mapped to very dark pixels in the output image.
However, pixels which were inside small white spots in the input image are
mapped to mid-grey intensity levels (Figure 2.9). Pixels on the edge of large white
areas are also mapped to mid-grey intensity levels. However, if there is a cluster
of small spots, which are closely spaced together, some of them may also
disappear.

 38

 (a) (b)

Figure 2.8 Shading blobs in a binary image (a) according to their areas and
(b) according to the order in which they are found during a raster scan (left to
right; top to bottom).

Intensity Scale
Black White

a b c

Figure 2.9 Using a grey-scale blurring filter to remove noise from a binary
image. (a) Background points are mapped to black. (b) Edge points are
mapped to the central part of the intensity range. Thresholding at mid-grey
has the effect of smoothing the edge of large blobs. (c) Central areas of large
white blobs are mapped to white.

Based on these observations, the following procedure has been developed. It

has been found to be effective in distinguishing between small spots and, at the
same time, achieving a certain amount of edge smoothing of the large bright blobs
which remain:

raf(11,11), % Low-pass filter using a 11x11 local operator

 39

thr(128), % Threshold at mid-grey

This technique is generally easier and faster to implement than the blob shading

technique described previously. Although it may not achieve the desired result
exactly, it can be performed at high speed.

An N-tuple filter having the weight matrix illustrated below, can be combined
with simple thresholding to distinguish between large and small spots. Assume
that there are several small white spots within the input image and that they are
spaced well apart. All pixels within a spot which can be contained within a circle
of radius three pixels will be mapped to white by this particular filter. Pixels
within a larger spot will become darker than this. The image is then thresholded at
white to separate the large and small spots.

 -1 -1 -1
 -1 -1
 -1 -1

-1 -1
-1 20 -1
-1 -1
 -1 -1
 -1 -1
 -1 -1 -1

Grass-fire transform and skeleton [gfa, mdl, mid]. Consider a binary image

containing a single white blob, Figure 2.10. Imagine that a fire is lit at all points
around the blob’s outer edge and the edges of any holes it may contain. The fire
will burn inwards, until at some instant, advancing fire lines meet. When this
occurs, the fire becomes extinguished locally. An output image is generated and is
shaded in proportion to the time it takes for the fire to reach each point.
Background pixels are mapped to black.

The importance of this transform, referred to as the grass-fire transform, lies in
the fact that it indicates distances to the nearest edge point in the image [BOR-86].
It is therefore possible to distinguish thin and fat limbs of a white blob. Those
points at which the fire lines meet are known as quench points. The set of quench
points form a "match-stick" figure, usually referred to as a skeleton or medial axis
transform. These figures can also be generated in a number of different ways
[GON-87] (Figure 2.11).

One such approach is described as onion-peeling. Consider a single white blob
and a "bug" which walks around the blob’s outer edge, removing one pixel at a
time. No edge pixel is removed, if by doing so we would break the blob into two
disconnected parts. In addition, no white pixel is removed, if there is only one
white pixel amongst its 8-neighbours. This simple procedure leads to an
undesirable effect in those instances when the input blob has holes in it; the
skeleton which it produces has small loops in it which fit around the holes like a
tightened noose. More sophisticated algorithms have been devised which avoid
this problem.

 40

Unburnt material

Burnt material

Fire-line
advancing

Fire line is a
contour of equal

brightness

Fire ignited all
around edgeFire will be

extinguished
here soon

Background is
shaded black

Pixel close to
edge is shaded

dark

Pixel far from
edge is shaded

bright

Figure 2.10 Grass-fire transform.

Figure 2.11 Application of the Medial Axis Transform.

Edge smoothing and corner detection. Consider three points B1, B2 and B3

which are placed close together on the edge of a single blob in a binary image.
(See Figure 2.12.) The perimeter distance between B1 and B2 is equal to that
between B2 and B3. Define the point P to be that at the centre of the line joining
B1 and B3. As the three points now move around the edge of the blob, keeping
the spacing between them constant, the locus of P traces a smoother path than that
followed by B2 as it moves around the edge. This forms the basis of a simple edge
smoothing procedure.

A related algorithm, for corner detection, shades the edge according to the
distance between P and B2. This results in an image in which the corners are
highlighted, while the smoother parts of the image are much darker.

Many other methods of edge smoothing are possible. For example, we may map
white pixels which have fewer than, say, three white 8-neighbours to black. This
has the effect of eliminating “hair” around the edge of a blob-like figure. One of
the techniques described previously for eliminating small spots offers another
possibility. A third option is to use the processing sequence: [exw, skw, skw, exw],
where exw represents expand white areas and skw denotes shrink white areas.

Convex hull [chu]. Consider a single blob in a binary image. The convex hull is

that area enclosed within the smallest convex polygon which will enclose the

 41

shape (Figure 2.13). This can also be described as the region enclosed within an
elastic string, stretched around the blob. The area enclosed by the convex hull, but
not within the original blob is called the convex deficiency, which may consist of a
number of disconnected parts, and includes any holes and indentations. If we
regard the blob as being like an island, we can understand the logic of referring to
the former as lakes and the latter as bays.

2.3.1 Measurements on Binary Images

To simplify the following explanation, we will confine ourselves to the analysis
of a binary image containing a single blob. The area of the blob can be measured
by the total number of object (white) pixels in the image. However, we must first
define two different types of edge points, in order to measure an object’s
perimeter.

Figure 2.12 Edge smoothing and corner detection.

Figure 2.13 Convex hull of a ‘club’ shape. The lightly shaded region
indicates the shape’s convex deficiency.

The 4-adjacency convention (Figure 2.14) only allows the four main compass

points to be used as direction indicators, while 8-adjacency uses all eight possible
directions. If 4-adjacency convention is applied to the image segment given in
Figure 2.14(c), then none of the four segments (two horizontal and two vertical)
will appear as touching, i.e. they are not connected. Using the 8-adjacency
convention, the segments are now connected, but we have the ambiguity that the
inside of the shape is connected to the outside. Neither convention is satisfactory,

 42

but since 8-adjacency allows diagonally-connected pixels to be represented, it
leads to a more faithful perimeter measurement.

Assuming that the 8-adjacency convention is used, we can generated a coded
description of the blob’s edge. This is referred to as the chain code or Freeman
code [fcc]. As we trace around the edge of the blob, we generate a number, 0-7, to
indicate which of the eight possible directions we have taken (i.e. from the centre,
shaded pixel in Figure 2.14(b)). Let No indicate how many odd-numbered code
values are produced as we code the blob’s edge, and Ne represent the number of
even-numbered values found. The perimeter of the blob is given approximately by
the formula: Ne + √2.No

This formula will normally suffice for use in those situations where the
perimeter of a smooth object is to be measured. The centroid of a blob [cgr]
determines its position within the image and can be calculated using the formulae:

I ← Σ Σ (a(i,j).i) / Ni,j and J ← Σ Σ (a(i,j).j) / Ni,j
 j i j i

where Ni,j ← Σ Σ a(i,j)
 j i

Although we are considering images in which the a(i,j) are equal to 0 (black) or

1 (white), it is convenient to use a(i,j) as an ordinary arithmetic variable as well.

 1 3 2 1
2 0 4 0
 3 5 6 7

 (a) (b)

(c)

Figure 2.14 Chain code. (a) 4-adjacency coding convention. (b) 8-adjacency
coding convention. (c) Image segment.

2.3.2 Shape Descriptors

The following are just a few of the numerous shape descriptors that have been
proposed:

(a) The distance of the furthest point on the edge of the blob from the centroid.
(b) The distance of the closest point on the edge of the blob from the centroid.
(c) The number of protuberances, as defined by that circle whose radius is equal
to the average of the parameters measured in (a) and (b).

 43

(d) The distances of points on the edge of the blob from the centroid, as a
function of angular position. This describes the silhouette in terms of polar co-
ordinates. (This is not a single-valued function.)
(e) Circularity = Area / Perimeter2. This will tend to zero for irregular shapes
with ragged boundaries, and has a maximum value (=1/4π) for a circle.
(f) The number of holes.(Use eul and ndo to count them.)
(g) The number of bays.
(h) Euler number.
(i) The ratio of the areas of the original blob and that of its convex hull.
(j) The ratio of the areas of the original blob and that of its circumcircle.
(k) The ratio of the area of the blob to the square of the total limb-length of its
skeleton.
(l) Distances between joints and limb ends of the skeleton.
(m) The ratio of the projections onto the major and minor axes.

2.4 Binary Mathematical Morphology
The basic concept involved in mathematical morphology is simple: an image is

probed with a template shape, called a structuring element, to find where the
structuring element fits, or does not fit within a given image. [DOU-92] (Figure
2.15) By marking the locations where the template shape fits, structural
information, can be gleaned about the image. The structuring elements used in
practice are usually geometrically simpler than the image they act on, although
this is not always the case. Common structuring elements include points, point
pairs, vectors, lines, squares, octagons, discs, rhombi and rings. Since shape is a
prime carrier of information in machine vision applications, mathematical
morphology has an important role to play in industrial systems [HAR-87b].

The language of binary morphology is derived from that of set theory [HAR-
92b]. General mathematical morphology is normally discussed in terms of
Euclidean N-space, but in digital image analysis we are only interested in a
discrete or digitised equivalent in two-space. The following analysis is therefore
restricted to binary images, in a digital two-dimensional integer space, Z². The
image set (or scene) under analysis will be denoted by A, with elements a = (a1,
a2). The shape parameter, or structuring element, that will be applied to scene A
will be denoted by B, with elements b = (b1, b2). The primary morphological
operations that we will examine are dilation, erosion, opening and closing.

 44

Figure 2.15 A structuring element fitting, B, and not fitting, A, into a given
image scene X [DOU-92].

Dilation (also referred to as filling and growing) is the expansion of an image

set A by a structuring element B. It is formally viewed as the combination of the
two sets using vector addition of the set elements. The dilation of an image set A
by a structuring element B, will be denoted A B, and can be represented as the
union of translates of the structuring element B [HAR-92b]:

A B = Ba
 a∈A

where represents the union of a set of points and the translation of B by point
a is given by, Ba = { c ∈ Z² | c = b + a for some b ∈ B }. This is best explained by
visualising a structuring element B moving over an image A in a raster fashion.
Whenever the origin of the structuring element touches one of the image pixels in
A, then the entire structuring element is placed at that location. For example, in
Figure 2.16 the grid image is dilated by a cross-shaped structuring element,
contained within a 3x3 pixel grid.

Figure 2.16 Dilation of a grid image by a cross structuring element.

Erosion is the dual morphological operation of dilation and is equivalent to the
shrinking (or reduction) of the image set A by a structuring element B. This is a
morphological transformation which combines two sets using vector subtraction
of set elements [HAR-92b]. The erosion of an image set A by a structuring

 45

element B, denoted A B, can be represented as the intersection of the negative
translates:

A B = A-b
 b∈B

where represents the intersection of a set of points. Erosion of the image A by
B is the set of all points for which B translated to a point x is contained in A. This
consists of sliding the structuring element B across the image A, and where B is
fully contained in A (by placing the origin of the structuring element at the point
x) then x belongs to the eroded image A B. For example, in Figure 2.17 the grid
image is eroded by a cross-shaped structuring element, contained within a 3x3
pixel grid.

Figure 2.17 Erosion of a grid image by a cross structuring element.

A duality relationship exists between certain morphological operators, such as

erosion and dilation. This means that the equivalent of such an operation can be
performed by its dual on the complement (negative) image and by taking the
complement of the result [VOG-89]. Although duals, erosion and dilation
operations are not inverses of each other. Rather they are related by the following
duality relationships:

 _ _
(A B)c = Ac B and (A B)c = Ac B

Where Ac refers to the complement of the image set A and,
_
B = { x | for some b ∈ B, x = - b }

refers to the reflection of B about the origin. (Serra [SER-82; SER-86] refers to
this as the transpose of the structuring element.)

2.4.1 Opening and Closing Operations

 46

Erosion and dilation tend to be used in pairs to extract, or impose, structure on
an image. The most commonly found erosion-dilation pairings occur in the
opening and closing transformations.

Opening is a combination of erosion and dilation operations that have the effect

of removing isolated spots in the image set A that are smaller than the structuring
element B and those sections of the image set A narrower than B. This is also
viewed as a geometric rounding operation. (Figure 2.18) The opening of the
image set A by the structuring element B, is denoted A B, and is defined as (A

 B) B.

Closing is the dual morphological operation of opening. This transformation has

the effect of filling in holes and blocking narrow valleys in the image set A, when
a structuring element B (of similar size to the holes and valleys) is applied. (Figure
2.18) The closing of the image set A by the structuring element B, is denoted A
B, and is defined as (A B) B.

 (a) (b) (c)

Figure 2.18 Application of a 3x3 square structuring element to a binary
image of a small plant. (a) Original image. (b) Result of morphological
opening. (c) Result of morphological closing.

One important property that is shared by both the opening and closing

operations is idempotency. This means that successful reapplication of the
operations will not change the previously transformed image [HAR-87b].
Therefore, A B = (A B) B and A B = (A B) B.

Unfortunately, the application of morphological techniques to industrial tasks,
which involves complex operations on “real-world” images, can be difficult to
implement. Practical imaging applications tend to have structuring elements that
are unpredictable in shape and size. In practice, the ability to manipulate arbitrary
structuring elements usually relies on their decomposition into component parts.

2.4.2 Structuring Element Decomposition

 47

Some vision systems [DUF-73; STE-78; WAL-88b] can perform basic
morphological operations very quickly in a parallel and/or pipelined manner.
Implementations that involve such special purpose hardware tend to be expensive,
although there are some notable exceptions [WAL-94]. Unfortunately, some of
these systems impose restrictions on the shape and size of the structuring elements
that can be handled. Therefore, one of the key problems involved in the
application of morphological techniques to industrial image analysis is the
generation and/or decomposition of large structuring elements. Two main
strategies are used to tackle this problem.

The first technique is called dilation or serial decomposition. This decomposes
certain large structuring elements into a sequence of successive erosion and
dilation operations, each step operating on the preceding result. Unfortunately, the
decomposition of large structuring elements into smaller ones is not always
possible. Also, those decompositions that are possible are not always easy to
identify and implement.

If a large structuring element B can be decomposed into a chain of dilation
operations, B = B1 B2 BN (Figure 2.19), then the dilation of the
image set A by B is given by:

A B = A (B1 B2 BN) = (((A B1) B2)) BN.

Similarly, using the so-called chain rule [ZHU-86], which states that A (B C)
= (A B) C, the erosion of A by B is given by:

A B = A (B1 B2 BN) = (((A B1) B2)) BN.

A second approach to the decomposition problem is based on “breaking up” the

structuring element, B, into a union of smaller components, B1, ... , BN. We can
think of this approach as 'tiling' of the structuring element by sub-structuring
elements. (Figure 2.20) Since the 'tiles' do not need to be contiguous or aligned,
any shape can be specified without the need for serial decomposition of the
structuring element, although the computational cost of this approach is
proportional to the area of the structuring element [WAL-88b]. This is referred to
as union or parallel decomposition. Therefore, with B decomposed into a union of
smaller structuring elements, B = B1 B2 BN, then the dilation of
an image A by the structuring element B can be rewritten as:

A B = A (B1 B2 BN)
 = (A B1) (A B2) …. (A BN)

Likewise, the erosion of A by the structuring element B can be rewritten as:

A B = A (B1 B2 BN)

 48

 = (A B1) (A B2) (A BN)

Figure 2.19 Construction of a 7x7 structuring element by successive dilation
of a 3x3 structuring element. (a) Initial pixel. (b) 3x3 structuring element and
the result of the first dilation. (c) Result of the second dilation. (d) Result of
the third dilation [WAL-88b].

Figure 2.20 Tiling of a 9x9 arbitrary structuring element. (a) The initial 9x9
structuring element. (b) Tiling with nine 3x3 sub-structuring elements [WAL-
88b].

This makes use of the fact that A (B C) = (A B) (A C) [HAR-

87b]. Due to the nature of this decomposition procedure, it is well suited to
implementation on parallel computer architectures.

Waltz [WAL-88b] compared these structural element decomposition
techniques, and showed that the serial approach has a 9:4 speed advantage over its
parallel equivalent. (This was based on an arbitrarily specified 9x9 pixel
structuring element, when implemented on a commercially available vision
system.) However, the parallel approach has a 9:4 advantage in the number of
degrees of freedom. (Every possible 9x9 structuring element can be achieved with
the parallel decomposition, but only a small subset can be realised with the serial
approach.) Although slower than the serial approach, it has the advantage that
there is no need for serial decomposition of the structuring element.

Classical parallel and serial methods mainly involve the numerous scanning of
image pixels and are therefore inefficient when implemented on conventional
computers. This is so, because the number of scans depends on the total number

 49

of pixels (or edge pixels) in the shape to be processed by the morphological
operator. Although the parallel approach is suited to some customised (parallel)
architectures, the ability to implement such parallel approaches on serial machines
is discussed by Vincent [VIN-91].

2.5 Grey Scale Morphology
Binary morphological operations can be extended naturally to process grey

scale imagery, by the use of neighbourhood minimum and maximum functions
[HAR-87b]. Heijmans [HEI-91], presents a detailed study of grey scale
morphological operators, in which he outlines how binary morphological
operators and thresholding techniques can be used to build a large class of useful
grey scale morphological operators. Sternberg [STE-86], discusses the application
of such morphological techniques to industrial inspection tasks.

In Figure 2.21, a one-dimensional morphological filter, operates on an analogue
signal (equivalent to a grey scale image). The input signal is represented by the
thin curve and the output by the thick black curve. In this simple example, the
structuring element has an approximately parabolic form. In order to calculate a
value for the output signal, the structuring element is pushed upwards, from below
the input curve. The height of the top of the structuring element is noted. This
process is then repeated, by sliding the structuring element sideways. Notice how
this particular operator attenuates the intensity peak but follows the input signal
quite accurately everywhere else. Subtracting the output signal from the input
would produce a result in which the intensity peak is emphasised and all other
variations would be reduced.

The effect of the basic morphological operators on two-dimensional grey scale
images can also be explained in these terms. Imagine the grey scale image as a
landscape, in which each pixel can be viewed in 3-D. The extra height dimension
represents the grey scale value of a pixel. We generate new images by passing the
structuring element above/below this landscape. (See Figure 2.21.)

Grey scale dilation. This is computed as the maximum of translations of the

grey surface. Grey level dilation of image A by the structuring element B produces an
image C defined by:

C(r,c) = Max(i,j){ A(r-i, c-j) + B(i,j) } = (A B)(r,c)

where A, B and C are grey level images. Commonly used grey level structuring
elements include rods, disks, cones and hemispheres. This operation is commonly
used to smooth small negative contrast grey level regions in an image.

 50

Figure 2.21 A 1-dimensional morphological filter, operating on an analogue
signal.

Grey scale erosion. The grey value of the erosion at any point is the maximum

value for which the structuring element centred at that point, still fits entirely within
the foreground under the surface. This is computed by taking the minimum of the grey
surface translated by all the points of the structuring element. (Figure 2.21). Grey
level erosion of image A by the structuring element B produces an image C defined
by:

C(r,c) = Min(i,j){ A(r+i, c+j) - B(i,j) } = (A B)(r,c)

This operation is commonly used to smooth small positive contrast grey level

regions in an image.

Grey scale opening. This operation is defined as the grey level erosion of the

image followed by the grey level dilation of the eroded image. That is, it will cut
down the peaks in the grey level topography to the highest level for which the
elements fit under the surface.

Grey scale closing. This operation is defined as the grey level dilation of the

image followed by the grey level erosion of the dilated image. Closing fills in the
valleys to the maximum level for which the element fails to fit above the surface. For
a more detailed discussion on binary and grey scale mathematical morphology,
see Haralick and Shapiro [HAR-92b] and Dougherty [DOU-92].

2.6 Global Image Transforms
An important class of image processing operators is characterised by an

equation of the form B ⇐ f(A), where A = {a(i,j)} and B = {b(p,q)}. Each

 51

element in the output picture, B, is calculated using all or, at least a large
proportion of the pixels in A. The output image, B, may well look quite different
from the input image, A. Examples of this class of operators are: lateral shift,
rotation, warping, Cartesian to Polar co-ordinate conversion, Fourier and Hough
transforms.

Integrate intensities along image rows [rin]. This operator is rarely of great

value when used on its own, but can be used with other operators to good effect,
for example detecting horizontal streaks and edges. The operator is defined
recursively:

b(i,j) ⇐ b(i,j-1) + a(i,j)/n where b(0,0) = 0

Row maximum [rox]. This function is often used to detect local intensity

minima. c(i,j) ⇐ MAX(a(i,j), c(i,j-1))

Geometric transforms. Algorithms exist by which images can be shifted [psh],

rotated [tur], undergo axis conversion [ctr, rtc], magnified [pex and psq] and
warped. The reader should note that certain operations, such as rotating a digital
image, can cause some difficulties because pixels in the input image are not
mapped exactly to pixels in the output image. This can cause smooth edges to
appear stepped. To avoid this effect, interpolation may be used, but this has the
unfortunate effect of blurring edges. (See [BAT-91] for more details.)

The utility of axis transformations is evident when we are confronted with the
examination of circular objects, or those displaying a series of concentric arcs, or
streaks radiating from a fixed point. Inspecting such objects is often made very
much easier, if we first convert from Cartesian to Polar co-ordinates. Warping is
also useful in a variety of situations. For example, it is possible to compensate for
barrel, or pin-cushion distortion in a camera. Geometric distortions introduced by
a wide-angle lens, or trapezoidal distortion due to viewing the scene from an
oblique angle can also be corrected. Another possibility is to convert simple
curves of known shape into straight lines, in order to make subsequent analysis
easier.

2.6.1 Hough Transform

The Hough transform provides a powerful and robust technique for detecting
lines, circles, ellipses, parabolae, and other curves of pre-defined shape, in a
binary image. Let us begin our discussion of this fascinating topic, by describing
the simplest version, the basic Hough Transform, which is intended to detect
straight lines. Actually, our objective is to locate nearly linear arrangements of
disconnected white spots and “broken” lines. Consider that a straight line in the
input image is defined by the equation r = x.Cos φ + y.Sin φ, where r and φ are
two unknown parameters, whose values are to be found. Clearly, if this line
intersects the point (xi, yi), then r = xi.Cos φ + yi.Sin φ can be solved for many

 52

different values of (r, φ). So, each white point (xi, yi) in the input image may be
associated with a set of (r, φ) values. Actually, this set of points forms a sinusoidal
curve in (r, φ) space. (The latter is called the Hough Transform (HT) image.)
Since each point in the input image generates such a sinusoidal curve, the whole
of that image creates a multitude of overlapping sinusoids, in the HT image. In
many instances, a large number of sinusoidal curves are found to converge on the
same spot in the HT image. The (r, φ) address of such a point indicates the slope,
φ, and position, r, of a straight line that can be drawn through a large number of
white spots in the input image.

The implementation of the Hough transform for line detection begins by using a
two-dimensional accumulator array, A(r, φ), to represent quantised (r, φ) space.
(Clearly, an important choice to be made is the step size for quantising r and φ.
However, we shall not dwell on such details here.) Assuming that all the elements
of A(r, φ) are initialised to zero, the Hough Transform is found by computing a set
S(xi, yi) of (r, φ) pairs satisfying the equation r = xi.Cos φ + yi.Sin φ. Then, for all
(r, φ) in S(xi, yi), we increment A(r, φ) by one. This process is then repeated for
all values of i such that the point (xi, yi) in the input image is white. We repeat
that bright spots in the HT image indicate “linear” sets of spots in the input image.
Thus, line detection is transformed to the rather simpler task of finding local
maxima in the accumulator array, A(r, φ). The co-ordinates (r, φ) of such a local
maximum give the parameters of the equation of the corresponding line in the
input image. The HT image can be displayed, processed and analysed just like any
other image, using the operators that are now familiar to us.

The robustness of the HT techniques arises from the fact that, if part of the line
is missing, the corresponding peak in the HT image is simply darker. This occurs
because fewer sinusoidal curves converge on that spot and the corresponding
accumulator cell is incremented less often. However, unless the line is almost
completely obliterated, this new darker spot can also be detected. In practice, we
find that “near straight lines” are transformed into a cluster of points. There is also
a spreading of the intensity peaks in the HT image, due to noise and quantisation
effects. In this event, we may conveniently threshold the HT image and then find
the centroid of the resulting spot, to calculate the parameters of the straight line in
the input image. Pitas [PIT-93] gives a more detailed description of this algorithm.
Figure 2.22 illustrates how this approach can be used to find a line in a noisy
binary image.

The Hough transform can also be generalised to detect groups of points lying on
a curve. In practice, this may not be a trivial task, since the complexity increases
very rapidly with the number of parameters needed to define the curve. For circle
detection, we define a circle parametrically as: r2 = (x - a)2 + (y - b)2 where, (a, b)
determines the co-ordinates of the centre of the circle and r is its radius. This
requires a three-dimensional parameter space, which cannot, of course, be
represented and processed as a single image. For an arbitrary curve, with no
simple equation to describe its boundary, a look-up table is used to define the
relationship between the boundary co-ordinates an orientation and the Hough
transform parameters. (See [SON-93] for more details.)

 53

 (a) (b)

(c)

Figure 2.22 Hough transform. (a) Original image. (b) Hough transform. (c)
Inverse Hough transform applied to a single white pixel located at the point of
maximum intensity in (b). Notice how accurately this process locates the line
in the input image, despite the presence of a high level of noise.

2.6.2 Two-dimensional Discrete Fourier Transform

We have just seen how the transformation of an image into a different domain
can sometimes make the analysis task easier. Another important operation to
which this remark applies is the Fourier Transform. Since we are discussing the
processing of images, we shall discuss the two-dimensional Discrete Fourier
Transform. This operation allows spatial periodicities in the intensity within an
image to be investigated, in order to find, amongst other features, the dominant
frequencies. The two-dimensional Discrete Fourier Transform of an N.N image
f(x,y) is defined as follows: [GON-87]

 54

F u v
N

f x y j ux vy N
x

N

y

N

(,) (,) exp [() /]= − +
=

−

=

−

∑ ∑1
2

0

1

0

1

π

where 0 ≤ u,v ≤ N-1. The inverse transform of F(u,v) is defined as:

f x y
N

F u v j u x vy N
u

N

v

N

(,) (,) ex p [() /]= +
=

−

=

−

∑ ∑1
2

0

1

0

1

π

where 0 ≤ x,y ≤ N-1.

Several algorithms have been developed to calculate the two-dimensional
Discrete Fourier Transform. The simplest makes use of the observation that this is
a separable transform which can be computed as a sequence of two one-
dimensional transforms. Therefore, we can generate the two-dimensional
transform by calculating the one-dimensional Discrete Fourier Transform along
the image rows and then repeating this on the resulting image but, this time,
operating on the columns. [GON-87] This reduces the computational overhead
when compared to direct two-dimensional implementations. The sequence of
operations is as follows:

f(x,y) → Row Transform → F1(x,v) → Column Transform → F2(u,v)

Although this is still computationally slow compared to other many shape

measurements, the Fourier transform is quite powerful. It allows the input to be
represented in the frequency domain, which can be displayed as a pair of images.
(It is not possible to represent both amplitude and phase using a single
monochrome image.) Once the processing within the frequency domain is
complete, the inverse transform can be used to generate a new image in the
original, so-called, spatial domain.

The Fourier power, or amplitude, spectrum plays an important role in image
processing and analysis. This can be displayed, processed and analysed as an
intensity image. Since the Fourier transform of a real function produces a complex
function: F(u,v) = R(u,v) + i.I(u,v), the frequency spectrum of the image is the
magnitude function

F u v R u v I u v(,) (,) (,)= +2 2

and the power spectrum (spectral density) is defined as P u v F u v(,) (,)=

2
Figure 2.23 illustrates how certain textured features can be highlighted using the

two-dimensional Discrete Fourier Transform. The image is transformed into the
frequency domain and an ideal band-pass filter (with a circular symmetry) is
applied. This has the effect of limiting the frequency information in the image.
When the inverse transform is calculated, the resultant textured image has a
different frequency content which can then be analysed. For more details on the
Fourier transform and its implementations, see [PIT-93] and [GON-87].

 55

 (a) (b)

 (c) (d)

Figure 2.23 Filtering a textured image in the frequency domain. (a) Original
textured image. (b) Resultant transformed image in the frequency domain
after using the two-dimensional Discrete Fourier Transform. (The image is
the frequency spectrum shown as an intensity function.) (c) Resultant
frequency domain image after an ideal band-pass filter is applied to image. (d)
The resultant spatial domain image after the inverse two-dimensional discrete
Fourier transform is applied to the band-pass filtered image in (c).

2.7 Texture Analysis
Texture is observed in the patterns of a wide variety of synthetic and natural

surfaces (e.g. wood, metal, paint and textiles). If an area of a textured image has a
large intensity variation then the dominant feature of that area would be texture. If
this area has little variation in intensity then the dominant feature within the area
is tone. This is known as the tone-texture concept. Although a precise formal
definition of texture does not exist, it may be described subjectively using terms
such as coarse, fine, smooth, granulated, rippled, regular, irregular and linear,

 56

and of course these features are used extensively in manual region segmentation.
There are two main classification techniques for texture: statistical and structural.

2.7.1 Statistical Approaches

The statistical approach is well suited to the analysis and classification of
random or natural textures. A number of different techniques have been
developed to describe and analyse such textures [HAR-79], a few of which are
outlined below.

Auto-Correlation Function (ACF)
 Auto-correlation derives information about the basic 2-D tonal pattern that is

repeated to yield a given periodic texture. Although useful at times, the ACF has
severe limitations. It cannot always distinguish between textures, since many
subjectively different textures have the same ACF, which is defined as follows:

A(δx, δy) = (Σ [I(i, j).I(i + δx, j + δy)]) / Σ [I(i, j)]2
 i,j i,j

where {I(i, j)} is the image matrix. The variables (i, j) are restricted to lie within a
specified window outside which the intensity is zero. Incremental shifts of the
image are given by (δx, δy). It is worth noting that the ACF and the power
spectral density are Fourier transforms of each other.

Fourier spectral analysis
The Fourier spectrum is well suited to describing the directionality and period

of repeated texture patterns, since they give rise to high energy narrow peaks in
the power spectrum. (See Section 2.6 and Figure 2.23.) Typical Fourier
descriptors of the power spectrum include: the location of the highest peak, mean,
and variance and the difference in frequency between the mean and the highest
value of the spectrum. This approach to texture analysis is often used in
aerial/satellite and medical image analysis. The main disadvantage of this
approach is that the procedures are not invariant even, under monotonic
transforms of its intensity.

Edge Density
This is a simple technique in which an edge detector or high pass filter is

applied to the textured image. The result is then thresholded and the edge density
is measured by the average number of edge pixels per unit area. Two-dimensional,
or directional filters/edge detectors, may be used as appropriate.

Histogram Features
This useful approach to texture analysis is based on the intensity histogram of

all or part of an image. Common histogram features include: moments, entropy
dispersion, mean (an estimate of the average intensity level), variance (this

 57

second moment is a measure of the dispersion of the region intensity), mean
square value or average energy, skewness (the third moment which gives an
indication of the histograms symmetry) and kurtosis (cluster prominence or
"peakness"). For example a narrow histogram indicates a low contrast region,
while two peaks with a well-defined valley between them indicates a region that
can readily be separated by simple thresholding.

Texture analysis, based solely on the grey scale histogram, suffers from the

limitation that it provides no information about the relative position of pixels to
each other. Consider two binary images, where each image has 50% black and
50% white pixels. One of the images might be a checkerboard pattern, while the
second one may consist of a salt and pepper noise pattern. These images generate
exactly the same grey level histogram. Therefore, we cannot distinguish them
using first order (histogram) statistics alone. This leads us naturally to the
examination of the co-occurrence approach to texture measurement.

2.7.2 Co-occurrence Matrix Approach

The co-occurrence matrix technique is based on the study of second-order grey
level spatial dependency statistics. This involves the study of the grey level spatial
interdependence of pixels and their spatial distribution in a local area. Second
order statistics describe the way grey levels tend to occur together, in pairs and
therefore provide a description of the type of texture present. A two-dimensional
histogram of the spatial dependency of the various grey level picture elements
within a textured image is created. While this technique is quite powerful, it does
not describe the shape of the primitive patterns making up the given texture.

The co-occurrence matrix is based on the estimation of the second order joint
conditional probability density function, f(p,q,d,a), for angular displacements, a,
equal to 0, 45, 90 and 135 degrees. Let f(p,q,d,a) be the probability of going from
one pixel with grey level p to another with grey level q, given that the distance
between them is d and the direction of travel between them is given by the angle
a. (For Ng grey levels - the size of the co-occurrence matrix will be Ng.Ng.) For
example, assuming the intensity distribution shown in the sub-image given below,
we can generate the co-occurrence matrix for d = 1 and a is taken as 0 degrees.

2 3 3 3
1 1 0 0
1 1 0 0
0 0 2 2
2 2 3 3

Sub-image with 4 grey-levels.

Grey
Scale

0 1 2 3

 58

0 6 2 1 0
1 2 4 0 0
2 1 0 4 2
3 0 0 2 6

Co-occurrence matrix {f(p,q,1,0)} for the sub-image.

A co-occurrence distribution that changes rapidly with distance, d, indicates a

fine texture. Since the co-occurrence matrix also depends on the image intensity
range, it is common practice to normalise the textured image's grey scale prior to
generating the co-occurrence matrix. This ensures that first-order statistics have
standard values and avoids confusing the effects of first- and second-order
statistics of the image.

A number of texture measures (also referred to as texture attributes) have been
developed to describe the co-occurrence matrix numerically and allow meaningful
comparisons between various textures. [HAR-79] (See Figure 2.24.) Although
these attributes are computationally intensive, they are simple to implement. Some
sample texture attributes for the co-occurrence matrix are given below.

Energy, or angular second moment, is a measure of the homogeneity of a

texture. It is defined thus,

Energy = ΣpΣq[f(p,q,d,a)]2

In a uniform image, the co-occurrence matrix will have few entries of large
magnitude. In this case the Energy attribute will be large.

Entropy is a measure of the complexity of a texture and is defined thus:

Entropy = - ΣpΣq[f(p,q,d,a).Log(f(p,q,d,a))]

It is commonly found that what a person judges to be a complex image tends to
have a higher Entropy value than a simple one.

Inertia is the measurement of the moment of inertia of the co-occurrence matrix

about its main diagonal. This is also referred as the contrast of the textured image.
This attribute gives an indication of the amount of local variation of intensity
present in an image.

Inertia = ΣpΣq[(p-q)2.f(p,q,d,a)]

 59

(a) (b)

 Sand Paper
 f(p,q,1,0) f(p,q,1,90) f(p,q,1,0) f(p,q,1,90)

Energy (x106) 1.63 1.7 3.49 3.42
Inertia (x108) 5.4 6.5 .181 .304

(c)

Figure 2.24 Co-occurrence based texture analysis. (a) Sand texture. (b) Paper
texture. (c) Texture attributes.

2.7.3 Structural Approaches

Certain textures are deterministic in that they consist of identical texels (basic
texture element), which are placed in a repeating pattern according to some well-
defined but unknown placement rules. To begin the analysis, a texel is isolated by
identifying a group of pixels having certain invariant properties, which repeat in
the given image. A texel may be defined by its: grey level, shape, or homogeneity
of some local property, such as size or orientation. Texel spatial relationships may
be expressed in terms of adjacency, closest distance and periodicities.

This approach has a similarity to language; with both image elements and
grammar, we can generate a syntactic model. A texture is labelled strong if it is
defined by deterministic placement rules, while a weak texture is one in which the
texels are placed at random. Measures for placement rules include: edge density,
run lengths of maximally connected pixels and the number of pixels per unit area
showing grey levels that are locally maxima or minima relative to their neighbours

2.7.4 Morphological Texture Analysis

Textural properties can be obtained from the erosion process (Sections 2.4 and
2.5) by appropriately parameterizing the structuring element and determining the

 60

number of elements of the erosion as a function of the parameters value [DOU-
92]. The number of white pixels of the morphological opening operation as a
function of the size parameter of the structuring element, H, can determine the
size distribution of the grains in an image. Granularity of the image F is defined
as:

 G(d) = 1 - (#[F Hd] / #F)

Where Hd is a disk structuring element of diameter d or a line structuring element
of length d, and #F is the number of elements in F. This measures the proportion
of pixels participating in grains smaller than d.

2.8 Implementation Considerations
Of course, all of the image processing and analysis operators that have been

mentioned above can be implemented using a conventional programming
language, such as C or Pascal. However, it is important to realise that many of the
algorithms are time-consuming when realised in this way. The monadic, dyadic
and local operators can all be implemented in time K.m.n seconds, where K is a
constant that is different for each function and (m,n) define the image resolution.
However, some of the global operators require O(m2.n2) time. With these points
in mind, we see that a low-cost, slow but very versatile image processing system
can be assembled, simply by embedding a frame-store into a conventional desk-
top computer. (A frame-store is a device for digitising video images and
displaying computer-processed/generated images on a monitor.)

The monadic operators can be implemented using a look-up table, which can be
realised simply in a ROM or RAM. The dyadic operators can be implemented
using a straightforward Arithmetic and Logic Unit (ALU), which is a standard
item of digital electronic hardware. The linear local operators can be
implemented, nowadays, using specialised integrated circuits. One manufacturer
sells a circuit board which can implement an 8x8 linear local operator in real-time
on a standard video signal. Several companies market a broad range of image
processing modules that can be plugged together, to form a very fast image
processing system that can be tailored to the needs of a given application.
Specialised architectures have been devised for image processing. Among the
most successful are parallel processors, which may process one row of an image
at a time (vector processor), or the whole image (array processor). Competing
with these are systolic array, neural networks and transputer networks. See
Dougherty and Laplante [DOU-95] for a discussion on the considerations that
need to be examined in the development of real-time imaging systems.

2.8.1 Morphological System Implementation

While no single image processing operation is so important that all others can
be ignored, it is interesting to consider the implementation of the morphological

 61

operators, since it reflects the range of hardware and software techniques that can
be applied to achieve high speed.

There are two classical approaches to the implementation of morphological
techniques on computer architectures, parallel and sequential (serial) methods.
(See Section 2.4.) Klien and Serra [KLI-72], discuss an early example of one of
the many commercial computer architectures for digital image processing which
implement the basic morphological operations: erosion and dilation.
Morphological operations with 3x3 pixel structuring elements, are easily
implemented by array architectures, such as CLIP [DUF-73]. Other system
implementations include Sternberg [STE-78]. Waltz [WAL-88b, WAL-94]
describes examples of a near real-time implementation of binary morphological
processing using large (up to 50x50 pixels), arbitrary structuring elements, based
on commercially available image processing boards. The success of this approach,
referred to as SKIPSM (Seperated-Kernal Image Processing using Finite State
Machines), was achieved by reformulating the algorithm in such a way that it
permitted high-speed hardware implementation. Similar algorithmic methods
allow fast implementation of these operators in software.

A number of companies now manufacture industrial vision systems that
incorporate video rate morphological operations, albeit with a limited range of
structuring elements. These include Machine Vision Int., Maitre, Synthetic Vision
Systems, Vicom, Applied Intelligence Systems and Leitz [HAR-87b].

2.9 Commercial Devices
In this section, we discuss generic types of computing sub-systems for machine

vision, rather than giving details of existing commercial products, since any
review of current technology would become out of date quite quickly. The
discussion will concentrate on the computing aspects of machine vision systems,
rather than the remaining systems issues, such a lighting and optics. Also, there
are numerous trade magazines that deal with commercial machine vision products.
(See Appendix C.)

For the purposes of this book, we have classified commercial systems into three
main categories:

• Plug-in board-based systems

 Frame-stores
 Dedicated function

• Self-contained vision systems
• Turn-key systems

2.9.1 Plug-in Boards: Frame-stores

The imaging engine in many low-cost machine vision systems consists of a host
computer working in conjunction with single or multiple plug-in boards. The most

 62

common example of these systems consists of a personal computer, or
workstation, and a frame-store card, which allows an image to be captured from a
standard CCD camera (array image format) and displayed. Many of the current,
extensive range of frame-store cards also offer on-board processing. Plug-in
accelerator cards which enable certain functions to be implemented in real-time
are available as daughter boards for many frame-stores. Some frame-stores have
slow-scan capabilities and the ability to interface to line-scan cameras. When used
in conjunction with the current range of high speed personal computers, such a
vision system is an attractive option for small to medium applications, of low
complexity. Certain personal computers/workstations now offer direct video input
without the need for an additional plug-in frame-store cards. With the growth in
multimedia applications, it is likely that this will become more commonplace on
commercial computers.

Such systems offer a number of significant advantages, most important of which
is their relatively low cost. Another significant advantage is their ease of use and
familiarity. This is especially the case when used in conjunction with standard
personal computers, which have become common place both in the home and the
workplace. The fact that the host computer for the imaging system is a widely
available commercial product also widens the base for software applications and
maximises the use of the frame-store. Many of the software packages available
today use 'point and click' interaction with the user, making it easy for him to
investigate image processing ideas. (Unfortunately, the majority of these packages
are for image processing, rather than image analysis.) The majority of the plug-in
frame-store boards can be programmed using commonly used high level
languages, such as C or FORTRAN. This is important, since the use of standard
programming languages can have a major impact on program development costs.

A common disadvantage with frame-store cards is that they rely on the power of
the host computer to do all of the required imaging tasks. Since the host computer
is generally not tuned for imaging applications, the system operation may be too
slow, despite the constantly increasing the performance of commercial computers.
So, for many high speed industrial applications, such systems are not suitable.
Many machine vision integrators would not consider personal computer systems
as robust enough for industrial applications. The use of industrial PCs in
conjunction with a wide range of dedicated processing and interface cards,
counters this argument, to a certain extent. Despite these disadvantages, the use of
frame-store plug-in cards offer a low cost introduction to machine vision, and is
suitable for educating, training, system design and other less-demanding
applications.

2.9.2 Plug-in Boards: Dedicated Function

For greater speed and ability, engineers often turn to plug-in boards which have
a specific functionality, such as real-time edge detection, binary correlation, and
convolution. Typically the host computer for such boards would be a VME rack
fitted with a CPU card. Quite often, such special-purpose boards are pipelined.
That is, they perform different operations on the image, in a sequential manner,

 63

that allows a new image to be captured while the previous image is still
undergoing processing. The main advantage of such systems is their speed and the
ability to increase the systems image throughput rate by the addition of extra plug-
boards. The disadvantage of such systems is that they can be difficult to program
and quite often require programmers with highly specialist skills. There is also a
significant cost factor involved in the capital equipment, along with the
application development costs.

While the majority of dedicated plug-in boards for pipelined systems are tuned
to deal with array CCD cameras, newer systems have appeared on the market that
are specifically designed for a line-scan camera.

2.9.3 Self-contained Systems

Some system manufactures have taken the option of designing specific machine
vision engines which are not tuned for a specific application, but rather designed
for their general functionality. Such systems may be totally self contained and
ready to install in an industrial environment. That is, they contain the imaging
optics, camera, imaging engine and interfaces for various mechanical actuators
and sensors. They differ from turn-key systems in that the software is supplied
with the self-contained system has yet to be moulded into a form that would solve
the vision application. Such systems have significant advantages, the main one
being speed. The majority of self-contained systems are custom designed,
although they may contain some plug-in boards and are tuned to provide whatever
functionality is required by the application. The self-contained nature of the
mechanical and image acquisition and display interfaces is also a significant
benefit when installing vision systems. However, it can be difficult to add further
functionality at a later date without upgrading the system.

2.9.4 Turn-key Systems

Turn-key vision systems are self-contained machine vision systems, designed
for a specific industrial use. While some such systems are custom designed, many
turn-key systems contain commercially available plug-in cards. Turn-key systems
tend to be designed for a specific market niche, such as can-end inspection, high-
speed print recognition and colour print registration. So, not only is the hardware
tuned for to deal with high-speed image analysis applications, it is also optimised
for a specific imaging task. While the other systems discussed usually require
significant development to produce a final solution for an imaging application,
turn-key systems are fully developed, although they need to be integrated into the
industrial environment. This should not be taken lightly, as this can often be a
difficult task. It may not be possible to find a turn-key system for a specific
application.

While we have avoided the discussion of any specific commercial devices, there
are a number of valuable information sources available, some of these are
provided by commercial organisations but some of the most valuable are free !

 64

(See the Internet resource list in Appendix C.) One commercial resource that is
well worth considering is Opto*Sense [WHI-94]. This is machine vision
database that gives details of a large number of machine vision vendors and their
products and services.

2.9.5 Software

As was mentioned earlier, there is a large number of image processing, and
analysis, packages available, for a wide range of computing platforms. Several of
these packages are freely available over the Internet. (See Appendix C.) Some of
these packages are tightly tied to a given vision system, while others are compiled
for a number of host computers and operating systems. The majority of the
software packages have interactive imaging tools that allow ideas to be tested
prior to coding the for efficient operation. For more information on the hardware
and software aspects of real-time imaging, including a survey of commonly used
languages, see [DOU-95].

2.10 Further Remarks
The image processing operators described in this chapter have all found

widespread use in industrial vision systems. Other areas of application for image
processing may well use additional algorithms to good effect. Two key features of
industrial image processing systems are the cost and speed of the target system
(i.e. the one installed in a factory). It is common practice to use a more versatile
and slower system for problem analysis and prototyping. While the target system
must continue to operate in an extremely hostile environment. (It may be hot,
greasy, wet and or dusty.) It must also be tolerant of abuse and neglect. As far as
possible, the target system should be self-calibrating and able to verify that it is
"seeing" appropriate images. It should provide enough information to ensure that
the factory personnel are able to trust it; no machine system should be built that is
a viewed by the workers as a mysterious black box. Consideration of these factors
is as much a part of the design process as writing the software. (See Appendices A
and B.)

3

Intelligent Image Processing

3.1 Interactive Image Processing

Simply reading the previous chapter, or any other text on image processing,

does not, on its own, equip a person to design an effective industrial vision
system. A person cannot examine a picture by eye and decide what algorithms are
necessary for filtering, analysing and measuring it. Proof of this is not hard to
find: try it, but be prepared for disappointment! In the past, many people have
adopted this approach, only to discover later that, what they were convinced
would be an effective image processing algorithm, was not reliable and effective
in practice, or did not work at all. Inspection of an object or scene by eye,
followed by introspective self-analysis is now totally discredited as a method of
choosing image processing algorithms for machine vision systems. Over the last
two decades, this has gradually been accepted as one of the central tenets of the
machine vision systems development process.

It is now widely accepted that an interactive “tool-box” is needed, by which a
person can experiment with image processing algorithms. Facilities of this kind
were originally developed in the 1970s. One of the earliest interactive image
processing systems was called SUSIE (Southampton University System for Image
Evaluation. [BAT-79]) From that, other systems were spawned, notably Autoview
([BAT-92b], sold in USA by 3M Company, under the name System 77) and VCS.
[VCS] These systems are all related to one another, in having similar command
repertoires, although they use different mnemonic command names. The set of
image processing functions used in the following pages is listed in Appendix E,
and forms the basis of the Prolog+ language, which we shall describe in this
chapter. The appropriate mnemonics have also been listed beside the image
processing functions described in Chapter 2.

A detailed account of the techniques and benefits of interactive image
processing is given elsewhere. [BAT-92b]

 67

3.1.1 Modus Operandi

A person working with an interactive image processor sits in front of a
computer terminal, with either one large, high-resolution screen, or several
medium-resolution ones. Displayed on the terminal are various text messages and
at least two images, called the current and alternate images. It is bad practice,
though all too common, to superimpose the textual data onto the pictures, since
neither can be seen properly.

As the user types each command, he sees the results of the corresponding
operation, displayed on the terminal screen almost instantaneously. For example,
the user might type the command neg, followed by the “Return” key. (The result
of this particular operation is that the negative of the current image is computed.)
The original current image replaces the alternate image, which is discarded.
(Figure 3.1) The user might type another command, e.g. thr(97,126), which
specifies numeric parameters, in order to perform thresholding.

Measurements on images can also be obtained. For example, the user might
type avr in order to measure the average intensity. The average intensity value is
printed on the text display for the user to read. Dyadic operations (such as add,
sub, mul, max and min) use both the current and alternate images. Again, the
current image is transferred to the alternate image display and the result is
displayed as the new current image. The image digitise operation (grb), reading a
picture from archive (disc) store (rea), and image generation (e.g. wgx) all move
the current image into the alternate image display and put the new image into the
current image display. At any time during the interactive process, the user can
press the “Return” key, to interchange the current and alternate images. Thus, the
user can always undo the last operation performed, since the previous (current)
image is always retained. (Of course, the dyadic functions, are not exactly
reversible, because the alternate image is lost.) The user can also examine the
results of each processing step, since the “before” and “after” images are
displayed side by side and can be compared directly. As each new command is
typed, it is recorded in the text display, thereby providing the user with a record of
the interactive session.

3.1.2 Prototyping Inspection Systems

Provided most of the interactive image processing functions take less than one
second to execute, the user is able to maintain a high level of concentration during
quite a long session, since he feels as though he is in complete control of the
machine. Longer execution times than this simply reduce the effectiveness of the
interaction, although most users can tolerate a few (exotic and infrequently used)
image processing operators having execution times of 30 seconds. It is good
practice, when adding new functions, to keep execution times less than 10
seconds, if at all possible.

 68

(a)

C(0)
A(0)

(discarded)

A(1) = C(0)C(1) = f(C(0))

Before

After

Current Alternate

C(0)
A(0)

(discarded)

A(1) = C(0)C(1) = f(C(0), A(0))

Before

After

Current Alternate

C(0)Before

After

Current Alternate

A(0) C(0)

A(0)C(0)
A(0)

(discarded)

A(1) = C(0)

Before

After

Current Alternate

New image

(d) (e)

(c)(b)

Figure 3.1 How the current and alternate images are changed during
interactive processing. (a) Command neg. The picture on the top-left, will be
denoted by P, and is displayed in the current image area, while that on the
top-right will be called Q and is displayed in the alternate image area. After
neg has been performed, the negative of P is displayed as the current image.
Image Q has been discarded and image P is now displayed in the alternate
image area. (b) Diagrammatic representation of monadic and local operators.
Examples: neg, thr, lpf, lnb, exw, bed. (c) Dyadic operators. Examples: add,
sub, mul, max, min. (d) Image digitisation (grb), reading images from disc
(rea) and image generation (e.g. zer, wgx, hic). (e) Switch images (swi).

 69

An experienced user of an interactive system can very often identify what
processing steps are appropriate for a given application task, in less than an hour.
We assume here, of course, that a satisfactory solution exists. If it does not, the
user will in a short time discover that fact. Numerous times during the last two
decades, representatives of a manufacturing company have visited the authors
laboratories, bringing with them samples of a certain product that is causing them
particular concern at that time. Typical product faults reported during such a visit
are scratches, cracks, stains, malformations, swarf, foreign bodies etc. Very often
such defects can only be detected visually, although human inspectors are
unreliable. The purpose of the visit is, of course, to explore the possibility of
using a machine vision system to inspect the objects, either during the
manufacturing process, or just after they have been made. After an initial period
of experimentation, when the lighting and viewing system is set up, the interactive
image processor is used to find procedures that are able to perform the inspection.
In the experience of the authors and many of their colleagues, working in different
companies, the process of designing / choosing an algorithm using an interactive
image processor takes only a short time, typically a few hours, or even minutes!
At the end of the exercise, the experimenter can, of course, be certain that the
algorithm he has discovered actually works!

3.1.3 Building Simple Programs

One important feature of many of the interactive image processing system
mentioned above is that they allow macros to be written. By combining several
commands in a macro, new image processing procedures can often be written,
without the need to program at the pixel level. For example, drawing isopohotes
(intensity contours), or plotting the intensity profile along a given line, are tasks
that are ideally suited for implementation using macros. Just as a small repertoire
of arithmetic operators / functions (+, -, *, /, sin, cos, log, exp, etc.) is sufficient to
represent a large class of mathematical functions, so a modest set of image
processing operator can be used to define a much larger collection of macros.
SUSIE, Autoview and VCS all have macro facilities, which are described in detail
in [BAT-91]. Although macros have been found to be very useful in the past,
they do not provide the full range of facilities needed for certain applications.

Interactive image processing is regarded, by the authors, as providing an
essential prelude to the more conventional approach to writing and developing
vision programs. It must be made clear, however, that interaction cannot fully
replace the conventional approach to program-writing. Nor is the latter approach
sufficient on its own, as a means of developing software for vision systems. For
these reasons, it was decided, some years ago, to search for a way of combining
the interactive and conventional approach to writing programs, in an attempt to
provide the benefits of both. As we shall see in the following pages, considerable
success has been achieved by embedding a collection of image processing
commands within the Artificial Intelligence language, Prolog. Some systems
allow programs to be written using a more conventional language, such as Basic
or C, with image processing operations being made available in the form of a

 70

library of sub-routines. Naturally, the same mnemonics are used for interactive
and program-mode operation, to make program writing as easy a possible. The
following is a brief VCS program, which shows image processing operations
being performed within a Basic program.

100 for i = 1 to 100 % Begin outer loop
200 grb % Digitise an image
300 for j = 1 to 5 % Begin inner loop
400 lpf % Low pass filter
500 next j % Terminate inner loop
600 gli min max % Find the maximum and minimum
 % intensities
700 X = max - min % Compute intensity range
800 print “Intensity range =“, X
 % Print result
900 next i % Terminate outer loop
1000 stop % Program finished

It is normal practice for the VCS [VCS] user to develop an image processing

sequence, interactively, then include the newly discovered function sequence
within a Basic-like program. Several other image processing languages have been
developed using the same basic idea, but with software founded upon Pascal,
Fortran, or C. Image processing systems have also been developed around other
languages, including APL, Forth, Smalltalk and Lisp.

3.1.4 Interaction and Prolog

In this chapter, we shall follow the same general route: embedding image
processing operations within Prolog. As we hope to show throughout the
remainder of this book, Prolog provides a powerful and natural mode of
programming for controlling image processing. Compared to the more
conventional “imperative” computer languages, such as Basic, Pascal, Fortran,
and C, the benefits of Prolog are not widely known amongst the general
population of computer users.

It was decided very early in the search for a suitable language as a “host” for
image processing that the benefits of interaction must not be lost. Despite their
great love of the Macintosh / Windows-style of operating environment, the
authors are convinced that interactive image processing is still best performed
using the command-line mode of operation. They have found no real alternative to
that. Pull-down menus and customised dialogue boxes are undoubtedly useful for
novice users but are of more limited value for more experienced users, involved in
prototyping image processing. To appreciate this fully, one has to witness a
command-line interactive image processor in the hands of an expert user. Better
still, one has to become an expert user. Selecting items from a pull-down menu is
slower and generally less convenient when values for arguments have to be
specified. Of course, a much greater investment of time and effort must be made
to learn to use a command-line system but the authors maintain that this is well
worthwhile. Their experience does not support the approach taken in the design of
many of the user interfaces built into many modern commercial image processing

 71

packages. Some of these rely almost exclusively on pull-down menus and
customised dialogue boxes. Image analyst, IP-Lab [IPL], OptiLab [OPT],
Photoshop [PHO], Image [IMA] and Visilog [VIS] are all in this category.
Prolog+, the extension to standard Prolog that we shall describe below, permits
the use of command-line, pull-down menus, customised dialogue boxes and
screens, and other modes of operation, not yet mentioned. Its primary mode of
interaction is via command line control, although each user needs, at times, to use
different interaction tools. Moreover, an expert user can program these himself,
thereby creating new interface tools, to suit his own or the application
requirements.

3.2 Introducing Prolog+

The image processing techniques described in the previous chapter are not
particularly intelligent, in the sense that many potential applications of machine
vision require greater reasoning power than they can provide. One of the main
themes of this book is that an intelligent program-controlled image processing
system can be made, by the simple expedient of embedding image manipulation
and measurement routines within standard Prolog. For the moment, we may think
of the image processor as being a hardware peripheral device that is attached to a
computer running a Prolog program, via a bi-directional, low-bandwidth, serial
line. (Figure 3.2) The top-level control language for this system will be called
Prolog+1 and, as we shall see, is able to solve many of the problems that do not
yield to standard image processing techniques operating alone. Prolog+ can also
be implemented using software, with no specialised hardware whatsoever. Many
high-performance desk-top computers are provided with a video input. For
example, many of the Macintosh family of computers can be fitted with an “AV”
card, to provide the ability to digitise images. In addition, a small, cheap, medium-
quality camera [QUC] is available which plugs into the serial (RS422) port of
virtually any Macintosh computer. A Prolog+ system can be built around these or
other standard hardware platforms, needing only software to run. It is also
possible to build a Prolog+ system which controls dedicated electronic hardware
for fast image processing.

Since Prolog is a rather unusual computer language, having been devised
originally for AI work, we shall describe it briefly in the following pages.
However, to obtain a more comprehensive understanding of this fascinating
language, the uninitiated reader is urged to refer to the standard textbooks. [CLO-
87, BRA-90] Throughout this book, we shall attempt to justify the choice of
Prolog as the basis for intelligent image processing, by describing and listing

1 Prolog+ should not be confused with Prolog++, which is an extension of LPA

MacProlog [MAC], providing Object Oriented Programming (OOP) facilities.
Hence, it is a trivial matter to extend Prolog+ further, so that it permits OOP
image processing programs to be written. To date, the authors have not yet
developed this idea and are not aware of any other work in this area.

 72

Prolog+ programs which together solve a range of diverse machine vision
problems. For the moment, let it suffice to say that many major benefits have been
obtained through the use of Prolog that could not have been obtained nearly so
easily using the other languages listed above, except possibly Lisp. The authors
can report that, in their experience, which now stretches over ten years, no serious
shortcomings of this approach have come to light.

Macintosh
Computer

Monitor

RS232Camera

Video

Image
processor

Figure 3.2 A simple approach to implementing Prolog+. The Macintosh
computer is programmed in Prolog.

Prolog+ was originally intended as a vehicle for developing intelligent image

processing procedures. Prolog+ programs can be written, edited and run, just as
one would expect using Prolog. It is a superset of standard (Edinburgh) Prolog
and, is also intended to provide the same interactive image processing facilities as
SUSIE [BAT-79], Autoview [BAT-92b], SuperVision [INT] and VCS [VCS].
Thus, Prolog+ provides facilities for both programmed and interactive image
processing and is well placed to assist in prototype development and problem
analysis for industrial vision applications. Hardware implementations of Prolog+
are described later in this chapter. (See Appendix D for a discussion on software
implementation of Prolog+.) In addition, a comprehensive operating environment,
centred on a version of Prolog+ implemented using LPA MacProlog [MAC], has
been devised and will be discussed in detail in the following chapter. This
includes auto-starting, user-extendible pull-down menus, cursor, on-line HELP,
automatic script generation, replaying recorded speech, speech synthesis, speech
recognition, advisory programs (“expert systems”) for machine vision system
designers, and various demonstration packages. In Chapter 4, we shall also
discuss the use of Prolog+ for Natural Language (NL) understanding, interfacing
to other languages / software packages and building networks of multi-camera /
multi-processor machine vision systems. In addition to its ability to perform image
processing, Prolog+ also provides facilities for controlling a range of external
hardware devices, such as robots, an (X,Y,θ)-table, cameras (pan, tilt, focus and
zoom), relays, solenoids, computer-controlled lighting, etc. and this will be
discussed in Chapter 5. Apart from analysing data from a video source, Prolog+,

 73

used in conjunction with an appropriate hardware interface unit, can sense and act
upon information derived from a range of other devices: proximity sensors,
thermocouples, pressure gauges, instruments measuring optical activity, pH and
salinity, ultra-sonic range sensors, digital micrometers, etc. We shall say more
about this in Chapter 5, while in Chapter 6, we shall concentrate upon the
specialised topic of recognising colours specified by name. Again, we shall use
the Prolog+ language. However, for the moment, we must concentrate upon first
principles, i.e. the ability of Prolog+ to perform complex image processing
operations.

The repertoire of image processing commands embedded within Prolog+ is
evident from the discussion in the previous chapter and also from Appendix E.
The list of image processing operators is constantly growing, as new primitives
are being added.

3.3 Review of Prolog
It took one of the authors (B.G.B.) two years to understand why Prolog is

important and just two weeks to become proficient at using it! The reason why
Prolog is worth further study is simply that it allows a novel and very natural
mode of programming to be used. It permits a person to state the nature of a
solution, rather than how to find one. To understand this, consider the task of
finding a marriage partner for a given hypothetical man. It is relatively easy to
specify the basic “requirements”, to a dating agency, in terms such as those listed
below2:

Sex: Female
Age: [45,55]
Height: [150,180]
Weight: [45,75]
Language: English

 Personality: A long list of desirable characteristics might
 be included here.

Clearly, this list is incomplete but it is sufficiently detailed to allow us to
illustrate the general principles of what is known as Declarative Programming.
Writing a Prolog program to find a wife / husband is straightforward and has
actually been used by dating agencies. Here is the program to find a wife, using
the very small number of criteria specified above:

find_wife(X) :-
 person(X), % Find a person called X
 sex(X,female), % Is person X female?

2 This list is intended merely to illustrate a point about Prolog; it does not make

any statement about the absolute desirability of any type of personality, or racial
characteristics.

 74

 age(X,A), % Find the age, A, of person X
 A ≥ 45, % Is person ≥ 45 years old?
 A ≤ 55, % Is person ≤ 55 years old?
 height(X, H), % Find the height, H, of person X
 H ≥ 150, % Is person at least 150cm tall
 H ≤ 180, % Is person at most 180cm tall
 weight(X,W), % Find the weight of person X
 W ≥ 45, % Does person weigh at least 45 kg
 W ≤ 75, % Does person weigh at most 75 kg
 speaks(X,English). % Does X speak English?
 must_be(X, [kind, truthful, generous, loving, loyal]).

 % Obvious meaning3.

Given such a program and a set of stored data about a collection of people,

Prolog will search the database, to find a suitable match. There is no need to tell
Prolog how to perform the search. The reader is urged to consider rewriting the
program using Basic, C, Fortran, or Pascal. The program will take much longer to
write, will consist of many more lines of code and the result will be altogether
much less satisfactory, because a person programming a computer in one of these
languages has to impose an unnatural mode of thought on the problem. Prolog
programming is very much more natural in its style, since it allows a person to
think more directly about the type of solution required, rather than how to find it.
Prolog differs from most other computer languages, such as Pascal, C, Forth,
APL, Occam, Lisp, Fortran and assembly code, in several very important ways.

(a) Firstly, a Prolog "program"4 does not consist of a sequence of instructions,
as routines written in these other languages do. Instead, it is a description of
(part of) the world. For this reason, Prolog is referred to as a declarative
language, whereas most other computer languages, military orders, knitting
patterns, automobile repair manuals, musical scores and culinary recipes are all
examples of imperative languages. This is a vital difference, which
distinguishes Prolog (and a very small group of related languages) from the
well-known conventional languages of Computer Science.
(b) The "flow of control" in a Prolog program does not follow the normal
convention of running from top to bottom. We shall see later that the flow is
just as likely to be in the reverse direction, through a control mechanism called
back-tracking.
(c) Through the use of back-tracking, it is possible to make and subsequently
revise temporary assignments of values to variables. This process is called

3 A suitable definition of must_be might be as follows:

must_be(_,[]).
must_be(A, [B|C]) :-
 personality(A,B), !, must_be(A,C).

4 The correct term is "application", since a program is, strictly speaking, a
sequence of instructions. However, we shall continue to use the term "program",
since this is more familiar to most readers.

 75

instantiation / de-instantiation5 and is akin to re-evaluating assumptions made
earlier in life. Instantiation is performed, in order to try and prove some
postulate, theorem or statement, which may or may not be true. As far as Prolog
is concerned, theorem proving is the equivalent process to running or executing
an imperative language program.
(d) It is possible to make very general statements in Prolog in a way that is not
possible in most other languages, such as those listed above. We shall see more
of this feature later, but for the moment, let us illustrate the point with a simple
example. In Prolog it is possible to define a relationship, called right in terms of
another relationship, called left.

 In English: "A is to the right of B if B is to the left of A."
 In Prolog: right(A,B) :- left(B,A).

(Read ":-" as "can be proved to be true if" or more succinctly as “if”.) Notice
that neither A nor B have yet been defined. In other words, we do not need to
know what A and B are in order to define the relationship right.6 For example,
A and B might be features of an image such as blob centres or corners.
Alternatively, A and B may be political “objects”, either people (Hitler and
Lenin) or policies (National Socialism and Marxism).The point to note is that
Prolog+ allows the relationships left and right to be applied to any such objects,
with equal ease.7
(e) Prolog makes very extensive use of recursion. While, Pascal, C and certain
other imperative languages also allow recursion, in Prolog it forms an essential
control mechanism.

Prolog was devised specifically for and has subsequently been applied

extensively in Artificial Intelligence. It is, for example, one of the prime tools for
research in Natural Language Understanding [GAZ-89] and has been used for
such tasks as planning a complex sequence of actions, given applications
constraints. It excels as a basis for writing rule-based programs for decision-
making and it is a straightforward matter to write expert systems in Prolog.
However, Prolog is not suitable for writing programs requiring a large amount of
numerical manipulation. Nor is Prolog appropriate for real-time control, or other
computational processes requiring frequent processing of interrupts.

3.3.1 Sample Program

5 The word “instantiation” is derived from the same linguistic root as

“instance”. Prolog tries to find an instance of some variable(s) which cause the
given predicate to be true.

6 left is defined in Section 3.5.5.
7 Is hitler to the right of lenin? In the political sense, “yes”, while the answer is

“no”, when we consider at the layout of words in the preceding sentence.

 76

This section is intended to refresh the memories of readers who have previously
encountered Prolog; it is not intended as an introduction for people who have
never seen the language before. The following program deals with the ancestry
and ages of members of two fictitious families.

/* The following facts specify in which years certain people were
born.
Interpretation: born(roger,1943) means that
 "roger was born in 1943".
*/
born(roger,1943).
born(susan,1942).
born(pamela,1969).
born(graham,1972).
born(thomas,1953).
born(angela,1954).
born(elizabeth,1985).
born(john,1986).
born(marion,1912).
born(patricia,1911).
born(gertrude,1870).
born(david,1868).

/* These facts describe the parent-child relationships which exist
in the families.
Interpretation: parent(X,Y) means that
 "X is a parent of Y".
*/
parent(roger,pamela).
parent(roger,graham).
parent(patricia,roger).
parent(anne,patricia).
parent(david,patricia).
parent(marion,susan).
parent(susan,graham).
parent(susan,pamela).
parent(thomas,john).
parent(angela,john).
parent(thomas,elizabeth).
parent(angela,elizabeth).

/* Defining a relationship called "child". Read this as follows:
 "A is a child of B if
 B is a parent of A."
*/
child(A,B) :- parent(B,A).

/* Defining a relationship called "older". Read this as follows:
 "A is older than B if
 the age of A is X AND
 the age of B is Y AND
 X > Y". */
older(A,B) :-
 age(A,X),
 age(B,Y),
 X > Y.

 77

/* Defining a relationship "age". Read this as follows:
 "A has age B if
 A was born in year X AND
 it is now year Y AND
 X ≤ Y AND
 B is equal to Y - X". */
age(A,B) :-
 born(A,X),
 date(Y,_,_),
 X ≤ Y,
 B is Y - X.

/* The definition of "ancestor" has two clauses. Prolog always
tries to satisfy the top one first. If this fails, it then tries to
satisfy the second clause.
Interpretation: ancestor(A,B) means that
 "A is an ancestor of B."
The first clause should be interpreted as follows:
 "A is an ancestor of B if A is a parent of B".
*/
ancestor(A,B) :- parent(A,B).

/* The second clause should be interpreted as follows:
 "A is an ancestor of B if
 A is a parent of Z AND
 Z is an ancestor of B."
 Notice the use of recursion here. */
ancestor(A,B) :-
 parent(A,Z),
 ancestor(Z,B).

/* Definition of "print_descendents".
 This uses backtracking to find all possible solutions. The
 first clause always fails but in doing so it prints the
 descendants and their dates of birth.
*/
print_descendents(A) :-
 nl, % New line
 write('The known descendants of '),
 % Print a message
 write(A), % Print value of A
 write(' are:'), % Print a message
 ancestor(A,Z), % Find Z such that A is ancestor of Z
 born(Z,Y), % Z was born in year Y
 nl, % New line
 tab(10), % 10 white spaces
 write(Z), % Print value of Z
 write(', born '), % Print a message
 write(Y), % Print value of Y
 fail. % Force back-tracking

% The second clause always succeeds and prints a new line
print_descendents(_) :- nl.

3.3.2 Sample Queries

Query: born(susan, 1942)
YES

Query: age(marion, Z)
Z = 77
YES

 78

Query: born(susan, X)
X = 1942
YES

Query: born(X, 1942)
X = susan
YES

Query: born(X, Y)
X = roger
Y = 1943

X = susan
Y = 1942

X = pamela
Y = 1969

X = graham
Y = 1972

X = thomas
Y = 1953

X = angela
Y = 1954

X = elizabeth
Y = 1985

X = john
Y = 1986

X = marion
Y = 1912

X = patricia
Y = 1911

X = gertude
Y = 1870

X = david
Y = 1868

NO MORE SOLUTIONS
(Notice the alternative
 solutions generated by
 this general query.)

Query: older(marion, susan)
YES

Query: older(susan, marion)
NO
(This really means NOT PROVEN)

Query: child(susan, Z)
Z = marion
YES

Query: ancestor(susan, Z)
Z = graham
Z = pamela

NO MORE SOLUTIONS
(Notice the alternative solutions.)

Query: ancestor(Z, graham)
Z = roger
Z = susan
Z = patricia
Z = anne
Z = david
Z = marion

NO MORE SOLUTIONS

Query: print_descendents(marion)

The known descendants of marion are:
 susan, born 1942
 graham, born 1972
 pamela, born 1969
YES

Query: print_descendents(anne)

The known descendants of anne are:
 patricia, born 1911
 roger, born 1943
 pamela, born 1969
 graham, born 1972
YES

Query: print_descendents(wilfred)
The known descendants of wilfred are:
YES
(There are no known descendents of
 wilfred.)

3.4 The Nature of Prolog+

 79

The reader is reminded that Prolog+ is an extension of standard Prolog, in
which a rich repertoire of image processing functions is available as a set of built-
in predicates. The way that the image processing predicates operate follows the
standard pattern established for printing in Prolog (c.f. nl, write, tab). That is, they
always succeed but are never resatisfied on back-tracking. For example, as a "side
effect" of trying to satisfy the goal neg, Prolog+ calculates the negative of the
current image. (Figure 3.1) The blurring operator (low-pass filter, lpf) also acts on
the current image. The goal thr(125,193) performs thesholding, setting all pixels
in the current image in the range [125,193] to white and all others to black. The
goal cwp(Z) always succeeds and instantiates Z to the number of white pixels in
the current image. However, the goal cwp(15294) will only succeed if there are
exactly 15294 white pixels in the current image. While Prolog+ is trying to prove
the compound goal [avr(Z),thr(Z)], Z is instantiated to the average intensity within
the current image (calculated by avr). This value is then used to define the
threshold parameter used by thr. With these points in mind, we are ready to
examine our very first Prolog+ program.

grab_and_threshold :-
 grb, % Digitise an image
 lpf, % Blur (Low-pass filter)
 avr(Z), % Calculate average intensity
 thr(Z). % Threshold at average intensity level

Since each sub-goal in this simple program succeeds, the effect is the same as

we had written a sequence of commands using a conventional (i.e. imperative)
computer language. The goal grab_and_threshold always succeeds. However, the
following Prolog+ program is a little more complicated.

big_changes(A) :-
 repeat, % Always succeeds on backtracking
 grb, % Digitise an image from the camera
 lpf, % Perform lpf (low-pass filter)
 lpf, % Perform lpf
 lpf, % Perform lpf
 sca(3), % Retain only 3 bits of each intensity value
 rea, % Read image stored during previous cycle
 swi, % Switch current & alternate images
 wri, % Save the image for the next cycle
 sub, % Subtract the two images
 abs, % Compute "absolute value" of intensity
 thr(1), % Threshold at intensity level 1.
 cwp(A), % A is number of white pixels in image
 A > 100. % Are differences between images significant?

The operator repeat succeeds, as does each of the image processing operators,

[grb, lpf, … , cwp(A)]. If the test A > 100 then fails, the program back-tracks to
repeat, since none of the image processing predicates is resatisfied on
backtracking. (Remember that repeat is always resatisfied on backtracking.)
Another image is then captured from the camera and the whole image processing
sequence is repeated. The loop terminates when A exceeds 100. When this
happens, the goal big_changes(A) succeeds and A is instantiated to the number of
white pixels in the difference image. The goal big_changes(A) performs the

 80

processing sequence [grb,… , cwp(A)] an indefinitely large number of times and
only succeeds when two consecutive images are found that are significantly
different from one another. This program could be used as the basis for an
intruder alarm, which signals when a person enters a restricted area. By adjusting
the number in the final sub-goal (i.e. A>100), it is possible to tolerate between
small changes (e.g. a cat wandering in front of the camera) while still being able
to detect larger objects, such as a person being in view.

Although image processing commands, such as grb, thr, cwp etc. are always
satisfied, errors will be signalled if arguments are incorrectly specified. Since
thr(X) requires one numeric argument, the goal will fail if X is uninstantiated. On
the other hand, the following compound goal is satisfied [X is 197, thr(X)], as is

 gli(A,B), % Get lower & upper limits of intensity
 C is (A+B)/2, % Average them

 thr(C). % Use average value as threshold8

The compound goal [X is 186, Y is 25, thr(X,Y)] fails, since thr fails when its

second argument is less than the first one,9 while [X is 1587, thr(X)] fails, because
the parameter (X) is outside the range of acceptable values, i.e. [0,255]. Notice
that thr has already been used with different numbers of arguments (different
arities). Throughout this book, we shall use thr with 0, 1 or 2 arguments. Other
image processing predicates will be treated in the same way. For example, we
have already used wri (write image to disc) and rea (read image from disc)
without arguments. We shall also encounter them with a single argument, which is
instantiated to a string of alpha-numeric characters. Such arguments may be
generated according to the usual Prolog conventions. For example, the Prolog
symbol generator, gensym, may be used to create a series of file-names,
image_file1, image_file2,…, as the following illustration shows:

process_image_sequence :-
 grb, % Digitise an image
 process_image, % Process the image
 gensym(image_file,X), % Generate new symbol name
 wri(X),
 process_image_sequence. % Repeat processing

Notice here that we have “condensed” almost all of the image processing into

the subsidiary predicate, process_image. Using this approach, a simpler, revised
version of big_changes may be defined using the subsidiary predicate, process.

big_changes(A) :-
 process % Listed below
 cwp(A), % Instantiate A to number of white pixels in image

8 The observant reader will notice that C can be instantiated to an integer

((A+B) is even) or a decimal value ((A+B) is odd). The effect of the latter is the
same as if C is first rounded down, before trying to satisfy the goal thr(C).

9 The image processor signals an error, which causes the failure of the Prolog
goal, thr(186,25).

 81

 A > 100. % Test to see whether differences between images
 % are large. If not, back-track to process.

where process is defined thus:

process :- grb, lpf, lpf, lpf, sca(3), rea, swi, wri,
 sub, abs, thr(1).

The use of subsidiary predicates, such as process_image and process, allows the

programmer to think at a higher conceptual level and to defer deciding what
image processing is to be performed until later.

3.5 Prolog+ Programs
Now that we have illustrated the basic principles of Prolog+, we are in a

position to be able to consider more complex programs. In this section, we shall
present a range of more advanced programs, which illustrate various features of
Prolog+. It is important to realise that we must always use Prolog+ to describe the
image generated by the camera, not the object / scene being inspected. The
importance of this point cannot be over-emphasised. Additional points of general
interest will be discussed as they arise.

3.5.1 Recognising Bakewell Tarts

Consider Figure 3.3, which shows diagrammatic side and plan views of a small
cake, popular in Britain and which is called a Bakewell tart. Now, let us use
Prolog+ to describe the image obtained by viewing such a cake from above.

bakewell_tart :-
 segment_image, % Convert image to form shown in Fig. 3.3
 outer_edge, % Check the outer edge
 cherry, % Check the cherry
 icing. % Check the icing

Programs written in Prolog+ are almost invariably written from the top level

downwards. In this instance, bakewell_tart was the first predicate to be defined.
Notice that there are four obvious stages in verifying that the tart is a good one:

(a) Simplify the image (to a 4-level form), using segment_image.
(b) Check the integrity of the outer edge, using outer_edge.
(c) Check the presence, size and placing of the cherry, using cherry.
(d) Check the icing, using icing.

Even a novice Prolog programmer can understand that bakewell_tart is only

satisfied if all four of the subsidiary tests succeed. The secondary predicates,
though not defined yet, are not necessary for us to understand the process of
recognising a Bakewell tart. Three of these are defined below. (segment_image is

 82

not given here, because it is problem specific and would distract us from the main
point.)

Pastry case

Fondant toppingHalf cherry

Side view

H
ei

gh
t

AngleIntegrity of
pastry case

Thickness

Pastry case with
crimped edge

Plan view

D
ia

m
et

er

Concentricity, size &
appearance of cherry

Integrity of fondant
topping

Appearance of crimping

Circularity of
pastry case

Appearance of
fondant-pastry edge

Figure 3.3 Critical dimensions of a Bakewell tart.

outer_edge :-
 thr(1), % Select outer edge
 circular. % Standard test for circularity. Defined below

cherry :-
 thr(1), % Select outer edge
 cgr(X1,Y1), % Centroid of outer edge
 swi, % Switch images
 thr(200), % Select cherry
 swi, % Switch images - restore image for use later
 cgr(X2,Y2), % Centroid of the cherry
 distance([X1,Y1,],[X2,Y2],D),
 % D is distance [X1,Y1] to [X2,Y2],
 D < 20. % Are cherry and outer edge nearly concentric?
icing :-
 thr(128), % Select icing
 rea(mask), % Read annular mask image from disc
 xor, % Calculate differences between these images
 cwp(A), % Calculate area of white region
 A > 50. % Allow a few small defects in icing

circular :-
 cwp(A), % Calculate area
 perimeter(P), % Calculate perimeter.

 83

 S is A/(P*P), % Shape factor = Area/(Perimeter^2)
 S < 0.08. % Min value for S is 1/4*π for a circle

Notice the highly modular approach to Prolog+ programming and the fact that it

is possible to define what is an "acceptable" Bakewell Tart, in a simple and
natural way. Apart from the predicate segment_image, whose definition depends
upon the lighting and camera, the program bakewell_tart is complete. It is able to
perform a simple yet effective means of inspecting Bakewell tarts.

3.5.2 Recognising Printed Letters

The top two layers of a Prolog+ program for recognising printed letters are
given below:

% Top level predicate for recognising printed letters, which may
% be either upper or lower case and in any one of three fonts
letter(X) :- upper_case(X). % Letter X may be upper case, …
letter(X) :- lower_case(X). % … or X may be lower case

upper_case(X) :-
 font(Y), % Find what font we are using
 member(Y,[times,courier,helvetica]),
 % These 3 fonts are of interest to us
 recognise_upper_case(X,Y). % X is upper case in font Y

lower_case(X) :-
 font(Y), % Find what font we are using
 member(Y,[times,courier,helvetica]),
 % These 3 fonts are of interest to us
 recognise_lower_case(X,Y). % X is lower case in font Y

The complex task of recognising an upper- or lower-case letter in any of the

three known fonts has been reduced to a total of 156 (=3*2*26) simpler sub-
problems. (A simple declarative definition of the sans serif upper case letter A is
presented later.) Now, let us consider what changes have to be made if a new font
(e.g. Palatino) is to be introduced. Two changes have to be made:

(i) the second line in the body of upper_case and lower_case is changed to
 member(Y,[times,courier,helvetica,palatino])
(ii) two new clauses are added for each letter X, one for
 recognise_upper_case(X,palatino) and another for
 recognise_lower_case(X,palatino).

If we wanted to add recognition rules for the numeric characters, then 10 new

clauses would be added, as in (ii). In other words, extending the scope of a
Prolog+ program is conceptually simple, if rather tedious to accomplish. Here, as
promised, is a naive but quite effective declarative definition of the sans serif
upper-case letter A:

recognise_upper_case(a,sans_serif) :-

 84

 apex(A), % There is an apex called A10.
 tee(B), % There is a tee-joint called B
 tee(C), % There is a tee-joint called C
 line_end(D), % There is a line_end called D
 line_end(E), % There is a line_end called E
 above(A,B), % A is above B.
 above(A,C),
 about_same_vertical(B,C),
 about_same_vertical(D,E),
 above(B,D),
 above(C,E),
 connected(A,B),
 connected(A,C),
 connected(B,D),
 connected(C,E),
 connected(B,C),
 left(B,C),
 left(D,E).

The reader should be able to understand the above program without detailed

knowledge about how the predicates apex, tee, line_end above,
about_same_vertical, above, connected and right are defined. Figure 3.4 shows
some of the objects which would be recognised by this program. Obviously,
recognise_upper_case can be refined by adding further conditions, to eliminate
some of the more bizarre objects that are recognised by the present definition and
are shown in Figure 3.4.

3.5.3 Identifying Table Cutlery

 The following Prolog+ program identifies items of table cutlery that are viewed
in silhouette. (It is assumed, for the sake of brevity, that the input image can be
segmented using simple thresholding.) The top-level predicate is camera_sees(Z)
and is a general purpose utility that can find any object, given an appropriate
definition for the subsidiary predicate object_is. In its present somewhat limited
form, the program recognises only forks and knives; additional clauses for
object_is are needed to identify other utensils, such as spoons, plates, mats, etc.
When the query camera_sees(Z) is specified, Z is instantiated to the type of object
seen by the camera. In practice, there may be many objects visible to the camera
and the program will progressively analyse each one in turn. Any objects visible
to the camera that are not recognised are signalled by instantiating Z to the value
unknown_type, see Figure 3.5.

10 The name of a feature, such as an apex or tee-joint, may be the same as its

address within the image. When using Prolog+, this is often very convenient.

 85

A

B C

D E

Figure 3.4 Objects which are inappropriately recognised as the sans serif
letter A by the goal recognise_upper_case(a,sans_serif).

Major axis
(axis of minimum
second moment)

B

X

Y Limb ends
of skeleton

Minor axis
(perpendicular
to major axis)

A

Minor axis

Major axis

Limb end of
skeleton

X

Y
B

A

Limb end of
skeleton

(a) (b)

Figure 3.5 Explaining the operation of two object recognition programs (a)
object_is(fork). AB is the axis of minimum second moment. Criteria to be
satisfied, before this object can be accepted as a fork: 150 ≤ X ≤ 450; 25 ≤ Y
≤ 100; 4 ≤ X/Y ≤ 10; skeleton here has 3-5 limb ends. (b) object_is(knife). AB
is the axis of minimum second moment. Criteria to be satisfied, before this
object can be accepted as a fork: 150 ≤ X ≤ 450; 25 ≤ Y ≤ 100; 6 ≤ X/Y ≤ 12;
skeleton must have exactly 2 limb ends.

% Top level predicate for recognising individual items of table
% cutlery
camera_sees(Z) :-
 grb, % Digitise an image from the camera
 segment_image, % Example: [enc, thr(128)]
 ndo, % Shade resulting binary image so that each

 86

 % blob has a different intensity
 wri(temp), % Save image in disc file, named "temp"
 repeat, % Begin loop - analyse all blobs in turn
 next_blob, % Select a blob from the image saved in "temp"
 object_is(Z), % Identify the blob as an object of type Z
 finished. % Succeeds only when no more blobs to analyse

% Select one blob from the image stored in disc file “temp”.
% Remove this blob from the stored image, so that it will not
% be considered next time.
next_blob :-
 rea(temp), % Read image from disc file “temp”
 gli(_,A), % Identify next blob - i.e. brightest
 hil(A,A,0), % Remove it from stored image
 wri(temp), % Save remaining blobs
 swi, % Revert to previous version of stored image
 thr(A,A). % Select one blob

% Recognises individual non-overlapping objects in a binary image.
object_is(fork) :- % Figure 3.5(a) shows how this clause works
 mma(X,Y), % Find lengths along major & minor axes (X,Y)
 X ≥ 150, % Length must be ≥ 150 pixels
 X ≤ 450, % Length must be ≤ 450 pixels
 Y ≥ 25, % Width must be ≥ 25 pixels
 X ≤ 100, % Width must be ≤ 100 pixels
 Z is X/Y, % Calculate aspect ratio - whatever
 % orientation
 Z ≤ 10, % Aspect ratio must ≤ 10
 Z ≥ 4, % Aspect ratio must be ≥ 4
 count_limb_ends(N),
 % Instantiate N to number of limb ends
 N ≥ 3, % Skeleton of fork must have ≥ 3 limb ends
 N ≤ 5. % Skeleton of fork must have ≤ 5 limb ends

% Add as many clauses here as are needed to recognise each possible
% type of object.
object_is(knife) :- % Figure 3.5(b) shows how this clause works
 mma(X,Y), % Find lengths along major & minor axes (X,Y)
 X ≥ 150, % Length must be ≥ 150 pixels
 X ≤ 450, % Length must be ≤ 450 pixels
 Y ≥ 25, % Width must be ≥ 25 pixels
 X ≤ 100, % Width must be ≤ 100 pixels
 Z is Y/X, % Calculate aspect ratio - whatever
 % orientation
 Z ≤ 12, % Aspect ratio must ≤ 12
 Z ≥ 6, % Aspect ratio must be ≥ 6
 count_limb_ends(2).
 % Skeleton of a knife has exactly 2 limb ends
 % Catch-all clause. Object is not recognised

object_is(unknown_type).

% Search is finished. Image is black everywhere.
finished :-
 rea(temp), % Read image from disc
 thr(1), % Threshold stored image
 cwp(0). % Succeeds if number of white points = 0

% Count the limb ends on a skeleton (“match-stick”) figure
count_limb_ends(N) :-

 87

 mdl, % Generate skeleton of the blob
 cnw, % Count white neighbours for 3*3 window
 min, % Ignore back-ground points
 thr(2,2), % Select limb ends
 eul(N). % Instantiate N to number of limb ends

3.5.4 Analysing all Visible Objects

The list of all objects that are visible to the camera can be found using the
predicate list_all_objects defined thus:

list_all_objects(A) :-
 grb, % Same pre-processing …
 segment_image, % … as is used in …
 ndo, % … the predicate …
 wri(temp), % … “camera_sees”
 find_object_list([],A). % Generate list of objects seen

find_object_list(A,A) :- % Terminating recursion
 finished. % Succeeds when no more blobs to
 % analyse

find_object_list(A,B) :- % Analyse all blobs in the image
 next_blob, % Select a blob from the image saved in
 % "temp"
 object_is(C), % Identify the blob as an object of
 % type C
 !, % Do not want to back-track, so include
 % cut (!) here to make recursion more
 % efficient
 find_object_list([C|A],B).
 % Recursive call to analyse all blobs

This makes use of the fact that object_is is able to recognise an object in the

presence of other objects, provided that they do not touch or overlap. We will now
make good use of list_all_objects in performing a much more difficult task,
namely that of recognising a well-laid table place setting.

3.5.5 Recognising a Table Place Setting

The following Prolog+ program can recognise a table place setting with the
cutlery laid out as shown in Figure 3.6(a). For this program to work properly, we
must first define additional clauses for the predicate object_is, so that appropriate
types of object, such as small_knife, tea_spoon, dinner_fork, plate, mat, etc., can
be recognised. Notice that table_place_setting is defined in standard Prolog,
without any further use of the image processing built-in predicates.

 88

1
2

3 4

6

7

5
(a)

(b)

(c)

Figure 3.6 Table place settings: (a) Ideal arrangement. Key: 1, dinner_fork; 2,
mat; 3, dinner_knife; 4, small_knife; 5, soup_spoon; 6, small_fork; 7,
desert_spoon. (b) Scene that is misrecognised by table_place_setting with the
original definitions of left and below but which is correctly rejected with the
revised versions. (c) A scene that is incorrectly recognised by the revised
version of the program.

table_place_setting :-
 list_all_objects(A),
 equal_sets(A, [mat, plate, dinner_knife, small_knife,
 dinner_fork, small_fork, soup_spoon, desert_spoon]),
 left(dinner_fork, mat), % Defined below
 left(mat, dinner_knife),
 left(dinner_knife, small_knife),
 left(small_knife, soup_spoon),
 below(mat, small_fork),
 below(small_fork, desert_spoon).

For completeness, we now define the predicates left, below and equal_sets.
These and many other useful “general purpose” predicates like them form part of
a Prolog+ Library, which augments the basic language.

left(A,B) :-
 location(A,Xa,_), % Horizontal position of A is Xa
 location(B,Xb,_), % Horizontal position of B is Xb
 !, % Inhibit backtracking
 Xa < Xb. % Compare horizontal positions

below(A,B) :-
 location(A,_,Ya), % Vertical position of A is Ya
 location(B,_,Yb), % Vertical position of B is Yb
 !, % Inhibit backtracking
 Ya < Yb. % Compare vertical positions

equal_sets([],[]). % Terminate recursion

equal_sets([A|B],C) :- % Checking two non-empty lists are

 89

 % equal
 member(A,C), % A is a member of C
 cull(A,C,D), % Delete A from list C. Result is D
 !, % Improve efficiency of recursion
 equal_sets(B,D). % Recursion. Are sets B and D also
 % equal?

cull(_,[],[]). % Cannot delete anything from empty list

cull(A,[A|B],C) :- % Delete A from list if A is at its head
 !, % Improve efficiency of recursion
 cull(A,B,C). % Repeat until the lists A and B are both
 % empty

cull(A,[B|C],[B|D]) :-
 % A is not head of “input” list so work on
 % tails
 !, % Improve efficiency of recursion
 cull(A,C,D). % Repeat until the lists A & B are both empty

Using these simple definitions, a range of unusual configurations of cutlery and

china objects is accepted. (See Figure 3.6(b).) To improve matters, we should
refine our definitions of left and below. When redefining left(A,B), we simply add
extra conditions, for example that A and B must be at about the same vertical
position:

left(A,B) :-
 location(A,Xa,Ya), % Horizontal position of A is Xa
 location(B,Xb,Yb), % Horizontal position of B is Xb
 !, % Inhibit backtracking
 Xa < Xb, % Compare horizontal positions
 about_same(Ya,Yb, 25). % Tolerance level is specified by 3rd
 % argument

about_same(A,B,C) :- A ≤ B + C.
about_same(A,B,C) :- A ≥ B - C.

The predicate below is redefined in a similar way:

below(A,B) :-
 location(A,Xa,Ya), % Vertical position of A is Ya
 location(B,Xb,Yb), % Vertical position of B is Yb
 !, % Inhibit backtracking
 Ya < Yb. % Compare vertical positions
 about_same(Xa,Xb, 25). % Tolerance level is specified by 3rd
 % argument

In practical application, it would probably be better for the tolerance parameter

required by about_same (third argument) to be related to the size of the objects to
be recognised. This would make a program such as table_place_setting more
robust, by making it size-independent. This modification to our program improves
matters, but it still recognises certain cutlery arrangements as being valid place
settings, even though we would probably want to exclude them in practice.
(Figure 3.6(c)) Clearly, we can go on adding further conditions to our program,
in order to reduce the number of cutlery arrangements accepted by it.

 90

3.6 Abstract Concepts in Prolog+
Like its better known ancestor, Prolog+ is a declarative language. As we have

already explained, this means that the nature of a solution is described by the
programmer, rather than the algorithmic steps needed to attain it. As a result, it is
very easy to create new commands in terms of existing ones, change command
names and alter default values of arguments. By using Prolog+, we also gain the
advantage of being able to use abstract concepts in our programs. We shall now
illustrate each of these points in turn.

3.6.1 Describing a Simple Package

Consider a simple scene, such as that shown in Figure 3.7, which is intended as
a model of a cardboard carton, containing some small item such as floppy discs,
video tape, photographic film, etc. Suppose that a friend has not previously seen
this article and that you want to tell him about it, so that he can be despatched to
look for others like it. (At this stage, we shall not enter the difficult debate about
how we might define the phrase "like it" in formal terms.) Showing the friend this
diagram is not permitted. Nor is sketching it allowed. The description must be
purely verbal. A person, is, in effect, able to "program" another person, enabling
the latter to recognise an article which has been described verbally. One of the
authors main research goals is to develop techniques for programming a machine
vision system, using the same natural method of describing objects that we would
use to "program" a person. The picture in Figure 3.7 could be described in
Prolog+ in the following way:

picture :-
 rectangle(A), % A is a rectangle
 ellipse(B), % B is an ellipse
 encloses(A,B), % A encloses B
 text(C,'Qwerty'), % C is the text ‘Qwerty’
 inside(C,B), % C is inside B
 print_texture(D), % D is “print_texture” (No need to read
 % it)
 encloses(A,D), % A encloses D
 below(D,B). % D is below B

In a Prolog+ program, there are no “instructions”, simply tests used to verify or

refute a predicate.11 Thus, picture can be proved to be true, if each of its
component sub-goals (i.e. rectangle(A), ellipse(B), encloses(A,B),…, below(D,B))
are all true. The image being analysed may contain many rectangles and ellipses
but the predicate picture is only true if there is at least one rectangle which
contains an ellipse. (Of, course, other conditions have to be satisfied as well.)

11 Prolog programs can be written in a procedural manner. By this, we mean

that the sub-goals all succeed, thereby reducing a predicate to a simple sequence
of operations. However, this is a separate issue which need not concern us here.

 91

Prolog+ will search the image for rectangle-ellipse pairs which together satisfy the
encloses relationship, and will then try to satisfy the other subgoals: text(C,
'Qwerty'), …, below(D,B)

This is, of course, plain
English text but its
exact meaning is
unimportant for our
present purpose. What
is important, however,
is that the text is
inside the rectangle
and below the ellipse

This text is different
and may even be in a
different language,
That is not at all
important for our
present purpose. Only
the texture matters.

Qwerty
This is, of course, plain
English text but its
exact meaning is
unimportant for our
present purpose. What
is important, however,
is that the text is inside
the rectangle and
below the ellipse

Qwerty
This is, of course, plain
English text but its
exact meaning is
unimportant for our
present purpose. What
is important, however,
is that the text is inside
the rectangle and
below the ellipse

rectangle(A),

 ellipse(B),

 encloses(A,B),

 text(C,'Qwerty'),

 inside(C,B),

 print_texture(D),

 encloses(A,D),

 below(D,B).

Qwerty
This is, of course, plain
English text but its
exact meaning is
unimportant for our
present purpose. What
is important, however,
is that the text is inside
the rectangle and
below the ellipse

Qwerty

Qwerty

Figure 3.7 A simple scene, deliberately contrived to resemble a cardboard
carton. Showing (part of its) its relationship to the predicate picture. Notice
that an infinite number of cartons and other images satisfy the constraints
imposed by the program picture.

3.6.2 Abstract Spatial Relationships

The predicates table_place_setting and picture rely upon abstract concepts
about spatial relationships between pairs of objects in an image. The relationships
in question are left and below were defined earlier. The predicate encloses is
clearly related to another important relationship, inside:

encloses(A,B) :- inside(B,A). % A encloses B if B is inside A

while inside can be defined thus.

inside(A,B) :-
 isolate(A), % Isolate object A

 92

 wri, % Save image until later
 isolate(B), % Isolate object B
 rea, % Recover saved image during “wri” operation
 sub, % Subtract images
 thr(0,0), % Find all black pixels
 cwp(0). % There are exactly zero black pixels.

Notice that inside(A,B) creates two binary images, containing objects A and B.

These images are then compared. If all white pixels in one image (i.e. the one
containing object B) are also white in the other (containing object A), then we can
conclude that A is inside B and the goal inside(A,B) succeeds.

There are, of course, many other abstract relationships that we must define.
Here are the definitions of a few of them:

% Are objects A and B concentric ?
concentric(A,B) :-
 location(A,Xa,Ya), % Could use centroid to define
 % “location”
 location(B,Xb,Yb), % Could use centroid to define “location”
 near([Xa,Ya],[Xb,Yb],10).
 % Is distance [Xa,Ya] to [Xb,Yb] ≤ 10

% Are A and B in about the same vertical position ?
about_same_vertical(A,B) :-
 location(A,Xa,Ya), % Could use centroid to define
 % “location”
 location(B,Xb,Yb), % Could use centroid to define “location”
 about_same(Ya,Yb,10). % Is difference in vertical position ≤
 % 10.

% Test whether object A in the top part of object B (i.e. the
% bottom-most point in A is above B’s centroid). A must be entirely
% contained inside B.
top_of(A,B) :-
 isolate(A), % Isolate object A
 dim(_,Ya,_,_), % Bottom of object A
 isolate(B), % Isolate object B
 cgr(B,_,Yb), % Could use centroid to define “location”
 Ya ≤ Yb, % Is bottom point in A above centre of B
 inside(A,B).

% Are the points [X1,Y1] and [X2,Y2] connected by a continuous set
% of white pixels ?
connected(X1,Y1,X2,Y2) :-
 ndo, % Shade blobs.
 pgt(X1,Y1,Z), % Z is intensity at [X1,Y1]
 pgt(X2,Y2,Z), % Z is intensity at [X2,Y2]
 Z = 255. % Both pixels are white

% Are regions A and B adjacent ?
adjacent(A,B) :-
 isolate(A), % Isolate region A
 exw, % Expand region by 1 pixel
 wri, % Save image for use later
 isolate(B), % Isolate region A
 rea, % Read image A expanded
 min, % Logical AND of the 2 images
 cwp(N), % Count white points in both images
 N > 0. % Are there some?

 93

The reader may like to consider how a predicate can be defined which can test
whether an object in a binary image is vertical. (Figure 3.8. The relevent image
processing predicate is lmi.) This predicate could be used to prevent
table_place_setting from detecting scenes like that shown in Figure 3.6(c).

3.6.3 Geometric Figures

The predicate rectangle, which is used in the definition of picture, seems to
refer to a geometric figure, that can be defined in precise mathematical terms.
(Figure 3.9) In fact, this is not so; human beings use the term “rectangles” much
more loosely than this. Most people, including mathematicians in their everyday
lives, would describe a rectangle using the fuzzy concepts of “straight line” and
“right angle”. Most people are prepared to use these terms to describe a wide
variety of carelessly drawn objects. (Figure 3.10) We cannot use the familiar
equation for a straight line (y = m.x + c) directly, when we want to test whether a
“broken” polygonal arc, or series of spots, could reasonably be regarded as
forming a straight line. We could use the Hough transform to do this. Another
approach is exemplified by the predicate straight_line, defined below. This
provides a simple heuristic for testing whether a 1-pixel wide arc, whose end
points are [X1,Y1] and [X2,Y2], could reasonably be accepted as being a straight
line. (See Figure 3.11.)

straight_line([X1,Y1], [X2,Y2]) :-
 wri, % Save image for use later
 zer, % Create black image
 vpl((X1,Y1, X2,Y2, 255),
 % Draw digital straight line
 neg, % Negate the image
 gft, % Grass fire transform
 rea, % Recover saved image
 min, % Use original image as mask on grass fire
 % picture
 gli(_,Z), % Find maximum intensity (i.e. distance from
 % line joining [X1,Y1] and [X2, Y2])
 Z ≤ 10. % Is whole arc ≤10 pixels away from this line?

Testing for right angles is easy, once the corner points have been identified.
(See Section 2.3.)

right_angle(A,B,C,D) :-
 angle(A,B,P), % Find angle of line joining A and B
 angle(C,D,Q), % Find angle of line joining C and D
 S is Q - P, % Find difference in angles
 about_same(S,90,5). % Check angle difference is in range
 % [85,95]

 94

about_same_vertical(A,B)

A B

 | Ya - Yb |
 <= 10

concentric(A,B)

A

B

Centroids <=
10 units apart

left(A,B)

A

B

Xa Xb > Xa

below(A,B)

A

BYb > Ya

Ya

top_of(A,B)

A

B

Note: inside(A,B) is also true

Yb

Ymin > Yb

connected(X1,Y1,X2,Y2)

[X1,Y1]

[X2,Y2]

Same
intensity

Blobs
shaded

A
B

adjacent(A,B)

A
B

vertical

Axis of
minimum 2nd

moment

Centroid

Angle <=
5 Degrees

Figure 3.8 Spatial relationships in Prolog+.

 95

Here, at last, is one possible test for rectangles, using the ideas just described.

rectangle(A,B,C,D) :-
 straight_line(A,B), % Side AB
 right_angle(A,B,B,C), % Corner at point B
 straight_line(B,C), % Side BC
 right_angle(B,C,C,D), % Corner at point C
 straight_line(C,D), % Side CD
 right_angle(C,D,D,A), % Corner at point D
 straight_line(D,A), % Side DA
 right_angle(D,A,A,B). % Corner at point A

Figure 3.9 “Rectangles”.

Figure 3.10 Some of the objects that people call “straight lines” and “right
angles”.

However, this is not the complete story! There are many other types of object

that could legitimately be called rectangles. Some of these are illustrated in Figure

 96

3.9. Clearly, a general definition of rectangles requires a lot more sophistication
than we have space to explain here. Let it suffice to say that each of the objects
shown in Figure 3.9 could be recognised by a separate Prolog+ clause.

Penumbra around line joining
[X1,Y1] and [X2,Y2] is created
by the grass-fire transform [gft]

Point of maximum deviation from straight line
is brightest point when ANDed with gft output

[X1,Y1] [X2,Y2]

Line generated by vpl(X1,Y1,X2,Y2,255)

Figure 3.11 Operation of the predicate straight_line.

3.7 Implementation of Prolog+
Consider Figure 3.12 which shows the block diagram of a system that offers

one possible implementation of Prolog+. This represents one of the most recent
stages in a period of evolutionary development that has taken place since 1985. A
number of other systems combining image processing with Prolog have been
built. (See Figure 3.13.)

3.7.1 The # Operator

The essential feature of Figure 3.12 is that it shows a Prolog program
controlling a proprietary image processor, the Intelligent Camera [INT]. Figure
3.14 shows the action that follows, when Prolog encounters a goal of the form #
en. The # operator performs the following actions:

1. The character string “en” is sent, via the Macintosh computer's modem port,
to the Intelligent Camera.
2. The Intelligent Camera interprets the character string “en” as a command and
performs the appropriate image processing operation (negating all intensities in
the image.)
3. When the Intelligent Camera completes the operation en, it signals that it has
done so, via its serial port, to the control computer running Prolog.
4. Prolog receives the "command done" signal from the Intelligent Camera and
interprets it so that the Prolog goal [# en] succeeds.

 97

Macintosh
Computer

Intelligent
camera

Monitor

RS232

Figure 3.12 One possible implementation of Prolog+, using the Intelligent
Camera [INT]. The Macintosh computer runs the Prolog+ software.

Autoview

Prolog

(a) (b) (c)

MacProlog

VCS

Macintosh

Intelligent
Camera

MacProlog

(d)

Prolog

Image proc.
Hardware
Controller

Robot Lights

HyperCard

Macintosh

MacintoshPDP11

Figure 3.13 Other possible implementations of Prolog+. Each of these
arrangements has been built, in the past. The earliest successful configuration
to be used was (a). Most of the authors recent work has been based on (c) and
(d).

The goal [# ‘tf(128,W)’] is slightly more complex but is dealt with in a similar

way. The only difference is that the character string “tf(128,W)” is sent to the
Intelligent Camera. The # operator is defined in such a way that we may type “#
tf(128,’W’)” instead. (This alternative form is a little more convenient when we
write Prolog+ programs.) The goal [# tf(X,'W')] where X is already instantiated to

 98

123, is treated in just the same way; the character string transmitted to the
Intelligent Camera is "tf(123,W)". However, both of the following goals [#
tf(1234,'W')] and [X is 1234, # tf(X,'W')] will fail, because the Intelligent Camera
cannot perform the operation. (The first parameter, X, is out of range.)

Two Prolog+ predicates are provided that can to receive data returned by the
image processor. These access the local and global memories stored within the
Intelligent Camera and have the form m(R,V) and g(R,V). The first of these
instantiates the Prolog+ variable V to the value currently stored in the image
processor's local memory register number R. The second instantiates V to the
value stored in the global memory register R . Until recently, these were the only
means that Prolog+ had of obtaining data about images.

What we have described thus far in this section will be referred to as Very
Simple Prolog+, or VSP. Prolog+ contains far more facilities than this but the
whole of Prolog+ as described so far in this book can be written in terms of VSP.
The definition of the # operator is dependent upon the particular image processor
being used. (See [BAT-91] for more details on this operator.) For the moment, the
reader should note the following points:

(i) Repeating the # operator two or more times has the same effect as including
it once in a program. In Prolog, this is achieved as follows: # # A :- # A.
Hence, # # # # en and # # en have the same effect as # en.
(ii) # is never resatisfied on back-tracking.
(iii) For the convenience of the user, the operator @ is defined to be
synonymous with #, using the definition @ A :- # A.

en

[0].

IPP

IPP

(a)

va

[0,137].

IPP

IPP

(b)

Figure 3.14 How the Prolog+ system shown in Figure 3.12 responds to two
typical image processing goals. Data passes between the Prolog host
computer and the image processor (Intelligent Camera). Key: P, Prolog host
computer. IP, Image processor. (a) # en. The image processor returns the list
[0]. to signal “task done”. (b) # va. The image processor returns the list
[0,137] to signal “task done” and that the average intensity is 137.

3.8 Comments
The idea of integrating image processing within Prolog was conceived in the

mid-1980s. [BAT-91] Prior to that, a program providing a loose linkage between
them had been developed. The tight connection between the image processing and

 99

Prolog that is implicit in Prolog+ has a distinctively beneficial effect, which is
more significant than a mere cosmetic change. Indeed, the “ergonomics” of the
combined software package are much improved, thereby enabling the Prolog+
programmer to concentrate better upon the high-level abstract concepts specific to
the application. While it is possible to implement Prolog+ using only the ‘#’
operator within Very Simple Prolog+ (VSP), closer integration between Prolog
and the image processing software has distinct advantages, in terms of user
acceptability. The software outlined in Appendix D was developed very recently
and does not require the definition of the ‘#’ operator as a prelude to
implementing the full Prolog+ language. We should not confuse implementation
details with the fundamental requirements of the language.

A very important aspect of Prolog+ is that it retains the ability to perform
interactive image processing as a means of developing algorithms / heuristics for
machine vision applications. Since interactive image processing has been found to
be very effective in a wide variety of industrial applications, this was considered
to be an essential feature of the language. We shall return to this theme in the
following chapter, where we explain how interaction is actually achieved.

The mechanism for invoking image processing operators within Prolog+
programs has been described above. Each image processing function is executed
as a side effect of evaluating a predicate that always succeeds but is never
resatisfied on backtracking. In this respect, the image processing operators
resemble the standard Prolog printing predicates: write, nl, tab, etc. Several
Prolog+ programs have been presented. The ability to describe an object or scene
that is to be recognised in future is an important aspect of Prolog+ programming.
This allows a person to work in a natural way. The ability to use abstract symbolic
relationships in these descriptions is particularly important. A person can, for
example, define what spatial relationships must exist between objects within an
image. The ability to define predicates such as left, near, parallel and from there
develop definitions for general objects, such as “rectangles”, are particularly
valuable. The program for examining a table place setting (table_place_setting) is
a good example of Prolog+ code that would be difficult to replace by software
written in another language.

The ability of Prolog+ to define synonyms and to represent reciprocal
relationships (e.g. right and left, below and above, etc.) is valuable, since it makes
it a trivial, if tedious, task to write a program that is tolerant of human beings who
are prone to forget / ignore rules about which word to use. A brief outline of the
implementation of Prolog+ has been given in the pages above.

Several possible methods of implementing Prolog+ have been devised in the

past:

(a) Using an external hardware device for image processing. This resides
outside the Prolog host computer and is connected to it via a serial
(RS232/RS422) line. This external device may, in fact, be another computer, a
slow dedicated hardware unit, such as the Intelligent Camera, or consist of a fast
hardware accelerator, controlled by a second computer.

 100

(b) As (a), but using a fast parallel line.
(c) Using a full software implementation. More details are provided of the
software implementation in Appendix D.

4

Enhanced Intelligent Systems

Thus far, Prolog+ has been presented simply as a language for intelligent image

processing. However, this is not a book about image processing per se. Hence, we
need to place Prolog+ in its proper context, as being just one element within a
“tool box” containing a number of design aids for industrial vision systems
engineers. The integrated operating environment, surrounding Prolog+ is just as
important as the “core” language itself and forms one of four major topics
discussed in this chapter.

The second major topic in this chapter is the use of speech to control a Prolog+
system. Speech input is seen as being attractive as a means of allowing the user of
a vision system or robot, to control it, without using a keyboard. Speech input is
faster and more natural for the user than is a keyboard. In addition, speech input
keeps both hands free and is less prone to damage by dust and dirt in a factory
environment. Of course, safeguards are needed to ensure that factory noise does
not affect the speech recognition system and it may not be possible to use it at all
in a very noisy plant. Strictly speaking, speech input and natural language
understanding to accompany it, are part of the environment surrounding Prolog+.
We have separated these issues in this chapter, simply for convenience.

In the third part of this chapter, we describe various design aids and discuss
how they can be interfaced to a Prolog+ system. Among them is a so-called
Lighting Advisor, which consists of two inter-linked HyperCard stacks and
provides advice about a wide range of issues relating to the formation of a good
image, prior to image digitisation and processing. Again, the Lighting Advisor
effectively forms part of the Prolog+ environment.

The construction of loosely coupled networks of Prolog+ systems, controlled by
a single Prolog program forms our final topic in this chapter. These networks can
have as many as 32 host computers and up to 1024 cameras.

4.1 Prolog+ Environment: A Tool-box for
 Machine Vision

 102

The Prolog+ environment provides a number of enhancements, extensions and
utilities to the language described in the previous chapter and which have been
designed as aids to the design process. The extensions to Prolog+ embodied
within its operating environment include the following features:

• Library of useful programs, including several demonstrations. The latter are

intended for education and training purposes.
• Auto-starting Prolog+ when the computer power is switched on.
• Interactive operation for prototyping industrial vision systems.
• Pull-down menus, which can be extended easily by the user, without any

programming.
• Command keys, for rapid selection of certain important functions.
• Graphical display of the pose of a robot in a work cell.
• Speech Synthesis, for presenting symbolic data to a user in a natural way.
• On-line HELP and operating data display facilities.
• Cursor, used for both drawing and interactive investigation of image

structure.
• Automatic Script Generation and editing.
• Linking to other programs, including a HyperCard controller for setting up a

robot vision work cell.
• Speech Recognition, which can be used in conjunction with Prolog

programs that are capable of understanding simple English sentences about a
domain of limited scope. This topic is discussed in the following section.

• Design Aids, including a programs which gives advice about lighting and
viewing techniques.

The ideas discussed in this chapter have all been studied and proved

experimentally; Prolog+ programs have been written to substantiate all of these
ideas. Integrating these utilities into a single, harmonious environment is a major
task and, for this reason, is still under way.

4.1.1 Defining New Predicate Names

In Appendix E, we list the mnemonics for the image processing operators that
are used throughout this book. However, the use of 3-letter mnemonics may not
be to everyone's taste. Suppose that we wish to define a new name for the image
processing operator neg. This can be accomplished very simply in the following
way:
 negate :- neg.

Either neg or negate may now be used. In the same way, a 2-letter mnemonic

form may be defined:

 ne :- neg.

 103

When we wish to define a new name for an operator, such as thr, which has a
variable arity1, the situation is slightly more complicated:

threshold(X,Y) :- thr(X,Y).
threshold(X) :- thr(X).
threshold :- thr.

In the same way, it is possible to make up an entirely new image processing

language, or to translate the terms into a foreign (natural) language. Here, for
example, is a small portion of the translator for an image processor intended for
use by Welsh speakers:

mwyaf :- biggest.
ardal_gwyn(X) :- white_area(X).
anglir :- blur.

4.1.2 Default Values for Arguments

It is a simple matter to redefine the default values for arguments of Prolog+
image processing operators. Suppose that we wish to define new default values
for the operator thr:

thr(X) :- thr(X,200). % Previous default value was 255
thr :- thr(75,125). % Not defined previously
thr :- thr(128,255). % Arbitrary but useful definition

Notice that it is necessary to include one clause for each case to be considered.

4.1.3 Useful Operators

A useful “program control” operator, ‘•’, may be defined thus:

0•G.
N•G :-
 call(G),
 M is N -1,
 M•G.

This operator may be used like a FOR-loop in a conventional programming

language, since it permits the programmer to order the repetition of an operation
G. In formal Prolog terms, N•G is a goal, which either succeeds or fails. If G fails
on any of the N repetitions, then N•G will also fail. N•G succeeds if all N
repetitions of G succeed. In order to understand the value of the '•' operator, notice
that the two following definitions of process are identical in their effect:

% First definition, using the ‘•’ operator
isophotes :- % Draw smoothed intensity contours (isophotes)

1 The arity measures the number of arguments.

 104

 3•lpf, % Repeat “lpf” three times
 sca(3), % Discard 5 least significant bits (keep 3 bits)
 sed,
 thr(1).

% Second definition, repeating “lpf” three times
isophotes :-
 lpf, lpf, lpf,
 sca(3), sed,
 thr(1).

A useful non-linear filter for detecting thin dark streaks (“cracks”) and small

spots may be defined thus:

crack :-
 wri, % Save image until later
 2•(3•lnb,neg),
 rea, % Read image saved earlier
 sub. % Subtract images

This is much more compact and rather more easily understood than the

following equivalent version:

crack :-
 wri,
 lnb, lnb, lnb,
 neg,
 lnb, lnb, lnb,
 rea, sub.

The following provides a more general Prolog equivalent of the FOR-loop:

for(A,_,B,_) :- % Terminate recursion
 A > B, % Upper limit of variable exceeded
 !. % Do not progress to next clause

for(A,B,C,D(_)) :-
 call(D(A)), % Try to satisfy goal D(A)
 E is A + B, % Increment counter, ready for next loop
 !, for(E,B,C,D(L)). % Go on to next loop

A typical query using this definition is for(3,2,27, process(_)), which tries to

satisfy process(I), for I = 3, 5, 7, …, 25, 27. A Prolog+ predicate, case, roughly
equivalent to Pascal's CASE operator may be defined in the following way:

case(A,B) :-
 select_list_element(A,B,C), % Instantiate C to A-th element
 % of list B
 call(C). % Satisfy goal C

% Fail for all negative values of first argument
select_list_element(N,_,fail) :-
 N ≤ 0, !, fail.

% Finish if N is 1.
select_list_element(1,[A],A).

% What to do if we have not found the N-th element yet

 105

select_list_element(A,[B|C],D) :-
 length(C,N), % Length of the list C is N
 N > 0, % Is N > 1?
 X is A - 1, select_list_element(X,C,D).
 % Repeat until we find the element we want

% Fail under all other circumstances
select_list_element(_,_,_) :- fail.

The conditional statement if_then_else may be defined thus:

if_then_else(A,B,C) :- A,!,B. % If A succeeds, test B.
if_then_else (A,B,C) :- C. % A has failed, so test C

The simpler if_then function could of course, be defined in the following way:

if_then(A,B) :- A,!,B. % If A succeeds, test B.

However, an operator, ('->') may be defined as an alternative:

A -> B :- A,!,B.

The AND operator (&) may be defined in the following way:

op(900,xfy,'&'). % Precedence is 900 and '&' is left associative
A & B :- A, B.

The usefulness of this operator is simply that to, a naive user, '&' is easier to

interpret than ','.

The OR operator (or) may be defined in the following way:

op(900,xfy,or). % Precedence is 900 and is left associative
A or B :- A ; B.

The if operator can be helpful as an aid to user understanding. It can be defined

thus

:- op(1200,xfx,if), term_expand((A if B), A :- B)).

and can be used in lieu of the Prolog ‘:-’ operator. Here is the program picture
(see Section 3.6.1) rewritten using the & and if operators.

 picture if
 rectangle(A) &
 ellipse(B) &
 encloses(A,B) &
 text(C,'Qwerty') &
 inside(C,B) &
 print_texture(D) &
 encloses(A,D) &
 below(D,B).

 106

4.1.4 Program Library

A large number of image processing functions, device control programs, and
other utilities have been provided to augment the Prolog+ software [BAT-91].
This list is constantly being enlarged. A detailed explanation of some of these
utilities is deferred until Chapters 5 and 6, where we shall discuss the control of
lighting, electro-mechanical and various and other devices (Chapter 5) and colour
image processing (Chapter 6). A series of demonstration programs has also been
developed. (See Table 4.1.) Some of these are described in more detail in Chapter
7.

4.1.5 Auto-start

Prolog+ can be provided with an auto-start facility, by following two simple
steps:

(i) Place the Prolog+ application software, or its alias, in the “Startup Items”
folder. The MacProlog software can be located in another folder. When the
computer power is switched on, the Prolog+ software will load automatically
and will then be compiled.
(ii) A start-up goal (called startup_goal) will be initiated if we place the
following statement in the program:

‘<LOAD>‘(_) :- startup_goal.

Prolog will try to satisfy the goal startup_goal, which may be used to good
effect in a variety of ways:

(a) Automatic initialisation of a hardware implementation of Prolog+.
(b) Calibration of a robot vision system.
(c) Construction of pull-down menus. (see Section 4.1.7)
(d) Construction of a pull-down menu, used for speech recognition. (See
Section 4.2.)
(e) Automatic entry into interactive mode.
(f) Automatic entry into a dialogue with a novice user.

So far, we have assumed that the full MacProlog software is loaded on start-up.

It is possible, however, to build stand-alone applications which do not have the
full MacProlog program development environment and these can be started
automatically in the same way.

Demonstration Description
Packing 2-D objects Packs 2-D objects of arbitrary shape into a space also

of arbitrary shape.

 107

Telling the time Analyses the image of a simple analogue clock and
finds the time in the format “five to nine”, “twenty past
six”, etc.

Dissecting small
plants

Demonstrates the dissection of a small plant for
micropropagation, given a silhouette of the plant.

Playing cards Calculates the value and suit of both picture and non-
picture playing cards, using a high magnification view
of the top-left corner of each card.

Smart burglar alarm Compares image obtained from camera with one
digitised earlier. If the difference is large enough, the
program signals an intruder.

Line drawings Analyses simple line drawings and recognises parallel
lines and squares.

Dominoes Plays dominoes against a virtual robot (i.e. a person
acting as a robot). (The domino rules are for the game
3s and 5s’.) Cheating is not allowed since the program
is not clever enough to cope with devious behaviour.

Stacking boxes Imagine a stack of boxes with sell-by dates on their
sides. The program plans the actions of a virtual robot
which restacks the boxes so that they are placed in date
order.

Picking up objects Analyses simple silhouette and decides where to place
the gripper of a virtual robot. The program indicates
whether or not it would be safe to lower the gripper,
and whether the grip would be secure.

Learning shapes Learns the shapes of simple objects, such as bottles,
viewed in silhouette.

Learning colours Learns the proportions of 8 colours plus black and
white in a series of images. This program is suitable for
recognising company logos, trademarks, etc. on printed
cartons.

Table 4.1 Demonstration Programs. (See Chapter 7.)

4.1.6 Interactive Mode

We have already explained the role and importance of interactive image
processing for prototyping industrial vision systems. The following program
provides Prolog+ with an interactive facility:

interactive_mode :-
 prompt_read([‘Please specify a Prolog+ goal’],X),

 108

 not(X = end), % Exit interactive mode
 ((X = end_of_file, swi); (call(X); # X)),
 interactive_mode. % Repeat
interactive_mode. % Force the goal to succeed

The third line in the body of the first clause of interactive_mode performs the

following actions:

(a) If the user pressed the RETURN key in response to prompt_read, X is
already instantiated to the value end_of_file. The effect is to switch the current
and alternate images. (Uses the predicate swi.)
(b) If the user types a non-null character sequence (X), Prolog tries to satisfy the
goal call(X), which may or may not perform some image processing.
(c) Prolog tries to satisfy call(X) in the usual way, as if it were a normal Prolog
goal. (That is, there is no attempt to do any image processing.) Hence, call(X)
can either succeed or fail. If call(X) happens to succeed, the cycle repeats,
beginning with the software issuing another invitation to the user to type a
command.
(d) If call(X) fails, Prolog sends the character sequence defined by X to the
image processor. Two actions can follow: either the image processor performs
the operation X successfully, or it does not and the first clause fails.

4.1.7 User Extendible Pull-down Menus

Pull-down menus provide a convenient means by which the user of a computer
system may order the execution of a range of useful functions. Pull-down menus
are standard now on a wide range of popular computers and operating systems.
They are unobtrusive when they are not in use, since they occupy only a narrow
strip across the top of the computer screen. A single menu heading may allow
access to a large number of “hidden” commands, which the user does not have to
remember in order to use them properly. Since it is possible to organise
hierarchical pull-down menus in MacProlog, it is conceivable that several hundred
items could be made available via pull-down menus.

The following menu headings are normally visible in LPA MacProlog: “File”,
“Edit”, “Search”, “Windows”, “Fonts” and “Eval”. Thus, there is plenty of
room, across the standard Macintosh screen, to add several more menus to support
Prolog+. As many as ten special-purpose menus (with single-character headings)
can be fitted onto a computer with a standard-size screen. If space allows, the
authors recommend the following menu headings for a Prolog+ system:

• Utility (for a variety of system-related functions).
• Process (for image-image mapping functions).
• Analysis (for image measurement and analysis functions).
• Device (for controlling external devices such as lights and a pick-and-place

arm).
• Table (for controlling an (X,Y,θ)-table, or Robot).

 109

• Speech - Optional. (Used in conjunction with the speech recognition system.
See Section 4.2.)

To save space on small-screen computer monitors, it may be more convenient to

use only the initial letters of the menu names, viz. “U”,“P”, “A”, “D” and “T”
and these are the ones we shall use hereafter. Alternatively, special-purpose
menus can be accommodated, simply by deleting one or more of the standard
MacProlog menus. For example, the "Fonts" menu can safely be deleted, while
the functions provided by the "Windows" menu can be performed in other ways. It
is also possible to develop programs without the "Search" menu, though this is a
little awkward in practice. It is unwise to delete or alter any of the other standard
MacProlog menus. By using short names for menu headings (e.g. single letters),
several more application-specific menus could be provided for Prolog+. To
provide even greater choice, hierarchical menus can be used in MacProlog. For
example, the ‘Colour’ sub-menu discussed in Chapter 6 is a fixed sub-menu,
appearing under the menu headed “Utility” or simply “U”. (Figure 4.1(b).)

In the standard Prolog+ software, the "P", "A”, "D” and “T” menus are all
empty initially. The "U" menu, though not empty, is quite short, with only a few
entries. (Figure 4.1(a)) The "Extend menu" option under this menu allows the user
to add items to any of the "U", "P", "A", "D” and “T” menus. The dialogue for
doing this is illustrated in Figure 4.2. Figures 4.3 to 4.6 show menus that have
been developed in this way.

Mechanism for Extending Menus

Adding new items to a menu can be achieved using the MacProlog built-in
predicate extend_menu. In the Prolog+ software, the tedium of choosing suitable
arguments for extend_menu is avoided by the use of a pull-down menu. The
following program defines what action follows the user selecting the item “Extend
menu” under the “U” menu. Using this facility, he is able to extend any one of the
user-defined menus: “U”, “P”, “A”, “D” or “T”. (The “S” menu is rather
different in both form and function and is not intended primarily for use with the
computer mouse. It is provided instead as a convenience, enabling the speech
recogniser to operate properly. More will be said about the “S” menu in Section
4.2.)

% This clause is satisfied when the user selects “Extend menu”
% under the “U” menu.
'U'('Extend menu') :-
 scroll_menu(['Which menu do you wish to extend?'],
 ['U','P','A','D','T'],[],Z), [Y] = Z,
 prompt_read(['What is the name of the item you wish to add to
 the ', Y, ' menu?'],X),
 prompt_read(['What goal do you wish to be associated with the
 item ', X, ' in menu ',Y,' ?'],W), extend_menu(Y,[X]),
 assertz(menu_item(Y,X,W)).

 110

(a)

(b)

Figure 4.1 The "U" (Utility) menu. (a) The top part (above “Initialise sound
replay system”) is fixed. The lower part of the menu was added using the
“Extend menu” facility. (b) The top part of the “Colour” sub-menu.

 111

(a)

(b)

(c)

Figure 4.2 Dialogue for extending the menus. (a) User selects which menu is
to be extended (b) User names the new menu item, (c) User defines what
action is to follow when that menu item is selected.

Figure 4.3 Extended “P” (Process) menu.

 112

Figure 4.4 Extended “A” (Analysis) menu.

Figure 4.5 Extended “D” (Device) menu.

The effect of satisfying 'U' ('Extend menu') is to assert one additional clause for

menu_item. (The reader will recall that assert adds the new clause to the program
immediately after all of the others already existing.) Notice that menu_item must
be defined in a data window, otherwise it will not be retained when the user quits
MacProlog. The following are typical entries in the “New Menus” window
created by 'U' ('Extend menu').

menu_item('P', 'Equalize histogram', heq).
menu_item('P', 'Sobel edge detector', sed).
menu_item('A', 'Centroid', cgr(_,_)). % Values are printed by “cgr”

 113

Figure 4.6 Extended “T” (Table) menu.

The newly added menu item is available for immediate use. However, it is

necessary to build the user-defined menus whenever the Prolog+ system is
(re)started. This can be achieved by satisfying the goal build_menus.

build_menus :-
 menu_item(A,B,C), extend_menu(A,[B]), fail.
build_menus.

To build the user-defined menus automatically, it is possible to use either

:- build_menus. % Build the menus after compilation

or

'<LOAD>'(_) :- build_menus.
 % Build menus after loading Prolog+ software

There is one final addition needed to the Prolog+ software: we must incorporate

a set of program segments like that following, in order to define what action
follows when a user-extended menu item is selected.

% What to do when item X is called from the “U” menu
'U'(X) :-
 menu_item('U',X,Y), % Consult the database for new menu item
 call(Y). % Satisfy the appropriate goal, Y

Similar definitions are needed for each of the other menus: “P”, “A”, “D” and

“T”.

4.1.8 Command Keys

Pull-down menus are particularly useful for novices but are not always popular,
particularly with very experienced computer users. To accommodate such people,
the Prolog+ software is provided with a set of Command Keys. (See Table 4.2.)

 114

Key Function
A Select all text in active window *
B Balance parentheses *
C Copy highlighted text to clipboard *
D Find definition of predicate with name specified by highlighted text *
E Find another copy of character sequence highlighted *
F Find selected text *
G Digitise (grab) an image (Standard MacProlog facility disabled)
H Get HELP for Prolog+
I Get information *
J Plot colour scattergram (See Chapter 6)
K Compile *
L Display live video on monitor
M Extend menu
N Start / Restart Prolog+ system
O Switch current and alternate images
P Purge the I/O port of all data
Q Not assigned
R Replace and find text *
S Select window *
T Transparent (or interactive) mode
U Repeat last query *
V Paste *
W What to find *
X Cut highlighted text *
Y Window details *
Z Undo last editing change *
/ Help (MacProlog)
1 Record command in Journal window
2 Clear Journal window
3 Initialise sound replay system
4 Reset colour processing system (See Chapter 6)
5 Standard colour recognition filter (See Chapter 6)
6 Display one image (for photographic recording of results)
7 Display live image on colour monitor
8 Switch pseudo-colour display OFF (See Chapter 6)
9 Switch pseudo-colour display ON (See Chapter 6)

zero (0) Learn coloured objects (See Chapter 6)
period (.) Stop goal satisfaction
equals (=) List named predicate
minus (-) Cursor on

Table 4.2 Prolog+ command keys. To perform one of the operations listed
above, the user presses the corresponding key, at the same time as holding the

 key down. Notice that asterisk (*), denotes a standard MacProlog key
command.

 115

4.1.9 Graphical Display of a Robot Work Cell

Apart from image processing, Prolog+ is often used for controlling a robot or
(X,Y,θ)-table. In Chapter 5, we shall discuss this topic again. For the moment, we
shall simply assert that there is an outstanding requirement for a graphical display
of a robot work cell. A drawing showing where the robot / table is and which
lights are ON / OFF is all that is needed.

The use of HyperCard graphics for simulating a so-called Flexible Inspection
Cell (FIC) is illustrated in Figure 4.7. The artwork was prepared using MacDraw
and imported into HyperCard. It is possible to generate animated image sequences
using HyperCard, which makes the construction of a controller for the FIC easy to
achieve. HyperCard graphics does not, however, possess the ability to generate
realistic-looking representations of 3D objects.

Figure 4.7 HyperCard graphics. The diagram shows a pneumatic pick-and-
place arm, which forms part of the flexible inspection cell. (Also see Figure
4.8.) When the user clicks on one of the buttons, the arm moves to a new
position and the diagram changes accordingly.

The particular arrangement shown in Figure 4.8 consists of an array of

computer-controlled lights, a laser light-stripe generator, a pattern projector, a
pneumatic pick-and-place arm, an (X,Y,θ)-table and four video cameras. Prolog+
programs are used to control the real FIC. Later, we shall see further examples of
HyperCard graphics, used in the FIC controller. Throughout the remainder of this
book, we shall discover that the FIC / Prolog+ combination provides a very
versatile platform for studying and prototyping a wide range of inspection and
robot guidance tasks. The Flexible Inspection Cell was developed in response to a

 116

realisation that traditional machine vision methods are not economic for
inspecting products that are made in small batches (fewer than about 104 items /
batch). The design and construction of the FIC hardware has taken place over a
period of years, in parallel with and motivating the development of Prolog+. A
detailed description of the function, control and use of the FIC will be deferred
until Chapter 5.

Figure 4.8 HyperCard controller for the Flexible Inspection Cell. Lamps are
denoted by circles. Notice that some are ON (lamp symbol appears). The
buttons on the left allow the user to set up a complex lighting pattern using a
single mouse click. The dark button labelled “Pick & place” causes
HyperCard to display one of a number of cards like that shown in Figure 4.7.

4.1.10 Speech Synthesis and Recorded Speech

Speech synthesis is valuable both as an aid to understanding the operation
(“flow”) of a Prolog program [BAT-91] and in providing a natural form for a
human being to receive certain types of data. For some years, a speech synthesis
package has been available for use with MacProlog. Another version, capable of
working under the System 7 operating system, has been developed recently by
McGowan, at Dublin City University. [MCG-94] The more recent development is
based upon the standard Macintosh facility known as Speech Manager. This
imposes certain restrictions: the most notable being that it can cope with strings of
length not exceeding 256 characters. Several utilities for configuring the speech
synthesiser were devised by McGowan and can conveniently be operated using a
pull-down sub-menu, located beneath the “U” or “Utility” menu. Prior to using

 117

the speech synthesiser, it is necessary to choose certain voice characteristics, such
as pitch and speaking rate.

Any synthesiser which generates speech for the English language must be able
to cope with non-phonetic spelling. For this reason, a dictionary is often used to
convert a phrase like “Hello Sean. It is Tuesday, so you buy some bread” to
“Hello Shawn. It is Chewsday, so you should by some bred”.

An alternative, approach is to write all phrases that are to be spoken in phonetic
form. This makes the program more difficult to write, since phrases that are to be
spoken have to be to expressed in an unfamiliar “alphabet”. McGowan’s software
provides a convenient facility which assists the user to convert standard English
words into phonetic form and then generate utterances for both forms. In this way,
the user can fairly quickly obtain a reasonably natural spoken phrase to convey
the meaning he intends. A single Prolog+ predicate, speak(X) is all that is needed
to operate the speech synthesiser, once it has been initialised. The variable X is
instantiated to a text string.

An industrial vision system could make good use of speech output to report its
status and results. However, this must be used with great care and consideration
for the user, because any system (or person) that talks incessantly can be very
irritating indeed. The situation is made even worse by the fact that a synthesised
voice is imperfect, sounding “tinny”, and may well have a disagreeable accent. An
inspection system that tells the world, via a loudspeaker, that the objects it is
examining have all been found to be satisfactory would quickly annoy anyone
standing nearby. On the other hand, a system that can quickly and succinctly
summarise its own performance, on demand, would be much more useful. Such a
system should be able to list the defect types found during, say, the last hour of its
operation, the number of each defect type and possibly a small number of
suggestions for corrective action that might be appropriate.

While speech synthesis is very versatile, the quality of the output is low and
irritates some users, particularly in situations where a relatively small number of
utterances are repeated often. In such cases, it may be better to replay pre-
recorded spoken messages. MacProlog can achieve this in a straightforward way,
although the details will not be given here.

4.1.11 On-line HELP

The provision of on-line HELP facilities is, of course, a major feature of much
of the better commercial software available today. Effective interaction is fast!
Hence, good HELP facilities are of special importance for an interactive image
processing system, which is driven by a command-line interpreter and has a large
repertoire of image processing operators. It is important, for example, that the user
should be able to find what parameters are required by a given predicate, with a
minimum of effort and delay. The significance of each parameter, its allowed
range of variation and default values are all needed. In addition, the HELP
facilities should provide a detailed description of what each command does and
the type of image on which it operates. For these reasons, Prolog+ has been
provided with two different HELP facilities:

 118

(i) When the user depresses the ‘ ‘ and ‘=‘ keys simultaneously, a dialogue
box is displayed inviting him to type the name of a Prolog+ predicate. When he
does so, the listing of that predicate is presented in the default output window.
(ii) When the user depresses the / H keys simultaneously, a dialogue box is
displayed inviting him to specify the name of an image processing command.
The effect is to display a full description of the command, its use (i.e. suitable
types of images, the effect, range and default values for each its parameters).
(Figure 4.9) The user is also invited to choose a suitable stored test image, so
that he can see the effect of that command for himself. Alternatively, he may
elect to apply the operator to the current image. He is able to use either default
values for the operator’s parameters, or values specified by him. In this way, a
close connection is maintained between the HELP facility and interactive image
processing.

(a)

(b)

Figure 4.9 User HELP window (a) User initiated the HELP facility using

/H. The window shown here invites the user to select which group of
commands he wishes to peruse. (b) User selected the eu command, within the
enhance group of commands. The text shown here relates to the Intelligent
Camera implementation of Prolog+.

4.1.12 Cursor

It is important that the user should be able to investigate the intensity values in
certain parts of the image he is viewing. Of course, a mouse, or track-ball, is
especially convenient for this. The Prolog+ cursor function is provided by the
predicate cur(X,Y,Z). Initially, all three of its arguments are uninstantiated. As the
user moves the cursor over the picture being investigated, the X- and Y-co-
ordinates are displayed in the output window, together with the intensity at that
point. To exit the cursor, the user simply double-clicks the mouse button. The
effect is to instantiate X, Y and Z, which can then be used in a Prolog+ program.

 119

To illustrate this, we present a short program which allows the user to select a
bright point in the Hough Transform of a given image, reconstruct the straight line
whose slope and intercept are defined by the co-ordinates of that point and then
superimpose the line on the original image. This is the inverse Hough Transform
method mentioned in Section 2.6.1.

interactive_hough_analysis :-
 wri, % Save the input image (binary)
 hough, % Hough transform
 message(['Use cursor to select a peak in Hough transform
 image, visible now']), % Message for the user
 cur(A,B,_), % Cursor
 reconstruct_line(A,B), % Draw a line with slope A &
 % intercept B
 rea, % Recover input image
 max. % Superimpose onto original figure

This predicate is particularly useful for interactively investigating the

significance of the various peaks in the Hough transform image, which is often
quite complicated in form. Objects in a binary image can be selected easily using
the cursor. To do this, we need to use a Prolog+ predicate which shades blobs in
some way. For example, we may use an operator (shade_blobs in the program
below), which shades each blob according to its size. The blob with the greatest
area is the brightest, the second biggest blob is the second brightest, etc.

% The following predicate isolates the blob ranked A out of a total
% of B blobs.
isolate_blob(A,B) :-
 count_blobs(B), % Count the white blobs in the image
 shade_blobs, % Shade blobs (e.g. according to area)
 cur(_,_,A), % User chooses one of the blobs
 thr(A,A). % Blob is isolated

The cursor is also useful for such tasks as drawing polygons around objects of

interest in a grey-scale image. These objects can then be isolated, by simple image
processing. Here is the program for drawing a convex polygon around a number
of points defined by the user:

% The first clause is used simply to set up the results image
draw_polygon(A) :-
 keep, % Save input image for use later
 zer, % Draw black image
 wri, % Save it
 draw_polygon([],A). % This bit does the real work

draw_polygon(A,B) :-
 fetch, % Recover input image
 cur(X,Y,_), % Interactive cursor
 rea, % Get results image
 vpl(X,Y,X,Y,255),
 % Add the point found to the results image
 chu, % Draw the convex hull
 blb, % Fill it (make it a solid white figure)
 wri, % Save it again
 bed, % Binary edge detector
 fetch, % Get original image again

 120

 max, % Superimpose polygon onto original figure
 yesno([‘Do you want to add any more points?’]),
 draw_polygon([[X,Y]|A). % Repeat operation.

draw_polygon(A,A). % Everything done.

Of course, it is a straightforward matter to write predicates which draw an

“open” polygonal curve, or a “closed” hollow polygon.

4.1.13 Automatic Script Generation and Optimisation

We have taken considerable pains in the earlier pages to explain that the use of
interactive image processing is invaluable as a step towards discovering /
developing a prototype algorithm for a given inspection task. A command
recorder has been developed which allows the user to keep track of what he has
typed during an interactive session and thereby develop programs with a
minimum of effort. The program requires only a minor change to
interactive_mode and hence need not be discussed in detail.

Quite a simple Prolog program is able to prune an algorithm search tree, to
eliminate “dead” branches. This program is based upon the idea of data
inheritance. To understand this term, recall that each image processing command
transforms the current, alternate and stored images in a predictable way. For
example, the command neg generates a new current image from the previous
current image. Meanwhile, the new alternate image is also derived from (i.e. is
identical to) the original current image. Other commands behave in a different
way. Figure 4.10 illustrates, in graphical form, some of the different types of data
inheritance that the Prolog+ image processing primitives possess. (The situation is
simplified slightly, for the sake of clarity, but these details need not concern us
here.) Figure 4.10(c) shows how data inheritance flows in a command sequence
generated during a sample interactive image processing session. Notice the “dead
branch” which does not alter the final outcome in any way and can safely be
removed by pruning. As we indicated earlier, it is possible to write a simple
Prolog+ program to prune a given command sequence, derived from the
interactive image processor. The program relies upon the similar ideas to those
written into the ancestor relationship used in analysing family trees and hence
requires no further explanation here.

4.1.14 Linking to Other Programs

Thus far, we have emphasised the use of Prolog as the host language for image
processing, although we have taken care to avoid suggesting that we should
manipulate individual pixels at this level. There are, of course, occasions when
some language, or application software package, other than Prolog is more
appropriate. For example, we might want to use a spreadsheet, or a user-generated
C program to implement certain functions that Prolog cannot do easily.

 121

It is possible to interface LPA MacProlog to both C and Pascal programs and
this facility is well documented elsewhere. [MCG-94] Interfacing MacProlog to
these two languages is fairly straightforward, using the System 7 operating system
software of the Macintosh computer. One possible interface for inter-application
communication on the Macintosh range of computers uses AppleEvents. An
AppleEvent is a message sent by one application to another, enabling data and /
or commands to be transmitted. In theory, it is possible to communicate between
any two applications which support AppleEvents, including MacProlog, Pascal,
C, HyperCard, Excel, Lisp and LabView. In order to illustrate the general
principles, we shall describe how a HyperCard stack can be used to communicate
with MacProlog.

Image save
(wri)

Image read
(rea)

Image switch
(swi)

Transparent
(e.g. gli, avr)

Dyadic
(e.g. add, sub)

Monadic &
local operators
(e.g. lpf, sed)

Image
generation

(e.g. zer, wgx)

Image
digitsation

(grb)

(b)

C0 A0

C1 A1D

Time

Backing
store(a)

grb

wri

lpf

lpf

lpf

sub

rea

rea

sed

thr

Redundant
branch

(c)

Figure 4.10 Data flow during interactive image processing. (a) Explaining the
terminology. The squares labelled C0 and A0 represent the current and
alternate images respectively, just prior to the execution of an image
processing command. C1 and A1 represent the same images after execution.
D represents an image stored either on disc or in “scratch-pad” (RAM)
memory. (b) Data flow models for different kinds of image processing
functions. (c) Data flow diagram for a short image processing sequence.
Operations which affect the final result are indicated by shaded squares.
Notice that the sub-sequence [lpf, lpf, lpf, rea, sub] can safely be deleted,
since it does not influence the final result.

Hypercard Controller for a Flexible Inspection Cell

As we have already explained, the Flexible Inspection Cell consists of an array
of twelve different lighting units (including a pattern projector and a laser), an
(X,Y,θ)-table and a pick-and-place arm. (see Figure 4.8) The FIC at Cardiff

 122

currently has four different cameras. Setting up the cell is difficult for a
command-based system, so a HyperCard application (called a stack) was
developed for this purpose. A very convenient software mechanism for interfacing
MacProlog and Hypercard has been developed by Stephen Cooper (formally of
Uppsala University) and is used as the basis of the controller for the FIC. This
interface software uses AppleEvents for signalling between Prolog and Hypercard
and has allowed the authors and their colleagues to develop an integrated software
environment for setting up and controlling the FIC.

Figure 4.11 shows a series of typical HyperCard screens for controlling the cell.
(Also see Figure 4.8) Notice that the user is able to instruct the FIC to perform
certain functions, simply by clicking on hot boxes: buttons. The FIC hardware can
receive its control signals in one of four ways, (a) directly from Prolog, (b) from
Prolog, via HyperCard, (c) from HyperCard, via Prolog and (d) directly from
HyperCard. Eventually, the first option was selected as being the most convenient
and reliable.

More will be said about this HyperCard stack in the following chapter. Let it
suffice for our present discussion to note that one of the (HyperCard) cards is able
to issue commands (i.e. goals) to Prolog+. (See Figure 4.11(b)) Clicking on the
HyperCard button labelled “cgr” has exactly the same effect as typing the
Prolog+ query cgr(X,Y). When the user clicks on this button, the following
sequence of events occurs:

(i) HyperCard sends an AppleEvent specifying the goal “grb” to MacProlog.
(ii) The goal cgr(X,Y) is satisfied in the usual way, by Prolog. This instantiates
X and Y.
(iii) The values of the newly instantiated variables are returned to the
application which originated the AppleEvent query (i.e. HyperCard).
(iv) The values of X and Y are available within HyperCard, for display or
performing further calculations.

It is possible to specify numeric values using a “slider”. (See, for example, the

button labelled “Par.” in Figure 4.11(b).) Among its other functions, the slider
enables threshold parameter values to be specified. In addition, it can be used to
determine the amount by which a picture is to be shifted (Prolog+ psh command),
or the increment to the intensity values. (Prolog command acn.) The screen shown
in Figure 4.11(b) was provided as a utility, enabling a person to set up the FIC and
then perform a small amount of image processing, without needing to think in
terms of Prolog+. The user can switch easily between the HyperCard control stack
and Prolog+.

 123

(a)

(b)

Figure 4.11 HyperCard controller for the Flexible Inspection Cell. (a)
Controlling the (X,Y,θ)-table. The user has access to both coarse and fine
controls (upper and lower bars) for each axis, labelled X,Y and T. The table
movements are specified in both absolute units (millimetres) and as
percentages of total travel (Px, Py and PTheta). (b) Controlling the image
processor. The user has access to a range of image processing functions,
simply by clicking on the appropriate button. Where the button label is
followed by a question mark (e.g. psy?) the image processing function
requires a numeric parameter, which is determined by the position of the
slider on the right.

 124

A button (in HyperCard) can be provided which automatically loads the
MacProlog / Prolog+ software, or bring Prolog+ to the foreground. Similar
facilities have been provided within Prolog+, for automatic loading of HyperCard,
or switching to that application. The intention when designing this facility was to
make the user feel that he is dealing with an integrated, “seamless” package. Thus,
the HyperCard FIC control software is effectively part of the Prolog+ operating
environment, as far as the user is able to judge.

4.2 Understanding Simple Spoken Instructions
Speech input has several attractions as a means of controlling industrial

systems. It is faster, potentially more accurate and is certainly more natural for the
user than a keyboard. In addition, speech input keeps both hands free and the
equipment is less prone to damage by swarf, dust, dirt and splashes, all of which
abound in a typical factory environment. Of course, safeguards are needed to
ensure that noise does not disturb the speech recogniser. Indeed, it may not be
possible to use it at all in a very noisy environment. Nevertheless, there are many
situations where speech control could be advantageous, if used sensibly. It is not
our intention to explore these possibilities here, merely to investigate the
technology

Speech input and natural language understanding form part of the broad
environment in which Prolog+ operates and hence discussion of this topic could
have taken place within the previous section. We have separated these issues,
since our discussion of speech input involves a good deal of technical detail. The
reader who wishes to skip this section, can do so in the knowledge that the
Prolog+ language, which was, of course, developed initially as a tool for image
processing, is also able to cope with the requirements of acquiring data using
speech / natural language input. The user interface which we shall describe in this
section, is fairly modest in its level of sophistication, being typified by the
dialogues needed for controlling the position of an (X,Y,θ)-table, or moving the
pieces around on a chess board. Compared to modern techniques for
understanding Natural Language, our programs may seem naive but are certainly
feasible in practice. The authors have deliberately aimed at producing a practical,
realistic method for receiving and acting upon spoken commands.

4.2.1 Speech Recognition

There are several speech recognition systems available for users of modern
desk-top computers. The remarks in this section relate to just one of these: the
Voice Navigator II system (VN), manufactured by Articulate Systems, Inc. (99
Erie Street, Cambridge, MA 02139, USA). This is a hardware-software system
which is connected to a Macintosh computer, via its SCSI port. A software
version is also available for use with the more modern “AV” family of Macintosh
computers, which have a speech input facility.

 125

 It is important to emphasise that the VN system is only able to recognise words
that are spoken in isolation; it cannot accommodate continuous speech, although
some more modern systems do boast this facility. Being restricted to speaking in
isolated words is, of course, unnatural and slower than speaking normally. While
the VN system has a vocabulary limited to 200 words, it is possible to perform
“context switching”, using a spoken command to select and load a new dictionary
file, appropriate for a different subject (same speaker), or a different speaker
(same / different subject). Thus, one user (suppose his name is Bruce) can work
with a vocabulary of 200 words, one of which is Paul. When Bruce says “Paul”,
the system loads Paul’s dictionary file. Paul now takes over the control of the
system, and has a working vocabulary of 200 words, one of which is “Bruce”.
When Paul says “Bruce”, the original dictionary is reloaded and Bruce is able to
use the system again2. An alternative scheme of operation is for a single user to
have different dictionaries, corresponding to different subjects of discourse. For
example, a single user might have four separate dictionaries for controlling the
lighting, camera, (X,Y-θ)-table and image processor. While these perform entirely
separate functions, it is possible to switch from, say, the lighting dictionary to the
dictionary for controlling the (X,Y-θ)-table, simply by saying “table”. The user
would be able to switch back again, by saying “lights”, or move on to operate the
image processor, by saying “image”.

It is easy to train the Voice Navigator II System to respond to a speech
command, so that it will have the same the effect as choosing an item appearing
under one of the pull-down menus. Thus, the VN system provides an alternative
to normal mouse-operated selection of menu items. (Other modes of operation are
possible but are not relevant to our present discussion.) The VN system can
operate with any pull-down menus, including system menus, menus created by
application software (e.g. MacProlog), and menus programmed by a Prolog+ user,
with the "Extend menu" option described in Section 4.1.7.

Suppose that the user wishes to order the Prolog+ system to calculate the
convex hull of a blob in a binary image and that a pull-down menu has been
created, which contains the term “Convex Hull”. When training the VN system,
the speaker is invited to say the phrase “Convex Hull”. This process is repeated a
total of three times, allowing the system to estimate the range of variation in the
speaker’s voice. Now, the user might choose to say “Convex Hull”, or to utter
some other phrase, such as “Rubber Band”, or “Smallest Polygon”. As long as he
is consistent, the VN system is able to trigger the action associated with the pull-
down menu item “Convex Hull”, whenever that phrase is spoken in the future.
The authors have trained the VN system to respond to a range of spoken
commands, such as those listed in Table 4.3.

2 If a speaker that is not known to the VN system tries to use it, the results will

be very disappointing. There is no effective short-cut which avoids training the
system properly.

 126

a an and
anticlock_wise by clock_wise
degrees down down_wards
eight eighteen eighty
eleven empty_list fifteen
fifty five forty
four fourteen hundred
i inches left
left-wards mm move
nine nineteen ninety
one pixels platform
please reposition right
right_wards rotate seven
seventeen seventy shift
six sixteen sixty
stage table ten
that the thirteen
thirty three to
transfer translate turn
twelve twenty two
up up_wards will
xy-table you zero

Table 4.3 Vocabulary used to by the speech recognition system to control an
(X,Y,θ)-table. These are the terminal symbols used in the grammar defined in
Section 4.2. The control terms (“Begin”, “End”, “Cancel”, “Kill”) are not
included in this table.

It is possible to perform a limited set of image processing functions, without

touching the keyboard. Greater sophistication is needed, if numeric parameters are
to be specified for such commands as thresholding, shifting and rotating images.3
More will be said later in this section about using speech recognition in
conjunction with a Prolog+ program, to control the position of the (X,Y,θ)-table
in an FIC. Several features of the Voice Navigator II system make it awkward to
use in practice:

(a) Homophonous words, such as “to”, “two” (numeral 2) and “too” have to
be identified before the grammar rules are written, since they are
indistinguishable to the speech recognition system.
(b) There is no facility for using synonyms. Thus, “rubber band”, “convex
polygon” and “smallest polygon” must all be included explicitly in the pull-

3 A few minutes’ thought will show that the way that the integers 0 - 1,000 are

expressed in English requires the definition of a non-trivial grammar. The analysis
of phrases representing the integers is well within the capabilities of the Definite
Clause Grammar (DCG) notation of Prolog, as we shall see later.

 127

down menus, if we wish to have the freedom to utter any one of these three
terms. Synonyms are especially important in view of point (c).
(c) There is no record / replay facility, to remind the user what spoken phrase he
used when training the VN system. For example, it is very easy for the user to
forget that he said “rubber band”, rather than “convex polygon” or “smallest
polygon”, since they are conceptually associated with each other.
(d) It can only respond properly, if the utterances it receives consist of well-
pronounced isolated words.

4.2.2 Natural Language Understanding

Let us discuss how speech recognition can be used in conjunction with a Prolog
program that is able to understand a simple form of Natural Language (English).
Consider the limited task of controlling an (X,Y,θ)-table which moves in response
to spoken commands. The vocabulary needed to accommodate all user utterances
that could reasonably be expected as commands for moving the table consists of
less than 200 words. Table 4.3 lists some of the terms that we might encounter.
(This list contains 66 items and was compiled from a set of Definite Clause
Grammar (DCG) rules defining acceptable commands to an (X,Y,θ)-table. These
grammar rules will be discussed in detail later.) First however, we shall describe
how the vocabulary defined by a set of grammar rules can be found. This is an
essential step, before we can discuss how sentences are developed using the
speech recogniser.

4.2.3 Automatically Building a Pull-down Menu

The following Prolog+ program automatically generates a pull-down menu
(called the “S” menu), containing all of the terminal symbols used in the
definition of a given grammar. Terminal symbols are those terms enclosed
between square brackets in a set of grammar rules and collectively define the
vocabulary used in conjunction with the grammar rules.

% Top level predicate for building the “S” menu
speech_terms :- menu_builder(0,[]).
 % Do not confuse with “build_menus”

% Searching the DCG window for terms between square brackets: e.g.
% [term]
menu_builder(N,A) :-
 wsearch('DCGs','[',N,X,Y),
 % Search for string beginning with ‘[‘
 wsearch('DCGs',']',Y,Z,_), % End of string, denoted by ‘]’
 X1 is X + 1,
 wsltxt('DCGs',X1,Z,Q),
 % Select text between ‘[‘ and ‘]’
 ((Q = '', R = empty_list); R = Q), % Ignore empty lists
 !,
 menu_builder(Z,[R|A]).
 % Repeat until window search complete

 128

% Add control terms. See note immediately following the end of this
% clause
menu_builder(_,L) :-
 append([begin,end,cancel,‘X’],L,A),
 % Adding control terms to menu
 sort(A,B), % Sort menu items in alphabetical order
 kill_menu('S'), % Delete any previous offerings
 install_menu('S',B). % Install menu S using terms in list B

The second clause of menu_builder adds the following control terms to the “S”

menu.

begin end cancel kill ‘X’

Thus, far, the “S” menu does nothing. In order to correct this, we must add the

following items to our program:

'S'(begin) :- remember(sentence,[]),writenl('Please speak to me').

/* Notice that we could use the speech synthesiser here, to tell
the user what to do. In this case, the following clause should be
used instead of that immediately above.
'S'(begin) :- remember(sentence,[]),speak('Speak to me slowly and
clearly'). */

% What to do when the term “end” is selected from the menu.
'S'(end) :-
 recall(sentence, Z), % Recall sentence
 writeseq(['The sentence given was:~M',Z]),
 phrase(sentence,Z), % Apply the parser
 writenl('and was parsed successfully and the instruction
 obeyed').

/* What to do when the input sentence was not understood and cannot
be obeyed. Again, we could use speech synthesis here to good
effect. */
'S'(end) :- writenl('but was NOT understood').

/* What to do when the term “cancel” is selected from the menu.
Notice that this deletes the latest word that was added to the
partially developed sentence . */
'S'(cancel) :-
 recall(sentence, Z), % Recall partial sentence
 reverse(Z,Z1), % Reverse list
 Z1 = [_|Z2], % Omit head
 reverse(Z2,Z3), % Reverse list again
 writeseqnl(['Sentence has been reduced to:',Z3]),
 % Tell the user
 remember(sentence,Z3). % Remember rest of the sentence

/* What to do when ‘X’ is selected from the “S” menu. (The user
might, for example, want to enter a number or an unpronounceable
data item (e.g. a product code), via the keyboard.) */
'S'('X') :-
 prompt_read(['Enter a valid Prolog term, please'],X),
 recall(sentence,Y), % Recall partial sentence
 append(Y,[X],Z), % Add new term to sentence
 remember(sentence,Z). % Remember enlarged sentence

% What to do when anything else is selected from the “S” menu

 129

'S'(X) :-
 recall(sentence,Y), % Recall partial sentence
 append(Y,[X],Z), % Add new item to the menu
 remember(sentence,Z). % Remember enlarged sentence

It is possible to select items from the pull-down menu in the normal manner,

using the mouse, or by speech control, via the Voice Navigator hardware. The
“S” menu is intended for use with speech recognition hardware but, if this is not
available, the ideas can be tested, almost as effectively, using the mouse. It is
possible to build up sentences by selecting terms from the “S” menu, starting with
begin and finishing with end. The sequence of operations is as follows:

(i) The user selects begin. This has the effect of clearing the input buffer, as a
prelude to receiving further data.
(ii) The user selects one of the terms in the “S” menu. As each item is selected,
the term is added to the buffer. In this way, a sentence is gradually built up,
word by word.
(iii) At any time, the user can select the term cancel to delete the term added
most recently.
(iv) Selecting kill causes the program to terminate and thereby ends the
dialogue; the partially completed sentence is discarded.
(v) The user selects end. This has the effect of passing the sentence just entered
to the parser. This checks that it conforms to the grammar.
(vi) Assuming that the sentence entered by the user is accepted by the parser, a
second program extracts the relevant meaning. In the next section, we shall
illustrate how this can be done for the task of operating an (X,Y,θ)-table.

4.2.4 Understanding NL Commands for an (X,Y,θ)-table

In a little while, we shall present set of grammar rule that was devised
specifically for controlling an (X,Y,θ)-table. However, before we do so, we shall
briefly explain an important feature of MacProlog that we will be needed to
understand the meaning of a command. Consider the following grammar rule:

 subject1 --> article, adjective, noun.

The states that phrase may be replaced by article, followed by adjective,
followed by noun. (We need not bother here with the precise definitions of the
terms article, adjective, and noun, whose general meanings are obvious.) To
verify that a given word sequence S conforms to this grammar, we simply apply
the Prolog+ parser, phrase:

 phrase(subject1,S,_) % We can safely ignore the
 % third argument here

This is a standard Prolog goal and either succeeds or fails, in the usual way. Let

us assume that phrase(subject1,S,_) succeeds. Now, consider the modified
definition, in which we have added a term enclosed within brackets, {……}.

 130

 subject2 --> article, {goal}, adjective, noun

The term in brackets is evaluated as a Prolog goal during the parsing of

subject2; the goal phrase(subject2,S,_) will only succeed if goal succeeds and
subject2 conforms to the given grammar. By embedding portions of Prolog code
in the middle of language-rule definitions, we are able to extract meaning, as we
are about to see. Here is the promised grammar for commands which operate an
(X,Y,θ)-table:

% Grammar rules for the (X,Y,Theta)-table
sentence --> table_command.
sentence --> lighting_command.
 % Possible extension - not defined here
sentence --> arm_command.
 % Possible extension - not defined here
table_command -->
 {remember(parser_output,[])},
 % Prolog goal. Store [] in property
 % “parser_output”
 courtesy, motion, table1, direction, amount.
 % Basic grammar rule

% It is always best to respond to politeness!
courtesy -->
 [] | % No courtesy at all
 [please] | % Simple courtesy: “please”
 [will] , [you], [please] | % A bit more elaborate
 [will],[you] |
 [please], [will], [you] |
 [i], [X], [you], [to] | % Example: “I want you to”
 [i], [X], [that], [you]. % Example: “I demand that you”

% Verbs: Defining motion
motion --> [shift] | [move] | [rotate] | [turn] | [reposition] |
[transfer] | [translate].

% Noun phrase
table1 --> [] | article, table2.

% Synonyms for “table”
table2 --> [table] | [platform] | [xy-table] | [stage].

% Articles
article --> [] | [a] | [an] | [the].

% Directions
direction --> preposition, [left], {save_parser_output(left)}.
direction -->[left-wards], {save_parser_output(left)}.
direction --> preposition, [right], {save_parser_output(right)}.
direction --> [right_wards], {save_parser_output(right)}.
direction --> [up], {save_parser_output(up)}.
direction --> [up_wards], {save_parser_output(up)}.
direction --> [down], {save_parser_output(down)}.
direction --> [down_wards], {save_parser_output(down)}.
direction --> [clock_wise], {save_parser_output(clock_wise)}.
direction --> [anticlock_wise], save_parser_output(anticlock_wise)}.

% Saving the output from the parser
save_parser_output(Z) :-

 131

 recall(parser_output,X), % Find partial sentence
 append([Z],X,Y), % Add a bit more to it
 remember(parser_output,Y). % Save it for later

% Prepositions. Note the problem of homophonous terms such as “to”
% and “two”.
preposition --> [] | [to] | [to], [the].
preposition -->
 [two],{writenl('Do not worry - I will cope with this
apparent error')}.
preposition -->
 [two], [the],{writenl('Do not worry - I will cope with this
apparent error')}.

% How far do we move?
amount --> numeral, dimension.
amount --> [by], amount.

% Coping with a common speech recogniser error: confusion of “I”
% and “by”
amount --> [i], amount.

% Dimensions
dimension --> [mm], {save_parser_output(mm)}.
dimension --> [inches], {save_parser_output(inches)}.
dimension --> [pixels], {save_parser_output(pixels)}.
dimension --> [degrees], {degrees}.

% Rule for recognising numbers such as “six hundred and fifty two”
numeral -->
 [X], [hundred], [and], [Y], [Z],
 { phrase(units,[X]), % Note: Parser used inside Prolog
 phrase(tens,[Y]), % Parser inside Prolog to check “tens”
 phrase(units,[Z]), % Parser applied to check “units”
 words_to_digits(X,X1),
 words_to_digits(Y,Y1),
 words_to_digits(Z,Z1),
 concat([X1,Y1, Z1],W1),
 % Create 3-digit numeral, in form “652”
 pname(W3,W2),
 save_parser_output(W3) }.

/* Rules are required for recognising several other word-sequences
that are sometime used when naming the integers, in the range 0 -
999. The following list contains one example of each type:
 [six, hundred, and, fifty, two]
 [six, hundred, fifty, two]
 [six, fifty, two]
 [six, five, two]
 [six, hundred, and, eleven]
 [six, hundred, eleven]
 [six, eleven]
 [six, hundred, and, fifty]
 [six, hundred, fifty]
 [six, hundred, and, two]
 [six, hundred, two]
 [six, hundred]
 [fifty, two]
 [fifty]
 [eleven]
 [seven] */

% Basic definitions
units --> [zero] | [‘O’] | [a] | [one] | …… [nine].

 132

tens --> [ten] | [twenty] | …… [ninety].
teens --> [ten] | [eleven] | …… [nineteen].

% Converting words to numerals
words_to_digits(no,0).
words_to_digits(none,0).
words_to_digits(‘O’,0). % People often say (letter) ‘O’ rather
 % than ‘zero’
words_to_digits(zero,0).
words_to_digits(a,1).
words_to_digits(one,1).
words_to_digits(two,2).
……
words_to_digits(nineteen,19).
words_to_digits(twenty,2).
……
words_to_digits(ninety,9).

4.2.5 Sample Sentences

The following sentences all conform to the grammar defined above.

[please, move, up_wards, fifty, two, mm]
[i, want, you, to, shift, up_wards, fifty, two, mm]
[i, demand, that, you, shift, to, the, right, by, four, inches]
[i, want, you, to, shift, to, the, right, by, one, hundred, and,
sixty, two, mm]
[rotate, clock_wise, by, four, hundred, and, two, degrees]
[rotate, clock_wise, by, twenty, two, degrees]
[please, turn, clock_wise, by, seventy, two, degrees]

4.2.6 Interpreting the Parser Output

We have defined the grammar rules in such a way that, when the parser is
applied to any valid sentence, the result is a 3-element list, stored in the
MacProlog property parser_output. To appreciate this, consider the following
compound goal:

remember(parser_output,[]), % Initialise parser output list
X = [please, turn, clock_wise, by, seventy, two, degrees],
phrase(sentence, X,_), % Apply the parser
recall(parser_output,Y) % Find the parser output

The effect is to instantiate Y to [degrees, 72, clock_wise]. This enables us to

understand how the “meaning” of a command can be extracted from a sentence. In
a little while, we shall present a program which interprets the parser output and
actually moves an (X,Y,θ)-table. This program uses a predicate called
move(X,Y,Z). Let it suffice for the moment to say that its arguments have the
following functions:

First argument: Move along the X-axis, units are specified in millimetres.
Second argument: Move along the Y-axis (millimetres).
Third argument: Rotate by an angle specified in degrees.

 133

Here is the program to interpret the parser output.

interpret :-
 recall(parser_output,X), % Get the parser output, (a 3-
 % element list)
 interpret1(X). % Now, interpret X

% How to interpret [clock_wise, degrees, numeral] (The 3 elements
% occur in any order)
interpret1(A) :-
 member(clock_wise,A), member(degrees,A),
 member(X,A), number(X), move(0,0,X).
 % Rotate the table by X degrees

% How to interpret [anticlock_wise, degrees, numeral]
interpret1(A) :-
 member(anticlock_wise,A), member(degrees,A),
 member(X,A), number(X), X1 is -X, move(0,0,X1).

% How to interpret [left, mm, numeral]
interpret1(A) :-
 member(left,A), member(mm,A), member(X,A),
 number(X), X1 is -X, move(X1,0,0).

% How to interpret [right, mm, numeral]
interpret1(A) :-
 member(right,A), member(mm,A),
 member(X,A), number(X), move(X,0,0).

% How to interpret [up, mm, numeral]
interpret1(A) :-
 member(up,A), member(mm,A), member(X,A),
 number(X), move(0,X,0).

% How to interpret [left, mm, numeral]
interpret1(A) :-
 member(down,A), member(mm,A),
 member(X,A), number(X), X1 is - X, move(0,X1,0).

% What to do if we cannot move the table according to the given
% command
interpret1(A) :- message([A,'was not understood']).

4.2.7 Review

The following points should be noted:

(i) The Voice Navigator II speech recognition system is able to select any item
from any pull-down menu.
(ii) It is possible to construct a pull-down menu (called the “S” menu) from a
set of grammar rules, using menu_builder. The “S” menu contains a small
number of control terms (begin, end, cancel, kill, ‘X’), in addition to a list of the
terminal symbols defined in the grammar.
(iii) Items from the “S” menu can be selected using either the mouse or the
speech recogniser.

 134

(iv) A set of grammar rules, defining commands for controlling an (X,Y,θ)-
table, has been defined.
(v) When menu_builder is applied to these rules, an “S” menu is built and
contains the items listed in Table 4.3.
(vi) To enter a command for the (X,Y,θ)-table, the user can enter a sequence
such as: [begin, please, move, up_wards, fifty, two, mm, end ….].
(vii) We have explained how the key-words in such a sentence can be extracted.
The result is a list, such as [up_wards,mm, 52].
(viii) A set of rules for moving the (X,Y,θ)-table has been defined (predicate
interpret). These rule use the 3-element key-list as “input”.

In addition to the table controller, the speech recogniser has been used to

operate the lights in the Flexible Inspection Cell and to perform standard image
processing functions. It is a notable experience to observe the (X,Y,θ)-table move,
or the lamps turn ON / OFF, in response to spoken commands, since the user feels
as though he has great power. While these ideas are still under development, they
do illustrate the fact that speech recognition, linked to simple grammar-rule
analysis is both practical and highly attractive, even to computer literate people.
For these reasons, the authors are convinced that many uses will be found for this
combination of technologies, in the future.

4.3 Aids for Designing Vision Systems
Designing a machine vision system is more complicated than simply choosing

an image processing algorithm. Selecting an appropriate lighting and viewing
configuration is of vital importance, before any image processing is ever
contemplated. The Lighting Advisor described below is one of several design
tools that have been devised, or are still under development, as part of the general
drive towards providing assistance for the vision engineers. (Another web version
of this design tool is also available [WWW-1].) Expert systems, hypermedia
programs and deductive systems are also being developed for such tasks as
choosing the appropriate camera, selecting a suitable lens, preparing samples for
inspection, etc. The one outstanding requirement is for a system that can give
advice about which are the most appropriate image processing algorithms to
consider for a given application. While this is still a long way off, one system for
doing this, within the narrow confines of inspecting objects made by a single
multi-product manufacturing line has been developed. [CHA-95]

4.3.1 Lighting Advisor

The Lighting Advisor is a hypermedia catalogue, describing about 150 different
lighting and viewing techniques, suitable for industrial machine vision systems.
The Lighting Advisor is in the form of two interconnected HyperCard stacks. For
each lighting and viewing technique, there are two cards: one provides notes in

 135

the form of plain text, while the other shows the optical layout diagram. The
Lighting Advisor can also be linked to other HyperCard stacks, such as the
controller for the Flexible Inspection Cell described in Section 5.5. Additional
stacks are currently being developed and will eventually include details about
cameras, references to the technical literature and preparing a sample for visual
inspection.

Lighting and viewing are now widely regarded as being of critical importance
for the successful development of machine vision systems, whether they are being
used for such tasks as inspection, measurement, grading, sorting, monitoring or
control for industrial applications. [BAT-85, BIE-91] In the early years of the
development of interest in Automated Visual Inspection, it was often argued that
an experimental approach to lighting design was essential. [BAT-80] While this
point of view is still valid, there is undoubtedly a need for more formal methods
and suitable computer-based design aids. [BAT-91b, BIE-91, BAT-92] There has
been a concerted effort recently by several groups to develop software tools by
which a vision engineer can obtain advice about which lighting and viewing
techniques are appropriate for a given machine vision task. Advisors for lighting
and viewing have been developed by Ball Corporation Inc., [PEN-88] Industrial
Technology Institute, Dearborn, MI [ITI-89] and one of the present authors
[BAT-89]. In recent years, very flexible lighting systems have been developed,
most notably ALIS 600 [DAU-92] and Micro-ALIS prototyping systems. [ALIS]
Other notable work in this area has been described by Ahlers, who devised feed-
back control systems for industrial lighting units [AHL-91]. The Flexible
Inspection Cell (FIC) has many of the advantages of the automated ALIS 600
system and contains a versatile manipulator. [BAT-94b] While the control of the
FIC will be described in detail in the next chapter, we merely need to note here
that systems such as these emphasise the need for a program which can assist in
choosing an appropriate lighting / viewing arrangement. The Lighting Advisor
should be viewed as being part of a much larger prototyping system (see Figures
4.12 to 4.19), which will eventually incorporate databases on:

(a) Lighting and viewing techniques.
(b) Cameras.
(c) Lenses.
(d) Sample preparation for easier viewing.
(e) Image processing techniques.
(f) Technical literature on machine vision.
(g) Addresses of suppliers of hardware and software, research institutes.

In the future, it is anticipated that the Lighting Advisor software will also be

used to control the Flexible Inspection Cell. It is already interfaced to the Prolog+
software. It is of interest to note that the possibility of using HyperCard for a
Lighting Advisor was first considered in 1988 but this approach was soon
abandoned in favour of one based upon a Prolog program. [BAT-89] The decision
to revert to HyperCard was made in 1993, following preliminary work by a
Cardiff student. [WIL-93]. The reason for this was the improved facilities offered

 136

by HyperCard, most notably the ability to show high-quality graphics, on a large-
screen display unit.

Stack Structure

The Lighting Advisor consists of three interconnected HyperCard stacks called
“Lighting Advisor”, “Lighting Diagrams” and “Lighting Pictures”. Apart from a
short preamble, the “Lighting Advisor” stack consists entirely of so-called
Methods cards, having the form shown in Figure 4.12. The buttons along the
bottom of the Methods cards have the following functions:

Find Find text. Dialogue box appears.
Index Go to “Index” Card (Figure 4.13).
Layout Go to corresponding card in “Lighting Diagrams” stack.
Print Print the present card
Begin Go to the first card in the “Lighting Advisor” stack.
Prev. Go to the previous card seen
Exit Go to HyperCard “Home” stack

The text fields in the Methods cards are obvious from Figure 4.12. At the time

of writing, there are over 150 Methods cards, relating to different lighting and
viewing techniques. This compares with 63 different lighting and viewing
methods described in a catalogue of such techniques, published 1985. (See [BAT-
85] and [BAT-94b].) Notice that each Method card in the “Lighting Advisor”
stack is uniquely associated with one card in the “Lighting Diagrams” stack and
another in the “Lighting Pictures” stack. Each card in the “Lighting Diagrams”
stack shows the layout of an optical system, while the “Lighting Pictures” stack
shows sample images obtained (see Figure 4.14).

Search Mechanisms

Apart from the buttons just described, there are several other ways to navigate,
in the Lighting Advisor: (a) “Index” card (Figure 4.13); (b) “Map” card (Figure
4.16); (c) First card in the “Lighting Advisor” stack (Figure 4.15); (d) Automatic
text search.

Each of these will now be described in turn.

 137

Figure 4.12 Typical “Method “card from the Lighting Advisor Stack.

Figure 4.13 “Index” card. Top left: Information window. Bottom left:
Buttons for navigating through this stack or moving to other stacks. Right:
scroll menu. Clicking on an item in this scroll menu, causes Hypercard to
move to the corresponding card in the “Lighting Advisor” stack.

 138

(a)

(b)

Figure 4.14 Secondary cards, linked to the card shown in Figure 4.12. (a)
Card from the “Lighting Diagrams” stack. (b) Corresponding card from the
“Lighting Pictures” stack.
“Index” card:

 139

The “Index” card is shown in Figure 4.13. In addition to the buttons described
above for cards in the “Lighting Advisor” stack, there are seven buttons, labelled:

Sample Preparation Go to the “Sample preparation” stack
Camera Advisor Go to the “Camera Advisor” stack
Map Go to the “Map” card
References Go to the “References” stack
Device Control Go to the “Device Control” stack
Home Card Go to the Hypercard “Home” stack.

In addition, there is a scroll menu, whose entries correspond to the text field at

the top-right-hand corner of each of the “Methods” cards in the “Lighting
Advisor” stack. Clicking on an item in this scroll menu, causes Hypercard to
move to the corresponding card.

“Map” card:
See Figure 4.16 It is recommended that the stack structure of any complex

HyperCard system be modelled, on a card known as a “Stack map”. The map card
follows this practice and shows how the “Lighting Advisor” and “Lighting
Diagrams” are inter-linked. Clicking on a card, or stack, causes HyperCard to
move as appropriate.

First card in the “Lighting Advisor” stack:
Buttons can conveniently be added to the this card, whenever other stacks are

added to the system. Templates for the “Camera”, “References” and “Sample
Preparation” stacks have all been devised. From the first card of the “Lighting
Advisor” stack, the user can elect to move to a detailed description of the stack
(via the “Preamble” button), or skip to the Methods cards, describing the various
lighting / viewing techniques. Of special note here is the invitation to the user to
indicate his level of experience. While an experienced user can add / modify cards
in the “Lighting Advisor” and “Lighting Diagrams” stacks, a novice user can
navigate through the “Lighting Advisor” stack using the automatic text search
facility.

Automatic text search:
The automatic text search facility provides a very simple way for a novice user

to search for items of interest. Consider Figure 4.12. Suppose that the user wishes
to find more information relating to the word “glinting”. To find another card
which contains this term, the user simply clicks once on that term, in one of the
Methods cards. By repeating this exercise, it is possible to find all cards which
share this term in a very short time. Browsing in this way is, of course, one of the
strengths of HyperCard.

 140

Figure 4.15 The first card in the “Lighting Advisor” stack. Notice the
presence of several buttons to initiate navigation through this stacks. The
functions of these buttons are explained in the text. The user can indicate his
level of his expertise, by clicking on the button on the lower right. (The
button label toggles between “Expert” and “Novice”.)

Figure 4.16 “Map” card, showing how the “Lighting Advisor” and “Lighting
Diagrams” stacks are interconnected.

 141

Remarks About the Lighting Advisor

Throughout this book, we repeatedly emphasise that machine vision is
concerned with much more than image processing, which is the particular forté of
Prolog+, as it was originally described in Chapter 3. One of the primary areas that
requires detailed consideration in any application is that of designing the image
acquisition sub-system (i.e. lighting, optics, viewing angle and camera). Since
1985, when the original catalogue of lighting and viewing methods was published,
a large number of other techniques have been used for machine vision. Rather
than publish another catalogue in book / paper form, it was decided to write a
much more comprehensive lighting advisor program using a modern version of
HyperCard and link this to Prolog+.

At the time of writing, there are 150 different lighting / viewing methods
described in the Lighting Advisor. However, it is not intended to be a static entity;
as new lighting and viewing methods are devised, its database will grow. Even a
moderately experienced Hypercard user can do this with ease. There are several
obvious steps for the future development of the Lighting Advisor:

(a) Restore the inferential power of Prolog, which was present in the earlier
Lighting Advisor [BAT-89], but which is lacking in the present implementation.
This would provide a “smart” dialogue to elicit information from the user about
the application. A Prolog program can, for example, make useful logical
inferences: that oily or wet objects glint; that glinting is also called specular
reflection and that glinting can be cured by using crossed linear polarisers.
(b) Control the Flexible Inspection Cell. Of course, this facility will only be
possible for some of the methods represented in the “Lighting Advisor” stack.
(c) Add descriptions of further lighting and viewing methods to the stack.
(d) Add further material, to provide a tutorial introduction to lighting and
viewing methods for industrial applications.

The Lighting Advisor can, of course, be linked to the HyperCard stack which

controls the FIC and hence forms part of the general Prolog+, environment. Thus,
a person using Prolog+ can consult the Lighting Advisor, set up the recommended
lighting configuration and return to Prolog+ simply by clicking the Macintosh
mouse. The procedure for navigating between these utilities is as follows:

In Prolog+ Select from the “Utility” menu
In HyperCard (FIC control) Click on button marked “Lighting Advisor”
In HyperCard (Lighting Advsor) Click on button marked “FIC Control”
To return to Prolog+ Click on button marked “Prolog+”

It is the authors ultimate ambition to eventually add several other advisory

programs to the extended Prolog+ system, including a Camera Selection Advisor
and a Sample Preparation Guide. To date, only the templates for these additional
facilities have been devised (Figures 4.17-4.19). Collecting the relevant
information from equipment manufacturers, then restructuring it to form a

 142

comprehensive, up-to-date, database, requires greater man-power resources than
the authors can muster at the moment.

Figure 4.17 Template for the Camera Advisor.

Figure 4.18 Template for the References database. This will eventually form
part of a comprehensive hypertext data search facility, for machine vision.

 143

Figure 4.19 Template for the Sample Preparation database.

4.3.2 Other Design Aids for Machine Vision

The authors long-term research goal is to develop a comprehensive, fully
integrated, CAD facility for machine vision systems. There is no doubt that, we
are very rapidly approaching a bottle-neck on further development of the subject,
caused by an acute shortage of trained personnel. For this reason, the authors
believe that the development of good design tools is essential, if the enormous
potential of machine vision technology is ever to be realised in full. While
considerable progress has been made already in certain areas, some gaps remain.
The following is a list of notable achievements by other workers in this general
field, but which cannot be integrated easily with Prolog+, and outstanding
“problem” areas requiring further work:

(i) Opto*Sense® is a comprehensive database of commercial systems suppliers
[WHI-94]. The software runs under the MS-DOS operating system and hence is
not compatible with the Prolog+ software.
(ii) A specialised calculator for lens selection has been distributed by the
Machine Vision Association of the Society of Manufacturing Engineers.
[MVA] The Machine Vision Lens Selector is in the form of a slide rule, which
allows the user to find the focal length of a lens, given the object distance and
field of view. Alternatively, the user can find the f-number from the depth of
field and desired resolution.
(iii) A Macintosh desk accessory for lens selection has been devised. [SNY-92]
Since this runs on the Macintosh computer, it can “co-exist” with the Prolog+ /

 144

HyperCard software but does not interface directly to it. The software is in the
form of a specialised screen-based calculator that can be called by selecting the
appropriate item from the Apple menu. This program performs the same
calculations as the slide rule mentioned in (ii). It would not be a major task to
rewrite this program using Prolog or Hypercard.
(iv) At least one sophisticated ray-tracing program for the Macintosh computer
is known to exist [KID]. This program can, of course, “co-exist” with the
Prolog+ software, but does not interface directly to it. The program is able to
calculate all of the necessary design parameters for a given optical set-up.
(v) The basic frame-work for a program which can give advice about which
camera to use have been developed by two post-graduate students working at
Cardiff [PET-90, WIL-92]
(vi) A “general purpose” program which is able to give advice about suitable
image processing operations for a given application is not yet available. Some
progress has been made in this area, for just one specific application area:
inspecting cakes made in the form of a continuous ribbon. [CHA-95]

4.4 Multi-camera Systems
The embodiment of Prolog+ described in Chapter 3 allows the use of only one

video camera. However, there are many instances when it is useful to be able to
combine two or more views of an object. (Table 4.4 and Figures 4.20 and 4.21.)
In this, the last part of this chapter, we shall discuss some of the ways in which we
can build an intelligent vision system that is able to digitise and process data from
several cameras.

4.4.1 Multiplexed-video Systems

Consider Figure 4.22(a), which shows perhaps the simplest and potentially most
flexible multi-camera system. We shall refer to this as a Video-Multiplexed (V-M)
system. Notice the presence of the video multiplexor on the input of the frame-
store, and that the multiplexor is controlled by the image processing computer.
Many low-cost image processing systems are organised in this way and can
typically accept up to four cameras. In a V-M system, the images from the various
cameras can be superimposed, if desired. This facility is not possible with Figure
4.22(b) and some of the other schemes described below. It is a simple matter to
add a video multiplexor on the input to any image processor, provided it can
generate the necessary control signals. (This will be discussed again in Chapter 5.)
The high flexibility of a V-M system is achieved by performing operations in
sequence, but of course this reduces its operating speed, compared to the
concurrent systems about to be described.

Application Remarks

 145

Packing/depletion
e.g. cutting leather for
shoes, bags, etc.

One camera is used for inspecting leather surface,
prior to cutting. A “flaw map” is fed to packing
program. Cutting templates and hide are viewed by
different cameras.

Car wash Several cameras are needed to inspect the whole body
surface before and after the wash. Other cameras are
needed to monitor the washing process.

Monitoring bakery, or
similar continuous-flow
manufacturing plant

Several cameras are needed for inspecting the mixing
and feeding of raw materials, the unbaked dough
(formed by the extruder), and the product after
baking, after decoration, before and after cutting,
during and after packing.

Brick laying robot Separate views are needed of both sides of wall being
built, placing of mortar on wall and bricks, cutting of
bricks.

“Golden sample” inspection of
populated printed circuit
boards

At least, one camera is needed for each board. (May
be more, if both high- and low-resolution viewing is
needed.)

Pruning plants At least three cameras are needed to obtain all-round
view. (May be more, if both high- and low-resolution
viewing is needed.)

Multi-lane production
processes

One camera cannot provide sufficiently high
resolution.

Power-press, or similar
machine

Separate cameras are needed to monitor material feed,
inspect dies and to inspect the finished product.

Painting large complicated
structures using a robot

Several cameras are needed, for navigation and for
inspecting the work-piece before during and after
spraying. Cameras may be mounted on robot arm, to
examine every nook and crevice.

3D inspection of foreign
bodies in packaged food.

Several containers may be filled simultaneously on a
modern, high-speed production line. Hence jars can
never be viewed in isolation from one another. (For
example, arrays of 2*3 jars of tomato sauce may be
filled at the same time. Two orthogonal views are
needed to locate a foreign body.)

Flexible Manufacturing
System

FMS is typically left unattended for long periods of
time. Vision is good means of monitoring progress.

Monitoring factory (for
safety hazards)

Many cameras needed to make sure gangways are
clear, doors are closed, floor is clean, pallets are
correctly loaded, stacked boxes are stable, no leaks
from complex pipe-work installations, etc.

Robotics Monitoring robot work area for human intruders,
obstacles which could get in way of the robot.

Table 4.4 Some practical applications of intelligent multi-camera machine
vision systems.

 146

Master

M1 M2 M3 M4

Direction of travel

Slave #1 Slave #5Slave #4
AppleTalk bus

Empty trays Trays with
empty cups

One cup
filled

Two cups
filled

Three cups
filled

Slave #2 Slave #3

Post-process
inspection and

control feedback

Product
inspection

In-process monitoring,
inspection and control

via feed-forward

In process monitoring &
post-process inspection

Process control via
feed-forward

Figure 4.20 Using a multi-camera vision system to monitor a multi-stage
production process. M1 to M4 are manufacturing machines.

Pre-wash inspection
for aerials, roof
rack, loose trim,

scratches etc

Post-wash inspection
for cleanliness,
scratches, etc

In-wash process monitoring
of water spray, shampoo

delivery, foam levels,
brushing, drainage, etc.

Overhead cameras (not shown) check for
position and doors open, no people nearby

Overhead cameras (not shown)
check for position and doors open

Slave

Master
N.B. Connections to other slaves are not shown

Slave Slave Slave

B
ru

sh
es

Figure 4.21 Using a multi-camera vision system to monitor a car wash.

 147

V
id

eo

M
ul

tip
le

xo
r

Cameras
(typically <= 8) Video monitor

Video

Macintosh computer
running Prolog

RS232 or higher
bandwidth digital

data bus

Image Processor

or

Frame Store

May be housed
inside the computer

(a)

Intelligent camera
Macintosh computer

running Prolog

Intelligent camera
(may have up to 4

remote heads) 8-
w

ay
 V

id
eo

 &
 R

S2
32

M

ul
tip

le
xo

r

Video monitor

Video

RS232
Up to 8 units

(b)

Figure 4.22 Video-Multiplexed (V-M) system. (a) Video multiplexor. (b)
Multiplexed image processors using the Intelligent Camera.

4.4.2 Networked Vision Systems

Figure 4.23 shows the organisation of a multiple camera vision system in which
several Prolog+ sub-systems are controlled by a single processor. Interconnection
is achieved via a standard AppleTalk network. Using this arrangement, up to
thirty one Slaves can be controlled from a single Prolog program, which will be
called the Master.

Each of the Slaves is fully autonomous and runs continuously, using an
infinitely looping Prolog+ program. It is important to note that we envisage a
system in which of all of the Slaves are active almost all of the time. A Slave
might, for example, identify what objects / events it can see and then report to the
master every few seconds. The Slaves operate completely independently from one
another; all communication takes place through the Master, which interprets the
data it receives from the Slave units operating below it and occasionally sends
them data to control / modify their actions. The arrangement shown in Figure 4.24

 148

is even more powerful. Each of the Slaves can control as many as eight image
processors (for example, Intelligent Cameras), through the use of an RS2324
multiplexor. Each of the image processors can have several remote image sensing
heads. (Up to 4 for the Intelligent Camera.) As many as 32 Macintosh computers
can be connected to a single AppleTalk network. Hence, we realise that data from
up to 1024 cameras can be processed by the system.

Macintosh computer
running Prolog

Master

Up to 31 units

Macintosh computer
running Prolog

Intelligent camera
(may have up to 4

remote heads)
Video monitor

Video

Slave

Printer port

Modem port
(RS232)

Macintosh computer
running Prolog

Intelligent camera
(may have up to 4

remote heads)
Video monitor

Video

Slave

Figure 4.23 Organisation of a multiple camera vision system in which several
Prolog+ sub-systems are controlled by a single processor.

4 Although the Macintosh computer uses the RS422 protocol, it is possible to

operate RS232 devices.

 149

Macintosh computer
running Prolog

Intelligent camera
Macintosh computer

running Prolog

Intelligent camera
(may have up to 4

remote heads)
8-

w
ay

 V
id

eo
 &

 R
S2

32

M
ul

tip
le

xo
r

Video monitor

Video

RS232
Up to 8 units

Slave

Intelligent camera
Macintosh computer

running Prolog

Intelligent camera
(may have up to 4

remote heads) 8-
w

ay
 V

id
eo

 &
 R

S2
32

M

ul
tip

le
xo

r

Video monitor

Video

RS232
Up to 8 units

Slave

Master

Up to 31 units

Printer port

Modem port

Figure 4.24 Enhanced networked vision system. Each of the slaves is a
Video-Multiplexed (V-M) system and hence can control up to 8 image
processors, via a multiplexor.

The role of the Master requires some explanation. Since it is not likely to be

able to respond individually to each signal sent to it by the Slaves, it is right to
question what this arrangement actually achieves. Decisions can be made locally
and rapidly by the Slaves, which are themselves intelligent Prolog+ systems.
Typically, the Slaves would generate performance statistics and report special
conditions that require the attention of the Master. They merely report in broad,
symbolic terms what they have found, without giving the Master too much detail.

4.4.3 Master-Slave System Organisation

 150

The system illustrated in Figure 4.24 is co-ordinated using AppleEvents, which
we have encountered already. Using AppleEvents, a Prolog+ program (P1) can
pass a goal to another Prolog+ program (P2), running on either the same computer
or another remote machine. This mode of operation places certain limitations
upon the structure of the software:

(a) The most important point to note is that P1 can pass a query to P2, but only
if P2 is not already running, i.e. trying to satisfy a goal. If P2 is already trying to
satisfy a goal G when the query from P1 arrives, the latter will be held in
obeyance until G has been evaluated. The incoming goal specified by P1 will be
evaluated after G.
(b) It is possible for P1 to assert and retract relations in P2’s database, in a
slightly indirect way. P2 must contain a predicate which does the assertion /
retraction on P1’s behalf.
(c) When the goal defined by P1 has been evaluated, P2 can pass results back to
P1. If these results from P2 do not arrive within a defined time limit, written
into program P1, the goal in P1 fails. This is a very useful facility, since it
allows recovery from a deadly embrace.

With these points in mind, we see that it is desirable to employ a passive Prolog

program which acts as a buffer between programs P1 and P2, so that they
communicate indirectly with each other. This will be called the Blackboard. By
the term passive, we mean that the Blackboard does not satisfy goals on its own
account, only when ordered to do so, by receiving a remote query from another
Prolog program. The Blackboard contains definitions for only a very small
number of relations, so that it can assert / retract on behalf of P1 and P2.

We shall consider a network in which the Master and each Slave is resident on a
different computer. Each Slave host runs two copies of the MacProlog software:
one with the Slave program and the other with a copy of the Blackboard program.
Thus, each Slave has a (passive) Blackboard program dedicated to it. (See Figure
4.25(a)) We could also use a common Blackboard to good effect, enabling the
Master to broadcast information to all Slaves. (See Figure 4.25(b).) However, we
shall not consider this option any further, since it provides few advantages
compared to the alternative arrangement and is a potential bottle-neck, limiting the
speed of the system.

Figure 4.26 shows the communication paths that we need to consider in a
Master - multi-Blackboard/Slave system. Before we can discuss this in detail, we
need to consider how one Prolog application (the local process) can send data to
another (the remote process).

 151

Master

B S

B S

B - Blackboard S - Slave

Blackboard and
Slave are both
hosted on same

computer

B S

Master hosted on
separate compute

from Slaves

Master

S

S

S - Slave

Slave are
hosted on
different

computers

S

Master and
Blackboard

hosted on same
computer

Blackboard

Figure 4.25 Blackboard organisation (a) Blackboard dedicated to the Slave.
(b) Common Blackboard for all Slaves.

Master Blackboard

1

2a

2b
Slave

3

4a

4b

5

6a

6b

Figure 4.26 Communication paths in a Master - multi-Blackboard/Slave
system. 1. Master uses remote_asserta(A) to place message for Slave on
Blackboard. remote_asserta(A) is sent from Master to Blackboard. 2a. Master
receives message from Slave by sending remote query to Blackboard.
(Example: info(X)) 2b. Blackboard satisfes remote query (info(X)) received
from Master and instantiates X; info(value1) is returned to the Master. 3.
Slave uses remote_asserta(B) to place message for Master on Blackboard.
remote_asserta(A) is sent from Slave to Blackboard. 4a. Slave receives
message from Master by sending remote query to Blackboard. (Example:
info(Y)). 4b. Blackboard satisfes remote query (info(Y)) received from Slave
and instantiates Y; info(value2) is returned to the Slave. 5. Master satisfies
remote_goal to start the Slave running. remote_goal is sent from Master to
Slave. 6a. Master tries to satisfy true, to test whether the Slave is still
active. 6b. Slave satisfies true, if it is not running another program and signals
“goal succeeds” to the Master. If the Slave is already running, the timer in
remote_query (in the Master program) causes remote_machine_running to
fail.

4.4.4 Remote Queries

 152

The MacProlog built-in predicate remote_query allows the user to pose queries
via one copy of Prolog (local process) but which are satisfied by another, possibly
running on a different computer (remote process). This facility is discussed in
detail in the MacProlog manual. [MAC] remote_query uses the following
arguments:

A - Query to be sent to the remote process.
B - Identification of the remote process. (Derived from the
 MacProlog built-in predicate ppc_browse. See

remote_reset, defined below.)
C - Maximum time delay allowed for the remote process to respond

to the query.
D - List of values returned from the remote process.

The following program segments are useful for running remote queries.

Getting started. Finding the ID number of the target process where remote

queries will be sent.

remote_reset(A) :-
 ppc_browse('Select the MacProlog application that you want to
 use',_,B), % Get ID for the target process.
 retractall(index_number(A,_)),
 % Forget previous ID number
 assert(index_number(A,B)).
 % Remember current process ID number

This predicate allows the user to locate any application running on the network

interactively. The target application is identified by the user, with an interactive
dialogue generated by ppc_browse. The goal remote_reset(A) associates the label
A with the ID number of the target application. After satisfying remote_reset(A),
the Prolog database contains information needed (in index_number) to despatch
AppleEvents to that application whose “address” is A. It is possible for a user
working at the Master terminal to locate each of the Slave and Blackboard
applications on the network, using remote_reset. It is not necessary for the user to
visit each of the Slaves. Exactly how this can be avoided will be explained later.

Useful operator (). This provides a simple syntactic form for remote queries.

These may be of the form goal(defined_arguments) or goal(Results).

 A :-
 A =.. [_|B], % Analyse arguments
 B = [C|_], % Get first argument
 var(C), % Checking that argument is a variable
 run(A,[B]), % Run remote query A. Results go into B
 !. % Do not allow backtracking to next clause

 A :- run(A,_). % What to do if there are no variable
 % arguments

% Handling remote queries at simplest level for user. A is query.

 153

% B contains results.
run(A,B) :-
 index_number(D), % Consult database for ID of target
 % process
 remote_query(A,D,600,C),
 % Arguments are described above
 prolog_solns(C,B), % Decode solutions found. Not defined
 !. % Avoid resatisfaction on backtracking.

Interactive Operation of the Remote Process
transparent :-
 prompt_read(['Please type a goal for the REMOTE process to
 satisfy'],X),
 not(X = end), % Terminate interactive session
 X, % Do it
 writeseqnl(['Remote…',X]),
 % Keep log of what happened during interaction
 !, % Make recursion more efficient
 transparent. % Do it all again

transparent. % Finish with success

Examples of remote queries :

Local goal Remote goal Action
 grb grb Digitise an image
 thr(123) thr(123) Threshold image
 hil(12,34,56) hil(12,34,56) Highlight intensities
 avr(X) avr(P) Average intensity
 cgr(X,Y) cgr(P,Q) Centroid
 lmi(X,Y,Z) lmi(P,Q,R) Least MOI

Starting an infinite remote process We might wish to start the following

remote program which performs process in an endless loop.

remote_goal :-
 process, % Remote machine has definition of “process”
 !, remote_goal .

The local goal remote_goal will start remote_goal running on the remote

machine. After a period of time defined by the programmer of the local machine,
 remote_goal succeeds and remote_goal continues running on the remote

machine. The two machines are now running independently.

Is the remote machine running? Clearly, the local machine needs to know

whether or not it can communicate with the remote machine again. Here is a
program which the local machine can run, in order to find out whether or not the
remote machine is actively trying to satisfy some (unknown) goal or is passively
waiting for some further instructions from the local machine.

remote_machine_running :-
 !, % Avoid resatisfaction on back-tracking

 154

 not(true). % Satisfied if remote machine is NOT running

remote_machine_running.
 % Remote machine running. Local goal succeeds

The first clause fails if the remote machine does not satisfy true within a time

limit defined by remote_query.

Reassign query not understood locally It is possible to reassign any query that

is not understood by the local machine to the remote machine. Error number 2 in
MacProlog signals that a goal has no definition. However, by redefining the error
handler in the following way, it is possible to divert a query to the remote
machine.

'<ERROR>'(2,A) :- A. % If error 2, try goal A on remote
 % machine

'<ERROR>'(2,A) :- abort. % That failed, so we really do have to
 % give up

Thus far, we have described the mechanism for forcing a remote copy of
MacProlog to answer a query posed to it by the local process. We now need to
consider how these ideas can be put to use in organising a Master-Slave message
signalling system. First, we need to consider the structure and use of the
Blackboard, since this is central to the proper co-ordination of the Master-Slave
system.

4.4.5 Blackboard

The Blackboard is a passive Prolog program which can receive data from the
Master or from any Slave, either of which can also consult it at any time. The
organisation of communication in a Master-Blackboard-Slave system is illustrated
in Figure 4.26. The Blackboard contains only a few items:

(a) remote_asserta which performs an asserta on behalf of the Master or a
Slave, neither of which are able to perform this operation directly. (It is not
possible for the Master or a Slave to issue the remote goal asserta.)
Similarly, remote_assertz performs assertz remotely.
(b) remote_clear_and_assert(A) clears any exisiting relations with the same
name and arity as A and then asserts A into the Blackboard database.
(c) remote_retractall(A) retracts all clauses in the Blackboard database that have
the same arity as A.

Here are the definitions for these predicates.

% Perform “asserta”, on behalf of the Master or a Slave
remote_asserta(A) :-
 attach_data(A,'Data window'),
 % Defines window where “assert” will be done
 asserta(A). % Assertion on behalf of Master or Slave.

 155

% Perform “assertz”, on behalf of the Master or a Slave
remote_assertz(A) :-
 attach_data(A,'Data window'),
 % Defines window where “assert” will be done
 assertz(A). % Assertion on behalf of Master or Slave.

% Perform “assert” on behalf of the Master or a Slave
% The following predicate clears any existing relations first.
remote_clear_and_assert(A) :-
 A =.. [B|C], % Separate functor and arguments of A
 length(C,D), % Find how many arguments in A
 abolish(B,D), % Remove all clauses of arity D with name B
 attach_data(B,'Data window'),
 % Defines window where “assert” will be done
 asserta(A), % Assertion done on behalf of Master or Slave
 !. % Avoid backtracking

/* Remote version of “abolish”. The following predicate uses number
of arguments in A to define the arity. */
remote_abolish(A) :-
 A =.. [B|C], % Separate functor and arguments of A
 length(C,D), % D is number of arguments in A
 abolish(B,D). % Remove all clauses of arity D with name B

In addition to the definitions given above, the Blackboard may contain a large

number of messages, which are in the process of passing from Master to Slave, or
vice versa. Examples of these messages will be given later.

Master and Slave Program Elements

To avoid confusion, the same predicate names should be used in the Master,
Slave and Blackboard programs. Thus, both Master and all Slaves should contain
the following definitions:

remote_asserta(A) :- remote_asserta(A).
remote_assertz(A) :- remote_assertz(A).
remote_clear_and_assert(A) :- remote_clear_and_assert(A).
remote_abolish(A) :- remote_abolish(A).

4.4.6 Controlling the Master-Slave System

We are now in a position to understand how the Master-Slave system can be
controlled using the Blackboard. We shall discuss the operation of the system step
by step.

Starting the System

In order to use the Blackboard properly, both the Master and Slave must be
running Prolog programs. If a Slave is not already running a query, it can be
started directly by the Master. Either run or the operator can be used to do
this:

 156

 remote_goal % Remote query (remote_goal) is run by Slave

Notice that, prior to satisfying remote_goal, we must make sure that

AppleEvents will be directed to the appropriate Prolog application. This is
achieved using remote_reset. In order to start a Slave via its Blackboard, we need
to invoke the operator twice:

 (slave_program)

(Since the operator is right associative, the brackets can be removed without

altering the meaning.) Of course, for this to work, the operator and the
predicate slave_program must be defined in the Blackboard. Either the Master or
the Blackboard can invoke remote_machine_running at any time, to test whether
the Slave is still running.

Stopping a Slave

The Master can order a given Slave to terminate its activity by placing the
message stop_slave in the Blackboard’s database. In order to do this, the Master
should satisfy the local goal remote_clear_and_assert(stop_slave).

The following predicate must be defined in the Slave.

stop :-
 stop_slave, % Consult the Blackboard database
 remote_abolish(stop_slave),
 % Clear the stop message from the Blackboard
 abort. % Stop whatever we are doing

stop(_). % No stop message, so carry on running slave

It is also necessary for the programmer to place the goal stop somewhere in his

program. This is a minor nuisance, but it does allow the programmer of the Slave
program to terminate the program at the most convenient point in its execution
cycle. Of course, if he does not do so, the Slave will continue running for ever!

Passing a Message to the Slave

In a similar way to that just described, the Master can pass messages and other
information, via the Blackboard, to the Slave, while the latter is running. This
permits the Slave to modify its actions, under the command of the Master, while
both Master and Slave applications are running. For example, the following Slave
program cycles endlessly (idling mode), until the Master places an appropriate
“command” in the Blackboard. This command is then “executed’ by the Slave.

slave_program :-
 message_from_master(A),
 % Slave consults Blackboard, similar to “stop”
 call(A), % Perform operation defined in Blackboard
 !, % Included for greater efficiency of recursion
 slave_program. % Do it all again

slave_program :- % Program defined by Master failed. Keep

 157

 % idling
 !, % Included for greater efficiency of recursion
 slave_program. % Idle until Blackboard contains a command

The Master can pass messages to the Slave via its Blackboard, at any time,

using the operator.

Receiving Data from a Slave

It is possible for the Master to receive data directly from a Slave, or indirectly
via the Blackboard. The latter process is very similar to that just described for
passing messages in the opposite direction, from the Master to the Slave. There
follow three short programs showing how data derived from images can be passed
from the Slave to the Master, via the Blackboard.

Slave Program
Slave_program :-
 beep(3), % Audible signal for the user
 grb, % Digitise image
 gli(A,B), % Get upper & lower intensity limits
 remote_clear_and_assert(parameters([A,B])),
 % Place data into Blackboard
 stop, % Stop if ordered to do so by Master
 !, % Included for more efficient recursion
 Slave_program % Do it all again

Blackboard (Snapshot of Database, Changing Constantly)
parameters([31, 251])

master_program :-
 repeat, % Begin processing cycle
 run(parameters(Z),Q), % Consult Blackboard
 Q = [W], % Decode results (quirk of AppleEvent format)
 writenl(W), % Write results list for the user to see
 fail. % Force backtracking (to “repeat”)

An important point to note here is that the Slave and Master programs are

unsynchronised. The periods of the program cycles may be similar, or completely
different. The Slave may be much faster than the Master, or vice versa. However,
a number representing the Slave program cycle number may be included in the list
of parameters passed to the Master. We can use the built-in MacProlog predicates
time, or gensym to provide a “time stamp”.

Direct communication from a Slave to the Master can be achieved in an obvious
way. The difference between this and indirect communication is that, in the latter
case, the Master can do nothing but wait, until the Slave sends the data. Notice
that the Master program can make use of the timer built into remote_query to
escape from a deadly embrace. In this event, some of the data from the Slave will
be lost.

4.4.7 Crash Recovery

 158

The network described above experiences some difficulty, if a Slave goes into a
tight recursive loop, containing no stop sub-goal. The Master cannot then regain
control whatever AppleEvent message it sends, either directly to the Slave or via
its Blackboard. There is a solution to this problem but it requires the construction
of a small piece of electronic hardware. Recall that the default option for
(software) interrupts to MacProlog allows goal satisfaction to be terminated by the
user pressing “ .” (COMMAND / period) on the keyboard. A small, low-cost
hardware unit can be connected to the Apple Desktop Bus (ADB) so that, on
receipt of an appropriate signal from the Master, it generates a signal sequence
equivalent to “ .” being pressed on the Slave keyboard. Thus, to regain control,
the Master sends an interrupt signal to the Slave ADB, via the hardware unit. (In
the next chapter we shall describe how a whole range of hardware devices can be
controlled from a Prolog program.) The action of MacProlog following the receipt
of an interrupt signal can be programmed using the '<INTERRUPT>' predicate
[BAT-91b]. The following clause in the Slave database forces the Slave to stop
whatever it is doing, when the interrupt from the Master arrives:

 '<INTERRUPT>'(_) :- abort.

Programming the Slave from the Master

It is important to note that the Master can write complete programs in the
Slave’s database. This is straightforward if the Slave already contains a definition
of remote_asserta(A). In this event, the Master can write (and delete) programs in
the Slave; the master simply satisfies a clause of the form new_slave_clause.

4.5 Comments
In this chapter, we have touched on a number of topics, all of which are

connected by our desire to make vision systems both more powerful and easier to
use. The choice of Prolog as the basis for intelligent image processing was made
as long ago as 1985. The original arguments in support of this choice, rather than,
say, Lisp, have long been superseded by the experience that we have subsequently
gained. In other words, we have been able to achieve far more than was ever
thought possible in those early days of the development of Prolog+. It has been
possible to develop a flexible environment around MacProlog, to assist vision
system design engineers. This includes such features as pull-down menus,
replaying recorded speech, speech recognition, speech synthesis, automatic
generation and pruning of macros, a rich program library, the ability to link
Prolog+ to programs written in other languages and commercial packages (e.g.
HyperCard). Prolog+ can also be extended to control a number of image
processors in a Master-Slave network.

However, there are several important aspects of Prolog+ that we have not yet
been able to develop. It is important to note that MacProlog can itself be extended,
by linking it to:

 159

(a) Flex an Expert System tool-kit [LPA].
(b) Prolog++, an Object Oriented Programming package [LPA].
(c) Parlog, a parallel declarative language.

There are, in addition, a number of notable programs, written in Prolog, which

could be advantageous to our work on machine vision. Natural language
processing, via the medium of Prolog, has been developed to a high level of
refinement. [GAZ-89]

5

Controlling External Devices

5.1 Devices and Signals
 This chapter is based upon the axiom that every industrial vision system must

be capable of communicating with a range of devices that exist in the world
outside itself. To be more specific, each machine vision system must be able to
perform at least three functions:

(i) Sense the electro-magnetic radiation (visible light, IR or UV) emanating
from the object or scene being examined.
(ii) Analyse data derived from the camera.
(iii) Decide what action its associated effector mechanisms should perform.

The authors assert that (iii) is just as important as (i) and (ii), even though few

books and articles on machine vision, or image processing, even bother to
mention the topic of controlling external devices. There is a fourth action which
some, but not all vision systems perform: receiving and analysing data from
various (non-imaging) sensors, a process which helps to synchronise the vision
system with other machines.

In this chapter, we shall discuss various aspects of the general subject of
interfacing to / from vision systems and will introduce more specific issues, such
as communications requirements, interfacing standards, designing a “general
purpose” interface unit, creating user-friendly control software, aligning and
calibrating a robot vision system. It is impossible, within the small space available
here, to consider any of these topics in great depth. As a result, we shall merely
highlight the more important issues involved. In addition, we shall describe one
particular physical arrangement of lamps, cameras, and mechanical handling
equipment, which was devised to form a general purpose test bed for studying
inspection and robot guidance techniques. This is the Flexible Inspection Cell
(FIC) referred to earlier [BAT-85b]. The FIC will provide the focus for
illustrating many of the more important general design considerations.

Referring to Figure 5.1, we see how an industrial machine vision system is
expected to interact with the external devices surrounding it in a factory. A system
inspecting objects on a production-line conveyor belt must be able to synchronise

 161

its activities to a number of machines, located both up- and down-stream from its
camera. Whatever the inspection task, it is important that image data be captured
from the camera at the most appropriate moment in the manufacturing cycle.
System synchronisation might typically be achieved using a light-beam and
photo-detector to sense the arrival of parts, travelling along the conveyor. In this
archetypal system, the accept/reject mechanism can be operated by a simple 2-
level signal. The accept/reject mechanism might be a simple air-jet “blower”, or a
swinging arm, operated by either a solenoid or pneumatic cylinder. In other
applications, it may be necessary to use a fixed-function pick-and-place
manipulator, or even a multi-axis robot, operating under the control of the vision
system. It might also be necessary to flash a stroboscope lamp, or to acquire and
then combine two or more images, derived from the same camera but using
different lighting conditions.

Digitise image

LE
D

Ph
ot

o-
de

te
ct

or

Accept / reject mechanism
(e.g. solenoid or air blast)

Conveyor belt motion

To adjacent machine(s) upstream.
Defect found - change process parameters To next machine down-stream,

signal object missing

Machine #1

Reject bin

Lighting unit
control line

Objects to be
examined

Parts-present detector

Machine #2

V
id

eo

Image processor

Figure 5.1 Archetypal machine vision system for inspecting objects as they
travel along on a conveyor belt. Notice that the vision system is expected to
interact with several other machines: a photo-optical (or infra-red) sensor
which detects when an object is correctly located for examination; the lighting
control unit; the accept/reject gate; process machines located upstream and
down-stream

5.2 Protocols and Signals
In the past, many different types of device have actually been interfaced, or

proposed for connection, to vision systems. By inspecting Table 5.1, it is not
difficult to understand why such a wide range of standardised and ad hoc data-
communications and control protocols have been used or proposed. The list
includes but is not restricted to the following:

(a) Serial digital data (RS232 / RS 422) used to transfer numeric and symbolic
information (e.g. name of defect type, position and orientation of the
component).
(b) Parallel digital bus. This may be a simple “unstructured” array of signal
lines, with / without timing signals, or conform to a well-defined bus standard,

 162

such as the IEEE 488 protocol. Both TTL (5 volt) and industrial 24 volt
standards are popular for parallel I/O.
(c) Computer bus (parallel). Of particular importance is the bus associated with
the IBM-compatible PC (such as the PCI bus), while other vision systems use
the Nubus (Macintosh family), and VME bus.
(d) Analogue. (Bandwidth, impedance and voltage levels may all vary over a
wide range. Analogue I/O ports may be balanced or non-balanced.)
(e) Digital data network. (e.g. Ethernet, AppleTalk, Novell, etc.) Few vision
systems provide connections to these networks, at the moment. However, it is
clear that this is an area for future developments. Indeed, we investigate this
possibility in Chapter 4.
(f) Video. As far as we are concerned, there are two important video standards:
RS170 (60Hz field scan, used throughout USA) and CCIR (50Hz field scan;
widely used in Europe). In addition, there are various high definition television
standards in use. Notice however that high-definition laser scanners and solid-
state line-scan imaging systems are usually designed individually, without
reference to internationally agreed standards.

5.2.1 Interfacing to Commercial Systems

In this section, we shall briefly review the types of interfaces available on
existing machine vision systems. A typical example, is provided by the Intelligent
Camera [INT], which has the following facilities:

(a) Two RS232 ports (connections are made via 9-way D-type connectors). One
of these allows the host processor to control / program the Intelligent Camera
and the other to an ancillary device, such as a printer or (X,Y,θ)-table. In
addition, both D-type connectors provide DC power for external devices.
(b) One 8-bit parallel I/O port, with opto-isolators (provided via a 25-way D-
type connector). These signal lines permit the camera to drive a stroboscope
lamp unit. It is also possible to delay image capture and processing until the
arrival of a “parts present” signal, generated by a proximity sensor. In addition,
the Intelligent Camera can drive an accept / reject mechanism (e.g. a solenoid,
air blast, or pick-and-place arm). It is also possible to operate a device, such as a
warning bell or flashing lamp. Once again, power is made available via the D-
type connector for driving external devices.
(c) Video output (BNC connector). This allows the Intelligent Camera to be
connected to a video monitor, so that a person can watch the image processing
taking place.

Sensor Interface Comments

 163

Proximity sensor Single TTL May use micro-switch, optical,
magnetic, or capacitance sensing.

Pressure Single TTL, serial
(RS232), or parallel

Device may indicate when certain
pressure limit is passed, or provide a
string of measurement values.

Temperature Single, TTL or serial
(RS232)

Device may indicate when certain
temperature limit is passed, or provide a
string of measurement values.

Force Single, TTL or serial
(RS232)

Device may indicate when certain force
limit is passed, or provide a string of
measurement values.

Gauges, micrometer,
etc

Serial Device may indicate when diameter
limits are violated, or provide a
measurement value.

Bar-code reader Serial (RS232) Used for input of product type / identity
so that vision system can perform
appropriate inspection function.

Range Serial (RS232) Range measurement may use radar,
lidar, IR, or optics for sensing. Device
may indicate when certain range limit is
passed, or provide a string of
measurement values. Particularly useful
for controlling auto-zoom.

Cameras / Lenses Interface Comments

Zoom Serial (RS232) Zoom motor requires intelligent
controller.

Focus Serial (RS232) Focus motor requires intelligent
controller.

Aperture Serial (RS232) Aperture control motor requires
intelligent controller.

Pan-and-tilt Serial (RS232) Pan-and-tilt control motors require
intelligent controller.

Synchronisation
trigger

TTL Some types of camera can initiate their
scanning cycle on command, rather than
waiting for synchronising to the video
“fly wheel”.

Scan mode Parallel TTL serial
(RS232)

Camera controller may have serial or
parallel interface.

Filter wheel Serial (RS232) Controller has serial interface.

Table 5.1 The tables list some of the devices that have been interfaced to
vision systems. Notice that display and input devices needed to support the
human-computer interface are not included here. The table is divided into
several parts, indicating families of devices that have been interfaced, or
proposed for connection, to industrial vision systems.
Lighting Device Interface Comments

 164

Stroboscope lamp
unit

Single TTL Used to “freeze” rapidly moving
objects. Lamp must be synchronised to
video camera and image capture.

Lamps (ON / OFF) Mains power Solid-state switch suitable for switching
lamps ON / OFF.

Pattern projector Mains power Solid-state switch suitable for switching
lamps ON / OFF.

Laser 5 - 12V Used for generating light stripe for
structured lighting. Simple electronic
amplifier may be needed to drive laser
from TTL.

Multi-LED lighting Multiple TTL Used to provide light-weight
illumination unit for mounting on robot
arm.

Lamps (variable) Serial (RS232) Serial line may be used to provide multi-
level control for an array of lamps.

Mechanical
Actuators

Interface Comments

Solenoid Single line, 24V, 240V, or
415V

Often used to operate mechanism for
deflecting reject parts from conveyor
belt.

Pneumatic Single line, 24V, 240V, or
415V

Often used to operate mechanism for
deflecting reject parts from conveyor
belt.

(X,Y,Z,θ) -table Serial (RS232) (X,Y,Z,θ)-table may be part of
machining centre e.g. drilling, milling
machine, lathe, water-jet, or laser cutter,
etc. Table may be servo-controlled, or
stepper motor.

Multi-axis robot Serial (RS232) Robot may be pneumatic, hydraulic or
electrical and may form part of a
complex manufacturing cell, performing
a range of functions, such as cutting,
turning, welding, paint spraying,
soldering, etc.

General Purpose

Devices
Interface Comments

Remote computer Parallel, Serial, SCSI Computer may provide interface to
LAN, WAN, Ethernet or Internet. Data
rate may be very high for transferring
video images.

Programmable logic
controller (PLC)

TTL, 24V PLC may synchronise several other
machines, as well as the vision system.

Table 5.1 (Cont’d)

Miscellaneous
Devices

Interface Comments

 165

Specialist image
processing equipment

Video, SCSI, Parallel High-speed processing of images in
external hardware augments software-
based processing.

Video recorder /
player

Parallel, TTL or serial
RS232

Vision system might operate player for
frame-by frame processing of video
signal, or for controlling time-lapse
recording.

Video monitor TTL, serial (RS232) Scan size, positive/negative image
display, pseudo colour, superimposition
of text can all be controlled.

Alarm bell, buzzer TTL Warning for general alarm.
Automatic test
equipment

Serial (RS232), or Parallel Vision system might adjust brightness /
scan-size of picture when calibrating
television receiver.

Printer (paper) Serial (RS232) Product statistics.
Ink-jet / bar-code
printer

Serial (RS232) Used for printing product type, grade,
dimensions, etc. directly on the product.
Also used for marking defect regions of
web materials, etc.

Plant emergency stop TTL or 24V Stops all activity in the manufacturing
plant if certain dangerous conditions
have been detected.

Table 5.1 (Cont’d)

Other vision systems have been built which provide direct interfacing to a

Programmable Logic Controller, or to one of the standard industry interfaces,
such as IEEE 488, VME, SCSI and Ethernet. Interfacing standards are, of course,
intended to make the task of the industrial design engineer easier. However, many
standards interfacing protocols have been defined and much of the equipment
which fits certain standard interfaces is expensive. It is inevitable that, whichever
standard has been adopted, some important facility is not provided, in a
convenient form. It is often cheaper to buy exactly those electro-mechanical
devices that are needed for a given application and then interface them directly to
the vision system. While this takes greater effort, researchers, university staff and
others working in an environment where funds are severely limited may find this
“do-it-yourself” solution preferable. The authors are in this category and, in their
research, are attempting to develop “general solutions” to a range of inspection
and other industrial vision applications. Faced with such a varied range of
interfacing requirements, connecting vision systems to industrial sensors and
effectors can be problematical. However, as we shall show, there is an alternative
approach, which the authors have found to be effective. In Section 5.4 we
describe a “general purpose” interface module which was designed to allow even
the simplest computer-based vision system (i.e. one with only a single RS232
port) to control a range of electro-mechanical, electrical, pneumatic, illumination
and video devices. First however, we shall explain why the Programmable Logic
Controller (PLC) does not fit our requirements exactly.

 166

5.3 Programmable Logic Controller
A Programmable Logic Controller (PLC) is a versatile digital electronics

device, intended for industrial control; a PLC is typically used to co-ordinate the
operations of a group of machines used in manufacturing. For example, a robot
might be used to load metal blanks into a power press. At the end of the metal-
forming process are then transferred from the press to either an “accept” or
“reject” bin, depending upon the decision reached by an automated visual
inspection system. (Figure 5.2) Even a simple production work-cell like this is
most likely to contain three machines made by different companies and have
completely different operation cycles. A PLC is often used in a situation like this,
to synchronise the three machines, so that they perform their various functions at
the appropriate times.

Key Events

1. Press being loaded
2. Pressing operation
3. Punch and die separate
4. Digitise an image
5. Process the image
6. Signal that part to be rejected or retained during unloading operation
7. Press being unloaded (Part is placed in "good" or "reject" bin)
8. Signal cycle to begin again

6

54

Press

Vision System

Loading / unloading
mechanism Time

3
21

8
1

3
21

8
1

7

7

7

7

Figure 5.2 Timing diagram for an hypothetical production cell, in which a
robot is used to load raw material into a power press. Following the pressing
operation, the finished parts are examined by a vision system. Defective
products are transferred by the robot to a “reject” bin. On the other hand,
“good” products are taken to the “accept” bin by the robot. Notice the need to
synchronise the three machines, so that appropriate operations are performed
at each stage in the processing cycle. Rather than interconnecting machines
like these directly to each other, it is common practice to use a PLC to sense
the status of each of the machines and to issue appropriate control signals to
them. Thus, the interconnection diagram resembles a (3-pointed) star, with the
PLC at the centre.

In order to explain in semi-formal terms what a PLC is, we may, in the first

instance, think of it as being a “black box”, which has a set of N binary inputs
(X1, …, XN) and M binary outputs (Y1,…YM) (M ≠ N). Each of the Xi is
derived from an ON/OFF sensor attached to one of the machines that the PLC is
intended to control and synchronise. Typically, most, if not all, of the Yj outputs

 167

operate a set of control actuators. The output Yj is calculated from the N inputs:
Yj = Yj(X1, …, XN), j ∈[1,…, M]

The output vector of the PLC varies with time; the output variables (Y1, …,
YM) change at discrete time intervals. Suppose that the time is represented in the
form of a P-bit Boolean vector (Z1, …,ZP). Then, each of the Yi (i = 1, …M) is a
Boolean function of an (N+P)-bit vector, (X1, …, XN, Z1, …,ZP). While a PLC
can be implemented easily using a random access memory of size M*(N+P)
elements, programming it at a low level (i.e. in terms of 0/1 bits) would be very
tedious and difficult. The task is made very much easier by the use of a computer,
which allows the input and output signal lines to be assigned symbolic names (e.g.
start, reset, doors_open, tool_broken, temperature_high etc.). Of course, the
computer helps the programmer in many other ways (e.g. by providing facilities
for cut-and-paste, storing programs, programming with subroutines, using FOR-
loops and IF-THEN program statements).

However, PLCs are more complex than this; a modern device is likely to
contain a set of timers. In addition, a PLC is often expected to:

(a) accept analogue inputs (The analogue inputs are compared to pre-defined
limits; if an analogue input is out of some pre-defined range, an internal
variable, equivalent to one of the Xi inputs described above, is set to logic level
1.)
(b) accept input sequences of alphanumeric characters (RS232 signal line)
(When a pre-defined sequence of characters is detected on the input, an internal
variable, equivalent to one of the Xi inputs, is set to logic level 1.)
(c) provide outputs in the form of character sequences. (The PLC contains a
character-sequence generator which is able to form a string of alpha-numeric
characters when a certain output variable, equivalent to one of the Yj, is set.)

The PLC is of particular importance to designers of vision systems, because it is

frequently used for co-ordinating and synchronising machines in a complex
manufacturing plant. One (or more) of the machines connected to the PLC might
well be a vision system. In the simplest case, there are just two 2-level signal
paths between the vision system and the PLC. (See Figure 5.3) One of these
transmits a signal from the PLC to trigger the vision system, prompting it to
digitise an image and begin its processing cycle. The other sends a pass/fail signal
from the vision system to the PLC, which in turn, operates the accept/reject
mechanism. This last device may be located some way down-stream from the
camera and must be triggered at the appropriate moment, at the instant when the
object to be rejected is passing it. (Figure 5.4) In a typical factory application, the
PLC may also be required to co-ordinate the actions of a large number of very
varied machines (e.g. robot, metal cutting, moulding, assembly, spraying, coating,
packing, printing, etc.), using data derived from a large range of sensors, in
addition to the vision system. This means that the PLC, not the vision system, may
be responsible for deciding what to do, in the event of a defective item being
found.

 168

Video Monitor

Intelligent camera

Manufacturing plant

PLC

Figure 5.3 Connecting a Programmable Logic Controller (PLC) to a vision
system such as the Intelligent Camera. Notice that the PLC lies at the heart of
the control system. For this reason, it is difficult to add “intelligence” to such
a system.

This is in marked contrast to our approach in this book, where we assume that

the computational processes needed to interpret observations from the sensors are
integrated with the intelligent interpretation of images, within the vision system.
The approach implicit in Figure 5.3 is limited in that it does not permit the
operation of the vision system to be modified easily, by taking note of the state of
the manufacturing plant. On the other hand, the approach that we advocate in this
chapter allows various sensor signals to be interpreted within the same symbolic
reasoning (Prolog+) program as we are use to analyse image data. While the
primary task of this program, measured purely in terms of computing effort, is
analysing image data from the camera(s), its other functions (e.g. analysing data
from the input ports and operating the output effectors) are of equal importance
for the harmonious operation of the manufacturing. The main advantage of this
approach is that the full reasoning power of Prolog is available to interpret the
signals representing the state of the external world. If necessary, the vision system
can re-evaluate its decisions iteratively. If there is a conflict in the data arising
from different sensors, this can be particularly valuable. Using a PLC does not
permit any intelligent reasoning to take place.

 169

PLC

Image
processor

Digitise image

LE
D

Ph
ot

o-
de

te
ct

or

Accept / reject
mechanism

(e.g. solenoid
or air blast)

Conveyor belt motion

Belt speed
measurement

transducer

SSR
Safety OFF switch

Plant control
computer Mains power line

Conveyor belt
drive motors

To adjacent machine(s) upstream.
Defect found - change process parameters

To next machine
down-stream, signal

object missing

Machine #1 Machine #2

Reject bin

Lighting unit
control line

Objects to be
examined

Parts-present detector

Figure 5.4 Using a PLC to control an inspection system operating on a
conveyor belt. Many of the signals entering and leaving the PLC are binary,
including those on the lines connecting it to the lighting unit, the accept /
reject mechanism, the safety switch, the machine located down-stream and
the parts-present transducer. The signal from the belt-speed transducer
produces a numeric output, while the signal sent to the upstream process
machines is likely to be symbolic in nature (i.e. conveyed as a string of ASCII
characters).

5.4 General Purpose Interface Unit
In this section, we describe a simple, low-cost interfacing device (Figure 5.5),

which was developed as an aid for prototyping industrial machine vision systems.
[BAT-94] The device, which we shall refer to as the MMB unit, provides facilities
for controlling the following devices, via a single serial (RS232) port.

(a) Ten mains-operated devices, such as lamps, relays, solenoids, or other ON /
OFF devices. Each individual channel has a current rating of 2.5A (at 240V),
while the total current rating for all ten lines is 10A. Ten flush-mounted 3-pin
mains sockets are fitted to the rear of the MMB unit.
(b) Four 3-port (i.e. simple ON / OFF) pneumatic valves. The connectors for
these air lines are fitted to the MMB unit’s front panel, while the air input line is
fitted at the rear.
(c) Two 5-port pneumatic valves. Each of these is capable of operating a PUSH
/ PULL cylinder. Again, the connectors for these air lines are fitted to the MMB
unit’s front panel.
(d) One 8-way video multiplexor. Nine BNC connectors (8 inputs and one
output) are fitted to the front of the MMB module.
(e) Six programmable-speed serial (RS232) communication ports. The
connectors for these are 9-way D-type connectors, fitted to the MMB front
panel.

 170

(f) Six opto-isolated, 8-way, parallel I/O ports. (Again, the connectors for these
are 9-way D-type connectors, fitted to the MMB front panel.)
(g) A laser stripe generator (used for structured lighting).
(h) A pattern projector. (This is a ruggedised slide projector and is able to
project patterns from a standard 50mm slide.)

8 channel UART
RAM ROM

C
P
U

8-way video
multiplexor

PIO PIOPIO

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

SSR

O
I

O
I

O
I

O
I

O
I

O
I

Six 8-way parallel
I/O lines

Ten 3-pin mains sockets
(240V, 1.0A each)

Common
video line

8 video
channels

Sw
itc

he
d

ai
r l

in
es

Host
computer

PV3

PV3

Seven RS232
serial lines

Back panel

Front panel

Connector
location

PV3

PV3

SSR PV5

PV5

Pneumatic control valves
(PV3, 3 port; PV5, 5 port)

Solid-state relays

O
N

 /
O

FF
C

om
pl

em
en

ta
ry

pa

irs

Figure 5.5 Internal hardware organisation of the MMB module. This is a
conventional microprocessor system with a rich set of interfacing chips
connected to its bus. Some of these, in turn, drive the video multiplexor,
solid-state relays and pneumatic air valves. All of the parallel I/O lines are
opto-isolated, for safety. Key: CPU, Central processing unit (Intel 80C86);
RAM, Random Access Memory (64 Kbytes); ROM, Read Only Memory (128
Kbytes); PIO, Parallel I/O (Intel 8251); UART, Universal Asynchronous
Receiver Transmitter (Philips Octal UART SCC 2698B); OI, Opto-Isolator
(Quad type, NEC 2502-4); SSR, Solid-state relay (RS 348431, rated at 2.5A)
PV, Pneumatic valve, (Manufacturer, SMC; Model, 3-port valve: VT307;
Model for 5-port valve: V25120.) (Design by MW Daley.)

In addition, the MMB module provides regulated power at +12V and +5V.

These power supply lines are useful for driving cameras, lamps and various
electronic devices connected to it. The MMB module’s control port is connected
to a host computer, running Prolog+. Hence, all I/O traffic flows via a single
RS232 line; the MMB module may be regarded as a data funnel, which allows the

 171

control port to collect / distribute data to a large number of other data pathways.
Using the MMB unit, it is possible for Prolog+ or other programs, which contain
only the most rudimentary I/O facilities, to operate a range of electro-mechanical
devices. For example, a HyperCard program can switch lamps and pneumatic air
lines ON / OFF, control the movements of an (X,Y,θ)-table and select different
video cameras. The electro-mechanical devices just mentioned form part of the
Flexible Inspection Cell (FIC), which is described in detail below. Let it suffice
for the moment to say that the FIC contains a variety of illumination devices,
several cameras, an (X,Y,θ)-table and a pneumatic pick-and-place arm, all
controlled from by Prolog+ program. Neither Hypercard nor MacProlog were
originally intended to control external devices like these.

The MMB interface module has also been used in a multi-camera vision system
in which an image processing module (Intelligent Camera) controls both gantry-
type and SCARA1 robots. (See Section 5.7, Figure 5.11.) A Prolog+ system,
interfaced to a gantry robot and a simple conveyor belt, has been programmed to
play dominoes, against a human opponent. Given certain minor changes to the
program, the FIC could also play dominoes. The FIC was used in the experiments
on the automated packing of arbitrary shapes reported in Chapter 7.

5.4.1 Motivation for the Design

The cost of designing industrial vision systems remains high, despite recent
advances in software and hardware. The motivation for the design of the MMB
interface module, originated with our concern for easy interfacing between
intelligent image processing software on the one hand and a variety of hardware
modules on the other. As we have seen, the latter range from simple ON / OFF
devices, such as lamps, pneumatic valves and solenoids, to sophisticated multi-
axis robotic manipulators. The MMB module was designed to act as the interface
controller for Prolog+, which has only rudimentary I/O facilities. (In its present
implementation, Prolog+ is only able to operate a single serial, RS232, port.) An
important aspect of the design is that the MMB module should provide a unified
high-level software interface for a variety of devices. Of course, operating speed
is reduced by the data funneling, but in the context of research, training, education
and prototype development, this is of little significance, compared to ease of use
and flexibility. Realising this led to the simple design which we shall now
describe in more detail.

5.4.2 Hardware Organisation

Figure 5.5 shows the internal organisation of the MMB hardware module.
During the design, keeping the cost of the MMB at a minimum was regarded as
being of prime importance. The objective was to achieve minimum cost, while

1 SCARA is the acronym for Selectively Compliant Articulated Robot Arm.

 172

maintaining a high level of flexibility. At the heart of the MMB hardware is an
Intel 8086 micro-processor, connected to a series of serial and parallel interfacing
chips, including: one 8-channel UART; three 3-port PIO chips2 which is
connected to one 8-way video multiplexor and sixteen ON / OFF solid-state relays
capable of switching mains power. Six of the solid-state relays are dedicated to
operating pneumatic control valves, while another ten are intended to switch
mains operated devices, such as lamps, solenoids, relays, motors, etc. An
important safety feature of the MMB unit is the fact that the parallel I/O lines are
all optically isolated. Figures 5.6 and 5.7 show the layouts of the front and rear
panels of the MMB unit. Notice that the pneumatic air lines use simple 6mm plug-
in connectors, which make the task of fitting and removing air pipes particularly
easy.

Parallel ports
(9-way D-type

connectors)

19"

13"

Reset button

Pneumatic connectors
(push-in fitting for 6mm

plastic tubing)

BNC connectors for
video multiplexor

For safety, all mains
devices are in closed

units

Serial ports
(9-way D-type

connectors)
Connector for

control
processor

Common
video line

Figure 5.6 Front panel layout of the MMB module. The diagram shows that
there is adequate space for all of the connectors on the front panel. Indeed, the
number of connectors could be doubled without undue crowding.

2 We have recently realised that these three chips could be replaced by a single

device. This would simplify the board design and programing, whilst reducing the
cost.

 173

Switched mains out

Air in

Mains in

Figure 5.7 Rear panel layout of the MMB module. Standard recessed
instrument-panel mains sockets were used. Once again, it is clear that there is
adequate space for more connectors if needed.

5.4.3 Programs

Programs for the MMB can be stored, either in battery-backed random access
memory (RAM), or in read-only memory (ROM). Of course, the latter can be
programmed using a conventional ROM-programmer, connected to a standard
personal computer. Of particular note here is that it is possible to program the
MMB module so that it can operate in a semi-autonomous manner, thereby
eliminating the need to control certain useful but tedious tasks using Prolog+. For
example, a program has been written which automatically initialises the Intelligent
Camera, on start-up; by pressing the RESET button; or at the command of the host
processor. Another MMB program initialises the (X,Y,θ)-table controller, while a
third operates the FIC’s pneumatic pick-and-place arm. The MMB is currently
programmed in 8086 assembly code. The cross-assembler runs on a personal
computer but this is removed when the MMB unit is in use, controlling the FIC.

5.4.4 Digression on Lighting

Of course, lighting control is well advanced in the theatre, where complex
lighting patterns and sequences are pre-programmed using sophisticated units,
capable of switching many kilowatts of power. These are almost invariably ON /
OFF devices. When we investigated theatre lighting devices, we did not find any
that satisfied our seemingly more modest needs. One of the principal objections
to using theatre lighting was its high cost, which simply reflected the fact that
these units have facilities which we do not need. More importantly, we did not
discover a unit that provided good facilities for controlling the lighting from a
remote device, such as a vision system.

The MMB module provides only ON / OFF control of lighting. For finer control
than this, a multi-lamp control unit has been designed. It is capable of operating

 174

16 filament lamps, with each lamp having any one of 16 different brightness
levels. The principle of operation is shown in Figure 5.8.

Thyristor

Thyristor

ThyristorPu
ls

e
se

qu
en

ce
 g

en
er

at
or

R
S2

32

in
te

rf
ac

e

Lamp 1

Lamp 2

Lamp 16

Clock generator

Time

Mains supply voltage

Time

Thyristor fires

RS232
input

Lamp brightness depends
on this area

On
Off

(a)

(b)

(c)

Figure 5.8 Lighting system, providing almost continuously variable control
of the intensities of 16 filament lamps.(a) Block diagram. The pulse sequence
generator determines when each of the thyristors fires during the mains power
cycle; the timing of the output pulses fixes the instant of firing. (b) Thyristor
firing pattern. (c) Each thyristor is switched on for only part of the mains
power cycle. The longer it is switched on, the brighter the lamp connected to
it will be.

Each lamp is controlled via a thyristor switch, which is fired by a pulse that is

carefully timed to arrive at a certain instant in the mains power cycle. By making
this pulse arrive early in the cycle, the thyristor will be switched on for longer and
the lamp will be brighter. It is a simple matter to arrange for an N-bit
microprocessor to generate suitable pulses for an N thyristor-lamp combinations.
By multiplexing the microprocessor outputs, an array of M*N lamps can be
controlled, where M is a small integer. The value of M that can be used in practice
is limited by the speed of the microprocessor, the cost of the hardware and the
tolerable power dissipation. In the design that was executed in Cardiff, 16 lamps
were controlled by an 8-bit microprocessor. (N = 8; M = 2) A more modern 16-bit
microprocessor, together with other low-cost electronic hardware, could easily

 175

generate the switching control signals for 64 lamps (M = 4), although the power
dissipation might well limit this number.

It is unlikely that many applications would require the use of as many as 64
high-energy lamps (> 10W each). However, the development in recent years of
super-bright LED’s has opened up a new possibility. Moderately priced multi-
LED lighting units are now available and are, of course, often seen on information
display boards. Special purpose lighting units, based upon the same principles of
operation, are now available commercially. These may contain several hundred
LED’s, arranged in some convenient pattern, such as an annulus. (The camera
lens can view through the central hole.) Since the power requirement for each
LED is modest, they can be driven directly from standard, cheap electronic
switching devices. The result is that it is easy to design control circuits for multi-
LED illumination heads, in which each LED can be individually controlled. While
each LED is an ON / OFF device, an array may contain so many of them that the
overall effect can be to produce nearly continuous brightness variations as more
LED’s are switched on. One limitation of using LED’s is the limited number of
colours available. (Red, yellow and green LED’s are currently sold.)

Various companies have developed lighting control units which monitor the
light output from a source and used this information in a feedback control system
to maintain very nearly constant light levels. R. J. Ahlers designed such a system
for providing in the primary light source for fibre optic illuminators. [RJA] A
trivial extension of this idea allows the light level to be determined by an external
signal, perhaps arising from a vision system. However, these units are not yet
cheap enough to allow us use a large number in an FIC.

An alternative to controlling the lighting is provided by a camera whose gain
can be changed under the control of a signal from an RS232 input port. One such
camera [Philips VC7105T] achieves this effect by altering the light integration
time in its CCD image sensing chip. The dynamic range achievable by this
technique is currently 1000:1. (This ignores the possibility of achieving an even
greater dynamic range by using an auto-iris lens as well.) Now, it is obvious that,
by altering the camera gain, the effect is the same as changing the brightness of all
lamps simultaneously, by the same factor. It is important to notice that adjusting
the camera gain does not permit the relative brightness of different parts of a
scene to be modified. However, there is one very useful ploy: digitise several
images, each obtained using a single lamp switched on, and then add them in the
appropriate proportions, within an image processor. To do this properly, we need
to have an accurately calibrated camera. Thus, by sacrificing time, we can achieve
the same overall effect as would be obtained with many lights being switched on
simultaneously.

Finally, we must mention the ALIS lighting systems, made by Dolan Jenner,
Inc. [ALIS] The ALIS 600 system consists of a light-proof cabinet containing a
range of lighting devices, of different kinds and arranged at various points around
the object mounting stage. The whole ALIS 600 system is capable of being
controlled by computer and hence could, in theory, be operated automatically
using an image processor. The object mounting stage can be moved using an
(X,Y,θ)-table. The result is a lighting system that is very similar to the FIC, except

 176

that ALIS is far more precise (and expensive!) than the authors “home-made”
unit. The same company also sells a set of interconnecting fibre optic and other
mutually compatible lighting units. They are intended for manual rather than
automatic adjustment and are collectively known as Micro-ALIS. They are
intended for use when investigating lighting system design experimentally.

5.4.5 Languages for Robotics

A number of specialised languages [MCL, PAL, RAIL, RPL, VAL, CURL,
AML, JARS] for controlling a robot have been developed, by extending standard
computer languages, such as PASCAL, Concurrent PASCAL, FORTRAN, LISP,
BASIC, PL/1 and APL. It is not difficult to envisage how languages such as these
can be enhanced, by providing a subroutine library for robot control. Apart from
the obvious functions of moving the robot to a defined pose, robot control
languages frequently contains facilities for performing appropriate co-ordinate
transformations. This is important, because it allows the user to control the
movement of the robot using parameters expressed in terms of world co-ordinates
(X,Y,Z), arm-joint angles, or a simple pixel address, derived from the vision
system. The software must also provide facilities for initialising and calibrating
the system. The reader is referred elsewhere for further details of specialised
robot-control, languages. [FU-87] The important point to note here is that Prolog+
is in good company, having been extended in a similar way. The fundamental
differences between the imperative languages on the one hand and the declarative
languages, exemplified by Prolog, is preserved.

The decision to use Prolog in intelligent machine vision systems was not a
once-and-for-all choice, forever forsaking the more conventional languages, for
the simple reason that it is possible to link code written in C and Pascal into
MacProlog programs. [MAC] Hence any “awkward” functions could be
programmed using either of these popular languages. So far, this has not been
necessary. (There is only one notable exception to this: the implementation of
Prolog+ in software, where C code is used to achieve high efficiency on image
processing tasks. See Appendix D.) Many of the device control functions that
might seem, at first, to suggest the use of Pascal or C routines embedded in Prolog
can be performed instead using the MMB unit. For example, initialising the
(X,Y,θ)-table controller was accomplished satisfactorily in this way. This is
hardly surprising when we examine the nature of the task: a small amount of data
(e.g. a command to a low level device controller) initiates a self-contained task. In
effect, the assembly code software in the MMB module is able to perform the
“awkward” operations, such as device control, which we might have assigned to a
C or Pascal program running on the same computer as Prolog.

5.5 Flexible Inspection Cell, Design Issues
Figure 5.9 shows a sketch of the physical layout of the Flexible Inspection Cell.

The main portion of the frame consists of a cube constructed using 12.5mm black

 177

steel tubes, 1m long. The lamps are domestic “spot” lamps, rated at 60W. The
light-stripe generator consists of a 3mW solid-state diode laser, fitted with a
cylindrical lens beam expander. The pattern projector is a rugged 50mm slide
projector and can be fitted with various transparencies, including intensity wedge
or staircase, single or multiple stripes, “rainbow” patterns, or dot-matrix patterns.
The (X,Y,θ)-table is driven by stepper motors and has a travel of about
300*375mm, with a resolution of 2.5µm / step. A pneumatic pick-and-place arm,
not shown here, allows objects to be repositioned on the table. The same arm can
also load / unload the table. At the time of writing, the cameras are four remote-
head units, connected to an Intelligent Camera. Notice that there are two overhead
cameras, providing wide-field and narrow-field views of the top of the (X,Y,θ)-
table. The (X,Y,θ)-table is driven by three Shinkoh stepper motors, controlled by
a drive unit supplied by Time and Precision Ltd. The horizontal (IN/OUT)
movement of the pneumatic pick-and-place arm used in the FIC is provided by a
rod-less pneumatic cylinder (stroke 375 mm, manufacturer SMC, Model
MY1M256-400). A standard pneumatic cylinder with a 60mm stroke provides the
UP/DOWN movement. The gripper fitted at the time of writing is a simple
vacuum device, with a circular suction cup, 12mm in diameter.

5.5.1 Lighting Arrangement

To reduce reflections, the FIC has a matt-black, rigid steel frame, holding the
lighting units. The latter consists of the following devices:

(a) Four 60 W filament lamps, around and just above the work-table, to provide
glancing illumination.
(b) Four 60 W filament lamps, around the table provide illumination at about
45° to the vertical axis.
(c) Two lamps directly above the table and very close to the overhead camera
provide nearly coaxial illumination and viewing. (An alternative would be to
use a ring illuminator, located around the lens of the overhead camera.)
(d) Two 60 W filament lamps, connected in parallel, which cannot shine
directly onto the table but provide high intensity illumination for a grey sheet of
material. This enables the side camera3 to view an object on the table with
either a bright or dark background.
(e) A rugged slide-projector, which enables the side camera to obtain range
information. The projector is normally fitted with a 50mm slide, which contains
a series of broad parallel black-white stripes, although this can be changed
manually. Among the other interesting possibilities is a slide consisting of a set
of coloured stripes.

3 That is one whose optical axis is horizontal and views objects on the table

from the side.

 178

(f) A solid-state laser light-stripe generator, fitted immediately above the table.
This is normally used in conjunction with the oblique camera to generate depth
maps. The laser can be connected directly to one of the parallel I/O lines.
(g) Infra-red and ultra-violet lamps can also be fitted to the FIC.

76

3

4

1

2

9
11

Laser stripe generator

Projector

Oblique camera

Overhead camera (wide field)

Side camera

10

Overhead camera (narrow field)

95

(X,Y,θ)-table

Dark grey background ,
provides back
illumination when lamps
9 are on and dark
background when lamps
7 and 8 are on

Matt black tubular
steel frame

8

Figure 5.9 Flexible Inspection Cell (FIC).

5.5.2 Mechanical Handling

The FIC contains a high-precision (X,Y,θ)-table, driven by standard stepper
motors and which provides movement control as follows:

(i) X-axis, travel 375 mm, step resolution ± 2.5µm.
(ii) Y-axis, travel 300 mm, step resolution ± 2.5µm.
(iii) θ-axis (rotation), 360° movement, step resolution 0.1°.

The interface card for the (X,Y,θ)-table controller (Digiplan IF5 card) has a

standard serial (RS232) input port, and has a straightforward and well-defined
command language. (Table 5.2) The FIC has been fitted with a pneumatic pick-
and-place arm, arranged so that an object can be place on the table and then
removed, or simply lifted up, while the table is shifted beneath it. This arm is
connected to the MMB module, simply by plugging 6mm plastic piping into both
units. The pick-and-place arm requires the use of the two 5-port switched air lines
mentioned earlier (One of these operates the in-out movement and the other for
the up-down movement of the end-effector.) One of the MMB unit’s ON/OFF air
lines is used to operate a suction gripper.

Command Function

 179

< 10 Define start / stop speed to be 10 steps s-1
^ 15 Define acceleration / deceleration rate to be 15

steps s-2
X 1000 @ 200 $ Shift 1000 steps in +X direction, at peak rate of 200

steps s-1 ($ initiates the movement)
Y-3000 $ Shift 3000 in -X direction
Z 250 @ 50 $ Rotate by 250 steps at peak speed of 50 steps s-1
X+ Y- $ Shift in +X and -Y directions previously-programmed

distance
X @ 500 G $ Travel continuously in +X direction at constant speed
Z @ 1000 G $ Rotate continuously in +Z direction at constant angular

speed
Cancel previous instruction (continuous or indexed

movement)
B - 20 Store backlash distance of 20 steps (See next two

commands)
X 100 B $ Move in +X direction for 120 units then reverse for 20

units
X-100 B $ Move in -X direction. No backlash correction

necessary when travelling in this direction

Table 5.2 Control language for the Digiplan stepper motor controller. Only
the most basic operations are described here. More advanced facilities, such
as defining and storing move sequences, delaying movement until a trigger
signal arrives on a parallel input port and generating output control signals are
not included, since they are not required in the FIC.

5.5.3 Cameras and Lenses

To be effective, an FIC requires a minimum of three cameras:

(a) Overhead camera, looking vertically downwards, used to view the top
surface of object(s) on the table.
(b) Side camera, providing a horizontal view. This camera is also able to
generate depth maps, when used in conjunction with the pattern projector, fitted
with a suitable slide.
(c) Oblique camera, used in conjunction with the laser stripe generator. (In the
FIC, this camera is used to acquire depth maps of the top surface of the object
on the table.)

However, there are good reasons for using more than three cameras in an FIC.

The principal advantage of adding extra cameras is that it is possible to fit them
with different lenses, in order to achieve different levels of magnification. In
many applications, it is necessary to locate an object using a camera fitted with a
wide-angle lens and then take more detailed observations using another camera

 180

with a narrow-angle lens. A standard lens, fitted to the overhead camera in the
FIC can view the whole of the table-top, when it is in its “home” position (i.e. at
the centre of its range of travel). A second overhead camera, located very close to
this one but fitted with a narrow-angle lens, may be used to obtain a higher
magnification and thus to see small detail, which would not be clearly visible to
the wide-field overhead camera. (Figure 5.10) Notice the offset caused by the fact
that these cameras are not in the same place. This is an important point and it has a
significant influence upon the calibration of the system. When a robot vision
system is first set up, the relative positions of the cameras and mechanical
handling sub-system are unknown and have to be found by taking measurements
experimentally. When there is more than (overhead) camera, this process has to
be extended, in order to relate their fields of view together.

5.5.4 MMB-Host Interface Protocol

The interface between the host computer and the MMB module follows the
protocol described below. (Also see Table 5.3)

(i) All output from the host computer is sent directly to the currently selected
serial port, with the exception that the control sequences defined in (iii) are
trapped by the MMB module and are not transmitted onwards. Notice that the
serial ports connecting the MMB to satellite devices may operate at a different
speed from the control port, connecting the MMB to the host processor.
(ii) All signals received on the currently selected serial port are sent to the host
computer. Signals received by the MMB module on its other serial ports are
simply ignored.
(iii) Control sequences are of the form: ¶ a b {c}, where a is an integer in the
range [1,8]; b is an integer and c is an optional integer. (See Table 5.3.) All
characters between “¶” and carriage return are ignored when sending data to the
serial ports.

A range of special functions (¶ 8 … commands) are available for operating the

FIC. These special functions are not essential but make the task of writing
software for the host processor easier. For example, ‘¶ 8 …’ commands have
been written for initialising the Intelligent Camera, initialising the (X,Y,θ)-table
and operating the pick-and-place arm from software resident in the MMB module.

 181

5

5

(c)

5

5

Offset due to cameras being
in different places

Wide-field
camera's view

Wide-field camera
(standard / wide-angle lens)

Narrow-field camera
(telephoto lens)

(X,Y,θ)-table
P

Q

Effective zoom factor = P/Q

(a)

Narrow-field
camera's view

View from wide-field
camera

View from
narrow-field camera

(b)

Figure 5.10 Two cameras with different lenses can provide different
magnifications. (a) Optical arrangement. (b) The wide-field camera views the
whole object to be examined, in low magnification. From this image, the
appropriate table-movement parameters are calculated. (c) After the table and
the object on it have been shifted, the narrow-field camera can examine a
selected part of the object in high magnification.

5.5.5 Additional Remarks

It must be emphasised that the MMB module was designed to fulfil a range of
functions; it was not designed specifically to control the present FIC. The module
has also been used to operate two commercial multi-axis robots: one a SCARA-
type robot, and the other a gantry robot. (Both robots are made by Cybernetic
Applications Ltd. and are intended for educational use.) The latter has been used
recently in a student exercise, building a machine that is able to play dominoes
against a human opponent. Other tasks that the MMB module has performed
include starting / stopping a conveyor belt and controlling a pneumatic “blower”
for diverting defective items from a conveyor belt inspection system. The MMB
module can also be used for such tasks as operating relays, solenoids, warning
lamps, bells and sensing the arrival of components as they pass the camera during
inspection.

 182

 Argument

Function First Second Third Example

Prolog signals to MMB that it
wants to receive data

0 Data port required
(Integer, 1-6)

None ¶ 0 3

Divert output to a different
serial port

1 Port no.
(1-7)

Baud rate
(e.g. 9600)

¶ 1 4 9600

Switch video multiplexor 2 Port no. (1-8) None ¶ 2 3
Switch mains power lines
on / off

3 Lamp state vector
(Hex integer,
0 - FF)

None ¶ 3 B4

Switch pneumatic air line
on / off

4 Pneumatics state
vector (Hex
integer, 0 - F)

None ¶ 4 9

Superbright LED’s
(reserved for future)

5 Lamp state vector
(Hex integer,
0 - FF)

None ¶ 5 7

Send data to parallel port 6 Port no. Hex integer ¶ 6 4 137
Receive data from
parallel port

7 Port no. None ¶ 7 5

Initialise all ports 8 0 None ¶ 8 0
Initialise Intelligent Camera 8 1 None ¶ 8 1
Initialise (X,Y,θ)-table 8 2 None ¶ 8 2
Switch laser stripe generator
on / off

8 3 0 / 1 ¶ 8 3 0

Switch pattern projector
on/ off

8 4 0 / 1 ¶ 8 4 1

Table 5.3 MMB control signals.

Many software packages have limited I/O capabilities. This statement includes

both MacProlog and HyperCard, which is discussed in a little while. The MMB
unit provides a means of interfacing these and similar software packages to a
range of external devices, which would not otherwise be possible. In situations in
which operating speed is of less importance than ease of use and versatility, the
present design provides a low cost solution to a wide range of interfacing
problems. Although it is conceptually naive, the absence of such a unit, in the
past, has hindered our research work in machine vision. The component cost of
the present unit is about £1000 (US$1500). Much of this cost lies in the case,
connectors, solid-state relays and pneumatic valves. The central electronics unit
costs under £100 (US$150). Hence, a lower cost unit could easily be made, with a
subsequent reduction in its functionality.

5.5.6 HyperCard Control Software for the FIC

 183

In Chapter 4, we described how the FIC can be controlled using a HyperCard
program (“stack”). HyperCard provides an excellent range of set of tools for
constructing easy-to-use and highly effective human-computer interfaces. The
HyperCard controller has been developed in such a way that it simplifies the task
of setting up the (X,Y,θ)-table, lighting, etc. in the FIC, without hindering access
to all of the features of Prolog+. The HyperCard controller co-exists and co-
operates with Prolog+. For example, the user can specify Prolog+ goals in
Hypercard; results are returned to HyperCard for viewing by the user. Moreover,
the user can switch quickly from one program to the other, with a minimum of
effort.

As we have seen in Chapter 4, Hypercard can control the FIC in two possible
ways: by direct control of the I/O port, and via Prolog+. The first of these makes
use of Hypertext’s (i.e. HyperCard’s programming language) ability to address the
Macintosh computer’s serial (RS232) ports. The second option uses so-called
AppleEvents. An AppleEvent is a message that is passed from one Macintosh
application (e.g. HyperCard) to another (e.g. Prolog). The message may be a
request for the receiver application to operate in some particular way. For
example, Hypercard may send MacProlog an AppleEvent which specifies a goal
(e.g. goal(A,B,C)) that is to be satisfied. If goal(A,B,C) does succeed, the variables
A, B and C will be instantiated (say A = 1, B = 2, C = 3). The message goal(1,2,3)
is then despatched by MacProlog, back to HyperCard, which can then perform
further calculations on the returned values (1,2,3). AppleEvents provide a very
useful medium for inter-application communication on the Macintosh computer.
Similar facilities exist, of course, on other computers. The authors have written
programs to control the FIC using both direct control of the I/O ports by
Hypercard and by using AppleEvents to specify Prolog+ goals, which in turn
operate the FIC.

5.6 Prolog+ Predicates for Device Control
Standard Prolog contains relatively unsophisticated facilities for controlling

external devices, compared to those found in many other languages. The inventors
and early pioneers working with Prolog apparently never envisaged it being used
to operate devices such as lamps, lasers, (X,Y,θ)-tables, robots, electro-plating
baths, milling machines, injection moulders, etc. Of necessity, the original
language did contain facilities for operating a printer and the “output” predicates
listed in this section follow the lead this provides.

Consider the Prolog built-in predicate write(X). This always succeeds but is
never resatisfied on backtracking. Strictly speaking, write(X) is a test, not a
command; as a side effect of trying to prove that write(X) is true, the printer
operates and types whatever value X currently has. [CLO-87]. In the same way,
the predicate lamp(A,B), which forms part of the extension of Prolog+, always
succeeds but is not resatisfied on backtracking. As a side effect, lamp number A is
switched to the state indicated by B. (B may be on, off, half-on, or some integer,
indicating the desired brightness level.) Other predicates controlling the “output”

 184

operate in the same way. To see how this is achieved in practice, here is the
Prolog code for lamp(A,B), which controls a (two-level) lamp:

lamp(A,B) :-
 lamp_state_vector(C),
 % Consult database for lamp state vector, C.
 list_element_set(A,B,C,D),
 % Set A-th element of list C to value B. D is
 % the new lighting state vector.
 retract(lamp_state_vector(C)),
 % Forget the previous lighting state vector
 assert(lamp_state_vector(D)),
 % Remember the new lighting state vector
 writeseqnl(modem, ['¶3 ',D]),
 % Command to MMB. See Table 5.3.
 !. % Prevent resatisfaction on backtracking

Now, let us consider the “input” predicates. Standard Prolog is provided with

the built-in predicates read and get and, at first sight, it seems that it would be a
simple matter to use these to obtain information about the outside world, via the
MMB module. However, there is an important point to note: Prolog relies upon
programmed I/O. Hence, all requests for data to be transferred from the MMB
module must be initiated by Prolog. Here is a suitable data-transfer protocol
needed for input, expressed in Prolog:

get_data(A,B) :-
 ticks(C), % Integer P indicates time. Units: 1/60th sec.
 D is C + 60, % Q is latest time allowed for MMB response
 writeseqnl(modem, ['¶0 ',A),
 % ‘¶0’ is test sequence used by Prolog to
 % sense whether MMB module is ready to receive
 % data. A indicates what data is requested.
 mmb_response(D), % Succeeds only if MMB is ready to send data
 read(modem,B). % Get data from MMB unit.

get_data(_,_) :-
 beep, % Audible warning
 writenl('The MMB Module was not available to send data'),
 fail. % Forced fail

% Clause 1 fails, if the time limit has been passed.
mmb_response(A) :-
 ticks(C), % C is the time now
 C > A, % Is C greater than given time limit, A?
 !, fail. % Force failure

% Clause 2 succeeds, if the character ‘$’ has been detected
mmb_response(A) :-
 serstatus(modem,in,B),
 % B = number of characters in input buffer
 B ≥ 1, % There are some characters to be analysed
 get(modem,C), % So, let’s see one
 C = ‘$’, % Is the character ‘$’?
 !. % Yes, so the goal succeeds

% Time limit has not been reached & character ‘$’ has not been seen
% yet - Try again
mmb_response(A) :-
 !, % Improve efficiency of recursion

 185

 mmb_response(A).
 % Repeat until ‘$’ found or time limit is reached

Following these general principles, a wide range of I/O predicates have been

defined for controlling the FIC via Prolog+.

5.7 System Calibration
Whenever a vision system is intended for use with a multi-axis manipulator (i.e.

(X,Y,θ)-table, or multi-axis robot), it is vitally important that their co-ordinate
systems be related to one another, before the system is used. The procedure for
doing this will be referred to as calibration. To appreciate the importance of this
calibration for robot vision systems in general, consider the FIC, which, of course,
has an (X,Y,θ)-table and pick-and-place arm. The FIC is one example of a 2 D
robot and is functionally equivalent to a SCARA arm. (Figure 5.11(a).) Both of
these devices are able to move parts around on a flat table and can conveniently
be guided by a vision system, with a single overhead camera. When the FIC is
first set up, the position of the camera relative to the (X,Y,θ)-table is unknown. In
addition, the camera may be skewed relative to the (X,Y,θ)-table, so that their co-
ordinate axes are not parallel. Furthermore, the camera’s magnification is not
known exactly. Finally, in the case of the FIC, the relative positions of the pick-
and-place arm and the camera are not known exactly. It is obvious that a series of
parameters must be calculated, so that a point determined in terms of the vision
system’s co-ordinates can be related to co-ordinates describing the position of the
(X,Y,θ)-table. An experimental procedure for calibrating the FIC forms the
subject of discussion in this section.

There are two possible methods for calibrating the overhead camera of the
Flexible Inspection Cell.

(a) “Once-and-for-all” calibration, using careful measurement and dead
reckoning.
(b) Automatic self-calibration, using some convenient marker to measure the
movements of the table.

By the former, we mean to imply that the calibration is done only once. It is

then assumed that the camera, its lens and the table (or robot) base are not moved
at all. This is a particularly dangerous assumption in any environment, such as a
factory, where unauthorised tampering is ubiquitous. Even in a research
laboratory, the dangers of mischievous fingers must be taken into account when
designing experiments. It is far safer to re-calibrate the machine vision system
every time that it is used. In a factory, it is good practice to perform the calibration
procedure at least once during every shift. While it may be possible to bolt the
camera and table rigidly to the same frame-work, it is often necessary to adjust the
lens, particularly during cleaning. (Of course, changing the camera zoom, focus
and aperture controls can all be accomplished accidentally during cleaning.)
Frequent re-calibration is needed, even in the best controlled environments.

 186

Manual calibration is tedious, slow, imprecise and prone to gross errors. On the
other hand, automatic self-calibration is fast, precise and reliable, provided that
sensible checks are built into the procedure. In the remainder of this section, we
shall therefore concentrate upon the self-calibration procedure, restricting our
discussion to the FIC. A very similar process can be devised for a SCARA robot,
used in conjunction with an overhead camera. The reader will not be surprised to
discover that a 3D robot, such as the gantry type (Figure 5.11(b)), requires a more
complicated procedure. However, this is a straightforward extension of the ideas
discuss here: we calibrate the system using the overhead and side cameras
separately. Finally, we relate the pictures for the two cameras together, using
some suitable target object, which both cameras can see, at the same time.

5.7.1 FIC Calibration Procedure (Overhead Camera)

The process consists of a number of distinct steps:

(a) The geometry of the work-space is shown in Figure 5.12. First, it is
necessary to set up the wide-angle overhead camera manually, so that it is
focused on the top of the (X,Y,θ)-table and can view the whole of the desired
field of view. In order to make the best possible use of the available image
resolution and to avoid over-complicating the image processing, it is suggested
that the camera should not be able to see much detail outside the disc forming
the top of the (X,Y,θ)-table.
(b) Next, a small high-contrast circular marker is placed near the centre of the
table. This can be done either by hand, or preferably by the pick-and-place arm.
Suppose that the table is dark, nominally matt black. Then, the marker should be
nominally white and it should not glint unduly. The lighting should be arranged
to come from above the table and be diffuse (multi-directional). This will avoid
casting sharp shadows. The overhead camera is then used to view the table top.
A straightforward Prolog+ program is then used to analyse the image of the
marker and find the co-ordinates of its centroid. Let these co-ordinates be
denoted by (X11,Y11). Notice that these parameters relate to vision system co-
ordinates.

 187

Column

Base

Effector

θ

θ

θ
3

2

1

Z
Main arm

Fore arm

Wrist

(a)

X

X

YZ

Lead screw positioning with stepper
motor drives (not shown)

Supporting
frame

Effector

(b)

Figure 5.11 Two types of multi-joint robot (a) SCARA robot (DP Batchelor).
(b) Gantry robot.

 188

(X12,Y12)

(X11,Y11)

(X1,Y1)

(X22,Y22)

(X21,Y21)

(X2,Y2)

(X32,Y32)

(X31,Y31)

(X3,Y3)

Xt

Yt

U

V
Y

X

Figure 5.12 Geometry of the work space for calibrating the overhead camera
in the FIC

(c) The (X,Y,θ)-table is then rotated by 180°. The centroid of the marker is
recalculated. Suppose that the new co-ordinate values are (X12,Y12). Again,
these numbers relate to vision system co-ordinates. The centre of the table is
now at (X1, Y1), where

 (X1, Y1) = ((X11 + X12)/2, (Y11 + Y12)/2) …(5.1)

(d) The table is then moved by a distance Xt along its X axis. (Notice that this
movement may not be parallel to the x-axis of the vision system.)
(e) Steps (b) and (c) are repeated. This process yields the new position for the
centre of the table at (X2,Y2). (In fact, it is not necessary to rotate the table by
180°. We could, for example, derive all of the relevant parameters using just
four points (i.e. (X11,Y11), (X12,Y12), (X21,Y21) and (X31,Y31)). However,
it is conceptually simpler to explain the procedure, in terms of movements of
the centre of the table.)
(f) The table is then returned to the original position, as at the end of step (a).
(g) A procedure akin to steps (b) - (f) is then performed, except that the table is
now moved an amount Yt along its Y axis and the centre of the table is
discovered to be at (X3,Y3).
(h) The axis-transformation equations are therefore

X U
X X

Xt
V

X X
Yt

X=
−





+
−





+. .
2 1 3 1

1 …(5.2)

 189

Y U
Y Y

Xt
V

Y Y
Yt

Y=
−





+
−





+. .
2 1 3 1

1 …(5.3)

where the position of the centre of the table, according to the table’s co-ordinate
system, is (U,V), and its position according to the vision system is (X,Y). The
origin of the table’s co-ordinate system is the centre of the table in step (b). This
is the point (X1,Y1), in the vision system’s co-ordinate space. It is
normally more useful to have the equations rearranged so that the robot co-
ordinates, (U,V), can be calculated from the vision system co-ordinates, (X,Y).

U Xt

Y Y
Y Y

X X
X X

Y Y
Y Y

X X
X X

=

−
−







−
−
−







−
−







−
−
−

























.

1
3 1

1
3 1

2 1
3 1

2 1
3 1

 …(5.4)

V Yt

X X
X X

Y Y
Y Y

X X
X X

Y Y
Y Y

=

−
−







−
−
−







−
−







−
−
−

























.

1
2 1

1
2 1

3 1
2 1

3 1
2 1

 …(5.5)

Of course, if the table and vision system co-ordinate axes are parallel, these
equations can be simplified to

U Xt
X X

X X
=

−
−







.
1

2 1
 …(5.6)

V Yt
Y Y
Y Y

=
−
−







.
1

3 1
 …(5.7)

The general axis-transformation equations are of the form

U = A.X’ + B.Y’ …(5.8)
V = C.X’ + D.Y’ …(5.9)

where

X’ = X - X1 …(5.10)
Y’ = Y - Y1 …(5.11)

 190

A Xt
X X

Y Y
Y Y

X X
X X

= −
−







−
−







−
−
−

























.

1
3 1

2 1
3 1

2 1
3 1

 …(5.12)

B Xt
Y Y

Y Y
Y Y

X X
X X

=
−







−
−







−
−
−

























.

1
3 1

2 1
3 1

2 1
3 1

 …(5.13)

C Yt
X X

X X
X X

Y Y
Y Y

=
−







−
−







−
−
−

























.

1
2 1

3 1
2 1

3 1
2 1

 …(5.14)

D Yt
Y Y

X X
X X

Y Y
Y Y

= −
−

−






−
−







−
−
−

























.

1
2 1

3 1
2 1

3 1
2 1

 …(5.15)

Hence, A, B, C and D can be calculated once, before we begin using the FIC in

earnest. Thereafter, we simply apply Equations 5.8 - 5.11. Notice that the origin
(i.e. the (0,0) position) for the (X,Y,θ)-table’s co-ordinate axes is given by the
position of the centre of the table at the beginning of the calibration procedure.

5.7.2 Calibration, SCARA and Gantry Robots
 (Overhead Camera)

The procedure just described can be modified slightly to calibrate a SCARA or
gantry robot, used in conjunction with an overhead camera. The changes needed
for this are fairly obvious and, for this reason, will be described in outline only.

(a) Pick up a white object, called the marker, in the robot’s gripper.
(b) Use the robot to place the object on a flat, matt black table. The robot
releases the marker when it is at its “home” position.
(c) Use the overhead camera to view the marker. (The robot arm is, of course,
moved out of the sight of the camera.) Digitise an image and locate the centroid
of the marker. (Co-ordinates: (X11,Y11)

 191

(d) Pick up the marker. Rotate the gripper by 180° and then replace the marker
on the table.
(e) Repeat step 3. (Marker co-ordinates: (X12,Y12)
(f) Compute the centre point, between (X11,Y11) and (X12,Y12) using
Equation 5.1.
(g). Pick up the marker. Move the robot to position (Xt, 0) relative to its home
position. Repeat steps (c) to (f). (Marker co-ordinates: (X2,Y2).)
(h) Pick up the marker. Move the robot to position (0,Yt) relative to its home
position. Repeat steps (3) to (6). (Marker co-ordinates: (X3,Y3).)
(i) Use the equations given in the previous section to translate the position
(X,Y), given in terms of vision system co-ordinates, into co-ordinates defining
the robot’s position.

This procedure is needed because an overhead camera cannot see an object

while it is being held in the robot gripper.

5.7.3 Calibration Procedure (Overhead Narrow-view Camera)

The calibration procedures just described are suitable for use with either wide-
angle or narrow-angle lenses. However, there is an additional requirement:
relating the wide and narrow-field cameras to each other. To simplify the analysis,
let us assume that both cameras

(a) see a circular white marker, resting on a black table;
(b) are aligned so that their co-ordinates axes are parallel;
(c) generate digital images with a resolution of Xmax*Ymax pixels;
(d) generate digital images which have a 1:1 aspect ratio when a square is
 being viewed.

Furthermore, we shall assume that the narrow field-of-view is entirely contained

within the wide one. Suppose that by using the narrow-field camera, we discover
that the marker is at (Xn,Yn) and has a diameter of Dn, while the equivalent
figures for the wide-field camera are (Xw,Yw) and Dw. Then, the optical-
magnification ratio of the two cameras is equal to R, where

R = Dw/ Dn. …(5.16)

The axis-translation equation is given by

(X', Y') = ((X - Xw)/R + Xn), (Y - Yw)/R + Yn)) …(5.17)

where (X',Y') is the position of a point, given in terms of the narrow-field camera,
and (X,Y) is its position related to the wide-field camera. (Figure 5.13) It is useful
to locate the centre of the field of view of the narrow-field camera in terms of the
wide-field camera co-ordinates.

 192

This can be achieved by solving the equation

(Xmax/2, Ymax/2) = ((Xc - Xw)/R + Xn), (Yc - Yw)/R + Yn)) …(5.18)

for Xc and Yc. The resulting equation is

(Xc, Yc) = (R.(Xmax/2 - Xn) + Xw), R.(Ymax/2 - Yn) + Yw) …(5.19)

Suppose that we identify something of interest, using the wide-field camera, and

then move it, using the (X,Y,θ)-table, so that we can take a more detailed look
with the narrow-field camera. The procedure for doing this is straightforward.
(Figures 5.10 and 5.13) Suppose that the wide-field camera has found the object at
point (Xp,Yp). We simply calculate the table movement by substituting ((Xp -
Xc), (Yp - Yc)) for (X,Y) into Equations 5.4 and 5.5.

Xw

Yw

Xn

Yn

Dw Dn

Xc

Yc

Y'

X'

X

Y

X'

Y'

(a) (b)

Wide-field
camera's view

Narrow-field
camera's view

Marker
disc

Narrow-field
camera's view

Marker
disc

Xmax

Ymax

Table movement
needed to centre object

in field of view

Xmax

Ymax

Figure 5.13 Relating the two overhead cameras together. (a) Wide-field
camera’s view (light shaded area). The narrow-field camera’s field of view is
also shown (dark shaded area.) Notice that the white marker disc is visible to
both cameras. By moving the table by an amount given by the thick black
arrow, the disc will be (approximately) centred on the narrow-field camera’s
optical axis. (b) Geometry of the narrow-field camera’s view of the marker.

5.7.4 Calibration Procedure (Side Camera)

 193

In one respect, the calibration procedure is simpler for the side camera, since
objects resting on top of the (X,Y,θ)-table, or held in the gripper of a gantry or
SCARA robot are visible. However, there are complications, due to the fact that
the object can move along the optical axis (Y axis, Figure 5.14) of the side
camera. This can lead to mis-focussing of the side camera, as well as causing the
apparent size of the object to vary. These problems can be avoided altogether, if
we use the overhead camera and (X,Y,θ)-table or robot to fix the object position
along the Y-axis, before images from the side camera are ever digitised and
processed. In the arrangement shown in Figure 5.14, the overhead camera locates
the object in the (X,Y) plane. The table / robot is then moved, so that the feature
of particular interest is placed at a known Y-position. The side camera sees object
features projected onto the (X,Z) plane.

Wide-field
overhead camera

Side camera
Z

X

Y

A B

Figure 5.14 The side camera has an unknown magnification, if the position of
the object along the Y-axis is not known. Thus, the object appears to get
bigger, if it moves from A to B. The overhead camera can provide some help
in determining the Y-position. However, this is not always possible, because
suitable “landmark” features might not be visible from both cameras. The
possible effects of mis-focusing are ignored here.

When the target has been placed in fixed Y-position, it is a trivial matter to

calibrate the robot vision system. Note, however, that it is advisable to use a
clearly recognisable target, since the view from the side camera may be far from
simple. (The gripper of a robot may have brightly polished metal surfaces. The
side-frame of the (X,Y,θ)-table, slide-way, carriage and θ stepper-motor may all
be visible, below the table top and are likely to glint to some extent.) There are

 194

two obvious ways to simplify the image, by employing a target which generates
an image with a very high contrast. (a) Use a calibration target with a small
retroreflective patch stuck to it and arrange for lighting to (appear to) come from
the side camera. (A small lamp, or LED, placed very close to the side camera will
suffice.) (b) Use a target which has a bright beacon (fibre optic or LED “point”
source”) mounted on it.

The calibration procedure consists of simply moving the (X,Y,θ)-table along the
X axis only and noting the movement, as observed by the side camera. When a
robot that is capable of moving in the vertical (Z) direction is being calibrated, the
target must be moved along both the X and Z axes. The equations relating the
table / robot movement to the shifts in the image seen by the side camera are
simple to derive.

5.8 Picking up a Randomly Placed Object
 (Overhead Camera)

The general manipulation task that we shall discuss in this section is that of
picking up a thin, laminate object, placed on the table in unknown orientation and
position. For simplicity in our discussion, the table will be assumed to be very
dark and the object very bright, so that image segmentation can be performed
easily, perhaps by thresholding, or some other simple process.

Consider Figure 5.15. The radius of the table is A units. The centre of the table
can move anywhere within a square of side 2.A units. The camera apparently
needs to be able to view a square of side 4.A units. This arrangement guarantees
that the camera can see an object placed on the table, wherever the latter is
located. It is assumed, of course, that the object lies wholly within the perimeter of
the circular top of the turn-table. Suppose, however, that the turn-table is always
moved to the centre of its range of travel, whenever an object upon it is to be
viewed. Then, the camera need only view a square of side length 2.A units. Of
course, this enables the camera to sense smaller features than the arrangement
suggested in Figure 5.15(a). Notice too that the corners of the image can safely be
ignored. This is important because we have no control over the appearance of the
corners of the image, which show the slide-way and drive motors of the (X,Y,θ)-
table mechanism. The slide-way might well have brightly polished metallic
surfaces, which would cause problems due to glinting. The corners of the image
should therefore be removed by masking, either optically, or by software.
(Alternatively, a larger black disc, whose radius is at least √2.A units, could be
fitted to the turn-table mechanism.) Of course, a well-designed program for
controlling the FIC, should always be aware of the position of the (X,Y,θ)-table.
In this case, it is not difficult to move the table to the centre of its range of travel,
every time the object upon it is to be viewed. Notice, however, that this does
increase the time spent moving the table, since two movements rather than one are
now needed. Thus, we can make better use of the camera’s finite resolution but at
the cost of reducing the speed of the system, using a camera with the smaller field
of view.

 195

(a)

2A

2A 4A

4A

(X,Y,θ)-table
radius is A

Wide-field camera's
field of view

Range of travel of
centre of table

Area that can be reached by
any point on the table

perimeter

Wide-field camera's field of
view is same as the limit of

table movement
(Square 2.A*2.A)

(b)

(X,Y,θ)-table
radius is A2A

Area that can be reached by any
point on the table perimeter

Figure 5.15 Picking up a randomly placed object, using the overhead camera
to guide the (X,Y,θ)-table. (a) Viewing an object anywhere on the table,
which can be located anywhere within its defined limits of travel. (b) Viewing
an object when the table is always located at the centre of its range of travel.
The magnification can be increased by a factor of two.

In order to normalise the position and orientation of an object positioned in an

arbitrary way on the table, we may use the following procedure. (See Figure 5.16)

1. Use the vision system to determine the position and orientation of the object.
2. Calculate the robot position parameters using the formulae listed in Section
5.7.
3. Move the table to the position and orientation found in step 1.
4. Rotate the table by –θ°.
5. Optional: Use the vision system to verify that the object position and
orientation have been correctly normalised. If not, return to step 1.

The co-ordinates of the centroid are, of course, useful for locating the object.

Let the centroid co-ordinates, as estimated by the vision system, be denoted by
(X0,Y0). The orientation of the object, relative to some appropriate reference axis,
will be represented by θ. The value of θ might be found by calculating the
orientation of the axis of minimum second moment, or of the line joining the
centroid of the object silhouette to the centroid of the largest “bay”, or “lake”.
Figure 5.17(a) illustrates the most obvious way to determine the position of the
object. This involves computing the co-ordinates of its centroid. Alternatively, the
centre of that line which joins the centroids of the two holes could be used to
determine the position. Of course, this method will not work if there do not exist
at least two clearly distinguishable holes. The orientation can be found in a
number of ways, of which four are illustrated in Figure 5.17(a). The axis of
minimum second moment is one possibility. A second is provided by finding the
orientation of the line joining the centroid to the furthest edge point. The line
joining the centroid of the silhouette to the centroid of the largest hole provides

 196

the basis for the third method. The fourth method is similar to the third, except
that the hole that is furthest from the centroid of the silhouette is used.
Alternatively, several other techniques, based upon joints and limb ends of the
skeleton of the silhouette, can be used. It is also possible to derive position. Figure
5.17(b) illustrates how the skeleton of a rigid blob-like object can provide a
number of key features by which the position and orientation may be determined.
For example the centre point of the line joining the skeleton limb-ends B and C, or
the skeleton joint F would be suitable places to locate a gripper. The orientation of
the object may be determined from the line BC. A good place to grip a flexible
object might be to hold it near its limb ends. In this case, a “four-handed” lift,
with the grippers placed close to limb-ends A, B, C and D would be appropriate.
Since the use of four grippers might be difficult in practice, a “four-handed” lift
might use gripping points placed close to A and D.

Random position
& orientation Orientation normalised Position normalised

Camera's field of view is same
as the limit of table movement.

Square 2.A*2.A

Corners can be ignored by
masking, either optically or

in software

Turn-table, radius A
(a)

(b) (c) (d)

Figure 5.16 Procedure for picking up a randomly placed object, using the
overhead camera to guide the (X,Y,θ)-table. (a) The wide-field camera’s field
of view is a square of side length 2.A. The radius of the circular top of the turn-
table is A and the travel is 2A*2A. (b) Object is in random position and
orientation. (c) First step: Digitise an image and then determine the orientation
of the object. Second step: rotate the table to normalise the orientation. (d) Third
step: Digitise another image and determine the position. Fourth step: Shift the
table to normalise the position.

 197

X centroid

Y centroid

Axis of minimum
second moment

Edge point furthest
from centroid

Centroid of
largest hole

Centroid of hole
furthest from centroid

Axis of minimum
second moment

(a)

A B

C

D

E F

(b)

Figure 5.17 Some suggestions for calculating position and orientation
parameters for a laminate object viewed in silhouette.

5.8.1 Program

The Prolog+ program listed below is able to normalise the position and
orientation of the biggest white object among several others, distributed at random
on top of the (X,Y,θ)-table, which is assumed to be black.

locate_and_pick :-
 home, % Go to the table’s home position
 grb, % Digitise an image from the camera
 enc, % Linear stretch of intensity scale
 thr, % Threshold at mid grey
 biggest, % Isolate the biggest blob
 lmi(_,_,Z), % Find orientation
 Z1 is -Z*100, % Rescale angle measurement
 writeseqnl(['Rotate table by',Z1,'degrees']),
 % Tell user what is happening
 table(0,0,Z1), % Normalise the orientation. Rotate the table
 where_is_table,
 % Tell the user where the table is now
 grb, % Digitise an image from the camera
 enc, % Linear stretch of intensity scale to range
 % [black, white]
 thr, % Threshold at mid grey
 biggest, % Isolate the biggest blob
 cgr(X,Y), % Find centroid co-ordinates
 convert_table_axes(X,Y,Xt,Yt),
 % Convert to table coordinates (Xt, Yt)
 table(Xt,Yt,Z1),
 % Shift the table to normalise position.
 grb, % Digitise another image
 vpl(128,1,128,256,255), % Draw vert. line through centroid
 vpl(1,128,256,128,255), % Draw horiz. line through centroid
 pick. % Operate pick-and-place arm to pick up object

The operation of locate_and_pick is illustrated in Image 5.1. The reader may

like to consider how this program can be modified to pick up all the objects on the
table.

 198

5.9 Grippers
We conclude this chapter with a brief discussion of grippers and how they relate

to the selection of a suitable grasping point. We shall briefly consider three types
of gripper: Suction, Magnetic and Multi-finger.

When discussing Suction and Magnetic grippers, we shall limit our attention to
objects having flat top surfaces, while for Multi-finger grippers we shall assume
that the object has sufficiently rough vertical sides to ensure that a friction-based
gripper can hold the object securely.

5.9.1 Suction Gripper

The suction gripper is assumed to be a circular rubber cup. Suppose that its
diameter is D and that it is being used to pick up smooth flat-topped laminate
objects. An obvious place to position the gripper is at the centroid of the object
silhouette. (Figure 5.18) If the gripper is small enough, its whole gripping surface
will lie within the perimeter of the object. However, if the edge of the gripper
overlaps that of the object, the grasp will not be secure, since air will leak into the
suction cup. If the object has any holes, these must also be taken into account. It
may, of course, be possible to use a small sucker but this does reduce the loads
that can be lifted. Here is a very simple program to determine whether gripping at
the centroid is safe. It is assumed that a binary image, representing the object
silhouette, has already been computed and is stored in the current image.

safe_grasp :-
 cgr(U,V), % Centroid is at (U,V)
 cwp(N), % How many white pixels in silhouette
 wri, % Save image for use later
 zer, % Generate black image
 gripper_size(X), % Consult database for size of gripper
 draw_disc(U,V, X, white),
 % Draw white “guard” disc, at (U,V), radius X
 rea, % Recover image of silhouette
 max, % OR disc and silhouette images
 cwp(M), % Count white points. Compare to earlier value
 M is N. % Test for equality of pixel counts

safe_grasp fails if the disc representing the gripper is not entirely covered by the
object silhouette.

5.9.2 Magnetic Gripper

A magnetic gripper is more tolerant of overlap than the suction type, just
discussed. Hence, it is possible to draw a “guard disc” that is smaller than the
gripper itself; provided that the guard disc is entirely covered by the object
silhouette, the grasp will be secure. (Figure 5.19) Hence, we can use safe_grasp
again, except that gripper_size yields the radius of the guard disc, not that of the
gripper itself. Another approach simply counts the number of pixels which lie

 199

within the gripper “footprint” but do not lie within the object silhouette. The
following program is a simple modification of safe_grasp:

safe_grasp1 :-
 cgr(U,V), % Centroid is at (U,V)
 wri, % Save image for use later
 zer, % Generate black image
 gripper_size(X),
 % Consult database for gripper size
 draw_disc(U,V, X, white), % Draw white “guard” disc
 rea, % Recover image of silhouette
 sub, % OR disc and silhouette images
 thr(0,100), % Isolate pixels in disc
 cwp(N), % Count white pixels
 M ≤ 100. % We can safely allow 100 pixels overlap

Note that in Image 5.2(d) the circular suction gripper could not grasp this object
securely, due to air leakage in the small regions enclosed within this circle but not
within the silhouette. A magnetic gripper placed here and of the same size might
well be able to do so.

Air leakage

Air leakage

Centroid

Laminate object

"Footprint" of suction gripper

Figure 5.18 Using a suction gripper to hold a flat-topped object. The dark
circle represents the suction gripper, which is so large that it overlaps the
outer edge of the object and one of its holes. Since air will leak, via the
overlap region, this does not provide a safe lifting point.

5.9.3 Multi-Finger Gripper

A multi-finger gripper lifts a laminate object by grasping its sides, not its top
surface as both magnetic and suction grippers do. This means that when the
gripper is lowered onto the table, the tips of the fingers are actually lower than the
top of the object that it is about to lift. This presents the potential danger of the
gripper colliding with the object to be lifted or another object placed nearby.
However, this can be avoided in a simple and obvious way, by drawing the

 200

shadow of the gripper finger tips (or “footprint”) onto the image of the table top.
In Image 5.2, the fingers are assumed to have rectangular tips. If these footprint
rectangles do not overlap any white object in the image of the table top, it is safe
to lower the gripper. Whether or not the grip will be secure depends upon friction,
the gripping force and the extent of any deformation of either gripper or object to
be lifted. (Such features cannot, of course, be understood by a vision system.) The
same technique can be used if the fingers are circular, or there are more than two
of them. (Also see Section 7.3.4.)

Overlap
critical

Overlap (probably)
not important

Centroid

Laminate object

"Footprint" of magnetic gripper

Non-critical
overlap

Guard disc (dark circle) is
smaller than the gripper

Figure 5.19 Using a magnetic gripper to hold a flat-topped object. The
circular stippled area represents the gripper “footprint”. Unlike the suction
gripper, the magnetic gripper can tolerate a certain amount of overlap, without
weakening the grasp unduly. Provided the dark stippled area is entirely
covered, the grasp will be strong. However, the overlap can cause other
problems: any object falling within the area labelled “Non-critical overlap”
will be grasped and may be lifted or just moved a little as the gripper is raised.

5.9.4 Further Remarks

When discussing the magnetic gripper, we permitted the gripper to overlap the
edge of the object silhouette. This is potentially dangerous but the solution is
exactly the same as for the multi-finger gripper: superimpose the gripper
“footprint” onto the image and test whether by so doing the gripper will overlap
any other objects. There are several further factors to be considered. The first is
the nature of the object itself. Clearly, if the object is not ferromagnetic, a

 201

magnetic gripper will not be able to lift it safely. On the other hand, if the object
has a very rough, pitted, fibrous or “stepped” top surface, a suction gripper will
not be able to provide a secure grasp.

If the centroid does not lie within the object silhouette then putting a magnetic
or suction gripper there is pointless. For this reason, locate_and_pick would have
to be modified to pick up horseshoes. It does not take much thought to realise that
there can be no single “all purpose” solution to the task of picking up previously
unseen objects. The use of Prolog+ allows the best of a finite set of gripping-point
calculation methods to be sought and used for a given application. No doubt, the
reader can suggest ways in which the various methods for calculating gripping
points can be evaluated for their effectiveness. However, it should be understood
that there is a limited amount that can be done with any vision system. Sooner or
later, slip sensors, strain gauges and other mechanical sensors, will be needed as
well, to ensure a firm but not destructive grip.

Clearly, the success of all vision-based methods for robot guidance depends
upon the validity of the implicit assumption that the mass distribution of the object
is nearly uniform. If it is not, there may be a high torque about the gripper when it
is located at the object centroid. The result may be an insecure grip.

A multi-finger gripper suffers from these and other problems. One of the most
important of these is that rigid, non-compliant fingers may not hold a rigid object
securely. Compliant or rubber-tipped fingers can provide a more secure grasp.
Calculating whether or not such a grip will be safe enough for practical use is very
difficult, in the general case. However, in certain restricted cases it would be
possible to define appropriate tests using Prolog+ programs. For example, the
grass-fire transform, applied to the silhouette of the object, would provide some
information about how far a compliant gripper would distort during lifting. This
would in turn enable the friction forces to be estimated approximately.

5.10 Summary
In this chapter, we have discussed the use of Prolog in the unfamiliar role of

controlling external devices, such as lamps, pneumatic devices, video cameras and
an (X,Y,θ)-table. This task has been made easier by the use of a specialised
hardware device, the MMB module. This is a versatile, low cost interfacing unit
which provides facilities for operating a range of electrical, electro-mechanical,
illumination and pneumatic devices. The physical layout, control and application
of a Flexible Inspection Cell (FIC) have been described. The calibration procedure
for the FIC and its use in a simple robotic task have been explained.

In the brief space available in this chapter, we have not been able to discuss in
detail other important matters, such as the calibration of other types of robot (e.g.
gantry, SCARA, multi-joint articulated arm, serpentine) used in conjunction with
a visual guidance system. Nor have we been able explain in detail how to set up
and align the FIC with its several cameras.

No practical machine vision system ever operates in complete isolation from the
outside world. At the very least, the vision system must operate a warning bell or

 202

lamp. However, a more common requirement is for an inspection system which
operates some simple accept / reject mechanism, such as a solenoid, air-blast, or
pick-and-place arm. In another frequently encountered situation, the vision system
is required to guide some robotic manipulator, such as a multi-axis articulated
arm, or (X,Y,θ)-table. The latter may form part of a manufacturing device, such as
a drilling-, milling-, or parts-assembly machine. An increasing number of
applications are being found where the vision system generates data for a complex
decision-making system which controls the whole manufacturing plant.
Management information systems with vision system sensors providing inputs are
also being installed. The point of this discussion is that every industrial vision
system must be interfaced to some other machine(s) in the factory. While the latter
may operate in some non-electrical medium (e.g. optical, mechanical, pneumatic,
hydraulic, thermal, nuclear, acoustic, x-ray, microwave), they all require electrical
control signals from the vision system. The interfacing requirements for industrial
vision systems are very varied and, in this chapter, we have discussed some of
these.

Of great importance for designers of machine vision systems is the ability to
construct prototypes quickly and easily. The Flexible Inspection Cell and general
purpose interface unit (MMB module) were developed specifically for this
purpose, as was the HyperCard control software for the FIC. These, or facilities
like them, are needed for a variety of reasons:

(a) To develop and prove new concepts.
(b) To act as a platform for the demonstration of new ideas to potential
customers.
(c) To act as a vehicle for education and training.
(d) To provide an immediate “off-the-shelf” solution for a certain restricted
class of vision applications, where the requirements for processing speed,
precision of manipulation and image resolution are within defined limits.
(e) To gain familiarity with new system components (e.g. new lighting units,
cameras, image processing sub-systems, etc.) in a realistic but controlled
environment.

6

Colour Image Recognition

6.1 Introduction
Colour vision is undoubtedly of very great value to an organism; the multitude

of colours in nature provides ample evidence of this. Brightly coloured flowers
signal the availability of food to bees. A great number of trees and bushes attract
birds by displaying bright red fruit, so that the seeds will be carried off to some
distant location. Butterflies indicate their identity by vivid wing markings. Wasps
and many snakes warn of their venomous sting / bite with brightly coloured
bodies. On the other hand, chameleons hide their presence by changing colour,
while some animals (e.g. certain monkeys) signal sexual readiness, by changing
the colour of parts of the body. Colour vision is so fundamental to animals and to
us in our every day lives that we tend to take it for granted. We indicate both
personality and mood with the clothes that we wear. Many different types of
entertainment are enhanced by the use of colour. We attempt to make our food
attractive by the careful balancing and selective use of colour. We reserve special
coloured signals to warn of danger on the roads, or at sea. Colour is used very
extensively to attract customer attention in shop, magazine, television and
hoarding advertisements. Not only is colour vision of great value to human
beings, it is a source of pleasure and a great many of our artefacts reflect this fact.
Numerous industrial products are brightly coloured, simply to be attractive and
eye-catching. The ability that we have to see colour makes our knowledge of the
world much richer and more enjoyable than it would be if we had simple
monochrome vision. The range of manufactured products reflects this fact. It is
natural, therefore, that we should now perceive a need to examine the colour of
industrial objects. To date, machine vision has been applied most frequently to
monochromatic objects, or those in which colour differences are also visible as
changes in intensity, when they are viewed using a monochrome camera.

Despite the obvious importance of colour in manufactured goods, machine
vision systems that can process coloured images have been used only infrequently
in the past. Colour image processing has received very little attention, as far as
inspection systems are concerned. Three major reasons have been put forward for
this.

 204

(a) Many industrial artefacts are monochromatic, or nearly so. For example,
uncoated metal surfaces are usually grey. Plastic mouldings, though often
coloured, are usually monochromatic. Painting converts a multi-coloured
surface into one that is monochromatic. There is a large class of applications in
which variations of hue have no importance whatsoever, since they do not, in
any way, reflect the fitness of a component to perform its function.
(b) Some colour inspection problems are inherently very difficult, requiring
very precise measurement of subtle colour differences. Commercial colour
image sensors (i.e. cathode ray tube and CCD cameras) are simply too
imprecise to allow really accurate measurements to be made. Applications that
demand very precise colour discrimination are to be found in the automobile,
printing, clothing and food industries.
(c) Colour image processing equipment is necessarily more complex and more
expensive than the equivalent monochrome devices. Colour cameras are more
complicated, lighting has to be better controlled, and a colour image requires
three times the storage capacity, compared to a monochrome image of the same
spatial resolution.

The main point to note here is that many people have been discouraged in the

past from investigating colour image processing systems for industrial inspection.
We hope to demonstrate that these arguments are no longer valid. The four main
lessons of this chapter are as follows:

(i) Colour recognition can be very useful and for this reason, should be
considered for use in a far greater number of industrial applications than
hitherto.
(ii) The cost of using colour image processing need not be prohibitively high.
(iii) There are numerous inspection applications that could benefit from the use
of “coarse” colour discrimination. Subtlety of colour discrimination is not
always needed. In business terms, there is a good living to be made from
designing coarse colour discrimination devices
(iv) Novel signal processing techniques have recently been devised that make
the recognition of colours simpler and easier to use than hitherto.

6.2 Applications of Coarse Colour
 Discrimination

In this section, we shall simply list a number of industrial inspection tasks that
could benefit from the use of rather coarse colour discrimination. Consider first
the task of verifying that there is a crayon of each desired colour in a cellophane
pack. Subtlety of colour discrimination is clearly not needed and might well prove
to be a disadvantage, because it would highlight colour variations that are of no
interest to us. This is typical of the other tasks that we shall list below.

A manufacturer of confectionery wishes to verify that each carton contains no
more than a certain number of sweets (candies) wrapped in red paper / foil.

 205

Clearly, it is important to monitor the number of expensive sweets and to maintain
a good balance of colours (i.e. varieties of sweets). A manufacturer of electrical
components wishes to inspect “bubble packs” containing coloured connectors.
(These are frequently red, blue and yellow / green.) A common method of
packaging that is used for small items like these uses a brightly printed card. A
transparent “bubble” forms a case for the components, which can frequently move
about quite freely. A large number of stationery goods, household and do-it-
yourself items are sold in this type of packaging.

Sensitive paints and adhesive labels are used to indicate whether pharmaceutical
/ medical products have been opened or exposed to excessively high temperatures.
Tamper-proof seals on certain food containers change colour when they are
opened. A certain manufacturer of domestic goods has a requirement for a system
that can count objects showing the company logo, which is a multi-coloured disc,
against a high-contrast black, grey or white background.

Product cartons are often colour coded. For example, products with blue labels
might be sold by a certain company in Europe, while red-labelled ones, with a
slightly different specification, are exported to USA. Identifying the colour of the
labels is of great importance to the pharmaceutical industry, where companies
supply goods conforming to legally enforceable standards. In many other
industries, it is important, for economic reasons, to identify and count cartons with
“Special offer” overprinted labels.

A visit to a supermarket, or do-it-yourself store, reveals a host of potential
applications for a colour inspection system. Verifying that containers of corrosive
chemicals have their tops properly fitted is clearly of importance, in avoiding
damage to clothing and personal injury. One plastic container that is sold in the
UK and Ireland holds domestic cleaning fluid and is bright blue with a red top.
Verifying that such a container has a complete and well fitting top is to the
advantage of the manufacturer, retailer and customer. The identification of labels
on bottles, jars, cans and plastic containers is another task that would be made
easier with colour discrimination. Locating self-adhesive labels, in order to make
sure that they are located on the side of a container is another task that is made
easier through the use of colour image processing.

 Inspecting food products is of very great interest to a large number of
companies. For example, a company that makes pizzas is interested in monitoring
the distribution and quantity of tomato, capsicum peppers, olives, mushrooms and
cheese on the bread base. A certain popular cake is called a Bakewell tart. It
consists of a small pastry cup, filled with almond paste, is covered in white icing
(frosting) and has a cherry placed at its centre. Verifying that each tart has a
cherry at, or near, its centre is a typical food inspection application for a colour
recognition system. One of the authors (BGB) has been collaborating for several
years with a company that makes large quantities of cake in the form of
“unending” strips, with a view to inspecting the decoration patterns [CHA-95].
Colour machine vision systems have been applied to situations such as the
harvesting of fruit and vegetables [LEV-88] and their subsequent grading for sale,
or processing. Certain foods are often accepted / rejected merely on the grounds
of their colour. The preference for foods of certain colours has important
consequences to the food processing industry. It is of interest that some countries

 206

have different preferences for the colour of food. For example, British people like
green apples, Americans like red ones and Italians prefer deep red. Even the
colours of food packaging have to be carefully considered. For example, blue on
white is a very popular packaging for dairy produce, because the colours suggest
the coolness and hygiene of the dairy. The degree to which a product is cooked is
often indicated by its colour. The food baking and roasting processes have to be
precisely controlled, to ensure that the products emerge with the right colour. A
colour sensitive vision system has been developed to monitor how well beef
steaks have been cooked [KEL-86]. Another colour sensitive system has been
devised which monitors the fat-to-lean ratio of raw meat. [HOL-92] Some
applications exist where the lack of colour in a product needs to be checked. For
example, the presence of minute flecks of bran (red-brown) in white flour can
have a detrimental effect upon its baking properties.

6.3 Why is a Banana Yellow?
"In the absence of an observer, there is no such thing as colour." [CHA-80]

Let us begin by considering the physics involved in the question. The visible

part of the electro-magnetic spectrum comprises wavelengths between 0.4 and 0.7
µm. (Figure 6.1) A light signal containing components with a non-uniform
mixture of wavelengths will appear to be coloured to a human observer. If the
energy spectrum is constant for all wavelengths in this range, the observer will
perceive white light. The non-uniform spectrum of light reaching the eye of a
human observer from a banana is perceived as being yellow. A similar but slightly
different spectrum of light emanates from a canary, or lemon. The seemingly
trivial question at the head of this section has a deeper meaning than we might at
first think. Many people, when faced with such a question, begin, to think about
Newton’s demonstration of the multiple-wave composition of white light and the
fact that bananas reflect light within a certain range of wavelengths, while
absorbing others. Curiously, most people, even non-scientists, attempt to answer
this question with reference to the physics of light absorption. However, light rays
are not actually coloured. So-called “yellow light”, reflected from a banana,
simply appears to us to be coloured yellow, because the human brain is stimulated
in a certain way that is different for the way that it is when the eye receives
“orange light”.

In fact, a banana is yellow because a lot of people collectively decided to call it
yellow. As children, we are taught by our parents to associate the sensation of
looking at lemons, bananas and canaries (and many other yellow things) with the
word “yellow”. We do not know anything at that age about the physics of
differential light absorption. Nor do we need to so as adults, to communicate the
concept of yellow to a person who is learning English for the first time, or to
children. A ripe banana “is yellow” because a lot of other people persistently call
it yellow and we have simply learned to do the same. There is no other reason
than that. In particular, the physics of light has got nothing whatsoever to do with

 207

the naming of a colour. Of course, physics can explain very well how our eyes
receive the particular mixture of wavelengths that we have learned to associate
with a certain name.

Ultra-violet
(UV)

Violet

Blue

Green

Yellow

Orange

Red

Infra-red
(IR)

0.38 µm

0.46 µm

0.51 µm

0.58 µm

0.60 µm

0.63 µm

0.78 µm

Wavelength
(approximate)

Visible

Figure 6.1 The visible part of the electro-magnetic spectrum.

From recent research, it appears that our eyes have three different colour

sensors, although this was disputed by some researchers until quite recently.
Trichromacity is the idea that any observed colour can be created by mixing three
different “primary colours” (whether we are mixing paint or coloured light) and
was commonplace by the mid-18th century, having been mentioned by an
anonymous author in 1708. Colour printing, with three colour plates, was
introduced by J. C. LeBlon, early in the 18th century, who apparently understood
the additive and subtractive methods of mixing colours. By measuring the colour
absorption of the human retina at a microscopic scale, it has been possible to
determine that there are three different types of pigment in the colour sensing
nerve cells in the retina (called cone cells), with absorption peaks at 0.43 µm, 0.53
µm and 0.56 µm. It is tempting to identify these peaks in the absorption curves
with the Blue, Green and Red sensors, respectively. J. Mollon [MOL-90] explains
that “the use of these mnemonic names has been one of the most pernicious
obstacles to the proper understanding of colour vision”. He also argues that there
are two quite distinct colour-recognition mechanisms. However, in the context of
a discourse on machine colour recognition, such nice points, about the psychology
and physiology of visual perception, need not concern us unduly.

Trichromacity is a limitation of our own colour vision and arises, we believe,
because there are three different types of colour sensor in the retina. However, it is
trichromacity that has facilitated colour printing, colour photography, colour
cinema film and colour television. Briefly stated, the central idea of trichromacity
is that physically different light sources will look the same to us, provided that
they stimulate the three receptor cells in the same ratios. (Figure 6.2) Thus, a

 208

continuous spectrum, derived by passing white light through coloured glass, can
produce the same sensation as a set of three monochromatic light sources,
provided that the intensities are chosen appropriately.

There are also some physiological and psychological disturbances to human
colour perception that a well designed vision system would avoid. Some of these
disturbances are outlined below, while others are listed in Table 6.1.

0.40 0.50 0.60 0.70

Blue Green Red

Wavelength, µm

Relative
sensitivity

Figure 6.2 Spectral sensitivity curves of the cones in the human eye.

Disease / Chemical Change in colour perception

Alcoholism Blue defect
Brain tumour, trauma Red-green or blue-yellow defects
Malnutrition All colours
Multiple sclerosis Red-yellow defects
Caffeine Enhances red sensitivity & reduces blue sensitivity
Tobacco Red-green defect

Table 6.1 Changes in the human perception of colours resulting from various
diseases and chemical substances.

Dichroism occurs when two colours are present as peaks in the spectral energy

distribution curve. One or the other peak dominates, according to the viewing
conditions. The proximity of vividly painted objects nearby can affect the
perception of the colour of the paler surface. Metamerism is the term used to
describe the situation when two surfaces are viewed in the same illumination and
produce different reflectance spectra but create the impression of being the same
colour to a human observer. (See Figure 6.3) Chromatic adaptation occurs when
the brain makes allowances for changes in illumination and subsequently changes

 209

in the colour perceived. Dark adaptation effectively switches off the human
colour sensors and occurs because different retinal sensors (rods) are used from
those used in day-light (cones). Nocturnal scenes appear to be monochrome,
because the rods are insensitive to colour variations. It must be remembered that
the dark-adapted eye is effectively colour blind, although bright points of light
still appear to be coloured.

Wavelength, λ

Energy

A

B

Figure 6.3 Metamerism. Curves A and B represent the spectra from two
different surfaces but which appear to be the same colour to a human
observer.

Human colour vision clearly varies from person to person, and can vary

considerably at different times in a given person’s life. A significant proportion
(about 7%) of the population is colour blind, with men being more prone to this
disability than women. Colour blindness is not always recognised by the sufferer,
although it can be detected relatively easily, by simple tests.

A machine vision system would not be subject to such variations in its ability to
perceive colours. However, we do require that a human being be available
initially, to define the colours that the machine will subsequently recognise. It is
important, therefore, that we realise that numerous external factors can alter the
human perception of colour. Since the “definition” is so subjective, any two
people are likely to disagree when naming intermediate colours, lying between the
colour primaries. With this thought in mind, we begin to appreciate how
important it is for a colour recognition system is able to learn from a human
teacher. This is just the approach that we shall take in the latter part of this
chapter.

A theory relating to the perception and reproduction of colour, in photography,
cinema, television and printing, has been developed over many years and
seemingly forms an integral part of the education for all people who work in these
areas at a technical level. However, we shall not discuss this theory in detail, since
to do so would merely introduce a major digression from our main theme. The
“classical” theory of colour is largely superfluous to our rather specific needs,
since we are not concerned at all with the fidelity of colour reproduction; we need

 210

only a small amount of theory, to put into context the conceptual and practical
aspects of a relatively new but very powerful technique for colour recognition.

We are leading the reader towards a technique for recognising colour, that is
both conceptually straightforward and conforms to the pragmatic, declarative
approach to programming implicit in Prolog+.

6.4 Machines for Colour Discrimination
Apart from the general advantages that a machine vision system has over a

human inspector, there are certain factors specific to colour inspection that render
a machine more attractive. In any manufacturing industry, there is constant
pressure to achieve ever higher production rates and mistakes are inevitably made
when people work under pressure. This is particularly true, if a colour judgement
has to be made. If people are asked to discriminate between similar colours, such
as red and red-orange, they frequently make mistakes. On the other hand, a simple
opto-electronic system should be able to make more consistent decisions even
when working at high speed. We shall therefore introduce the topic of optical
filters before moving on to discuss colour cameras.

6.4.1 Optical Filters

Colour discrimination has been widely applied in machine vision systems for a
number of years, using optical filters. These devices can make a major difference
to the image contrast derived from a dichromatic scene (i.e. contains just two
colours, apart from neutral). High performance optical filters are probably still the
best and most cost-effective method of improving contrast in scenes of this type
and, for this reason, they will be discussed first. Then, we shall be in a better
position to understand how information about colour can be obtained from a
camera.

Figure 6.4(a) shows the spectral transmission characteristics of members of a
typical family of optical filters. These are called band-pass filters, since they
transmit wavelengths between certain limits, while all other wave-lengths, within
the visible wave band, are heavily attenuated. Other band-filters are available that
have much narrower and much broader pass bands. (Figure 6.4(b) and 6.4(c).)
Long-pass and short-pass filters are also sold. (Figure 6.4(d) and 6.4(e).) So
called interference filters have a multi-layer sandwich construction and have very
sharp cut-off characteristics. Unfortunately, they are sensitive to moisture and
heat, both of which cause them to delaminate, so great care must be taken to
protect them, particularly in a hostile factory environment. A curious phenomenon
occurs, if an interference filter is held up to a source of white light. As the filter is
tilted, relative to the line of sight, it appears to change colour. This characteristic
can be used to good effect, to fine-tune optical colour filtering systems.
Interference filters provide excellent colour discrimination capability at a low
cost. However, they provide fixed colour discrimination and cannot be
reprogrammed, as we would like. Multi-colour discrimination using interference

 211

filters is cumbersome, requiring a carefully calibrated optical bench. In effect, a
colour camera provides such a facility. (Figures 6.5 and 6.6.)

T

T

T

T

T

λ

λ

λ

λ

λ

(a)

(b)

(c)

(d)

(e)

0.4µm 0.7µm

Figure 6.4 Transmission (T) versus wavelength (λ), for various sets of optical
filters. (a) Middle-spread band-pass filters, (b) Narrow band-pass filters, (c)
Broad-pass band filters, (d) Long-pass filter, (e) Short-pass filter.

6.4.2 Colour Cameras

The traditional cathode-ray tube (vidicon family) colour camera has the
construction illustrated in Figure 6.5. The optical filters used in a colour camera
typically have characteristics similar to those shown in Figure 6.2. Compensation
must be made for the non-constant gain of the light sensing tubes, across the
visible-light spectrum. In many 3-tube colour cameras, the output consists of three
parallel lines, called R, G and B, each of which carries a standard monochrome
video signal. Another standard, called composite video, exists in which the colour
and intensity information is coded by modulating a high-frequency carrier signal.
A composite video signal can readily be converted to RGB-format and vice versa.

 212

The details of the various video standards need not concern us here and can be
found elsewhere. [HUT-71]

A solid-state colour camera can be constructed in a similar way to the CRT
colour camera illustrated in Figure 6.5, by replacing the CRT sensors with CCD
image sensors. Alternatively we can make good use of the precise geometry of the
photo-sensor array; by placing minute patches of optical dye in front of the sensor
to produce a cheaper colour CCD camera. (Figure 6.6) Some specialised cameras
exist for use in machine vision systems applications (e.g. cameras with high
spatial resolution, very high sensitivity, extended spectral response, etc.).
Although they can produce some very impressive results in certain situations,
none of these specialised cameras need concern us here, since we assume that a
perfectly conventional colour camera is used by our vision system.

Lenses

Beam-splitters

Mirror

Colour filters

Red

Green

Blue

R

G

B

CRT image
sensors

Mirr
or

Optical signals

Im
ag

e
fr

om
 sc

en
e

be
in

g
ex

am
in

ed

3
pa

ra
lle

l v
id

eo
 o

ut
pu

ts

Figure 6.5 Construction of a 3-tube colour camera.

 213

Row 1

Row 2

Row M

Row 3

R
G

B

R
G

B

R
G

B

R
G

B

R
G

B

R
G

B

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. N

Figure 6.6 Colour mask structure for a single chip solid-state colour camera.
Each shaded rectangle represents a photodetector with a coloured mask
placed in front of it. R - passes red, G - passes green, B - passes blue.

6.4.3 Light Sources for Colour Vision

Images derived from a well lit object are almost invariably much more easily
processed than those obtained from a scene illuminated using highly variable
ambient light. Hence, it is important to obtain the optimum illumination,
appropriate to the given vision task. There is no point in our taking great care to
design a sophisticated image processor, if we do not exercise the same diligence
when planning the illumination-optical sub-system. A small amount of effort
when choosing the lighting might well make the image processing system much
simpler (see Appendix A). We can express this point in the following rule:

Never compensate for a sloppy approach to the design of the optical /
illumination sub-system, by increasing the sophistication of the image
processing.

This maxim is of particular importance when applying colour image processing

to industrial inspection, because the stability and purity of the lighting can make
an even greater difference than it does for a monochrome system. The design of
the illumination sub-system is always of critical importance. Here are some

 214

additional rules that we should always bear in mind, when choosing a light source
for a colour inspection system.

(a) The brightness of the light source should be sufficient for a clear image to be
obtained. It should be borne in mind that a colour camera is likely to be
considerably less sensitive than a monochrome camera.
(b) The light source should not generate excessive amounts of infra-red
radiation, since this may damage the object being viewed and / or the camera.
High levels of infra-red radiation can also spoil the image contrast, particularly
when we are using solid-state cameras. These are particularly sensitive to near
infra-red radiation. (Wavelengths in the range 0.7 - 1.0 µm.) If in doubt, place
an IR-blocking filter, between the object being viewed and the camera. Such a
filter is inexpensive and highly effective.
(c) The light output from the lamp should not contain large amounts of ultra-
violet radiation, since this can also reduce the image contrast. If in doubt, use a
UV-blocking filter.
(d) Keep all optical surfaces clean. This includes the reflectors around the light
source and the optical windows used on ruggedised enclosures, used to protect
the camera and light source.
(e) Use a light source that is stable. The intensity of the light output from a lamp
usually varies considerably during its life-time. Worse than this, the colour of
many types of lamp changes, as it ages and as the power supply voltage varies.
For this reason, it is essential that we use a regulated power supply, with closed-
loop, feed-back control, sensing the light falling on a test target. The latter may
be a standard surface (e.g. white paper) that is put in place once in a while (e.g.
once every shift), to recalibrate the optical system. The vision system design
engineer should always ask the manufacturer for data on lamp ageing. This
should be available for any high-quality light source.
(f) Devise some means of calibrating the colour measuring system. Use the
colour image processing system, if possible, to calibrate itself and its light
source, by viewing some standard target, which must, of course be stable.
(g) Do not assume that a lamp that looks as though it is white actually is; our
eyes have a remarkable ability to compensate for changes in the colour of the
lighting, so human estimates of lamp colour are very unreliable. Remember, that
during chromatic adaptation, the brain unconsciously compensates for minor
changes in the colour of the illumination.

It is obvious that certain light sources yield unnatural colours when illuminating

certain surfaces. This can occur, for example, if the spectrum of the source is
discontinuous, or if the spectrum of the lamp is very different from that of a black-
body radiator. Since ultra-violet radiation causes certain materials to fluoresce,
this can cause unnatural looking colours to appear on some surfaces.

The NPL Crawford method [PER-91] for calibrating lamps compares the
spectral power distribution of a test source with a reference source, by dividing
the spectrum into 6 bands, and integrating the luminance over each band. These
values are then expressed as percentages of the total luminance. The excess
deviance over a tolerance for each band is totalled and subtracted from a specified

 215

number, to give the value for colour rendering. A similar but more widely
accepted method for characterising the colour rendering of lamps is the Ra8 index,
defined by the CIE [CIE-31, PER-91]. The higher the value of the Ra8 index, the
better the colour rendering. A value for Ra8 of approximately 90 or above is
usually recommended for accurate colour appraisal. A source with a colour
temperature of about 6500 K and a colour rendering index Ra8 of 90 or above is
required for high quality colour vision. However, the British Standards Institute
has produced a specification for illumination for the assessment of colour (BS
950). In addition to these requirements, the British Standards Institute specifies
that the chromaticity and spectral distribution of the source lie within certain
limits. This specification is intended for very accurate colour appraisal and
therefore the tolerances given by the specification may, in some cases be relaxed
slightly. Nevertheless, it serves as a good indication of the requirements of a
source. Since the specification may not be met directly by certain lamps, or
combinations of lamps, colour filters may be used to adjust the colour temperature
of a source. The specific illumination set up chosen for a vision system is
dependant very much on the situation.

6.4.4 Colour Standards

 Many companies develop colour atlases for their own specific needs during
manufacturing. For example, bakeries, manufacturers of cars, clothing and paint
all require precise colour control and have well developed colour reference
systems. For more general use, a colour atlas such as the Munsell Book of Colour
[MUN] can be useful. The main reasons for using a colour atlas during
experimentation are convenience, and the stability and objectivity of
measurement. However, there are also a number of disadvantages, associated with
the use of a colour atlas. The following points should be borne in mind:

(a) Colour atlases are limited in the number of samples they provide.
(b) Printed colour atlases are subject to fading and soiling. (Careful handling is
needed to reduce errors to acceptable levels.)
(c) Colour atlases are limited by the range of dyes and pigments available.
(d) They are unable to represent colours of high saturation.
(e) The lighting must be accurately controlled and stable. Normal room lights
are not.

An accurate and controlled source of coloured light is a monochromator. This is

a device, like a spectrometer, in which white light is shone into a prism, or an
interference grating. This separates the light into its spectral components. A thin
slit is used to select the a desired narrow band of wavelengths. (See Figure 6.7.)

 216

Integrating sphere with
collimator samples the
light from the grating

Camera

Collimated
white light

Red

Violet

Diffraction grating
on a turntable

Figure 6.7 A monochromator provides a way of generating coloured light in a
repeatable way. A human operator has no difficulty in rotating a diffraction
grating (or prism), so that they can find the limits of named colours. The
colours that can be produced by this equipment are called spectral colours.
Notice that there are some colours that cannot be generated in this way, most
notably purples and gold.

6.5 Ways of Thinking about Colour
As explained earlier, it is believed by most researchers that human colour

perception employs three types of cones in the retina, each being tuned to a
different part of the visual spectrum. Colour television cameras also contain three
optical filters, which have been specially designed to approximate the spectral
response of the cones in the human eye. In this way, the colour response of the
camera is made to correspond approximately to that of the eye. It should be
realised that almost all colour cameras used in machine vision systems have been
designed to have this characteristic, even if their output signals are not displayed
as images on a monitor. It seemed natural to investigate whether standard colour
television equipment could be adapted to recognise colours in the same way that
people do. The transmitted signals derived from a colour camera are formed by
the encoding the RGB picture information into two parts: luminance, which
carries the brightness information, and chrominance, which carries the colour
information. The latter conveys both hue and saturation information. The method
of coding colour information is different in the NTSC, PAL and SECAM
broadcast television systems, although the details need not concern us here.

What is of greater relevance is that, in each of these broadcast standards, all of
the colour information is carried in the chrominance signal. Without this, only
information about intensity is carried. We are all familiar with the special effects
shown on television programmes, especially advertisements, in which a
monochrome (i.e. black and white) picture, representing some dull, unattractive
scene, is suddenly transformed into a brilliantly coloured image. This is achieved
in the editing room, by modifying the chrominance signal. The implication is

 217

clear: the information needed for colour perception is contained in the
chrominance signal, not in the luminance.

A variety of other representations of colour have been devised, some of which
are summarised below. In the following discussion R, G and B represent the
outputs from a colour video camera.

6.5.1 Opponent Process Representation of Colour

The Opponent Process Representation emphasises the differences between red
and green, between yellow and blue, and between black and white. A very simple
Opponent Process model can be based upon the following transformation of the
RGB signals.

(Re _)
(_)
(_)

d Green
Blue Yellow
White Black

R
G
B

















=
−

− −

































1 2 1
1 1 2

1 1 1

 …(6.1)

 More complicated transformation models have been proposed in an attempt to

account for certain psychophysical effects. The Opponent Process Representation
of colour information is a good way to emphasise the difference between red and
green regions, blue and yellow regions, and black and white regions in a scene.
For example, it has been found to be able to discriminate between the green
pepper and the red tomato on a pizza, and to isolate the black olives. [PER-91]

6.5.2 YIQ Colour Representation

Consider the following transformation of the RGB signals:

Y
I
Q

R
G
B

















=
−
− −
−

































0 3 059 011
0 6 0 28 0 32
0 21 052 0 31

. . .

. . .
. . .

 …(6.2)

This equation is a simple representation of the NTSC encoding scheme, used in

American broadcast television. If the so-called chrominance angle, Q, and
chrominance amplitude, I, are plotted as polar co-ordinates, parts of the IQ plane
can be identified with colours as classified by human beings. (See Table 6.2.)

 218

Colour Quadrant Number
Purple 1
Red, Orange, Yellow 2
Yellow/Green, Green 3
Blue, Blue/green 4

 Table 6.2 Associating various colours with regions of the IQ plane.

6.5.3 HSI, Hue Saturation and Intensity

A technique for colour image processing that is enjoying increasing popularity,
is based upon the concepts of hue, saturation and intensity. The HSI
representation of colour is close to that method of colour description that is used
by humans. When a person is asked to describe a colour, it is likely that they
would first describe the kind of colour (hue), followed by the strength of colour
(saturation) and the brightness (intensity).

Hue (H) defines the intrinsic nature of the colour. Different hues result from
different wavelengths of light stimulating the cones of the retina. In other words,
hue is related to the name of a colour that a human being might assign. We shall
see much more of this in the following pages, where we will define the HSI
parameters in mathematical terms. A saturated colour (S ≈ 1) is deep, vivid and
intense, due to the fact that it does not contain colours from other parts of the
spectrum. Weak or pastel colours (S ≈ 0) have little saturation.

6.5.4 RGB Colour Space: Colour Triangle

Consider Figure 6.8, which shows a diagram representing RGB space. The
cube, defined by the inequality 0 ≤ R,G,B ≤ W, where W is a constant for all three
signal channels, shows the allowed range of variation of the point (R,G,B). The
colour triangle, also called the Maxwell triangle is defined as the intersection of
that plane which passes through the points (W,0,0), (0,W,0) and (0,0,W), with the
colour cube. Now, the orientation of that line joining the point (R,G,B) to the
origin can be measured by two angles. An alternative, and much more convenient
method is to define the orientation of this line by specifying where the vector
(R,G,B) intersects the colour triangle. (The (R,G,B) vector is extended if
necessary.) Then, by specifying two parameters (i.e. defining the position of a
point in the colour triangle), the orientation of the (R,G,B) vector can be fixed. It
has been found experimentally that all points lying along a given straight line are
associated with the same sensation of colour in a human being, except that very
close to the origin (i.e. very dark scenes) there is a loss of perception of colour.
Hence, all (R,G,B) vectors which project to the same point on the colour triangle
are associated with the same colour name, as it is assigned by a given person (at a
given time, under defined lighting conditions). Moreover, points in the colour
triangle that are very close together are very likely to be associate with the same

 219

colour label. These are very important points to note and indicate why the colour
triangle is so important.

Yellow

Red

Blue

Green

Magenta

Cyan

Black

White

Colour vector

R

B

G

Colour triangle

Figure 6.8 The colour triangle.

The following points should be noted:

(a) The quantity (R + G + B) is a useful estimate of the intensity as perceived by
a human being when viewing the same scene as the camera. This is a reflection
of a principle known to psychologists as Grassman’s Law. [HUT-71] The
length of the vector, given by R G B2 2 2+ + , is not nearly so useful.
(b) The colour triangle allows us to use a graphical representation of the
distribution of colours, showing them in terms of the spatial distribution of
blobs in an image. This is a particularly valuable aid to our understanding the
nature and inter-relationship between colours, since we are already very familiar
with such concepts from our earlier work on monochrome image processing. It
also permits us to use image processing software, to perform such operations as
generalising colours, merging colours, performing fine discrimination between
similar colours, simplifying the boundaries defining the recognition limits of
specific colours, etc.
(c) Since the colours perceived by a human being can be related to the
orientation of the (R,G,B) colour vector, a narrow cone, with its apex at the
origin, can be drawn to define the limits of a given colour, e.g. “yellow”. The
intersection of the cone with the colour triangle generates a blob-like figure.
(d) Not all colours can be represented properly in the colour triangle.
Trichromaticity is simply a useful working idea, but it does not guarantee that
perfect colour reproduction, or recognition, is possible using just three primary
colours. Hutson [HUT-71] says

 220

“No three primaries exist for which all of the spectrum and all of the non-
spectral colours can be produced. As a result, the colour triangle cannot
distinguish between saturated and non-saturated cyans, purples and
magentas. The situation is not as catastrophic as the chromaticity diagram
appears to indicate. The colours of everyday scenes are generally rather
unsaturated and have chromaticities lying near the centre of the chromaticity
diagram.”

Some colours that are distinguishable by eye are not easily differentiated by a
colour camera. For example, “gold” and “yellow“ are mapped to the same
region of the colour triangle. Vivid purple is mapped to magenta, while vivid
cyan is mapped to a paler (i.e. less saturated) tone. In relative terms, these are
minor difficulties, and the colour triangle remains one of the most useful
concepts for colour vision.
(e) Fully saturated mixtures of two primary colours are found on the outer edges
of the triangle, whereas the centre of the triangle, where all three primary
components are balanced, represents white. We shall refer to the centre of the
colour triangle as the white point, since it represents neutral (i.e. non-coloured)
tones. Other, unsaturated colours are represented as points elsewhere within the
triangle. The hue is represented as the angular position of a point relative to the
centre of the colour triangle, while the degree of saturation is measured by the
distance from the centre.
(f) The following equations relate the HSI parameters to the RGB representation
and are derived in [GON-92]. For convenience, it is assumed that the RGB
components have been normalised (W=1). (Also see Figure 6.9.)

H = -1cos 2

2 2

R G B

R G R B G B

− −

− + − −











() ()()
 …(6.3)

S 1
3.min(R,G, B)

R G B
= −

+ +
 …(6.4)

I
R G B

=
+ +



3

 …(6.5)

 221

Blue

Green Red

Contours of
constant saturation

Hue proportional to
this angle

Colour vector
Saturation
Increasing

Figure 6.9 Hue and saturation plotted in the colour triangle.

6.5.5 1-Dimensional Histograms of RGB Colour Separations

It is possible to think of the RGB colour representation as being equivalent to
separate monochrome images, known as the RGB Colour Separations. These can
be processed individually, in pairs, or combined together in some way, using
conventional image processing operators, such as those described in Chapter 2.
One useful method of describing a grey scale image is, of course, the intensity
histogram and we can apply the same technique to the R, G or B images. Various
techniques have been devised for measuring the shape of histograms and these can
quantify skewness, standard deviation, location of the peak. etc. All of these can
be applied to any one of the three colour separations, resulting in a set of numbers
describing the colour image.

Applications such as monitoring the cooking of beef steaks and pizza crust have
been studied in this way. [KEL-86] Although the histogram analysis technique has
distinct potential, it gives no indication about the spatial distribution of colours in
an image. Another important consideration is the fact the this technique is, in no
obvious way linked, to the human perception of colour, making it difficult to
interpret the data.

6.5.6 2-Dimensional Scattergrams

The method of analysis about to be described provides an alternative, but
generally less effective method of analysis than those based on the colour triangle.
Since both methods rely upon the generation and use of 2-dimensional
scattergrams, there is some possibility of confusion. It must be understood,
however, that they operate in completely different ways and that we therefore
need to be careful about our terminology. Later in this chapter, we shall use the
term colour scattergram. We emphasise that colour scattergrams and 2-
dimensional scattergrams are completely different, and must not be confused.

 222

The 2-dimensional scattergrams, about to be defined, are often able to yield
useful information about the nature and distribution of colours in a scene. This is
achieved without the specialised hardware needed by certain other methods.
Figure 6.10 explains how the 2-dimensional scattergram is computed. In order to
describe, in formal terms, how 2-dimensional scattergrams may be generated, let
us consider two monochrome images A = {A(i,j)} and B = {B(i,j)}. A third image
C can be generated as follows:

Rule 1: Make C black (level 0) initially.
Rule 2: Plot a point of intensity (Z + 1) at the position [A(i,j), B(i,j)] in C, if this
point is at level Z beforehand. (Notice that Z may equal 0 initially.)
Rule 3: Repeat Rule 2 for all (i, j) in the image.

i

j
a(i,j)

Image A (red)
i

j
b(i,j)

Image B (blue)

a(i,j)
[red]

b(i,j)
[blue]

W

W

0

“Blue” region
in image

“Red” region
in image

“Magenta” region
in image

2-dimensional scattergrams

Scan images A and B to generate
scattergram shown below

Figure 6.10 Generating the 2-dimensional scattergram.

 223

Suppose that image A was generated by the R channel and that image B was
derived from the G channel. The resulting (R,G)-scattergram can tell us a great
deal about how the red and green signals are related to one another and therefore
provide a useful aid to understanding the types colours in the image. It is often
possible to identify bright spots in a scattergram. (As we saw in Chapter 2, 2-
dimensional scattergrams are also very useful for texture analysis.)

6.5.7 Colour Scattergrams

Let us assume that a certain point (i,j) in the scene being viewed yields a colour
vector (Ri,j, Gi,j, Bi,j). Furthermore, this vector, or its projection, will be assumed
to intersect the colour triangle at that point defined by the polar co-ordinates (Hi,j,
Si,j) where Hi,j, Si,j are hue and saturation values calculated using equations (6.3)
and (6.4). The point to note is that, each address (i,j) in the scene being viewed
defines a point in the colour triangle. We are now in a position to be able to
compute the colour scattergram:

Rule 1: Clear the current image.
Rule 2: Select a point (i,j) in the input image being viewed.
Rule 3: Compute values for the hue and saturation, using equations (6.3) and
(6.4), respectively.
Rule 4: Transform (Hi,j, Si,j) (polar co-ordinates) into Cartesian co-ordinates,
(i,j).
Rule 5: Add 1 to the intensity stored at point (i,j) in the current image. (Hard
limiting occurs if we try to increase the intensity beyond 255.)
Rule 6: Repeat Rule 5 for all (i,j) in the input scene.

It is clear that dense clusters in the colour scattergram are associated with large

regions of nearly constant colour. (The colour plates, and the half tone images
show several examples of colour scattergrams.) A large diffuse cluster usually
signifies the fact there is a wide variation of colours in the scene being viewed,
often with colours “melting” into one another. On the other hand, step-wise colour
changes are typically associated with small clusters that are distinct from one
another. The colour scattergram is a very useful method of characterising colour
images and hence has a central role in programming the colour filters described in
the following section. The reader should be aware of the distinctions between the
1-dimensional, 2-dimensional and colour scattergrams. Failure to appreciate the
distinctions will be a severe hindrance to further understanding of colour analysis.
The differences may be summarised as being variations in how integration is
performed in the colour cube:

1-dimensional scattergrams: integrate one of the 2-dimensional scattergrams
along one of its axes.
2-dimensional scattergrams: integrate along one of the axes in colour space.
Colour scattergrams: integrate along a series of lines, all radiating from the
origin in RGB space.

 224

6.6 Programmable Colour Filter (PCF)
The Programmable Colour Filter provides an electronic method of filtering

colour images. It is fully under software control and as we shall see, is particularly
well suited to the style of programming embodied in Prolog+. We shall place the
PCF into the theoretical context that we have just discussed. First, however, we
shall describe how the PCF may be implemented in electronic hardware. (See
Figure 6.11.)

6 bits

6 bits

ADC

ADC

ADC
6 bits

18 bits

Red

Green

Blue

Look-up-table
(18 bits x 8 bits)

8 bits

Teach
/recognise

Data input

Defines intensity value in a
monochrome image

V
id

eo
 c

ha
nn

el
s f

ro
m

 c
am

er
a

(a
na

lo
gu

e)

D
ig

iti
se

d
vi

de
o

ou
tp

ut

Figure 6.11 Programmable colour filter, block diagram. The output of a
colour camera consists of three parallel analogue video signals, called the
RGB channels. In effect, these signals define three monochrome images, each
of which generates 6 bits / pixel when digitised. Altogether, the digitised
RGB signals define a total of 18 bits and these form the address lines entering
a random access memory, RAM. The latter implements a simple look-up table
(LUT). The colour filter is programmed by changing the contents of the look-
up table. An image processor might typically use a larger RAM to store
several look-up tables, which can be selected at will, with additional input
lines (not shown).

The PCF uses a standard RGB video input from a colour camera and digitises

each channel with a resolution of n bits. Typically, n = 6. Thus, a total of 3n (18)
bits of data is available about each pixel and together these 23n (262144) bits
form the address for a random access memory, RAM. This RAM is assumed to
have 8 parallel output lines and to have been loaded with suitable values, thereby
forming a Look Up Table (LUT). By means that we shall discuss later, the
contents of this LUT can be modified, enabling it to recognise any desired
combinations of the incoming RGB signals. Thus, the filter can be programmed to
recognise one, or more, colours. The LUT has a total of capacity of 23n bytes
(256Kbytes) of data. Since the output of the LUT consists of 8 parallel lines, it
can define the intensities in a monochrome video image.

 225

Notice that there is no attempt to store a colour image. The digitised RGB video
signal is processed in real time by the LUT, the output of which can be:

(a) redisplayed as a monochrome image, or
(b) passed through a set of three further Look Up Tables, providing a pseudo-
colour display, or
(c) digitised, stored and then processed, exactly as a conventional monochrome
signal from a camera would be.

The third of these options is particularly interesting, because it provides us with

a very fast, powerful and convenient extension to a monochrome image
processing system. The system we are about to describe permits all three of these
options. (See Figure 6.12.)

Video Monitor

Remote head
colour camera

Prolog host

Monochrome
image

processor
Pseudo-
colour

Programmable
colour
filter

Intelligent Camera (colour option)

RS232/RS422
serial line

Figure 6.12 The block diagram of the colour image processing system used
by the authors in the experiments reported in this chapter. The colour version
of the Intelligent Camera [INT] consists of a programmable colour filter,
forming a front-end processor, which supplies signals to a monochrome
digital image processing system, with a pseudo-colour display unit. Apart
from its ability to control these two units, the image processor is in other
respects a standard Intelligent Camera.

6.6.1 Implementation of the PCF

One possible implementation of the PCF involves the use of the Intelligent
Camera [INT, PLU-91]. The colour filter is normally programmed interactively,
using a dialogue based upon a personal computer. First, a monochrome image is
digitised and displayed. The user then draws a mask around a region of interest,
within the input image. Colours in this region are then analysed. The
(monochrome) intensity histogram is then displayed and the user is invited to
define intensity limits, based upon his interpretation of the histogram. Pixels
having intensities lying between these limits will later be taken into account when

 226

choosing the contents of the LUT. Pixels generating intensities outside these
limits will simply be ignored. All pixels within the masked region and whose
(monochrome) intensities lie between these limits are then analysed and a colour
scattergram is generated. This typically consists of a set of bright points scattered
against a dark background. The colour scattergram is displayed in the current
image. The user then defines one set of colours to be recognised, by interactively
drawing a closed contour, usually around the main cluster in the colour
scattergram. Minor clusters and outlier points are normally ignored. (See Image
6.1.) Finally, the region within the contour drawn by the user is used, by the
colour filter software, to define the LUT contents. A wide tolerance for the
colours recognised is obtained, if the user draws a contour larger than the
dominant cluster in the colour scattergram. A small enclosed region means that a
smaller set of colours will be recognised. The procedure for programming the
colour filter is, in our experience, far from easy to use and requires a great deal of
skill on the part of the user to obtain good results. In its recognition mode, the
output of the colour filter is in the format of a digitised video signal, representing
a multi-level grey-scale image. The output “intensities” normally (but not always)
consists of a set of discrete levels, each one representing a different recognised
colour. Since the PCF is able to operate in real time on a digitised RGB video
signal, it does not add to the processing time of any image processing operations.

6.6.2 Programming the PCF

Consider Figure 6.13. The position of a point in the colour triangle can be
specified by the parameters1 U and V, which can be calculated from R, G and B
using the formulae:

U = (R - G) / [√2. (R+G +B)]

and

V = (2.B - R - G) / [√6. (R+G+B)]

To see how these equations can be derived, view the colour triangle normally

(i.e. along the line QPO, the diagonal of the colour cube). When the vector (R,0,0)
is projected onto the colour triangle, the resultant is a vector Vr of length R√(2/3)
parallel with the R′ axis. In a similar way, when the vector (0,G,0) is projected
onto the colour triangle, the result is a vector Vg of length G√(2/3) parallel to the
G′ axis. Finally, the vector (0,0,B) projected into the colour triangle forms a
vector Vb of length B√(2/3) parallel to the B′ axis. A given colour observation
(R,G,B) can therefore be represented by the vector sum (Vr+Vg+Vb). Finally, U
and V can be calculated, simply by resolving Vr, Vg and Vb along these axes.

1 These parameters are not to be confused with those used in the CIE Uniform

Chromacity Scale (UCS)-system.

 227

Let us now consider the mapping function Γ(.) given by:

Γ((R,G,B)) = ((R - G)/(√2.(R+G +B)), (2.B - R - G)/(√6.(R+G+B)))

Γ(X) projects a general point X = (R,G,B) within the colour cube onto the colour
triangle. Clearly, there are many values of the colour vector (R,G,B) which give
identical values for Γ((R,G,B)). The set of points within the colour cube which
give a constant value for Γ((R,G,B)) all lie along a straight line passing through
the origin in RGB space (O in Figure 6.13). Let us denote this set by Φ(U,V),
where ∀X: X ∈ Φ(U,V) → Γ(X) = {U,V}. The colour scattergram is simply an
image in which the “intensity” at a point {U,V} is given by the number of
members in the set Φ(U,V).

R

G

B

O

B' & V

U

R'

G'

P

Q

Figure 6.13. Showing the relationship between the RGB- and UV-coordinate
axes. The vectors R', G' and B' all lie in the UV-plane, which also contains
the colour triangle.

The details of the process of programming the PCF are as follows (see Figures

6.14 and 6.15):

(i) Project all RGB vectors onto the colour triangle, which of course contains
the colour scattergram. (Use the Prolog+ predicate plot_scattergram.)
(ii) Process the colour scattergram, to form a synthetic image, S. (Image S is
not a “picture of” anything. It is merely a convenient representation of the
distribution of colours within the input).

 228

(iii) Project each point, Y, in image S back into the colour cube. This process is
called Back-projection. Every vector X, within the colour cube, that shares the
same values of hue and saturation as Y, is assigned a number equal to the
intensity at Y. The values stored within the look-up table are obtained by back-
projecting each point within the colour triangle through the colour cube. Any
points not assigned a value by this rule are given the default value 0 (black).

Back-projection is embodied within the Prolog+ predicate, create_filter. This

predicate takes as its “input” the set of points lying within an equilateral triangle,
T, within the current image. (Points outside T are simply ignored.) Triangle T
corresponds in position to the colour triangle as it is mapped into the current
image, by applying plot_scattergram. Understanding the details of how
create_filter works is not essential for using the PCF. It is more important to
realise that create_filter simply generates a set of values and stores them in the
LUT. It should be noted that create_filter is able to program the PCF, using any
image that may be shown to it. This may, be a colour scattergram, derived using
plot_scattergram, from a complicated coloured scene. The scattergram may be
“raw” or processed, for example, either by smoothing or removing outliers.
Alternatively, certain patterns can be created using the image processor as a
graphics generator and then applying create_filter. (Plate 1) As we shall see later,
some particularly interesting and useful effects can be produced in this way.
Access to PCF commands are available in Prolog+, through a set of items in a
pull-down menu. (See Table 6.3.)

The standard colour filtering techniques listed in Table 6.3 could satisfy the
needs of a significant proportion of applications. In many cases, an understanding
of the theoretical basis of create_filter is unimportant. Certainly, the Prolog+
programmer who simply wants to use the PCF to recognise familiar “named”
colours, such as “yellow”, “orange” or “red” has no need to understand how
create_filter works, since standard Prolog+ programs already exist. In some
instances, however, more specific colour recognition is required. For example, it
may be necessary to train a PCF to recognise application specific colours, such as
“banana yellow” or “leaf green”. The higher level operators, now embodied in
Prolog+ programs have greatly simplified the task of training the PCF. Even so,
the task is somewhat easier and certainly less mysterious, if the user understands
the theoretical issues involved.

 229

G

R

B

O

Y

Z

The value stored at Y is
equal to the total

number of points lying
along OZ. Notice that Y
lies in the colour triangle

Z is on the outer edge of
the colour cube

(a)

B

G R

B

G R
 (b) (c)

Figure 6.14 Programming a colour filter. (a) The first step is to compute the
colour scattergram. The points lying along OZ are counted. This defines the
value at Y in the colour scattergram. (b) The colour scattergram is presented
to the user in the form of a grey-scale image in which intensity indicates how
many pixels were found of each colour. (c) The second step is to process the
colour scattergram. The steps represented diagrammatically here are
thresholding and blob shading, using label_blobs. (d) The colour triangle is
shown here within the colour cube. The process of programming the colour
filter is to “back-project” each point, Y, through the colour triangle, so that
each point lying along the line OY is given the same value as Y. The blobs
shown in (c) each contain many points of the same intensity. The effect of
“projecting” a blob through the colour cube is to set all points lying within a
cone to the same intensity. (e) Two intensity limits (L1 and L2) are specified
by the user. (L2 may well be set to 255, in which case, it has no practical
effect.) When the LUT contents are being computed, points within the colour
triangle are not “back-projected” into either of the two corners, shown shaded
here.

 230

R

The value stored in
location X of the LUT

is equal that at Y.
(Notice that Y lies in
the colour triangle.)

G

B

O

Y

Z is on the edge of
the colour cube

Z

X

Assume values in this blob are
all same (level Q). Then all

corresponding LUT entries in
this cone are set to Q.

All blobs in the colour triangle
are treated in the same way.

(d)

R

B

G

Upper limit, L2

Lower limit, L1

(e)

Figure 6.14 (Cont’d).

 231

__

Menu item Function and Prolog+ predicate name
__
Display one image - for photography Display the current image only.
Reset colour processing system Switch to normal (monochrome) mode.
 [pcf_normal , pseudo_colour(off)]
Live video image on colour monitor Used to set up colour camera & monitor.
Pseudo-colour OFF Switch pseudo-colour OFF. [pseudo_colour(off)]
Pseudo-colour ON Switch pseudo-colour ON. [pseudo_colour(on)]
__
All 3 colour channels Add R,G,B channels; monochrome image processing.
Red channel Select RED colour channel for monochrome image input.
Green channel Select GREEN colour channel.
Blue channel Select BLUE colour channel.
Digitise 3 colour channels Half resolution R, G, B colour separations placed
 in 3 quadrants of one image. [colour_separation]
Check colour camera light levels Used during camera set up.
__
Two dimensional colour scattergram 2-D scattergram. User selects pair of colours.
Colour scattergram Plot the colour scattergram in the current image.
 [plot_scattergram]
Draw colour triangle - reference only Line drawing of colour triangle (draw_triangle).
__
Clear colour filter [initialise_pcf_lut]
Colour filter ON Load file & activate a named colour recognition filter.
Colour filter OFF Deactivate colour filter.
Save colour filter Give PCF a name and save it.
Learn colour within region Learn colour(s) associated with a defined region of
 the current covered by blob scene. A binary image
 is used as a mask, to select the area to be used
 when training the PCF. [learn_with_masking]
Create PCF from current image Design colour filter from a binary scattergram in the
 current image. [create_filter]
Design PCF by learning Interactive design of a colour filter. Used for high
 precision colour recognition.
Colour generalisation Generalise colours. [generalise_colour]
__
“hue” PCF Filter recognises 256 colours [hue].
“hue” PCF plus pseudo-colour Program “hue” PCF with pseudo-colour ON.
"Primary" colours Filter recognises 7 colours: red, green, blue,
 yellow, cyan, magenta and neutral.
Saturation PCF PCF which measures saturation by measuring the
 distance from the white point in the colour triangle.
Measure colour similarity PCF which measures similarity to a single unique
 colour, defined as a point in the colour triangle.
 [colour_similarity1 or 2, selected by user]
__
Approximate colour scattergram Represent the colour scattergram as a set of
Rebuild colour scattergram circles for storage & reconstruction in Prolog+
__

Table 6.3 Pull-down menus for operating the colour filter interactively. The
names of Prolog+ predicates mentioned in the text are given in square
brackets.

 232

6.6.3 Recognising a Single Colour

Consider a very simple scene consisting of a single spectral colour, for example,
vivid yellow, with uniform illumination everywhere. What happens when the PCF
is trained on such an image? The colour scattergram, created during the training
process, contains a single compact cluster. In its recognition mode, the
programmed PCF may well be applied to the video signal derived from a more
complex scene, containing the same shade of yellow and other colours. Only the
particular shade of yellow encountered during training will be recognised. (Pixels
of this shade of yellow are shaded white in the output image.) All other colours
will be ignored. (Shaded black) Very dark and very bright yellow regions will
also be ignored. (Remember that both upper and lower intensity limits are applied
during the back-projection process outlined in Figure 6.14. (Take special note of
Figure 6.14(e).) In the standard Prolog+ predicate, create_filter, the limits are set
to 32 and 255. This choice of parameter values has not been found to be
restrictive in any way.) When the PCF designed to recognise a particular shade of
yellow is applied to a polychromatic scene, only that same shade of yellow will be
detected; all other colours, including slightly different shades of yellow, will map
to black. (Plate 2.)

6.6.4 Noise Effects

When a PCF that has been trained on one scene and reapplied to the same
scene, it is often found that the filter output is noisy; some pixels in what appears
by eye to be a region of uniform colour are mapped to black. (Plate 2) On a live
video picture, some pixels are seen to scintillate. There are several possible
reasons for this:

(a) Pixels which generate points in the colour scattergram close to the edge of
the main cluster, will sometimes be displayed as black. Camera noise adds an
unavoidable jitter in the values generated at the RGB signal outputs.
(b) Recall that hard upper and lower intensity limits are defined during training
of the PCF. Some very dark pixels, below the lower intensity limit will be
shaded black, even though they are of the particular tone that the PCF is
supposed to recognise. A similar situation holds around the upper intensity
limit.
(c) Specular reflection on wrinkles on the surface of the object being viewed is
a prime cause of noise-like effects. The very high intensities produced by
glinting cause black spots to appear in the PCF output image.
(d) The colour scattergram often consists of a compact cluster, with a diffuse
“corona”. Outlier points are often specifically excluded, by generating a small
blob which covers only the dense centre of the cluster, prior to applying
create_filter.
(e) Colour edges produce outlier points in the colour scattergram. As a result,
sharp colour edges may become jagged, in the PCF output image.

 233

6.6.5 Recognising Multiple Colours

The ability to recognise a single colour would be rather limiting. To avoid this
restriction, there are two additional features of the PCF that we have not yet
discussed. It is possible to teach the filter progressively, by applying create_filter
to several different images in succession. This allows training of a PCF that can
recognise multiple colours, to progress in manageable steps. For example, the user
may wish to teach the PCF the general concept of “yellow”, by training it
successively on examples of grapefruit, bananas, lemons, canaries, etc.
Alternatively, several blobs, possibly with different intensity values, can be placed
in the same image, prior to applying create_filter. (See Figure 6.14(d))

Camera

Optional -
processing loop

may be traversed
many times

Colour
separation

& mask
R G

B

Image processing /
image generation

Grey scale image

Image processing

create_filter

PCF LUT R,G,B video
signal

Monochrome
video signal

Pseudo-colour
display unit Colour monitor

Colour
scattergram

colour_separation

Mask image
(binary)

plot_scattergram

Figure 6.15 Data flow during the design and use of a programmable colour
filter. The role of the mask is explained in Figure 6.20.

In order to distinguish different colours, it is possible to assign the PCF output

to different levels. For example, the user might arbitrarily assign colours to the
following intensity levels in the PCF output image:

blue 47 green 115

 234

canary yellow 165 lemon yellow 175
red 215 etc.

It must be emphasised that any such assignment is purely arbitrary. However,

we shall see, in the next section, that some assignments are more useful than
others, especially when they are used in conjunction with a pseudo-colour display.

6.6.6 Pseudo-Colour Display for the PCF

The role of the pseudo-colour display is illustrated in Figure 6.12. Now,
consider Figure 6.16. The image that forms the input to the pseudo-colour unit is
presented to three look-up tables, which define the RGB components in a colour
image, displayed on a monitor. The contents of the look-up tables can be adjusted
at will, to provide a pleasing / convenient mapping between intensity and colour.
(See colour plates.)

Red

Green

Blue

V
id

eo
 c

ha
nn

el
s t

o
m

on
ito

r
(a

na
lo

gu
e)

Look-up-table
(8 bits x 8 bits)

DAC

DAC

DAC

D
ig

iti
se

d
vi

de
o

in
pu

t
(8

 b
its

)

Defines intensity value in a
monochrome image

Look-up-table
(8 bits x 8 bits)

Look-up-table
(8 bits x 8 bits)

Figure 6.16 Organisation of the hardware for displaying images in pseudo-
colour. Each box labelled “DAC” represents a digital-to-analogue converter.

The particular pseudo-colour mapping function shown in Plate 1 and Table 6.4,

has one special merit. When the image sensor output is connected directly to the
monitor (ctm), the user is able to determine when saturation occurs very easily.
(The display monitor shows white pixels.)

Pseudo-colour can be specially helpful when working on colour recognition
using a PCF. With care, it is often possible (and very useful), to match pseudo-
colours to real colours. For example, all of the “red” points in the input image may
be mapped by the PCF to a single value, such that, when it is applied to the
pseudo-colour display, they all appear to be red. Hence, a display, which shows
only a very few distinct pseudo-colours, can often approximate the original scene,
which contains innumerable true colours. (Table 6.4) This is very convenient for

 235

the user, who can then relate the PCF output directly to the original scene being
viewed. Several of the images in the colour plates are displayed in this way.

It may not be possible, or desirable, to use pseudo-colour in this way, if a subtle
colour discrimination is required. For example, suppose that we wish to separate
“canary yellow” from “lemon yellow”. In this situation, there is no point in trying
to make the pseudo-colours reflect the true colours, which are very similar. In this
case, it is probably better to use quite different pseudo-colours, such as red and
blue. (Plate 3)

The Prolog+ predicates for operating the pseudo-colour display system are
pseudo_colour(on) and pseudo_colour(off).

True colour PCF output level Pseudo-colour displayed

Very dark 0 Black
Blue 47 Blue
Cyan 95 Cyan
Green 115 Green
Yellow 160 Yellow

Red 215 Red
Magenta 250 Magenta
Neutral 255 White

Table 6.4 Showing the relationship between the true colours in a scene and
the PCF output levels, which generate the corresponding pseudo-colours. The
numbers given in the second column are the approximate values needed by
the Intelligent Camera, to generate the pseudo-colours given in column three.

6.6.7 Recent Teaching of the PCF Dominates

An important feature of the PCF is the fact that the contents of the look-up table
are defined in a serial manner, so that recently acquired data over-writes older
information. To illustrate this point, imagine that we are training the PCF to
recognise the colours of fruit. Suppose that we train first it to recognise lemons
and that “lemon yellow” is represented by a set Sl of points in the colour
scattergram. Next, we train the PCF to recognise grapefruit, for which the set of
scattergram points is Sg. We shall assume (with some experimental evidence to
support the hypothesis) that Sl and Sg have some common elements. While the
recognition of grapefruit will be accurate, some parts of a lemon may be
incorrectly attributed to grapefruit. If the PCF were trained to recognise several
additional types of yellow fruit, we might well find that Sl contains no members
that are not also members of other sets. In this event, “lemon yellow” will never
be identified. (Figure 6.17) Clearly, this raises two important questions:

(a) Is this likely to be a serious problem in practice?
(b) If so, how can the difficulty be overcome?

 236

So far, the authors have not encountered any real difficulty, as a result of this
phenomenon. However, it must be understood that this effect is problem specific;
in some applications, it might be troublesome, while in many others, it simply
does not occur at all. Clearly, it would be possible to write a Prolog+ program that
is able to warn about the occurrence of scattergram overlap. So far, we have
ignored the possibility of combining colour recognition with structural (e.g.
shape) information. We will examine this issue later.

Lemons, [1], invisible
because this set is

completely covered by
more recently acquired data

points

Grapefruit, [2],
partially obscurred

Bananas, [4],
fully visible

Blue

RedGreen

Melons, [3],
partially obscurred

Figure 6.17 Recent learning dominates in a PCF. The colour recognition
system is taught to distinguish several types of yellow fruit. These are
presented in the following order: 1, lemons; 2, grapefruit; 3, melon’s; 4,
bananas. Of these, only bananas will be recognised correctly. Other
information, such as object size and / or shape is needed to resolve this.

6.6.8 Prolog+ Software for Operating the PCF

The predicate create_filter is just one of many operators that have been written
to control the PCF. A range of other facilities is provided in the form of pull-down
menus. Even when programming the PCF using Prolog+, it is inevitable that there
will need to be a high degree of interaction between it and the user. For example,
when programming the filter to recognise “banana yellow”, a human being must
be available, as a teacher, to define what is / is not “banana yellow”. Moreover, a
human being can very quickly evaluate a PCF and can easily determine whether it
achieves its design objective of recognising certain colours and distinguishing
them from others. Since such processes as these are very difficult to automate, the
authors devised a set of interactive tools, based on Prolog+, for programming and
evaluating colour filters. (Figure 6.18)

 237

Figure 6.18 The Colour sub-menu, appears under the Utilities menu.

It should be understood that, once the PCF has been programmed, any
subsequent calls to grb will result in an image being digitised via the PCF. For
this reason, our programs, which appear later in this chapter, do not appear to
contain any reference to colour recognition. Colour recognition via the PCF is
implicit in the grb command. In the same way, a real-time display of live video,
via the PCF is possible using the command ctm. We repeat the statement that the
use of the PCF does not reduce the processing speed in any way whatsoever.

A suitable PCF could be programmed to recognise “yellow” objects, all other
colours being ignored. To achieve this, the yellow regions in the scene being
viewed would be mapped to white and other colours to black in the output image.
Thus, by performing the operation grb, we obtain a binary image. (This process
takes about 65 ms with our present computer configuration.) Hence, a simple
program to detect a banana might look something like this:

banana :-
 grb, % PCF already programmed to recognise yellow
 biggest, % Ignore any small spots in PCF output image
 size(banana), % Check blob size is within limits for banana
 shape(banana). % Check that blob shape is OK for banana

No doubt, the reader can suggest various techniques for verifying that the shape

and size of the biggest yellow object are both commensurate with that object
being a banana. More programs like this will be presented later. It is possible to
generate a pattern with continuous shading, as a prelude to applying create_filter.
The Prolog+ sequence [hic(128,92), enc, 3•sqr, create_filter] draws an intensity
cone centred at the white point in the middle of the colour triangle. The sub-
sequence [enc, 3•sqr] simply rescales the image intensities. The resulting PCF is
able to provide a crude measure of saturation. In addition to create_filter, there
are several other dedicated predicates for controlling the PCF.

 238

Plot Colour Scattergram

plot_scattergram plots the colour scattergram in the current image, from the
RGB colour separations, plus a binary image, which acts as a mask. (The
significance and use of the mask image will be discussed later.) Prior to
evaluating plot_scattergram, it is necessary to load four half-resolution, sub-
images into the four quadrants of the current image, as shown below. (See Images
6.11 and 6.12.)

Red Green
Blue Mask

The predicate colour_separation does just this.

% The Current Image Initially Contains The Binary Image Which Forms
% The Mask.
colour_separation :-
 shrink(50,50), % reduce image size to 50% along X & Y axes
 shift(bottom_right),
 % place in bottom right quadrant of image C.
 video(red), % select R video channel
 grb, % digitise image
 shrink(50,50), % reduce image size to 50% along X & Y axes
 shift(top_left),
 % place in top left quadrant of image C.
 video(green), % select G video channel
 grb, % digitise image
 shrink(50,50), % reduce image size to 50% along X & Y axes
 shift(top_right),
 % place in top right quadrant of image C.
 video(blue), % select B video channel
 grb, % digitise image
 shrink(50,50), % reduce image size to 50% along X & Y axes

 shift(bottom_left),
 % place in bottom left quadrant of image C.
 rea. % read composite image back into image A

The colour scattergram can then be generated by calling plot_scattergram.

Notice that plot_scattergram does not alter the contents of the PCF look-up table.

Draw Colour Triangle Outline

draw_triangle simply draws a geometric figure in the current image, thereby
providing a means of calibrating the colour scattergram.

Clear LUT

 The predicate initialise_pcf sets the contents of all elements in the PCF look-up
table to zero.

Store Current LUT

 239

store_lut stores the current LUT contents in battery-backed RAM, in a named
file.

Reload Stored PCF

get_lut recovers a stored PCF from battery-backed RAM.

Reverting to Monochrome Operation

The predicate pcf_normal switches the PCF back to normal monochrome
operation. The corresponding LUT effectively computes the function (R+G+B).

6.6.9 Programming the PCF using the Colour Scattergram

One naive procedure for programming the PCF is to plot the colour scattergram,
using plot_scattergram immediately before calling create_filter. However, this is
not a good idea, for the simple reason that the colour scattergram is a multi-level
grey-scale image, in which intensity indicates frequency. It is far better to
threshold the colour scattergram first. This will normally create a set of “blobs”.
(Image 6.1) Clearly, we would expect that, if the threshold value is well chosen,
each cluster in the colour scattergram would generate just one major blob, plus
perhaps a few small satellite blobs representing outliers. The result of applying
create_filter to a multi-blob image is that all of the colours represented by those
blobs will be mapped to white. Suppose that we shade the blobs first. A simple
expedient is to do so using label_blobs, which has the effect of giving each of the
blobs a different intensity value; big blobs are given high intensity values, while
small ones become dark. Applying create_filter now will program the PCF to
discriminate between colours. (Figure 6.19) The output levels generated by the
PCF are quite arbitrary and can be chosen for the convenience of the user.

 240

Green Red

Blue

(a)

Green Red

Blue

(b)

Figure 6.19 Using label_blobs to distinguish between different colours. (a)
The PCF derived from this image, by applying create_filter, is unable to
distinguish red, green blue and yellow. This occurs because all four blobs
have the same intensity. (b) The PCF derived from this image is able to
distinguish red, green blue and yellow. This image can be derived from (a) by
applying label_blobs.

6.6.10 Programming the PCF by Image Processing

We may not want to generate the colour scattergram for the whole of the
camera’s field of view; we may prefer to concentrate instead upon certain regions
that are of special interest and deliberately ignore others. The definition of
colour_separation allows the use of a mask image specifically for this purpose.
The mask simply controls plot_scattergram; pixels that are white in the mask
image will contribute to the scattergram, while black pixels do not. (Figures 6.15
and 6.20) The following program trains the PCF to recognise whatever colours are
“covered” by the white areas of the mask image.

% The mask is in the current image initially
learn_with_masking :-

 241

 colour_separation, % Generate 4 sub images of half
 % resolution
 initialise_pcf, % Set all LUT contents to zero
 plot_scattergram, % Plot colour scattergram in current
 % image (A)
 threshold, % Create binary version of colour
 % scattergram
 label_blobs, % Shade blobs - optional
 create_filter. % Set up LUT contents from current
 % image

In the previous section, we mentioned that it is possible to generate blob-like

figures by thresholding the colour scattergram. A cluster in the (grey-scale)
scattergram may give rise to one large blob and several smaller “satellite” blobs.
The latter can be a nuisance, because they generate “noise” effects. However these
very small blobs are easy to eliminate, using big_blobs. Here is a program for
learning the dominant colour in a scene, with automatic noise removal and
masking.

pcf_with_noise_cleanup :-
 grb, % Digitise an image
 create_binary_image, % Create the mask image in the current
 % image
 colour_separation, % Generate 4 sub images of half
 % resolution
 initialise_PCF_lut , % Set all LUT contents to zero
 plot_scattergram , % Plot the colour scattergram
 blur % Low pass filter
 thr(16), % Fixed value thresholding. Arbitrary
 % choice
 big_blobs(20), % Eliminate blobs with < 20 pixels,
 3•exw, % Expand white regions
 label_blobs, % Shade blobs according to their sizes
 create_filter. % Set up LUT contents from current
 % image

6.6.11 “Hue” PCF

It is evident from the discussion earlier, that the HSI representation of colour
has considerable merit. The principal reason is that hue can be related to the
names that we give to colours. It is possible to use the PCF to measure hue, albeit
with some modification of the term. The hue predicate, defined below programs
the PCF so that its output gives a measure of hue. (See Plate 1(b).)

hue :-
 wgx, % Intensity wedge
 cartesian_to_polar,
 % “Bend” wedge into circular pattern
 hil(0,0,1), % Black causes colour discontinuity when
 % pseudo-colour is used. Avoid it.
 hil(255,255,254),
 % White causes colour discontinuity when
 % pseudo-colour is used. Avoid it.
 psh(-64,-64), % Shift image
 shrink(50,50), % Reduce image size to 50% along X & Y axes
 psh(0,-36), % Shift image

 242

 scroll_menu(['Choose white level parameter?'], ['0', '4',
 '8', '12', '16', '20', '24', '28', '32'],['24'],X),
 X =[Y], % Decode answer from previous line
 pname(Z,Y), % Convert character string to number
 draw_disc(128,92,Z,255),
 % Draw white disc at (128,92), radius = Z
 create_filter.
 % Set up LUT contents from current image

RGB colour
separations: A

BMask
A

BMask
A

BMask

BlueRed Green

RedGreen

Blue

PCF

Process the colour scattergram
and then apply create_filter

Mask image, generated using
normal image processing methods,
or by user drawing a closed contour

Contribution to the
intensity here

received
from B but not A

Colour scattergram

Apply
plot_scattergram

Figure 6.20 A mask may be used to limit the area of the input image which
contributes to the colour scattergram. Hence, the PCF will learn to recognise
only those colours within the region of interest covered by the mask.

The intensity in a circular wedge pattern, like the one generated by the first six
lines of hue, is proportional to angular position, measured relative to a horizontal
line through the centre of the colour triangle (co-ordinates (128,92)). Lines 3 and
4 eliminate values 0 and 255, which are represented by black and white
respectively in pseudo-colour. If black and white were not suppressed in this way,
one row of each shade appears at the 3 o’clock position in the colour triangle and
would cause noise-like effects when the PCF is applied. A white disc is drawn at
the centre of the colour triangle and is responsible for the PCF mapping neutral

 243

shades (very pale, non-saturated colours) into white. For obvious reasons, the
colour filter generated by hue will be called the “hue PCF”.

Let P denote the output of the hue PCF and H the value of the hue, as defined
by Equation 6.3. These two quantities are related as follows:

 P

255
360

H 30) mod 360)= −((

The hue PCF output has a discontinuity in the magenta region of the colour

triangle. (Plate 1(b)) This can occasionally cause some minor problems, although
these can often be overcome in a straightforward way. (Plate 3)

In many situations, the hue PCF is able to provide an adequate basis for colour
recognition, without the need to resort to learning. (See colour plates.) It should
be noted that surfaces of the same hue but with different (high) degrees of
saturation are indistinguishable to this filter. Black and dark grey are mapped to
black, while brighter neutral shades are mapped to white by the hue PCF.

Pseudo colour-triangle is a term which will be used to refer to a synthesised
pattern, superimposed on the colour triangle. (See Plate 1 and Image 6.3.)
Applying create_filter to a pseudo colour-triangle generates a fixed-function PCF.
A variety of interesting and useful functions, in addition to measuring hue, can be
implemented thus.

6.6.12 Analysing Output of the Hue PCF

Figure 6.21(b) shows, in diagrammatic form, the histogram of an image
generated by the hue PCF. (Also see Plate 1(e).) This is an example of what will
be called a colour histogram. Well defined peaks in the colour histogram indicate
that the image contains a number of distinct, well-defined colours, rather than
continuously varying colours, which blend into each other. A series of intensity
thresholds can then be chosen, so that the PCF output can be quantised into
discrete levels, thereby enabling the various colours in the input scene to be
separated. A multi-peak histogram, like that shown in Figure 6.21(b), is easy to
analyse, either by eye or using a Prolog+ program, to select appropriate threshold
parameters. Fixed-value thresholding, applied to the PCF output, is “safe”, in the
sense that the resulting image does not vary significantly with changing
illumination. This is in sharp contrast to the use of fixed-value thresholding
applied directly to the camera output.

Another stratagem is to apply the histogram equalisation operator (heq) to the
hue PCF output. This often produces a very interesting effect, in which regions of
nearly constant colour are all “stretched”, so that their colour variations are all
made more obvious. With some justification, the latter process could be termed
colour equalisation, since it enhances subtle changes of hue within regions of
nearly constant colour, while contracting the differences between such regions.
This can be a powerful tool for observing subtle colour changes in a scene. In a
similar way, the “linear” contrast enhancement operator (enc) could be applied to
the PCF output, in lieu of heq. It is certainly well worth investigating both of these

 244

possibilities, in practice. Similarly, we might apply various other contrast
enhancement operators, such as sqr, [neg, sqr, neg], log, exp, etc. to the PCF
output image. The hue PCF and, as we shall see later, certain other colour filters
based upon fixed pseudo colour-triangles, are able to yield valuable insight, when
they are used interactively. In view of this reliance on interaction, it is difficult to
explain all of the possibilities that exist.

Cyan cluster

Yellow cluster Orange-red cluster

Green cluster

Discontinuity in
hue PCF output

White disc

Blue

Green Red

White cluster

(a)

Black White
PCF

output
level

Frequency

C
ya

n

G
re

en
Y

el
lo

w

O
ra

ng
e-

re
d

A B C D E

Theshold
parameters

Very high peak at
level 255 , due to

white cluster

(b)

Figure 6.21 Colour histogram. (a) Colour scattergram for an hypothetical
polychromatic scene. There is one cluster in the scattergram for each colour in
the input scene, including white (neutral). (b) The colour histogram is the
result of applying hgi to the output of the hue PCF. Placing intensity
thresholds at A, B, C, D, E provides an excellent basis for separating these
five colours.

6.6.13 “Segmented” PCF

 245

The hue PCF provides a convenient and straightforward means of analysing
colour variations. The segmented PCF is even simpler, providing for the
recognition of only six broad categories of colour (i.e. red, green, blue, yellow,
cyan and magenta), plus neutral. It does not provide the user with the same
opportunities for experimentation as the hue PCF does. As a result, it is less
demanding of the user but it is very coarse in its ability to discriminate colours.
Nevertheless, it is well worth trying the segmented PCF in the study of any new
application, since it is very easy to use.

 The pseudo colour-triangle for the segmented PCF can be generated by
drawing a series of polygons (using vpl), filling (blb) and shading them (hil).
(Image 6.3) Finally, the central white disc is drawn using draw_disc. The Prolog+
program for drawing the pseudo colour-triangle is straightforward and does not
warrant detailed attention.

6.6.14 Measuring Colour Similarity and Saturation

Given a suitable grey-scale image as input, the predicate create_filter will create
a PCF that is able to recognise up to 256 different colours. As an example of this,
suppose that we perform the following sequence of operations.

hic(128,92), % Draw an intensity cone
heq, % Histogram equalisation
create_filter.

The resulting PCF will produce an image in which the output level indicates the

degree of saturation. The scale is not quite the same as that defined by Equation
6.4. Another more accurate approximation of the saturation is provided by the
predicate saturation, defined thus:

saturation :-
 zer, % Black image
 neg, % Picture is all white now
 vpl(128,92,129,92,0),
 % Draw single black spot at [128,92]
 gft, % Grass-fire transform
 create_filter. % Program the PCF

Next, consider the pseudo colour-triangle shown in Image 6.11(g). Intensity in

this image measures the Euclidean distance from the centre point of the base of
the colour triangle. This point corresponds to “archetypal” yellow. Hence, the
intensity in this pseudo colour-triangle indicates the “yellow-ness” and the output
of the corresponding PCF indicates how much yellow is present at each point in
the scene being viewed. Clearly, the same concept can be applied to measure other
colours, such as red, green, blue, cyan, etc. that can be easily located in the colour
triangle.

It is, of course, possible to generalise the idea, so that the distance from any
arbitrary point, (X,Y), in the colour triangle is represented by the intensity in the

 246

pseudo colour-triangle. Perhaps the simplest way of doing this is to draw an
intensity cone (hic) with its centre at the point (X,Y).

colour_similarity1(X,Y) :-
 hic(X,Y), % Draw intensity cone centred at (X,Y)
 sqr, % Optional. Possibly use other transforms
 create_filter. % Generate the PCF LUT from the current image

An alternative is to use the grass-fire transform (gft). Notice the similarity

between the following program and saturation:

colour_similarity2(X,Y) :-
 zer, % Create black image
 neg, % Negate. Makes image all white
 vpl(X,Y,X,Y,0),
 % Make (X,Y) black.
 gft, % Grass fire transform
 create_filter. % Generate the PCF LUT from the current image

When a new image is digitised, the PCF output measures the “similarity”
between colours in the input scene and that single colour represented by the point
(X,Y). Image 6.11(g) shows a pseudo colour-triangle for measuring the “purity”
of the three primary colours R, G and B.

6.6.15 Detecting Local Colour Changes

It is possible to extend the ideas implicit in colour_similarity2, so that local
colour changes in a complex coloured scene are made clearly visible. Here is the
program for generating a pseudo-random, pseudo colour-triangle. (Image 6.4(a))
The parameter, N, defines the complexity of the pattern created in the pseudo
colour-triangle. An essential feature of the image generated by subtle_colour is
that the pseudo colour-triangle has a high intensity gradient almost everywhere.

subtle_colour(N) :-
 zer, % Generate black image
 random(N), % N points at random positions in current
 % image
 thr(1), % Remove intensity variations in random image
 3•exw, % Ignore dense local clusters. Adjust the
 % looping parameter to taste
 condense, % Reduce blobs to their centroids
 neg, % Negate
 gft, % Grass fire transform
 enc, % Enhance contrast in current image
 create_filter. % Generate the PCF LUT

Let us consider how the subtle_colour PCF might be used. It is best applied to a

scene which is nearly constant in time and with local changes of colour. Consider,
for example, the task of printing sheets of paper, or flattened cardboard cartons.
The pattern on the sheets may be quite complicated and involve a number of
colours. It is important to understand that each sheet is inspected in exactly the

 247

same position and orientation.2 Precise registration is important but it is not
necessary to assume that the intensity of the lighting is constant in time, provided
that it does not alter significantly in colour. When the subtle_colour PCF is
applied to a printed sheet, the result is a monochrome image in which the intensity
has a complicated pattern, indicating the colour, not brightness, variations. Now,
suppose that a second sheet, identical to the first, but with a small local variation
of colour is examined. The resulting image will be the same as before, except in
the region of the colour change, where the intensities will be significantly
different. By subtracting the two PCF output images, the differences in the
original colour scenes can be highlighted. (See Image 6.4(d-f).)

The program subtle_colour PCF that may be used to detect colour changes
simply by subtracting successive pairs of images. Here is a program to do this.

subtle_colour_changes :-
 grb, % Digitise an image. PCF already
 % programmed
 cpy, % Copy image A to image B
 swi(a,c), % Switch images A and C
 sub, % Subtract images A and B
 abs, % Absolute value of intensities
 thr(25), % Threshold. Adjust level to taste
 big_blobs(10), % Remove blobs with <10 pixels. Adjust
 % to taste
 cwp(N), % Count white points
 N > 25. % Are differences significant

subtle_colour_changes :-
 subtle_colour_changes.
 % Repeat until changes are found

At first sight, it would appear that repeated patterns, such as printed cloth,

stamps, bank-notes and other roller-printed web products could be inspected using
the subtle_colour PCF. In practice, however, these particular applications may
present considerable difficulties, due to the very high precision needed in the
registration of the two images. A more likely range of applications is likely to be
found in manufacturing, for example, monitoring the packing of cakes,
chocolates, pharmaceuticals, toiletries, etc. into boxes, and looking for splashes of
coloured food materials on pies, packaging, etc.

6.6.16 Colour Generalisation

Consider a colour scattergram in which there are six distinct and compact
clusters. (Image 6.11(j)) This form of scattergram is generated by polychromatic
scenes in which there are several regions, each containing nearly constant and
perceptually distinct colours. (Plate 3) After applying thresholding and noise
reduction to the colour scattergram, there are several small blobs, which can be
shaded, using the operator label_blobs. A PCF, designed by applying create_filter

2 The technique for detecting colour changes suffers from the same restrictions
as template matching, to which it is closely related.

 248

to an image containing small blobs, will often be rather noisy. In particular, some
of the points in the original image are mapped to black, incorrectly suggesting that
they have not been seen beforehand. The reason is that the small blobs do not
cover all points in the colour scattergram. If we were to make the blobs larger and
then design a new PCF, the noise level would be reduced. Enlarging the blobs can
be achieved by applying the lnb operator several times. This can be repeated as
many times as we like, provided that the blobs do not merge. Here is a program
which achieves this:

generalise_colour :-
 wri, % Save scattergram image
 thr(1), % Threshold at level 1. Very dark grey.
 count(blobs,A),
 % Count blobs in colour triangle
 rea, % Recover image saved earlier
 generalise_colour(A).
 % Lower level predicate, defined below.

generalise_colour(A) :-
 rea, % Recover image saved earlier
 lnb, % Spread bright regions
 thr(1), % Threshold at level 1. Very dark grey.
 count(blobs,N),
 % Count blobs in colour triangle
 A is N, % Check that no. of blobs is unchanged
 swi, % Switch images
 wri, % Read image saved earlier
 !, % Inhibit backtracking
 generalise_colour(A).
 % Repeat until blobs touch

generalise_colour(_) :-
 rea. % Recover saved image

generalise_colour is applied after the colour scattergram has been generated and

thresholded and before create_filter is applied. The program sequence is as
follows.

 plot_scattergram, % Generate the colour scattergram
 threshold, % Threshold - creates small blobs
 label_blobs, % Shade blobs in some arbitrary way
 generalise_colour, % Apply colour generalisation
 create_filter % Program the PCF

A rather better colour generalisation procedure has been devised around the

grass-fire transform. (Section 2.3.) This procedure is superior to the version of
generalise_colour given above, since it does not simply terminate when the first
two blobs merge as they are being dilated. The process generates a map
resembling the territorial waters surrounding a group of separate and independent
island nations. (See Images 6.11(j) and 6.12(b).) The colour triangle is sub-
divided on a nearest neighbour basis and it is possible to place a limit on the
extent of “territorial waters” surrounding any given “island”.

It should be understood that when a PCF is designed with colour generalisation
to distinguish between two colours (e.g. “yellow” and “red”), strange effects may

 249

occur when it is applied to other colours (e.g. orange, green or blue). It is good
practice to apply a PCF with colour generalisation only to those colours that it is
was designed to discriminate. Colour generalisation is a very useful procedure but
it does need to be applied intelligently and the results scrutinised carefully.
Nevertheless, it is particularly useful in reducing “noise” effects, when designing
PCFs to recognise the colours in polychromatic scenes. (See [BAT-95b] for more
details.)

6.7 Colour Recognition in Prolog+ Programs
We are now in a position to use the PCF for colour recognition and to present

Prolog+ programs indicating how this facility can be used in practice. For the
remainder of this chapter, the subtleties of designing PCF’s can safely be ignored.
Indeed, our programs will not refer explicitly to any of the predicates listed above.
We simply need to remember that grb and ctm both make implicit use of whatever
PCF was last programmed. The programs listed below frequently contain
instructions to switch the pseudo-colour display unit on. This is often of
considerable help to the user when interpreting images generated with a PCF but
it has no effect whatsoever on the processing.

6.7.1 Counting Coloured Objects

An obvious and important application requirement is that of counting objects
having a certain range of colours. For example, we might want to count all of the
“yellow” and “turquoise” objects in a scene, whilst ignoring “orange” and
“magenta” items. As we shall see, this is often a relatively straightforward task
and usually does not require the user to program a colour filter explicitly. The
reason is that the hue filter, or some other standard PCF, will frequently provide
the necessary discrimination, in conjunction with simple fixed-level thresholding.
The user can usually decide what threshold levels to use by adopting a simple
procedure, based upon the colour histogram. Peaks in the colour histogram can
usually be identified with specific colours in the scene being viewed. For
example, the simple polychromatic scene in Plate 3(a) generates 6 peaks, which a
user of the Prolog+ system can identify with little difficulty.

The Prolog+ program presented below is quite general and is able to
accommodate several bands of colour. For example, it can count objects which are
“green”, “yellow”, or “red”. Hence, it could, for example, count tomatoes, at any
stage of ripeness. It was assumed that the hue PCF, or some similar filter has
already been programmed. Recall that 256 different colours are recognised by the
hue PCF; the filter outputs are numbers (i.e. intensities) in the range [0, 255].
Hence, we can use integers in this range to represent colours. Using this simple
notation, a single integer represents a very narrow band of colours. (For
convenience, we shall refer to this as a “single colour”.) We can extend this
notation, so that a pair of integers, [P,Q] denotes a broader, continuous range of
colours, with limits P and Q. In addition, a list of integer pairs will be used to

 250

denote a more general (i.e. discontinuous) set of colours. For reasons which will
soon become apparent, we shall reserve colour 255 for a special purpose. Hence,
we shall assume that the PCF does not generate any output pixels with intensity
255. If it does, these pixels will be assigned to level zero and hence may be “lost”.
(The program works quite happily with the hue PCF, except that neutral shades,
cannot be counted.) Here is the program for counting coloured objects.

% Instantiates B to the number of objects having the colours
% specified by the list A.
count_coloured_objects(A,B) :-
 create_filter, % Program/load whatever PCF is to be used
 hil(255,255,0),% Remove any pixels at level 255
 grb, % Digitise an image using this filter
 isolate(A), % Isolate all regions specified by list A
 remove_noise, % Optional noise removal operator
 count(blobs,B).% Count regions. Instantiate B

isolate([]) :- thr(255).
 % Keep all regions with any of specified
 % colours

isolate([[A,B]|C]) :- % Consider colour band [A,B]
 hil(A,B,255), % Map pixels in range [A,B] to level 255
 !, % Added to improve efficiency of recursion
 isolate(C). % Repeat for other colour bands, if necessary

[grb, isolate(A)] generates an image consisting of a set of white blobs,

representing the areas whose colours are included in the “input” list, A. The
reader might like to contemplate how the above program could be modified to
count objects of any colour, ignoring those which are of a neutral shade. Another
variant can be devised, in which colours are specified by name, rather than by
number. No changes are needed to count_coloured_objects, modifications are
needed only to isolate. Assuming that the hue PCF is being used, isolate may be
redefined thus:

isolate([]) :- thr(255). % Terminate recursion.

% This clause deals with a list of colours, such as
% [sulphur_yellow, tangerine, cyanide_blue, leaf_green].
isolate([A|B]) :-
 colour_limits(A,C,D),
 % Consult db for limits corresponding to A
 hil(C,D,255), % Map “yellow” pixels to white
 !,
 isolate(B). % Repeat for all colours in tail of list

% This clause deals with single colours
isolate(A) :-
 colour_limits(A,B,C), % Consult database for limits (A)
 thr(B,C). % Select colours in band [B,C]

% Sample of the database. This clause defines limits for “yellow”
% in the PCF output
colour_limits(yellow,135,185).

 251

Of course, isolate has a far wider range of applications than has been explained
so far. The following program counts pink and blue sheep, but only if they have
green eyes.

count(sheep,A) :-
 create_filter(hue), % Program the ‘hue’ PCF
 grb, % Digitise image.
 wri(temp), % Save image for use later
 isolate([pink, blue]), % Keep pink and blue objects
 keep(sheep), % Discard all non-sheep
 blb, % Fill any holes (where eyes are)
 wri(sheep), % Save for use later
 rea(temp), % Recover input image
 isolate(green), % Keep green objects
 keep(eyes), % Discard all non-eyes
 rea(sheep), % Recover sheep image
 touches, % Keep sheep if they have ≥ 1
 % green eyes
 count(blobs,A). % Count the sheep.

It is assumed that keep(sheep) and keep(eyes) are both based upon the size

and/or shape of blob-like objects in a binary image. touches compares two images:
if a blob in image A overlaps a blob in image B, the blob in A is retained. If a blob
in A does not overlap at all with any white pixels in B, then the blob in A is
discarded. [BAT-91] Defining touches is left as an exercise for the reader. (Hint:
Use label_blobs, mask one image with the other and make use of recursion to
identify which blobs have overlap.) Also see Section 3.6.2.

6.7.2 Recognising a Polychromatic Logo, Program 1

The familiar logo associated with Apple Computers Inc. contains six nearly
monochromatic regions. The task that we shall consider is that of recognising
such a pattern, independently of its scale. The program that we shall discuss first
simply calculates the proportion of each of the six colours, relative to the total
coloured area. The estimated proportions are then compared to values determined
experimentally and written explicitly into the program. Later, we shall describe
several improvements on this naive approach, adding self-adaptive learning and
taking the positions of the coloured stripes into account.

Here is our first program for recognising the Apple Computer logo.

apple_logo:-
 create_filter(hue), % Program the ‘hue’ PCF
 grb, % Digitise image
 wri, % Save image for use later
 thr(1,254), % Find coloured regions; ignore B & W
 biggest, % Find biggest blob. This ignores the
 % green leaf
 cwp(N0), % Measure area of main part of the logo
 rea, % Recover original image
 min, % Mask to remove black and white areas
 wri, % Save masked image for use later
 thr(13,57), % Threshold to select magenta
 cwp(N1), % Calculate its area

 252

 swi, % Switch current and alternate images
 thr(57,128), % Threshold to select blue
 cwp(N2), % Calculate its area
 swi, % Switch current and alternate images
 thr(128,185), % Threshold to select green
 cwp(N3), % Calculate its area
 swi, % Switch current and alternate images
 thr(185,206), % Threshold to select yellow
 cwp(N4), % Calculate its area
 swi, % Switch current and alternate images
 thr(206,223), % Threshold to select orange
 cwp(N5), % Calculate its area
 swi, % Switch current and alternate images
 thr(223,250), % Threshold to select red
 cwp(N6), % Calculate its area
 swi, % Switch current and alternate images
 % Calculate proportions of the various colours
 M1 is 100*N1 // N0, % M1 is percentage of magenta
 M2 is 100*N2 // N0, % M2 is percentage of blue
 M3 is 100*N3 // N0, % M3 is percentage of green
 M4 is 100*N4 // N0, % M4 is percentage of yellow
 M5 is 100*N5 // N0, % M5 is percentage of orange
 M6 is 100*N6 // N0, % M6 is percentage of red
 % Write parameter list for the user to peruse
 writeseqnl(['Parameter list:',[M1,M2,M3,M4,M5,M6]]),
 % Calculate Euclidean distance between [M1,M2,M3,M4,M5,M6] &
 % stored vector
 euclidean_distance([M1,M2,M3,M4,M5,M6],[16, 13, 13, 19, 18,
 19],0,Z),
 writeseqnl(['Distance measure:',Z]), % Tell user how far
 Z < 100, % Is distance small enough?
 writenl('Apple logo was detected'), % Printed message
 say('Found Apple Logo'). % Spoken message

apple_logo:-
 writenl(‘Apple logo was NOT visible'), %Printed message
 say('Apple Logo NOT found'). % Spoken message

euclidean_distance([],_,A,A) :- !. % First terminating clause

euclidean_distance(_,[],A,A) :- !. % Second terminating clause

euclidean_distance([A|B],[C|D],E,F) :-
 G is (A-C)*(A-C) + E, % Sum of squares of differences
 !, % Included for faster/more efficient recursion
 euclidean_distance(B,D,G,F).
 % Repeat until one/both of input lists is empty

The predicate apple_logo is unsophisticated, being intended to recognise the

Apple Computer logo and no other pattern. The program simply counts the
proportions of pixels lying within certain colour bands, defined by applying
various thresholds to the output of the hue PCF. The threshold parameters were
chosen by finding the valleys in the colour histogram, of the image generated by
the hue PCF.

The predicate euclidean_distance calculates the square of the so-called
Euclidean distance, which is defined as follows. Let X = {Xi, i = 1,…,N} and Y =
{Yi, i = 1,…,N} be two N-dimensional vectors. Then, the Euclidean distance
between them is given by D(X,Y), where

 253

If X and Y have almost identical values, D(X,Y) is small. In the special case

when these vectors are identical, D(X,Y) = 0. On the other hand, if X and Y are
very different D(X,Y) is large. D(X,Y) therefore measures the dissimilarity
between X and Y.

apple_logo succeeds if the measured vector [M1,M2,M3,M4,M5,M6] is very
similar to the stored reference vector: [16, 13, 13, 19, 18, 19]. The significance of
[M1,M2,M3,M4,M5,M6] is explained above. The reference vector represents the
measurements obtained using the same program on a pattern that was known to be
an (ideal) logo. The idea of comparing the Euclidean distance to a fixed threshold
is explained in Figure 6.22(a). Later, we shall adopt the more advanced approach
in which several stored reference vectors are used.

6.7.3 Recognising a Polychromatic Logo, Program 2

The following program adopts a slightly more sophisticated approach to that
explained above. Here, the vertical order of the colour stripes is taken into
account. The program accepts a pattern as being an Apple Computer logo, if the
stripes are located in the following order (moving upwards): blue, magenta, red,
orange, yellow, green. Only differences from the earlier version of the program
are annotated.

apple_logo :-
 create_filter(hue),
 grb, wri, thr(1,254),
 biggest, cwp(N0),
 rea, min, wri,
 thr(13,57),
 cgr(_,Ymagenta), % Y co-ordinate of magenta band
 cwp(N1), swi,
 thr(57,128),
 cgr(_,Yblue), % Y co-ordinate of blue band
 cwp(N2), swi,
 thr(128,185),
 cgr(_,Ygreen), % Y co-ordinate of green band
 cwp(N3), swi,
 thr(185,206),
 cgr(_,Yyellow), % Y co-ordinate of yellow band
 cwp(N4), swi,
 thr(206,223),
 cgr(_,Yorange), % Y co-ordinate of orange band
 cwp(N5), swi,
 thr(223,250),
 cgr(_,Yred), % Y co-ordinate of red band
 cwp(N6), swi,
 M1 is 100*N1 // N0, M2 is 100*N2 // N0,
 M3 is 100*N3 // N0, M4 is 100*N4 // N0,
 M5 is 100*N5 // N0, M6 is 100*N6 // N0,
 writeseqnl(['Parameter list:',[M1,M2,M3,M4,M5,M6]]),
 Yblue < Ymagenta, writenl('1'), % Blue is below magenta
 Ymagenta < Yred, writenl('2'), % Magenta is below red

D (,) (X Y)
i N

N
i i

2X Y = ∑ −
=

 254

 Yred < Yorange, writenl('3'), % Red is below orange
 Yorange < Yyellow, writenl('4'), % Orange is below yellow
 Yyellow < Ygreen, writenl('5'), % Yellow is below green
 euclidean_distance([M1,M2,M3,M4,M5,M6],[16, 13, 13, 19, 18,
 19],0,Z),
 writeseqnl(['Distance measure:',Z]),
 Z < 100,
 writenl('The Apple logo has been detected'),
 say('Found Apple Logo'),

 !.

This program is, of course, also specific to this one application; it is necessary

to write a new program, if objects other than the Apple Computer logo are to be
detected. The program, can be modified slightly to allow it to recognise scenes in
which there is a continuous variation of colour, rather like that in a rainbow. For
example, a program has been written that is able to recognise the 3M Company
logo, which consists of a multi-coloured disc.

Let us consider two further points that arise here. The first is that the shapes of
the coloured bands have been ignored. Given that a crude measure of the shape of
a blob can be obtained by computing the ratio of its area to the square of its
perimeter, it is possible to enhance the program given above. The reader might
like to contemplate how this could be done. (Hint: Add two lines of Prolog+ code
for each coloured stripe. One computes the shape measure, while the second
compares its value to stored tolerance limits.) The second point to note is that the
second version of apple_logo makes no use of the abstract relationship above,
discussed in Chapter 3. A third and much clearer approach to recognising the
Apple Computer logo is therefore represented by the program given in the
following section.

6.7.4 Recognising a Polychromatic Logo, Program 3

The two earlier definitions of apple_logo, are both “linear” (procedural) in
structure. Better programming style is to be seen in the following program which
performs the same operations as the second definition.

apple_logo :-
 get_image(N), % Equivalent to first lines of earlier defs.
 area(red, N, Ared), % Normalised area of red pixels is Ared
 area(green, N, Agreen),
 area(yellow, N, Ayellow),
 area(orange,Aorange),
 area(magenta, N, Amagenta),
 area(blue,N, Ablue),
 check_areas(Amagenta,Ablue,Agreen,Ayellow,Aorange,Ared),
 % Matching sizes
 above(green,yellow), % Verifies that green is above yellow
 above(yellow,orange),
 above(orange,red),
 above(red,magenta),
 above(magenta,blue).

/* “get_image” is identical with the first few lines of the two
earlier definitions of “apple_logo”. */

 255

get_image(A) :-
 create_filter(hue), % Program the ‘hue’ PCF
 grb, % Recall that “hue” PCF has been programmed
 wri, % Save image for use later
 thr(1,254), % Ignore black & neutral regions
 biggest, % Keep only the biggest one
 cwp(A), % Compute its area
 rea, % Read grey-scale image back again
 min, % Remove pixels corresponding to non-colours
 wri. % Needed by “isolate” (not defined here)

area(A,B,C) :-
 isolate(A),
 cwp(D), % Count number of pixels of colour A
 C is 100*D/B. % Rescale by dividing by total area of logo

% Performs match between measured sizes and stored values
check_areas(A,B,C,D,E,F) :-
 euclidean_distance([A,B,C,D,E,F],[16, 13, 13, 19, 18,
 19],0,Z),
 Z < 100.

% Definition of “above” for coloured stripes
above(A,B) :-
 isolate(A), % Isolate pixels of colour A
 locate(A,_,Xa), % Centroid of colour band A. Not
 % defined here
 isolate(B), % Isolate pixels of colour B
 locate(B,_,Xb), % Centroid of colour band B
 Xa > Xb.

The observent reader will note that this definition of above is perfectly standard;
we have merely annotated it in such a way that its relevance to colour recognition
is evident.

6.7.5 Multiple Exemplar Approach to Recognition

The simple approach to the recognition of coloured objects, exemplified by the
first two versions of apple_logo, requires that a new Prolog+ program be written
for every pattern that is to be recognised. A more general program, called
crude_color_recognition, makes better use of the declarative nature of Prolog+
and is listed below. This program calculates the Euclidean distances from the
measurement vector (X) to a set of stored vectors, held in stored_vector. If any of
these distance values is less than some pre-defined threshold (taken to be 100
here), crude_color_recognition will succeed. (The name of this predicate was
chosen to emphasise the point that a more sophisticated colour recognition
program will be presented later.)

 256

X2

X1Y1

Y2 T

(a) (b)

X2

X1

X2

X1
(d)

X2

X1
(c)

Figure 6.22 Decision surfaces drawn in two dimensions. (a) A single point
[Y1,Y2] and distance threshold (T) defines a circular region. Any point
[X1,X2] which falls inside the shaded area is associated with the decision YES
(apple_logo succeeds), while all other points are associated with the decision
NO (apple_logo fails). (b) Several circular sub-regions can be superimposed.
If [X1, X2] falls inside any circle, the decision is YES. If [X1, X2] falls
outside all circles, the decision is NO. Notice that we have to store 3
parameters for each circle. (c) The Nearest Neighbour decision rule.
Representatives of more than one class are stored. Here, there are just two. A
point is associated with a certain class, if [X1, X2] is closer to one of the
stored representatives of that class than it is to all of the representatives of all
other classes. (d) A modified version of the Nearest Neighbour decision rule.
The decision is “Don’t know”, if the distance to the nearest neighbour is
greater than some pre-defined limit. (Also see Figure 7.2.3.)

crude_color_recognition :-
 create_filter(hue), % Program the ‘hue’ PCF
 grb, % Digitise image
 process; % Processing, optional, adjust to taste
 get_parameters(X), % Calculate measurement vector
 stored_vector(Y), % Consult database.
 euclidean_distance(X,Y,0,Z),
 % Z = Euclidean distance between X & Y
 Z < 100, % Is Z small enough? Adjust to taste.
 writenl('Object was recognised'),

 257

 % Object similar to stored pattern
 !. % Inhibit back-tracking

crude_color_recognition :-
 writenl('Object was NOT recognised'),
 % Message to user
 fail. % Force failure - object not recognised

% Stored vector, appropriate for recognising the 3M Company logo.
stored_vector([15, 6, 11, 32, 26]).

There are, of course, many possible ways to define get_parameters. This

program was presented as if there were only one stored_vector fact in the
database. Suppose there are more several / many. What effect does this have?
Figure 6.22(b) demonstrates the potential improvement in power of recognition
that this provides. The program simply makes use of back-tracking over the three
lines set in italics to perform a search for a stored reference vector (Y) that is
sufficiently similar to the measured vector (X) to satisfy the test Z <100, where Z
= D(X,Y). If any Y is discovered that satisfies this test, the vector X is recognised
as belonging to that class of objects represented by the set of stored reference
vectors. This is the basis of a method of decision making known as a Compound
Classifier. [BAT-74] So far, we have not indicated how the Y vectors can be
computed. One possible way is to measure the parameters [M1,M2,M3,M4,M5]
for each member of a carefully selected set of objects, forming what is known as a
training set. Another method is to store Y vectors progressively in the database
(i.e. asserting new stored_vector facts), subject to the constraint that a new fact is
only added, if it is sufficiently different from all of the vectors already stored.

In the following section, we describe a program which develops these ideas and
which permits several classes of object to be represented by vectors stored in the
database.

6.7.6 Learning Proportions of Colours in a Scene

The following program calculates eight parameters measuring the proportions
of the picture in eight colour bands, ignoring black and neutral. In this respect, it
is similar in operation to apple_logo. However, these numbers are then used in a
different way.

% Top level predicate for learning to recognise coloured objects
learning_coloured_objects :-
 yesno(['Do you want to initialise the colour recognition
 filter and database? If in doubt, select YES']),
 retractall(colour_vector(_,_)),
 % Initialise the database
 pseudo_colour(on), % Switch pseudo-colour ON
 create_filter(hue), % Program the ‘hue’ PCF
 learn_coloured_objects.
 % Learning colours.

learn_coloured_objects :-
 ctm, % Allow user to set up the camera and

 258

 % lighting
 yesno(['Click on YES when you are ready to continue, or
 select NO to finish']),
 grb, % Digitise image. We are using ‘hue’ PCF
 wri, % Save the image for use later
 thr(1,254), % Keep colours only - eliminate black &
 % neutral
 big_blobs(50), % Eliminate blobs with less than 50 pixels
 blb, % Fill any holes
 skw, % Eliminate edge artefacts
 cwp(N0), % Count total number of white points
 rea, % Read image saved earlier
 min, % Apply binary image as a mask
 wri, % Save masked image for use later
 thr(1,32), % Keep colours coded by int. in range [1,32]
 cwp(N1), % Count number of pixels (magenta colour band)
 swi, % Switch images
 thr(33,64), % Keep colours coded by int. in range [33,64]
 cwp(N2), % Count number of pixels (blue colour band)
 swi, % Switch images
 thr(65,96), % Keep colours coded by int. in range [65,96]
 cwp(N3),
 swi, % Switch images
 thr(97,128), % Keep colours coded by int. in range [97,128]
 cwp(N4), % Count number of pixels
 swi, % Switch images
 thr(129,160), % Keep colours coded by int. in range
 % [129,160]
 cwp(N5), % Count number of pixels
 swi, % Switch images
 thr(161,192), % Keep colours coded by int. in range
 % [161,192]
 cwp(N6), % Count number of pixels
 swi, % Switch images
 thr(193,224), % Keep colours coded by int. in range
 % [193,224]
 cwp(N7), % Count number of pixels
 swi, % Switch images
 thr(225,254), % Keep colours coded by int. in range
 % [225,254]
 cwp(N8), % Count number of pixels
 swi, % Switch images
 M1 is 100*N1 // N0, M2 is 100*N2 // N0,
 M3 is 100*N3 // N0, M4 is 100*N4 // N0,
 M5 is 100*N5 // N0, M6 is 100*N6 // N0,
 M7 is 100*N7 // N0, M8 is 100*N8 // N0,
 learn_coloured_objects1([M1,M2,M3,M4,M5,M6,M7,M8],Z),
 !,
 learn_coloured_objects(Q).

learn_coloured_objects(_).

learn_coloured_objects1(X,Z) :-
 colour_vector(A,B), % Consult database
 euclidean_distance(X,A,0,Z), % Euclidean distance X to A
 writeseqnl(['Distance from',B,'is',Z]),
 Z < 50, % Is A close enough to X?
 writeseqnl(['Object was recognised as',B]).
 % Yes! So tell user so

% Failed to recognise the object, so the user guides the program
% through learning
learn_coloured_objects1(X,Z) :-

 259

 yesno(['No known object has been seen. Do you want to expand
 the database?']),
 grb, % User sees what he is talking about
 prompt_read(['What do you want to call this object?'],Z),
 assert(colour_vector(X,Z)).
 % Add vector to database

 learn_coloured_objects1(_,unknown_object).

6.7.7 Superior Program for Learning Colour Proportions

The decision-making mechanism used in the above definition of
learning_coloured_objects is rather weak. The following program improves
matters by using the Nearest Neighbour decision rule. [BAT-74] The theoretical
basis is explained in Figure 6.22(c). (Also see Section 7.2.4.)

learning_coloured_objects :-
 yesno(['Do you want to initialise the colour recognition
 filter and database? If in doubt, select YES']),
 retractall(colour_vector(_,_)),
 % Initialise the database
 pseudo_colour(on), % Switch pseudo-colour ON
 create_filter(hue), % Program the “hue” PCF
 learning_coloured_objects .
 % Keep going

learning_coloured_objects :-
 ctm, % Live video
 yesno(['Do you want to perform (any more) learning?']),
 get_parameter_vector(X),
 % Calculate list of image descriptors,
 % X
 learn_coloured_objects1(X,_),
 % Apply learning
 !, % Included for efficient recursion
 learning_coloured_objects .
 % Repeat process

learning_coloured_objects. % User indicated learning finished

% Recognition and learning
learn_coloured_objects1(A,B) :-
 nnc(A,B,C), % Nearest neighbour classifier
 B < 100. % Is nearest neighbour distance small enough?

learn_coloured_objects1(X,Z) :-
 yesno(['No known object has been seen. Do you want to expand
 the database?']),
 grb, % Digitise image. Remind user about object
 prompt_read(['What do you want to call this object?'],Z),
 assert(colour_vector(X,Z)).
 % Store details of object in DB

 learn_coloured_objects1(_,unknown).
 % User decided not to expand database

% Nearest neighbour classifier. (Also see page 309.)
nnc(_,_,_) :-
 remember(nnc,[1000000,nothing]),

 260

 % Initialise database
 fail. % Force this clause to fail

nnc(X,_,_) :-
 remember(nnc,[1000000,nothing]),
 % Initialise database
 colour_vector(Y,Z), % Consult database for descriptor
 % vector
 euclidean_distance(X,Y,0,D),
 % D = Euclidean distance from X to Y
 recall(nnc,[E,_]), % E = smallest distance encountered so
 % far
 E > D, % Is D smaller than E?
 remember(nnc,[D,Z]), % It is, save new value & associated
 % vector
 fail. % Force backtracking This clause always
 % fails

% No more stored vectors to be considered. Return identity of
% nearest neighbour and distance
nnc(_,D,X) :-
 recall(nnc,[D,X]), % Get NN identity (X) and distance D
 !. % Not resatisfied on backtracking

The authors have successfully used this learning program to distinguish

between coloured printed packages. However, some difficulty was encountered,
when trying to use the program to distinguish certain cartons of this general type,
since they were found to contain large light brown regions (i.e. cake and pastry)
and only small areas of other colours (fruit / filling). The program could, of
course, be modified to look for known proportions of colours within certain
limited areas of the image, and hence ignore problem regions like this.

6.7.8 Teaching the PCF by Showing

Although we have used the hue PCF in Prolog+ programs, we have not yet
made use of the ability of the colour filter to learn. To understand why this is
important, consider the task of recognising apples from their colours. It is clearly
not sufficient to say that apples are always green. Nor are they always red.
Clearly, the unripe fruit are green and some ripe apples are too. However, the ripe
fruit can be red, brown (russets), yellow or yellow-green, depending upon the
variety. It is impossible to define accurately, in words, what is meant by the term
“apple coloured”. Apart from a set of photographs of apples, there is no known
object in existence anywhere that contains all of the possible colours that are
encompassed by this term and no others. In a situation such as this, we have to
rely upon (machine) learning. We therefore need a Prolog+ program that can
learn, by progressively updating the contents of the PCF LUT. Such a machine
should then be able to learn what the concept of “apple coloured” means.

 The program generates the colour scattergram of the first scene shown to the
camera. This is then stored and the second scene is analysed, in the same way.
The new and stored colour scattergrams are then merged (using max) and the
composite scattergram is stored. Subsequent views are treated in the same way;

 261

each new colour scattergram is merged with the previously stored composite
scattergram and the result is retained for the next learning cycle.

naive_colour_learning :-
 zer, % Create all black image
 wri, % Initialising intermediate results store
 naive_colour_learning1,
 % Auxiliary predicate
 rea, % Recover saved image
 blur, % Smooth composite colour scattergram-optional
 thr(8), % Adjust threshold parameter to taste
 create_filter. % Program the PCF

naive_colour_learning1 :-
 grab_3_images, % Digitise RGB colour separations
 colour_scattergram,
 % Generated from RGB separations
 rea, % Get composite scattergram image
 max, % Merge composite and new scattergrams
 wri. % Save enhanced composite colour scattergram
 yesno([‘Do you want to perform more learning’]),
 !,
 naive_colour_learning1.

naive_colour_learning1.

It should be noted that this extremely simple learning program does not have

any provision for synchronising the image acquisition and learning with external
events, nor for the user to confirm / cancel self-adaptation. Issues such as these are
clearly very important in practice but their inclusion here would merely obscure
the program structure. The algorithm implemented in naive_colour_learning can
only learn a single colour. It cannot, for example, learn to distinguish between
apples and bananas, whereas the following program can do so.

% Top level predicate for improved colour learning
learning_colour :-
 pseudo_colour(on), % Easier to work with pseudo-colour on
 ctm, % Live video, facilitates setting up
 % the camera
 ((yesno(['Set up the camera. Do you want to initialise the
 colour scattergram?']),
 zer, % Clear image
 keep); % Save image
 true), % Force success locally, even if
 % “yesno” failed
 repeat, % Beginning of loop
 learning_colour1, % Auxiliary predicate where learning is
 % done
 ctm, % Live video
 not(yesno(['Do you want to perform more learning?'])),
 ((yesno(['Do you want to use the colour generalisation
 procedure?']),
 generalise_colour_recognition);
 % Optional colour generalisation
 true). % Force success locally, even if
 % “yesno” failed

learning_colour :- % Finished, so finish off tidily
 pseudo_colour(off). % Switch pseudo-colour off

 262

% Second level predicate
learning_colour1 :-
 learning_colour2, % A third level predicate
 yesno(['A filter for a single colour has been created. Does
 it achieve a satisfactory discrimination?']),
 rea, % Recover image saved
 get_colour(X), % Ask user for name / identity no. of
 % pseudo-colour
 hil(1,255,X), % Shade blob to appropriate pseudo-
 % colour level
 fetch, % Get composite scattergram
 max, % Superimpose new scattergram on
 % composite
 create_filter, % Program the filter
 cpy, % Make copy of composite scattergram
 ctm, % Show the user result of new composite
 % filter
 yesno(['The single-colour filter has been added (temporarily)
 to the existing multi-colour filter Is this OK?']),
 swi, % Recover composite scattergram
 keep, % Save new composite scattergram
 !. % Avoid back-tracking

learning_colour1 :- !. % Force success & avoid back-tracking

% Third level predicate
learning_colour2 :-
 grab_3_images, % Digitise RGB colour separations
 colour_scattergram, % Generated from RGB separations
 blur, % Smoothing
 thr(32), % Cut off scattergram tails
 wri, % Save the binary scattergram
 create_filter, % Program the PCF
 ctm, % Live video
 !. % Avoid possibility of backtracking

% Find out what pseudo-colour to shade the blobs in the colour
% triangle
get_colour(X) :-
 findall(X,pseudo_colour_value(X,_),Q),
 % Find list of known colours
 scroll_menu(['Selecting pseudo-colour to be displayed. Choose
 just ONE item '], [other | Q],[other],Y),
 Y = [Z|_], % Select head if there is more than
 % item selected
 not(Z = other), % Abandon this clause if Z = other
 pseudo_colour_value(Z,X),
 % Convert from named colour to number
 !. % No back-tracking allowed

/* Getting ready for clause 3. Clause 2 simply draws a wedge
(displayed in pseudo_colour) & a series of vertical black lines to
indicate which pseudo-colours are already in use. */
get_colour(_) :-
 wgx, % Intensity wedge
 pseudo_colour_value(_,Z),
 % Consult database
 Z > 0, % Ignore black - this would cause an
 % error
 vpl(Z,1,Z,256,0), % Draw vertical black line
 fail. % Go through database. Then force
 % failure

 263

% This clause always follows clause 2. User selects pseudo-colour
% with the cursor
get_colour(X) :-
 pseudo_colour(on), % Switch pseudo-colour ON
 prompt_read(['Choose a pseudo-colour with the mouse. Avoid
 the vertical black lines. What do you want to call this
 colour?'],Y),
 cur(_,_,X), % Cursor. User selects colour
 assert(pseudo_colour_value(Y,X)),
 % Expand the database
 pseudo_colour(off), % Switch pseudo-colour OFF
 !.

% Database converting named colours to numbers
pseudo_colour_value(red,215). % Standard colour
pseudo_colour_value(green,115). % Standard colour
pseudo_colour_value(blue,47). % Standard colour
pseudo_colour_value(yellow,160). % Standard colour
pseudo_colour_value(cyan,95). % Standard colour
pseudo_colour_value(magenta,250). % Standard colour
pseudo_colour_value(black,0). % Standard colour
pseudo_colour_value(white,255). % Standard colour
pseudo_colour_value(violet,16). % Standard colour
pseudo_colour_value(orange,186). % Standard colour
pseudo_colour_value(vanilla_ice_cream,150). % Item added by user
pseudo_colour_value(cobolt,30). % Item added by user

6.7.9 Template Matching of Colour Images

There is a common requirement in industry to recognise scenes that are repeated
in time. Consider for example, the task of examining brightly coloured printed
cartons and containers, such as those used for food products, toiletries, stationery,
automobile parts, etc. The cartons are moved along, either by indexing, or by
continuous motion. In the latter case, it often happens that some timing signal can
be generated to indicate the arrival of the new carton and thereby allow image
digitisation to be synchronised to the production process. The essential point is
that, in either situation, the objects being inspected are always viewed in very
nearly the same orientation and position, lighting and magnification. Template
matching has traditionally been used in this type of situation, when monochrome
images are being processed.

The process of template matching is illustrated in Figure 6.23, and is clearly
very closely related to N-tuple filtering (Section 2.2.6) and Morphology (Sections
2.4 and 2.5). Since a PCF maps colour into intensity, it is possible to apply
template matching to the colour images, as well. The following program performs
a crude template match, using a stored image, which can be either monochrome,
or the output of a PCF.

template_match :-
 grb, % Digitise an image
 fetch, % Recover stored mask
 sub, % Subtract images
 avr(X), % Compute average intensity
 tolerance_band(P1,P2),
 % Consult database for tolerance parameters

 264

 X ≤ P2, % Check upper limit
 X ≥ P1. % Check lower limit

(a) (b)

(c) (d)

(e) (f)

Figure 6.23 Template matching (a) The template. This might consist of
several disjoint parts, or it might be a single connected shape, possibly
containing “holes”. (b) Pattern to be compared to the template. (c) By shifting
the [X,Y] position, the template can be made to fit the pattern exactly. (d)
When the pattern is made smaller or larger, the template will not fit exactly.
(e) When the pattern has a different aspect ratio, it will not fit the template
exactly. (f) When the pattern has been rotated, it will not fit the template
exactly .

If preferred, the maximum difference of intensity can be used as the criterion for

establishing a match:

template_match :-
 grb,
 fetch,
 sub,

 265

 gli(_,X), % Compute maximum intensity difference
 tolerance_band(P1,P2),
 X ≤ P2,
 X ≥ P1.

A third variant is to use the Qth percentile of the intensity difference:

template_match(Q) :-
 grb,
 fetch,
 sub,
 pct(Q,_), % Threshold at Q’th percentile of int.
 % difference
 min, % Select darkest Q% of the picture
 gli(_,X), % Find Q’th percentile intensity
 tolerance_band(P1,P2),
 X ≤ P2,
 X ≥ P1.

These three programs are all slightly different variations of the basic template
matching scheme. However, the following program is fundamentally different,
since it allows the image to be shifted and rotated before the matching is
attempted.

template_match(X,Y,Z) :-
 grb, % Digitise an image
 psh(X,Y), % Shift image by [X,Y]
 tur(Z), % Rotate image by Z degrees
 fetch, % Recover stored mask
 sub, % Subtract images
 avr(X), % Compute average intensity
 tolerance_band(P1,P2),
 % Consult database for tolerance parameters
 X ≤ P2, % Check upper limit
 X ≥ P1. % Check lower limit

Various methods can be used to calculate the shift and rotation parameters. In
many instance, of course, the centroid and principal axis (i.e. the axis of minimum
second moment) could be used to achieve this. Alternatively, certain key features
could be located first. To illustrate how colour can help to achieve this, consider
the task of calculating the position and orientation of a red picture playing card.
(See Image 6.6.)

normalise_card :-
 grb, % Digitise image. “hue” PCF programmed
 wri, % Save image for use later
 thr(255), % Select white (i.e. neutral) parts of the
 % image
 biggest, % Ignore any smaller bits
 blb, % Fill any holes
 cgr(P,Q), % Centroid
 rea, % Recover image stored earlier
 isolate(red), % Equivalent to “thr(235,254)”
 biggest, % Isolate red suit symbol at corner of card
 cwp(U), % Count white points
 swi, % Switch images
 V is 0.75*U, % 75% of area of red suit symbol

 266

 big_blobs(V), % Keeps only 2 suit symbols at corners of
 % card
 condense, % Reduce them to single points (centroids)
 cwp(N), % Count white points
 !, % Avoid backtracking if next goal fails
 N is 2, % Check that there are exactly two points
 get_points([[X1,Y1],[X2,Y2] |_]),
 % Get co-ordinates of the centroids
 angle(X1,Y1,X2,Y2,R),
 % Find angle of line joining [X1,Y1] & [X2,Y2]
 rea, % Read image saved earlier again
 P1 is 128 - P, % Calculate shift along X axis
 Q1 is 128 - Q, % Calculate shift along Y axis
 psh(P1,Q1), % Shift image by [P1,Q1]
 R1 is -R, % Inverse of orientation
 tur(R1,128,128),
 % Rotate by -R degrees
 wri, % Save image for use again later
 thr(1), % Keep everything but black
 biggest, % Make sure there is only one blob
 blb, % Fill any holes in it
 dim(A,B,C,D), % Find max/min X and Y values
 A1 is -A +1, % Calculate X shift parameter
 B1 is -C + 1, % Calculate Y shift parameter
 C1 is 100*(1- (B - A)/256),
 % Rescaling parameter for X axis
 D1 is 100*(1- (D - C)/256),
 % Rescaling parameter for Y axis
 rea, % Recover image saved earlier
 min, % Recover image from disc
 psh(A1,B1), % Shift it by [A1,B1]
 rescale_axes(C1,D1).
 % Rescale [X, Y] axes by [C1, D1]

6.7.10 Using Colour for Object Orientation

The program listed below was designed to recognise the VISA logo, used on
credit cards. This consists of a broad blue stripe above the word “VISA”, which is
printed in blue, with an orange stripe below it. There may well be other
information in these and other colours on a credit card. In its present form, the
predicate visa_card uses the ubiquitous hue PCF.

% A naive program for recognising the VISA logo
visa_card :-
 grb, % Digitise an image. “hue’ PCF is being used
 isolate(blue), % Isolate blue regions, discard all others
 wri, % Save image showing blue regions
 swi, % Revert to PCF output
 isolate(orange),
 % Isolate orange regions, discard all others
 hin, % Halve intensities
 rea, % Recover image showing blue regions
 max, % Superimpose images
 wri, % Save image for use later
 thr(120,130), % Find orange regions again
 biggest, % Process biggest orange blob only
 cwp(N), % Count points in orange stripe
 lmi(X,Y,Z), % Find its orientation
 X1 is 128 - X, % Calculate X shift parameter

 267

 Y1 is 128 - Y, % Calculate Y shift parameter
 Z1 is -Z, % Calculate rotation parameter
 rea, % Read image saved earlier
 psh(X1,Y1), % Shift it …
 tur(Z1), % …and rotate it
 wri, % Save image for use later
 N1 is 0.9*N, % Lower limit: orange stripe size - 10%
 N2 is 1.1*N, % Upper limit: orange stripe size + 10%
 thr(1), % Select all non-black points
 big_blobs(N1), % Keep blobs with ≥ N1 pixels
 big_blobs(N2), % Keep blobs with ≤ N2 pixels
 xor, % Blue stripe same nominal area as orange
 % stripe
 chu, % Convex hull around blue and orange stripes
 blb, % Solid figure enclosing blue & orange stripes
 rea, % Recover image saved earlier
 min, % Retains blue & orange stripes & word VISA
 rescale, % Rescale so that the logo fills the image
 get_parameters(L1),
 % Calculate parameter list. Example given
 % below
 consult_db(L2),
 % Consult database for reference vector
 euclidean_distance(L1, L2,0,E),
 % E is Euclidean distance between L1 & L2
 writeseqnl(['Euclidean distance =',E]),
 % Message for user
 ((E < 5000, % Small difference between L1 & L2
 writenl('A VISA card was found'));
 % Announce logo found
 writenl('No VISA card was found')).
 % Announce logo was NOT found

% Compute the average intensity in each 64*64 square in the image.
get_parameters(_) :-
 remember(par_list,[]),
 % Initialise list of feature values
 member(X,[1,65,129,161,193]), % Select a value for X
 member(Y,[1,65,129,161,193]), % Select a value for Y
 swc(X,Y,32,32),
 % Place 32*32 processing window at [X,Y]
 recall(par_list,L), % Get intermediate results list
 avr(Z), % Calculate average intensity
 remember(par_list,[Z|L]),
 % Save enlarged intermediate results list
 fail. % Step through image

get_parameters(L) :-
 recall(par_list,L), % Get result list
 swc(1, 1, 256, 256).
 % Reset processing window, 256*256, at [1,1]

In this form, visa_card does not demonstrate good Prolog+ programming style,
since it is a simple linear list of operations to be performed. The following version
is probably easier to understand.

visa_card :-
 grb, % Digitise image, PCF creates 3-level image
 wri, % Save image for use later
 thr(128,128), % Keep orange pixels; ignore blue for now
 biggest, % Keep orange stripe in logo only.
 cwp(N), % Area of orange stripe in logo is N

 268

 normalisation_parameters(X,Y,Z),
 % Find centroid [X,Y] & orientation, Z
 rea, % Recover “raw” image, saved earlier

 size_selector(N),
 % Keeps blobs with areas = N ± 0.1*N pixels
 solid_convex_hull,
 % Draw solid figure enclosing logo stripes
 rea, % Recover image saved earlier
 min, % Apply binary image as mask to keep only 2
 % stripes and word “VISA” in logo
 translate(X,Y,Z),
 % Normalise position and orientation of logo
 rescale, % Rescale so that the logo fills the image
 recognise(visa_card).
 % Possible to use template matching here

The first point to note here is that we have assumed that the PCF has been

specially pre-programmed to recognise only orange (mapped to level 128) and
blue (level 255). This simple change makes the remainder of the program rather
easier to understand. Further simplifications are achieved through the use of three
perfectly standard predicates: normalisation_parameters, translate and rescale.
Only recognise is specific to this application. Its function is similar to that
embodied in template_match.

6.7.11 Approximating an Image by a Set of Overlapping Discs

Suppose that the colour scattergram of a certain scene has been calculated and
that we need to find some suitable representation of it, so that, at some time in the
future, we can reconstruct it. (It will be assumed that we do not have sufficient
storage space to retain the scattergram in the form of an image.) It is necessary
therefore to reduce the scattergram to some parametric form. One possible method
of doing this is to use a set of overlapping discs. (Image 6.7) The parametric
representation of the scattergram is then in the form of a list of lists, having the
following structure: [[X1,Y1,Z1], [X2,Y2,Z2], [X3,Y3,Z3], …, [Xn,Yn,Zn]],
where [Xi, Yi] denotes the centre of a white circular disc of radius Zi, i = 1,…,n.

The program approximate_colour_scattergram calculates these parameters and
operates according to the procedure explained below.

(i) A scattergram in binary form is first created, by thesholding the colour
scattergram at some suitable level. (The user might need to adjust the threshold
parameter experimentally, to obtain the best results. This is usually quite
straightforward.)
(ii) Initialise the parameter list. The initial parameter list could simply be the
empty list, []. Alternatively, we may wish to extend an existing parameter list,
for some reason.
(iii) The grass-fire transform of the binary scattergram image is obtained, using
the command gft. (See Section 2.3, Figure 2.10)
(iv) The brightest point in the image is then found. Suppose that its intensity is
Z and its position is [X,Y].

 269

(v) Superimpose a black disc, centred at [X,Y] and with radius Z, onto the
image.
(vi) Append [X,Y,Z] to the parameter list. Notice that [X,Y,Z] defines the disc
completely.
(vii) Perform steps (iv) to (vi), until the brightest pixel in the image has an
intensity less than some pre-defined limit. (This has been arbitrarily set to 3 in
the program listed below.)

/* Approximate white regions in a binary image by a set of discs,
which may but need not overlap. Big circles are put into place
initially, followed by progressively smaller ones. The grass-fire
transform is used to find out where large circles can be placed. */
approximate_colour_scattergram :-
 yesno(['Do you want to retain any previously stored details
 about colour histogram approximations?']),
 cover_image(A),
 % Cover white region with black discs
 asserta(disc_parameters(A)).
 % Save position & size parameters in database

approximate_colour_scattergram :-
 retractall(disc_parameters(_)),
 % Clear the database
 cover_image(A),
 % Cover white region with black discs
 asserta(disc_parameters(A)).
 % Save position & size parameters in database

/* Perform the approximation. Large discs will be fitted first. A
is the list of disc position and size parameters. */
cover_image(A) :-
 gft, % Grass fire transform.
 wri, % Save image for use later
 reduce([],A). % Approx. white regions with overlapping discs

/* This predicate is the one that does the hard work. It
progressively “nibbles away” the white regions, by superimposing
black discs onto it. */
reduce(A,B) :-
 rea, % Get image stored earlier
 gli(_,Z), % Find maximum intensity
 Z > 3, % Ignore very small discs. Adjust to taste
 thr(Z), % Threshold at maximum intensity
 top_left(X,Y), % Get address of top-left most white pixel
 swi, % Revert to grey-scale image
 draw_disc(X,Y,Z,0),
 % Draw black disc at [X,Y] with radius Z
 wri, % Save image
 reduce([[X,Y,Z]|A],B).
 % Disc parameters added to list. Continue

reduce(A,A). % End recursion; no more big discs can be
 % added

% Sample of the database where disc parameters are stored.
disc_parameters([[100,100,25], [110,125,30], [95,126,16]]).

Given a parameter list in the same format, rebuild_colour_scattergram allows
us to reconstruct the scattergram. The program allows each blob (formed by a set

 270

of overlapping circles) in the reconstructed image to be assigned a different
intensity and then programs the PCF.

% Rebuild the colour scattergram by drawing a set of overlapping
% discs
rebuild_colour_scattergram :-
 disc_parameters(A),
 % Get disc parameter list from database
 zer, % Create black image to initialise the process
 draw_discs(A), % Draw discs with parameters defined by A
 yesno(['Do you want to program the colour filter?']),
 label_blobs, % Shade blobs
 3•lnb, % Optional: may make PCF more robust
 create_filter. % Program the PCF from the current image

rebuild_colour_scattergram.
 % Force this predicate to succeed

/* Drawing a set of white discs, which may but need not overlap.
The position and size parameters are defined by the “input” list
[A|B]. */
draw_discs([]). % Terminate recursion, no more discs to draw

draw_discs([A|B]) :-
 A = [X,Y,Z], % Decompose A into three components
 draw_disc(X,Y,Z,255),
 % Draw disc at [X,Y], radius Z, intensity 255
 !, % Included for the sake of efficiency of
 % recursion
 draw_discs(B). % Repeat, draw all discs defined in database

6.7.12 Interpreting Resistor and Capacitor Colour Codes

In developing a Prolog+ program capable of interpreting resistor and capacitor
colour codes, (Figure 6.24) there are several sub-problems that must be solved.

(a) Obtaining a good image. Resistors are small and shiny. Solder joints can
cause serious glinting problems. This problem can be solved by paying careful
attention to the optics and lighting.
(b) Recognising resistors. In the general case, this is may present considerable
difficulties, since resistors and capacitors are highly variable in appearance. The
PCB also forms a highly variable and complex background. However, a great
deal of help can be obtained by using the fact, that in most cases, the layout of
the PCB is predictable. In these instances, this sub-problem reduces to a trivial
level.
(c) Deciding the component polarity. (i.e. which way round the colour code is to
be read.) There only two alternatives for resistors and only one option for
capacitors like that sketched in Figure 6.24. The spacing of the colour bands can
be of assistance in this decision.
(d) Identifying the colour code bands. (This and step (e) might be merged.) The
resistor body may be coloured and must be ignored. In some cases, when the
colour of the resistor body is known beforehand, this task becomes trivially
easy.

 271

(e) Recognising colours in the code. This is the task for which we might well
use a colour filter, although there may be some difficulties. This arises because
some of the code colours are ill suited for automatic recognition using a PCF.
Brown, grey, silver and gold are especially difficult. It would be possible to
select a much better set of colours, as far as the colour recognition system is
concerned, but of course, the whole electronics industry would be reluctant to
adopt a new standard simply for our benefit !
(f) Interpreting the code; calculating the resistance/capacitance value, decoding
the tolerance and working voltage.

The general unconstrained task of reading resistor/capacitor colour codes

clearly requires a considerable amount of program intelligence. Since it is not our
intention here to try to describe a complete solution for this challenging problem,
let is suffice to say that the combination of colour recognition and intelligent
image interpretation that is embodied in Prolog+ is exactly what is needed. We
conclude by presenting a simple little program that performs the last mentioned
task, (f), of interpreting the resistor colour code. resistor is the top level predicate
for calculating numeric values, for resistors with only three colour bands. (i.e.
tolerance = ± 20 %). The goal resistor(brown, black, green, Z) will instantiate Z to
the resistance, expressed in Kilo-ohms (KΩ). If the computed resistance is not a
preferred value, resistor will fail.

resistor(A,B,C,D) :-
 value1(A,A1), % Interpret Band 1 colour as a number
 value1(B,B1), % Interpret Band 2 colour as a number
 value3(C,C1), % Interpret Band 3 colour as a number
 !, % Force failure; not preferred value
 Z is 10*A1 + B1, % Combine Bands 1 and 2
 % List of preferred values follows
 on(Z,[10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,
 56,62,68,75,82,91]),
 D is Z*C1. % Compute final value

% Interpreting Bands 1 and 2 as numbers
value1(black,0). value1(brown,1). value1(red,2). value1(orange,3).
value1(yellow,4). value1(green,5). value1(blue,6).
value1(violet,7). value1(grey,8). value1(white,9).

% Interpreting Band 3 as a number
value3(silver, 0.00001). value3(gold, 0.0001). value3(black,0.001).
value3(brown,0.01). value3(red,0.1). value3(orange,1).
value3(yellow,10). value3(green,100). value3(blue,1000).

The reason for including this program here is to emphasise the general point

that the interpretation of colour images may well require a high level of intelligent
activity on the part of the program. In other words, the mere recognition of
colours, or any other features in an image, is insufficient to meet the needs of
many inspection and other machine vision tasks.

 272

Band 1

Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Grey
White

1
2
3
4
5
6
7
8
9

Band 2

Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Grey
White

0
1
2
3
4
5
6
7
8
9

Tolerance band,
red, gold or silver,

not present on
±20% resistors

Resistors

Band 3

Silver
Gold
Black
Brown
Red
Orange
Yellow
Green
Blue

0.01
0.1
1
10
100
1000
10,000
100,000
1,000,000

(Ohms / pF)
MultiplierFirst

digit
Second

digit

Tolerance band,
white or black

Working voltage,
red or yellow

Capacitors

Figure 6.24 Resistor and capacitor colour codes.

6.8 Discussion and Conclusions
The results of a series of varied experiments involving colour recognition are

presented in the coloured plates. Notes describing these applications are given in
the legends. When working on colour recognition, it is important that we use a
stable light source. (Image 6.9) There can be a distinct shift of the colour
perceived by a colour recognition system, if the light source is changed from one
type of lamp to another.

Evidence of the importance that we place on colour is to be found in the fact
that a large proportion of manufactured goods are coloured. Despite this,
relatively little work to date in machine vision has concentrated on the
development of industrial inspection systems capable of detecting colour. There
exists a new and exciting technique for recognising colours, based upon the
programmable colour filter. The PCF is simple to implement and fast in operation
and it can perform any task that is possible using the RGB, opponent process,
YIQ and HSI representations of colour. It is capable of recognising almost all the
“named” colours that are familiar to us in everyday life. Moreover, it can learn

 273

new colours, such as “banana yellow”, “strawberry red”, “cucumber green”, etc.
A number of programs have been presented that make use of colour recognition in
a variety of ways, including self-learning. However, it is the use of colour in
declarative programming that is most exciting.

Let us perform a simple thought experiment. Suppose that we want you find a
certain object. Let us call it XXXX. (There are no prizes for guessing what class
of objects we have in mind) We might describe XXXX in the following way:

1. An XXXX is yellow-green, yellow, or yellow with brown spots.
2. An XXXX is between 60 and 300 mm long.
3. An XXXX is between 15 and 60 mm in width.
4. An XXXX is curved in a simple arc.

Your task now is to find an XXXX. Look around the room where you are

sitting. Can you see an XXXX? You might find an XXXX in your lunch box ! Of
course, there are many objects in the universe that conform to rules 2, 3 and 4. A
small cucumber does, for example. However, there are far fewer objects in
existence that conform to all four recognition rules. By adding information about
the colour of an XXXX, we are able to be very much more specific. It is very
unlikely that, unless you have a banana for lunch today, or you are reading this
book in the kitchen, that you will find an XXXX. We must not confuse ourselves
by believing that XXXX and banana are synonymous. Our rules are perfect for
recognising XXXXs but are prone to producing false positive responses for
bananas. By using colour, we have simply made the number of false positive
responses rather smaller.

In order to emphasise the potential value of colour recognition in declarative
programming, consider Figure 6.25. Suppose that a “general purpose” machine
vision system is to be built, to monitor the manufacture and packaging of
household and industrial chemicals, such as cleaning fluid, polish, detergent, etc.
A new product line is about to be introduced and will be distributed in bright blue
plastic containers, with red tops. (See Figure 6.25) Colours on products like these
are carefully chosen, both to project the corporate image and to provide a warning
that the fluid in the bottles is corrosive. The task before us is to reprogram the
supposedly “general purpose” vision system, so that it will recognise the new
bottles and distinguish them from other types and from malformed bottles. In
many cases like this, we would like to avoid reprogramming the vision system
using low-level computer languages, such as C, Pascal, or even Prolog+. Nor do
we want to have the task of programming a PCF on the factory floor, since this is
a fairly complicated procedure, requiring skilled labour. We simply want to be
able to use low-skill labour, communicating with the machine in a way that is both
natural and straightforward. In Chapter 4 we discussed the rôle of natural
language for programming machine vision systems. The point to be made here is
simply that it is legitimate to include terms relating to everyday colours in the
vocabulary of the language, since the means exists for recognising a wide range of
tones. A description of the bottle portrayed in Figure 6.25 in constrained English
might be something like this:

 274

1. A is a red rectangle
2. A is at the top of the image..
3. A has area Z4 ±10% and height Y4 ± 5%.
4. B is a blue rectangle
5. B has area Z3 ±10% and height Y3± 5%.
6. B is below A.
7. C is mixed_colour
8. C has area Z2 and height Y2.
9. C is below D. etc.

For many purposes, this provides an adequate basis for recognition. The use of

colour makes the definition much more specific than it would be with only
monochrome image processing at our disposal.

Cap:
red,
area = Z4, height = Y4
Bottle shoulders:
blue,
area = Z3, height = Y3
Label:
Mixed red, yellow and black,
area = Z2, height = Y2

Bottle base:
blue,
area = Z1, height = Y1

Figure 6.25 Using colour in declarative programming. The object represented
diagrammatically here is a plastic bottle containing household bleach.

7

Applications of Intelligent Vision

7.1 Recognition of Printed Patterns
Optical character recognition (OCR) is concerned with the reading of printed

text by machine. The subject was first studied seriously in the 1960s, when it was
regarded as a very expensive technology. OCR is now common-place; indeed, it is
possible to buy a reliable software package that will read laser-quality printed text,
for a few hundred dollars.

In this case study, we shall consider the recognition of printed patterns but not
conventional text. The programs that we shall describe are capable of
distinguishing printed letters and we shall discuss this particular topic. It should
be understood, however, that our primary concern is not to re-invent OCR but to
demonstrate the power of Prolog+. Our research in this area has been motivated
by the observation that an industrial machine vision system is sometimes required
to recognise members of just a few well-formed printed patterns. Figure 7.1.1
illustrates several tasks typical of this type and we shall discuss these in turn.

7.1.1 Non-picture Playing Cards

Recognising the playing card suit symbols is straightforward; we simply count
the number of bays (i.e. blobs in the convex deficiency). That is, we construct the
convex hull (Prolog+ operator chu), then apply the blob-fill operator (blb),
followed by the exclusive OR operator (xor). Finally, we count the blobs. If there
are four blobs, the card belongs to the “club” suit (♣). If there are 2, the card is a
“spade” (♠). If there is only one, the card is a “heart” (♥) and if there are none,
the card is a “diamond” (x). Any other value indicates an error. Here is a Prolog+
program for recognising the suit and value of a non-picture playing card.

playing_card :-
 loa, enc, wri(temp1), thr, neg, big, wri(temp2), cwp(A),
 B is A//2, swi, ndo, hgi(C), list_elements_greater(C,B,D),
 length(D,E), V is E - 1, rea(temp2), cvd, cbl(F), suit(F,G),
 rea(temp1), writeseqnl(['The card is the',V,'of', G]).

suit(4,clubs).

 276

suit(2,spades).
suit(1,hearts).
suit(0,diamonds).
suit(_, 'unknown suit').

The task of recognising the picture cards will be solved by recognising the

letters A, J, Q and K, and is discussed in Section 7.1.4.

♣♠♥♦

C D F 8
☺./

A J Q K

Figure 7.1.1 Four typical discrimination tasks,. Each requires choosing
among a small number of well-defined printed patterns.

7.1.2 “Stars”

The “stars” in Figure 7.1.1 can be distinguished almost as easily, as the suit of a
playing card. The following table shows how this can be achieved.

Character No. of bays No. of lakes

C 5 5

D 8 9

F 6 6

8 8 8

Notice that this time, however, we must use another measure, the number of

lakes. The program can be made more robust and we can, of course, distinguish
more classes of patterns, if we derive more measurements simultaneously.

 277

7.1.3 “Smiley Faces”

Although, the “smiley faces” cannot be distinguished quite so easily, the task is
nevertheless quite straightforward. Here is the program:

face(A) :-
 pre_process_face, % Convert to binary form & save image on disc
 test_face, % Is this a valid face image ?
 find_smile(A). % Find facial expression

face('Face not found'). % Image was not a face

pre_process_face :-
 grb, % Digitise image
 enc, % Enhance contrast
 thr, % Threshold
 neg, % Negate image
 blb, % Fill lakes
 xor, % Exclusive OR - to isolate “lakes”
 wri, % Save image for use later
 blb, % Fill lakes
 xor, % Exclusive OR - to isolate “lakes”
 biggest, % Isolate largest blob i.e. mouth
 yxt, % Interchange X and Y axes
 keep. % keep image for further analysis

% Is the image likely to be a face ?
test_face :-
 rea, % Read image saved earlier
 blb, % Fill lakes
 shape_factor(A), % Calculate (Area/Perimeter^2)
 A > 0.8, % Is shape factor large enough for
 % approximate circle?
 rea, % Read image again
 eul(B), % Euler number
 B is -2. % Face has one blob and three lakes

% Calculate the shape factor
shape_factor(C) :-
 cwp(A), % Area
 perimeter(B), % Perimeter
 pi(Pi), % Pi = 3.14…
 C is (4*Pi*A)/(B*B). % 4*pi*Area/Perimeter

% Find expression of mouth
find_smile(happy) :- % Mouth turned up - happy
 fetch, % Recover image saved earlier
 rox, % Row maximum
 chu, % Convex hull
 max, % Logical OR
 blb, % Fill lakes
 xor, % Exclusive OR
 cwp(N), % Area
 N ≥ 100. % Is mouth turned up enough?

% Same as previous clause, except for line 2
find_smile(sad) :-
 fetch,
 lrt, % Invert X-axis
 rox, chu, max, blb,
 xor, cwp(N),

 278

 writenl(N),
 N ≥ 100.

find_smile(neutral). % Mouth is neither turned up nor down

While the above program was originally intended for recognising the printed

faces in Figure 7.1.1, it is robust enough to cope with hand-drawn faces, provided
the outline is a closed contour. (Figure 7.1.2) The reader may like to ponder about
the changes needed to cope with drawings where this condition is not met.

Figure 7.1.2 Four hand-drawn face images.

7.1.4 Alphanumeric Characters

The task of distinguishing between the following sans serif characters (Arial
font) can be easily achieved using the numbers of lakes, bays, skeleton limb-ends
and joints.

A, J, Q, K

For such a simple discrimination task, a person can easily write down the

feature values, without the use of an image processing system, and then verify that
they are unique:

Character [Lakes, Bays, Limb-ends, Joints]

A [1,1,2,2]
J [0,1,2,0]
Q [1,2,2,1]
K [0,3,4,2]

For more complex recognition tasks, requiring the discrimination of more

character classes, it may well be necessary to employ more measurements. Table
7.1.1 lists the values of 8 parameters which can distinguish the numerals 0 - 9 in
Times Roman font. The task of choosing a feature set which can distinguish the

 279

26 lower-case, 26 upper-case, numerals 0 - 9, punctuation and special symbols (+,
£, $, @, &, *, ?, /, etc.) is difficult and is almost certainly beyond the capability of
a person working unaided. The situation is made worse by the fact that some
patterns produce measurement vectors which are unstable. For example, the
number of bays may change, depending upon noise.

Pattern Measurements
Times Roman

Font 1 2 3 4 5 6 7 8

0 0 1 0 X X X X X
1 1 0 2 X X X X 1
2 1 0 2 1 X X X 2
3 1 0 2 0 2 3 3 3
4 0 1 3 X X X X X
5 1 0 2 0 X X X 2
6 0 1 1 0 X X X X
7 1 0 1 X 1 2 2 X
8 X 2 X X X X X X
9 0 1 1 1 X X X X

10 2 1 2 X X 1 X 1
11 2 0 3 X X 0 X 1
12 2 0 3 1 X 2 X 1

Table 7.1.1 Recognising the digits 0 - 9 and the compound patterns ‘10’ -
‘12’, in Times Roman font. X indicates “Don’t Care”. Measurements 1 - 8
are defined as follows: 1. Euler number. 2. Number of holes (lakes). 3.
Number of indentations (bays). 4. Equal to 1 if the largest blob in the convex
deficiency (i.e. bay or lake) is above the second largest. Equal to 0 otherwise.
5. The number of times the vertical line L1 intersects the character. (See
Figure 7.1.3) 6. The number of times the vertical line L2 intersects the
character. (See Figure 7.1.3) 7. The number of times the vertical line L3
intersects the character. (See Figure 7.1.3) 8. The number of blobs generated
by the following sequence: rox, xor, skw, exw.

When we try to accommodate a mixture of fonts, the situation quickly becomes

quite unmanageable. This is why we need to employ learning techniques. Before
we consider this topic in detail, here is a Prolog+ program which can discriminate
the numerals 0 - 9, in Times Roman font. (See Figure 7.1.3.)

Program
% Top level predicate: recognising well formed printed alpha-
% numeric characters.
recognise_alpha_numeric(X) :-
 alpha_numeric_features(A,B,C,D,E,F,G,H),
 stored_features(A,B,C,D,E,F,G,H,Q),

 280

 writeseqnl([[A,B,C,D,E,F,G,H], ' was classified as ',X]).

% Database: Times Roman font. Other fonts may not be recognised
% correctly
stored_features(0,1,0,_,_,_,_,_,zero).
stored_features(1,0,2,_,_,_,_,1,one).
stored_features(1,0,2, 1, _,_,_,2,two).
stored_features(1, 0, 2, 0, 2, 3, 3,3,three).
stored_features(0, 1, 3, _,_,_,_,_,four).
stored_features(1, 0,2, 0, _,_,_,2,five).
stored_features(0, 1, 1, 0, _,_,_,_,six).
stored_features(1, 0, 1, _, 1, 2, 2,_,seven).
stored_features(_,2,_,_,_,_,_,_,eight).
 % Only one feature needed to find ‘8’
stored_features(0, 1, 1, 1, _,_,_,_,nine).
stored_features(_,_,_,_,_,_,_,_,not_known).
 % Character is not recognised

% Eight “logical” shape features. (i.e. these must match the stored
% values exactly)
alpha_numeric_features(A,B,C,D,E,F,G,H) :-
 wri, % Save image for future reference
 eul(A), % Measurement 1: Euler number
 holes, % Isolate lakes (holes)
 cbl(B), % Measurement 2. Number of lakes (holes)
 rea, % Get stored image back again
 bays, % Isolate bays (indentations)
 cbl(C), % Measurement 3. Number of bays
 rea, % Get stored image back again
 biggest_bay_top(D), % Measurement 4: Biggest bay above/below 2nd
 % largest
 rea, % Get stored image back again
 rox, % Row maximum - form “shadow”
 xor, % Exclusive OR - by shadow by removing
 % original figure
 skw, % Shrink white to eliminate any very small
 % regions present
 cbl(H), % Measurement 8: Number of blobs in “shadow”
 rea, % Get stored image back again
 vertical_scan_count(E,F,G). % Measurements 5-7. Vertical slicing

% Count number of times 3 equally spaced vertical slices cut the
% figure
vertical_scan_count(P,Q,R) :-
 normalise, % Normalise position in centre of image
 wri, % Store image
 dim(A,B,_,_), % Minimum and maximum X and Y
 C is (B - A)//4,
 E is 128 - C, F is 128 + C,
 zer, % Black image
 vpl(E,1,E,255,64), % Draw vertical line left of centre of image
 vpl(D,1,D,255,128), % Draw vertical line through centre of image
 vpl(F,1,F,255,192), % Draw vertical line right of centre of image
 rea, % Read normalised image
 min, % Mask figure and 3 lines
 wri, thr(64,64),
 count(blobs,P), % No. of chords formed by left-hand vertical
 % line
 rea, thr(128,128),
 count(blobs,Q), % No. of chords formed by central vertical
 % line
 rea, thr(192,192),
 ccount(blobs,R). % No. of chords formed by right-hand vertical
 % line

 281

% Is the biggest blob in the convex deficiency above below the
% second largest. (Similar to predicate bbt.)
biggest_bay_top(0) :-
 chu, % Convex hull
 max, % Maximum - superimpose convex hull on figure
 blb, % Fill holes
 xor, % Exclusive OR: isolate lakes and bays and lakes
 biggest, % Largest blob
 cgr(_,Y1), % Find its vertical position
 xor, % Remove biggest blob in convex deficiency
 biggest, % Gets second largest blob in convex deficiency
 cgr(_,Y2) % Find its vertical position
 (Y1 > Y2, A is 0); A is 1). % Fix “output” value

Measurement 4
(value 0 for this example)

Measurements 5 - 7
(Scan lines L1-L3 intersect
the numeral (3,3,3) times)

Largest bay is below
second largest bay

Second
largest bay

Measurement 8
("Shadow" produces 3 blobs)

3 areas created by shadow

Measurements 2 & 3
(Lakes & Bays)

L1 L2 L3

Lake

Bay

Figure 7.1.3 Measurements 2 - 8 for recognising the digits 0 - 9 and the
compound patterns ‘10’ - ‘12’, in Times Roman font.

Comments

An observant reader will have spotted the fact that the set of measurements
created by alpha_numeric_features is redundant; the number of lakes is equal to
(1 - E), where E is the Euler number. However, there are some occasions when it
is useful to know the Euler number. Two lower-case letters, i and j consist of

 282

more than one component and the Euler number provides an easy way to
distinguish these letters from 1 and l. In its present form, however, the program
could not distinguish i from j, nor 1 from l. The inclusion of the Euler number
also enables the program to cope with compound patterns, such as 10, 11 and 12.

Logical and Analogue Shape Measurements

The predicate recognise_alpha_numeric suffers from a serious problem: the
measured and stored feature lists must match one another perfectly. Hence, the set
of features generated by alpha_numeric_features must be exactly the same as one
of the lists held in stored_features. For this reason, the predicate
recognise_alpha_numeric behaves in a logical manner, since it requires an exact
match between measured and stored parameter values. (Of course, “don’t care”
conditions are allowed under this scheme.)

In Figure 7.1.4, three analogue measurements are defined for describing the
alpha-numeric pattern ‘5W’. By the term analogue, we mean that the
measurements are continuously variable and a perfect match with stored values
may not be possible

Recognition Criteria (logical)

One lake
Five bays
Two limb ends

Recognition Criteria (analogue)

Aspect ratio (width : height)
Ratios of areas of lakes (e.g. biggest : second largest)
Ratio of area of convex hull : area of original figure

Bays

Lake

Figure 7.1.4 Logical and analogue measurements for describing the
compound pattern ‘5W’. Notice that this consists of a singe blob.

7.2 Manipulation of Planar Objects

 283

Our objective in what follows is to pick up only those flat laminate objects that
are known to the vision system, using a visually guided robot. “Unknown” objects
are to be located and the user warned that moving them would be unsafe. It is
possible to use any robot which is able to manipulate objects lying on a plane
table. We shall explain how the Flexible Inspection Cell (FIC) can be used for this
purpose. However, a SCARA or gantry robot, fitted with an overhead camera
could be used instead. There are three phases in the operation of such a system:

(a) Calibration. The automatic calibration of a robot vision system which uses
an overhead camera has already been explained in detail (Section 5.7) and so
will not be discussed again here.
(b) Learning. The vision system learns typical values for a set of size and shape
parameters characterising each class of objects that is to be moved by the robot.
(c) Recognition. The vision system guides the robot a it picks up objects that are
similar to those encountered during the learning phase.

7.2.1 Assumptions

As usual, a series of assumptions is imposed, to make the problem tractable.

(i) The Flexible Inspection Cell (Section 5.5) will be used to demonstrate the
ideas outlined below. Remember that the FIC incorporates an (X,Y,θ)-table, a
pneumatic pick-and-place arm, computer-controlled lighting and an overhead
camera, which looks vertically downwards, onto the table top.
(ii) The top surface of the (X,Y,θ)-table is matt black.
(iii) A set of thin, nominally white laminate objects are placed haphazardly on
the table top.
(iv) The objects lying on the table top do not touch, or overlap.
(v) During the learning phase, a person is able to name each object that the
system sees.
(vi) During the recognition phase, the system is expected to work
autonomously, without any human intervention. However, the user is to be
informed about unknown objects and those that are considered to be unsafe to
handle using the robot.
(vii) Objects that are similar to those seen during training are picked up by the
robot.
(viii) Objects that are unlike any seen during training are identified but are not
picked up by the robot.
(ix) Some objects would be unsafe to lift because the suction gripper is too large
and overlaps their sides. Such objects are to be identified but not lifted by the
robot.
(x) The FIC has already been calibrated. (See Section 5.7.1.)
(xi) A simple goal of the form pick(X,Y,Theta,Q) is used to order the FIC to pick
up an object of type Q, located at [X,Y] and with orientation Theta. It is
assumed that the label Q indicates where the object is to be placed. Thus, the
system is able to sort objects, placing them in bins according to their type.

 284

(xii) To minimise errors when calculating the positions of an object on the
table-top, the lights should be placed close to the overhead camera. However,
care must be taken to avoid glinting. It will be assumed that glinting does not
occur.

Compared to our naïve expectations, the task that we have just described is

surprisingly complicated; there are many different aspects of the system behaviour
which do not immediately come to mind.

7.2.2 Significance

Many industrial assembly, and sorting tasks can be solved using the same basic
arrangement, consisting of an overhead camera to guide a robot that moves an
object on a flat table top. Consider the task of sorting components made using a
stamping, moulding, or die-casting machine. It is assumed that the sprue has been
removed automatically and that a series of different components have fallen in
random position and orientation onto the table. The visually guided robot could be
used to sort them, placing each type of product into a separate bin. Objects that
touch or overlap can be accommodated within the constraints imposed by the
assumptions listed above. This process consists of two stages:

(i) Two or more touching / overlapping objects together form a single
“unknown object” that the robot will not try to lift. Thus, identifying them is a
necessary prelude to step (ii). (It is, of course, a good idea to pick up “known”
objects first.)
(ii) The robot can nudge an “unknown object” from the side, to try and separate
it into objects that it can recognise and handle individually.

The task of identifying shapes is an important prelude to packing. (See Section

7.3 for a detailed discussion on the issues relating to automated packing systems.)

7.2.3 Simple Shape Measurements

In Section 7.1, we described a set of shape measurements, which could be
used/adopted for the present task. However, the six parameters calculated by the
predicate measurements, as used in our experiments, are slightly different and are
defined below. (Also see Figure 7.2.1.)

1. Area of the object silhouette. (Variable A)
2. Length of the object, measured along the principal axis (i.e. axis of minimum
second moment). (Variable D1)
3. Width of the object measured in a direction normal to the principal axis.
(Variable D2)
4. The ratio D1/D2. (Variable R)
5. The area of the convex hull divided by the area of the silhouette. (Variable S)

 285

6. The area of the minimum enclosing rectangle, divided by the area of the
silhouette. (Variable T)

D1

D2

Convex hullInput shape
Minimum enclosing

rectangle

Principal
axis

D1

Figure 7.2.1 Parameters calculated by the predicate measurements.

A crude linear rescaling is included in the definitions of A, R, S and T, to make

sure that each of the measured parameters lies in roughly the same range. Notice
that variables R, S and T are all size independent, while D1 and D2 all vary with
object size and optical magnification.

measurements(V) :-
 rea, % Read “input” image saved earlier
 cwp(B), % Area of the object silhouette
 A is B//40, % Rescaling
 rea, % Read “input” image
 normalise, % Normalise both position and orientation
 dim(X1,X2,Y1,Y2), % Dimensions of minimum enclosing rectangle
 rea, % Read “input” image
 chu, % Convex hull
 blb, % Fill it
 cwp(C), % Area of convex hull
 S is (100*C)//B, % Simple arithmetic, including rescaling
 D1 is X2 - X1, % Length along principal axis
 D2 is Y2 - Y1, % Width normal to principal axis
 R is (100*D2)//D1, % Simple arithmetic, including rescaling
 T is (100*D1*D2)//C,% Simple arithmetic, including rescaling
 V = [A,D1,D2,R,S,T],% Fix “output” list
 rea. % Read “input” image

Figure 7.2.2 shows four objects used to demonstrate the ideas we are

discussing. The learning program (learn) defined in Section 7.2.5 calls
measurements and when applied to this image asserts the following facts into the
database.

object_data([100, 141, 78, 55, 208, 131], 'Conrod').
object_data([67, 94, 89, 94, 197, 157], 'Y shape').
object_data([97, 123, 110, 89, 190, 182], '3-pointed star').
object_data([97, 158, 50, 31, 139, 144], 'Spanner').

 286

It is important to note that learn has been written in such a way that it is a trivial

matter to compute different or additional shape / size parameters: we simply
redefine the predicate measurements. No other changes to the program are
necessary.

Figure 7.2.2 Four objects for use with learn and recognise.

7.2.4 Learning and Recognition

Before we present the learning program, we must spend a little time discussing
how decisions can be made when a set of imprecise measurements is available.
When a program such as measurements is applied to a set of objects of the same
nominal type, the parameter values so obtained are liable to vary. Even if they
were all identical, quantisation noise would cause some fluctuation of the
measured values. When we apply measurements in its present form, each object is
described by a set of six numbers. In more general terms, an object (Q) can be
described by a vector, X, containing n numbers (X1, X2, …, Xn). A set of m
reference vectors, describing archetypal objects of each class, will be stored by
our program. These will be denoted by Y1, Y2 … , Ym, where Yi = (Yi,1, Yi,2,
…, Yi,n)

The Yi (i = 1, …, m) describe objects which have been examined by a human
inspector and are known to be “good” and are typical of their class. (Later, we
shall see that it is possible to have more than one archetype representing each
class.) The similarity between two objects represented by vectors X and Yi can be
assessed by measuring the Euclidean distance (D(X,Yi)) between them:

D(X,Yi) = √((X1 - Yi,1)2 + (X2 - Yi,2)2 +… + (Xn - Yi,n)2)

The larger D(X,Yi) is, the smaller the similarity is between the shapes they

represent. Thus, an object of unknown type and which is represented by a vector
X can be attributed to an appropriate class by finding which of the Y1, Y2 … ,
Ym is closest to X. This leads us to the idea of a Maximum Similarity Classifier.

 287

The more usual name for this is a Nearest Neighbour Classifier (NNC), and is
explained in diagrammatic terms in Figure 7.2.3. (Also see Figure 6.22.) Each of
the Yi (i = 1, …, m) is associated with some class label Ci (i = 1, …, m). The
NNC attributes X to class Ci if D(X,Yi) ≤ D(X,Yj), (j ≠i, 1, …, m).

Dmax

Y1

Y2

Y3
Y4

Y5

Q

D(Q,Y2) < D(Q,Yi), i ≠ 2,
but D(Q,Y2) > Dmax. So,
Q is classified as unknown

X1

X2

D(P,Y2) < D(X,Yi), i ≠ 2,
and D(X,Y2) ≤ Dmax. So, P is
attributed to the same class as Y2

P

Figure 7.2.3 Nearest Neighbour Classifier (NNC).

In our simple exercise there is probably no need to store more than one

reference vector Yi for a given value of Ci. We are considering shapes that are
very similar to their respective archetypes but are very different from members of
any other class. However, the NNC does permit this option. In order to select
suitable values for the Yi in this straightforward application, we simply apply
measurements to one “good” example of each category of shape that we wish to
recognise in future. The parameters so obtained are then stored in the Prolog
database. This is the basis of the predicate learn, whose listing we are about to
present. The shape recognition process is accomplished by recognise, which
implements a simple Nearest Neighbour Classifier.

7.2.5 Program Listing

% Learning phase
learn :-
 retractall(object_data(_,_)), % Clear the database
 preprocess, % Simple image processing
 analyse_binary_image1. % Measure each blob in the image

% Recognition phase
recognise :-
 preprocess, % Simple image processing
 analyse_binary_image2. % Analyse each object/decide what to do

 288

% Generate an image in which each blob is given a different
% intensity
preprocess :-
 grb, % Digitise image
 enc, % Enhance contrast
 thr, % Threshold
 neg, % Negate
 ndo, % Shade objects
 enc, % Enhance contrast
 wri(temp1). % Save image

% Analysing blobs during the learning phase
analyse_binary_image1 :-
 select_one_blob, % Choose one blob for analysis
 prompt_read(['Object name'],Q),
 % Ask user for name of that object
 measurements(V), % Now measure it
 assert(object_data(V,Q)), % Save measurements in the database
 analyse_binary_image1. % Repeat until all blobs have been
 % analysed

analyse_binary_image1 :- writenl('FINISHED').
 % No more blobs to be processed

% Analysing blobs during the recognition phase
analyse_binary_image2 :-
 select_one_blob, % Choose one blob for analysis
 measurements(V), % Now measure it
 writeseqnl(['Vector: ', V]),
 % Message for the user
 nnc(V,S,Q), % Nearest neighbour classifier
 pick_up(Q,_,_,_), % Robot now picks up the object
 message(['Object class: ', Q, 'Distance =',S]),
 nl, nl, % Message for the user
 analyse_binary_image2. % Repeat until all blobs have been
 % analysed

analyse_binary_image2 :- writenl('FINISHED').
 % No more blobs to be processed

% Selecting one blob from a stored image
select_one_blob :-
 rea(temp2), % Read stored image
 gli(_,X), % Find highest intensity in it
 !, % Force failure if next sub-goal fails
 X > 0, % Any more objects to be analysed?
 hil(X,X,0), % Eliminate selected blob from further
 % consideration
 rea(temp2), % Read stored image again
 swi, % Switch current and alternate images
 wri(temp2), % Save depleted image
 swi, % Switch current and alternate images
 thr(X,X), % Select the next blob to be analysed
 wri(temp1). % Save it

% Normalise position and orientation of blob in binary image. Robot
% is not moved
normalise :-
 lmi(X,Y,Z), % Centroid, [X,Y]. Orientation, Z
 X1 is 128 - X, Y1 is 128 - Y, Z1 is -Z,
 psh(X1,Y1), % Shift so centroid is at centre of image
 tur(Z1). % Rotate so principal axis is horizontal

% Nearest Neighbour Classifier (slight variation compared to page

 289

% 263). The first clause initialises the MacProlog property “nnc”
nnc(_,_,_) :-
 remember(nnc,[1000000,'Not known']),
 % ≥ largest possible distance
 fail.

% Finding the stored point that is closest to the “input vector” X
nnc(X,_,_) :-
 object_data(Y,Z), % Consult database of stored vectors
 euclidean_distance(X,Y,0,D),
 % D= Euclidean dist. between X and Y
 recall(nnc,[E,_]), % Find previous minimum
 E > D, % Is new values smaller?
 remember(nnc,[D,Z]), % It is! So, store it for use later
 fail. % Backtrack to “object_data”

% Terminating recursion
nnc(_,D,X) :-
 recall(nnc,[D,X]), % Find minimum distance to stored point
 D ≤ 20,
 writeseqnl(['Class: ',X,'Distance to nearest neighbour =',D]),
 !.

nnc(_,'too large','not known').

% Euclidean distance (slightly different from page 255).
euclidean_distance([],_,A,B) :-
 sqrt(A,B), % B is square root of A
 writeseqnl(['Euclidean distance =',B]).

% Second terminating clause - second “input” list is empty
euclidean_distance(_,[],A,B) :-
 sqrt(A,B), % B is square root of A
 writeseqnl(['Euclidean distance =',B]).

% Find sum of squares of differences between corresponding elements
% of 2 input lists
euclidean_distance([A|B],[C|D],E,F) :-
 G is (A - C)*(A - C) + E, % Sum of squares of differences
 !,
 euclidean_distance(B,D,G,F). % Repeat until all list elements
 % done

% Virtual robot. We move the image not the real object
% What to do when the NNC cannot classify this object.
pick_up('not known',_,_,_) :-
 rea(temp1), % Read saved image of blob
 normalise, % Normalise position and orientation
 vpl(1,128,256,128,128), % Horizontal line through image centre
 vpl(128,1,128,256,128), % Vertical line through image centre
 writenl('Robot will not try to pick up an unknown object').

% Object is of known type and it is safe to lift it with suction
% gripper
pick_up(Q,X,Y,Z) :-
 rea(temp1), % Read saved image of blob
 lmi(X,Y,Z), % Position and orientation
 normalise, % Normalise position and orientation
 cwp(A), % Count white points
 draw_sucker, % Draw “footprint” of the gripper
 cwp(B), % Count white points again
 A is B, % Is white area same?
 vpl(1,128,256,128,128), % Horizontal line through image centre

 290

 vpl(128,1,128,256,128), % Vertical line through image centre
 writeseqnl(['Located at:', [X,Y],'Orientation:',Z]),
 writeseqnl(['Robot will pick up the',Q]). % Message for user

% Safe lifting is not possible because suction gripper overlaps
% edge of silhouette
pick_up(Q,X,Y,Z) :-
 rea(temp1), % Read saved image of blob
 normalise, % Normalise position and orientation
 vpl(1,128,256,128,128), % Horizontal line through image centre
 vpl(128,1,128,256,128), % Vertical line through image centre
 hin, % Halve int. to make sucker-disc visible
 draw_sucker, % Draw “footprint” of the gripper
 writeseqnl(['Sucker is too large for safe lifting - robot will
not pick up the',Q]).

% Draw a white disc to represent the “footprint” of the suction
% gripper
draw_sucker :-
 draw_disc(128,128,6,255). % Draw white disc, radius 6 pixels.

7.2.6 Sample Output of Recognition Phase

Vector: [100, 141, 78, 55, 208,
130]
Euclidean distance = 2
Euclidean distance = 74.12
Euclidean distance = 81.51
Class: Conrod
Distance to nearest neighbour = 2
Located at: [190, 178]
Orientation: 132
Robot will pick up the Conrod

Vector: [67, 95, 89, 93, 197,
157]
Euclidean distance = 75.89
Euclidean distance = 2
Euclidean distance = 118.13
Class: Y shape
Distance to nearest neighbour = 2
Sucker is too large for safe
lifting - robot will not pick up
the Y shape

Vector: [97, 122, 108, 88, 190,
177]
Euclidean distance = 70.29
Euclidean distance = 50.21
Euclidean distance = 108.04
Robot will not try to pick up an
unknown object

Vector: [98, 159, 50, 31, 139,
144]
Euclidean distance = 81.70
Euclidean distance = 116.68
Euclidean distance = 0
Class: Spanner
Distance to nearest neighbour = 0
Located at: [138, 67]
Orientation: 24
Robot will pick up the Spanner

FINISHED
Nº1 yes

7.3 Packing and Depletion
The ability to manipulate previously unseen objects under visual control is one

of the key tasks in the successful implementation of robotic, automated assembly
and adaptive material handling systems. It is within the context of this framework
that an industrial vision packing strategy has been developed [WHE-93, WHE-
96]. Its two main components are a geometric packer, based on the principles of
mathematical morphology [WHE-91], which takes an arbitrary shape in a given
orientation and puts the shape into place, in that orientation. The second

 291

component, a heuristic packer, is concerned with the ordering and alignment of
shapes prior to applying them to the geometric packer. This component also deals
with other general considerations, such as the conflict in problem constraints and
the measurement of packing performance. In addition, it deals with practical
constraints, such as the effects of the robot gripper on the packing strategy,
packing in the presence of defective regions, and anisotropy ("grain" in the
material being handled) and pattern matching considerations.

Together, these form a flexible strategy that allows the packing of arbitrary
two-dimensional shapes. While the technique about to be described will pack any
set of shapes presented to it, the efficiency is critically dependent on the
application. Therefore, we need to use any clues we may glean from the context
information, to ensure that we obtain an efficient packing strategy for that
application. (See Figure 7.3.1.)

Figure 7.3.1 General packing strategy.

Since simpler packing problems, such as palletising [DOW-85], have been

shown to be NP-complete [GAR-79], it is clearly impossible to guarantee that we
will reach an optimal procedure for the more general problem. Hence, our aim has
been to produce an efficient packing strategy (but not necessarily an optimal
solution), that is flexible enough for industrial use.

7.3.1 Geometric Packer Implementation

The following section outlines the intermediate steps involved in the
morphological packing of an arbitrary shape. This is denoted by the structuring
element B. The image scene is denoted by the image set A. The morphological
operations are also summarised in the image flowchart illustrated in Figure 7.3.2.

 292

A detailed description this procedure can be found in [WHE-91]. (Also see
Section 2.4 for details on morphological imaging techniques.)

Step 1

Digitise the scene, image set A, and the shape to be packed, B.
Step 2

Erode the image scene A, by the structuring element B, to produce the
erosion residue image C = A B. Every white pixel in this residue image
represents a valid packing location. This step will be valid for any choice of
structuring element origin point. (Conventionally, and to be consistent with
the ideas discussed in the previous section, the origin will be taken to be the
structuring element centroid.)

Step 3
Scan the erosion residue image, in a raster fashion, for the location of the
first (top-left) white pixel. This location is denoted by (fitx, fity) in the
program that follows and corresponds to the first possible packing location of
B in the scene A, when it is scanned in this way. It has been suggested by
Haralick [HAR-92] that further erosion of the residue image C by a standard
3x3 square structuring element, prior to searching for the first packing
location, would enable control of the spacing between the packed shapes.
Clearly, the number of pixel stripping operations, on the erosion residue,
would be related to the spacing between the packed shapes.

Step 4
Translate (shift) the shape to be packed, B, to the location (fitx, fity). This
effectively places B at the co-ordinate of the first possible packing location
(when the residue image is scanned in a raster fashion). The resultant image
will be denoted by B(fitx, fity).

Step 5
The resultant image from step 4 is subtracted from the original image set A to
produce a new value for the image set A, therefore effectively packing B into
the scene. (See Figure 7.3.2.) This can be represented algebraically as
replacing A by A - B(fitx, fity).

This procedure is applied recursively to the image set A until an attempt to pack

all the input shapes has been made or no more shapes will fit in the remaining
space. The reapplication of the transform has no effect on the shapes already
packed, due to the idempotent nature of this operation.

7.3.2 Heuristic Packing Techniques

The heuristic packer determines the orientation and order in which the shapes
are applied to the geometric packer and operates upon two classes of shapes:
simple polygons and (irregular) blobs. It is necessary to consider both these
general shape classes separately, since no single scheme exists for all cases.
While, the geometric packer is independent of the shape class and application
context, the heuristic packer is not.

 293

Figure 7.3.2 Morphological operations image flowchart.

Blob Packing

This section outlines some of the possible heuristics that have been devised to
deal with two-dimensional binary images of random shape and size, prior to the
application of the geometric packer. The approach outlined was designed
specifically for off-line packing but the techniques developed could equally well
be applied to an on-line packing application.

All the shapes to be packed are presented simultaneously to the vision system.
The shapes are then ranked according to their bay sizes; the shape with the largest
bay is the first to be applied to the geometric packer. Once the shape ordering has
been decided, it is necessary to orientate each shape so that an efficient local
packing strategy can be implemented. Four orientation rules are used to align the
shape to be packed in the scene.

 294

The order in which the shapes will be placed by the packer is determined by the
sort_by_bay predicate defined below. If the area of the largest bay is significant
compared to the area of the current shape, then the shape is sorted by its largest
bay size (largest first). Otherwise the shapes are sorted by their size (largest first).
The bay_rot predicate rotates a shape such that the largest bay is aligned with the
scene's angle of least moment of inertia. This predicate also ensures that the
biggest bay is facing into the scene (that is facing to the right and upwards). The
operation of this predicate is summarised below:

• If object_Y_coordinate > bay_Y_coordinate then rotate shape by 180°
• If object_Y_coordinate = bay_Y_coordinate and object_X_coordinate

 > bay_X_coordinate then rotate shape by 180°
• If object_Y_coordinate = bay_Y_coordinate and object_X_coordinate

 ≤ bay_X_coordinate then no action required as in correct orientation
• If object_Y_coordinate < bay_Y_coordinate then no action required as

 in correct orientation

In the following program, the undefined predicate main_pack finds the valid

packing location in the erosion residue. The appropriate shape is then placed at
this location.

packbay:-
 get_all_shapes, % Get all shapes to be packed.
 sort_by_bay, % Sort shapes by bay size.
 % Sorted data is stored in new_blob_db db.
 !,
 pack_bay_1. % Pack shapes - largest bay first.

% Main packing co-ordination predicate
pack_bay_1:-
 big_bay_first, % Pack the shapes by bay size.
 read_shapes, % View remaining shapes.
 cwp(N), % Count image pixels.
 N > 0, % If no pixels to process - fail.
 centre_screen_se,
 % Place shape in centre of FOV prior to
 % rotation
 cwp(SHAPESIZE), % Current shape area.
 get_shape_parameters(ROUNDNESS,BAYSIZE,BAY_ROUNDNESS),
 % Current shape parameters.
 bay_rotate_options(SHAPESIZE,ROUNDNESS,BAYSIZE,
 BAY_ROUNDNESS), % Choose rotation procedure.
 !, pack_bay_1.

pack_bay_1:-
 performance_meas. % Calculate performance values.

% Shape alignment and rotation after sorting

/* Orientation rule 1: Use this sorting option if the bay size is
zero and the shape has a roundness <= 1. If the above conditions
occur then the object is classified as 'round' (i.e. a disk shape)
and therefore it need not be rotated or aligned. */
bay_rotate_options(_,ROUNDNESS,BAYSIZE,_):-
 BAYSIZE = 0, ROUNDNESS < 1,
 pack_bay_main. % Morphological packing.

 295

/* Orientation rule 2: Use this sorting option if the largest bay
size > a quarter of the shape area. Therefore if the bay is large
the shape is rotated such that the largest bay is at the angle of
the least MOI of the shape to be packed, ensuring that the bay
region always points into the main body of the shape to be packed.
By checking the bay roundness we ensure that we do not rotate the
image by its bay if the bay is elongated. */
bay_rotate_options(SHAPESIZE,_,BAYSIZE,BAY_ROUNDNESS):-
 BAYSIZE > SHAPESIZE/4, BAY_ROUNDNESS =< 2,
 bay_rot,
 pack_bay_main. % Morphological packing.

/* Orientation rule 3: Use this sorting option if the bay size > a
quarter of the shape area. By checking the bay roundness we ensure
that we do not rotate the image by its bay if the bay is elongated.
We align the shape with respect to the least MOI of the scene. */
bay_rotate_options(SHAPESIZE,_,BAYSIZE,BAY_ROUNDNESS):-
 BAYSIZE > SHAPESIZE/4, BAY_ROUNDNESS > 2,
 shape_rot, % Rotate shape such that it is at
 % scenes angle of the least MOI.
 pack_bay_main. % Morphological packing.

/* Orientation rule 4: Use this sorting option if the bay size <= a
quarter of the shape area. Therefore if the bay is considered small
we align the shape with respect to the scenes least MOI. */
bay_rotate_options(SHAPESIZE,_,BAYSIZE,_):-
 shape_rot,
 pack_bay_main. % Morphological packing.

% Morphological packing predicate: Using system macros installed in
% the Intelligent Camera.
pack_bay_main:-
 read_structuring_element,
 $'PACK', % Erosion residue using system macro call
 % (indicated by the symbol ‘$’).
 space_out, % Dilate image by single pixel to make packing
 % clearer.
 $'TRES', % Pack original SE.
 main_pack. % Place SE onto erosion residue.

Figure 7.3.3 shows the result of packing hand tools into a rectangular tray. The

shapes were initially presented directly to the geometric packer, without the aid of
the heuristic packer. (Figure 7.3.3(a).) This has the effect of packing each tool at
whatever orientation it happened to be in when it was presented to the vision
system. Figure 7.3.3(b) shows the resultant packing configuration when the
heuristic packer precedes the geometric packer. Each shape is aligned and
ordered, before it is applied to the geometric packer. Figure 7.3.3(c) shows the
packing of the tools into a "random" blob region. The full packing strategy was
used again here, as in Figure 7.3.3(b).

 296

(a)

(b) (c)

Figure 7.3.3 Automated packing of tool shapes. (a) Tools packed in their
current orientation, (b) tools reorientated for better efficiency, (c) tools
packed in an irregular scene.

Polygon Packing

The previous approach is not efficient, when packing shapes which do not
contain bays of significant area. Hence, a different packing procedure is used to
pack simple polygons which do not possess large bays. As before, this procedure
was designed to work within an off-line packing system but could also be applied
to on-line packing applications. Unlike the previous approach, however, this
second procedure has the ability to determine the local packing efficiency for each
shape and will reorientate it, if necessary, to ensure a more efficient configuration.
(This local efficiency check could also be applied to the blob packing strategy.) In
our second sample application, we chose to pack non-uniform box shapes
(squares and rectangles) into a square scene. (Figure 7.3.4) Once all the shapes
have been presented to the packing system, they are ordered according to size,
with the largest shape being packed first. The shapes must then be orientated,
prior to the application of the geometric packer.

In the initial versions of this packing procedure, each shape was aligned in such
a way that its axis of least moment of inertia was matched to that of the scene
under investigation. However, this method proved unreliable for packing squares,
because quantisation effects produce a digital image, with a jagged edge. (A
resolution of 256x256 pixels was used.) Furthermore, a square has no well-

 297

defined axis of minimum second moment. This can cause errors in the calculation
of the moment of inertia. The problem was overcome by aligning the longest
straight edge of the shape to be packed with the longest straight edge of the scene.
The edge angles for the shape and scene were found by applying an edge
detection operator, followed by the Hough transform. The latter was used, because
it is tolerant of local variations in edge straightness. Once the peaks in the Hough
transform image were enhanced and separated from the background, the largest
peak was found [BAT-91c]. This peak corresponds, of course, to the longest
straight edge within the image under investigation, whether it be the shape or the
scene. Since the position of the peak in Hough space defines the radial and the
angular position of the longest straight edge, aligning the shape and the scene is
straightforward.

Once a polygonal shape has been packed, a local packing efficiency check is
carried out. This ensures that the number of unpacked regions within the scene is
kept to a minimum. The shape to be packed is rotated through a number of
predefined angular positions. After each rotation, the number of unpacked regions
in the scene is checked. If a single unpacked region is found, then a local optimum
has been reached. In this case, the local packing efficiency routine is terminated
and the next shape is examined. Otherwise, the local packing efficiency check is
continued, ensuring that, when a shape is packed, a minimum number of
unpacked regions exists. This reduces the chance of producing large voids in the
packed scene, and improves its overall efficiency of packing.

Figure 7.3.4 Automated packing of non-uniform boxes in a square tray.

The packing order is determined by the sizes of the shapes to be packed (largest

first). The rotation of the shapes by the packer is based on the angle of the largest
face (longest straight side of the polygon) of the unpacked region. The predicate
shape_face_angles finds the largest face angle and stores it in the face angle
database. This database also contains a selection of rotational variations for the
current shape. The face angles are sorted such that the angle of the largest face
appears at the top of the database. The other entries are modified (by a fixed angle
rotation factor) versions of this value. The predicate blob_cnt counts the number

 298

of "free space blobs", that is the number of blocks of free space available to the
packer. The polygon packer operates according to the following rules:

• If blob count is 1 then the best fit has occurred, so exit and view the next

 shape.
• If blob count is 0 then read the new angle from face angles database

 and retry.
• If blob count < local optimum then update blob count and update the

 local optimal storage buffer before trying the next angle in the face
 angles database.

• If blob count ≥ local optimum then try the next angle in database.

polypack:-
 scene_capture, % Capture scene to be packed.
 get_all_shapes, % Find all the input shapes.
 poly_pack_1. % Pack shapes - largest first sorted.

% Main packing co-ordination predicate
poly_pack_1:-
 big_shape_first, % Pack the shapes by SE size.
 centre_screen_se, % Centre SE in the field of view.
 shape_face_angles, % Find the angle of the largest face.
 face_angles_db(LONGEST),
 retract(face_angles_db(LONGEST)),
 % Recover a face angle database value.
 turn(LONGEST,A,B), % Rotates the structuring element about
 % its centre of gravity, by the angle
 % recovered from the face angle
 % database.
 poly_pack_main,!,
 poly_pack_1. % Get the next shape to pack.

poly_pack_1:-
 performance_meas. % Calculate performance values.

poly_pack_main:-
 morph_pack, % Morphological packing.
 read_updated_image, blob_cnt.

% Morphological packing predicate
morph_pack:-
 updated_image,
 $'PACK', % Erosion residue using system macro
 % call indicated by the symbol ‘$’.
 space_out, % Dilate image by single pixel to
 % make packing clearer.
 residue_check, % No residue exists then try next
 % angle. No residue indicates that the
 % shape cannot be packed in current
 % orientation so quit.
 $'TRES', % Pack original SE using a system macro
 main_pack. % Place SE onto erosion residue.

7.3.3 Performance Measures

 299

To ensure that we have confidence in the global efficiency of any packing
strategy, there must be some way of measuring its performance. Traditionally,
packing performance has been measured by a single number, called the packing
density [STE-91]. This is the ratio of the total area of all the packed shapes to that
of the total area of the scene. This is referred to as the worst case analysis packing
measure. A number of other performance measures have been developed in the
field of Operational Research, particularly for comparing different heuristics for
packing rectangular bins by odd-sized boxes. (See [DOW-85] for a review of
packing procedures used in Operational Research.) These alternative performance
measurements can be quite useful in well-constrained packing problems, but they
are of little use in dealing with the packing of arbitrary shapes. [WHE-96].

Predicates

The following predicates evaluate the 'goodness-of-fit' of a given packing
procedure. The Packing Density is defined as the ratio of the optimal packing area
(which is the sum of the area of the individual shapes to be packed) to that of the
area of the convex hull of the packed shapes (minus the area of any scene defects).
This is a standard packing measurement, and has a maximum value of one. We
have defined a parameter, called Performance Index, which is a modified version
of the Packing Density and accounts for unpacked shapes. The Performance Index
equals Packing Density times the Count Ratio, and has a maximum value of one.
The Count Ratio is defined as the ratio of the total number of shapes packed to the
number of original shapes presented to the packing procedure. Another parameter
that we have defined is Space Usage, and this equals the ratio of the area of the
shapes packed to that of the unpacked original shape. This gives us an idea of the
amount of space unpacked in the original scene. The Space Usage ratio has a
maximum value of one. This occurs when no space remains unpacked.

Figure 7.3.5 shows the results of placing (using blob packing techniques) some
standard household items, such as scissors, keys and pens, into a rectangular tray
(Figure 7.3.5(a)) and into an irregular scene (Figure 7.3.5(b)). Figure 7.3.6 shows
the automated packing of simple polygon shapes, i.e. assembling a simple block
jigsaw. The performance measures for the packing examples discussed in this
section are shown in Table 7.3.1.

 300

(a) (b)

Figure 7.3.5 Packing items into: (a) a rectangular tray, (b) an irregular scene.

Figure 7.3.6 Automated packing of simple polygons in a rectangular scene.

Figure
Number

Packing
Density

Shapes
Presented

Shapes
Packed

Performance
Index

Space
Usage

7.3.3(a) 0.36 5 5 0.36 0.25
7.3.3(b) 0.435 5 5 0.435 0.25
7.3.3(c) 0.381 5 4 0.305 0.191

7.3.4 0.86 6 5 0.72 0.735
7.3.5(a) 0.38 6 6 0.38 0.261
7.3.5(b) 0.44 6 6 0.44 0.317

7.3.6 0.81 5 4 0.64 0.566
7.3.8 0.41 5 3 0.246 0.23

7.3.9(a) 0.36 5 5 0.36 0.249
7.3.9(b) 0.511 8 5 0.319 0.381

Table 7.3.1 Comparison of packing configurations using the performance
measures defined in Section 7.3.3.

7.3.4 Robot Gripper Considerations

Any supposedly general purpose strategy for packing must be robust enough to
cope with a range of different type of material handling systems. For all of the
applications considered above, we have tacitly assumed that some form of suction
or magnetic gripper could be used to lift and place the objects during packing. In
this case, the "foot-print" of the gripper is assumed to lie within the outer edge of
the shapes being manipulated. (See Section 5.9.)

Automated material handling systems frequently make use of robotic grippers
which have two three or more "fingers". This complicates the problem of packing,

 301

since the gripper requires access to objects within a partially packed scene.
Therefore, any packing strategy must make allowances for the gripper. The worse
case position usually (but not always) occurs when the gripper is fully open, just
after placing an object in position. The problem of gripper access can be dealt
with very effectively, by the simple expedient of overlaying a gripper template on
the shape to be packed prior to the application of the geometric packer. (Figure
7.3.7) The gripper "foot-print" is based on the positions of the fingers in both the
open and closed positions. In fact, the convex hull of each of the finger tips in the
open and closed positions is formed when computing the composite "foot-print".
This convex hull is indicated by the shaded region in Figure 7.3.7.

Figure 7.3.7 Generation of the gripper “footprint” based on the fully open
and closed positions of a multi-fingered robot gripper.

Figure 7.3.8, shows the result of packing tools into a rectangular tray, taking the

gripper "foot-print" into account. Although the general blob packing remains the
same, the procedure’s performance is inevitably weakened when allowance is
made for the robot gripper. For example, compare Figures 7.3.3(b) and 7.3.8. (See
Table 7.3.1 for a comparison of the packing performance measures.) Clearly, the
gripper "foot-prints" indicated in Figure 7.3.8 are not those for the ideal gripping
positions for these objects. They are used merely to indicate how our packing
strategy can cope with multi-finger grippers.

In a practical situation, care must be taken to ensure that any change in the
shapes of the objects to be packed, due to squeezing by the robot gripper, does not
adversely effect the packing. The same is true of articulated and other hinged
objects, such as scissors or pliers, which can change their shape during handling.
Again, this type of application constraint, could also be dealt with by the
introduction of suitable heuristic packing rules, and may also be used as a factor
when calculating the gripping position.

The strategy outlined above for working with multi-finger grippers does have
the advantage of allowing the shapes to be unpacked from the scene in any order.
One possible modification to the approach outlined above, results in a denser
configuration that, in general, can only be unpacked safely in reverse order. This
modification consists of packing each shape, taking the robot "foot-print" into
account, but removing the "foot-print" from the scene prior to the application of
the next shape.

 302

Figure 7.3.8 Tool packing with worse case gripper "foot-print".

7.3.5 Packing Scenes with Defective Regions

Any practical automated packing system for use in such industries as leather or
timber processing must be able to pack "objects" into a scene which may contain
defective regions. (This is an alternative way of representing the stock cutting
problem.) The importance of good packing procedures in the leather industry is
obvious, since the raw material is both expensive and non-recyclable. Our packer
can readily accommodate defects like these; we simply define the initial scene to
contain a number of holes. Figure 7.3.9(a) illustrates the effect of packing tools
into a rectangular tray which contains four small blob-like "defects". By
comparing the packing configuration shown in Figures 7.3.9(a) and 7.3.3(b) (see
Table 7.3.1 also), it is clear that the packing is not as tight when defects are taken
into account. Figure 7.3.9(b) shows the packing of leather templates onto a hide.
The small blob-like regions indicate the defective areas of the hide. These
defective regions are not to be included in the leather pieces to be cut. Both of the
results shown in Figure 7.3.9 indicate the flexibility of the packing strategies
described.

(a) (b)

 303

Figure 7.3.9 Packing items into defective regions: (a) Tools into a defective
tray, (b) Leather template pieces into a leather hide which contains defects.

7.3.6 Discussion

The results presented here show the power of the heuristic approach when
presented with a wide range of problems, including the packing of shapes into
materials with defective regions. We have attempted to maximise the use of
application specific information, to produce an efficient packing strategy. The
example application also outlines a technique that will allow a range of
performance measures to be computed, so that different packing procedures can
be compared. This is necessary due to the fact that the heuristic approach we have
taken does not guarantee an optimal result. For a more detailed discussion on
automated packing techniques and systems, the reader is directed to [WHE-96,
WHE-93 and WHE-91].

7.4 Handedness of Mirror-Image Components

7.4.1 Handedness and Chirality

We explain how Prolog+ can be used to determine the "handedness" of planar
objects, such as leather, plastic and fabric components for clothing, bags,
upholstery, gloves and shoes, using so-called Concavity Trees (CTs) and a number
of other heuristic techniques. A large number of industrial products are either
symmetrical, or are sold in mirror-image pairs. In such a case, for every "right
handed" component, there will be another "left handed" one. Objects which are
mirror images of each other, but are in all other respects identical, are said to
differ in their chirality. This quantity is closely related to "handedness" and the
relationship between them will be defined later. Mirror-image pairs of objects are
found in many other situations, most notably where they are intended to fit some
other symmetrical object, most notably the human body. The list of products
existing as mirror-image pairs is not simply limited to clothing. Many of the
components of a bicycle, for example, exist in mirror-image pairs. Another use for
a chirality test is to determine whether a planar object, such as a metal stamping is
"face up" or "face down". A safety-critical application of this kind was
encountered by the authors several years ago and was concerned with components
for automobile brakes.

Our prime objective in this case study is to present techniques for finding the
chirality of objects that can be viewed in silhouette. An important secondary goal
is to introduce the reader to the concepts of concavity trees, which have a range of
other applications, some of which are explained elsewhere in this chapter. A

 304

recursive program for generating concavity trees is listed below and provides a
good demonstration of Prolog+.

Relating Chirality and Handedness

Chirality is an abstract property and does not indicate whether a given piece of
leather forms part of a left or right shoe, or glove. Chirality has the value left or
right, and this value is inverted when we pick up an object and turn it over. A
piece of leather may form part of a right shoe, yet have a chirality value equal to
left. When that piece of leather is turned over, its chirality values becomes right
but, of course, it is still a component of a right shoe. (Figure 7.4.1) Thus, chirality
is a function of posture, not an indicator of intended use. We shall define
handedness in terms of chirality, in the following way:

% If the object is laying "face up" then the handedness is equal to
% the chirality
handedness(U) :-
 face(up), chirality(U), !.

% If the object is laying "face down", then the handedness is the
% inverse of the chirality
handedness(U) :-
 face(down), chirality(V),
 (U = left, V = right); (U = right, V = left)), !.

Handedness, defined in this way, is still not sufficient to tell us whether a given

component forms part of a left or right shoe. We also need a parts list having the
following general form.

Component identity

number
Handedness of component to make

 right shoe left shoe

1 right left
2 left right

… … …
10 left right

Such a table can be represented using a set of simple Prolog statements :

% Component A with handedness value of "right" is part of left shoe
component(left, A,right) :- component(right, A,left), !.
% Component A with handedness value of "left" is part of left shoe
component(left, A,left) :- component(right, A,right), !.

% If handedness = right, comp. 1 is part of right shoe
component(right, 1,right).
% If handedness = left, comp. 2 is part of right shoe
component(right, 2,left).
……
% If handedness = left, comp. 10 is part of right shoe
component(right, 10,left).

 305

(a)

(b)

Figure 7.4.1 Chirality and its relationship to handedness and function. (a)
Mirror image components of leather mittens, all viewed "face up". The group
on the left, form the left glove and those on the right are parts of the right
glove. Shading indicates chirality, as it is calculated by the second version of
chirality. If an object is "turned over", its chirality is reversed but the
handedness is not and, of course, it remains a component of the same glove,
so its function is unaltered. (b) Typical objects considered in this case study.

 Now that we have seen the significance of chirality, we shall describe how it

can be calculated from a concavity tree. First, however, we shall digress briefly, to
explain the significance and generation of concavity trees.

7.4.2 Concavity Trees

There is a general requirement for an inspection process which combines both
local and global information about an object’s shape, within a single integrated
data structure. It is often necessary to pay detailed attention to a number of small
regions of a large artefact and then to verify that its overall shape is correct. In
essence, concavity trees provide a multi-level representation of an object's shape,
which makes this type of analysis fairly simple. Concavity trees are ideally suited

 306

for a variety of industrial inspection tasks, such as inspecting stampings, pressings
and mouldings, where severe but local defects can occur. Metal-forming tools,
such as punches and dies are not subject to significant changes in shape during
normal operation. Hence, the objects produced by them are likely to be
dimensionally correct. However, abnormal operation can occur, as a result of
failure to feed the metal stock properly, through broken or chipped tools or
displaced tooling.

There is a specific need for a "general purpose" inspection method which can
examine piercings (lakes) and indentations (bays), both of which are intended to
mate with other parts. In many applications, inspection may be achieved with
relatively low precision, since there is no common fault which can introduce small
overall errors. (Tool wear can but this accurately predictable and, for this reason,
need not concern us here.) In this type of situation, parts are either correctly made,
or are badly malformed locally. Thus, for example, an inspection system might be
asked to decide whether an object possesses a certain hole, indentation (or spur),
needed to provide mechanical linkage to another component. A similar inspection
technique is needed in any industry where a “pastry cutter” is used to form the
products. Hence, we may expect to see applications of concavity trees in the
plastics, leather, clothing and food industries, amongst others.

Concavity Trees have a variety of possible uses, including shape recognition,
parts assembly and finding object orientation. The one feature of Concavity Trees
that makes them particularly well suited for discussion in this book is that they
require the use of recursion, which is, of course, an essential feature of Prolog.
The use of such a sophisticated technique for the seemingly straightforward task
of finding whether a 2D object forms part of a left- or right-handed shoe might
seem to be unjustified. Certainly, it is possible to find the chirality in other ways,
for example by shape matching, or comparing the sequences of left-right turns,
taken as we traverse the perimeter of a blob-like object. These may well be faster
than the approach based on concavity trees but are unlikely to be as versatile in
the range of objects they will handle successfully. For the sake of completeness,
we present alternative methods for finding chirality later. For the moment,
however, we shall concentrate on concavity trees.

 307

(a)

5

7

1

(c)

(b)

Convex hull of S is the root
of the concavity tree

(d)

6
4

2

8

9

3

2 3 4 6 8 9

1 5 7

0Convex hull of S ("stuck in")

Concavities. The black
pieces are "cut out"

Meta-concavities. The black
pieces are "stuck in"

(e)

Figure 7.4.2 Generating concavity trees. (a) Original shape (S) to be
analysed. (b) Convex hull of S. The three concavities are represented here as
black regions. Together, they form the convex deficiency of S. (c) Convex
hull of each concavity. The numerals indicate the node labels generated by the
first program. (The nodes are analysed in this order, thereby implementing a
depth-first search.) (d) Meta-concavities of S. These are the concavities of the
concavities of S. (e) Concavity tree generated by the first program. The shape
corresponding to each node in the tree is shaded black.

A Concavity Tree (CT) is an hierarchical tree-like structure, whose nodes

represent convex polygons. These are of varying sizes and are either “cut out” or
“stuck in”, beginning with the convex hull of whatever object is to be analysed.

 308

This cut-and-paste process enables us to approximate a given blob-like object, to
varying degrees of precision. The tree-like representation of shape is based on the
idea of a concavity, which is a term intended to encompass both lakes (holes) and
bays (indentations). Concavities are defined in terms of the dual concepts of
convex hull and convex deficiency. (Prolog+ operators chu and cvd). The convex
deficiency is the difference between the filled convex hull of a blob and the blob
itself. It consists of a number of distinct regions, each of which is a concavity. A
CT combines both global and local information about shape, in a single integrated
data structure and it is possible to label its nodes, using as many shape, size and
position descriptors as we can conveniently measure. In this respect, a CT is much
more general than any of the other shape description / representation techniques
that we discuss elsewhere in this book. As we shall see later, an elegant, and very
short, Prolog+ program can be used to generate a CT from a binary image. In fact,
this particular program shows Prolog+ off to very good effect.

Formal Definition

In the following explanation of how to create concavity trees, we shall find it
convenient to use the terminology of set theory. Recall that an object in a binary
image is a connected set of white points. The idea of a concavity tree can be
understood most easily with the help of a series of simple diagrams. In Figure
7.4.2, S denotes the initial blob that is to be represented by a CT. To generate the
tree, we begin by computing the convex deficiency of S. (In general, the convex
deficiency will consist of a number of large, disjoint blobs, representing the bays
and lakes of S and numerous very small regions, created as artefacts of camera
and quantisation noise.) Let Q* denote the filled convex hull of any given set, Q.
Furthermore, let (X⊗Y) be the set of white points formed by computing the
difference (exclusive OR) between two given sets X and Y. We shall also assume
that the convex deficiency of S, i.e. the set (S*⊗ S), consists of N distinct blobs,
which will be denoted by {CS1, CS2, …, CSN}.

The CSi (i = 1, , …, N) are the concavities of S. We now apply the same type of
analysis to each of the CSi as we did to S. That is, we compute the convex
deficiency of each member of the following set: {(CS1*⊗ CS1), (CS2*⊗ CS2), …,
(CSN*⊗ CSN),}. This process of analysing the blobs within the convex deficiency
of a given blob is repeated recursively. To terminate recursion, we simply impose
a lower size (area) limit on the objects which we analyse in this way. The
concavity tree is used to relate the concavities, concavities of concavities (meta-
concavities), concavities of concavities of concavities (meta-meta-concavities)
etc. to each other and to S*.

To understand the CT-generation process in physical terms, let us equip
ourselves (mentally) with scissors and adhesive tape. To approximate S, we begin
with a convex shape, S*, and cut out N convex shapes, corresponding to the filled
convex hulls of the concavities: {CS1*, CS2*, …, CSN*}. We now stick back some
smaller convex pieces corresponding to the filled convex hulls of each of the
meta-concavities. Then, we cut out pieces corresponding to the filled convex hulls
of all of the meta-meta-concavities. Next, we stick back pieces corresponding to
the filled convex hulls of all of the meta-meta-meta-concavities. This process of

 309

alternately cutting out convex shapes and then sticking back other, smaller convex
shapes continues indefinitely (i.e. until the objects are too small to make it
worthwhile continuing). (See Figure 7.4.2)

Generating Concavity Trees

As we mentioned earlier, the CT is defined recursively. To an experienced
programmer, the mere whisper of the word “recursion” immediately suggests the
use of Prolog. However, the program concavity_tree, which is listed below, uses a
somewhat unusual form of recursion; the predicate analyse_node does not contain
a direct call to itself but instead contains the line:

eab_modified(E,analyse_node(E)),

This is perfectly legal Prolog programming practice and leads to a very compact

program for calculating CTs. The reader should understand that
eab_modified(A,B) tries to satisfy goal B on all blobs in the binary image held in
file A. The first (recursive) clause of analyse_node measures various shape
parameters of a given (single) blob, using the undefined “general purpose”
predicate shape_measurements, and then applies analyse_node to each 8-
connected set in the convex deficiency of that blob. We can use
shape_measurements to obtain as many shape, size and / or position parameters as
we wish. We might, for example, choose to derive such measurements as: X-co-
ordinate of centroid; Y-co-ordinate of centroid; area; perimeter; shape factor; area
of filled convex hull; ratio of area of filled convex hull to the area of the original
blob; aspect ratio of minimum area rectangle … etc. (See Section 7.2.3.)

Prolog+ contains three standard operators

gob If the stored image is empty, gob fails.
 Otherwise, select (get) one blob from a stored image.

The latter is modified by deleting that blob.
gob_init Used to initialise gob.
eab(A) Evaluate goal A for all blobs in the current image

These three predicates had to be modified slightly for the concavity tree

program; one extra parameter has been added to each one, enabling us to pass the
name of the “input” image file. The revised definitions are given below. Here is
the program listing for the CT generator.

% Top level predicate for computing Concavity Trees
concavity_tree:-
 retractall(ct_node(_)),
 % Clear database, ready for new CT
 psk, % Push image onto the stack
 init_gensym(node), % Initialise the symbol generator
 analyse_node([]), % This bit does all of the hard work
 pop. % Restore image

 310

/* Define the minimum size of blob to be analysed. Adjust this
parameter to taste */
min_blob_size(50).

/* Analyse one node in the Concavity Tree. The first clause
contains the indirect recursive call to "analyse_node" */
analyse_node(A) :-
 cwp(C), % Measure blob area
 min_blob_size(D), % Consult DB for minimum blob size
 C ≥ D, % Is blob large enough to bother with?
 gensym(node,E), % Name node in CT - standard symbol generator
 shape_measurements(F), % General shape measurement - undefined
 cvd, % Convex deficiency of “input” blob
 kgr(D), % Ignore tiny blobs
 eab_modified(E,analyse_node(E)),
 % Analyse convex deficiency - recursive
 writeseqnl(['Blob: ',E, 'Parameters: ',F,'Parent: ', A]),
 assert(ct_node(E,A,F)). % Assert node data into Prolog DB

analyse_node(A). % Ending recursion. Force goal to succeed

/* Initialise "gob_modified". This is the standard predicate,
“gob_init,” modified slightly, by adding the parameter A, which
specifies the name of an image file. */
gob_modified_init(A) :-
 ndo, % Shade image
 wri(A). % Save image in file A

/* Get one blob. Standard Prolog+ predicate, “gob,” modified
slightly to facilitate recursion. */
gob_modified(A,B) :-
 rea(A), % Read image file named A
 gli(_,B), % Upper intensity limit
 ((B = 0, !, fail) ; % Fail if no more objects left to analyse
 (hil(B,B,0), % Remove next blob to be analysed
 wri(A), % Save image with one blob deleted
 swi, % Switch images
 thr(B,B))). % Isolate next blob for analysis

gob_modified(A,B) :- gob_modified(A,B).

/* Evaluate a named goal, for all blobs in an image. This is the
standard predicate, “eab”, modified slightly to facilitate
recursion. A is the name of a file containing a multi-level image
with several blobs. B is the predicate to be “applied” to all blobs
in the image in file A. */
eab_modified(A,B) :-
 psk, % Push image onto the stack
 gob_modified_init(A)
 % Initialise, ready for “gob_modified”
 -> % Conditional evaluation
 (gob_modified(A,C), % Get one blob from image held in file A.
 call(B), % Satisfy goal specified by B
 fail). % Repeat for all blobs in file A

% Goal always succeeds and restores original image
eab_modified(_,_) :- pop.

Sample Concavity Trees

For the sake of illustration, three simple shape / size parameters were calculated
by shape_measurements, viz area, perimeter and shape factor. In the experiments

 311

reported below, these parameters were calculated on the blob and its (meta)-
concavities, not on their convex hulls. The following output was generated by the
program, given the starting image shown in Figure 7.4.3(a).

 (a) (b)

 (c) (d)

 (e) (f)

Figure 7.4.3 Six binary objects to be analysed. Notice that the three "peaks"
in the bottom-most concavity in (a - c) are at slightly different heights.

Blob: node2 % Give arbitrary label to this node
Parameters: [2651, 242, 0.571]
 % [Area, Perimeter, Shape factor]
Parent: node1 % Parent of node2 is node1

Blob: node3
Parameters: [1755, 214, 0.485]
Parent: node1 % Parent of node3 is node1

 312

Blob: node1
Parameters: [17196, 768, 0.367]
Parent: node0 % Parent of node1 is node0

Blob: node5
Parameters: [1261, 195, 0.420]
Parent: node4 % Parent of node5 is node4

Blob: node4
Parameters: [6095, 530, 0.274]
Parent: node0 % Parent of node4 is node0

Blob: node9
Parameters: [904, 154, 0.483]
Parent: node8 % Parent of node9 is node8

Blob: node8
Parameters: [4502, 408, 0.341]
Parent: node7 % Parent of node8 is node7

Blob: node7
Parameters: [7594, 671, 0.213]
Parent: node6 % Parent of node7 is node6

Blob: node6
Parameters: [16310, 1106, 0.168]
Parent: node0 % Parent of node6 is node0

Blob: node0 % node0 is the root of the CT
Parameters: [73717, 2433, 0.070]
Parent: [] % There is no parent for the root

No.1 : yes % Goal always succeeds

In addition, a set of facts describing the tree was placed in the database. (This is

achieved by assert(ct_node(E,A,F)), i.e. the last line of the first clause of
analyse_node.)

ct_node(node2 , node1, [2651, 242, 0.571]).
ct_node(node3 , node3, [1755, 214, 0.485]).
……
ct_node(node0 ,[], 73717, 2433, 0.070]).

The corresponding tree is drawn in Figure 7.4.4(a).

 313

(a)

0

1

2

3

4

5

6

7

8

9

1261

6095

904

4502

7594

16310

3251

5095

15671

(b)

0

1

2

3

5

6

8

9

4

7

904

4502

7594

16310

1261

6095

3251

5095

15671

(d)

2651 1755

17196

737170

1

2 3

8

9

1261

6095
4

5

6

7
904

4502

7594

16310

(c)

2651 1755

17196

737170

1 4 6

7

8

9

2 3 5

1261

6095

904

4502

7594

16310

0

1

6

7 10

11

12

14132 3 4 5 8 9

415 124 1083

73

13
32

10755

595 133

32
66

707

21
61

95 276

10703

71330

(e)
2 9 106 8

0

1 3 4 5 8

19426

13053

285

5774 3741

3427 1625 1255 141

2527

26
74

(g)

(f)

2

76

0

1 3 4

8754

9700

164

1503 3741 786 193 84

5

Figure 7.4.4 Concavity trees of various objects in Figure 7.4.3.

 314

The CT results given in Figure 7.4.4 require some explanation, which is given
by following table. It should be noted that the numbers inside the circles indicate
the order in which the nodes of the CT were analysed, while the numbers printed
beside them indicate the areas of the corresponding shapes.

Input shape Concavity tree Comments
Fig. 7.4.3(a) Fig. 7.4.4(a) Non-canonical form of CT
Fig. 7.4.3(a) Fig. 7.4.4(b) Canonical CT (described in next section).
Fig. 7.4.3(b) Fig. 7.4.4(c) Compare to Fig. 7.4.4(a). Major change in

CT occurs even though there is a very small
change in the input shape.

Fig. 7.4.3(c) Fig. 7.4.4(b)
or (c)

Result depends on noise; 3 "peaks" on
bottom-most indentation of input are
directly in line.

Fig. 7.4.3(b) Fig. 7.4.4(d) Canonical CT
Fig. 7.4.3(d) Fig. 7.4.4(e) Input is smoothed version of Fig. 7.4.3(a)
Fig. 7.4.3(e) Fig. 7.4.4(f) 4 black nodes correspond to bays that do not

change as a result of objects touching.
Fig. 7.4.3(f) Fig. 7.4.4(g) Black nodes remain unchanged whether

scissors are open or closed.

Canonical Form of Concavity Trees

The order in which the nodes are added to the CT is indicated by simple
identifiers: node0, node1, node2, …. (These names are generated by gennsym.)
The reader will observe that this ordering reflects the fact that the CT is generated
using a depth-first search. However, this is only part of the story, since detailed
examination of the program reveals that the order in which the “children” of a
given node are analysed is determined by two predicates: gob_modified and
eab_modified. If we rotate the initial shape to be analysed, the program defined
above may well generate a CT with its nodes labelled in a different order. So that
we can make the calculation of chirality easier and to facilitate other important
operations, such as shape matching, it is better to create CTs in some standard
way that is independent of orientation. This can be achieved very simply, by
redefining the predicates gob_modified, eab_modified and gob_modified_init.
This incurs very little cost, in computational terms. The key is to use the predicate
big, to select one blob at a time for analysis. Here are revised definitions of these
three predicates, which use this idea:

% One line has been deleted from "gob_modified_init"
gob_modified_init(A) :- wri(A).

eab_modified(A,B) :- psk, wri(A)
 ->
 (gob_modified(A), call(B), fail).

eab_modified(_,_) :- pop.

gob_modified(A) :-

 315

 rea(A), % Read image file named A
 cwp(N), % Count white pixels in image
 ((N = 0,!,fail); % If there are none, then fail
 (big, % Select biggest blob for analysis first
 xor, % Delete that blob from image to be stored
 wri(A), % Save the depleted image
 swi)). % Revert to the single blob image

gob_modified(A) :- gob_modified(A).

The higher level predicates, concavity_tree and analyse_node, remain

unchanged. CTs, generated by the second version of the program, are evaluated
and the nodes identified in the same order, whatever the orientation of the original
object; the biggest (meta-) concavities are analysed first. (See Figure 7.4.4(b) and
(d).) A CT generated in this way is said to be in Canonical Form. There is no
unique form for a canonical tree and in some situations, it may be preferable to
use an alternative definition. For example, we might choose instead to list the
nodes of the tree so that they are in cyclical order, following a clock-wise tour
around the object perimeter, beginning from some convenient starting point (e.g.
largest (meta-)concavity). (Figure 7.4.5)

node2

node6

no
de

5

node7

no
de

9

node8

node1

node2

node0

(a)

1

4 5 6

3

987

2

0

Clockwise

Clockwise

Clockwise

(b)

node3

node4

[1] [2] [3]

[1] [3] [2] [1] [2] [3]

Root

Sequence of analysis

Figure 7.4.5 Alternative definition of Canonical Concavity Trees. (a) Input
blob. (Meta-)concavities are analysed in cyclic (clockwise) order, beginning
with the largest. (b) Concavity tree. Numbers in square brackets indicate the
ranked sizes, at that level in the tree. Thus, node4 [1] is bigger than node6 [2],
which is bigger than node5 [3].

Program to find Chirality

 316

Normally, we might assume that the concavities are all sufficiently different for
us to base the test of chirality on them. If this is not the case, we can use the meta-
concavities, meta-meta-concavities etc. instead. The first parameter of
chirality(A,B) allows us to specify the node whose children are to be compared so
that we can find the chirality. (Figure 7.4.6) The following program is based on
the assumption that the first two parameters computed by shape_measurements
are the [X,Y]-co-ordinates of the centroids of the (meta-)concavities.

% The chirality (Y) of a given shape is defined in terms of angular
% positions of the (meta-)concavities associated with the children
% of node X. The chirality is computed on the canonical CT.
chirality(X,Y) :-
 findall(M,(ct_node(_,X,M)),Z), % Z is list of children of node X
 ct_node(X,_,[X0,Y0|_]), % Where is node X?
 Z = [[X1,Y1|_], [X2,Y2|_], [X3,Y3|_] | _],
 angle(X1,Y1,X0,Y0,A1), % Angle of line twixt [X1,Y] & [X0,Y0]
 angle(X2,Y2,X0,Y0,A2),
 angle(X3,Y3,X0,Y0,A3),
 chirality_database(Y,A1,A2,A3). % Consult database

chirality_database(right,A1,A2,A3) :- rank_order(A1, A2, A3).
chirality_database(right,A1,A2,A3) :- rank_order(A2, A3, A1).
chirality_database(right,A1,A2,A3) :- rank_order(A3, A1, A2).
chirality_database(left,A1,A2,A3) :- rank_order(A1, A3, A2).
chirality_database(left,A1,A2,A3) :- rank_order(A2, A1, A3).
chirality_database(left,A1,A2,A3) :- rank_order(A3, A2, A1).

rank_order(A1, A2, A3) :- A1 ≤ A2, A2 < A3.

Notice that chirality(A,_) fails if there are fewer than 3 children of node A. An

important additional point to note is that the program defines chirality for an
arbitrary node in the CT and that there is no reason why these values should be
the same. (Figure 7.4.7)

7.4.3 Properties of Concavity Trees

In addition to their providing a test for chirality, concavity trees have some
useful properties, which may be summarised as follows:

1. A concavity tree combines both global and local information in a single,
integrated structure.
2. The accuracy of the representation of a given shape is under the control of the
programmer, who can “prune” the tree to ignore small features, or retain them,
in order to obtain improved precision.
3. The nodes all correspond to convex polygons, which are the (filled) convex
hulls of the (meta-)concavities.
4. Nodes in odd numbered levels correspond to shapes which are “stuck in”.
(The root, node0, is taken to be in level 1.)
5. Nodes in even numbered levels correspond to shapes which are “cut out”.
6. Each of the nodes in a CT can be labelled, by calculating a set of shape, size
and position measurements for the corresponding blob and / or its convex hull.

 317

In the sample CTs given in Figures 7.4.4, the nodes have been labelled with the
areas of the (meta-)concavities, not their convex hulls.
7. Repeated edge features, such as the bays formed between the legs of an
integrated circuit, are obvious when we inspect the CT, which contains several
similar sub-trees.
8. Semi-flexible shapes, such as a pair of scissors, often retain certain nodes /
sub-trees unchanged when they are flexed. (Figure 7.4.4(g).)
9. Touching / overlapping objects will often lead to CTs in which certain nodes
are identical to those generated by each object analysed individually. (Figure
7.4.4(f))
10. The CT can be used to determine the orientation of “difficult” shapes, for
example, where there is no obvious “long axis”. The angles used to test for
chirality can also be used to determine orientation.
11. CTs suffer from two different types of instability, which are described
below. However, this does not usually lead to serious problems.

Angle A1

Angle A2Angle A3

Centroid for Node 1
Centroid for Node 2

Largest meta-concavity
associated with Node 2

Centroid of
meta-concavity

associated with Node 4
Reference axis

Original
blob (S)

Centroid of
meta-concavity

associated with Node 3

Angles increasing

Note:
A3 > A2 > A1
So chirality is "left"

Figure 7.4.6 Chirality test based on the first program for chirality. The
diagram shows the test being applied to Node 1. (Prolog+ goal
chirality(node1,X)) The input blob is shaded mid-grey. Its largest concavity
(Node 1) is light grey and its children (meta-concavities, labelled Node 2 -
Node 4) are very dark grey. Crosses indicate the centroids of this concavity
and its three meta-concavities. Since A3 < A2 < A1, the chirality is "left".
Notice however, that the chirality calculated on Node 0 is "right". Hence, the
goals chirality(node0,right) and chirality(node1,right) both succeed.

 318

node2
node3

no
de

4

node6

no
de

8

node7

node1

node5

node9

node0

(a)

1

2 3 4

9

876

5

0

Clockwise

Clockwise

Clockwise

(b)

Figure 7.4.7 Chirality is defined in an arbitrary way, so calling chirality with
different parameters does not necessarily yield the same results. In this
example, chirality(node0,right), chirality(node1,left) and chirality(node5,
right) are all satisfied. (a) "Input" blob, Arrows show the directions of
decreasing meta-concavity area. (b) Concavity tree, Arrows show the
clockwise direction.

Instability

The two blobs shown in Figure 7.4.3(a) and Figure 7.4.3(b) differ in only one
small detail: the central "peak" of the bottom-most concavity is lower in Figure
7.4.3(a) than it is in Figure 7.4.3(b). Hence, the bottom-most concavity of this part
of the object in Figure 7.4.3(a) gives rise to one meta-concavity and one meta-
meta-concavity. The equivalent sub-tree for Figure 7.4.3(b) has two meta-
concavities. The remaining features (i.e. the other two concavities) of these two
objects are identical. The concavity trees in Figures 7.4.4(a) and 7.4.4(c) are quite
different, even though the blobs that they represent are almost identical. This
illustrates a fundamental feature of CTs, which has far-reaching implications for
their practical application. In Figure 7.4.3(c), the three "peaks" at the top of the
bottom-most concavity are aligned exactly. In this situation, it is impossible to
predict which form the tree will take; it could resemble either Figure 7.4.4(a) or
(c). In practice, camera and quantisation noise will determine which tree is
actually generated by the program. For this reason, it is occasionally necessary to
store and process more than one CT representing each class of "good" objects.
Instability is caused, of course, whenever two (meta)-concavities are separated by
only a very narrow channel between the edge of the convex hull and the edge of
the blob itself. Thus, a simple, sans serif letter 'E' may be viewed as having either
one or two concavities. (Figure 7.4.8.) If we were to use the CT approach for
shape recognition, we would, clearly, need to store two or more CTs for each case
of instability.

 319

A

B

C

(b) (c)

Centre limb short Centre limb longUnstable (3 limbs
are in line)

Convex hull

Concavity

Meta-concavity

Generates
either form

GeneratesGenerates

Concavity
Trees

(a)

0

A

Identical
sub-trees

B or C C or B

Figure 7.4.8 Instability in Concavity trees. (a) An E-shaped object in which
the ends of the three limbs are in line exhibits the first type of instability. (b)
An object with two (very nearly) identical concavities. Of course, concavity A
is analysed first. However, either B or C may be analysed next, depending on
camera and quantisation noise. (c) The canonical CT generated for the shape
in (b). Notice that there is an ambiguity about the identity of the sub-trees
corresponding to concavities B and C. This is the second type of instability.

Canonical CTs, generated by the second version of the program, are apparently

evaluated and labelled in the same order, whatever the orientation of the input
blob, since the biggest (meta-)concavities are always analysed first. (See Figure
7.4.4(b) & (d).) However, noise can again cause problems, if two concavities are
very similar. In Figure 7.4.8(b), for example, there are three concavities, two of
which are almost identical. In such a case, it is impossible to calculate a unique
canonical form of the CT, in the way that we have described. We could, of course,
redefine the concept of a canonical tree, based for example on meta-concavities.
This second form of instability can be detected very easily by a Prolog+ program,
which simply hunts for pairs of similar sub-trees in the CT.

7.4.4 Simpler Tests for Chirality

While Concavity Trees are very versatile, generating them can be quite time
consuming. In order to determine chirality, much simpler computational
techniques will often suffice and can be made to operate much faster. In this
section, just a few of the many possibilities will be described.

Second Program

This simplified procedure to determine chirality, is based on a standard Polar-
to-Cartesian co-ordinate mapping. Consider the following program:

 320

chirality(right) :-
 npo, % Normalise position and orientation
 chf, % Flip horiz. axis if longest vert. section is left
 % of image centre
 yxt, % Interchange X and Y co-ordinate axes
 ptc, % Map from polar to Cartesian co-ordinates
 yxt, % Interchange X and Y co-ordinate axes
 rin, % Integrate intensities along rows
 csh, % Make all columns the same as RHS of the image
 gli(_,Q), % Peak intensity
 thr(Q,Q), % Threshold at peak intensity
 big, % Isolate biggest region at peak intensity, if more
 % than one
 cgr(_,Y), % Find its vertical position
 dgw(_,_,_,A), % Get image size
 B is int(A/2), % Find mid-point of image (vertical axis, only)
 Y < B, % Is peak above centre of image?
 !. % Do not allow back-tracking

chirality(left).

This procedure on which this based is illustrated in Figure 7.4.9. The task of

determining chirality is reduced to testing whether or not the peak in the
integrated intensity profile (Figure 7.4.9(c)) is above or below the centre of the
image.

(a)

 (b) (c)

Figure 7.4.9 Chirality test based on the second program for chirality. (a)
Input image, after npo. (b) After [npo, yxt, ptc]. (c) [rin,plt] applied to (b).
The program finds the position of the peak integrated intensity. If the peak is
above the centre of the image, the chirality is taken to be "right". Otherwise it
is "left".

Third Program

This program fixes the orientation and position of the "input" shape using [npo,
chf] and then tests whether the centroid of the largest concavity (i.e. either a lake

 321

or a bay) is above or below the middle of the image. (Figure 7.4.10) The operator
npo has the effect of aligning a blob so that its principal axis lies along the
horizontal axis, while chf makes sure that its longest vertical section is to the right
of the centre of the image. N is a control parameter, which allows the user to
select which concavity is to be used for finding the chirality.

chirality(N,right) :-
 psk, npo,
 chf, % Flip horizontal axis if longest vertical section
 % is left of image centre
 cvd, big(N), cgr(_,Y), dgw(_,_,_,A),
 % Centroid of largest concavity
 B is int(A/2), % Find mid-point of image (vertical axis, only)
 Y < B, % Is peak in integrated intensity profile above
 % centre of image?
 pop, !.

chirality(left).

Figure 7.4.10 Chirality test based on the third program for chirality. The
input image has been normalised, using [npo,chf], so the centroid of the blob
is at the centre of the image and its principal axis is horizontal. Since the
centroid of the largest bay is below the centre of the image, the chirality is
taken to be "left". Notice that the chirality calculated in this way is different
from that derived by the fourth method.

Fourth Program

In certain situations, it may be preferable to base the chirality test on lakes
(holes), and ignore indentations. (Figure 7.4.11)

chirality(N,right) :-
 psk, % Put input image onto stack
 npo, % Normalise position and orientation
 chf, % Flip horizontal axis if longest vertical section
 % is left of image centre
 blb, % Fill lakes (holes)
 xor, % Exclusive OR - isolates lakes
 big(N), % Isolate N-th biggest lake.
 cgr(_,Y), % Find its vertical position
 dgw(_,_,_,A), % Get image size
 B is int(A/), % Find mid-point of image (vertical axis, only)
 Y < B, % Is peak in integrated intensity profile above
 % centre of image?
 pop, % Restore input image
 !. % Do not allow back-tracking

 322

chirality(left).

The reader may like to contemplate how the program can be modified to allow
indentations but not holes to be used as the basis for the chirality test.

Fifth Program

In some cases, it is impossible to obtain a reliable estimate of the orientation of
a component from the principal axis (i.e. axis of minimum second moment),
which forms the basis of the operators npo and lmi. In this case, it is possible to
use two bays, two lakes or one lake and one bay to find the orientation first. The
following program uses the two largest bays to fix the orientation (Figure 7.4.12)
Here is the program, which in other respects resembles the second program.

chirality(right) :-
 nlk, % Normalise position/orientation using lakes
 % ranked 1 & 2
 rin, gli(_,Q), thr(Q,Q),
 big, % Isolate biggest region at peak intensity,
 % if more than one
 cgr(_,Y), % Find its vertical position
 dgw(_,_,_,A), % Get image size
 B is int(A/2), % Find mid-point of image (vertical axis, only)
 Y < B, % Is peak in integrated intensity profile
 % above centre of image?
 !. % Do not allow back-tracking

chirality(left).

Figure 7.4.11 Chirality test based on the fourth program for chirality. The
input image has been normalised, using [npo,chf], so the centroid of the blob
is at the centre of the image and its principal axis is horizontal. Since the
centroid of the largest lake is above the centre of the image, the chirality is
taken to be "right". Notice that the chirality calculated in this way is different
from that derived by the third method.

 323

Figure 7.4.12 Chirality test based on the fifth program for chirality. (a) Input
image. (b) After nlk has been applied. (c) [rin,plt] applied to (b). The program
finds the position of the peak integrated intensity. If the peak is above the
centre of the image, the chirality is taken to be "right". Otherwise it is "left".

7.5 Telling the Time
In this case study, the camera views a conventional “analogue” clock. The

vision system interprets the image of the clock and calculates what time it is. The
output is given in both digital and symbolic "casual" format. Examples of the
latter are “twenty past three”, “quarter past eleven” and “ten o’clock”.

7.5.1 Significance

Analysing the image of a clock face serves as a model for a number of
important tasks for manufacturing industry. Although less common than they once
were, moving-needle meters are still widely used in automobiles, aircraft,
industrial process control instruments, domestic electricity, water and gas meters.
A machine vision system might appropriately be used to “read” instruments such
as these, during calibration and inspection.

The task of telling the time by analysing the image of an analogue clock is less
straightforward than might at first be thought. Since both hands move

 324

continuously and are linked by gears, the significance of the position of the hour
hand can only be determined after first locating the minute hand. In addition, there
are two “discontinuities”, which occur when the minute and hour hands pass the
12 o’clock position. Furthermore, special provision has to be made for analysing
the image when the minute and hour hands overlap. The task of telling the time
can be broken down into several sub-tasks, which is, of course, well-suited to
Prolog’s multiple-clause structure.

7.5.2 Simplifying Assumptions

The following assumptions were made initially, in order to make the problem
manageable.

(a) The clock face consists of a white circular disc, with a black annulus
surrounding it.
(b) The hands have black tips but are white near the centre of the face.
(c) There is no second hand.
(d) Black numerals, minute / hour “tick” marks and lettering are tolerated on the
clock face but they must be thin compared to the hour and minute hands.

Some of these conditions can be relaxed but the general effect is to make the

program more complicated. Unless we make these, or some other similar
simplifying assumptions, it seems unlikely that it would be possible to write an
effective program for telling the time, given any type of clock face. Unusual and
bizarre clock designs, such as those showing pictorial scenes, animals, cartoon
characters, etc. are outside the scope of our present discussion, since our theme in
this book is to describe techniques that are relevant in the context of
manufacturing industry.

In certain industrial calibration tasks, it may be possible to move the hands /
needle of an instrument quite quickly, under software control. This makes one
particular type of vision algorithm (image subtraction) more attractive than it
seems when we consider clocks. We shall therefore discuss how several images of
a clock, obtained over a period of several hours, can be combined. While this
seems an unreasonable approach when writing a program to tell the time, it is
nevertheless quite attractive in certain industrial applications.

7.5.3 Lighting

It is clearly important to avoid producing shadows (of the rim and hands) and
glinting (on the hands, front glass). Lighting the clock face with a broad
illumination source is ideal. One possible way to do this is to use flood lamps to
project light onto a board that has been painted matt white. The camera views the
clock face through a small hole cut in the centre of the board.

 325

7.5.4 First Program

The following program represents our first attempt at writing a program to tell
the time. It returns the time in both digital and casual formats.

telling_time(H, M, C) :-
 grb, % Digitise image
 yxt, % Interchange X & Y axes
 tbt, % Flip vertical axis
 crack, % Non-linear filter & threshold
 blb, % Fill black holes
 cgr(U,V), % Centroid of clock face
 xor, % Isolate face
 blb, % Fill black holes
 xor, % Isolate hands
 big_blobs(200), % Eliminate small blobs (noise)
 count(blobs,N), % To check whether hands overlap
 biggest, % Select minute hand (larger)
 cgr(Xm,Xm), % Find its centroid
 angle(Xm,Xm,U,V, Mangle), % Orientation of minute hand
 ((N = 2, % Test whether hands overlap
 xor, % No - so select hour hand
 cgr(Xh,Yh), % Find its centroid
 angle(Xh,Yh,U,V,Hangle)) % Orientation of hour hand
 ; % Prolog OR operator
 (Hangle is Mangle)), % Do this if hands do overlap
 A is 60 - Mangle/6, % Calculate M, floating pt.
 int(A,M), % Convert to integer
 calculate_hour(Hangle, M, H), % Calculate hours
 casual_time_conv(H, M, C), % Convert to casual format
 !.

% Interpret hour hand position, considering minute hand position.
calculate_hour(Hangle, M, H) :-
 % Calculate hours when minutes < 30.
 M < 30, A is (367 - Hangle)/30, int(A,H).

calculate_hour(Hangle, M, H) :-
 % Calculate hours when minutes ≥ 30
 M ≥ 30, A is (353 - Hangle)/30, int(A,H).

% Break task of converting to casual time format into twelve small
% units.

% 0 - 2 mins past hour. Example of output: [six, o_clock]
casual_time_conv(A, B, C) :-
 B ≤ 2, % Check minutes ≤ 2
 number_to_words(A,D), % Convert hour to word format
 C = [D,o_clock]. % Create output list

% 3 - 7 mins past hour. Example of output: [five, past, four]
casual_time_conv(A,B,C) :-
 B ≥ 3, B ≤ 7, % Check minutes
 number_to_words(A,D), % Convert hour to word format
 C = [five,past,D]. % Create output list

% 8 - 12 minutes past the hour. Example: [ten, past, four]
casual_time_conv(A,B,C) :-
 B ≥ 8, B ≤ 12, number_to_words(A,D), C = [ten,past,D].

% 13 - 17 minutes past the hour. Example: [quarter, past, four]

 326

casual_time_conv(A,B,C) :-
 B ≥ 13, B ≤ 17, number_to_words(A,D), C = [quarter,past,D].

% 18 - 22 minutes past the hour. Example: [twenty, past, four]
casual_time_conv(A,B,C) :-
 B ≥ 18, B ≤ 22, number_to_words(A,D), C = [twenty,past,D].

% 23 - 27 minutes past the hour. Example: [twenty, five, past,
four]
casual_time_conv(A,B,C) :-
 B ≥ 23, B ≤ 27, number_to_words(A,D), C = [twenty,five,past,D].

% 28 - 32 minutes past the hour. Example: [half, past, four]
casual_time_conv(A,B,C) :-
 B ≥ 28, B ≤ 32, number_to_words(A,D), C = [half,past,D].

% 33 - 37 minutes past the hour. Example: [twenty, five, to, five]
casual_time_conv(A,B,C) :-
 B ≥ 33, B ≤ 37, D is A +1, number_to_words(D,E),
 C = [twenty, five, to,E].

% 38 - 42 minutes past the hour. Example: [twenty, to, five]
casual_time_conv(A,B,C) :-
 B ≥ 38, B ≤ 42, D is A +1, number_to_words(D,E),
 C = [twenty, to,E].

% 43 - 47 minutes past the hour. Example: [quarter, to, five]
casual_time_conv(A,B,C) :-
 B ≥ 43, B ≤ 47, D is A +1, number_to_words(D,E),
 C = [quarter, to,E].

% 48 - 52 minutes past the hour. Example: [ten, to, five]
casual_time_conv(A,B,C) :-
 B ≥ 48, B ≤ 52, D is A +1, number_to_words(D,E), C = [ten, to,E].

% 53 - 57 minutes past the hour. Example: [five, to, five]
casual_time_conv(A,B,C) :-
 B ≥ 53, B ≤ 57, D is A +1, number_to_words(D,E),
 C = [five, to,E].

% 58 - 60 minutes past the hour. Example: [five, o_clock]
casual_time_conv(A,B,C) :-
 B ≥ 58, B ≤ 60, D is A +1, C = [D,o_clock].

% Converting numbers to words. There are twelve clauses covering
% cases 1 - 12.
number_to_words(1, one).
number_to_words(2, two).
……
number_to_words(12,twelve).

7.5.5 Other Methods

Relaxing one of the assumptions The program listed above will work well
with only the very simplest types of clock face, such as that shown in Image

 327

7.5.1(a). For example, it will produce spurious results if any of the following
apply:

(a) The hands extend to the rim of the face.
(b) The numerals are of comparable thickness to the hands.
(c) The hands are black near the centre of the face.

The last mentioned variation in clock face design can be accommodated easily,

by drawing a small white disc that is concentric with the clock face. To do this,
we simply replace [cgr(U,V), xor] in telling_time by the following program
segment:

cgr(U,V), % As before
dim(A,B,_,_), % Find X limits of clock face
R is 0.25*(B - A), % Make disc radius = 0.5* face radius.
xor, % As before
draw_disc(U,V,R) % Disc is concentric with face

Further variations in clock-face design can often be accommodated using

“patches” to accommodate special cases. However, a more fundamental change of
approach is needed, if we are to produce a more robust program, capable of
working with a wider variation of clock designs.

Hough Transform The Hough transform can be used to good effect to locate

the hands on most types of clock. This technique works best on clocks which have
long straight hands and a face plate that is almost plain. Image 7.5.2 shows how
the Hough transform can be used to find the orientation of the minute and hour
hands. Notice that it may be beneficial to apply some other image processing
operations before the Hough transform is performed, in order to make sure that
the hands are represented by narrow lines. This has the effect of making the spots
in the Hough transform image easier to detect reliably, because they are smaller
and have a higher contrast.

Polar-Cartesian axis transformation. Another elegant approach uses the Polar-

Cartesian axis transformation (ptc, see Image 7.5.3). This operation converts
concentric circles into parallel horizontal lines and radial features (“wheel
spokes”) into parallel vertical lines. Thus, the hands of the clock become mapped
into two vertical dark bars, which can easily be located. It is also a straightforward
matter to distinguish the minute and hour hands, since the latter produces a shorter
vertical bar.

Image 7.5.3(b) illustrates the effect of applying ptc to the original (grey-scale)
image of a simple clock face. The horizontal axis corresponds to angles measured
relative to the line joining the face centre to the 12 o’clock position. The vertical
axis corresponds to distance, measured from the face centre. The minute hand is
the longer of the two dark grey “fingers”. The dark horizontal band is due to the
rim of the clock face, while the hour “tick” marks are located beneath it. Notice
that the operator ptc requires two parameters which define the centre of the polar-
Cartesian axis transformation. This can conveniently and easily be derived from

 328

the centroid of the face disc. Slight errors arise as a result of quantisation noise,
when calculating the centre of the face. This inevitably leads to a small
“sinusoidal” wave in the image of the rim. Its effect is not important for our
application. Image 7.5.3(c) illustrates the result of applying the command
sequence [yxt, rin, csh, wgx, sub, thr, bed, yxt] applied to (b). This is equivalent to
integrating the intensity in Image 7.5.3(a) along a series of radii. The major peaks
here are easy to detect and locate, thereby enabling the clock to be “read”. The
minor peaks are, of course, due to the hour “tick” marks. Image 7.5.3(d) illustrates
the original image from a real clock. Notice the fluorescent tips of the hands. It
would, of course, be possible to increase the image contrast by illuminating with
ultra-violet light. However, we chose not to do this, so that we could demonstrate
the method on a more complex visual analysis task.

Image Subtraction One possible method of analysing the clock image that is

potentially much more robust is to compare it with a face which has no hands. A
similar effect can be obtained by comparing the clock image with another image,
obtained some time (at least one hour) before. Then, simple image subtraction,
allows the hands to be identified easily. (Image 7.5.4)

The following program allows an image of the face to be reconstructed, as if the
clock did not have any hands. This program operates on the assumption that the
face is bright compared to the hands, the camera and clock are both fixed rigidly
and the lighting is constant over a 12 hour period.

build_face_image :- timer(0), grb, wri, fail.

build_face_image :-
 delay, % Don’t do things too often - reduces noise
 grb, rea, max, wri, timer(X),
 X < 12.0, % Observe clock for 12 hours
 !, % Needed to improve program efficiency
 build_face_image. % Repeat

build_face_image :- rea. % Get clock face image from disc

It is now a straighforward matter to locate the hands. To do this, we simply
subtract the image created using build_face_image from the picture of the clock.
Simple thresholding will then isolate the hands. (See Image 7.5.4)

7.5.6 Concluding Remarks

The purpose of this case study was to demonstrate that, what may seem to be a
simple application, may be quite complicated and require the use of AI
techniques. None of the methods described above is "complete", in being able to
tell the time correctly for all designs of clock face. Indeed, it is quite to easy to
contrive special cases where they all fail. While the image subtraction method is
probably the most robust, it does require that the clock be stationary within the
camera’s field of view for a long period. As we have pointed out, this is not
necessarily a serious problem in some industrial instrument calibration tasks. For
example, suppose that we wish to calibrate an aircraft's barometric altimeter.

 329

During calibration, the signal from the transducer (measuring air pressure) going
into the cockpit display instrument is replaced by one generated electronically.
The test equipment then moves the instrument needle to a number of pre-set
positions (e.g. 5000, 10000, 20000 feet, etc.) and the vision system locates the
needle(s). In this type of application, the image subtraction method will probably
be acceptable, whereas it would be far too slow for setting the time on clocks.

7.6 Food and Agricultural Products

7.6.1 Objective

In this section, we shall present a series of case studies, demonstrating how
Prolog+ can be used to ensure that agricultural and food products are well formed,
safe (i.e. have no large-body contaminants) and are attractive in appearance.
Outline solutions will be presented, in the hope of convincing the reader that there
is a large potential for machine vision in the agri-food industry, where there is
inevitably a high degree of product variability.

7.6.2 Industrial Relevance

Since no physical contact is made with the objects being inspected, automated
visual inspection is inherently and totally hygienic. Furthermore, machine vision
can be used to examine soft and semi-liquid materials, such as purées of fruit and
vegetables, tomatoes, uncooked dough, whipped cream, icing, butter etc., without
any chance of deforming them. Since it is theoretically possible to examine a wide
variety of features on food products, it would be reasonable to expect that we
would find machine vision being used extensively throughout the food industry.
In fact, this is not so. In the past, machine vision has been applied successfully in
many widely different situations in the “hard” manufacturing industries (e.g.
automobile, electronics, aircraft and consumer goods). These industries typically
manufacture objects with close tolerances, often with micron-level accuracy on
linear dimensions. By way of contrast, the food industry produces artefacts which
are much more variable; tolerances are measured in terms of millimetres. This has,
in the past, presented quite severe difficulties for standard (i.e. “non intelligent”)
machine vision systems, which are much better suited to verifying that well-
defined products are being made as they should be. It has been found to be much
more difficult to build machine vision systems which are able to cope with the
high degree of variability in shape, size and appearance that characterises food
products. While there is no doubt that this high level variation has hindered the
acceptance of machine vision technology in the food industry, there has been
some notable work in the agri-food area. [CHA-95]

• Biscuits, inspecting biscuits.

 330

• Bread, analysing texture.
• Carrots, controlling trimming.
• Cherries, detecting kernel shells embedded in flesh.
• Chicken / fish, detecting bones, using x-rays.
• Chips (french fries), inspecting for black spots.
• Confectionery, controlling decoration.
• Fish fingers, counting.
• Flat fish, controlling trimming.
• Flour, measuring bran content.
• Lettuce, harvesting.
• Loaves, measuring shape and volume.
• Measuring the thickness of chocolate on confectionery.
• Meat, measuring fat: lean ratio.
• Mushrooms, harvesting mushrooms.
• Potatoes inspecting.
• Sacramental wafers, inspection.
• Seeds (e.g. rice, wheat kernels, etc.), sorting.

Chan [CHA-95] provides an overall review of the achievements and potential

for applying machine vision in the food processing industry. Another notable
source of information about the need for improved food quality is to be found in
newspapers. It is all too common to see headlines which report that a foreign
body, such as a sliver of glass, metal bolt, dead mouse, bird’s skull, or snail, has
been found in food products, ranging from packaged peanuts and bottled milk to
loaves and pizza. Numerous cases of foreign body contamination of food products
are heard in the lower courts, but few cases ever reach the higher courts. It seems
that in the UK and Ireland, most food manufacturers either settle out of court, or
are fined in a lower court for selling products which contain dangerous /
unpleasant foreign bodies.

We are left with several main conclusions:

(a) Machine vision is ideally suited to inspecting food products since it is totally
hygienic.
(b) There remains a major problem of detecting foreign bodies in food.
(c) There is a continuing problem which manufacturers face, in making
malformed products which lead to customer dissatisfaction, even though they
are perfectly safe and nutritious. Such products are sometimes pulped and
recycled, or simply sold as scrap for animal feed. In both cases there is a loss of
valuable product and hence profit.
(d) There are numerous potential (i.e. unsolved) applications of machine vision,
where the existing technology has been unable to provide a cost effective
solution.
(e) In both Europe and USA, even more stringent product safety laws are being
imposed, particularly on the food and pharmaceutical industries.

 331

(f) There has been a distinct reluctance to employ machine vision systems in the
food industry, on account of the high capital cost of such systems and low profit
margins in this industry.

The principal reasons why low-tolerance products, such as confectionery,

loaves, meat pies, pizzas, etc. are difficult to inspect using machine vision are as
follows:

(i) It is impossible to guarantee that viewing / lighting angles are optimal, if the
product shape is changing drastically and unpredictably.
(ii) There are no firm points (e.g. corners, straight sides, drilled holes, etc.) on
which to “anchor” measurements.
(iii) The interpretation of measurements and other data derived from highly
variable artefacts requires subtle (i.e. rule-based) analysis.

For these reasons, we need to employ more “intelligent” machine vision

systems in the food industry than have been used in the “hard” manufacturing
industries.

7.6.3 Product Shape, Two-dimensions

Many mass-produced food products, such as pies, tarts and certain types of loaf
are made in moulds, while others are extruded and then cut off to a given length.
The latter is especially popular for making confectionery, since it employs a
highly reliable continuous manufacturing process, which lends itself very well to
full automation. Another popular manufacturing technique is to stamp out
(complicated 2D) shapes from a sheet of soft material, such as dough, using a
specially shaped knife. In all of these cases, the shape of at least part of the
product is quite well controlled. However, there are numerous instances of food
products being made without any constraints, except that they lie on a flat tray.
For example, (American-style) cookies, macaroons, meringues, Welsh cakes, and
scones are formed by depositing a preformed (stamped) shape of dough-like
consistency, or an amorphous “dollop” of a semi-liquid material, onto a flat
surface where it is baked. As it cooks, the “dollop” takes on a new shape, which
develops in an unpredictable and uncontrolled way. Croissants, Cornish Pasties,
and filled pies all have widely varying shapes for this reason. Checking product
shape, given a binary image representing its silhouette, is one of the most
important tasks in food inspection. We shall therefore consider this task in some
detail, beginning with very simple shape checks and progressing to more
sophisticated methods.

Image Acquisition

In order to generate a high-contrast image, which can then be thresholded to
create a binary image, we can use one of several lighting-viewing techniques.
[BAT85]

 332

(i) Back lighting, with a light source located behind the object being examined.
(ii) Front lighting, using an ultra-violet light source and a fluorescent
background. A UV-blocking filter is placed in front of the camera lens.
(iii) Front lighting using an ultra-violet light and a UV-absorbent, non-
fluorescent background. This works only if the object being examined is
fluorescent. Again, a UV-blocking filter is placed in front of the camera lens.
(iv) The CONSIGHT structured-lighting system. [HOL-79] This requires that
the objects being inspected are carried on a smooth conveyor belt. (A chain belt
would not be appropriate.)
(v) Off-axis front illumination, using carefully collimated (parallel-beam) light
sources which shine on the object but not on the background. The latter must be
placed some considerable distance behind the object, to avoid light falling on its
surface.
(vi) Front lighting using coaxial illumination and viewing, and a retro-reflective
background surface.
(vii) Front lighting and a highly coloured background. A programmable colour
filter or a simple optical filter can improve the contrast between the object and
its background. This technique only works with objects which are not strongly
coloured.
(viii) Thermal imaging camera. The object being examined must be hot and no
external light is required.

The final choice of lighting-viewing method can only be made when the full

application requirements are known. Let us turn our attention now to algorithmic
and computational techniques for inspecting silhouettes of food products,
assuming that a binary image has already been created

Rectangular and Circular Biscuits

First, let us discuss how we can inspect rectangular objects such as biscuits. The
following program will do this quickly and reliably, provided that the straight
sides of the biscuit lie parallel to the image border.

rectangular_biscuit :-
 grab_and_process_image, % Generate binary image
 mar, % Draw minimum area rectangle
 max, % Superimpose MAR onto original (binary) image
 blb, % Fill holes
 xor, % Isolate differences between MAR & original image
 3•skw, % Shrink white areas.
 cwp(0). % Have all white regions disappeared?

rectangular_biscuit succeeds if the object being viewed is nearly rectangular and
is aligned to the image axes. If the biscuit is rotated, relative to the camera, or the
biscuit is broken, rectangular_biscuit fails. In many food manufacturing
applications, it is perfectly reasonable to expect that the objects being inspected
will arrive in front of the camera in known orientation. (The material cutting and
mechanical handling arrangements ensure this.) However, if this condition is not

 333

satisfied, we simply add one extra step, npo, before the second sub-goal in
rectangular_biscuit.

Another method of aligning the silhouette is needed if the alignment assumption
is invalid and the biscuit is square. One possible way to do this is explained in
Figure 7.6.1. We identify the top- and left-most points of the biscuit (A and B
respectively) and then draw two vertical lines to intersect the biscuit at points C
and D. Notice that the vertical lines through points A, B, C and D are equally
spaced. The orientation of the biscuit is then determined by that of the line CD.
We shall use a similar technique when we consider the inspection of slices of
bread and will describe the program to do this, in detail then.

A

B

C
D

Orientation of biscuit derived
from line through C and D

Xb XaXd Xc

Xa - Xc = Xc - Xd = Xd - Xb

Minimum area rectangle

Biscuit

Figure 7.6.1 Alignment of a biscuit.

It is a straightforward task to verify that a biscuit, cake, pizza, or pie is nearly

circular. Here is a program to do this.

circular :-
 grab_and_process_image, % Generate binary image
 bed, % Derive edge
 cwp(A), % Count edge points
 wri, % Save image for later
 ccc, % Draw circumcircle
 3•exw, % Make it thicker. Adjust loop parameter to taste
 rea, % Recover edge image
 min, % Apply “thick circumcircle” as a mask on edge image
 cwp(A). % Do all edge pixels lie within 3 pixels of
 % circumcircle

A simple alternative to the above scheme will be defined in a little while. This

second procedure fits an ellipse into the minimum area rectangle (MAR)
surrounding the blob which is to be tested for circularity. The aspect ratio of this

 334

ellipse and the areas of protuberances and indentations, defined by this ellipse, are
computed. If the aspect ratio is outside defined limits, or the areas of the
protuberances or indentations are too large, circular fails.

circular :-
 psk, % Push image onto stack
 dim(L,T,R,B), % Find limits of minimum area rectangle (MAR)
 zer, % Draw black image
 cir(L,T,R,B,255), % Draw ellipse within MAR
 tsk, % See image at top of stack
 sub, % Subtract images
 thr(200), % Isolate areas outside fitted circle
 cwp(U), % Count points
 swi, % Area of protuberances
 thr(0,100), % Isolate areas inside fitted circle
 cwp(V), % Area of indentations
 pop, % Restore input image whatever the result
 S is ((R - L)*(R - L)) / ((B - T)*(B - T)),
 % Squared aspect ratio of MAR
 circularity_tolerance(U1,V1,W1,W2),
 % Consult DB for tolerance limits
 S ≥ W2, % Fails if object is an ellipse, rather than circle
 S ≤ W1, % Fails if object is an ellipse, rather than circle
 U ≤ U1, % Fails if area of protuberances is too large
 V ≥ V1. % Fails if area of indentations is too large

circularity_tolerance(200,202,0.95,1.05).
 % Database for shape parameters

This second definition of circular could, of course, be extended easily to inspect

elliptical objects. We simply add npo after the first sub-goal and adjust the aspect-
ratio limits stored in circularity_tolerance (third and fourth parameters). There
are, of course, many other possible techniques for examining “geometric” shapes
such as squares, rectangles, circles and ellipses. It must be borne in mind,
however, that the shapes found in food products bear only a very loose
resemblance to the mathematical entities which bear the same names. For
example, a “circular biscuit” is not truly circular in the mathematical sense.
Nevertheless, inspecting food products with “geometric” shapes is rather simpler
than some of the other applications that we shall consider later. We could use any
of the techniques listed below to examine nominally circular food products, which
have a wide range of variability.

(a) Shape ratio (shf, which is based on the ratio of the area of a blob to the
square of its perimeter) to examine circular objects.
(b) Ratio of the area of the convex deficiency [cvd] of a blob to that of the blob
itself. This detects indentations quickly and easily. Convex shapes, such as
squares, rectangles, circles and ellipses, all produce a small value for this ratio
(close to zero).
(c) Find three edge points and then fit a circle to intersect all of them. Suppose
that the radius of the fitted circle is R and its centre is at [X,Y]. We then draw a
circular annulus, centred on [X,Y] with radii R ± K.R, where K is much smaller
than 1.0 and then test, to make sure that all edge points lie within this annulus.

 335

(d) Compare the minimum bounding circle [mbc] with a nominally circular
object.
(e) Use the modified version of the Hough transform which can locate circles.
(f) Compute the differences between the minimum area rectangle [mar] and the
silhouette. This is suitable for inspecting rectangular objects, such as biscuits,
with rounded corners. Here is the program code:

rounded_rectangular_biscuits :-
 grab_and_process_image, % Generate binary image
 npo, % Normalise position and orientation
 cwp(A), % Area
 mar, max, blb, xor, % Isolate corners
 skw, % Ignore minor indentations
 blp(B), % Measure parameters of all blobs
 length(B,), % Check there are 4 rounded corners
 compare(A,B). % Simple Prolog test for corners

Slices of Bread

Examining the silhouette of a slice of bread is rather more complicated than
inspecting the simple moulded / pressed shapes found in biscuits (Images 7.6.1
and 7.6.2). The ideal shape of slices from a lidded tin loaf is square, so that the
filling of a sandwich does not ooze out at the edges. It is, of course, a simple
matter to modify the rules described above to inspect the square slices taken from
a lidded tin loaf. Hence, we shall not discuss this type of loaf in much detail here.
On the other hand, non-lidded tin loaves are only partially constrained during
baking and hence are more variable in the shape of the top surface. This makes
inspecting them a more challenging and interesting task. Of course, there are
many other types of loaf. The most difficult ones to inspect are those which are
baked on a flat tray and are therefore totally unconstrained as the dough rises
during baking. We shall concentrate for the moment upon the non-lidded tin loaf
and merely illustrate the processing of images from a lidded tin loaf in passing.

The most complicated part of the task of inspecting a slice taken from a non-
lidded tin loaf is the identification and measurement of appropriate features. Once
a set of measurements has been derived from a slice, it is a relatively
straightforward matter to compare them with stored values, using learning and
recognition rules similar to those outlined in Section 7.2.4. There are several steps
in the process of deriving suitable measurements:

(a) Locating the base of the slice, calculating and then normalising its
orientation. (This will provide a reference for subsequent angle measurements.)
(b) Isolating the straight parts of the sides and calculating their orientations
relative to each other and to the base.
(c) Locating the top of the slice and measuring its radius of curvature.
(d) Isolating and measuring the “overspill”. (This is the upper part of the loaf
which spreads out as the dough rises, overspilling the rim of the open-top
baking tin.)

Locating the Base and Determining Orientation

 336

One possible way to determine the orientation of a slice of bread, prior to
analysing its shape, is to use the Hough transform [huf]. Image 7.6.2 shows the
Hough transform image derived from the slice silhouette, after the binary edge
detector operator [bed] has been applied. The location of the brightest point in the
Hough transform output image (Image 7.6.2(d)) indicates both the position and
orientation of the bottom edge of the slice. We can, of course, use this information
to good effect, to normalise the orientation of the image of the slice, since this is
the longest linear edge segment. Our experience has shown that the Hough
transform is more accurate in this application than the faster operator, lmi. (Image
7.6.2(c)) The reason is that the loaf is almost square and has no obvious “long
axis”. This remark applies particularly to the lidded tin loaf (Image 7.6.1), which
ideally has a square cross section.

Another possible technique for determining the orientation of a slice is to
choose two points on the bottom (nearly straight) edge of the slice. (Image
7.6.2(k)) We then find the orientation of the line joining those points, using the
operator ang (c.f. Figure 7.6.1). This technique is rather faster than that based on
the Hough transform and is sufficiently accurate and reliable, provided that the
slices are always orientated approximately. Assuming that the orientation of the
bottom edge of slice does not vary by more than about ±30°, relative to the
horizontal axis of the image, this method will work reliably. In many industrial
applications of machine vision, an assumption of this general type is perfectly
reasonable and reflects reality, where approximate, but not precise, positioning
and alignment can be guaranteed by simple mechanical means, such as guide rails,
deflector plates, etc. Assumptions like this often allow much simpler / faster
computational methods to be used in machine vision. Despite its great popularity
among image processing specialists, the Hough transform is often far less
attractive for industrial applications than an alternative heuristic procedure, which
is often simpler and faster and hence more likely to find its way into an industrial
machine vision system.

It often happens, when studying industrial applications of machine vision, that
problem-specific knowledge allows a simpler and faster heuristic procedure to be
used, in preference to an algorithmic technique, even though the latter has
received the benefit of detailed mathematical analysis. We very often find that
implementation details preclude the use of certain “mathematically proven”
computational techniques.1 The authors would prefer to use some computationally
convenient heuristic methods in this particular application, rather than the Hough
transform, reflecting their conviction that Industrial machine vision should
properly be regarded as a Systems Engineering discipline and not as part of the
science of computer vision.

However, for the sake of completeness and to demonstrate that Prolog+ is
sufficiently versatile to accommodate both approaches, we shall present two
programs with which we can calculate and normalise the orientation of a slice of

1 This is, of course, a dynamic situation, since a procedure that is too expensive

/ slow to implement now may become more attractive in a few years time, after
computational and electronic hardware techniques have improved.

 337

bread taken from a non-lidded tin loaf, beginning with one based on the Hough
transform:

normalise_loaf_orientation1 :-
 psk, skw, xor, % Edges are left behind
 huf, % Hough Transform
 gli(_,A), thr(A,A), big, cgr(X,Y),
 dgw(L,T,R,B), % Image size
 Z is int(-90*X/(R-L+1)), % Rescale to calculate angle
 tsk, % See image at top of the stack
 tur(Z), % Rotate so strongest linear feature (base) is horizontal
 pop, % Recover original image
 swi. % Switch images - normalised image is in current image

The simpler alternative, in which we determine the orientation using two edge

points may be implemented thus (c.f. Figure 7.6.1):

normalise_loaf_orientation2 :-
 psk, % Push image onto stack
 dim(A,_,B,_), % Dimensions of loaf
 X1 is int(0.7*A + 0.3*B), % Vert. scan line towards left of base
 X2 is int(0.3*A + 0.7*B), % Vert. scan line towards right of base
 scan(X1,X2,Y1,Y2), % Intersections of 2 scan lines & edge
 % of base
 ang(X1,Y1,X2,Y2,_,Z), % Angle of base w.r.t. horizontal
 Z1 is int(-Z), % Negate angle
 tur(Z1), % Turn loaf image
 pop, % Restore input image
 swi. % Switch images

Locating Straight Sides

A program will be described which fits a straight line to the linear section of the
side of a non-lidded tin loaf. Refer again to Image 7.6.2(d), which shows the
Hough transform derived from the silhouette of a slice. Notice that there are three
strong, well-defined peaks. We have already located and analysed one of these, to
find the orientation of the base. The two other peaks correspond to the straight
sides of the slice and can be analysed in a similar way. Notice that these two peaks
have approximately equal co-ordinates along the horizontal axis, indicating that
the lines they represent are almost parallel.

A procedure can be defined in terms of the Hough transform and which uses a
set of edge points located on one side of the slice. Of course, this uses a similar
process to that embodied in normalise_loaf_orientation2 and hence will not be
described in detail. Instead, we shall concentrate on a third method which uses lmi
in an unusual way. Although we dismissed using this operator earlier, it can be
used to good effect provided that we apply it to a section of the edge contour and
not to the whole slice silhouette.

% Fit a straight line to the linear part of the left-hand-side of
% the loaf
loaf_left_side(Z) :-
 psk, % Push image onto stack
 dim(L,T,R,B), % Dimensions of loaf
 Y1 is int(T + (B-T)*0.5), % Upper part of linear section
 Y2 is int(T + (B-T)*0.8), % Centre of linear section

 338

 tsk, % See image at top of stack
 bve(L,Y1,R,Y1,X1,_,_,_), % Intersection of top scan line with
 % edge of loaf
 tsk, % See image at top of stack, again
 bve(L,Y2,R,Y2,X2,_,_,_), % Intersection of middle scan with edge
 zer, % Black image
 fld(X1,Y1,X2,Y2), % Fit straight line to linear part of
 % left of loaf
 angle(X1,Y1,X2,Y2,Z), % Calculate angle of this line
 pop, % Restore original image
 swi. % Switch images

% Fit a straight line to the linear part of the right-hand-side of
% the loaf
loaf_right_side(A) :-
 psk, % Push image onto stack
 lrt, % Flip horizontal axis
 loaf_left_side(B), % Fit straight line to edge on LHS
 A is -B, % Invert angle as calculated for LHS
 lrt, % Flip horizontal axis again
 pop, % Restore original image
 swi. % Switch images

Measuring Overspill

The lines formed by loaf_left_side and loaf_right_side allow us to identify the
overspill. (Image 7.6.2(g)(h)). We explained earlier that this is the upper part of
the slice which overhangs the sides of the baking tin.) Thus, the overspill can be
reduced to two blobs, which can in turn be represented by two sets of simple
shape parameters, such as area, perimeter, dimensions and aspect ratio.

Radius of Curvature of Top Edge

Let us assume, for the sake of simplicity, that the orientation of a slice from a
non-lidded tin loaf has already been normalised (i.e. the bottom edge is nearly
parallel to the image border). Using the following program, we can measure the
radius of the top edge. (Figure 7.6.2)

Figure 7.6.2 Fitting a circle to the top surface of a non-lidded tin loaf, using
three sample points.

 339

loaf_top(X0,Y0,Rad) :-
 psk, % Push image onto stack
 dim(A,_,B,_), % Dimensions of blob
 X1 is int(0.8*A + 0.2*B), % X-position: first vertical scan line
 X2 is int(0.5* (A + B)), % X-position: second vertical scan line
 X3 is int(0.2*A + 0.8*B), % X-position: third vertical scan line
 scan_3_lines(X1,X2,X3,Y1,Y2,Y3), % Three vertical scan lines
 fit_circle(X1,Y1,X2,Y2,X3,Y3, X0,Y0,Rad),
 % Fit circle to intersections
 pop, % Pop image stack
 swi. % Switch images

% Find Y intersections of blob with three vertical scan lines given
% X-positions
scan_3_lines(X1,X2,X3,Y1,Y2,Y3) :-
 psk, % Push image onto stack
 dgw(L,T,R,B), % Image dimensions
 bve(X1,T,X1,B,_,Y1,_,_),
 % Find intersections with first scan line
 tsk, % See image at top of stack (Do not POP)
 bve(X2,T,X2,B,_,Y2,_,_),
 % Find intersections with second scan line
 tsk, % See image at top of stack (Do not POP)
 bve(X3,T,X3,B,_,Y3,_,_),
 % Find intersections with third scan line
 pop. % Recover “input” image

% Fit a circle to three points
fit_circle(X1,Y1,X2,Y2,X3,Y3, X0,Y0,Rad) :-
 circle(X1,Y1,X2,Y2,X3,Y3, X0,Y0,Rad), % Defined below
 L is int(X0 - Rad), R is int(X0+ Rad),
 T is int(Y0 - Rad), B is int(Y0 + Rad), zer,
 cir(L,T,R,B,255). % Draw circle inside rectangle

% Radius R & centre [Px,YPy] of circle through points [Ax,Ay],
% [Bx,By] & [Cx, Cy]
circle(Ax,Ay,Bx,By,Cx,Cy,Px,Py,R):-
 D is 2*(Ay*Cx + By*Ax -By*Cx - Ay*Bx - Cy*Ax + Cy*Bx),
 Px is (By*Ax^2 - Cy*Ax^2 - Ay*By^2 + Ay*Cy^2 + Cy*Bx^2 +
 By*Ay^2 + Ay*Cx^2 - By*Cy^2 - By*Cx^2 - Ay*Bx^2 +
 Cy*By^2 - Cy*Ay^2)/ D,
 Py is (Cx*Ax^2 + Cx*Ay^2 + Ax*Bx^2 - Cx*Bx^2 + Ax*By^2 -
 Cx*By^2 - Bx*Ax^2 - Bx*Ay^2 - Ax*Cx^2 + Bx*Cx^2 -
 Ax*Cy^2 + Bx*Cy^2) / D,
 R is sqrt((Ax - Px)^2 + (Ay - Py)^2).

7.6.4 Analysing the 3D Structure of an Uncut Loaf

To conclude this section, we briefly discuss the analysis of the 3-dimensional
shape of the top surface of a loaf using a so-called Depth Map. This is an image in
which the "intensity" indicates the height of a surface, not the amount of light
coming from it. An optical arrangement for generating depth maps is shown in
Figure 7.6.3. This technique is variously called light stripe sectioning, structured
lighting and triangulation, and relies on the fact that the loaf is moved
progressively past the camera and light-stripe generator. The latter can very
conveniently be built, using a diode laser, fitted with a cylindrical lens. At each X-
position for the loaf, a vector of height-measurement values is created. This vector
describes the height of that curve formed by the intersection of the top surface of

 340

the loaf with a vertical plane. Of course, some parts of a loaf, such as indentations
in its sides and ends, are obscured. Occlusion can cause difficulties for subsequent
analysis of the range map. To overcome this, more sophisticated range-
measurement techniques are needed. For example, it is possible to use three, or
more, laser light-stripe generators and cameras to obtain an "all-round" view of
loaf sides and top surface. (We cannot, of course, measure the base.) As we shall
see, minor occlusions can result in black spots appearing in depth maps and these
require the use of special processing techniques.

An important point to note is that in Figure 7.6.3(a), the light-stripe generator is
located directly above the loaf, while the camera views it obliquely. Many articles
and books, even a wall-poster produced by a learned society show the camera
placed above the sample and the laser off-set to one side. However, this makes the
analysis of the data very much more difficult and it is far easier to use the
arrangement shown in Figure 7.6.3(a). The reason is simple: the light stripe
effectively forms a section of the object being measured. If a ray produced by the
laser does not lie in the vertical plane, its point of intersection with the surface is
not fixed, along the X axis. The reader is therefore strongly urged to use the
arrangement shown in Figure 7.6.3(a).

Image 7.6.3(a) and (b) show the light stripe falling on the top surface of a
round-top bread roll. Of course, we would normally choose to operate any optical
rig in the dark, in order to avoid interference from highly-variable ambient light.
However, it is possible to make the light-stripe sectioning technique very robust,
since the laser generates high-intensity monochromatic light, whereas ordinary
(i.e. pan-chromatic) room lighting typically has very little energy within the
narrow pass band of a notch filter placed in front of the camera lens. The image of
the light-stripe as detected by the camera can easily be processed and the list of
surface-height values created. The program to do this is straightforward and is
based on the "crack detector" [crk] and skeletonisation [ske] operators:

% Find list of surface height values for one X-position of sample.

one_row_height_data(L) :-
 grb, % Digitise an image
 neg, % Negate image, so stripe is dark
 crk, % Crack detector finds thin dark features
 thr(32), % Threshold - adjust parameter to taste
 3*exw, 3*skw, % Noise removal
 ske, % Skeletonisation
 rin, % Integrate intensities along row - finds
 % where light stripe is.
 vgt(L). % Instantiate L to list of height values for
 % this X-position

 341

(d)

Array camera
Laser fitted with

cylindrical lens generates
a fan-shaped beam

Carriage motion
(Constant velocity /

indexed)

Object being
examined

(a)

Object
surface

DS

L
H

A Pinhole

Retina

(b)

(c)

Figure 7.6.3 Generating depth maps using structured lighting. (a) Optical-
scanning arrangement. (b) Ray geometry. The surface height, H, is given by
the formula: H = D.L.(1 + tan2(A))/(S.tan(A) + D). (c) Projecting a light
stripe onto a block on a plane surface. (d) What the camera "sees". The height
of the "pulse" is D. Using the formula just given, the height of the block (H)
can be determined.

Another particularly important point to note is that the technique for generating

depth maps outlined in Figure 7.6.3 is inherently slow; a depth map with N rows
can be created in N video frame-scan periods. If N = 512 and the frame-scan
period is 0.040 seconds (PAL / CCIR standard), the depth map can be formed in
10.24 seconds. This may well be unacceptably long for many industrial
applications. For example, it would not be possible to perform 100% inspection of
loaves in a commercial bakery with this method. To overcome this difficulty,
various other techniques are have been devised, including simultaneously
projecting a series of (monochrome) light stripes (Image 7.6.4) and multi-coloured
bands, from which a series of cross-section profiles can be created from a single
image (Image 7.6.5). However, we shall ignore the problems caused by the slower
arrangement shown in Figure 7.6.3, since we merely want to illustrate the basic
principles of depth map generation and analysis.

Image 7.6.6 shows depth maps derived from a croissant, Cornish pastie (a
"parcel" of meat and vegetables, wrapped in a pastry case) and a non-lidded tin
loaf with a "split" at the top. It is possible to calculate intensity contours
(isophotes) using the following program (also see page 104):

contours :-
 psk, % Push image onto the stack for display later
 raf, % Filter to make contours a bit smoother

 342

 sca(3), % Reduce number of grey levels to 8. Adjust
 % parameter to taste
 sed, % Edge detector
 thr(1), % Threshold - result is binary image
 pop, % Recover original image
 swi. % Switch images

Since "intensity" in a depth map indicates surface height, the isophotes are also

height contours, just like the contours of elevation drawn on a map. It is also
possible to draw both horizontal and vertical height profiles using plotit.

plotit(A) :-
 psk, % Push image onto the stack for display later
 lrt, % Flip image about horizontal axis
 psh(A), % Shift to right by amount A
 csh, % Copy RHS to all other columns of image
 wgx, % Intensity wedge
 sub, % Subtract
 thr, % Threshold at mid grey;
 bed, % Contour is desired intensity profile
 pop, % Recover original image
 swi. % Switch images

The observant reader will have notice some black spots in Image 7.6.6(d).

These are due to occlusion, which occurs when there are steep-sided pits or
"cliffs" in the surface being measured. It is possible to "fill" these, if they are very
small, using a fairly simple filter:

% Fill occlusions in depth maps if they are less than 2.A pixels
% wide / diameter

fill_occulsions(A) :-
 psk, % Push image onto the stack for display later
 thr(0,0), % Find occlusions
 wri(temp), % Save binary image of occlusions
 swi, % Revert to grey-scale image
 A*lnb, % Expand bright regions to "fill" occlusions
 rea(temp), % Recover binary image, showing occlusions
 min, % Occlusions appear as shaded islands
 pop, % Restore original image
 max. % Fill holes with the "shaded islands"

From the depth map generated in this way, it is a straightforward matter to

derive a range of measurements, of which the following are perhaps the most
obvious ones:

(i) Maximum height, H0.
(ii) Area, A(H), above a given height, H. The parameter H is allowed to vary in
a step-wise manner over a range defined by taking the expected variations in
height into account. For example, we might measure A(H1), A(H1-h), A(H1-
2.h), A(H1-3.h), ..., where H1 is the maximum allowed value for H0 and h is a
small increment, typically 1 - 5 mm. Each of the A(.) can then be compared
individually to previously measured tolerance limits. Alternatively, we might
choose to consider the vector { A(H1), A(H1-h), A(H1-2.h), A(H1-3.h), ... } as a

 343

complete entity and apply it as the input to some suitable learning process.
(Image 7.6.6(b) and Section 7.2.4)
(iii) For some suitable value of the height parameter H, we "slice" the depth
map. (This is a similar process as that defined for step (ii).) This results in a
binary image, where white indicates points on the loaf surface that are higher
than H, while black areas indicate points that are lower. For an ideal non-lidded
tin loaf, which has a single well-rounded dome-like top "slicing" the depth map
at say 90% of the maximum height, yields one nearly elliptical blob-like figure.
We might then compute the position of the centroid of this figure, its aspect
ratio and the orientation of its longest axis. These parameters can then be
compared to "ideal" values, either by conventional statistical analysis, or by
using some multi-parameter learning procedure.
(iv) The same "slicing" process might be applied to a split-top tin loaf. This type
of loaf is expected to possess a top with a valley, lying between two elongated
ridges. Ideally, the result of "slicing" should be a binary image, containing two
elongated ellipse-like figures. Various tests for symmetry might be applied to
these contours. Individually, they should be approximately symmetrical, about
both their long and short axes. Their long axes should be parallel and the
distance between them should lie within a defined range. Moreover, "ellipses"
created by "slicing" at different height values, should be concentric.
(v) The "slicing" process applied to a loaf with a more complex shape might
well result in a number of distinct blob-like features. For example, a certain type
of bread roll is made by tying a simple knot in a rope of dough, while another
kind of roll consists of a short plait. Again, "slicing" the depth map will result in
the generation of a number of blobs, whose areas, shape and positions can all be
analysed individually and collectively.

Of course, these rules can all be represented readily in Prolog+. In fact, Prolog+

is an ideal language for the task of analysing loaf shape, since the rules for
recognising an acceptable loaf are likely to be expressed in terms of abstract, ill-
defined quantities, such as "ellipse", "concentric", "symmetrical". While these
words are associated with precisely defined mathematical entities, they are used
here in the informal sense that a non-mathematician would use them.

In conclusion, we show that depth maps can be precise enough to be useful for
engineering components. Image 7.6.7 shows a zinc die-cast component, which
contains several step-like edges. These are visible as sharp intensity gradients in
the depth map. Notice however, that occlusions occurs, appearing as black
shadows.

8

Concluding Remarks

Industrial applications of machine vision are extremely varied in their nature

and requirements. Despite this, it seems to be a universal truth that however fast,
cheap, or smart we make them, somebody wants a machine vision system that is
faster, cheaper and smarter than anything that has been made so far. Whichever
computer and language we chose to use, somebody will want us to use a different
one. If we have solved a problem for one industry, there is a feeling among some
people that it has no relevance to another, even though the inherent nature of the
two tasks are very similar. The converse is also true: if we can solve one problem
for a certain industry, then, some people believe that we can also solve another,
whatever its relationship in terms of application requirements. The authors hope
that by now the reader will be aware that these are nothing but simple fallacies.
Machine vision does not necessarily conform to our naive, uninformed
expectations. Some of the ideas and methods that we have encountered in the
earlier pages are counter-intuitive. In particular, introspective thought is not a
viable means of designing vision systems. We cannot design a vision system by
simply asking ourselves the question "How do I see this pattern?" A lot of people
have tried this approach and all of them have failed. Introspection simply does not
work! However, confident that the reader is that he can design a system whilst
sitting at a desk, without suitable experimentation, it is impossible. Let us make it
absolutely clear that frustration, disappointment and despair inevitably lie at the
end of that particular road. How do we know that with such unshakeable
certainty? The answer is simple: experience and observation. The collective
experience of the authors is over thirty years and, at no time, have they ever seen
the "introspective approach" to machine vision system design even come close to
working effectively. Any speaker, or author of a book or paper who indicates
otherwise, is simply mistaken or misrepresenting reality. To summarise, we need
good design tools for machine vision. Prolog+ and its modern implementation,
PIP, provide one such a facility.

To date, there have been many thousands of successful industrial applications of
machine vision and there have been many unsuccessful one too! Like the ancient
builders of bridges and cathedrals, many of the designers of machine vision
systems were operating on ad hoc principles. As a result, their designs were based
on weak foundations and often collapsed. After a number of failures, sometimes
spectacular, the engineering community has, at last, gained a sense of realism

 346

about machine vision and designers are more often inclined now to the view that
the "system" principles that we have emphasised here are of crucial importance.
One of the key reasons for these failures has been (and often still is) the innate
belief that most people have that they are experts on vision. In fact very few
people really are experts at human vision or at machine vision. Accepting this is
one of the great steps forward, that a person has to take, in order to become
proficient at the design process. No electronics engineer would try to analyse the
behaviour of a circuit without taking detailed measurements with a suitable meter.
In the same way, no good vision engineer would attempt to analyse images
without the use of an interactive image processor.

There is a great shortage of well trained vision systems engineers. A good
honours degree in Engineering, Electronics, Physics or Computer Science is
merely the minimal entry qualification for training in this subject. Both authors
have taught machine vision as an option on Master's degree programmes, and we
still feel that the graduates are inadequately prepared for the real needs of
industry. We have also taught numerous short courses (2 - 3 days) and feel that
even this route leaves engineers with scant knowledge of the real problems that
they will face as designers of vision systems. Much more effective use could and,
the authors believe, should be made of the available human resources by
promoting active collaboration between academic and industrial staff.

Apart from the urgent need for longer and more concentrated specialist training
for machine vision systems engineers, there is a requirement for improved design
aids. In this book, we have discussed several of these. Interactive image
processing is central to understanding how images should be processed. A facility
like Prolog+ is important because it allows engineers to construct prototypes
quickly and easily. Ready access to a range of tools such as the Lighting Advisor
is important, to train / remind engineers of techniques which they might otherwise
forget or ignore. Of course, it is impossible in a book such as this to encompass all
of the relevant knowledge. All that we can hope to do is to provide the reader with
a "snap-shot" of what the authors believe to be the important issues at this point in
time. We have deliberately restricted our attention to industrial applications of
machine vision. We have stated emphatically on several occasions that this book
is not about computer vision. The two subjects are quite different, as we have
taken great pains to point out in Appendix A. The subject of machine vision is
evolving at a rapid rate and the tools that we have developed are themselves
evolving. We envisage, for example, that before the end of the decade, it will be
possible to choose whatever happens to be the most convenient computer
language, for use at the top level in a prototyping system; it should be possible to
"plug in" image processing facilities into otherwise perfectly standard languages,
such as Lisp, C, SmallTalk, Basic and of course, Prolog. The Lighting Advisor
will no doubt expand in the next few years and the authors hope to extend the
range of advisory programs that are available. There is an on-going development
process for these design tools and the authors are particularly anxious to receive
suggestions, comments, feedback, etc. so that they can be made even more
effective. Suggestions would also be welcome for further "Proverbs", which
encapsulate the wisdom needed to design successful machine vision systems. (See
Appendix A.)

 347

What unsolved problems do we envisage will be important in the near future?
The authors would suggest that the following will be among the most important
ones:

• Design of an inspection system for the aesthetic appearance, of wood,

marble, food products, etc.
• Learning by showing from a "Golden Sample". This will, of necessity,

require the use of meta-knowledge. To suggest that a person or machine
accepts that a sample should "look like this example that I am showing you",
presupposes that there is higher-level knowledge about what constitutes
acceptable similarity.

• Declarative programming involving natural language will be refined to a
much higher level.

• The user interface will continue to develop and improve, through the use of
multi-media techniques. Prolog+, for example, should be provided with at
least rudimentary graphics facilities, to aid feedback to the human operator.

• Multi-camera / multi-processor systems will become more common-place
and networking will develop to allow really effective co-operative action
between vision systems.

• Closed-loop process-control, through the use of Expert Systems with visual
inputs, will become more common in manufacturing industry.

• Techniques will be devised for giving advice about which image processing
method to use in a given application.

We referred earlier in this chapter to the large number of successful applications

that have been studied. In Chapter 7, we have illustrated the use of the tools
described earlier in this book. While such tasks as telling the time and recognising
playing cards may seem to be remote from industrial applications, they are, in
fact, models for "real world" industrial applications that we are not at liberty to
discuss in detail. There are literally thousands of diverse applications that
designers have had to face in the past. However, we do know that this number is
minuscule compared to the huge quantity of potential applications. How many
ways can you find to use your eyes? If we are ever to realise the full potential of
this fascinating technology, we must have many more properly trained personnel
and we must develop even better design tools. This book is an attempt to
encourage both of these objectives. The rewards, in terms of improved methods
for monitoring and controlling manufacturing processes, could be truly enormous!
A famous entertainer used the catch-phrase "You ain't seen nuthin yet". This could
well be our watch-word, as we approach the end of the decade!

References

AHL-91 R.-J. Ahlers, “Case studies in machine vision integration”, Proc.
 SPIE Machine Vision Systems Integration, vol. CR36, 1991, 56-62.
ALIS ALIS™ 600 and Micro ALIS are products of Dolan Jenner
 Industries., Inc., Blueberry Hill Industrial Park, PO Box 1020,
 Woburn, MA 01801, USA.
AVA-85 AVA Machine Vision Glossary, Automated Vision Association, 1985.
BAT-74 B. G. Batchelor, Practical Approach to Pattern Classification, Plenum,
 London & New York, 1974.
BAT-79 B. G. Batchelor, Interactive Image analysis as a Prototyping Tool for

 Industrial Inspection, Computers & Digital Techniques, vol. no. 2,
 1979, 61-69.
BAT-80 B. G. Batchelor, B. K. Marlow, B. D. V. Smith and M. J. Werson,
 “A research laboratory for automatic visual inspection”, Proc. 5th
 Int. Conf. Automated Inspection & Product Control, Stuttgart,
 Germany, June, 1980, 13-32.
BAT-85 B. G. Batchelor, D. A. Hill & D. C. Hodgson (Ed’s), Automated
 Visual Inspection, IFS Publications Ltd., Bedford, England, 1985.
BAT-85b B. G. Batchelor & A. K. Steel, “A flexible inspection cell”, Proc.
 5th Int. Conf. on Robot Vision & Sensory Control, IFS Publications
 Ltd., Bedford, England, October 1985, 449-468.
BAT-89 B. G. Batchelor, “A Prolog lighting advisor”, Proc. SPIE
 Intelligent Robots & Computer Vision VIII: Systems and
 Applications, Philadelphia, USA, vol. 1193, 1989, 295-302.
BAT-91 B.G. Batchelor, Intelligent Image Processing in Prolog, Springer-

 Verlag, 1991.
BAT-91b B. G. Batchelor, “Tools for designing industrial vision systems”,
 Proc. SPIE Machine Vision Systems Integration, vol. CR36, 1991,
 138-175.
BAT-91c B.G. Batchelor, “Interpreting the radon transform using Prolog”,
 Proc. SPIE Machine Vision Architectures, Integration, and
 Applications, vol. 1615, 1991, 87-97.
BAT-92 B. G. Batchelor, “Design aids for visual inspection systems”,
 Sensor Review 12(3), 1992, 3-4.
BAT-92b B. G. Batchelor & F. N. Waltz, Interactive Image Processing, Springer
 -Verlag, London, 1992.
BAT-94 B.G. Batchelor and P.F. Whelan (Eds.), Selected Papers on Industrial

 Machine Vision Systems, SPIE Milestone Series MS 97, SPIE Optical
 Engineering Press, 1994.

 349

BAT-94b B.G. Batchelor, M.W. Daley, and E.C. Griffiths, “Hardware and
 software for prototyping industrial vision systems”, Proc. SPIE
 Machine Vision Applications, Architectures, and Systems Integration

 III, vol. 2347, 1994, 189-197.
BAT-95 B.G. Batchelor and P.F. Whelan, “Ethical, environmental and social

 issues for machine vision in manufacturing industry”, Proc. SPIE
 Machine Vision Applications, Architectures and Systems Integration
 IV, vol. 2597, 1995, 2-15.

BAT-95b B. G. Batchelor and P. F. Whelan, “Real-time colour recognition in
 symbolic programming for machine vision systems”, Machine Vision
 and Applications 8(6), 1995, 385-398.

BAX-94 G.A. Baxes, Digital Image Processing: Principles and Applications,
 John Wiley, 1994.

BIE-91 L. H. Bieman & J. A. Peyton, “Building an infra-structure for system
 integration”, Proc. SPIE Machine Vision Systems Integration, vol.

 CR36, 1991, 3-19.
BOR-86 G. Borgefors, “Distance transformations in digital images”, Computer

 Vision, Graphics, and Image Processing 34, 1986, 344-371.
BRA-90 I. Bratko, Prolog: Programming for Artificial Intelligence, 2nd
 Edition, Addison Wesley, 1990.
CHA-80 G. J. Chamberlain, Colour: Its Measurement, Computation and

 Application, Heyden and Son, Ltd., 1980.
CHA-93 T. Chang and C.-C. Jay Kuo, “Texture analysis and classification with

 tree-structured wavelet transforms”, IEEE Trans. on Image Processing
 2(4), 1993, 429-441.

CHA-95 John Chan, Application of Machine Vision in The Food Industry,
 Ph.D. Thesis, University of Wales College of Cardiff, UK, 1995.
CHI-74 Y.P. Chien and K.S. Fu, “Recognition of X-ray picture patterns”, IEEE

Trans. Syst, Man and Cybern. SMC-4, 1974, 145-156.
CHI-88 R.T. Chin, “Automated visual inspection: 1981 to 1987”, Computer

 Vision, Graphics and Image Processing 41, 1988, 346-381.
CHI-82 R.T. Chin and C.A. Harlow, “Automated visual inspection: A survey”,

 IEEE Transactions on Pattern Analysis and Machine Intelligence 4(6),
 1982, 557-573.

CIE-31 Commission Internationale de l’Eclairage, the International
 Committee on Colour Standards.

CLO-87 W.F. Clocksin & C.S. Mellish, Programming in Prolog, 3rd Edition,
 Springer-Verlag, 1987.

COE-88 H. Coelho & J.C. Cotta, Prolog by Example, Springer-Verlag, Berlin,
 1988.
DAU-92 R. Daum & K. Harding, “The machine vision lighting testbed”,
 Proc. Conf. Applied Machine Vision Conference ‘92, Atlanta, SME
 Machine Vision Association, 1992, 92-183.
DEL-92 A. Delchambre, Computer-Aided Assembly Planning, Chapman &

 Hall, 1992.
DOU-92 E.R. Dougherty, An Introduction to Morphological Image Processing,

 Tutorial Text TT9, SPIE Press, 1992.

 350

DOU-95 E.R. Dougherty and P.A. Laplante, Introduction to Real-time
 Imaging, Tutorial Text TT19, SPIE/IEEE Press, 1995.

DOW-85 W.B. Dowsland, “Two and three dimensional packing problems and
 solution methods”, New Zealand Operational Research 13(1), 1985, 1-
 18.

DRE-86 H.L. Dreyfus and S.E. Dreyfus, Mind over Machine, The Free Press,
 1986.

DUF-73 M.J.B. Duff, D.M. Waston, T.M. Fountain and G.K. Shaw, "A
 cellular logic array for image processing", Pattern Recognition,
 1973.
EUR-89 EUREKA, Robotics and Production Automation, European

 Community, 1989.
FOS-84 J. Foster, P.M. Page and J. Hewit, “Development of an expert vision

 system for automatic industrial inspection”, Proc. 4'th Intl. Conf. on
 Robot Vision and Sensory Control, London, 1984, 303-311.

FRE-88 H. Freeman (Ed.), Machine vision: Algorithms, Architectures, and
 Systems, Academic Press Inc., 1988.

FU-87 K.S. Fu, R.C. Gonzalez and C.S. Lee, Robotics: Control, Sensing,
 Vision and Intelligence, McGraw-Hill, 1987.

GAR-79 M.R. Garey and D.S. Johnson, Computers and Intractability - A Guide
 to the Theory of NP-Completeness, W.H. Freeman and Co., 1979.

GAZ-89 G. Gazdar and C. Mellish, Natural Language Processing in Prolog,
 Addison-Wesley, Wokingham, UK, 1989
GON-87 R.C. Gonzalez and P. Wintz, Digital Image Processing, Addison

 Wesley, 1987.
GON-92 R. C. Gonzalez & R. E. Woods, Digital Image Processing, Addison

 Wesley, 1992.
HAR-79 R.M. Haralick, “Statistical and structural approaches to texture”,
 Proceedings of the IEEE 67(5), 1979, 786-804.
HAR-87 S.J. Harrington and P.J. Sackett, “Study of robotic assembly systems”,

 Assembly Automation 7(3), 1987, 122-126.
HAR-87b R.M. Haralick, S.R. Sternberg and X. Zhuang, “Image analysis
 using mathematical morphology”, IEEE Trans. Pattern Anal.
 Machine Intell. 9(4), 1987, 532-550.
HAR-92 R. Haralick, “Performance characterization in computer vision”,

 Proceedings of the British Machine Vision Conference, Springer-
 Verlag, 1992, 1-8.

HAR-92b R.M. Haralick and L.G. Shapiro, “Mathematical Morphology”,
 Chapter 5 of Computer and Robot Vision: Volume 1, Addison
 Wesley, 1992.
HEI-91 H.J.A.M. Heijmans “Theoretical aspects of grey-level morphology”,
 IEEE Trans. Pattern Anal. Machine Intell. 13(6), 1991, 568-582.
HOC-87 J. Hochberg, “Machines should not see as people do, but must know

 how people see”, Computer Vision, Graphics and Image Processing 37,
 1987, 221-237.

 351

HOL-79 S.W. Holland, L. Rossol and M.R. Ward, “CONSIGHT-I: A vision-
 controlled robot system for transferring parts from belt conveyors”,
 Computer Vision and Sensor-based Robots, Plenum Publishing, 1979,
 81-100.

HOL-84 J. Hollingum, Machine Vision, the Eyes of Automation, IFS
 Publications, 1984.

HOL-92 Holmes, Newman & Associates, Automated Meat Piece Grading
 System, Oakhampton, Devon, England, UK, Patent Pending.

HOS-90 D.R. Hoska, “Fixtureless assembly/manufacture”, Proceedings of
 Robots and Vision Automation 1990, 1990, (4-17)-(4-28).

HUT-71 T. C. Hutson, Colour Television Theory, McGraw-Hill, London, 1971.
IMA NIH-Image, National Instiutes of Health, USA.
 Anonymous FTP: zippy.nimh.nih.gov
INT Intelligent Camera, Image Inspection Ltd., Unit 7, First Quarter,

 Blenheim Road, Kingston, Surrey, KT19 9QN, UK.
IPL IP-Lab, Signal Analytics Corporation, Vienna, VA, USA.
ITI-89 The Lighting Science Database, Sensor Center for Improved
 Quality, Industrial Technology Institute, PO Box 1485, Ann Arbor,
 MI 48106, USA.
JON-94 A. C. Jones & B. G. Batchelor, “Software for intelligent image
 processing”, Proc. SPIE Intelligent Robots & Computer Vision
 XIII: Algorithms, Techniques Active Vision Materials Handling,
 Boston, MA., Nov. 1994.
KEL-86 J. M. Keller, “Color image analysis of food”, Proc. IEEE Computer

 Society on Computer Inspection and Pattern Recognition, Florida,
 1986.

KID Optical Design Software, Kidger Optics Ltd/, 9a High Street,
 Crowborough, East Sussex, TN6 2QA, England, UK.
KLI-72 J.C. Klien and J.Serra, “The texture analyzer”, J. Microscopy
 95(2), 1972, 349-356.
KRU-81 R.P. Kruger and W.B. Thompson, “A technical and economic

 assessment of computer vision for industrial inspection and robotic
 assembly”, Proceedings of the IEEE 69(12), 1981, 1524-1538.

LEE-89 M.H. Lee, Intelligent Robotics, Open University Press, 1989.
LEV-88 P. Levi, “Image processing robotics applied to citrus fruit harvesting”,

 Proc. ROVISEC7 Conf, Feb. 1988, Zurich, Switzerland.
LPA Logic Programming Associates Ltd., Studio 4, Royal Victoria Patriotic

 Building, Trinity Road, London, SW18 3SX, UK
MAC MacProlog, Logic Programming Associates Ltd. MacProlog is also
 sold in USA by Quintus Inc., Mountain View, CA.
MCC-92 K.M. McClannon, P.F. Whelan and C. McCorkell, “Machine vision in

 process control”, Procs. of the Ninth Conference of the Irish
 Manufacturing Committee, University College Dublin, 1992, 637-646.

MCC-93 K.M. McClannon, P.F. Whelan and C. McCorkell, “Integrating
 machine vision into process control”, Procs. of FAIM'93, University
 of Limerick, CRC Press, 1993, 703-714.

 352

MCG-94 T. McGowan, “A text to speech synthesiser for the MacProlog
 environment”, Internal Technical Report, School of Electronic
 Engineering, Dublin City University, Ireland, 1994.

MIC-86 D. Michie, On Machine Intelligence, Ellis Horwood Ltd, 1986.
MOL-90 J Mollon, “The tricks of colour”, Images and Understanding, H.

 Barlow, C. Blakemore, & M. Weston-Smith, Cambridge University
 Press, Cambridge, England, 1990.

MUN Munsell Color Co. Munsell Book of Color. 2441 North Calvert St.,
 Baltimore, MD.
MVA Machine Vision Lens Selector, Machine Vision Association of the
 Society of Manufacturing Engineers, 1992, manuf. by American
 Slide-Chart Corp., Wheaton, IL 60187, USA.
NEM-95 Sasha Nemecek, “Employment blues: Nothing to do with being green”,

 Scientific American, June 1995, 25.
OPT OptiLab & Concept Vi, Graftek France, Le Moulin de l'Image, 26270

 Mirmande, France.
OWE-85 T. Owen, Assembly with Robots, Prentice-Hall, 1985.
PAV-92 T. Pavlidis, “Why progress in machine vision is so slow”, Pattern

 Recognition Letters 13, 1992, 221-225.
PEA-84 J. Pearl, Heuristics: Intelligent Search Strategies for Computer
 Problem Solving, Addison Wesley, 1984.
PEN-84 A.P. Pentland, “Fractal-based descriptors of natural scenes”, IEEE

 Trans. on Pattern Analysis and Machine Intelligence 6(6), 1984.
PEN-88 Lighting Advisor Expert System, © Penn Video, Inc. (a subsidiary of

 Ball Corporation, Inc.,) Industrial Systems Division, 929 Sweitzer
 Avenue, Akron, Ohio 44311, USA.

PER-91 S. J. Perry, Colour Machine Vision, M.Sc. dissertation, University of
 Wales College of Cardiff, 1991.

PET-90 P. Peters, Camera Advisor, M.Sc. dissertation, University of Wales
 College of Cardiff, UK, 1990.
PHO Photoshop, Adobe Systems, Inc., 1585 Charleston Road, PO Box
 7900, Mountain View, CA 94039-7900, USA.
PIT-93 I. Pitas, Digital Image Processing Algorithms, Prentice-Hall, 1993.

PLU-91 A. P. Plummer, “Inspecting coloured objects using grey-scale vision

 systems”, Proc. SPIE Machine Vision Systems Integration, vol. CR-36,
 1991, 64-77.
QUC QuickCam, Connectix, 2600 Campus Drive, San Mateo, CA 94403,
 USA.
RED-91 A. Redford, “Guest editorial”, Int. J. Prod. Res. 29(2), 1991, 225-227.
RJA Regulated Lighting Unit for Fibre Optic Illuminators, R-J Ahlers, A-

 Tec, Mittlerer Kirchaldenweg,10, D-70195 Stuttgart, Germany.
ROB-89 S.L. Robinson and R.K. Miller, Automated Inspection and Quality

 Assurance, Dekker, 1989.

 353

RUM-89 P. Rummel, “Applied robot vision: Combining workpiece recognition
 and inspection”, Machine Vision for Inspection and Measurement (Ed.
 H. Freeman), 1989, 203-221.

SER-82 J. Serra, Image Analysis and Mathematical Morphology Vol: 1,
 Academic Press, 1982.
SER-86 J. Serra, “Introduction to Mathematical morphology”, Comput.
 Vision Graph. Image Process. 35, 1986, 283-305.
SIE-88 L.H. Siew, R.M. Hodgson and E.S. Wood, “Texture measures for carpet

 wear assessment”, IEEE Trans. on Pattern Analysis and Machine
 Intelligence 10(1), 1988.

SIL-80 E.A. Silver, R.V.V. Vidal and D. de Werra, “A tutorial on heuristic
 methods”, European Journal of Operational Research 5, 1980, 153-
 162.

SIM-81 H.A. Simon, The Sciences of the Artificial, 2nd Edition, MIT Press,
 1981.

SNY-92 M. A. Snyder, “Tools for designing camera configuration”, Proc.
 SPIE Machine Vision Architectures, Integration and Applications,
 vol. 1823, 1992, 18-28.
SON-93 M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis
 and Machine Vision, Chapman & Hall, 1993.
STE-78 S.R. Sternberg, “Parallel architecture for image processing”, Proc.
 IEEE Int. Computer Software and Applications Conf., Chicago,
 1978, 712-717.
STE-86 S.R. Sternberg, “Grey scale morphology”, Computer Vision, Graphics
 and Image Processing 35, 1986, 333-355.
STE-91 I. Stewart, “How to succeed in stacking”, New Scientist, July 1991, 29-

 32.
SWI-89 K. Swift, “Expert system aids design for assembly”, Assembly

 Automation 9(3), 1989, 132-136.
TAY-88 W.A. Taylor, What Every Engineer Should Know About Artificial

 Intelligence, MIT, 1988.
VCS VCS Image Processing Software, Vision Dynamics Ltd., Suite 7a, 1 St.

 Albans Road, Hemel Hempstead, HP2 4XX. UK
VIN-91 L. Vincent, “Morphological transformations of binary images with
 arbitrary structuring elements”, Signal Processing 22, 1991, 3-23.
VIS Visilog, Neosis, Immeuble Nungesser, 13 Avenue Morane Saulnier,
 78140, Velizy, France.
VOG-89 R.C. Vogt, Automatic Generation of Morphological Set
 Recognition Algorithms, Springer-Verlag, 1989.
WAL-88 A.M. Wallace, “Industrial applications of computer vision since 1982”,

 IEE Proceedings 135(3), 1988, 117-136.
WAL-88b F.M. Waltz, “Fast implementation of standard and 'fuzzy' binary
 morphological operations with large, arbitrary structuring
 elements”, Proc. SPIE Intelligent Robots and Computer Vision VII,
 vol. 1002, 1988, 434-441.
WAL-94 F.M. Waltz, “Application of SKIPSM to binary morphology”, Proc.
 SPIE Machine Vision Applications, Architectures, and Systems

 354

 Integration III, vol. 2347, 1994, 396-407.
WES-76 J. Weska, C. Dyer and A. Rosenfeld, “A comparative study of texture

 measures for terrain classification”, IEEE Trans. Syst., Man and
 Cybern. 6(4), 1976, 269-285.

WHE-91. P.F. Whelan and B.G. Batchelor, “Automated packing of arbitrary
 shapes”, Proc. SPIE Machine Vision Architectures, Integration,
 and Applications, vol. 1615, 1991,. 77-86.
WHE-93 P.F. Whelan and B.G. Batchelor, “Flexible packing of arbitrary
 two-dimensional shapes”, Optical Engineering 32(12), 1993, 3278-
 3287.
WHE-96 P.F. Whelan and B.G. Batchelor, “Automated packing systems - A
 systems engineering approach”, IEEE Trans. on Systems, Man and
 Cybernetics - Part A: Systems and Humans, 26(05), 1996, 533-544.
WHI-94 K. White, Opto*Sense, Visual*Sense*Systems, 314 Meadow
 Wood Terrece, Ithaca, NY 14850, USA, 1994.
WIL-92 G. Wilson, A Prototype Knowledge-Based System for Specifying
 Industrial Imaging Systems, M.Sc. dissertation, University of
 Wales College of Cardiff, UK, 1992.
WIL-93 R. H. R. Williams, Lighting Advisor - A HyperCard Version, M.Sc.
 dissertation, University of Wales College of Cardiff, UK, 1993.
WWW-1 The Lighting Advisor , http://www.cm.cf.ac.uk/lad/text.intro.html
ZHU-86 X. Zhuang and R.M. Haralick, “Morphological structuring element
 decomposition”, Computer Vision, Graphics, and Image
 Processing 35, 1986, 370-382.

Appendix A

Proverbs, Opinions and Folklore

The following is a list of observations, comments, suggestions, etc. based upon

our direct and our colleagues’ experiences. It is offered in a light-hearted manner
but encapsulates some important lessons that we have learned but which are
unfortunately not universally acknowledged. We hope it is will bring
enlightenment and promote discussion among our colleagues. By its very nature,
this list is dynamic and additions to it are always welcome. The current version of
this list can be found at the following web site:

http://www.eeng.dcu.ie/~whelanp/proverbs/proverbs.html

General
There is more to machine vision than meets the eye.
 A machine vision system does not see things as the human eye does.
An eye is not a camera. A brain is not a computer.

Machine vision systems should not necessarily be modelled on, or
intended to emulate human vision.

Machine vision is not a scientific discipline.
Machine vision is not an exercise in philosophy but an engineering
project.

No vision system should be required to answer the general question “What is
this?”

It is better for vision systems to answer more specific questions, such as
“Is this widget well made?” Verification (i.e. checking that the widget is
well made) is better than recognition, where few or no a priori
assumptions are made.

Intelligence ≠ Computing power.
Making the computer more powerful does not necessarily make the
system smarter.

Optimal solutions do not always exist.

 356

If they do exist, optimal solutions may be too complex, or impossible to
find. We should therefore be prepared to search for and accept
satisfactory solutions, rather than optimal ones.

Use a standard solution to a vision problem but only if it is sensible to do so.
Wherever possible we should provide standard solutions to industrial
problems, since this helps to broaden the application base.

Avoid the application of machine vision techniques for their own sake.
It is vanity on the part of the vision engineer to do so. There are plenty of
other methods of solution available. Most of them are cheaper than
vision.

Defect prevention is better than cure.
We should consider using vision in closed loop feedback control of the
manufacturing process.

Do not rely on second-hand information about the manufacturing process and
environment.

The vision engineer should always see the manufacturing process for
himself. If the customer is unwilling to let the vision engineer into the
factory, it may be necessary to abandon the application.

Vision systems need not be fully automatic.
While it is more usual to use a fully automatic vision system, it can be
used instead to enhance images for subsequent human analysis.

Systems
No system should be more complicated than it need be.

This is a reformulation of Occam’s Razor, which in its original form is
“Entia non multiplicanda sunt.” In its English translation, excessive
complication is attributed to mere vanity. In colloquial use, this is often
referred to as the KISS principle. (Keep it simple, stupid.) Simple systems
are almost always the best in practice.

All parts of a properly designed machine vision system bear an equal strain.
Of course, it is impossible to measure strain in any formal sense. The
point is that no part of a vision system should be made more complicated
because a sloppy attitude has been adopted during the design of other
parts. A particularly common error is the tendency to concentrate on the
image processing, to the detriment of the image acquisition (i.e. pose of
the object being inspected, lighting, optics and sensor).

If it matters that we use the Sobel edge detector rather than the Roberts
operator, then there is something fundamentally wrong, probably the lighting.

This remark is not about the relative merits of the various edge detection
operators but is a statement about the need for a broader “systems”
approach. A common error is to pay much more attention to the image
processing process but ignore the fact that the image contrast is low
because the lighting sub-system is poorly designed.

 357

The following inequality is always true: Vision-system ≠ PC + Framegrabber +
Camera + Software.

To many people, these are the only components needed to build a vision
system. However, this neglects many important issues: lighting, optics,
systems integration, mechanical handling, ergonomics and standard
industrial inspection practice.

Problem constraints allow the vision engineer to simplify the design.
By taking systems issues into account, it may well be possible to design a
simpler, faster, cheaper and more robust system.

Vision systems can use the same aids as people to reduce task complexity.
For example, special optical/lighting techniques, X-rays, fluoroscopy,
multi-spectral imaging, specialised sample preparation can all be used.

Documentation is an essential part of the system.
A vision system will not survive for long without sufficient
documentation.

Customer
Whatever software and hardware that a machine vision system uses, the
customer will want it to be different, so don’t tell them.

Many customer companies have a policy of using certain types of
computer hardware / software, which will often conflict with the vision
system. It is wise to regard the vision system as a closed box.

The customer must not be allowed to tinker with the system after it is installed.
The customer should be dissuaded from making internal adjustments to
the system, since this requires rare and specialised skills (lighting,
optics, camera, algorithms, systems integration).

The customer’s company just does not make defective widgets; the vision
system is simple intended “to improve product quality”.

Companies are often sensitive about the way that quality (or lack of it) in
their products is discussed. This must be borne in mind when designing a
vision system and particularly when reporting developments at
conferences, in publications, etc.

Everybody (including the customer) thinks that they are an expert on vision and
will tell the vision engineer how to design the machine.

This is, regrettably, one of the great truths. As a result, everybody will
feel it is their right and duty to tell the vision engineer how to do his job.
In many instances, prototyping tools need to be used for the specific
purpose of convincing the customer that his intuitive approach just does
not work reliably.

The widgets that were provided for the feasibility study were specially cleaned
and chosen by the customer for the project.

 358

Beware of the pernicious habit of some customers who deliberately, or
through ignorance, select good quality products to show the vision
company, rather than providing a more representative sample.

Customer education is an integral part of vision system design.
A well educated customer can help to reduce the project cost and may
well help to reach a better system design.

A little knowledge is a dangerous thing.
The customer will suggest many changes to the system design if he is
ignorant of the subtleties which led to the present design. It is best to tell
the customer all or nothing. For example, the vision engineer should not
tell the customer that the system uses a camera costing $5000, because
the latter will know of a camera that costs only $100 but will not
appreciate the benefits of the more expensive device.

Financial
The vision system must pay for itself in 6 months.

The vision engineer must be prepared to argue against the simple-
minded attitude which attempts to judge the value of a vision system
solely on financial grounds. When a company buys a vision system, it is
investing in the improvement of the quality/safety of its products.

Component cost is not the same thing as system cost.
By purchasing one relatively expensive component, it may be possible
make the overall system cheaper, faster and more reliable.

Only ten percent of the cost of installing a vision system is directly attributable
to the requirements of image formation, acquisition and processing.

The remaining ninety percent of the project cost is due to making the
system work properly in the factory.

$1 spent on inspection is worth $10 in improved profits.
Investing a little in automated visual inspection can lead to significant
gains in improved efficiency.

System Specification
The specification of the vision system is not what the customer wants.

Do not try to take short cuts in the initial dialogue. The vision engineer
should be prepared to spend a considerable amount of time finding what
the customer really wants.

The system specification must be agreed and fully understood by all concerned.
All specifications should be in writing with negotiable and non-
negotiable specifications noted before the design proper begins.

No machine vision system can solve the problem that the customer forgot to
mention when placing the order.

Undertake a proper and complete design study for each type of product.

 359

The specification of a vision system should indicate its functionality and
performance.

It should not be used merely as a marketing tool.
Beware when the customer says “By the way! We would like to be able to
inspect these objects as well.”

We repeat the point just made above: undertake a proper design study
for each type of product.

Simple accept/reject labelling is easier than classifying defects by type.
If the customer wants to classify defects, they should be made aware that
this could have a major bearing on the cost of the inspection system.
Detailed classification of defects can greatly increase the speed/cost of
the vision system.

It may not be possible to classify defects reliably.
The classification process may not always be clear-cut. A certain product
may, for example, have a combination of faults. The vision system
supplier and customer must agree beforehand what bounds are to be
imposed on the classification process.

Specify the operating environment.
It is relatively easy to make a system that works well in the laboratory.
However, it is much more difficult to build a target system that will work
reliably in a hostile factory environment.

Defect types must be realistically prioritised.
The ranking of defect types in order of importance can have a major
influence on the approach taken, and hence the final cost of the solution.
For example, it may be the case that 90% of defect types can be detected
for a cost of 90% of the total project budget, whereas detecting the
remaining 10% of defect types would cost another 90%. (This is an
example of the 90:90 rule.)

Choosing Inspection System Design Samples
Maximise the number of product samples.

The feasibility study, the target system design process, the testing and
evaluation of the target system and any demonstrations to the customer
should all be based on a large number of representative sample parts.
These samples should cover the full range of part variability.

Choose design samples following proper statistical sampling techniques.
Their selection should be made according to a carefully planned and
agreed protocol.

If necessary, choose inspection samples manually using agreed criteria.

If samples are chosen manually they will need to be cross-checked to
ensure that the variation found in manual inspection is minimised. It is
critical that the vision engineer establishes a reliable training set.

 360

The customer said his widgets were made of brass. He did not think to state that
they are always painted blue and oily.

To the vision engineer, the surface finish is more important than the
underlying material. This contrasts sharply with the customer who often
regards surface finish as being of mere cosmetic value.

Classify sample defects.
There are many different ways in which a product can fail to meet its
criteria. Any specific application knowledge that the customer can add
concerning the type and origin of the fault, will be useful in the design
process.

Vision Company
A sales-person who says that their company’s vision system can operate in
uncontrolled lighting is lying.

No. We are not exaggerating. The human eye cannot. No machine can
either.

A happy vision team has (at least) seven players.
This consists of engineers who specialise in mechanical handling,
lighting, optics, video sensor technology, electronic hardware, software,
vision system integration.

Alternative Solutions
What a person cannot see, generally cannot be detected by the machine vision
system.

The human eye is remarkably adept and versatile. In contrast, a vision
system is clumsy and unsophisticated, although it may be faster and more
reliable. It is a good maxim to admit defeat sometimes as this will gain
customer confidence, in the long term.

It may be cheaper to hire a person to inspect the widgets.
However, a machine may be faster, more consistent and reliable. Be
prepared to argue this point with the customer.

Machines can do some things better than humans.
Machines can sense outside the visible spectrum (X-rays, IR, UV). Line-
scan cameras and laser scanners can produce high resolution images
that cannot be seen directly by the eye. Depending on the technology
used, a machine vision system would be expected to achieve a
substantially higher inspection efficiency, and it can theoretically do this
for 24 hours a day, 7 days a week. Machine vision can also be useful at
detecting gradual changes in continuous processes that appear over long
time periods. For example, inspecting gradual colour variations in the
production of web materials. Such a gradual change in colour is unlikely
to be detected by a human operator.

 361

People can do some things better than machines.
So far, no machine has been built that can reliably guide a car through
busy traffic, safely and at speed. No machine can yet judge the aesthetic
qualities of a person’s dress or a fine painting.

Even the best human inspector is only 70% efficient.
This is one of the best arguments in favour of using machine vision. A
person is easily distracted, for example by a good-looking member of the
opposite sex walking past. The performance of a human inspector falls as
a results of boredom, dissatisfaction with employment, distress due to a
recent argument, illness, fatigue, hunger, discomfort, pain, alcohol and
drug ingestion.

Machines can work in situations that people cannot tolerate.
Machines can work in radioactive, chemical and biological hazards,
where there are high levels of noise, IR, UV, X-ray and microwave
radiation, or it is very hot. Machines can tolerate flashing lights, which
would induce epileptic fits and migraine attacks in people. A camera can
operate under very high, very low, or suddenly changing pressure, and
can also be used safely where there is a danger of explosion, or brittle
materials are likely to shatter suddenly. A camera can be placed close to
a laser cutter, which would be dangerous to a human being. A person
cannot inspect the inside of a working jet engine, nor even a drain pipe.

Human inspection often comes free.
Packing and assembly operators can inspect objects without adding
(significantly) to the overall cost of the manufacturing process.

Neither a human inspector, nor a fully automated vision system, will always get
the best results.

It is sometimes better to employ a person working in symbiosis with a
machine vision system.

Mechanical Handling
However deformed the widgets are, they must all pass through the inspection
system without jamming.

If the full range of defective widgets cannot be fed properly through the
inspection system, then it is of no use whatsoever. It is an irony that one
of the main aims of automated visual inspection is to preventing jamming
of a mechanical sub-system, such as an assembly machine.

If the parts feed mechanism of the inspection system can go wrong, it most
certainly will and the camera will be crushed.

Be prepared to sacrifice the camera, lighting and/or optical sub-systems,
in the event of a failure of the feed mechanism. Design the system
accordingly.

Lighting and Optics

 362

Many hands make light work.
… but not very well. However, some people do apply proper engineering
principles to the design of the optical sub-system and inevitably obtain
better results.

The lighting is not constant.
Lighting is never constant in either time or in space.

Never use software to compensate for a poor lighting system.
It is not cost effective and will result in a poor system design.

It is cheaper to add a light-proof shroud to keep sun-light away from the object
under inspection than to modify the software.

Another universal truth which is often forgotten.
Nothing exceeds the speed of light.

Any processing that can be done optically will save a lot of computer
processing later.

It is all done by mirrors.
Wishful thinking, in view of the previous remark.

Image Resolution
Any feature whose diameter is equal to 0.1% of the width of the camera's field
of view, requires an image resolution better than 2000x2000.

Nyquist's Sampling Theorem places a fundamental limit on the image
resolution. This is often forgotten / ignored by advertisers on broadcast
television, who frequently place disclaimer notices about their products
on the screen, using printing that cannot be read properly because it is
too small The same principal applies to machine vision.

A (100x100) picture is worth 10000 words.
The ancients were very astute when they realised that a digital image
requires the storage and processing of a lot of data.

One high-quality image is better than 5 fuzzy pictures.
Few people would dispute this point.

Five fuzzy pictures are better than one high-quality image.
No! This does not conflict with the previous proverb. It may be cheaper
and easier to obtain the required information from a small set of low-
resolution images than to process one very high resolution image. For
example, it may be necessary to see several small features within a large
scene. In such a case, it might be appropriate, say to use 5 low resolution
images (e.g. 256*256), rather than one image of much higher resolution
(e.g. 2000*2000).

Related Disciplines
Machine Vision ≠ Computer Vision.

 363

Machine vision is concerned with Systems Engineering and the solution
of practical problems, such as guiding industrial robots, inspection and
process monitoring. On the other hand, Computer Vision concentrates
on the concepts and scientific basis of vision . The latter is concerned
with generic issues and takes inspiration from and is often used to model
human and animal vision.

Machine vision research is not a part-time activity for workers in Image
Processing, Pattern Recognition, or Artificial Intelligence.

Some people think it is, unfortunately. The solutions they offer to
industrial inspection problems are, at best, unreliable and over-
complicated, because they are unaware of the broader "systems issues",
such as image acquisition, QA practices, industrial engineering etc..

Environmental Protection
Protect the machine from the work place.

A factory is a hostile place, with lots of dirt, tampering fingers, etc.
Protect the work place from the machine.

Protect eyes from flashing lights, lasers, etc. Make sure that the
inspection machine does not shed bits, such as nuts, bolts, etc. to
contaminate food products, pharmaceuticals, etc.

It is cheaper to pay for a shroud to enclose strobed light than to pay
compensation for causing epileptic fits.

Flashing lights can trigger epileptic fits and migraine attacks.
The lens may not fit the workman’s camera at home, but he thinks it will.

Be aware of light fingered workers causing damage by removing pieces
of equipment.

"He is a good worker and likes to keep things clean - he washes down all of the
equipment using a hose-pipe, every afternoon".

This is quotation from one factory manager about a dedicated, but
uninformed worker who did not realise the potential damage and danger
his actions could cause. It is imperative therefore that the vision
equipment be made safe and robust.

Adjustment of the camera is achieved using a 1kg hammer.
Vision engineers will be horrified at this prospect but it may happen.

 Factories are dirty places.
The electrical power supply is noisy. The air supply, for pneumatic
equipment, also carries dirt, moisture and oil. Dirt, dust, moisture,
fumes, spray, etc. all abound in the local atmosphere.

Proving and Working with the System in the
Factory

Do not assume that the factory workers are computer literate.

 364

Software should be designed in such a way that it can be used with
minimal computer skills.

The people who will make sure that the machine will not work are standing
beside it.

So, the vision engineer should try to persuade them that it is actually in
their best interests (as well as his) to work in co-operation with the
treasured vision system, not against it.

A picture is worth ten thousand words.
Give the workers a television program to watch. A visual display,
showing performance statistics of the vision system and explaining its
operation is well worth having, even though it may not seem to be
essential.

People "understand" pictures.
A visual display is a useful way of building the confidence of factory
personnel. It is also a valuable diagnostic tool: a person can easily
recognise whether a sequence of images, showing the operation of the
vision system is being repeated properly.

The service schedule of the vision system should be compatible with the
production line.

If it is not, the vision system will not fit into the factory environment
properly.

For every hour you spend on inspecting products, your smarter competitor
spends 10 hours improving their process.

Automated inspection is not always the best way to get the desired
results.

Document all experiments to validate the system.
All laboratory and on-site trials in the customer's premises should be
fully documented. This should include details about the hardware and
software used, parameter settings, optical and lighting set-ups, lens
distance, aperture settings and mechanical handling features, how the
products were selected.

Quantify the system performance.
The ability of the system to perform to the agreed specification should be
demonstrated and quantified. Accuracy, repeatability, robustness,
feature delectability and tolerance of product variation should all be
measured and recorded. All demonstrations should be attended by the
vision application engineer(s) who are ultimately responsible for the
system design and implementation.

Results may not be reproducible.
Wherever possible, the results of all system performance tests should be
reproducible and statistically characterised as to repeatability. In certain
applications, for example the inspection of natural products, the
variation in product characteristics make it difficult to implement this
approach.

Align, calibrate and then test the system before it is used.
A badly aligned system, or one which has not been calibrated, is likely to
produce erroneous but seemingly reasonable results.

 365

 366

Appendix B

Factors to be Considered when
Designing a Vision System

Mechanical Handling
Motion: Continuous linear; indexed; continuous rotating; sliding; free fall;

direction; velocity.

Presentation
Known or random position; known or random orientation; arbitrary or limited

number of attitudes possible when dropped on table; touching; separate;
overlapping; on table; held in machine chuck; hanging (on chain); stacked;
palletised; jumbled heap; jumbled in a bin.

Will faulty parts feed without jamming? Number of components/minute;
separation between components; vibration; physical space available for
illumination; optics and camera.

Illumination
Spectral characteristics: Visible waveband; colour; infra-red; ultra-violet.
Intensity: Variation with time; lamp ageing; variation when new lamps are fitted;

power supply variations.
Spatial distribution: Uniform; patterned (structured); filament shadow; dark spots

to uneven packing and broken fibres in fibre-optic bundles.
Temporal variation (short term): Constant; strobed; computer controlled; feed-

back to compensate for falling light output of lamps as they age.
Polarisation: None; linear; circular.
Coherence: Incoherent; coherent.
Illumination optics (also see below): Mirrors; lenses; fibre optics; filters; filters

and mirrors for heat removal.
Servicing and maintenance: Lamp life; lamp replacement procedure; cleaning

optics.

 367

Environmental protection: Heat; water; dust; dirt; fumes; splashes etc.; tampering;
malevolence; theft; ambient light; protecting people from dangerous light
(lasers & stroboscopes); ionising radiation.

Optics
Lenses: Custom or standard; magnification; aperture; focal length; depth of focus;

resolution (line pairs/mm); aberrations; anamorphic; materials; glass; quartz;
plastic.

Filters: Long pass; short pass; band pass; notch; infra-red; ultra-violet; effects of
heat and moisture.

Beamsplitters: Pellicle or cube type; vibration.
Polarisers: Linear; circular; spectral performance.
Fibre optics: Fibre material; ambient light.

Image Sensor
Type: CRT; solid state; laser scanner.
Camera characteristics: Spatial resolution; sensitivity, dynamic range;

gamma/linearity; geometric precision; intensity scale fidelity; lag; image
burn-in; blooming; comet tail effect; noise level; monochrome or colour;
weight; radiation damage.

Physical characteristics: Weight; size; lens mounting; magnetic susceptibility;
damage by ionising radiation; operating voltages.

Protection of camera: Heat; infra-red; moisture; vibration; accidental knocks;
fibre optics.

Image Processing
Hardware: Architecture/technology; processor; bus; analog pre-processing;

analogue to digital converter (ADC); digital pre-processing; image analysis
and measurement.

Image coding and representation methods: Array representation of an image; run
length code; sparse array code.

Software: Operating system; language.
Algorithm “intelligence”: Smart; dumb.

System Level

 368

Engineering: Robustness; Reliability; equipment protection; safety of equipment.
Economic: Direct cost of installation; indirect cost of installation; running costs;

pay-back period.
Speed: Throughput rate; delay.
Human interface: Ease of use; level of skill needed by operator; ease of

reprogramming for new task; user education; machine driven operating
dialogue.

Output type: Qualitative; quantitative; image.
Performance: Collection of statistics on reject rates; definition of “gold standard”

for inspection.
Co-ordination with other machines: Synchronisation; immediate feedback to

manufacturing plant.
System test: Calibration; standard test samples; self test; test images in backing

store files.
Servicing and maintenance procedures.

 369

Appendix C

General Reference Material

Machine Vision
I. Alexander, Artificial Vision for Robots, Kogan Page Ltd.(1983).
AVA Machine Vision Glossary, Automated Vision Association (1985).
H. Bassman and P.W. Besslich. AdOculos - Digital Image Processing,

International Thomson Publishing (1995).
B.G. Batchelor, Pattern Recognition, Ideas in Practice, Plenum (London) (1978).
B.G. Batchelor, Intelligent Image Processing in Prolog, Springer-Verlag (1991).
B.G. Batchelor, D.A. Hill and D.C. Hodgson, Automated Visual Inspection, IFS

Ltd/North Holland (1984).
B.G. Batchelor and F.M. Waltz, Interactive Image Processing, Springer-Verlag

(1993).
B.G. Batchelor and P.F. Whelan (Eds.), Selected Papers on Industrial Machine

Vision Systems, SPIE Milestone Series MS 97, SPIE Optical Engineering
Press, (1994).

A. Browne and L. Norton-Wayne, Vision and Information Processing for
Automation, Plenum Press, New York, (1986).

E.R. Davis, Machine Vision: Theory, Algorithms, Practicalities, Academic Press
(1990).

G. Dodd and L. Rossol, Computer Vision and Sensor Based Robots, Plenum press
(1979).

E.R. Dougherty and P.A. Laplante, Introduction to Real-time Imaging, SPIE/IEEE
Press, SPIE Vol. TT19 (1995).

M. Eijiri, Machine Vision A Practical Technology for Advanced Image
Processing, Gordon and Breach Science Publishers (1989).

H. Freeman, Machine Vision: Algorithms, Architectures, and Systems, Academic
Press (1987).

H. Freeman (Ed.), Machine Vision for Inspection and Measurement, Academic
Press (1989).

H. Freeman, Machine Vision for Three Dimensional Scenes, Academic Press
(1990).

K.S. Fu, R.C. Gonzalez and C.S. Lee, Robotics, Control, Sensing, Vision and
Intelligence, McGraw-Hill (1987).

 370

L.J. Galbiati, Machine Vision and Digital Image Processing Fundamentals,
Prentice-Hall (1990).

R.C. Gonzalez and P. Wintz, Digital Image Processing, Addison Wesley (1987).
R.C. Gonzalez and R. E. Woods, Digital Image Processing, Reading, Mass,

(1992).
R.M. Haralick and L.G. Shapiro, Computer and Robot Vision: Volumes I and II,

Addison Wesley (1992).
J. Hollingum, Machine Vision: The Eyes of Automation, IFS Ltd. (1984).
B.K.P. Horn, Robot Vision, MIT press (1986).
R. Jain, R. Kasturi and B.G. Schunck, Machine Vision, McGraw-Hill (1995).
M.D. Levine, Vision in Man and Machine, McGraw-Hill (1985).
H.R. Myler and A.R. Weeks, Computer Imaging Recipes in C, Prentice Hall

(1993).
H.R. Myler and A.R. Weeks, The Pocket Handbook of Image Processing

Algorithms in C, Prentice Hall (1993).
A. Pugh, Robot Vision, IFS/Springer-Verlag (1983).
S.L. Robinson and R.K. Miller Automated Inspection and Quality Insurance,

Marcel Dekker (1989).
A. Rosenfeld and A. C. Kak, Digital Picture Processing (2nd edition), Academic

Press, New York, (1982).
R.J. Schalkoff, Digital Image Processing and Computer Vision, Wiley (1989).
M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis and Machine

Vision, Chapman & Hall (1993).
C. Torras (Ed.), Computer Vision, Theory and Industrial Applications, Springer-

Verlag, Berlin (1992).
D. Vernon, Machine Vision, Prentice-Hall (1991).
N.J. Zimmerman and A. Oosterlinck (Eds.), Industrial Applications of Image

Analysis, D.E.B. Publishers (1983).

Computer Vision
D.H. Ballard and C.M. Brown, Computer Vision, Prentice-Hall (1982).
H. Barlow, C. Blakemore and M. Weston-Smith (Eds), Images and

Understanding, Cambridge University Press (1990).
A. Basu and X. Li, Computer Vision: Systems, Theory and Applications, World

Scientific (1993).
G.A. Baxes, Digital Image Processing:- A Practical Primer, Prentice-

Hall/Cascade Press (1984).
G.A. Baxes, Digital Image Processing: Principles and Applications, John Wiley

(1994).
R.D. Boyle and R.C. Thomas, Computer Vision: A First Course, Blackwell

(1988).
M. Brady and H.G. Barrow, Computer Vision, North-Holland (1981).
K.R. Castleman, Digital Image Processing, Prentice-Hall (1996).

 371

R. Chellappa and A.A. Sawchuk, Digital Image Processing and Analysis: Volume
1: Digital Image Processing, IEEE Computer Society (1985).

R. Chellappa and A.A. Sawchuk, Digital Image Processing and Analysis: Volume
2: Digital Image Analysis, IEEE Computer Society (1985).

C.H. Chen, L.F. Pau and P.S.P Wang, Handbook of Pattern Recognition and
Computer Vision, World Scientific (1993).

E.R. Dougherty, An Introduction to Morphological Image Processing, Tutorial
Text Vol. TT9, SPIE press (1992).

R.O. Duda and P.E Hart, Pattern Classification and Scene Analysis, John Wiley
(1973).

M.A. Fischler, Readings in Computer Vision: Issues, Problems, Principles and
Paradigms, M. Kaufmann Publishers (1987).

K.S. Fu (Ed.), Syntactic Pattern Recognition and Applications, Springer-Verlag
(1981).

C.R. Giardina and E.R. Dougherty, Morphological Methods in Image and Signal
Processing, Prentice Hall (1988).

W.B. Green, Digital Image Processing - A Systems Approach, Van Nostrand
Reinhold (1983).

E.L. Hall, Computer Image Processing and Recognition, Academic Press (1979).
T.S. Huang, Image Sequence Analysis, Springer-Verlag (1981).
M. James, Pattern Recognition, BSP (1987).
A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall (1989).
C.A. Lindley, Practical Image Processing in C, Wiley (1991).
A. Low, Introductory Computer Vision and Image Processing, McGraw Hill

(1991).
D. Marr, Vision, W.H Freeman and Company (1982).
A.D. Marshall and R.R. Martin, Computer Vision, Models and Inspection, World

Scientific (1992).
R. Nevatia, Machine Perception, Prentice-Hall (1982).
L.F. Pau, Computer Vision for Electronic Manufacturing, Plenum Press (1990).
A.P. Pentland, From Pixels to Predicates: Recent Advances in Computational and

Robotic Vision, Ablex Publishing Corp. (1986).
I. Pitas, Digital Image Processing Algorithms, Prentice-Hall (1993).
W.K. Pratt, Digital Image Processing, Wiley (1978).
J. C. Russ, The Image Processing Handbook (2nd edition), CRC Press, Boca

Raton, (1995).
J. Serra, Image Analysis and Mathematical Morphology Vol. 1, Academic Press

(1982).
J. Serra, Image Analysis and Mathematical Morphology Vol: 2 Theoretical

Advances, Academic Press (1988).
L. Uhr, Parallel Computer Vision, Academic Press (1987).

Related Material

 372

M. Brady, L.A. Gerhardt and H.F. Davidson (Eds.), Robotics and Artificial
Intelligence, Springer-Verlag (1984).

J.P. Chan and B.G. Batchelor, "Machine vision for the food industry", Food
Process Monitoring Systems, Blackie and Sons, Glasgow (1992).

H.L. Dreyfuss and S.E. Dreyfuss, Mind over Machine, Free Press (1986).
E.A. Feigenbaum, The Fifth Generation: Artificial Intelligence and Japans

Computer Challenge to the World, Pan, London, (1984).
M.H. Lee, Intelligent Robotics, Open University Press (1989).
D. Michie, On Machine Intelligence (2nd Edition), Ellis Horwood Ltd (1986).
T. Owen, Assembly with Robots, Prentice-Hall (1985).
S.K. Rogers and M. Kabrisky, An Introduction to Biological and Artificial Neural

Networks for Pattern Recognition, Vol. TT4, SPIE Press (1991).
H.A. Simon, The Sciences of the Artificial, MIT Press, Cambridge MA (1969).
W.A. Taylor, What Every Engineer Should Know About Artificial Intelligence,

MIT (1988).

Special Issues
Special section on Shape Analysis, IEEE Transactions on Pattern Analysis and

Machine Intelligence 8(1) (1986).
Special Issue on Industrial Machine Vision and Computer Vision Technology -

Part I, IEEE Transactions on Pattern Analysis and Machine Intelligence
10(1) (1988).

Special Issue on Industrial Machine Vision and Computer Vision Technology -
Part II, IEEE Transactions on Pattern Analysis and Machine Intelligence
10(3) (1988).

Special section on Computer Architectures, IEEE Transactions on Pattern
Analysis and Machine Intelligence 11(3) (1989).

Special Issue on Shape Analysis in Image Processing, Pattern Recognition 13
(1981).

Special Issue on Digital Picture Processing, Proceedings of the IEEE 60(7)
(1972).

Special Issue on Designing Autonomous Agents, Robotics and Autonomous
Systems 6(1,2) (1990).

Special Issue on Image Analysis and Processing, Signal Processing 3 (1981).

Survey/Review Papers
R.T. Chin, "Automated visual inspection: 1981 to 1987", Computer Vision,

Graphics and Image Processing 41, 346-381 (1988).
R.T. Chin and C.A. Harlow, "Automated visual inspection: A survey", IEEE

Transactions on Pattern Analysis and Machine Intelligence 4(6), 557-573
(1982).

 373

R.C. Gonzalez, "Syntactic pattern recognition - Introduction and survey", Proc.
Natl. Elec. Conf. 27, 27-31 (1972).

R.P. Kruger and W.B. Thompson, "A technical and economic assessment of
computer vision for industrial inspection and robotic assembly", Proceedings
of the IEEE 69(12), 1524-1538 (1981).

T. Pavlidis, "A review of algorithms for shape analysis", Comput. Graph. Image
Processing 25, 68-88 (1984).

A. Rosenfeld, "Image analysis: problems, progress and prospects", Pattern
Recognition 17(1), 3-12 (1984).

P.K. Sahoo, "A survey of thresholding techniques", Computer Vision, Graphics
and Image Processing 41, 233-260 (1988).

A.M. Wallace, "Industrial applications of computer vision since 1982", IEE
Proceedings 135(3), 117-136 (1988).

J. Weska, "A survey of threshold selection techniques", Comput. Graph. Image
Processing 7, 259-265 (1978).

Periodicals/Journals/Magazines
Advanced Imaging. PTM Publishing.
Artificial Intelligence - An International Journal, Elsevier Science Publishers.
Communications, Speech and Vision. IEE-The Institution of Electrical Engineers.
Computers and Digital Techniques. IEE.
Computer Graphics and Image Processing.
Computer Vision, Graphics and Image Processing.
IEE Proceedings on Vision, Image and Signal Processing, IEE.
IEEE Transactions on Acoustics, Speech and Signal Processing. IEEE.
IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE.
IEEE Transactions on Systems, Man and Cybernetics. IEEE.
IEEE Transactions on Robotics and Automation. IEEE.
Image and Vision Computing. Butterworths.
Image Processing. Reed Publishing.
Imaging Systems and Technology. John Wiley and Sons.
Intelligent Systems Engineering, IEE.
International Journal of Computer Vision. Kluwer Academic Publishers.
Journal of Visual Communications and Image Representation. Academic Press.
Journal of Systems Engineering, Springer International.
Machine Vision and Applications. Springer International.
Optical Engineering, SPIE-The International Society for Optical Engineering.
Pattern Recognition. Pergamon.
Pattern Recognition Letters. IARP, North Holland.
Photonics: Spectra. Laurin Publishing.
Real-time Imaging, Academic Press.
Robotica. Cambridge University Press.
Sensor Review.
The Photonics Design and Applications Handbook. Laurin Publishing.

 374

The Photonics Dictionary. Laurin Publishing.
Vision. SME (Machine Vision Association).

Conference Proceedings
Applications of Digital Image Processing, SPIE.
Applied Machine Vision Conference, SME.
British Machine Vision Conference, Springer-Verlag.
European Conference on Computer Vision - ECCV, Springer-Verlag.
IEEE Conference on Robotics and Automation, IEEE.
Intelligent Robots and Computer Vision, SPIE.
International Conference on Assembly Automation, IFS/North-Holland.
International Conference on Automated Inspection and Product Control,

FS/North-Holland.
International Conference on Robot Vision and Sensory Controls, IFS Publishers.
International Robots and Vision Automation Conference.
Machine Vision Applications, Architectures and Systems Integration, SPIE.
Optics, Illumination and Image Sensing for Machine Vision, SPIE.
Topical Meeting on Machine Vision, Optical Society of America.
Vision Systems in Robotic and Industrial Control, IEE Computing & Control.

Internet Resources1

Newsgroups
alt.3d

Three-dimensional Imaging
comp.ai.vision

Computer Vision
comp.robotics

Robotics and Robot Vision
sci.image.processing

Scientific Image Processing

Mailing Lists
vision-list@ads.com

Computer Vision
pixel-request@essex.ac.uk

1Although correct at the time the book went to print, these links may change.

 375

‘The Pixel' Digest
morpho@cwi.nl

Morphological Digest

FTP Sites
mom.spie.org

International Society for Optical Engineering (SPIE).
peipa.essex.ac.uk

Pilot European Image Processing Archive. Also see peipa/info/IP-
tools.review for a review of image processing tools.

ftp://ftp.wmin.ac.uk/pub/itrg/coloureq.txt
Colour spaces and colour transforms

World Wide Web (URL)
http://www.cs.cmu.edu/~cil/txtvision.html

Computer Vision Home Page. This site contains a comprehensive list of
computer vision research groups on the World Wide Web. It also
includes topics related to computer vision, conference and symposia
notifications, frequently asked questions, a list of news groups and
archives, publications, test images and source code. A very useful source
of information.

http://www.eeng.dcu.ie/~whelanp/vsg/vsghp.html
Vision Systems Group (DCU)

http://www.vision.auc.dk/LIA/NORVIC/index.html
NORVIC: Nordic Research Network in Computer Vision

http://afrodite.lira.dist.unige.it/fullservice.html
ECVNet

http://www.vision1.com/links.html
Vision and Imaging Resource Links

http://www.epm.ornl.gov/~batsell/imaging.html
Imaging on the Internet: Scientific/Industrial Resources

http://www.sme.org/memb/mva.html
Machine Vision Association of SME (MVA/SME)

http://piglet.cs.umass.edu:4321/robotics.html
Robotics Internet Resources

http://www.wiley.com/wileychi/electronic/hipr/
HIPR - Hypermedia Image Processing Reference. (Available on CD-
ROM from John Wiley & Sons Ltd.)

http://arachnid.cs.cf.ac.uk/Lad/text.intro.html
The Lighting Advisor

http://www.cm.cf.ac.uk/Dave/Vision_lecture/Vision_lecture_c
aller.html

Vision Systems Courseware
http://www.cogs.susx.ac.uk/users/davidy/teachvision/
vision0.html

Sussex Computer Vision Teach Files

 376

http://www.ph.tn.tudelft.nl/Software/TimWin/timwww2.html
TIMWIN: A program for scientific image processing

http://www.khoros.unm.edu/khoros/
The Khoros Page

http://pasture.ecn.purdue.edu/~precetti/
Colour Classification Tutorial

http://www.isc.tamu.edu/~astro/color.html
Colour Science

http://www.cis.rit.edu/mcsl/
Munsell Color Science Laboratory

http://wwwwhite.media.mit.edu/vismod/imagery/VisionTexture/
vistex.html

VisTex Vision Texture Database
http://moralforce.cc.gatech.edu/

ARPA Image Database Browser
http://www.cwi.nl/projects/morphology/

The Morphology Digest

http://www.cs.washington.edu/research/vision/pamitc.html
IEEE - PAMI TC Home Page

http://www.elsevier.nl:80/section/computer/416/525443/
menu.htm

Image and Vision Computing
http://scorpions.ifqsc.sc.usp.br/ifsc/ffi/grupos/instrum/
visao/meetings/rti.htm

Real-Time Imaging

http://iris.usc.edu/Information/Iris-Conferences.html
Computer Vision Conferences

http://www.rpd.net/Info/conferences/index/
Machine_Vision.html

WWW Virtual Library on Conferences: Machine Vision

Design Aids

 Lighting

ALIS 600 is a sophisticated multi-function lighting system, which provides a
variety of illumination devices, mounted inside a light-proof cabinet. The lights
are operated from regulated power supplies and can be switched by a computer.

Micro-ALIS [ALIS] is an experimental tool-kit consisting of a set of useful
illumination, optical and fibre-optic devices. In addition, there is a set of
versatile mechanical fixtures for holding lamps, optical devices and samples.

Optics

 377

Sigma 2100 [KID] is a program for designing optical systems from simple
objectives to complex multi-configuration systems, including zoom lenses,
switchers, multi-channel lenses, multi-waveband lenses and scanners.

KDP is a general-purpose optical design and analysis program. It has provisions
for modelling ray-tracing and optimising a wide variety of types of optical
systems. It has an extensive optical analysis capability which is enhanced by a
semi-compiled macro programming language. KDP is free and runs on a PC.
(KDP, Optical Design Software, Engineering Calculations, 1377 East Windsor
Road, #317 Glendale, CA 91205, USA. Available via WWW:
www.kdpoptics.com.)

TracePro is a ray-tracing program for optical analysis. It accounts for optical
flux as it propagates through a solid model, defined in terms of geometric
objects, such as spheres, elliptical and conical cylinders and cones, blocks and
tori. TracePro can calculate absorption, specular reflection, refraction,
scattering and aperture diffraction effects. (TracePro, Optical Systems Analysis
Program, Lambda Research Corp., PO Box 1400, Littelton, MA 01460-4400,
USA.)

Optica has a large collection of data relating to lenses, mirrors, prisms, gratings.
It provides a full range of geometric ray-tracing functions for designing optical
systems and components. It is a based on Mathematica. (Optica, Optical Design
Software, Wolfram Research Inc., 100 Trade Centre Drive, Champaign, IL
61820-7237, USA.)

Zemax is an optical design program.

OPTICAD provides optical layout and analysis software. (OptiCAD and Zemax,
Optical Design Software, Focus Software, PO Box 18228,Tucson, AZ 85731-
8228, USA.)

Lens Selector Program. Optimum Vision Ltd., Unit 3a, Penns Road, Petersfield,
GU32 2EW, UK.

LensVIEW is a compilation of lens design data on CD-ROM.

Machine Vision Lens Selector [MVA] is a slide rule and performs basic lens
design calculations.

Camera Calculator [SNY-92] is a Macintosh desk-accessory. It solves the
standard lens formulae, given any sufficient sub-set of variables. It allows the
user to specify virtually any sub-set of known values for such features as object
size, object distance, image size, image distance, magnification, depth of field, f
number, image resolution, and then calculates the unknown values.

 378

Lighting-Viewing Subsystem

HyperCard Lighting Advisor provides a catalogue of over 150 different lighting
and viewing techniques. For each lighting-viewing technique, there are three
cards: one provides notes in a fixed-format frame; another shows a sketch of the
optical layout and the third card provides a sample image obtained using that
lighting-viewing method. The Lighting Advisor is available on a shareware
basis.
 Email : Bruce.Batchelor@cs.cf.ac.uk
 WWW: http://www.cs.cf.ac.uk/User/Bruce.Batchelor/
 and http://www.cs.cf.ac.uk/lad/text.intro.htm
 FTP: http://bruce.cs.cf.ac.uk/FTP/Light.sit.hqx

Lighting Science Database [ITI-89], Prolog Lighting Advisor [BAT-89] and
Lighting Advisor Expert System [PEN-88] all provide a broadly similar
function to the HyperCard Lighting Advisor.

Equipment / Software Suppliers

Opto*Sense [WHI-94] is a comprehensive database of machine vision
vendors' names and addresses. It runs on a PC.

Training Courses

"Success with Vision" is a set of six video tapes, describing the basic principles
of machine vision system design. (Visual*Sense*Systems, 314 Meadow Wood
Terrace, Ithaca, NY 14850, USA.)

On-line Training Course in Machine Vision, Automated Vision Systems, 1550
La Pradera Drive, Campbell, CA 95008-1547, USA.
 WWW: http://www.autovis.com/autovis/

 379

Appendix D

PIP - Software Implementation of
Prolog+

This appendix was written in conjunction with Andrew Jones and Ralf Hack

(University of Wales College of Cardiff). They, together with Stephen Palmer and
BGB, are the joint authors of PIP.

D.1 Availability of the PIP Software

Copies of the PIP software described below may be obtained by contacting:
Bruce.Batchelor@cs.cf.ac.uk or Andrew.C.Jones@cs.cf.ac.uk.

Up-to date information about the status and availability of PIP is available on the
World Wide Web (http://bruce.cs.cf.ac.uk/bruce/index.html).

D.2 Introduction

In this appendix, we describe PIP (mnemonic for Prolog Image Processing), a
software system for interactive image processing and which provides the ability to
write Prolog+ programs. PIP runs on an Apple Macintosh computer but differs
from Prolog+ in two important respects. The first is that PIP performs image
processing, implemented in software, using the C programming language,
whereas Prolog+ originally relied on the availability of dedicated image
processing hardware. The second difference is that, although the present version
of PIP supports almost all of the Prolog+ commands mentioned elsewhere in this
book, these are implemented in terms of lower-level Prolog predicates, which
enable a more flexible approach to image manipulation to be taken. In principle,
other operating paradigms, such as processing colour and multi-spectral images,
or maintaining a history of past results using an image stack, are possible in PIP.

We shall discuss the impact of the Apple Macintosh operating system upon the
implementation of the image processing functions, and the interface between these
and the Prolog sub-system. We also explain how the Prolog+ commands have
been implemented. We will outline the principles upon which the PIP system is
built, explaining in detail why this particular software-based approach is
attractive. We shall then describe the infra-structure that has been implemented
for image processing in which Prolog operates as a “top-level” controller. It is

 380

anticipated, however, that the system will not normally be used at this (i.e. infra-
structure) level. One way in which a more accessible command set may be
realised is to implement Prolog+ commands above this infra-structure. We discuss
how this has been achieved. While we do not explain in detail how the other
operating paradigms just mentioned may be implemented, it is fairly obvious how
this can be achieved.

D.3 Software for Image Processing

Using specialised hardware for image processing has the obvious advantage
over a software implementation that the hardware is tailored to image processing
and will often give substantially better performance. If a software implementation
is capable of providing adequate performance for a particular application, then
such an implementation offers a number of benefits, including the following:

• Apart from initial image capture, no investment in specialised hardware is

required. Indeed, a complete image processing system may be assembled by
merely purchasing a standard CCIR/RS320, or RS170, video camera and
installing the PIP software on a Macintosh computer fitted with a standard
“AV” (Audio-Video) card. Alternatively, a low cost camera (QuickCam2)
may be used without any other hardware. (This device is interfaced to the
computer via the serial port.) A third option is to use scanned images.

• As a user upgrades his computer, he will obtain a corresponding
improvement in image processing performance, without incurring the
additional cost of investing in new hardware.

• The software can be extended indefinitely, whereas image processing
hardware is typically packaged in a closed “black box”, providing a
predetermined range of functions.

It should be clearly understood that Prolog is not an appropriate language for

implementing “low-level” image processing operations, such as image addition,
thresholding, filtering, skeletonisation, convex hull, etc. (These are often
described colloquially as “pixel pushing” operations.) A procedural high-level
language, or of course, assembly language, is much better suited to rapid, iterative
processing of large arrays of data. Thus, an essential feature of the PIP system is
the interface between Prolog and the image processing software.

D.4 Choice of Hardware and Software Platforms

We have chosen the Apple Macintosh computer, LPA MacProlog32 and
Symantec Think C for system development. The software has been tested on
several Apple computers, including those based on Motorola 680X0 processors
and the PowerPC family. At the time of writing (October 1996), there is no

2 QuickCam, Connectix Corporation, San Mateo, CA, USA

 381

“native code” version of the MacProlog32 software for the PowerPC family, so
the software runs in emulation mode on these machines. The stand-alone version
runs successfully under the Macintosh Application Environment 2.0 (Apple
Computer, Inc.) on a Sun or Hewlett-Packard workstation. Unfortunately, the PIP
software will not run under the WINDOWS 95 or MS-DOS operating systems.
However, the promised enhancements to the Executor 2 software3, which
emulates a Macintosh computer, should make this possible soon.

We chose to use the Apple Macintosh for a number of reasons. Historically, our
previous work on Prolog+ has been carried out on Apple Macintosh computers,
due to the availability of a good implementation of Prolog. The LPA MacProlog
environment used by the authors provides a full implementation of Prolog,
user-interface development facilities, the ability to call functions written in C or
Pascal, and the ability to act upon low-level events, such as activation of a
window, in a user-defined manner.

We are using THINK C because this is one of the languages supported by LPA
MacProlog. The former offers an integrated programming environment, which has
proved useful in developing and testing image processing functions, before
attempting to integrate them into the PIP system.

D.5 Why not Implement Prolog+ Commands Directly?

Prolog+ is centred mostly around just two images: the current and alternate
images. In previous implementations of Prolog+, both of these images were
continually visible on a video (i.e. not the computer) monitor, whereas in PIP,
they appear in windows on the Macintosh computer screen.

We elected not to implement C routines which perform Prolog+ functions
directly. Instead, a new image is created by each image-to-image mapping
operator (e.g. neg, add, lpf, chu, etc.) and we have provided separate routines for
such tasks as, disposal of images which are no longer required, creation of
windows to display images and association of a new image with a window.

The reasons for this approach include the following:

• It is fairly easy to implement a 2-image (i.e. Prolog+) operating paradigm on

top of this, by writing appropriate Prolog code.
• The idea of leaving the source images unchanged is more in keeping with

the spirit of the Prolog language.
• It will not always be desirable to have a continuous display of the images

when the system is working. (The user may, for example, wish to hide
intermediate results from a customer.)

3 The Executor 2 software is available from Ardi Software, Inc., Suite 4-101,

1650 University Boulevard, Albuquerque, NM 87102, USA. Also consult the
following WWW site: http://www.ardi.com

 382

• There is freedom to implement and explore other image processing models,
if desired. (For example, we may wish to defined operations such as add,
subtract, multiply, etc on 3-component colour images.)

D.6 Infra-structure for Image Processing Using Prolog

LPA MacProlog allows the programmer to call functions written in C, or Pascal.
On the Apple Macintosh family of computers, files have two separate parts: the
data and resource forks. MacProlog requires that a new code resource be created
containing the compiled foreign code. Having opened the file containing the
resource, the call_c (or call_pascal) predicate is used to invoke the required
function. A collection of 'glue' routines must be linked into the foreign code
resource, which allow the programmer to access arguments of the call_c routine
and manipulate the data structures supported by Prolog, such as lists.

In order to obtain a system which successfully coexists with the Macintosh
Finder (the Graphical User Interface) and other applications, it was necessary to
build our own application within the framework provided by Apple Computer,
Inc. In particular, there is a wide range of Toolbox routines, for managing entities
such as windows and menus. QuickDraw and offscreen graphics worlds are
among the facilities provided for creating, manipulating and displaying graphical
data. Using these features, in a way consistent with the Apple Computer
Company’s recommendations, should ensure the future portability of the PIP
system.

In the following, we shall first consider how images are stored, displayed and
manipulated in our system, and then consider how the interface between Prolog
and the C routines is built.

D.7 Storing, Displaying and Manipulating Images

It is generally best to avoid accessing the screen display directly on the Apple
Macintosh computer. Instead, drawing is carried out using QuickDraw routines,
via a graphics port, which is normally a window. The operating system ensures
that only visible parts of the window are drawn, and generates update events
when part of a window needs to be redrawn, perhaps as a result of another
overlapping window being moved. If a pixel map must be manipulated directly,
then an offscreen graphics world (GWorld) may be used. One creates an offscreen
GWorld and draws into it using QuickDraw or accessing the GWorld's pixels
directly. The result may be copied to the appropriate window, using the
QuickDraw copyBits routine. In our system, we use an offscreen GWorld to
represent each image currently in use. Not all of these offscreen GWorlds
necessarily have a corresponding window, but each image display window in PIP
does have a corresponding offscreen GWorld.

Using offscreen GWorlds offers a number of benefits to the programmer:

 383

• An offscreen GWorld can be associated with a window for future redrawing,
as necessary.

• Whatever the pixel depth of the display, it is possible to make an offscreen
GWorld of appropriate depth for the image. (So far, the images we have
dealt with have had a depth of 8 bits per pixel, and our program assumes this
pixel depth when it creates a new offscreen GWorld.) If a display mode is
selected in which not all the image colours are available, the copyBits
routine will select the nearest possible colour from the current palette.

• It is possible to associate a colour lookup table (CLUT) with an offscreen
GWorld which is different from the default. This is useful because the
default Macintosh CLUTs assign white to a pixel value of 0, whereas our
grey-scale image-processing operations assume a grey-scale gradient, in
which 0 signifies black. So, in the present PIP system, which deals with
8-bit grey-scale images, we set the CLUT for a new off-screen GWorld to a
gradient of 256 grey levels, in which 0 signifies black and 255 signifies
white. It is not necessary to change the screen CLUT (which would corrupt
the colours of other items on the screen), since mapping between CLUTs is
performed automatically by the QuickDraw routines.

• Since the Macintosh operating system has its own memory management
routines, memory occupied by an offscreen GWorld may be released as soon
as it is no longer needed.

Tables D.1 and D.2 illustrate how the above functionality is implemented in our

C code. Table D.1 contains annotated extracts from the negate_image routine,
which indicates how a new offscreen GWorld is created and accessed. Table D.2
contains extracts from update_window, which indicates how an offscreen GWorld
is associated with a window and how the window is updated.

D.8 Prolog-C Interface

Information concerning the current images and windows is stored by the Prolog
program. In this section we explain how parameters are passed between Prolog
and the C routines, and then discuss the implementation of the predicates which
call the C routines and provide the infra-structure for the PIP system. Finally, we
discuss how user events are handled.

Code Comments
externOSErr negate_image(GWorldPtr
iml, GworldPtr *im2)

iml:inputi image; irn2:output image.

{ …
GetGWorld(&origPort, &origDev); Store current GWorld for later

restoration.

 384

sourcePM = GetGWorldPixMap(iml); Get input image pixel map (NB This
contains a reference to the memory
where the pixels themselves are
located, and other information.)

good=LockPixels(sourcePM); Prevent it from moving.
boundRect=(*iml).portRect; Get boundaries of pixel rnap.
ctable = GetCTable(129); Obtain the greyscale CLUT.
errNo = NetGWorld(im2, 8, &boundRect,
 cTable, nil, 0);

Create new offscreen GWorld of
depth 8, with our special CLUT.

DisposeCTab(cTable); Free memory
SetGWorld(*im2, nil); Drawing to occur in this new

GWorld.
destPM=GetGWorldPixMap(*im2); Obtain the new pixel rnap.
good=LockPixels(destPM);

srcAddr=(unsigned
char*)GetPixBaseAddr(sourcePM);

Calculate where pixels are stored
and prepare to copy the pixels,

srcRowBytes=(**sourcePM).rowBytes &
 0x3fff;

destAddr=(unsigned
char*)GetPixBaseAddr(destPM);

destRowBytes=(**destPM).rowBytes &
0x3fff;

width = boundRect.right - boundRect.left;
height = boundRect.bottom -
 boundRect.top;

for (row=0; row<height; row++) Copy pixels negating. NB we
assume a greyscale image with pixel
values between 0 and 255 inclusive.

{
 srcAddrl=srcAddr;
 destAddrl=destAddr;
 for (column=0; column<width;
 column++)

 *destAddrl++ = 255-(*srcAddrl++);
 srcAddr=srcAddr+srcRowBytes;
 destAddr=destAddr+destRowBytes;
}
UnlockPixels(destPM); Allow pixel maps to move again.
UnlockPixels(sourcePM);
SetGWorld(origPort, origDev); Restore original GWorld (screen).
… }

Table D.1 The negate_image routine.

Code Comments

extern OSErr update_window(WindowPtr
 theWindow)

{ …
GetGWorld(&origPort, &origDev); Store current GWorld for later

restoration.

 385

theImage=(GWorldPtr)
GetWRefCon(theWindow);

Retrieve pointer to offscreen Gworld
associated with the window

SetPort(theWindow); Drawing to occur in this window.
BeginUpdate(theWindow); Indicate to OS that an update event is
display_in_window(theImage, theWindow); being processed; call the image drawing
EndUpdate(theWindow); routine; indicate update is complete.
SetGWorld(origPort, origDev); Restore original GWorld (screen).
…}

 Table D.2 The update_window routine.

Passing Parameters

The routines such as negate_image, described earlier, cannot be called directly
from Prolog: some pre- and post-processing is required, in order to retrieve and
set the parameters passed between Prolog and the C routine. A major reason why
this extra processing is not bundled with each routine is that, in their present form,
it is fairly easy to write a stand-alone C program that allows the functions to be
tested and debugged separately, from within the Symantec programming
environment. A C routine is invoked from LPA MacProlog using a call of the
form:

call_c(<parameter list>, <resource type>, <resource id>)

In our case we have a single code resource of type 'MINE' and resource id 0.

We always use a parameter list of the form:

[<input param. list>, <output param. list>, <function no.>, <err.
code>]

As an example of the implementation of the image processing predicates,

consider the following extract from our Prolog code:

neg_im(Iml, Im2):-call_c([[Iml],Var,6,Err],'MINE',0), Err=0,
Var=[Im2], recd_new_im(Im2).

The neg_im predicate only succeeds if the error number were zero; the output

list should contain a single element (i.e. the value of a pointer to the new image)
and the Prolog system records that this new image has been created. This kind of
data is recorded using the properties feature of MacProlog. An example of how
this feature is used is given below, when considering the implementation of
Prolog+ commands.

User Events

We need to be able to handle the following two kinds of event:

• update events, generated when a window needs to be redrawn; and
• mouse_down events, when they occur in the close box of the window.

 386

MacProlog provides a way of trapping these events and acting upon them,

provided that the windows' windowKind is greater than 32. (All windows created
by our C routines have windowKind 33.) When an update event is received,
MacProlog calls the user-defined x_update predicate (if any); a mouse-down
event calls the x_mousedown predicate, etc. As an example, x_update is defined
thus in our system:

 x_update(Win) :- call_c([[Win], _, 2, _], 'MINE', 0).

When the Prolog system invokes this predicate, the parameter Win is bound to

the value of a pointer to the window that must be updated. Our x_update code
calls the C routine which we have written to process update events for the
specified window.

D.9 Using Infra-structure Facilities Directly

To use the infra-structure facilities directly is a somewhat laborious procedure.
No images are automatically disposed of and an image is only displayed in
response to an explicit command to do so. The following example illustrates how
these facilities may be used; the values of pointers to the original and final images
are returned in variables X and Y respectively:

example(Im,Im4) :-
 new_im(Im), % Read new image from disk
 new_win_for_im_disp(Im,Win,"Original Image",1,50)
 % Create new window for image titled
 % "Original Image", with top left hand
 % corner at (1,50)
 inop3_im([2,3,2,3,5,3,2,3,2],Im, Iml),
 % Local operator - blur
 new_win_for_im_disp(Iml,Winl, "New Image", 320,50),
 % New window for this image
 linop3_im([2,3,2,3,5,3,2,3,2],Iml,Im2),
 % Local operator - blur
 new_win_im_disp(Im2,Winl),
 % Display this new image
 kill_im(Iml), % Dispose of previous image
 sobel_im(Im2,Im3), % Sobel edge detector

In the case of the image negation function, the call is composed thus:

 call_c([[Iml], Var, 6, Err], 'MINE', O).

A single parameter, the value of the source image pointer, is passed to the C

routine; the routine binds Var to a single-element list which contains the
destination image pointer's value; the negation routine is routine number 6, and
Err will be bound to the error value (which is 0, unless an error occurred).

Table D.3 contains extracts from the main C routine which chooses the
appropriate image processing function based on the function number it receives,

 387

and passes parameters between the Prolog environment and that function. Table
D.4 lists predicates forming the image processing infra-structure.

Code Comments
bool main(long argc, void *link())
{… inListTag=get_arg(1); Get 4 arguments passed by call_c
outListTag=get_arg(2);
fNoTag=get_arg(3);
errNoTag=get_arg(4);
switch (get_int_val(fNoTag)) Recover the value of the function
{ … number; call routine which handles
case 6; the specified function number.
errNo = do_negate_image(inListTag,
outListTag);

break; …
}
put_int_val(errNoTag, errNo); Store error number.
return SUCCESS; Return value indicating predicate

succeeded
OSErr do_negate_image(cellpo inListTag,
cellpo, outListTag)

{ …
lml = (GWorldPtr)get_int_val
(get_list_head(inListTag));

Get 1st (and only) input parameter
(head of the input list).

errNo = negate_image(iml, &im2); Call the negate routine.
outListTag = put_list(outListTag); Create a list to hold output

parameter(s).
put_int_val(get_list_head(outListTag), (long)
im2);

put_nil(get_list_tail(outListTag)); Tail of output list is empty, i.e. the list
has only one element

return errNo; Return error number to main routine.
… }

Table D.3 The main C routine, interfacing with Prolog.

D.10 Predicates Forming the Image Processing Infra-structure

It would be undesirable to use the call_c predicate directly in Prolog programs
for the following reasons:

• The semantics we have imposed upon the call_c predicate are very opaque.
• When an image processing operation is called, additional processing at the

Prolog level is required, such as keeping a record of any new images and
windows that have been created.

The following program segment explains how this can be achieved:

 388

new_win_im_disp(Im3,Winl),
kill_im(Im2),
thresh_im(Im3,Im4,15,255), % Pixels with intensities 15 255 are
 % set to white. All others are black
new_win_im_disp(Im4,Winl),
kill_im(Im3).

Predicate Format Description

new_im(Im) Select a new file (in PICT format) from a dialog box, and
draw that file's contents into a new image. “Im” points to
the new image on return from this predicate.

kill_im (Im) Dispose of the image, freeing the memory it occupied.
new_win_for_im (Im, Win,
Name, OffH, OffV)

Create a new window for the image. New window has
title Name, & its top left hand corner is located at (OffH,
OffV) . Win points to the new window on return from this

new_win_for_im_disp (Im,
Win, Name, OffH, OffV)

Perform the same function as new_win_for_im, but
display the window's contents immediately (rather than
waiting for an update event).

new_win_im (Im, Win) Associate the existing window win with new image “Im”.
new_win_im_disp(Im,
Win)

As new_win_im, but display the window's contents
immediately.

close_win (Win) Close the window, freeing the memory it occupied.
copy_im (Iml, Im2) Copy image “Iml” to new image. “Im2” points to this new

image on return.
kill_wins_and_ims Dispose of all windows and images currently in use,

freeing the memory they occupy.

Table D.4 Predicates forming the image processing infra-structure discussed
in the text. Note: Variables Im, Iml, Im2 and Im3 denote integers which are
pointers to images; Win denotes an integer which is a pointer to a window.

D.11 Implementing Prolog+ Commands

Prolog+ is built essentially around two images: the current and alternate
images. When a Prolog+ image processing operation occurs, the current image
will be replaced with the result of the operation, and the alternate image will be
replaced with the previously current image. These images are displayed
continuously on a monitor.

Our predicates implementing these commands use the lower-level predicates
previously described, and perform additional 'housekeeping', such as disposal of
old images and maintaining information about the current and alternate images.
As an example, the following is an implementation of the neg operator:

neg:-
 recall(curr_im,CurrIm), % Retrieve present current & …
 recall(alt_im,AltIm), % … alternate images & windows
 recall(curr_win,CurrWin), % … stored as properties
 recall(alt_win,AltWin),
 neg_im(CurrIm,NewIm), % Negate the image
 new_win_im_disp(NewIm,CurrWin),

 389

 % Display new image in current
 % window
 new_win_im_disp(CurrIm,AltWin),
 % Display previous current
 % image in the alternate window
 kill_im(AltIm), % Dispose of previous alternate
 % image
 remember(curr_im,NewIm), % Store references to new
 % current …
 remember(alt_im,CurrIm). % … and alternate images

Other operators are implemented in a broadly similar manner. A complete list of

Prolog+ operators currently supported by PIP is given in Appendix E.

 390

Appendix E

Prolog+ and PIP Commands

The predicates listed below are all available on the PIP or Prolog+ systems. PIP

has a rather larger range of commands than Prolog+ and is being developed
actively at the University of Wales Cardiff. A few Prolog+ commands are not yet
available in PIP but are included here, since they will be added very soon.

Image Processing Primitives

Mnemonic Arity Description
aad 3 Aspect adjust
abs 0 "Absolute value" of intensity
acn 1 Add constant to each intensity value
add 0 Add current and alternate images
and 0 Logical AND of corresponding pixels in current & alternate

images
ang 6 Orientation and length of line
avg 1 Average intensity
bay 0 Bays (indentations) of a blob
bbt 6 Is biggest bay above second biggest bay?
bed 1 Edge detector for binary images
bic 1 Clear A-th bit of intensity of each pixel in current image
bif 1 Flip the A-th bit of the intensity of each pixel in the current

image
big 1 Find A-th biggest blob
bis 1 Set A-th bit of intensity of each pixel in current image to 1
blb 0 Fill holes (lakes) in a binary image
blk 0 Set every pixel in the image to black (level 0)
blo 1 Expand the central intensities.
blp 1 Find blob parameters
box 5 Set (hollow) rectangle to defined grey level
bpt 2 Find co-ordinates of centre of bottom-most chord
bsk 0 Copy image at bottom of stack into current image
bve 5 Find all points where given vector intersects edge of object
cal 1 Copy each pixel with intensity > A. All other pixels are

black
cbl 1 Count blobs

 391

Image Processing Primitives
Mnemonic Arity Description

ccc 0 Draw circumcircle of a blob placed at the blob centroid
cct 1 Concavity tree
cgr 0 Co-ordinates of geometric centroid of all white pixels
chf 0 Flip horizontal axis if longest vertical white chord is to left of

image centre
chf 1 Flip hor. axis if longest vertical section is left of image centre
chu 0 Draw the convex hull around a blob-like object
cin 0 Column integrate
cir 5 Set an ellipse to a defined grey level
clc 0 Column run length coding
cnw 0 Count number of white 8-neighbours in each 3*3

neighbourhood
com 1 Count number of points with different intensities
con 9 General purpose linear convolution operator based on 3*3

window
cox 0 Column maximum
cpy 0 Copy current image into alternative image
crk 1 Crack detector
crp 4 Crop image
csh 0 Copy intensity horizontally from RHS
csk 0 Clear image stack
ctp 0 Cartesian to Polar axis transformation
cur 4 Cursor
cvd 0 Convex deficiency
cwp 1 Count the white points in the current image.
dab 2 Draw some defined feature (e.g. centroid, principal axis) for

each blob in image
dbn 0 Direction of the brightest neighbour
dcg 0 Draw geometric centroid and print its co-ordinates
dci 7 Draw centre of the image
dcl 3 Draw a pair of cross lines through a given point
dcn 1 Divide each pixel intensity by a constant
dgw 4 Get image size
dif 0 Subtract alternate and current images ignoring the sign.
dil 1 Dilate image along given direction
dim 4 Extreme X and Y values for all white pixels
din 0 Double all intensities
div 0 Divide current image by alternate image
dlp 2 Difference of low-pass filters
doc 0 Suspend Prolog and enter HyperCard HELP facility
dpa 1 Draw principal axis
dsl 3 Draw straight line given one point on it and its slope
eab 1 Analyse each blob in turn
ect 0 Threshold mid-way between minimum & maximum intensity
edc 3 Euclidean distance between two vectors, specified as lists
edd 1 Non-linear edge detector
edg 2 Set the border of width W to grey level G

 392

Image Processing Primitives
Mnemonic Arity Description

egr 1 Grow the ends of an arc in a binary image
enc 0 Enhance contrast
ero 1 Erode image along given direction
eul 3 Euler number
exp 0 Exponential intensity transformation
exw 0 Expand white
fac 0 Flip the image about its centroid
fbr 0 Find and remove all blobs touching the border
fcb 9 Fit circle to three points on a blob
fcd 4 Fit circle to three points
fil 5 Set (solid) rectangle to defined grey level
fld 4 Fit straight line to data (2 points)
gft 0 Grass fire transform
gli 2 Get limits of intensity
gob 1 Get one blob and delete it from stored image
gra 0 Gradient, a simple edge detector
gry 1 Set every pixel in the image to defined level
hfl 8 Synonymous with blb
hgc 0 Cumulative histogram
hge 0 Histogram equalisation
hgi 1 Intensity histogram
hgr 0 Horizontal gradient
hid 0 Horizontal intensity difference operator
hil 3 Highlight intensities in given range
him 1 Hide a displayed image
hin 0 Halve all intensities
hmx 2 Histogram maximum
hol 0 Obtain the holes (lakes) of a blob in given binary image
hpf 0 High pass filter (3*3 window)
hpi 0 Plot intensity histogram of current image
huf 0 Hough transform
iht 2 Inverse Hough transform of given point
ior 0 OR corresponding pixels in current and alternate images
itv 0 Enter interactive mode
jnt 0 Joints (of a skeleton)
kgr 0 Keep blobs with area greater than defined limit.
ksm 0 Keep blobs with area smaller than defined limit
lak 0 Obtain the holes (lakes) of a blob in given binary image
lat 1 Local averaging with threshold
lav 1 Local averaging (blurring) filter.
lgr 0 Largest gradient of each 3x3 neighbourhood
lgt 2 Transfer intensities along a line into a Prolog list
lin 1 Normalise orientation so that longest straight side is

horizontal
lme 0 Limb ends (of a skeleton)
lmi 4 Geometric centroid & orient. of axis of min. second moment
lnb 0 Largest neighbour

 393

Image Processing Primitives
Mnemonic Arity Description

log 0 Logarithmic intensity transformation
lpc 1 Laplacian operator (4 or 8-neighbour)
lpf 0 Low Pass (Blurring) Filter (3* window)
lpt 2 Find co-ordinates of centre of left-most chord
lrt 0 Left-to-right transform
lut 1 Apply one of the standard look-up tables to the current image
mar 0 Draw the minimum-area rectangle
max 0 Maximum of current and alternate images (pixel by pixel)
mbc 0 Draw minimum bounding circle around a blob
mcn 1 Multiply each pixel intensity by a constant
mdf 1 Median filter
mdl 0 Skeleton. Synonym for ske
min 0 Minimum of current and alternate images (pixel by pixel)
mma 2 Find lengths of blob projected onto principal axis and axis

normal to it
mul 0 Multiply current image by alternate image
ndo 0 Numerate (shade) distinct objects in a binary image
neg 0 Negate image
nlk 0 Normalise position and orientation using largest and second

largest lakes
nlk 5 Normalise position and orientation based on lakes A & B
nmr 0 Normalise position; put middle of Min. rect. at centre of

image
nnc 0 Nearest Neighbour classifier
not 0 Logical negation of all pixels in a binary image
npo 3 Normalise position and orientation of a blob in a binary image
nxy 2 Normalise [X,Y] position; put centroid at centre of the image
per 1 Perimeter
pex 2 Picture expand (increase image size)
pfx 3 Set the pixel whose address is (X, Y) to level G
pic 8 Save/load named image
pis 0 Push an image onto the stack
plt 1 Plot the intensity profile along a specified column
pop 0 Remove image from top of stack and put it into current image
psh 2 Picture shift
psk 0 Push an image onto the stack
psq 2 Picture squeeze (reduce image size)
psw 2 Picture shift with wrap around
ptc 0 Polar to Cartesian axis transformation
pth 2 Percentage threshold
raf 1 Repeated averaging filter
rbi 0 Recover both current and alternate images from image stack
rea 1 Read image
red 0 Roberts edge detector
rim 1 Read image from RAM disc
rlc 0 Row run length coding
roa 0 Rotate image counterclockwise by 90°

 394

Image Processing Primitives
Mnemonic Arity Description

roc 0 Rotate image clockwise by 90°
rpt 2 Find co-ordinates of centre of right-most chord
rsh 0 Copy intensity vertically from bottom
sbi 0 Save both current and alternate images on image stack
sca 1 Reduce number of bits in each intensity value to A
sco 0 Circular wedge
sed 0 Sobel edge detector
set 0 Set every pixel in the image to white (level 255)
shf 1 Shape factor
shp 1 Sharpen image
sim 2 Generate a new image display window
skw 0 Shrink white regions
snb 0 Smallest neighbour
sqr 0 Square all intensities
sqt 0 Square-root of all intensities
ssk 0 View (see) the images on the stack
sub 0 Subtract images
swi 0 Swap current and alternative image
tbt 0 Flip the vertical axis of the image
thr 2 Threshold
tpt 2 Find co-ordinates of centre of top-most chord
tsk 0 Copy image at top of stack into current image
tur 1 Rotate an image by A degrees about its centre point

usm 1 Unsharp masking (High pass filter)
vgr 0 Vertical gradient
vgt 1 Store grey-levels along RHS of image in a Prolog list
vid 0 Vertical intensity difference operator
vpl 5 Draw a digital straight line
vpt 1 Set intensities along RHS of image to values in Prolog list
vsk 1 Transfer the A-th image on the stack in the current image
vsm 0 Vertical smoothing
wdg 1 Draw an intensity wedge
wgx 0 Draw an intensity wedge
wim 1 Save image in RAM disc
wri 1 Write image in RAM
wrm 0 Remove isolated white pixels
xor 0 Exclusive OR of current and alternate images
yxt 0 Transpose the image axes
zer 0 Make image black

 395

Synonyms used in this Book

Predicate Arity Description
angle 6 Synonym for ang
bays 0 Synonym for bays
biggest 0 Synonym for big
big_blobs 1 Synonym for kgr
count 2 Similar in operation to cbl but can also counts other features

e.g. bays, lakes
crack 0 Synonym for crk
draw_disc 3 Draw a solid white disc of given radius in a given position
draw_one_disc 3 Synonym for draw_disc
fetch 1 Similar in operation to rea(saved_im)
fit_circle 9 Fit a circle to 3 points
keep 1 Similar in operation to wri(saved_im)
label blobs 0 Synonym for ndo
speak 1 Synonym for utter
normalise 0 Synonym for npo

Colour Image Processing, Partial Listing
Predicate Arity Description
colour_
scattergram

0 Calculate the colour scattergram

colour_
similarity

2 Program the PCF to measure similarity to a defined colour

create_filter 0 Program the colour filter from the current image
draw_triangle Draw outline of the colour triangle in the current image
generalise_
colour

0 Colour generalisation

grab_3_images 0 Digitise the RGB colour separations as 3 distinct images
hue 0 Program the PCF for the hue filter
initialise_
pcf_lut

0 Set all PCF LUT values to zero (black) initially

normal_pcf 0 Reset PCF to normal operation for monochrome image
processing

pseudo_colour 1 Pseudo-colour on/off
redness 0 Program the PCF to measure redness
saturation 0 Program the PCF to measure saturation
video 1 Select R, G, B or monochrome channel for future grb

operations

Gauge Predicates [Bat-91]

 396

Predicate Arity Description
balloon 5 Get co-ordinates of closest white pixel to a given point. For

each radius, scan anti-clockwise, starting at 3 o'clock
position.

circle 9 Calculate centre & radius of circle passing through 3 given
points.

compass 6 Get co-ordinates of first white pixel on circumference of
circle, given its centre and radius. Start searching at 3 o'clock
position.

edge 7 Find position of largest absolute value of gradient along
given line.

fan 7 Get co-ordinates of closest white pixel found in fan-shaped
search area, given fan position, orientation and spread
parameter

gap 8 Get position of minimum & maximum intensity gradient
along the line joining two given points

lmn 6 Find position of smallest value of intensity along line defined
by its two end points

lmx 6 Find position of largest value of intensity along line defined
by its two end points

mid_point 6 Calculate the mid-point of line joining 2 given points.
perdendicular_
bisector

8 Given 4 points (A, B, C, & D), check that line [C,D] is
perpendicular to line [A,B] and vice versa.

protractor 6 Get co-ordinates of the first white pixel encountered along a
line, given it starting points and orientation.

triangle 9 Calculate perimeter, perpendicular height and area of
triangle defined by co-ordinates of its vertices

 397

Properties and Relationships Between Objects in Images
Predicate Description
about_same Are two numbers about the same. Tolerance is specified by

user.
about_same_horizontal Test whether two blobs are at about the same horizontal

position
about_same_vertical Test whether two blobs are at about the same vertical

position
above Test whether one blob is above another
adjacent Are two named objects adjacent to one another?
below Test whether one blob is below another
bigger Test whether one blob has larger area than another
brighter Test whether one point is brighter than another
circular Is given blob approximately circular
concentric Are centroids of two named objects at same position?
connected Are two given points parts of the same blob? Are they 8-

connected?
contains Test whether one blob is inside another
convex Is object convex
darker Test whether one point is darker than another
encloses Synonym for contains
inside Test whether one blob is inside another
left Test whether one blob is to the left of another
parallel Are two lines defined by their end points parallel?
right Test whether one blob is to the right of another
right_angle Are two lines specified by their end points at right angles?
smaller Test whether one named blob is smaller than another
straight_line Is arc with specified end points a straight line?
top_of Is one named object in top part of another named object?

Operators and Control Predicates
Operator Description
 & AND operator (infix) - can be used in lieu of ',' in compound goals
 -> Conditional evaluation of a goal
case Conditional evaluation of list of goals
for FOR i = N1 STEP N2 UNTIL N3 DO GOAL
if Use in lieu of ':-' in defining Prolog clauses (infix operator)
if_then Conditional evaluation of a goal. Synonymous with '→' operator.
if_then_else IF P THEN Q ELSE R
or OR, use in lieu of ';' in definitions of compound goals. (Infix operator)
• Repeat defined goal a given number of times. (e.g. 6•lpf)
¶ (prefix) Device control operator. Used to operate MMB interfacing unit

(A,B) Send given Prolog goal to remote computer.

 398

Miscellaneous
Predicate Description
cut Use “!,cut” in lieu of “!” when using speech synthesiser to follow

program flow
do_it Performs an operation on behalf of HyperCard. Normally used only

in conjunction with HyperCard
fails Use lieu of fail when using speech synthesiser to follow program

flow
gob_init Initialise gob
gob_modified Similar to gob but can be used inside recursive loop
help Switch to PIP manual (Bring HyperCard to the front)
recursive_eab Similar to eab but can be used inside recursive loop
repeats Use in lieu of repeat when using speech synthesiser to follow

program flow
utter Use speech synthesiser to say phrase or list of phrases

Controlling External Devices
Predicate Description
all_lights Switch all lights on/off
aperture Set aperture of selected camera to defined value
calibrate_axes Calculate mapping function parameters between (X,Y,Theta)-table

and camera co-ordinates
camera_state Find camera state-vector
convert_axes Convert between (X,Y,Theta)-table and camera co-ordinate axes.
focus Set focus of selected camera to defined value
grasp Operate FIC gripper (Suction on)
home Send the (X,Y,theta)-table to its home position.
in Put pick-and-place arm in the IN position
input_port Find state of a given input port
laser Switch the laser light stripe generator on/off
light Set given lamp to defined brightness level.
move_to Move (X,Y,Theta)-table to given point and orientation
nudge Move (X,Y,Theta)-table by a defined amount.
out Put pick-and-place arm in OUT position
output_port Set given parallel output port to defined bit pattern
pan(A) Adjust pan of selected camera.
pick Pick up object from the (X,Y,Theta)-table using pick-and-place arm
place Place object on the (X,Y,Theta)-table
projector(A) Switch the slide projector on/off
release Release FIC gripper
select_camera Choose camera
table_at Where is the (X,Y,Theta)-table?
tilt(A) Set tilt of selected camera.
up Put pick-and-place arm in the UP position
utter(A) Utter the phrase or list of phrases defined by "input" parameter.
zoom(A) Set zoom of selected camera

 399

Glossary of Terms

Algorithm, A well-defined set of rules for performing a particular mathematical
calculation. (c.f. heuristic)

Aliasing, Phenomenon which gives rise to spurious results if an image is sampled
at a spatial frequency below the Nyquist limit.

Analogue to digital converter (ADC), An electronic hardware device which
converts an analogue voltage into a digital representation of the value of that
voltage. An ADC is characterised by its resolution (i.e. the number of bits
used to represent the voltage) and its conversion time.

Anamorphic mirror. A mirror that produces different magnifications along
different directions in the image plane.

Aperture, The aperture controls the amount of light passing through a lens. The F
number scale (1.4, 2, 2.8, 4, 5.6, 8, 11, 16) for a standard photographic lens
reduces the amount of light passing through the lens by half with each step
increase in the scale.

Astigmatism, Optical aberration in which, instead of a point image being formed
of a point object, two short line images are produced at right angles to each
other.

Autocollimation. A procedure for collimating an optical instrument with variable
objective lens and cross hairs. The instrument is directed towards a plane
mirror and the cross hairs and lens are adjusted so that the cross hairs
coincide with their reflected image.

Autocorrelatlon function. See Section 2.7.
Automatic gain control. Attribute of a circuit (e.g. video amplifier) whose gain is

automatically adjusted to allow for changes (in ambient light).
Auto iris lens. Lens whose aperture automatically adjusts itself to allow for

variations in the ambient light.
Back focal length. The distance from the rear surface of a lens to its focal plane.
Beam expander. An optical system for increasing the width of a light beam.
Beam splitter. A partially silvered or aluminised mirror which splits an incident

beam of light into a reflected beam and a perpendicular transmitted beam.
Other forms of beam splitter are also available.

Binary image. An image in which each pixel can be represented by only the two
binary digits 0 or 1, (i.e. black or white). (See Chapter 2.)

Blooming. An effect by which a highly illuminated point image on an image
sensor spreads out to form a disc; caused by the high intensity of the incident
beam saturating the image sensor at that point.

Borescope. A telescope in the form of a straight tube containing a mirror or prism
used for inspecting cylindrical cavities. Also called endoscope or intrascope.

Buried channel CCD. Type of CCD with a buried layer of doping material which
together with the electrodes causes the charge packets to move below the
surface; giving a high-charge transfer efficiency.

Byte. Unit of information or memory size equal to eight bits; memory size is
normally measured in kilobytes (1024 bytes) or megabytes.

 400

"C" mount. This is a 1" diameter threaded standard lens mount. Preferred mount in
industrial applications due to its size and weight.

Carbon dioxide laser. A powerful, continuous, infrared laser that can emit several
hundred watts at a wavelength of 10.6µm. Used for welding and cutting
applications.

Chain code (Digital). Code used for describing a curve such as the periphery of an
object. Each discrete point on the curve is represented by an integer from 0 to
7, representing the direction of the next point as an angle ranging from 0° to
315° in 45° steps. (Section 2.3.1)

Charge coupled photodiode array (CCPD). An image sensor which combines the
best properties of CCDs (low noise, high clock rate) and photodiode arrays
(good spectral response, resistance to blooming), i.e. the image sensors are
photodiodes but the scanning function follows the principles of operation of
a CCD.

Charged coupled image sensor. CCD in which each element generates a charge
proportional to the light intensity falling on it. Associated circuitry moves
these charges bodily through an analogue shift register on the same chip to
form a serial representation of the incident image at the output.

Charge injection device (CID). A charge transfer device used as an image sensor
in which the image points are accessed by reference to their Cartesian co-
ordinates. CIDs have low dark current, are resistant to blooming but are
relatively noisy.

Charge transfer efficiency. Efficiency with which charges are transferred between
neighbouring locations in a CCD.

Chromatic aberration. An optical aberration in which the component colours in a
point source of white light are brought to a focus at different points; caused
by the variation of the refractive index of the glass with wavelength.

Classification. An object is classified as belonging to some group or class on the
basis of the features extracted. (Section 7.2.4)

Closing is a mathematical morphology operator and consists of a combination of
erosion and dilation operations. It has the effect of filling in holes and blocking
narrow valleys in the image set, when a structuring element (of similar size to the
holes and valleys) is applied. It of is the dual morphological operation of
opening. (Section 2.4)

Coherent illumination. Monochromatic light with a definite phase relation
between different points in space. Applies particularly to laser light.

Collimator. Optical device for producing a parallel beam of light.
Colour is the general name for all sensations arising from the activity of the retina

of the eye and its associated nervous system. Colours vary in three different
ways: hue, saturation and intensity. (Chapter 6)

Colour cube refers to a 3-dimensional space in which we plot the RGB colour
information. (Section 6.5.4)

Coloured is used to signify an object or scene that has some discernible colour,
other than neutral, which has low values of saturation.

Colour scattergram is a graphical representation of the colour variation to be
found in a scene and consists of a set of points superimposed onto the colour

 401

triangle. It is convenient, in practice, to plot the colour scattergram as an
image, so that it can be filtered, thresholded and processed using the usual
image processing software. (See Section 6.5.7.)

Colour temperature. That temperature of a black body which radiates energy with
the same spectral distribution as that from a given surface.

Colour triangle is an abstract geometric figure that is useful when analysing and
discussing colours. Each point in the triangle corresponds to a different
colour in the scene being viewed. Points that are close together usually have
similar colours. (See Section 6.5.4.)

Coma. Optical aberration of an optical system which gives a point object a pear-
shaped image.

Connectivity. Topological property of a binary image relating to the number of
'holes', or ‘lakes’, it contains. (Section 2.5)

Contrast. The difference in light intensity between two adjacent image points,
normalised by dividing by the sum of those intensities.

Convex deficiency. The set of points within a convex hull that are not in the object. It
includes lakes (regions totally enclosed by an object), and bays (regions lying
between the convex hull perimeter and the object). (Section 2.3)

Convex hull. Given an arbitrary two-dimensional shape, the perimeter of its
convex hull could be obtained by stretching a rubber band around the shape.

Correlation, two-dimensional. An image-processing operation used to search for a
particular image pattern within a picture, i.e. a template matching operation.

Cross talk. A process by which an unwanted signal is induced in a circuit because
of its close proximity to a neighbouring circuit; can be applied to adjacent
image sensors in a solid-state array.

Dark current. Current that flows in the output circuit of an image sensor even in
the absence of illumination.

Dark-field illumination. A method of microscope illumination in which the
illuminating beam is a hollow cone of light formed by an opaque stop at the
centre of the condenser large enough to prevent direct light from entering the
camera’s objective lens; the specimen is placed at the apex of the cone and is
seen only with light scattered, diffracted or refracted by the specimen.

Depth of field. The range of object distances over which a camera gives a
sufficiently sharp image.

Depth of focus. The range of image distances over which the image remains sharp
for a given object distance.

Descriptive syntactic process. A pattern recognition technique which models an
object by a set of features and by the spatial relationships between these
features. (Section 3.5.2)

Diffraction. Wave phenomenon of light whereby the intensity distribution in a
wave is spatially redistributed after encountering an obstacle. It accounts for
the ability of waves to go round corners.

Diffuser. Translucent material, e.g. polypropylene, used to produce diffuse
illumination.

Digital to analogue converter (DAC). A piece of electronic hardware, typically a
single chip, used to convert a binary number into an analogue voltage.

 402

Digitisation. The conversion of an analogue or continuous waveform (typically
video) into a sequence of numbers suitable for digital processing. The
conversion process is accomplished by an analogue to digital converter
(ADC).

Dilation. A mathematical morphological operation (also referred to as filling and
growing) which is concerned with the expansion of an image set by a structuring
element. (Section 2.4)

Distortion. Defect of an optical system in which magnification varies with angular
distance from the axis, causing straight lines to appear curved.

Dual. The duality relationship that exists between certain morphological operators,
such as erosion and dilation, means that the equivalent of such an operation can
be performed by its dual on the complement image and by taking the
complement of the result.

Dye laser. A type of tuneable laser in which the active medium is a dye such as
acridine red, with very large molecules.

Dye penetrant. A liquid dye used for detecting cracks or surface defects in non-
magnetic materials.

Dynamic aperture. The effective transverse aperture of a linear image sensor
which is being mechanically scanned in the transverse direction.

Dynamic range. A characteristic property of any measuring instrument. It is equal
to the ratio of the maximum to minimum measurable values of the physical
quantity which the instrument was designed to measure.

Edge detection operator. An image-processing operator whose effect is to
highlight the edges of an image, e.g. Sobel or Roberts edge detection
operators. (Section 2.2.5)

Endoscope. A rigid arrangement of optical fibres with an objective at one end and
an eyepiece at the other. Unlike a fibrescope it cannot be bent and is used for
direct in-line viewing.

Erosion. This is the dual morphological operation of dilation and is equivalent to the
shrinking (or reduction) of the image set by a structuring element. (Section 2.4)

Euler number. Topological property of a binary image equal to the number of
distinct 'blobs' minus the number of 'holes'.

Extension tubes Hollow, cylindrical "C" mount devices that can be used to increase
the distance between the sensor and the lens, thereby altering its working
distance.

Fast Fourier transform (FFT). A particularly fast algorithm for computing the
Discrete Fourier transform of a digitised signal. The signal can be a function
of distance or time.

Feature extraction is the extraction of image features which are characteristic of
the object and which will be used in the classification process.

Fibrescope. An arrangement of optical fibres with an objective at one end and an
eyepiece at the other; unlike the endoscope the instrument can be bent as
required, to view inaccessible objects .

Field. A complete scan of a TV picture using either odd (or even) numbered lines,
i.e. a complete frame consists of two interlaced fields.

Field curvature. Aberration of an optical system causing the surface of sharpest
focus to be curved.

 403

Field of view. Described by an angle of arc from side-to-side and top-to-bottom of the
scene viewed through a lens of a specific format. It is directly related to the lens
focal length and the camera image format.

Filters (Optical) can be used to absorb light of a given wavelength before it reaches
the image sensor. Correct use of filters can help to simplify the image
processing. The main types of filters used are colour filters, but polarising filters
are frequently used to reduce specular reflection. (Section 6.4.1)

Fluorescence. A process in which a material absorbs electromagnetic radiation at
one wavelength and emits it at another, longer wavelength.

Fluorescence microscope. A type of compound microscope in which the specimen
on being illuminated by ultraviolet or blue radiation fluoresces and is then
viewed in the normal way.

Fluorescent lamp. An example of a cheap non-directional light source. Diffuse,
therefore minimising the amount of shadow.

Flying spot laser scanner. A device used for optical inspection where very fine
detail is required. It consists of a laser beam which is made to scan the object
by mechanical, or electromechanical means, the reflected light being
collected by a suitable photodetector.

Focal length. Distance from focal point to principal point of a lens or mirror.
Focal point, focus. Point at which rays parallel to the axis of an optical system

converge or from which they appear to diverge. Most optical systems have
two principal foci produced by rays incident from the left and from the right.

Frame. One complete TV picture usually representing a snapshot of a moving
scene with an effective exposure time of 1/25’th (Europe) or 1/30’th (USA)
of a second.

Frame-store. An electronic memory used for storing one or more digital
representations of an image. The storage process must be fast enough to
occur in real-time.

Frame transfer. A term applied to a particular type of CCD image sensor which
has special scanning circuitry to minimise image smear.

Fresnel lens. A thin lens constructed in the form of a series of stepped concentric
segments thus giving the optical properties of a thick lens.

Gallium arsenide laser. A laser that emits infrared radiation (λ = 900 nm) at right
angles to a junction region in gallium arsenide. Can be modulated directly at
microwave frequencies. Cryogenic cooling is required.

Gamma correction. The photo-electrical response I of some TV cameras is a non-
linear function of the incident light intensity E of the form: I = const.Eγ. Any
attempt to correct for this non-linearity using either hardware or software is
called gamma correction.

Geometric transform. Type of image processing operator in which the
transformed image is essentially recognisable but is in some way rotated,
distorted or warped. (Section 2.6)

Grey scale. A numerical representation of intensity in which black is usually
represented by 0, white by some fixed maximum number (e.g. 255) and
shades of grey by intermediate numbers.

 404

Helium-neon laser. Low-power laser in which the lasing medium is a mixture of
helium and neon.

Heuristic. A heuristic method is a "procedure for the solving of well defined
mathematical problems by an intuitive approach in which the structure of the
problem can be interpreted and exploited intelligently to obtain a reasonable
solution" [SIL-80]. (c.f. algorithm)

HSI Hue, Saturation and Intensity. This is a convenient method of describing
colour and is an alternative to the RGB representation, from which the HSI
parameters can be calculated.

Hue is the component in the description of colour, which, in effect, defines the
name of a colour. Although the terms yellow, red, violet, etc. are defined
subjectively, they can be related to the measurement of hue.

Image acquisition is concerned with the generation of a two dimensional array of
integer values representing the brightness function of the actual scene at
discrete spatial intervals. A frame-store is used for capturing video image.

Image analysis is concerned with the extraction of explicit information regarding
the contents of the image.

Image format. Describes the diameter of the light sensitive area of an imager. Possible
formats: 1/2", 2/3" and 1".

Image interpretation is concerned with making some decision, based on the
information gleaned from image analysis.

Image processing, The principal objective of image processing is to process a
given image, so that it is more suitable for a specific application. The term is
also used in a generic sense, to include Image Analysis and Image
Enhancement.

Image transform. An image processing operator in which each pixel is replaced
by a function of, many or, all of the pixels in the original image, e.g.
autocorrelation.

Incandescent lamps (Common bulb). Simple cheap light source. Relies on hot
filament. Gives directional illumination which causes shadows. Emits a lot of
infra-red. Not commonly used in industrial applications.

Incoherent illumination. Light in which the phase relation between different
points in space varies randomly.

Infrared (IR). Term applied to that part of the electromagnetic spectrum
containing wavelengths which are longer than those for visible red light but
shorter than microwaves.

Integration. Solid state sensors are examples of integrating detectors, i.e. each
photosensor will accumulate light during a time interval specified by electronic
timing signals. For an array device this is generally done for the whole frame
time. The resultant signal is proportional to the light level and the exposure time.
Therefore, if we expose the sensor quickly, then a higher light level needs to be
supplied.

Intensity. This quantity measures the amount of light reflected from a surface.
Intensity is not sensitive to colour. (The term is also used to signify the value
associated with a given pixel in a digital image. The value of the intensity at
a given point may be measured, by a camera, or computed.)

 405

Interferometer. An instrument in which a beam of coherent or partially coherent
light is split into two separate beams which travel different paths before
being reunited to form an interference pattern. Used for very accurate
measurement of distance.

Interlaced scanning. A method for scanning TV images whereby a complete
frame is scanned by first scanning the odd-numbered lines followed by the
interlaced even-numbered lines. Also see field and frame.

Interline transfer. A term applied to a particular type of CCD image sensor which
has special scanning circuitry to minimise image smear.

Laser. Acronym for “Light Amplification by Stimulated Emission of Radiation”, a
device which produces a highly coherent, parallel beam of monochromatic
light.

Light Emitting Diodes. LED's are often used for illumination in machine vision
applications. They provide long life, a fairly even beam of low intensity light and
high efficiency.

Linear array. Solid-state array in which the photosensitive elements lie along a
line.

Line pairs per mm. Unit of spatial frequency; often used to describe the resolving
power of a lens. For example, a good lens can resolve 100 line pairs per mm.

Local operator. An image-processing operator in which each pixel is replaced by
a function of its neighbouring pixels. (Section 2.2.3)

Look-up table (LUT). A table of numbers stored in a digital memory used for
quick reference. Often used to speed up computer software.

Machine vision The use of devices for optical, non-contact sensing to automatically
receive and interpret an image of a real scene in order to obtain information
and/or control machines or processes [AVA-85].

Mathematical morphology, involves the probing of an image with a template
shape, which is called a structuring element, to quantify the manner in which
the structuring element fits (or does not fit) within a given image.
(Sections 2.4 and 2.5)

Matrix-matrix mapping. General class of image-processing operations in which
the matrix representing the result of the operation is a function of the matrix
representing the original image. (Section 2.2)

Microprocessor. The central processing unit of a microcomputer, normally
fabricated as a large scale integrated circuit.

Modulation transfer function. Modulus of optical transfer function.
Moiré fringes or patterns. Pattern of lines which appears when two patterns of

closely spaced lines are superimposed at an appropriate angle.
Monadic point-by-point operator. Image processing operator which acts on only

one image. Each pixel in the transformed image is obtained from operations
on only the corresponding pixel in the original image.

Monochromatic is used in this book to refer to either light, or the scene being
viewed. Monochromatic light contains electro-magnetic radiation of a single
wavelength. The term is also used to describe light having a narrow range of
wavelengths. For example, that pair of narrow spectral bands giving light
from a sodium lamp its characteristic yellow colour would be referred to as

 406

being monochromatic. Surfaces that reflect/emit light with a narrower
spectrum would also be referred to as being monochromatic.

Monochrome is used to refer to images. (The term monochromatic refers to light,
or the scene being viewed.) A monochrome image contains no information
about colour. The signal from an RGB colour camera generates three
separate images, each of which is referred to as being monochrome. In effect,
these measure the amount of red, green and blue light in a coloured scene. A
colour image can be represented, for the purposes of display, printing, or
digital processing, by three monochrome images, called its colour
separations.

Neutral is used to signify an object or scene that has is composed only of grey,
white or black regions. It does not have any colours such as yellow, red, etc.
The page of this book appears to be neutral when viewed in natural (i.e.
white) light.

N-tuple operator. An image processing operator in which each pixel is replaced
by a function of only a selected few (N) of its neighbouring pixels. (Section
2.2.5)

Nyquist limit. Spatial frequency equal to half the sampling frequency. If an image
falls on a solid-state array of element spacing d, the image is said to be
sampled at a spatial frequency of 1/d. The Nyquist limit is 1/(2d) and using
this array it would be impossible to discern spatial detail having a frequency
greater than 1/(2d) .

Opening is a combination of erosion and dilation operations that have the effect of
removing isolated points in the image set smaller than the structuring element
and those sections of the image set narrower than the structuring element.
(Section 2.4.1)

Optical aberration. Any deviation from perfect image formation by an optical
system.

Optical character recognition. A branch of technology concerned with the
automatic optical scanning of printed words and their subsequent recognition
by machine.

Optical transfer function. A complex function of spatial frequency characterising
an optical system. It gives a numerical measure, in amplitude and phase, of
the extent to which the contrast of object details of a given spatial frequency
is degraded in the process of forming the image.

Parallel processor. Computer which has a large number of identical processors
each of which can operate on data (such as a digital image) at the same time.

Phosphor. A luminescent material, normally used in cathode ray tubes, which
partially converts the energy of an incident electron beam into light energy.

Photodiode. A semiconductor diode in which the reverse or leakage current varies
with light intensity.

Photodiode array. Solid-state array in which the photosensitive elements consist
of photodiodes.

Photomultiplier. A very sensitive light detector, capable of detecting a single
photon. It consists of a light-sensitive cathode, together with a series of
dynodes and an anode, in an evacuated glass envelope.

 407

Pixel (Pel). Picture element; the smallest addressable section of a digital image.
Within the pixel boundaries the grey level or colour of the image can be
considered constant.

Polarised light. Light beam with an electric field vector vibrating in one plane
only.

Polar vector representation. Code used for describing a curve such as the
periphery of an object. Each “break point” on a piece-wise linear curve is
represented by the polar co-ordinates of the next point with the current point
as origin.

Polychromatic A polychromatic scene contains a number of monochromatic
regions, each one being clearly distinct from all of the others. This is a
specialised use in this book. (Section 6.7)

Programmable Colour Filter (PCF) is the term used in this book to refer to a real-
time video filtering device, consisting of a look-up table, implemented in a
random access memory, RAM, whose inputs are the digitised RGB signals.
The contents of the look-up table are generated from a monochrome image.
The output of a PCF is a monochrome video image, but this may often be
displayed to good effect using pseudo-colour. (Section 6.6)

Pseudo colour-triangle is a computer generated image, superimposed onto the
colour triangle. A series of very useful programmable colour filters can be
generated by creating pseudo colour-triangles (using an image processor, or
graphics program) and then applying the Prolog+ program create_filter.
(Section 6.6.10)

Quartz halogen lamp. An intense source of white light produced by an electrically
heated tungsten filament enclosed in a quartz envelope which contains a
halogen vapour, e.g. iodine at low pressure.

Raster scan. The simplest way of scanning an image in which the scanning
electron beam starts at the top of the image and proceeds sequentially
scanning one line at a time until it reaches the bottom.

Real-time. A process which in some way models a real, live event is said to take
place in real-time, if it occurs at the same rate as the real process. For
example a frame-store works in real-time if it is able to store digits
representing an image at the rate at which they are supplied by an ADC.

Refraction. Change of direction of a ray of light when passing from one
transparent medium to another.

Resolution (of a digital image). The number of rows and columns.
Resolution (of an optical system). The smallest angular separation of two object

points which produces two distinguishable image points.
Retrofocus lens. Compound lens system consisting of a diverging lens followed

by a converging lens (reverse of telephoto principle); this gives a back focal
length which is greater than the true focal length, facilitating convenient
camera design.

Retrorelective tape. Adhesive tape with a special coating which returns an
incident beam of light along its path of incidence.

RGB (Red, Green and Blue). Both photoconductive and solid-state (CCD) colour
video cameras use three sets of photo-detectors, behind red, green and blue
optical filters. Hence, both types of camera generate RGB signals naturally.

 408

Roberts' edge detection operator. See Section 2.2.
Robot. The formal definition that is generally accepted as defining the functionality of

a robot was drawn up by the Robot Institute of America in 1979 and states that a
robot is "a reprogrammable multi-functional manipulator designed to move
material, parts, tools or specialised devices through variable programmed
motions for the performance of a variety of tasks".

Run code. A mathematical representation of image, in which each segment of a
line scan along, which the grey-level or colour does not change, is
represented by the number of pixels in that segment, together with its shade
of grey or colour.

Saturation. Colourfulness, or strength of colour. A highly saturated red means that
light from only the red part of the spectrum is present. On the other hand,
pink is non-saturated, having a considerable amount of white light mixed
with red. (Section 6.5.3)

Segmentation is a process that divides an image into its constituent parts or
objects. It is a grouping process which identifies regions in the image as
being similar, with respect to some defined criterion..

Serial processor. Computer with one processor which performs all operations
sequentially. Most current computers are of this type.

Sobel edge detection operator. See Section 2.2.
Solid-state array. Type of image sensor fabricated normally in the form of a

linear, or rectangular, array of photosensitive elements, constituting a single
integrated circuit.

Spatial frequency. Optical term used as a measure of the amount of detail in an
object or image; usually measured as a number of lines per mm.

Speckle. A phenomenon in which the scattering of coherent light by a rough
surface, or inhomogeneous medium, generates an interference pattern of
random intensity distribution, giving the surface or medium a granular
appearance.

Specular reflection. Reflection of light in which the angle of incidence is equal
 to the angle of reflection. This gives rise to glinting.

Spherical aberration. Optical aberration produced by lenses or mirrors with
spherical surfaces. Rays of light parallel to the optic axis, but at different
distances from it, are brought to a focus at different points.

Surface channel CCD. Type of CCD in which the potential distribution used to
confine the charge packets is created by the electrode voltages only. This
gives a poor transfer efficiency.

Synchronisation (synch) pulse. Synchronisation pulses accompany a video signal,
to trigger certain crucial events such as the start of a line scan.

Telecentric. A telescopic system whose aperture stop is located at one of the foci
of the objective. Such a system is made to accept only collimated light.

Telephoto lens. A lens for imaging distant objects. It is designed to be compact so
that the distance from the front of the lens to the image plane is less than the
focal length of the lens.

Template. Ideal representation of an object to be found in an image.
Template Matching. Technique for shape matching, which involves the translation

of the template to every possible position in the image and finding a measure

 409

of the match between the prototype (template) and the image at that position.
If the match is within a specified range then the object is assumed to be
present.

Thresholding. An image-processing operation which converts a monochrome
image into a binary image by setting all those pixels above a certain
threshold to 1 (white) and all those pixels below that threshold to 0 (black).

Translucent. Permitting partial passage of light.
Trichromacity. Idea that any observed colour can be created by mixing three

different “primary” colours. These may be derived by mixing paint or
coloured light.

Tungsten filament lamp Non-uniform “point” source of light which gives low
intensity illumination.

Two-dimensional scattergrams. Derived by plotting one colour component against
another. For example, we might plot the amount of red light against the
amount of blue light, on a point-by-point basis, for a polychromatic scene.

Two-dimensional array. Solid-state array in which the photosensitive elements are
arranged in a rectangular array.

Ultraviolet. Term applied to that part of the electromagnetic spectrum containing
radiation in the wavelength range of approximately 400 nm to 5 nm, i.e.
between visible blue light and X-rays.

Video. Pertaining to visual information. Normally used to describe the output
signal of any kind of TV camera.

Vidicon. Generic term for a family of photoconductive camera tubes using a
transparent signal plate and a low-velocity scanning electron beam.
Advantages include small size and simplicity.

Vignetting. Dark shadows around the corners of the image “seen” by a video camera,
due to insufficient coverage by the lens, e.g. a 2/3" lens used on a 1" format
sensor.

Weight matrix. A matrix of constant coefficients multiplying the pixel intensities
in the definition of a local or N-tuple operator. (Section 2.2.4)

Woods glass. A type of glass that transmits ultraviolet radiation well but is
relatively opaque to visible radiation.

Xenon lamp. High intensity arc discharge bulb. Light from it resembles daylight. Fast
response - suitable for strobe lights. Although commonly used, these lamps have
a number of dangers associated with them. These include: ultra-violet emissions,
high flash rates (which can induce photo-sensitive epilepsy), and they require
high wattage power supplies (e.g. 14.4W at a 10Hz flash rate).

YAG laser. Yttrium-aluminium-garnet laser. Infrared laser in which the active
material consists of neodymium ions in an yttrium-aluminium-garnet crystal;
it can provide a continuous power output of several watts.

Additional Glossary Material
The Photonics Dictionary, Photonics Spectra.

 410

 Covers high-technology optics, lasers, fibre optics, electro-optics, imaging
and optical computing.

Digital Image Processing [BAX-94]
 Includes a glossary of image processing terms.
Precision Digital Images Corporation glossary of terms.
 Hardware orientated Online glossary
 http://www.precisionimages.com/gloss.htm

411

Index of Predicates, Operators and
Grammar Rules

'<ERROR>'/2, 154
'<INTERRUPT>'/1, 158
'<LOAD>'/1, 106
-> operator (infix), 105
• operator (infix), 103

 operator (prefix), 152
'S'/1, 128
'U'/1, 110, 113

about_same/3, 89
about_same_vertical/2, 92
above/2, 255
adjacent/2, 92
age/2, 77
alpha_numeric_features/8, 280
analyse_binary_image1/0, 288
analyse_binary_image2/0, 288
analyse_node/1, 310
ancestor/2, 77
anglir/0, 103
apple_logo/0, 251, 253, 254
approximate_colour_scattergram/0, 269
ardal_gwyn/1, 103
area/3, 255

bakewell_tart/0, 81
banana/0, 237
bay_rotate_options/4, 295
below/2, 88, 89
big_changes/1, 79, 81
biggest_bay_top/1, 281
born/2, 76
build_face_image/0, 328
build_menus/0, 113

camera_sees/1, 86
case/2, 104
casual_time/3, 325
check_areas/6, 255
cherry/0, 82
child/2, 76

chirality/2, 316, 320, 321, 322
chirality_database/4, 316
circle/9, 339
circular/0, 83, 333, 334
circularity_tolerance/4, 334
colour_separation/0, 238
colour_similarity1/2, 246
colour_similarity2/2, 246
component/3, 305
concavity_tree/0, 310
concentric/2, 92
connected/4, 92
contours/0, 342
count/2, 251
count_coloured_objects/2, 250
count_limb_ends/1, 87
cover_image/1, 269
crack/1, 104
crude_color_reconition/0, 256
ct_node/3, 312
cull/3, 89

disc_parameters/1, 270
draw_discs/1, 270
draw_polygon/1, 119
draw_sucker/0, 290

eab_modified/2, 310
encloses/2, 91
equal_sets/2, 88
euclidean_distance/4, 252, 289

face/1, 277
fill_occlusions/1, 342
find_object_list/2, 87
find_smile/1, 277
find_wife/1, 74
finished/0, 87
fit_circle/9, 339
for/4, 104

generalise_colour/0, 248
get_colour/1, 262

412

get_data/2, 184
get_image/1, 255
get_parameters/1, 267
gob_modified/1, 310, 314
grab_and_threshold/0, 79

handedness/1, 304
hue/0, 241

icing/0, 83
if operator (infix), 105
if_then/2, 105
if_then_else/3, 105
inside/2, 92
interactive_hough_analysis/0, 119
interactive_mode/0, 108
interpret/0, 133
interpret1/1, 133
isolate//1, 250
isolate_blob/2, 119
isophotes/0, 104

lamp/2, 184
learn/0, 288
learn_with_masking/0, 241
learning_colour/0, 261
learning_colour1/0, 262
learning_colour2/0, 262
learning_coloured objects/0, 257, 259
left/2, 88, 89
list_all_objects/1, 87
loaf_left_side/1, 338
loaf_right_side/1, 338
loaf_top/3, 339
locate_and_pick/0, 197
lower_case/1, 83

master_program/0, 157
measurements/1, 285
menu_builder/2, 127
menu_item/3, 112
min_blob_size/1, 310
mmb_response/1, 184
morph_pack/0, 298
must_be/2, 74
mwyaf/0, 103

naive_colour_learning/0, 261
ne/0, 103
neg/0, 389

negate/0, 102
next_blob/0, 86
nnc/3, 260, 289
normalise/0, 289
normalise_card/0, 265
normalise_loaf_orientation1/0, 337
normalise_loaf_orientation2/0, 337
number_to_words/2, 326

object_data/2, 286
object_is/1, 86
older//2, 77
one_row_height_data/1, 341
outer_edge/0, 82

packbay/0, 294
pack_bay_1/0, 294
pack_bay_main/0, 295
parameters/1, 157
pcf_with_noise_cleanup/0, 241
pick_up/0, 289
picture/0, 90, 106
playing_card/0, 275
plotit/1, 342
polypack/0, 298
poly_pack_1/0, 298
poly_pack_main/0, 298
preprocess/0, 288
process/0, 81
process_image_sequence/0, 80
pseudo_colour_value/2, 263
parent/2, 76
print_descendents/1, 77

rank_order/3, 16
rebuild_colour_scattergram/0, 270
recognise/0, 288
recognise_alpha_numeric/1, 279
recognise_upper_case/2, 84
rectangle/4, 95
rectangular_biscuit/0, 332
reduce/2, 269
remote_abolish/1, 155
remote_asserta/1, 155
remote_assertz/1, 155
remote_clear_and_assert/1, 155
remote_goal/0, 153
remote_machine_running/0, 154
remote_reset/1, 152
resistor/4, 271
right/2, 75
right_angle/4, 93

413

rounded_rectangular_biscuits/0, 335
run/2, 153

safe_grasp/0, 198
saturation/0, 245
save_parser_output/1, 131
scan_3_lines/6, 339
select_list_element/3, 105
select_one_blob/0, 288
shape_factor/1, 277
slave_program/0, 157
speech_terms/0, 127
stop/0, 156
stored_features/9, 280
straight_line/2, 93
subtle_colour/1, 246
subtle_colour_changes/0, 247
suit/2, 276

table_place_setting/0, 88
telling_time/3, 325
template_match/(0,1,3), 264, 265
test_face/0, 277
thr/(0,1), 103
threshold/(0,1,2), 103
top_of/2, 92
transparent/0, 153

upper_case/1, 83

value1/2, 271
value3/2, 272
vertical_scan_count/3, 280
visa_card/0, 266, 268

words_to_digits/2, 132

Grammar Rules

amount, 131
article, 130
courtesy, 130
dimension, 131
direction, 130
motion, 130
numeral, 131
preposition, 131
sentence, 130
table_command, 130
table1, 130
table2, 130

teens, 132
units, 132

 414

Index

operator, 96
& operator, 105, 397
-> operator, 105, 397

 operator, 152
@ operator, 98
¶ operator, 180, 397
• operator, 103, 104, 397
11x11 window, 28
1-dimensional histograms, 221
2-dimensional scattergrams, 221
3D structure, 340
3x3 neighbourhood, 22
3x3 processing window, 25
4-adjacency, 42
4-connected, 22
5x5 operator, 27
7x7 operator, 27
8-adjacency, 42
8-connected, 22
8-neighbours, 22

abstract concepts, 90
accumulator array, 52
adaptive visual feedback, 14
add, 24
agricultural products, 329
agri-food processing industry, 329
AI languages, 17
algorithms, 15
ALIS 600, 176, 376
alphanumeric characters, 278
alternate image, 67, 68
alternative solutions, 360
analogue shape measurements, 282
analogue, 162
AND, 35
antilogarithm, 23
AppleEvent, 122, 150
Appletalk, 147
applications, 275
approximating an image, 268
arguments, 103
arity, 103

artificial intelligence (AI), 17, 69
assignment operator, 21
auto-correlation, 56
automated material handling, 301
automatic self-calibration, 185
automation, 2, 6-7
auto-start, 106
Autoview, 66, 72

back-projection, 228
back-tracking, 75
band-pass filters, 210
barrel distortion, 51
bays, 41, 278, 306
binary image, 35, 41
binary mathematical morphology, 43
biscuits, 332
blackboard, 150, 154
blob packing, 294
blurring, 28
Boolean, 35
BS 950, 215

calibration, 185, 186, 190, 191, 193, 283
cameras, 163, 179, 212
canonical form, 314, 315
capacitor colour codes, 270
Cartesian to Polar, 51
cathode-ray tube, 212
CCD, 175
CCIR, 162
centroid, 42
chain code, 42
chirality, 303, 316, 319
chromatic adaptation, 209
chrominance amplitude (I), 217
chrominance angle (Q), 217
chrominance, 216, 217
circular food products, 334
circularity, 43
classification, 56
closed-loop process-control, 347
closing, 46, 50

 415

coarse colour discrimination, 204
coding colour, 216
colour, 20, 203-204, 206

atlas, 215
differences, 204
discrimination, 204
filter, 231
generalisation, 247
histogram, 244
image processing, 204, 395
machine vision systems, 206
manufacturing industry, 203
mis-registration, 12
object orientation, 266
perception, 208
proportions, 257, 259
recognition, 249
representation, 217
reproduction, 210
saturation, 245
scattergram, 221, 223, 226, 228, 238,

239
science, 376
sensors, 204
separations, 221
similarity, 245
spaces, 375
standards, 215
triangle, 218, 239

command keys, 113, 114
command-line, 70
commercial devices, 61
commercial systems, 162
commissioning, 4
complement, 45
composite video, 212
computer bus, 162
computer vision, 370, 374, 376
concavity trees, 303, 306, 309, 316, 319
conference proceedings, 374
conferences, 376
connectivity detector, 36
CONSIGHT, 332
context, 9
contours, 342
controlling external devices, 160
convex deficiency, 41, 308, 335
convex hull, 41, 308
Co-occurrence matrix, 57
corner detection, 40
count ratio, 299
count white neighbours, 36

counting coloured objects, 249
courseware, 376
crack detector, 29
create_filter, 228
cumulative histogram, 34
current image, 67, 68
customer, 357

dark adaptation, 209
decision surfaces, 256
declarative programming, 73, 210, 274
decomposition, 47
de-instantiation, 75
depletion, 291
depth map, 340, 342
describing a simple package, 90
design aids, 143, 376
design software, 376, 377
designing vision systems, 134, 366
determining orientation, 336
device control, 183
Dichroism, 209
digital image, 19
dilation decomposition, 47
dilation, 44, 49
direction codes, 31
Discrete Fourier Transform, 53
discrimination tasks, 276
distortion, 51
dual, 45
dyadic, 24

edge density, 57
edge detector, 28-31, 35
edge effects, 32
edge smoothing, 40
edge, 26
electro-magnetic spectrum, 206, 207
energy, 58
entropy, 58
environmental protection, 363
equalisation, 34
equipment suppliers, 378
erosion, 45, 50
Euclidean distance, 253, 255, 287
Euler number, 36
Exclusive OR, 35
expand white areas, 35
expert systems, 347
exponential, 23
extendible menus, 108, 109
external devices, 160, 398

 416

faces, 277
factory, 364
FIC, 115, 122, 135, 160, 171, 177, 183, 283
filling holes, 37, 44
filter, 38, 49, 50, 210, 231
financial, 358
finite state machines, 61
FLEX, 159
Flexible Inspection Cell (FIC), 115, 122,

135, 160, 171, 177, 183, 283
flexible manufacturing systems, 6
folklore, 355
food processing industry, 330
food products, 205, 329, 334
Fourier spectral analysis, 56
Fourier transform, 54
frame-stores, 62
Freeman code, 42
Frei and Chen edge detector, 31
FTP sites, 375

Gantry robot, 187
gauge predicates, 396
general purpose interface unit, 169
generalise_colour, 248
generating concavity trees, 309
geometric figures, 93
geometric packer, 291, 292
geometric transforms, 51
global image transform, 51
global memory, 98
golden sample, 347
grammar rule, 129, 134
granularity, 60
graphical display, 115
grass-fire transform, 39
grey scale, 19

closing, 50
dilation., 49
erosion, 50
filter, 38
morphology, 49
opening, 50

gripper footprint, 301
gripper, 198, 199, 201, 301
growing, 44

handedness, 303
help, 117, 118
heuristic packer, 291, 293
heuristics, 15

highlight, 24
high-pass filtering, 26
histogram, 33-34, 56, 221, 244

equalisation, 34
features, 57
intensity, 33

Hough transform, 51, 119, 297, 327, 335,
336

HSI, 218
Hue PCF, 241, 243
hue, 216, 218, 243
human analogies, 1
human colour perception, 1, 208
human vision, 1
Hypercard, 115, 122, 135-136, 183
hypermedia, 135

idempotency, 46
identifying table cutlery, 84
if operator, 105
illumination, 366
image acquisition, 332
image processing, 21, 66, 240, 367, 374,

380, 382, 388, 390
image recognition, 203
image resolution, 362
imperative languages, 74
index card, 137, 139
industrial applications, 345
industrial examples, 1, 10
inertia, 59
inspection, 2
instability in concavity trees, 319
instability, 318
instantiation, 75
integrate intensities, 51
Intelligent Camera, 96, 148, 173
intelligent systems, 13, 101, 145
intelligent vision, 13, 275
intensity, 218

histogram, 33
maximum, 34
mean, 34
minimum, 34,
multiply, 23
normalisation, 22
shift, 22

interactive image processing, 66, 70, 108
interfacing, 162
interference filters, 211
internet resources, 374
interpreting colour codes, 270

 417

inverse, 35
IQ plane, 217
isophotes, 342

joints, 278
journals, 373

Khoros, 376

lakes, 41, 278, 306
largest intensity neighbourhood, 28
learning, 251, 257, 259, 283, 286
lens selection, 143, 144
lenses, 163, 179
lidded tin loaf, 335
light absorption, 206
light sources, 213
light stripe sectioning, 340
Lighting Advisor, 135, 346, 375
lighting, 135. 164, 173, 177, 324, 362, 376
lighting-viewing subsystem, 378
light-stripe generator, 340
limb-ends, 278
limitations, 4
linear local operator, 25, 32
loaf, 335, 340
local area histogram equalisation, 34
local colour changes, 246
local memory, 98
local operators, 25
locating straight sides, 337
logarithm, 23
logical shape measurements, 282
low-pass filtering, 26
luminance, 216

machine intelligence, 9
machine vision, 1, 3, 19, 161, 206, 345,

369
Macintosh, 71
MacProlog, 72, 108
macros, 69
magazines, 373
magnetic gripper, 198
mailing lists, 375
manipulation of planar objects, 283
manipulation, 194
map card, 139
MAR, 334
master-slave system, 147, 150, 155
MAT, 40
mathematical morphology, 43

maximum intensity, 25, 34
Maximum Similarity Classifier, 287
Maxwell triangle, 218
mean intensity, 34
measurements, 41
measuring overspill, 338
mechanical actuators, 164
mechanical handling, 178, 361, 366
Medial Axis Transform (MAT), 40
median filter, 29
meta-concavities, 308
Metamerism, 209
meta-meta-concavities, 308
method card, 137
Micro-ALIS, 176, 377
minimum area rectangle (MAR), 334, 335
minimum bounding circle, 335
minimum intensity, 25, 34
mirror-image components, 303
mirrors (as lenses), 367
MMB, 169, 172, 179-180, 182
monadic, 22
monochromator, 215, 216
monochrome image, 19, 20
morphological filter, 49, 50
morphological imaging techniques, 292
morphological packing, 292
morphological texture analysis, 59
morphology, 49
moving-needle meters, 323
multi-camera, 144, 145, 347
multi-finger gripper, 199, 201, 301
multi-joint robot, 187
multiple colours, 233
multiple exemplar approach, 255
multiplexed-video, 144
multiply, 24
multi-processor, 347
multispectral image, 20
Munsell Book of Colour, 215

naming of a colour, 207
natural language understanding, 124, 127
natural textures, 56
Nearest Neighbour Classifier, 287
negate, 23
networked vision systems, 147
newsgroups, 374
noise effects, 232
non-lidded tin loaf, 335
non-linear N-tuple operators, 32
normalisation, 22

 418

NPL Crawford method, 214
N-tuple operators, 32

object orientation, 266
occlusion, 340
OCR, 275
onion-peeling, 39
on-line help, 117
opening, 46, 50
operating the PCF, 236
opinions, 355
Opponent Process Representation, 217
optical analysis, 377
optical character recognition (OCR), 275
optical design, 377
optical filters, 210
optics, 362, 367, 377
Opto*Sense®, 143, 378
OR operator, 35, 105
orientation, 336
overlapping discs, 268

packing, 291

defective regions, 302
density, 299
Heuristic, 291, 293
Polygon, 296
strategy, 291

parallel decomposition, 47
parallel digital bus, 162
Parlog, 159
parser, 129, 130, 132
passing parameters, 385
PCF implementation, 225
PCF, 224-226, 234-236, 239-240, 243, 260
pel, 19
perception, 208
performance index, 299
performance measures, 299
performance of vision systems, 5
periodicals, 373
pick-and-place arm, 122
picture element (pel), 19
pin-cushion distortion, 51
PIP, 345, 379, 390
pixel, 19
planar objects, 283
plastic bottle top inspection, 11
playing cards, 275
PLC, 164, 166, 167
plot_scattergram, 240
plug-in boards, 62, 63

point-by-point operator, 22, 24
Polar-cartesian axis transformation, 327
polychromatic logo, 251, 253, 254
polygon packing, 296
predicate names, 102
presentation, 366
Prewitt edge detector, 30
primary colours, 207
primitives, 390
printed patterns, 275
process control, 7, 8, 347
processing, 21, 66, 70, 108, 240, 367, 374
product shape, 331
program library, 106
Programmable Colour Filter (PCF), 224-

226, 235-236
Programmable Logic Controller (PLC),

164, 166
Programming the PCF, 226, 239, 240
programming, 73, 210, 274
Prolog, 70, 73, 383, 387
Prolog+ Programs, 249
Prolog+, 71, 79, 96, 102, 183, 236, 249,

345, 379, 388, 390
Prolog++, 159
properties of concavity trees, 316
protocols and signals, 161
prototyping, 67
proverbs, 355
pseudo-colour display, 234
pull-down menus, 70, 108, 134, 236

Ra8 index, 215
radius of curvature, 338
randomly placed object, 194, 195
rank filters, 31
ray-tracing, 144, 377
recognition, 203, 249, 275, 283, 286

bakewell tarts, 81
digits, 279, 281
multiple colours, 233
printed letters, 83
single colour, 232
table place setting, 87

recorded speech, 116
rectangles, 95
recursion, 75, 306
reference material, 369
region labelling, 37
related disciplines, 363
remote process, 153
remote queries, 152

 419

remove isolated white points, 35
representations of images, 19
resistor colour codes, 270
resolution, 362
review papers, 372
RGB, 212, 217, 218, 221
Roberts edge detector, 29
robot, 7, 176, 187, 375

gripper, 301
guidance, 201
languages, 176
vision, 2, 374
work cell, 115

row maximum, 51
RS170, 162

saturation, 216, 218, 245
SCARA robot, 187
scattergram, 221, 223, 226, 228, 238, 239
script generation, 120
Segmented PCF, 245
self-adaptive learning, 251
self-calibration, 185
self-contained systems, 63
sensor, 163, 204, 367
separable operator, 27
serial decomposition, 47
serial digital data, 161
set theory, 43
shading blobs, 38
shape descriptors, 43
shape measurements, 282, 284
shape ratio, 335
shrink white areas, 35
similarity, 287
single colour, 232
skeleton, 39
SKIPSM, 61
slaves, 147
slices of bread, 335
small spots, 37
Sobel edge detector, 29
software, 64, 377-379
solid-state colour camera, 212, 213
space usage, 299
spatial dependency statistics, 57
spatial relationships, 91
spatial resolution, 20
special issues, 372
spectral analysis, 56
spectral transmission, 210
spectrum, 206, 207

speech input, 101, 124
speech manager, 116
speech recognition, 124, 126, 133
speech synthesis, 116
speech, 116
spoken instructions, 124
squaring, 24
standards, 215
stars, 276
stock cutting, 302
streak, 26
structured lighting, 340, 341
structuring element 44, 47
subtract, 24, 324, 328
suction gripper, 198
SuperVision, 72
survey papers, 372
SUSIE, 66, 72
System 77, 66
system, 356

design samples, 359
engineering, 2, 9
implementation, 61
level, 368
specification, 358
synchronisation, 161, 167

teaching by showing, 260
teaching the PCF, 235, 260
television, 20
telling the time, 323
template matching, 263, 264
texels, 59
texture, 56

analysis, 34, 56, 59
attributes, 58
classification, 56
measures, 58

three-dimensional imaging, 374
threshold, 23
Thyristor, 174
tiling, 47
tone-texture concept, 56
training the PCF, 235
training course, 378
transform, 39, 50, 51, 119, 297, 327, 335,

336
transpose, 45
triangulation, 340
Trichromacity, 207, 208
turn-key systems, 64

 420

union decomposition, 47
unsolved problems, 347

valley, 34
VCS, 66, 72
Very Simple Prolog+ (VSP), 98
video, 162, 212
Video-Multiplexed (V-M), 144
Vidicon, 212
vision company, 360
vision system co-ordinates, 188
Vision Systems Group (DCU), 375
V-M, 144
VN, 124, 133
Voice Navigator (VN), 124, 133
VSP, 98

warping, 51
weight matrix, 25, 27
World Wide Web, 375
WWW, 375

X,Y,θ-table, 115, 122, 123, 129, 178, 188,

283

YIQ, 217

Chapter 5 - Legends for the Half Tone
Images

Image 5.1 Operation of locate_and_pick. (a) Original scene showing 6
objects. (b) The largest object (“club”) has been identified. Its axis of
minimum second moment has been calculated and the centroid has been
located. The table has been rotated and shifted to normalise both orientation
and position. The suction gripper of the pick-and-place arm is then lowered at
the point indicated by the crossed lines. (c) Second largest object (sickle-
shaped wrench) has been located. (Notice the small circular feature to the left
of the white disc. This is one of four screws holding the table top in place.)
(d) The third object to be picked up is the pair of scissors. (e) The fourth
object to be picked up is the white disc. In this case, the orientation
measurement is meaningless. (f) The fifth object to be picked up is a V-
shaped plastic component. The rectangular component remaining is an
electrical connector and cannot be grasped with this type of gripper.

Image 5.2 Attempting to pick up an automobile connecting rod (con-rod). (a)
Silhouette of the con-rod after thresholding and noise removal. (b) Centroid
and axis of minimum second moment. (c) Orientation determined by joining
the centroid of the silhouette to the centroid off the largest “bay”. It is purely
fortuitous that this method of determining orientation very nearly coincides
with that obtained using the axis of minimum second moment. (d) Circular
suction gripper, represented here by a circle located at the centroid of the
silhouette. (e) After normalising both position and orientation, a 2-finger
gripper can be used to lift the con-rod. The two white bars have been drawn
here to represent the gripper footprints on the object plane.

Chapter 6 - Legends for the Half Tone
Images

Image 6.1 Colour analysis of a multi-colour scene using various techniques.
(a) Monochrome image. The original artwork consisted of 6 well-defined and
well-separated colours. (b) Image derived by digitising the R channel. (c) G
channel. (d) B channel. (e) Colour scattergram, thresholded at level 128. (f)
Thresholded at level 4. (g) Thresholded at level 2. (h) Thresholded at level 1.
(i) [lnb, thr(4), big_blobs(20)] applied to the colour scattergram. (Compare to
(e).) (j) Colour generalisation applied to image (h). (k) 2-dimensional colour
scattergram. Vertical axis, R. Horizontal axis, G. (l) 2-dimensional colour
scattergram. Vertical axis, G. Horizontal axis, B.

Image 6.2 Colour scattergrams of various natural objects. In each case,
thresholding and a noise-reduction filter has been applied, to remove outlier
points. (a) Green foliage (lime tree). (b) Courgette. (c) Cucumber. (d) Banana
(e) Corn cob. (f) Red apple.

Image 6.3 Using computer-generated pseudo colour-triangles to pre-program
the PCF. (Also see Image 6.11.) (a) The circular wedge which forms the basis
of the hue filter. The pseudo-colour display of this image (with a white disc
superimposed) is shown in Plate 1(b). (b) A PCF generated from this image
distinguishes between neutral (mapped to black) and coloured regions
(mapped to white). (c) Segmentation of the colour triangle. The wedge shaped
sectors are all of equal area. This filter performs a very crude discrimination
of six primary colours (red, magenta, blue, cyan, green, yellow) and neutral.
Compare this to Plate 1(b). (d) Superimposing a colour scattergram derived
from a scene containing red, yellow and green regions onto the pseudo
colour-triangle explains why the PCF derived from (c) does always not
distinguish between the primary colours very accurately. The blob at the left
of centre corresponds to green and overlaps the boundary of two sectors in
(c). (e) A colour triangle shaded so that the intensity indicates distance from
its centre. The PCF derived from this image, by applying create_filter,
provides a measurement of saturation and hence forms the basis of the
saturation PCF. (Also see Plate 1(c).) (f) The saturation detection filter based
on (e) was used to analyse a scene containing four different yellow regions.
Bright areas are close to saturation.

Image 6.4 Detecting subtle, local colour changes in a complex scene that is
fixed in space. (a) Pseudo colour-triangle. This image was generated by
scattering a number of points at random in a binary image. The image was
negated and the grass-fire transform [gft] applied. (b) Monochrome image
derived from a children’s game. Notice the very faint dark triangle, just to the
right of the word kite in the top-right corner. This is the defect referred to
below. (c) The PCF derived from (a) by using create_filter and applied to the
scene without the defect. (d) The same PCF applied to the scene with the
defect. Notice how the defect stands out here. (e) Images (c) and (d)
subtracted and the resulting image thresholded. (f) Image (e) after noise
removal.

Image 6.5 Compound colour scattergrams, corresponding to more than one
colour. (a) Scattergram corresponding to two different shades of yellow
(black blobs) and red (white blob). Notice that the red scattergram is
fragmented into one large blob and several very small ones. (b) Colour
separation achieved by a filter that was trained on the colour scattergram
shown in (a) . The black spots are due to noise and indicate that the blobs in
(b) are too small. The input image consisted of a red rectangle at the bottom
left, a yellow rectangle at the bottom right and another yellow rectangle, of a
slightly different shade, at the top. (c) The colour triangle shown in (b) was
processed by expanding the blobs (separately) using [6•exw]. (d) Colour
separation achieved by the PCF obtained from the colour triangle in (e).
Notice that the noise level is much reduced, compared to (b). (e) Colour
scattergams for two different shades of yellow (merged into a single blob at
the centre bottom), red (bottom right), green (left of centre) and blue (above
left of centre). (f) Colour generalisation procedure applied to the colour
triangle in (e). Notice the very small region at the bottom right. This arises
because the noise removal procedure was imperfect.

Image 6.6 Using colour to determine the orientation of a picture playing card.
(a) Monochrome image. (b) Colour separation. (c) Thresholded output of the
hue PCF. (d) The orientation of the line that joins the centroids of the two
largest blobs in (c) determines the orientation of the card.

Image 6.7 Representing a colour scattergram by a set of overlapping discs.
(a) Colour scattergram derived from the logo of a well-known company. This
logo consists of six well-defined and well-separated colours. The scattergram
has been converted to binary form by thresholding and a simple noise
removal procedure has been applied, to remove very small white regions. The
outline of the colour scattergram has been omitted here and in (b), for
convenience. (b) Approximating the colour scattergram by a set of 12 circles.

Image 6.8 Recognising the colours of wires on a UK standard mains plug. (a)
Monochrome image. The wire connecting to the terminal at the bottom-left
(neutral wire) is blue. That one connecting to the brass terminal on the right
(live, only partially in view) is brown. The wire connecting to the top terminal
(earth wire) has yellow and green stripes. The body of the plug is matt white.
(b) PCF output. (c) Multi-level thresholding and noise removal applied to
image (b) isolates the three coloured wires.

Image 6.9 Showing how the colour scattergram shows the effects of varying
the colour of illumination. The scene being viewed was a piece of white
paper, under the following lighting conditions: 1. 8-foot fluorescent tube, type
Philips 125W/36. The colour scattergram forms a single very compact cluster.
(Upper white blob.) 2. Fluorescent desk lamp, type Osram 11W/41. Again the
colour scattergram forms a single compact cluster. (Lower white blob.) 3.
Volpi 150W fibre optic light source, bulb type Philips EFR A1/232. The
colour scattergram is virtually identical to that generated for case (1). 4.
Filament desk lamp. 60W bulb. Once again, the colour scattergram forms a
single compact cluster. (Black blob)

Image 6.10 Pattern with a continuously varying colour, resembling a
rainbow. (The original artwork was the logo of a well-known company.) (a)
Colour scattergram. (b) After thresholding and noise removal.

Image 6.11 Inspecting coloured packaging. The original image is shown in
Plate 3(a). (a) Sum of the three colour channel outputs (R+G+B). (b) Top-left:
Image derived by digitising the R channel. Top-right: G channel. Bottom-left:
B channel. (c) 2-dimensional scattergram. Horizontal axis: G channel.
Vertical axis: R channel. (d) Histogram of the R channel output. (e) Pseudo
colour-triangle for measuring purity of the primary colours (R, G & B). (f)
Histogram of the output of a PCF which measures purity of the primary
colours. (g) Pseudo colour-triangle for measuring yellow-ness. (h) Histogram
of the output of the PCF derived from (g). (i) Output of the filter described in
(g). (j) Thresholded colour scattergram (black) and the watershed, which
forms the basis of the colour generalisation procedure (white). In effect, the
blobs in the colour scattergram are extended until they fill the cells defined by
the watershed.

Image 6.12 Examining dress fabric. The original colour image is shown in
Plate 4(a). (a) Top-left: Image derived by digitising the R channel. Top-right:
G channel. Bottom-left: B channel. (b) Colour scattergram (black spots). The
white lines indicate the watershed contours separating the black spots. The
areas they enclose define the blobs generated during colour generalisation.

Chapter 6 - Legends for the Colour
Plates

Plate 1 (a) Pseudo-colour applied to: top, intensity stair-case (The black and
white stripes correspond to levels 0 (zero) and 255, respectively.) bottom,
intensity wedge (operator wgx). (b) Pseudo colour-triangle, formed by
generating an intensity wedge and then using the Cartesian-to-polar
transformation. (ctp) The radius of the central white disc (24 pixels here) can
be varied at will. (c) Pseudo colour-triangle, forming the basis of a filter for
measuring saturation. (d) Analysing the image of a set of 6 pencil erasers
within a transparent "bubble" pack. (Unprocessed video image) (e) Colour
histogram. The peaks in this histogram correspond to the following objects /
surfaces (from left to right): blue background, blue erasers, green eraser,
yellow eraser, orange-red background stripe, red eraser. (f) Output of the hue
colour filter. (White disc radius = 24.)

Plate 2 (a) Analysing a scene containing three similar shades of yellow that
are just distinguishable by the human eye. (Photographic copy of the original
artwork) (b) Colour scattergram. (Pseudo-colour display on.) The general
concept "yellow" would be represented by a blob that encloses all three of
these small spots. (c) Output of the colour filter derived from (b). (d)
Analysing the image of a small electronics component (black with shiny silver
printing), in a transparent plastic bag. The bag has red printing on it and is
resting on a white background. (Unprocessed video image) (e) Output of the
hue colour filter. (White disc radius = 24.) (f) Binary image, obtained by
thresholding (e). (Pseudo-colour display on.)

Plate 3 (a) Coloured stripes from the packaging of a well-known domestic
product. (Unprocessed video image.) (b) Output of the hue colour filter. (c)
Colour scattergram, superimposed on the pseudo colour-triangle. Notice that
the white blob at the 3 o'clock position straddles the sharp transition between
red and violet in the pseudo colour-triangle. This is the reason that the red
stripe in the input image generates a noisy pattern in (b). (d) A new pseudo
colour-triangle was created by flipping the hue pseudo colour-triangle about
its vertical axis. A colour filter was then generated in the usual way. Since
there is no sharp transition across the blob at 3 o'clock, the red stripe does not
create a noisy pattern, as it did in (b). Although the colour filter outputs
corresponding to the red and orange-red stripes are similar, they can be
separated reliably, using simple thresholding. (e) Analysing a scene
containing four children's building bricks. (Unprocessed video image) (f)
Output of the hue colour filter. (White disc radius = 24.)

Plate 4 (a) Analysing colours on a piece of dress fabric. (Unprocessed video
image.) (b) Output of the hue colour filter. (White disc radius = 16.) (c)

Unprocessed video image of a quiche. (d) Output of the hue colour filter
applied to (c). (e) Simulated product package. (f) Key lettering isolated from
(e).

Plate 1

Plate 2

Plate 3

Plate 4

Chapter 7 - Legends for the Half Tone
Images

Image 7.5.1 Using filtering and thesholding to analyse a simple clock, which
produces a high contrast between the hands and a plain face. (a) Original
image. (b) The image processing sequence [wri, 2•(3•lnb, neg)), rea, sub,
thr(140)] was applied to (a). (c) [blb,xor] was applied to (b). (d) [blb, xor]
was applied to (c). (e) Only blobs with an area in excess of 200 pixels have
been retained. (f) [2•skw,2•exw] was applied to (e).

Image 7.5.2 The Hough transform applied to simulated and real clock faces.
(a) Original image of a simple clock (simulated). (b) [enc, thr] applied to (a).
(c) [huf, neg, sqr] applied to (a). The sub-sequence [neg, sqr] was used
simply to improve visibility of some of the minor detail. (d) The two major
peaks in (c) were detected automatically and the corresponding lines
reconstructed. This shows that these peaks correspond to the minute and hour
hands. (e) The medial axis transformation [ske, mdl] applied to (b). (f) [huf,
neg, sqr] applied to (e). Notice that the peaks are better defined than in (c).
(g) Same processing as in (d) but this time applied to (f). (h) The Hough
transform method was applied to locate the minute hand on the real clock.
Although the minute hand has been correctly located, the fluorescent tip of
the hour hand makes this method unreliable.

Image 7.5.3 The Polar-to-Cartesian axis transformation [ptc] applied to a
simulated and real clock faces. (a) Original (grey-scale) image of a simple
clock face. (b) The operator ptc applied to (a). (c) The command sequence
[yxt, rin, csh, wgx, sub, thr, bed, yxt] applied to (b). (d) Original image from a
real clock. (e) ptc applied to (d). (f) As in (c), processing applied to (d). (g)
Another clock design. (h) ptc applied to (g). The minute and hour hands are
responsible for the two major peaks. (i) As in (c), processing applied to (h).

Image 7.5.4 (a) Original clock face. (b) Circular scan which intersects the
hands but avoids the printing on the face. (c) Intensity plotted against angular
position around the circular scan in (b). (d) The hour “tick” marks can be
identified easily, using a circular scan, followed by simple filtering and
thresholding. The image shown here was obtained using the Cartesian-to-
polar co-ordinate axis transformation. (e) Difference image obtained by
subtracting two images of the clock, taken at [9:10] and at [9:37]. (f) Multi-
level thresholding produces a “cleaner” picture which is easy to analyse. (g)
Image of the face of the clock, without the hands (obtained using the max
operator, applied to two images, taken at [9:10] and [9:37]). (h) Difference
image, obtained by subtracting the image in (g) from the (unprocessed) image
of the clock taken, at [9:41]. (i) Simple thresholding applied to (h).

Image 7.6.1 Inspecting bread slices from a lidded tin loaf. (a) Silhouette of
the slice. (b) Axis of minimum second moment [dpa]. (c) Slice after
reorientation, so that the principal axis is vertical. (d) Difference between the
minimum enclosing rectangle and (c). (e) A similar result to (d) can be
obtained by computing the convex deficiency of (a). [cvd]

Image 7.6.2 Analysing the silhouette of a slice of bread from a non-lidded tin
loaf. (a) Silhouette. (b) Outer edge. [bed] (c) Centroid and principal axis (axis
of minimum second moment) [dpa]. (d) Hough transform [bed,huf]. (e)
Hough transform image enhanced for easier viewing [bed,huf,sqr,neg]. (f)
Line corresponding to brightest point in (d). Inverse Hough transform applied.
(g) Three lines obtain by applying the inverse Hough transform to the three
principal peaks in (d). (h) Overspill found from lines drawn in (g). (i) Points
of high curvature (corners) are highlighted. (j) Corners have been used to
"cut" the edge contour. (k) After removing very small blobs in (j). The three
straight segments and curved top of the slice have been isolated.

Image 7.6.3 Projecting a single light stripe onto a bread roll, using a diode
laser.(a) Image obtained in ambient light. (b) Improved image obtained in
darkened room. (c) Light stripe has been reduced to one-pixel wide arc. (Note
discontinuities)

Image 7.6.4 Projecting many (white) light stripes onto a bread roll.

Image 7.6.5 Projecting coloured light stripes onto a bread roll. (a) Original
image. There were 4 light stripes in a repeating pattern. (b) Edge contours
derived from (a).

Image 7.6.6 Depth maps. (a) Depth map of a croissant. (b) sca(3) applied to
(a) reveals the height contours. (c) Intensity plot. (d) Cornish pastie. (e)
Intensity plot (horizontal section). (f) Intensity plot (vertical section). (g)
Depth map of a loaf. (h) Height contours of (g). (i) Intensity plot of (g).

Image 7.6.7 Structured lighting applied to an engineering component (zinc
die-casting). (a) Depth map. (b) Height profile, across horizontal line in (a).
(c) Height contours.

	Intelligent Vision Systems
	for Industry
	Bruce G. Batchelor
	University of Wales, Cardiff
	Paul F. Whelan
	Dublin City University
	Preface
	Preface
	Acknowledgements
	Table of Contents

	Chapter 1
	1
	Basic Concepts
	1.1 Industrial Vision Systems
	1.1.1 Justification
	1.1.2 Limitations of Present Systems
	1.1.3 Flexible Manufacturing Systems
	1.1.4 Process Control

	1.2 Systems Engineering
	1.2.1 Importance of Context
	1.2.2 Industrial Examples

	1.3 Intelligent Vision
	1.3.1 Heuristics and Algorithms
	1.3.2 Artificial Intelligence (AI) Languages

	1.4 Book Outline

	Chapter 2
	2
	Basic Machine Vision Techniques
	2.1 Representations of Images
	2.2 Elementary Image Processing Functions
	2.2.1 Monadic, Point-by-point Operators.
	2.2.2 Dyadic, Point-by-point Operators
	2.2.3 Local Operators
	2.2.4 Linear Local Operators
	2.2.5 Non-linear Local Operators
	2.2.6 N-tuple Operators
	2.2.7 Edge Effects
	2.2.8 Intensity Histogram [hpi, hgi, hge, hgc]

	2.3 Binary Images
	2.3.1 Measurements on Binary Images
	2.3.2 Shape Descriptors

	2.4 Binary Mathematical Morphology
	2.4.1 Opening and Closing Operations
	2.4.2 Structuring Element Decomposition

	2.5 Grey Scale Morphology
	2.6 Global Image Transforms
	2.6.1 Hough Transform
	2.6.2 Two-dimensional Discrete Fourier Transform

	2.7 Texture Analysis
	2.7.1 Statistical Approaches
	2.7.2 Co-occurrence Matrix Approach
	2.7.3 Structural Approaches
	2.7.4 Morphological Texture Analysis

	2.8 Implementation Considerations
	2.8.1 Morphological System Implementation

	2.9 Commercial Devices
	2.9.1 Plug-in Boards: Frame-stores
	2.9.2 Plug-in Boards: Dedicated Function
	2.9.3 Self-contained Systems
	2.9.4 Turn-key Systems
	2.9.5 Software

	2.10 Further Remarks

	Chapter 3
	3
	Intelligent Image Processing
	3.1 Interactive Image Processing
	3.1.1 Modus Operandi
	3.1.2 Prototyping Inspection Systems
	3.1.3 Building Simple Programs
	3.1.4 Interaction and Prolog

	3.2 Introducing Prolog+
	3.3 Review of Prolog
	3.3.1 Sample Program
	3.3.2 Sample Queries

	3.4 The Nature of Prolog+
	3.5 Prolog+ Programs
	3.5.1 Recognising Bakewell Tarts
	3.5.2 Recognising Printed Letters
	3.5.3 Identifying Table Cutlery
	3.5.4 Analysing all Visible Objects
	3.5.5 Recognising a Table Place Setting

	3.6 Abstract Concepts in Prolog+
	3.6.1 Describing a Simple Package
	3.6.2 Abstract Spatial Relationships
	3.6.3 Geometric Figures

	3.7 Implementation of Prolog+
	3.7.1 The # Operator

	3.8 Comments

	Chapter 4
	4
	Enhanced Intelligent Systems
	4.1 Prolog+ Environment: A Tool-box for Machine Vision
	4.1.1 Defining New Predicate Names
	4.1.2 Default Values for Arguments
	4.1.3 Useful Operators
	4.1.4 Program Library
	4.1.5 Auto-start
	4.1.6 Interactive Mode
	4.1.7 User Extendible Pull-down Menus
	Mechanism for Extending Menus

	4.1.8 Command Keys
	4.1.9 Graphical Display of a Robot Work Cell
	4.1.10 Speech Synthesis and Recorded Speech
	4.1.11 On-line HELP
	4.1.12 Cursor
	4.1.13 Automatic Script Generation and Optimisation
	4.1.14 Linking to Other Programs
	Hypercard Controller for a Flexible Inspection Cell

	4.2 Understanding Simple Spoken Instructions
	4.2.1 Speech Recognition
	4.2.2 Natural Language Understanding
	4.2.3 Automatically Building a Pull-down Menu
	4.2.4 Understanding NL Commands for an (X,Y,?)-table
	4.2.5 Sample Sentences
	4.2.6 Interpreting the Parser Output
	4.2.7 Review

	4.3 Aids for Designing Vision Systems
	4.3.1 Lighting Advisor
	Stack Structure
	Search Mechanisms
	Remarks About the Lighting Advisor

	4.3.2 Other Design Aids for Machine Vision

	4.4 Multi-camera Systems
	4.4.1 Multiplexed-video Systems
	4.4.2 Networked Vision Systems
	4.4.3 Master-Slave System Organisation
	4.4.4 Remote Queries
	Interactive Operation of the Remote Process

	4.4.5 Blackboard
	Master and Slave Program Elements

	4.4.6 Controlling the Master-Slave System
	Starting the System
	Stopping a Slave
	Passing a Message to the Slave
	Receiving Data from a Slave
	Slave Program
	Blackboard (Snapshot of Database, Changing Constantly)

	4.4.7 Crash Recovery
	Programming the Slave from the Master

	4.5 Comments

	Chapter 5
	5
	Controlling External Devices
	5.1 Devices and Signals
	5.2 Protocols and Signals
	5.2.1 Interfacing to Commercial Systems

	5.3 Programmable Logic Controller
	5.4 General Purpose Interface Unit
	5.4.1 Motivation for the Design
	5.4.2 Hardware Organisation
	5.4.3 Programs
	5.4.4 Digression on Lighting
	5.4.5 Languages for Robotics

	5.5 Flexible Inspection Cell, Design Issues
	5.5.1 Lighting Arrangement
	5.5.2 Mechanical Handling
	5.5.3 Cameras and Lenses
	5.5.4 MMB-Host Interface Protocol
	5.5.5 Additional Remarks
	5.5.6 HyperCard Control Software for the FIC

	5.6 Prolog+ Predicates for Device Control
	5.7 System Calibration
	5.7.1 FIC Calibration Procedure (Overhead Camera)
	5.7.2 Calibration, SCARA and Gantry Robots
	(Overhead Camera)
	5.7.3 Calibration Procedure (Overhead Narrow-view Camera)
	5.7.4 Calibration Procedure (Side Camera)

	5.8 Picking up a Randomly Placed Object
	(Overhead Camera)
	5.8.1 Program

	5.9 Grippers
	5.9.1 Suction Gripper
	5.9.2 Magnetic Gripper
	5.9.3 Multi-Finger Gripper
	5.9.4 Further Remarks

	5.10 Summary

	Chapter 6
	6
	Colour Image Recognition
	6.1 Introduction
	6.2 Applications of Coarse Colour
	Discrimination
	6.3 Why is a Banana Yellow?
	6.4 Machines for Colour Discrimination
	6.4.1 Optical Filters
	6.4.2 Colour Cameras
	6.4.3 Light Sources for Colour Vision
	6.4.4 Colour Standards

	6.5 Ways of Thinking about Colour
	6.5.1 Opponent Process Representation of Colour
	6.5.2 YIQ Colour Representation
	6.5.3 HSI, Hue Saturation and Intensity
	6.5.4 RGB Colour Space: Colour Triangle
	6.5.5 1-Dimensional Histograms of RGB Colour Separations
	6.5.6 2-Dimensional Scattergrams
	6.5.7 Colour Scattergrams

	6.6 Programmable Colour Filter (PCF)
	6.6.1 Implementation of the PCF
	6.6.2 Programming the PCF
	6.6.3 Recognising a Single Colour
	6.6.4 Noise Effects
	6.6.5 Recognising Multiple Colours
	6.6.6 Pseudo-Colour Display for the PCF
	6.6.7 Recent Teaching of the PCF Dominates
	6.6.8 Prolog+ Software for Operating the PCF
	Plot Colour Scattergram
	Draw Colour Triangle Outline
	Clear LUT
	Store Current LUT
	Reload Stored PCF
	Reverting to Monochrome Operation

	6.6.9 Programming the PCF using the Colour Scattergram
	6.6.10 Programming the PCF by Image Processing
	6.6.11 “Hue” PCF
	6.6.12 Analysing Output of the Hue PCF
	6.6.13 “Segmented” PCF
	6.6.14 Measuring Colour Similarity and Saturation
	6.6.15 Detecting Local Colour Changes
	6.6.16 Colour Generalisation

	6.7 Colour Recognition in Prolog+ Programs
	6.7.1 Counting Coloured Objects
	6.7.2 Recognising a Polychromatic Logo, Program 1
	6.7.3 Recognising a Polychromatic Logo, Program 2
	6.7.4 Recognising a Polychromatic Logo, Program 3
	6.7.5 Multiple Exemplar Approach to Recognition
	6.7.6 Learning Proportions of Colours in a Scene
	6.7.7 Superior Program for Learning Colour Proportions
	6.7.8 Teaching the PCF by Showing
	6.7.9 Template Matching of Colour Images
	6.7.10 Using Colour for Object Orientation
	6.7.11 Approximating an Image by a Set of Overlapping Discs
	6.7.12 Interpreting Resistor and Capacitor Colour Codes

	6.8 Discussion and Conclusions

	Chapter 7
	7
	Applications of Intelligent Vision
	7.1 Recognition of Printed Patterns
	7.1.1 Non-picture Playing Cards
	7.1.2 “Stars”
	7.1.3 “Smiley Faces”
	7.1.4 Alphanumeric Characters
	Program
	Comments
	Logical and Analogue Shape Measurements

	7.2 Manipulation of Planar Objects
	7.2.1 Assumptions
	7.2.2 Significance
	7.2.3 Simple Shape Measurements
	7.2.4 Learning and Recognition
	7.2.5 Program Listing
	7.2.6 Sample Output of Recognition Phase

	7.3 Packing and Depletion
	7.3.1 Geometric Packer Implementation
	7.3.2 Heuristic Packing Techniques
	Blob Packing
	Polygon Packing

	7.3.3 Performance Measures
	Predicates

	7.3.4 Robot Gripper Considerations
	7.3.5 Packing Scenes with Defective Regions
	7.3.6 Discussion

	7.4 Handedness of Mirror-Image Components
	7.4.1 Handedness and Chirality
	Relating Chirality and Handedness

	7.4.2 Concavity Trees
	Formal Definition
	Generating Concavity Trees
	Sample Concavity Trees
	Canonical Form of Concavity Trees
	Program to find Chirality

	7.4.3 Properties of Concavity Trees
	Instability

	7.4.4 Simpler Tests for Chirality
	Second Program
	Third Program
	Fourth Program
	Fifth Program

	7.5 Telling the Time
	7.5.1 Significance
	7.5.2 Simplifying Assumptions
	7.5.3 Lighting
	7.5.4 First Program
	7.5.5 Other Methods
	7.5.6 Concluding Remarks

	7.6 Food and Agricultural Products
	7.6.1 Objective
	7.6.2 Industrial Relevance
	7.6.3 Product Shape, Two-dimensions
	Image Acquisition
	Rectangular and Circular Biscuits
	Slices of Bread
	Locating the Base and Determining Orientation
	Locating Straight Sides
	Measuring Overspill
	Radius of Curvature of Top Edge

	7.6.4 Analysing the 3D Structure of an Uncut Loaf

	Chapter 8
	8
	Concluding Remarks

	References
	References

	Appendix
	Appendix A
	Proverbs, Opinions and Folklore
	General
	Systems
	Customer
	Financial
	System Specification
	Choosing Inspection System Design Samples
	Vision Company
	Alternative Solutions
	Mechanical Handling
	Lighting and Optics
	Image Resolution
	Related Disciplines
	Environmental Protection
	Proving and Working with the System in the Factory
	Appendix B
	Factors to be Considered when
	Designing a Vision System
	Mechanical Handling
	Presentation
	Illumination
	Optics
	Image Sensor
	Image Processing
	System Level
	Appendix C
	General Reference Material
	Machine Vision
	Computer Vision
	Related Material
	Special Issues
	Survey/Review Papers
	Periodicals/Journals/Magazines
	Conference Proceedings
	Internet Resources
	
	Newsgroups
	Mailing Lists
	FTP Sites
	World Wide Web (URL)

	Design Aids
	
	Lighting
	Optics
	Lighting-Viewing Subsystem
	Equipment / Software Suppliers
	Training Courses

	Appendix D
	PIP - Software Implementation of Prolog+
	D.1 Availability of the PIP Software
	D.2 Introduction
	D.3 Software for Image Processing
	D.4 Choice of Hardware and Software Platforms
	D.5 Why not Implement Prolog+ Commands Directly?
	D.6 Infra-structure for Image Processing Using Prolog
	D.7 Storing, Displaying and Manipulating Images
	D.8 Prolog-C Interface
	Passing Parameters
	User Events

	D.9 Using Infra-structure Facilities Directly
	D.10 Predicates Forming the Image Processing Infra-structure
	D.11 Implementing Prolog+ Commands

	Appendix E
	Prolog+ and PIP Commands
	Glossary of Terms
	Additional Glossary Material

	Index of Predicates
	Index of Predicates, Operators and Grammar Rules

	Index
	Index

	Half-tones_and_Colour-Plates_1
	Chapter 5 - Legends for the Half Tone Images
	5.1
	Chapter 6 - Legends for the Half Tone Images
	6.1
	Chapter 6 - Legends for the Colour Plates

	Half-tones_and_Colour-Plates_2
	Chapter 7 - Legends for the Half Tone Images

	cover.pdf
	Intelligent Vision Systems
	for Industry
	Bruce G. Batchelor
	University of Wales, Cardiff
	Paul F. Whelan
	Dublin City University
	© Bruce G. Batchelor, Paul F. Whelan 2002

