
Conjugated Linoleic Acid (CLA) Isomers as 
Anticancer Lipids: Analysis, bioformation 

and mechanisms of action in the HT-29 
human colon cancer cell line

Ph.D. thesis

By

Md. Shafiqur Rahman B.Sc. (Honours), M.Sc.

DCU
School of Biotechnology 

Dublin City University 

Dublin, Ireland

Project Supervisor: Rosaleen Devery Ph.D.

Ju ly  2006



Declaration

This thesis is submitted in fulfilment o f the requirements for Doctor o f Philosophy, by 

research and thesis. Except where otherwise acknowledged, this work was carried out by 

the author alone, on a full time basis between October 2 0 0 1 and July 2006 at the School of 

Biotechnology, Dublin City University.

Signed: f t  cA..

Md. Shafiqur Rahman

ID No : 51164612 

Date: 10.07.06

ii



Abstract

Title Conjugated Lmoleic Acid (CLA) Isomers as Anticancer Lipids Analysis, 
bioformation and mechanisms o f action m the HT-29 human colon cancer cell 
line

A uthor Md Shaflqur Rahman, Date 10th July 2006

Conjugated hnoleic acid (CLA), a group of polyunsaturated fatty acids occurring 

naturally in dairy products but also produced by certain strains o f human intestinal 

bifidobacteria is known to exhibit potent anticancer effect both in vivo and m a range of 

tumour epithelial cell lines The HT-29 human colon cancer cell line was used in this 

study as an in vitro model to investigate the effects o f CLA and ¿raws-vaccemc acid (¿- 

VA), a putative precursor o f c9, t \ \  CLA on markers o f growth, differentiation and 

apoptosis Sodium butyrate, which maintains a balance between cell proliferation, 

differentiation and apoptosis m intestinal epithelium was used as positive control For 

comparative purposes, parallel experiments were performed with hnoleic acid HT-29 

cells were sensitive to the growth inhibitory effects of a CLA mixture of isomers and to 

three of its constituent isomers, c9, ¿11 CLA, ¿10, c l2  CLA and t9, t \ \  CLA at 

physiological levels /-VA was cytotoxic to the HT-29 cells at concentrations greater than 

70jjM and was less inhibitory than CLA treatments The CLA mixture of isomers, c9, t\  1 

CLA and ¿10, c l2  CLA showed evidence of apoptosis o f HT-29 cells as reflected by 

annexin binding, measured by flow cytometry All CLA isomers induced 

carcinoembryomc antigen (CEA) and showed varying levels of reduction in histone 

deacetylase (HDAC) activity Increased level of ceramide was observed when cells were 

incubated with the CLA mixture of isomers In this study the gas chromatographic 

methods for analysis o f CLA and ¿-VA m HT-29 cancer cells was validated This study 

provided evidence for cellular bioconversion of ¿-VA to c9, ¿11 CLA in HT-29 cells 

CLA isomers altered fatty acid composition in HT-29 cells which may be via modulation 

of fatty acid synthase (FAS) and stearoyl-CoA desaturase (SCD) activities This study 

indicated that the antiproliferative effect of CLA on HT-29 colon cancer cell line may be 

mediated by differentiation and apoptosis and by modulation o f FAS and SCD activities

in
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IGF insulin-like growth factors
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IP3 inositol triphosphate
IQ 2-armno-3-methyl-imidazo[4,5-f]-quinohne
KAI-I Kangai-1
LA hnoleic acid
LCSFA Long chain saturated fatty acid
M Mitosis
MAP Mitogen-activated protein
MAPK Mitogen-activated protein kinase
MEK MAP kinase kinase
MeOH Methanol
MMR Mismatch repair
mRNA messenger ribonucleic acid
mTOR Mammalian target o f rapamycin
MUFA Monounsaturated fatty acid
NaCL Sodium chloride
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NaOH Sodum hydroxide
NL Neutral lipid
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PBS phosphate buffered saline
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p g e 2 prostaglandin E2
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PKB protein kinase B
PKC protein kinase C
PL phospholipid
PMS Phenazine methosulfate
PMSF Phenyl methyl sulfonyl fluoride
pNP p-mtrophenol
pNPP p-mtrophenyl phosphate
PPAR peroxisome prohferator-activated receptor
pRb retinoblastoma protein
PS phosphatidylsenne
PTEN Phosphatase and tensinhomolog
PUFA polyunsaturated fatty acid
Rb retinolastoma
RNA Ribonucleic acid
SCD Steroyl CoA desaturase
SCID severe combined immuno deficient mice
SD Standard deviation
SM sphingomyelin
SP1 Sphingosin 1
SP2 Sphingosin 2
SPneat Sphmgosmneat
TG triglycende
TSFA Total saturated fatty acid
t trans
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Units
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CHAPTER 1 

General Introduction
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Colorectal cancer is one o f the most common malignancies in the western world 

Although surgical excision is the best option for treatment, many patients who undergo 

therapeutic resection will develop tumor recurrences Therefore, there is increasing 

urgency to develop strategies to prevent this disease The role o f diet in the development 

and prevention o f cancer has been the focus o f much scientific research during the past 

decade Evidence suggests that dietary fats are associated with risk o f colorectal cancer 

Fats are adversely implicated m the etiology o f many cancers, yet evidence is 

accumulating that certain fatty acids, such as the highly polyunsaturated n-3 fish oil fatty 

acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have potential 

anticancer activity Recent development in the understanding of diet m colon cancer 

etiology has raised expectations that this increasing knowledge might lead to improved 

cancer prevention In this regard, the identification of dietary factors that can prevent 

colon cancer would show particular promise More recently, anticancer activity was 

demonstrated for conjugated hnoleic acid (CLA) in both human tumor cell lines and m 

well-accepted rodent models o f carcinogenesis Conjugated hnoleic acid (CLA) is a 

group of polyunsaturated fatty acids found in diary products, beef, and lamb In vitro and 

experimental animal studies document a growing number of potential health benefits for 

CLA Not only is CLA a powerful anticarcinogen but it also has been reported to have 

anti-atherogenic, immunomodulatmg, growth promoting, anti-diabetic and anti-obesity 

properties The challenge now is to determine the effects o f CLA in human subjects and 

to identify the specific physiological mechamsm(s) by which different CLA isomers exert 

their unique biological effects Such knowledge will accelerate the development o f CLA- 

enriched dairy foods, such as milk, butter, cheese and yoghurt Consumption of such 

natural products may produce a natural chemopreventive effect, without the additional 

cost o f oral supplements or the need for disturbing dietary changes

The aim o f this chapter is to present the evidence for the anticancer activity o f CLA and 

to provide a comprehensive background to the research work contained in this thesis

1.0 Overview
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1.1 Cancer

Cancer is a group of more than 100 different diseases They affect the body's basic unit, 

the cell. Cancer occurs when cells become abnormal and divide without control o r order. 

Normally, cells divide to produce more cells only when the body needs them. If cells 

keep dividing when new cells arc not needed, a mass o f tissue forms. This mass o f extra 

tissue, called a growth or tumor, can be benign or malignant. Benign tumors are not 

cancer. They can usually be removed and, in most cases, they do not come back. Most 

important, cells from benign tumors do not spread to other parts o f the body. Benign 

tumors are rarely a threat to life. Malignant tumors are cancer. Cancer cells can invade 

and damage tissues and organs near the tumor. Also, cancer cells can break away from a 

malignant tumor and enter the bloodstream or lymphatic system. This is how cancer 

spreads from the original (primary) tumor to form new tumors in other parts o f the body. 

The spread of cancer is called metastasis. When cancer spreads to another part o f the 

body, the new tumor has the same kind o f abnormal cells and the same name as the 

primary tumor. For example, if colon cancer spreads to the liver, the cancer cells in the 

liver are colon cancer cells. The disease is metastatic colon cancer (it is not liver cancer), 

fwww medicinenet.com/colon cancer/index.html

At the beginning o f the third millennium, cancer remains the second leading cause of 

death in the developed world (Zhang, 2002). A total o f 1,372,910 new cancer cases and 

570,280 deaths are expected in the United States in 2005 (Jemal el al., 2005). There were 

an estimated 2.6 million new cases o f cancer in Europe in 1995, representing over one- 

quarter o f the world burden of cancer. The corresponding number o f deaths from cancer 

was approximately 1.6 million. After adjusting for differing population age structures, 

overall incidence rates in men were highest in the Western European countries (420.9 per 

100 000), with only Austria having a rate under 400. Eastern European men had the 

second highest rates o f cancer (4 14.2), with extremely high rates being observed in 

Hungary (566.6) and in the Czech Republic (480.5). In contrast to men, the highest rates 

in women were observed in Northern Europe (315.9) and were particularly high in 

Denmark (396.2) and the other Nordic countries excepting Finland Deaths from cancers 

o f the colon and rectum (189 000) ranked second, followed by deaths from stomach



cancer (152 000), which due to poorer survival ranked higher than breast cancer 

(124 000) (Bray e ta l ,  2002)

In Ireland there are over 19000 new cases of cancer reported each year, with over 11000 

cancer deaths This excludes 5800 cases of non-melanoma skin cancer, which are rarely 

life-threatening The risk of cancer increases markedly with age Age-specific rates of 

incidence for men and women aged between 80 to 84 y are two to three times higher than 

rates for those aged 60 to 64 y, and rates for men and women aged 60-64 y are roughly 

four to ten times higher than for the 40-44 y age group Given the fact that more and 

more people are living well past 65 y, the number o f cancer cases is sure to continue to 

rise However, nsk factors other than age are modifiable It is known that, approximately 

one third o f all cancers are caused by tobacco, one third by diet (high fat/low fruit and 

vegetables), and most of the remaining third by other lifestyle choices such as excessive 

drinking, lack of regular exercise, sexual and reproductive patterns, and frequent 

sunburns Occupational exposures account for the remaining cancer risk, while the final 

and very small-outstanding proportion o f risk relates to toxins in the environment 

(Campo et a l , 2004)

A recent report by the Irish Cancer Registry revealed that mortality rates are higher for 

both men and women in Ireland than m the US even though the incidence is lower Men 

have higher incidence (20%) and mortality (40%) rates than women in Ireland However, 

while the rates for men are equivalent to those in the EU, for women m Ireland the 

incidence and mortality rates are significantly higher than in the EU (Campo et a l , 2004) 

This highlights the scope for improvement m translational research, interdisciplinary and 

inter-institutional collaboration and communication promoting a free-flow of information 

and new treatments from the laboratory bench to the patient’s bedside
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1.2 Genetic alterations of the cell and development of cancer

It is now widely accepted that carcinogenesis is a multistep process characterized by 

genetic alterations in cells that influence key cellular pathways involved in growth and 

development (Fig 1 1) (reviewed in Osborne et a l, 2004 and Yokota, 2000) For a 

normal cell to transform to a fully malignant cell, a number o f specific genes need to be 

mutated Each mutation alone or in combination with other mutations render one or more 

malignant phenotypes (Fig 1 2) (reviewed in Fukasawa, 2005) Upregulation or 

downregulation o f some genes is the basis o f tumor initiation and progression

Figure 1.1 Stepwise malignant progression of human cancer in association with 

accumulation o f genetic alterations in cells (Source Yokota, 2000)

Genetic Genetic
M o n  aüeiatlon

Metastasis

0 :  normal cell, 0 ; p H M t y r t c t l  ®  : nallgnan) cell without metastatic ability» t  : malignant cell with metastatic ability
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Gentle alterations Phenotypic alterations

Oncogene

Tumor suppressor gene

Proliferation

Differentiation

Apoptosis

Response to genetic damage

Invasion

Metastasis

Figure 1 2 Crossroads between genetic and phenotypic alterations in human cancer 

(Source Yokota, 2000)

Genes commonly mutated in human cancer belong to one of three different classes 

oncogenes, tumor suppressor genes, and mismatch repair (MMR) genes (Weinberg, 

1993, Chung and Rustgi, 1995) (Fig 1 3) Oncogenes and tumor suppressor genes are 

known to have functions to regulate proliferation, differentiation, apoptosis and responses 

to genetic damages (Yokota, 2000) Oncogenes refer to those genes whose alterations 

cause gain-of-function effects, while tumor suppressor genes cause loss-of-function 

effects that contribute to the malignant phenotype (reviw in Osborne et a l , 2004) While 

the latter eliminates cancerous cells via apoptosis, the former enhances cell proliferation 

(review in El-Aneed, 2004) Oncogenes are normal genes responsible for the stimulation 

o f controlled cellular proliferation (Sherr, 1996)

6



Numerous oncogenes have been characterized in human cancers. Amplification and 

overexpression o f these oncogenes and oncogene products are the major mechanisms 

through which these genes participate in carcinogenesis (Reviwed in Osborne et al., 

2004).

One o f the most prominent oncogenes is bcl-2 gene, a prototypical inhibitor o f apoptosis 

(Gross et al., 1999). Over-expression o f bcl-2 also increases resistance to chemo- and 

radiotherapies in cancer cells (Reed, 1999).

Amplification o f the N-myc oncogene is now a valuable prognostic marker for patients 

with neuroblastoma (Brodeur et al., 1984 and Seeger et al., 1985), and 

amplification/overexpression of the erbB-2 (also known as Her-2) oncogene is also a 

marker for the aggressiveness o f ovarian and breast cancers (Slamon et al., 1987 and 

1989). The c-myc oncogene encodes a nuclear phosphoprotein that acts as a 

transcriptional regulator involved in cellular proliferation, differentiation and apoptosis. It 

is amplified and overexpressed in 15%—25% of breast tumors (Nass et a l,  1997). In 

general, oncogene amplification occurs late in tumor progression and correlates well with 

clinical aggressiveness o f tumors (Yokota et al., 1986 and 1988).

re p lica tio n  errors ^ M o d i f i e r  g e n e s
S u p p re sso r g e n e s  in flu e n c e  c e ll fu n c tio n
in h ib it  c e ll c y c le  an d  
p ro m o te  a p o p to s is

F ig u re  1.3 The normal function of the different classes of cancer-causing genes according to the 

cell cycle stage (Source: Calvert and Frucht, 2002).
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Point mutations o f the ras oncogenes, m particular o f the K-ras gene, occur in a variety o f 

human cancers, such as pancreatic cancer, colorectal cancer, lung adenocarcinoma and 

thyroid carcinoma The prognostic significance o f ras mutation has been documented m 

lung adenocarcinoma (Rodenhius and Slebos, 1992) Furthermore, alterations in several 

oncogenes have been also detected in a subset o f cancer cells For instance, alterations in 

the adenomatous polyposis coll (APC), K-ras and p53 genes are common in colorectal 

cancer (Kinzler and Vogelstein, 1996), while those in the p53, RB/pl6, c-myc and K-ras 

genes are common m lung cancer (Yokota, 1999 and Sekido et a l , 1998) Ras, a 

downstream central acting protein, activates the phosphoinositide 3-kinase (PI3K)/Akt 

and mitogen-activated protein (MAP) kinase pathways Famesyl transferase inhibitors 

(FTIs) prevent the translocation o f Ras to the inner membrane, where it is activated 

While the HER-2 (human epithelial growth factor receptor 2, also known as HER-2 or 

erbB-2) membrane receptor tyrosine kinase is the most studied component o f the cell 

signaling system, many other proteins including Ras, are involved in transducing and 

modulating this signal, which has many end events, including cell proliferation, 

alterations in drug sensitivity and DNA repair, angiogenesis, apoptosis, protease activity 

and cell motility (Reviwed in Osborne et a l , 2004)

The HER-2 gene encodes a 185-kDa transmembrane tyrosine kinase growth factor 

receptor (Yarden and Shwkowski, 2001) This leads to multiple transduction cascades 

acting through a variety o f pathways including the MAP kinase and PI3K/Akt pathways, 

which eventuate m proliferation, angiogenesis, altered cell-cell interactions, increased cell 

motility, metastases and resistance to apoptosis (Oved and Yarden, 2002)

The epidermal growth factor receptor (EGFR, also known as HER-l), are relevant in 

breast cancer Expression of EGFR has been reported in some studies to be associated 

with a worse clinical outcome as well as estrogen-receptor (ER) negativity (Witton et a l, 

2003) Growth-factor-mediated signal transduction activates several key kinases that 

serve as master switches and can control numerous pathways The mammalian target o f 

rapamycin (mTOR) is a pivotal downstream kmase that couples growth stimuli from 

receptors or cytoplasmic kinases to regulation o f the cell cycle Rapamycin and its 

analogues inhibit phosphorylation of mTOR, thus blocking m translation o f key protein
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synthesis machinery components and cell cycle regulatory proteins such as c-Myc and 

cyclin D1 respectively (Mita et a l , 2003) The c-myc gene is a member o f the myc family 

of nuclear protooncogenes play roles in cell proliferation, differentiation, and apoptosis 

Inappropriate expression of c-myc genes contnbutes to the development o f many types of 

cancers in humans It has been proposed that c-myc may normally function by 

coordinating expression of growth-related genes in response to mitogemc signals 

Deregulated c-myc expression may predispose to cancer by enhancing cell growth to 

levels required for uncontrolled cell division (Iritam and Eisenman, 1999)

The biological activity o f oncogenes can be modulated and suppressed either on the RNA 

or the DNA levels Anti-oncogenes are oligonucleotides (short nucleic acid segments) 

that can bind to a specific sequence of the RNA (antisense oligonucleotides) or the DNA 

(antigene oligonucleotides) resulting in the inhibition o f the oncogene activity (reviewed 

in El-Aneed, 2004, Helene, 1994, Zhang and Roth, 1994)

In contrast to the oncogenes discussed above, tumor suppressor genes act as the cell’s 

brakes by encoding proteins that repress biochemical function and cell proliferation 

Tumor suppressor genes refer to those genes whose loss of function results in the 

promotion of malignancy Tumor suppressor genes are usually negative regulators of 

growth or other functions that may affect invasive and metastatic potential, such as cell 

adhesion and regulation of protease activity (reviwed in Osborne et a l , 2004) These 

genes induce apoptosis and/or cell cycle arrest in malignant cells (Opalka et a l , 2002)

The mam representative gene o f this family is the p53  gene which is responsible for the 

detection of DNA damage followed by repair initiation or apoptosis induction (Sager, 

1989) Under normal conditions, p53 acts as a regulating mechanism for cell division 

When activated, p53 can directly interact with DNA to yield transcription o f a number o f 

genes, including the cychn-dependent protein kinase inhibitors (CKIs), p21 and a 

temporary arrest o f the cell cycle in the Gi or G2fM phase, pnor to mitosis to allow for 

DNA repair p53 is also capable of interacting with other cellular pathways to trigger 

apoptosis or differentiation (Lane et a l, 1994) It is well documented that p53 gene 

induces apoptosis and cell cycle arrest in cultured cells (Roy et a t , 2002, Sauter et a l ,
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2002, Mitry et a l , 1997) Similarly, tumor growth inhibition and tumor regression in 

ammal models were observed after p53 transfection (Dolivet et a l , 2002, Anderson et a l , 

1998, Hsiao et a l , 1997) p53 protein interfere in the biochemical pathways of many 

gene groups which regulate cell growth and differentiation namely, bcl-2 and caspase 

(Reviewed in Shen and White, 2001) p53 has also been shown to factor m the expression 

of other proposed tumor suppressors or regulators o f angiogenesis and metastasis, 

including the proteins maspm, hypermethylated in cancer (HIC)-l, and Kangai-1 (KAI-1) 

(Zou et a l , 2000, Mashimo et a l , 1998, Wales et a l , 1995)

p27 and Skp2 negative regulators o f the cell cycle are also considered tumor suppressor 

genes in that a loss of their function can contribute to malignant behavior p27 belongs to 

a family of CKIs known as Cip/Kip, whose other members are p21 and p57 In general, 

CKIs slow the progression of the cell cycle, p27 is capable of binding to a number of 

umque cyclm/CDK complexes to attenuate their activity, typically directing the cell 

toward arrest in the Gj phase (Russo et a l , 1996) p27 expression has been shown to have 

prognostic value m a variety o f tumors, including lung and colon (Esposito et a l , 1997, 

Loda e ta l ,  1997)

Cell cycle checkpoint kinase (CHK2) is a serine threonine kinase that is mutated in some 

families that have a high breast cancer risk (Bell et a l , 1999) This kinase is activated by 

the ataxia-telangiectasia mutated (ATM) protein in response to DNA damage and then 

phosphorylates p53 and BRCA-1 (Vahteristo et a l , 2002) The ATM gene senses DNA 

damage and activates checkpoints and DNA repair pathways through rapid 

phosphorylation of several substrates including p53, BRCA-1 and CHK2 (Shiloh, 2003)

PTEN (phosphatase and tensin homolog) encodes a phosphatase that serves as a negative 

regulator to Akt Loss o f PTEN function augments the Akt cell survival signal (Burke et 

a l, 1997)

In addition to oncogenes, tumor suppressor genes and MMR genes, several other genes 

seem to be important m colon carcinogenesis, although their exact roles and mechanisms 

of action have not been fully determined (Figure 1 3) Cyclooxygenase (COX)-2 is one of 

two COXs, the other being COX-1 Although COX-1 is a constitutive component of
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cells, COX-2 enzyme probably has a role in programmed cell death (Calvert and Frucht, 

2002)

i

1.3 Colon cancer

Colon cancer is a major cause o f cancer mortality and morbidity both in the USA and 

worldwide (Bailar and Gomik, 1997, WHO, 1997) affecting about one in 20 people over 

a lifetime (Bleiberg et a l , 2002) It is considered among the big killers, together with 

lung, prostate and breast cancer (Labianca et a l , 2004)

Colorectal cancer is the leading cause of cancer in Europe as well (United European 

Gastroenterology Federation, 2003) The incidence is slightly higher in the west and 

north than in south and east Europe Other high risk areas include North America and 

Australia Central and South America, Asia and Africa are areas o f low risk (Parkin et a l , 

2002) An estimated 225,000 European colon cancer cases occurred in 2000, accounting 

for 8% of all malignant tumours in adults (Parkin et a l , 2002, Ferlay et a l , 2001) The 

incidence in men is about 50% greater than in women (Ferlay et a l , 2001)

Data from European Network of Cancer Registries (ENCR), about 70% of patients with 

colon cancer are over 65 years o f age Colon cancer is rare under the age of 45 (2 per

100,000 per year) (ENCR 2001) In the age group 45-54 colon cancer incidence is about 

20 per 100,000 per year and thereafter increases at a much higher rates (55 per 100,000 

per year for aged 55-64, 120 for aged 65-74 and 200 per 100,000 per year for those older 

than 75 years o f age) (ENCR 2001)

Epidemiological studies have shown a significant difference in colon cancer incidence 

among different ethnic groups The incidence of colon cancer is much higher in the 

United States and European countries compared with Asian countries (Parkin et a l ,

2002) such as Japan and China, which is believed to be partly attributed to dietary habits 

(Messina et a l , 1991) One of the major differences in diet between these populations is 

that the Japanese and the Chinese consume a traditional diet high in soy products The 

increased incidence of colorectal cancer in the developed world is suggestive of
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environmental and nutritional influences in its pathogenesis (Weisburger and Wynder 

1987)

Colon cancer is the result o f an abnormal balance in many cellular processes, such as cell 

growth and differentiation of colomc epithial cells (Navarro et a l , 1997) It is usually 

observed in one o f three specific patterns sporadic, inherited and familial Sporadic 

disease, with no familial or inherited predisposition, accounts for approximately 70% of 

colorectal cancer in the population Sporadic colon cancer is common in persons older 

than 50 years o f age, probably as a result of dietary and environmental factors as well as 

normal aging (Calvert and Frucht, 2002)

Colorectal cancer is inherited in fewer than 10 out o f every 100 cases (Stewart et a l , 

2003 and Calvert and Frucht, 2002) People with inherited colorectal cancer have 

polyposis or nonpolyposis syndromes In polyposis syndromes, patients develop many 

polyps in their colons Some of these polyps become cancer The main polyposis 

syndrome is familial adenomatous polyposis (FAP) which is associated with mutation or 

loss o f FAP (also called the adenomatous polyposis coh (APC) gene (Stewart et a l ,

2003) Colorectal cancer is familial in possibly up to 25 of every 100 cases People in 

families with familial colorectal cancer have a higher than average risk for colorectal 

cancer Some patients do not have polyposis but do have inherited genes that put them at 

very high risk for colorectal cancer but the pattern o f inheritance is not consistent with an 

inherited syndrome (Calvert and Frucht, 2002) Hereditary nonpolyposis colorectal 

cancer (HNPCC) syndrome is associated with germhne mutations in six DNA mismatch 

repair genes (Stewart et a l , 2003) HNPCC is a most common known hereditary cause of 

colon cancer The prevalence of colorectal cancer associated with the HNPCC syndrome 

is very low as estimated by the Modena Cancer registry slightly more than 7% of the 

total colorectal cancer prevalence (Gatta et a l , 1999)

Diet is the most important exogenous factor identified up to now in the aetiology of colon 

cancer It has been estimated that 70% o f colorectal cancers could be prevented by 

nutritional intervention (Stewart et a l , 2003) A substantial number o f dietary factors and 

factors related to diet, possibly modify the risk o f colon cancer These factors are diets
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high m starch, non-starch polysaccharides (fiber) and carotenoids, all o f which are found 

in foods of plant origin, and possibly decrease the risk Evidence that diets nch in 

vegetables protect against colon cancer is substantial, while the data on fruits are more 

limited and inconsistent Consumption o f non-digestible fructo-ohgosacchandes may 

selectively promote the growth and activity of potentially beneficial bacteria, such as 

Bifidobacterium and Lactobacillus (WCRF and AICR, 1997) Recently, the role o f fibre 

as a protective factor for colon cancer was confirmed m a large cohort European study on 

diet (Bingham et a l , 2003) In populations with low average intake of dietary fibre, an 

approximate doubling of total fibre intake from food could reduce the risk of colorectal 

cancer by 40%

1.4 Diet and cancer

The increasing use o f functional foods by the public to improve their general health and 

prevent the incidence of chronic diseases (eg, cardiovascular disease, diabetes, and 

cancer) has become a major area o f interest within the nutrition community Previously 

epidemiological evidence supports the association o f intake o f dietary fat with the 

incidence and mortality of colorectal and prostate cancers (Erickson, 1998, Giovannucci 

and Goldin, 1997, Willett, 1989, Rose et a l , 1986)

High fat diets, rich in cholesterol and saturated lipids, may favour colon cancer because 

of their high caloric content, or they could lead to increased levels of bile acids in the 

colonic rumen or a disbalance of the essential fatty acids metabolism (Eynard, 1997) But 

recent epidemiologic studies suggest that high intakes of high-fat dairy foods may reduce 

the risk of colorectal cancer (Larsson et a l , 2005) Increasing knowledge about the 20 - 

40 year process of human carcinogenesis is providing many new opportunities for early 

intervention and prevention and specifically for chemoprevention Cancer 

chemoprevention may be defined as the use o f specific chemical substances, many of 

which occur naturally in foods, to prevent cancer initiation and to inhibit or reverse the 

development of invasive cancer (Singletary, 2000)
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Carcinogenesis is a complex, multi-step process that progresses over many years Since it 

is exceptionally difficult to cure malignant tumors, cancer prevention may be a more 

effective strategy to control and, ultimately, overcome cancer A promising and important 

group of potential cancer preventive agents are those derived from natural products, 

particularly dietary substances because of their low toxicity and apparent benefit in other 

chronic diseases (Lim et a l , 2005) And also, because replicating cancer cells have an 

increased requirement for lipids for membrane formation and metabolic energy, dietary 

intervention with fatty acids possessing anticarcmogenic properties may represents a 

novel, practical and relatively safe approach to reduce the proliferation of colorectal and 

prostate cancer cells (Palombo et a l , 2002) It is well established that, beef together with 

whole milk and dairy derivatives, are almost the only sources for conjugated linoleic acid 

(CL As) family Furthermore CL As are the only natural fatty acids accepted by the 

National Academy of Sciences o f USA as exhibiting consistent antitumour properties at 

levels as low as 0 25 -  1 0 per cent o f total fats (Eynard and Lopez, 2003)

1.5 Introduction to CLA

Conjugated linoleic acids (CLAs) refer to a naturally occurring group of positional and 

geometric isomers o f linoleic acid (18 2n -  6, LA) that are formed by biohydrogenation 

and oxidation processes in nature (reviewed in Wahle et a l , 2004, reviewed in Belury, 

2002a) Whereas the double bonds m LA are at the 9th and 12th carbon from the 

carboxyl group in the a s  configuration, the bonds in CLA are in positions 9 and 11 or 10 

and 12 (i e conjugated), each of these bonds may be in the cis or tram  configuration The 

cis-9, trans-11 (c9, ¿11) and trans-IQ, cts-12 (¿10, c l2 ) isomers are considered to be 

biologically active (Palombo et a l , 2002) The two predominant isomers of CLA which 

are found primarily in ruminant meats and milk products and commercial preparation are 

c9, ¿11 CLA and ¿10, c!2  CLA (Brown et a l , 2004) Recenlty, ¿9, t i l  CLA is also 

available as a commercial preparation

CLA isomers have been studied extensively due to their ability to modulate cancer, 

atherosclerosis, obesity, immune function and diabetes in a variety o f experimental
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models (Reviewed in Brown and McIntosh, 2003). It exhibits chemoprotective effects in 

several tissues in experimental animals, such as chemically induced forestomach 

neoplasia, skin tumors in mice, mammary and colon carcinogenesis in rats (Belury, 

2002b). CLAs were first discovered by Pariza and his group when investigating the 

carcinogenic components o f grilled beef (Pariza and Hargraves, 1985).

1.6 S t ruc tu re  o f  C LA s

CLAs are a scries o f positional and geometric isomers o f linoleic acid (cis-9, cw-12- 

18:2« - 6 )  where one or both o f the double bonds are either in the cis or the trans 

configuration and transposed to different positions along the acyl chain with the bonds 

separated by a simple carbon-carbon linkage rather than by the normal methylene group 

(Figure 1.4). A number o f cis c/s, cis trans, trans-cis and trans trans isomers with the 

double bonds at various locations along the acyl chain, from carbon-6 to carbon-15, have 

been identified by various chemical reductive, chromatographic and spectroscopic 

techniques (Adlof, 2003; Christie, 2003; Dobson, 2003).

Unoleic add 
cis-9. d »-12 (18:2)

Conjugated lino!tic acid 
cto-9, trans-11 isomer

Conjugated linoleic acid 
trans-10, cis-12 isomer

Figure 1.4 Structure o f the parent omega-6 fatty acid linoleic acid and its two main 
conjugated derivatives (source: reviewed in Wahle et a!., 2004).
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1.7 Sources of CLAs

The major dietary sources of CLAs are foods derived from ruminant animals, in 

particular dairy products Consequently, the mam food source o f CLAs in the Western 

diet is from meat and dairy products derived from cows, sheep, goats and deer (reviewed 

in Wahle et a l , 2004, Gninan et a l , 2000, Ma et a l , 1999, Chm et a l , 1992) The rumen 

of these animals is likened to a large anaerobic fermentation tub which contains microbes 

capable o f biohydrogenating the ingested polyunsaturated fatty acids derived largely from 

forage but also from other feed sources, natural or otherwise (e g added gram or fish oils) 

(reviewed in Wahle et a l , 2004)

The predominant isomer in milk and other dairy products is the c9, t\  1 CLA with minor 

but significant proportions of ¿10, c l2  CLA (Parodi, 2003, McGuire et al t 1999 Parodi, 

1997) This contrasts with commercial preparations o f CLA where proportions of the two 

main isomers are usually almost equal, although the chemical method for synthesis will 

allow a variety of ratios for the two isomers in the final mixture (Parodi, 2003, Saebo, 

2003, McGuire et a l , 1999, Parodi, 1997) The greatest concentrations o f CLA in milk 

are obtained when cows are fed supplemental feed oils, particularly fish oil supplements 

(Parrish et a l , 2003, Stanton et a l , 2003, Chilliard et a l , 2001 Gulati et a l , 2000, Parodi, 

1997) Interestingly, the highest natural levels o f CLA observed to date in nature occur m 

wallaby milk (Parodi, 1997) Fat associated with meat o f ruminant animals, contributes in 

the region of 25-30% of the total intake in Western populations (Parodi, 2003, McGuire 

et a l , 1999, Parodi, 1997)

Ruminant products are the pnncipal source of CLA in human diets with -70%  and 25% 

coming from dairy products and red meat, respectively (Ritzenthaler et a l , 2001) The c9, 

¿11 CLA (rumemc acid, RA) represents 75-90% of total CLA in dairy foods (Lock and 

Bauman, 2004, Parodi, 2003, McGuire et a l , 1999, Parodi, 1997)

CLA is found in minor amounts in oils and seafood (0 2-0  8 mg CLA/g fat) but m greater 

amounts m meats (1 0-4 0 mg CLA/g fat) and dairy products (5 0-7  0 mg CLA/g fat) 

(Herbel et a l , 1998) The c9, ¿11 CLA is the primary dietary form of CLA in human 

diets The second most abundant isomer o f CLA is the ¿10, c l2 CLA form initially
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identified in grilled beef (reviewed in Wahle et a l , 2004) However, the relative 

concentration o f c9, i l l  CLA and other isomers including ¿10, c l2  CLA m dairy and 

meat products is influenced by the type and amount o f vegetable fats fed to ruminants 

(Panza et a l , 2001) The accumulation o f CLA isomers and of several 

elongated/desaturated and p~oxidation metabolites have been reported in tissues of 

animals fed diets with CLA (reviewed in Belury, 2002a)

CLA is present in natural sources in only minute amounts, which makes it extremely 

difficult to purify from such sources Furthermore, it is difficult to separate CLA isomers 

prepared by alkali isomerization in bulk and therefore only CLA mixtures are currently 

on the market as health supplements (Tsuzuki et a l , 2004)

CLA is not found m any of the vegetable oils commonly used in the food chain, although 

fatty acids with conjugated double bonds were observed in various seed oils from a 

number o f plant species (Reviewed in Wahle et a l , 2004) In Okinawa, Japan, which is in 

itself one o f the leading countries in the world in terms of life expectancy, people often 

eat bitter gourds (Momordica charantia) The seed oil o f such gourds contains 60% a- 

eleostearic acid (a -ESA, 9,11,13-18 3) (w w) Interestingly it was reported that c9, ¿11 

CLA can be produced in rats from the conversion of conjugated tnene a  -ESA A 

significant amount of c9, ¿11 CLA was found in the liver and plasma lipids of rats fed a 

1% (w/w % o f diet) eleosteanc acid diet for 4 weeks (Tsuzuki et a l , 2004)

1.8 Dietary intake of CLAs in humans

The daily intake of CLA in human populations vanes from country to country The 

estimated daily CLA intakes range from negligible to 1500 mg in Australian populations 

(Parodi, 2003, Fntsche et a l , 1999), whereas the average CLA intake in the UK is about 

400-600 mg/d Interestingly, intakes in women are generally lower than in men due 

possibly to a lower dairy fat consumption in the former (Parodi, 2003, McGuire et a l , 

1999, Parodi, 1997)
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Herbel et a l , (1998) reported that young men and women living in the United States 

consumed approximately 127 mg CLA/day Somewhat similar values were obtained m 

another US study that the dietary intake o f CLA in young men and woman was 137 and 

52 mg/day, respectively (Ritzenthaler et a l , 1998) It is interesting to note that college- 

aged women have extremely low CLA intakes The CLA intake m young Canadians 

(Ens et a l , 2001) has been estimated to be 94 mg/day Dietary intake of CLA in Germany 

was also estimated to be lower in women (350 mg CLA/day) than in men (430 mg 

CLA/day) (Fntsche and Steinhart, 1998) on the basis o f the West German National 

Consumption Survey In a more recent German study, daily intake was reported to be 246 

and 323 mg CLA/day To achieve an intake of 0 1 g/lOOg diet, the level o f CLA that has 

been shown to significantly reduce tumors in animals (Ip et a l , 1994), the c9, /ll-C L A  

intake would need to be 620 and 441 mg/day for men and women, respectively 

(Ritzenthaler e ta l , 2001)

The average intake of CLA probably may not reflect the total CLA available to an 

individual because o f endogenous conversion of f-VA from dairy products to CLA via 

the A-9 desaturase enzyme (Corl et a l , 2003) It has been estimated that 20% of /-VA is 

converted to CLA in this way (Turpeinen et a l , 2002) Dietary modifications can 

increase CLA concentration in human tissues Specific intervention studies have shown 

that increasing the CLA content o f the diet increased the CLA content in human milk 

(Park et a l , 1999a), plasma (Huang et a l , 1994) and adipose tissue (Jiang et a l , 1999) 

The amount o f c9, /11-CLA in human adipose tissue was significantly related to milk fat 

intake (Jiang et a l , 1999)

1.9 The biosynthesis of CLA in ruminant, rodent and man

CLA has been identified in human blood, milk (Fogerty et a l , 1988), adipose tissue 

(Ackman et a l , 1981), bile and duodenal juices (Cawood et a l , 1983) with c9 ,111 CLA 

as the most predominant isomer present The origin of CLA in human tissues is thought 

to be dietary as the consumption of CLA-contaimng foods such as cheese has been shown

18



to increase plasma CLA levels (Huang et a l , 1994, Britton et a l , 1992) It was first 

proposed by Parodi (1994) that tram -vaccenic acid (¿-VA), the predominant tram  

monounsaturated fatty acid in milk fat could be desaturated to c9y ¿1 1 CLA m humans 

based on the observation that a A9 desaturase enzyme from rat liver microsomes has been 

shown to produce CLA from ¿-VA (Mahfouz et a l , 1980, Pollard et a l , 1981)

There are two pathways for the production o f CLA in the dairy cow Firstly, they are 

formed as intermediates through incomplete biohydrogenation of PUFA from the diet 

specifically lmoleic (18 2n-6) and lmolemc acids (18 3n-3) by anaerobic rumen micro 

organisms (Hughes et a l , 1982, Kepler et a l , 1966) Two major groups of rumen 

bactenahave been identified that isomenze either the c l 2 bond to ¿11, eg, Butyrmbrio  

fibrisolvem  (Kim et a l , 2000, Hughes et a l , 1982, Kepler et a l , 1966), or the c9 bond to 

¿10, eg, Megasphaera elsdenu (Kim et a l , 2002a) The cascade o f possible FAs from 

18 2n-6 and 18 3n-3 by these 2 groups of rumen bacteria is shown in Figure 1 5

Isomerization followed by biohydrogenation in the normal rumen produces mainly ¿11- 

contaimng fatty acids, whereas during dysfunctional states mainly ¿10 fatty acids are 

produced Metabolites produced in the rumen can pass through the blood into tissues, 

including milk fat, the transfer of selected fatty acids is shown by dotted arrows ¿11-18 1 

is desaturated to c9, ¿11-18 2 (c9, ¿11 CLA) by A9-desaturase, whereas ¿10-18 1 is not 

converted to ¿10, cl2-18 2 (¿10, c l2  CLA) in the tissue The underlined tram  double 

bond indicates the common tram  double bond formed by the respective rumen bacteria 

(Figure 1 5) (reviewed in Kramer et al f 2004)

A second pathway for production of c9, ¿11 CLA is via A9 desaturation o f ¿-VA m the 

mammary gland (Gninari et a l , 2000) Ip et a l , (1999a) demonstrated that rats 

consuming CLA-enriched butterfat accumulated more total CLA in their tissues 

compared to those consuming either Matreya CLA or Nu-Chek Prep CLA The authors 

hypothesised that the availability of ¿-VA in the high CLA butterfat may serve as the 

precursor for the endogenous synthesis of CLA via the A9 desaturase reaction Santora et 

a l , (2000) reported and quantified the desaturation of ¿-VA to CLA m mice When equal
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quantities o f f-VA and CLA were fed to mice they reported that 12 % of the /-VA 

consumed during a 2-wk feeding period was recovered in the carcass as CLA. O f the 

proportion o f /-VA in the tissues that was available for bioconversion, 48.8 % was 

desaturated. CLA was found in the carcass only when vaccenic acid or CLA was fed. 

CLA was found in both triglyceride and phospholipids when CLA was fed, but only in 

triglyceride when /-VA was fed, suggesting that bioconversion occurred in the adipose 

tissue (Santora et at., 2000).

Salminen et al., (1998) provided evidence that CLA in human serum has been derived in 

part from the diet and in part by conversion o f dietary trans fatty acids. Serum CLA 

levels were significantly higher in subjects fed a high-dairy fat diet, rich in CLA and 

/ram-fatty acids than when fed a CLA-poor stearic acid diet. Evidently, CLA was formed 

during consumption o f the diet rich in trans fatty acids and incorporated into serum 

lipids. Adlof et al., (2000) showed that /-VA was converted into CLA in humans, at a 

CLA enrichment o f approximately 30%.

N o rm a l  R u m e n
eg . Bury r iv i  brio  f i briso! vens

I '
(-11^15-18:2 . sr 9 / l i - l § : 2

I  B to h v d ro g rn a lio n  

/ I0 x 1 5 -1 8 .2

Figure 1.5 Possible metabolic intermediates o f  linoleic and linolenic acid produced by 

rumen bacteria (Source: reviewed in Kramer et a!., 2004).

20



►

Recently Miller et a l , (2003) observed that, when cells were incubated in the presence of 

t-VA at concentrations of 5 to 20 ng/mL, both t-VA and c9, t \ \  CLA increased in 

cellular lipids in a dose-dependent manner After 4 d o f incubation o f SW480 and MCF-7 

cells with VA (20 ng/mL), c9, t\  1 CLA increased from undetectable levels to 8 57 and 

12 14 g/100 g FAME in cellular lipids, respectively O’Shea et a l , (2000) also examined 

the fatty acid composition of total cell lipids of MCF-7 human breast cancer cells, 

incubated in the presence o f pure c9, t\  1 CLA (20 jug/ml) and with a CLA-enriched milk 

fat containing 20 jag/ml CLA CLA uptake was approximately 6 fold more proficient 

from the milk fat than from the synthetic pure c9, /11-CLA source, supporting the study 

by Ip et a l , (1999a) The study also suggested that CLA could be formed from t-V  A  

present in the milk fat by a A9 desaturase enzyme present in human breast cancer cells

It has also been proposed that CLA may also be synthesised from LA by intestinal flora 

or by free radical induced isomerisation of LA In normal rats, dietary linoleic acid gave 

rise to CLA m various tissues in proportion to the amount o f linoleic acid fed, but this 

conversion was not evident in germ-free animals (Chin et a l , 1994) However Salminen 

et a l , (1998) refuted the concept of production o f CLA from linoleic acid m humans 

because significantly different levels of CLA were found in serum lipids from subjects 

fed three different dietary regimes that contained the same levels of LA The 

consumption of LA in triglyceride form in sunflower oil did not increase plasma levels of 

esterfied CLA in the total lipids of human subjects (Herbel et a l , 1998) But there is 

evidence that small amounts o f PUFAs are absorved in the large intestine (Adlof et a l , 

2000)

1.10 Health benefits of CLAs

Interest in CLAs has increased recently because of its anticarcinogemc properties In 

addition to their anticarcinogemc properties (reviewed in Belury, 2002b), CLA isomers 

have been shown to modulate immune function (reviewed in Wahle et a l , 2004), as well 

as markers of atherosclerosis (reviewed in Kritchevsky, et a l , 2000), diabetes (reviewed 

in Belury, 2002a), and obesity risk (reviewed in Evans et a l , 2002b)
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They also have reported beneficial regulatory effects on bone formation, lipid and 

eicosanoid metabolism, cytokine and immuno-globulin production and can modulate the 

expression of a number o f genes, either directly or through specific transcription factors 

involved in the many metabolic processes they affect (reviewed in Wahle et a l , 2004, 

Eggert et a l , 2002, Park et a l , 2000b, Li and Watkms, 1998, Belury and Kempa- 

Steczko, 1997, reviewed in Ip, 1997)

1.11 CLA inhibits carcinogenesis

The most studied bioactivity o f CLA is its anticancer effect The development of 

anti cancer research involving CLA began when Ha et a l , (1987) found that CLA 

inhibited in vivo initiation of mouse epidermal tumors Since then CLA has been shown 

to inhibit the formation of tumour in numerous animal models of cancer and to inhibit the 

growth of a large variety of human cancer cells

Experimental studies have shown that, in contrast to LA, CLA is an effective inhibitory 

agent of human mammary, colorectal and prostate cancer in vitro and in vivo (Park et a l , 

2000a, Cesano et a l , 1998b, Schut et a l , 1997, Liew et a l , 1995, Ip et a l , 1994b, Rose 

et a l , 1993, Shultz et a l , 1992b, Ip et a l , 1991) CLA behaved as a powerful 

anticarcinogen in a rat mammary tumor model with an effective range as low as 0 5% in 

the diet [Liew et a l , 1995] Interestingly, the protective effect of CLA was expressed at 

concentrations close to human consumption levels flp et a l , 1994a]

When transplanted into nude mice, growth of mammary (Visonneau et a l , 1997) or 

prostate (Cesano et a l , 1998b) cancer cell lines was significantly reduced if animals were 

fed a diet with CLA (1 0%) The c9, ¿11 CLA and ¿10, c l2  CLA appear to be equally 

active in inhibiting mammary carcinogenesis in rats (Ip et a l , 2002)

Studies in animal models of human prostate cancer that used transplanted DU 145 cells 

have shown clear anti-tumorigemc effects o f dietary CLAs similar to those observed with 

breast cancer models when implanted into SCID mice and these effects were opposite to
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those observed with linoleic acid feeding (Cesano et al., 1998b). CLAs were found to be 

cytotoxic to the rat dRLh-84 hepatoma cells at concentrations as low as 1 nM when 

compared to control (Yamasaki et al.. 2002b).

CLAs also inhibited the growth of a human hepatoma cell line (HepG2) in vitro These 

effects were due to alterations o f fatty acid metabolism in the cells (Igarashi and 

Miyazawa, 2001).

Neovascularisation or angiogenesis in tumours is an important mechanism for ensuring 

the nutrient supply and consequently the growth o f the tumour and also in maintaining 

complex atherosclerotic lesions. Inhibition o f angiogenesis would be expected to reduce 

rapid tumour growth and plaque progression. Evidence that CLAs can inhibit 

angiogenesis in mammary cancer (Ip et al., 2002). This indicates that these fatty acids 

may inhibit tumour growth through a reduced blood supply. Recently, a possible role of 

c9, /1 1 CL A in inhibition o f angiogenesis has been proposed when c9, t\ 1 CLA prevented 

the conversion of mammary stromal stem cells to endothelial cells (Masso-Welch et al., 

2002 ).

Whereas a great deal o f evidence demonstrates that dietary CLA inhibits the initiation 

and promotion stages o f carcinogenesis, the role o f CLA in the progression stage of 

carcinogenesis has not been comprehensively addressed (review in Belury, 2002a). It is 

critical to understand how CLA modulates malignant tumor formation and metastasis 

because the growth of secondary tumors is the major cause of morbidity and mortality in 

people with cancer. However a study has demonstrated that CLAs, both main isomers 

and a mix, at a concentration of 0.5% to 1% (w/w) o f the diet, had a significant and dose- 

dependent inhibitory effect on pulmonary tumour burden, an index of metastasis, in mice 

with transplantable tumours (Hubbard et al.. 2000; Kuniyasu et al.. 2006).

The evidence o f possible anti cancer activity o f CLA against intestinal cancer first arose 

when CLA was shown to inhibit the formation o f 2-amino-3-methyl-imidazo[4,5-fJ- 

quinoline (IQ)-DNA adducts in a number o f organs including the large intestine o f CFDj 

mice (Zu and Schut, 1992). The heterocyclic amine IQ reacts with DNA to form 

carcinogen-DNA adducts, leading to mutation and subsequently, to the initiation o f the
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carcinogenic process Other experimental evidence was the modulation of azoxymethane- 

induced colonic aberrant crypt foci (ACF) in male rats fed a CLA supplemented diet 

(Kohno et a l , 2002) The administration o f CLA caused a significant reduction in the 

frequency of ACF Also, these mixtures of CLA isomers lowered the proliferating cell 

nuclear antigen (PCNA) index in colomc ACF whereas apoptosis occurred (Kohno et a l ,

2002) Park et a l , (2001) reported that dietary CLA can inhibit 1 2-dimethylhydrazine- 

mduced colon carcinogenesis by a mechanism probably involving increased apoptosis 

These authors suggested a possible chemopreventive activity of CLA in the early phase 

of colon tumongenesis through modulation of cryptal cell proliferation activity and 

apoptosis (Park et a l , 2001)

CLA at 0 5% and 1% of the diet has been shown to significantly reduce the induction of 

mutations in distal colon of the Big BlueR rat (a transgenic animal model developed for 

evaluation o f mutagenicity o f chemical compounds) (Yang et a l , 2002) In a study 

mimicking human dietary supplementation, the effect of timing of CLA feeding on 

mutagenesis was studied Simultaneous administration o f CLA with 2-amino-l-methyl-6- 

pheny-irmdazo[4,5-b] pyridine (PhIP), suppressed PhlP-induced mutations in the distal 

colon by 23% Consistent with inhibition o f PhlP-induced mutation frequency, dietary 

CLA also inhibited aberrant crypt foci formation in male F344 rats given PhIP in basal 

diet (Yang et a l , 2002) In view o f the presence o f both PhIP and CLA in the typical 

western human diet, understanding the effects of CLA on mutagenesis and DNA repair 

will be necessary for development o f strategies which can optimally impact on cancer 

control

Park et a l , (2004) reported that CLA decreased the incidence o f colon cancer by 

decreasing cellular proliferation and inducing apoptosis o f the colonic mucosa of rats 

These effects may be due in part to decreased PGE2 levels and increased Bax/Bcl-2 ratios 

(Park et a l , 2004) Bcl-2 actively forms heterodimers with Bax to neutralize the latter's 

proapoptotic activity (Reed, 1994) and that phosphorylation o f Bel-2 functionally 

stabilizes the Bcl-2-Bax heterodimenzation (Deng et a l , 2000) Therefore, the Bax/Bcl-2 

ratio can function as a controller to modulate cellular fate (Buckley, 2001)
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Although most o f the experiments showed positive effects o f CLA as anticarcinogen of 

colon cancer, contradictory observations have also been reported for the effects of CLAs 

as well In an ApcMm mouse model (transgenic mouse model, mutation m Ape gene) of 

colon cancer CLA did not reduce tumour load but omega-3 PUFA from fish did (Petrick 

et a l , 2000) A recent study also reported that the ¿10, c l2 CLA actually promoted colon 

carcinogenesis rather than inhibiting it m the ApcMm mouse model (Rajakangas et a l ,
s

2003)

The beneficial effects of CLAs in gastrointestinal cancer have been observed mainly in 

chemically induced tumours m animal models But anti-proliferative effects of CLA have 

also been investigated in cultures of colon cancer cells (Cho et a l , 2003, Kemp et a l , 

2003, Miller et a l , 2002, Palombo et a l , 2002, O’Shea et a l , 2000, Shultz et a l , 1992b)

Unlike the in vivo experiments, all of which used a mixture of CLA isomers, some of the 

in vitro studies have provided some insight into the activities of specific CLA isomers on 

colon cancer cell growth Miller et a l , (2002) and Kim et a l , (2002b) compared the 

individual potencies of the c9, t i l  CLA and the ¿10, c \2  CLA isomers on the growth of 

the SW480 and Caco-2 colon cell line respectively In a recent study the ¿10, c l2  CLA 

isomer (at 14 and 28 jAg/ml) exhibited the greatest potency against colorectal cancer 

proliferation o f the HT-29 and M EM  01 cell lines (Palombo et a l , 2002)

High-fat dairy foods contain many potentially anticarcinogemc factors that might reduce 

the risk of colorectal cancer including CLA, sphingomyelin and ether lipids (Molkentin, 

2000) However, few epidemiologic studies have specifically evaluated high-fat dairy 

food consumption and none have evaluated CLA intake, m relation to colorectal cancer 

risk

Recently in an epidemiological study with a cohort design (Swedish Cohort Study) 

Larsson and her colleagues (2005) demonstrated that high-fat dairy foods (including 

whole milk, full-fat cultured milk, cheese, cream, sour cream, and butter) may lower the 

risk of colorectal cancer, particularly cancer of the distal colon Total high-fat dairy food 

consumption was significantly and inversely associated with the risk of colorectal cancer 

It has been proposed that the inverse association might in part, be related to CLA intake
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m high fat dairy foods (Larsson et a l , 2005) CLA intake was estimated according to the 

published data on the concentrations o f CLA found in the total fat o f various foods (Jiang 

et a l , 1997, Chin et a l , 1992) In this study 60708 women aged 40-76y participated in 

the Swedish Mammography Cohort The women’s consumption of high-fat dairy foods 

was assessedat baseline, which was from 1987 to 1990, and again in 1997 After 15 years 

follow-up, 798 incident cases o f colorectal cancer were discovered (Larsson et a l , 2005) 

Women who consumed >4 servings o f high-fat dairy foods/d had a multivariate rate ratio 

of colorectal cancer of 0 59 when compared with women who consumed <1 serving/d 

Each increment of 2 servings o f high-fat dairy foods/d corresponded to a 13% reduction 

in the risk o f colorectal cancer For CLA, the multivariate rate ratio of colorectal cancer in 

a comparison of the 2 extreme quartiles o f intake was 0 71 It was concluded from the 

experimental data that, CLA intake was significantly and inversely related to colorectal 

cancer risk

1.12 Proposed mechanisms underlying the anticarcinogenic effect of 

CLA

Strong evidence for the anticancer abilities of CLA indicates a need to study the 

mechamsms of chemoprotection by CLA Efforts have been made to elucidate the 

mechanistic role of CLA in modulating carcinogenesis by determining the effects on the 

stages o f carcinogenesis known as initiation, promotion, and progression (reviewed in 

Belury and Vanden Heuvel, 1997)

Preliminary studies have revealed some important insights that may start to explain the 

molecular basis for anti-tumour activity o f CLAs In particular, in view of their effects on 

reduction in cellular proliferation and increased apoptosis, research has focussed on the 

molecular mechanisms underlying the control of these pathways

In order to elucidate the anticarcinogenic mechanisms of CLA, early work focused on 

events associated with initiation As an antnmtiator, CLA may modulate events such as 

free radical-induced oxidation, carcinogen metabolism and/or carcinogen-DNA adduct
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formation in some tumor models (reviewed in Belury et a l , 1995) Current attention is 

focused on elucidating the mechanisms by which CLA inhibits carcinogenesis during 

promotion and progression particularly in the mammary, skin and colon carcinogenesis 

models (Ip et a l , 1995, Belury et a l , 1996, and Palombo et a l , 2002 respectively) The 

promotion stage involves the clonal expansion of initiated cells to form a benign tumor 

This stage of carcinogenesis represents a premahgnant state in which tumors arise from 

cells that have increased cell proliferation, reduced programmed cell death (or apoptosis), 

and/or deregulated differentiation

1.12 1 CLA effects on cell signaling and apoptosis

Data suggest that CLA modulates molecular signaling events that impact on the cell 

cycle, ultimately regulating cell proliferation In cultured cells, CLA reduced 

proliferation o f mammary tumor cells in vitro (Durgam and Fernandes, 1997, Shultz et 

al, 1992b) and in vivo (Ip et a l , 1994b) Autonomous cell proliferation is one o f the 

characteristics of cancer cells, driven by activated growth-stimulating oncogenes

The ErbB family of receptor tyrosine kinases includes the epidermal growth factor 

receptor (EGFR) or ErbBl, -2,-3, and -4 Activation o f these receptors regulates a 

number of processes including cell proliferation, survival, and differentiation 

Overexpression o f ErbB genes, particularly ErbB2, has been observed in several types of 

human cancer (Hamdy, and Thomas, 2001, Safran et a l , 2001, Yamauchi et a l , 2001) In 

colon cancer, the expression of mRNA for ErbB2 and -3 as well as the corresponding 

proteins was increased compared with normal mucosa (Porebska et a l , 2000, Maurer et 

a l , 1998, Ciardiello et a l , 1991)

One of the many initial events that occur after growth factors bind to their cognate 

growth factor receptor tyrosine kinases is the recruitment and activation of 

phosphoinositide 3-kinase (PI3-kinase) (Varticovski et a l , 1994) In many instances of 

receptor-activated PI 3-kinase signaling, binding of the p85 adaptor subunit is itself, a 

response to upstream tyrosine kinase activity (Wymann and Pirola, 1998) ErbB3 is
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particularly well adapted to mediate PI3-kinase signaling because it contains six 

consensus-binding sites for p85 (Hellyer, 2001)

The recruitment and activation o f PI3-kinase is one o f the many initial events that occur 

after growth factors bind to their growth factor receptor tyrosine kinases (Varticovski et 

a l , 1994) PI3-kinase phosphorylates inositol phospholipids at position 3 of the inositol 

ring and PI3-kinase lipid products interact with certain proteins and modulate their 

localization and/or activity (Vanhaesebroeck et a l , 1997) Akt is a downstream target o f 

PI3-kinase and plays a central role in PI3-kinase-mediated protection against apoptosis 

(Franke et a l , 1997) which can be activated by a variety o f growth factors and cytokines 

via phosphorylation on serine and threonine residues (Datta et a l , 1999, Hemmmgs, 

1997, Klippel et a l, 1997) and may participate in growth factor-stimulated cell cycle 

(Gille and Downward, 1999, Muise-Helmencks et a l , 1998) and inhibition of apoptosis 

(Kuhk et a l , 1997) Disturbance of normal protein kinase B (PKB)/Akt signaling has 

been reported in several human cancers (Nicholson and Anderson, 2002, Kandel and 

Hay, 1999)

Cho et a l , (2003 and 2005) demonstrated that CLA mixtures of isomers and ¿10, c l2  

CLA inhibits cell proliferation and stimulates apoptosis in HT-29 cells and that this may 

be mediated by its ability to downregulate ErbB3 signaling and the PI3-kinase/Akt 

pathway

Cho et a l , (2003 and 2005) observed that HRG [hereguhn (HRG) is a ligand that bind to 

and activates ErbB3 and -4 receptors (Tzahar, 1996)] stimulated the recruitment of PI3- 

kinase to the ErbB3 receptor in HT-29 cells and CLA decreased ErbB3-associated PI3- 

kinase protein levels and PI3-kinase activities CLA mixtures o f isomers and /10, c l2 

CLA inhibited HRG stimulated phosphorylation of ErbB3, recruitment o f the p85 subunit 

of phosphoinositide 3-kinase (PI3K) to ErbB3, ErbB3-associated PI3K activities and 

phosphorylation of Akt
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In addition to the PI3-kinase/Akt pathway, MAPK, also known as extracellular signal- 

regulated kinases (ERKs), are protein serine/threomne kinases that play a critical role in 

the regulation o f cell growth and differentiation (Hunter, 1995 and Marshall, 1995)

The Ras-Raf-MEK-MAPK (MAPKs) pathway may be involved in apoptosis, in that the 

MAPKs are signalling pathways critical for the conversion o f various extracellular 

signals to biological responses (Johnson and Lapadat, 2002) In particular, ERK 

activation is generally related to cell survival, but there are reports indicating that 

apoptosis may be associated with the suppression of ERK signaling (Koo et a l , 2002, Jan 

et a l , 1999, Nagata and Todokoro 1999) Miglietta et a l , (2006) revealed that CLA 

induced apoptosis in MDA-MB-231 breast cancer cells through ERK/MAPK signalling 

and occurrence of apoptosis was related to reduction in phosphorylated form o f ERK1/2 

and induction o f upregulation of pro-apoptotic protein Bak

As a counterbalancing event in promotion, apoptosis offers protection against 

carcinogenesis via programmed death of cancer cells Degeneration of an established 

tumour may occur because of either a decrease in cellular proliferation, an increase in 

programmed cell death, apoptosis, or necrosis o f the tumour due to nutrient deprivation 

(inhibition of tumour angiogenesis) (Cho et a l , 2003) A number of studies have showed 

the pro-apoptotic effects o f CLA in experimental models o f colon cancer in culture HT- 

29 (Cho et a l , 2003 and 2006, Palombo et a l , 2002), MIP-101 (Palombo et a l , 2002) 

and SW480 (Miller et a l , 2002)

Inhibition of proliferation and induction of apoptosis by CLA have already been shown in 

various cell types Dietary CLA induced apoptosis m numerous tissues including 

mammary (Ip et al t 2000), liver (Lu et a l , 2002), and adipose (Tsuboyama-Kasaoka et 

a l , 2000) tissues and in cultured mammaiy epithelial cells (Ip et a l , 1999b) In 

mammary tissue initiated with methylmtrosourea, dietary CLA induced apoptosis of cells 

m the terminal end bud and m premalignant lesions known as intraductal proliferation 

lesions (Ip et a l , 2000) In these studies, CLA induction of apoptosis was associated with 

a reduction of bcl-2, a signaling protein known to suppress apoptosis Ip et a l , (1996)
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have shown that CLA inhibited proliferation and induced apoptosis of normal mammary 

epithelial cells

The effects of CLAs on the pro- and anti-apoptotic pathways and their controlling genes 

have also revealed some interesting key facts The expression of bcl-2, a key anti- 

apoptotic proto-oncogene, was decreased in rat mammary tumours and tumour cells by 

feeding or treating with CLAs, other oncogenes involved m apoptosis such as bax or bak 

(Banm et a l , 2003, ip et a l , 2000 and 1999b) were not affected or were not determined 

(e g p53, p21, bad and bcl-X)

Majumder et a l , (2002) earned out a detailed evaluation o f the effects of a mix o f CLAs 

and individual isomers on the expression o f several pro- and anti-apoptotic oncogenes m 

human breast cancer and prostate cancer cells Oestrogen sensitive MCF-7 and oestrogen 

insensitive MDA-MB-231 breast cancer cells were studied Expression o f some o f the 

major oncogenes involved in cell survival and cell death (p53, p21, bcl-2, bax, bcl-Xs) 

were determined at the transcriptional (mRNA) and translational (protein) level CLA 

treatment inhibited proliferation and induced apoptosis which correlated with increased 

gene expression (mRNA and protein) of pro-apoptotic p53 and p21 WAF1/CIP1 but 

reduced expression of anti-apoptotic bcl-2 in MCF-7 cells The reduced bcl-2 protein 

expression supported findings o f lower levels of this protein in rat tumour tissue as well 

(Ip et a l , 2 000 ,1999b and 1995)

This information suggest that CLA may inhibit promotion by inducing signaling events 

leading to enhanced apoptosis

112 2 CLA and cell cycle

Because deregulation of numerous cell cycle components has been implicated in 

tumorigemc processes, cell cycle regulators are potential molecular targets for cancer 

prevention
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The mammalian cell cycle is divided into four separate phases, referred to as G\, S, G2, 

and M phases In late Gi phase and before entenng S phase, cells move across the 

restriction point (Sherr, 1996) During the Gi phase, cells respond to extracellular signals 

by either advancing toward another division or withdrawing from the cycle into a resting 

state ( Go) (Pardee, 1989, Sherr, 1994)

The mammalian cell cycle progression is controlled by the sequential activation and 

inactivation of several cyclin-dependent kinases (CDK) (Johnson and Walker, 1999) The 

cell cycle progression from G0/Gi to S-phase requires phosphorylation of the 

retinoblastoma tumor suppressor protein (Rb), a member o f the pocket protein family, by 

the cyclin Dl-cdk4/6 and cychnE-cdk2 complexes (Nurse, 2000, Weinberg, 1995) In 

quiescent cells, hypophosphorylated Rb associates with a family o f heterodimenc 

transcriptional regulators, collectively named the E2Fs (Ikeda et a l , 1996, Moberg et a l , 

1996, Sherr, 1996) Phosphorylation o f Rb in early GI by cyclin Dl/cdk4/6 triggers a 

cascade of events that begins with the dissociation o f E2F from Rb and the activation of 

transcription o f cyclin E by E2F, and culminates with the stimulation by E2F of its own 

transcription and assembly o f cyclin E with its catalytic partner Cdk2 The cyclin E-cdk2 

complexes promote further phosphorylation of Rb and the release of E2F thus 

establishing a positive feedback loop that accelerates the irreversible progression through 

lateG l (Sherr, 1996)

Recently, Cho et a l , (2006) reported that ¿10, c2, CLA inhibited G l - S  progression in HT- 

29 human colon cancer They observed ¿10, c l2 CLA induced cell cycle arrest at the 

G 0/ G 1 phase An increase in the levels o f p21 in ¿10 c 12 CLA-treated cells led to the 

inhibition o f the CDK activity, which resulted in a decrease in phosphorylated Rb and an 

increase in hypophosphorylated Rb It was revealed that ¿10, c l2 CLA upregulates the 

level o f p21 and its interaction with PCNA, which may also contribute to the observed 

decreased DNA synthesis (Cho et a l , 2006) Utilizing HCT116 cells, Kemp et a l , (2003) 

have shown that CLA increased accumulation of hypophosphorylated Rb These results 

indicate that the decreased phospho-Rb (or increased hypophosphorylated Rb) 

contributes to G i / S  arrest observed in CLA-treated cells Utilizing MCF-7 breast cancer 

cells Kemp et a l , (2003) have also shown CLA induced cell cycle arrest in G o / G j
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Active E2F

Figure 1.6 Cell Cycle: Simplified G l/S  regulation. If a dividing cell is going to proceed 

through another round of division, the Rb protein (or its related family members) is 

phosphorylated by cyclin/CDK complexes. This releases the E2F transcription factor and 

leads to changes in gene expression that are essential for cell cycle progression. 

Alternately, if  a cell is going to exit the cell cycle and terminally differentiate, this 

phosphylation event is blocked. (Source: hnnv/www shadeoro/ii 

13/06/06

Lim el a i,  (2005) examined if physiological levels o f CLA alter the cell cycle 

progression o f HT-29 cells and the expression and activities o f cell cycle regulatory 

proteins. They found that CLA induced a G|/S phase arrest which was accompanied by 

decreased cyclin A, D1 and E and increased p21 and its interaction with proliferating cell
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nuclear antigen (PCNA) PCNA plays an essential role in DNA replication and different 

types o f DNA repair, including nucleotide excision repair, mismatch repair, and base 

excision repair (reviewed in Tsunmoto, 1999) Lim et a l , (2005) demonstrated that CLA 

decreased levels of phospho-Rb in a dose-dependent manner indicating that induction of 

p21 by CLA leads to inhibition o f CDK activity resulting in reduced phosphorylation of 

CDK substrates and the induction of p21 both by p53-dependent and -independent 

mechanisms (Majumder et a l , 2002)

In view of importance of lipid component on cell signaling pathway, the next three 

chapter of the present study delt with the effects o f CLA on growth, apoptosis, 

differentiation, epigenetic influence o f cell death and m modulation of cellular lipid 

composition of HT-29 human colon cancer cells

The objectives o f this study were to investigate the effects o f a CLA mixture of isomers, 

three of its constituent isomers c9, i l l  CLA, ¿10, c l2  CLA and ¿9, ¿11 CLA and trans- 

vaccenic acid (¿-VA), a putative precursor o f c9, ¿11 CLA on markers o f growth, 

differentiation and apoptosis The HT-29 human colon cancer cell line was used as an in 

vitro model
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CHAPTER 2

Effects of fatty acids on growth of HT-29 

adenocarcinoma cell line
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Abstract

The antiproliferative activity o f conjugated hnoleic acid (CLA) isomers has been well 

documented The aim o f this study was to compare the growth inhibitory effects o f CLA 

mixture o f isomers, c 9 ,¿11 CLA, ¿10, c l 2 CLA, ¿9, ¿1 1 CLA and trans vaccenic acid (¿- 

VA) on HT-29 cells when delivered as complexes with bovine serum albumin (BSA) or 

as free fatty acids dissolved in ethanol Free fatty acid forms o f CLA mixture o f isomers, 

c9, ¿11 CLA, ¿10, c l2  CLA and ¿9, ¿11 CLA inhibited cells growth in a dose and time 

dependent manner Relative IC50 values were 17±1 6 jaM, 59±3 6 joM, 62±2 2 \xM and 

75±1 7 jiM for ¿9, ¿11 CLA, CLA mixture, ¿10, c l2  CLA and c9, ¿11 CLA respectively 

after 5 days o f incubation ¿-VA was lnhibitoiy at higher concentrations and LA showed a 

stimulatory effect up to 70juM Fatty acidralbumin complexes inhibited growth to a lesser 

extent than corresponding free fatty acids suggesting that albumin protects cytotoxic 

effects o f CLAs m HT-29 cells The potency o f treatments was ¿9, t\  1 CLA > CLA 

mixture > ¿10, c l2  CLA> c9, ¿11 CLA This study has shown for the first time that ¿9, ¿11 

CLA is the most potent cytotoxic CLA isomer m HT-29 cells
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New understandings o f the nature o f colon cancer development have identified metabolic 

processes as well as endogenous and exogenous factors which, under the influence of the 

immune system and genetics can modulate the process o f carcinogenesis Sodium 

butyrate, produced in the human colon by bacterial enzymatic breakdown of dietary fibre, 

undigested starch and non-absorbed simple carbohydrates has emerged as having 

important structural and physiological effects on the colon It maintains a balance 

between proliferation, differentiation and apoptosis m both normal and colonic carcinoma 

cells (McIntyre et a l , 1991) Other fatty acids o f dietary origin that can inhibit growth of 

colorectal cancer cells include CL A, a collective term for isomers o f hnoieic acid with 

conjugated double bonds c9, ¿11CLA and ¿10, c l2  CLA have been observed to be as 

potent as a CLA mixture of isomers in inhibiting growth m the SW480, HT-29 and MIP- 

101 colon tumour cell lines (Miller et a l , 2002, Palombo et a l , 2002)

¿-VA is potentially a very important contributor to tissue levels o f CLA It is now clear 

that several human tissues, in particular the intestine, can convert ¿-VA to c9, ¿11 CLA 

(Duffy et a l , 2006) t-V  A  a major trans fatty acid in the fat of ruminants, is produced in 

the rumen and converted in mammary gland to c9, ¿11 CLA by A9-desaturase (Turpeinen 

et a l , 2002) Miller et a l , (2003) demonstrated that t-V  A  inhibited the growth of MCF-7 

human breast cancer cells and SW480 colon cancer cells by up to 41% and 36 %, 

respectively Another study has also shown that vaccemc acid in the form o f either cis or 

trans, significantly reduced growth of HT-29 human colon cancer cells by 23% when 

compared with control cells (Awad et a l , 1995)

The effects o f CLA, just like those of other PUF As may be mediated by different 

mechanisms epigenetic alterations in chromatin structure affecting accessibility to 

transcription factors, regulation of gene expression, modulation o f specific signal 

transduction pathways through changes m protein kinase expression and activation 

(Kemp et a l , 2003), lipid peroxidation (O Shea et a l , 1999), direct action on gene 

transcription (Cho et a l , 2006, 2005 and 2003, Lim et a l , 2005, Kemp et a l , 2003),

2.1 Introduction
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modulation o f eicosanoids (Miller et a l , 2001) and activation of transcription factors, for 

example PPARs (Kumyasu et a l , 2006)

The involvement o f long chain fatty acids in signalling processes is dependent on their 

interaction with cells Nonesterified fatty acids circulate in plasma of mammals as 

albumin complexes Albumin solubilises fatty acids in the aqueous environment thus 

providing a reservoir o f bound fatty acids to replenish free fatty acids depleted by cellular 

uptake A direct role for albumin in cellular uptake o f fatty acids has also been proposed 

(Reviewed in Hamilton, 1998), albumin interacts with cell surface binding sites/receptors 

from a variety o f mammalian cell types (Tngatti and Gerber, 1996) Models for the 

mechanism o f uptake include transcytosis of albumin-fatty acid complexes in a process 

thought to involve caveolae, diffusion through the lipid bilayer or transfer to a membrane 

-transport protein apparatus (Hostmark, 2003) The sequestering of albumin at the cell 

surface may have major implications for fatty acid-induced cytotoxicity The close 

association o f serum albumin with the cell surface should facilitate the removal o f 

cytotoxic fatty acids from the vicinity o f cells and minimise damage to cell membranes

The HT-29 human adenocarcinoma cell line is one o f the cell lines of intestinal origin 

which reversibly displays structural and functional features o f mature intestinal epithelial 

cells Under normal culture conditions they display an undifferentiated phenotype but 

they can express an ‘nterocyte-like’ differentiated phenotype in response to sodium 

butyrate (Schroy, 1994) The collective evidence of antiproliferative effects o f CLA 

suggests that CLA formulations could be developed as dietaiy adjuvants against to 

prevent colon cancer However, how the CLA mixture or specific isomers o f CLA 

modulate the interaction of butyrate with its molecular targets is unknown The study 

therefore examined the effect o f co-incubation with a CLA mixture and butyrate on 

growth pnor to examining effects of CLA on specific targets of butyrate action (in 

Chapter 3)
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2.2 Objectives

The objective o f this study was to compare the effects o f a CL A mixture o f isomers, three 

of its constituent isomers c9, ¿1 1 CLA, ¿10, c l 2 CLA and ¿9, ¿1 1 CLA and trans-vaccemc 

acid (¿-VA) on HT-29 cell growth when delivered as free fatty acids and as complexes 

with albumin

2.3 Materials and methods

2.3.1 M aterials

Cell culture media Dulbecco’s Minimum Essential Medium (DMEM) contaimng glucose 

(4 5g/L), L-glutamine (0 584g/L), N aHC03 (3 7g/L) and pyndoxine HC1 (0 004g/L), 

supplements and related solutions were purchased from Sigma-Aldrich, Dublin, Ireland, 

unless otherwise stated The HT-29 human colon cancer cell line was obtained from the 

American Type Culture Collection (ATCC) (Rockville, MD, USA)

Conjugated Linoleic Acid (CLA) mixture o f isomers (99% pure, approximately 

comprising 41% c9, ¿11 CLA, 44% ¿10, c l2  CLA, 10% clO, c l2  CLA and minor 

amounts o f ¿9, ¿11 CLA, ¿10, ¿12 CLA, c9, e l l  CLA) (Cat UC-59A) and single 

preparations (90% pure) of isomers c9, ¿11 CLA, ¿10, c l2  CLA and 99% pure ¿-VA (Cat 

UC-60A, UC-61A and U48A respectively) were from NuChek-Prep, Elysian, MN, USA 

and 98% pure ¿9, ¿11 CLA (Cat 1181) from Matreya, In c , Netherland Linoleic Acid 

(LA) was purchased from Sigma-Aldrich, Dublin (Cat L1012) All fatty acid 

preparations were dissolved in sterile filtered ethanol 1 g fatty acid in 10 mL ethanol to 

yield solutions of 99 mg/mL CLA mixture, ¿-VA and LA, 90 mg/mL c9, ¿11 CLA and 

¿10, c l2  CLA and 98 mg/ml pure tram  9, tram  11- (¿9, ¿11-) CLA These were then 

divided into 1 mL aliquots and stored at -20 °C
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Bovine serum albumin (BSA) 35% BSA (lipidated) (Cat A8918) and 10% BSA 

(delipidated) (Cat A1595) were purchased from Sigma-Aldrich, Dublin, Ireland

All sterile disposable plastic-ware was from Sarstedt L td , Wexford, Ireland Phosphate 

buffered saline (PBS) (Lennox, Cat BR14) was prepared by dissolving five tablets in 500 

mL ultra-distilled water (dH20 )  This was then autoclaved at 115 °C for 20 mm All 

water used in cleaning or for maintaining humidity in the incubator was also dH20  

autoclaved PBS and sterile water were both stored at room temperature Trypsin/EDTA 

solution (T/E) was made up as follows 50 mL o f 10X Trypsin (Sigma, Cat T4549) and 

10 mL of 1% w/v EDTA (Cat E6511) were added to 440 mL PBS This was aliquoted 

into sterile universal containers and stored at -20 °C A stock solution of 1% EDTA can 

be made up in advance and stored at 4 °C

2.3.2 Cell culture

2.3.2 1 M edia preparation

Cell culture media was prepared as follows 25 mL (5% v/v) Foetal calf serum (FCS) 

(Sigma, Cat F7524), 5 mL (1 unit/ml) Penicillin /Streptomycin (P/S) (Cat P0781) and 

0 5mL (1 mM) HEPES (Cat H0887) were added to Dulbecco’s Minimum Essential 

Medium (DMEM) (Cat D5796) Complete media was stored at 4 °C for up to two 

weeks

2.3 2 2 Feeding

HT-29 cells were grown in a ShelLab, IR2424 model CO2 humidified Incubator at 37°C 

with 5% CO2 and 95% room air Cell culture work was earned out in a class II laminar 

airflow cabinet (Gelaire 85, BSB4 laminar air-flow cabinet) Protocol for maintenance of 

cell lines was adapted from O’Shea et a l , (1999) The complete media was incubated at 

37 °C for 20 mm in a water-bath prior to use Industrial methylated spirits (IMS)
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(Lennox, Cat 1170) was used to spray all internal surfaces o f the laminar pnor to use 

All bottles, plastics etc brought into the laminar, as well as gloves were also sprayed 

Waste media was drawn off from the flask with a pipette and transferred to a waste 

bottle The flask was then rinsed with PBS (Lennox, Cat BR14), 3 mL for T25 flask, 10 

mL for T75 flask and again transferred to the waste bottle The appropriate fresh 

complete media was then added, 5 mL for T25 or 15 mL for T75 The flask was then 

sprayed with IMS and replaced in the incubator When finished working in the laminar 

all surfaces was washed down with Virkon solution (Lennox, Cat 222/0154/01) This 

was then rinsed using tissue paper damped with sterile water Once diy all surfaces were 

then sprayed down with IMS and allowed to dry again

2.3.2.3 Subcultunng

Cells were grown in Falcon T-75 cm2 flasks, fed every 2nd day and passaged twice a 

week after exposure to 0 25% (w/v) trypsin/ 0 02% (w/v) EDTA In details Media and 

trypsm /EDTA (T/E) solution were incubated at 37 °C for 20 mm in a water-bath Waste 

media was drawn off and the flask rinsed with PBS as per feeding method T/E was then 

added, 2 mL for T25 or 4mL for T75 and incubated until all the cells were detached from 

the base o f the flask (1-3 mm) This solution was then transferred to a universal The 

flask was then nnsed with PBS, 3 mL for T25 or 10 mL for T75 and added to the 

universal This cell suspension along with a counter balance of another universal 

contaimng same volume of liquid was centrifuged at 1000 ref for 5 mm using a Labofuge 

400 centrifuge, Heraeus Instruments (supplied by Foss Electric, Dublin) The supernatant 

was removed and the pellet resuspended in 15 mL complete media or appropriate 

amount Following a cell count the appropriate amount o f this cell suspension or stock 

was then used to re-seed a new flask at the required cell density Two days prior to 

setting up the each experiment the cell line was passaged and seeded at sufficient density 

so as to be 70-80% confluent on the day o f the setting up the experiment
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23.2 A  T rea tm en t

Fatty acids used in the cytotoxicity tests on the HT-29 cells, were delivered in three 

different forms 1 e 1) as free fatty acids dissolved in ethanol and 2) as complex m two 

different types o f bovine serum albumin (BSA) One was 35% BSA (lipidated), other one 

was 10% BSA (delipidated) in different molar ratio in DMEM medium

2.3.3 Cell counting and viability assays

2.3.3.1 Determ ination of cell proliferation by trypan  blue exclusion method

A cell suspension is made as per Subcultunng method i e a flask o f cells was trypsinised, 

spun and resuspended, 1 mL of this suspension was then transferred to a microtube, into 

which 200 |iL o f 0 4% (w/v) trypan blue (Sigma, Cat T8154) was added This was then 

mixed and 10 jjL  of this mixture was pipetted to the side of the chamber o f the 

haemocytometer enclosed by a cover slip and was drawn in by capillary motion

Figure 2.1 Diagram of Haemocytometer with coverslip

Cells were counted from the four large comer quadrants and the centre square as 

observed under the 10X objective This total number was divided by 5 to give the average 

cell number per square This was multiplied by the dilution factor o f 1 2 and then by 104,
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which results in the total cell number per mL Viable cells appear clear and do not stain, 

whereas non-viable cells stain blue from the influx o f trypan blue across breached 

membranes The percentage o f growth inhibition of HT-29 cells were measured related 

to control and calculated by using the following equation [(Viable ceil number in control 

flask - Viable cell number m sample flask)/Viable cell number in control flask x 100]

1 mm 0.2 mm 0.25 mm

Figure 2.2 Illustration o f squares on a haemocytometer, showing one o f the comer 

quadrants shaded The volume underneath the coverslip o f this area (or one square) is 0 1 

mm’ or 10^ ml

2.3.3 2 Determ ination of growth inhibition of HT-29 cells by acid phosphatase 

activity assays

Cell growth was also measured using a microplate acid phosphatase activity assay 96 

well plates were used for this assay The acid phosphatase (AP) assay is based on the 

ability o f the AP enzyme m the lysozomes of cells to hydrolyze the p-mtrophenyl 

phosphate (pNPP) yielding p-mtrophenyl chromophore (Martin and Clynes, 1991)
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The procedure m detail A confluent flask was trypsimsed and cell suspension made as 

per Subcultunng method A cell count was performed using trypan blue according to the 

Cell Counting method and a stock solution was made up at a cell density o f 1 x 104 

cells/mL Plates were seeded with 100 jiL of cell stock in each well These were then 

cultured for 24 h following which 100 fxL o f  treatments /media was added to 

corresponding wells Cytotoxicity was assessed after specific time points

All assay reagents were prepared in advance PBS was made up as previously listed, as 

was a 1 M NaOH solution and both were stored at room temperature Sodium acetate 

buffer was prepared at a concentration o f 0 1 M, containing 0 1% Triton X-100 and 

adjusted to pH 5 5 using glacial Acetic acid This was stored at 4 °C in the dark for up to 

one month The /?-mtrophenyl phosphate (pNPP) (Cat P5869) was added immediately 

prior to performing the assay to yield a 10 mM solution

After the required incubation time all media was removed from the plates by flicking the 

plates upside-down over a waste container They were then rinsed with 100 jal o f PBS 

100 jal o f freshly prepared 10 mM />mtrophenyl phosphate substrate in sodium acetate 

buffer solution was added to each well, plates were incubated at 37°C for 2 h Reaction 

were terminated by addition o f 50jil o f IN NaOH each well (tliis caused an electrophilic 

shift in the />nitrophenyl chromophore and thus developed the yellow color) After 10-15 

minutes the plate were read at 405 n m o n a  Tecan A-5082 Sunrise microplate reader 

(Tecan, Austria) (O’Connor, 1998, Martin and Clynes, 1991) The percentage inhibition 

o f cell growth of HT-29 cells was measured related to control and by using the following 

equation {(OD o f control cells - OD o f sample cells)/OD of control cells x 100}]

2.3*3.3 L inearity of acid phosphatase assay

To determine the accuracy of the acid phosphatase assay variable numbers o f HT-29 cells 

in the range lxlO 2 to lOxlO2 were aliquots in 96 well plate in triplicate and incubated in a
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humidified CO2 incubator After 1, 3 and 5 days the assay was performed and the 

linearity o f the assay was determined (Figure 2 3)

Figure 2.3 Growth of HT-29 cells after a) 1 day, b) 3 days and c) 5 days
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2.3.4 Statistical analysis

All data are expressed as mean±SD calculated with Microsoft® Excel 2000 At least three 

independent experiments were performed in triplicate The statistical significance 

(P<0 05) was determined using the Student’s t-test and was used to determine 

significance between treatments

2.4 Results

2.4.1 Effects of CLA isomers on growth of HT-29 cells

The effects o f CLA isomers on cell growth were determined by incubating cells for 5 

days with various CLA treatments in the range 0-200|iM as either free fatty acids or as 

fatty acid/albumin (2 1 molar ratio) complexes Linoleic acid was included as a control 

Cell number was determined using a microplate colonmetnc assay for cellular acid 

phosphatase, the activity o f which is proportional to cell number (Fig 2 3) It is apparent 

that free fatty acid forms of CLA mixture o f isomers, c9, i l l  CLA, ¿10, c l2  CLA and ¿9, 

111 CLA inhibited growth in a dose-dependent manner after 5 days (Fig 2 4) Relative 

I C 50 values were 17±1 6 \xM, 59±3 6 |iM, 62±2 2 jaM and 75±1 7 jiM for ¿9, ¿11 CLA, 

CLA mixture, ¿10, c l2  CLA and c9, ¿11 CLA respectively Linoleic acid stimulated 

growth in the range 0-75|xM and was inhibitory at higher concentrations Trans mono 

unsaturated vaccemc acid (¿-VA) at a range o f concentration 50-200|uM inhibited growth 

of human HT-29 cancer cells by 10-48%

Pnor to complexmg fatty acids with albumin, the effects o f different types o f albumin 

(delipidated vs non dehpidated) on growth of HT-29 cells was investigated over 1, 3 and 

5 days Dehpidated albumin (5-100jdM) had no significant effect on HT-29 cell 

proliferation after 1 and 3 days treatment (Fig 2 5) After 5 days treatment, modest 

stimulation o f growth by 30-40% was apparant By contrast non-delipidated albumin
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exerted a time and dose-dependent growth inhibitory effect on HT29 cells proliferation. 

Growth was inhibited 10-20% on day 1 following treatment with albumin in the range 5- 

lOOpM. Growth was inhibited 15-30% on day 3 over the range 15-lOO^M and was 

inhibited 20-80% on day 5. Delipidated albumin was used for complexing fatty acids in 

the molar ratio 2:1 o f fatty acidialbumin.

5 days

CLA mixture -*-c9,t11 t10. c12 —  t9, t11 t-VA -•— LA

Figure 2.4 HT-29 cells were cultured at a density o f 15 x 102 cells/well in a 96 well plate 

in DMEM medium incubated with 0-200 nM of CLA mixture o f isomers, c9, t \ 1 CLA; 

110, c \ 2 CLA; /9, t\  1 CLA, /-VA and LA as free fatty acids for 5 days. Growth inhibition 

was measured by acid phosphatase assay. Results shown are %  o f control; mean + SD 

(n=6).
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Figure 2.5 Growth of HT-29 cells. Cells were incubated with 0-100 nM o f BSA for 1, 3 

and 5 days. Results shown are % o f control; mean + SD (n=3).
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Fatty acid: albumin complexes inhibited growth to a lesser extent than corresponding free 

fatty acids. It is apparent from Fig 2.6 that /9, i\  1 CL A was the most potent isomer (IC50 

24.9+0.1 nM). There was a trend towards greater inhibition the CLA mixture o f isomers 

and 110, c l 2 CLA than by c9, /1 1 CLA. c9, /1 1 CLA inhibited growth by 12-46% over 

the range 60-200^iM. Growth was inhibited 17-56% by CLA mixture o f isomers and 21- 

46% by r 10, c l 2 CLA over the range 10-200nM. Linoleic acid : albumin complex had 

negligible effects on growth over the concentration range 0-200jiM.

Figure 2.6 HT-29 cells were cultured at a density o f 15 x 102 cells/well in a 96 well plate 

in DMEM medium incubated with 0-200 nM of CLA mixture o f isomers, c9, t \ 1 CLA; 

/10, c l 2 CLA; i 9 j \ \  CLA; /-VA and LA for 5 days. All fatty acids were complexed with 

BSA prior to treatment at 2:1 ratio. Growth inhibition was measured by acid phosphatase 

assay. Results shown are % o f control; mean + SD (n=6).
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Elevating the CLA mixture: albumin ratio from 2:1 to 8:1 resulted in greater inhibition of 

cell growth (Fig. 2.7), suggesting that cytotoxicity depends on molar ratio o f CLA to 

albumin.

DAY 5  — CLA- FFA

CLA  [mM]

Figure 2.7 HT-29 cells were cultured at a density o f 15 x 102 cells/well in a 96 well plate 

in DMEM medium incubated with 0-200 o f CLA mixture o f isomers as free fatty 

acids and complexed with BSA in the ratios o f 2:1, 4:1 and 8:1 for 5 days. Growth 

inhibition was measured by acid phosphatase assay. Results shown are % o f control; 

mean ±  SD (n=3).
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When HT-29 cells were incubated for 1 ,3  and 5days with the CLA mixture o f isomers, 

flO, cl2CLA and c9, f l l  CLA at 50, 70, 100 and 200p.M maximum growth inhibition 

occurred by day 5 (Fig. 2.8). It was apparent that the various CLA treatments inhibited 

growth in a time-dependent manner and that the CLA mixture o f isomers and /10, c l 2 

CLA were more potent than equimolar concentrations o f c9, / 11CLA (Fig 2.8).

□  1 day ■  3 day  □  5 day _  —

J O  J D  J O  J D

C  100 T □  1 day E9 3 day  □  5 day

g  80 
60

f 40
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^  50 70 100 200

CLA m ix tu re  [^iM]

100 □ 1 day □  3 day □  5 day
80

£  60 
c

f 40

20
o> 0 i\ jO jDJj

50 70 100 200

c9, t11 CLAQiM)

Figure 2.8 % growth inhibition o f HT-29 cells after 1, 3 and 5 days when cells were 
incubated with 50-200 o f CLA mixture o f isomers, c9, t\ 1 CLA and MO, c l 2 CLA. 
Results shown arc % o f control; mean + SD (n=3).

50



2.4.2 Effect of CLA isomers in combination with sodium butyrate on 
growth of HT-29 cells

Similar observations o f cytotoxicity by CLA isomers were shown by the method of 

trypan blue dye exclusion. Growth was reduced by 8-27% by various CLA treatments 

after lday and by 20-67% after 3 days. The /9, /11CLA isomer appeared to be more 

potent than the CLA mixture, inhibiting growth by 27% after 1 day and 62% after 3days. 

/-VA inhibited growth by 6% after 3 days. Linoleic acid had negligible effects on growth. 

By contrast incubation with 3mM sodium butyrate inhibited growth by 25% after lday 

and 66% after 3 days (Fig 2.9).

80 □ 1day a 3day

NaBt CLA C9,t11 t10,c12 t9,t11 t-VA LA

Treatments

Figure 2.9 Effects o f CLA mixture o f isomers, c 9 ,111 CLA, MO, c l2  CLA, r9, /1 1 CLA 

isomers, /-VA, LA (75^M) and 3mM NaBt on HT-29 cell number, as determined by 

trypan blue exclution. Results shown are the mean (+SD) of treated cells (n=3). Asterisks 

(*) denote significant values (P<0.05) relative to control.
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A dose and time-dependent inhibitory effect on growth was also observed when HT29 

cells were treated with sodium butyrate in the range 0-5mM (Fig 2.10). Cells treated 

with 1, 2, 3 and 5mM butyrate were harvested after 3, 6 and 9 days o f incubation as 

described in methods. Control cells increased 4.4 fold in number between day 3 and day 

9 (Fig 2.10). Butyrate ( ImM) had no effect on cell growth over the course o f  the 9 days. 

Butyrate at 2mM significantly inhibited growth by approximately 50% on days 6 and 9. 

Butyrate at 3 mM inhibited growth by 60-70% on days 3, 6 and 9. Similarly, butyrate at 

5mM inhibited growth by 56-88%.

Figure 2.10 Effects o f sodium butyrate (1, 2, 3 and 5 mM) on cell growth, as determined 

by trypan blue exclusion. Growth o f HT-29 cells was monitored after 3, 6 and 9 days o f 

treatment. Results shown are mean (±SD) o f 3 experiments and compared to control. 

Asterisks (*) denote significant values (P<0.05) relative to control.
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Co-treatment of cells with sodium butyrate (3mM) and either CLA mixture, c9, /l 1 CLA 

or /10, c 12 CLA all at 75mM , inhibited growth by 74%, 67% and 78% compared with 

butyrate alone (55%) (Fig. 2.11).

Figure 2.11 HT-29 colorectal cancer cells were cultured at a density o f in DMEM 

medium 0.8 x 10* cells/flask in T75 cm' incubated with the combination o f 3mM NaBt 

and 75 o f CLA mixture o f  isomers, c9, /11 CLA, rlO, c l 2 CLA and LA for 3 days. 

Cell proliferation was measured by trypan blue exclusion. Results shown are the mean 

(±SD) o f treated cells (n^3) expressed as cell number compared to control. Asterisks (*) 

denote significant values (P<0.05) relative to control. Asterisks ( t)  denote significant 

values (P<0.05) relative to 3mM NaBt.
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The anticarcinogenic properties of CLA were established by several investigators using 

cell lines derived from mammary, colon and prostate cancers and animal models of 

mammary and colon carcinogenesis Shultz et a l , (1992a) were the first to demonstrate 

the inhibitory property o f a CLA mixture on MCF-7 cell growth Subsequent reports 

confirmed the inhibitory effect o f CLA mixtures containing cis and trans-9,11- and 

10,12- isomers in several colon cancer cell lines (SW480, HT-29, Caco 2, MIP and 

Colo320 cells) Most studies have reported on the inhibitory effects of a CLA mixture 

with IC50 values ranging between nanomolar up to high micromolar concentrations 

depending on cell line (Kuniyasu et a l , 2006, Cho et a l , 2003, Kemp, et a l , 2003, Miller 

et a l , 2003, Kim et a l , 2002b, Palombo et a l , 2002, Roche et a l , 2001, Igarashi and 

Miyazawa, 2000) Because specific isomers o f CLA have been shown to possess different 

biological activity in a number o f systems we were interested in their potential to inhibit 

colon cancer growth

Emerging evidence suggests that bioproduction o f CLA isomers by various probiotic 

cultures including lactobacilh and bifidobacteria (Alonso et a l , 2003) may be a 

significant source of CLA isomers in addition to bovine milk fat and chemical synthesis 

The t9, t i l  CLA isomer was identified as an end product CLA isomer m several 

bifidobacteria strains (Coakley et a l , 2006 in press) Up to now the action of this type of 

CLA has not been investigated m cancer cells In light o f substantial evidence 

demonstrating the health promoting properties o f bifidobacteria, the possibility that 

probiotics may be working to inhibit cancer cell growth warrants investigation

This study showed that the HT-29 cell line was sensitive to growth inhibitory effects of 

not only the CLA mixture but also to three o f its constituent isomers, c9, ¿11 CLA, ¿10, 

e l l  CLA and ¿9, ¿11 CLA following incubation with CLA up to 200j^M and including 

the physiological range (10-75jaM) It is o f note that levels >100^M have been detected 

in chronic alcoholics and patients with liver disease (Szebeni et a l , 1986, Fink et a l , 

1985) and that levels up to 5 times that found in normal serum have been achieved in

2.5 Discussion
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humans following long-term supplementation with CLA (Petridou et a l , 2003) Isomers 

differed in their range of antiproliferative activity (Fig 2 5), such as that at 75pM, the 

most potent isomer (t9, ¿1 1 CLA) inhibited growth about 88% while inhibition by the 

least effective isomer (c9, ¿1 1 CLA) was about 50% As shown in Figure 2 5, the order of 

potency was (most least potent) (9, tl 1 CLA > CLA mixture > ¿10, cl2  CLA> c9, t\ 1 

CLA The CLA mixture of isomers at 75jnM (yielding a c9, i l l  CLA and ¿10, cl2 CLA 

of approximately 8 6jig/ml and 9 2 jug/ml each) was equally effective in inhibiting growth 

as the ¿10, cl 2 CLA added at 75jaM This suggests that a plateau effect was reached or 

that one or more of the other isomers present in the mixture may modulate growth A 

small number of studies has now revealed that c9, ¿11 CLA, the most common naturally 

occurring isomer m milk fat may not be as potent as other CLA isomers, including ¿10, 

cl2 CLA and c9, cl 1 CLA (Tanmahasamut et a l , 2004, Cho et a l , 2003, Palombo et a l , 

2002) Tanmahasamut et a l , (2004) showed that c9, ¿11 CLA was the least potent isomer 

in inhibiting growth of a breast cancer cell line However in a HT-29 cell line, c9, cl 1 

CLA was less potent than c9, ¿11 CLA (Palombo et a l , 2002) It is apparent that such 

differences may be cell line specific or may even be related to mode of delivery of CLA 

to cells The growth stimulatory effect of LA at concentrations up to 70jiM previously 

reported in the SW480 cell line was also seen in this study

The short chain fatty acid butyrate, which is denved from the action of anaerobic colonic 

microflora on undigested polysacchandes is thought to be partially responsible for the 

anticarcinogemc properties associated with dietary fiber Previous in vitro studies using 

sodium butyrate indicate that it is a potent inducer of differentiation and apoptosis in a 

variety of cell culture systems (Rouet-Benzineb et a l , 2004, Vincan et a l , 2000, Benard 

and Balasubramanian, 1997, Scheppach et a l , 1995) A dose and time dependant 

inhibition of HT-29 cells growth was observed with sodium butyrate The combined 

effects of CLA and sodium butyrate were greater than the effect of butyrate alone

Albumin is a highly abundant serum protein that serves as a transport vehicle for several 

endogeneous compounds including fatty acids (FA), hemin, bilirubin and tryptophan, all 

of which bind with high affinity (Hestmark, 2003) Analysis of literature has revealed
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that CLA is delivered to cells in many forms conjugated to BSA at 20 1 molar ratio 

(Palombo et a l , 2002), 4 1 molar ratio (Cho et a l , 2003, Kim et a l , 2002) or as free fatty 

acids (Maggiora et a l , 2004, Tanmahasamut et a l , 2004, Miller et a l , 2003, O’Shea et 

a l , 1999, Shultz et a l , 1999) Some cell lines eg  Colo320 are extremely sensitive to 

nanomolar concentrations of CLA (Kumyasu et a l , 2006), others are inhibited by 

micromolar concentrations in the range low 5jiM to 160^M The absence of data 

evaluating mode of delivery on susceptibility to growth has promted this investigation to 

systematically compare the effects of delivering a CLA mixture as free fatty acids and as 

complexes to the HT-29 cell line This study also investigated the growth modulatory 

effects of single CLA isomers when complexes with albumin (2 1 ratio) This ratio was 

chosen on the basis that under normal phygiological conditions up to 2 mol of fatty acid 

are bound to albumin, but the molar ratio of fatty acid/albumin can nse to 6 1 or greater 

in the peripheral vasculature during fasting or extreme exercise or under physiological 

conditions such as diabetes, liver and cardiovascular disease (Hostmark, 2003 and 2005)

Interestingly all of the CLA-albumin complexes were less effective in inhibiting growth 

than the unbound free fatty CLA isomers The CLA mixture and ¿10, c\2 CLA was more 

potent than the single c9, t\ 1 CLA isomer Other reports also indicate that CLA mixture 

bound to albumin ¿10, cl2 CLA bound to albumin were more effective than c9, ¿11 CLA 

isomer in inhibiting growth of HT-29 cells (Palombo et a l , 2002), no study has yet 

compared their effects with those of ¿9, ¿11 CLA It is apparent that of the isomers studied 

¿9, ¿11 CLA was the most potent It is important that more basic research is undertaken to 

determine the specific cellular and molecular effects of this and other isomers present m 

the mixture

Many polyunsaturated fatty acids protect against colon carcinogenesis in part by 

enhancing oxidative stress and inducing apoptosis Their incorporation into mitochondrial 

membrane phospholipids enhances membrane hpid oxidation and the moderation of 

mitochondnal potential which contnbutes to the induction of apoptosis (Ng et a l , 2005) 

CLA also prone to oxidation and it has been suggested that increased lipid oxidation may 

contribute to the anti-tumorigemc effects of this agent (Miller et a l , 2002, O’Shea et a l ,
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1999) The relative protection afforded to HT-29 cells by CLA-albumin complexes 

relative to free fatty acids may relate to the known antioxidant activity of albumin 

Human and bovine serum albumin afford considerable protection against damage to 

decarboxyribose and DNA mediated by highly reactive hydroxyl radicals (Smith et a l , 

1992)

t-VA has been shown to elicit a biological response in vivo, reducing mammary gland 

premalignant lesions in carcmogen-treated rats (Banm et a l , 2001) The present study 

showed that t-VA at 70^M inhibited growth of human HT-29 cancer cells by 21% after 5 

days which was much lower than all CLA treatments (45%-94%) Growth inhibition by t- 

VA  may be due to its conversion to c9, t\ 1 CLA by A9-desaturase enzyme (Lock et a l ,

2004)

The prospective cohort study in Sweden revealed that high-fat dairy foods (including 

whole milk, full-fat cultured milk, cheese, cream, sour cream, and butter) may lower the 

risk of colorectal cancer and suggested that CLA may be the component in high fat dairy 

foods providing the protective effect (Larsson et a l , 2005) Although much progress in 

elucidating mechanisms of action has been made, additional supportive and consistent 

data is required from more in vitro and in vivo laboratory studies, clinical trials and 

epidemiology to achieve consensus and sound scientific agreement about the beneficial 

effects of receiving CLA as dietary supplements To this end appropriate molecular and 

biochemical markers of CLA exposure and its cellular targets are being sought
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CHAPTER 3

Effects of CLA isomers on biological markers of 

apoptosis, differentiation and epigenetic 

regulation in HT-29 human
j

colon cancer cells
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Abstract

Dietary conjugated linoleic acid (CLA) has been shown to reduce colon tumor incidence 

m rodents by mechanisms probably involving differentiation and/or apoptosis The aim of 

this study was to examine the effects of a CLA mixture, c9, ¿ 1 1 CLA, ¿10, c 12 CLA, ¿9, 

¿11 CLA and trans vaccemc (¿-VA) acid on selective biological markers of apoptosis, 

differentiation and epigenetic influences m HT-29 colon cancer cells The CLA mixture 

of isomers, c9, ¿11 CLA and ¿10, c!2 CLA increased annexin V binding to 

phosphatidylsenne suggesting apoptosis after incubation with a physiological level of 

fatty acid An elevated level of ceramide was observed in HT-29 cells by the CLA 

mixture of isomers after 3 days incubation All CLA treatments increased 

carcinoembryonic antigen (CEA) level Histone deacetylase (HDAC) activity was 

inhibited by c9, ¿11 CLA and ¿10, cl2 CLA suggesting that these two isomers may exert 

antiproliferative effects in HT-29 cells by modulation of histones The ¿9, ¿11 CLA 

isomer inhibited HDAC activity and increased CEA level in HT-29 cells but had no 

effects on ceramide or apoptosis suggesting that cells may have undergone differentiation 

prior to death by necrosis ¿-VA had no effects on either CEA or HDAC
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Colon cancer development is strongly influenced by diet Of the numerous dietary factors 

that modulate colon cancer incidence in animal models, the amount and type of dietary 

fats and fibre consumed has received the most attention For example, high fat com oil 

diets rich m linoleic acid enhance the development of colon tumors (Reddy and Maeura, 

1984, Sakaguchi et a l , 1984), whereas high fat fish oil diets reduce colon cancer 

incidence (Calviello et a l , 1999, Rose and Connolly, 1999, Bartsch et al, 1999, Anti et 

a l , 1997 and 1992,) Colonic luminal nutrients such as butyrate derived from bacterial 

fermentation of complex carbohydrates reduced the size and number of tumours 

(Dzierzewicz, et a l , 1999, Wohn, 1993, Young and Gibson, 1993) A recent 

epidemiological study has shown that women consuming a high intake of conjugated 

linoleic acid (CLA), a type of fat found naturally in dairy products of ruminant origin 

were predisposed to a significantly lower risk of colon cancer (Larsson et a l , 2005) 

Recognition that dietary fats interact with endogenous short chain fatty acids produced m 

the human colon to modulate colonic cytokinetics in human subjects has stimulated new 

investigations into how CLA may interact with butyrate at the molecular level

Many pathways may be implicated epigenetic alterations in chromatin structure affecting 

accessibility to transcription factors, regulation of gene expression, modulation of 

specific signal transduction pathways through changes m protein kinase expression and 

activation, lipid peroxidation, modulation of eicosanoids and activation of transcription 

factors Overall, it is likely that dietary fiber and high CLA diets modulate one or more of 

the range of genes and signalling pathways known to play a role in colon cancer

Butyrate is a potent modulator of gene regulation Accessibility of gene promoters to 

transcription complexes is an important level of gene regulation Histone acetylases and 

deacetylases control accessibility by the addition or removal of acetyl groups to the lysine 

residues of histones Because DNA is nucleophilic (cation-attracting), histones bearing 

positively charged deacetylated lysines are more attracted to DNA resulting in the DNA 

becoming more compacted and less exposed for transcription Conversely, histones

3.1 Introduction
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bearing acetylated lysines are less attracted to DNA and are more exposed for 

transcription and reactivation of tumor suppressor genes which had been silenced by 

hypoacetylation during tumongenesis Butyrate permits histones to remain in an 

acetylated state, and through the resulting alterations in gene regulation, inhibits cell 

cycle progression and in some cases induces apoptosis and differentiation (Orchel et al, 

2005, Davie, 2003)

Differentiation is a process by which a cell matures and becomes capable of performing 

specific functions It can involve both morphological and functional alterations 

Morphological differentiation emphasises changes within the cellular structure and 

organisation of the cell while functional differentiation focuses on biochemical and 

enzymatic function (Rudolph et a l , 2001)

Butyrate is a potent differentiating agent that promotes the expression of differentiation 

markers such as alkaline phosphatase (ALP) in colonic cell lines Butyrate has also been 

shown to influence the morphology and motility of cancer cells in vitro Incubation of 

colonic cell lines with this short chain fatty acid resulted in an increased number of cells 

progressing to a more differentiated phenotype and subsequent apoptosis, the sequence of 

events typical for a normal nontransformed crypt cell These events were associated with 

modulation of activity of c-Jun N-terminal kinases and protein kinase C signal 

transduction pathways and induction of p21 (Orchel et a l , 2005) Similarity butyrate is a 

potent inducer of carcinoembryomc antigen (CEA) expression in colon cancer cell lines 

differing in their degree of differentiation Increased expression has often been associated 

with colon carcinomas that have a more differentiated phenotype (Frangsmr et a l , 1999)

Lampen et a l , (2005) provided new evidence that the cellular and molecular effects of 

c9, /II CLA may be related to promotion of a more differentiated phenotype in CaCo 2 

colonic epithelial cells CLA activated the 5’flanking region of the alkaline phosphatase 

promoter, increased the expression of alkaline phosphatase mRNA and its specific 

enzyme activity Other significant effects induced by CLA included downregulation of 

target genes of the APC-P-catenin-TCF-4 and PPAR 8 signalling pathways In particular,
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expression of c-myc, c-jun, P-catemn, PPAR5, cyclin D1 and promoter activities of c- 

myc and API were decreased in a concentration-dependent manner (Lampen et a l , 

2005) Downregulation of the P catenin-TCF-4 pathway is associated with an ability to 

induce cell differentiation Together with earlier data showing that CLA could 

downregulate ErbB3 signaling, PI3 kinase Akt signaling, prevent accumulation of 

hyperphosphorylated Rb and cyclin-cdk complexes (Lim et a l , 2005, Cho et a l , 2003, 

Kemp et a l , 2003), it would appear that CLA-mduced growth arrest and activation of cell 

apoptosis may be end stages of terminal colonocyte differentiation

Other endogenous biological factors associated with fatty acid-induced differentiation 

and apoptosis are sphmgolipid metabolites such as ceramide and sphmgosme Direct 

evidence for an involvement of sphmgolipid signaling in growth arrest by 

polyunsaturated fatty acids was provided recently when omega-3 polyunsaturated fatty 

acids attenuated breast cancer growth through activation of a neutral sphmgomyelinase- 

mediated pathway (Wu et a l , 2005) Sphingomyelinase is an enzyme that catalyzes the 

hydrolysis of sphingomyelin (SM) to ceramide A variety of studies have shown that 

ceramide is ubiquitously produced during cellular stress and is associated with apoptosis 

Furthermore, treating cells with synthetic short-chain ceramide has been shown to induce 

cell-cycle arrest and apoptosis Ceramide levels also changed dunng progression through 

the cell cycle and have been shown to enhance expression of p21, a cellular inhibitor of 

cdk2 kinase that is involved in cell-cycle arrest via hypophosphorylation of 

retinoblastoma protein (pRb) The importance of sphmgolipid signaling in CLA-mediated 

induction of differentiation and/or apoptosis of HT-29 cells has not yet been assessed 

The aim of the study was to investigate the effect of CLA and its isomers on ceramide 

mass content in cells and on biological markers of apoptosis (Annexin V binding to 

phosphatidyl serine), differentiation (CEA activity, and alkaline phosphatase activity) and 

epigenetic regulation (FIDAC)
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The objective of the present study was to elucidate whether apoptosis and/or 

differentiation mediate the antiproliferative effects of CLA in the colon HT-29 ceil line 

The effect of 4 different CLA preparations (<?9, t\ 1 CLA, ¿10, c 12 CLA, ¿9, ¿11 CLA and 

the CLA mixture of isomers) on ceramide mass content in cells and on biological markers 

of apoptosis (Annexin V binding to phosphatidyl serine), differentiation (CEA and ALP) 

and epigenetic regulation (histone acétylation) were investigated

Specific aims were as follows

• To set up a reproducible method for the assay of ceramide and sphmgosme and to 

determine the effect of fatty acids on the levels of these sphingolipids tn HT-29 

colon cancer cells

• To determine the proportion of apoptotic HT-29 cells following CLA treatments 

using fluorescense activated cell sorting analysis with annexin V-PI (propidium 

iodide)

• To determine the effect of fatty acids on histone deacetylase activity in HT-29 

colon cancer cells

• To determine the effect of fatty acids on CEA and on the specific activity of ALP 

in HT-29 colon cancer ceils

3.2 Objectives
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3.3 Materials and methods

3.3.1 Materials

HT-29, a colon adenocarcinoma cell line was obtained from the American Type Culture 

Collection (Manassas, VA, USA) Culture media and supplements were purchased from 

Sigma-Aldnch (Dublin, Ireland) HT-29 cells were maintained in Dulbecco’s Minimum 

Essential Medium supplemented with 5% (by volume) fetal calf serum, 1 unit/mL 

penicillin and streptomycin and 1 mM HEPES Sphingosine, N-acetyl-D-sphingosine (i e 

ceramide) and O-phthaldehyde (OPA) were purchased from Sigma-Aldnch (Dublin, 

Ireland) Conjugated Linoleic Acid (CLA) mixture of isomers (99% pure, approximately 

comprising 44% transit), c isl2 -, 41% cis 9, trans 11/ trans 9, cis 11, 10% cis 10, cis 12 

and minor amounts of trans 9, trans 11, trans 10, trans 12, cis 9, cis 11-CLA) (Cat UC- 

59A) and single preparations (90% pure) of isomers cis 9, trans 11- (c9, ¿11-), trans 10, 

cis 12- (¿10, e l l - )  CLA and 99% pure ¿-VA (Cat UC-60A, UC-61A and U48A 

respectively) were from NuChek-Prep, Elysian, MN, USA and 98% pure trans 9, trans 

11- (¿9, ¿11-) CLA (Cat 1181) from Metreya, Inc , Netherland PA All other chemicals 

and solvents used were of HPLC grade (AGB Scientific Ltd, Dublin 11, Ireland) 

Vybrant™ Apoptosis Assay Kit #2 was purchased from Molecular Probes, Inc and 

contained the following components

• Alexa Fluor 488 annexin V (Component A), 250 jal of a solution in 25 mM 

HEPES, 140 mM NaCl, 1 mM EDTA, pH 7 4, plus 0 1% bovine serum albumin 

(BSA)

• Propidium iodide (Component B), 100 \i\ of a 1 mg/ml (1 5 mM) solution in 

dH20

• 5X Annexin-Binding Buffer (ABB) (Component C), 15 ml of 50 mM HEPES, 

700 mM NaCl, 12 5 mM CaCl2> pH 7 4

Fluometnc HD AC assay kits (Cat JM-K330-100) purchased from MBL Med & Biol 

Lab CO,LTD, Woburn, MA, USA) CEA colorimetric ELISA kit (Cat BC-1011) 

purchased from (BioCheck Inc, CA) Alkaline phosphatase assay kit sigma 104
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containing Phosphatase substrate (Cat 104-40), p-Nitrophenol standard solution (Cat 

104-1) and Alkaline buffer solution (Cat 221) was purchased from Sigma-Aldrich, 

Dublin, Ireland

3.3.2 Quantitative analysis of cellular ceramide

3.3.2.1 Ceil culture

The HT-29 cells were seeded in Falcon T-75 cm2 flasks at a density of 1 5 x 106 

cells/flask for 3 days treatments and 3xl06 cells/flask for 1 day treatments and allowed to 

culture for 24 h Cells were maintained at 37°C with medium, pH 7 2-7 4 via a required 

flow of 95% air and 5% CO2 Next day the medium was replaced with 15 mL fresh media 

containing 3 mM NaBt, the CLA mixture of isomers, c9, ¿11 CLA, ¿10, cl2 CLA, ¿9, ¿11 

CLA or ¿-VA at concentrations of 75 \M  (dissolved in 100% ethanol) Control flasks 

were supplemented with equivalent volumes of ethanol (0 028% v/v) After 1 and 3 days 

of incubation, both floating and adherent cells were harvested and pooled and counted 

using trypan blue exclusion method as described in chapter 2 Cellular lipid extraction, 

sphingolipid extraction by alkaline hydrolysis, deacylation of ceramide, denvatisation of 

sphingosine with O-phthaldehyde (OPA) and calculation of cellular ceramide were 

performed as described by Santana et al (1996)

3.3.2.2 Cellular lipid extraction

2 mL of lipid extraction solution (chloroform methanol 1 M HC1, 100 100 1, v/v/v) was 

added to cell pellets and then vortexed 1 minute, 0 6 mL of balanced salt solution (BSS) 

and 100 mM EDTA (9 1, v/v) solution was added to each cell extract The balanced salt 

solution contained 135 mM NaCl, 4 5 mM KC1, 1 5 mM CaC^, 0 5 mM MgCh, 5 6 mM 

glucose and 10 mM HEPES, pH 7 2 The samples were vortexed for 30 sec and 

centrifuged at 1000 rpm for 5 mm using a Labofuge 13 (Heraeus Instruments, Hanau,
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Germany) 500 \iL of the lower organic phase was transferred to two different sets of 

tube One set of the tubes was marked ‘basal5, where an alkaline hydrolysis step was 

carried out to detect the base level of sphingosine and the other set was marked ‘total5 

and was deacylated to convert ceramide to sphingosine, ‘Total5 represent ceramide levels 

plus ‘basal5 sphingosine levels

3.3.2 3 Sphmgolipid extraction by alkaline hydrolysis

Sphingosine (SPi) standards (0-2000 pmol) dissolved in chloroformrmethanol (11, v/v) 

and dried down under nitrogen were prepared alongside the ‘basal5 samples 500 jxL of 

0 1 M KOH in methanol was added to the lipid film of both standard and sample tubes, 

the tubes capped, vortexed and incubated for 1 h in a 37°C water-bath (Grant Instruments, 

Cambridge» England) 500 of chloroform and 270 jiL of BSS and 30 |iL of EDTA 

solution were added to all tubes to extract the sphmgohpids The tubes were then 

vortexed and centrifuged (Labofuge 13) at 800 rpm for 5 mm 500 \iL of the lower 

organic phase was transferred to eppendorfs where samples were dried down under 

nitrogen

3.3.2.4 Deacylation of ceramide

Sphingosine (SP2) and ceramide standards (0-2000 pmol) were dissolved in chloroform 

methanol (1 1 , v/v) to calculate the overall recovery of sphmgohpids and the efficiency of 

the deacylation procedure and dned down under nitrogen alongside the ‘total5 samples 

500 *iL of 1 M KOH m methanol was added to the lipid film of all tubes to deacylate the 

ceramide, the tubes capped, vortexed and incubated at 100°C for 1 5 h in a heating block 

(COD Reactor purchased from Hach Company, Loveland, Colombia, Canada) The tubes 

were allowed to cool and were neutralized with 500 jiL of 1 M HCl m methanol The 

sphingoid base was then extracted from each tube by adding 1 mL of chloroform and 900 

\iL of 1 M NaCl, the tubes were vortexed and centrifuged at 800 rpm for 5 mm All of the 

lower phase was then collected and dried down under nitrogen
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All samples were derivatised with OPA reagent (99 mL 3% (w/v) boric acid in water, pH 

10 5, mixed with 1 mL ethanol containing 50 mg OPA and 50 ^L of 2-mercaptoethanol) 

OPA reagent was prepared fresh daily Neat sphmgosine (S P neat in the range 0-2000 

pmol) dissolved m chloroform methanol (11 , v/v) and dned down under nitrogen was 

prepared alongside the other samples and standards to determine the efficiency of the 

deaceylation procedure of ceramide The sphingoid base in each tube was redissolved in 

50 }iL of methanol and mixed with 50 \iL of OPA reagent and the tubes were incubated at 

room temperature for 15 mm 500 \\L of methanol 5 mM potassium phosphate (9 1, v/v), 

pH 7 0 was added to the tubes, which were then micro-centnfuged at 1600 rpm for 30 s 

m a Biofuge 13 (Heraeus Instruments, Hanau, Germany) to clarify the samples 500 \xL 

was then transferred to HPLC vials

3 3 2.6 HPLC separation and quantitation

The derivatised sphmgosine was separated by HPLC (Vanan 9012) fitted with a 

Dynamix® AI-200 automatic sample injector with a 50 \iL injection loop and quantitated 

using a Vanan 9075 fluorescence detector A Nova Pack® C l8 column (Waters, Milford, 

MA, USA) was used for the separation A mobile phase of methanol 5 mM potassium 

phosphate, pH 7 0 (9 1, v/v) and flow rate of 0 6 mL/min were used to elute the samples 

An excitation wavelength of 340 nm and an emission wavelength of 455 nm were used

3.3.2.7 Calculations for ceramide cellular content

The method takes advantage of the low basal levels of sphmgosine existent in the cells, 

and the fact that ceramide can be deacylated to generate the free amino group containing 

sphmgosine Sphmgosine can, in turn, be denvatized to form flurescent compound,

3.3.2.5 Derivatisation with O-Phthalaldehyde (OPA)
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separated by HPLC from the other sphingoid bases, and quantitated by flurescence 

detection Basal cellular levels of sphingosine are also measured in each sample and 

thereafter subtracted from the total sphingosine accumulated as a consequence of 

ceramide deaceylation, to obtain the cell content ceramide (Santana et a l , 1996)

Calculations for determining cellular ceramide content were earned out according to 

Santana et a l , (1996) as follows

pmol ceramide = [(pmol total x % recovery of sphingolipid by alkaline hydrolysis x 

% efficiency of deacylation) -  pmol basal]

Where, pmol total = pmol in the total sample (deacylated) read against the ceramide 

standard curve,

efficiency of deacylation = averaged peak areas of each point in ceramide standard 

curve/peak areas of SPneat standard curve,

efficiency of sphingolipid recovery = averaged peak areas of each point m SP2 standard 

curve/peak areas of SPi standard curve,

pmol basal = pmol in the basal sample (alkaline hydrolysis) read against the SPi standard 

curve

3 3.2.8 Standard curves

Four standard curves were set up as per “Materials and Methods” section All standard 

curves were prepared in the range 0-2000 pmol Each standard was prepared and 

analyzed for sphingosine and ceramide (converted to sphingosine) content using HPLC to 

obtain reliable linear correlations between sphingosine concentration and peak area 

Below (Table 3 1) is a summary of the preparation of each standard curve A sphingosine 

standard curve (SPi) was set up and subjected to an alkaline hydrolysis step in addition to
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derivatisation and was quantified using HPLC. A second sphingosine standard curve 

(SP2) was set up and subjected to déacylation, derivatisation and quantified using HPLC. 

The purpose of these two steps was to calculate the overall recovery of sphingosine from 

the extraction procedure, which would then be used when quantifying basal sphingosine 

levels in the HT-29 cell extracts. Another standard curve was constracted in which 

ceramide was deacylated, derivatised and quantified using HPLC. A sphingosine standard 

curve (SPneat) was also set up and subjected to derivatisation with OPA and was 

quantified using HPLC. By comparing the ceramide standard curve with the SPneat 

standard curve, it is possible to calculate the efficiency of the déacylation procedure. The 

ceramide is converted to sphingosine via the déacylation procedure and thus a ceramide 

standard curve allows for quantification of total sphingosine (basal sphingosine levels 

plus deacylated ceramide levels) in the HT-29 cell samples. A simple subtraction of basal 

sphingosine levels from total sphingosine levels will subsequently yield cellular ceramide 

levels.

Table 3.1 Summary of standard curve preparations

Standard Alkaline Hydrolysis Deacvlation Derivatisation
SPneat - - j

SP, V - V

SP2 V /V

Ceramide V V
-
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3.3.3 Assay of the determination of the apoptotic cell number by 

fluorescense activated cell sorting (FACS) analysis

Apoptosis is a carefully regulated process of cell death that occurs as a normal part of 

development Apoptosis is distinguished from necrosis, or accidental cell death by 

characteristic morphological and biochemical changes, including compaction and 

fragmentation of the nuclear chromatin, shrinkage of the cytoplasm and loss of 

membrane asymmetry In normal viable cells, phosphatidylsenne (PS) is located on the 

cytoplasmic surface of the cell membrane However m apoptotic cells, PS is translocated 

from the inner to the outer leaflet of the plasma membrane, thus exposing PS to the 

external cellular environment The human anticoagulant, annexin V, is a 35-36kD Ca2+ 

dependent phospholipid-binding protein that has a high affinity for PS Annexin V 

labeled with a fluorophore or biotin can identify apoptotic cells by binding to PS exposed 

on the outer leaflet A commercially available ‘Vybrant™ Apoptosis Assay Kit #2 

containing a recombinant annexin V conjugated to the Alexa Fluor488 dye was used to 

determine apoptotic cells Alexa Fluor488 dye is an almost perfect spectral match to 

fluorescein (FITC), but it creates brighter and more photostable conjugates In addition, 

the kit includes a ready-to use solution of the red-fluorescent propidium iodide (PI) 

nucleic acid-binding dye PI is impermeant to live cells and apoptotic cells, but stains 

necrotic cells with red fluorescence, binding tightly to the nucleic acids in the cell After 

staining a cell population with Alexa Fluor488 annexin V and PI m the provided binding 

buffer, apoptotic cells show green fluorescence, dead cells show red and green 

fluorescence, and live cells show little or no fluorescence These populations can easily 

be distinguished using a flow cytometer with the 488nm line of an argon-ion laser for 

excitation as flow cytometry technology is used to measure properties of cells as they 

move or flow m liquid suspension

HT-29 human colon cancer cells were cultured in 6 well plates at a density of 1 2 x 106 

cells/well for 6 hour incubation, 1 x 106 cells/well for 1 day treatments and 0 8 x 106 

cells/well for 3 days incubation and allowed to culture for 24 hours Cells were 

maintained as previously described in the section 3 3 2 1 Next day the medium was
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replaced with 5 mL fresh media and treated with fatty acids Control flasks were 

supplemented with equivalent volumes of ethanol (0 028% v/v) After indicated time of 

incubation, the media were discarded and cells were washed with ice cold PBS Cells 

were trypsinised with 200jnl trypsin, then 800 jul of fresh media was added to the 

trypsinised cells and transferred all together in a micro tube (1 5 ml) Cells were 

centnfuged at 1600 rpm in a Biofuge 13 for 3 min Then FACS analysis was performed 

using Vybrant™ Apoptosis Assay Kit #2, according to the protocol supplied by the 

supplier Cells were washed in ice cold-PBS and resuspended in 200 jil of IX Annexin- 

Binding Buffer (ABB) which was prepared from 5X Annexin-Binding Buffer 2 5 jul 

Alexa Fluor488 Annexm V and 0 5 \x\ of PI (100 jag/ml, prepared from 1 mg/ml with IX 

ABB) added to cell suspension and incubated at room temperature for 15 mins A further 

200 jliI of IX ABB was then added and placed on ice for 3 hour before read by FACS 

(FACSCahbur™, BD Indispensibile to human health, UK)

3,3A Measurement of histone deacetylase (HDAC) activity

Histone deacetylase activity (HDAC) is implicated in gene expression, affecting 

transcription of genes regulating apoptosis and differentiation A HDAC activity assay 

was performed in a 96 well microplate m which a fluorometnc substrate (containing an 

acetylated lysine side chain) was converted into a fluorophore product, which was 

subsequently read on a fluorescence plate reader This assay (MBL, Woburn, MA USA) 

eliminates radioactivity, extraction and chromatography as used in traditional assays 

Briefly, 50\x\ HT-29 cell lysate was incubated with 10|al of a 10X assay buffer (supplied 

with kit, MBL, Woburn, MA USA) and 5jnl of substrate (4mM) [Boc-Lysine (Ac)-AMC] 

at 37°C for 30 minutes After incubation reaction was stopped with lOjal Lysme 

Developer and incubated at 37°C for another 30 minutes Samples were read in a 

fluorescence plate reader with Excitation/Emission=350/460 nm and slit width 10 and 2 5 

nm Deacetylase activity was expressed as Relative Fluorescence Units per jug protein in 

cell lysate
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3.3.5 Analyses of cellular carcinoembryonic antigen (CEA) expression

Cellular carcinoembryonic antigen (CEA) level was measured by a colorimetric ELISA 

kit (BioCheck Inc, CA) using sodium butyrate as a positive control The CEA ELISA test 

is based on the principal of a solid phase enzyme-linked immunosorbant assay The assay 

system utilizes a monoclonal antibody directed against a distinct antigen determinant on 

the intact CEA molecule and goat anti-CEA antibody conjugated to horseradish 

peroxidase The test sample (cell lysate) was allowed to react simultaneously with the 

two antibodies, resulting in the CEA molecules being sandwiched between the solid 

phase and enzyme linked antibodies After 1 hour incubation at room temperature, the 

wells were washed with water to remove unbound labeled antibodies A solution of 

tetramethylbenzidine reagent is added and incubated for 20 nun, resulting in the 

development a blue color The color development is stopped with the addition of 1M HC1 

solution The concentration of CEA is directly proportional to the color intensity of the 

test sample Absorbance is measured spectrophotometncally at 450 nm

3.3.6 Measurement alkaline phosphatase activity

Alkaline phosphatase activity was measured in cell lysates by the kinetic determination of 

p-mtrophenol phosphate hydrolysis using a commercially available Sigma diagnostics kit 

(Sigma, St Louis, MO) 0 5 ml of 2-amino-2-methyl-l-propanol buffer (1 5M) and stock 

substrate solution (15 mM p-mtrophenyl phosphate disodium) were pipetted in triplicate 

into each test tube These were incubated in a water bath at 37°C for 5 nuns to 

equilibrate 0 1 ml of sample was then added to each tube, except the blank (to which 0 1 

ml water was added) and further incubated in a water bath at 37°C for exactly 30 mins 

The reaction was terminated by the addition of 10 ml of 0 05 M NaOH Absorbance was 

measured at 420 nm Standard curves were prepared using stock p-nitrophenol solution 

(10 mM/L) diluted appropriately In all cases, the specific enzyme activity was expressed 

as milliumts, where 1 milliunit was equivalent to 1 nmole of p-nitrophenol phosphate 

(pNPP) hydrolysed per min per mg protein at 37°C
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3.3.7 Cell lysate preparation

Cells were harvested after a specific time points using phosphate buffered saline (PBS) 

containing 0 25% trypsin Cells were spun at lOOOrpm for 5 min The resulting pellets 

were washed in PBS and resuspended in 500 \x\ lysis buffer [10 mM sodium phosphate 

buffer (pH 7 2), 100 mM NaCl, 10 mM sodium deoxycholate, 1 mM PMSF, 1% Tnton-X 

100, 0 1 mM leupeptm and 0 2 mg/ml aprotinm] The samples were then sonicated with a 

sonicator (Model VC 502, Sonocs & Materials Inc, Newton, CTS USA) on ice

3.3.8 Protein Assay

The protein concentration of cell lysates was estimated by the Bio-Rad dye binding assay 

BSA standards were prepared from BSA stock (1000 (ig/ml) in the concentration range 0- 

1000 jug/ml BSA Samples were assayed m triplicate in a 96 well plate at 37°C The dye 

reagent was diluted in distilled water as 1 part Biorad reagent in 4 parts distilled water 

Absorbance was read in a microplate reader at 620 nm

3.3.9 Statistical analysis

All data are expressed as mean±SD calculated with Microsoft® Excel 2000 At least three 

independent experiments were performed m triplicate The statistical significance 

(P<0 05) was determined using the Student’s t-test and was used to determine 

significance between treatments
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3.4 Results

3.4 1 Ceramide mass assay by HPLC

Figure 3 1 depicts a typical HPLC chromatogram of ceramide (1000 pmol) after 

déacylation to sphmgosme The retention time for denvatised sphmgosme was 9 453 min 

and OPA eluted fully after 3 min Figure 3 2 depicts a typical HPLC chromatogram of 

total sphmgosme in (a) control HT-29 cells and in (b) cells treated with 75|jM CLA 

mixture

Figure 3.1 Typical HPLC chromatogram of a ceramide standard which is converted to 

sphingosm after deacetylation procedure The retention time of sphmgosme 9 453 mm 

was recorded at a concentration of 1000 pmol The OPA eluted between 1-3 mm
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Figure 3.2 Typical HPLC chromatogram of total sphingosine in (a) control HT-29 cells 

and in (b) cells treated with 75^M CLA mixture.
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The linearity of the relationship between peak fluorescence area units and concentration 

of sphingosine after denvitisation (Fig 3 3, A), alkaline hydrolysis (Fig 3 3, B) and 

déacylation (Fig 3 3, C) is depicted in Fig 3 3 Figure 3 4 depicts the linearity of the 

relationship between peak area and concentration of ceramide after déacylation It is 

apparent that the assay can measure sphingosine in the range 0-2000 pmol after 

denvatisation with o-phthaldehyde (OPA) as described m Fig 3 3, A

Figure 3 3 (A, B, C) Standard curves of (A) SPNeat (neat sphingosine, denvatised with OP A), 
(B) SPi (Sphingosine standard, hydrolyzed and denvatised with OPA and (C) SP2 (Sphingosine 
standard deacylated and denvatised) and all were quantitated using HPLC (n = 3)
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Similarity, known amounts of ceramide in the range 0-2000 pmol can be measured after 

déacylation to the sphingoid base and derivitization with OPA as described in Fig 3 4 

Efficiency of déacylation was approximately 100%, as judged by comparison with Fig 

3 3, A Recovery of sphingoid base during déacylation was approximately 82% as judged 

by comparison of Fig 3 3, B & 3 3, C

Figure 3 4* Standard curves of Ceramide (0-2000 pmole) was deacylated (to convert 

ceramide to sphmgosine), denvatised and quantitated using HPLC (n = 3)

3.4.2 Effect of CLA isomers on ceramide and sphmgosine content in HT-29 cells

Cell content of ceramide was determined by subtraction of level of basal sphmgosine 

from level of total sphmgosine as described in the methods section Fig 3 5 show 

ceramide content of HT-29 cells (3xl06 and 1 5xl06) following treatment with ethanol 

(control) or CLA mixture of isomers, c9, / l l  CLA, /10, cl2 CLA, /9, ¿11 CLA or t-VA 

all at 75joM for 1 day and 3 day Sodium butyrate at 3mM was used as positive control 

Data refer to mean + SD (n=3) ceramide content (pmol/106 cells) None of the treatments 

altered ceramide content after lday (Fig 3 5) However it is apparent that after 3day the
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level of ceramide was significantly higher (p<0.05) in cells treated with sodium butyrate 

(2619 + 141 pmol/10f’ cells) and the CLA mixture (2106 +113 pmol/10' cells ) compared 

with control cells (1045 + 206 pmol/106 cells). The single CLA isomers and /-VA had 

negligible effects on cellular ceramide.

□  1 day ■  3 day
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Cont NaBt CLA rmture c9,t11CLA t10,c12CLA t9J11CLA t-VA

Treatments

Figure 3.5 Effects of fatty acids on cellular ceramide levels. HT-29 colorectal cancer 

cells were cultured at a density of 3 x I0f’ cells/flask for 1 day and 1.5 x 106 cells/flask for 

3 day in DMEM medium in T75 cm2 flask. Cells were incubated with either 3 mM NaBt 

or 75 ¿iM of CLA mixture of isomers, c9, /11 CLA; M0, c l2 CLA; r9, t\ 1 CLA or t-VA 

for 3 day. Results shown are the mean ±SD (n=3) expressed as pmol ceramide/106 cells 

relative to control.
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Basal sphingosine was significantly elevated after treatment with sodium butyrate but not 

by CLA or /-VA treatments (Fig. 3.6).

□ 1 day ■ 3 day

*

Oi a  . i A A
CLAnrixture c9,!11CLA t10. C12CLA t9.111 CLA t-VA

Treatments

Figure 3.6 Effects of fatty acids on cellular sphingosine levels. HT-29 colorectal cancer 

cells were cultured at a density of 3 x 10'’ cells/flask for 1 day and 1.5 x 10'' cells/flask for 

3 day in DMEM medium in T75 cm2 flask. Cells were incubated with either 3 mM NaBt 

or 75 \xM of CLA mixture of isomers, c9, / 11 CLA; MO, cl 2 CLA; t9y /11 CLA or /-VA. 

Results shown are the mean ±SD (n=3) expressed as pmol sphingosine/106 cells relative 

to control.

3.4.3 Effect of CLA isomers on Annexin V labelling of cells

Annexin V binding to phosphatidylserine exposed on the outer leaflet o f plasma 

membranes was used as an assay for detecting apoptosis. Apoptotic cell number was 

analysed by flow cytometry and expressed as a % of total cell number. Fig 3.7 shows a 

typical picture of fluorescence-activated cell sorting in a) control HT-29 cells (0.8 x 106 

cells/well) and b) cells treated with CLA mixture of isomers (75^iM) for 3day. Fig 3.8 

shows a typical picture of fluorescence-activated cell sorting in cells treated with 75jiM 

of a) c9, t\ 1 CLA b) /10, cl 2 CLA and c) /9, /11 CLA for 1 day. The cross wires were
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drawn so that the lower left quadrant contains the viable cells that arc negative for 

annexin V and propidium iodide (PI). The upper and lower right quadrants show the 

apoptotic cells that are positive for annexin V and negative for PI. The upper left 

quadrant contains the necrotic cells which are positive for PI and negative for annexin V.
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Figure 3.7 Fluorescence-activated cell sorting: shows a typical picture of fluorescence- 

activated cell sorting in a) control HT-29 cells (0.8 x 10' cells/well) and b) cells treated 

with CLA mixture of isomers (75^M) for 3 day.
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Figure 3.8 Fluorescence-activatcd cell sorting: shows a typical picture of fluorescence- 

activated cell sorting in HT-29 cells treated with 75^iM of a) c9, /II CLA b) /10, cl2 

CLA and c) /9, / l 1 CLA for lday.
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It is apparent that when HT-29 cells were treated with CLA mixture of isomers for 3 days 

that there was a 6 fold higher percentage of apoptotic cells relative to untreated control 

cells (Fig 3.9). Sodium butyrate increased the number of apoptotic cells by approximately 

3 fold.

Cells were examined after 6 hrs and 1 day treatment with three different CLA isomers 

(c9, /II CLA, /10, c 12 CLA and /9, / 11 CLA) (Fig. 3.8) to investigate the apoptosis. The 

single isomers c9, /II CLA and /10, c l2 CLA at 75jiM showed a significant 2-2.7 fold 

increase in apoptotic cells after 1 day (p<0.05) relative to control cells (3.2%±0.2). The 

/9, /11 CLA did not show any effect on apoptosis of HT-29 after 1 day. Increasing % of 

apoptotic HT-29 cells were observed after 6 hour of incubation with c9, /11 CLA, /10, 

c 12 CLA and /9, /11 CLA but there was no significant difference from untreated control 

cells (Fig 3.10).
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</>

Corn CLA NaBt

T reatments

Figure 3.9 Effects of CLA mixture on apoptosis of HT-29 cells. HT-29 cells were 

cultured and treated with CLA (75^M) and NaBt (3mM) for 3 days. Proportion of 

apoptotic cell numbers were analyzed by flow cytometry and the number of apoptotic 

cells is expressed as a percentage of total cell number. Results shown are the mean (±SD) 

of treated cells (n=3).
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Figure 3.10 Effects of c9, t\ 1 CLA, /10, c l2 CLA, and /9 ,/l 1 CLA on apoptosis of HT- 

29 cells. HT-29 cells were cultured and treated with c9, t\ 1 CLA, /10, cl2 CLA, and i9, 

111 CLA for 6 hours and 1 day. Proportion of apoptotic cell numbers were analyzed by 

flow cytometry and the number of apoptotic cells is expressed as a percentage of total 

cell number. Results shown are the mean (±SD) of treated cells (n=4). Asterisks (*) 

denote significant values (P<0.05) relative to control.

3.4.4 Effect of C IA  isomers on histonc deacetylase activity

Histonc deacetylase (HDAC) activity in HT-29 cells was used as a marker for detecting 

fatty acid-induced modulation of epigenetics in HT-29 cells. Cells (0.8x10(' /flask) were 

treated with the CLA mixture of isomers, c9, /11 CLA, flO, cl2 CLA, ¡9, t\ 1 CLA, /-VA 

or LA all at 75jaM for 5 days. Sodium butyrate (3mM) was included as a negative 

control. Level of HDAC was decreased 1.7 fold in sodium butyrate-treated cells relative 

to control cells (2.0+ SD RFU /mg protein) (Fig 3.11).
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It is apparent that c9, /II CLA and /9, /II CLA had significant inhibitory effect on 

HDAC activity; the reduction in HDAC by the CLA mixture and /10, c l2 CLA did not 

reach statistical significance. Trans vaccenic acid and linoleic acid had no effect. When 

adherent cells were analysed, only /10, c l2 CLA and linoleic acid were inhibitory 

(p<0.05) (Fig 3.12), suggesting differential effects of PUFAs on the accumulation of 

acetylated histones between viable and non viable cells.

2.5 5 days. Total cell lysate
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F ree fa tty  a a d s

Figure 3.11 Cells were seeded at 0.8 x 10* cells/flask in T-75cm2 flask in complete 

culture media. On the second day media was replenished with fresh media containing 

3mM sodium butyrate and 75pM of CLA mixture of isomers; c9, /II CLA; /10, cl2 

CLA; /9, /II CLA, /-VA and LA as free fatty acid HT-29 cells treated with ethanol 

(0.028% v/v) served as control. HDAC activity expressed as the Relative Fluorescence 

Units per ng protein sample. The results represents the mean +SD (n=3). Asterisks (*) 

denote significant values (P<0.05) relative to control.
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Figure 3.12 Cells were seeded at 0.8 x 10* cells/flask in T-75cm2 flask in complete 

culture media. On the second day media was replenished with fresh media containing 

3mM sodium butyrate and 75^iM of CLA mixture o f isomers; c9, 111 CLA; t 10, cl2 

CLA; /9, /II CLA, t-VA and LA as free fatty acid. HT-29 cells treated with ethanol 

(0.028% v/v) served as control. HDAC activity expressed as the Relative Fluorescence 

Units per jig protein sample. The result represents the mean +SD (n=3). Asterisks (*) 

denote significant values (P<0.05) relative to control

3.4.5 Effect of CLA isomers on CEA expression

CEA expression in lysates from adherent cells was used as a marker for detecting fatty 

acid-induced differentiation of HT-29 cells. Cells (0.8x10' /flask) were treated with the 

CLA mixture of isomers, c9, /11 CLA; /10, cl2 CLA; /9, t\ 1 CLA, t-VA  and LA all at 

75nM for 5 days. Sodium butyrate (3mM) was included as a positive control.
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It is apparent that all of the fatty acids except /-VA and LA increased CEA relative to 

control cells (15.05±0.75 pg/^g protein). Level of CEA was increased 5.6 fold in sodium 

butyrate-treated cells. Of the CLA isomers studied, the CLA mixture, /10, c 12 CLA and 

/9, /I 1 CLA exhibited the greatest potency, increasing CEA levels by approximately 50% 

(Fig 3.13). c9, /II CLA also showed an increase but it did not attain statistical 

significance.
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Figure 3.13 HT-29 cells were seeded at 0.8 x 106 cells/flask in T-75 cm2 flask in 

complete culture media On the second day media was replenished with fresh media 

containing 3mM sodium butyrate and 75^M of CLA mixture of isomers; c9,/l 1-CLA, 

/10, c l2 CLA; /9, /11 CLA, /-VA and LA as free fatty acids. Control flasks were treated 

with ethanol (0.028% v/v). CEA levels expressed as picagram (pg) per ng protein 

sample. Results represents mean +SD (n ^ ). Asterisks (*) denote significant values 

(P<0.05) relative to control.
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Similar effects were observed when cells were treated with CLA:BSA complexes (2:1 

molar ratio). The CLA mixture and /10, c i2  CLA increased CEA levels approximately 2 

fold (Fig 3.14). c9, f ll  CLA and f9, i l l  CLA increased CEA by 30-60% (p<0.05) 

relative to control but trans vaccenic acid and LA had no significant effect. When cell 

lysates from both floating and adherent cells were analysed, only /9, /11CLA was 

stimulatory (p<0.05) (Fig 3.15), suggesting differential effects of PUFAs on CEA 

expression between viable and non viable cells.

5 days, adherent cell lysate

50
*

Control CLA t10,c12 c9,t11 t9t11 t-VA LA 3mM
NaBt

FA/BSA(2:1)

Figure 3.14 HT-29 cells were seeded at 0.8 x 10* cells/flask in T-75 cm2 flask in 
complete culture media. On the second day media was replenished with fresh media 
containing 3mM sodium butyrate and 75^M of CLA mixture of isomers; c9, t \ 1-CLA; 
/10, cl2-CLA; t9,t\ l-CLA isomer, f-VA and LA. Fatty acids were complexed with BSA 
at a ratio 2:1 prior to treatment. Control flasks were treated with ethanol (0.028%). CEA 
levels expressed as picagram (pg) per ng protein sample. Results represents mean +SD 
(n=6 ). Asterisks (*) denote significant values (P<0.05) relative to control.
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5 days, total cell lysate
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Figure 3.15 HT-29 cells were seeded at 0.8 x 106 cells/flask in T-75 cm2 flask in 

complete culture media. On the second day media was replenished with fresh media 

containing 3mM sodium butyrate and 75^M of CLA mixture of isomers; c9, /l 1 CLA; 

110, ci2 CLA; /9, t\ 1 CLA isomer, /-VA and LA as free fatty acids. Control flasks were 

treated with ethanol (0.028%). CEA levels expressed as picagram (pg) per ng protein 

sample. Results represents mean +SD (n=6 ). Asterisks (*) denote significant values 

(P<0.05) relative to control.
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3.4.6 Effect of CLA isomers on alkaline phosphatase activity

The specific activity of alkaline phoshatase (ALP) in cell lysates was used as a marker for 

detecting fatty acid-induced cell differentiation. Cells (0.8 xlO6 /flask) were treated with 

the CLA mixture of isomers, c9, /II CLA and MO, c l2 CLA at varying doses between 

50-125jiM for 2 days. Sodium butyrate (3mM) was included as a positive control. It is 

apparent that none of the CLA treatments had any effect on ALP activity in adherent 

cells, with specific activity ranging between 3-4mU. Butyrate increased ALP activity 21 

fold (p<0.05) relative to control (3 + 0.4 mU) (Fig 3 .16).
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Figure 3.16 Effects of CLA on ALP activity in HT-29 colorectal cancer cells. Cells were 

cultured at a density of 0.8 x 10r cells/flask in DMEM medium in 75cm: flask with 

varying concentrations (50, 75, 100 and 125jiM) of CLA mixture of isomers, c9, /II 

CLA and /10, c l2 CLA for 2 days. Ethanol (0.028% v/v) was used as control. 3mM NaBt 

was used as positive control. Results represents mean +SD (n=3) and expressed as mU 

where 1 mU = 1 nmole product formed/min/mg protein at 37°C. Asterisks denote 

significant differences relative to control. Asterisks (*) denote significant values (P<0.05) 

relative to control.
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The ALP activity of total cells (both adherent and floating) was also not affected by CLA 

(Fig 3.16) suggesting that inhibitory effects of CLA on growth are mediated by pathways 

independent of butyrate. Fig 3.17 shows that when cells are co-treated with sodium 

butyrate and the various CLA isomers or linoleic acid that sodium butyrate-induced ALP 

activity was suppressed by 57-65%, suggesting that PUFAs may antagonise the effects of 

butyrate on expression of the ALP differentiation marker.
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Figure 3.17 Effects of equimolar concentrations of a CLA mixture of isomers (75^M), 

c9, t\ 1 CLA (75 nM), /10,cl2 CLA (75 jiM), LA (75 jaM) and NaBt (75 nM) on alkaline 

phosphatase (ALP) activity, a commonly employed functional marker of intestinal brush 

border expression. Ethanol (0.028% v/v) was used as control. ALP activity was measured 

in total cell lysates (n=3) after 3,6  and 9 days of continuous treatment. Results shown are 

the mean (+SD) of treated cells (n=3). ALP activity was expressed as mU where 1 mU =

1 nmole product formed/min/mg protein at 37°C. Asterisks (*) denote significant values 

(P<0.05) relative to control.
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Figure 3.18 Relative alkaline phosphatase (ALP) activity of HT-29 colorectal cancer 

cells cultured at a density of in DMEM medium 0.8 x 106 cells/flask in 75 cm2 incubated 

with the combination of 3 mM NaBt and 75jiM of CLA mixture of isomers, c9, t\ 1 CLA, 

/10,cl2 CLA, and LA for 3 days. Ethanol/BSA (0.028% v/v) was used as control. ALP 

activity, a commonly employed functional marker of intestinal brush border expression 

was measured in adherent cell lysates from cultures (n=3) after 2 day of treatment. Result 

are expressed as mU where 1 mU = 1 nmole product formed/min/mg protein at 37°C. 

Asterisks (*) denote significant values (P<0.05) relative to control. Asterisks (f) denote 

significant values (P<0.05) relative to 3mM NaBt.
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There is intensive discussion about the potential benefits of a CLA rich diet m prevention 

of colon cancer A recent longitudinal study that assessed the dietary intake of a large 

population of woman over 15 years suggested that colorectal cancer risk may be 

inversely associated with the consumption of high fat dairy foods Although such foods 

may contain potentially other anticarcinogemc lipids, in particular sphingolipids, much 

significant research in recent years has turned on their content of CLA It has been 

previously reported that diets containing a CLA mixture of isomers inhibit colon cancer 

development in different chemically-induced tumour models (Kohno et a l , 2004, Yang 

et a l , 2002, Park et a l , 2001, Liew et a l , 1995, Zu and Schut, 1992) Although primarily 

absorbed from the small intestine, small amounts of fatty acids can also be absorbed from 

the large intestine (Caleraro et a l , 1991, Molina et a l , 1990) Since growth is a balance 

between cell proliferation, death and differentiation it is likely that CLA isomers affect 

not only epithelial cell proliferation but also apoptosis and differentiation m vivo It is 

noteworthy that cumulative evidence now exists from in vitro studies to show that CLA 

mixtures of isomers may induce apoptosis and differentiation in colon cancer cells 

(Lampen et a l , 2005) Few studies have investigated mechanisms of action of individual 

CLA isomers such as c9, t\ 1 CLA or /10, cl2 CLA, the two predominant isomers m the 

mixture Similarly few studies have investigated the effects of t9, t\ 1 CLA isomer known 

to be produced by certain intestinal bifidobacteria (Coakley et a l , 2006, Rosberg-Cody et 

al , 2004, Coakley et a l , and 2003) It was shown in Chapter 2 that t9, tl 1 CLA was a 

more potent inhibitor of HT-29 cell growth than c9, tl 1 CLA or ¿10, cl2 CLA This study 

set out to examine the effects of these isomers on a selection of biological markers that 

reflect cell death, differentiation and epigenetic influences

In this study, the CLA isomer, c9, tl 1 CLA was shown to increase binding of Annexin V 

to phosphatidylserme exposed on the outer leaflet of plasma membranes as early as 6h 

after treatment with a concentration physiologically important for humans It is thus 

likely that c9, tl 1 CLA isomer does induce apoptosis of the colon cells investigated here 

Besides inhibition of proliferation and induction of apoptosis effects on cell

3.5 Discussion
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differentiation were also important The increase in CEA level, a molecular biomarker of 

cell differentiation when cells were treated with c9 ,111 CLA isomer for 5 days confirms 

a previous report that this CLA isomer may induce differentiation (Lampen et a l , 2005) 

The latter showed convincingly that c9, /II CLA increased the promoter activity of 

alkaline phosphatase, its mRNA production and specific activity in Caco 2 cells after 6, 

12 and 21 days It is apparent from figure 3 17 that after 3, 6 and 9 days CLA, unlike 

butyrate did not induce alkaline phosphatase activity in HT-29 cells and even antagonised 

the effect of butyrate Remarkable differences m the potency of cellular effects of c9, t\ 1 

CLA have been reported between HT-29 cells and Caco 2 colon cells (Lampen et a l ,

2005) The latter were approximately 3 fold more resistant to inhibitory effects of c9, tl 1 

CLA than HT-29 cells and may therefore be more susceptible to undergo genetic changes 

associated with cell differentiation before death The observation that CEA levels were 

increased following treatment with not just c9, tl 1 CLA but all CLA treatments suggests 

CEA may be an earlier onset marker than alkaline phosphatase A comparision of the 

relative expression of CEA and alkaline phosphatase in three cell lines including HT-29 

cells that that are double producers of CEA and alkaline phosphatase revealed that 

maximux expression of CEA occurred with lower concentration of butyrate that did that 

of alkaline phosphatase suggesting a differential pattern of expression (Yoshinan et a l , 

1999) It is apparent from this study and in chapter 2 that as early as 6h and 24h that cells 

are dying and that by 5 days approx 50% have died at this (75jiM) concentration The 

occurrence of higher CEA in CLA-treated cells relative to control suggests that 

differentiation may be a pre-death cellular characteristics of CLA treatment

Aberrant histone acetylation is believed to be an important etiological factor m several, 

types of cancer This study showed for the first time that c9, /II CLA inhibited the 

enzymatic deacetylation of DNA-histone complexes to a similar extent as butyrate m 

total lysates of HT-29 cells Inhibition of HD AC activity, of which there are at least 7 

isoenzymes in mammals (Cress and Seto, 2000, Gray and Ekstrom, 2000) permits 

histones to remain in an acetylated state, which can changes in gene expression and 

impact on key regulators of apoptosis and the cell cycle such as p21, cyclins (A, E, Bl, 

D1 and D3), apoptosis mediators (Bax and Bcl-2) and transcription factors (c-Myc)

93



i

(Louis et a l , 2004) At present the importance of butyrate-induced HD AC inhibition is 

believed to be related to its ability to ‘reactivate’ the expression of epigenetically silenced 

genes, including those involved in differentiation, cell cycle regulation, apoptosis, 

angiogenesis, invasion and metastasis Interestingly, much research in recent years has 

shown that the antiproliferative effects of c9, 111 CLA are also associated with 

modulation of HD AC targets such as cyclms, Bcl-2 and p21 in colon cells This study 

proposes that one of the mechanisms underlying growth arrest and programmed cell 

death as descnbed by others is that CLA mediates a possible reversal of aberrant 

epigenetic deacetylation of HT-29 chromatin The consequence of acetyiation could be a 

release of bonds between DNA and histones resulting in an increased accessibility of 

DNA to various factors involved in upregulation of selected genes eg intestinal alkaline 

phosphatase (as described by Lampen et a l , 2005) or CEA In this study CLA-inhibition 

of HD AC was associated with upregulation of CEA production and membrane flipping of 

phosphatidylserme Interestingly no effect was observed in adherent cells suggesting that 

HDAC inhibition is an event associated only with dying cells Further investigations of 

the physiological function of the different HDAC isoenzymes and their deregulation in 

human cancer are required in order to devise optimized use of CLA for dietary 

intervention

The CLA mixture of isomers containing approximately equal proportions of both c9, t\ 1 

CLA or /10, c\2 CLA showed evidence of both differentiation and apoptosis as reflected 

by CEA and annexin binding It is interesting that all of the CLA treatments investigated, 

only the CLA mixture increased ceramide content of cells Ceramide belongs to highly 

bioactive class of molecules known as sphingolipids that are used by cells to regulate 

growth, differentiation, apoptosis and other cellular functions They are located in lipid- 

rich structures such as the extracellular leaflet of the cell membrane and are critical for 

the maintenance of membrane structure, especially that of “rmcrodomams” (such as 

caveolae) (Harder and Simons 1997), they modulate the behaviour of growth factor 

receptors and extracellular matrix proteins (Hakomon, 1991) Sphingolipids function as 

‘‘second messengers” for growth factors, cytokines, differentiation factors and growing 

list of agonists and toxins (Kolesmck 1998, Memll et a l , 1997, Spiegel and Merrill,
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1996) Sphingolipid turnover into different bioactive metabolites depends on activation of 

sphingomyelin hydrolysis to ceramide by sphingomyelinase, which is further metabolized 

by ceramidase and sphingosine kinase to sphmgosine and sphmgosme-1 -phosphate 

Agents that activate only sphingomyelinase, which results m ceramide accumulation have 

profound effects on the behaviour of cells because sphmgosme-1-phosphate is potent 

mitogen and an inhibitor of apoptosis (Cuvilher and Levade, 2003, Ohvera and Spiegel, 

1^93), where sphmgosine and ceramide inhibit growth and/or induce apoptosis (Sweeney 

et a l, 1998, Hannun, 1994) It would appear that treatment of HT-29 cells with a CLA 

mixture activates sphingomyelinase to elevate ceramide at the expense of sphmgosme 

(Nikolova-Karakashian et a l , 1997) or that it inhibits ceramidase Interestingly activation 

of a neutral sphingomyelinase in tumour tissues by a diet supplemented with fish oils was 

associated with inhibition of breast cancer growth in nude mice (Wu et a l , 2005) In 

parallel m vitro experiments, the latter showed that fish oils inhibited the growth of 

cultured MDA-MB231 cells while also increasing ceramide formation and neutral 

sphingomyelinase activity 30-40% Further studies are required to determine if the 

increase m ceramide levels observed in CLA treated cells may be due to modulation of 

neutral sphingomyelinase, downregulation of which has been noted to be one of the 

earliest biochemical changes detected in colon cancer (Dudeja et a l , 1986)

The ¿10, c l2 CLA isomer also increased annexin V binding to phosphatidylserme, 

suggesting apoptosis after incubation with physiological level of fatty acid for 6h and 

24h As with c9, 111 CLA isomer, the ¿10, c\2 CLA isomer had no effect on aikalme 

phosphatase but did increase cellular CEA levels in cells It is apparent that isomers of 

CLA differ in potency as well as in manifestation of cellular and molecular effects 

Though c9, t\ 1 CLA significantly inhibited HDAC activity neither ¿10, cl2 CLA nor the 

CLA mixture showed a significant effect An investigation of structure-activity 

requirements of HDAC inhibitors showed that potent HDAC inhibitors such as butyrate 

fit fully into the active site of the enzyme and that its carboxylate group forms a bidentate 

ligand with a buried zinc atom (Finnin et a l , 1999) The inhibition observed with c9, t\ 1 

CLA suggests that this fatty acid must also have gamed access to the HDAC active site 

presumably positioning its terminal carboxylic acid group adjacent to the zmc atom It is
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possible that the shape of the fatty acid tail of ¿10, c 12 CLA and of constituent isomers in 

the CLA mixture may limit access to the HDAC pocket, thereby diminishing their 

relative importance in modulating histone-DNA interactions by acetylation

The ¿9, ¿1 1 CLA isomer, known to be produced by strains of bifidobacteria was observed 

to be potent inhibitor of HT-29 cell growth (Chapter 2) This study showed that 

programmed cell death may not be the main mode of death for this isomer as unlike c9, 

¿11 CLA or ¿10, cl2 CLA it did not affect annexin V binding to phosphatidylsenne 

Surprisingly, it also increased CEA production but not ceramide suggesting that cells 

may have undergone differentiation prior to death by necrosis Interestingly, the ¿9, ¿11 

CLA isomer (but not Cl 8 1 ¿-11) was also a potent inhibitor of HDAC suggesting it like 

c9, ¿11 CLA may of the desired orientation for the active site of the enzyme The 

observation that trans vaccenic acid (C l8 1 ¿-11) did not inhibit HDAC may be further 

indication of the specificity of fatty acid binding to HDAC It was apparent from Chapter 

2 that ¿-VA was the least potent of the fatty acids in inhibiting cell growth Although a 

previous study clearly showed that ¿-VA induced DNA fragmentation in SW480 colon 

cancer cells and that the cellular responses to ¿-VA were likely to be mediated by ¿-VA 

desaturation to c9, ¿11 CLA via A9 desaturase (Miller et a l , 2003), there was no evidence 

from this study that ¿-VA was a bioactive lipid in HT-29 cells Further studies are 

required to examine the potential for HT-29 cells to bioconvert ¿-VA to c9, ¿11 CLA

Data from this study suggest that there is an association exists between decreased HDAC 

activity, increased ceramide level, increased CEA level and growth suppression in the 

HT-29 cells treated with the various CLA isomers

In conclusion this study has identified three novel biological markers (CEA, ceramide 

and HDAC) by which various CLA isomers may exert antiproliferative effects in HT-29 

cells

96



I

CHAPTER 4

Modulation of cellular lipids in HT-29 

human colon cancer cell line by CLA
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Abstract

Modulation of fatty acid synthase (FAS) and stearoyl CoA desaturase (SCD) activities 

may be an attractive target for inhibition of cancer cell growth The hypothesis that 

growth inhibition by CLA may be related to modulation of cellular lipids in HT-29 

cancer cells was studied CLA treatments and ¿-VA decreased the proportion of palmitate 

and stearate in HT-29 colon cancer cells compared to untreated control cells suggesting 

that CLA and t-VA treatments may be potent inhibitors of FAS The c9, ¿11 CLA and 

¿10, c'12 CLA acted as more potent inhibitors of FAS than the CLA mixture of isomers or 

¿9, ¿11 CLA Treatments with CLA and ¿-VA also affected SCD activity in the HT-29 

cells Desaturation of stearate to oleate was inhibited with all CLA treatments except c9, 

¿11 CLA All CLA treatments significantly inhibited A-9 desaturation from palmitate to 

palmitoleate after 120h incubation suggesting that CLA treatments may inhibit SCD 

activity The ¿-VA also decreased the A9 desaturation after 120h at the highest 

concentration (lOO îM) suggesting that like CLA, ¿-VA may be an inhibitory regulator of 

SCD This study also showed that ¿-VA was desaturated to c9, ¿11 CLA in HT-29 cells 

and that conversion was linear with respect to amount of t-VA presented to cells and 

duration of treatment It is conclude that the growth mhibitoiy effects of CLA may be 

mediated by changing fatty acid composition through modulating FAS and SCD 

activities
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After numerous clinical and basic studies, it now appears that human cancer cells have 

the capacity to synthesize their own supply of fatty acids, seemingly independent of the 

regulatory signals that downregulate fatty-acid synthesis in normal cells (reviewed in 

Kuhajda, 2000) Fatty-acid synthesis is common to all plants and animals Fatty acids are 

involved in diverse functions in cells from energy storage and membrane structure to 

signal transduction cascades and protein acylation (reviewed in Kuhajda, 2000) De novo 

synthesis of fatty acids by tumor cells accounted for more than 93% of triacylglycerol 

fatty acids Endogenous fatty-acid synthesis could be a significant source of fatty acids 

for growth of tumor cells, considering the rates of transport of free fatty acid and plasma 

triacylglycerol from the host to the tumor cells (Reviewed in Kuhajda, 2000)

The synthesis of malonyl-CoA is the first committed step of fatty acid synthesis and the 

enzyme that catalyzes this reaction, acetyl-CoA carboxylase (ACC), is the major site of 

regulation of fatty acid synthesis The synthesis of fatty acids from acetyl-CoA and 

malonyl-CoA is carried out by fatty acid synthase, FAS (Wakil, 1989, Witkowsk et a l , 

1991) All of the reactions of fatty acid synthesis are carried out by the multiple 

enzymatic activities of FAS The primary fatty acid synthesized by FAS is palmitate 

Palmitate is then released from the enzyme and can then undergo separate elongation 

and/or unsaturation to yield other fatty acid molecules FAS is downregulated m most 

normal human tissues because of the fat in human diet In contrast, FAS is often highly 

expressed in human cancers High levels of FAS expression have been found in many 

human cancers including breast, prostate, colon, ovary, endometrium, thyroid, oral cavity, 

esophagus, bladder, retinoblastoma and melanoma (reviewed in Guo et a l , 2004, 

Camassei, et a l , 2003, Innocenzi et a l , 2003, Nemoto et al , 2001, Kuhajda, 2000, Alo 

et al y 1996, )

The differential tissue distribution makes FAS an attractive target for cancer cells For 

example, FAS is highly expressed in colon cancer but not in normal colonic mucosa In 

this setting, colon cancer could be targeted by a FAS inhibitor, but the proliferating 

compartment of the colon would be unaffected (reviewed in Kuhajda, 2000) The

4.1 Introduction
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association of FAS expression and tumor virulence led to the conception that FAS 

expression and activity may be vital for the growth and survival of human cancer cells 

Studies have demonstrated that inhibition of FAS is selectively cytotoxic to human 

cancer cells in vivo (reviewed in Kuhajda, 2000) There is increasing evidence linking 

activity of the fatty-acid-synthesis pathway, DNA synthesis, and proliferation m cancer 

cells (Menendez et a l , 2005) Inhibition of fatty-acid synthesis could be a means to limit 

cytotoxic therapy to proliferating cells with high levels of FAS This strategy would 

likely target cancer cells and leave the normal proliferating cellular compartments m bone 

marrow, skin, and gastrointestinal tract intact (reviewed in Kuhajda, 2000)

Another important enzyme in fatty acid synthesis is stearoyl-CoA desaturase (SCD) 

which is the rate-limiting enzyme catalyzing the synthesis of monounsaturated fatty 

acids, mainly oleate (18 1) and palmitoleate (16 1) These represent the major 

monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters (/ e 

esters of long-chain fatty alcohols with long-cham fatty acids) and cholesterol esters The 

ratio of saturated to monounsaturated fatty acids affects phospholipid composition and 

alteration in this ratio has been implicated in a variety of disease states including 

cardiovascular disease, obesity, diabetes, neurological disease, and cancer For this 

reason, the expression of SCD is of physiological significance in both normal and disease 

states (reviewed in Ntambi and Miyazaki, 2004)

Large numbers of experimental data show that tumour cell growth can be modulated by 

individual fatty acids (Guthrie and Carroll, 1999, Zhou and Blackburn, 1999) Functional 

foods contain dietary components that have beneficial properties beyond their traditional 

nutrient value (National Research Council, 1994) The predominant CL A found in milk 

fat, the cis-9, trans- 11 isomer (rumenic acid), has been shown to be anticarcmogemc in 

animal models (McGuire et a l , 2000) Also trans vaccemc acid has been claimed to have 

anticarcmogemc properties, probably due to in vivo conversion into rumenic acid (Corl et 

a l , 2003, Turpeinen et a l , 2002) Others have also shown endogenous synthesis of c9, 

111 CL A in mice, rats and humans when diets were supplemented with trans-11 Cl 8 1 (/- 

VA) (Adlof et a l , 2000, Santora et a l , 2000, Ip et a l , 1999, Salminen et a l , 1998b)
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Different mechanisms of the anticarcmogemc action of CLA have been hypothesized 

One other possible mechanism for the anticarcmogemc activity of CLA is the alteration 

of the FA composition of cell membrane phospholipids (PLs) by CLA isomers resulting 

in reduced synthesis of arachidomc acid (AA) and arachidonate-derived eicosanoids, 

which are associated with stimulation of cancer cell growth (Park et a l , 2004, Banni et 

a l , 1999) There is some evidence that CLA inhibits the desaturation of LA and the 

formation of AA and prostaglandin E2 (PGE2) (Park et a l , 2004, Liu and Belury, 1998) 

Like most other dietary polyunsaturated fatty acids, CLA isomers and their metabolites 

are readily incorporated into phospholipid and neutral lipid fractions of numerous tissues 

(Moya-Camarena et a l , 1999c, Belury and Kempa-Steczko, 1997, Ip et a l , 1996 and 

1991, Ha e ta l ,  1990)

There is no evidence to date that CLAs have any effects on FAS activity Therefore one 

of the objectives of the present study was to examine the relationship between CLA and 

the FAS products palmitate and stearate

The present study was designed to determine the cellular incorporation of the specific 

CLA isomers in total lipids and in three major lipid classes phospholipids, neutral lipids 

and fatty acid fraction in HT-29 cells t-VA incorporation in total lipid and its conversion 

to c9, i l l  CLA in HT-29 cells was also examined In addition this study examined the 

effects of CLA mixture of isomers, three different single isomers of CLA (c9, t\  1 CLA 

and ¿10, cl2 CLA and /9, t \  1 CLA) and t-V A  on cellular lipid composition
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The overall aim of this study was to examine the effect of CLA and /-VA on lipid 

composition of HT-29 human colon cancer cells

The specific objectives were as follows

• To validate a gas chromatographic procedure for analysis of CLA and M/A in 

HT-29 human colon cancer cells

• To characterize the lipid composition of HT-29 cells

• To determine if cellular lipid composition could be altered by treatment of cells 

with CLA and /-VA, as free fatty acids and as fatty acid-albumm complexes

• To determine the conversion of /-VA to c9, tl 1 CLA in HT-29 cells

4.2 Aim and specific objectives

4.3 Materials and methods

4.3.1 Materials

The HT-29 human colon cancer cell line was obtained from American Type Culture 

Collection (ATCC, Rockville, MD) Dulbecco’s Minimum Essential Medium (DMEM), 

supplements and related solutions, boron trifluoride methanol (14% solution), (10%) 

bovine serum albumin (BSA) essentially fatty acid-free, Chloroform (GC grade), 

methanol(GC grade), hexane(GC grade), and 2-propanol(GC grade), were purchased 

from Sigma-Aldrich, Dublin Acetic acid glacial (100%) and HCL (37%) were from 

BDH Laboratory Supplies England and diethyl-ether (HPLC grade) was from Lab-Scan, 

Analytical Science GC column WCOT Fused Silica CP-Select CB column- 100m x 0 25 

mm ID, 0 2jxm film thickness was purchased from Chrompack, Middleburg, The 

Netherlands Sep-Pak Vac 3cc (500 mg) NH2 Cartridges were obtained from Waters, 

Waters Corporation, Ireland, a Vac Elute vacuum elution apparatus with adaptors and 

Vac Elut sample collector racks were obtained from Analytichem International, Harbor 

City, CA
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All sterile disposable plastic-ware was from Sarstedt L td , Wexford, Ireland Phosphate 

buffered saline (PBS) (Lennox, Cat BR14) was prepared by dissolving five tablets in 500 

mL ultra-distilled water (dH20)

Free fatty acids. Conjugated Linoleic Acid (CLA) mixture of isomers (99% pure, 

approximately composing 44% ¿10, c 12 , 41% c 9, ¿11, 10% clO, c l2 and minor 

amounts of ¿9, i l l ,  ¿10, ¿12, c9, cll-CLA) and single preparations (90% pure) of isomers 

c9, ¿11 CLA and ¿10, cl2 CLA were from NuChek-Prep, Elysian, MN, USA Single 

preparations (98% pure) of ¿9, ¿11 CLA isomer was from Matreya, Inc Netherlands 

Linoleic Acid (LA), Heptadecanoic acid (C l7 0) were purchased from Sigma-Aldnch, 

Dublin, Ireland

FAME (Fatty acid methyl ester) Standards: FAME of c9, ¿11 CLA, ¿10, cl2 CLA, ¿9, 

¿11 CLA and a FAME mixture of 37 fatty acids (Table 1) were purchased from Matreya, 

Inc Netherland FAME of ¿-VA was from Supelco Sigma-Aldrich Chemical Co (St 

Louis, MO) A FAME mixture, containing 5 FAME [Methyl octanonate (C8 0) Methyl 

decanoate (CIO 0), Methyl laurate (Cl2 0), Methyl Mynstate (Cl4 0) Methyl Palmitate 

(Cl6 0)] were purchased from Sigma-Aldnch Chemical Co (St Louis, MO) Two more 

FAME mixture, one (GLC 20A) containing 6 FAME [Methyl Palmitate (C16 0), Methyl 

Stearate(C18 0), Methyl Oleate (C18 1, c9), Methyl Linoleate(C8 2, c9, cl2), Methyl 

Linolenate (C18 3, c9, cl2 and cl5) and Methyl Arachidate(C20 0)] and other one (GLC 

20A ) containing 7 FAME [Methyl Mynstate (C14 0) Methyl Palmitate (C16 0), Methyl 

Palmitoleate (C l6 1, c9), Methyl Stearate(C18 0), Methyl Oleate (Cl 8 1, c9), Methyl 

Linoleate(C8 2, c9, cl2) and Methyl Linolenate (C18 3, c9, cl2 and cl5)] were gifted by 

NuChek-Prep, Elysian, MN, USA
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4.3.2 Analysis of fatty acid profiles of HT-29 cells in total cellular lipid

4.3 2 1 Cell culture

Initially HT-29 cells were seeded in 25cm2 culture flasks at a density of 5 x 105 

cells/flask and cultured for 24 h to allow the cells attach to the substratum The cells were 

maintained in a humidified atmosphere The pH of the media was maintained at 7 2-7 4 

pH by a required flow of 95% air and 5% CO2 in a C 02 incubator (Model LR2424)

4.3.2.2 Cell treatment

The medium was removed after this 24 hour incubation and replaced with fresh medium 

after washing the cells with phosphate buffered salme (PBS) Cells were then treated with 

25-100|iM of a CLA mixture of isomers, c9, t\ 1 CLA, /10, cl2 CLA, (9, t\ 1 CLA, /-VA 

and LA as either free fatty acids or as fatty acid-albumin complexes (2 1 molar ratio) and 

incubated for specific time points Control flasks were supplemented with an equivalent 

amount of ethanol or ethanol/BS A was used as control (0 028%, v/v)

4 3.2.3 Cell harvesting

After incubation, the media containing dead cells were collected in umversals and 

centrifuged at 1000 rpm for 5 min to collect the floating cells The supernatant was 

discarded Adherent cells were harvested using phosphate buffered salme (PBS) 

containing 0 25% (w/v) trypsin (Sigma-Aldnch Ireland L td) and collected in the same 

universal which contained the floating cells and then centrifuged at 1000 rpm for 5 mm 

Supernatants were discarded and cell pellets saved for lipid extraction
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4 3.2.4 Extraction, methylataion and gas chromatographic (GC) analysis of total 

cellular lipids

Fatty acid profiles of total cellular lipids of HT-29 cells were analysed in 3 steps lipid 

extraction, methylation and GC analysis

4.3.2.4 1 Cellular lipid extraction

The procedure used for cellular lipid extraction was a modified version of the methods of 

Folch et a l , (1957) and Bligh and Dyer (1959) Heptadecanoic acid (Cno) was used as 

an internal standard to calculate the amounts of fatty acids in cellular extracts The 

internal standard was used to correct for variation in volume injections from the standard 

(e g , small differences in volume, split ratio, dilutions, etc) Briefly 3 75 ml 

chloroform/methanol (2 1, v/v) and 386 4 ¡Lig heptadecanoic acid in ethanol (Cno) was 

added to harvested cells Vortexed for 3 minutes and 1 25 ml chloroform was added 

followed by vortex another 1 minute and added 1 25 ml H2O and vortexed again for 1 

mm Centrifuged at 2000 rpm for 8 mm Lower phase was collected in a GC vial through 

the protein disk with a pasture pipette Solvent was evaporated with N2 and stored at -20° 

C until methylation

4 3 2 4 2 Preparation of fatty acid methyl ester

The free fatty acids were methylated in 14% BF3/methanol according to the method 

described by Alonso, et a l , (2004) In brief, lOOjil methanolic NaOH (1M) was added to 

the lipid extract, mixed and left in water bath at 70° C for 15 mm Then 200 ju.1 14% BF3 

in methanol was added and incubated at room temperature for 30 mm 200 jil hexane and 

100 1̂ H20  were added next followed by vortexed thoroughly Organic phase (upper 

layer) was collected in a GC vial after 5 minutes centrifuge at 1000 rpm and stored at - 

20° C until GC analysis Sample containing FAME ware dried down under N2 and 100
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jiil of hexane was added before injection The injection volume was 1 yd through the 

experiment

4.3.2.4.3 GC analysis

The methyl esters of fatty acids (FAME) were analyzed with a VARIAN CP-3800 gas 

chromatograph equipped with a flame ionization detector and a WCOT Fused Silica CP- 

Select CB column- 100m x 0 25 mm ID, 0 2|xm film thickness (Chrompack, Middleburg, 

The Netherlands) At first the optimal operation conditions of GC were tested with a few 

different temperature programmes by injecting 1 jul aliquots of a mixture of 41 FAME 

standards (Matreya, Inc, Netherland) with Hamilton micro synnge Then the following 

temperature program was utilized for optimal separation of FAMEs The injector and the 

detector temperature were maintained at 250°C The column temperature was operated 

isothermally at 190°C for 60 minutes after injection of samples and then raised from 

190°C to 225°C at 4°C /mm with a final hold of 10 mm at 225°C Nitrogen was used as 

earner gas with column flow rate 0 7 ml/min Samples were run in split (1 20) mode

4.3.2.5 Validation of GC M ethods

4.3.2.5.1 Recovery of fatty acids

To evaluate the percentage recovenes of fatty acids, 21fxg -140^g of fatty acids (CLA 

mixture of isomers, c9, t\ 1 CLA, ¿10, cl2 CLA, ¿9, ¿11 CLA and f-VA) were spiked into 

2 x 106 HT-29 cells in triplicate The samples were taken through the entire procedure 

(lipid extraction, methylataion) and analysed by GC Recovenes were calculated by 

expressing recovered amounts of individual fatty acids as a percentage of the amounts 

added
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To evaluate the percentage repeatability of the assay, 21 jug of fatty acids (CLA mixture 

of isomers, c9, i l l  CLA, ¿10, cl2 CLA, ¿9, i l l  CLA and r-VA) were spiked into 2 x 106 

HT-29 cells on 5 different days m triplicate The samples were taken through the entire 

procedure (lipid extraction and methylation) and analysed by GC Repeatability was 

calculated by determines amounts of individual fatty acids recovered each of the over 5 

days

4.3.3 Analysis of phospholipids, neutral lipids and fatty acids fractions 

of HT-29 cellular lipid

Cellular lipids were fractioned according to the method of Kaluzny et a l , (1985) Due to 

the rapidity and high yields (> 95%) of this procedure, it is superior to preparative HPLC 

or TLC for the separation of lipid mixtures for subsequent analysis (Kaluzny et a l , 

1985)

After cellular lipid extraction liquids were evaporated to dryness under nitrogen and re- 

dissolved in 0 4 ml chloroform Sep-Pak Vac 3cc (500 mg) NH2 cartridges (Bond Elut 

columns) were placed in the Vac Elut apparatus and washed twice under vacuum with 2 

ml aliquots of hexane A collection rack with receiving tubes was then placed in the Vac 

Elut (Fig 4 1) The vacuum was released immediately after the second hexane wash to 

prevent the columns from becoming completely dry Cellular lipids in chloroform were 

applied to the column under vaccum and the chloroform was pulled through This left the 

entire lipid mixture on the column Next, the column was eluted with 4 ml of solvent 

chloroform 2 propanol (2 1, v/v) to separate the neutral lipid fraction The eluant (neutral 

lipid) was saved and new collection tubes were placed in the collecting racks The 

column was then eluted with 4 ml of 2% acetic acid in diethyl ether and the fatty acid 

fraction of cellular lipids was collected and saved Again another set of new collection 

tubes was placed in the collecting racks to separate the phospholipids fraction The

I

4.3.2.5.2 Repeatability
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column was then eluted with 4 ml of methanol and the eluant (phospholipids) was 

collected and saved The liquid (solvent) from all three fractions was evaporated with N2 

and lOOjiL hexane was added to each tube to re-dissolve the lipid fractions and 

transferred to the GC vial and stored at -20° C until méthylation The méthylation 

procedure was performed as described in section 4 3 2 4 2

Figure 4.1 Vac-Elut apparatus used to hold Bond Elut columns for isolation of lipid 

classes The collection rack holding receiving tubes is shown in the 3-dimensional 

drawing (Kaluzny et a l , 1985)
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4.3.4 Identification and  quan tita tive  analysis o f  FA M E s

Identification of the fatty acids was based on their retention time with reference to a 

FAME standards mixture (Matreya, Inc., Netherlands Quantification requires several 

steps. Sample peak areas must be compared with the standard peak areas. Since the 

concentrations of FAMEs responsible for the standard peaks are known, this comparison 

permits concentration to be calculated from the sample peak area.

However, direct comparison is not possible because of the likelihood of small differences 

the in volume, split ratio and dilutions between sample injection and standard injection. 

An internal standard is required to correct for variations in sample volume; the ratio of all 

peak areas to the internal standard in both the sample and the standard are determined. 

Since the internal standard has a known concentration in both sample and standard, it can 

be used to correct for sample variations. Ax denotes the area of a peak due to compound 

x in the sample. Ac,x denotes “corrected area" and is determined for each peak in the 

chromatogram using the equation

A (J|7 o standard [C^o sample]

Ac,x =  Ax x -------------------x ____________  Equation 1

A C17 sample [Ct70 standard]

The A Cj7u standard and \ C sample denote the peak area of C17« standard fatty acid 

and peak area of C'170 in the sample chromatogram respectively. The [C170 standard] and 

[C sample] denote the concentration of C17.U standard fatty acid and concentration of 

Ci7d in the sample respectively (Table 4 1 & 4.2).

From the corrected areas (Ac,x), the concentration of specific fatty acid [x] in cellular 

lipids can be calculate using the equation 2.
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(xjstandard 

[x] = Ac,x x -------------

standard

E quation  2

The Axjtandard and (xjstandard denote the peak area and concentration of standard specific 

fatty acid x respectively (Table 4 .1).

An example of how [/10, c 12 CLAJ in a lipid extract may be quantified is as follows: 

Table 4.1 shows the chemical names, abbreviations, [FAMEs], retention times and peak 

areas of 41 fatty acid methyl esters of a standard mixture. It is apparent that C17«, the 

internal standard, at a concentration of 0.6 mg/ml eluted at 21.5 minutes and had a peak 

area of 182995. By comparison, the /10, cl2 CLA isomer present at lmg/ml eluted at

36.07 min and had a peak area of 310260.

Table 4.2 shows typical data from GC analysis of a sample. It records peak number, 

retention times and area counts for all fatty acids present in a sample lipid extract. It is 

apparent that C l7:0, the internal standard, present at a concentration of 3.86 mg/ml eluted 

at 21.404 min and had an area count of 1176792. /10 cT2 CLA isomer eluted at 35.579 

min and had a peak area of 109435.

Using Equation 1, Ac,x the corrected peak area for/10 c l 2 CLA in the sample is :

182995 3.86 mg/ml

109435 x ------------ x -------------

1176792 0.6 mg/ml

= 109479.2
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Using Equation 2, the [¿10, c\2  CLA] m the sample is

1 mg/ml

[¿10, c\2  CLA] -  109479 2 x ----------

310260

= 0 35 mg/ml

4.3.5 Identification of the peak of the standard fatty acid methyl ester

A mixture of fatty acids methyl ester (FAME), containing 37 fatty acids was purchased 

from Matreya, Inc, Netherlands This FAME mixture was analyzed by GC with 

described GC condition and peaks were identified according to the suppliers 

specifications Another 2 mixture of FAME [{C14 0, C16 0, C16 1, C18 0, C18 l(cis-9), 

C18 2(cis-9,12), C18 3( cis-9,12,15)} and {C16 0, C18 0, C18 l(cis-9), C18 2(cis-9,12), 

C l8 3( cis-9,12,15), C20}] got from Nu-Check Prep as a gift (m 2004 AOCS Annual 

Meeting, Cincinnati), were analyzed and compared with the FAME mixture of Matrya 

Also another 2 FAME mixture (C8 0-C18 3) from sigma were analyzed and compared 

with the other FAME mixtured and confirmed with the compansion of the retention time 

The FAME of c9, ¿11 CLA, ¿10, cl2 CLA and ¿9, ¿11 CLA were purchased from 

Matreya, Inc, Netherland and FAME of ¿-VA was purchased from Supelco 

independently and analyzed by GC independently Then these 4 FAME were mixed into 

the FAME mixture of Matreya and again analyzed by the same GC programme The peak 

of c9, ¿11 CLA, ¿10, cl2 CLA, ¿9, ¿11 CLA and ¿-VA in the FAME mixture were 

identified with the compansion of the retention time in the mixture to retention time of 

the peak of the individual fatty acids These final mixture of FAME were injected with 

every expenment and identifications and quantification of fatty acids in the cellular lipids 

were performed with these mixture Table 4 1 shows the chemical name, abbreviation 

and retention time of mixture of FAME standard and methyl esters of CLA isomers (c9, 

¿11 CLA, ¿10, cl2 CLA and ¿9, ¿11 CLA)
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Table 4.1 Chemical name, abbreviation, retention time and peak area of standard fatty 
acid methyl esters mg/ml as determined using Vanen CP 3800 gas chromatography

Chemical name Abbreviation Amounts
mg/ml

Retention 
time(Mm)

Peak Area

Hexane Solvent 11 37 65816984
Methyl Butyrate C4 0 12 Unidentified Unidentified
Methyl hexanoate C6 0 12 11 77 156481
Methyl octanoate C8 0 12 12 13 342043
Methyl decanoate C10 0 12 12 76 373759
Methyl undecanoate C110 06 13 23 184142
Methyl laurate C12 0 12 13 85 ,371395
Methyl tetradecanoate C13 0 06 14 67 182420
Methyl mynstate C14 0 1 2 15 75 359816
Methyl myristoleate C14 l(cis-9) 06 16 62 182414
Methyl pentadecanoate C15 0 06 17 17 180828
Methyl pentadecenoate C15 1 (c/5“ 10) 06 18 32 178428
Methyl palmitate C16 0 18 19 06 548625
Methyl palrmtoleate C16 \(cis-9) 06 20 25 182482
Methyl heptadecanoate C17*0 0.6 21 50 182995
Methyl heptadecenoate C17 l(c/iS-10) 06 23 07 183425
Methyl stearate C18 0 1 2 24 76 370275
Methyl elaidate C18 \{trans-9) 06 25 69 185967
Methyl vaccinate C18 l(frcww-ll) 1 25 87 199579
Methyl oleate C18 l(c/s-9) 12 26 47 372318
Methyl lmoelaidate C18 2(trans9, transll) 06 27 68 182987
Methyl hnoleate C18 2 (cis9, cts 12) 06 29 48 174958
Methyl gamma-hnoleate C18 3(cis6, cis9, cis 12) 06 31 83 180502
Methyl hnolenate C l8 3(as9, cis 12, cis 15) 06 33 80 180574
Methyl arachidate C20 0 12 34 58 373062
Methyl conjugated linoleate C18 2(cis9, transll) 1 35 19 304816
Methyl conjugated linoleate C18*2 (trans 10, cisll) 1 36 07 310260
Methyl ejcosanoate C20 1(cisll) 06 3731 184172
Methyl conjugated hnoleate C18 2(trans9, trans 11) 1 38 06 307955
Methyl heneicosanoate C210 06 41 76 188930
Methyl eicosadienoate C20 2(c/slli cwl4) 06 42 50 184638
Methyl eicosatnenoate C20 3(^ 8, a s l l ,  cisH) 06 46 35 173984
Methyl arachidonate C20 4(cís5, cisS, cisll, cis 14) 06 49 28 166865
Methyl eicosatnenoate C20 3(c/5ll, cis 14, cis 17) 06 49 79 177703
Methyl behenate C22 0 12 5134 379805
Methyl erucate C22 I(cisl3) 06 55 80 190739
Methyl tncosanoate C23 0 06 58 11 175647
Methyl docosadienoate C22 2(c/$13, c/sl6) 06 62 97 192641
Methyl eicosapentaenoate C20 5(c5, <?8, c \\ ,  cis 14, c/s 17) 06 63 71 189897
Methyl lignocerate C24 0 1 2 69 55 389994
Methyl nervonate C24 l(c/sl5) 06 71 77 194608
Methyl docosahexaenoate C22 6(c4, cl, clO, cl3, cl6, cl9) 06 75 07 164443

112



I

Table 4.2 Typical data from GC analysis of fatty acids in HT-29 cells after incubation 

with /10, cl 2 CL A.

Peak Peak Name Res t lt () Ret. Tune Area Rel Sep. Width States Gro^
No Tune

(Min)
Offset
(MiM)

(routs) Ret
Tbiw

Code 1/2 Coies 
(see)

1 967518 11345 0000 62383608 000 BB 60 0
2 01018 11.624 0000 65660 000 TF 00 0
3 01526 11887 0000 98363 000 IF 00 0
4 0 0573 12.170 0000 36967 000 TF 00 0
5 01037 12353 0 000 66856 000 TF 00 0
6 00033 12760 0000 2096 000 TF 00 0
7 00016 12.891 0000 1061 000 TF 00 0
8 00049 13.006 0000 3154 000 TF 00 0
9 00722 13179 0000 46567 000 TF 0.0 0
10 00019 13 779 0000 1222 0.00 TS 00 0
11 00410 14704 0000 26444 000 BB 206 0
12 00354 15650 0000 22849 000 BB 50 0
13 00134 16132 0000 8615 000 BB 4.2 0
14 00053 17050 0000 3438 0.00 BV 6.6 0
15 00296 17486 0000 19082 000 VV 93 0
16 0 0081 17 883 0000 5237 0.00 VB 00 0

g  Cl 7:0 01962 18896 0000 126494 000 BB 70 0
00057 19425 0000 3672 0.00 BV 6.5 0

19 /  — 0.0071 19860 0000 4588 000 W 7.0 0
20 / 20073 0000 10114 000 VV 72 0
I K / 00055 — qooo 3514 0.00 VB 8.4 0
22* 12251 21404 oaST-*•1176792 000 BB 86 0
23 00060 2S069 0000 3S58 odO TF 00 0
24 0.0072 22722 0000 4632 0.00 TF 00 0
25 01848 24 504 0000 119172 000 BB 102 0
26 00363 25 373 0000 23396 000 BB 79 0
27 0.0606 26162 0 000 39084 ooo BV 99 0
28 /10, cl2CLA 00107 26 485 0000 6901 0.00 VB 99 0
29 / 00032 28665 0000 2039 000 BV 146 0

30 / —0JQ113 29150 0000 7262 ooo VB 106 0
31 / 00035" 0 000 2233 000 BB 137 0

00036 34119 2297 000 BB 147 0
3T 0.1697 35.579 0 000 ^09435 000 BB 131 0
34 00021 37 507 0 000 1369 000 BB 140 0
35 00136 44064 0 000 8748 0.00 BB 399 0
36 00031 45688 0000 2010 000 BB 140 0
37 00168 48 566 0 000 10805 000 BB 172 0
38 0 0061 52751 0000 3930 000 BB 209 0
39 0.0044 57.216 0000 2833 000 BB 182 0
40 00066 73155 0 000 4285 000 BB 100 0
41 00113 74631 0 000 7280 0.00 PP 99 0

Totals 100D001 OJOOO 64477956
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Figure 4 .2  sh ow s the full chrom atogram  o f  mixture o f  FAM E standard and methyl esters

o f  CLA isom ers[c9, / 1 1 C L A ,/1 0 , c ! 2  C LA and (9, i\  1 CLA ].

Figure 4.2 Full GC chromatogram of the methyl esters of a 41 standard fatty acid 

mixture analysed using a 100m CP-Select CB capillary column.
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Figure 4 .3  sh ow s the partial chrom atogram o f  m ixture o f  FAM E standard with C l  8 (from

stearic acid to / 9 , / l l  CLA ) region.

c 9 , / l l  /1 0 ,c l2
-CLA -CLA

C 18:2 

(/9 ./1 2 )

1 5  5  5zs ÜÏÏ S s  '
Minutes

Figure 4.3 Partial GC chromatogram of the FAME Cl 8:0-C20:0 standards analysed 

using a 100m CP-Select CB capillary column.
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4.3.6 Statistical analysis

All data are expressed as mean±SD calculated with Microsoft® Excel 2000 At least three 

independent experiments were performed in triplicate The statistical significance 

(P<0 05) was determined using the Student’s t-test and was used to determine 

significance between treatments

4.4 Results

4.4.1 Validation of cellular extraction, methylation and Gas chromatographic 

separation of CLA isomers and f~VA.

HT-29 human adenocarcinoma cell line was cultured exactly as outlined m Chapter 2 

Repeatability was assayed over 5 experiment in which 21jig of fatty acid (CLA mixture, 

c9, i l l  CLA, ilO, c 12 CLA, t9, i l l  CLA and r-VA) was added to cells (2 x 106) 

Recovery assayed by adding varying amounts (21^g-140|ig) of fatty acid (CLA mixture, 

c9, ¿11 CLA, ¿10, cl2 CLA, ¿9, ¿11 CLA and ¿-VA) to cells The internal standard was 

added at the same time as fatty acid Cellular lipids were extracted, methylated and 

analyzed by GC as described above

Figure 4 4 shows the partial GC chromatogram of the fatty acids profile of HT-29 cells 

spiked with different isomers of CLA, CLA mixture of isomers and ¿-VA for repeatability 

experiments Chromatograms showed the clear peaks for c9, ¿11 CLA, ¿10, cl2 CLA, ¿9, 

¿11 CLA and ¿-VA
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F igure  4.4 Partial gas chromatographic separation o f  the conjugated linoleic acid region 

(CLA) after 21^g o f  (A) c9, 111 CLA, (B) /10, c !2  CLA, (C) /9, / l  1 CLA, (D ) CLA 

mixture and (E) /-VA spiked into 2 x 10'’ HT-29 cells before extraction o f  lipid to do the 

repeatability o f  fatty acids.
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Repeatability o f  the method for measuring 3 CLA isomers and ¿-VA was assessed with 

21^g over 5 days Table 4 3 and 4 4 shows the good repeatability analysis o f  CLA 

mixture, 3 single isomers o f  CLA and t-V A  The average recovery was 84 8% for c9, ¿1 1 

CLA and 84 0% for ¿10, c l 2 CLA, when CLA mixture was analyzed For individual fatty 

acid spiked the average recovery was 91 4% (c9, ¿11 CLA), 90 4% (¿10, c l2  CLA), 

95 7% (¿9, ¿11 CLA) and 89 5% (¿-VA)

T able 4.3 Repeatability o f  CLA mixtures o f  isomers spiked in HT-29 cell pellete

4.4.1.1 Repeatability analysis

CLA mixture

1

CLA

2

recovered (jag) 

3 4 5

M ean ± SD 

(ng)

% C V  Average % 
recovery

c9, i l l  CLA
(8 6 ng)

7 48 7 28 7 76 7 02 6 93 7 3 ± 0  3 4 6 84 8

¿10, c l2  CLA 
(9 2 Mg)

7 97 7 8 8 3 7 45 7 28 7 8 ± 0 4 5 2 84 0

Table 4.4 Repeatability o f  CLA isomers and ¿-VA spiked in HT-29 cell pellete (n=5)

Fatty acids 
spiked (21 jug)

1

Fatty acids recovered 

(Hg)

2 3 4 5

M ean ± SD 

(ng)

% C V Average
%

recovery

c9, ¿11 CLA 18 8 20 1 19 0 18 9 19 1 192  + 0 5 2 8 9 1 4

¿10, c l2  CLA 19 6 18 8 19 2 186 188 19 0 ± 0 4 2 1 90 4

¿9, ¿11 CLA 20 4 20 1 20 4 19 9 19 7 20 1 ± 0 3 1 6 95 7

¿-VA 18 8 19 6 19 0 19 5 17 0 18 8 ± 1 0 5 5 89 5
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Figure 4.5 shows the peak for C l8:0, C l 8:1, LA and some other unknown peaks in 

control cells. The chromatogram o f the fatty acids profile o f  HT-29 cells clearly showed 

that none o f  CLA isomers, t-VA and C l7 were present in HT-29 cells.

F igure 4.5 Partial GC chromatogram o f  the Fatty acids profile o f  HT-29 cells with 

retention time analysed using a 100m CP-Select CB capillary column

4.4.1.2 Recovery analysis

For recovery analysis, known amounts in the range 21-140fjg o f  the individual fatty acids 

(CLA mixture, c9, / l  1 CLA; 110, c l2  CLA; /9, t \  1 CLA and f-VA) were added to  cell 

pellets. Each experiment was conducted in triplicate.

Tables 4.5, 4 .6 ,4 .7 , 4.8 and 4.9 show the mean fatty acid recovery, ± standard deviations 

(n=3), %  coefficient o f  variation (CV), mean % recovery and the overall mean recovery 

for c9, (\ 1 CLA; /10, c l2  CLA; i9 , t \ I  CLA; CLA m ixture and /-VA in HT-29 cells.
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As can be seen from Table 4 5 when 21 jug o f  c9, ¿11 CLA was added to cells 19 2+0 5jug 

on average was recovered, amounting to 91 4% mean recovery Similar % recovery were 

observed for 35, 70, 105 and 140jug giving 94 1%, 87 4%, 89 8%, and 91 9% mean 

recoveries respectively This leads to an overall 90 9% recovery o f  c9, ¿1 1 CLA, showing 

that there could be a loss o f  9 1% c9, ¿11-CLA through extraction and methylation 

procedures The coefficient o f variation ranged from 2 8-19 6 %

Table 4 6 shows that the mean recovery 90 4%, 81 7%, 79 2%, 80 3% and 90 9% after 

spiking 21, 35, 70, 105, and 140jig spiking concentrations o f  ¿10, cl2-C LA  respectively 

The coefficient o f variation ranged from 2 2-7 8 % The overall 84 5% mean recovery o f 

¿10, c 12-CLA was observed

The recovery o f  ¿9, ¿11 CLA with the mean recovery 95 7%, 84 5%, 82 9%, 86 8% and 

89 4 when spiking 21, 35, 70, 105 and 140|ug o f  ¿9, ¿11CLA The coefficient o f  variation 

ranged from 1 6-8 6 % The overall mean recovery was observed 87 9% o f ¿9, ¿11 CLA 

(Table 4 7)

AS can be seen from Table 4 8, spiking 21 jag o f ¿-VA before lipid extraction led to mean 

recovery o f 19 4 jig (92 2% mean recovery) Similar mean recoveries were found after 

spiking with 35^g (101 4%), 70^g (98 5%), 105^g (98 9%) and 105^g (88 9%) o f  ¿-VA 

This leads to an overall 96 0% mean recovery o f  ¿-VA, showing negligible loss o f t-VA 

occurred during the lipid extraction, methylation and GC procedures The coefficient o f 

variation ranged from 1 7-8 5% for ¿-VA (n=3)

The mean recovery for c9, ¿11-CLA was observed 84 8%, 87 9%, 86 9%, 82 8% and 

89 1% when 21-140|ug CLA m ixture were spiked in cells For ¿10, c \2  CLA the mean 

recovery were 84 0%, 84 4%, 86 9%, 80 9% and 90 8% respectively The overall mean 

recovery was 86 3% and 85 4% for c9, ¿11 CLA and ¿10, c l2  CLA respectively (Table 

4 9)
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T a b le  4 .5  R ecovery o f  c9, t \  1 C L A  isom er spiked m  HT 29 ce lls  (n=3)

Fatty acid spiked 

0*8)

M ean ± SD 

(Mg)

% C V M ean 
% recovery

Overall mean 
% recovery

21 192  ± 0  5 2 8 9 1 4

35 32 9 ± 1 3 3 9 94 1

70 61 2 ± 1 9 3 0 87 4 90 9

105 94 3 ± 8 5 9 0 89 8

140 1287  + 4 6 3 5 9 1 9

Table 4.6 Recovery o f  ¿10, c l2  CLA isomer spiked in HT 29 cells (n=3)

Fatty acid M ean ± SD % C V M ean Overall mean
spiked (jo.g) (Mg) %  recovery % recovery

21 19 0 ± 0 4 2 1 90 4

35 28 6 ±  2 2 7 8 81 7

70 55 5 ±  1 3 2 3 79 2 84 5

105 84 3 ± 2  2 2 6 80 3

140 127 3 +  2 7 2 2 90 9
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T a b le  4 .7  R ecovery  o f  t9, t \  1 CLA isom er spiked in HT 29  ce lls  (n = 3)

Fatty acid 
spiked (ng)

M ean ± SD 

(Mg)

% C V M ean 
% recovery

M ean 
% recovery

21 20 1 ± 0 3 16 95 7

35 29 6 ± 2 6 8 6 84 5

70 58 0 ± 1 5 2 6 83 0 87 9

105 91 2 ± 4 0 4 4 86 8

140 89 4 ± 4  3 3 4 89 4

T ab le  4.8 Recovery o f  f-VA spiked in HT 29 cells (n=3)

Fatty acid 
spiked (ng)

Average recovery 

(Mg)

% C V Average % 
recovery

Overall average 
% recovery

21 19 4 ± 0  3 1 7 92 2

35 35 5 ±  1 6 4 4 1014

70 69 0 ± 2 8 4 1 98 6 96 0

105 103 9 ± 8 6 8 5 98 9

140 124 4 ± 7 6 6 1 88 9
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Table 4.9  R ecovery  o f  C L A  m ixtures o f  isom ers spiked in H T 29  ce lls  (n=3)

Recovered c9, ¿11 CLA

Fatty acid spiked (jug) Average 
recovery (jug)

% C V Average % 
recovery

Overall average % 
recovery

21 7 3 ± 0 3 4 7 84 8

35 12 6 ± 0 2 1 5 87 9

70 24 9 ± 0 4 1 7 86 9 86 3

105 35 6 ± 1 5 4 1 82 8

140 51 2 ± 3 1 6 2 89 1

Recovered ¿10, c l2  CLA

Fatty acid spiked (jag) Average % C V Average % Overall average %
recovery (jug) recovery recovery

21 7 8 ± 0 4 5 3 84 0

35 13 0 ± 0 4 3 2 84 4

70 26 8 ± 0 6 2 1 86 9 85 4

105 37 4 ± 0  8 2 2 80 9

140 55 9 ± 3 6 6 5 90 8

Figures 4 6, 4 7, 4 8 and 4 9 shows the increasing peak for c9, rl 1 CLA, ¿10, c  12 CLA 

and ¿9, t l  1 CLA with spiking the increasing concentration o f  c9, ¿1 1 CLA, ¿10, c l2  CLA, 

¿9, ¿11 CLA and CLA mixture o f  isomers m  HT-29 cells before extraction o f  lipid to do 

the recovery o f  CLA

123



Minutes

F igure  4.6 Partial gas chromatographic separation o f  the conjugated linoleic acid (CLA) 

region o f  HT-29 cells after (A) 21 ng, (B) 35jig, (C) 70ng, (D) 105ng and (E) 140ng o f 

c9, /l 1 CLA were spiked into 2 x 10'’HT-29 cells before extraction o f  lipid.
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M i n u t e *

F igure  4.7 Partial gas chromatographic separation o f  the conjugated linolcic acid (CLA) 

region o f  HT-29 cells after (A) 21 fig, (B) 35^g, (C) 70ng, (D) 105jig and (D) 140|ig o f  

/10, c l2  CLA were spiked into 2 x 106 HT-29 cells before extraction o f  lipid.

125



Figure 4.8 Partial gas chromatographic separation o f  the conjugated linoleic acid (CLA) 

region o f  HT-29 cells after (A ) 2 lu g , (B) 35jig, (C) 70^g, (D) 105jig and (E) 140ng o f 

/9, / 11 CLA were spiked into 2  x 10' HT-29 cells before extraction o f  lipid.
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Minutas

F igure  4.9 Partial gas chromatographic separation o f  the conjugated linoleic acid region 

(CLA) after (A) 21 Mg, (B) 35^g , (C) 70^g, (D) 105|ig and (E) 140ng o f  CLA mixture o f  

isomers containing 41% cP, t\  1 CLA and 44%  flO, c l2  CLA spiked into 2 x 106 HT-29 

cells before extraction o f  lipid.
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The fatty acid profiles o f untreated (control) HT29 cells maintained in culture for 

between 24h and 120h are depicted in Table 4 10 It is apparent that long chain saturated 

fatty acids (LCSFA) constitute the bulk (59-83%) o f  fatty acids present in the total lipid 

fractions

Table 4.10 Fatty acids composition o f  untreated control HT-29 cells after 24, 48, 72 and 

120 hours incubation with media

% FAME of cellular lipid

Fatty acids 24h (n=6) 
obtained

48h (n=3) 72h (n=6) 120h(n=12)

C14 0 3 2 ± 0 2 4 0 ± 0  28 3 6 ± 0 9 4 3 ± 0 1

C16 0 33 2 ± 2  3 32 3 ± 2  3 30 1 ± 1 4 26 5 ± 0 2

C16 1 2 6 ± 1 2 2 2 ±  19 5 0 ± 0 6 10 5 ± 0  8

C180 46 6 ± 5 9 45 7 ± 3 1 36 1 ± 2 7 28 3 ± 0 8

C18 l( t- l l) 0 0 0 0

C18 l(o-9) 10 3 ± 3 0 11 0 ± 0 7 Î6 8 ± 0 7 23 1 ± 0 8

LA 0 8 ± 0 9 1 2 ± 1 0 2 5 ± 0 3 1 8 ± 0 2

C20 0 0 2 ± 0 3 0 3 ± 0 5 0 0 3 ± 0 1

c9, t i l  CLA 0 0 0 0

C20 4 1 7 ±  1 6 2 1 ± 1 8 3 4 ± 1 1 3 1 ± 0  5

C22 6 1 2 ± 0 6 1 2 ± 1 0 2 3 ± 0 5 2 1 ± 0 3

LCSFA 83 2 ± 7 1 82 4 ± 5 4 69 8 ± 3 1 59 3 ± 1 0

UFA 16 7 ± 7 1 17 6 ± 5 4 30 2 ± 3 1 40 7 ± 1 0

MUFA/LCSFA 0 2 ± 0 01 0 16 ¿ 0  03 0 3 ± 0  01 0 6 ± 0 02

D ata represent M ean ±  SD o f n  replicates (i e n=3, 6 or 12)
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The predominant LCSFA were stearate (28-47% o f total FAM E) and palmitate (27-33% 

o f total FAME) M inor amounts (<1%) o f  C20 0 were observed Unsaturated fatty acids 

comprised the remaining 17-41% o f fatty acids in the cell lipid fraction Oleic acid and 

palmitoleic acid were the predominant cis9 monounsaturated fatty acids, present at 

between 10-23% and 2-11% respectively o f  total lipid Arachidonic acid, linoleic acid 

and DHA were each present in similar amounts (0 8-3 4% o f total FAME) Rumenic acid 

(c9, t \  1 CLA) and tram  vaccenic acid were not detectable m control cells

It is apparent that as incubation times increased beyond 48h, the ratio o f  monounsaturated 

fatty acids to saturated fatty acids increased suggesting an active delta 9 desaturase 

activity m HT-29 cells (Table 4 10) After 120h incubation, levels o f  stearate and 

palmitate decreased by 39% and 20% respectively com pared with 24h incubation, while 

levels o f  oleic acid and palmitoleic acid increased 2-fold and 4-folu respectively Levels 

o f  linoleic acid remained unaltered, levels o f  arachidonic acid and DHA were increased 

almost 2 fold, suggesting active delta 5 / delta 6 desaturase and elongase activities in HT- 

29 cells Figure 4 10 and 4 11 demonstrate typical chromatograms o f fatty acid profiles o f 

HT-29 cells after 24h and 120h The relatively lower amounts o f polyunsaturated fatty 

acids relative to other fatty acids m HT-29 cells is consistent with previous studies 

showing that membrane lipids o f  cancer cells are generally lower m polyunsaturated fatty 

acids, particularly the n6 series
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F igure  4.10 Typical chromatogram o f fatty acid profiles o f  HT-29 cells after 24h.
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F igure  4.11 Typical chromatograms o f  fatty acid profiles o f  HT-29 cells after 120h

C l 7:0
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4,4,2 Effects of trans vaccenic acid (i-VA) on fatty acid profiles of total 
cellular lipids of HT-29 cells

Treatment with r-VA in the range 25-100 \iM  for 48h and 120h altered the fatty acid 

profile o f  the total lipid fraction o f  cells Briefly, levels o f  LCSFA decreased while total 

unsaturated fatty acids increased with increasing amounts o f /-VA in the culture medium 

The increase in unsaturation was related to increased uptake and to bioconversion o f t- 

VA to c9, t \  1 CLA by cells As the amount o f  t-V A taken up by cells increased from 8 8 

± 0 7 %  o f total FAM E (n=3) to  37 3+ 0 8% o f total FAME (n=3) there was a 

proportionate increase m level o f  rumemc acid from 1 8+0 1 ( n ^ )  to 5 0+_0 06 % o f total 

FAM E (n=3) At 48h, r-VA at lOO^M decreased (p<0 05) steanc acid and palmitate by 

45% and 41% respectively com pared with control cells, however oleic acid was 

decreased by 50% (p<0 05) The ratio o f  C18 1 A 9 /C l8 0 was decreased by 17% 

following t-V A treatment suggesting inhibition o f  A 9 desaturation o f  stearate Levels o f 

Arachidomc acid, linoleic acid and DHA (C22 6) were unchanged relative to control 

(Table 4 11)

Similar effects were observed after treatment with t-V  A for 120h As the amount o f t-V  A  

taken up by cells increased from 2 7+0 2 % o f total FAME (n=3) to 14 6+0 3 % o f  total 

FAM E (n=3), there was a proportionate increase in level o f  c9, t i l  CLA from 3 1+0 07 

(n=3) to 9 9+0 3 % o f total FAM E (n=3) The UFA/LCSFA ratio increased by 35%, t- 

V A  at IOOjiM decreased steanc acid and palmitate by 19% and 14% respectively 

com pared with control cells, oleic acid and palmitoleic acid were decreased by 40%  and 

32% respectively The ratios o f  both C l 8 1 A 9/C 18 0 and C16 1 A 9/C 16 0 were 

significantly lower following IOOjiM t-V  A  treatm ent suggesting possible inhibition o f  A9 

desaturation o f  stearate and palmitate Levels o f  arachidomc acid and lmoleic acid were 

decreased by 35% while DHA rem ained unchanged compared with control cells (Table 

4 12)
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T a b le  4.11 Fatty acids com position  o f  total cellular lipids o f  H T -29 ce lls  w hen incubated

in the presence o f  25 jaM -100 jjM  o f  /-V A  as free fatty acid  for 48hrs

%  FA M E  o f ce llu la r lipid

Fatty acids 
obtained (|ig)

Control
(Ethanol)

/-VA 
[25 pM]

/-VA 
[50 jaM]

/-VA 
[75 |iM]

/-VA 
[100 nM]

C14 0 4 0 ± 0 28 3 7 ± 0 06 3 2 ± 0 1* 2 2 ± 0 2* 2 6 ± 0 1*

C16 0 32 3 ± 2 3 28 5 ± 2 3 24 3 ± 0 3* 22 0 ± 0 6* 19 0 ± 0 1*

C16 1 2 2 ± 1 9 2 6 ± 0 05 1 9 ± 0 1 1 8 ± 0 1 1 6 ± 0  05

C180 45 7 ± 3 1 39 8 ± 0 8* 33 1 ± 0 6* 26 4 ± 0 3* 25 3 ± 0  5*

/-VA 0 8 8 ± 0 7* 21 9 ± 1 2* 33 1 ± 0 T 37 3 ± 0 8*

C18 l(c9) 11 0 ± 0 7 8 5 ± 0 4* 7 0 ± 0 4 7 7 ± 1 1 5 4 ± 0 2*

LA 1 2 ±  1 0 1 3 ± 0 1 1 4 ± 0 4 0 8 ± 0 7 0 9 ± 0 1

C20 0 0 3 ± 0 5 0 9 ± 0 01 0 8 ± 0 1 0 0 4 ± 0 3

c9, i l l  CLA 0 1 8 ± 0  1* 2 7 ± 0 1* 4 3 ± 0 04* 5 0 ± 0 06*

C20 4 2 1 ± 1 8 2 7 ± 0 3 2 4 ± 0 1 1 1 ± 0 9 1 7 ± 0 1

C22 6 1 2 db 1 0 1 4 ± 0 1 1 2 ± 0 02 0 5 ± 0 5 1 0 ± 0 02

LCSFA 82 4 ± 5 4 72 9 ± 1 1 61 4 ± 0 9* 50 7 ± 1 0* 47 2 ± 0 8*

UFA 17 6 ± 5 4 27 1 dr 1 1 38 6 ± 0 9* 49 3 ± 1 0* 52 8 ± 0  8*

M UFA 13 2 ± 1 7 19 9 ± 0 7* 30 8 ± 0 8* 42 6 ± 1 4* 44 3 ± 0 9*

UFA/LCSFA 0 22 ± 0 08 0 4 ± 0 02 0 6 ± 0 02* 1 0 ± 0 04* 1 1 ± 0 04*

MUFA/LCSFA 0 16 ± 0  03 0 3 ± 0 01* 0 5 ± 0 02* 0 8 ± 0 03* 0 9 ± 0 03*

C16 1/C16 0 0 07 ± 0 06 0 1 ± 0 02 0 1 ± 0 002 0 1 ± 0 04 0 1 ± 0 02

C18 I(c9)/C18 0 0 24 ± 0 02 0 2 ± 0 01 0 2 ± 0 01 0 3 ± 0  04 0 2 ± 0 01*

♦D enotes results w h ich  are significantly different to untreated ce lls  (p<0 0 5 ) Data

represent M ean ±  SD  o f  3 replicates (i e  n=3)
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T ab le  4 .12  Fatty acids com position  o f  total cellular lip ids o f  H T -29 ce lls  w hen  incubated

m  the presence o f  25 jiM -1 00  jiM  o f  i-VA  as free fatty acid  for 120hrs

%  FA M E of cellu lar lipid

Fatty acids 
obtained (jig)

Control
(Ethanol)

t-WA 
[25 jxM]

r-VA 
[50 |iM]

/-VA 
[75 mM ]

t-WA 
[100 )iM]

C14 0 4 4 ± 0 02 4 8 ± 0 5 4 3 ± 0 1 4 0 ± 0 2 3 9 ± 0 4

C16 0 26 8 ± 0 1 26 2 ± 0 6 25 6 ± 0 4* 24 0 ± 0 3* 23 0 ± 0 3*

Cl 6 1 11 1 ± 0 3 11 2 ± 0 3 9 4 ± 0 6 9 5 ± 0 2 7 5 ± 0  3*

C18 0 29 0 db 1 7 28 2 ± 1 4 27 9 ± 2 2 23 5 ± 0 8* 23 5 ± 1 5*

t-WA 0 2 7 ± 0 2* 6 1 ± 0 5* 8 9 ± 0 9* 14 6 ± 0 3*

C18 l(c9) 22 0 ± 2 0 18 6 ± 0  9 15 6 ± 0 9* 17 6 ± 0 8* 13 2 ± 0 7*

LA 1 7 ± 0 03 1 4 ± 0 05* 1 3 ± 0 1* 1 3 ± 0  05 1 1 ± 0  1*

C20 0 0 4 ± 0 4 0 5 ± 0 4 0 4 ± 0 3 0 1 ± 0 1 0 3 ± 0 3

c9, r llC L A 0 3 1 ± 0 07* 5 7 ± 0 7* 7 6 ± 0 4* 9 9 ± 0  3*

C20 4 2 8 ± 0 1 1 7 ± 1  5 2 2 ± 0 1* 2 0 ± 0 1* 1 8 ± 0  1*

C22 6 1 9 ± 1 01 1 6 ± 0 04* 1 6 ± 0 1 1 6 ± 0 02* 1 3 ± 0  r

LCSFA 60 6 ± 2 2 59 7 ± 1 2 58 2 ± 2 7 51 6 ± I 0* 50 7 ± 1 7*

UFA 39 4 ± 2 2 40 3 ± 1 2 41 8 ± 2 7 48 4 ± 1 0* 49 3 ± 1 7*

MUFA 33 1 ± 2  3 32 4 ± 0  5 31 1 ± 1 9 36 0 ± 0 6 35 3 ± 1 3

UFA/LCSFA 0 65 ± 0 06 0 7 ± 0 03 0 7 ± 0 1 0 9 ± 0 04* 1 0 ± 0 1*

MUFA/LCSFA 0 55 ± 0 06 0 5 ± 0 01 0 5 ± 0 1 0 7 ± 0 02* 0 7 ± 0 05*

C16 1/C 16 0 0 4 ± 0 01 0 4 ± 0 02 0 4 ± 0 03 0 4 ± 0 01 0 3 ±001*

C18 I(c9)/C18 0 0 8 ± 0 1 0 7 ± 0 02 0 6 ± 0 1 0 7 ± 0 04 0 6 ± 0 1*

♦D enotes results w hich  are significantly different to  untreated ce lls  (p<0 05) D ata

represent M ean ±  SD  o f  3 replicates (i e n=3)
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Figure 4.12 and 4.13 are partial gas chromatograms that demonstrate bioconversion o f  /- 

VA to rumenic acid (c9 111 CL A). It was apparent that the c9 i\  1 CL A peak increased 

with increasing concentration o f  /-VA treatments.

JL
t-VA

Al_A iL
B c9, t\  I CLA

/

c 9 , / l l  CLA

/

Figure 4.12 Partial gas chromatogram o f the conjugated linoleic acid region (CLA) o f  the 
fatty acids profile o f  HT-29 cells, after incubated with different concentrations o f  /-VA 
for 2 days. (A) ethanol as control (B) 25|iM  /-VA, (C) 50^M  /-VA, (D) 75nM  /-VA 
and (E) lOO^M /-VA.
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F igure  4.13: Partial gas chromatogram o f the conjugated linoleic acid region (CLA) o f  

the fatty acids profile o f  HT-29 cells, after incubated with different concentrations o f  l- 

VA for 5 days. (A) ethanol as control (B) 25nM  /-VA, (C) 50(iM /-VA, (D) IOOjiM t - 

VA and (E) lOO^M t-WA.

135



f

Bioconversion o f  ¿-VA to c91 \ 1 CLA in HT-29 cells over 120h was linear with respect to 

duration o f  incubation o f f-VA at 75juM (Fig 4 14)

F ig u re  4.14 % /-VA and c9s ¿11 CLA in HT-29 cells after 1-5 days incubation with 

75jaM ¿-VA

4.4.3 Effects of trans vaccenic acid (f-VA) when present as fatty acid- 
BSA complex (molar ratio 2:1)

Fatty acid substrates are often presented to cells growing in culture as their BSA- 

conjugates The mode o f  fatty acid presentation however may influence to some extent 

the cellular response Uptake was therefore examined in HT-29 cells growing in a culture 

medium supplemented with ¿-VA-BSA com plex (molar ratio 2 1) Table 4 1 3  

demonstrates that the fatty acid profile o f  HT-29 cells is virtually identical when cells are 

treated with ethanol or with BSA for 120h
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T a b le  4 .13  Fatty acid  com position  o f  total cellular lipids from  H T -29 ce lls  incubated in

the presence o f  37  5 juM o f  B S A  or ethanol (0  028% , v /v) for 120hrs

% FAME of c e llu la r lip id

Fatty acids obtained BSA Ethanol

C14 0 3 9 ± 0 1 4 1 ± 0 1

C16 0 25 5 ± 0 5 26 1 ± 0 7

C16 1 12 3 ± 0 4 11 7 ± 0 6

C180 28 5 ± 1 5 28 3 ± 0 3

f-VA 0 0

C18 l(c9) 24 8 ± 1 5 23 3 ± 0 9

LA 1 0 ± 0 9 1 5 ± 0 05

C20 0 0 4 ± 0 4 0 5 ± 0 4

c9, t\ 1 CL A 0 0

C20 4 1 7 ± 1 4 2 7 ± 0 2

C22 6 1 8 ± 0  1 1 8 ± 0 03

LCSFA 58 4 ± 1 6 59 0 ± 1 4

UFA 41 6 ± 1 6 41 0 ± 1 4

MUFA 37 1 ± 1 2 35 1 ± 1 5

UFA/LCSFA 0 7 ± 0 05 0 7 ± 0 04

MUFA/LCSFA 0 6 ± 0 02 0 6 ± 0 04

C16 1/C16 0 0 5 ± 0 03 0 5 ± 0 03

C18 I(c9)/C18 0 0 9 ± 0 04 0 8 ± 0 04

D ata represent M ean ± SD o f 3 replicates (i e n=3)
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Treatment with f-VA-BSA complex for 120h resulted in a higher level o f uptake 

(10 5+0 3% o f total FAM E) com pared with the free fatty acid (8 9+0 9 % o f total FAME) 

into the total lipid fraction o f  cells (Table 4 14) However effects on the proportion o f 

unsaturated fatty acids to saturated fatty acids were similar to those reported for free fatty 

acid (Table 4 12) Like the free fatty acid at IOOjuM, ¿-VA-BSA complex significantly 

increased (p<0 05) the level o f  c9, t \  1 CLA to 9 1+ 0 2 %  o f  total FAM E (n=3) while it 

decreased (p<0 05) the levels o f  LCSFA (52 8 + 0 4 (n=3)) by 10% relative to control 

cells Like the free fatty acid at IOOjuM, /-VA-BSA decreased (p<0 05) the levels o f the 

two m am  À9 unsaturated fatty acids (oleic acid and palmitoleic acid) by 40 % and 34 % 

respectively The ratio o f  C18 1 A 9/C18 0 and C16 1 A 9/C16 0 were decreased 

following treatment suggesting possible inhibition o f  A9 desaturation o f stearate and 

palmitate Unlike free /-VA treatment, the BSA-fatty acid complex did not alter levels o f 

arachidomc acid and linoleic acid, levels o f  DHA were decreased by approximately 20% 

Together the data suggest that the bioconversion o f  /-VA to c9, / l  1 CLA is independent 

o f  the manner o f  its uptake by HT-29 cells
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T a b le  4 .14  Fatty acids com position  o f  total cellular lipids from  H T -29 ce lls  incubated in

the presence 37  5 jiM  o f  B S A  and t -Y A  as fatty acid  B S A  com p lexes (2 1) for 120hrs

% FAME o f c e llu la r lip id

Fatty acids obtained BSA /-VA (7 5 ju M )

C 14 0 3 9 ±  0 1 4 0 ±  0 1

C 16 0 25 5 ±  0 5 24 3 ±  0 3

C 16 1 12 3 ±  0 4 8 1 ±  0 4*

C 18 0 28 5 d= 1 5 24  2 ±  0 2*

t-VA 0 10 5 ± 0  3*

C l 8 l(c 9 ) 24 8 ±  1 5 14 8 ± 0 2 *

L A 1 0 ± 0 9 1 3 ±  0 02

C 20 0 0 4 ±  0 4 0 3 ±  0 3

c9, t\ \  C L A 0 9  1 ±  0 2*

C 20  4 1 7 ± 1 4 2 1 ±  0  1

C 22 6 1 8 ±  0 1 1 4 ± 0  01*

L C S F A 58 4 ±  1 6 52 8 ±  0 4*

U F A 41 6 ±  1 6 47  2 ±  0 4*

M U F A 37 1 ±  1 2 33 4 ±  0 4*

U F A /L C S F A 0 7 ±  0 05 0 9 ± 0 0 1 *

M U F A /L C S F A 0 6 ±  0 02 0 6 ±  0 01

C 16 1/C 16 0 0 5 ±  0 03 0 3 ±  0 02*

C 18 I(c9 )/C 1 8  0 0 9 ±  0  04 0 6 ±  0  02*

♦Denotes results which are significantly different to BSA treated (BSA control) cells

(p<0 05) D ata represent M ean ± SD o f 3 replicates (i e n=3)
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4.4.4 Effects of CLA mixture, c9,111 CLA; flO, c  12 CLA and t9 , fl 1 

CLA on fatty acid profiles of total cellular lipids of HT-29 cells

The fatty acid profiles o f  total cellular lipids from HT-29 cells following treatment with 

CLA mixture o f  isomers, c9, /1 1 CLA; HO, c l 2 CLA and /9, /I 1 CLA, all at 75^M  for 

24h, 72h and 120h are presented in Tables 4 .1 5 ,4 .16 and 4.17.

The efTects o f  supplementation with CLA in its various isomeric forms on cellular lipid 

profiles were similar after 24h and 72h. It is apparent that supplementation with all o f  the 

CLA preparations for 24h significantly decreased the proportion o f  LCSFA and increased 

the unsaturation index (i.e. the ratio o f  unsaturated fatty acids to saturated fatty acids) o f  

cellular lipid fractions. Levels o f  C l6:0 were decreased by 27 to 42% by the CLA 

mixture o f  isomers and by rumenic acid, /!0 , c l  2 CLA and /9, / I I  CLA. Levels o f  C l 8:0 

were similarly reduced by all treatments.

At 24h all treatments except c9, t \  1 CLA significantly decreased oleic acid by 49-56%. 

Levels o f  palmitoleic acid were also reduced by CLA treatments. Levels o f  linoleic acid 

and archidonic acid were unchanged by CLA treatments after 24h. The decrease in oleic 

acid and palmitoleic was offset by an increase in the proportion o f  CLA isomers taken up 

by cells. It is apparent that after 24h, the CLA content o f  cells was broadly similar across 

all treatments, except for /10, c l2  CLA which was the predominant fatty acid present at 

41.0+1.2 %  total FAME (= 56.6+4.7 ng  o f  the isomer). The amount o f  rumenic acid 

(31.2+1.2 ng) and /10, c l 2 CLA (37.1 + 1.2 ng) taken up by cells from the CLA mixture 

o f  isomers represented 14.0+0.5 %  total FAME and 16.7% o f  total FAME respectively. 

Comparable levels o f  c9, /1 1 CLA (30.7+0.6%  total FAME) (=75.1+3.2 ng  isomer) and 

/9, rl 1 CLA (30.3+1.9%  total FAME) (= 62.9 + 3.3 ng) were observed in the cellular 

lipid fraction (Table 4.15).

After 72h, all treatments reduced the proportion o f  LCSFA by 23-29%. Both C16:0 and 

C l 8:0 were reduced relative to control cells. All treatments including c9, / I I  CLA 

reduced oleic acid by 24 to 58% (Table 4.16). Palmitoleic acid was significantly reduced
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by the CLA mixture o f  isomers, c 9 ,1 11 CLA and by ¿10, c 12 CLA Levels o f  linoleic 

acid were also reduced by all treatments Despite the reduction in cis 9 monounsaturated 

fatty acids and m  linoleic and the trend towards reduction in arachidomc acid, the overall 

unsaturation index (ratio o f  unsaturated fatty acids to saturated fatty acids) o f cellular 

lipid fractions was higher following each treatment This was attributed to the uptake o f  

CLA by cells After 72h the CLA contents o f  cells though lower relative to 24h 

treatments, reflecting metabolism, were similar across all treatments, ranging between 27 

and 29% o f total FAM E (Table 4 16)

After 120h, uptake o f various CLA isomers by cells was lower than at 24h, ranging 

between 17-21% o f total FAME (Table 4 17) By contrast with shorter term  treatments, 

the CLA mixture o f  isomers had negligible effects after 120h on the amount o f  LCSFA 

relative to control cells and on the unsaturation index o f  cellular lipids

The increase in unsaturation due to uptake o f  CLA mixture was offset by the significant 

reduction in oleic acid (by 60%) and palmitoleic (by 66%) relative to control The ratios 

o f  c l8  1 A9/C18 0 and c l6  1 A9/C16 0 were reduced by 63% and 76% respectively 

relative to control cells Level o f  linoleic acid was not altered by the CLA mixture while 

arachidomc acid decreased (p<0 05) by approximately 26%

Both c9, ¿1 1 CLA and ¿9, /1 1 CLA decreased the proportion o f  LCSFA by 14% and 7% 

respectively and increased the proportion o f  unsaturated fatty acids relative to control 

cells (Table 4 17) Both also decreased the amounts o f  oleic acid by 19% and 42% 

respectively The ratios o f  c l 8 1 A9/C18 0 was not altered by c9, ¿11 CLA but was 

reduced to 38% by /9, ¿11 CLA Both decreased the amounts o f palmitoleic acid by 30% 

and 15% respectively, thereby reducing the ratios o f  c l6  1 A9/C16 0 by 29% and 11% 

respectively N either linoleic acid nor arachidomc acid was significantly altered

The fatty acid profile generated by treatmg cells with ¿10, c 12 CLA was similar to that 

generated by CLA mixture o f  isomers Uptake o f  ¿10, c l2  CLA was 20 9+1 4 % total 

FAM E The ¿10, c 12 CLA isomer had negligible effects on LCSFA content reducing it to
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55 5+0 7 % total FAM E relative to control cells (59 3+1 6% total FAM E (n=3) though 

this did not reach statistical significance The levels o f  C16 1 and C l8 1 were reduced by 

81% and 65% (p<0 05), the ratios o f  C16 1 A9/C16 0 and C l 8 1 A9/C18 0 were reduced 

by 76% and 63% respectively suggesting strong inhibition o f A9 desaturase by ¿10, c \2  

CLA Arachidomc acid level was also decreased (p<0 05) suggesting an inhibitory effect 

on A5/A 6 desaturation and elongation activities

A peak corresponding to C l 8 1 MO was observed when cells were treated with the CLA 

mixture o f  isomers and ¿10, c \2  CLA only (Fig 4 15, Tables 4 15-4 17), neither c9, ¿11 

CLA or ¿9, ¿11 CLA treatm ent produced C l8 1 ¿-10 suggesting a possible cellular 

biohydrogenation reaction occurring on carbon 12
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T a b le  4 .15  Fatty acids com position  o f  total cellular lipids from  H T -29 ce lls  incubated in

the presence o f  75 jiM  o f  CLA  m ixture o f  isom ers, c9, t i l  C LA, ¿10, c l 2  C L A  and t9 ,

t l  1 CLA as free fatty acid  for 24hrs

%  FAME of c e llu la r lip id

Fatty acids 
obtained

Control
(Ethanol)

CLA  m ixture 
(75 jiM )

c9, / I I  CLA 
(75nM )

n o ,c l2 C L A  
( 7 5 \ M )

19 ,/ I I  CLA 
(75nM )

C14 0 2 4 ± 0 2 1 8 ± 0 1* 1 9 ± o r 1 4 ± 0 1* 2 0 ± 0 1

C16 0 34 8 ±  1 2 24 3 ± 0 2* 23 5 ±  0 6* 20 3 ± 0 7* 25 5 ± 0  1*

C16 1 1 8 ± 0 2 1 2 ±  0 1 1 4 ± 0 1 0 7 ±  0 1* 1 5 ±  0 1*

C18 0 50 8 ± 2 1 34 1 ± 1 3* 31 2 ± 0 4* 29 8 ±  1 2* 35 2 ±  0 3*

C 18 1 [M 0 ] 0 0 6 ±  0 03* 0 3 0 ±  0 4* 0

/-VA 0 0 0 0 0

C 18 l(c 9 ) 8 2  ±  0 9 4  2 ±  0 2* 8 5 ±  0 7 3 6  ±  0 6* 3 8 ±  0 7*

LA 0  3 ±  0 5 0 8 ±  0 02 0 7 ±  0 7 0 1 ± 0 4 0  3 ±  0 3

C 20 0 0 4 ±  0 7 0 7 ±  0 03 0 0 0 4 ±  0 4

c9, / I I  C L A 0 14 0 ±  0 5* 30  7 ±  0 6* 0 0

HO, c l 2 C LA 0 16 7 ±  0 5* 0 41 0 ±  1 2* 0

/ 9 , / I I  C L A 0 0 0 0 30 3 ±  1 9*

C 20 4 0 6 ±  1 0 1 3 ±  0 1 1 3 ± 0  1 0 4  ±  0 1 0 5 ±  0 5

C 22 6 0 8 ±  0 7 0 4 ±  0 4 0 8 ±  0 03 0 5 ±  0 1 0 6 ±  0 I

L C S F A 88 3 ±  1 9 61 0 ±  1 6* 56 6 ±  0 5* 51 6 ± 2 0 * 63 0 ±  0 4*

U F A 11 7 ±  1 9 39  0 ±  1 6* 43 4 ±  0  5* 29 0 ± 2 0* 37 0 ± 0  4*

M U F A  (A9) 1 0 0 ±  1 0 5 3 ± 0  1* 9 9 ±  0 5 4  3 ±  0 6* 5 3 ±  0 6*

U F A /L C S F A 0 1 ±  0 02 0 6 ±  0 04* 0 8 ±  0 01* 0 6 ±  0 1* 0 6 ±  0 01*

MUFA/LCSFA 0 1 ± 0 0 1 0 1 ±  0 004 0  2 ±  0 01* 0  1 ±  0 02 0 1 ± 0 0 1

C 16  1/C 16 0 0 05 ± 0  01 0 05 ±  0 002 0 1 ±  0 02 0 03 ±  0  04* 0 1 ±  0 05*

C 18 I(c9 )/C 1 8  0 0 16 ± 0  02 0 1 ± 0 0 1 0  3 ±  0 02* 0  1 ±  0 02 0 1 ±  0 02

♦Denotes results which are significantly different to untreated cells (p<0 05) Data

represent M ean ± SD o f 3 replicates (i e n=3)

143



ì

Table 4.16 Fatty acids com position  o f  total cellular lipids from  H T -29 ce lls  incubated in

the presence o f  75 juM o f  CLA m ixture o f  isom ers, c9, ¿11 CLA, ¿10, c 12 C LA and ¿9,

t \  1 CLA as free fatty acid for 72hrs

%  FAME of cellular lipid

Fatty acids 
obtained

Control
(Ethanol)

CLA mixture 
(75uM )

c9, /1 1 CLA 
(75uM )

no, C12 CLA 
(75pM )

/9, t i l  CLA 
(75jiM )

C14 0 3 0 ± 0 2 2 5 ±  0 2 2 2 ±  0 1* 2 6 ±  0 3 3 1 ± 0 3

C16 0 31 1 ±  0 6 24 3 ± 1 8* 22 7 ± 0 2* 25 1 ± 0 5* 23 3 ± 2 3*

C16 1 4 6 ± 0 3 1 8 ± 0  1* 2 5 ± 0 05* 1 6 ± 0 1* 4 5 ± 0 9

C18 0 38 0 ±  1 0 28 5 ± 1 3* 26 0 ± 0 9* 25 6 ± 2 1* 25 4 ± 3 7*

C18 1[M 0] 0 1 9 ± o  r 0 7 2 ± 0 4* 0

i-VA 0 0 0 0 0

C IS  l(c9 ) 16 3 ± 0 6 8 1 ±  1 0* 12 4 ±  0 3* 6 9± 0 2* 11 5 ± 2  1

LA 2 3 ±  0 03 1 8 ± o r 1 5 ± 0  1* 1 7 ± 0 1* 1 8 ± 0 2

C20 0 0 0 5 ±  0 4 0 1 2 ± 0 3 0

c9, / I I  CLA 0 14 5 ± 0 9 * 29 1 ± 1 4* 0 0

/10, c\2  CLA 0 12 5 ± 2 3* 0 26 8 ± 1 7* 0

i9, t\ 1 CLA 0 0 0 0 26 6 ±  2 6*

C20 4 2 7 ± 0 5 2 2 ± 0 2 2 1 ± 0  1 1 7 ± 0 1* 2 3 ±  0 3

C22 6 2 0 ±  0 1 1 5 ± 0 3 1 5 ± 0 03* 1 2 ± 0 05* 1 5 ± 0 2

LCSFA 72 0 ±  0 3 55 7 ± 2 9* 50 9 ±  0 9* 54 1 ± 2 1* 51 9 ± 5 7*

UFA 28 0 ± 0 3 44 3 ±  2 9* 49 1 ±  0 9* 42 5 ± 2  1* 48 1 ± 5 7*

M U FA  (A9) 20 9 ±  0 9 9 9 ±  0 5* 14 9 ±  0 3* 8 5 ± 0 2* 16 1 ± 2  9

U FA /LCSFA 0 4 ± 0 02 0 8 ±  0 1* 1 0 ± 0 03* 0 8 ± 0 1* 0 9 ± 0 2*

M U FA /LCSFA 0 3 ± 0 0 1 0̂ 17 ± 0  02* 0 3 ± 0 0 1 0 16 ± 0 02* 0 3 ± 0 1

C16 1/C16 0 0 15 ± 0 01 0 1 ± 0 003* 0 1 ± 0 02* 0 1 ± 0 02* 0 2 ± 0 05

C18 I(c9)/C18 0 0 43 ±  0 03 0 1 ± 0 04* 0 5 ± 0 07 0 3 ± 0 03* 0 5 ±  0 1

♦D enotes results w h ich  are significantly different to  untreated ce lls  (p<0 0 5 ) D ata

. represent M ean ±  SD  o f  3 replicates (l e  n=3)
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T a b le  4 .17  Fatty acids com position  o f  total cellular lipids from  H T -29 ce lls  incubated in

the presence o f  75 jaM o f  C L A  m ixture o f  isom ers, c9, t \  1 CLA, ilO , c l2  C L A  and (9,

t \  1 C LA  as free fatty acid  for 120hrs

% FAME of cellular lipid

Fatty acids 
obtained

Control
(Ethanol)

CLA  mixture 
(75uM )

c 9 , / l l  CLA 
(75nM )

* 1 0 ,c l2 C L A
(75|jM )

/9, /I  I CLA 
(75nM )

C14 0 4 1 ± 0 2 5 4 ± 0 1* 3 7 ± 0 3 4 8 ± 0 2 4 4 ±  0 3

C16 0 26 3 ±  0 6 29 4 ± 0 2* 23 5 ±  0 1* 26 4 ± 0 8 25 1 ± 0 6*

C16 1 11 1 ±  0 8 3 8 ± 0 1 * 7 7 ±  0 03* 2 1 ± 0  1* 9 4 ± 0 8*

C18 0 28 8 ± 1 2 27 0 ±  0 2 23 6 ±  0 6* 24 1 ± 0 4 25 7 ±  1 0*

C18 1[/-10] 0 2 1 ±  0 003* 0 7 5  ± 0 3 * 0

/-V  A 0 0 0 0 0

C18 l(c9 ) 23 4 ±  0 8 9 3 ±  1 1* 18 9 ± 0 3* 8 3 ±  0 4* 13 5 ± 0 9 *

LA 1 6 ±  0 1 1 5 ±  0 04 1 1 ± 0 3 1 6 ± 0 01 1 5 ±  0 1

C20 0 0 2 ±  0 3 0 2 ± 0 3 0 2 ±  0 3 0 3 ± 0 2 0

c9, t\ 1 CLA 0 10 1 ± 0 2 * 18 5 ± 1 4* 0 0

/1 0 ,c l2 C L A 0 8 0 ± 0 1* 0 20 9 ± 1 4* 0

19, i l l  CLA 0 0 0 0 16 6 ± 0 7*

C20 4 2 7 ± 0 1 2 0 ±  0 04* 1 4 ±  1 2 2 5 ± 0 04* 2 3 ±  0 1

C22 6 1 9 ± 0  1 1 2 ± 0 3 1 4 ± 0 02* 1 7 ± 0  1* 1 6 ± 0  1*

LCSFA 59 3 ± 1 6 62 1 ± 0 3 51 0 ± 0  7* 55 5 ± 0 7 55 1 ± 1 4*

UFA 40 7 ± 1 6 37 9 ± 0 3 49 0 ± 0 7* 44 5 ±  0 7 44 9 ± 1 4*

M U FA  (A9) 34 5 ±  1 7 13 2 ± 0 2 * 26 6 ±  0 3* 10 4 ± 0 5* 22 9 ± 1 8*

UFA /LCSFA 0 7 ±  0 05 0 6 ±  0 01 1 0 ± 0 02* 0 8 ± 0 02 0 8 ± 0 05

M U FA /LC SFA 0 6 ±  0 04 0 2 ± 0 002* 0 5 ± 0 005 0 3  ± 0 0 1 * 0 4 ± 0 04*

C16 1/C16 0 0 422 ± 0 04 0 1 ± 0 003* 0 3* ± 0 004 0 1 ± 0 001* 0 374 ± 0 04*

C18 I(c9)/C 18 0 0 813 ± 0  06 0 3 ±  0 004* 0 804 ± 0  01 0 3 ±  0 02* 0 5 ± 0 1*

♦D en otes results w hich  are significantly different to  untreated ce lls  (p<0 0 5 ) Data

represent M ean ±  SD  o f  3 replicates ( i e n=3)
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Figure 4.15 Partial gas chromatographic separation o f  the conjugated linoleic acid (CLA) 

region o f  HT-29 cells after 5 days treatment with (A) Ethanol (control), and 75 nM  o f 

(B) c9, /11 CLA, (C) /10, c l 2 CLA, (D) /9, / 11 CLA, (E) CLA mixture o f  isomer.
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Figure 4 16 shows that the occurance o f  C l 8 1 ¿-10 in cells treated with varying amounts 

o f  ¿10, c \2  CLA was both dose-dependent and time dependent Treatment with 100 |iM  

¿10, c \2  CLA for 120n yielded a significantly higher (p<0 05 j level o f  CIS 1 ¿-10 

metabolite (9 3+0 1% total FAM E) than a similar treatm ent for 72h (7 7+0 2 % total 

F A M E ) and for 24h (2 8+0 1% total FAME)

—o— 110, c12 CLA —s - C 1 8  1 (t-10)

day 1 day 3 day 5

F ig u re  4.16 Time and dose dependent conversion o f  ¿10, c \2  CLA to its metabolite 18 1 

¿-10 trans fatty acids when incubated 25pM , 50juM, 75jiM  and lOOjiM CLA
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Figure 4.17, summarises the dose and time-dependent effects o f  /10, c l 2 CLA on the 

lipid profile o f  HT-29 cells. Interestingly, the fatty acid profile generated by the IOOjaM 

/10, c l 2 CLA showed a significant reduced proportion o f  LCSFA (51.3+0.3%  total 

FAME) relative to control cells (58.1+2.9 %  total FAME).

C18:1, t-10 t10, C12 CLA LCSFA

Fatty acids

F igure  4.17 Dose dependent effects o f/1 0 , c !2  CLA on the lipid profile o f  HT-29 cells 

after 120 hrs incubation.
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4.4.5 Effects of CL A mixture, c9, t i l  CL A; t l  0, c l2  CL A and *9, t i l  

CLA when present as fatty acid-BSA complexes (molar ratio 2:1)

Table 4 18 demonstrates the lipid profile when cells were presented with fatty acids 

complexed with BSA (2 1 molar ratio) for 120h The c9, ¿11 CLA and ¿9, ¿11 CLA 

decreased the LCSFA content but only c9, ¿11 CLA treatment attained statistical 

significance, decreasing LCSFA to 51 4+0 4 % total FAME relative to control cells 

(58 4+1 6 % total FAME) Unlike free CLA isomer, ¿10, c l2  CLA-BSA significantly 

(p<0 05) elevated the amount o f  LCSFA relative to control untreated cells

All fatty acid-BSA complexes reduced oleic acid to a similar extent (by 31-71%) as free 

fatty acid treatments and decreased the ratio o f  c l 8 1 A9/C18 0 by 22-67% All except 

¿9, ¿11 CLA-BSA reduced palmitoleic acid by 47-81% and reduced the ratio o f 

c l6  1 A9/C16 0 by 40-80% The c9, ¿11 CLA isomer complexes with BSA increased the 

unsaturation index o f  cell lipids, similar to free c9 , ¿11 CLA The c9, ¿11 CLA and ¿10, 

c !2  CLA components o f  the CLA mixture were taken up in amounts equivalent to 

26 0+0 l^ g  and 20 1+0 2fig, representing 11 1% and 11 6% o f total FAME respectively 

The c9 , ¿11 CLA single isomer was taken up in amounts equivalent to 55 7±0 2 jug 

representing 20 4+0 4 % total FAME The ¿10, c \2  CLA single isomer was taken up m 

amounts equivalent to 43 6+2 2 jig representing 17 8+0 5 % total FAM E Uptake o f  ¿9, 

¿11 CLA was equivalent to 33 1+2 1 |ug representing 14 8+0 6 % total FAME (Table 

4 19)
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Table 4.18 Fatty acids com position  o f  total cellular lipids from  H T -29 ce lls  incubated in

the presence o f  37  5 jiM  o f  B S A , 75 juM o f  CLA  m ixture o f  isom ers, c9 , ¿11 CLA, ¿10,

c l2  C LA  and ¿9, t \  1 C LA  as fatty acid  B S A  com p lexes (2 1) for 120h

%  FAME of cellular kpid
Fatty acids 
obtained

BSA CLA  m ixture 
(75^M )

c9, i l l  CLA 
(75uM )

ilO, c l2  CLA 
(75aM )

t9, i l l  CLA 

(75uM )

C14 0 3 9 ± 0 1 5 2 ± 0 2* 3 5 ± 0 1 4 6 ± 0 1 5 0 ± 0 1*

C16 0 25 5 ± 0 5 29 1 ± 0 1* 23 9 ±  0 3* 29 3 ± 0 3 * 24 5 ± 0 4

C16 1 12 3 ± 0 4 3 8 ± 0  1* 6 5 ± 0 1 * 2 3 ±  0 1* 11 7 ±  0 6

C18 0 28 5 ± 1 5 25 2 ± 0 6* 23 8 ±  0 4* 28 4 ±  0 3 25 O i l  2

C18 1[M 0] 0 2 4 ±  0 1* 0 5 5 ±  0 2* 0

C18 l(c9 ) 24 8 ± 1 5 9 6 ±  0 1* 17 2 ± 0 3* 7 3  ± 0  1* 13 6 ± 0 4*

LA 1 0 ± 0 9 1 4 ± 0  1 1 2 ±  0 04 1 2 ± 0 04 1 4 ± 0  1

C20 0 0 4 ± 0 4 0 3 ± 0 3 0 2 ±  0 3 0 5 ± 0 4 0 5 ± 0 04

c9, / I I  CLA 0 11 1 ± 0 3 * 20 4 ±  0 4* 0 0

/10, c\2  CLA 0 11 6 ± 0 2 * 0 17 8 ± 0 5* 0

t9y / I I  CLA 0 0 0 0 14 8 ± 0 6 *

C20 4 1 7 ±  1 4 1 9 ± 0 04 1 9 ± 0 03 1 8 ± 0 02 2 1 ± 0  1

C22 6 1 8 ± 0 1 1 4 ±  0 03* 1 3 ± 0 03* 1 3 ±  0 05* 1 5 rh 0 1*

LCSFA 58 4 ± 1 6 59 8 ±  0 7 51 4 ± 0 4 * 62 8 ± 0 4* 55 0 ± 1 5

U FA 41 6 ±  1 6 40 2 ± 0 7 48 6 ± 0 4* 37 2 ±  0 4* 45 0 ± 1 5

M UFA 37 1 ±  1 2 15 8 ± 0 2* 23 8 ±  0 4* 15 1 ± 0 3 * 25 2 ± 1 0*

U FA /LC SFA 0 7 ± 0 05 0 7 ± 0 02 0 9 ± 0 01* 0 6 ± 0  10* 0 8 ±  0 05

M U FA /LC SFA 0 6 ± 0 02 0 3 ±  0 005* 0 5 ± 0  01* 0 2 ±  0 01* 0 5 ± 0 03*

C16 1/C 16 0 0 5 ± 0 03 0 1 ± 0 004* 0 3 ± 0 0 1 * 0 1 ± 0 003* 0 5 ±  0 03

C18 I(c9)/C 18 0 0 9 ± 0 04 0 4 ±  0 01* 0 7 ± 0 01* 0 3 ±  0 003* 0 5 ± 0 04*

♦D enotes results w h ich  are significantly  different to B S A  treated (B S A  control) ce lls

(p<0 0 5 ) D ata represent M ean ±  SD  o f  3 replicates (l e n=3)
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Table 4.19 Com pansion o f  CLA taken up by HT-29 cells when incubated m the presence 

o f  75 jiM o f CLA mixture o f  isomers, 75 jiM  o f  c9, ¿11 CLA, 75 o f ¿10, c l2  CLA 

and 75 jjM  o f ¿9, ¿11 CLA as free fatty acid and also as complex with BSA (2 1) for 

120h

Treatments c9, ¿11 CLA 
(75nM )

¿10, c l2  CLA 
(75juM)

¿9, ¿11 CLA 
(75 nM )

CLA mixture (free form) 2 4 7 + 0 2 196  + 0 7 0

CLA mixture (complex form) 26 0 ± 0 1 20 1 ± 0 2 0

c9, ¿11 CLA (free form) 52 5 ± 3 1 0 0

c9, ¿11 CLA (complex form) 55 7 ± 0 2 0 0

¿10, c l2  CLA (free form) 0 3 7 9  + 2 2 0

¿10, c l 2 CLA (complex form) 0 4 3 6  + 2 2 0

¿9, ¿11 CLA (free form) 0 0 3 7 2  + 3 0

¿9, ¿11 CLA (complex form) 0 0 33 1 ± 2 1

D ata represent M ean ± SD o f 3 replicates (1 e n=3)

Levels o f  linoleic acid and arachidomc acids were not altered by the CLA mixture o f 

isom er nor by its two m ain isomer constituents nor by ¿9, ¿11 CLA As with free fatty 

acids, a peak corresponding to C l 8 1 ¿-10 was observed when cells were treated with the 

CLA mixture o f  isomers (2 4+0 1% total FAM E) and ¿10, c l2  CLA (5 5+0 2% total 

FAM E) (Figure 4 16)

Together the data suggest that all CLAs are taken up to a similar extent by cells whether 

presented as free fatty acids or as BSA complexes ¿10, c l2  CLA and the CLA mixture o f 

isomers generate a hpid profile that is similar, irrespective o f  bem g com plexed with BSA
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4.4.6 Fatty acid composition of HT-29 cells following lipid fractionation

Long chain saturated fatty acids were the predominant fatty acids m the phospholipids 

(75 4% o f total FAME), neutral lipids (65 8% o f total FAM E) and fatty acids fraction 

(92 5% o f  total FAM E) o f  untreated HT-29 cells M onounsaturated fatty acids (C l6 1 

and C l8 1) comprised the bulk o f  the unsaturated fatty acids in each o f  the fractions 

(Table 4 20) Arachidomc acid was predominantly found in the phospholipids fraction 

(4 4+0 6%) compared with the neutral lipids (0 9+0 04%) and fatty acids fractions 

(0 2+0 2%)

4 4.7 Incorporation of CLA mixture of isomers, c9, i l l  CLA; ¿10, c 12 CLA 

and *9,111 CLA, and into cellular phospholipids neutral lipids and fatty acid 

fraction

The CLA mixture o f  isomers was predominantly taken up by the neutral lipids fraction, 

thereby contributing to a significantly increased ratio o f  unsaturated fatty acids to 

saturated fatty acids The monounsaturated fatty acids and arachidomc acid were 

significantly reduced in the phospholipids and neutral lipids relative to control cells 

Their reduction in the fatty acids fraction didn’t reach statistical significance (Table 

4 21 )

The two single CLA isomers, c9, ¿11 CLA, and ¿10, c l 2 CLA were also predominantly 

taken up by the neutral hpid fraction thereby increasing the unsaturation index o f  this 

fraction All treatments significantly reduced monounsaturated fatty acids m the 

phospholipids and neutral lipids relative to control cells All treatments except c9, ¿11 

CLA reduced arachidomc acid m the phospholipids (P<0 05), the reduction by c9, ¿11 

CLA was not significant C l8 1 ¿10 was found predominantly in the neutral lipids 

fraction following treatment with either ¿10, c l2  CLA or CLA mixture (Table 4 21 and 

4 23)
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T a b le  4 20  Fatty acids com position  o f  H T -29 ce lls  in  three different classes

(phospholipids, neutral lip ids and fatty acids fraction) w hen  incubated in the presence o f

ethanol as control for 120h

%  FAME of cellular lipid

Fatty acids obtained Phospho-lipids Fraction Neutral lipids fraction Fatty acids fraction

C14 3 1 ± 0 2 4 2 ±  0 3 2 3 ±  0 1

C16 25 7 ± 1 5 30 6 ± 1 5 30 9 ± 0 5

C16 1 5 1 ±  0 3 10 6 ±  1 1 1 6 ±  0 2

C18 46 0 ± 1 8 30 0 ± 3  5 57 6 ± 0 5

C18 1[/-10] 0 0 0

C18 1 [c-9] 11 6 ± 0 9 20 2 ±  2 7 3 3 ± 0 6

LA U ± 0 1 1 3 ± 0 1 0 3 ± 0 3

C20 0 7 ±  0 6 1 0 ± 0 1 1 7 ± 0  1

c9, /11-CLA 0 0 0

/1 0 ,c l2 -C L A 0 0 0

/P, i\ 1-CLA 0 0 0

C20 4 4 4 ±  0 6 0 9 it 0 04 0 2 ±0 2

C22 6 2 4 ± 0 6 1 2 ± 0 1 2 2 ±  2 0

LC SFA 75 4 ± 2 2 65 8 ±  4 1 92 5 ± 1 0

UFA 24 6 ± 2 2 34 2 ±  4 1 7 5 ± 1 0

M UFA 16 7 ± 1 2 30 7 ± 3 8 4 9 ± 0 8

U FA /LCSFA 0 3 ± 0 04 0 5 ±  0 1 0 0888 ± 0 01

M U FA /LC SFA 0 2 ± 0 02 0 5 ± 0  1 0 05 ± 0  01

C16 1/C16 0 0 2 ±  0 02 0 3 ±  0 05 0 05 ± 0  01

C18 I(c9)/C 18 0 0 2 ±  0 03 01 ± 0 2 0 1 ± 0 0 1

D ata represent M ean ± SD o f 3 replicates (1 e n=3)
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Table 4.21 Fatty acids com position  o f  H T -29 ce lls  in  three different classes

(phospholipids, neutral lipids and fatty acids fraction) w hen  incubated in the presence o f

CL A  m ixture o f  isom ers for 120h

% FAME of cellular hpid

Fatty acids obtained Phospho-hpids Fraction Neutral lipids fraction Fatty acids fraction

C14 2 9 ± 0 3 3 9 ±  0 2 2 4 ±  0 1

C16 27 4 ±  1 r 24 3 ± 0 5* 30 7 ± 0  3

C16 1 1 3 ± 0  1* 1 8 ± 0 3* 0 9 ±  0 4*

C18 49 0 ±  1 2 26 4 ±  3 2* 57 8 ± 0 2

C18 1[MQ] 0 9 ± 0 8 5 8 ±  0 8* 0 6 ± 0 02*

C18 1 [c-9] 4 6 ± 0 3* 7 0 ± 0 7* 1 9 ±  0 2

LA 1 6 ±  0 04 1 2 ±  0 1* 0 3 ± 0 02

C20 0 6 ±  0 5 0 6 ± 0 2* 1 5 ±  0 04

c9, m-CLA 5 0 ±  0 4* 14 6 ± 1 0* 2 2 ± 0 2*

/10, C12-CLA 3 o ± o r 12 4 ± 0 7* 1 5 ± 0  1*

t9, /I I -C L  A 0 0 0

C20 4 2 9 ± 0 2* 0 6 ± 0 01* 0

C22 6 1 3 ± 0 03 1 3 ± 0 1 0 2 ± 0 03

LCSFA 79 9 ± 0 5 55 3 ± 3 6* 92 4 ± 0 4

UFA 20 1 ± 0 5 44 7 ± 3 6* 7 6 ± 0 4

M U FA 6 8 ± 0 5* 14 6 ± 1 8* 3 5 ± 0 4

UFA/LCSFA 0 3 ± 0 0 1 0 8 ±  0 1* 0 1 ±  0 005

M U FA /LCSFA 0 1 ± 0 0 1 * 0 3 ± 0 05* 0 04 ± 0 005*

C16 1/C16 0 0 001 ± 0  01* 0 1 ± 0  01* 0 04 ± 0  01*

C18 I(c 9 )/C l8  0 0 1 ±  0 05* 0 3 ± 0 1 * 0 03 ± 0 004

♦D enotes results w hich  are significantly different to  untreated control) ce lls  (p<0 05)

D ata represent M ean ±  S D  o f  3 replicates (i e n =3)
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Table 4.22 Fatty acids com position  o f  H T -29 ce lls  in  three different classes

(phospholipids, neutral lipids and fatty acids fraction) w hen incubated in the presence o f

c9 , ¿11 C L A for 120h

% FAME of cellular lipid

Fatty acids obtained Phospho-hpids Fraction Neutral lipids fraction Fatty acids fraction

C14 3 0 ± 0 2 3 5 ± 0 04 2 2 ± 0 05

C16 26 3 ± 0 4 25 5 ± 0 6* 30 1 ± 0 9

C16 1 2 2 ± 0 2* 4 8 ± 0 1* 1 0 ± 0 1

C18 46 0 ± 0 8 22 8 ± 0 8* 56 2 ± 0 9*

C18 I[M0] 0 0 0

C18 1 [c-9] 6 5 ± 0  1* 14 0 ± 0 4* 3 1 ± 0 4

LA 0 9 ± 0 04 1 1 ± 0 04* 0 2 ± 0 02

C20 1 1 ± 0 1 0 5 ± 0 02* 1 5 ± 0  1

c9, t\ 1-CLA 8 7 ± 0 3* 26 0 ± 0 5* 5 4 ± 1 2*

/10, cl2-CLA 0 0 0

/9, ¿12-CLA 0 0 0

C20 4 3 7 ± 0 1 0 5 ± 0 03* 0

C22 6 1 8 ± 0  1 1 3 ± 0  1 0 2 ± 0 05

LCSFA 76 3 ± 0 6 52 3 ± 0 8* 90 1 ± 1 8*

UFA 23 7 ± 0 6 47 7 ± 0 8* 9 9 ± 1 8*

MUFA 8 6 ± 0 1* 18 8 ± 0 4* 4 1 ± 0 5

UFA/LCSFA 0 3 ± 0 01 0 9 ± 0 03* 0 0816 ± 0  02*

MUFA/LCSFA 0 1 ± 0 002* 0 4 ± 0 01 0 05 ± 0  01

C16 1/C16 0 0 l±001* 0 2 ± 0 01* 0 03 ± 0 004

C18 I(c9)/C18 0 0 1 ± 0 004* 0 6 ± 0 02 0 1 ±001

♦D enotes results w hich  are significantly  different to untreated control) ce lls  (p<0 0 5 )

D ata represent M ean ±  S D  o f  3 replicates (1  e n=3)
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Table 4.23 Fatty acids com position  o f  H T -29 ce lls  in  three different classes

(phospholipids, neutral lipids and fatty acids fraction) w hen  incubated in the presence o f

¿10, c l 2  C L A for 120h

% FAME of c e l lu la r  l ip id

Fatty acids obtained Phospho-lipids Fraction Neutral lipids fraction Fatty acids fraction

C14 2 8 ± 0 2 3 4 ± 0 2 2 4 ± 0 1

C16 28 2 ± 6 24 4 ± 0 7* 30 4 ± 0 6*

C16 1 1 0 ± 0  1* 1 4 ± 0 02* 0 4 ± 0 04*

C18 49 7 ± 1 3 28 7 ± 0 3 57 7 ± 0  5

C18 1[/-10] 2 8 ± 0 4* 11 3 ±05* 1 5 ± 0 3*

Cl 8 1 [c-9] 4 8 ± 0 6* 5 2 ± 0 2* 1 7 ± 0 l*

LA 1 0 ± 0 2 0 9 ± 0 1* 0 2 ± 0 1

C20 0 5 ± 0 5 0 8 ± 0 04* 1 6 ± 0  1*

c9, /II-CLA 0 0 0

/10, c 12-CLA 5 1 ± 0 4* 22 2 ± 0 2* 3 9 ± 0 4*

/P, / 11-CLA 0 0 0

C20 4 2 8 ± 0 2 0 6 ± 0 04* 0 2 ± 0 2

C22 6 I 3 ± 0 1 1 2 ± 0 1 0 2 ± 0  01

LCSFA 81 2 ± 0 5* 57 3 ± 0 6* 92 0 ± 1 0

UFA 18 8 ± 0 5* 42 7 ± 0 6* 8 0 ± 1 0

MUFA 8 6 ± 0 4* 17 9 ± 0 7* 3 6 ± 0 2

UFA/LCSFA 0 2 ± 0 01 0 7 ± 0 02* 0 1 ± 0 0 1

MUFA/LCSFA 0 liO O l* 0 3 ± 0  01 0 04 ± 0 003

C16 1/C16 0 0 04 ± 0 002* 0 1 ± 0 003* 0 01 ± 0 002*

C18 I(c9)/C 18 0 0 1 ± 0 0 1 * 0 2 ± 0 005 * 0 03 ± 0  001*

♦D enotes results w hich are significantly different to untreated control) ce lls  (p<0 05)

D ata represent M ean ±  SD  o f  3 replicates (l e n=3)
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T ab le  4 24  Fatty acids com position  o f  H T -29 ce lls  in three different classes

(phospholipids, neutral lipids and fatty acids fraction) w hen  incubated m  the presence o f

/9 , ¿11 C L A for 120h

% FAME of cellular lipid

Fatty acids obtained Phospho-lipids Fraction Neutral lipids fraction Fatty acids fraction

C14 2 3 ±01* 2 5 ± 0 1* 1 8 ± 0 1*

C16 30 1 ± 0 7 25 7 ± 0 7 29 3 ± 0 5

C16 1 1 6 ± 0 1* 3 3 ± 0 03* 0 5 ± 0  01*

C18 59 0 ± 0 4* 44 4 ± 1 3* 63 5 ± 0 4*

C18 1[M0] 0 0 0

C18 1 [c-9] 3 6 ± 0 2* 6 6 ± 0 ? 1 3 ± 0  r

LA 0 0 9 ± 0 01* 0 1 ±001*

C20 0 1 0± 001 1 5 ± 0 1

c9, t\ 1-CLA 0 0 0

rlO, C12-CLA 0 0 0

19, i\ 1-CLA 1 2 ± 0 05* 13 8±03* 2 0 ± 0 1*

C20 4 1 7 ± 0  1* 0 5 ± 0 02* 0

C22 6 0 4 ± 0 01* 1 1 ± 0 04 0

LCSFA 91 4 ±0 2* 73 6 ± 0 5 96 1 ± 0  1*

UFA 8 6 ± 0 2* 26 4 ± 0 5 3 9 ± 0 1*

MUFA 5 2 ± 0 1* 10 0 ± 0 2* 1 8 ± 0  1*

UFA/LCSFA 0 1 ± 0 003* 0 4 ±  0 01 0 04 ± 0  001*

MUFA/LCSFA 0 1 ± 0 0 0 1 * 0 1 ± 0 004* 0 02 ± 0  001*

C16 1/C16 0 0 1 ± 0 001* 0 1 ± 0 005* 0 02 ± 0 0002*

C18 I(c9)/Cl8 0 0 1 ± 0 002* 0 1 ± 0 0 1 * 0 02 ± 0  001*

♦D enotes results w hich  are significantly different to  untreated control) ce lls  (p<0 05)

D ata represent M ean ±  SD  o f  3 replicates ( i e  n=3)

157



A

The hypothesis being tested in this work is that uptake and incorporation o f  CLA into 

cells can alter their lipid composition such that cellular processes controlling cancer cell 

growth are modulated. The overall objective o f  the work described in this chapter was to 

determine the extent to which CLA isomers and trans vaccenic acid, its putative precursor 

can modulate the lipid composition o f  HT-29 cells, a colon-derived human cancer cell 

line. To this end, it was important to first develop a validated procedure for separating 

and quantitating individual CLA isomers (c9, /1 1 CLA; t \0 y c \2  CLA and t 9 , t 11 CLA) 

and /-VA in cells.

Gas chromatography (GC) has been the method o f  choice for fatty acid analysis in 

biological samples for several decades. The GC technique employed here used a long 

capillary column to separate fatty acids as fatty acid methyl esters (FAME). The method 

separated FAMEs including CLA cis/trans, trans/as  and trans/irans isomers with good 

resolution on the basis o f  chain length, geometric configuration and numbers o f  double 

bonds. All FAM Es were quantitated by reference to an internal standard heptadecanoic 

acid (C l7:0) which was added to cell pellets before lipid extraction. Methylation was a 

two stage procedure involving alkali-catalysed hydrolysis in methanol for derivatising 

bound fatty acids in lipid extracts and BF3 /methanol for free fatty acids. This procedure 

was previously shown to suppress artificial isomerisation o f  cis trans CLA and trans/cis 

CLA to trans trans CLA (Igarashi et al., 2004; Yurwecz 1997; Koritala and Rohwedder 

1972). As presented above, the overall recover}' o f  C LA  was in the range 84.5-96.0% 

with 1.7-9.0%CV for overall reproducibility ranging between 89% and 96%. The data 

reported here is consistent with those reported in the literature when NaOH-BF3 reagent 

was used for methylation (Alonso et a!.. 2004, Kim et al.. 2000; Jiang et al., 1996). The 

former reported 83% recovery o f  CLA and 6.6%  CV for repeatability using capillary GC 

analysis while the latter reported 89.4% recovery with 3.6% CV. The method was 

therefore considered advantageous for analysis o f  CLA isomers in HT-29 cells.

The data presented in Table 4.10 in which HT-29 cancer cells were characterised by 

higher proportions o f  long chain saturated fatty acids such as stearate and palmitate

4.5 Discussion
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compared with unsaturated fatty acids suggests that these cells were capable o f 

synthesising their own supply o f  fatty acids via fatty acid synthase (FAS) Palmitate and 

stearate were also the predominant saturated fatty acids in phospholipids and neutral lipid 

fractions o f  HT-29 cells It is likely that FAS may be up regulated in HT-29 cells to meet 

the demands for oxidising power and/or membrane synthesis m response to cancer related 

overexpression o f  growth factors (e g Heregulin) and/or growth factor receptors (e g 

ErbB) It was also apparent that HT-29 cells possessed stearoyl-CoA desaturase activity 

by which monounsaturated fatty acids such as oleic acid and palmitoleic acid were 

produced from corresponding saturated fatty acyl Co As At 120h control cells showed a 6 

fold increase in the A9 desaturation index (the ratio o f  c9 monounsaturated fatty acids to 

saturated fatty acids) compared with 24h and was up 2 fold compared with 72h 

Palmitoleate and oleate were also the major (C16 0 26-30% in PL and 24-26%in NL and 

for C l 8 0 246-59% in PL and 23-44% in NL) monounsaturated fatty acids o f  the 

phospholipids and neutral lipid fraction The relatively lower amounts o f  polyunsaturated 

fatty acids relative to monounsaturated fatty acids suggest a much reduced level o f A5 

and A6 desaturase activities compared with A9 desaturase

It is apparent that it is possible to influence the lipid composition o f  cells by controlling 

the type o f lipids added to the culture medium Treatment with /-VA for 48h and 120h 

decreased the proportion o f palmitate and stearic acid in cells Similarity, all CLA 

treatments lowered total LCSFA levels at 24 to 72h suggesting that CLA and TVA 

treatments may be potent inhibitors o f  FAS After 24 and 72 h o f  culture ¿10, c 12 CLA 

and c9, t l  1 CLA acted as more potent inhibitors than the CLA mixture o f isomers or /9, 

t l  1 CLA The effects o f CLA treatments on FAS after 120h were not as marked

It has been proposed that FAS activity and/or expression in cancer cells is incapable o f 

being repressed by dietary fatty acids such as hnoleic acid and/or arachidomc acid 

(M enendez et a l , 2004) However the potential for specific unsaturated fatty acids to 

modulate FAS expression was recently reported when C l 8 3 PUFAs, namely GLA and 

ALA inhibited activity and expression o f  FAS in SK-Br3 breast cancer cells while 

supraphysiological levels o f  PUFAs such as LA and ARA had no effect (M enendez et a l ,
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2004) Although the specific mechanisms by which GLA and ALA target tumour 

associated FAS is not yet known their differential effects suggest that tumour associated 

FAS does not ignore all dietary fatty acids A  hypothetical model for understanding the 

constitutive upregulation o f FAS in cancer cells suggests that FAS regulation occurs 

through m odulation o f SR EB Plc which is driven by a constitutive hyperactivation o f  

upstream oncogenic cascades such as PI-3K1 AKT and M APK ERK  signalling pathways 

In light o f recent studies showing that CLA downregulated PI-3K/ AKT and MAPK 

(M ighetta et a l , 2006, Cho et a l , 2005) it would be o f interest to evaluate if  CLA also 

downregulates FAS via an effect on SREBPlc thus resulting m a CLA sensitivity

Treatments with CLA and ¿-VA also affected SCD activity in the HT-29 cell line Studies 

on the regulation o f  stearoyl-CoA desaturase and its role m metabolism have shown how 

critical this enzyme is in a variety o f  disease states including cancer The ratio o f 

saturated to monounsaturated fatty acids affects phospholipids composition and has been 

implicated in the regulation o f cell growth, apoptosis and differentiation through effects 

on membrane fluidity (Ntambi, 1999) and signal transduction (Miyazaki et a l , 2000)
i

As index o f  A-9 desaturation, 16 1/16 0 levels were reduced by all CLA treatments 

revealing that CLA isomers significantly inhibited A-9 desaturation from palmitate to 

palmitoleate Similarity, 18 1/18 0 levels were reduced by all CLA treatments except for 

c9, ¿11 CLA at 120h suggesting that CLA treatments can inhibit A9 desaturase The 

observation that c9, t \  1 CLA did not alter the 18 1/18 0 ratio at 120h is a reflection o f  the 

similar magnitude in reduction o f  C l8 0 and C l8 1 levels Interestingly when cells were 

treated with CLA isomers complexed with BSA all CLA treatments including c9, t\  1 

CLA reduced A9 desaturation index It was apparent that by 72h o f  culture both the CLA 

mixture and ¿10, c l2  CLA acted as more potent inhibitors o f  A9 desaturation than c9, ¿11 

CLA or ¿9, ¿11 CLA All CLA treatments also reduced the monounsaturated fatty acid 

composition o f  phospholipids and neutral lipid fractions to a similar extent as total lipids 

Inhibitory effects o f  ¿10, c \2  CLA treatments on A-9 desaturation are consistent with a 

previous report using human breast cancer cell lines (Choi et a l , 2002a), mammary gland 

o f  lactating mice (Lin et a l , 2004) and rat hepatoma cell line (Lee et a l , 1998) By
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contrast the effect o f  c9,¿11 CLA on inhibition o f desaturase activity appears to be cell 

specific The c9, ¿1 1 CLA isomer was without effect in adipocytes (Bretillon et a l , 1999) 

but did inhibit in breast cancer cell lines (Choi et a l , 2002a) It has been shown that ¿10, 

c l 2 CLA isomer but not c9, i l l  CLA decreased SCD1 mRNA expression, protein level 

and enzyme activity in 3T3-L1 preadipocytes The mechanism o f ¿10, c l2  CLA action 

on SCD gene expression could involve decreased SCD mRNA stability and/or gene 

transcription Determ ining whether CLA decreases the expression o f the SCD gene in 

HT-29 cells by reducing mRNA stability and whether the effect is isomer-specific 

requires further investigation

Oleic acid and palmitoleic acid represent the major monounsaturated fatty acids o f 

membrane phospholipids and triglycerides (neutral lipids) Expression o f SCD is highly 

regulated in response to changes in the cellular environment Amongst the many 

developmental, dietary, hormonal and environmental factors regulating SCD are PUFAs 

Many including CLA have been shown to inhibit transcription o f one o f the mam 

isoforms o f  SCD mRNA in mice (Choi et a l , 2000, Park et a l , 2000 and 1999b, Lee et 

a l , 1998) This study showing that long term incubation with CLA mixture for 120h 

decreased the ratio o f  oleate stearate and o f palmitoleate:palmitate is therefore consistent 

with in vivo studies showing inhibition o f  A9 desaturase (Lin et a l , 2004) It is proposed 

that a future study could verify the strategic importance o f a CLA-induced inhibition o f  

A9 desaturase i f  sterculic acid, an inhibitor o f  A9 desaturases was effective in inhibiting 

colon cancer cell growth

This study also clearly showed that ¿-VA was desaturated to c9, ¿11 CLA in HT-29 cells 

and that conversion was linear with respect to amount o f  ¿-VA presented to cells and 

duration o f treatment Desaturation normally introduces a single double bond between 

carbons 9 and 10 into a saturated fatty acyl CoA in a reaction involving NADPH, cyt b5 

reductase, cytbS and m olecular oxygen The current hypothesis is that the enzyme 

removes hydrogen atoms starting with one at the c9 position followed by removal o f  the 

second hydrogen atom from the c 10 position Desaturation o f C l 8 1 ¿11 was an unusual 

finding as the preferred substrates for insertion o f  a double bond are palmitoyl Co A and 

Stearoyl Co A However it confirms previously reported findings that endogenous
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synthesis o f  c9, ¿1 1 CLA from ¿-VA was dependent on A9 desaturase (Gomez et a l , 

2003, M iller et a l , 2001, A dlof et a l , 2000, Santora et a l , 2000, M ahfouz et a l , 1980, 

Pollard 1980) The latter quantified the desaturation o f ¿-VA to c9, ¿11 CLA in humans A 

recent human intervention study m which desaturation o f  two different C l 8 1 trans fatty 

acids (trans-11-18 1 and trans-12-18 1) was evaluated showed selective endogenous 

conversion o f  t-V  A  to c9, t l  1 CLA contributed as much as 25% to the human CLA pool

It was also apparent that /-VA at the highest concentration (IOOjuM) decreased the ratios 

o f both C18 1A9*C18 0 and C16 1A9:C16 0, suggesting that like CLA, /-VA may be 

inhibitory regulator o f SCD

The mechanism by which CLA and t-V  A  decrease scdl mRNA is not yet known It may 

be related to the position and orientation o f  one o f  the double bonds present m these 

PUFAs A polyunsaturated fatty acid responsive region index has been localized in the 

promoter o f  stearoyl-CoA de-saturase gene (reviewed in Miyazaki and Ntambi, 2003) 

W hether this region mediates the action o f CLA or t-V  A  on the transcnption o f the scdl 

gene awaits further investigation

The appearance o f  a peak that putatively corresponded to C l 8 1 ¿-10 was an unexpected 

finding in this study It was apparent only when cells were treated with either the CLA 

mixture o f isomers or the ¿10, c l 2 CLA W hether it could represent a metabolite o f ¿10, 

c l 2 CLA m human cells is not yet known Further studies are warranted when and if  a 

purified form becomes commercially available It is o f  interest however that species o f 

the genus Propionibactenum  isolated from mouse cecum produced /10, c l2  CLA and 

C18 1 ¿-10 when cultured m the presence o f  hnoleic acid (Verhulst et a l , 1987)

In conclusion we report that CLA changes fatty acid composition in HT-29 cells by 

decreasing saturated and monounsaturated fatty acids The ability to alter the fatty acid 

composition o f  tissues by reducing the levels o f  monounsaturated fatty acids (Lee et al 

1995) is one o f the effects o f CLA that has been observed consistently It is proposed that 

CLA treatments modify cellular fatty acid composition m HT-29 cells by decreasing the
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activity o f  FAS and stearoyl-CoA desaturase enzyme activity The potential to alter the 

ratio o f saturated to monounsaturated fatty acids may be important in maintaining 

membrane fluidity, alteration o f this ratio may underlie the inhibitory effects o f CLA on 

growth
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CHAPTER 5 

Final Discussion and Conclusion

164



r

Cancer is a leading cause o f death in human populations all over the world Food is an 

important factor in determining cancer incidence in many countries and regions Food 

can have both positive (carcinogenic) and negative (preventive) effects Improved food, 

better life styles and developments o f  functional food are all crucial to cancer prevention 

(Sugimura, 2002)

Increased knowledge in the nutritional sciences and an improved understanding o f  the 

cellular and molecular basis o f  cancer now make it possible to approach research on 

nutrient-gene interactions relevant to cancer prevention and treatment Dietary 

intervention represents an attractive, non-invasive means o f providing anticancer 

preventative and therapeutic benefits to at-risk individuals

Among the macronutnents, lipids have a unique property not shared with other nutrients, 

the type o f lipid ingested modulates the chemical composition o f cells to a very 

significant degree Novel functions for fatty acids and hpid-denved mediators, other than 

those encompassing membrane structure or provision o f  energy, have been elucidated 

Dietary fat has been shown to have profound effects on gene expression, leading to 

changes in cell metabolism, growth and cell differentiation (Jump and Clark, 1999, 

Grimaldi, 2001)

Insight into the relationship between CLA and cancer has come in the main from in vivo 

studies Experiments which permit the study, in isolation, o f the interactions between 

specific cell types and dietary components are a powerful tool when conducted in 

conjunction with animal or human studies The ability to culture epithelial tumor cells in 

vitro has proved very useful in acquiring information on potential mechanisms for the 

effects o f CLA on cancer Immortalised cell lines have genetic alterations that stabilise 

them for growth in culture but the ability to culture these cells in the presence o f fatty 

acids and to then measure cell behaviour over a relatively short period o f time allows for 

comprehensive studies with reproducible results that permit insight into the effects o f 

these compounds Considerations in the design o f  cell culture studies include cell line 

selection, cell culture condition, the vehicle used to deliver the fatty acid, cell seeding 

densities, timing o f  measurements, laboratory procedures and selection o f  biological
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endpoints relevant to human cancer Numerous down stream events can be assessed 

including changes in cellular signalling molecules and gene expression The fatty acid 

CLA has been shown to be effective at inhibiting carcinogenesis in multiple systems and 

at several stages including initiation, promotion, progression and metastasis (reviewed m 

Belury 2002b, reviewed in Scimeca 1999) By way o f comparison, fish oil has been 

shown to exhibit anticancer properties but efficacious levels usually exceed 10 % o f diet 

The ability o f  CLA to inhibit multiple models o f  carcinogenesis at much lower dietary 

levels (0 1 % w/w) appears to be specific for this group o f fatty acids and has led to 

extensive studies being carried out to probe mechanisms and functions that are likely to 

be unique among PUFAs

The anticarcinogenic effects o f  a CLA mixture, 3 single isomers o f CLA (c9, ¿1 1 CLA, 

¿10, c \2  CLA and /9, ¿1 1 CLA), ¿-VA and LA were exam ined in this study using HT-29 

human colon adenocarcmama cell line Sodium butyrate was used as positive control 

Results from this study revealed that the HT-29 cell line were sensitive to growth 

inhibitory effects o f not only the CLA mixture but also to ¿10, c l 2 CLA, c9 , ¿11 CLA and 

¿9, ¿11 CLA isomers in a dose and time dependant manner following 1, 3 and 5 days o f 

incubation with 10~200|iM concentration

¿-VA at 70jiM inhibited growth o f  human HT-29 cancer cells by 21% after 5 days which 

was much lower than all CLA treatments (45%-94%)and the anticarcinogenic effects o f 

¿-VA is dependent on its conversion to c9, ¿1 l-A9-desaturase enzyme in rats (Lock et a l , 

2004) Another study has also shown that vaccemc acid (8 4 jug/ml), in the form o f either 

cis or trans, significantly reduced growth o f  HT-29 human colon cancer cells by 23% 

when compared with control cells (Awad et a l , 1995)

It is important that cell culture conditions mimic the in vivo environment as best they can 

Serum albumin is a remarkable protein capable o f binding numerous ligands (Peters, 

1995, Brown and Shockley, 1982, Peters and Reed, 1978, Foster, 1977) Choi et a l , 

(2002b) suggest that albumin has adequate binding capacity for the low plasm a levels o f 

very long chain fatty acid (VLCFA) with 20 to 26 carbons, but the protein may not be
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able to bind longer chain VLCFA In general, albumin has an important role in regulating 

the colloid osmotic pressure in blood and serves as a vehicle for the transport o f  many 

substances in blood such as hormones, drugs, ammo acids and free fatty acids (Hastmark, 

2003) Albumin is the principal earner o f  fatty acids that are otherwise insoluble in 

circulating plasma (Emerson, 1989)

In a separate experiment m the present study, the effect o f  presenting CLA to cells as a 

complex with BSA was evaluated and compared with presentation o f CLA m free fatty 

acid form dissolved in ethanol (0 028 % v/v) CLA (50 and 100 juM) complexed with 

bovine serum albumin reduced growth o f HT-29 cells by 28-44 % relative to control but 

was significantly less toxic (p<0 05) than free CLA which inhibited growth by 42-85 % 

Similar results were observed with 3 single CLA isomers c9, ¿1 1 CLA (8-25%), ¿10, c l2  

CLA (33-43%) and t9, ¿11 CLA (70-86%) showed less growth inhibition as albumin 

complexes than free c9, ¿11 CLA (20-76%), ¿10, c \2  CLA (42-78%) and t9 , ¿11 CLA 

(91-93%) The present study have shown for the first time that ¿9, ¿1 1 CLA is the most 

potent cytotoxic CLA isomer in both free fatty acid form and as a complex with BSA ¿- 

VA didn’t show significant effect as with albumin complex

Sodium butyrate was inhibitory in a dose and time dependant manner and the combined 

effects o f  CLA and Sodium butyrate were greater than the effect o f  butyrate alone on the 

growth inhibition o f HT-29 cells CLA mixture o f  isomers, c9, ¿11 CLA and ¿10, c l2  

CLA in combination with Sodium butyrate significantly (p<0 05) increased the inhibition 

o f HT-29 cell growth compared to Sodium butyrate alone

In summary the present study showed that CLA mixture o f  isomer and three individual 

isomers c9, ¿11 CLA, ¿10, c l2  CLA and ¿9, ¿11CLA were cytotoxic to HT-29 cells when 

delivered as complex with BSA or delivered as dissolved in ethanol

D ata from Chapter 2 confirmed the anticancer activity o f  CLA isomers m HT-29 colon 

cancer cells The CLA-induced cytotoxicity may be related to epigenetic alterations m 

chromatin structure affecting accessibility to transcription factors, regulation o f  gene
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expression, modulation o f  specific signal transduction pathways through changes in 

protein kinase expression and activation, lipid peroxidation, alterations in the distribution 

o f  arachidomc acid among cellular lipids, an altered prostaglandin profile, induction o f 

ceramide, CEA and ALP which triggered a cascade o f  events leading to apoptosis and 

differentiation Differentiation can involve both morphological and functional alterations 

M orphological differentiation emphasises changes within the cellular structure and 

organisation o f  the cell while functional differentiation focuses on biochemical and 

enzymatic function (Rudolph et a l , 2001)

The present study has clearly shown that CLA inhibited HT-29 cell growth via apoptotic 

pathway The percentage o f apoptotic cells was detected by FACS which showed higher 

% o f apoptotic cell numbers by CLA mixture, c9, / l l  CLA, and /10, c l2  CLA compared 

with untreated control cells Cho et a l, (2003) also found a 3 fold increase in the 

percentage o f apoptotic cells compared with control after 3 days o f incubation o f HT-29 

cells with CLA The /9, t \  1 CLA showed higher % o f necrotic cells than apoptotic cells 

after 24h at 75jiM concentration suggesting that IC50 values differ in mode o f cell death

This study identified a reduced level o f HD AC (epigenetic regulation) and elevation o f 

two possible differentiation markers, ceramide and CEA, whereas ALP level was 

unchanged The results o f  this study highlight a possible association between 

sphingohpids and the reported growth inhibitory properties o f  CLA Increased levels o f 

ceramide were observed with CLA treatments at concentrations o f  75pM  after 3 day 

Recently W-3 PUFAs have been shown to inhibit the growth o f breast cancer cells 

mediated by sphingomyelinase activation (W u et a l , 2005) Sphingomyelinase is an 

enzyme that catalyzes the hydrolysis o f sphingomyelin (SM) to ceramide It is a 

possibility that CLA induced differentiation and apoptosis in this study results in the 

elevated concentration o f  cellular ceramide via sphingomyelinase pathway in HT-29 

cells Recent studies showed that inhibition o f  histone deacetylases (HDACs) elicits anti­

cancer effects in several tumor cell lines by inhibition o f  cell growth and inducing cell 

differentiation (Johnstone, et a l , 2002) Therefore, the ability o f  these fatty acids (CLA, '
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Sodium butyrate, t-V A  and LA) to induce CEA production and inhibit HDAC activity 

could be crucial Trans vaccemc acid didn’t show any effect

CEA is an intracellular adhesion glycoprotein (Grunt et a l , 1991) Several studies have 

shown that the up-regulation o f  CEA expression is associated with a differentiation 

induction-like response in human colon cancer cells (Chaakrabarty et a l , 1992 and 1990, 

Niles et a l , 1988, Denk et al 1972) It is apparent that all o f the fatty acids except t-V A  

and LA increased CEA relative to control cells as free and as fatty acids-albumm 

complexes O f the CLA isomers studied, the CLA mixture, ¿10, c l2  CLA and ¿9, / I I  

CLA exhibited the greatest potency c9 , t \  1 CLA also showed an increase but it did not 

attain statistical significance However it was elevated in adherent cells incubated with 

c9, t \  1 CLA-BSA complex W hen cell lysates from both floating and adherent cells were 

analysed, only t9 , t i l  CLA was stimulatory suggesting differential effects o f PUFAs on 

CEA expression between viable and non viable cells

In the present study it was observed that sodium butyrate treatment resulted a m marked 

increase in the activities o f alkaline phosphatase activity in o f HT-29 cells But none o f 

the CLA isomers, CLA mixture and t-V A  showed increased ALP activity Alkaline 

phosphatase is a well known differentiation marker o f  colonic epithelium Sodium 

butyrate -induced differentiation is associated with an increase in the alkaline 

phosphatase (ALP) activity (Siavoshian et a l , 1997, Barnard et a l , 1992)

The mechamsms by which committed cells are allocated to the different cell lineages o f 

the intestine are poorly understood (Velcich et a l , 1995) HT-29 cells can express, upon 

exposure to  the appropriate inducers, distinct intestinal specific markers, they are, 

therefore, considered multi-potent, similar to the stem cells o f  the crypt It was observed 

that, in HT-29 cells, different inducers (12-O-tetradecanoylphorboM  3-acetate, forskolin, 

and sodium butyrate) modulate specific sets o f  markers Forskolin induced the expression 

o f  both mucin gene MUC2 and M UC3, whereas 12-O-tetradecanoylphorbol-13-acetate is 

capable o f  inducing only M UC2, and sodium butyrate, only MUC3 gene expression 

Carcinoembryomc antigen, a marker common to enterocytes and goblet cells, can be
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induced by all the agents, whereas the alkaline phosphatase gene, the expression o f which 

is characteristic o f  enterocytes, was responsive solely to sodium butyrate treatment 

(Velcich et a l , 1995) o f HT-29 cells It was previously reported that ALP activity was 

not elevated when HT-29 cells treated with tumour necrosis factor alpha (TN F-a) or 

hexamethylene bisacetamide (HMBA) but elevated by sodium butyrate treatment 

(Kovaikova et a l , 2000, Schroy et a l , 1994) and all those agents inhibited growth o f HT- 

29 cells which suggested that inhibitory effects o f  HMBA and TN F-a on growth and 

differentiation o f  HT-29 cells are mediated by pathways independent o f  butyrate and 

ALP activity Therefore the present study suggests that inhibitory effects o f  CLA on 

growth and differentiation o f  HT-29 cells may be mediated by pathways independent o f 

butyrate and ALP activity Recently Lampen et a l , (2005) provided evidence that the 

cellular and molecular effects o f  c9, / I I  CLA may be related to promotion o f  a more 

differentiated phenotype in CaCo2 colomc epithelial cells by the induction o f the 

expression o f  alkaline phosphatase mRNA and its specific enzyme activity But there are 

no available data for CLA on ALP activity in HT-29 cells in the literature so far

Data from this study suggest that there is an association exists between decreased HD AC 

activity, increased ceramide level, increased CEA level and growth suppression in the 

HT-29 cells treated with the various CLA isomers

In summary this study proposed that CEA and ceramide level o f  HT-29 cells may be 

regulated by CLA The regulation o f apoptosis by means o f  dietary agents is a novel and 

promising therapeutic approach for cancer treatment Given the importance o f apoptosis 

m cancer development, apoptosis-inducing lipids could conceivably have an important 

role in adjunct anticancer therapy The potential clinical usefulness o f  a CLA based 

approach to cancer therapy requires further study

Endogenous fatty-acid synthesis could be a significant source o f fatty acids for growth o f 

tum or cells, considering the rates o f free fatty acid and plasma tnacylglycerol transport 

from the host to the tum or cells (reviewed in Kuhajda, 2000) Fatty-acid synthesis is 

common to all plants and animals Fatty acids are involved in diverse functions in cells

170



from energy storage and membrane structure to signal transduction cascades and protein 

acylation (reviewed in Kuhajda, 2000)

Fatty acid synthesis are carried out by the multiple enzymatic activities o f  fatty acid 

synthase (FAS) FAS is downregulated in most normal human tissues because o f the fat 

in human diet In contrast, FAS is often highly expressed m human cancers High levels 

o f  FAS expression have been found in many human cancers including breast, prostate, 

colon, ovary, endometrium, thyroid, oral cavity, esophagus, bladder, retinoblastoma and 

melanoma ((Shah, et a l , 2006, Innocenzi et a l , 2003, Nemoto et al , 2001, reviewed in 

Kuhajda, 2000, Alo e t a l , 1996)

The association o f FAS expression and tum or virulence led to the conception that FAS 

expression and activity may be vital for the growth and survival o f human cancer cells 

Studies have demonstrated that inhibition o f  FAS is selectively cytotoxic to human 

cancer cells in vivo (reviewed in Kuhajda, 2000) Inhibition o f fatty-acid synthesis by 

CLA could be a means to lim it cytotoxic therapy to proliferating ceils with high levels o f 

FAS This strategy would likely target cancer cells and leave the normal proliferating 

cellular compartments in gastrointestinal tract intact

Uptake and incorporation o f CLA into cells can alter their lipid composition such that 

cellular processes controlling cancer cell growth are modulated Metabolism o f CLA by 

desaturases and elongation enzymes has been well documented now Conjugated 

metabolites have been identified m  numerous tissues This knowledge opens up a new 

avenue o f  research which is related to the question o f  whether the metabolism o f CLA is 

essential for its anticancer activity I f  purified metabolites become available for cell 

culture studies, it would be important to conduct studies to delineate whether CLA or one 

o f its metabolites is the proximate effector molecule In the long term, elucidation o f  the 

mechanisms by which individual CLA isomers elicit their putative beneficial effects 

would permit studies to investigate evidence o f  such effects in cancer patients receiving 

them as dietary supplements
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Stearoyl-CoA desaturase (SCD) which is the rate-limiting enzyme catalyzing the 

synthesis o f  monounsaturated fatty acids, mainly oleate (18 1 ) and palmitoleate (16 1 ) 

The ratio o f saturated to monounsaturated fatty acids affects phospholipid composition 

and alteration in this ratio has been implicated in a variety o f disease states including 

cardiovascular disease, obesity, diabetes, neurological disease, and cancer For this 

reason, the expression o f  SCD is o f  physiological significance in both normal and disease 

states (reviewed in Ntambi and Miyazaki, 2004) Large numbers o f  experimental data 

show that tumour cell growth can be modulated by individual fatty acids (G uthne and 

Carroll, 1999, Zhou and Blackburn, 1999) Abnormal activation o f  SCD contributes to 

the development o f  many types o f cancer, and downregulation o f these pathways by CLA 

could have important therapeutic benefits

This study determined the extent to which CLA isomers and trans vaccemc acid, its 

putative precursor can modulate the lipid composition o f HT-29 cells, a colon-derived 

human cancer cell line Gas chromatography (GC) has been the method o f  choice for 

fatty acid analysis in biological samples for several decades The present study validated 

a GC methodology for the quantification o f  CLA in cancer cells Initially the accuracy 

and separation power o f  the method was established by the successive analysis o f fatty 

acid standards until satisfactory repeatability and reproducibility was obtained

The GC technique employed here used a long capillary column to separate fatty acids as 

fatty acid methyl esters (FAME) The method separated FAMEs including CLA cis/transy 

trans/cis and trans/trans isomers with good resolution on the basis o f chain length, 

geometric configuration and numbers o f double bonds M ethylation was a two stage 

procedure involving alkali-catalysed hydrolysis in methanol for denvatising bound fatty 

acids in lipid extracts and BF3 /methanol for free fatty acids This procedure was 

previously shown to suppress artificial isomensation o f cis/trans CLA and trans/cis CLA 

to trans/trans CLA (Yurwecz, 1997, Igarashi et a l 2004, Koritala and Rohwedder, 1972) 

As presented above, the overall recovery o f CLA was in the range 84 5-96 0% with 1 7- 

9 0%CV for overall reproducibility ranging between 89% and 96% The data reported 

here is consistent w ith those reported in the literature when NaOH-BF3 reagent was used
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for methylation (Alonso et a l , 2004, Kim and Liu, 2000, Jiang et a l , 1996) However a 

recent review demonstrated that BF3/M eOH derivatization method is not suitable for 

CL A quantification because cis, m m s-conjugated fatty acids are lost (significant increase 

in the t, t CLA isomers occurs) and methoxy artifacts are formed when BF3/MeOH was 

mixed with lipid extract and heated with high temperature (100°C) for 2-90 m in rather 

than room temperature (Aldai et a l , 2005) B ut in the present study used at room 

temperature condition for 30 minutes which was shown to suppress artificial 

isomerisation o f  as/trans  CLA and trans/cis CLA to trans/trans CLA (Igarashi et a l , 

2004, Yurwecz 1997, K ontala and Rohwedder 1972)

The data presented in this study in which HT-29 cancer cells were characterised by 

higher proportions o f  long chain saturated fatty acids such as stearate acid and palmitate 

compared with unsaturated fatty acids suggests that these cells were capable o f 

synthesising their own supply o f  fatty acids via fatty acid synthase (FAS) Palmitate and 

stearate were also the predominant saturated fatty acids in phospholipids and neutral lipid 

fractions o f HT-29 cells It was also apparent that HT-29 cells possessed stearoyl-CoA 

desaturase activity by which monounsaturated fatty acids such as oleic acid and 

palmitoleic acid were produced from corresponding saturated fatty acyl CoAs

This study also suggests that it is possible to influence the lipid composition o f cells by 

controlling the type o f lipids added to the culture medium Treatment with t-VA 

decreased the proportion o f palmitate and stearic acid in cells Similarity, all CLA 

treatments lowered total LCSFA levels suggesting that CLA and t-VA treatments may be 

potent inhibitors o f FAS After 24 and 72 h o f culture ¿10, c \2  CLA and c9, t i l  CLA 

acted as m ore potent FAS inhibitors than the CLA mixture o f  isomers or /9, t l  1CLA

D ata from this study demonstrate that HT-29 cancer cells have the enzymic capability to 

convert t-V A  to c9, t l  1 CLA and we postulate that the growth suppression and cellular 

responses o f HT-29 cell line are likely to be mediated via t-V A  desaturation to c9, ¿11- 

CLA via A9-desaturase However, it is impossible to rule out the possibility that t-V A  

may have an independent effect itself Corresponding experiments in which cells are
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simultaneously treated with cyclopropene fatty acid (an inhibitor o f  A9-desaturase) may 

determine whether the anticancer effect o f ¿-VA can be negated Present study revealed 

that, the levels o f  C16 1 and C l8 1 were reduced by 80% and 64% (p<0 05), the ratios o f 

C16 1 A9/C16 0 and C18 1A9/C18 0 were reduced by 75% and 62% respectively 

suggesting strong inhibition o f  A9 desaturase by ¿10, c l2  CLA in HT-29 cells The ¿10, 

c 12-CLA isomer has also been shown to inhibit the activity o f A9-desaturase in human 

cultured hepatoblastoma cells (Choi et a l , 2001) It may be useful to treat HT-29 cells 

with ¿-VA along with a sub-lethal dose o f  ¿10, cl2-C LA  capable o f  inhibiting the activity 

o f  A9-desaturase and to subsequently examine the effect on cell viability and CLA- 

responsive markers To establish the importance o f  ¿-VA as a precursor o f  endogenous 

CLA, it is imperative to conduct studies in humans Both descnptive data (l e the 

activity o f  A9-desaturase at various tissue sites) and quantitative studies should be 

undertaken It may also be useful to determine the levels o f  FAS and A9-desaturase in 

normal and tumor cell lines and in tumor biopsies using RT-PCR

It has been hypothesised that FAS activity and/or expression m cancer cells is incapable 

o f  being repressed by dietary fatty acids such as linoleic acid and/or arachidonic acid 

However the potential for specific unsaturated fatty acids to modulate FAS expression 

was recently reported when C l8 3 PUFAs, namely GLA and ALA inhibited activity and 

expression o f FAS in SK-Br3 breast cancer cells while supraphysiological levels o f 

PUFAs such as LA and ARA had no effect Although the specific mechanisms by which 

GLA and ALA target tum our associated FAS is not yet known their differential effects 

suggest that tumour associated FAS does not ignore all dietary fatty acids A hypothetical 

model for understanding the constitutive upregulation o f  FAS in cancer cells suggests 

that FAS regulation occurs thro modulation o f  SR EB Plc which is driven by a 

constitutive hyperactivation o f  upstream oncogenic cascades such as PI-3K/ AKT and 

MAPK ERK signalling pathways In light o f  recent studies showing that CLA 

downregulated AKT it would be o f  interest to evaluate if  CLA also downregulates FAS 

via an effect on its upstream regulator, SREBPlc thus resulting in a CLA sensitivity
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Because CLA isomers have been identified as having effects on cellular processes such 

as proliferation, apoptosis and differentiation, it may be opportune to examine if  CLA 

isomers may be possible chemotherapeutic agents, or potential adjuvants to radio-or 

chemotherapy Resistance to chemotherapy drugs is a significant problem in the 

treatment o f  cancer It has been indicated that changes m the fluidity o f the membranes 

due to certain lipids can reduce or completely prevent the efflux o f  cancer drugs out o f 

cells (Schuldes et a l , 2000) Plasm a membrane fatty acid composition influences how 

lipophilic drugs diffuse through the membrane The more soluble the drug is m the 

membrane the more it can diffuse through Increased unsaturation decreases lipid 

molecular packing Preclinical trials have shown that certain PUFAs may enhance the 

cytotoxicity o f several antineoplastic agents (Conklm, 2002) Polyunsaturated fatty acids 

such as DHA, eicosapentaenoic (EPA), gamma hnolemc acid (GLA) and pannaric acid, 

have been shown to be cytotoxic to drug-resistant tum our cells by inducing oxidative 

stress and altering the activity o f  cell membrane bound enzymes such as sodium- 

potassium-ATPase and 5 ’-nucleotidase and the concentration o f  protein kinase C, central 

to reduction o f  intracellular drug levels (Pallares-Trujillo et a l , 2000, Das et a l , 1997, 

Bums and Spector, 1994) Because o f enhanced cellular growth rates, certain membrane 

domains o f tumour cells should respond rapidly to circulating fatty acids Altering the 

physical and functional properties o f  tumor cell membranes, by enrichment with CLA 

alone or in combination with other PUFAs (EPA, DHA and GLA), may increase the 

response to chemotherapy and may, to some degree reverse the resistance o f cancer cells 

to certain chemotherapeutic agents Possible synergism in the action o f anticancer drugs 

and CLA to enhance the intracellular concentration o f  these drugs warrant investigation 

A positive outcome from these types o f  studies could provide a sound scientific basis for 

combining a lipid based approach with traditional chemotherapy in the treatment o f 

cancer Patients with cancer could ingest defined diets containing CLA and other PUFAs

The possibility that CLA may be considered as a potential dietary component for use in 

nutritional prevention o f colon cancer is an attractive issue However, to date beneficial 

effects o f CLA have been demonstrated in animal experimental models and in vitro 

systems only Even though there is one epidemiological evidence in the literature so far
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linking CLA intake and colon tumour prevention in humans, more studies are required to 

confirm this effect Further studies are needed to identify new mechamsms and to 

evaluate and verify these mechanisms m humans to gain more understanding o f the 

effects o f CLA intake on cancer risk in real-life situations Epidemiologic studies with 

more detailed information about CLA exposures and improved analytic approaches that 

take into account the biological interplay between several nutritional factors m cancer 

development are needed The amount o f dietary CLA required, the duration o f 

intervention, as well as the most appropriate stages in life for such an intervention are 

issues that are not yet known The efficacy o f  CLA supplementation to inhibit tumour 

growth in cancer patients needs to be evaluated Analysis o f  normal and malignant tissues 

post surgery would give a novel insight into the use o f CLA as adjuncts to conventional 

therapies

Biomarkers o f  CLA intake need to be identified and validated The physiological 

consequences o f CLA intake throughout the lifespan are currently not understood 

Evidence suggests that early programming during foetal growth, infancy and childhood 

might decrease risk for chronic diseases in later life (Lusas, 1991) Thus, a better and 

more accurate understanding o f  CLA intakes and factors influencing CLA consumption 

throughout the lifespan might lend insight into what might be considered appropriate 

dietary recommendations for this potential nutrient

The goals o f  future research must therefore be to examine the selectivity o f the anti 

proliferative effect o f  CLA on a wide variety o f  cell types including appropriate normal 

control cells, to examine the selectivity o f organ site carcinogenesis intervention by CLA, 

to carry out epidemiological studies o f  c9, t \  1 CLA exposure and cancer risk and to make 

use o f  genomic technology to identify signaling pathways and molecular targets that are 

relevant to the action o f CLA in cancer prevention Cancer-associated surrogate markers 

may then be investigated m controlled clinical trials to evaluate responsiveness to CLA It 

is vital that the efficacy o f  the individual CLA isomers in vivo  be evaluated and the 

optimal levels o f  these isomers required for beneficial effects determined Identification 

o f  modulated mechamsms and tangible anti-cancer benefits will give impetus to food
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manufacturers to incorporate CLA as a nutraceutical in functional foods which would 

enhance the health o f  the general population

The term "functional food" implies that the food has some identified value leading to 

health benefits, including reduced risk for disease, for the person consuming it (Reviewed 

in American Dietetic Association, 2004)

According to this definition, unmodified whole foods such as fruits and vegetables 

represent the simplest form o f a functional food M odified foods, including those that 

have been fortified with nutrients or enhanced with phytochemicals or botamcals, also 

fall withm the realm o f  functional foods

The scientific evidence for functional foods and their physiologically active components 

can be categorized into four distinct areas (a) clinical trials, (b) animal studies, (c) 

experimental in vitro laboratory studies, and (d) epidemiologic studies

Recent review (Reviewed in American Dietetic Association, 2004) demonstrated that, 

dairy products and meat from ruminant animals containing conjugated lmoleic acid 

(CLA), which may alter carcinogenesis (Belury, 200b and 1995) a fourth category o f 

functional foods For CLA, in vitro, in vivo, or epidemiologic research is available to 

support their health benefits, however, no health claim exists, partially because o f  the 

limited or improperly designed clinical trial data or lack o f scientific agreement about the 

strength o f the evidence (Reviewed in American Dietetic Association, 2004) Ideally, the 

evaluation o f  the efficacy o f  individual functional foods must be completed using a 

scientifically valid nsk-benefit model that clearly assesses all physiologic effects, both 

positive and negative Review o f the in vitro, animal, epidemiologic, and clinical data is 

essential before functional foods or food components are marketed to consumers for their 

health-promoting qualities (ILSI North American Technical Committee on Food 

Components for Health Promotion 2002) Therefore to develop CLA enriched functional 

foods as anticarcinogemc more research has to be done to get adequate data essential for 

functional foods
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