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Abstract

Previous work has shown that treatment of the lung cell carcinoma cell line DLKP 
with the differentiation modulating agent bromodeoxyuridine (BrdU) causes post- 
transcriptionally regulated changes in the expression of growth and differentiation 
related genes These changes in gene expression were found to coincide with an 
increase in the level of expression and phosphorylation of the translation initiation 
factor eIF-4E In this study we have overexpressed eIF4E in DLKP cells to determine 
its role in mediating the changes seen in BrdU treatment and what effects it may have 
on the growth of lung cancer cells in general as studies have shown eIF4E to play a 
role in regulating gene expression in carcinogenesis We also analysed the 
overexpression of Ser209 mutated non-phosphorylatable eIF4E in DLKP cells to 
determine the role of the eIF4E Ser209 (S209) phosphorylation site in regulating 
translational changes in gene expression and functional changes in DLKP cells The 
exact role of eIF4E Ser209 phosphorylation in translation initiation is currently 
unknown and conflicting views have emerged as to whether it is necessary for 
regulation of translation by eIF4E

Stable transfections were carried out using wild type (4E), S209 mutant (4E-S209) 
and HA (hemagluttinm) epitope-tagged human eIF4E constructs Stable transfections 
were also earned using empty pcDNA plasmid vector as a negative control Western 
blot analysis showed that transfected HA-tagged eEF4E protein was effectively 
overexpressed in DLKP cells The transfected cells were cloned out by limiting 
dilution and clones were chosen for further analysis Two clones expressing wild type 
HA tagged eIF4E, two clones expressing HA-tagged 4E-S209 phosphorylation site 
mutant and two pcDNA vector transfected control clones have been analysed in this 
study

An eDF4E overexpressing clone which expresses a high level of transfected protein 
showed increased keratin 8 expression These cells also showed an increase in pi 
integrm expression which was not seen in other eIF4E overexpressing clones 
indicating high levels of 4E overexpression may induce expression of this protein 
Immunocytochemical analysis of alpha integrm subunits showed increased expression 
of alpha 3 integrm in eIF4E overexpressing cells

Invasion assays were performed on eIF4E overexpressing cells as increased 4E 
expression has been detected in certain cancers The eIF4E overexpressing clone 
which expresses a high level of transfected protein displayed a large increase in 
invasiveness compared to control transfected cells whereas other eIF4E transfected 
clones did not display increased mvasiveness eIF4E-S209 mutant transfected cells 
showed similar levels of mvasiveness compared to controls

v

Large scale analysis of the effects of eIF4E overexpression on protein expression 
levels was undertaken using the novel 2D-DIGE (2 dimensional-differential in gel 
analysis) two dimensional electrophoresis technique Differentially expressed proteins 
were identified using mass-spectrometry based techniques Among the proteins 
identified were proteins involved in mRNA processing, protein degradation and 
cytoskeletai regulation Of particular interest, were a number of proteins involved in 
regulating cytoskeletai dynamics whose expression was down regulated in eIF4E-



S209 mutant overexpressing cells A common regulatory element in the mRNA of 
these proteins was identified which led to the development of a hypothesis for 
localised translation of these proteins The possible involvement of eIF4E in 
regulation of localised translation of these proteins represents a novel aspect of 
translational regulation by eIF4E which may contribute to its role in oncogenesis 
Changes seen in the expression of proteins involved in mRNA processing and protein 
degradation indicate that other post-transcriptional processes apart from translational 
regulation may play an important role in regulating gene expression in these cells 
Oligonucleotide microarray analysis of the mRNA expression levels of genes in 
eIF4E overexpressing cells has also been conducted to determine the effects of eIF4E 
overexpression on transcriptional regulation downstream of its effects on translation 
regulation Microarray analysis showed that there are changes in the expression of a 
large number of genes with diverse cellular functions This indicates changes in 
transcriptional regulation occur as a result of eEF4E overexpression mRNA 
expression levels of a large number of genes involved in cytoskeletai regulation were 
found to be altered in eIF4E and eIF4E-S209 mutant overexpressing cells

Microarray analysis showed that the integrm signalling gene FAK (focal adhesion 
kinase) was downregulated in both 4E and 4E S209 overexpesssing cells Western 
blot analysis showed this gene was also downregulated at the protein level Immuno- 
fluorescent staining of FAK showed the localisation of this protein was altered in 
eIF4E and eIF4E-S209 mutant overexpressing cells and may affect the growth and 
mvasiveness of these cells

A large number of genes and proteins found to be altered in proteomic and microarray 
anlysis were involved in regulating actin cytoskeletai dynamics Cells were therefore 
analysed for expression of actin cytoskeletai structures Major changes were detected 
in actin cytoskeletai structures in an eIF4E overexpressing clone which expresses a 
high level of transfected protein

We have therefore conducted an in depth analysis into the regulation of growth and 
differentiation related gene expression by eIF4E
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1.1 Translation

Translation has come to be recognised as an important site of regulation of gene 

expression, with the initiation stage as the most commonly observed target for 

physiological control Modulation of initiation can influence both the overall global 

rate of protein synthesis and also the relative rates of synthesis of different proteins, 

frequently control at these two levels is superimposed Control of the overall rate of 

protein synthesis is potentially important in achieving cell growth during the G1 phase 

of the cell cycle, while the concentrations of an increasing number of specific proteins 

involved in the control of cell proliferation or differentiation are now thought to be 

modulated at least in part at the translational level (Pain, 1996)

Two particular steps of the initiation pathway appear to be hot spots for physiological 

regulation, the binding of Met-tRNA to the 40S nbosomal subunit, mediated by eIF2, 

and the initial binding of the 43 S preinitiation complex to the 5’ end of the mRNA, 

mediated by eIF4E and associated factors The first of these, which precedes mRNA 

involvement, is mainly, but not exclusively, relevant to regulation of the overall 

global rate of protein synthesis, whereas the mRNA binding step can, in addition, 

exert preferential effects on the translation of different mRNAs (Pain, 1996) Two 

themes which repeatedly surface during investigation of translational regulation are 

the phosphorylation of initiation factors and also the influence of structural features in 

the 5* and 3’ untranslated regions of mRNA molecules The influence of these two 

themes may be combined where features of an mRNA molecule render its translation 

especially sensitive to modulation of the activity of particular initiation factors 

Several of the initiation factors are phosphoproteins but the clearest links between 

phosphorylation and the regulation of translation concern the factors eIF2 and eIF4E 

Regulatory features in mRNA molecules include structures that may act directly (e g 

by impeding 40S subunit binding or scanning) or indirectly, by providing a binding 

site for a tram-acting protein (Pain, 1996)
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1.1.1 Mechanism of translation initiation

Initiation of protein synthesis involves the sequential binding of first the 40S and then 

the 60S nbosomal subunit to a messenger RNA molecule The process in eukaryotes 

can be divided into three stages (1) association of initiator tRNA (Met- tRNA) and 

several initiation factors with the 40S nbosomal subunit to form the 43 S preinitiation 

complex, (2) the binding of this complex to mRNA followed by its migration to the 

correct AUG initiation codon, and (3) the addition of the 60S nbosomal subunit to 

assemble an 80S nbosome at the initiation codon, ready to commence translation of 

the coding sequence This last step requires the pnor release of the initiation factors 

bound to the 40S nbosomal subunit dunng the earlier stages, these factors are then 

recycled to catalyse further initiation events (Pam, 1996)

1.1.2 eIF4E
All known RNA polymerase II transcripts are modified cotranscriptionally by 

addition of an inverted 7-methylguanosine, linked by a 5’-55 tnphosphate bridge to 

the first transcribed residue This group known as the ‘cap’, functions in splicing, 

polyadenylation, nuclear export, stability and recognition of mRNA for translation 

(Lewis and Izaurralde, 1997) In 1978, a 24 kDa cytoplasmic protein was found to 

cross link specifically to a cap analogue, and was designated the 24 K cap binding 

protein, later renamed eIF4E eIF4E was able to reverse the inhibitory effect of cap 

analogue on mRNA translation and so was shown to be directly involved in the 

initiation stage of translation (McKendrick et a l , 1999)

The cap plays a critical role in protein synthesis by demarcating the 5’ terminus of 

mRNA, this ‘marker’ interacts with the initiation factor eIF4E, which, through its 

interaction with other translation initiation factors recruits the translational machinery 

to the 5’ end of mRNAs

3



1 1.2 1 eIF4E Structure

The 3D structure of eIF4E resembles a cupped hand or glove concave structure and 

consists of eight antiparallel (3 strands, three a  helices and ten loop structures The 

eight antiparallel J3 strands form a curved P sheet with the three a  helices located at 

the back of this structure providing it with support (Marcotngiano et a l , 1997, Tomoo 

et a l , 2003) The concave backbone structure provides a scaffold for the mRNA cap 

recognition pocket consisting of three receiving parts for the 5’-terminal m7G base, 

the triphosphate and the second nucleotide The C- and N- terminal regions of the 

protein are flexible and are important for regulation of eIF4E function The C- 

terminal flexible region has been shown to function as a receiving pocket for the 

second nucleotide and also contains the Ser209 regulatory phosphorylation site 

(Tomoo et a l , 2003) The N- terminal flexible region is involved in the binding of the 

4E-BP repressor proteins and the eIF4G scaffold protein (Tomoo et a l , 2003, Gross 

et a l , 2003)

eIF4E functions in translation initiation as part of a tnmeric complex known as eIF4F 

eIF4F consists of the cap binding protein eIF4E, eIF4A (an RNA helicase), and 

eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4 A 

The N-terminal third of eIF4G interacts with eIF4E while the C-terminal two thirds 

contains two separate binding sites for eIF4A and one binding site for eIF3 It is 

thought that through its interaction with eIF4E, eDF4G functions by bringing the 

eIF4A helicase activity to the mRNA 5’ end to facilitate nbosome binding by 

unwinding mRNA 5’ end secondary structure eIF4G also contains binding sites for 

the proteins PABP (poly A binding protein) and the Mnk eIF4E kinases PABP is a 

protein that simultaneously binds to the poly(A) structure at the 3 ’ terminus of an 

mRNA and also the eIF4G scaffold protein which brings about circularisation of the 

mRNA and may contribute to increased translational efficiency (Fig 1) 

eIF4E is the least abundant of all initiation factors and under most circumstances the 

availability of eIF4E is considered to be the rate limiting factor in the binding of 

ribosomes to the mRNA Consequently eIF4E is a major target for regulation

4



STOP

PABP

Figure 1. Recruitment of initiation complexes to the 5’-cap structure.
eIF4E binds to the 5’-5’ m7GpppG cap structure (represented by a black dot) at the 5’- 
end of the messenger RNA. Binding of the scaffold protein eIF4G to the dorsal site of 
eIF4E allows recruitment of several other factors to the mRNA, e.g., eEF4A, the 
poly(A)-binding protein (PABP), which binds to the N-terminus of eIF4G, and the 
Mnks which bind to the C-terminus of eIF4G. A central domain in eIF4G binds eIF3, 
which brings in the 40S small ribosomal subunit and consequently eIF2 with the 
initiator methionyl tRNA (Met-tRNAiMet). The helicase activity of eIF4A is thought to 
be required for unwinding of secondary structures (represented by loop structure 
above) in the 5’UTR region, allowing subsequent movement of the whole complex 
along the 5’-UTR, until the initiation codon (AUG) of the open reading frame is 
recognised by the anticodon of the Met-tRNA. The interaction of the mRNA with 
PABP through its poly(A)-tail and the binding of PABP to eIF4G circularises the 
mRNA, a process that is thought to be important for re-initiation of translation or may 
be required for verification that the mRNA is full length. The open reading frame of 
the mRNA is shown as a thick line. Initiation factors are abbreviated. The arrow 
indicates the phosphorylation of eIF4E at Ser209 by the Mnks. The trident structure 
represents the initiator tRNAiMet.
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1 1 2  2 eIF4E Regulation

Recruitment of the translational machinery to mRNA is responsive to a variety of 

extracellular stimuli, including exposure to hormones, growth factors and cytokines, 

nutrient availability and various types of cellular stress

eIF4E activity is regulated at multiple levels, (1) via modulation of its transcription,

(2) by phosphorylation of the eIF4E protein and (3) through its interaction with a 

family of translational repressor proteins

1 1 2  2 1 Transcriptional Regulation

Although the mechanism regulating transcription of the eIF4E gene is not completely 

understood, the eIF4E promoter was shown to contain two bona fide myc binding 

sites, both of which are required for expression of a heterologous reporter gene (Jones 

et a l , 1996) Consistent with this observation eIF4E mRNA expression is upregulated 

in cells overexpressing C-myc and transcription of the eIF4E gene is responsive to 

activation of a myc-estrogen fusion protein (Rosenwald et a l , 1993)

Studies have shown that myc protein is an important regulator of cell proliferation and 

growth (Adhikary and Ellers, 2005) Since eIF4E itself plays a key role m cell growth 

and proliferation, it is possible that eIF4E is an important downstream target of myc

1 1 2 2 2 eIF4E Phosphorylation Regulation

Another mechanism for regulation of eIF4E is by phosphorylation at its major 

physiological phosphorylation site, Ser 209 Phosphorylation of eEF4E on Ser 209 is 

increased following treatment of cells with growth factors, hormones and mitogens 

(Pyrronet et a l , 1999) These effects appear to be mediated via the MEK/Erk 

pathway, as they are blocked by inhibitors of MEK (Fig 2) (Flynn and Proud, 1996, 

Wang et a l , 1998, Waskiewicz et a l , 1999) Certain cytokines and stressful 

conditions also increase the phosphorylation of eIF4E and these effects appear to 

involve the p38 MAP kinase pathway (Wang et a l , 1998, Morley and McKendrick,

1997) Although certain other stresses (e g heat shock oxidative stress or osmotic 

stress) also activate the p38 MAP kinase pathway, they do not increase 

phosphorylation of eIF4E (Wang et a l , 1998) This is probably due to the fact that
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they cause loss of eIF4F complexes, as a result of déphosphorylation of 4E-BP1, 

which then sequesters eIF4E (Wang et a l , 1998, Patel et a l , 2002), separating it from 

the Mnk eIF4E kinases bound to eIF4G

Initial reports on the effects of eIF4E phosphorylation claimed phosphorylated eIF4E 

had a higher binding affinity for the cap structure and this contributed to increased 

translation initiation (Bu et a l , 1993, Minich et a l , 1994)

Analysis of the co-crystal X-ray structure of eIF4E bound to m7GDP led to a model to 

account for the reported increased cap affinity engendered by Ser 209 

phosphorylation (Marcotngiano et a l , 1997) According to the crystal structure it was 

considered possible that Lys 159 could form a salt bridge with phosphorylated Ser 

209, creating a retractable clamp over the mRNA, thus stabilising the interaction 

between the mRNA 5’ end and eIF4E This original crystallographic analysis 

conducted by Marcotngiano et al (1997) involved analysing eIF4E bound to the cap 

analog m7GDP rather than the complete cap structure or a capped oligonucleotide 

More recent crystallographic studies by Tomoo etal (2002, 2003) and Niedzwiecka 

et al (2002) did use larger ligands (m7GpppA and m7GpppG) and have higher 

resolution These studies show that formation of a salt bridge between Lys 159 and 

phosphorylated Ser 209 is not possible as the distance between these residues is too 

large Molecular dynamics simulations conducted by Tomoo et al (2003) of cap- 

bound eIF4E led to the suggestion that Ser209 phosphorylation may affect the size of 

the entrance to the cap binding site and this may be responsible for the effects of 

eIF4E phosphorylation

The study by Minich et al (1994) claiming phosphorylated eIF4E has a higher 

affinity for the cap structure was conducted before the discovery of the Mnk eIF4E 

kinases and used chromatography on RNA-Sepharose to separate phosphorylated 

from unphosphorylated eIF4E The fraction of eIF4E that was not retained on this 

resin was found to consist only of the phosphorylated form, while the bound matenal 

was unphosphorylated Using fluorescence methods, it was found that the fraction 

containing the phosphorylated eIF4E showed a three to four times higher affinity for 

cap analogs and for capped (globin) RNA Two important factors which call these 

results into question are, (a) the basis of the resolution of the phosphorylated and non-
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phosphorylated eIF4E forms on RNA-Sepharose is unclear and, (b) it is possible that 

one or other fraction was contaminated with other proteins that influence the affinity 

of eIF4E for RNA For example, the 4E-BPs, which greatly increase the binding of 

eIF4E to cap (Ptushkina et a l , 1999) were not known at this time and would not have 

been detected by the methods used in this study

Recent studies using more advanced techniques have reported that phosphorylation 

of Ser 209 actually decreases the affinity of eIF4E for the cap structure (Scheper et 

a l , 2002, Zuberek et a l , 2003) Scheper et al (2002) used highly active preparations 

of the eIF4E kinase, Mnk2, to produce stoichiometrically phophorylated eIF4E Using 

fluorescence spectroscopy and surface plasmon resonance techniques, they showed 

that phosphorylation of eIF4E markedly reduces its affinity for capped RNA, 

primarily due to an increased rate of dissociation Zuberek et al (2003) applied a 

unique protein engineering technique, Intern mediated protein ligation, to synthesize 

eIF4E which is selectively phosphorylated at Ser 209 Using synthetic cap analogs, 

they compared quantitatively the cap affinity for phosphorylated and 

unphosphorylated eIF4E A 1 5-fold to 4 5-fold reduction in cap affinity for 

phosphorylated eIF4E was observed The series of the cap analogs used in the study 

included those with increasing negative charge as a result of phosphate chain 

elongation and one with increasing number of nucleotides in the RNA chain The 

decrease in affinity was found to be dependent on the negative charge of the 5’-to-5’ 

phosphate chains as well as the presence of a longer tetranbonucleotide strand

Studies analysing eIF4E phosphorylation in various systems have produced results 

which would suggest that phosphorylation of eIF4E may not be necessary for 

translation (McKendrick et a l , 2001, Morley and Naegele, 2002) and may even have 

a negative effect on translation (Knauf et a l , 2001) Lachance et al (2002) have 

analysed the role of eIF4E phosphorylation in Drosophila by mutating the equivalent 

of Ser209 (Ser251) to Alanine, thereby preventing phosphorylation of the protein 

This mutation caused a retardation of development and reduced size of the adult 

animals This study strongly indicates a role for phosphorylation of eIF4E in cell and 

orgamsmal physiology In contrast, a recent study by Ueda et al (2004) showed that
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in mice lacking Mnkl and Mnk2, eIF4E phosphorylation is not necessary for normal 

cell growth and development

r

The recent developments that have arisen from the study of eIF4E phosphorylation, 

l e the reduced cap affinity of phosphorylated eIF4E, requires new models to explain 

the function of eIF4E phosphorylation in the initiation process The accuracy of these 

models depend on what point in the sequence of events involved in the initiation 

process eIF4E phosphorylation actually occurs

One possible explanation for the role of eIF4E phosphorylation in the translation 

initiation process is that eIF4E phosphorylation may occur after the 40S nbosomal 

subunit has bound to eIF4F through the eIF3- eIF4G interaction Phosphorylation of 

eIF4E at this point could then cause the release of the 40S ribosomal subunit and 

associated translation initiation factors from the 5’ end of the mRNA They would 

then scan towards the AUG mtitiation codon where upon binding of the 60S 

nbosomal subunit, they would be released and free to start new rounds of translation 

initiation

1 1 2 2 21 Mnk eTF4E Kinases

The Mnks were identified simultaneously by the work of two independent groups 

using screens for substrates and binding partners of Erk and p38 MAP kinases 

(Fukunaga and Hunter, 1997, Waskiewicz et a l , 1997) Each group identified two 

related kinases, now termed Mnkl and Mnk2 They share substantial similarity (88%) 

in their catalytic domains and their N- and C- termini also share high levels of 

similarity (respectively 77% and 65%) Both Mnk species interact with eIF4F 

complexes in vivo (Waskiewicz et a l , 1999, Pyrronet et a l , 1999, Scheper et a l ,

2001) The Mnk kinases bind to the eIF4F scaffold protein eIF4G to phosphorylate 

eIF4E (Fig 1) This is consistent with studies that show that 4E is more highly 

phosphorylated when in the eIF4F complex than when free (Waskiewicz et a l , 1999, 

Pyrronet et a l , 1999)

Mnkl and Murine Mnk2 can be activated by phosphorylation in vitro by Erk or by 

p38 MAP kinase (Fukunaga and Hunter, 1997, Scheper and Proud, 2002, Waskiewicz 

et a l , 1997) although there are important differences in their in vivo activities In vivo,
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Mnkl displays a low level of activity, which is greatly enhanced by treatment of cells 

with agents that activate either the Erk or p38 MAP kinase oc/p pathway (Fukunaga 

and Hunter, 1997, Waskiewicz et a l , 1997, Wang et a l , 1998) The effects of these 

treatments are blocked by inhibitors of these pathways (Fig 2) In contrast to Mnkl, 

Mnk2 has high basal activity which is not further enhanced by agents that activate 

ERK/p38 MAP kinase (Scheper et a l , 2001) This high basal activity can be reduced 

by inhibitors of these pathways, it seems the low basal activity of these pathways in 

unstimulated cells is sufficient to activate Mnk2 This suggests that Mnk2 may be 

unusually readily phosphorylated and activated by Erk/p38 MAP kinase and 

experiments performed in vitro bear this out (Scheper et a l , 2001) The differences in 

basal activity or regulation of Mnk2 as compared to Mnkl have important 

implications for the control of eIF4E phosphorylation In cells that mainly contain 

Mnkl, the level of eIF4E phosphorylation will be determined by two factors The first 

is the state of activation of the ERK or p38 MAP kinase pathways, which regulate the 

activity of Mnkl The second is the level of eIF4F complexes which bring together 

eIF4E and the Mnks through their common binding partner, eIF4G The level of 

eIF4F complexes is determined by factors such as amino acid availability and other 

stimuli including growth factors and insulin which affect the phosphorylation of the 

4E-BP repressor proteins

The high basal activity of Mnk2 is likely to have two important consequences for 

cellular levels of eIF4E phosphorylation Firstly, this is likely to be relatively high in 

cells possessing significant levels of these kinases (provided eIF4E is not sequestered 

from eIF4F complexes by 4E-BPs) Secondly, the primary determinant of eIF4E 

phosphorylation m cells mainly expressing a Mnk2 isoform will be the level of eIF4F 

complexes rather than increases in Erk/p38 MAP kinase activity
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Figure 2 Intracellular signalling pathways involved in the phosphorylation of 

the translation initiation factors eIF4E and the 4E-BPs The RAS pathway leading 

to eIF4E phosphorylation and the PI3K pathway leading to 4E-BP phosphorylation 

are depicted Also shown are the targets of several pharmacalogical inhibitors (italics) 

utilised in the studies delineating these pathways

1.1 2 2 3 4E Binding Proteins

Using the far Western hybridisation technique, Pause et al (1994) isolated cDNAs 

encoding two small (~12 kDa) proteins which interact with eIF4E and which share 

56% overall identity at the ammo acid level These proteins termed 4E-BP1 and 4E- 

BP2 were demonstrated to inhibit cap dependent translation both in an in vitro cell- 

free translation assay and in vivo (Pause et a l , 1994) Binding of the 4E-BPs to eEF4E 

prevents the association between eIF4G and eIF4E and thus, the assembly of a 

functional eIF4F complex
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Both eIF4G and the 4E-BPs share a small amino acid motif YXXXXLO (where X is 

any ammo acid and O is an aliphatic residue), responsible for interaction with eIF4E 

(Mader et a l , 1995) Deletion of this sequence or mutation of either the tyrosine or 

the LO residue to alanine abolishes eIF4E binding

1 1 2 2 31 Regulation of 4E-BP phosphorylation

The phosphorylation state of specific serine/threonine residues in the 4E-BPs 

regulates the affinity of these proteins for eIF4E (Fig 3) Hypophosphorylated 4E- 

BPs bind efficiently to eIF4E but phosphorylation of a critical number of residues in 

these proteins abrogates this binding Phosphorylation of 4E-BP1 has been shown to 

occur in an ordered hierarchical manner (Gingras et a l , 2001)

Hormones (insulin, angiotensin), growth factors, cytokines, mitogens, G coupled 

receptor ligands and Adenovirus infection have all been reported to induce 

phosphorylation of 4E-BP1 accompanied by a resultant decrease in its ability to 

interact with eIF4E Conversely heat shock (in certain cell types) and infection with 

pohovirus or EMCV have been reported to decrease 4E-BP1 phosphorylation (Raught 

and Gingras, 1999)

Phosphorylation of 4E-BPs was initially thought to be mediated through MAPK 

pathways (Pause et a l , 1994) Subsequent studies have shown that inhibitors which 

are without effect on MAPK activity (rapamycin, wortmannin and SQ2006) 

completely prevent 4E-BP1 phosphorylation (Fig 2) (Raught and Gingras, 1999)

The intracellular signalling cascade leading to 4E-BP1 phosphorylation shares many 

similarities with the pathway leading to p70s6k activation (p70s6k is the protein 

kinase responsible for the phosphorylation of ribosomal protein S6) Phosphorylation 

of 4E-BP1 is wortmannin and rapamycin sensitive, is induced by the same agents as 

p70s6k and its phosphorylation in response to mitogen treatment occurs with similar 

kinetics 4E-BP1 lies on a pathway containing the phosphotidylinositol 3-OH kinase 

(PI3K) and its downstream effector the serine/threonine Akt/PKB (Gingras et a l ,

1998) 4E-BP1 phosphorylation is also dependent on the FKBP-rapamycin associated
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protein/ mammalian target of rapamycin (FRAP/mTOR) kinase (Fig 2) (Gingras et 

al, 1998,Brunne/a/, 1997)

The PI3Ks are a family of lipid kinases responsible for the phosphorylation of the 

hydroxyl group at position three of the inositol ring of phosphatidylinositols PI3Ks 

have been implicated in the regulation of many cellular processes, including 

resistance to apoptosis, cell motility, differentiation and proliferation (Vanhaesebrook 

et a l , 1997) Wortmannm inhibits PI3K signalling by binding to its catalytic subunit 

Overexpression of the PI3Ka subunit (pi 10a) induces phosphorylation of 4E-BP1 in 

a wortmannm sensitive manner (Gingras et a l , 1998)

The Akt/PKB Ser/Thr protein kinases were first identified in 1991 independently by 

three different groups Two groups identified the approximately 60 kDa kinase as a 

result of its homology with both protein kmase C (PKC) and protein kinase A (PKA), 

this gave rise to the name PKB At the same time this kinase was identified as the 

product of the oncogene v-akt of the acutely transforming retrovirus AKT8 found in a 

rodent T-cell lymphoma (Marte and Downward, 1997)

Akt is activated by PI3K-generated lipid products, which bind to its pleckstnn 

homology (PH) domain and target Akt to the plasma membrane The binding of these 

lipid products (PtdIns(3,4,5)P3) and translocation to the plasma membrane enables the 

subsequent phosphorylation of T308 (located in the kinase domain of Akt) by the 

kinase PDK1 PDK1 is a constitutively active kinase that is neither stimulated by 

insulin nor inhibited by PI3K inhibitors (Downward, 1998) To fully activate Akt, 

phosphorylation of S473, mediated by PDK2 is also necessary PDK2 is also activated 

by the lipid products of PI3 kmase After its phosphorylation at both sites, Akt can 

detach from the membrane and phosphorylate its targets within the cell

A study by Gingras et al (1998) has shown that a dominant negative mutant of Akt 

blocks insulin mediated phosphorylation of 4E-BP1, indicating that Akt is required 

for in vivo phosphorylation of 4E-BP1 This study also showed that an activated Akt 

induces phosphorylation of 4E-BP1 on the same sites that are phosphorylated upon 

serum stimulation (Gingras et al 1998) Phosphorylation of 4E-BP1 by the activated
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form of Akt was wortmannm insensitive but was sensitive to the inhibitor rapamycin 

suggesting that a rapamycin sensitive kinase(s) acts downstream of Akt to induce 

phosphorylation of 4E-BP1

FRAP/mTOR is the mammalian homologue of the yeast TOR proteins and the target 

of the FKBP12-rapamycin complex (an îmmunophihn-immunosuppressant 

interaction) This very large (289 kDa) protein is a member of a newly emerging 

family of kinases termed the PIKs (phosphatidyl inositol kinase-related kinases)

(Keith and Schreiber, 1995), some members of this family appear to function instead 

as protein kinases The role of FRAP/mTOR in mammalian translation initiation was 

confirmed when it was demonstrated that expression of a rapamycin resistant 

FRAP/mTOR protein confers rapamycin resistance to 4E-BP1 phosphorylation 

(Brunn et a l , 1997)

Initially it was not known whether FRAP/mTOR protein was directly regulated by 

Akt/PKB or if it lied on a parallel signalling pathway Studies have now shown 

mTOR to be directly phosphorylated by Akt (Nave et a l , 1999) Akt was shown to 

phosphorylate mTOR at Ser2448 m vitro These increases closely paralleled 

previously described increases in activity of mTOR by insulin and PKB (Nave et a l ,

1999)

Studies have shown that mTOR plays a critical role in the phosphorylation of 4E-BP1 

Inhibition of mTOR activity in insulin treated cells through treatment with rapamycin 

attenuates 4E-BP1 phosphorylation Overexpression of mTOR increases 4E-BP1 

phosphorylation in cells (Raught and Gingras, 1999) mTOR is also known to mediate 

4E-BP1 phosphorylation in response to levels of nutrients in cells (Proud, 2002)

The exact mechanism by which mTOR acts on 4E-BP1 is unclear Direct 

phosphorylation of 4E-BP1 by mTOR or indirect regulation of phosphorylation by an 

mTOR regulated kinase or phosphatase has been suggested (Gingras et a l , 2001)

New insights have emerged regarding the biochemical mechanism by which mTOR 

signaling is regulated The regulatory associated protein of mTOR, raptor, has been 

identified as novel mTOR interacting protein and regulator (Kim et a l , 2002, Hara et 

a l , 2002) Raptor association with mTOR is required for efficient phosphorylation of
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mTOR (Kim et a l , 2002, Hara et a l , 2002) and has been suggested to function as a 

scaffold protein that brings mTOR in close proximity to it’s substrates (Hara et a l ,

2002) In addition, raptor has also been suggested to function as a bidirectional 

regulator of mTOR, inhibiting mTOR under nutrient starvation conditions and 

activating it when adequate supplies of amino acid and carbohydrates are available 

(Kim et a l , 2002) A TOR signalling (TOS) motif present m the extreme C terminus 

of 4E-BP1 has been found to be essential for phosphorylation at mTOR regulated 

sites (Schalm et a l , 2003) This same motif is also necessary for binding of raptor, 

indicating it’s importance for regulating 4E-BP1 (Choi et a l , 2003, Schalm et a l , 

2003, Beugnet et a l , 2003) Another motif at the N terminus of 4E-BP1 known as the 

RAIP motif has also been found to play an important role in phosphorylation of 4E- 

BP1 by mTOR but this is considered to be independent of the 4E-BPl/raptor 

interaction and has led to the suggestion that other as yet unidentified co-factors are 

involved in 4E-BP phosphorylation (Beugnet et a l , 2003)
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Figure 3. (A) 4E-BP bound to eIF4E prevents eIF4E binding to eIF4G and eIF4F 
complex formation, (B) Phosphorylation of 4E-BP causes release of 4E-BP from 
eIF4E allowing eIF4F complex formation
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1.1.3 Eukaryotic initiation factor eIF2

eIF2 plays a central role in the maintenance of what is generally considered a rate 

limiting step in mRNA translation

eEF2 is a multi meric protein consisting of three dissimilar subunits termed a, P and y, 

in order of increasing molecular mass The eIF2a amino acid sequence is 

unremarkable with the exception of SerSl, which is a phosphate acceptor for three 

protein kinases haem regulated inhibitor (HRI), double stranded RNA activated 

protein kinase (PKR), and the nutrient-regulated protein kinase (GCN2) Yeast eIF2a 

contains additional kinase sites which are not conserved in the mammalian protein 

The eIF2p peptide contains the binding sites for eIF5 and eIF2B eIF2y is thought to 

be the primary guanine nucleotide binding site

1 1 3  1 Function and regulation

The most well defined function of eIF2 is to recruit the initiator tRNA and conduct it 

as a Met-tRNA-eIF2-GTP ternary complex to the 43 S nbosomal subunit Following 

the association of mRNA with the 40S subunit and location of the subunit at the AUG 

start codon, eEF5 binds to eIF2 and stimulates the hydrolysis of eIF2-bound GTP It 

has been proposed that either eIF5 or the P- or y-subumts of eIF2 contains the GTPase 

actvity responsible for GTP hydrolysis

Following GTP hydrolysis the eIF2-GDP complex is released from the ribosome 

Although the release mechanism has not been delineated, eEF2 has been found 

associated with the 60S nbosomal subunit and it has been suggested that transfer to 

the 60S subunit is important in eIF2 recycling (Chakrabarti and Maitra, 1992)

Pnor to binding Met-tRNA, the GDP bound to eIF2 must be exchanged for GTP, a 

reaction mediated by eIF2B (Webb and Proud, 1997) The best charactensed 

mechanism for regulating eIF2B activity involves phosphorylation of eIF2a (Pain, 

1996) Phosphorylation of eIF2a on Ser51 converts eIF2 from a substrate to a 

competitive inhibitor of eIF2B, the phosphorylated form of eEF2a having a much
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higher affinity (about 150-fold) than the unphosphorylated form Although eIF2B is 

able to recycle GDP for GTP when eIF2a is phosphorylated, eIF2B is not released 

after the exchange Because eIF2B is present in limiting amounts compared with eIF2, 

it is potentially a major regulator of overall rates of translation initiation (Kleijn et a l ,

1998)

Three protein kinases that specifically phosphorylate eIF2a at SerSl have been cloned 

and sequenced

(A) The haem controlled repressor or haem-regulated inhibitor (HCR or HRI), which 

co-ordinates globin synthesis to haem avilability in reticulocytes

(B) In mammalian cells, the double stranded RNA-activated kinase PKR, is important 

in the defence of mammalian cell populations against viral invasion It is markedly 

induced by transcriptional activation in response to interferons a  or P released by 

neighbouring cells Upon subsequent viral infection, the kinase is activated and 

severely inhibits translation by increasing eIF2a phosphorylation This prevents the 

utilisation of the translational apparatus for the production of viral proteins and hence 

restricts viral replication within cells

The primary structure of human PKR deduced from its cDNA sequence shows a 551- 

amino acid protein consisting of an amino-terminal regulatory domain and a carboxy 

terminal catalytic domain Binding of double stranded RNA activates PKR which 

undergoes a conformational change, leading to autophosphorylation and the formation 

of homodimers

Although PKR plays an important role in mediating the antiviral effects of 

interferons, PKR is also implicated in regulating cell proliferation in uninfected cells 

and may have a tumour suppressor function under normal conditions Studies of 

human malignancies and tumour cell lines suggest that, in general, patients bearing 

tumours with a higher PKR content have a more favorable prognosis (Pain, 1996, 

Jaguse*#/, 1999)
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(C)The third kinase, GCN2, present in the yeast Saccharomyces cerevisiae, regulates 

GCN4 transcription factor, mRNA translation

1 1 3 1 1  eEF2B

eIF2B is a complex multimenc protein consisting of five dissimilar subunits named a, 

P, y, 5 and e, in order of increasing molecular mass This feature sets eIF2B apart 

from the vast number of guanine nucleotide exchange factors (GEFs), which are 

mostly monomeric proteins

Genetic studies in yeast suggest a model where eJF2B can be functionally divided into 

catalytic ( e,y) and regulatory (a, P, 5) subdomains The e-subumt has been shown to 

contain the GEF activity although full activity requires the other subunits The 8- 

subumt also interacts with the P subunit of eIF2 and is important for the formation of 

the eIF2B holoprotein The regulatory domain responds to eIF2a phosphorylation

The e-subumt has also been shown to be phosphorylated by GSK-3, which causes 

inhibition of eIF2B activity GSK-3 is inactivated by insulin in a PI 3- kinase 

dependent manner
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1.1.4 Mechanisms of Translational Control

As mentioned earlier, translation is now recognised as an important site of regulation 

of gene expression Regulation at the translational level enables cells to respond 

rapidly to external stimuli Mitogenic stimulation of many cell types causes a 2-fold to 

3-fold increase in the general rate of protein synthesis as well as an additional 

selective increase in the translation of a subset of translationally repressed mRNAs 

(Willis, 1999) Included in this group of mRNAs are many of those involved in the 

control of cell growth, which often encode growth factors and proto-oncogenes The 

5’UTRs of approximately 90% of vertebrate mRNAs examined to date are between 

10 and 200 bases long, yet two thirds of the mRNAs known to encode protoncogenes 

or factors related to cell proliferation contain atypical 5’UTRs which are more than 

200 bases long and/or contain more than one AUG codon (Fig 4)

Theories have now developed stating that the size of an mRNAs 5’UTR and the 

presence of certain features within the 5’UTR have the ability to cause an mRNA to 

be poorly translated or “weak” under normal conditions The expression of these 

weak mRNAs can be significantly increased by upregulation of translation A large 

proportion of these weak mRNAs appear to code for proteins involved in cellular 

proliferation and differentiation

Features of mRNAs that are poorly translated under normal conditions (e g cells in 

the resting state) and whose translation may be upregulated under other conditions 

(e g after growth induction) comprise one or more of the following (i) long and 

highly structured 5’UTRs, (n) additional upstream initiation codons, (111) upstream 

open reading frames (uORFs) or ( i v )  internal ribosome entry sites (IRESs) (Clemems 

andBommer, 1999)

(1) Long and highly structured 5’UTRs

The 5’UTRs of the majority of cellular mRNAs are up to 100 nucleotides long 

However, there is a small group of mRNAs which bear a considerably longer 5’UTR, 

and the majority of mRNAs coding for growth related proteins belong to this group 

(Kozak 1987, 1991) These 5’UTRs are often GC rich (70-90%) which is indicative of 

a high degree of secondary structure and in many cases secondary structure 

predictions reveal the potential to form extended stem-loop structures either within
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the 5’UTRs or larger parts of the molecule The secondary structure seems to be 

inhibitory for the scanning of the mRNA from the cap to the AUG initiation codon, 

and such mRNAs are particularly dependent for their translation on the activity of the 

cap dependent unwinding machinery They are therefore good candidates for mRNAs 

for which translation is specifically upregulated through activation of components of 

initiation factor eEF4F

(11) Additional initiation codons within the 5’UTR

Apart from extended areas of secondary structure, mRNAs with long leader sequences 

may contain additional upstream initiation codons Examples are predominantly 

mRNAs coding for growth factors and proto-oncogene products, e g FGF-2 or c-myc 

The additional initiation codons are often non-AUG codons, with CUG being the 

most common one and they may give rise to slightly larger protein products with 

specific cellular functions or localisation The usage of the upstream codon versus the 

normal AUG codon varies considerably between different mRNAs and depends on 

the cellular conditions (Tounol et a l , 2003)

(in) Upstream open reading frames

Some mRNAs with long leader sequences contain one or more upstream open reading 

frames within their 5’UTRs, and these uORFs are often inhibitory for the translation 

of the downstream coding region (Willis, 1999)

( i v )  Internal ribosome entry sites

Another feature of mRNAs containing long 5’UTRs is the presence of internal 

ribosome entry sites (IRESes) Internal initiation was originally identified in the case 

of picomavirus RNAs, which bear extremely long and structured 5’UTRs, where it 

seemed unlikely that the scanning and unwinding machinery works all the way from 

the 5’-end to the AUG start codon IRESes usually comprise highly structured areas 

within the 5’UTRs and often feature a polypyrimidine tract near the 3’ terminal end 

The mRNAs of certain cellular growth promoting genes have been found to contain 

IRESes, for example FGF-2, PDGF and c-myc mRNAs The IRESes of cellular 

mRNAs seem to differ from those of picomaviral RNAs (Clemems and Bommer,

1999)
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Figure 4. Translation intitation on (A) Short non structured 5’UTR mRNA and (B) 
Long structured 5’UTR mRNA containing an upstream open reading frame (uORF).
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1.1.5 Translational control of growth and differentiation
There is now a growing body of evidence to suggest that translational control of 

protein expression plays an important role in various cellular processes such as 

transformation, growth and differentiation The major site of translational regulation 

is initiation and translation initiation factors, mainly eIF4E, have been shown to be 

involved in these processes

1 1 5 1  eIF4E and Cancer

eIF4E overexpression studies in cell lines have shown that overexpression of eIF4E 

has the ability to cause transformation and growth deregulation of cells (De 

Beneddetti and Rhoads, 1990, De Beneddetti et a l , 1994) It has also been shown that 

reducing the level of eIF4E with antisense RNA inhibits the oncogenic and metastatic 

properties of several oncogenic cell lines (Rinker-Schaeffer et a l , 1993, Graffe et a l ,

1995)

Analysis of protein synthesis in CHO cells overexpressing eIF4E revealed that 

whereas the synthesis of most proteins increased only moderately (from 0 to 10%) the 

synthesis of several polypeptides was increased greatly (De Benedetti, 1994) This is 

in agreement with the theory of mRNA competition for translation that would predict 

a small increase in the translation of “strong” mRNAs, but a much greater effect on 

the translation of “weak” and less abundant transcripts Overexpression of eIF4E in 

CHO cells and also a rat cell line (CREF-4E) in this study showed a greater than 

average increase in the expression of the proto-oncogene c-Myc 

eIF4E has been shown to regulate other mRNAs important for malignant 

transformation including, Ornithine Decarboxylase (ODC), a key enzyme in 

polyamine synthesis and Cyclin Dl, a protein kinase regulator involved in the control 

of the G1 to S-phase transition

In the case of ODC, it has been shown that ODC levels are drastically increased in 

eIF4E transformed cells ODC overexpression itself results in a transformed 

phenotype and its expression can be suppressed in RAS transformed cells by 

depleting eIF4E (Graffe et a l , 1997) The transformed phenotype of eIF4E 

overexpressing cells can be suppressed by expressing a dominant negative mutant of 

ODC or by treatment with an inhibitor of ODC (Shantz and Pegg, 1999)
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Translational repression of cyclin D1 was shown to be relieved in NIH-3T3 cells 

overexpressing eIF4E This effect is now known to be caused by increased nucleo- 

cytoplasmic transport of the cyclin D1 mRNA which is regulated by eIF4E 

(Strudwick and Borden, 2002)

Also upregulated by overexpression of eIF4E are FGF-2 and VEGF, two important 

regulators of angiogenesis in cancer Expression of FGF-2 and VEGF were found to 

be elevated in breast cancer, which correlates with elevated eIF4E levels (Clemens 

and Bommer, 1999, DeBenedetti and Harris, 1999)

1 1 5  2 Translation Factors m Lung Cancer

Although translation factors have been shown to be upregulated in a wide range of 

cancers and the overexpression of translation factors in cells has been shown to 

induce cellular transformation (Clemens and Bommer, 1999, De Benedetti and Hams, 

1999, Watkins and Norbury, 2002), the role of translational factors in lung cancers is 

relatively unknown

A study of the expression of a large number of genes at the protein and mRNA level 

in lung adenocarcinomas showed a poor correlation between mRNA and protein 

levels for the majority of genes analysed (Chen et a l , 2002) This shows that post- 

transcnptional regulation can play a major role in gene expression in lung cancer 

although translational regulation may only partially account for the poor correlation 

between mRNA and protein levels in this study A study of growth related gene 

expression in proliferating and non-proliferating rat lung epithelial cells in primary 

culture showed evidence for growth-dependent translational control of certain genes 

(Clement et a l , 1990)

eIF4E expression has been shown to be elevated in adenocarcinomas of the human 

peripheral lung and in bronchioalveolar carcinoma where higher eIF4E levels were 

found to correlate with more invasive subtypes (Seki et a l , 2002) Levels of eIF4E 

and eIF2a have been shown to be increased frequently in bronchioalveolar but not m 

squamous cell carcinoma of the lung (Rosenwald et a l , 2001)

eIF4G is overexpressed in squamous cell lung carcinoma (Bauer et a l , 2001, Bauer et 

a l , 2002) It is possible eIF4G overexpression may function to increase the amount of

24



the translation initiation complex eIF4F, which in turn may result in the translational 

activation of the same target mRNAs as seen in eIF4E overexpressing cells.

Other translation factors showing increased expression in lung cancers include the 

p i70 subunit of eIF3 which was shown to be upregulated in lung cancer tissue 

(Pincheira et al., 2001) and also eIF5A expression in lung adenocarcinomas (Chen et 

al, 2003). The roles of these proteins in translation are not very well known but it is 

likely their overexpression may affect translational control.

1.1.5.3 eIF4E control of Differentiation

A role for eIF4E in embryogenesis and differentiation was suggested by experiments 

that showed injection of eIF4E into Xenopus embryos leads to the induction of 

mesoderm in ectodermal explants. eIF4E injection also induced mesodermal 

differentiation in explants normally differentiating towards ectodermal tissues. eIF4E 

injection in Xenopus oocytes resulted in preferential translation of Xenopus activin, a 

mesoderm inducing member of the TGF-P superfamily, whereas total protein 

synthesis was unaffected (van der Welden and Thomas, 1999).

1.1.5.3.1 Translational Control in Lung Differentiation

Although there are few direct reports of translational regulation in lung development, 

proteins which have been reported to be translationally regulated such as TGFpi and 

FGF-2 are known to play roles in lung development and differentiation (Warburton et 

a l , 2000). The transcription factors C/EBPa and C/EBPp are also known to be 

translationally regulated and have been shown to be involved in the regulation of 

differentiation specific genes (e.g. Surfactant proteins, CCSP) in lung cells 

(Calkhoven et a l , 2000; Cassel and Nord, 2003).

There is now strong evidence to show translational regulation plays a role in the 

proliferation and differentiation of cells. Translational regulation in lung development 

and differentiation should prove to be an interesting research area for the future.
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1.2 Lung epithelial development and organisation

Lung development in mammals occurs as an outgrowth of the embryonic gut In 

humans, it originates from the ventral wall of the primitive oesophagus between 4 and 

5 weeks of gestation (Bishop, 2004) From then on, the endoderm/epithehum 

undergoes dichotomous branching into the surrounding mesenchyme This highly 

ordered process of repeated bud outgrowth and division of terminal units is known as 

branching morphogenesis and gives rise to the pulmonary tree and defines the 

proximal-distal axis of the lung The development of mammalian lung is divided into 

four phases and in humans the timing of these phases are embryonic 0-5 weeks, 

glandular 5-16 weeks, canalicular 16-26 weeks and saccular 26 weeks to term The 

primordial lining that forms in the embryonic stage develops into pseudostratified 

epithelium during the early glandular phase and as branching progresses, columnar 

epithelium forms During the glandular and into the canalicular phase, the initial thick 

layer of stratified epithelial cells starts to thin and shows gradation, becoming thinner 

along the length of the tree Submucosal glands first appear at around 10 weeks in the 

trachea but not until 16 weeks in the bronchi Bronchioles appear during the 

canalicular stage, marking the start of the formation of gas exchange units A lumen is 

present at this stage and the epithelium starts to look more cuboidal, an appearance 

that remains into the final saccular phase where alveolar ducts and air sacs begin to 

open The final formation of alveoli takes place post-natally Thus the mature lung has 

distinct anatomical regions lined by different types of epithelial cells In the mature 

lung, the trachea and major bronchi are lined by pseudostratified epithelium The 

major phenotypes in the proximal airways are ciliated and mucous secretory (or 

goblet) cells, with the more infrequent neuroendocrine cells and the less well 

differentiated basal cell lying in a basal position The bronchioles are also lined by 

ciliated cells, but possess a separate phenotype known as the Clara cells that are non 

ciliated The alveoli are lined by flattened squamous (type I pneumocytes) and 

cuboidal (type II pneomocytes) cells (Bishop, 2004)

Neuroendocrine cells first appear in the lung at around 8 weeks of gestation They 

contain biogems amines, commonly serotonin and/or peptides, including bombesin 

and calcitonin gene related peptide They are relatively frequent in the developing
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lung where they play a major role in airway growth and development but form >1% 

of epithelial cells in adult lung, where they are seen as scattered elements in the 

epithelium or in innervated epithelial corpuscles, so called neouroepithelial bodies 

(Bishop, 2004)

12 1 Lung Stem Cells

The average normal adult lung contains approximately 70m2 of gas diffusion surface 

The lining in many areas consists of only a monolayer of cells and can be as thin as 

0 l|im in the case of alveolar type I pneumocytes (Bishop, 2004) The epithelial 

surface of the lung is constantly open to potential injury and therefore, in order to 

maintain the protective lining, rapid response mechanisms are in place that lead to 

epithelial renewal Stem cell and progenitor cells play a key role in mediating these 

response mechanisms Although there is considerable debate over the exact nature of 

stem cells, a generally accepted definition is that they are clonogemc cells that are 

capable of self renewal and multi lineage differentiation This stable population of 

undifferentiated cells gives rise to progenitors that have little or no capacity to self 

renew and that show signs of differentiation In lung, there are various types of stem 

cells, differing according their position within the pulmonary tree, and that they often 

form pools, ready to proliferate in response to injury and effect local repair However, 

recent studies have indicated that blood-borne cells acquired via the circulation may 

play a role in lung epithelial repair m response to injury (Bishop, 2004, Fine, 2004)

12 11 Stem Cell Niches 

12 111  Proximal airways

In the trachea and bronchi, basal cells are widely believed to be stem cells The basal 

cells and the parabasal cells that he just above them, form a pluripotential reserve that, 

unlike the surrounding epithelium usually survives injury The basal cells appear at 

around 10 weeks of gestation in the human trachea, are roughly triangular and lie 

under the columnar epithelial layer, with one edge anchoring the epithelium to the 

basement membrane Recent studies involving labelling of tracheal epithelial basal 

cells in mice have shown these cells have the ability to form large colonies in in-vitro
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assays, can engage in multipotent differentiation and have the capacity to fully restore 

a fully differentiated epithelium following lung injury (Hong et a l , 2004, Schoch et 

a l , 2004)

1.2 1 1 2 Bronchioles

Recent research has shown that subsets of Clara cells fulfil the criteria of adult niche 

specific stem cells Pools of stem cells have been discovered that express Clara Cell 

Specific Protein (CCSP) but are not typical Clara cells as they are resistant to airway 

pollutants such as naphthalene (Giangreco et a l , 2002, Hong et a l , 2001) Generally, 

Clara cells are enriched with cytochrome P-450 enzymes that would make them 

vulnerable to naphthalene In addition, these variant CCSP-expressing (or vCE) cells 

show multipotent differentiation The vCE cells are located in neuroepithelial bodies 

and at the broncho-alveolar duct junction (Giangreco et a l , 2002, Hong et a l , 2001) 

Neuroedocnne cells are not considered themselves to be stem cells but are thought to 

closely interact with vCE progenitor cells in neuroepithelial bodies and play a role in 

epithelial regeneration (Reynolds et a l , 2000) Cells have been identified within 

neuroepithelial bodies that express markers of both CCSP and the neuroendocrine cell 

marker CGRP (Reynolds et a l , 2000) indicating these cells are closely related and 

may derive from a common progenitor

1.2 1 1 3 Alveoli

Type II pneumocytes have been shown to restore the alveolar epithelium following 

generalized damage by oxidants e g oxygen and nitrogen dioxide, by giving rise to 

either new type II cells or the squamous type I pneumocyte, the latter being destroyed 

by most types of lung injury (Bishop, 2004)
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1.3 Integrins

The integrin superfamily consists of a major class of transmembrane glycoproteins 

that mediate cell-matnx and ceil-cell adhesion Extracellular matrix molecules serve 

as ligands for the integrins and are crucial for the orderly development of tissues 

during morphogenesis, maintenance of adult tissue, wound healing and oncogenesis 

(Mizejewski, 1999)

The integrins, composed of a- and (3- chain heterodimenc complexes, serve as 

integral cell membrane receptors that form focal adhesion contacts with various ECM 

ligands (i e fibronectin, laminin, vitronectin, the collagens, thrombospondin, entactin, 

fibrinogen, intercellular adhesion molecule (ICAM) and the vascular cell adhesion 

molecule) (Mizejewski, 1999) Investigations have also further linked integrin 

interactions with cytoplasmic cytoskeletal filament-associated proteins such as actin, 

vinculin, talin, a-actinm, paxillin and divalent cation-dependent proteins such as 

calreticulin

Integrins also function as cellular signalling receptors Integnns themselves do not 

contain any catalytic activity and are thus unable to independently initiate signalling 

cascades Rather, the short cytoplasmic domains of a- and P-subunits serve as 

scaffolds for the assembly of multiprotein signalling complexes (Giancotti and 

Ruoslahti, 1999, Sheppard, 2003)

Each integrin generally consists of a noncovalently linked a- and P- subunit, with 

each subunit having a large extracellular domain, a single membrane spanning domain 

and a short, non-catalytic cytoplasmic tail

Eighteen human a-subunits and 8 P-subumts have been identified that can form a 

total of 24 integrin heterodimers (Sheppard, 2003), with each heterodimer pairing 

being specific for a unique set of ligands For example, integrin avp3 binds a wide 

range of ECM molecules, including fibronectin, fibrinogen, von Willebrands factor, 

vitronectin and proteolysed forms of collagen and laminin, whereas integrin a5pi 

selectively binds fibronectin (Hood and Cheresh, 2002)

29



1.3.1 Integrin Signalling

The cytoplasmic tails of integrins are generally short and always devoid of any 

enzymatic features. Hence, integrins transduce signals by associating with adapter 

proteins that connect the integrin to the cytoskeleton, cytoplasmic kinases and 

transmembrane growth factor receptors.

Figure 5. Integrin signalling network. Different classes of signalling protein are 

colour coded, e.g. focal adhesion proteins are yellow, actin cystskeleton regulatory 

proteins are orange, PI3 kinase signalling in grey.

Integrin signalling and assembly of the cytoskeleton are intimately linked. As 

integrins bind to the ECM, they become clustered in the plane of the cell membrane 

and associate with a cytoskeletal and signalling complex that promotes the assembly 

of actin filaments. The reorganisation of actin filaments into larger stress fibers, in 

turn, causes more integrin clustering, thus enhancing the matrix binding and 

organisation by integrins in a positive feedback system. As a result, ECM proteins
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mtegrins and cytoskeletal proteins assemble into aggregates on each side of the 

membrane Well developed aggregates can be detected by immunoflourescence 

microscopy and are known as focal adhesions and ECM contacts In this manner, 

mtegrins serve as integrators of the ECM and cytoskeleton, the property for which 

they are named (Giancotti and Ruoslahti, 1999)

The |31 mtegrin cytoplasmic domain interacts directly and indirectly with a large 

number of cytoskeletal and signalling proteins (Fig 5) The pi integnn subunit was 

first shown to colocalise with extracellular fibronectin and several intracellular 

cytoskeletal components including actin, a-actimn, vinculin and talin It was 

subsequently demonstrated that two actin binding proteins, talin and a-actmin directly 

associate with the cytoplasmic tail of P1 mtegrin (Miranti and Brugge, 2002) The 

observation that talin and a-actmin bind other cytoskeletal proteins such as zyxin, 

paxillin and vinculin, which in turn bind tensin, led to the proposal that the complex 

of mtegrm-linked cytoskeletal proteins in focal adhesions are important for 

maintaining strong cell-substrate adhesions and promoting cell spreading (Miranti and 

Brugge, 2002)

As connections between mtegrins and cytoskeletal proteins were being characterised, 

evidence began to accumulate that integnns could not only regulate actin cytoskeletal 

rearrangements but also modulate gene expression and cell differentiation 

Attachment to the ECM was found to either induce gene expression in the absence of 

other factors or to be a critical requirement for the induction of genes involved in 

differentiated cell functions In addition, antibodies to pi were shown to block the 

differentiation of myoblasts and fibronectin inhibited the differentiation of 

keratmocytes (Miranti and Brugge, 2002)

The involvement of integnns in regulating gene expression and cell differentiation 

motivated investigators to identify the cytoplasmic proteins involved in transducing 

the signals required for these events The evidence that v-Src, an oncogenic tyrosine 

kinase, localises to focal adhesions and that focal adhesions, could be immunostained 

with antibodies to phosphotyrosine, provided the first hints of a connection between 

mtegrins and tyrosine phosphorylation

The first direct evidence for mtegrin-mediated regulation of tyrosme kinases came 

from studies in platelets, where activation by agonists results in a rapid and strong
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induction of tyrosine phosphorylation that is predominantly induced by fibrinogen 

binding to specific mtegrin receptors Because tyrosine kinases were first identified in 

association with oncogene products, such as v-Src and v-Abl and subsequently with 

several growth factor receptors, they had been associated with the specific regulation 

of cell proliferation pathways The finding that platelet activation and mtegrin 

receptors trigger the activation of tyrosine kinases broadened the functions of these 

kinases to include events triggered by adhesion receptors in differentiated, post­

mitotic cell functions Integnns were also found to regulate sodium-proton antiporters, 

and protein kinase C (PKC) was shown to associate with mtegrin containing focal 

adhesions (Miranti and Brugge, 2002)

A major breakthrough in mtegrin-mediated intracellular signalling came from 

the identification and cloning of the protein tyrosine kinase FAK (focal adhesion 

kinase) (Miranti and Brugge, 2002) FAK, originally identified as a v-Src substrate 

(Kanner et a l , 1989), was found to localise to focal adhesions and to be inducibly 

tyrosine phosphorylated after the attachment of cells to ECM proteins, or of platelets 

to fibrinogen (Guan et a l , 1991, Hanks et a l , 1992, Komberg et a l , 1989, Lipfert et 

a l , 1992, Schaller et a l , 1992) FAK was also found to be activated by growth factors 

and other agonists, in addition to integnns These findings supported the concept that 

integrins are signalling receptors, as well as mediators of cell adhesion (Miranti and 

Brugge, 2002)

The signalling events that occur upon mtegrin binding to ligands in the extracellular 

matrix involve the complex interaction of a large number of cytoskeletal proteins, 

tyrosine kinases and other signalling proteins Only a small proportion of these 

proteins bind directly to mtegrin cytoplasmic domains but the proteins that become 

localised at mtegnn containing focal adhesions often bind numerous proteins and 

therefore play a role as scaffolding proteins for the organisation of signalling 

complexes Through this complex network of protein interactions, integnns can 

transmit signals from its extracellular interactions to a wide variety of internal 

signalling pathways within the cell which affect cellular processes such as 

proliferation, apoptosis, migration, morphogenesis and invasion This is the 

underlying reason that integnns are such important molecules in regulation of normal 

cellular function in growth and development and in dysregulation of cellular function 

in disease states such as cancer
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The timing and sequencing of protein interaction in focal adhesion complexes are 

important in regulating their functions Focal adhesions are dynamic complexes that 

constantly form, disintegrate and then reform This dynamic regulation is important 

for cellular processes associated with focal adhesions, e g migration

13 11 Integnn Signalling Mechanism

On binding to ECM molecules, mtegnns are thought to undergo a conformational 

change which allows the intracellular domain of their P-subumt to interact with focal 

adhesion proteins such as talin and a-actinin The detailed sequence of events 

following ECM binding to integnn is not known, but the p-subumt cytoplasmic 

domain interacts directly with talin and talin in turn interacts with both vinculin and 

paxilhn FAK appears to localise to nascent focal adhesions because it binds to 

paxilhn Upon activation, FAK combines with Src family kinases which then 

phosphorylate paxilhn and pl30cas (Fig 6) Both of these molecules serve as 

scaffolds for the recruitment of various adaptors and signalling intermediates 

(Giancotti, 1999)

13 111  FAK Activation

Clustering of integnn results in rapid phosphorylation of FAK at Tyr397 as well as 

several additional sites within the kinase and c-terminal domains Phosphorylation at 

Tyr397 correlates with increased catalytic activity of FAK and appears to be 

important for tyrosine phosphorylation of focal adhesion associated proteins as well 

as phosphorylation at Tyr576 and Tyr577, two highly conserved residues positioned 

within the ‘catalytic loop’ of the kinase domain Phosphorylation of these residues is 

important for the maximal adhesion induced activation of FAK and signalling to 

downstream effectors (Parsons, 2003)

Phosphorylation of FAK in response to integnn engagement leads to the formation of 

phosphotyrosine docking sites for several classes of signalling molecules and may be 

important for the conformation-induced binding of proteins to other structural motifs 

within the N- and C-terminal non-catalytic regions Phosphorylation on Tyr397 

creates a high-affimty binding site for the SH2 domain of Src family kinases and leads 

to the recruitment and activation of Src through the formation of a bipartite kinase 

complex Tyr397-dependent activation of FAK and the recruitment of Src have been
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implicated in the efficient tyrosine phosphorylation of additional sites on FAK as well 

as the FAK binding proteins Cas and paxillin Phosphorylation of Tyr397 also appears 

to be important for the recruitment of other SH2 containing proteins, including the 

85kDa subunit of phosphoinositide 3-kinase (PI3-kinase), phospholipase c (PLC)-y 

and the adapter protein Grb7 The phosphorylation of Tyr397 as well as Tyr925, 

creates a binding site for the Grb2-SOS complex (Parsons 2003)

FAK contains four sites of serine phosphoryaltion within the C-terminal domain 

(Ser722, Ser843, Ser 846 and Ser 910) The role of serine phosphorylation in the 

regulation of FAK function is poorly understood, however, the proximity of several of 

these phosphorylated serine residues to sites of protein-protein interaction suggests a 

role for senne phosphorylation in modulating binding/stability of downstream 

signalling proteins (Parsons, 2003)

The C-termmal harbors multiple protein-protein interaction sites In addition 

to the paxillin-binding site in the FAT domains, two additional sites contain proline- 

nch recognition sites for SH3-domain-containing proteins (Pro2 and Pro3, Fig 6)

Pro2 provides the major binding motif recognised by the SH3 domain of Cas, a multi­

functional adapter protein Upon mtegnn clustering, Cas is localised to adhesion 

complexes and is tyrosine phosphorylated FAK mutants that lack the binding site for 

Cas exhibit compromised signalling to downstream effectors The Pro3 motif binds 

the SH3 domains of two regulators of small GTPases GRAF, a GAP (GTPase- 

activating protein) for Rho and AS API, a GAP for Arfl and Arf6 The binding of 

ASAP and GRAF to FAK appears important to link adhesion complex signalling with 

the concerted regulation of small GTP-binding proteins in the Rho and Arf families, 

proteins that play an important function in cytoskeletal reorganisation
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Figure 6. FAK protein interactions, a  and p represent integrin receptors.

1.3.1.1.2 FAK regulates cell motility and invasion

In cell motility, FAK signalling controls the formation and turnover of focal contact 

sites and for cell invasion, FAK signalling alters MMP expression and promotes 

generation of an invasive phenotype (Schlaepfer et al., 2004).

FAK consists of a central catalytic domain and amino and carboxyl terminal non- 

catalytic domains. A focal adhesion targeting sequence within the carboxyl terminus 

is required for localisation to focal adhesions. Inhibition of FAK activity by
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expression of its carboxyl terminus decreases cell motility and cells from FAK 

deficient mice also show reduced migration (Schlaepfer et a l , 2004)

Transformation of FAK deficient fibroblasts with the v-Src oncogene promotes 

cellular motility equal to that of FAK re-expression However, these cells are not 

invasive and required intact FAK expression to produce this phenotype (Schlaepfer et 

a/,2004)

The importance of FAK in regulating mvasiveness caused by v-Src overexpression in 

NIH-3T3 cells was analysed by the expression of the FAK dominant negative 

inhibitor FRNK (Hauck et a l , 2002) FRNK consists of the C-terminal domain of 

FAK and functions as a potent negative inhibitor of FAK by competitively preventing 

FAK localisation to focal contacts Stable expression of FRNK in v-Src-transformed 

NIH 3T3 fibroblasts inhibited cell invasion through Matngel and blocked 

experimental métastasés in nude mice without effects on cell motility The reduced 

invasiveness of FRNK expressing cells correlated with reduced expression of MMP-2 

gene expression and MMP-2 secretion Overexpression of MMP-2 rescued FRNK 

blockage to cell invasion (Hauck et a l , 2002)

13 12 Integnn signalling to actin

After ligand binding, integrms activate signalling cascades that affect formation, 

turnover and linkage of actin filaments The stimulation of Rho-GTPases is of special 

importance in this respect These molecules are essential for the organisation of the 

actin cytoskeleton and promote specialised actin structures such as stress fibres 

(RhoA), lammelipodia (Racl) and filipodia (Cdc42) (Brakebusch and Fassler, 2003) 

In addition, Rho-GTPases are involved in cell proliferation, survival, polarity, vesicle 

transport and various other activities Integrms can stimulate Rho-GTPases via 

different pathways, of which those via FAK and Src-like kinases seem to be most 

important (Brakebusch and Fassler, 2003)

Rho-GTPases can be activated by FAK through several mechanisms A pl30Cas-Crk- 

DOCKI8O complex can activate Racl, which promotes lammelipodia formation 

Second, PI3-K can stimulate Rho-GTPase-activating GEF molecules via PIP3 

production, which in turn stimulates Rho-GTPases FAK can directly or indirectly 

interact via paxillin with the adapter GIT1 and with GEFs of the Cool/PIX family, 

which activate Racl and Cdc42 Finally, Src-like kinases can activate GEFs through 

phopsphorylation In short, integnn activation tnggers the formation of various
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phosphoprotein complexes that can modify the actin cytoskeleton particularly by 

activating Rho-GTPases (Brakebusch and Fassler, 2003)

1 3 2 pi integrin alternative splicing

Alternative splicing of mRNA leads to additional complexity of the integnn family 

Variants of both the extracellular and cytoplasmic domains have been reported 

(Melker and Sonnenberg, 1999) Alternative extracellular domains may account for 

different ligand-binding affinities or vanations in the state of activation, while 

variants of the cytoplasmic domain may modulate integrin activity, cytoskeletal 

associations and/or signalling events (Flier and Sonnenberg, 2001)

Cytoplasmic variants of several P- subunits have been described The four 

cytoplasmic variants of the pi-subunit, the most abundantly expressed family of the 

integrin subunits, are the best described pi a, P1b, Pic and plo 

pi a  is present in all tissues except cardiac and skeletal muscle, which instead express 

the highly homologous pio variant The two variants share the first 24 ammo acids of 

their cytoplasmic domains, and the two NPXY focal adhesion localisation sequences 

(cyto-2 and -3 domains) in the C-terminus are also conserved In non-muscle cells, 

both transfected P1a and p iD localised in focal contacts and activate focal adhesion 

kinase (FAK), MAP kinase and RhoA However p iA and p iD are not functionally 

equivalent in embryonic development The replacement of p iA by P1d results in 

embryonic lethality in mice, which might be due to impaired migration of 

neuroepithelial cells, whereas replacement of P Id by PIa does not lead to severe 

abnormalities in striated muscle in vivo (Flier and Sonnenberg, 2001)

The P 1band pic variants are minor forms and are present in man but not in mouse 

Both variants behave as inactive integnns, which is probably due to their failure to 

become localised at focal adhesions Expression of piBor p ic in cells decreases the 

ability of cells to adhere and to migrate on extracellular matrix components Similarly 

expression of P 1b or pic inhibits DNA synthesis and cell proliferation, whereas PIa 

does not inflict such inhibition (Flier and Sonnenberg, 2001)
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13 3 Integnn expression in cancer

Malignant transformation is characterised by disruption of cytoskeletal organisation, 

decreased adhesion and altered adhesion dependent responses Studies of integrin 

expression in transformed cells suggest that various integnn subunits may contnbute 

either positively or negatively to the transformed cell phenotype For the various types 

of cancers, different changes in integrin expression are associated with tumor growth 

and metastasis Tumor progression leading to metastasis appears to involve equipping 

cancer cells with the appropnate adhesive (integnn) phenotype for interaction with 

the ECM A consistent finding is the lack of spatial organisation of integnn 

expression in epithelial tumors In carcinomas, the spatial arrangement of mtegrms 

becomes quite disordered, with a diffuse and less abundant cellular distribution The 

integrin expression pattern also changes during cancer progression from 

transformation, to pnmary tumor growth and progression, to cell invasion and 

metastasis (Mizejewski, 1999)

13 4 Integnn expression in the lung

Normal lung development involves major changes in the expression of ECM 

molecules and integrin receptors (Coraux et a l , 1998) At least seven different 

mtegrms (a2J31, a3pi, a6J34, a9pi, avP5, avp6 and avP8) are expressed on airway 

epithelial cells of healthy adults The integnn a5pi is generally not seen in healthy 

adult airway epithelium in vivo but is rapidly induced in airway epithelia in response 

to injury (Sheppard, 2003) The epithelial cells that line conducting airways utilize 

input from mtegrms for airway branching during morphogenesis (Kreidberg et al s

1996) to establish polarity and remain attached to their basement membrane 

(Sheppard, 2003) Integnns are also induced in response to injury and inflammation 

and it is likely that lung epithelial cells utilise these integnns to detect, co-ordinate 

and spatially organise complex responses to airway and lung injury
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1.4 The Actin Cytoskeleton
The integrity of the actin cytoskeleton is essential for cells to form and maintain their 

shape and structure Remodelling of the actin cytoskeleton in dynamic cellular 

processes produces changes in shape and motility in response to external stimuli, and 

is therefore involved in signal transduction These features of the actin cytoskeleton 

are regulated by a large number of actin binding proteins, which were initially 

considered to be structural components that organise a stable actin cytoskeleton, but 

are now known to be regulators of cellular dynamics and key components of 

signalling processes

Actin dynamics are required for a number of physiological processes including the 

absorptive function of the intestinal epithelium, for mechanosensing in the inner ear, 

for oriented nerve and capillary growth and during defence processes that involve 

phagocytosis, migration and the activation of immunologically competent cells 

(Revenu et a l , 2004) The actin cytoskeleton is essential for cell-motility events that 

are required for normal organogenesis and also for pathophysiological processes such 

as wound repair or tumor cell-migration (metastasis) (Revenu et a l , 2004)

14 1 Cell motility and actin dynamics

To migrate, cells use dynamic rearrangements of the actin cytoskeleton for the 

formation of protrusive structures and for generation of intracellular forces that lead to 

net cell translocation This is initiated by a transition from a non-polarised to a 

polarised state, most often induced by cues from the extracellular environment 

Polarised motile cells extend distinct protrusive regions in the direction of 

translocation Two cellular actin rich structures are typically associated with cell 

migration lammelipodia are large veil like sheets, which contain highly branched and 

cross-linked actin filaments, filopodia are long thin structures that often project 

beyond the edge of the lammelipodium and have parallel bundles of actin filaments 

For a cell to translocate (i e to move from one place to another), the cell needs to 

attach at a new site and retract its rear The new attachment sites or focal contacts that 

constitute a link between the substrate and the actin cytoskeleton are formed behind 

the leading edge While they mature into focal adhesions they pull the cell forward
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Subsequently attachment sites at the rear of the cell are released, allowing the cell to 

pull its rear towards the direction of movement (Lambrechts et a l , 2004)

As mentioned above, lammelipodia and filipodia are composed of actin filaments 

These are formed by the polymerisation of globular monomeric actin (G-actin), an 

ATP binding protein, into double stranded helical filaments (F-actin) These are 

structurally and kinetically polarised, possessing a faster growing (+) end and a 

slower growing (-) end Once incorporated at the (+) end, ATP-G-actin hydrolyses its 

bound ATP After release of inorganic phosphate, ADP-actin molecules are left in the 

filament and finally dissociate at the (-) end ADP-actin monomers are subsequently 

reloaded with ATP and shuttle back to the barbed (+) ends for a new round of 

polymerisation This process results in what is known as treadmilling-a net flow of 

actin subunits throughout the filament (Lambrechts et a l , 2004, Revenu et a l , 2004) 

Many proteins bind to actin and influence its dynamics or state These proteins are 

referred to as actin binding proteins (ABPs) Among ABPs, some link actin filaments 

in a loose network (crosslinking proteins) or in a tight bundle (bundling proteins), or 

anchor filaments to membranes Others bind to the barbed (+) end of the filament and 

prevent further elongation (capping proteins), whereas some cause fragmentation of 

filaments (severing proteins) or might favour the depolymerisation of pointed (-) ends 

A general model for actin based cell motility can be summarised as a four stage 

continuous cycle of ( 1) polarisation, (2) protrusion of lammelipodia as a result of 

actin polymerisation, (3) formation of attachment sites, (4) retraction of the cells rear 

(Lambrechts et a l , 2004)

In metastatic and invasive tumor cells, alterations in the regulation of the actin 

cytoskeleton contributes to dysregulated cellular migration The observed alterations 

within the actin system can arise via three non-mutually exclusive pathways (i) via 

mutations in actin, (n) via changes in upstream regulatory signalling proteins, (111) via 

changed expression levels of actin binding proteins In all cases, this disturbs the 

balance between the synergistic and antagonistic activities of the actin binding 

proteins that regulate actin dynamics Therefore, multiple pathways are likely to exist 

whereby increasing or decreasing one activity can render a cell more motile 

(Lambrechts et a l , 2004)
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Keratins (40-70 kDa) are known as the major structural proteins of epithelial cells 

where they occur as intermediate sized filaments in the cytoplasm They are encoded 

by a large family comprising >40 genes (Yamada et a l , 2002) Keratin intermediate 

filaments are among the most differentiation specific proteins synthesized in epithelial 

cells More than 20 different cellular keratins (known as cytokeratins to distinguish 

them from keratins present in hair and nails) have been identified, each of which 

appears to have a distinctive pattern of protein synthesis in normal epitheha (McBride 

et a l , 1999, Moll et a l , 1982) The keratin family of proteins is generally subdivided 

into basic type II keratins (K1-K8) and acidic type I keratins (K9-K20), which form 

heteropolymers consisting of at least one type I and one type II chain, e g K8 and 

K18 are partners which dimense to form keratin filaments

There are two types of epitheha simple and stratified Simple epitheha are composed 

of a single layer of cells and they line organs such as the stomach, liver or kidney 

Simple epitheha are characterised by the expression of K8 and K18 Some simple 

epitheha also express K7, K17 and K19 while others express the intermediate 

filament protein vimentin (Fuchs e ta l , 1998)

Stratified epitheha (such as the epidermis) are composed of several layers with each 

successive layer representing a more differentiated state In this case cells progress 

from the basal to the upper layers increasing in differentiation as they proceed through 

the different layers Depending on the epithelial cell type each successive layer in 

stratified epitheha (which are at different levels of differentiation) are characterised 

by the expression of unique keratin pairs (Fuchs et a l , 1998)

The specificity of keratin expression in different cell types depending on the 

differentiation state of the cells has led to the use of keratins as markers for 

identification of cell types and their level of differentiation

1.5 Keratins
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1.6 C/EBP transnption factors
The C/EBPs are a family of transcription factors expressed m several organs and are 

involved in controlling differentiation-dependent gene expression In liver, fat and 

white blood cells of the myelomonocytic lineage, C/EBP factors have been 

demonstrated to be important regulators of different aspects of differentiation, 

including proliferation, cell cycle arrest and gene expression (Cassel and Nord, 2003, 

Ramji and Foka, 2002)

C/EBP transcription factors belong to the bZIP class of basic domain transcription 

factors Six members (C/EBPa-Q constitute the mammalian C/EBP family The basic 

region of C/EBP factors is a highly positively charged domain that directly interacts 

with7DNA All members of the C/EBP family have similar basic region DNA-binding 

motifs except C/EBPC (which lacks DNA binding activity) As a consequence of the 

high similarity in the basic region, C/EBPa, C/EBPP and C/EBP5 have been shown to 

interact with virtually identical DNA sequences The leucine zipper region is also 

conserved between the different family members, whereas the amino-terminal 

transactivation domain is more diverse The leucine zipper domain is involved in 

homo- and heterodimensation and all proteins in the C/EBP family have been shown 

to form homo- and heterodimers (Cassel and Nord, 2003, Ramji and Foka, 2002)

16 1 C/EBPs in Lung

Of the tissue specific C/EBP family members, three have been demonstrated to be 

expressed in lung, namely C/EBPa, -p and -5 In adult lung, C/EBPa is expressed in 

the type II cells of the alveolar epithelium, and lower levels are seen in the 

bronchiolar epithelial Clara cells C/EBPP is expressed in type II cells of the alveolar 

region and expression is also seen in the bronchial epithelium C/EBP8 shows high 

level expression in the bronchiolar epithelium and lower levels in alveolar type II 

cells (Cassel and Nord, 2003) An important role for C/EBPa in lung cell 

differentiation is suggested by the phenotype of the C/EBPa (-/-) mouse C/EBPa (-/- 

) knockout mice display impaired lung cellular differentiation with abnormalities in 

the alveolar epithelium and hyperprohferation of type II cells (Cassel and Nord 2003, 

Flodby et al 7 1996) No lung phenotype has been reported in C/EBPp(-/-)3 C/EBP8(- 

/-) or C/EBPP(-/-)/C/EBP5(-/-) double knockout mice (Cassel and Nord, 2003)
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Studies have shown that C/EBP transcription factors are involved in the regulation of 

lung epithelial differentiation related gene expression C/EBPs have been implicated 

in the transcriptional regulation of Surfactant Protein A (SP-A), Surfactant Protein D 

(SP-D), Clara Cell Specific Protein (CCSP) and the P450 enzyme CYP2B1 (Cassel et 

a l , 2000, Cassel and Nord, 2003, He and Crouch, 2002, Rosenberg et a l , 2002) 

These results indicate C/EBP transcription factors play an important role in lung 

epithelial development and differentiation

The observation that C/EBPa(-/-) mice display hyperproliferation of alveolar type II 

cells indicates it is involved in regulation of growth in airway epithelial cells 

Analysis of C/EBPa expression in a panel of lung cancer cell lines and primary tumor 

specimens showed decreased expression of C/EBPa in a large proportion of samples 

Induction of C/EBPa expression by stable transfection in two lung cancer cell lines 

led to growth reduction, differentiation and apoptosis, indicating a possible tumor 

suppressor role for C/EBPa (Halmos et a l , 2002)

C/EBP expression is also induced after lung injury suggesting a role for these factors 

in repairing damaged epithelium after injury (Sugahara, 1999)

16 2 Translational regulation of C/EBP expression

Production of different C/EBP-a and -P polypeptides by alternative use of initiation 

codons represents a major form of translational control in the regulation of the C/EBP 

family C/EBP-a and -P mRNAs contain multiple translation initiation sites and also 

evolutionary conserved upstream open reading frames (uORFs) which allow the 

production of different protein isoforms by differential initiation of translation 

initiation These protein isoforms display altered biological activity which makes 

translational control important in the regulation of C/EBP expression (Ramji and 

Foka, 2002 ) A study by Calkhoven et al (2000) showed that PKR and mTOR 

signalling pathways control the ratio of C/EBP-a and -P isoform expression through 

the translation initiation factors eIF2a and eIF4E
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1.7 CBP/p300 Transcriptional co-activators

CREB-bindmg protein (CBP) and p300 are believed to participate in the activities of 

hundreds of different transcription factors CBP and p300 were both identified 

initially in protein interaction assays, the former through its association with the 

transcription factor CREB, and the latter through its interaction with the adenoviral 

protein El A (Goodman and Smolik, 2000) The recognition that these two proteins, 

one involved in transcription and the other in cell transformation, had highly 

conserved sequences suggested that they had the potential to participate m a variety of 

cellular functions

CBP and p300 are transcriptional co-activator proteins that play a central role in co­

ordinating and integrating multiple signal dependent events with the transcriptional 

apparatus, allowing the appropriate level of gene activity to occur in response to 

different physiological cues that influence, for example, proliferation, differentiation 

and apoptosis

The transcription regulating properties of p300 and CBP appear to be exerted through 

multiple mechanisms They act as protein bridges, thereby connecting different 

sequence-specific transcription factors to the transcription apparatus Providing a 

protein scaffold upon which to build a multicomponent transcriptional regulatory 

complex is likely to be an important feature of p300 and CBP control Another key 

property is the presence of histone acetyltransferase (HAT) activity, which endows 

p300/CBP with the capacity to influence chromatin activity by influencing 

nucleosomal histones Other proteins, including YY1 and c-Myc are also subject to 

regulation through acetylation by p300 and CBP (Chan and La Thangue, 2001, Yao et 

a l , 2001, Vervoorts et a l , 20003) p300 has also been reported to interact with the 

transcription factor C/EBPP which results in activation of C/EBPp and also tnggers 

phosphorylation of p300 (Mink et a l , 1997, Schwartz et a l , 2003)

17 1 CBP/p300 in Lung

CBP has been found to be involved in the transcriptional regulation of the lung 

differentiation specific genes Surfactant Protein A (SP-A) and Surfactant Protein (SP- 

B) (Naltner et a l , 2000a, Yi et a l , 2002) CBP was found to stimulate the SP-B
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promoter synergistically with the transcription factors TTF-1 and RAR in the H441 

pulmonary adenocarcinoma cells (Naltner et a l , 2000a) CBP, TTF-1 and SRC-1 

synergistically activated SP-A promoter activity in A549 lung adenocarcinoma cells 

(Yi et a l, 2002)

Immunocytochemical analysis of CBP and p300 in developing mouse lung showed 

nuclear staining for both CBP and p300 in almost all cell types at various stages of 

lung development indicating a role for CBP and p300 as general transcriptional co- 

activators in this organ (Naltner et a l , 2000b)
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1.8 Aims of Thesis

Previous work conducted in this laboratory has shown that treatment of the poorly 

differentiated lung cell line DLKP with the differentiation modulating agent BrdU 

causes increased expression of growth and differentiation related proteins The 

translation initiation factor eEF4E has been implicated in the post-transcriptional 

regulation of gene-expression in these cells with increased expression and 

phosphorylation of the translation initiation factor eIF4E detected in BrdU treated 

DLKP cells eDF4E is also considered to play a role as an oncogene and its expression 

is increased in various cancers It was therefore decided to analyse the effect of 

overexpression of eIF4E and phosphorylation on growth and gene expression in 

DLKP cells The main aims of this thesis therefore were as follows

• Conduct transient transfections, and generate stably transfected DLKP cells, 

with wild type (4E-HA), and non phosphorylatable S209 mutant (4E 8209- 

HA), HA (hemagluttmin) epitope tagged human eIF4E constructs

• Analyse expression of Cytokeratin 8, 18, 19 which are subject to post- 

transcriptional regulation in BrdU treated DLKP cells

• Analyse expression of P1 integnn and associated a  Integnn binding partners 

which are also differentially expressed in BrdU treated DLKP cells

• Conduct invasion assays to determine if overexpression of 4E-HA or 4E 

S209-HA alters the invasion characteristics of DLKP cells

• Investigate changes in transcriptional control as a result of 4E-HA and 4E 

S209-HA overexpression using oligonucleotide microarray analysis

• Conduct large scale analysis of protein expression using two dimensional gel 

electrophoresis to determine the effects of 4E-HA and 4E S209-HA 

overexpression on the protein expression profiles of these cells
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2.0 Materials and methods
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2.1 Cell Culture Methods

2 1 1  Water

Ultrapure water was used in the preparation of all media and solutions Initially the water 

was pre-treated which involved activated carbon, pre-filtration and anti-scaling This 

water was then purified by a reverse osmosis system (Millipore Milh-RO 10 Plus,

Elgastat UHP) to a standard of 12 -18 MQ/cm resistance

2 12 Treatment of Glassware

All solutions for use in cell culture and maintenance were prepared and stored in sterile 

glass bottles Bottles (and lids) and all other glassware used for any cell-related work 

were prepared as follows - all glassware and lids were soaked in a 2% (v/v) solution of 

RBS-25 (AGB Scientific) for at least 1-hour This is a deproteimsing agent, which 

removes proteineous matenal from the bottles Glassware was scrubbed and rinsed 

several times in tap water, the bottles were then washed by machine using Neodisher 

detergent, an organic, phosphate-based acid detergent The bottles were then rinsed twice 

with distilled water, once with ultrapure water and sterilised by autoclaving

21.3 Sterilisation

Water, glassware and all thermostable solutions were sterilised by autoclaving at 121 °C 

for 20 minutes (min) under pressure of 1 bar Thermolabile solutions were filtered through 

a 0 22 jum sterile filter (Millipore, millex-gv, SLGV-025BS) Low protein-binding filters 

were used for all protein-containing solutions
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2 1 4  Media Preparation

Medium was routinely prepared and sterility checked by Mr Joe Carey (technician) as in 

SOP NCTCC 003-02 The basal media used dunng routine cell culture were prepared 

according to the formulations shown in Table 2 1 1 Media (10x) was added to sterile 

ultrapure water, buffered with HEPES and NaHC03 and adjusted to a pH of 7 45 - 7 55 

using sterile 1 5M NaOH and 1 5M HC1 The media were then filtered through sterile 

0 22^m bell filters (Gelman, 121-58) and stored in 500ml sterile bottles at 4°C Sterility 

checks were carried out on each 500ml bottle of medium as described in Section 2 2 7

The basal media were stored at 4°C up to their expiry dates as specified on each 

individual lOx medium container (3 months) Working stocks of culture media was 

prepared as 100ml aliquots, supplemented with L-glutamine (Gibco, 25030-024) and fetal 

calf serum as required This was stored for up to 2 weeks at 4°C, after which time, fresh 

culture medium was prepared

DMEM

(Gibco, 12501- 

029)

Hams F12

(Gibco, 21700- 

109)

10X Medium 500ml Powder

Ultrapure ifcO 4300ml 4700ml

1M HEPES*

Sigma, H-9136

100ml 100ml

7 5% NaHCOs

BDH, 30151

45ml 45ml

* HEPES = N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) 

Table 2.1.1 Preparation of basal media



2 2 Methods Used in Maintaining Cell Lines

2 2 1 Safety Precautions

All cell culture work was earned out in a class II down-flow re-circulating laminar flow 

cabinet (Nuaire Biological Cabinet) and any work, which involved toxic compounds, was 

carried out in a class II cytoguard (Gelman) Strict aseptic techniques were adhered to at 

all times The laminar flow cabinet was swabbed with 70% industrial methylated spirits 

(IMS) before and after use, as were all items used in the cabinet Each cell line was 

assigned specific media and waste bottles and only one cell line was used at a time in the 

cabinet, which, was allowed to clear for 15min between different cell lines The cabinet 

itself was cleaned each week with industrial detergents (Virkon, Antec International, 

TEGO, TH Goldschmidt Ltd), as were the incubators

2 2 2 Culture of Adherent Cell Lines

DLKP cell lines were cultured in ATCC medium (Ham’s FI2/ DMEM (1 1)) 

supplemented with 5% FCS and 2mM L-glutamine (Gibco, 25030-024)

The cell lines employed during the course of this research were generally maintained in 

non-vented 75 cm2 flasks (Costar, 3075)

2 2 3 Subculture of Adherent Cell Lines
During routine sub-culturing or harvesting of adherent lines, cells were removed from 

their flasks by enzymatic detachment The following protocol outlines the methods used 

in subcultunng DLKP cell lines

Waste medium was removed from the flasks and rinsed with a pre-warmed (37°C) 

trypsin/EDTA (TV) solution (0 25% trypsin (Gibco, 25090-028), 0 01% EDTA (Sigma, 

E5134) solution in PBS (Oxoid, BR14a)) The purpose of this was to eliminate any 

naturally occurring trypsin inhibitor, which would be present in residual serum Fresh TV 

was then placed on the cells (lml/25cm2 flask or 2ml/75cm2 flask) and the flasks were 

incubated at 37°C until the cells were seen to have detached (5 min) The trypsin was 

deactivated by addition of an equal volume of growth medium (i e containing serum) 

The entire solution was transferred to a 30ml sterile universal tube (Greiner, 201151) and

51



centrifuged at 201xg for 5 minutes The resulting cell pellet was re-suspended m pre­

warmed (37°C) fresh growth medium, counted (Section 2 2 5) and used to re-seed a flask 

at the required cell density or to set up an assay

2 2 4 Cell Counting

Cell counting and viability determinations were carried out using a trypan-blue (Gibco, 

15250-012) dye exclusion technique

An aliquot of trypan-blue was added to a sample from a single cell suspension in a ratio 

of 1 5 After 3 min incubation at room temperature, a sample of this mixture was applied 

to the chamber of a haemocytometer over which a glass covershp had been placed Cells 

in the 16 squares of the four outer comer grids of the chamber were counted 

microscopically An average per comer grid was calculated with the dilution factor being 

taken into account and final cell numbers were multiplied by 104 to determine the number 

of cells per ml (volume occupied by sample in chamber is 0 1 cm x 0 1cm x 0 01cm / e 

0 0001cm3 therefore cell number x 104 is equivalent to cells per ml) Non-viable cells 

were those, which stained blue while viable cells excluded the trypan-blue dye and 

remained unstained

2 2 5 Cell Freezing

To allow long term storage of cell stocks, cells were frozen and cryo-preserved in liquid 

nitrogen at temperatures of -180°C Once frozen properly, such stocks should last 

indefinitely

DLKP were frozen using the standard freezing method as follows Cells to be frozen 

were harvested in the log phase of growth (z e actively growing and approximately 60- 

70% confluent) and counted as described in Sections 2 24 Pelleted f cells were re­

suspended in serum and an equal volume of a DMSO/serum (1 9, v/v) freezing solution 

The freezing solution was slowly added (drop-wise) to the cell suspension (as DMSO is 

toxic to cells) A final concentration of at least 5x106 cells/ml was generated The 

suspension was then ahquoted into cryovials (Greiner, 122 278) which were then quickly 

placed in the vapour phase of liquid nitrogen containers (approximately -80°C) After 2 5
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to 3 5 hours, the cryovials were lowered down into the liquid nitrogen where they were 

stored until required

2 2 6 Cell Thawing

The following procedure was used for thawing DLKP cells Immediately prior to the 

removal of a cryovial from the liquid nitrogen stores for thawing, a sterile universal tube 

containing 5 ml growth medium was prepared This allowed for the rapid transfer and 

dilution of thawed cells to reduce their exposure time to the DMSO freezing solution (it 

is toxic at room temperature) The cryovial was partially thawed and its contents were 

transferred to the universal The suspension was centrifuged at 201 xg for 5 min, the 

DMSO-contaimng supernatant was removed and the pellet was then re-suspended in 

fresh growth medium Viability counts were carried out (Section 2 2 4) to determine the 

efficacy of the freezing/ thawing procedures A sample was also taken for sterility 

analysis (Section 2 2 7) Thawed cells were placed into tissue culture flasks with the 

appropnate volume of medium (5ml/25cm2 flask and 10ml/75cm2 flask) and allowed to 

attach overnight

2 2 7 Sterility Checks

Sterility checks were routinely carried out on all media, supplements and trypsin used for 

cell culture Samples of basal media were inoculated into Columbia (Oxoid, CM331) 

blood agar plates, Sabauraud (Oxoid, CM217) dextrose and Thioglycollate (Oxoid, 

CM173) broth’s which should between them detect most contaminants including bacteria, 

fungus and yeast Growth media (z e supplemented with serum and L-glutamine) were 

sterility checked at least 3 days prior to use by incubating samples at 37°C These were 

subsequently examined for turbidity and other indications of contamination Freshly 

thawed cells were also subjected to sterility checks

2 2 8 Mycoplasma Analysis

Mycoplasma examinations were carried out routinely (at least every 3 months) on all cell 

lines used in this study
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2 2 8 1 Indirect Staining Procedure

In this procedure, Mycoplasma-negative NRK cells (a normal rat kidney fibroblast line) 

were used as indicator cells 1 e these cells were incubated with supernatant from test cell 

lines and then examined for Mycoplasma contamination NRK cells were used for this 

procedure because cell integrity is well maintained during fixation and stocks are 

mycoplasma negative A fluorescent Hoechst stain was utilised which binds specifically 

to DNA and so will stain the nucleus of the cell in addition to any Mycoplasma DNA 

present A Mycoplasma infection would thus be seen as small fluorescent bodies in the 

cytoplasm of the NRK cells and sometimes outside the cells

NRK cells were seeded onto sterile coverslips in sterile Petn dishes (Greiner, 633 185) at 

a cell density of 2x 103 cells per ml and were allowed to attach overnight at 37°C in a 5% 

CO2, humidified incubator A 1ml aliquot of cell-free (cleared by centrifugation at 201 xg
1

for 5 min) supernatant from each test cell line was then inoculated onto a NRK petri dish 

and incubated as before until the cells reached 20 - 50% confluency (4-5 days) After this 

time, the waste medium was removed from the petri dishes, the coverslips (Chance 

Propper, 22 x 22 mm) were washed twice with sterile PBS, once with a cold 

PBS/Camoys (50/50) solution and fixed with 2ml of Camoys solution (acetic 

acid methanol-1 3) for 10 minutes The fixative was then removed and after air drying, 

the coverslips were washed twice in deionised water and stained with 2ml of Hoechst 

33258 stain (BDH) (50ng/ml) for 10 minutes

From this point on, work proceeded without direct light to limit quenching of the 

fluorescent stain The coverslips were rinsed three times in PBS They were then 

mounted in 50% (v/v) glycerol in 0 05M citric acid and 0 1M disodium phosphate and 

examined using a fluorescent microscope with a UV filter

2 2 8 2 Direct Staining

The direct stain for Mycoplasma involved a culture method where test samples were 

inoculated onto an enriched Mycoplasma culture broth (Oxoid, CM403) - supplemented 

with 20% serum, 10% yeast extract (Oxoid L21,15% w/v) and 10% stock solution (12 5g 

D-glucose, 2 5g L-arganme and 250 mis stenle-filtered UHP) This medium was 

designed to optimise the growth of any contaminants and was incubated at 37°C for 48
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hours Samples of this broth were then streaked onto plates of Mycoplasma agar base 

(Oxoid, CM401) which had also been supplemented as above and the plates were 

incubated for 3 weeks at 37°C in a CO2 environment The plates were viewed 

microscopically at least every 7 days and the appearance of small, “fried egg” -shaped 

colonies would be indicative of a mycoplasma infection

2.3 Preparation of Cell Samples for Analysis

23  1 Preparation of Bromodeoxyundine (BrdU) Stock Solution

DLKP Bromodeoxyundine (BrdU) treatment studies were carried out using 5- 

bromodeoxyundine (BrdU) (Sigma, B5002) BrdU powder was reconstituted in UHP 

water to a stock concentration of lOmM and the resultant solution was filter sterilised 

through a stenle 0 22jum filter, ahquoted into stenle Eppendorfs and stored at -20°C for 

up to 1 year

2 3 2 Preparation of cell samples for Immunocytochemical/Immunoflourescence 

Analysis

For immunocytochemical and immunoflourescence analysis (Section 2 8), cells were 

plated onto 6-well plates (Costar, 3516) at densities of lxlO4 cells per well A 2 ml 

volume of medium was sufficient for each well The cells were allowed to attach and 

form colonies by incubating at 37°C, 5% CO2 for 24 hours The plates were covered with

parafilm to prevent contamination For BrdU treatments after 24 hr, the medium was 

removed and 2 ml fresh medium containing either 10|jM BrdU was then added to each 

well and the plates were then incubated for 7 days Medium was replaced every 3-4 days 

over the course of the assay All waste medium was retained for disposal by incineration
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2.3 2 1 Fixing Cells for Immunofluorescence/lininunocytochemistry

After incubation, cells were rinsed 3X in PBS A 2 ml volume of ice cold methanol was 

added to each well and the plates were incubated at -20°C for 7 minutes and removed 

The plates were allowed to air-dry, wrapped in foil and stored at -20°C

23  3 Preparation of cell samples for Western Blot analysis

For Western blotting, cells were inoculated into 75cm2 flasks at a density of lxlO5 cells 

per flask and allowed to attach and form colonies For BrdU treatments, BrdU at a 

concentration of 1 O^M was then added to the cells after 24 hours and cells were grown 

for 7 days Otherwise, cells were incubated until approx 80% confluent Medium was 

replaced every 3-4 days The cells were then harvested by trypsmisation, washed in
o

sterile PBS A, counted, pelleted and stored at -80 C until required

2 3 4 Preparation of cell samples for RT-PCR/ Microarray RNA analysis

For RNA analysis, cells were inoculated into 75cm2 flasks at a density of lx l05 cells per 

flask and allowed to attach and form colonies Cells were incubated until approx 80% 

confluent Medium was replaced every 3-4 days The cells were then harvested by 

trypsmisation, washed in sterile PBS A and counted Approximately 10* cells were 

pelleted and lysed using 1ml of TRI REAGENT™ (SIGMA, T-9424) The samples were 

allowed to stand for 5 mins at RT to allow complete dissociation of nucleoprotein
o

complexes and then snap frozen in liquid nitrogen and stored at -80 C until required

2 3 5 Preparation of cell samples for 2D electrophoresis

For preparation of samples for 2D electrophoreisis cells were inoculated into 175cm2

flasks at a density of 5x105 cells per flask and allowed to attach and form colonies

Medium was replaced every 3-4 days until cells were approx 80% confluent The cells 

were then harvested by trypsmisation, washed in ice-cold sterile PBS A, counted and 

pelleted The further preparation of cell samples for 2D electrophoresis is described in 

section 2 9 2
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2 4 Growth Assay Experimental Protocol

Cells were seeded at a density of 0 5x105 cells/flask in 25cm2 flasks The cells were 

allowed to attach overnight at 37°C incubator On each day following initial seeding, the 

cells were trypsmised (Section 2 2 3) and counted (Section 2 2 4) Each flask was 

counted on both counting chambers of a Hemocytometer and two flasks were counted 

each day The proliferation assay was earned out for a total of 6 days

2.5 Invasion Assay Experimental Protocol

Invasion assays were performed using BD Biocoat™Matngel™ Invasion Chambers (Cat 

No 354480) according to manufacturers instructions Invasion assays were performed 

using 5x104 cells per invasion chamber and 5% foetal calf serum was used as 

chemottractant Cells were incubated in invasion chambers at 37°C, 5% CO2 for 48 hours 

After this time, the inner side of the invasion chamber was wiped with a wet cotton swab 

while the outer side was stained with 0 25% crystal violet for 10 minutes and then nnsed 

with PBS and allowed to dry Five fields at 10X magnification were counted for crystal 

violet stained cells per chamber
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2.6 Overexpression Studies

eIF-4E cDNA in the BK episomal vector was a kind gift from Prof Arngo DeBenedetti 

(Louisiana, USA) The 4E-HA and 4E S209-HA plasmids were gifts from Dr Rob 

Schneider (New York, USA) Both plasmids were obtained as a culture of pre­

transformed cells resistant to geneticin (GEN) and ampicillin (AMP)

2 61  Plasmid Preparation

Cultures were streaked on LB agar containing SO^g/ml Ampicillin (Sigma, G9516) and 

incubated at 37°C overnight From these, a single colony was inoculated into 10ml of LB 

Broth Ampicillin (50|ig/ml) and grown overnight A 2ml sample of this suspension was 

then added to 200ml of TB Ampicillin 50|ig/ml and left to grow overnight at 37°C for 

large-scale isolation of plasmid from transformed cells The following day the cells were 

pelleted for 15 mins at 265 5xg The plasmid DNA was then isolated from the cells us in the 

Maxi-Mini Qiagen Plasmid DNA extraction Kit (Qiagen, 12143) The DNA concentration 

was determined by measuring the absorbance OD 260nm

2 6 2 Transfection of Cell Lines 

2 6 21 Transient Transfections

On the day prior to transfections, cells to be transfected were plated from a single cell 

suspension and seeded into 25cm2 flasks at 4x105 cells per flask

On the day of the assay the liposome transfection agent Fugene6 (Boehnnger Mannheim,

1 814 443) was mixed with the DNA to be transfected m a 3 1 ratio and allowing 2 \xg 

DNA/flask The components were mixed in 100 |il serum free medium (SFM) per flask 

to be transfected The Fugene6 was added to the SFM and care was taken not to allow it 

to touch the sides of the eppendorf The DNA was then added The components were 

mixed by gentle tapping and allowed to sit for 25 minutes at room temperature During 

this period, the medium was changed on the wells to be transfected and on the control 

wells After 25 minutes had elapsed, lOÔ il of the transfection mix was added to the 

flasks in a drop-wise fashion with constant swirling The transfections were carried out
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over 72 hours and then the flasks were sampled for immunoimmunocytochemistry (72 

hrs) or Western blot (at 24,48 and 72hrs)

2 6 2 2 Generation of Stably Transfetcted Cell Lines

To generate stably transfected DLKP cells, four flasks were set up per transfection, l e 

three for transfection and one as a control The cells were seeded at 4 x 105 cells/flask and 

allowed to attach overnight The transfection was carried out using the liposome 

transfection agent Fugene6 (Boehnnger Mannheim, 1 814 443) as described for transient 

transfections (Section 2 6 2 1) Antibiotic selection commenced 48 hours after 

transfection and the relevant cells and their controls were selected with initial 

concentrations of200 |ig/ml G418 (Sigma, G9516) The concentration of the Geneticin 

was incrementally increased over time until the contents of the control flasks were all 

dead The final selection concentrations reached was 800 fig/ml (G418)

2 6 2 3 Generation of Clonal Populations From Stably Transfected Mixed 

Populations

To generate clonal populations from stably transfected DLKP cells, the cells were diluted 

and plated out in 96-well plates, such that, the probability was that one cell would be 

found in every third well (i e a plating suspension of 3 3 cells/ml) These plates were 

incubated overnight at 37°C and at 5% CO2 Twelve hours after plating, the plates were 

examined and wells containing single cells were highlighted and monitored Up to 20 

clones were usually isolated and gradually expanded to 12-well plates, 6-well plates and 

eventually flasks
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2 6 3 Quantification of DNA using a UV Spectrophotometer

The plasmid DNA was quantified using a UV spectrophotometer (Molecular Devices) at 

260nm By simultaneous measurement of the OD at 280nm the relative purity of the 

sample could be ascertained The amount of DNA was calculated from the following 

formula

OD260 x 50 x Dilution factor/1000 = DNA amount (̂ ig/jJ-l)

The relative purity could be calculated using

Purity = OD260/OD280 

Purity values of 1 8 - 2  would generally be expected
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2.7 Immunocytochemical and Immunofluorescence Analysis

2 7 1 Immunocytochemical Analysis

The avidin-biotin complex (ABC) immunoperoxidase technique combined with the 

diaminobenzidine (DAB) visualisation procedure was used m all immunocytochemistry 

experiments The ABC method involves application of a biotin-labelled secondary 

antibody to cells probed with a primary antibody, followed by the addition of avidin- 

biotin-peroxidase complex which results in a high staining intensity due to the formation 

of an avidin-biotin lattice which contains peroxidase molecules The peroxidase enzyme 

then reacts with a DAB solution to give an insoluble, brown-coloured precipitate The 

formation of this brown precipitate-coloured precipitate is indicative of primary antibody 

reactivity

The procedure used is as follows

Cell preparations on 6-well tissue culture plates (which had been previously fixed in 

methanol and frozen at -20°C) were allowed to thaw and equilibrate at room temperature 

A grease pen (DAKO, S2002) was used to encircle cells in the tissue culture plates to 

contain the various solutions involved during the procedure The cells were incubated for 

5 minutes with a 3% H2O2 solution to quench any endogenous peroxidase activity that 

may be present in the cells and which could lead to false positive results The cells were 

then rinsed with UHP and placed in TBS for 5 minutes The plates were incubated for 20 

minutes at room temperature (RT) with an appropnate serum diluted 1 5 in TBS to block 

non-specific binding This was removed and 30-50|il of optimally diluted primary 

antibody was administered The tissue-culture plates were placed on a tray containing 

moistened tissue paper and incubated at 37°C for 2 hours The primary antibodies used in 

these studies are listed in Table 2 7 1 The wells were then rinsed in TBS/ 0 1% Tween x3 

for 5 min each and then incubated for 30 mm with a biotinylated secondary antibody 

diluted in TBS (Table 2 7 1) The wells were rinsed as before and incubated with 

strepABComplex/ Horse Radish Peroxidase (HRP) (DAKO, K377) for 30 mm at RT, 

after which they were rinsed x3 in TBS/ 0 1% Tween The cells were then incubated 

with a DAB solution (DAKO, S3000) for 7-10 minutes Excess DAB solution was then
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")
rinsed off with UHP water The wells were then mounted using a commercial mounting 

solution (DAKO, S3023)

Antibody Host Supplier Dilution Serum for 
Blocking

CK8 Mouse Sigma (C5301) 1/300 Rabbit 
(Dako, X092)

CK18 Mouse Sigma (C8451) 1/100 Rabbit
CK19 Mouse Sigma (C6930) 1/50 Rabbit
FAK Mouse BD Transduction 

Laboratories 
(610088)

1/50 Rabbit

eIF-4E Mouse BD Transduction 
Laboratories (610270)

1/250 Rabbit

CBP Rabbit Santa Cruz (sc-369) 1/100 Goat
P300 Rabbit Santa Cruz (sc-584) 1/100 Goat

C/EBPß Rabbit Santa Cruz (sc-150) 1/100 Goat
ODC Mouse SIGMA (01136) 1/100 Rabbit

ßl Integrin Mouse Serotech (MCA1188) 1/100 Rabbit
a l  Integrin Mouse Chemicon (MAB1973Z) 1/100 Goat
a2 Integrin Mouse Chemicon (MAB1950Z) 1/100 Goat
a3 Integrin Mouse Chemicon (MAB1952Z) 1/100 Goat
a5 Integrin Mouse Chemicon (MAB1956Z) 1/100 Goat
Alexa Fluor 

488 Phalloidin
N/A* Molecular Probes 1/20 N/A*

Anti Mouse 
(FITC)

Rabbit Dako
(F0261)

1/30 N/A

Anti Mouse 
(Biotin)

Rabbit Dako
(E0354)

1/300 N/A

Anti Rabbit 
(Biotin)

Goat Dako
(E0432)

1/300 N/A

Anti Goat 
(Biotin)

Rabbit Dako
(E0466)

1/300 N/A

Table 2 7 1 Antibodies used in Immunofluorescent/Immunocytochemical studies

including the labelled secondary antibodies (* Alexa Fluor 488 Phalloidin is not an 

antibody it is a fluorescent derivative of the phallotoxin phalloidin)
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Basic immunofluorescence was used for FAK staining, frozen 6-well sample plates were 

removed from the -20°C freezer and allowed to equilibrate to room temperature (-10 

minutes) Grease circles (DAKO pen, DAKO Cat S2002) were then drawn within the 

wells (to contain the solutions used in the subsequent analysis) The cells were re­

hydrated using lx TBS for 5 minutes

This was tapped off and the relevant serum (listed in Table 2 7 1) (diluted 1/5) was added 

as a ‘blocker’ for 20 minutes at room temperature The serum was removed at this point 

and the primary antibody was applied (antibodies and dilutions are listed in Table 2 7 1) 

This was incubated overnight at 4°C in a moist environment The following day, the 

primary antibody was removed and the wells were washed three times in TBS-0 1% 

tween at 5 minutes per wash The fluorescent secondary antibodies were prepared in the 

dark room under dim conditions and were covered in foil upon dilution with TBS (They 

are light sensitive) The secondary antibodies (Table 2 7 1) were incubated for 60 minutes 

and the plates were wrapped in foil to maintain dim conditions All work from this point 

onwards was earned out in the dark to prevent ‘quenching’ fluorescent signal After 60 

minutes incubation the antibodies were removed and the plates were washed three times 

m TBS-0 1% tween The wells were then mounted using fluorescent mounting medium 

(Dako, S3023) and covered with coverslips (Chance Propper, 22 x 22 mm)

2 7 2 Basic Immunofluorescence Analysis
v.
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2 7 3 Cell Fixation and Labelling for F-actin Fluorescence Analysis

Cells were plated on glass chamber slides (NUNC) and cultured at 37°C, 5%CC>2 for 5 

days before use Cells were washed in PHEM buffer (PIPES 60mMol, HEPES 25mMol, 

EGTA lOmMol, MgCL2 2mMol) and fixed in 4% paraformaldehyde, 0 5% 

gluteraldehyde in PHEM for 20 mm at room temperature Cells were permeabilized with 

0 1% Triton X-100 in PHEM Free aldehyde groups were reduced with 01% (w/v) 

sodium borohydnde in PBS Cells were preincubated in PHEM containing 1% PBS for 

30 minutes Alexa Fluor 488 Phalloidin methanolic stock was diluted 1/20 in PHEM 

containing 1% BSA for 20 mins at room temperature and this staining solution was then 

placed on cells for 30 mins at room temperature Cells were then washed twice in PHEM 

buffer The wells were then mounted using fluorescent mounting medium (Dako, S3023) 

and covered with coverslips (Chance Propper, 22 x 22 mm)

2 7 4 Confocal Microscopy

Cells fluorescently labelled with Phalloidin (F-actin) and FAK were analysed by confocal 

microscopy The fluorochromes (FITC and Alexa 488) were excited with a 488nm laser 

line generated from an ArKr laser Band pass filters and PMT detectors were optimised to 

detect the emitted fluorescence An xyz scan was performed for each sample and results 

were displayed as an average projection of the stack obtained
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2 8 Western Blotting analysis

2 8.1 Sample Preparation

Cell pellets were taken from flasks of cells in culture following differentiation or 

transfection experiments These pellets were usually washed 2X in PBS, dried and stored 

at -80°C until needed

Cell pellets (Section 2 7 1 ) were lysed in TG lysis buffer [20mM Tns-HCl/lmMEGTA 

pH 8,10% glycerol, 1% TntonX-100, 1 5mMMgCl2, 0 137mMNaCl, lmMNa3V04, 

ImMPefabloc (Boehringer, 84500920-22)] and IX Protease inhibitor cocktail 

(Boehringer, 1697498) on ice for 30 minutes followed by sonication in a Labsomc U 

(Braun) unit The cells were pulsed 3-5 times on ice using a repeating duty cycle of

0 3 seconds Once 60-80% of the cells were determined to be lysed (by checking a sample 

of lysate under a microscope), the sonication was stopped The sonicated samples were 

then centrifuged at 664xg for 5 minutes on a benchtop microfuge to remove cellular 

debns The supernatant was carefully removed and ahquoted to eppendorf tubes Protein 

samples were stored at -20°C until required for quantification or analysis

2 8 2 Protein Quantification by DC Protein Assay

Protein quantification could be carried out using the DC protein assay (Biorad, 500-0116) 

which is based on the Lowry protein assay To quantify the protein extracted, serial 

dilutions of the protein were prepared in duplicate (all sample and standard dilutions were 

made in lysis buffer) and a standard curve was generated using serial dilutions of a

1 mg/ml BSA (Sigma, A9543) stock A 5 fj.1 volume of standards or samples were loaded 

into a clean 96-well plate To each well 25 jo.1 of solution A (provided) was added 

followed by 200 jil solution B The plate was mixed gently and the colour was allowed to 

develop for 15 minutes The plates were quantified using a Spectra max plus plate reader 

(Molecular Devices) at 750 nm and the data was processed using Soft max Pro software
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2 8 3 Aery lam ide Gel Electrophoresis

Proteins were separated by SDS polyacrylamide gel electrophoresis (SDS PAGE) The 

resolving and stacking gels were prepared as outlined in Table 2 8 1 The gels were 

poured in to clean 10 cm x 8 cm gel cassettes consisting of glass plates separated by 

0 75cm plastic spacers The resolving gel was poured initially, allowed to solidify and 

overlayed with the stacking gel Before the stacking gel was set, a comb was inserted to 

generate sample wells Gels were generally used immediately but could be stored at 4°C 

overnight if wrapped well in foil For most applications, 50 fig of protein was loaded to 

each well Samples were mixed with 5X loading buffer (6 25 ml 1 25 M Tns-HCl pH 6 8, 

2 5 g SDS, 14 5 ml glycerol, 0 025% bromophenol blue, this was made up to 50 ml with 

H20) The samples were boiled for three minutes prior to loading and were run in 

parallel with protein size markers (Isis, P77085) The electrophoresis conditions were 250 

V and 45 mA The gels were run for 1-1 5 hours (time depends on the size of the protein 

to be studied, l e larger proteins were run for longer)

Component Resolving 
Gel (7 5%)

Resolving Gel 
(10%)

Stacking Gel (5%)

30 %Acrylamide Stock 
(Sigma, E344-500ML-C)

3 8 ml 5 ml 0 8 ml

UHP 8 ml 6 8 ml 3 6 ml
1 875 M Tns-HCl (pH 

8 8)
3 ml 3 ml -

1 25 M Tns-HCl 
(pH 6 8)

- - 0 5 ml

10% SDS 150 |xl 150 Ml 50 îl
10 % Ammonium 

Persulphate (Sigma, 
A1433)

60 (j.1 60 jil 17 jol

TEMED 
(Sigma, T8133)

9 (xl 9 (il 6 \i\

Table 2 8 1 Preparation of Acrylamide Ge s
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2 8 4 Western blotting

Following electrophoresis, gels were equilibrated in transfer buffer (25 mM Tns, 192 

mM Glycine (Sigma, G7126) pH 8 3-8 5 without adjustment) for 15 minutes with 

agitation Protein gels were transferred to Hybond ECL nitrocellulose membrane 

(Amarsham, RPN 202OD) using semi-dry electroblotting (semi-dry transfer cell 

(Biorad)) For this, 8 sheets of Whatman 3 mm filter paper (Whatman, 1001824) were 

soaked in transfer buffer and placed on the cathode plate of a semi-dry blotting apparatus 

Excess air was removed from between the filters by rolling a glass pipette over the filter 

paper Nitrocellulose, cut to the same size of the gel, was soaked in transfer buffer and 

placed over the filter paper, making sure there were no air bubbles The acrylamide gel 

was placed over the nitrocellulose and 8 more sheets of pre-soaked filter paper were 

placed on top of the gel Excess air was again removed by rolling the pipette over the 

filter paper The proteins were transferred from the gel to the nitrocellulose at a current of 

34mA at 15V for 20-25 mm

All incubation steps from now on, including the blocking step, were carried out on a 

revolving apparatus (Stovall, Bellydancer) to ensure even exposure of the nitrocellulose 

blot to all reagents

The nitrocellulose membranes were blocked for 1-2 hours at room temperature with fresh, 

filtered, 5% non-fat dried milk (Cadburys, Marvel skimmed milk) in TBS (8 76 g NaCl, 

6 09 g Tris-HCL in 1L UHP)/ 0 1 % Tween (Sigma PI 379) pH 7 5

After blocking, the membranes were rinsed with TBS-tween and incubated with primary 

antibody (Table 2 5 3) overnight at 4°C The primary antibody was removed and the 

membranes rinsed 3 times with TBS/ 0 1% Tween The membranes were then washed for 

15 mm and then twice for 5 minutes in TBS/ Tween Bound antibody was detected using 

enhanced chemiluminescence (ECL)

67



Following chemiluminescent detection, blots were again washed and blocked as 

described and re-probed for an internal standard eg GAPDH This was earned out as 

before

2 8 5 Enhanced Chemiluminescence Detection

Protein bands were developed using the Enhanced Chemiluminescence Kit (ECL) 

(Amersham, RPN2109) according to the manufacturer’s instructions

Hoseradish Peroxidase Conjugated Secondary antibody (diluted appropriately, Table 

2 8 6) was added to the blots with shaking for 1 hour at room temperature The 

secondary antibody was removed and the membranes were washed as before A sheet of 

cellophane was flattened over a smooth surface, eg a glass plate, making sure all air 

bubbles were removed The membrane was then placed on the cellophane, and excess 

fluid removed An equal volume of ECL (1 5ml) detection reagent 1 and reagent 2 were 

mixed and covered over the membrane Charges on the cellophane ensured the fluid 

stayed on the membrane The reagent was removed after one minute and the membrane 

wrapped in cellophane The membrane was exposed to autoradiographic film (Kodak, X- 

OMAT S, 500 9907) in an autoradiographic cassette for vanous times (depending on the 

level of signal) The autoradiographic film was then developed

The exposed film was developed for 5min in developer (Kodak, LX24) diluted 1 6 5 in 

water The film was briefly immersed in water and transferred to a Fixer solution (Kodak, 

FX-40) diluted 1 5 in water, for 5minutes The film was transferred to water for 5 min 

and then air-dried
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2 8 6 Antibodies Used for Western Blotting

Antibody Host Supplier Dilution * ||
FAK Mouse BD Transduction 

Laboratories 
(610088)

1/50

eIF-4E Mouse BD Transduction 
Laboratories 

(610270)

1/250

CBP Rabbit Santa Cruz (sc- 
369)

1/100

Anti-HA Mouse Roche (1666606) 1/1000
GAPDH Mouse Abeam (ab8245) 1/ 10,000
p-actin Mouse Sigma

(A5441)
1/ 10,000

Mouse IgG Sheep Sigma
(A6782)

1 /1,000

Rabbit IgG Goat Sigma
(A4914)

1/5,000

Goat IgG Rabbit Sigma
(A5420)

1/1,000-1/5,000

Table 2 8 6 Antibodies used for Western blotting
*A11 antibodies were diluted in TBS
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2 9 Proteomics-2D Gel Electrophoresis 

2 9 1 Chemicals
Cy2, Cy3, Cy5, immobilized pH gradient strips, Ampholytes, were purchased from GE 

Healthcare Urea and íodoacetamide were bought from Fluka Chemical Corp 

(Milwaukee, WI) CHAPS, Tris and DTT were obtained from Sigma

2 9 2 Sample Preparation and Protein Labeling

Cells at -80% confluence were washed twice in 0 5x phosphate-buffered saline, lysed in 

lysis buffer (4% (w/v) CHAPS, 7 M urea, 2M thiourea, 10 mM Tns-HCl, pH 8 5) and 

then homogenized by passing through a 25-gauge needle six times Insoluble material 

was removed by centrifugation at 20,817xg for 20 min at 10°C Protein concentration 

was determined using the BSA protein assay kit (Pierce) Cell lysates were labelled with 

N-hydroxy succinimidyl ester-denvatives of the cyanine dyes Cy2, Cy3 and Cy5 

following the protocol described previously Typically, 50 \xg of lysate was minimally 

labelled with 400 pmol of either Cy3 or Cy5 for comparison on the same 2D gel 

Labelling reactions were performed on ice in the dark for 30 min and then quenched with 

a 50-fold molar excess of free lysine to dye for 10 mm on ice A pool of all samples was 

also prepared and labeled with Cy2 to be used as a standard on all gels to aid image 

matching and cross-gel statistical analysis The Cy3 and Cy5 labelling reactions (50 \ig of 

each) from each lysate were mixed and run on the same gels with an equal amount (50 jig) 

of Cy2-labeled standard

2 9 3 Protem Separation by 2D Gel Electrophoresis and Gel Imaging

Immobilized linear pH gradient (IPG) strips, pH 4-7, were rehydrated in rehydration 

buffer (7 M urea, 2M thiourea, 2% CHAPS, 0 5% IPG Buffer, 50 mM DTT) overnight, 

according to the manufacturers guidelines Isoelectric focusing was performed using a 

IPGphor apparatus (GE Healthcare) for a total of 40 kV-h at 20°C, 50 mA Strips were 

equilibrated for 15 min in 50 mM Tns-HCl, pH 8 8, 6 M urea, 30% (v/v) glycerol, 1% 

(w/v) SDS containing 65 mM DTT and then for 15 mm m the same buffer containing 240

70



mM iodoacetamide. Equilibrated IPG strips were transferred onto 18x 20-cm 12% 

uniform polyacrylamide gels poured between low fluorescence glass plates. Strips were 

overlaid with 0.5% (w/v) low melting point agarose in running buffer containing 

bromphenol blue. Gels were run using the Ettan Dalt 12 appartus (GE Healthcare) at 1.8 

W/gel at 10°C until the dye front had run off the bottom of the gels (approximately 18h). 

All the images were collected on a Typhoon 9400 Variable Mode Imager (GE 

Healthcare). Statistics and quantitation of protein expression were carried out in Decyder 

software (GE Healthcare).

2.9.4 Spot digestion and Mass Spectrometric Analyses

Excision of protein spots, trypsin digestion and protein identification by mass 

spectrometric analysis using an Ettan MALDI-ToF Pro instrument from GE Healthcare 

was performed according to an established methodology. Preparative gels containing 

300fig of protein were fixed in 30% (v/v) methanol, 7.5% (v/v) acetic acid overnight and 

washed in water and total protein was detected by post-staining with SyproRuby dye 

(Molecular Probes) for 3 h at room temperature or Colloidal Coomassie (Sigma) for 2 

hours. Excess dye was removed by the appropriate destaining and washing methods. 

Sypro Ruby gels were imaged using a Typhoon 9400 Variable Mode Imager (Amersham 

Biosciences, Inc.) at the appropriate excitation and emission wavelengths for the stain. 

The subsequent gel image was imported into the BVA module of DeCyder software and 

was matched to images generated from DIGE analysis. Spots of interest were selected 

and confirmed using this software for subsequent picking using an Ettan Spot Picker. 

Colloidal Coomassie stained gels were scanned using an Image Scanner (GE Healthcare) 

flatbed scanner. The gel files were imported into ImageMaster 2D Platinum Version 5.0 

software for subsequent spot detection. Spots of interest generated by DIGE analysis 

were matched to their counterparts in the ImageMaster software and these spot locations 

were exported for subsequent picking using an Ettan Spot Picker. Gel plugs were placed 

into a presilconized 1.5 mL plastic tube for destaining, desalting and washing steps. The 

remaining liquid above the gel plugs was removed and sufficient acetonitrile was added 

in order to cover the gel plugs. Following shrinkage of the gel plugs, acetonitrile was
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removed and the protein-containing gel pieces were rehydrated for 5 min with a minimal 

volume of 100 mM ammonium bicarbonate An equal volume of acetomtnle was added 

and after 15 min of incubation, the solution was removed from the gel plugs and the 

samples then dried down for 30 min using a vacuum centrifuge Individual gel pieces 

were then rehydrated in digestion buffer (12 5ng trypsin per \i\ of 10% Acetromtrile 

40mM Ammonium Bicarbonate) to cover the gel pieces More digestion buffer was 

added if all the initial volume had been absorbed by the gel pieces Exhaustive digestion 

was carried out overnight at 37 °C After digestion, the samples were centrifuged at 

12,000 g for 10 min using a bench top centrifuge The supernatant was carefully removed 

from each sample and placed into clean and silconized plastic tubes Samples were stored 

at -70 °C until analysed by MS For MALDI-Tof analysis, mixtures of tryptic peptides 

from individual samples were desalted using Millipore C-18 Zip-Tips (Milhpore) and 

eluted onto the sample plate with the matrix solution [5 mg/mL a-cyano-4- 

hydroxycinnamic acid in 50% acetonitnle/0 1% tnfluoroacetic acid (v/v)] Mass spectra 

were recorded using the MALDI ToF instrument operating in the positive reflector mode 

at the following parameters accelerating voltage 20 kV, and pulsed extraction on (focus 

mass 2500) Internal and external calibration was performed using trypsin autolysis peaks 

at m/z 842 50, m/z 2211 104 and Pep4 mix respectively The mass spectra were analysed 

using MALDI evaluation software (Amersham Biosciences) and protein identification 

was achieved with the PMF Pro-Found search engine for peptide mass fingerprints 

Peptide samples of insufficient abundance for MALDI-Tof identification were subjected 

to LC-MS/MS using an Ettan MDLC system (GE Healthcare) attached to an LTQ mass 

spectrometer (Thermo Electron) with an ESI ion source Peptide sequences were 

identified using SEQUEST algorithm incorporated into BioWorks software (version 3 1) 

(Thermo Electron) and the Swiss-Prot human protein database
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2 9.5 Silver staining of 2D electrophoresis gels

All cell lysates to be used for DIGE analysis were screened initially by silver staining to 

ensure that these samples were of good quality Cell samples for silver staining were 

prepared as for DIGE analysis but are not labelled with Cy dyes Samples are separated 

by 2D Gel Electrophoresis as for Cy Dye labelled proteins and processed as follows

■ Fixing gels are placed in fixing solution for a minimum of 30 minutes

■ Washing Using the outlet on the gel box, the fixing solution was carefully 

drained out A volume of water (150 ml) was added to rinse and the gel was 

placed on a belly dancer for five minutes The gel was rinse a total of three times

■ Sensitizing After the third wash, the gel box was drained and approximately 200 

ml of sensitizing solution was added before returning gel to the belly dancer for 

30 minutes

■ Washing Then using the method outlined above, three 10-minute washes were 

carried out with distilled water

■ Silver Reaction Following the washes, silver reaction solution (200 ml) was

added and the gel returned to the belly dancer for 20 minutes

* Washing Following the silver step, a further two washes were carried out Each 

wash was a minimum of 5 minutes

■ Developing Developer (200 ml) was added to the gel and allowed to develop on 

the belly dancer until protein spots appear, something in the region of 20 minutes

■ Stopping When the desired amount of spots had appeared on the gel, the

developing was stopped with the addition of stopping solution (200ml) and the gel 

returned to the belly dancer for 10 minutes

■ Storage For medium to long-term storage the gels were kept in distilled water All 

equipment used in the procedure was cleaned using warm water and detergent, 

before nnsing with distilled water
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2 9 51  Preparation of 1L of Fixing solution (Required for 6 gels)

A volume of 400ml of ethanol and 100 ml of acetic acid were added to a 1L of distilled 

water and mixed well

2 9 5 2 Preparation of 1L of Sensitizer solution (Required for 6 gels)

To 300ml of ethanol, 2g sodium thiosulphate, and 68g sodium acetate were added 

together in 1L of distilled water and mixed with a stirring bar until in solution 

2 9 5 3 Preparation of 1L of Silver solution (Required for 6 gels)

To 1L of distilled water, 2 5g of silver nitrate was added and mixed well Immediately 

before use 400^1 of formaldehyde was added and the solution mixed well 

2 9.5.4 Preparation of 1L of Developer solution (Required for 6 gels)

To 1L of distilled water, 25g of sodium carbonate was added and mixed by swirling 

2 9 5 5 Preparation of 1L of Stopper solution (Required for 6 gels)

To 1L of distilled water, 14 6g of Na2EDTA was added and mixed well by swirling
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2.10 RNA Analysis

2.10.1 Preparation of RNA for Analysis

RNA is easily degraded by RNase enzymes which are ubiquitous, thus the following 

precautions were taken prior to RNA work.

All solutions for RNA related work, i.e. that would come in to contact with the RNA, 

were prepared from sterile UHP that had been treated with 0.1% diethyl pyrocarbonate 

(DEPC) (Sigma, D5758) before autoclaving. Solutions for RNA work were made in 

bottles that had been baked at 180°C for 8 hours or more. All eppendorfs PCR tubes used 

etc. were RNase free and pre-autoclaved prior to use as were Gilson pipette tips. 

Disposable nitrile gloves were worn at all times during RNA work (to protect the 

operator and to prevent RNase degradation). The gloves were changed frequently during 

RNA manipulation.

2.10.2 RNA Isolation Using TriReagent

RNA was extracted from cultured cells in 75cm2 flasks. Cells were initially trypsinised, 

washed in PBS A, pelleted and then lysed in TriReagent and stored at -80°C until 

required.

The following protocol outlines the method whereby pure RNA was isolated from 

TriReagent. The frozen TriReagent samples were allowed to thaw at room temperature 

and upon thawing, were allowed to sit for at least 5 minutes to ensure complete 

dissociation of nucleoprotein complexes. A volume of 0.2 ml of chloroform was added 

per ml of TriReagent in the sample. This was shaken vigorously for 15 s and the samples 

were allowed to stand for 15 minutes at room temperature. The sample was then 

centrifuged at 17,949xg for 15 minutes at 4 °C. Following centrifugation, the sample 

separated in to three layers, the upper aqueous layer containing the RNA, the interphase 

(DNA) and the red layer containing the protein. The upper layer was thus carefully
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removed to a fresh eppendorf and 0 5 ml of isopropanol (Fluka, 59304) was added to the 

aqueous RNA solution per ml of TriReagent used initially The tubes were mixed well 

and allowed to stand at room temperature (15-20 minutes) This effected the precipitation 

of the RNA, which was then recovered by centrifugation at 17,949xg for 10 minutes The 

RNA was washed (2X) in 75% EtOH and air dried for 5-10 minutes The recovered RNA 

pellet was then dissolved m 12-20 1̂ DEPC treated H2O with repeated pipetting To aid 

re-suspension of the RNA, the sample was also heated to 55°C for 10 minutes followed 

by cooling on ice RNA was ahquoted and stored at -80°C until required

2 10 2 1 RNA Purification for Oligonucleotide Microarray Analysis

For reproducible results using Affymetrix Oligonucleotide Microarrays, the initial RNA 

had to be of extremely high quality, thus the RNeasy (Qiagen 74104) system was used to 

further purify RNA samples isolated using TriReagent The RNeasy purification kit is 

based on the guanidine thiocyanate method of RNA extraction The procedure was 

performed according to manufacturers instructions
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2 10 3 RNA Quantification

RNA (like DNA) was quantified using a UV spectrophotometer The OD260 was used to 

quantify the RNA in the sample using the following equation

OD26o x 40 x Dilution Factor/1000 = RNA content (ng/fil)

By simultaneously measuring the OD280 the punty of the sample could be estimated

Purity = OD260/OD280

This was typically in the range of 1 8-2 0 A ratio of <1 6 indicated that the RNA may not 

be fully in solution The RNA was diluted to 1 |ig/fil stocks for reverse transcription (RT- 

reaction)

2 10 4 Gel Electrophoresis of RNA to Determine Quality

All solutions to be used for the gel electrophoresis of RNA were prepared in DEPC 

treated water including the electrophoresis buffer and the gels The samples (containing 

approximately 5 \xg RNA/well) were run on 0 8% agarose gels To sink the RNA in to the 

wells, pre-autoclaved glycerol was mixed with the RNA to a final concentration of 10%

(v/v)
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2 10 5 1 Reverse Transcription of RNA (cDNA Synthesis)

To form cDNA, the following components were mixed in a 0 5 ml eppendorf tube 

(Eppendorf, 0030 121 023) and heated to 70 °C for 10 minutes followed by cooling on 

ice

1 1̂ Oligo dT 12-18 primers (0 5 |xg/|xl)

1 Ml RNA (1 jig/jil)

3 DEPC H20

This step gets nd or RNA secondary structure and allows the oligo dT to bind the poly

(A)+ tail of the RNA

As this mixture was heating the following reaction mix was generated (all volumes listed 

in master mix assume 1 Mg total RNA)

4 Ml 5X buffer (Sigma, P2317)

2 |al 100 mM DTT (Sigma, D6059)

1 îl RNasin (40 W\i\) (Sigma, R2520)

1 1̂ dNTPs (10 mM each) (Sigma, DNTP-100)

6^1 DEPC H20

1 Ml MMLV-RT (200U/m1) (Sigma, M1302)

Once the RNA mixture had cooled ( - 2  minutes) 15 jj iI  of the master mix was added and 

mixed by flicking The resultant mixture was given a rapid centrifuge to collect the 

material in the bottom of the tube and then incubated at 37°C for 1 hour The resultant 

cDNA was stable at 4°C but for prolonged storage was maintained at -20°C

2 10 5 Reverse-Transcnption Polymerase Chain Reaction (RT-PCR) Analysis
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2 10 5.2 Polymerase Cham Reaction (PCR)

The cDNA was then analysed for the expression of genes of interest by PCR

The standardised PCR mix is listed below and did not change significantly with any of

the PCRs earned out in this thesis

12 25 (il H20

2 5 ixl 1 OX PCR buffer (Sigma, P2317)

1 5 |jl 25 mM MgCl2 (Sigma, M8787)

4 jixl 1 25 mM dNTP

0 5 |J.I each of the forward and reverse primers (250 ng/pl) for the target gene (Oswel 

DNA Service, Southhampton)

0 5 pi each of the forward and reverse primers to the housekeeping gene of interest l e p 

Actin (25 ng/jLtl), (also synthesised by Oswel DNA Service)

0 25 [i\ Taq Polymerase (5U/nl) (Sigma, D4545)

The samples were mixed and centnfuged before being placed on the thermocycler 

(Biometra)

The PCR protocol used is outlined below 

95 °C for 3 minutes (Dénaturation step)

25-30 cycles of

95 °C for 30 s (Dénaturation)

52-60 °C for 30 s (Annealing)

72 °C for 30 s (Extension)

and

72 °C for 7 minutes (Extension)

PCR products were stored at 4 °C until they were analysed by gel electrophoresis
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2 10 5 3 Gel Electrophoresis of PCR Products

Typically 2% agarose (Sigma, A9539) gels were used for PCR gel electrophoresis, these 

gels were prepared and run in IX TBE (10 8g Tns base, 5 5 g Bone Acid, 4 ml 0 5M 

EDTA and made up to 1L with UHP) and were melted in a laboratory microwave Upon 

cooling, the gel was supplemented with 5 îl ethidium bromide (10 mg/ml) (to allow 

visualisation of the DNA The gel was then poured in to the electrophoresis unit (Biorad) 

and allowed to set By placing a comb in to the top of the gel prior to hardening, sample 

wells were formed

To run the samples, 2 of 6X loading buffer (50% Glycerol, 1 mg/ml bromophenol 

blue, 1 mM EDTA) was added to 10 |il PCR product and loaded to the gel with an 

appropnate size marker (Sigma, D0672) The gels were electrophoresed at 120-150 mV 

for 1-2 hours (depending on size of the target gene, i e to get adequate separation) Once 

the internal control and target bands were seen to have migrated to the required extent, 

the gel was taken to the gel analyzer (an EpiChemi II Darkroom, UVP Laboratory 

Products) and photographed
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2 10 6 Afifymetrix GeneChip® Oligonucleotide Microarray Analysis

The microarray gene expression experiments which were performed in this body of work 

were performed using Affymetnx® Human Genome U133A GeneChips® Asymetrix 

GeneChip probe microarrays are manufactured using technology that combines 

photolithography and combinatorial chemistry Tens to hundreds to thousands of 

different oligonucleotide probes are synthesised and each of these oligonucleotides is 

located in a specific area on the microarray slide, called a probe cell Each probe cell 

contains millions of copies of a given oligonucleotide and each feature size on the 

Asymetrix U133A GeneChip is 18 microns Due to advances in microarray design 

Asymetrix have since launched a new GeneChip, U133 Plus 2, which has decreased the 

feature size of the probes from 18 microns to 11 microns The new U133 Plus 2 

GeneChips are now comprised of the old Affymetnx U133A and U133B GeneChips on a 

single slide The reduction in feature size to 11 microns has resulted in an increase in 

feature definition, with improved sharpness and signal uniformity

The most important aspect in efficient probe design is the quality of the sequence 

information used Probe selection and array design are two major factors in reliability, 

sensitivity, specificity and versatility of expression probe arrays Probes selected for 

gene expression arrays by Affymetrix are generated from sequence and annotation data 

obtained from multiple databases such as GenBank, RefSeq and dbEST Sequences from 

these databases are collected and clustered into groups of similar sequences Using 

clusters provided by UniGene database as a starting point, sequences are further 

subdivided into subclusters representing distinct transcripts

This categorisation process involves alignment to the human genome, which reveals 

splicing and polyadenylation variants The alignment also extends the annotation 

information supplied by the databases pinpointing low quality sequences These areas 

are usually trimmed for subsequent generation of high quality consensus sequences or
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alternatively Asymetrix employ quality ranking to select representative sequences, called 

exemplars, for probe design

In general, Affymetrix use 11 to 16 probes which are 25 bases in length for each 

transcript The probe selection method used by Affymetrix for their U133 GeneChips 

takes into account probe uniqueness and the hybridisation characteristics of the probes 

which allow probes to be selected based on probe behaviour Affymetrix use a multiple 

linear regression (MLR) model in the probe design that was derived from thermodynamic 

model of nucleic acid duplex formation This model predicts probe binding affinity and 

linearity of signal changes in response to varying target concentrations An advantage of 

this type of model-based probe selection system is that it provides a physical and 

mathematical foundation for systematic and large-scale probe selection Also, an 

essential criterion of probe selection by Affymetnx for quantitative expression analysis is 

that hybridisation intensities of the selected probes must be linearly related to target 

concentrations

A core element of Affymetnx microarray design is the Perfect/Mismatch probe strategy 

For each probe that is designed to be perfectly complimentary to a given target sequence, 

a partner probe is also generated that is identical except for a single base mismatch in its 

center These probe pairs, called the Perfect Match probe (PM) and the Mismatch probes 

(MM), allow the quantitation and subtraction of signals caused by non-specific cross- 

hybndisation The differences in hybndisation signals between the partners, as well as 

their intensity ratios, serve as indicators of specific target abundance
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2 10 6 1 Preparation of samples for microarray analysis

RNA was extracted from 4E-HA 5, 4E S209-HA 6 and pcDNA 2 cells using TnReagent 

(section 2 10 2) and was then further purified using RNeasy spin columns (Qiagen) 

(Section 2 10 2 1) RNA quality was verified by OD 260/280 readings and by analysis on 

the Agilent 2100 Bioanalyser (Fig 3 12 12 2)

Fragmented biotin labelled target cRNA was generated from 10 |ag of total RNA (Section 

2 10 6 2) and was then used to hybridise to Affymetrix HGU133A GeneChip arrays 

Fragmented and unfragmented cRNA quality was confirmed by agarose gel 

electrophoresis (Section 2 10 4)

Preparation of Target cRNA for Affymetrix GeneChips

Cells

V
Total RNA

Total RNA isolation 
(TnReagent+Rneasy Kit)

V
cDNA Synthesis with T7(dT)24 primer 

Clean up

Double stranded cDNA

V

In Vitro Transcription (IVT) 
(T7 RNAPolymerase+-biotin 
labelled ribonucleotides)

Biotin labelled cRNA

Clean up and fragmentation

Fragmented Target cRNA
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210 6 2 Sample and Array Processing

After RNA isolation, quantification and purification using the Qiagen Rneasy isolation 

method (Section 2 10 1-4), cDNA was synthesised using the GeneChip T7-01igo (dT) 

Promoter Primer Kit (Affymetnx, 900375) from lÔ ig total RNA First strand cDNA 

synthesis was then performed using the SuperScnpt Choice Kit (BioSciences, 11917- 

010) First strand cDNA synthesis involved ‘primer hybridisation’ where the T7-01igo 

(dT) primer was incubated with the RNA and DEPC-treated H2O at 70°C for 10 nuns, 

followed by a short incubation in ice, ‘temperature adjustment’ where 5X first strand 

buffer, DTT and dNTP mix were added to the RNA mix and incubated at 42°C for 2 mins 

and ‘First Strand synthesis’ where SuperScnpt II RT was added to the mix and incubated 

at 42°C for 1 hour Second strand cDNA synthesis was performed and punfied using 

GeneChip Sample Cleanup module (Affymetnx, 900371) as recommended by the 

manufacturers instructions

cRNA was then synthesised and biotin-labelled using the Enzo Bio Array High Yield 

RNA Transcnpt Labelling Kit (Affymetnx, 900182) Biotin-labelled cRNA was purified 

using the GeneChip Cleanup Module Kit (Affymetnx, 900371) and quantified The 

value obtained was adjusted to reflect carryover of unlabelled total RNA A sample of 

biotin-labelled cRNA was taken for gel electrophoresis analysis The labelled cRNA was 

then fragmented before hybndisation onto the Affymetnx GeneChip probe microarrays 

The aliquot of fragmented sample RNA was stored at -20°C until ready to perform the 

hybndisation step

Hybridisation of cRNA onto the Affymetnx GeneChip probe human microarrays 

(Affymetnx, HU133A and HU133 Plus 2) was performed in the Conway Institute, 

University College Dublin, where the Affymetnx Hybridisation Oven and Fluidics 

Station is set up along with the Affymetnx GeneChip Scanner, which exported the data 

directly into the Affymetnx analysis software, MicroArray Suite 5 1 (MAS 5 1)
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2 10 6 3 Processing and analysis of microarray expression data

I would like to thank Eoin Ryan who performed the processing, statistical analysis and 

clustering of Microarray Data in these experiments

The processing and analysis of the expression data was conducted as follows 

The expression data from the 9 GeneChips were scaled to 100 using Affymetrix MAS 5 0 

software This process adjusts the trimmed mean of each data set to 100 so that different 

GeneChips are directly comparable This is known as a linear normalisation 

After this step, various QC parameters were extracted from the expression data and 

plotted as in Figure 3 12 12 4

One of the most important of the QC parameters is the Scaling Factor Affymetrix 

technical support advises that chips should not be compared if the Scaling Factors show 

more than a three-fold difference All QC parameters were found to be within acceptable 

limits

Scaled gene expression data were subsequently exported into Genespnng expression data 

analysis software Further normalisation of array data was conducted prior to expression 

analysis The median value of each probe set from the control samples (pcDNA 2) was 

given a value of 1 This meant that a probe set with an average two fold increase in either 

of the other expenmental samples would have a ‘normalised value of 2’ after this 

normalisation A probe set with a two-fold downregulation would have a normalised 

value of 0 5

At this stage, there were 22,283 genes (probe sets) in the analysis An initial filter was 

applied to remove genes that are not flagged as present in at least three of the nine 

samples analysed These genes were further filtered to remove genes that do not cross a 

two-fold threshold (up or down) across the experiment

This left 927 genes that appeared to be more than 2-fold up or down-regulated in 4E-HA 

5 or 4E 209-HA 6 cells in comparison to pcDNA 2 control cells A Welch ANOVA 

statistical test with a p-value cut off of 0 05 was used to find statistically significant 

genes
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Genes that passed the statistical test were clustered using the Pearson Correlation 

(settings Separation 1, Minimum Distance 0 001, merge similar branches) This 

clustering was used to generate a heat map graphical representation (Fig 3 1 2 12 5) of 

differentially expressed genes grouped (clustered) according to their expression pattern
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3.0 Results



3 1 Overexpression of eIF4E in DLKP

Previous studies in this laboratory have shown that treatment of DLKP cells with the 

differentiation modulating agent 5’-bromo-2’-deoxy uridine (BrdU) induces post- 

transcriptional upregulation of the expression of growth and differentiation related 

proteins Treatment of DLKP cells with BrdU induces post-transcnptional upregulation 

of expression of the cytokeratins 8, 18,19, and also pi mtegrin (Meleady and Clynes 

2000, 2001, McBride et a l , 1999) Treatment of DLKP cells with BrdU was also found 

to induce increased expression and phosphorylation of the translation initiation factor 

eIF4E As eIF4E is known to be involved in translational regulation of gene expression it 

was decided to analyse the effects of increased eIF4E levels on growth and gene 

expression in these cells

88



3.1.1 Overexpression of eIF4E in BK shuttle vector (BK-4E)

For initial DLKP eIF4E overexpression experiments, DLKP cells were stably transfected 

with eIF4E cDNA m a BK episomal shuttle vector (BK-4E) DLKP cells were also stably 

transfected with an empty BK shuttle vector as a control (DLKP-BK) These were kind 

gifts from Prof Arngo DeBenedetti, Louislanna, U S A  (DeBenedetti and Rhoads,

1990) Stably transfected cells were selected with geneticin (800 |ig/ml)

Immunocytochemical characterisation of eIF4E, Keratin 8, and Ornithine Decarboxylase 

(ODC) expression was earned out on uncloned bulk populations of BK-4E and DLKP- 

BK cells (Figs 3111- 3  113)  Immunocytochemical analysis showed increased 

expression of eIF4E, Keratin 8 and ODC in BK-4E transfected DLKP cells ODC 

expression has previously been shown to be translationally regulated by eIF4E (Shantz et 

a l ,1996)

Several unsuccesful attempts were made at generating clonal populations of BK-4E and 

and DLKP-BK cells These cells did not survive after limiting dilution and studies were 

discontinued with these cells
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Figure 3.1.1.1 Immunocytochemical analysis of eIF4E expression in BK-4E, eIF4E 
overexpressing DLKP cells. eIF4E expression is increased in BK-4E cells (B), 
compared to DLKP-BK control cells (A).
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Figure 3.1.1.2 Immunocytochemical analysis of Ornithine Decarboxylase (ODC) 
expression in BK-4E, eIF4E overexpressing cells. ODC expression is increased in BK- 
4E cells (B), compared to DLKP-BK control cells (A).
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(A) DLKP-BK (B) BK-4E

Figure 3.1.1.3 Immunocytochemical analysis of Keratin 8 expression in BK-4E, 
eIF4E overexpressing cells. K8 expression is increased in BK-4E cells (B), compared to 
DLKP-BK control cells (A).
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3 1 2  Overexpression of HA tagged eIF4E (4E-HA) in DLKP cells

DLKP cells were subsequently stably transfected with plasmids expressing influenza 

hemagglutinin epitope (HA)-tagged wild type eBF4E (4E-HA) and also a mutant of eIF4E 

that cannot be phosphorylated at Ser 209, Ser 209-»Ala eIF4E (4E S209-HA) The 4E- 

HA and 4E S209-HA plasmids were gifts from Dr Rob Schneider, New York, USA 

(Cuesta et al, 2000) These HA-tagged eIF4E constructs have been shown to be effective 

in regulating protein translation in previous experiments (Cuesta et al, 2000) Ser 209 is 

the main regulatory phosphorylation site of eIF4E but its exact role and importance m 

translational control is unknown DLKP cells were also transfected with an empty 

pcDNA plasmid vector as a control
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DLKP cells were transiently transfected with pcDNA contol, 4E-HA and 4E S209-HA 

cDNAs Cells transiently transfected for 24, 48 and 72 hrs were analysed by Western blot 

using anti-eIF4E and anti-HA antibody (Figs 3 1 2 1 - 3 1 2 6 )  Western blot analysis 

shows 4E-HA and 4E S209-HA proteins were effectively expressed in transiently 

transfected cells, though 4E S209-HA protein appears to be expressed at a lower level 

than 4E-HA protein

eIF4E, Keratin 8, pi integnn and Ornithine decarboxylase expression in transiently 

transfected cells 72hrs post-transfection was analysed by lmmunocytochemistry (Figs 

3 12 7-312 10)

Immunocytochemical analysis of eIF4E levels was performed using anti-eIF4E antibody, 

which detects both endogenous wild-type eIF4E and transfected HA-tagged eIF4E (Fig 

3 12 7) Staining for eIF4E was increased in 4E-HA transiently transfected cells 

compared to pcDNA control transfected cells eIF4E expression appeared to be 

heterogenous in these cells with some goups of cells staining more intensely than others 

Staining for eIF4E in 4E S209-HA transfected cells did not appear to be stronger than in 

pcDNA controls This is likely to be due to the lower levels of transfected protein in these 

cells (Fig 3 12 3) which may not be detected by lmmunocytochemistry 

Immunocytochemical analysis of Keratin 8 levels in 4E-HA transiently transfected cells 

shows increased expression (Fig 3 12 8) Keratin 8 staining is heterogenous in these 

cells, which correlates with staining for eIF4E Keratin 8 shows intense staining in certain 

4E-HA transfected cells Keratin 8 staining in 4E S209-HA transiently transfected cells 

shows no increase compared to pcDNA control tranfected cells (Fig 3 12 8) 

pi integrin expression in 4E-HA and 4E S209-HA transiently transfected cells shows no 

increase in staining for pi integnn compared to pcDNA transfected cells (Fig 3 12 9) 

ODC expression was increased in 4E-HA transiently transfected cells but not m 4E 8209- 

HA transfected cells (Fig 3 1210)

3 1 2  1 Transient Transfection of 4E-HA m DLKP cells
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4E-HA
32.5 kDa

P-Actin

Figure 3.1.2.1 Western Blot analysis of 4E-HA levels in 4E-HA transiently 
transfected DLKP cells using anti-HA antibody. 4E-HA protein is highly expressed in 
transiently transfected DLKP cells after 48 and 72 hrs

4E-HA 
32.5 kDa

eIF4E 
25 kDa

P-Actin

Figure 3.1.2.2 Western Blot analysis of 4E-HA transiently transfected DLKP cells 
using anti-eIF4E antibody. Anti eIF4E antibody detects wild type eIF4E protein (25 
kDa) and HA-tagged transfected eIF4E (32.5 kDa). 4E-HA protein is expressed in 
transiently transfected DLKP cells.
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4E S209-HA
32.5 kDa

P-Actin

Figure 3.1.2.3 Western Blot analysis of 4E S209-HA levels in 4E-HA transiently 
transfected DLKP cells using anti-HA antibody. 4E S209-HA protein is expressed in 
transiently transfected DLKP cells.
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Figure 3.1.2.4 Western Blot analysis of 4E S209-HA transiently transfected DLKP 
cells using anti-eIF4E antibody. Anti eIF4E antibody detects wild type eIF4E protein 
(25 kDa) and HA tagged transfected eIF4E (32.5 kDa). 4E S209-HA protein is expressed 
in transiently transfected DLKP cells.
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Anti-HA
32.5 kDa

Figure 3.1.2.5 Western Blot analysis of pcDNA transiently transfected DLKP cells 
using anti-HA antibody. No 4E-HA protein is present in pcDNA transiently transfected 
cells.
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Figure 3.1.2.6 Western Blot analysis of pcDNA transiently transfected DLKP cells 
using anti-eIF4E antibody. Anti eIF4E antibody detects wild type eIF4E protein (25 
kDa) and HA tagged transfected eIF4E (32.5 kDa). No 4E-HA protein is present in 
pcDNA transiently transfected cells.
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(C) 4E-HA 72hr

Figure 3 1 2  7 Immunocytochemical Analysis of elF4£ expression m 4E-HA 
transiently transfected DLKP cells Anti eIF4E antibody was used to stain transiently 
transfected cells Anti eIF4E antibody detects both endogenous wild type eIF4E and HA 
tagged transfected eIF4E eIF4E expression is increased in 4E-HA transiently transfected 
cells compared to pcDNA controls (A) and 4E S209-HA transfected cells (B) 4E-HA 
transfected cells display heterogenous staining for eIF4E (20X magnification)
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(A) pcDNA 72hr (B) 4E S209-HA 72hr

Figure 3.1.2.8 Immunocytochemical Analysis of K8 expression in 4E-HA transiently 
transfected DLKP cells. K8 expression is increased in 4E-HA transfected cells (C) 
compared to pcDNA controls (A) and 4E S209-HA transfected cells (B). Keratin 8 
expression is heterogenous in these cells, this correlates with heterogenous eIF4E 
expression seen in these cells (Fig 3.1.2.7). (20X magnification).

98



Figure 3 12 9 Immunocytochemical Analysis of p i In teg r in expression m 4E-HA 
transiently transfected DLKP cells pi Integnn expression was low in transiently 
transfected pcDNA, 4E S209-HA and 4E-HA cells (20X magnification)
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Figure 3.1.2.10 Immunocytochemical Analysis of ODC expression in 4E-HA 
transiently transfected DLKP cells. ODC expression was low in transiently transfected 
pcDNA control (A) and 4E S209-HA cells (B). 4E-HA transiently transfected cells (C) 
show increased ODC expression. (2OX magnification).
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3 1 2  2 Preliminary Screen of Uncloned Stable 4E-HA Transfected DLKP cells

DLKP cells were transfected with pcDNA control plasmid, 4E-HA or 4E S209-HA 

cDNAs Stably transfected cells were then selected with geneticin supplemented media 

(800 fig/ml)

Western blot analysis of uncloned mixed populations of 4E-HA and pcDNA stably 

transfected cells for 4E-HA levels shows that 4E-HA is being expressed effectively in the 

uncloned parental 4E-HA transfected cells (Fig 3 12 2 1)

Uncloned mixed populations of DLKP cells transfected with 4E-HA (Parental 4E-HA) 

and pcDNA control vector (Parental pcDNA) were analysed by immunocytochemisrty 

for a number of protems of interest prior to selection of clones for further analysis 

Immunocytochemical analysis shows increased expression of keratin 8, pl-integnn and 

ODC in 4E-HA transfected cells (Figs 3 1 2 2 2-3 1 2 2 4 )  Keratin 8 and pi-integrin 

have previously been shown to be upregulated in DLKP cells after treatment with the 

differentiation-modulating agent BrdU Ornithine Decarboxylase is known to be subject 

to translational regulation and has been shown to be upregulated in eIF4E overexpressing 

cell lines (Shantz e ta l , 1996)
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Figure 3.1.2.2.1 Western Blot Analysis of 4E-HA expression in uncloned parental 
4E-HA and pcDNA transfected DLKP cells. 4E-HA protein is expressed in uncloned 
4E-HA transfected cells.

(A) pcDNA Parental cells (B) 4E-HA Parental cells

%

Figure 3.1.2.2.2 Immunocytochemical Analysis of Keratin 8 expression in Parental 
4E-HA and pcDNA. Keratin 8 expression is increased in 4E-HA Parental cells (B) 
compared to pcDNA Parental control cells (A). (20X magnification).
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A) pcDNA Parental cells

Figure 3.1.2.2.3 Immunocytochemical Analysis of pi Integrin expression in 
Parental 4E-HA and pcDNA. pcDNA Parental cells (A) are negative for pi Integrin 
expression. 4E Parental cells (B) show expression of pi Integrin. (20X magnification).
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Figure 3.1.2.2.4 Immunocytochemical Analysis of ODC expression in Parental 4E- 
HA and pcDNA. ODC expression is increased in 4E-HA Parental cells (B), compared to 
pcDNA Parental control cells (A). (20X magnification).

B) 4E-HA Parental cells
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3 12 3 Selection of Stably Transfected 4E-HA Overexpressing Clones

Clonal populations of DLKP cells transfected with pcDNA empty control vector and 4E- 

HA or 4E S209-HA cDNAs, were generated by limiting dilution Clones were then 

analysed by Western blotting to determine expression levels of transfected protein 

Western blot analysis of 4E-HA transfected clones using anti-eIF4E antibody, showed 

expression of transfected 4E-HA protein in 4E-HA Clone 5 (Fig 3 1 2 3 1) In agreement 

with Western blotting using anti-eIF4E Ab (Fig 3 12 3 1), Western blot analysis of 4E- 

HA transfected clones using anti-HA antibody showed 4E-HA Clone 5 expressed the 

highest level of 4E-HA protein and was therefore selected for further analysis (Fig 

3 1 2 3 3) Clone 4E-HA 10 was also selected for further analysis as a lower 4E-HA 

expressing clone Expression of 4E-HA protein in 4E-HA transfected clones apart from 

4E-HA 5 was not detected using anti-eIF4E antibody as this antibody was less sensitive 

than anti-HA antibody for detecting HA tagged 4E

The 4E S209-HA transfected cells were analysed by Western blot using anti-HA antibody 

to detect expression levels of 4E S209-HA protein (Fig 3 1 2 3 2) Of the 4E S209-HA 

clones, clone 6 and clone 12 expressed the highest level of 4E S209-HA protein and were 

selected for further analysis

Western blot analysis of the selected pcDNA control clones, 4E-HA or 4E S209-HA 

transfected-clones using anti-HA antibody on the same gel shows that pcDNA transfected 

clones do not express HA tagged 4E, 4E S209-HA clones 6 and 12 and 4E-HA clone 10 

express similar levels of HA tagged 4E and 4E-HA clone 5 expresses a much higher 

levels of HA tagged 4E (Fig 3 12 4)
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Figure 3.1.2.3.1 Western blot analysis of 4E-HA transfected clones using anti eIF4E 
antibody. Anti eIF4E antibody detects wild type eIF4E protein (25 kDa) and also detects 
HA tagged transfected eIF4E (32.5 kDa). HA tagged eIF4E protein is detected in Clone 
4E-HA 5.
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Figure 3.1.2.3.2 Western blot analysis of 4E S209-HA protein in 4E S209-HA 
transfected clones using anti-HA antibody. Clone 4E S209-HA 6 expresses the highest 
level of 4E S209-HA protein. Anti-HA antibody detects HA tagged transfected eIF4E 
(32.5 kDa).
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Figure 3.1.2.33 Western blot analysis of 4E-HA protein levels in 4E-HA transfected 
clones using anti-HA antibody. Anti-HA antibody detects HA tagged transfected eIF4E 
(32.5 kDa).

Figure 3.1.2.3.4 Western blot analysis of 4E-HA protein levels in 4E-HA and 4E 
S209 -HA transfected clones using anti-HA antibody. Anti-HA antibody detects HA 
tagged transfected eIF4E (32.5 kDa).
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3.1.2.4 Analysis of 4E-HA Phosphorylation m 4E-HA Overexpressing 
Stably Transfected Clones

The 4E-HA overexpressing clones chosen for further analysis, 4E-HA Clone 5 and 4E 

S209-HA clone 6, were analysed by 2 Dimensional (2D) Electrophoresis followed by 

Western blotting Phosphorylated and non-phosphorylated forms of proteins are separated 

in the first dimension by iso-electnc focusing due to changes in pi caused by additional 

phosphate groups Proteins are then separated according to molecular weight in the 

second dimension using poylacrylamide gel electrophoresis (PAGE) and then identified 

by Western blot anlaysis Analysis of 4E-HA 5 and 4E S209-HA 6 cell lysates with anti 

HA antibody after 2D electrophoresis showed the presence of phosphorylated and non- 

phosphorylated 4E-HA protein in 4E-HA 5 cells (Fig 3 12 4 1) Only non- 

phosphorylated 4E S209-HA protein was detected in 4E S209-HA 6 cells (Fig 3 1 2 4 2)
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Figure 3 12 41  Phosphorylation status analysis of 4E-HA protein in 4E-HA 5 cells 
shows this protein is present in a phosphorylated and unphosphorylated form
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4E S209-HA 
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Figure 3 12 4 2 Phosphorylation status analysis of 4E  S209-HA protein tn 4E  S209-HA 
6 cells shows this protein is only present in an unphosphorylated form
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3 1 2  5 Morphological phenotypes of 4E-HA transfected cells.

DLKP cells transfected with 4E-HA or 4E S209-HA were examined for changes m 

morphology The 4E S209-HA overexpressing clones possess a smooth edged rounded 

morphology with few cellular projections compared to pcDNA controls or 4E-HA 

overexpressing clones (Figs 3 1 2 5 1-3 1 2 5 3) The 4E-HA 5 cells which express high 

levels of 4E-HA protein showed numerous large cells containing multiple cellular 

protrusions
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Figure 3.1.2.5.1 Morphological analysis of pcDNA control transfected DLKP cells.
pcDNA control transfected cells possess an irregular morphology. (20X magnification).

I l l



Figure 3.1.2.5.2 Morphological analysis of 4E S209-HA overexpressing DLKP cells.
4E S209-HA transfected cells have smooth rounded edges with few cellular protrusions. 
(20X magnification).



(A) 4 E-HA 5

(B) 4E-HA 10
L,

Figure 3.1.2.5.3 Morphological analysis of 4E-HA overexpressing DLKP cells. 4E-
HA cells possess an irregular morphology. 4E-HA 5 cells also contain a proportion of 
large cells with multiple cellular protrusions. Arrows indicate large 4E-HA 5 cells (A) 
with multiple cellular protrusions. (20X magnification).
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Treatment of DLKP cells with BrdU induces post-transcriptional upregulation of 

expression of the cytokeratins 8,18 and 19 (Meleady and Clynes, 2001, McBride et a l , 

1999) BrdU treated DLKP cells also express elevated levels of eIF4E protein and 

enhanced phosphorylation of eIF4E (Walsh et a l , 2003) Keratin 8,18 and 19 

expression was therefore analysed in 4E-HA overexpressing stably transfected DLKP 

clones to determine if increases in keratin expression seen in BrdU treated DLKP cells 

were replicated in 4E-HA overexpressing cells

Immunocytochemical analysis shows increased staining for keratin 8 in 4E-HA clone 5 

(Fig 3 12 6 1) The 4E-HA clone 10 and both pcDNA controls and 4E S209-HA cells 

only show weak background staining (Fig 3 12 6 1) RT-PCR analysis of keratin 8 

mRNA levels in 4E-HA 5 cells compared to 4E S209-HA 6, pcDNA 2 and DLKP cells 

shows no change in mRNA levels for keratin 8 (Fig 3 1 2 6 2)

Immunocytochemical analysis showed no change in the level of keratin 18 and 19 

expression in 4E S209-HA and 4E-HA overexpressing cells compared to pcDNA 

controls with low levels of staining present in both (Fig 3 1 2 6 3-3 1 264)

3 1 2  6 Keratin expression in 4E-HA overexpressing stably transfected clones
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(A) pcDNA 2 K8 (B) pcDNA 8 K8

(C) 4E S209-HA 6 K8

(E) 4E-HA 5 K8 (F) 4E-HA 10 K8

Figure 3.1.2.6.1 Immunocytochemical analysis of Keratin 8 expression in 4E-HA 
overexpressing clones. Increased staining for Keratin 8 was observed in 4E-HA 5 cells 
(E). No increased staining was observed in 4E-HA 10 (F) cells or 4E S209-HA 
overexpressing cells (C, D). (20X magnification).
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Figure 3 1 2  6 2 RT-PCR analysis of Keratin 8 Expression in 4E-HA overexpress mg 
stably transfected clones Keratin 8 mRNA levels are unchanged in 4E-HA 
overexpressing clones or pcDNA transfected cells
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(A) pcDNA 2 K18

C) 4E S209-HA6 K18

[E) 4E-HA5K18 (F) 4E-HA 10 K18

Figure 3.1.2.6.3 Immunocytochemical analysis of keratin 18 expression in 4E-HA
overexpressing clones. No increase in Keratin 18 expression was observed in 4E-HA or
4E S209-HA overexpressing cells. (20X magnification).

"B) pcDNA 8 K18
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;c) 4E S209-HA6

Figure 3.1.2.6.4 Immunocytochemical analysis of Keratin 19 expression in 4E-HA
overexpressing clones. No increase in Keratin 19 expression was observed in 4E-HA or
4E S209-HA clones. (20X magnification).
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3 1.2 7 Intégrai expression in 4E-HA Overexpressing Stably Transfected Clones

pi mtegrin and a2 integnn have previously been shown to be upregulated in BrdU 

treated DLKP cells (Meleady and Clynes, 2000) BrdU treated DLKP cells also express 

elevated levels of eIF4E protein and enhanced phosphorylation of eIF4E (Walsh e ta l ,

2003) pi integnn and a2 integnn expression was therefore analysed in 4E-HA 

overexpressing stably transfected DLKP clones to determine if increases in integnn 

expression seen in BrdU treated DLKP cells were replicated in 4E-HA overexpressing 

cells The pi integnn binding partners a l ,  a3, and a5 have also been analysed here as 

they are known to be expressed in the pulmonary epithelium and are implicated in the the 

regulation of growth and development of pulmonary epithelial cells (Coraux et a l , 1998, 

Sheppard, 2003)

Immunocytochemical analysis of pi mtegrin expression shows increased staining for pi 

mtegrin in 4E-HA clone 5 cells The 4E-HA clone 10,4E S209-HA overexpressing cells 

and pcDNA control cells exhibit weak background staining for pi integnn (Fig 

3 127  1)

Expression of a l ,  a2 and a5 mtegrin was undetected in 4E-HA, 4E S209-HA 

overexpressing cells and pcDNA controls (Fig 3 1 2 7  2, 3 1 2 7  3, 3 1 2 7  5) Strong 

staining for a3 integnn was seen in the 4E-HA overexpressing clones 5 and 10 wheareas, 

it is undetected m 4E S209-HA overexpressing cells and pcDNA control cells (Fig 

3 1 2 7 4)
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(A) pcDNA 2 (B) pcDNA 8

(C) 4E S209-HA 6

(E) 4E-HA 5

(D) 4E S209-HA 12

(F) 4E-HA 10

Figure 3.1.2.7.1 Immunocytochemical analysis of p i integrin expression in 4E 
overexpressing cells. Increased staining for pi integrin was observed in 4E-HA 5 cells
(E). No increase in staining was observed in 4E-HA 10 (F) cells or 4E S209-HA 
overexpressing cells (C, D). (20X magnification).
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Figure 3.1.2.7.2 Immunocytochemical analysis of a l  integrin expression in 4E
overexpressing ceDs. Staining for a l  integrin was not detected in pcDNA controls
(A,B), 4E S209-HA (C,D) and 4E-HA overexpressing cells (E, F). (20X Magnification).
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(A) pcDNA 2 (B) pcDNA 8

(D) 4E S209-HA 6 (E) 4E S209-HA 12

Figure 3.1.2.7.3 Immunocytochemical analysis of a2 integrin expression in 4E
overexpressing cells. Staining for a2 integrin was not detected in pcDNA controls (A,
B), 4E S209-HA (C, D) and 4E-HA overexpressing cells (E, F). (20X Magnification)
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Figure 3.1.2.7.4 Immunocytochemical analysis of a3 integrin expression in 4E 
overexpressing cells. Strong staining for a3 integrin was detected in 4E-HA 
overexpressing clones 5 and 10 (E, F). No staining for a3 integrin was detected in 
pcDNA controls (A, B) or 4E S209-HA overexpressing cells (C, D). (20X 
Magnification).
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(A) pcDNA 2 (B) pcDNA 8
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(C) 4E S209-HA 6 (D) 4E S209-HA 12

Cl ■ • •
•

(E) 4E-HA 5 (F) 4E-HA 10

Figure 3.1.2.7.5 Immunocytochemical analysis of aS  integrin expression in 4E
overexpressing cells. Staining for a5 integrin was not detected in pcDNA controls (A,
B), 4E S209-HA (C, D) and 4E-HA (E, F) overexpressing cells. (20X Magnification).
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Ornithine Decarboxylase (ODC) is a key enzyme in the regulation of polyamine 

biosynthesis Polyamine levels are known to be involved m the regulation of growth, 

differentiation and transformation of cells (Shantz and Pegg, 1999) Expression of ODC 

is reported to be subject to translational regulation by eIF4E (Shantz and Pegg, 1999) It 

was therefore decided to examine expression of ODC in 4E-HA overexpress mg cells to 

determine if any changes in expression levels were present

Analysis of ODC expression by immunocytochemistry shows upregulation of expression 

in 4E-HA overexpress mg cells and also in 4E S209-HA cells (Fig 3 12 8 1)

3 12 8 Ornithine Decarboxylase Expression (ODC) in 4 E-HA overexpressuig stably

transfected clones
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(A) pcDNA 2 ODC (B) 4E S209-HA 6 ODC

(C) 4E-HA 5 ODC

Figure 3.1.2.8.1 Immunocytochemical analysis of ODC expression in 4E 
overexpressing DLKP cells. Staining for ODC is increased in 4E S209-HA 6 (B) and 
4E-HA 5 (C) overexpressing cells compared to pcDNA 2 controls (A). (20X 
magnification).
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Previous studies have shown that overexpression of eIF4E increases the growth rate of 

cell lines The growth rates of pcDNA control, 4E-HA and 4E S209-HA transfected 

clones were compared to determine the effect of 4E overexpression and 4E 

phosphorylation on growth and proliferation in these cells Both 4E-HA and 4E S209-HA 

overexpress mg clones had higher growth rates than pcDNA 2 control cells (Fig 

3 12 9 1) After 6 days the growth rate of 4E-HA 5 cells levelled off as these cells 

reached confluency whereas the higher growth rate of 4E S209-HA 6 cells was 

maintained This was probably due to the fact that 4E S209-HA 6 cells were smaller and 

had not achieved confluency at this stage allowing them to maintain a high growth rate 

This experiment was performed once

3 1 2  9 Growth rate analysis of stably transfected 4E-HA overexpressing clones

TIME IN DAYS PCDNA2 4E S209-HA 6 4E-HA5
1 4 875 5 75 4 938
2 8 719 12313 9 531
3 18813 22 625 20 75
4 25 813 42 6875 39 25
5 39 375 69 625 86 25
6 101 25 147 25 103 625

Table 3 12 9 1 Growth curve for 4E-HA overexpress mg clones over a 6 day period 
Results are expressed as average cell number (xlO4) per flask (n=2)
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O -  DAY vs 4E S209-HA 6 

DAY vs 4 E-HA 5

Days

Figure 3 1 2  91 Growth curve of 4E-HA overexpress mg clones Results are expressed as 
average cell number per flask xlO4 (n=2)
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eIF4E is known to be involved in the regulation of invasiveness and metastasis of cancer 

cells (DeBenedetti and Graff, 2004) It was therefore decided to analyse the effect of 4E- 

HA overexpression on the invasiveness of DLKP cells

An in vitro system for the study of cell invasion through basement membrane was used to 

determine the invasiveness of 4E-HA overexpressing DLKP cells This consisted of cell 

culture well inserts containing an 8 fim pore-size PET membrane coated with a uniform 

layer of BD Matngel™ Basement Membrane Matrix Cells that had migrated through the 

PET membrane were stained with crystal violet and 5 fields at 10X magnification were 

counted per well

4E-HA Clone 5 cells showed highly increased mvasiveness compared to all other cells 

tested (Figs 3 1 2 10 1-3 1 2 10 3)

3.1.2.10 Invasion assays of 4E-HA overexpressing stably-transfected
clones
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Figure 3.1.2.10.1 Invasion assays of 4E-HA overexpressing cells. Cells that have 
passed through Matrigel coated membrane were stained with crystal violet before 
counting (4X Magnification).
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Invasion Assay

pcDNA 2 pcDNA 8 S209 6 S209 12 4E5 4E10

Cell Line
] Cell No

Figure 3 1 2 10 2 Invasion assay of 4E-HA overexpressing cells Invasion assays were 
performed in triplicate Five fields at 10X magnification were counted for each invasion 
chamber Results are expressed as average cell number ± standard deviation (n-3)
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Cell Line Invasiveness %
4E-HA 5 100%

4E S209-HA 12 48 28%
pcDNA 8 35 79%

4E S209-HA 6 29 55%
pcDNA 2 17 68%
4E-HA10 15 61%

Figure 3.1 2 103 Invasiveness expressed as a percentage of invasiveness of 4E-HA 
clone 5
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3.1.2.11 Proteomic analysis of 4E-HA overexpressing cells

In order to further identify differences in protein expression as a result of overexpression 

of 4E-HA and 4E S209-HA in DLKP cells it was decided to analyse protein expression 

levels in these cells using 2D-Electrophoresis In this study, we have used the recently 

developed ETTAN DIGE (Amersham) 2D electrophoresis system (Figure 3 12 111)

Proteomic analysis was carried out on two 4E-HA transfected DLKP clones (4E-HA 5, 

4E-HA 10), two 4E S209-HA clones (4E S209-HA 6, 4E S209-HA 12) and two pcDNA 

control plasmid transfected clones (pcDNA 2, pcDNA 8)

The main analysis of our results was performed by pooling the results from the two 

clones of each group together into three groups i e 4E-HA, 4E S209-HA and pcDNA 

The expression values of protein spots in each group were then compared against each 

other eg 4E vs S209, pcDNA vs 4E, pcDNA vs S209 A t-test analysis of protein spot 

expression values in comparisons was applied to ensure statistical significance of results

We have also analysed differences in protein expression between the highly invasive 4E- 

HA overexpressing clone 4E-HA 5 and the low level invasive 4E-HA overexpressing 

clone 4E-HA 10 in order to identify proteins proteins which maybe involved in regulating 

the invasiveness of these cells

I would like to thank Dr Andrew Dowd, who performed the Dige labelling, isoelectric 

focusing, SDS-PAGE electropheresis and mass spectrometry protein identification for the 

main 4E-HA, 4E S209-HA, pcDNA cell comparison experiment described in this section 

and also aided in the analysis of protein expression data on Decyder Software™
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Pooled internal 
standard 
label with Cy™2

Protein extract 1 
label with Cy3

Protein extract 2 
label with Cy5

Mix labelled 2-DE Typhoon
extracts separation Variable Mode

Imager

Figure 3.1.2.11.1 ETTAN DIGE (Amersham) 2D electrophoresis system.

i
DeCyder™ 
Offerenti al 
Analysis 
Software
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Pnor to analysis by DIGE, all protein extracts were analysed by 2D electrophoresis 

followed by silver staining to ensure extracts used were of good quality and had not been 

adversely affected by protein extraction (e g protein degradation) (Fig 3 12 112)

pi

< ►

Figure 3.1 2 112 All protein lysates for DIGE analysis were run on 2D electrophoresis 
gels and visualised by silver staining to ensure the quality of proteins samples (A) Good 
quality sample showing clear well defined protein spots
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The experimental design for DIGE analysis of pcDNA 2, pcDNA 8 ,4E S209-HA 6, 4E 

S209-HA 12,4E-HA 5 and 4E-HA 10 cells is outlined in Table 3 12 111 This involved 

two sessions running 6 2D gels simultaneously Four samples of each cell line were 

analysed to allow for statistical analysis of protein expression using DeCyder software 

(Figure 3 1 211 3)

Gel Number Cy2 label Cy3 label Cy5 label
1 Pooled Internal Std 4E-HA5 pcDNA 2

50 îg (Sample 1) 50^g (Sample 3) 50|ig
2 Pooled Internal Std 4E S209-HA 6 4E-HA 5

50\ig (Sample 1) 50[ig (Sample 3) 50|uig
3 Pooled Internal Std pcDNA 2 4E S209-HA 6

50ng (Sample 1) 50 îg (Sample 3) 50|ig
4 Pooled Internal Std 4E-HA5 pcDNA 2

50\ig (Sample 2) 50|ig (Sample 4) 50 îg
5 Pooled Internal Std 4E S209-HA 6 4E-HA5

50|xg (Sample 2) 50|xg (Sample 4) 50^g
6 Pooled Internal Std pcDNA 2 4E S209-HA6

50|ig (Sample 2) 50(ig (Sample 4) 50j^g
7 Pooled Internal Std 4E-HA10 pcDNA 8

50 îg (Sample 1) 50^g (Sample 3) 50^g
8 Pooled Internal Std 4E S209-HA 12 4E-HA10

50|xg (Sample 1) 50 îg (Sample 3) 50|xg
9 Pooled Internal Std pcDNA 8 4E S209-HA 12

50 Mg (Sample 1) 50^g (Sample 3) 50^g
10 Pooled Internal Std 4E-HA 10 pcDNA 8

50^g (Sample 2) 50^g (Sample 4) 50^g
11 Pooled Internal Std 4E S209-HA 12 4E-HA 10

50^g (Sample 2) 50 îg (Sample 4) 50 îg
12 Pooled Internal Std pcDNA 8 4E S209-HA 12

50|ag (Sample 2) 50p,g (Sample 4) 50|a.g

Table 3 1 2 11.1 Ettan DIGE experimental design for analysis of the effect of 4E-HA and 

4E S209-HA overexpression Samples 1-4 represent biological replicates
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DeCyder differential analysis software was used to identify protein spots which showed a 

1 5 fold or more change in expression with a t-test score o f0 05 or less between

(a) pcDNA control transfected cells vs 4E-HA overexpressmg cells (Section 

3 1 2 11 1)

(b) pcDNA control transfected cells vs 4E S209-HA overexpressing cells (Section 

3 1 211 2)

(c) 4E-HA overexpressmg cells vs 4E S209-HA overexpressing cells (Section 

3 1 211 3)

(d) 4E-HA clone 5 vs 4E-HA clone 10 (Section 3 12 114)

After differentially expressed protein spots were identified, these targets were then 

subjected to mass spectrometry analysis to determine their identities
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Figure 3.1.2.11.3. Representative DIGE 2D Gel Image. The protein spot identified as 

cofilin is circled and indicated with an arrow.
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3 1211 1 Differentially regulated proteins in 4E-HA overexpressuig cells compared

to pcDNA control transfected cells

Comparison of protein expression in 4E-HA overexpressing cells to pcDNA control 

transfected cells showed upregulation of three proteins, the mRNA processing protein 

G3BP and two protein chaperones, heat shock protein APG and chaperomn (Hsp60 

protein 1 ) Three downregulated proteins were identified as Aldehyde Dehydrogenases 

and one downregulated protein was unidentified (Table 3 12 112)

Master Protein Name 
No

Accession
No

4E-HA vs 
pcDNA

Fold Change 
(T-test score)

Function

mRNA Processing
803 G3BP gi|5031703| 1 86 (0 029) mRNA

processing/degradation
Protein Folding

297 Heat Shock Protein gi|315419411 1 9 (0 0094) Chaperone Activity
APG

1236 Chaperonin (Hsp60 gi|315429471 1 51 (0 021) Chaperone Activity
protein 1)

Metabolism
1097 Aldehyde gi|21361176| -1 67(0 05) Free retinal binding

Dehydrogenase 1A1
1100 Aldehyde gi|2183299| -1 76(0 00064) Free retinal binding

Dehydrogenase 1
1117 Aldehyde gi|21361176| -2 11 (0 0016) Free retinal binding

Dehydrogenase 1A1
Unidentified

2164 - -1 7(0  049) -

Table 3 1 2  112 Differentially Expressed Proteins in 4E-HA overexpressing cells 
compared to pcDNA control cells
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pcDNA 4E-HA

(A)

G3BP

Figure 3.1.2.11.4 Decyder 3D view (A) and graph view (B) of G3BP expression in 
pcDNA and 4E-HA. The protein identified as G3BP is circled in purple.
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Comparison of protein expression in 4E-S209 HA overexpressing cells to pcDNA control 

transfected cells showed twelve protein spots were downregulated and seven upregulated 

in the 4E S209-HA overexpressmg cells (Table 3 12 113) Of the the twelve 

downregulated protein spots, seven have been identified and are involved in cellular 

functions such as cytoskeletal regulation, mRNA processing and regulation of metabolic 

pathways

Seven protein spots were upregulated, five of which have been identified Three 

upregulated proteins are involved in regulation of protein degradation via the ubiquitin- 

proteasomal degradation pathway (Figure 3 12 115) One is an activator of protein 

chaperones and another is a nucleotide metabolism enzyme The Decyder graph view of 

the expression levels of the protein degradation protein PA28 beta is shown in Figure 

3 1 211 6

3 1 2 11.2 Differentially regulated proteins in 4E S209-HA overexpressing cells

compared to pcDNA control transfected cells
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Master Protein Name Accession No 4E S209-HA Reported Function
No vs pcDNA

Fold Change
(T-test score)

Cytoskeletal
2861 Cofilm gi|5031635| -4 77 (0 00099) Actm filament 

organisation
1600 Moesm gi|4505257| -1 57(0024) Actm cytoskeleton 

membrane interaction
2276 Tropomyosin3 gi|55665783| -1 51 (000088) Actm filament 

stabilisation
3290 Tubulin Specific 

Chaperone A
gi|30583547| -1 91 (0 00016) (3-Tubulin processing

mRNA Process mg
1299 HNRPF gi|l 5990432) -1 98(0013) mRNA processing
1296 HNRPF gi|16876910| -1 69(0 043) mRNA processing
Protein Degradation
2312 Proteasome Activator 

PA28 beta cham
gi|2136005| 2 45 (4 5E-07) Protein Degradation

2553 Ubiquitin carboxy- 
termmal hydrolase LI

gi|41857201 1 91 (0 00016) Protein Degradation

2313 Proteasome activator 
subunit 1 (PA28 alpha 
chain)

gi|305811411 1 96(0 00021) Protein Degradation

Metabolism
2062 Purine Nucleoside 

Phosphorylase
gi|55925942 2 19(0 00080) Punne Nucleotide 

Salvage
1808 DDAH1 gi|21707415| -1 73 (0 0022) Nitnc Oxide Biosynthesis
2535 Glyoxalase 1 gi| 15030212] -1 46(0019) Methylglyoxal

detoxification
Protein Folding

1539 AHA1 gi|6912280| 1 98 (0 0058) Chaperone Activator
Unidentified

2313 - 1 96(0 00021)
2596 - -165(0 00062)
3310 - -1 52(0 0076)
1670 - -2 15(0 022)
1440 - 1 57 (0 026)
1688 - -1 57 (0035)
993 - -1 88(0 036)

Table 3 1 2 11 3 Differentially Expressed Proteins in 4E S209-HA overexpressing 
clones compared to pcDNA control clones
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pcPNA 4E S209-HA

Proteasome 
activator PA28 

beta

Proteasome 
activator 

subunit 1 (PA 
28 alpha)

Ubiquitin 
carboxy- 
terminal 

hydrolase LI

Figure 3.1.2.11.5 Decyder 3D view of protein degradation proteins upregulated in 
4E S209-HA transfected cells compared to pcDNA control cells.
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Figure 3.1.2.11.6 DeCyder graph of expression level of protein identified as 
Proteasome Activator PA28 beta in pcDNA, 4E-HA and 4E S209-HA transfected 
cells.
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Comparison of 4E-HA overexpressing cells to 4E S209-HA overexpressing cells showed 

down-regulation of 31 proteins and up-regulation of 15 proteins Of these 46 

differentially expressed proteins 26 have been identified (Table 3 1 2 11 4)

Of the down-regulated proteins, eight have been identified as cytoskeletal proteins, four 

are involved in the processing of mRNAs, two are protein chaperones, two are metabolic 

proteins and one is a protein degradation pathway protein (possible actin)

Of the upregulated proteins, three are involved in regulation of protein degradation via 

the ubiquitin-proteasomal degradation pathway, five are identified as aldehyde 

dehyrogenase 1 or lai and one is the nucleotide metabolism enzyme Purine Nucleoside 

Phosphorylase Figures 3 12 117 and 3 12 118 show a Decyder 3D and image view of 

Cofilin and Moesin expression respectively Figure 3 12 119 shows a Decyder graph 

view of Cofilin expression

3 1 2 1 1 3  Differentially regulated proteins in 4E S209-HA overexpressing cells

compared to 4E-HA overexpressing cells
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Master Protein Name Accession 4E S209-HA Reported Function
No. Number vs 4E-HA

Fold Change
(T -test score)

Cytoskeletal
2861 Cofilin gi|50316351 -5.38 (0.0069) Actin filament 

organisation
1600 Moesin gi|45052571 -1.71 (0.015) Actin cytoskeleton 

membrane interaction
1333 Solute Carrier Family 9, 

isoform 3 regulator 1 
(EBP-50)

gi|4759140| -2.24 (0.0084) Actin cytoskeleton 
membrane interaction

2276 Tropomyosin3 gi|55665783| -1.5(0.033) Actin filament 
stabilisation

993 EPB41L2 gi|21961573| -1.98(0.0066) Actin organisation
3290 Tubulin Specific Chaperone

A
gi|30583547| -1.86(0.0012) (3-Tubulin processing

1666
A

Mutant beta actin gi|28336| -1.61 (0.0029) Cytoskeletal Protein
1347 Actin-like 6A isoform 1 gi|4757718| -1.76(0.0066) Chromatin Modification

mRNA Processing
803 G3BP gi|50317031 -2.36 (0.038) mRNA

processing/degradation
1296 HNRPF gi| 16876910] -1.84(0.0065) mRNA processing

1299 HNRPF gi| 159904321 -1.73 (0.0034) mRNA processing
1072 HNRPK gi| 141654351 -1.56(0.041) mRNA processing

Protein Degradation
2312 Proteasome Activator PA28 

beta chain
gi|21360051 2.07 (8.8E-05) Protein Degradation

2553 Ubiquitin carboxy-terminal 
hydrolase LI

gi|41857201 1.5(0.0016) Protein Degradation

2313 Proteasome activator subunit 
1 (PA28 alpha chain)

gi|305811411 1.85 (0.00026) Protein Degradation

1300 Ubiquitin transfer carrier 
member

gi| 169243191 
blast says 

actin

-2.08 (0.0096) Protein Degradation

Protein Folding
297 Heat Shock Protein APG gi|315419411 -2.25 (0.012) Protein Folding
747 HSP APG1 gi|315419411 -2.3 (0.023) Protein Folding

Metabolism
1097 Aldehyde Dehydrogenase 

1A1
gi|213611761 2.4 (0.0026) Free retinal binding

1100 Aldehyde Dehydrogenase 1 gi|21832991 1.68(0.0031) Free retinal binding
1117 Aldehyde Dehydrogenase 

1A1
gi|21361176| 2.17 (0.0001) Free retinal binding

1167 Aldehyde Dehydrogenase 
1A1

gi|213611761 2.2 (0.0003) Free retinal binding

1177 Aldehyde Dehydrogenase 
1A1

gi|213611761 2.28 (0.00033) Free retinal binding

2062 Purine Nucleoside gi|55925942| 1.73 (0.0033) Purine Nucleotide Salvage
Phosphorylase

Nitric Oxide Biosynthesis1808 DDAH1 gi|21707415| -1.44 (0.0041)
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2535 Glyoxalase 1 gi| 150302121 -2 01 (0 0034) Methylglyoxal
detoxification

Unidentified
3310 - -1 56(0 0047)
1670 - -2 06(000041)
1440 - 1 78(0 0016)
1688 - -1 65 (00052)
1868 - 2 87 (0 00023)
523 - -2 78(0 00063)
1156 - 1 7(0 0022)
2280 - 1 95(0 0039)
3310 - -1 56(0 0047)
1688 - -1 65(0 0052)
1272 - -2 17(0 0064)
1123 - 1 71 (00058)
911 - -2 01 (00088)
917 -1 86(0 013)
997 - -2 31 (0 014)
1136 - 1 63 (0 023)
749 - -2 36(0029)

2077 - 2 47(0035)
653 - -3 25(0 034)
2814 - -1 84(0 04)
1213________________-_____________________________-1 76(0 044)

Table 3 1 2 1 1 4  Differentially Expressed Proteins in 4E-HA overexpressing clones 
compared to 4E S209-HA clones
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4E S209-HA 4E-HA

Cofilin

Figure 3.1.2.11.7 Decyder 3D view (A) and image view (B) of Cofilin expression in 
4E-HA and 4E S209-HA samples

4E S209-HA 4E-HA

Moesin

Figure 3.1.2.11.8 Decyder 3D view (A) and image view (B) of Moesin expression in 
4E-HA and 4E S209-HA samples.

148



St
an

da
rd

iz
ed

 
Lo

g 
A

bu
n

da
nc

e

Figure 3 12 119 Decyder graph view of Cofilin expression in pcDNA, 4E-HA (4E) 
and 4E S209-HA (S209) samples
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3 12 114 Differentially regulated proteins in 4E-HA clone 10 compared to 4E-HA 
clone 5

Comparison of4E-HA overexpressing clone 10 to 4E-HA clone 5 showed lower 

expression of 14 proteins and higher expression of 8 proteins Of these 22 differentially 

expressed proteins 16 have been identified (Table 3 12 115)

Of the lower expression level proteins, six have been identified as cytoskeletal proteins 

(e g vimentin, Figure 3 12 1110), three are metabolic proteins, one is involved in the 

processing of mRNAs (poly(rC)-binding protein 2) and one is involved in cellular 

signalling (Prohibitin)

Of the higher expression level proteins, one is involved in cytoskeleton regulation 

(CapG), one is involved in protein folding (Hsp 70kDa protein 5), one is involved in

protein degradation (Proteasome activator PA28 beta) and one is a metabolic protein

(Peroxiredoxin 2 isoform b)
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Master No Protein Name Accession
Number

4E-10 vs 4E-5
Fold Change 
(t-test score)

Reported
Function

Cytoskeletal
1264 Vimentm gi|57471646| -3 76 (0 006) Cytoskeletal Protem
1261 Vunentin gi|340219| -3 26(00016) Cytoskeletal Protem
1573 Mutant Beta Actin gi|28336| -1 71 (000097) Cytoskeletal Protem
1549 Mutant Beta Actin gi|28336| -1 49 (0 024) Cytoskeletal Protem
1677 Cham A, ca2+ bmdmg gi|21730367| 1 86(0027) Actm Filament

mimicry In The Crystal 
Structure Of The Eu3+- 
Bound Mutant Human 
Macrophage Capping 
Protein Cap G (CapG)

1968 novel protein similar to gi| 12314197! -1 99 (0 0032)

Capping Protein 

Plasma membrane
annexin A2 

1799 Annexin A1 gi|54696696| -1 58(0028)
bmdmg
Plasma membrane

Protein Folding
810 Hsp 70kDa protein 5 gi| 16507237| 1 5 (0 029)

bmdmg

Protem Chaperone
(BiP)

mRNA Processing
1654 poly(rC)-bmding protein 2 gi| 14141166| -1 5(0 021) mRNA processing
Protem Degradation
2312 Proteasome activator gi|2136005| 1 58 (0 048) Protem Degradation

PA28 beta
Metabolism
2514 IPP isomerase 
1073 Glutaminase isoform C gi|6002671|

-1 51 (0046) 
-1 91 (00014) Glutamine

989 FASN gi|38196977| -2 37 (0 00064)
catabolism 
Fatty acid

1071 Aldehyde Dehydrogenase gi|2183299| -2 18(0 00018)
biosynthesis
Oxidoreductase

1
2754 Peroxiredoxin 2 îsoform b gi|33188452) 1 46(0 002)

activity
Antioxidant activity

Cell Signalling
2154 Prohibitm gi|55646807| -2 13(00091)
Unidentified
1670 1 7(0 0012)
2443 - 1 47 (0 0065) -

2590 - 1 5 (0 0094) -

1249 - -217(0019) -

560 - -1 87(0032) -

1541 - 1 84(0 045)

Table 3 1 2 1 1 5  Differentially Expressed Proteins m 4E-HA overexpressing clone 4E 
HA 5 compared to clone 4E-HA 10
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4E-HA 10 4E-HA5

(A)

Vimentin 
(Masterno. 1264)

Figure 3.1.2.11.10 Decyder 2D view (A) and Image view (B) of protein spot 
identified as Vimentin (Master No. 1264).
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3.1 2 11.5 UTRscan analysis of mRNAs of differentially regulated 

cytoskeletal proteins.

The mRNA sequences for some of the differentially regulated cytoskeletal proteins were 

analysed using the online mRNA analysis program UTRscan which detects regulatory 

nucleotide sequences present in mRNA UTRs (Mignone e ta l , 2005) The proteins 

analysed included cofilm, moesrn, tropomyosin 3, EBP50, EPB41L2, ACTL6A and 

TBCA

(http //www ba ltb cnr it/BIG/UTRScan/)

3 1 2 1 1 5 1  Cofilin (NM_005507 2)

Pattern = 15-LOX-DICE

Found 1 matches m  1 sequences

gi|49472823|ref|NM_005507 2| [908,924] CCCTCCATCC CTTG ACG

 > Checking repeats for 15-LOX-DICE {min 2)
Found 0 matches for pattern 15-LOX-DICE
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3 1 2 1 1 5  2 Moesin (NM 002444 2)

Pattern = 15-LOX-DICE

Found 3 matches in 1 sequences

gil537293351 ref|NM_002444 2| [421,435] CCCCTGCTCT TT AAG
gi|53729335|ref|NM_002444 2 I [3256,3274] CCCTTGCTCT CAACCC AGG
gi|53729335j ref|NM_002444 21 [3435,3450] CCCCACACCT GGA AAG

-----> Checking repeats for 15-LOX-DICE (min 2)
Found 0 matches for pattern 15-LOX-DICE

Pattern = IRES

Found 1 matches m  1 sequences

gi|53729335|ref|NM_002444 2 I [3874, 3981] TTTGTG TACTTT TTGGG
t t t t t t a a  a a a t t g t t  t t t g g a g g  g g t t t  a t g c t  c a a t c  c a t g  t t c t a  t t t c a g  t g c c a a

TAAAA
TTTAG GAAGAC TTCAA AAAAAAAAAA

Pattern = ADH DRE

Found 1 matches in 1 sequences

gi|53729335|ref|NM_002444 2| [2653,2660] AAGGCTGA
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3.1 2115 3 Tropomyosin 3, variant 1 (NM_152263 1)

Pattern = 15-LOX-DICE

Found 3 matches m  1 sequences

giI 22748618|ref|NM_152263 1| [785, 798] CCACGCCCTC A ATG
giI 22748618|ref|NM_152263 1| [971,990] CCCCACCCCA AATTAAA ATG
giI 22748618[ref|NM_152263 1| [1102, 1120] CCCCCTCCTCT GACTT ATG

 > Checking repeats for 15-LOX-DICE (min 2)
Found 0 matches for pattern 15-LOX-DICE

Pattern = IRES

Found 1 matches in 1 sequences

gi|22748618|ref|NM_152263 1| [1179,1281] TGATT CTACC AGAGTG A TGGAT
TTA GTACA GGTTACTC AGGA TAGTAATT TTAGT TATACT CCTCA AGCTG AACA AGATT 
AAATTCCT TATTT CCAGGTTCTT

3.1 2 11 5 4 Tropomyosin 3, variant 2 (NM153649.2)

Pattern = 15-LOX-DICE

Found 1 matches m  1 sequences

giI 397256311ref|NM_153649 2 | [1563, 1579] TCCTGCCTCC TTGA AAG

 > Checking repeats for 15-LOX-DICE (min 2)
Found 0 matches for pattern 15-LOX-DICE

Pattern = Brd-Box 

Found 1 matches in 1 sequences 

gi|397256311 ref|NM_153649 2| [1387, 13933 AGCTTTA
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3 1 2 11.5 5 EBP50 (NM_004252.1)

Pattern = 15-LOX-DICE

Found 2 matches in 1 sequences

gi|47591391 ref|NM_004252 1| [1614, 1633] CCCTCCCTTC CTCCCCC ATG
gi|4759139trefiNM_004252 1| [1915,1932] GCCCATCCCT GAGCC AGG

 > checking repeats for 15-LOX-DICE (min 2)
Found 0 matches for pattern 15-LOX-DICE

Pattern = K-Box 

Found 1 matches in 1 sequences 

gi|47591391 ref|NM_004252 1| [1631,1638] ATGTGATA

3 1 2  115 6 EPB41L2 (NM_001431 1)

Pattern = GY-Box 

Found 1 matches in 1 sequences 

gi|4503578|ref|NM_001431 1| [155,161] GTCTTCC
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3 1211 5.6 Actin-like 6A (ACTL6A), transcript variant 1 (NM 004301.2)

Pattern = K-Box 

Found 1 matches m  1 sequences 

gi|30089995]ref|NM_004301 2| [1178,1185] GTGTGATA

Pattern = Brd-Box

Found 2 matches in 1 sequences

gi|300899951ref|NM_004301 2| [1512,1518] AGCTTTA
gi|300899951 ref|NM_004301 2| [1601, 1607] AGCTTTA

31211  5 7 TBCA, (NM 004607 1)

No regulatory elements found
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3.1.2.12 Microarray analysis of stably transfected DLKP cells.

The results already presented show that overexpression of eIF4E in DLKP cells induced 

changes in the expression of growth and differentiation related proteins. The translational 

upregulation of gene expression by eIF4E may also have a knock on effect on regulation 

of gene transcription, which could contribute to changes in growth and differentiation in 

eIF4E overexpressing cells. We decided to analyse gene mRNA expression profiles of 

4E-HA overexpressing cells using Affymetrix GeneChip microarrays (Fig. 3.1.2.12.1). 

The RNA quality of samples (Fig. 3 .1.2.12.2) and fragmentation of biotin labelled cRNA 

(Fig. 3.1.2.12.3) were monitored for this experiment.
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Figure 3.1.2.12.1 Affymetrix GeneChip gene expression assay. Labeled cRNA targets 
derived from the mRNA of an experimental sample are hybridized to nucleic acid probes 
attached to the solid support. By monitoring the amount of label associated with each 
DNA location, it is possible to infer the abundance of each mRNA species represented
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Figure 3.1.2.12.2 Analysis of RNA quality using Bioanalyser RNA chip. The two clear 
sharp peaks represent 18S and 20S ribosomal RNA. All samples tested show similar 
results indicating RNA was not degraded and no DNA contamination was present.
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Figure 3 1.2 12 3 Monitoring of fragmented and unfragmented biotin labelled 
cRNA by agarose gel electrophoresis (Lane 1) pcDNA 2, sample 1 fragmented cRNA, 
(Lane 2) pcDNA 2, sample 1 unfragmented cRNA, (Lane 3) pcDNA 2, sample 2 
fragmented cRNA, (Lane 4) pcDNA 2, sample 2 unfragmented cRNA, (Lane 5) pcDNA 
2, sample 3 fragmented cRNA, (Lane 6) pcDNA 2, sample 3 unfragmented cRNA, (Lane 
7) 4E-HA 5, sample 1 fragmented cRNA, (Lane 8) 4E-HA 5, sample 1 unfragmented 
cRNA, (Lane 9) 4E-HA 5, sample 2 fragmented cRNA, (Lane 10) 4E-HA 5, sample 2 
unfragmented cRNA, (Lane 11) 4E-HA 5, sample 3 fragmented cRNA, (Lane 12) 4E-HA 
5, sample 3 unfragmented cRNA, (Lane 13) 4E S209-HA 6, sample 1 fragmented cRNA, 
(Lane 14) 4E S209-HA 6, sample 1 unfragmented cRNA, (Lane 15) 4E S209-HA 6, 
sample 2 fragmented cRNA, (Lane 16) 4E S209-HA 6, sample 2 unfragmented cRNA, 
(Lane 17) 4E S209-HA 6, sample 3 fragmented cRNA, (Lane 18) 4E S209-HA 6, sample 
3 unfragmented cRNA



3.1.2.12.1 Microarray expression data analysis

Affymetrix HGU133A oligonucleotide microarray chips were used to analyse mRNA 

expression levels of pcDNA-2, 4E S209-HA 6 and 4E-HA 5 cells.

HG-UI33 A GeneChips are comprised of over 500,000 unique oligonucleotide features 

covering over 18,000 transcripts and variants, which, in turn, represent approximately 

14,500 of the best characterised human genes.

pcDNA 2, 4E S209-HA 6 and 4E-HA 5 RNA samples were analysed in triplicate on 

Affymetrix HG-U133A GeneChips. All Q.C. parameters for each sample were found to 

be within acceptable limits (Fig. 3.1.2.12.4). Gene expression data was analysed in order 

to identify genes that are differentially expressed between these cell lines and hierarchical 

clustering was subsequently performed to group differentially expressed genes according 

to their expression pattern.

—x— background /10 — raw Q (electronic noise)
—■— GAPDH 375' ratio —I— Scaling Factor X 10

beta-actin 375' ratio avg. Raw Value (all) /25
—•—% called Present /10

QC criteria

4E 1 4E 3 4E 4 PC PC PC S209 2 S209 3 S209 4
DNA 1 DNA 2 DNA 3

Figure 3.1.2.12.4 Analysis of Q.C. parameters for GeneChip microarrays
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The heat map of clustered genes (Fig. 3 .1.2.12.5) was used to select groups of genes 

which showed a common pattern of expression in the different samples analysed, e.g. 

group 1 contains genes which show decresed expression in both 4E-HA 5 and 4E 8209- 

HA 6 cells compared to pcDNA 2 cells.

Figure 3.1.2.12.5 Heat Map representation of differentially expressed genes showing 
clustering of similarly expressed genes. Clusters labelled 1-7 were chosen for subsequent 
analysis. This heat map displays expression level of genes in the baseline/control sample 
(pcDNA 2) as yellow. Genes which show increased expression in the test samples (4E- 
HA 5, 4E S209-HA 6) are coloured red and genes which show decreased expression are 
coloured blue.
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Various software tools were employed in the analysis of differentially expressed genes 

Probe set IDs for probe sets which were found to be differentially regulated where 

entered onto the Net Affix (hhtp //www affymetnx com) online database NetAffx is 

specifically designed for affymetnx data and provides up-to-date annotation information 

for each probe set, function information and links to online public databases

Bibhosphere (Genomatix, wwwgenomatix de/go/bib) data-mining software was used to 

help identify gene-gene connections within lists of differentially expressed genes from 

microarray analysis Bibhosphere data mining software automatically detects co-citations 

of genes in PubMed literature abstracts Bibhosphere also automatically checks for 

alternative gene names in pubmed abstracts which proved to be a bottle-neck in manual 

analysis as many differentially expressed genes were known by multiple names in the 

literature Bibhosphere analysis data of gene-gene connections is displayed as a 3D 

interactive view of gene relationships (Fig 3 1 2 12 6)

EASE software (Hosack et a l, 2003) was also used to help identify biological themes 

from lists of differentially regulated probe set IDs

Genes found to be differentially expressed in 4E-HA 5 and 4E S209-HA 6 cells 

compared to pcDNA 2 control cells were categorised and examined according to their 

function (e g transcription) or whether their expression is involved in regulating a certain 

type of cellular phenotype (e g mvasiveness) Expression levels of genes involved in 

cellular invasion, tumor suppression, regulation of the actin cytoskeleton, transcription 

and integnn signalling/FAK interaction were found to be altered in 4E-HA and 4E 8209- 

HA overexpressing cells

3 1 2 12 2 Analysis of differentially expressed genes
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Previous experiments in this study have shown that 4E-HA 5 cells display increased in 

vitro invasiveness (Section 3 12 13) Analysis of differentially regulated gene lists 

revealed numerous differentially regulated genes which have previously been shown to 

regulate or are associated with cellular invasiveness (Table 3 12 12 1)

3 1 2 12 2 1 Invasion related gene expression

Table 3 1 2 12 1 Expression levels of differentially expressed invasion related genes
Normalised and raw (in brackets) expression values are given for these genes *Genes

pcDNA 2 4E S209-HA 6 4E-HA5
TACSTDl 1 (18 2) 9 654(175 7) 1 746(31 77)

TPBG 1 (88 57) 0 324 (28 67) 1 204(106 6)
MMP10 1 (681 2) 0 423 (288 4) 0 878 (597 9)

TFPI2* 1 (298 65) 0 006 (1 8665) 0 427 (127 615)
represented by more than one probe set, the average expression values are given for these 
genes
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3 1 2 12 2 2 Tumor suppressor gene expression

Analysis of differentially expressed gene lists showed a large number of genes which are 

upregulated in 4E S209-HA 6 cells compared to pcDNA 2 and 4E-HA 5 cells are known 

to function as tumor suppressors (Table 3 12 12 2)

pcDNA 2 4E S209-HA 6 4E-HA 5

ROBOl 1 (181 4) 0 513 (93 17) 0 389 (70 63)
SCRIB 1 (114 4) 0 442 (50 5) 0 497 (56 83)
THY1 1 (75 43) 0 302 (22 77) 0 285(21 47)

C5orfl3 1 (153 5) 0 92 (141 2) 0 243 (37 23)

CDKN1B 1 (98 03) 2 581 (253 6) 2 42 (237 2)

SFN* 1 (61 234) 17.217 (1054.25) 8 883 (543 943)
DAPK 1 (22 5) 4 29 (96 53) 1 557 (35 03)
TOB1 1 (126 8) 2 163 (2743) 1 526 (193.5)
GAS2 1(1 8) 24 167 (43 5) 4 704 (8 467)
PLAGL1 1 (13 23) 6 283 (83 13) 2 207 (29 2)
GPC3 1 (17 8) 2 376 (42 3) 1 15 (20 47)
DCN* 1 (29 62) 10 03 (297) 0 833 (24 66)
LUM 1(5 2) 62 73 (326 2) 0 256 (1 433)

CYR61 1 (923) 0 371 (342 4) 0 565 (521 6)

Table 3 1 2 12 2 Expression levels of differentially expressed tumor suppressor 
genes Normalised and raw (in brackets) expression values are given for these genes 
Genes which are upregulated in 4E S209-HA 6 cells compared to pcDNA 2 and 4E-HA 5 
cells are in bold type *Genes represented by more than one probe set, the average 
expression value is given for these genes
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3 1 2 12 23 Cytoskeletal/actin related genes

A large number of genes involved in regulating the actm cytoskeleton or actin 

cytoskeleton protein interactions were represented in the differentially regulated genes 

from microarray analysis (Table 3 12 12 3) Analysis ofF-actin in 4E-HA 

overexpressing cells showed alterations in F-actin structures in 4E-HA 5 cells (Section 

3 12 13) Microarray analysis indicates transcriptional control of genes involved in 

regulating actin structures may play a role in mediating these changes

Other cytoskeletal protein genes such as the intermediate filament protein Vimentin 

(VTM) and genes involved in regulating microtubules (e g TBCD) were found to be 

differentially expressed

166



pcDNA 2 4E S209-HA 6 4E-HA5
FAT
DNM3
TAGLN2
TNNT1
FXYD5
PDLIM2

1 (106)
1 (36 77) 
1 (297 4) 
1 (188 5) 
1 (209 5) 
1 (149 4)

0 22 (23 43) 
0 33 (12 27) 
0 40(120) 

0 54 (101 9) 
0 32 (67 47) 
0 44(65 13)

014(143) 
0 46 (16 8) 
0 39(116 6) 
0 43 (80 57) 
0 45 (95 2) 
0 52 (77 6)

PDLIM4 1 (53 03) 0 71 (37 63) 0 24 (12 83)

CAPG 1 (163 4) 0 93 (151 7) 0 28 (45 27)

CSRP1
SLC9A3R1
VIM
MARCKS*
TBCD
NEBL*
LIM*

1 (43 9)
1 (89 27)

1 (1,230 467) 
1 (11 519)
1 (29 67)
1 (80 5)

1 (104 185)

3 48 (152 9)
1 55 (138 7)

1 97 (2,420 133) 
5 23 (60 235)

1 48 (44)
1 51 (121 5)

1 38 (143 785)

3 66 (160 8)
2 30 (205)

2 36 (2,908 5) 
11 88 (136 85) 
2 13 (63 23)

2 38 (191 565) 
2 43 (252 65)

BASP1
ANK2*
SSPN*

1 (20 6)
1 (22 635) 
1 (4 0335)

3 62 (74 63)
8 37 (189 515) 
23 24 (93 75)

0 94 (19 37)
1 21 (18 635) 

1 59 (6 4)

NAV3
ADD2
MIRAB13

1 (252 1) 
1 (259 1) 
1 (130 7)

0 03 (7 867) 
0 38(97 77) 
0 49 (64 03)

0 85 (213 5) 
0 77 (199 3) 
0 64 (83 27)

SGCE
SGEF

1 (63 8) 
1 (9 333)

0 41 (26 03)
1 14(10 63)

2 51 (160 4) 
2 2 (20 53)

Table 3 1 2 12 3 Expression levels of differentially expressed actin/cytoskeletal 
related genes Normalised and raw (in brackets) expression values are given for these 
genes *Genes represented by more than one probe set, the average expression values are 
given for these genes
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Transcription factors from differentially expressed gene lists were analysed in order to 

determine if any differentially expressed transcription factors might be responsible for 

changes in the expression levels of other differentially regulated genes which were 

detected These results are discussed in section 4 4 6

3 1 2 12 2 4 Transcription factor gene expression

pcDNA 4E S209-HA 6 4E-HA5
TCF3 1 (179 6) 0 51 (91) 0 36 (65 17)
TIEG 1(235 7) 0 29 (69 37) 0 48(112 4)

NFIB* 1 (439 65) 0 98 (430 4) 0 44(192 27)

TCF4* 1 (42 572) 7 94 (338 02) 5 57 (263 98)
FOXA1 1 (20 97) 2 89 (60 6) 2 34 (49 03)
JARJD1A 1 (51 33) 1 89 (97 07) 2 02(103 9)
ATF5 1 (35 8) 2 59 (92 87) 2 8(100 2)
CART1 1 (51 4) 4 23 (217 4) 5 09 (261 8)
ZIC1 1 (136 3) 7 08 (965 1) 11 5 (1,567 93)
MSX1 1 (36 33) 13 49 (490 2) 10 31 (374 5)
ESR1 1 (18 53) 2 14(39 63) 1 67 (30 93)
CREBL2 1 (44 4) 2 15 (95 315) 1 97 (87 5)

CSDA* 1 (234 4) 1 89 (443 8) 1 34 (313 685)
BHLHB3 1 (1 733) 63 07(109 3) 5 00 (8 667)

ETV5 1(99) 0 44 (43 43) 1 25(124 2)
FOXD1 (156 1) 0 44 (68 3) 0 66 (103)

3 1 2.12 4 Expression levels of differentially expressed transcription factor genes
Normalised and raw (in brackets) expression values are given for these genes *Genes 
represented by more than one probe set, the average expression value is given for these 
genes
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Microarray data was analysed for genes known to be involved in integrin signalling. A 

central protein in the integrin signalling pathway known as Focal Adhesion Kinase 

(FAK) (Mitra et al., 2005) was downregulated in 4E-HA 5 and 4E S209-HA 6 cells 

compared to pcDNA 2 control cells (Table 3.1.2.12.5).

Analysis of differentially expressed gene lists for genes known to interact with FAK was 

aided by Bibliosphere software which automatically detects co-citations of genes in 

PubMed literature abstracts (Fig. 3.1.2.12.6).

3.1.2.12.2.5 FAK/integrin signalling related gene expression

VGLL1 PLSCR1
L^2030G9 #  & ,  A

\  MARCKS

m  •  \8PA09 \

Figure 3.1.2.12.6 Bibliosphere analysis of FAK connections to differentially expressed 

genes.
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pcDNA 2 4E S209-HA 6 4E-HA5
PTK2 (FAK) 1 (207 5) 0 51 (105 9) 0 378 (78 4)

TGFB1I1 1 (68 93) 0 76 (52 33) 0 447 (30 80)

EPHA3 1 (2 267) 189 15 (428 8) 181 78 (412 1)
NTS 1 (95 7) 34 66 (3316 8) 38 84 (3716 73)

CASP 1 (51 23) 1 943 (99 53) 1 45 (74 23)

NEDD9 1 (88 57) 0 32 (28 67) 1 20 (106 6)

Table 3 1 2 12 5 Expression levels of FAK related genes Normalised and raw (in
brackets) expression values are given for these genes
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3 12 12.2 6 Genes related to neuron guidance, tissue morphogenesis, cellular 
migration and invasion

Recent studies have shown that many proteins that have originally been identified in the 

nervous system as guidance cues for axons are also involved in regulating tissue 

morphogenesis, cellular migration and invasion (Hinck, 2004, Tamagnone and Comoglio,

2004) Microarray analysis of 4E-HA 5 and 4E S209-HA 6 cells in comparison to 

pcDNA 2 control cells identified a number of differentially regulated genes which fell 

into this category (Table 3 12 12 6)

pcDNA 2 4E S209-HA 6 4E-HA 5
ROBOl 1 (181 4) 0 513 (93 17) 0 388 (70 63)
CRMP1 1 (152 9) 0 204(31 17) 0 259 (39 63)

SLITRK3 1 (6 433) 15 42(99 2) 20 301 (130 6)
EPHA3 1 (2 267) 189 15 (428 8) 181 78(412 1)
SEMA3A 1 (33 17) 2 351 (77 97) 3 120(103 5)
SEMA3C 1 (54 27) 2 04 (110 7) 1 623 (88 1)

DPYSL4 (CRMP3) 1 (61 03) 0 215(13 1) 0 452 (27 57)

Table 3 1.2 12 6 Expression levels of genes related to neuron guidance, tissue 
morphogenesis, cellular migration and invasion Normalised and raw (in brackets) 
expression values are given for these genes
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Results from both microarray and 2D-DIGE proteomic analysis indicate that a large 

number of genes and proteins that are differentially regulated in 4E-HA and 4E S209-HA 

cells are involved in regulating the actin cytoskeleton Organisation of actin structures in 

cells is involved m regulating the morphology and motility/invasiveness of cells 

(Lambrechts et a l , 2004) We have analysed the F-actin (filamentous actin) structures in 

4E-HA transfected cells using fluorescently labelled phalloidm (Molecular Probes) which 

binds and stabilises F-actin

F-actin staining in both pcDNA control and 4E S209-HA transfected cells was diffuse 

and little or no filamentous staining observed (Fig 3 1 2 13 1) In contrast 4E-HA 5 cells 

showed a more intense filamentous staining (Figs 3 12 13 2 and 3 12 13 3) Intense 

staining was seen in lone cells or cells at the edges of colonies The most intense staining 

was in these cells was observed in areas of cellular outgrowth (Fig 3 12133)  These 

results indicate actin cytoskeleton dynamics are altered in 4E-HA overexpressing cells

3 1.2.13 Analysis of F-Actin in 4E-HA Overxpressmg Stably
Transfected Clones
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(A) pcDNA 2 (B) pcDNA 8

Figure 3 12 13.1 F-Actin fluorescent staining analysis of pcDNA control transfected 
and 4E S209-HA overexpressing cells
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(C) 4E-HA 5 (D) 4E-HA 5

Figure 3 1 2 13 2 F-Actin fluorescent staining analysis 4E-HA 10 (A) cells display 
diffuse F-actin staining 4E-HA 5 (B and C) shows organisation of F-actin in filaments
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Figure 3 12 133  F-Actin fluorescent staining analysis in 4E-HA 5 cells (A) Group of 
4E-HA 5 cells containing stress fibers, (B) 4E-HA 5 cell at the edge of a colony 
displaying filopodial actin projections and a broad lammelipodial outgrowth



Focal Adhesion Kinase (FAK) is a major mediator of integrin dependent signalling and 

plays an important role in the regulation of cellular motility (Mitra et a l , 2005) 

Microarray analysis showed that FAK mRNA expression was reduced in 4E-HA and 4E 

S209-HA cells (Table 3 12 12 5)

In order to determine if FAK protein levels were altered in 4E-HA transfected cells and 

examine the localisation of the protein, FAK expression was examined by Western 

blotting and also immunofluorescent labelling followed by confocal microscopy

Western blot analysis shows decreased expression of FAK in 4E-HA 5 and 4E S209-HA 

6 cells in comparison to DLKP and pcDNA 2 cells (Fig 3 12 14 1) These results match 

the decreased expression level of FAK mRNA seen in these cells from microarray 

analysis (Table 3 12 12 5)

In pcDNA 2 control transfected cells, FAK protein is localised in patches (focal 

adhesions) that are distributed evenly throughout the cell (Fig 3 12 14 2) and does not 

appear to be concentrated in a particular area of the cell (e g peripheral regions) The 4E 

S209-HA 6 cells show an overall reduction in FAK expression with localisation of FAK 

in the periphery of cells at the edges of colonies (Fig 3 1 2 14 2 B) The 4E-HA 5 cells 

also display an overall decrease in FAK expression However FAK staining appears to be 

localised to the periphery of cells at areas of cellular outgrowth (Fig 3 12 14 2 C,D)

3.1.2.14 Focal Adhesion Kinase expression m 4 E-HA overxpressing
stably transfected clones
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FAK

GAPDH

Figure 3.1.2.14.1 Western blot analysis of FAK expression in 4E-HA overexpressing 
cells. Expression of FAK protein is decreased in 4E S209-HA 6 and 4E-HA 5 cells 
compared to pcDNA 2 and DLKP cells.
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(A) pcDNA 2 (B) 4E S209-HA 6

Figure 3.1.2.14.2 Immunofluorescence analysis of FAK expression. (A) In pcDNA 2 
control cells FAK is highly expressed and is localised in patches that are distributed 
throughout the cell. (B) In 4E S209 overexpressing cells intense FAK staining is localised 
to the periphery of cells at the edge of colonies. FAK is localised to the periphery of 4E 
overexpressing cells (C, D) with high intensity in areas of cellular outgrowth.
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As eIF4E has been implicated in the regulation of differentiation and growth in DLKP 

cells, it was decide to attempt to reduce eIF4E levels in DLKP cells by transfection with 

eIF4E antisense cDNA in order to analyse the effect of reduced eIF4E levels on growth 

and differentiation DLKP cells were stably transfected with antisense-eIF4E cDNA 

Clonal subpopulations of eIF4E-antisense cDNA transfected cells were generated by 

limiting dilution

Western blot analysis of eIF4E levels in clonal populations of DLKP cells stably 

transfected with eIF4E-antisense cDNA (Fig 3 13 1) showed no significant reduction of 

eIF4E levels in any of the clones analysed As no significant reduction in eIF4E levels 

were obtained in the clones generated these studies were discontinued

3.1.3 Transfection of DLKP cells with eIF4E Antisense cDNA
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Figure 3 13 1 Western Blot analysis of eIF4E levels in eIF4E-antisense tranfected 
clones eIF4E levels do not appear to be reduced in eIF4E-antisense transfected clones
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3.2 Ornithine Decaroxylase (ODC) Expression in BrdU treated DLKP  
cells.

Ornithine Decarboxylase is a key enzyme in the regulation of polyamine biosynthesis. 

Polyamine levels are known to be involved in the regulation of growth, differentiation 

and transformation of cells. Ornithine Decarboxylase (ODC) is known to be subject to 

translational regulation. Previous studies have shown that treatment of DLKP cells 

induces changes in the growth and differentiation of these cells in conjunction with 

increased expression and phosphorylation of the translation regulating protein eIF4E. It 

was therefore decided to examine the effect of BrdU treatment on the expression of ODC 

in these cells.

Immunocytochemical analysis shows increased expression of ODC in BrdU treated 

DLKP cells (Fig. 3.2.1)

(A) DLKP (B) DLKP 7 Day BrdU

Figure 3.2.1 Immunocytochemical analysis of ODC expression in 7 day lOpM BrdU 
treated cells. Staining for ODC is increased BrdU treated DLKP cells (B). Magnification
20X.
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3.3 C/EBP transcription factor expression in BrdU-treated DLKP cells.

The C/EBP family of transcription factors are important regulators of differentiation in a 

number of tissues and are involved in differentiation in lung cells (Cassel and Nord,

2003) C/EBPa and C/EBPp protein expression is regulated in part at a translational 

level, with the expression of different sized isoforms of these proteins determined by the 

use of multiple translation initiation sites in the 5’ UTRs of their mRNAs eIF4E is 

involved in the translational regulation of C/EBPa and C/EBPp (Calkhoven e ta l , 2000) 

As post-transcriptional regulation of differentiation related gene expression has been 

observed in BrdU treated DLKP cells in conjunction with increased expression and 

phosphorylation of eIF4E, we decided to analyse the expression of C/EBPa and C/EBPp 

in these cells

DLKP cells were treated with 10|jM BrdU for 7 days and analysed by 

immunocytochemistry and Western blotting for C/EBPa and p protein expression 

No changes in C/EBPa expression were detected in BrdU treated cells by 

immunocytochemical and Western blot analysis Immunocytochemical and Western blot 

analysis both show low expression of C/EBPa in both untreated and BrdU treated DLKP 

cells with no change in expression level (Figs 3 3 1 and 3 3 2)

Immunocytochemical analysis of C/EBPp expresssion in BrdU treated DLKP cells shows 

a change in staining from predominantly cytoplasmic in untreated cells to predominantly 

nuclear in BrdU-treated cells indicating increased nuclear localisation of the protein (Fig 

3 3 3) Western blot analysis of C/EBPp expression in BrdU treated DLKP shows a 

reduction in the overall level of C/EBPp protein present in these cells (Fig 3 3 4)
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(A) DLKP Untreated

W-

Figure 3.3.1 Immunocytochemical analysis of C/EBPa expression in 7 day 10nM 
BrdU-treated cells. Staining for C/EBPa is weak in both untreated (A) and BrdU-treated 
(B) DLKP cells. Magnification 20X.
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C/EBPa

Figure 3.3.2 Western blot analysis of C/EBPa expression in 7 day lOpM BrdU 
treated DLKP cells. C/EBPa protein is not expressed in untreated or 7 day 10}iMBrdU 
treated DLKP cells. Some faint non-specific bands are seen due to long exposure time.

DLKP BrdU Treated
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(A) DLKP

W^r' % jfc ^ &* %
f *3? p

(B) DLKP 7 Day BrdU

Figure 3.3.3 Immunocytochemical analysis of C/EBPp expression in 7 day 10pM 
BrdU treated cells. Staining for C/EBPp in untreated DLKP cells (A) is localised 
predominantly in the cytoplasm with little staining in the nucleus. BrdU treated DLKP
(B) show decreased cyoplasmic staining and increased nuclear staining indicating 
increased nuclear localisation of the protein. Magnification 20X.
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Figure 3.3.4 Western blot analysis of C/EBPp expression in 7 day 10|iM BrdU 
treated DLKP cells. Treatment of DLKP with BrdU causes a reduction in the overall 
level of C/EBPp protein expression.
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The expression of the transcriptional co-activators CBP and p300 were analysed in DLKP 

cells. These proteins are known to play a role in the expression of a number of lung 

differentiation related genes and are known to interact with a wide range of transcription 

factors.

Immunocytochemical and Western blot analysis showed strong expression of CBP and 

lowp300 expression in DLKP (Fig. 3.4.1). Western blot analysis of CBP expression in 

BrdU-treated DLKP cells showed a decrease in the level of CBP protein expression in 

BrdU-treated cells (3.4.2).

3.4 CBP/p300 expression in DLKP cells.

(B)DLKP p300

Figure 3.4.1 Immunocytochemical analysis of CBP and p300 expression in DLKP 
cells. DLKP cells show strong staining for CBP (A) and weak staining for p300 (B). 
Magnification 20X.

(A) DLKP CBP
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Figure 3.4.2 Western Blot analysis of CBP expression in BrdU-treated DLKP cells.
BrdU-treated DLKP cells show a decrease in CBP protein expression.
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3 5 Investigation into the ability of hormone-supplemented serum-free 
media to induce differentiation m DLKP cells.

Following on from previous studies in this laboratory (Fmbar O’Sullivan PhD, 1999), we 

have investigated the ability of a complex hormone supplemented serum free media to 

induce differentiation in DLKP cells This was conducted in order to try to develop an 

alternative method of m vitro induction of differentiation to BrdU treatment using 

biologically active compounds The pathways by which these biologically active 

compounds induce differentiation (e g upregulation of eIF4E expression) could then be 

compared to BrdU treated cells to assess the physiological relevance of BrdU induced 

differentiation

DLKP cells were grown in a serum-free media (SFM) from stocks of DLKP cells which 

had previously been cultured in SFM in order to eliminate any interfering effects of 

growth factors and hormones present in serum-supplemented media (SSM) and increase 

the reliability and reproducibility of hormonal treatments which was a problem in 

previous studies

SFM consists of Ham’s F12/DMEM (11) media, supplemented with the following 

compounds

Supplement Concentration
Transferrin 5 0 ng/ml
Insulin 10 0 (ig/ml
L-glutamme 2 mM
Fibronectin 5 0 |ag/ml

The following components were then added to the SFM for hormonal supplemented 
media (HSM) treatments

Components ofHSM 
Oestrogen 8 fig/ml 
Hydrocortisone 3 |ig/ml 
Cholera Toxin 2 7 ng/ml
EGF 20 ng/ml________
KGF 0 25 n.g/ml
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DLKP cells cultured in SFM were smaller and more circular than cells cultured in SSM 

Treatment with HSM caused cells to spread out and increase in size (Figs 3 5 1-3 5 7)

Immunocytochemical analysis of Keratin 8,18,19, pi integral and Ep-CAM protein 

expression was performed after 5 and 10 days of treatment

• DLKP cells grown in SFM and SFM+HSM showed strong keratin 8 staining after 

5 days and weaker staining after 10 days (Fig 3 5 2)

• Keratin 18 expression was weakly positve in DLKP cells grown in SFM and 

SFM+HSM after 5 days and was similar to negative control levels after 10 days 

(Fig 3 5 3)

• Keratin 19 express ion was not detected in DLKP cells grown in SFM and 

SFM+HSM after 5 and 10 days (Fig 3 5 4)

• pi integrin staining was weakly positive in DLKP cells grown in SFM and 

SFM+HSM after 5 and 10 days (Fig 3 5 5)

• Ep-CAM staining was weakly positive in DLKP cells grown in SFM and 

SFM+HSM after 5 and 10 days (Fig 3 5 6)
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(A) SFM Day 5 Negative Control (B) SFM+HSM Day 5 Negative Control

(C) SFM Day 10 Negative Control (D) SFM+HSM Day 10 Control

Figure 3 51 Negative controls for lmmunocytochemical analysis of DLKP cells grown 
in SFM and SFM+HSM Negative controls were treated as test samples without the 
addition of primary antibody
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Figure 3 5 2 Immunocytochemical analysis of keratin 8 expression in DLKP cells 
grown ui SFM and SFM supplemented with Hormones (SFM +HSM) DLKP cells 
grown in SFM (A) and SFM+HSM (B) show positive staining after 5 days After 10 days 
SFM (C) and SFM+HSM (D) cells show weak staining
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(A) SFM Day 5 K18 (B) SFM+HSM Day 5 K18

(C) SFM Day 1 OKI 8
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(D) SFM+HSM Day 10 K18

Figure 3 5 3 Immunocytochemical analysis of keratin 18 expression in DLKP cells 
grown in SFM and SFM supplemeted with hormones (SFM +HSM) DLKP cells 
grown in SFM (A) and SFM+HSM (B) show positive staining after 5 days After 10 days 
SFM (C) and SFM+HSM (D) cells show weak staining
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(A) SFM Day 5 K19 (B) SFM+HSM Day 5 K19

(C) SFM Day 10 K19 (D) SFM+HSM Day 10 K19

Figure 3 5 4 Immunocytochemical analysis of keratin 19 expression in DLKP cells 
grown in SFM and SFM supplemeted with Hormones (SFM +HSM) DLKP cells 
grown in SFM (A, C) and SFM+HSM (B, D) show no staining for keratin 19 after 5 and 
10 days

191



(A) SFMDay 5 pi Integnn (B) SFM+HSM Day 5 pi Integrin

(C) SFM Day 10 p 1 Integnn (D) SFM+HSM Day 10 p 1 Integnn

' k.

Figure 3 5 5 Immunocytochemical analysis of pi integnn expression in DLKP cells 
grown in SFM and SFM supplemeted with hormones (SFM +HSM) DLKP cells 
grown in SFM (A, C) and SFM+HSM (B, D) show positive staining for pi integnn after 
5 and 10 days
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(A) SFM Day 5 Ep-CAM (B) SFM+HSM Day 5 Ep-CAM
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(C) SFM Day 10 Ep-CAM (D) SFM+HSM Day 10 Ep-CAM

Figure 3 5 6 Immunocytochemical analysis of Ep-CAM expression in DLKP cells 
grown in SFM and SFM supplemeted with hormones (SFM +HSM). DLKP cells 
grown in SFM (A, C) and SFM+HSM (B, D) show weak staining for Ep-CAM after 5 
and 10 days
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4.0 Discussion
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4.1 General Introduction

The lung cell line DLKP was isolated in our laboratory from a tumor histologically 

diagnosed as a poorly differentiated lung carcinoma (Law et a l, 1992) It lacks many 

of the ultrastructural features associated with normal differentiated cells of the lung 

such as dense core granules or lamellar bodies (McBnde et a l , 1998) DLKP also 

fails to express many of the normal cytochemical markers associated with 

differentiated epithelial lung cells such as cytokeratin proteins and desmosomal 

protein The lack of differentiation-associated markers in DLKP and the induction of 

expression of some of these markers upon treatment with the differentiation 

modulating agent BrdU, suggests DLKP may behave to some extent like a lung stem 

cell line

Studies of changes in gene expression in DLKP cells following treatment with BrdU, 

revealed that increases in protein expression for certain growth and differentiation 

related genes were occurring due to post-transcnptional regulation This post- 

transcnptional regulation was found to occur in conjunction with increased expression 

and phosphorylation of the translation initiation factor eIF4E 

These results suggest eIF4E may play a role in mediating changes in growth and 

differentiation related gene expression in BrdU treated DLKP cells 

The expression of translation initiation factors is also known to be altered in a wide 

range of cancers and these factors are thought to cause changes in gene expression 

which contribute to the development and progression of cancer Recent studies have 

shown increased expression of eIF4E and other translation initiation factors in lung 

cancers suggesting a role for translational regulation of gene expression in the 

regulation of growth in these cells (Bauer et a l , 2001, Bauer et a l , 2002, Pincheira et 

a l , 2001, Rosenwald et a l , 2001, Seki et a l , 2002)

It was therefore decided to examine the effects of overexpression of eIF4E in this cell 

line to determine if increased levels of this translation initiation factor could be 

responsible for mediating some of the changes seen in BrdU-treated DLKP cells and 

if increased eIF4E levels in these cells lead to changes in growth and gene expression 

which may be relevant to cancer progression
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The role of the Ser209 phosphorylation site of eIF4E in regulating the translational 

control of gene expression has been a matter of debate recently, with research from 

different sources leading to differing views on the importance of the Ser209 

phosphorylation site in regulating translation initiation (Scheper and Proud, 2002) 

A non-phosphorylatable eIF4E mutant lacking the Ser209 phosphorylation site was 

therefore also overexpressed in DLKP cells to help determine the role of 

phosphorylation of eIF4E in regulating changes in cellular growth and gene 

expression
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4 2 Overexpression of eIF4E in DLKP cells

Initial expenments on overexpression of eIF4E in DLKP cells were conducted with 

DLKP cells stably transfected with eIF4E cDNA in a BK virus based episomal shuttle 

vector Immunocytochemical analysis showed an increase in staining for eIF4E 

indicating an increase in eIF4E protein levels in BK-4E cells (Fig 3 1 1 1) An initial 

immunocytochemical analysis of uncloned cell populations of transfected cells was 

conducted for ornithine decarboxylase and keratin 8 expression (Fig 3 1 1 2 and 

3 1 1 3 )  Attempts were made at generating clonal populations of these cells by 

limiting dilution, however these attempts were unsuccessful and studies were 

discontinued with these cells

Further eIF4E overexpression expenments were performed using HA epitope tagged 

wild type (4E-HA) and S209 mutant eIF4E proteins (4E S209-HA) Western blot 

analysis of stable and transiently transfected cells with anti-HA antibody (Figs 

3 1 2 1 , 3 1 2  3 , 3 1 2 2 1 , 3 1 2 3  2, 3 1 2 3  3) showed expression of HA tagged eIF4E 

proteins at the expected molecular weight (32 5 kDa) with no expression in control 

pcDNA transfected cells (Fig 3 12 5 and 3 1 2 3 4)

Clonal populations of 4E-HA and 4E S209-HA overexpressing DLKP cells were 

successfully generated and clones overexpressing tranfected 4E-HA protein were 

selected (Figs 3 1 2 3 2-3 1 24) Two 4E-HA and two 4E S209-HA overexpressing 

clones were selected for analysis The 4E-HA overexpressing clone 5 was chosen as it 

expressed a high level of transfected protein Unfortunately no other 4E-HA or 4E 

S209-HA overexpressing clones analysed, matched the expression level of 4E-HA 

clone 5 The two 4E S209-HA clones chosen (6 and 12) expressed the highest levels 

of transfected protein of the 4E S209-HA clones analysed Clone 4E-HA 10 was 

chosen for further analysis as it expressed transfected 4E-HA at a similar level to the 

4E S209-HA in the 4E S209-HA clones 6 and 12

Expression of 4E-HA and 4E S209-HA protein in DLKP cells results in an overall 

increase in eEF4E levels in these cells, allowing us to assess the role of increased 

eIF4E levels on the translational regulation of gene expression in these cells, as well 

as the role of the S209 phosphorylation site on translational regulation of gene 

expression
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4 2 1 Morphology of eIF4E overexpressing cells

Analysis of the morphological features of 4E-HA and 4E S209-HA overexpressing 

cells was conducted in order to determine if any morphological changes were induced 

by overexpression of these proteins DLKP cells transfected with empty pcDNA 

vector possess an irregular morphology (Fig 3 12 5 1) The 4E S209-HA 

overexpressing clones possess a more smooth-edged rounded morphology with few 

cellular projections compared to pcDNA controls or 4E-HA overexpressing clones 

(Figs 3 1 2 5 1-3 1 2 5 3) The 4E-HA 10 cells possess an irregular morphology 

similar to pcDNA controls whereas 4E-HA 5 cells which express high levels of 4E- 

HA protein show large cells containing multiple cellular protrusions (Fig 3 1 2 5 3 )

It would appear therefore that overexpression of 4E S209-HA may alter the 

morphological features of DLKP cells restricting the formation of cellular protrusions 

This indicates that eIF4E phosphorylation may function in regulating the expression 

of genes involved in determining cellular morphology The presence of large cells 

containing numerous cellular protrusions in 4E-HA 5 cells (Fig 3 1 2 5 3) indicates 

that overexpression of high levels of wild type eIF4E may also increase expression of 

genes associated with these morphological features
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4 2 2 Growth rate of eIF4E overexpressing cells

Analysis of the growth rate of the 4E-HA and 4E S209-HA overexpressing stably 

transfected DLKP clones 4E-HA 5 and 4E S209-HA 6 showed the growth rates of 

these cells were increased in comparison to pcDNA 2 control transfected cells (Fig 

3 12 9 1) The growth curve shows a drop in the growth rate of 4E-HA 5 cells at day 

6 This coincided with these cells achieving confluency, which suggests that the 

decreased growth rate at this time may be associated contact inhibition of growth The 

4E S209-HA 6 cells continued to proliferate at day 6 These cells had not achieved 

confluency at this time-point due to the smaller size of these cells Overexpression of 

eIF4E has been shown to induce transformation and increase the growth rates of 

various cell types (DeBenedetti and Graff, 2004, Mamane e ta l , 2004) High levels of 

eIF4E expression are also found in many types of cancer indicating a role in tumor 

progression (DeBenedetti and Graff, 2004, Mamane e ta l , 2004) The overexpression 

of eIF4E in DLKP cells in this study caused increased cellular proliferation This 

would suggest that eIF4E may play a role in regulating proliferation in these cells and 

may also play a role in the regulation of growth in lung cancers in general The 

increased proliferation seen in 4E S209-HA cells indicates that eIF4E phosphorylation 

is not necessary for the increased proliferation mediated by increased eIF4E 

expression in these cells
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Keratin 8 expression was increased m BK-4E cells (Fig 3 1 13), 4E-HA transiently 

tranfected DLKP cells (Fig 3 12 8), 4E-HA stably transfected uncloned DLKP cells 

(Fig 3 1 2 2 2) and the stably transfected 4E-HA overexpressing clone 4E-HA 5 (Fig 

3 12 6 1) Keratin 8 expression was not detected in 4E-HA clone 10 (Fig 3 12 6 1) 

The level of transfected 4E-HA protein in 4E-HA 10 cells was lower than in 4E-HA 5 

cells indicating that higher 4E levels may be necessary to induce keratin 8 expression 

in these cells

Keratin 8 expression was not increased in transiently transfected 4E S209-HA cells 

(Fig 3 1 2 8) or stably transfected 4E S209-HA overexpressing clones (Fig 3 12 6 1) 

The level of transfected 4E S209-HA protein in these cells was at a similar level to 

4E-HA protein in 4E-HA clone 10 which also did not express keratin 8 It therefore 

could not be determined if the lack of keratin 8 protein expression in these cells was 

due to the S209 phosphorylation site mutation or the lower level of transfected protein 

compared to 4E-HA clone 5

RT-PCR analysis of keratin 8 mRNA levels in stably transfected 4E-HA 

overexpressing clones showed no difference in keratin 8 mRNA levels between 

pcDNA control cells and 4E S209-HA and 4E-HA overexpressing cells examined 

(Fig 3 1 2 6 2) indicating that differences in keratin 8 protein expression were as a 

result of post-transcnptional/translational regulation Previous studies in our 

laboratory have shown treatment of DLKP cells with the differentiation modulating 

agent BrdU resulted in post-transcriptional/translational upregulation of keratin 8 

expression in conjunction with increased eIF4E staining and phosphorylation 

Immunocytochemical analysis of keratin 8 expression in these cells showed intense 

filamentous staining in a proportion of BrdU treated DLKP cells after 7 days of 

treatment (McBnde et a l , 1999) In contrast, 4E-HA 5 cells show diffuse non- 

filamentous keratin 8 staining (Fig 3 12 6 1) It is possible that although 4E-HA 

overexpression may increase the levels of keratin 8 protein in these cells, further 

posttranslational processing may be necessary for keratin 8 to form the filamentous 

structures seen in BrdU-treated cells

4.2.3 Keratin expression in eIF4E overexpressing cells

4 2 31  Keratin 8 expression in eIF4E overexpress mg cells
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Keratin 8 is considered to be a marker of simple epithelial cells and expression of 

keratin 8 expression in DLKP cells may be interpreted as an indication of 

differentiation from a poorly differentiated cell phenotype to an epithelial phenotype 

The DLKP cell line is considered to have stem cel 1-1 ike properties due to its lack of 

differentiation markers and its ability to express such markers upon treatment with the 

differentiation modulator BrdU Stem cells in the adult lung are considered to act as 

cellular reservoirs that can be induced to proliferate, migrate and differentiate in order 

to replace damaged tissue after lung injury Upregulation of translation may play a
t

role in this process by increasing expression of differentiation related proteins such as 

keratin 8 whilst also promoting the proliferation and migration of cells in order to 

replace damaged tissues

4 2 3 2 Keratin 18 and 19 expression in eIF4E overexpressing cells

Immunocytochemical analysis of keratins 18 and 19 expression in stably transfected 

4E-HA and 4E S209-HA overexpressing DLKP clones revealed no staining for these 

proteins (Figs 3 1 2 6 3 , 3  1 2 6  4) This indicates that these proteins are not subject to 

translational regulation through eIF4E protein expression levels Previous studies 

have shown these proteins are post-transcnptionally upregulated in BrdU treated 

DLKP cells (McBnde et a l , 1999, Meleady and Clynes, 2001) Increased expression 

of eIF4E may not be responsible for the increased expression of K18 and K19 upon 

BrdU treatment as no increase in their expression was detected in 4E overexpressing 

cells here

201



4.2.4 Integnn expression in eIF4E overexpressing DLKP cells

4 2 4 1 pi integnn expression in eIF4E overexpress mg DLKP cells

Treatment of DLKP cells with BrdU has previously been shown to cause a post- 

transcnptional increase in pi integnn expression (Meleady and Clynes, 2000) It was 

therefore decided to analyse pi integnn expression in 4E overexpressmg cells to 

determine if increased 4E expression can cause this increase in pi integnn levels 

Immunocytochemical analysis shows upregulation of pi integnn expression in stably 

transfected uncloned 4E-HA overexpressmg DLKP cells and the stably transfected 

4E-HA overexpressmg clone 4E-HA 5 although not in 4E-HA clone 10 (Fig 

3 1 2 2 3 , 3  1 2 7  1)

The level of transfected 4E-HA protein in 4E-HA 10 cells was lower than in 4E-HA 5 

cells indicating that higher 4E levels may be necessary to induce pi integnn 

expression in these cells

pi integnn expression was not increased in transiently or stably transfected 4E 8209- 

HA overexpressmg clones (Figs 3 1 2 9, 3 1 2 7 1) The level of transfected 4E 8209- 

HA protein in the stably transfected 4E S209-HA overexpressmg clones was at a 

similar level to 4E-HA protein in 4E-HA clone 10 which also did not express pi 

integnn It therefore could not be determined if the lack of pi integnn expression in 

4E S209-HA overexpressmg clones was due to an effect on the S209 phosphorylation 

site mutation or the lower level of transfected protein compared to 4E-HA clone 5

Immunocytochemical analysis of pi integnn expression in transiently transfected 4E- 

HA overexpressmg DLKP cells shows no increase in pi integnn expression (Fig 

3 12 9) pi integnn expression may not be increased by 4E-HA overexpression in 

transient tranfections due to the fact that these cells are almost confluent when they 

are transfected which may inhibit the expression of pi integnn on the cell membrane

pi integnn plays an important role in both normal lung development and also in lung 

cancer progression pi integnn is expressed in lung epithelial cells dunng lung 

development and in normal adult epithelium (Coraux e ta l , 1998, Sheppard 2003)
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Upregulation of pi mtegnn subunits is also seen in epithelial repair following injury 

in lung (Sheppard 2003) Studies of a3 mtegnn deficient mice show a3pl mtegnn 

plays a crucial role in lung organogenesis a3pi mtegnn deficient mice die dunng the 

neonatal penod and display abnormal branching morphogenesis of the lungs 

(Kreidberg et a l , 1996) a3pi mtegnn was also shown to be important for pnmary 

cultures of rat alveolar epithelial cells to adhere and form a confluent monolayer of 

cells (Lubman et a l , 2000) The migration and tubular morphogenesis of human fetal 

tracheal epithelial cells in culture was prevented by incubation with anti-pi mtegnn 

antibodies indicating the importance of pi mtegnn m these processes (Coraux et a l , 

2000)

Vanous studies indicate pi mtegnn also plays a role in lung cancer Binding of small 

cell lung cancer cells to ECM components via pi mtegnn provides protection from 

chemotherapy induced apoptosis (Buttery et a l , 2004) pi mtegnn expression 

correlated with lymph node metastasis in non small cell lung cancer (NSCLC) (Han et 

a l , 2003) Increased expression of a3pl mtegnn was found to be responsible for 

brain metastasis in a NSCLC cell line (Yoshimasu, 2004) A recent study by Moro et 

al (2004) has also shown translational regulation of p iA mtegnn expression in 

Prostate Carcinoma cells

Thus, the literature suggests that pi mtegnn expression plays an important role in 

both normal lung epithelium and lung cancer cells and our results show that 

translational control of pi integnn expression may be important in regulating the 

properties of both cell types
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4 2 4 2 a  Integnn subunit expression in eIF4E overexpressing DLKP cells

Immunocytochemical analysis of major pulmonary a  integnn subunit-pi integnn 

binding partners was conducted to determine if eIF4E overexpression induced 

increased expression of these proteins Immunocytochemical analysis of a l ,  a2 and 

a5 integnn showed no expression of these proteins in pcDNA controls, 4E-HA or 4E 

S209-HA overexpressing cells Previous studies had shown increased expression of 

a2 integnn in BrdU-treated DLKP cells (Meleady and Clynes, 2000) but this was due 

to transcnptional upregulation (Meleady and Clynes, 2000) Overexpression of eIF4E 

does not therefore appear to cause increased expression of this protein and 

transcnptional upregulation in BrdU treated cells is unlikely to be related to increased 

eIF4E expression

Immunocytochemical analysis of a3 integnn expression showed increased expression 

of a3 integnn in 4E-HA clones 5 and 10 (Fig 3 1 2 7 4) a3 integnn expression was 

undetected in 4E S209-HA overexpressing DLKP clones and pcDNA controls (Fig 

3 1 2 7 4)

As mentioned with pi integnn, a3pi integnn plays a crucial role in lung 

organogenesis (Kreidberg et a l , 1996) Other studies also confirm the importance of 

a3pi integnn in regulating cellular adhesion and motility in development and wound 

repair in different cell types (Nguyen et a l , 2001, Choma et a l , 2004, Schmid, 2004) 

The association of a3pi integnn with cellular motility correlates with its increased 

expression in 4E-HA 5 cells The 4E-HA 5 cells were found to be highly invasive 

which involves increased cellular motility
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4 2 5 Ornithine Decarboxylase (ODC) expression in 4E overexpressing cells

Poly amines are ubiquitous cellular components that are involved in normal and 

neoplastic growth Polyamine biosynthesis is tightly regulated in mammalian cells by 

the activities of onnithine-decarboxylase (ODC) and S-adenosyl methionone 

decarboxylase ODC is a rate limiting enzyme for polyamine biosynthesis and is 

recognised as a proto-oncogene Overexpression of ODC causes transformation of 

NIH3T3 cells ODC mRNA contains a lengthy GC nch 5’UTR, rendering it poorly 

translated Overexpression of eIF4E in NIH 3T3 cells has been shown to increase 

ODC protein levels and depletion of eIF4E using anti-sense eIF4E suppressed ODC 

mRNA translation in eIF4E overexpressing cells (Mamame et a l , 2004)

Overexpression of both 4E-HA and 4E S209-HA in DLKP cells caused increased 

expression of ODC as determined by immunocytochemical analysis (Fig 3 12 8)

The relative levels of ODC in these cells is not known as attempts at Western blot 

analysis proved unsuccessful Western blot analysis showed large numbers of bands 

below the expected molecular weight This may have been due to protein degradation 

as ODC is known to have a short half-life and is subject to degradation by the 26S 

proteasome

As ODC is upregulated in both 4E-HA and 4E S209-HA overexpressing cells the 

phosphorylation of eIF4E on Sei209 may not be necessary for translational regulation 

of ODC protein expression by eIF4E

ODC expression is involved in regulating normal and neoplastic cellular growth 

(Graffe et a l , 1997, Shantz and Pegg, 1999, Wallace and Fraser 2004) Translational 

regulation of ODC expression may play a significant role in lung cancer progression, 

and it would be of interest to analyse ODC expression in lung tumor samples to 

determine if ODC expression is increased and if so is it due to translational regulation
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4 2 6 Analysis of in-vitro invasion of eIF4E overexpressing cells

The expression of the translation factor eIF4E has been shown to be associated with 

tumongenesis, tumor mvasiveness and metastasis (De Benedetti and Graff, 2004)

For this reason, it was decided to analyse the effect of eIF4E overexpression on the 

ability of DLKP cells to invade through a reconstituted basement membrane (in vitro 

invasion assay)

In all, six cell lines were tested, two pcDNA control transfected clones (pcDNA 2, 8), 

two 4E S209-HA clones (4E S209-HA 6, 12) and two 4E-HA clones (4E-HA 5, 10) 

The 4E-HA clone 5 proved to be highly invasive in comp an son to all other cell lines 

tested (Section 3 1 2 10) The 4E-HA 5 cells also express higher levels of transfected 

4E-HA than the other cell lines and therefore this result correlates with previous 

studies in which expression of eIF4E is associated tumor invasiveness and metastasis 

(DeBenedetti and Graff 2004, Rosenwald, 2004) The 4E-HA clone 10 actually 

showed slightly lower mvasiveness than both the pcDNA control cell lines and 4E 

S209-HA cell lines Differences in mvasiveness were seen between pcDNA control 

clones tested and also between 4E S209-HA clones which express similar amounts of 

transfected 4E S209-HA protein The low level of invasiveness seen in 4E-HA clone 

10 may be explained by the fact that this clone expresses a lower level of 4E-HA 

transfected protein than 4E-HA clone 5 which may not be sufficient to induce 

increased mvasiveness in what may have been a clone which displayed low invasive 

potential to begin with 4E S209-HA overexpressing clones and pcDNA control 

clones expressed similar levels of mvasiveness Some variation was seen between the 

pcDNA clones and 4E S209-HA clones though this may be attributable to the inherent 

clonal variation in DLKP cells

A study by Seki et al (2002) has previously shown that increased eIF4E expression 

levels correlate with more invasive subtypes of lung adenocarcinomas (Seki et a l , 

2002)
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4.3 Proteomic analysis eIF4E overexpressing DLKP cells

In order to identify changes in protein expression as a result of overexpression of 4E- 

HA and 4E S209-HA in DLKP cells, it was decided analyse protein expression levels 

in these cells using two-dimensional difference gel electrophoresis (2-D DIGE)

Two dimensional electrophoresis separates proteins according to two independent 

properties in two discrete steps the first dimension step, isoelectric focusing (IEF), 

separates proteins according to their isoelectnc point (pi), the second dimension step, 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE), separates proteins according 

to their molecular weights (Mr, relative molecular weight) Thousands of different 

proteins can thus be separated and information such as the protein pi, the apparent 

molecular weight, and the amount of each protein is obtained

In this study, we have used the recently developed ETTAN DIGE (Amersham) 2-D 

electrophoresis system This method involves labelling different protein samples with 

three different charge- and size-matched fluorescent cyanine dyes which possess 

distinct excitation and emission spectra (Cy™2, Cy3 and Cy5) Different protein 

samples labelled with different fluorescent dyes can be run on the same gel, the 

properties of the fluorescent dyes ensure that resulting gel images will perfectly 

overlay The ability to compare different samples on the same gel avoids 

complications of gel-to-gel variation and enables more accurate and rapid analysis of 

differences between protein samples and reduces the number of gels that need to be 

run

Proteomic analysis was earned out on two 4E-HA transfected DLKP clones (4E-HA 

5, 4E-HA 10), two 4E S209-HA clones ( 4E S209-HA 6, 4E S209-HA 12) and two 

pcDNA control plasmid transfected clones (pcDNA 2, pcDNA 8)

The mam analysis of our results was performed by pooling the results from the two 

clones of each group together into three groups i e 4E-HA, 4E S209-HA and pcDNA 

The expression values of protein spots in each group were then compared against each 

other e g pcDNA vs 4E-HA, pcDNA vs 4E S209-HA, 4E-HA vs 4E S209-HA
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We have also analysed differences in protein expression between the 4E-HA 

overexpressing clones 5 and 10 The 4E-HA clone 5 expresses high levels of 

transfected 4E-HA protein and is highly invasive whereas 4E-HA clone 10 expresses 

a lower level of transfected 4E-HA protein and is only mildly invasive Analysis of 

differences in protein expression between these two clones may further identify 

translationally regulated proteins and also proteins involved in regulating 

invasiveness
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4.3.1 Analysis of differentially regulated proteins in a comparison

between 4E-HA and 4E S209-HA overexpressing DLKP cells.

Analysis of differentially expressed proteins between 4E-HA overexpressing cells 

compared to 4E S209-HA overexpressing cells revealed changes in a number of 

different classes of protein (Table 4 3 1)

4E-HA vs 4E S209-HA 
4E-HA 4E S209-HA

Increased expression Decreased Expression Increased Expression Decreased Expression

Protein Chaperones Metabolism Protein Degradation Cytoskeletal

Heat Shock Protem Aldehyde PA28 alpha, PA28 Cofilin, Moesin,

APG, Dehydrogenase beta, UCHL1, AHA1? EPB41L2, EBP-50, 

Tropomyosin 3, 

Tubulin Secific 

Chaperone A, Mutant 

beta actin, Actin-likc 

6 A isoform 1

mRNA Processing Metabolism Metabolism

G3BP DDAH1, Glyoxalase 1 Purine Nucleoside 

Phosphorylase 

mRNA Processing

HNRPF,HNRPK

Table 4 3 1 Proteins differentially expressed between 4E-HA and 4E S209-HA 

overexpressing cells
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4 3 11 Cytoskeletal Proteins

4 3 1 1 1  Cofilin

Expression of the actin regulatory protein cofilin was 5 38-fold lower in 4E S209-HA 

overexpressing cells compared to 4E-HA overexpressing cells

Cofilin is a small (19 kDa) ubiquitous protein that binds to both G- and F- actin, it has 

a higher affinity for ADP-bound subunits and enhances the rate of monomer 

dissociation from the pointed end of actin filaments In addition, cofilin can also sever 

actin filaments and thus directly generate free actin barbed ends The 

depolymen sation and sevenng activities of cofilin are thought to be due to its ability 

to bind cooperatively to F-actin and cause a twist in the actin filament, promoting the 

destabilisation of actin-actin interactions and thus fragmentation of the filament 

(DesMarais, 2005)

Cofilin has emerged as one of the protein families playing an essential role in actin 

dynamics at the plasma membrane dunng cell protrusion Although the activation of 

cofilin is required for cell motility, it was not clear until recently how the relative 

contnbutions of cofilin-mediated barbed end formation and subsequent 

polymensation and cofilin-mediated actin depolymen sation are balanced dunng 

protrusion and cell motility Some considered that the cofilin-mediated 

depolymensation of actin provides the actin monomers necessary for ongoing 

filament assembly whereas others maintained that the sevenng of actin filaments by 

cofilin generates the free barbed ends for actin polymensation essential for motility 

(Des Marais, 2005)

It is now thought that synergy between cofilin and the Arp2/3 complex contnbutes to 

barbed end generation and cellular protrusion The Arp2/3 complex consists of seven 

polypeptides and is found at actin filament Y-b ranches in the sub membrane array 

Owing to its in vitro ability to generate new filament branches in a pre-existing actin 

filament network, it is believed to be a major contnbutor to barbed-end generation and 

cellular protrusion (DesMarais, 2005)

The Arp2/3 complex and cofilin are present together in the dendntic arrays of actm 

filaments at the leading edge of motile cells (Des Marais e ta l , 2005) Both the
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Arp2/3 complex and cofilm contnbute to bart>ed-end generation at the leading edge, 

since function blocking antibodies directed against either protein significantly 

decrease barbed-end generation and cell protrusion (Des Marais et a l , 2005) The 

severing activity of cofilin can increase the nucleaton activity of the Arp 2/3 

complex This occurs because cofilm creates free barbed ends that nucleate the 

growth of new actin filaments which are preferred sites for the ATP binding of the 

Arp2/3 complex, compared with the older, ADP containing filaments The availability 

of new actin filaments increases the nucleation activity of the Arp 2/3 complex and 

biases its branching activity towards the barbed end of the mother filament In this 

manner, cofilin plays a major role in regulating the formation of actin based cellular 

protrusions and also plays a related role in controlling the direction of cellular 

motility By utilizing a chemically engineered, light sensitive phosphocofilin mimic, 

Ghosh et al (2004) demonstrated that activated cofilin polymenses actin, generates 

cellular protrusions and can determine the direction of cellular migration 

Overexpression of cofilin was also found to enhance the motility of glioblastoma 

tumour cells in a concentration dependent fashion (Yap et a l , 2005)

4 3 1 1 2  Moesin

Expression of Moesin was 1 71-fold lower in 4E S209-HA overexpressing cells 

compared to 4E-HA overexpressing cells

Moesin is a member of a family of proteins collectively known as ERM (eznn- 

radixin-moesin) proteins which are involved in linking the cytoskeleton to the plasma 

membrane

The ERM proteins are structured into three functional domains an N-terminal FERM 

(four point one, ERM) domain, an extended coiled-coil region and a short C-terminal 

domain ERM proteins are negatively regulated by an intramolecular interaction 

between the amino- and carboxy- terminal domains that masks at least some sites of 

protein interaction Activation therefore requires separation of the two domains 

(Bretscher et a l , 2002) ERM proteins contain an F-actin binding site within their 

carboxy terminal 30 residues which is masked in the isolated dormant monomer The
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ammo terminal FERM domain interacts with membrane proteins (Bretscher e ta l , 

2002)

ERM proteins provide a regulated linkage from filamentous (F)-actin in the cortex to 

membrane proteins on the surface of cells Regulated attachment of membrane 

proteins to F-actin is essential for many fundamental processes, including the 

determination of cell shape and surface structures, cell adhesion, motility, cytokinesis, 

phagocytosis and integration of membrane transport with signaling pathways 

(Bretscher et a l , 2002)

ERM proteins associate with specific membrane associated proteins, either directly or 

through adapter molecules such as EBP50 (ERM-phosphoprotein of 50 kDa)

4 3 1.1 3 EPB41L2 (4 1G)

Expression of EPB41L2 was 1 98-fold lower in 4E S209-HA overexpressing cells 

compared to 4E-HA overexpressing cells

EPB41L2 (erythrocyte membrane protein band 4 1-like 2) is a member of the band 

4 1 superfamily of proteins which also contains the ERM family of membrane- 

cytoskeleton linker proteins The protein 4 1 superfamily encompasses a group of 

structural proteins that play important roles in membrane biophysical processes 

through their interactions with actin, members of the spectrin family and the 

cytoplasmic domain of integral membrane proteins The prototypical member of this 

family is the major 80-kDa protein 4 1R isoform found in red blood cells, where it is a 

key component of the erythroid membrane skeleton that underlies and mechanically 

supports the plasma membrane The 4 1R gene (EPB41) is noteworthy for elaborate 

alternative pre-mRNA splicing pathways by which it encodes tissue specific protein 

isoforms Mutations in this gene result in membrane mechanical defects and 

morphological abnormalities characteristic of the red cell disorder hereditary 

elliptocytosis EBP41L2 is a widely expressed homologue of EBP41 This gene 

encodes a protein that is highly homologous to the prototypical 4 1R in three key 

structural domains the membrane binding domain, the spectnn-actin binding domain, 

and the conserved C-terminal domain
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Members of the Protein 4 1 superfamily are characterized by the presence of a 

conserved FERM (Four 1 protein, Eznn, Radixin, Moesin) domain at the N-terminus 

of the molecule and in many cases, a spectnn/actin binding domain (SABD) The 

main function of these proteins is linking cell surface glycoproteins to the actin 

cytoskeleton thereby providing structural stabilization of the cell membrane (Sun et 

a/,2002)

4 3 1 1 4  EBP-50 (Solute Carrier Family 9, isoform 3 regulator 1)

Expression of the protein EBP-50 was 2 24-fold lower in 4E S209-HA overexpressing 

cells compared to 4E-HA overexpressing cells

ERM proteins provide a regulated linkage from filamentous (F)-actin in the cortex to 

membrane proteins on the surface of cells Regulated attachment of membrane 

proteins to F-actin is essential for many fundamental processes, including the 

determination of cell shape and surface structures, cell adhesion, motility, cytokinesis, 

phagocytosis and integration of membrane transport with signaling pathways 

(Bretscher et a l , 2002)

ERM proteins associate with specific membrane associated proteins, either directly or 

through adapter molecules such as EBP-50 (ERM-phosphoprotein of 50 kDa) EBP- 

50 is 358-residue adapter molecule that has two PDZ domains and a C-terminal ERM 

binding (EB) region EBP-50 binds to numerous membrane proteins through its PDZ 

domains and binds to the FERM domain of ERM proteins through its EB region 

Through these interactions EBP-50 functions as a scaffolding protein, linking the 

actin cytoskeleton to the plasma membrane (Bretscher et a l , 2002) The interaction of 

plasma membrane proteins with the underlying cytoskeleton facilitated by ERM 

proteins and EBP-50 plays an important role in regulating cell shape, adhesion, 

motility and other plasma membrane processes including endocytosis and exocytosis 

(Bretscher et a l , 2002)
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4 3 1 1 5  Tropomyosin 3

The binding of tropomyosin to actin filaments prevents them from being 

depoly men sed or severed by cofilin Tropomyosin also prevents the Arp2/3 complex 

from binding to filaments to initiate branches Thus, tropomyosin may be able to 

restrict spatially the activities of cofilm and the Arp2/3 complex m vivo to certain 

populations of actin filaments in certain compartments of the cell 

In carcinoma cells, the dynamic nucleation zone at the leading edge of the lamellipod 

is enriched in cofilin and the Arp2/3 complex but tropomyosin is depleted from this 

region of the cell and is present mainly on actin filaments in the cell body and on 

stress fibers (Des Marais et a l , 2002) This allows the establishment of functionally 

distinct actin compartments in the cells, with rapid generation of actin barbed ends in 

the cofilin and Arp2/3 complex-rich leading edge compartment and very little barbed 

end formation in the tropomyosin rich cell body

4 3 1 1 6  Tubulin Specific Chaperone A (TBCA)

Expression of TBCA was 1 86-fold lower in 4E S209-HA cells compared to 4E-HA 

overexpressing cells

Microtubules are polarized polymers of cx/p tubulin participating in essential cell 

functions A multistep process involving distinct molecular chaperones and cofactors 

produces new tubulin heterodimers competent to polymense Tubulin specific 

chaperone A (TBCA) interacts with P tubulin in a quasi-native state behaving as a 

molecular chaperone (Lewis et a l , 1997)

A recent study by Nolasco et al (2005) used siRNA to silence TBCA expression in 

HeLa and MCF-7 mammalian cell lines It was found that TBCA was essential for 

cell viability and its knockdown produced a decrease in the amount of soluble tubulin,

Expression of tropomyosin 3 was 1 5-fold lower in 4E S209-HA overexpressing cells

compared to 4E-HA overexpressing cells
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modifications in microtubules and G1 cell cycle arrest In MCF-7 cells, cell death was 

preceded by a change in cell shape resembling differentiation (Nolasco et a l , 2005) 

Knockdown of TBCA expression also caused changes in the actin cytoskeleton in 

HeLa cells (Nolasco e ta l , 2005) These results suggest that TBCA expression and 

activity can have a profound effect on the microtubule cytoskeleton and normal cell 

function

4 3.1 1 7 P-Actin

Expression of a protein identified as P-Actin was 2 08-fold lower in 4E S209-HA 

overexpressing cells compared to 4E-HA overexpressing cells

In vertebrates 3 mam groups of actin isoforms, alpha, beta and gamma have been 

identified The alpha actins are found in muscle tissues and are a major constituent of 

the contractile apparatus The beta and gamma actins coexist in most cell types as 

components of the cytoskeleton and as mediators of internal cell motility

4 3 1.1 8 Mutant Beta Actin

Expression of a protein identified as mutant beta actin was 1 61-fold lower in 4E 

S209-HA overexpressing cells compared to 4E-HA overexpressing cells

The differences between mutant beta actin identified here and normal beta actin are 

two mutations in the coding region that substitute two amino acid residues 

(Val139-»Met, Ala295-^Asp) Mutant beta actin when expressed in cells in the absence 

of normal beta actin confers resistance to cytochalasin which is a toxin which binds 

actin filaments preventing polymerization (Ohmon e ta l , 1992) Whether this 

mutation affects the normal function of beta actin is unknown
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4 3 1 1 9  Actin-like 6A iso form 1 (BAF53)

Expression of Actin-like 6A isoform 1 was 1 76-fold lower in 4E S209-HA cells 

compared 4E-HA overexpressing cells

The gene Actin-like 6A isoform 1 (BAF53) encodes a family member of actin-related 

proteins (ARPs), which share significant ammo acid sequence identity to conventional 

actins BAF53 is a mammalian nuclear Arp that is an integral component of many 

chromatin modifying complexes Chromatin modifying complexes activate or repress 

transcription of many genes by altering chromatin structure in an autonomous or 

concerted manner ATP-dnven chromatin remodeling complexes such as the 

mammalian SWI/SNF and PBAF complexes have BAF53 and P-actin as their 

components Though many BAF53-containing chromatin modifying complexes have 

been identified little is known of the role of BAF5 3/p-actin in the complexes (Lee et 

a l,  2003)

4 3 1 1 1 0  Overview of cytoskeletal proteins differentially regulated in 4E S209- 

HA cells compared to 4E-HA cells

The largest category of differentially regulated proteins in this comparison were 

cytoskeletal and cytoskeleton regulatory proteins The majority of these proteins were 

actin cytoskeleton regulatory proteins The expression levels of each of these proteins 

was lower in 4E S209-HA cells compared to 4E-HA cells The largest difference in 

protein expression seen was in the actin regulatory protein cofilin whose expression 

level was 5 38-fold lower in 4E S209-HA cells compared to 4E-HA cells As 

discussed in section 4 3 111  cofilm possesses actin severing and depolymensation 

activity and acting in synergy with the Arp2/3 complex plays an important role in 

regulating actin dynamics at the plasma membrane in cellular protrusions and motility 

(Des Marais, 2005) The actin binding proteins Moesin and EPB41L2 and the scaffold 

protein EBP-50 all function in linking the actin cytoskeleton to the plasma membrane
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(Sections 4 3 1 1 2-43 1 14) The expression of these three proteins was also lower in 

4E S209-HA cells in comparison to 4E-HA cells

The actin cytoskeleton plays an important role in regulating cellular morphology and 

motility (Section 1 4) The decreased expression of cofihn in 4E S209-HA cells 

compared to 4E-HA overexpressing cells correlates with differences in cellular 

morphology seen in these cells (Section 3 12 5) The 4E S209-HA cells exhibit a 

smooth edged rounded morphology with very few cellular protrusions in contrast to 

4E-HA overexpressing cells which contain numerous cellular protrusion particularly 

4E-HA clone 5 cells which express high levels of transfected 4E-HA Cofihn is 

considered to play an essential role in actin dynamics at the cell membrane during 

cellular protrusion (DesMarais, 2005), the more than 5-fold decrease in its expression 

levels in 4E S209-HA cells in comparison to 4E-HA cells would suggest its decreased 

expression plays an important role in mediating this moiphological phenotype The 

binding of F-actin structures to the plasma membrane also plays an important role in 

regulating cellular morphology (Bretscher et a l , 2002) The proteins Moesin, 

EPB41L2 and EBP-50 all function in this role and their expression levels were all 

decreased in 4E S209-HA cells compared to 4E-HA cells This suggests that the 

linkage of the actin cytoskeleton to plasma membranes may be impaired in these cells 

and combined with decreased cofilm expression may prevent the formation of 

protrusive structures in these cells Confocal microscopy analysis of actin cytoskeletal 

structures using fluorescently labelled phalloidin showed no actn staining at the 

plasma membrane in 4E S209-HA cells (Section 3 12 13) This was in contrast to 

staining seen 4E-HA overexpressing cells particularly 4E-HA 5 cells (Section 

3 1 2 13)

The expression of a normal and mutant isoform of 0-actin protein was also lower in 

4E S209-HA cells compared to 4E-HA cells (Table 3 1 2 11 4) A lower level of actin 

protein in 4E S209-HA cells may contribute to the morphological and invasive 

phenotype of these cells also

Expression of the actin binding protein Tropomyosin 3 was also reduced in 4E S209- 

HA overexpressing cells in comparison to 4E-HA overexpressing cells Binding of 

tropomyosin to actin filaments prevents them from being depolymensed and severed 

by cofihn Tropomyosin can also prevent the Arp2/3complex from binding to
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filaments to initiate branches (Des Marais, 2002) Tropomyosin therefore has a 

stabilising effect on actin filaments within cells Analysis of cellular localisation of 

tropomyosin by DesMarais (2002) showed that tropomyosin localises to stress fibers 

and actin filaments in the cell body but is absent from the leading edge of cells where 

cofilin and Arp2/3 complexes function (Des Marais, 2002) Confocal microscopic 

analysis of actin cytoskeletal structures using fluorescently labelled phalloidin showed 

that 4E S209-HA overexpressing cells did not display any stress fibers or other actin 

filaments within the cell body (Fig 3 12 13 1) The 4E-HA overexpressing cells, 

particularly 4E-HA clone 5, clearly showed the presence of these structures (Fig 

3 12 13 2-3) The reduced expression of Tropomyosin 3 in the 4E S209-HA cells 

may decrease the stability of actin fibers in these cells

Expression of a member of the Arp family, Actin-like 6 A isoform 1 ( A K A  BAF53) 

was also lower (1 76-fold) in 4E S209-HA cells compared to 4E-HA cells and may 

cause differences in transcriptional regulation as it is considered to be an integral 

component of chromatin modifying complexes which can alter transcriptional 

regulation by modifying access of transcriptional regulatory factors to DNA (Lee et 

a/,2003)

Regulation of the Microtubule cytoskeleton may also be affected in 4E S209-HA cells 

as expression of the P-tubulin chaperone, tubulin specific chaperone A (TBCA) was 

1 86-fold lower in these cells compared to 4E-HA cells Studies have shown that 

lowering TBCA expression levels can have a profound effect on the microtubule 

cytoskeleton and normal cell function (Nolasco et a l , 2005) The decreased 

expression of TBCA in 4E S209-HA cells may therefore cause changes in the 

microtubule cytoskeleton which affect the morphological phenotype and growth of 

these cells

The down regulation of actin cytoskeleton regulatory proteins in 4E S209-HA cells is 

also likely to impact on the invasive capacity of these cells The actin cytoskeleton is 

considered as the cellular engine which dnves cell motility (Lambrechts et a l , 2004) 

The aberrant cell migration that characterises tumor invasion and metastasis is 

associated with deregulation of the actin system (Lambrechts et a l , 2004) The 4E-
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HA 5 cells were highly invasive in comparison to both 4E S209-HA overexpressing 

clones whereas 4E-HA 10 cells were slightly less invasive than the 4E S209-HA 

overexpressing clones (Section 3 12 10) The higher level of cofilin and other actin 

regulatory proteins in 4E-HA overexpressing cells is likely to contribute to the high 

invasiveness of 4E-HA 5 cells Cofilm expression in all 4E-HA 5 cell samples was on 

average over two fold higher than in 4E-HA 10 cells in our proteomic analysis The t- 

test score for cofilin expression comparison between these cells though was greater 

than 0 05 and therefore did not pass our statistical analysis specifications although this 

result would suggest that cofilin expression may be linked to eIF4E levels and 

invasiveness in these cells

The expression of the cytoskeletal proteins cofilin, moesm, tropomyosin 3 and 

Tubulin Specific Chaperone A were all decreased in 4E S209-HA cells in comparison 

to pcDNA control cells The lower expression level of these proteins in 4E S209-HA 

cells compared to 4E-HA cells is therefore due to a decrease in their expression in 4E 

S209-HA cells rather than an increase in 4E-HA cells

4 3 1 1 10 1 Actin related cytoskeletal protein expression regulation

The differential expression of actin cytoskeletal proteins seen in this study begs the 

question, why might this class of protein be particularly affected by disruption of 

phosphorylation at the eIF4E S209 phosphorylation site? A clue as to why this may 

be, could be the fact that a large proportion of these proteins function in the periphery 

of the cell For example Moesin, EBP-50 and EPB41L2 all function in linking actin 

cytoskeletal structures to the plasma membrane and are therefore located at the very 

edge of the cytoplasm Cofilin functions at the leading edge of motile cells as a key 

regulator of actin dynamics (DesMarais et a l , 2005) These proteins are therefore 

utilized in particular areas of the cell One mechanism for localizing a protein within a 

particular area of a cell is through localized translation

There are numerous examples of localized translation of actin cytoskeleton proteins, 

the best characterized of which being P-actin mRNA (Shav-Tal and Singer, 2000) In 

migrating fibroblasts, 3-actin mRNA is localized to the leading edge of the cells
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(Lawrence and Singer, 1986). This correlates with the elevated levels of P-actin 

protein required in lammelipodia which depend on the rapid polymerization of actin 

for cell movement (Condeelis and Singer, 2005). In neuronal cells, P-actin mRNA is 

localized to neuronal growth cones and dendrites (Shav-Tal and Singer, 2005).

As discussed in section 4.4.1.1.1, the Arp2/3 complex is one of the major modulators 

of actin polymerisation in cell protrusions. The Arp2/3 complex consists of seven 

polypeptides and is found at actin filament Y-branches in the submembrane array 

(DesMarais et al., 2005). A recent study by Mingle et al. (2005) has shown that the 

seven mRNAs that encode Arp2/3 subunits are all localised to areas of cellular 

protrusion in fibroblast cells. As mentioned previously, recent studies have also 

shown that Arp2/3 and Cofilin act synergistically in local actin polymerisation 

responses upon cell stimulation and play a central role in regulating the direction of 

cell motility (DesMarais e t a l 2005).

Transcripts for the actin regulatory GTPase RhoA are localised to developing axons 

and growth cones in neuronal cells (Wu et a l 2005).

There is therefore a growing body of evidence which suggests that localised 

translation of actins and actin regulatory proteins plays an important role in regulating 

cellular morphology and motility.

A study by Topisirovic etal. (2004) was conducted, in which, both wild type eIF4E 

and a non-phosphorylatable eIF4E-S209 mutant similar to the one used in this study 

were overexpressed in NIH3T3 cells. The ability of wild type eIF4E and eIF4E S209 

mutant to cause transformation of these NIH3T3 cells was then examined by 

anchorage dependent foci formation assay. The transformation of NIH3T3 cells was 

greater in wild type eIF4E overexpressing cells compared to eIF4E S209 mutant cells. 

The eIF4E S209 phosphorylation site mutation therefore abrogated the ability eIF4E 

to transform these cells (Topisirovic et al., 2004). The ability of wild type eIF4E and 

eIF4E S209 mutant overexpression to increase nucleo-cytoplasmic transport of cyclin 

D1 mRNA was also examined and it was found that mutation of the S209 

phosphorylation site also abrogated the ability of eIF4E to increase nucleo- 

cytoplasmic mRNA transport (Topisirovic eta l., 2004). The phosphorylation of the
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S209 site therefore appears to play a role in cellular transformation through regulation 

of mRNA transportation

The transportation of mRNAs is regulated by the binding of proteins to nucleotide 

sequences in their 3’UTRs p-actin mRNA localization is regulated by ZBPs (zipcode 

binding proteins) which bind to 'zipcode’ sequences immediately downstream of the 

ORF (Shav-Tal and Singer, 2005) ZBP1 binds to P-actin mRNA in the nucleus and 

travels in cytoplasmic granules to the leading edge (Shav-Tal and Singer, 2005) 

Translation is thought to be inhibited, perhaps by ZBP1, until the mRNA reaches the 

lammelipodia

There are numerous examples of proteins which bind mRNAs and are involved in 

regulating their transport and localized translation including examples where 

interaction with eIF4E is required (Huang and Richter, 2004, Shav-Tai and Singer, 

2005) A recent study by Culikovic eta l (2005) has identified an -100 nucleotide 

sequence in the 3’UTR of cyclin D1 mRNA referred to as an eIF4E sensitivity 

element (4E-SE) which is responsible for eIF4E mediated mRNA transport 

(Culikovic et a l , 2005) It may be the case that phosphorylation of eIF4E plays a role 

in stabilizing interactions between eIF4E and other proteins which bind to elements 

such as the 4E-SE which regulate mRNA transport

We therefore searched the literature to see if the differentially regulated proteins 

identified in this study have been reported to be regulated by mRNA 

transport/localization A recent study by Willis et al (2005) utilizing proteomics 

technology and RT-PCR to analyse the axonal localization of proteins and mRNA in 

injury-conditioned adult dorsal root ganglion (DRG) neurons identified numerous 

cytoskeletal proteins whose mRNA was also present in axonal preparations (Willis et 

a l , 2005) Among the proteins identified were beta-actin, tropomyosin 3 and cofilin 

(Willis et a l , 2005), these proteins were also identified in our study as proteins 

differentially regulated between 4E-HA and 4E S209-HA overexpressing DLKP cells 

In a subsequent follow on study by Aranda-Abreu et al (2005) the 3’UTRs of the 

axonally located mRNAs where analysed for similarity to a well characterized U-nch 

3’UTR sequence responsible for localization of the axonally located Tau protein 

mRNA A U-nch sequence highly similar to the Tau mRNA localisation was detected
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in the 3 ’UTR of cofilin mRNA (Aranda-Abreu et a l , 2005) The cofilin mRNA 

3’UTR has therefore already been shown to contain sequences which are likely to 

regulate its cellular localization

In order to further investigate the possibility that mRNA 3’UTR elements are 

responsible for regulating the expression of differentially expressed proteins between 

4E-HA and 4E S209-HA cells, we analysed the mRNA sequences of differentially 

expressed cytoskeletal proteins using the online mRNA analysis program UTRscan 

UTRscan looks for UTR functional elements by searching through user submitted 

sequence data for patterns defined in the UTRsite collection (Mignone et a l , 2005) 

The mRNA sequences of the cytoskeletal proteins Cofilin, Moesin, EBP50, 

EPB41L2, Tropomyosin 3 and Actin Like 6 isoform A were submitted for analysis 

The presence of one or more 15-Lipoxygenase Differentiation Control Element (15- 

LOX DICE) translation regulatory elements was detected in the majority of the 

mRNA transcripts submitted (Cofilin x l, EBP50 x2, Moesin x3, Tropomyosin 3 x3) 

The 15-LOX-DICE element was therefore a common feature among transcnpts 

analysed The cytidine-nch 15-LOXDICE, is a multifunctional cis-element found in 

the 3'-UTR of numerous eukaryotic mRNAs The 15 LOX-DICE element binds KH 

domain proteins of the type hnRNP E and K, thus mediating mRNA stabilization and
t

translational control (Reimann et a l , 2002) The exact mechanism of translation 

silencing by 15-LOX-DICE is unknown but it is known that it is at the level of 

translation initiation indicating interaction of 15-LOX-DICE binding proteins such as 

hnRNP K and hnRNP E with translation initiation proteins at the mRNA 5’ end (Fig 

4 3 1) (Ostareck, 2001)
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Figure 4.3.1 Model of possible interaction between eIF4E and proteins binding to 

3’UTR elements such as 4ESE and 15-LOX-DICE regulating mRNA transport and 

localization. Phosphorylation of eIF4E may play a role in regulating eIF4E-trans 

factor interaction or eIF4E/trans factor complex-mRNA interaction.

Experimental evidence that the 15-LOX-DICE element is involved in regulation of 

cofilin is seen in a study by Klimek-Tomczak etal. (2004) which detected cofilin 

RNA among RNA co-immunoprecipitated with hnRNP K. HnRNP K may therefore 

be involved in translational repression of the 15-LOX DICE element containing 

mRNAs identified in our study. If hnRNP K is involved in repressing translation of 

these mRNAs for the purpose of mRNA transportation /translational localization, an 

activation mechanism would be necessary to allow translation to proceed once an 

appropriate destination is reached.

hnRNP K binds selectively to the SH3 domains of tyrosine kinases, Src, Fyn, Lyn and 

Lck (Bomsztyk, 2004). A study by Ostareck Lederer et a l (2002) showed that 

interaction between hnRNP K and c-Src leads to c-Src activation and tyrosine 

phosphorylation of hnRNP K. c-Src-mediated phosphorylation reversibly inhibited
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the binding of hnRNP K to the 15-LOX DICE mRNA 3TJTR element in vitro and 

specifically derepressed the translation of 15-LOX DICE bearing reporter mRNAs in 

vivo (Ostareck Lederer et a l , 2002) Src functions as an integnn signaling protein as 

part of focal adhesion complexes and directly interacts with focal adhesion kinase 

(Section 1 3 1 1) Src therefore functions in peripheral cellular regions where the 

differentially expressed proteins identified with 15 LOX-DICE bearing mRNAs also 

function (Cofilin, Moesin, EBP50, EPB41L2, Tropomysosin 3) A recent study by 

Hoog et al (2004) used specialized mass spectrometry methods to identify proteins 

interacting with focal adhesion proteins Numerous RNA binding and nbosomal 

proteins were identified including hnRNP K (Hoog et a l , 2004) Subsequent confocal 

microcopic analysis of spreading cells showed hnRNP K protein localized to focal 

adhesion associated sites termed spreading initiation centers (SICs) (Hoog e ta l ,

2004) Focal Adhesion Kinase (FAK) was also present in spreading initiation centers 

(Hoog et a l , 2004) These results would indicate that Focal Adhesion Complex sites 

or SICs may be areas where hnRNP K localizes to activate translation of bound 

mRNAs A model for this translation regulatory mechanism is outlined m Figure 4 3 2 

(on following page)
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Cellular M igration

Cytoskeletal
Rearrangement

Cellular Protrusion

Focal Adhesion 
Complex Site 

(FAK+Src etc.)
hnRNPK

Phospho-
hnRNPK

eIF4E Ribosome
Cytoskeletal mRNA 

(e.g. Cofilin)

Translating mRNA

Figure 4.3.2 Model of mRNA transport/translation localization of differentially expressed cytsokeletal 

proteins identified in proteomic analysis. Cytoskeletal mRNA (e.g. Cofilin) with eIF4E bound to 5 ’-cap 

interacts with hnRNP K bound to 15 LOX DICE element in 3 ’UTR causing translational repression. 

This mRNP complex is transported to Focal Adhesion Complex where phopsphorylation of hnRNP K 

by Src causes release of hnRNP K and translational activation. This allows translation to occur in the 

vicinity of the focal adhesion complex resulting in cytoskeletal rearrangement, morphological change 

and migration.
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An explanation for the decreased expression of cytoskeletal proteins with mRNAs 

bearing 15 LOX-DICE sequences in 4E S209-HA overexpressing cells compared to 

4E-HA overexpressing cells may be that phosphorylation of eIF4E plays a role in 

regulating interaction of eEF4E with hnRNP K eIF4E phosphorylation may also affect 

the interaction of a hnRNP K-eIF4E complex with the cap structure Either of these 

scenarios could result in disruption of mRNA transport or translational activation 

following silencing The exact details of this mechanism will be the subject of future 

research but we can conclude from this study that it is highly probable that eIF4E 

plays a role in regulating the transport and/or translation of a new class of mRNAs in 

conjunction with 15 LOX DICE element binding proteins such as hnRNP K This 

novel mRNA regulation model is particularly relevant to the regulation of genes 

involved in regulating actin cytoskeleton dynamics, cellular morphology and 

migration and therefore is important to the field of cancer invasion/metastasis It is 

also noteworthy that hnRNP K has recently been identified as a regulator of eIF4E 

transcription and binds to an element critical for promoter function known as the 4E 

basal element (4EBE) further implicating hnRNP K in regulation of gene expression 

in conjunction with eIF4E (Lynch e ta l , 2005)
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4.3.1.2 mRNA Processing Proteins

4 3 12  1 HnRNP F

Heterogeneous nuclear nbonucleoproteins (hnRNPs/HNRPs) constitute a set of
i

polypeptides that bind heterogeneous nuclear RNA (hnRNA), the transcnpts produced 

by RNA polymerase II and precursors to mRNAs This family of proteins is involved 

in the processing of RNA molecules from transcription to translation, including 

splicing, transportation, degradation and translation of RNAs

Expression of two proteins identified as hnRNP F were 1 84 (Master No 1296) and 

1 73 (Master No 1299) fold lower in 4E S209-HA overexpressmg cells compared to 

4E-HA overexpressmg cells

HnRNP F is best characterized in its role as a regulator of pre-mRNA splicing 

HnRNP F binds preferentially to CBC-RNA (Cap Binding Complex-RNA) 

complexes rather than naked RNA Depletion of hnRNP F from HeLa cell nuclear 

extract was found to decrease the efficiency of pre mRNA splicing (Gamben et a l ,

1997) HnRNP F is involved in regulating the splicing of Bcl-x Bcl-x is a member of 

the Bcl-2 family of proteins that are key regulators of apoptosis The Bcl-x pre-mRNA 

is alternatively spliced to yield Bcl-xs and B c1 -x l, two isoforms that have been 

associated, respectively, with the promotion and the prevention of apoptosis A 30- 

nucleotide G-nch element (B2G) which vs responsible for regulating mRNA splicing 

of Bcl-x was found to bind to hnRNP F The addition of hnRNP F to a HeLa extract 

improved the production of the Bcl-xs variant Consistent withi the in vitro results, 

small interfering RNA targeting hnRNP F and H decreased the B c1 -x s/B c1 -x l ratio of 

plasmid-denved and endogenously produced Bcl-x transcnpts These results show a 

positive role for the hnRNP F proteins in the production of the proapoptotic regulator 

Bcl-xs (Gameau e ta l , 2005)
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4 3 12 2 HnRNP K

Expression of a protein identified as hnRNP K was 1 56-fold lower in 4E S209-HA 

overexpressing cells compared to 4E-HA overexpressing cells

HnRNP K is a member of the heterogeneous nuclear nbonucleoprotein family 

discussed in section 4 4 12 1 hnRNP K protein has been found not only in the 

nucleus but also in the cytoplasm and mitochondria and is implicated in chromatin 

remodeling, transcription, splicing and translation processes hnRNP K protein 

contains multiple modules that on the one hand, bind kinases while on the other hand 

recruit chromatin, transcnption, splicing and translation factors These protein 

mediated interactions are regulated by signaling cascades These observations are 

consistent with hnRNP K protein acting as a docking platform to integrate signaling 

cascades by facilitating cross talk between kinases and factors that mediate nucleic 

acid directed processes (Bomsztyk et a l , 2004) hnRNP K binds to CU rich repetitive 

stretches known as DICE (differential control elements) elements in mRNA 3’UTRs 

and can block translation initiation by blocking the recruitment of the 60S nbosomal 

subunit and the formation of the translation competent 80S ribosome (Bomsztyk et 

a l , 2004) A recent study by Lynch et al (2005) has found that hnRNP K binds to a 

polypynmidine element in the promoter sequence of eIF4E which they termed the 

4EBE (eIF4E basal element), which functions as a basal promoter element hnRNP K 

was shown to regulate eIF4E levels and also increased translation initiation, cell 

division and promoted neoplastic transformation in an eIF4E dependent manner 

(Lynch et a l , 2005) Overexpression of hnRNP K in this study caused an increase in 

the rate of global translation levels (Lynch et a l , 2005)

4 3 1 2 3 G3BP

Expression of the RasGAP associated endonbonuclease G3BP was 2 3 6-fold lower in 

4E S209-HA overexpressing cells in comparison to 4E-HA overexpressing cells 

G3BP is involved in regulating mRNA fate through degradation and sequestration in 

cellular bodies known as stress granules (Toumere et a l , 2003, Kedersha et a l ,

2005)
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4 3 1.2 4 Overview of mRNA Processing proteins

The expression levels of two members of the heterogeneous nuclear nbonucleoprotem 

family, hnRNP F and hnRNP K and also the mRNA regulatory protein G3BP were all 

lower in 4E S209-HA overexpressing cells in comparison to 4E-HA overexpressing 

cells

As hnRNP F expression is associated with the production of pro-apoptotic Bcl-xs 

(Gameau et a l , 2005), decreased expression of hnRNP F in 4E S209-HA cells may 

contribute to the survival of these cells Decreased expression of hnRNP F may also 

affect mRNA splicing of other genes

The lower level of hnRNP K in 4E S209-HA cells compared to 4E-HA cells may 

have a widespread effect on gene expression hnRNPK activity is implicated in the 

regulation of transcription, RNA processing and translation and may therefore affect 

the expression of a large number of genes The fact that hnRNP K is involved in 

regulating transcription of eIF4E is also of interest

The expression level of hnRNP F protein is decreased in 4E S209-HA cells in 

comp an son to pcDNA control cells The lower expression level of this protein in 4E 

S209-HA cells compared to 4E-HA cells is therefore due to a decrease in its 

expression in 4E S209-HA cells rather than an increase in 4E-HA cells On the other 

hand expression of G3BP is increased in 4E-HA cells in companson to pcDNA 

control cells The lower expression level of this protein in 4E S209-HA cells 

compared to 4E-HA cells is therefore due to an increase in expression in 4E-HA cells 

rather than a decrease in 4E S209-HA cells The increased expression of G3BP in 4E- 

HA cells is discussed further in section 4 3 2 2

The lower level of RNA processing proteins in 4E-S209 HA overexpressing cells 

compared to 4E-HA overexpressing cells may result in altered gene expression due to 

their role in mRNA splicing, transport, degradation, translation and also in the case of 

hnRNP K, transcnption Whether the lower expression of this class of protein in 4E 

S209-HA cells is a direct result of reduced 4E phosphorylation is unclear A recent 

study by Topisirovic e ta l  (2004) analysing the ability of an eIF4E S209 mutant to 

transform NIH3T3 cells discovered that mutation of the eIF4E S209 phosphorylation 

site reduced eIF4E dependent nucleo-cytoplasmic mRNA transport (Topisirovic et a l ,

2004) A proposed explanation for this reduction in eIF4E dependent nucleo-
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cytoplasmic mRNA transport was the disruption of interactions between eIF4E and 

other proteins in the nucleus involved in regulating nucleo-cytoplasmic mRNA 

transport or alterations in the binding of other nbonucleoproteins to mRNAs in the 

nucleus due to the altered affinity of non-phosphorylated eIF4E for the cap structure 

(Topisirovie et a l , 2004) There is therefore, a possible connection between 4E 

phosphorylation and RNA binding proteins involved in nucleo-cytoplasmic transport 

Whether the altered expression of the RNA binding proteins seen here is connected to 

this process remains to be seen

4.3 1.3 Protein Chaperones

Expression of two proteins identified as Heat shock protein APG1 were 2 25 and 2 3- 

fold higher in 4E-HA overexpressing cells than 4E S209-HA cells 

Heat shock protein APG is a member of the HSP110 family of heat shock proteins 

and possesses protein chaperone activity (Matsumon et a l , 2002)

The heat shock protein chaperones interact with diverse protein substrates to assist in 

their folding and have a critical role during cell stress to prevent the appearance of 

folding intermediates that lead to misfolded or otherwise damaged molecules 

Consequently, heat shock protein chaperones assist in the recoveiy from stress by 

repairing damaged proteins (protein refolding), thus restoring protein homeostasis and 

promoting cell survival A major characteristic of tumor cells is their resistance to cell 

death Increased expression of heat shock proteins has been detected in a number of 

cancers (Jolly and Monmoto, 2000) It is considered that increased expression of heat 

shock proteins may confer a survival advantage on cancer cells eIF4E has been 

classified as an oncogene due to its ability to transform cells and its increased 

expression in a number of cancers (Mamane et a l , 2004, Rosenwald, 2004) Increased 

expression of heat shock protein chaperones in eIF4E overexpressing cells may be 

necessary for folding of proteins whose levels are increased as a result of translational 

upregulation
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The increased expression of heat shock protein APG1 in 4E-HA overexpressing cells 

in comparison to 4E S209-HA overexpressing cells may be an indication of higher 

protein production, or increased production of a subset of proteins requiring protein 

chaperone activity for correct folding

4.3.1.4 Protein Degradation proteins

The expression of the proteasome activator proteins PA28 alpha and PA28 beta were 

1 85-fold and 2 07-fold higher respectively in 4E S209-HA overexpressing cells in 

companson to 4E-HA overexpressing cells Expression of Ubiquitin carboxy terminal 

hydrolase LI was 1 5-fold higher in 4E S209-HA overexpressing cells in companson 

to 4E-HA overexpressing cells

These proteins are upregulated in 4E S209-HA cells in companson to pcDNA control 

cells and the higher levels seen 4E S209-HA cells in companson to 4E-HA cells are 

therefore due their increased expression in 4E S209-HA cells rather than decreased 

expression 4E-HA cells

This category of proteins were the only proteins that showed increased expression in 

4E S209-HA cells apart from the nucleotide metabolism protein Punne Nucleoside 

Phosphorylase It would seem therefore that an increase in non-phosphorylated eIF4E 

levels has an effect on protein degradation pathways Increased protein degradation in 

4E S209-HA cells may cause decreased expression of other proteins in the cells 

The increased expression of protein degradation proteins in 4E-S209-HA cells is 

discussed further in Section 4 3 3 1
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4.3.1.5 Metabolie Proteins

Expression of five proteins identified as Aldehyde Dehydrogenease 1 and a protein 

identified as Punne Nucleoside Phosphorylase were lower in 4E-HA overexpressing 

cells compared to 4E S209-HA overexpressing cells Aldehyde dehydrogenase 1 

expression was decreased in 4E-HA cells in comparison to pcDNA controls indicating 

the lower expression seen here is due to reduced expression in 4E-HA cells rather 

than increased expression in 4E S209-HA cells On the other hand, Punne Nucleoside 

Phosphorylase expression is increased in 4E S209-HA cells in comparison to pcDNA 

controls indicating its lower expression in 4E-HA cells seen here is due to increased 

expression in 4E S209-HA cells rather than decreased expression in 4E-HA cells

Expression of a protein identified as Glyoxalase 1 is lower in 4E S209-HA 

overexpressing cells compared to 4E-HA overexpressing cells Glyoxalase 1 

expression was reduced in 4E S209-HA cells in comparison to pcDNA controls 

indicating its lower expression in 4E-S209 HA cells seen here is due to decreased 

expression in 4E S209-HA cells rather than increased expression in 4E-HA cells

The relevance of decreased expression of Aldehyde dehydrogenase in 4E-HA cells is 

discussed in section 4 3 2 1, and the increased expression of Purine Nucleoside 

Phosphorylase and decreased expression of Glyoxalase 1 in 4E S209-HA cells in 

section 4 3 3 5
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Analysis of differentially expressed proteins between 4E-HA overexpressing cells 

compared to pcDNA controls revealed changes in a number of different classes of 

proteins (Table 4 3 2)

4 3 2 Differentially expressed proteins in 4E-HA overexpressing cells
compared to pcDNA controls

dcDNA v s  4E-HA
4E-HA Increased Expression 4E-HA Decreased Expression

Protein Folding Metabolism

Heat Shock Protein APG. Chaperonm (Hsp60) Aldehyde Dehydrogenase

mRNA Processing

G3BP

Table 4 3 2 Proteins differentially expressed between 4E-HA and 4E S209-HA 

overexpressing cells

4 3 2 1 Aldehyde Dehydrogenase

Five proteins identified as Aldehyde Dehygrogenase 1 enzymes were downregulated 

in 4E-FLA overexpressing cells compared to pcDNA controls, with fold changes 

ranging from a 1 59-fold to a 2 11-fold decrease (Table 3 12 112) Previous 2D 

electrophoresis analysis of Aldehyde Dehydrogenase enzymes has shown separation 

of multiple vanants of aldehyde dehydrogenase enzymes by this method (Park et a l , 

2002)

Aldehyde Dehydrogenases (ALDH) are considered as general detoxifying enzymes 

which eliminate toxic biogenic and xenobiotic aldehydes Adehyde dehydrogenase 1 

(ALDH1) is a cytosolic enzyme ubiquitously distributed in vanous tissues The 

enzyme has a high activity for the oxidation of both all-trans- and 9-cis-retmal and it 

may play a role in the formation of retinoic acid, which is a potent modulator for gene 

expression and tissue differentiation (Yoshtda e ta l , 1998) Retinoic acid is known to
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play an important role in the development and differentiation of the lung (Ross, 2004) 

and reduced expression of aldehyde dehydrogenase may therefore have an effect on 

the growth and differentiation of lung cells through it’s regulation of retinoic acid 

Aldehyde Dehydrogenase also plays an important role in metabolizing acetaldehyde 

Acetaldehyde is a known carcinogenic aldehyde that is found in cigarette and car 

exhaust smoke and is also a product of ethanol metabolism Acetaldehyde plays an 

important role in the pathogenesis of tissue injury that results from alcohol or 

cigarette consumption As acetaldehyde is a substrate for ALDH, high levels of 

ALDH could protect against the toxicity of acetaldehyde and vice-versa (Moreb et a l ,

2005)

4 3 2 2 G3BP

The RasGAP-associated endonbonuclease G3BP was 1 86-fold upregulated in 4E-HA 

cells compared to pcDNA control cells

G3 BP is an RNA binding protein known to bind to the SH3 domain of the Ras 

GTPase activating protein (RasGAP) Recent studies have shown G3BP is involved in 

the assembly of the mRNA regulatory bodies known as stress granules (Toumere et 

a l , 2003, Kedersha et a l , 2005) Stress granules (SGs) are cellular bodies where 

mRNAs and associated proteins are involved in regulating the sequestration and 

degradation of mRNAs under conditions of cellular stress Stress granules are 

described as sites of translationally inactive protein synthesis machinery Stress 

granules form in the cytoplasm in response to various toxic agents and are believed to 

play a critical role in the regulation of mRNA translation during stress A study by 

Toumerre e ta l  (2003), showed that G3BP is recruited to SGs in cells exposed to 

arsemte (Toumerre e ta l , 2003)

In a recent study by Kedersha et al (2005), G3BP was transfected into DU145 cells in 

order to induce the formation of stress granules to allow for analysis of their 

constituent proteins This study showed that stress granules induced by increased 

expression of G3BP contained eIF4E and other translation initiation factors such as 

eIF4G, eIF3 and Poly(A) binding protein They also showed the induction of related 

cellular bodies known as processing bodies in G3BP overexpressing cells which are 

involved in mRNA degradation Processing bodies were also found to contain eIF4E 

protein (Kedersha et al (2005)
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In stressed cells, Stress Granules form as a result of eIF2a phosphorylation which 

causes a situation where the level of ell^-GTP-tRNA,1̂ 1 ternary complex becomes 

limiting for translation initiation

In normal cellular conditions, eIF4E levels are considered to be a rate limiting factor 

and the level of available eIF4E is regulated by it being bound by 4E-BP repressor 

proteins It may be possible that in eIF4E overexpressing cells, such as those used in 

our study, the raising of eIF4E levels results in a situation whereby eIF2-GTP- 

tRNA,Met ternary complex levels become limiting regardless of eIF2a 

phosphorylation This would lead to the assembly of eIF2/eIF5-deficient premitiation 

complexes which subsequently are routed to stress granules as in stressed cells The 

increased expression of G3BP in 4E overexpressing cells could therefore be in 

response to this situation as G3BP has been shown to be involved in stress granule 

formation and may therefore affect the ability of 4E overexpression to cause change 

in gene expression levels via regulation of mRNA translation

It would be of interest to analyse the localization of G3BP and translation initiation 

factors within 4E-HA overexpressing cells to determine if they are present in stress 

granules
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4 3.2 3 Protein Chaperones

Two heat shock proteins possessing protein chaperone activity were upregulated in 

4E-HA overexpressing cells in comparison to pcDNA control cells Heat shock 

protein APG was upregulated 1 9-fold and chaperonm (Hsp60) was upregulated 

1 51-fold Heat shock protein APG is a member of the HSP110 family of heat shock 

proteins (Matsumon et a l , 2002, Nonoguchi et a l , 1999) Chaperonm is known 

commonly as a mitochondrial protein in mammalian cells and is involved in assisting 

in the correct folding of mitochondrial proteins (Barazi et a l , 2002)

The heat shock protein chaperones interact with diverse protein substrates to assist in 

their folding and have a critical role dunng cell stress to prevent the appearance of 

folding intermediates that lead to misfolded or otherwise damaged molecules 

Consequently, heat shock protein chaperones assist in the recovery from stress by 

repairing damaged proteins (protein refolding), thus restoring protein homeostasis and 

promoting cell survival

A major characteristic of tumor cells is their resistance to cell death Increased 

expression of heat shock proteins has been detected in a number of cancers (Jolly and 

Monmoto, 2000) It is considered that increased expression of heat shock proteins 

may confer a survival advantage on cancer cells eIF4E has been classified as an 

oncogene due to its ability to transform cells and its increased expression in a number 

of cancers Increased expression of heat shock protein chaperones in eIF4E 

overexpressing cells may be necessary for folding of proteins whose levels are 

increased as a result of translational upregulation

Recent studies have shown that chaperonm may also function outside the 

mitochondria A study by Barazi et al (2002) showed that chaperonm protein on the 

cell surface was involved in the activation of a301 integnn (Barazi et a l , 2002) 

Increased expression of a3 and pi integnn was detected in 4E-HA 5 cells (Section 

3 12 7) It is possible that chaperonm expression may therefore play a role in 

modulating integnn activity on 4E-HA 5 cells if expressed on the cell surface in these 

cells
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Analysis of differentially expressed proteins between 4E S209-HA overexpressing 

cells compared to pcDNA controls revealed changes in a number of different classes 

of proteins (Table 4 3 3)

4.3.3 Differentially expressed proteins in 4E S209-HA overexpressing
cells compared to pcDNA controls.

dcDNA v s  4E S209-HA 
4E S209-HA Increased Expression 4E S209-HA Decreased Expression

Protein Degradation Cytoskeletal

PA28 alpha, PA28 beta, UCHL1, AHAl? CofiliiL Moesin Tropomyosin 3, Tubulin Secific

Chaperone A

Protein Folding mRNA Processing

AHA1 HNRPF

Metabolism Metabolism

Punne Nucleoside Phosphorylase DDAHl, Glyoxalase 1

Table 43  3 Proteins differentially expressed between pcDNA controls and 4E 8209- 

HA overexpressing cells

4 3 31 Protein Degradation Proteins 

4 3 31  1 PA28 Alpha and PA28 Beta

The expression of the proteasome activator proteins PA28 alpha and PA28 beta was

1 85-fold and 2 07-fold higher respectively in 4E S209-HA overexpressing cells in

comparison to pcDNA control cells

Proteasomes perform the majority of proteolysis that occurs in the cytosol and nucleus 

of eukaryotic cells and thereby, perform crucial roles in cellular regulation and 

homeostasis Isolated proteasomes are inactive because substrates cannot access the 

proteolytic sites PA28 proteins are activators that bind to proteasomes and stimulate 

the hydrolysis of peptides (Reichstemer and Hill, 2005)
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The 20S proteasome is a barrel shaped assembly of 28 protein subunits that possess 

three distinct proteolytic active sites with different specifities Together, the three 

active sites, present in the two central nngs of P subunits, hydrolyse almost all peptide 

bonds, having trouble only with those bonds that follow glycine and proline The 

elimination of

inappropriate substrates is prevented by sequestration of active sites within the hollow 

structure of the 20S proteasome Substrates access the central catalytic chamber 

through axial ports in the end nngs of a  subunits, although in the absence of 

activators these channels are closed and activity is repressed 

Proteasomes are activated by protein complexes that bind to the end of a  subunits 

The best known activator is PA700 (proteasome activator MW 700, also known as 

19S or regulatory complex (RC)), which has been conserved from yeast to humans 

and binds to the 20S proteasome to form the 26S proteasome PA700 is the only 

proteasome activator that is known to stimulate degradation of protein substrates, 

which it generally recognizes by a polyubiquitination modification and which it 

processes by an ATP-dependent mechanism Thus PA700 is though to mediate most 

of the biological effects of the proteasome by facilitating substrate degradation

In contrast to the evolutionary conserved protein complex PA700, PA28 (also 

known as 1 1 S or REG), has been shown to bind specifically to and activate 20S 

proteasomes against model peptide substrates but does not recognize ubiquinated 

proteins or use ATP It is possible that PA28 functions normally in mixed complexes 

known as hybnd proteasomes in which the 20S proteasome is bound at one end by 

PA700 and at the other end by PA28

PA28 family members, which are found in higher eukaryotes but are absent from 

yeasts exist as homo- or heteromenc complexes of seven ~28-kDa subunits There are 

three PA28 homologs called a, P, and y The a  and P subunits form a heteroheptamer 

whereas y forms a homoheptamer The biological roles of PA28 proteins are 

understood less well than those of PA700 although their biochemical activities and 

evolutionary conservation implies that they have important roles in cellular 

physiology and several important functions have been proposed 

Although PA28a and p subunits are expressed in many organs, they are particularly 

abundant m immune tissues PA28aP proteins are mainly found in the cytoplasm and
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are induced by interferon and infection The best characterized function of PA28 

proteasomal activators are in cellular immunity where they are known to be involved 

in the generation of peptides for presentation on class I molecules and subsequent 

recognition by cytotoxic T lymphocytes (Reichsteiner and Hill, 2005)

Although the mam role of PA28 a and P appear to be in cellular immunity, studies 

have also shown that expression of PA28 a and P proteasome activators are also 

increased in conditions which appear unrelated to immune response In cases such as 

these it is thought that there is more generation of hybrid 26S proteasomes, thereby 

increasing proteolytic efficiency (Tanahashi et a l , 2000)

4 3 3 1 2  U C H L1

The expression of the ubiquitin carboxy terminal hydrolase LI (UCHL1) was 

increased 1 9 1-fold in 4E S209-HA cells in comparison to pcDNA controls

The ubiquitin proteasome system is a major pathway for selective protein degradation 

Ubiquitin attaches to the target proteins and forms a polyubiquitin chain and the 

ubiquitinated proteins are recognized and degraded by a multi-subunit protease 

complex, called the proteasome Ubiquitin carboxy terminal hydrolases recycle 

ubiquitin from ubiquitin/protein complexes or polyubiquitin chains by cleaving the 

amide linkage neighbouring the C-termmal glycine of ubiquitin (Liu et a l , 2002) 

UCHL1 hydrolase activity is thought to be important for cytoplasmic protein 

degradation, recycling free ubiquitin by cleaving ubiquitinated peptides that are the 

products of proteasomal degradation of polyubiquitinated proteins Association of 

UCHL1 with ubiquitin also plays a role in maintaining ubiquitin levels by inhibiting 

its degradation (Osaka et a l , 2003)

UCHL1 is expressed at high levels in the neural and neuroendocnne systems 

UCHL1 is one of the major proteins of the brain, constituting 1 -5% of total soluble 

brain protein UCHL1 expression has been associated with cancer progression and 

also with the development of Parkinsons disease (Liu et a l , 2002) It is not known if 

increased expression of UCHL1 is a cause or a result of cancer progression

Increased expression of UCHL1 in 4E S209-HA cells may contnbute to increased 

protein degradation in these cells UCHL1 is also considered to be a marker of 

neuroendocnne differentiation in lung cancer cell lines (Castro et a l , 2000) The
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increased expression of UCHL1 and the proteasomal activators PA28 alpha and beta 

may suggest a general upregulation of protein degradation in 4E S209-HA cells It 

would be of interest to determine if these results are replicated in other cell lines 

overexpressing 4E S209-HA

4.3.3.2 Chaperone Activity

4.3 3 2 1  A H A 1

Expression of a protein identified as AHA 1 was increased 1 98-fold in 4E S209-HA 

overexpressing cells in comparison to pcDNA controls

AHA1 is an activator of the highly expressed heat shock protein Hsp90 and is induced 

under stressful conditions such as heat shock Hsp90 is an highly conserved and 

essential stress protein that is present in all eukaryotic cells Despite being a heat 

shock protein, hsp90 is one of the most abundant proteins in non heat shocked cells 

(1-2%  of cytosolic protein), where it performs housekeeping functions controlling the 

activity, turnover and trafficking of a variety of proteins Most of the hsp90-regulated 

proteins that have been discovered are involved in signal transduction (Panaretou et 

a l ,2002)

Rather than acting at an early stage of folding, Hsp90 binds client proteins in a 

substantially folded form and facilitates their association with cofactors or other 

proteins required for full activity Hsp90-dependent activation of CPs (client proteins) 

in vivo involves a plethora of co-chaperones, which associate with the Hsp90-based 

complex at different stages of the activation process (Panaretou et a l , 2002)

The biological activity of Hsp90 depends on its ability to bind and hydrolyze ATP 

AHA1 stimulates the inherent ATPase cycle of Hsp90, which is essential for its 

chaperone activity in vivo (Panaretou e t a l , 2002)

In addition to its chaperone activity, Hsp90, like the proteasomal activators PA28a  

and p, is also implicated in protein degradation and MHC class I antigen processing 

(Yamano et a l , 2002) Hsp90 directly associates with the 20S proteasome and can
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influence the enzyme activity, in a study by Imai e ta l  (2003) functional loss of 

Hsp90 in yeast caused dissociation of the 26S proteasome The dissociated 

constituents then reassembled in a Hsp90-dependent fashion both in vivo and in vitro 

This process was found to require ATP-hydrolysis by Hsp90 (Imai et a l , 2003) 

Therefore Hsp90 and its ATP hydrolysis activity which is regulated by AH A1 may 

play a role in proteasomal activity and assembly Increased expression of AHA1 in 4E  

S209-HA cells may therefore play a role in regulating proteasomal protein 

degradation and MHC class I antigen processing As Hsp90 is known to function as a 

chaperone for signal transducing proteins increased expression of the Hsp90 

activating protein AHA1 may therefore contribute to the survival and growth of 4E  

S209-HA overexpressing cells

4.3.3.3 Increased Protein Degradation and MHC I antigen 

presentation in 4E S209-HA cells due to defective translation?

A  model proposed some years ago suggests that a large proportion of peptides which 

are processed for antigen presentation on MHC class I molecules are denved from 

degradation of defective nbosomal products (DRiPs) rather than from the degradation 

of full length proteins or ‘old’ proteins that are no longer useful to the cell (Yewdell et 

a l , 1996) Subsequent studies have provided evidence to support this theory

Production of DRiPs occurs through mistranslation of proteins in various ways
!

including, (a) alternative initiation or pre-termination of translation, (b) through 

nbosomal slipping in which one part of the peptide is denved from one open reading 

frame (ORF) and the other half from another ORF and (c) they have also been shown 

to generated from the 3 ’UTR both in and out of frame with the mam ORF and/or with 

a leucine as the initiation codon (Fahreaus, 2005) A  study by Schubert e ta l  (2000) 

showed that DRiPs constitute upwards of 30% of newly synthesized proteins and also 

that the maturation of MHC class I molecules is correlated directly with the 

production of DRiPs and their degradation by proteasomes (Schubert et a l , 2000) 

These studies show that there is a link between aberrant protein translation, protein 

degradation and the MHC I antigen processing pathway
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The exact role of 4E S209 phosphorylation in translation initiation is still a matter for 

debate Studies have shown that 4E S209 phosphorylation decreases the affinity of 4E  

for the 5 ’ cap structure (Section 1 1 2 2 2) In their review of the role of 4E S209 

phosphorylation Scheper and Proud (2002) proposed a number of possible models 

explaining the role 4E S209 phosphorylation may play in translation initiation It is 

proposed in these models that 4E and its associated translation factors may remain 

attached to the 5 ’ end cap structure until phosphorylation of 4E occurs at a certain 

point in the translation initiation process e g association of the 40S nbosomal subunit 

or AUG initiation codon recognition The phosphorylation of 4E at this point would 

allow the release of the translation initiation factors from the cap structure to allow 

scanning away from the 5 ’ end of the RNA or release of the translation factors for 

further initiation events Lack of phosphorylation of 4E could therefore disrupt the 

translation initiation process by preventing the release of translation initiation 

complexes from the 5 ’ end of mRNA at the correct point in the translation initiation 

process

As mentioned previously, production of DRiPs occurs through mistranslation of 

proteins in various ways such as alternative initiation or pre-termination of translation 

and nbosomal slipping (Fahreaus, 2005) It may be the case that in 4E S209-HA 

overexpressing cells, the rate of occurrence of events such as these is increased due to 

the release of translation initiation complexes from 5 ’end cap structures being 

inhibited dunng the initiation process as phosphorylation of 4E fails to occur

Increased expression of PA28 a  and P and also UCHL1 in 4E S209-HA cells may 

occur as a result of increased production of ‘DRiPs’ due to abnormalities in protein 

translation caused by the 4E-S209 phosphorylation site being absent from the 

transfected protein These DRiPs would require increased levels of ubiquitin to direct 

them to proteasomal degradation and presentation on MHC class I molecules 

Increased UCHL1 levels may provide the necessary nse in ubiquitin through its 

ability to prevent degradation of ubiquitin and its reprocessing of ubiquitin from 

previously ubiquitinated proteins (Liu et a l , 2002, Osaka et a l , 2003) Increased 

levels of PA28 a  and P may be necessary to activate proteasomal degradation and 

processing of DRiPs for presentation on the MHC class I molecules Previous studies

242



have shown that the maturation of MHC class I molecules is correlated directly with 

the production of DRiPs and their degradation by proteasomes (Schubert ei a l , 2000) 

Increased expression of AHA1 may have a role to play in this process as an activator 

of Hsp90 Hsp90 has been shown to interact with proteasomes and can compensate 

for loss of PA28 in antigen presentation in certain cellular situations (Yamano et a l , 

2002) Increased expression of AHA1 may therefore assist in proteasomal degradation 

and antigen presentation through its activation of Hsp90

In summary, increased expression ofPA28 a  and P, UCHL1 and AHA1 have a 

common link in proteasomal degradation of proteins and antigen presentation on 

MHC class I cells This process is considered by many to be directly connected to 

mistranslation of proteins (DRiPs) The lack of phosphorylation of eIF4E in 4E S209- 

HA overexpressing cells may therefore be causing an increase in production of DRiPs 

and a subsequent increase in proteasomal degradation and antigen processing
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4.3.3.4 mRNA Processing

4 3 3 4 1 HnRNPF

Expression of hnRNP F was decreased 1 98-fold in 4E S209-HA overexpressing cells 

in comp an son to pcDNA controls HnRNP-F and its decreased expression in 4E 

S209-HA cells is discussed in Section 4 3 1 2  1

4.3.3 5 Metabolic Proteins 

4 3 3 5 1 Purine Nucleoside Phosphorylase

Expression of Punne nucleoside phosphorylase (PNP) was increased 2 19-fold in 4E  

S209-HA overexpressing cells in companson to pcDNA controls 

PNP is a key enzyme in the punne-salvage pathway, which allows cells to utilize 

preformed bases and nucleosides in order to synthesize nucleotides (Bzowska et a l ,

2000) Increased levels of PNP have been detected in certain types of cancers 

(Roberts e t a l , 2004) indicating increased PNP levels may confer a growth advantage 

to these cells The increased expression of PNP in 4E S209-HA cells may therefore 

confer a growth advantage on these cells Analysis of the growth rate of 4E S209-HA 

6 in companson to 4E-HA 5 and pcDNA 2 cells showed that the growth rates of both 

4E overexpressing cells were increased in companson to the pcDNA controls (Section

3 1 2 9 )

4 3 3 5 2 DDAH1

Expression of DDAH1 was decreased 1 7 3 -fold in 4E S209-HA overexpressing cells 

in companson to pcDNA controls

Dimethylargmine dimethylaminohydrolase regulates cellular methylargmine 

concentrations, which in turn inhibit mtnc oxide synthase Nitnc oxide is an important 

signaling molecule and regulator of angiogenesis Factors that regulate mtnc oxide 

synthesis are therefore important targets in the control of tumor progression
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In a study by Kostouro et a l  (2004), overexpression of DDAH in a glioma tumor cell 

line resulted in increased tumor growth They found that increased DDAH expression 

caused hypoxia m tumors which resulted in activation of angiogenesis Expression of 

DDAH therefore appears to play a role in regulating tumor oxygenation Decreased 

expression of DDAH 1 in 4E S209-HA overexpressing cells could therefore play a 

role in regulating the oxygenation of these cells in an in-vivo situation although its 

role in vitro may not be significant

4 3 3 5 3 Glyoxalase 1

Expression of Glyoxalase 1 was decreased 1 46-fold in 4E S209-HA overexpressing 

cells in comparison to pcDNA controls

Glyoxalase 1 is an essential component of the pathway leading to the detoxification of 

methyl glyoxal, a side product of glycolysis Accumulation of methylglyoxal causes 

DNA modification and protein cross-links and thus initiates the activation of 

apoptosis (Thomalley, 2003 a)

Overexpression of glyoxalase I was found in drug-resistant tumour cells and may be 

an example of an undesirable effect of the enzymatic protection against DNA  

glycation (Thomalley, 2003b) Experimental overexpression of glyoxalase I conferred 

resistance to drug-induced apoptosis Glyoxalase I-mediated drug resistance was 

found m human leukaemia and lung carcinoma cells (Thomalley, 2003b) Elevated 

levels of glyoxalase expression have been reported in lung cancer cell lines and 

glyoxalase activity is associated with resistance to apoptosis inducing anti-cancer 

agents (Sakamoto et a l , 2001)

Decreased expression of Glyoxalase 1 in 4E S209-HA cells may therefore increase 

the susceptibility of these cells to apoptosis induced by anti-cancer drugs
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Analysis of differentially expressed proteins between 4E-HA clone 5 and 4E-HA  

clone 10 cells revealed changes in a number of different classes of proteins (Table 

4 3 4)

4.3.4 Differentially expressed proteins in a comparison of 4E-HA

clone 5 and 4E-HA clone 10 cells

4E -H A  5 vs 4E -H A  10

4E-HA 5 High Expression 4E-HA 5 Low expression

Cytoskeletal Cytoskeletal
Vimentm, Mutant Beta Actin, Annexin A l, CapG

Annexin A2

nvRNA Processing Protein Folding

poly(rC)-binding protein 2 Hsp 70kDa protein 5 (BiP)

Cell Signalling Protein Degradation

Prohibitin PA28 beta

Metabolism Metabolism

FASN, Glutaminase isoform C, Aldehyde Peroxiredoxm 2 isoform b,

Dehydrogenase 1, IPP isomerase

Table 4 3 4 Proteins differentially expressed between 4E-HA clone 5 and 4E-HA 

clone 10 cells

4 3 41  Prohibitin

Prohibitin expression was 2 13-fold higher in 4E-HA 5 cells compared to 4E-HA 10 

cells Recent studies by Rajalingam e ta l  (2005), have shown prohibitin plays an 

important role in the activation of the Ras-Raf signalling pathway and can regulate 

epithelial cell migration (Rajalingam et a l , 2005) In this study, knockdown of 

prohibitin expression eliminated activation of c-Raf by Ras and caused major changes 

in the morphology, migration and adhesion of epithelial cells (Rajalingam e t a l ,

2005) The 4E-HA 5 and 4E-HA 10 cells show different morphological features 

which correlate with these results The 4E-HA 5 cells show numerous large cells with 

multiple cellular protrusions which aren’t present in the 4E -H A 10 cell population 

(Section 4 2 1) The high level of invasiveness of 4E-HA 5 cells in comparison to 4E-
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HA 10 cells also indicates increased motility of these cells Previous studies have also 

shown prohibitin to be overexpressed in carcinomas (Asamoto and Cohen, 1994, 

Wang e t a l , 2004)

4 3 4 2 Vimentin

Two protein spots with identified as vimentin were 3 76-fold (master no 1264) and 

3 26-fold (master no 1261) more highly expressed in 4E-HA 5 cells compared to 4E- 

HA 10 cells

Vimentin is an intermediate filament cytoskeletal protein whose expression is 

characteristic of cells of mesenchymal ongin e g fibroblasts However, evidence has 

accumulated which shows that atypical expression of vimentin in epithelial cancer 

cells is associated with invasiveness and metastasis potential for a variety of cancers 

including hepatocellular carcinoma (Hu et a l , 2004), prostate carcinoma (Lang et a l , 

2002 Singh et a l , 2003), breast carcinoma (Hendnx et a l , 1997) and cervical 

carcinoma (Gilles et a l , 1996)

Analysis of vimentin expression in migrating MCF10 A  breast carcinoma cells using 

an in vitro  wound assay model revealed induction of vimentin mRNA and protein in 

migrating cells (Grilles et a l , 1999) Reduction of vimentin expression using antisense 

cDNA caused a reduction in the migration of these cells also (Grilles et a l , 1999) 

These studies show that vimentin is strongly associated with cellular motility and 

invasiveness We have previously shown that 4E-HA 5 cells are highly invasive 

compared to 4E-HA 10 cells (Section 3 1 2  10) The increased expression of vimentin 

in 4E-HA 5 cells may therefore contnbute to the mvasiveness of these cells

Microarray analysis detected an increase in vimentin mRNA expression in 4E-HA 5 

and 4E-S209 6 cells in comparison to pcDNA 2 cells (Section 3 1 2 12 2 3) The 

increase in vimentin mRNA expression in these cells was matched by the vimentin 

protein levels detected in these cells This suggets that changes in vimentin protein 

expression are due to transcriptional regulation in these cells
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4.3 4 3 CapG

A  protein spot identified as the actin regulatory protein CapG (master no 1677) was 

downregulated 1 86-fold in 4E-HA 5 cells compared to 4E-HA 10 cells 

CapG is a member of the gelsolin/vilhn family of actin-regulatory proteins Unlike 

other members of this family though, CapG caps the barbed ends of actin filaments, 

but does not sever them (Mishra et a l , 1994)

Dynamic shifts in the concentration and length of actin filaments provide the force 

and structure for nonmuscle cell motility Many actin-binding proteins exist to 

temporally and spatially regulate actin filament assembly A  key site for the 

regulation of actin filament assembly is the fast growing or barbed actin filament 

ends In living cells, the number of barbed ends available for the addition of actin 

monomers is likely to determine where new forces for directional cell movement are 

generated Proteins capable of blocking exchange at the barbed end can prevent 

indiscriminate growth of actin filaments and control where new actin filaments are 

assembled The gelsolin/vilhn family of actin regulatory proteins, of which CapG is a 

member can serve this function (Witke et al, 2001) For this reason CapG expression 

is likely to affect the regulation of cellular motility and invasion Decreased 

expression of CapG in 4E-HA 5 cells may contribute to the increased invasiveness of 

these cells by reducing the capping of barbed ends and allowing increased assembly 

of actin filaments in areas of cellular outgrowth thereby increasing cellular motility 

Analysis of F-actin structures in these cells using fluorescent labeling and confocal 

microscopy also revealed strong staining for actin structures in 4E-HA 5 cells which 

was not detected in 4E-HA 10 cells

Microarray analysis detected a decrease in CapG mRNA expression in 4E-HA 5 cells 

in companson to 4E-S209 6 cells and pcDNA 2 cells (Section Section 3 1 2 12 2 3) 

This indicates that the lower level of CapG protein in 4E-HA 5 cells may be due to 

transcriptional regulation
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4.3.4.4 Mutant Beta Actin

Two protein spots which were identified as mutant beta actin were 1 7 1 -fold (master 

no 1573) and 1 49-fold (master no 1549) more highly expressed in 4E-HA 5 cells 

compared to 4E-HA 10 cells This is the same isoform of beta actin as descnbed in 

section 4 3 1 1 8

The increased expression of this form of beta actin in 4E-HA 5 cells compared to 4E- 

HA 10 cells may contribute to differences in morphology and mvasiveness observed 

in these cells

4 3 4 5 Annexins

Annexms are a family of closely related calcium and membrane binding proteins 

expressed m most eukaryotic cell types Annexms are proposed to act as membrane- 

cytoskeleton and membrane-membrane linkers They undergo Ca2+-dependent 

binding to phospholipids that are preferentially located on the cytosolic face of the 

plasma membrane The central biochemical characteristic of annexms is their Ca2+- 

regulated binding to the periphery of membranes containing acidic phospholipids 

This could allow them to organize the interface between the cytoplasm (or 

cytoskeleton) and the cytoplasmic face of cellular membranes (Rescher and Gerke, 

2004) Annexms have been implicated in Ca2+-regulated exocytotic events, certain 

aspects of endocytosis and stabilization of specific domains of organelle membranes 

and the plasma membrane (Rescher and Gerke, 2004)

4 3 4 5 1 Annexin A 1

Expression of annexin A 1 wasl 5 8-fold higher in 4E-HA 5 cells compared to 4E-HA  

10 cells

Annexin A 1 binds to F-actin and also interacts with profilin, a G-actin binding protein 

and regulator of actin polymerization Complex formation between annexin A1 and 

profilin modifies the profilin effect on actin polymerization Because of the partially 

overlapping intracellular localization of the two proteins, it has been speculated that 

the annexin A1-profilin interaction participates in regulating the membrane-associated 

cytoskeleton (Gerke and Moss, 2002, Hayes e t a l , 2004)
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The role of annexin A 1 in membrane interaction with actin structures and regulation 

of the membrane associated cytoskeleton could contribute to differences in 

invasiveness, morphology and F-actin staining The 4E-HA 5 cells display increased 

invasiveness compared to 4E-HA 10 cells which is associated with actin based 

cellular motility Analysis of F-Actin structures in these cells also showed intense F- 

actin staining at cell membranes in 4E-HA 5 cells (Section 3 1 2  13)

4 3 4.5 2 Novel Protein Similar to Annexin A2

Annexin A2 (pseudogene 2) protein was increased 1 99-fold in 4E-HA 5 cells 

compared to 4E-HA 10 cells

Annexin A2 is an F-actin binding annexin that also has a Ca2+-dependent filament 

bundling activity Annexin A2 protein is associated with actin structures and annexin 

A2 along with its binding partners can interact directly with F-actin (Rescher and 

Gerke, 2004, Hayes et a l , 2004) Annexin A2 is associated with dynamic actin 

structures In particular, those actin structures associated with cellular membranes 

during e g phagocytosis, pinocytosis and cell migration, contain annexin A2 and 

probably require the protein (Hayes et a l , 2004)

The association of annexin A2 and membrane interaction with dynamic actin 

structures involved in processes such as migration correlates with its increased 

expression in 4E-HA 5 cells compared to 4E-HA 10 cells The 4E-HA 5 cells display 

increased mvasiveness compared to 4E-HA 10 cells, which is associated with actin 

based cellular motility Analysis of F-actin structures in these cells also showed 

intense F-actin staining at cell membranes in 4E-HA 5 cells (Section 3 1 2  13)
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Tumors overexpressing FAS, the enzyme responsible for de novo synthesis of fatty 

acids, display aggressive biologic behavior compared to those tumors with normal 

FAS levels, suggesting that FAS overexpression confers a selective growth advantage 

(Baron et a l , 2004)

Once considered largely an anabolic-energy-storage pathway, FA S has become a 

novel target pathway for chemotherapy development (Francis and Kuhajda, 2000)

The 4E-HA 5 cells which express higher levels of FAS are also more invasive than 

4E-HA 10 cells, this correlates with the aggressive behaviour reported for tumors 

which overexpress this protein

4 3 4 7 Glutaminase isoform C

Glutaminase isoform C protein expression was 1 91-fold higher in 4E-HA 5 cells 

compared to 4E-HA 10 cells

The mitochondrial enzyme glutaminase catalyzes the hydrolysis of glutamine (Gin) to 

glutamate and ammonia Through this reaction and the subsequent conversion to a- 

ketoglutarate, glutamine serves as a major source of tricarboxylic acid cycle 

intermediates and ultimately provides a large fraction of cellular energy and reducing 

equivalents In culture, most mammalian cells depend on Gin for their survival and 

proliferation and tumor cells have been identified as particularly avid consumers of 

Gin How and why Gin influences cell survival and proliferation and the determinants 

of Gin utilization rates are not precisely known However, it is believed that the 

majority of Gin utilization by tumor cells is driven by its enzymatic hydrolysis via 

glutaminase (Medina, 2001)

Experimental evidence supports the correlation of glutaminase activity with the extent 

of malignant proliferation Glutaminase reaches a maximum of expression and activity 

immediately before the maximum proliferation rate (Medina, 2001) In a study by

4 3 4 6 FASN

Fatty acid synthase (FAS) protein expression was 2 37-fold higher in 4E-HA 5 cells

compared to 4E-HA 10 cells
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Lobo et a l  (2000) knockdown of glutaminase expression in a tumor cell line using 

antisense technology caused major morphological changes in these cells, reduced 

their growth rates and caused loss of tumongenicity

The higher expression of glutaminase isoform C in 4E-HA 5 cells correlates with 

increased glutaminase expression seen in tumongenic cells The 4E-HA 5 cells are 

highly invasive compared to 4E-HA 10 cells which indicates these cells are more 

likely to be tumongenic increased glutaminase expression may contnbute to the 

invasive phenotype of these cells

4 3.4.8 Peroxiredoxin 2 isoform b

Peroxiredoxin 2 isoform b protein expression was 1 46-fold higher in 4E-HA 10 cells 

compared to 4E-HA 5 cells

This gene encodes a member of the peroxiredoxin family of antioxidant enzymes, 

which reduce hydrogen peroxide and alkyl hydroperoxides The encoded protein is 

thought to play an antioxidant protective role in cells (Shen and Nathan, 2002)

The lower level of peroxiredoxon 2 isoform b protein in 4E-HA 5 cells compared to 

4E-HA 10 cells may therefore render these cells more susceptible to oxidant injury

4 3 4 9 poly(rQ-binding protein 2 (PCBP2), (hnRNP E2)

poly(rC)-binding protein 2 expression was 1 50-fold higher in 4E-HA 5 cells 

compared to 4E-HA 10 cells

£oly(C)-bindmg proteins (PCBPs) constitute a family of nucleic acid-binding proteins 

that play important roles in a wide spectrum of regulatory mechanisms The diverse 

functions of PCBPs are dependent on the ability of the PCBPs to recognize poly(C) 

sequences with high affinity and specificity PCBPs contain three copies of KH 

(hnRNP K homology) domains, which are responsible forbindmg nucleic acids 

Interaction of PCBPs with the UTRs of mRNAs have been shown to regulate the 

stability of these molecules and can also regulate their translational activation and 

repression (Waggoner and Liebhaber, 2003, Du et a l , 2004) Waggoner and 

Liebhaber identified one hundred and sixty mRNAs which interact with poly(rC)- 

binding protein 2 indicating a role for this protein in post-transcnptional regulation of 

the expression of a wide number of genes (Waggoner and Liebhaber, 2003) This
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study also showed that poly(rC)-binding protein 2 protein interacted with its own 

mRNA, which suggests autoregulatory control of its gene expression (Waggoner and 

Liebhaber, 2003)

The higher expression level of poly(rC)-binding protein 2 in 4E-HA 5 cells may affect 

post-transcnptional/translational control of gene expression in these cells

4 3 4 10 Hsp 70kDa protein 5 (BiP/GRP78)

Hsp 70kDa protein 5 (BiP) expression was 1 50-fold higher in 4E-HA 10 cells 

compared to 4E-HA 5 cells

BiP/GRP78 functions as an endoplasmic reticulum protein chaperone and aids in the 

production of properly folded proteins and protein complexes and prevents the 

accumulation of misfolded proteins and protein aggregation BiP/GRP78 is also a 

major regulator of the stress response in the endoplasmic reticulum GRP78 binds to 

all three ER stress sensors (PERK, IRE 1, ATF 6) through its peptide binding domains 

and keeps them in an inactive conformation The peptide binding domain also serves 

as the binding region for misfolded proteins When misfolded proteins accumulate in 

the cell, they bind to GRP78 and disrupt its interaction with these proximal stress
/

sensors While free IRE 1 and PERK homodimense and undergo autophosphorylation 

and activation, ATF6 transits to the Golgi for proteolytic activation (Rao and 

Bredesen, 2004) Increased expression of GRP78 is induced by the ATF 6 

transcription factor in response to cell stress (Rao and Bredesen, 2004)

The higher level of expression of GRP78/BiP in 4E-HA 10 cells in comparison to 4E- 

HA 5 cells may occur as a result of cell stress response in these cells There may also 

be higher constitutive level of GRP78/BiP in these cells which may aid in protein 

production in the endoplasmic reticulum
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4.4 Microarray analysis of eIF4E overexpressing cells

Microarray analysis was performed on eIF4E overexpressing cells to determine if 

translational changes induced by eIF4E overexpression were causing a downstream 

effect on gene transcription The 4E-HA clone 5 , 4E S209-HA clone 6 and pcDNA 2 

cells were analysed in triplicate using aflymetnx H G-U133 A  genechips which contain 

oligonucleotide probesets for 14,500 of the best characterised human genes The 

results from this experiment were analysed using Genespnng statistical analysis 

software Using Genespnng software we selected genes that showed a two-fold up or 

down regulation between the different transfected DLKP clones tested The genes 

selected using these parameters underwent further statistical analysis for selection of 

significantly changed genes Genes that passed this statistical analysis were then 

clustered into groups which showed similar expression levels in the three cell lines 

tested (Figure 3 1 2  12 5) The genes represented in these clusters were then analysed 

and genes of interest were categonsed according to cellular function

The overexpression of 4E-HA and 4E S209-HA resulted in altered transcnptional 

regulation of large numbers of genes involved vanous cellular processes This 

indicates that changes that occur as a result of eIF4E-mediated translational regulation 

of protein expression have a knock-on effect on the transcnptional regulation of 

certain genes It would be of interest to determine if the changes in transcnptional 

regulation of gene expression seen in these cells are replicated in other lung 

carcinoma cell lines and cells from other tissues upon overexpression of eIF4E
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4.4.1 Actin cytoskeleton- related genes

A  large number of genes known to interact with and regulate the actm cytoskeleton 

were found to be differentially regulated in 4E-HA 5 and 4E S209-HA 6 cells 

compared to pcDNA 2 controls (Table 3 1 2  12 3) This corresponds with differences 

in F-actin staining seen in 4E-HA 5 and 4E S209-HA 6 cells compared to pcDNA 2 

control cells when analysed with fluorescently labelled phalloidm (Section 3 1 2  13) 

The 4E-HA 5 cells exhibited actm structures such as lammelipodia and filopodia 

associated with migratory cells which were not present in 4E S209-HA 6 and pcDNA

2 cells Regulation of actin cytoskeletal dynamics is known to play an important role 

in normal and pathological cell motility (Lambrechts e t a l , 2004) The changes seen 

in the actin cytoskeleton of 4E-HA 5 and 4E S209-HA 6 cells are likely to play a role 

in regulating the invasiveness of these cells The effects of eIF4E and translational 

control in regulating the actin cytoskeleton in invasive and metastatic cancer should 

be an interesting area for future studies A  number of these genes are discussed below

4.4 11 TNNT1 (Troponin T)

Microarray analysis showed TNNT1 mRNA expression was down regulated in 4E- 

HA 5 and 4E S209-HA 6 cells compared to pcDNA 2 control cells (Section

3 1 2 12 2 3)

The asymmetric extended comma-shaped molecule of troponin T provides contacts 

between troponin components, tropomyosin and actin The C-terminal globular 

domain of troponin T interacts with tropomyosin (in the vicinity of Cys-190), 

troponin components and actin (Filatov et a l , 1999) This molecule therefore plays a 

role in regulating the organisation of the actin cytoskeleton It is likely that decreased 

expression of TNNT1 in 4E-HA 5 and 4E S209-HA 6 cells may contribute to the 

organisation of actm structures in these cells

4 4 1 2  CAPG

Microarray analysis showed CAPG mRNA expression was down-regulated in 4E-HA

5 cells compared to 4E S209-HA 6 and pcDNA 2 control cells (Section 3 1 2 12 2 3)
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Dynamic shifts in the concentration and length of actm filaments provide the force 

and structure for nonmuscle cell motility Many actin-binding proteins exist to 

temporally and spatially regulate actm filament assembly A  key site for the 

regulation of actm filament assembly is the fast growing or barbed actm filament 

ends In living cells the number of barbed ends available for the addition of actm 

monomers is likely to determine where new forces for directional cell movement are 

generated Proteins capable of blocking exchange at the barbed end can prevent 

indiscriminate growth of actm filaments and control where new actin filaments are 

assembled The gelsohn/villin family of actin regulatory proteins, of which CapG is a 

member can serve this function (Witke et al, 2001)

The decreased expression of CAPG in 4E-HA 5 cells may therefore contribute to the 

expression of F-actin structures in these cells Decreased CAPG expression may cause 

dysregulation of actin filament assembly in 4E-HA 5 cells and therefore contribute to 

increased motility and invasiveness

4 4 1 3  MARCKS

Microarray analysis showed MARCKS mRNA expression was increased in 4E-HA 5 

(11 88-fold) and 4E S209-HA 6 (5 23-fold) cells compared to pcDNA 2 control cells 

(Section 3 1 2 12 2 3)

The protein encoded by this gene is a substrate for protein kinase C It is localized to 

the plasma membrane and is an actm filament crosslmking protein Phosphorylation 

by protein kinase C or binding to calcium-calmodulin inhibits its association with 

actin and with the plasma membrane, leading to its presence in the cytoplasm The 

protein is thought to be involved in cell motility, phagocytosis, membrane trafficking 

and mitogenesis (Disatnick e t a l , 2004, Stumpo e i a l , 1989)

M ARCKS mRNA expression was increased 11 88-fold in 4E-HA 5 cells, the 

increased expression of this gene product may contribute to expression of actin 

structures in these cells and contribute to increased invasiveness
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4 4 1 4  ADD2 (Adducin 2, beta)

Microarray analysis showed Adducin mRNA expression was decreased in 4E 8209- 

HA 6 cells compared to 4E-HA 5 and pcDNA 2 control cells (Section 3 1 2 12 2 3) 

Adducins are heteromenc proteins composed of different subunits referred to as 

adducin alpha, beta and gamma The three subunits are encoded by distinct genes and 

belong to a family of membrane skeletal proteins involved in the assembly of 

spectnn-actin network in erythrocytes and at sites of cell-cell contact in epithelial 

tissues Adducin forms tematy complexes between spectnn and actin and promotes 

association of spectnn with actin filaments Adducin exhibits the highest affinity for 

complexes between spectnn and the fast-growing ends of actin filaments (Bennet and 

Baines, 2001, Matsuoka et a l , 2000)

The relative activities of adducin for actin filament ends and sides in the presence and 

absence of spectnn suggest that the preferred role of adducin in cells is to form a 

complex with the fast-growing ends of actin filaments that recruits spectnn and 

prevents addition or loss of actin subunits Adducin thus is an actin-capping protein 

that recruits other proteins to actin filament ends and could represent a new class of 

assembly factor with the function of integrating actin into other cell structures (Bennet 

and Baines, 2001)

Recent observations suggest a role for adducin in cell motility and as a target for 

regulation by Rho-dependent and Ca2+-dependent pathways Prominent physiological 

sites of regulation of adducin include dendntic spines of hippocampal neurons, 

platelets and growth cones of axons (Matsuoka et a l , 2000)

Decreased expression of ADD2 in 4E S209-HA 6 cells may play a role in the 

organisation of actin cytoskeletal structures in these cells
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4.4.2 Integnn signalling/focal adhesion proteins/FAK related genes

Microarray analysis revealed the differential expression of a number of integnn 

signalling/focal adhesion proteins/FAK related genes (Table 4 4 2)

pcDNA 2 4E S209-HA 6 4E-H A5

PTK2 (FAK) 1 (207 5) 0 51 (105 9) 0 378 (78 4)

TG FB1I1 (Hic-5) 1 (68 93) 0 76 (52 33) 0 447 (30 80)

EPHA3 1 (2 267) 189 15 (428 8) 181 78 (412 1)
NTS 1 (95 7) 34 6 6 (3316  8) 38 84 (3716 73)

CASP 1 (51 23) 1 943 (99 53) 1 45 (74 23)

NEDD9 (HEF-1) 1 (88 57) 0 32 (28 67) 1 20(106 6)

Table 4 4 2 Microarray analysis of expression levels of FAK  related genes 

Normalised and raw (in brackets) expression values are given for these genes

4 4 2 1 F A K

Microarray analysis showed decreased expression of FAK mRNA in 4E-HA 5 and 

4E-S209-HA 6 cells compared to pcDNA 2 control cells (Table 3 1 2 12 2 5)

Western blot analysis of FAK  protein expression also shows decreased expression of 

FAK protein in 4E-HA 5 and 4E S209-HA 6 cells in companson to DLKP and 

pcDNA 2 cells (Fig 3 1 2  14 1) This result matches the decreased expression level of 

FAK  mRNA seen in these cells from microarray analysis and therefore provides 

venfication for that result

Immunofluorescent analysis of FAK expression in stably transfected 4E-HA 

overexpressing clones showed a dramatic alteration in the level and localisation of 

FAK protein within these cells In pcDNA control transfected DLKP cells, strong 

FAK immunofluorescence was distnbuted in patches evenly throughout the cell (Fig 

3 1 2  14 2) In 4E-HA 5 cells FAK immunflourescence was decreased overall and 

showed localisation to areas of cellular outgrowth at the edges of cells (Fig 

3 1 2  14 2) The 4E S209-HA 6 cells also showed an overall decrease in FAK  

immunofluorescence and localisation at the edge of colonies (Fig 3 1 2  14 2) The
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decrease in FAK expression in eIF4E overexpressing cells was likely due to decreased 

transcription as microarray analysis showed decreased FAK mRNA expression in 4E- 

HA 5 and 4E S209-HA 6 cells compared to pcDNA 2 cells (Table 3 1 2 12 2 5)

Focal adhesion kinase (FAK) plays a prominent role in integnn signalling FAK  

activation, demonstrated by an increase in phosphorylation of Tyr397 as well as other 

sites in the protein, is best understood in the context of the engagement of integnns at 

the cell surface Activation of FAK results in recruitment of a number of SH2-domain 

and SH3-domain containing proteins, which mediate signalling to several downstream 

pathways FAK-dependent activation of these pathways has been implicated in a 

diverse array of cellular processes including cell migration, invasion, growth factor 

signalling, cell cycle progression and cell survival (Parsons, 2003, Schlaepfer et a l , 

2004) The 4E-HA 5 cells show increased m vitro  invasiveness It is possible FAK  

expression and localisation may be an important factor in this result It will be 

important in future studies to determine the activation status of FAK  within these cells 

using phosphospecific antibodies It is possible that increased expression of pi 

integnn in 4E-HA 5 cells may result in increased FAK activation and play a role in 

the increased invasiveness of these cells Analysis of FA K  in A549 lung carcinoma 

cells revealed that inhibition of FAK expression or function resulted in decreased 

MMP-9 secretion and the inhibition of in vitro  A549 lung adenocarcinoma cell 

invasion through reconstituted basement membrane (Huack et a l , 2001) FAK  

tyrosine phosphorylation and the co-localisation of v-Src with FAK and pi integnn at 

mvadopodia cell projections was shown to promote cell invasion in fibroblasts 

(Huack et a l , 2002) A  study of squamous cell carcinoma cells showed that 

recruitment of FAK  and paxillin to pi integnn promoted cancer cell migration and 

invasion via the mitogen activated protein kinase pathway (Crowe and Ohannessian, 

2004) These and other studies suggest that pi integnn and FAK are important 

regulators of cellular migration and invasion

The results for FAK  expression show that the level of FAK expression and its 

localisation are altered in 4E-HA 5 overexpressing cells compared to pcDNA 2 

control cells The importance of FAK in regulation of cell signalling and cellular 

behaviour would suggest this may have a major effect on the phenotype of these cells 

Further analysis of FAK  activation using phospho-specific antibodies should allow us 

to gam further insights into the role of FAK in these cells
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4.4.2 2 Hic-5 (TGFB1I1) and HEF 1 (NEDD9)

Hie 5 (TG FB1I1) and HEF 1 (NEDD9) are proteins homologous to paxilhn and 

pl30Cas respectively, which are two of the most important proteins known to interact 

with FAK in focal adhesion complexes Paxilhn is considered to be important for the 

localisation of FAK  to focal adhesions and signalling to FAK from (3-integnn 

cytoplasmic domains via its interaction with talin Upon activation, FAK combines 

with Src family kinases, which then phosphorylate paxilhn and pl30Cas Both of 

these molecules serve as scaffolds for the recruitment of various adaptors and 

signalling intermediates (Giancotti, 1999)

Microarray analysis showed Hic-5 mRNA expression was down regulated in 4E-HA 

5 cells compared to pcDNA 2 and 4E S209-HA 6 cells (Section 3 1 2 12 2 5) Hic-5 is 

a paxilhn homologue localised to focal adhesion complexes but has distinct functional 

features from paxilhn Unlike paxilhn, Hic-5 is a negative regulator of cell growth 

Hic-5 inhibits cell spreading via competition with paxilhn for FAK  and subsequent 

prevention of downstream signalling transduction Expression of anti sense Hic-5 is 

shown to increase cell spreading It is hypothesised that Hic-5 could compete for 

common interaction factors with paxilhn and antagonise the signal pathways that 

involve Paxilhn This competitive effect between paxilhn and Hic-5 through 

interaction with FAK suggests that the counterbalance of paxilhn and Hic-5 

expression may be a novel mechanism regulating integrtn mediated signal 

transduction and the resultant cytoskeletal reorganisation (Nishiya et a l , 2001, 

Yuminamochi et a l , 2003) Decreased levels of this protein in 4E-HA 5 cells may 

have an important effect on regulation of FAK  signalling and interactions It may also 

play a role in the localisation of FAK  protein in these cells

Microarray analysis showed NEDD9/HEF1 mRNA expression is downregulated in 

4E S209-HA 6 compared to 4E-HA 5 cells and pcDNA 2 cells HEF1 (NEDD9) 

possesses a similar protein sequence and domain structure to the prototypical member 

of the Cas family pl30Cas, with both proteins containing an ammo terminal SH3 

domain, multiple potential SH2 binding sites in the central substrate domain and a

260



carboxy terminal dimensation molecule Ligation of pi integnns in hematopoietic or 

lymphocytic cells causes tyrosine phosphorylation of HEF1 HEF1 is a substrate for 

several tyrosine kinases including FAK, RAFTK, and Src family members In 

adherent cells, HEF1 localises to focal adhesions where it may modulate adherence 

based signalling Studies suggest that phosphorylated HEF1 can function as a 

downstream effector of FAK to promote integnn-dependent cell motility (O’Neill et 

a l , 2000, Zhenge and McKeown-Longo, 2002) Decreased HEF1 expression in 4E 

S209-HA 6 cells is likely to have an important effect on regulation of FAK  signalling

4 4 2 3 EphA3

Microarray analysis showed that mRNA levels for the receptor tyrosine kinase EphA3 

was highly upregulated in both 4E-HA 5 (428 8-fold) and 4E S209-HA 6 (412 1-fold) 

cells compared to pcD NA2 control cells (Section 3 1 2 12 2 5) The cytoplasmic 

domain of this class of EphA receptors is known to interact with FAK (Murai and 

Pasquale, 2003) and therefore may play a role in the localisation and activation of 

FAK in these cells

4 4 2 4 Neurotensin

Microarray analysis showed that mRNA levels for the neuropeptide Neurotensin was 

also highly upregulated in both 4E-HA 5 (34 66-fold) and 4E S209-HA 6 (38 84-fold) 

cells compared to pcDNA 2 control cells (Section 3 1 2 12 2 5) Neurotensin is a 

neuropeptide which alters the growth of cancers cells and stimulates growth and 

colony formation of small cell lung cancer cells (Leyton et a l , 2002, Sethi and 

Rozengurt, 1991) A  study by Leyton et a l  (2002) showed that treatment of the large 

cell lung carcinoma cell line NCI-H1299 with neurotensin caused tyrosine 

phosphorylation of focal adhesion kinase This effect was inhibited by treatment of 

the cells with the neurotensin receptor antagonist SR48692 These studies suggest that 

increased expression of neurotensin in 4E-HA 5 and 4E S209-HA 6 cells may 

increase activation of FAK  signalling in these cells
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4 4 2 5 Casp (Calpastatin)

Microarray analysis showed that mRNA levels for the calpain inhibitor calpastatin 

were upregulated in 4E S209-HA 6 cells and also at a lower level 4E-HA 5 cells 

compared to pcDNA 2 control cells (Section 3 1 2 12 2 5)

The Calpains are a well-conserved family of intracellular calcium dependent cysteine 

proteases In vivo, calpain activity is tightly regulated by its highly specific 

endogenous inhibitor calpastatin Calpains cleave numerous cellular proteins, 

including components of focal adhesions, cell-cycle regulatory proteins and proteins 

involved in the regulation of cell survival Thus, calpain activity is implicated in a 

variety of cellular processes, including migration, proliferation and apoptosis (Pemn 

and Huttenlocker, 2002, Potter et al, 1998)

Treatment of migrating cell with pharmacological inhibitors of calpain activity results 

in impaired retraction of the rear of the cell, an increase in tail length and suppression 

of cell movement (Huttenlocher et a l  1997) Calpains are known to localise at focal 

adhesion structures and distinct mtegnn clusters and several focal adhesion 

components such as FAK, Src, paxilhn, talin and P-Integnn subunits are substrates for 

calpain Calpain-mediated proteolysis has therefore been proposed as a mechanism 

for promoting disassembly of focal adhesion structures, leading to the turnover of 

integnn-dependent cell matnx adhesions that is needed for cell movement (Glading et 

a l , 2002, Pfaff et a l , 1999) Spreading and cell motility require calpain degradation 

of focal adhesions at attachment sites at both the leading and rear edges of cells 

(Glading et a l , 2002, Pemn and Huttenlocker, 2002)

Overexpression of calpastatin in NIH-3T3-derived clonal cells impairs the ability of 

these cells to extent lammelipodia, reduces by 90% the ability of the cells to spread 

and results in an increase in eznn content (suggesting that calpastatin overexpression 

prevents normal degradation of this calpain-sensitive substrate) (Potter et a l , 1998) 

Increased expression of calpastatin in 4E-S209-HA 6 cells may therefore cause 

disruption of focal adhesion disassembly by calpain and therefore affect FAK  

localisation and cellular morphology and motility
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4.4.3 Genes related to neuron guidance, tissue morphogenesis, 

cellular migration

Recent studies have shown that many proteins that have on gin ally been identified in 

the nervous system as guidance cues for axons are also involved in regulating tissue 

morphogenesis, cellular migration and invasion (Hinck, 2004, Tamagnone and 

Comoglio, 2004) Microarray analysis of 4E-HA 5 and 4E S209-HA 6 cells in 

comparison to pcDNA 2 control cells identified a number of differentially regulated 

genes which fall into this category (Table 4 4 3)

pcDNA 2 4E S209-HA 6 4E-H A5
ROBOl 1 (181 4) 0 513  (93 17) 0 388 (70 63)
CRMP1 1 (152 9) 0 20 4(31 17) 0 259 (39 63)

SLITRK3 1 (6 433) 15 42(99 2) 20 301 (130 6)
EPHA3 1 (2 267) 189 15 (428 8) 181 78 (4 12  1)
SEM A3A 1 (33 17) 2 351 (77 97) 3 120 (103 5)
SEM A3C 1 (54 27) 2 0 4 (110  7) 1 623 (88 1)

DPYSL4 (CRMP3) 1 (61 03) 0 2 1 5 ( 1 3  1) 0 452 (27 57)
Table 4 4 3  Expression levels of diffentially expressed genes related to neuron 

guidance, tissue morphogenesis, cellular migration and invasion Normalised and raw 

(in brackets) expression values are given for these genes

4 4 3 1  Semaphonns, CRMPs

Microarray analysis showed that mRNA levels for the semaphonn family axon 

guidance genes SEMA3 A  and SEM A3C were upregulated in 4E-HA 5 and 4E 8209- 

HA 6 cells compared to pcDNA 2 control cells (Section 3 1 2 12 2 6) Messenger 

RN A levels for the SEM A3A signalling gene CRMP1 and its homolog DPYSL4  

(CRMP3) were downregulated in 4E-HA 5 and 4E S209-HA 6 cells compared to 

pcDNA 2 control cells (Section 3 1 2 12 2 6)

The semaphonns are among the best studied axonal guidance molecules and appear to 

play key roles in these cellular events To date, more than 20 different semaphonns 

have been identified They fall into eight groups on the basis of domain organisation
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and species of origin but all semaphonns contain a conserved, 500-amino-acid-length 

“ Sema” domain at their amino-terminus

Sema3 A, a prototypical class 3 secreted semaphonn, is a potent inhibitor of axonal 

outgrowth from a specific subset of neurons, including spinal motomeurons and 

neurons in the embryonic dorsal root ganglion (DRG) and sympathetic ganglion The 

binding of Sema3A to DRG growth cones rapidly induces actin depolymensation and 

growth cone collapse, a cellular response associated with the chemorepulsion of 

neuntes However, semaphonns can provide both repulsive and attractive cues to 

cells In cortical neurons Sema3A, provides a repulsive signal whereas Sema3C acts 

as an attractive guidance signal (Goshima e t a l , 2002)

In lung, Sema3 A  inhibits branching morphogenesis of the fetal mouse lung whereas 

Sema3C and Sema3F activate branching morphogenesis (Goshima et a l , 2002, 

Kagoshima et a l , 2001) The mhibitoiy effect of Sema3 A  on cell growth seen in lung 

branching morphogenesis may be mediated via CRMP1 CRMP1 has been shown in 

other cell types to function downstream of SEM A3A in cell growth 

inhibition/repulsion (Deo et a l , 2004) Loss of CRMP1 expression is also associated 

with increased mvasiveness of lung cancer cells (Shih e t a l , 2001), this may be due to 

these cells failing to respond to growth inhibition/repulsion signals from Sema3 A  as a 

result of low CRMP1 levels Downregulation of CRMP1 may therefore prevent 

negative regulation of growth/invasion by semaphonns (Sema3 A) and allow positive 

regulation of growth/invasion by semaphonns (Sema3C) to dominate

The collapsing-response-mediator-protein (CRMP) family consists of five members 

and is best descnbed m the regulation of axonal-growth cone collapse CRMP1, 

CRMP2, CRMP3 and CRMP4 family members are approximately 75%  identical in 

protein sequence CRMP5 (also known as CRAM  or CRMP3 associated molecule) 

shares a 50% identity with other CRMPs (Deo et a l , 2004) CRMPs appear to play a 

complex role in axon growth as well as microtubule dynamics and axon induction 

CRMPs localise to the lamellipodia and filopodia of axonal groth cones, suggesting a 

role in axon guidance (Deo et a l , 2004)

A  cDNA microarray study by Shih e ta l  (2001) examining differential gene 

expression among a panel of lung carcinoma cell lines of varying invasive abilities
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identified the gene CRMP-1 as being relatively highly expressed in less invasive lung 

cancer cell lines. Transfection of CRMP-1 into a highly invasive cell line reduced 

invasion through a matrigel coated membrane by approximately half (Shih et a l ,

2001). The CRMP-1 mRNA levels of 80 non-small-cell lung carcinoma tumors were 

also determined and it was found that patients with high CRMP-1-expressing tumors 

exhibited statistically significantly longer disease-free and overall survival (Shih et 

a l , 2001). A  low expression of CRMP-1 mRNA in lung cancer tissue was 

significantly associated with advanced disease, lymph node metastasis, early post­

operative relapse and shorter survival (Shih e ta l., 2003).

CRMP3 (DPYSL4) is structurally and functionally homologous to CRMP1 and may 

therefore also play a similar role in regulating the invasiveness of lung cancer cells 

(Deo e t a l , 2004; Shih e ta l,  2003).

4.4.3.2 ROBOl

Microarray analysis showed that mRNA levels for the axon guidance genes ROBOl 

was downregulated in 4E-HA 5 and 4E S209-HA 6 cells compared to pcDNA 2 

control cells (Section 3.1.2.12.2.6).

Another family of axonal guidance cue genes which are expressed in the lung are Slit 

ligands and their Robo receptors (Anselmo e t a l , 2003; Xian e t a l , 2001).

The D UTTJ/RO BO J  gene is widely expressed in mammals and codes for a receptor 

with a domain structure of the NCAM  family. Members of the Slit family are likely to 

be the ligands for mammalian Robo. Slit proteins have been expressed in lung at 

levels equal to or greater than in adult rat brain (Xian e t a l , 2001).

In a study by Xian et a l  (2001) a deleted form of the Robol gene, which mimics a 

naturally occurring, lung tumor-associated human homozygous deletion of exon 2 of 

DUTTl/ROBOl, was introduced into the mouse germ line. Mice homozygous for this 

targeted mutation, which eliminates the first Ig domain of Duttl/Robol, frequently 

died at birth of respiratory failure because of delayed lung maturation. Lungs from 

these mice have reduced air spaces and increased mesenchyme, features that are 

present some days before birth. Survivors acquire extensive bronchial epithelial 

abnormalities including hyperplasia. This study shows that ROBOl plays an 

important part in regulating lung cell growth and development (Xian e ta l,  2001).
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Analysis of Robol gene expression in munne lung development shows its expression 

correlates with brachial infiltration into the surrounding mesenchyme (Bonner e t a l , 

2003, Anselmo et a l , 2003)

The ROBOl gene is located on an area of chromosome 3 where allele loss is 

associated with lung tumor development (Xian et a l , 2001)

These studies show that the axon guidance molecule ROBOl plays a role in normal 

lung development and also lung cancer cell growth The decreased expression of 

ROBOl in 4E-HA 5 and 4E S209-HA 6 cells may therefore play a role in regulating 

the growth and mvasiveness of these cells

4 4.3 3 Slitrk3

Microarray analysis showed that mRNA levels for the axon guidance gene SLITRK3 

was upregulated in 4E-HA 5 and 4E S209-HA 6 cells compared to pcDNA 2 control 

cells (Section 3 1 2 12 2 6)

The Slitrk family was identified as neuronal transmembrane proteins that control 

neunte outgrowth When overexpressed in neuronal cells, induction of a single neunte 

or inhibition of neunte outgrowth was observed, depending on the Slitrk subtype 

Structurally, they are charactenzed by two leucme-nch repeat (LRR) domains located 

amino-terminally to the transmembrane domain (on extenor of the cell) LRR  

domains are known to be present in many proteins and mediate protein to protein 

interaction The LRR domains in the Slitrk family proteins are most similar to those 

of the Slit family, which are known to control axon guidance and branching Another 

structural feature is carboxy-terminally located tyrosine residues which are flanked by 

amino acid sequences similar to the carboxy-terminal domain of trk neurotrophin 

receptor (Aruga et a l , 2003)

Increased expression of SLITRK3 in 4E-HA 5 and 4E S209-HA 6 cells may therefore 

play a role in regulating the growth and mvasiveness of these cells
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4.4 3 4 EphA3

Microarray analysis showed that mRNA levels for the receptor tyrosine kinase EphA3 

was highly upregulated in both 4E-HA 5 (428 8-fold) and 4E S209-HA 6 (412 1-fold) 

cells compared to pcDNA 2 control cells (Section 3 1 2 12 2 6)

The Eph family of receptor tyrosine kinases regulate the behaviour of various cell 

types by binding membrane anchored ligands, ephnns, at sites of cell-cell contact 

(Pasquale, 2005) Signalling through Eph receptor tyrosine kinases is involved in 

regulating axon guidance, cell adhesion and cell migration during development and 

disease (Pasquale, 2005) Increased expression of EphA3 in 4E-HA 5 and 4E S209- 

HA 6 cells may therefore play a role in regulating the growth and mvasiveness of 

these cells
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4.4 Invasion related genes
Analysis of the in vitro  invasiveness of 4E-HA 5, 4E S209-HA 6 and pcDNA 2 cells 

showed differences in the invasiveness of these cells (Section 3 1 2 10) We therefore 

decided to identify differentially expressed genes from microarray analysis which 

were specifically related in cellular invasiveness (Table 4 4)

pcDNA 2 4E S209-HA 6 4E-H A 5
TACSTD l 1 (18 2) 9 654 (175 7) 1 74 6 (31 77)

TPBG 1 (88 57) 0 324 (28 67) 1 204(106 6)
MMP10 1 (681 2) 0 423 (288 4) 0 878 (597 9)

TFPI2* 1 (298 65) 0 006(1 8665) 0 4 2 7 (12 7  615)
Table 4 4 Expression levels of diffentially expressed invasion related genes 

Normalised and raw (in brackets) expression values are given for these genes

4 4 41  TACSTD1, tumor-associated calcium signal transducer 1

TACSTD1 mRNA expression was upregulated in 4E S209-HA 6 cells compared to 

4E-HA 5 and pcDNA 2 cells A  recent study by Lader et a l  (2004) analysing the gene 

expression profile of 22 non-small cell lung cancer cell lines and their invasiveness 

through Matngel identified TACSTD1 (Ep-CAM) among the two genes with the 

highest inverse association with invasion (Lader et a l , 2004) Increased TACSTD 1 

expression may therefore inhibit invasiveness in 4E S209-HA 6 cells

4 4 4 2 TPBG, trophoblast glycoprotein

TPBG mRNA expression was decreased in 4E S209-HA 6 cells compared to 4E-HA

5 and pcDNA 2 cells There was also an increase in TPBG mRNA expression in 4E- 

HA 5 cells compared to pcDNA 2 cells

The human 5T4 oncotrophoblast glycoprotein was discovered by looking for shared 

surface molecules which would reflect the functional si mil an ties between the growth 

and invasive properties of trophoblast, the major interfacing cell type between mother 

and foetus in the placenta and tumour cells It is expressed by many different 

carcinomas but is detected at only low levels in some normal epithelia 

The 5T4 trophoblast glycoprotein is overexpressed in a number of different tumour 

types, notably ovanan, gastnc and colorectal and is associated with poorer clinical 

outcome This association suggests a role for 5T4 in the progression of malignancy
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(Woods et al, 2002, King et a l , 1999) These studies suggest that decreased TPBG  

expression in 4E S209-HA 6 cells may cause a decrease the invasiveness of these 

cells and increased expression 4E-HA 5 cells may increase the invasiveness of those 

cells

4 4 4.3 MMP10, matrix metalloproteinase 10

MMP10 expression was decreased in 4E S209-HA 6 cells compared to 4E-HA 5 and 

pcDNA 2 cells

The serine protease MMP10 has a broad range of substrates including the ECM  

components, laminm, fibronectm and non-fibnllar collagens MMP-10 is also 

considered to play a role as an activator of other MMPs, converting MMP1, MMP8, 

MMP7 and MMP9 from their pro-MMP form to their active MMP form (Nakamura et 

a l,  1998)

A  number of recent studies implicate MMP10 expression in lung cancer growth and 

metastasis A  study of the expression and significance of matrix metalloproteinases in 

lung carcinomas showed strong overall levels of expression of the stromelysins 

MMP-3 and MMP-10 in lung adenocarcinomas (Bodey et a l , 2001)

An Indian study on MMP-10 expression in human esophogal squamous cell 

carcinomas (ESCCs) detected a large proportion (74%) of human ESCCs with MMP- 

10 overexpression in tumor cell cytoplasm and stromal elements (Mathew e t a l ,

2002) MMP-10 overexpression was significantly associated with tumor size, local 

invasiveness of the tumor and distant organ metastasis, suggestive of its involvement 

in development and progression of ESCCs (Mathew et a l , 2002)

Cho et a l (2004) compared MMP expression in recumng stage I lung cancer to non 

recurring stage I lung cancer using cDNA arrays, and found MMP10 to be the most 

frequently upregulated gene in recumng lung cancers This result was validated by 

quantitative PCR and real time RT-PCR analysis Immunohistochemical analysis of 

MMP-10 protein expression showed more intense immunoreactivity in recurred stage 

IB lung cancer than in nonrecurred stage IB lung cancer This study suggests MMP- 

10 plays an important role in the recurrence of stage IB lung cancer, irrespective of 

the histological type (Cho et a l , 2004)

These studies suggest that decreased expression of MMP10 in 4E S209-HA 6 cells 

may cause a decrease in the mvasiveness of these cells
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4 4 4 4 TFPI2

Microarray analysis showed TFPI2 mRNA expression was absent from 4E S209-HA 

6 cells and was also down regulated in 4E-HA 5 cells compared to pcDNA 2 control 

cells (Section 3 1 2  12 2)

TFPI2 plays a role in the invasion of cancer cells through the extracellular matrix 

(ECM) It is a senne protease inhibitor secreted into the ECM whose expression is 

often lost in cells derived from tumors of diverse organs TFPI2 inhibits plasmin, 

trypsin, chymotrypsin, cathepsin, and plasma kallikrein

The role of TFPI2 in cancer progression is not completely elucidated On one hand, 

TFPI2 has an anti-invasive effect that might be mediated via inhibition of plasmin that 

activates proteases (e g MMPs), promoting degradation of the extracellular matnx 

and tumor invasion Several tumor cell lines were less invasive when they were stably 

transfected with TFPI2 cDNA (Chand e t a l , 2004, Kondun et al, 2001) On the other 

hand, TFPI-2 has been shown to have a pro-invasive effect in hepatocellular 

carcinoma cells (Neaud et a l , 2000) The A549 lung cancer cell line displayed 

increased mvasiveness, as measured by Matngel invasion assay, when TFPI2 levels 

were decreased by transfection with antisense mRNA (Lakka et a l , 2000)

TFPI2 expression is normally associated with inhibition of invasiveness in cancer 

cells although exceptions are seen in the literature Our array results show pcDNA 2 

control transfected cells have the highest level of TFPI2 expression with 4E-HA 5 

cells having approximately half the expression level of pcDNA 2 controls and TFPI2 

expression absent from 4E S209-HA 6 transfected cells Decreased TFPI2 expression 

in 4E-HA 5 cells may therefore play a role in the increased invasiveness of these cells 

Although TFPI2 expression is absent from 4E S209-HA 6 cells they do not display 

increased mvasiveness, this may be due to other factors which regulating mvasiveness 

in these cells
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4.4.5 Tumor suppressor genes

Genes known to function as tumor suppressor genes were shown to be highly 

represented in the group of genes which showed increased expression in 4E S209-HA 

6 cells (Cluster 5) compared to 4E-HA 5 and pcDNA 2 control cells (Fig 3 1 2 23) 

(Section 3 1 2  12 2) The transcriptional upregulation of tumor suppressor genes seen 

in 4E S209-HA overexpressing cells may indicate that translational changes that 

occur as a result of decreased eIF4E phosphorylation have a knock on effect on 

transcnptional regulation of these genes This may have important implications for the 

role of elF4E phosphorylation in tumongenic growth regulation If decreased eIF4E 

phosphorylation can upregulate tumor suppressor gene expression, inhibitors of the 

Mnk eIF4E kinases could be used to treat cancers with the aim of increasing the 

transcription of these genes Further studies of tumor suppressor gene expression in 

4E S209-HA overexpressing cells or treatment of cells with eIF4E kinase inhibitors 

should reveal if this is a general effect or is specific to the cells examined in this 

study
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4.4 6 Transcription factor genes
A number of transcription factors were found to be among genes differentially 

regulated in 4E-HA 5 and 4E S209-HA 6 cells compared to pcDNA 2 cells (Section

3 1 2 12 2 4) A  number of these have previously been shown to play important roles 

in regulation of lung cell growth and development and are discussed below

/

4 4 6.1 FOXA1

Microarray analysis showed that mRNA levels for the transcription factor FOXA1 

was upregulated in both 4E-HA 5 and 4E S209-HA 6 cells compared to pcDNA 2 

control cells (Section 3 1 2 12 2 4)

FOXA1 (HNF3a) belongs to the hepatocyte nuclear factor 3 (HNF3) gene family, 

which includes HNF3P (FOXA2) and HNF3y (FOXA3) H NF3a encodes a 

polypeptide o f473 amino acids in humans The HNF3 genes are members of the 

forkhead class of DNA-binding proteins, all of which contain a highly conserved 110- 

amino acid forkhead motif, a variant of the helix-tum-helix motf, first identified in 

the Drosophila gene fork head (fkh) H NF3a is expressed in embryonic endoderm and 

adult tissues of endodermal origin including stomach, intestines, liver, and lung The 

FO XAl/H N F3a gene is amplified and overexpressed in esophageal and lung 

adenocarcinomas and may have an oncogenic role in these cells (Lin et a l , 2002)

The increased expression of FOXA1 in 4E-HA 5 and 4E S209-HA 6 cells may 

therefore affect the carcinogenic growth (invasiveness) of these cells

4 4 6 2 NFIB

Microarray analysis showed that the mRNA level for the transcription factor NFIB 

was decreased in 4E-HA 5 cells compared to 4E S209-HA 6 and pcDNA 2 control 

cells (Section 3 1 2 12 2 4)

The transcription factor Nuclear factor I-B (NFIB) plays an important role in lung 

development Lung development is severely impaired in NFIB null mice, causing 

these mice to die early after birth due to respiratory failure (Grunder et a l , 2002) As 

NFIB is known to affect the growth of lung cells during development the decreased
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expression of this gene in 4E-HA 5 cells may contnbute to the growth characten sties 

of these cells

4 4 6 3 Etv5

Microarray analysis shows the transcription factor Etv5 (Erm) TO B E downregulated 

in 4E S209-HA 6 cells and upregulated in 4E-HA 5 cells compared to pcDNA 2 

control cells

The transcription factor Etv5 (Erm) is a member of the Pea3 subfamily of Ets 

transcription factors The Pea3 subfamily includes three members Pea3, Etv5 (Erm), 

and Er81 (Etvl) All three have a 72-amino-acid N-terminal transcription activation 

domain, an 85 amino acid winged hehx-tum-helix ETS DNA binding domain and a 

short C-terminal domain They recognise similar DNA sequences flanking the core 

GGAA/T binding sequence and act as transcriptional activators (Liu e t a l , 2003) The 

subfamily has been implicated in various cellular processes including proliferation, 

differentiation and tumongenesis Members are overexpressed in oncogene-induced 

mouse mammary tumours and expression of an inhibitor form of Pea 3 reduces the 

size and the number of tumors (Liu et a l , 2003)

Expression of a suppressor form of Erm (EngR-Erm) under the control of the 

promoter of the lung specific gene SpC in mice results in a severe disruption of lung 

development In addition to defects in branching morphogenesis, the differentiation of 

distal cell types is inhibited or delayed (Liu e t a l , 2003)

Conserved PE A3 elements that bind members of ETS transcription factors have also 

been found in all inducible MMP promoters, with the exception of the MMP-12 

promoter, they are located adjacent to at least one AP-1 element (Westermarck and 

Kahan, 1999)

The decreased expression of Etv5 in 4E S209-HA 6 cells corresponds to decreased 

expression of the matrix metalloproteinase MMP10 in these cells also detected by 

microarray analysis (Section 3 1 2 12 2 1) The promoter region of the MMP10 gene 

is known to contain conserved PE A3 elements Etv5 is a member of the PE A3 

subfamily of ETS transcription factors and may therefore be responsible for the 

transcriptional regulation of MMP10 seen here
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4.4.7 Possible Connections between transcriptional changes identified 

in microarray analysis and localised translation.

4 4 7 1 Focal Adhesion Complexes, Src and translational regulation

Microarray analysis has identified a number of focal adhesion and related genes 

whose expression was differentially regulated in 4E-HA and 4E S209-HA 

overexpressing cells compared to pcDNA controls These results indicate that 

signalling via integnns and focal adhesions are likely to be altered within these cells 

A  number of recent studies have indicated that focal adhesion proteins and focal 

adhesion sites may play a role in the regulation of translational control Src is a well 

known proto-oncogene which plays a central role in focal adhesion signalling (See 

section 1 3  1 1 )  Src mediated phosphorylation of the translational silencing protein 

hnRNPK is known to reversibly inhibit the binding of hnRNPK to the RNA  

regulatory element which this protein binds thereby allowing translational activation 

of mRNAs containing this regulatory element (Ostareck-Lederer et a l , 2002)

Another recent article by Kami et a l  (2005) revealed that active Src elevates levels of 

P-catenin by enhancing cap-dependent translation In this study Src was shown to 

induce phosphorylation of eIF4E and its repressor protein 4E-BP (Kami e t a l , 2005) 

Treatment of a number of cell lines with the Src inhibitor PP1 dramatically reduced 

the phosphorylation of eIF4E on senne 209 (Kami et a l , 2005)

A study by Hoog et a l  (2004) used specialized mass spectrometry methods to identify 

proteins interacting with focal adhesion proteins Numerous RNA binding and 

nbosomal proteins were identified including hnRNP K (Hoog et a l , 2004)

Subsequent confocal microcopic analysis of spreading cells showed hnRNP K protein 

localized to focal adhesion associated sites which were termed spreading initiation 

centers (SICs) (Hoog et a l , 2004) These results would indicate that Focal Adhesion 

Complex sites or SICs may be areas where hnRNP K may localize for translational 

activation of bound mRNAs

These studies therefore show a connection between translational activation and focal 

adhesion complexes
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4.4 7 2 Axon guidance cues and translational regulation

One of the best characterised cellular situations where localised mRNA translation/ 

protein synthesis is known to occur is neuronal axon growth cone response to growth 

guidance cues (Piper and Holt, 2004) Studies have shown that axons separated from 

their cell bodies have the ability to respond to growth guidance cues (Campbell and 

Holt, 2001) Axons which were separated from their cell bodies and treated with the 

guidance cue Sema3a showed a rapid increase in protein synthesis Axonal growth 

cones contained an abundance of nbosomal proteins, capped-RNA and translation 

initiation factors (eIF4E, 4E-BP and Mnk-1) and treatment with Sema3a and other 

guidance cues rapidly (5 min) induced the phosphorylation of eIF4E, 4E-BP and 

Mnk-1 (Campbell and Holt, 2001,2003) A  recent study by Wu et aI (2005) has also 

shown that Sema3a induces axonal translation of RhoA mRNA Localisation of RhoA 

transcripts was found to be mediated by an axonal targeting element located in the 

mRNA 3 ’UTR (Wu et a l , 2005) Localised axonal translation of the EphA2 receptor 

protein has also been reported and is also regulated by elements within the mRNA 

3 ’UTR (Bnttas e t a l , 2002) These results show that localised translational control of 

protein synthesis may play an important role in regulating axonal growth and 

migration Many of the factors which regulate axonal growth cone guidance have also 

been found to play similar roles in regulating cellular growth and migration in organ 

morphogenesis and cell migration in non-neuronal cells (Hinck, 2004) It may be the 

case therefore that the translational control mechanisms seen in the neuronal axon are 

replicated in non-neuronal cells (e g lung)
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The expression of F-actm was analysed in 4E overexpressmg cells using fluorescently 

labelled phalloidin, which specifically labels F-actin

The pcDNA control transfected cells and 4E-S209-HA mutant overexpressmg cells 

showed diffuse staining distributed throughout the cell (Section 3 1 2 13) In contrast, 

wild type 4E-HA overexpresssing cells showed intense filamentous F-actin staining 

and the presence of F-actin structures such as lammelipodia and filopodia, which are 

associated with cell migration (Section 3 1 2  13) The altered expression of F-actin in 

wild type 4E overexpressmg DLKP may be partially induced by the altered 

expression of pi integnn and FAK in these cells The cytoplasmic domain of pi 

integnn is known to bind directly to actin binding proteins and can also signal to 

proteins involved in actin cytoskeletal remodelling such as RhoGTPases via FAK  

Microarray analysis identified a large number of genes involved in regulation of the 

actin cytoskeleton that were differentially regulated in 4E-HA overexpressmg cells 

(Section 3 1 2 12 2 3)

Microarray analysis also identified a number of genes that are associated with 

mvasiveness in cancers A  number of these genes are best characterised for their role 

in guidance of neuronal axon growth (e g CRMP1, Sema3a) and are also known to 

play a role in lung morphogenesis These genes are known to induce changes in the 

actin cytoskeleton thereby altenng the growth and migration of target cells (Section 

4 4 3)

The altered expression of pi integnn and FAK proteins (Section 3 1 2 7, 3 1 2 14) and 

also actin related gene expression seen by microarray analysis (Section 3 1 2 12 2 3) 

would suggest that altered regulation of actin dynamics is one of the most significant 

aspects of the changes seen in 4E-HA overexpressmg cells 

Proteomic analysis also revealed changes in the levels of proteins involved in actin 

cytoskeletal regulation and a model for the translational regulation of these genes has 

beeen proposed (Secton 4 3 1 1 1 0 )

These changes are likely to be one of the major factors contnbuting to the altered 

morphology, growth and mvasiveness of these cells

4.5 F-Actin expression in eIF4E overexpressing DLKP cells
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The work presented in this thesis is derived from the analysis of gene expression in 

BrdU treated DLKP cells Treatment of DLKP cells with BrdU resulted in the post- 

transcnptional regulation of a number of growth and differentiation related genes 

This correlated with increased expression and phosphorylation of the translation 

initiation factor eIF4E, suggesting translational regulation of gene expression in these 

cells In this thesis, the translationally regulated proteins ODC and C/EBP0 were 

examined in eIF4E overexpressing DLKP cells to assess the role of translational 

regulation in the regulation of growth and differentiation related gene expression 

These proteins had not previously been examined in BrdU treated cells, so their 

expression in BrdU treated cells was analysed to determine if their expression was 

changed

4 6 1 ODC expression in BrdU treated DLKP cells

Polyamines are ubiquitous cellular components that are involved in normal and 

neoplastic growth Polyamine biosynthesis is tightly regulated in mammalian cells by 

the activities of onmthme-decarboxylase (ODC) and S-adenosyl methionone 

decarboxylase ODC is a rate limiting enzyme for polyamine biosynthesis and is 

recognised as a proto-oncogene (Shantz and Pegg,1999) Overexpression of ODC 

causes transformation of NIH3T3 cells ODC mRNA contains a lengthy GC rich 

5 ’UTR, rendering it poorly translated Overexpression of eIF4E in NIH 3T3 cells has 

been shown to increase ODC protein levels and depletion of eIF4E using anti-sense 

eIF4E suppressed ODC mRNA translation m eIF4E overexpressmg cells (Mamame et 

a l , 2004, Shantz and Pegg,1999)

Immunocytochemical analysis of expression of ODC in BrdU treated cells showed 

increased expression in these cells (Fig 3 2 1) Previous studies in this laboratory 

have shown that treatment of DLKP cells with BrdU induced increased expression of 

eIF4E As increased eIF4E levels lead to increased expression of ODC, the increased 

expression of eIF4E may account for the increase observed Increased production of

4.6 Analysis of BrdU treated DLKP cells for ODC, C/EBPP, and CBP

expression
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poly amines as a result of increased ODC levels may cause further changes in gene 

expression and regulation of growth

4.6.2 C/EBPa and C/EBPP expression m BrdU treated DLKP cells

In this thesis we have analysed the expression of the transcription factors C/EBPa and 

C/EBPp These transcription factors are known to be translationally regulated 

(Calkhoven e t a l , 2000) and also play a role in regulating the expression of 

differentiation related genes in the lung (Cassel and Nord, 2003)

Immunocytochemical and Western blot analysis of C/EBPa expression shows that 

this protein is not present in either untreated or BrdU treated cells (Fig 3 3 1 ,3  3 2) 

Low expression of C/EBPa may be significant as previous studies suggest C/EBPa is 

down regulated in a large proportion of lung cancers and that it has growth inhibitory 

properties in airway epithelial cells (Halmos e t a l , 2002) C/EBPa-deficient mice 

show hyperprohferation of type II pneumocytes and disturbed alveleolar architecture 

indicating its role in normal lung development (Flodby et a l , 1996)

Immunocytochemical analysis of C/EBPP expression in untreated DLKP cells shows 

strong cytoplasmic staining for C/EBPP Treatment of DLKP cells with BrdU caused 

a shift in staining from predominantly cytoplasmic staining in untreated cells to 

nuclear staining in BrdU treated DLKP cells (Fig 3 3 3) C/EBPP has previously been 

shown to be subject to regulation by nucleo-cytoplasmic transport (Ramji and Foka,

2002) Western blot analysis of C/EBPP expression showed an overall decrease in 

C/EBPP protein levels in BrdU treated cells (Fig 3 3 4)
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4.6.3 CBP expression in BrdU treated DLKP cells

CREB-binding protein (CBP) proteins are known to play a role in the expression of a 

number of lung differentiation related genes and are known to interact with a wide 

range of transcription factors CBP and p300 are transcriptional co-activator proteins 

that play a central role in co-ordinating and integrating multiple signal dependent 

events with the transcriptional apparatus, allowing the appropriate level of gene 

activity to occur in response to different physiological cues that influence, for 

example, proliferation, differentiation and apoptosis(Goodman and Smolik, 2001)

The transcription regulating properties of p300 and CBP appear to be exerted through 

multiple mechanisms They act as protein badges, thereby connecting different 

sequence-specific transcription factors to the transcription apparatus Providing a 

protein scaffold upon which to build a multicomponent transcriptional regulatory 

complex is likely to be an important feature of p300/CBP control Another key 

property is the presence of histone acetyltransferase (HAT) activity, which endows 

p300/CBP with the capacity to influence chromatin activity by influencing 

nucleosomal histones Other proteins, including Y Y 1  and c-Myc are also subject to 

regulation through acetylation by p300 and CBP (Chan and La Thangue, 2001, Yao et 

a l , 2001, Vervoorts et a l , 2003) p300 has also been reported to interact with the 

transcription factor C/EBPp which results in activation of C/EBPp and also triggers 

phosphorylation of p300 (Mink et a l , 1997, Schwartz et a l , 2003)

CBP has been found to be involved in the transcriptional regulation of the lung 

differentiation specific genes Surfactant Protein A  (SP-A) and Surfactant Protein (SP- 

B) (Naltner et a l , 2000, Yi et a l , 2002) CBP was found to stimulate the SP-B 

promoter synergistically with the transcription factors TTF-1 and RAR in the H441 

pulmonary adenocarcinoma cells (Naltner et a l , 2000) CBP, TTF-1 and SRC-1 

synergistically activated SP-A promoter activity in A549 lung adenocarcinoma cells 

(Yi et a l 9 2002)

Immunocytochemical analysis of CBP and p300 in developing mouse lung showed 

nuclear staining for both CBP and p300 in almost all cell types at various stages of

279



lung development indicating a role for CBP and p300 as general transcriptional co- 

activators in this organ (Naltner et a l , 2000)

Immunocytochemical analysis of CBP and p300 expression in untreated DLKP cells 

showed strong expression of CBP and low expression of p300 (Fig 3 4 1) Western 

blot analysis showed a decrease in the level of CBP protein expression in BrdU 

treated cells (Fig 3 4 2) As CBP and P300 are known to have a wide ranging effect 

on transcriptional regulation the decreased expression of CBP in BrdU treated DLKP 

cells may affect the transcriptional regulation of a large number of genes
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4.7 Analysis of Gene expression in DLKP cells grown in Serum Free 

Media treated with Hormone Supplemented Media

As an initial part of our study into regulation of gene expression in growth and 

differentiation of DLKP cells we decided to analyse the expression of growth and 

differentiation related genes after treatment of DLKP cells with a cocktail of 

hormones and growth factors known to be involved in regulating growth and 

development in normal lung Cells were grown in serum free media in order to 

prevent interference from growth factors and hormones present in serum 

supplemented media and allow increased reproducibility

Unfortunately, no major changes were observed in the expression of genes analysed 

upon treatment of DLKP cells grown in serum free media with hormone 

supplemented media and these studies were discontinued
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5.0 Conclusions
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The main focus of this thesis was analysing the effects of overexpression of the 

translation initiation factor eEF4E on regulation of gene expression, growth and 

functional charactensties in the poorly differentiated lung carcinoma cell line DLKP 

Previous studies in this lab had shown increased expression and phosphorylation of 

eIF4E to be associated with post-transcriptional regulation of gene expression in 

DLKP cells treated with the differentiation modulating agent BrdU 

The following conclusions were made as a result of our research

•  Stably transfected DLKP cells overexpressing high levels of 4E-HA (4E-HA 

5) showed increased expression of the epithelial marker Keratin 8 Keratin 8 

expression wasn’t detected in 4E S209-HA overexpressing cells and 4E-HA  

overexpressing DLKP cells (4E-HA 10) Immunocytochemical analysis of 

Keratin 8 expression in transiently transfected DLKP cells show 

hetereogenous staining for Keratin 8 This matches heterogenous staining for 

eIF4E protein seen in these cells indicating that Keratin 8 may be upregulated 

in cells expressing high levels of 4E protein These results show that eIF4E 

overexpression may cause increased Keratin 8 expression if expressed at a 

sufficiently high level in DLKP cells The level of Keratin staining seen in 4E- 

HA overexpressing cells is not at the level seen in BrdU treated cells This 

indicates other factors may cause increased Keratin 8 expression in BrdU 

treated DLKP cells though increased 4E expression may be a contributing 

factor Immunocytochemical analysis of Keratin 18 and 19 expression in 

stably transfected 4E-HA and 4E S209-HA cells showed no increase in 

expression of these cells indicating 4E alone does not control expression of 

these proteins

•  Immunocytochemical analysis showed increased P1 mtegrin expression in 

DLKP cells overexpressing high levels of 4E-HA (4E-HA 5) Moderately 4E- 

HA overexpressing cells (4E-HA 10) and 4E S209-HA overexpressing cells 

showed no increase in P1 mtegrin expression These results suggest that high 

levels of eIF4E expression can result in increased pi integnn expression in 

these cells Immunocytochemical analysis of a  subunit integnn expression 

showed increased expression of a3 expression both 4E-HA overexpressing
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•  The polyamine metabolism regulating protein Ornithine Decarboxylase 

(ODC) was upregulated in 4E-HA and 4E-S209 HA overexpressing clones 

This protein is known to be translationally regulated and previous studies have 

shown upregulation of ODC in 4E overexpressing cell lines The increased 

expression of ODC in 4E S209-HA overexpressing cells indicates that 

phosphorylation of 4E may not be necessary for increased translational 

regulation of ODC expression Microarray analysis detected no increase in 

ODC mRNA expression suggesting that post-transcriptional regulation is 

responsible for this increase

•  The highly 4E-HA overexpressing DLKP clone 4E-HA 5 displayed increased 

invasiveness through reconstituted basement membrane compared to pcDNA 

controls and 4E-S209-HA cells 4E-HA clone 10 which expresses a lower 

level of transfected 4E-HA did not show increased mvasiveness 4E S209-HA 

overexpressing cells also did not display increased mvasiveness compared to 

pcDNA control transfected cells This would suggest that increased 4E 

expression can result in increased mvasiveness in DLKP cells although 4E 

expression needs to be at a sufficiently high level for this to occur The effect 

of the mutation of the 4E S209 phosphorylation site in 4E S209-HA 

overexpressing cells on mvasiveness cannot be deduced from this experiment 

as the level of transfected protein was not at the same level as the highly 

expressing, invasive 4E-HA transfected cell line We therefore cannot tell 

whether the lack of increased mvasiveness is due to the mutation of the S209 

phosphorylation site or the lower level of transfected 4E S209-HA protein We 

can deduce that the mutation of the 4E phosphorylation site did not cause a 

reduction in mvasiveness below the level seen in pcDNA control cells and 

therefore it would appear that the introduction of non-phosphorylatable 4E 

does not have an inhibitory effect on mvasiveness

•  Proteomics analysis using the 2D-DIGE system revealed a number of proteins 

of various functional categories which were differentially expressed in 4E-HA

clones No increases in other a  integnn proteins were detected in 4E S209-HA

overexpressing cells
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and 4E S209-HA overexpressing DLKP cells compared to pcDNA control 

cells. Of particular interest were a number of proteins involved in regulating 

cytoskeletal dynamics whose expression was down regulated in 4E S209-HA 

overexpressing cells. A  common regulatory element in the mRNA of these 

proteins was identified which led to the development of a hypothesis for 

localised translation of these proteins. The possible involvement of eIF4E in 

regulation of localised translation of these proteins represents a novel aspect of 

translational regulation by eIF4E which may contribute to its role in 

oncogenesis.

•  4E S209-HA cells also showed upregulation of proteins involved in 

proteasomal degradation pathways which suggests possible disruption of 

protein translation and processing in these cells.

•  A smaller number of proteins than expected were found to be upregulated in 

wild type 4E-HA overexpressing cells. Of the proteins upregulated in 4E 

overexpressing cells, the main protein of interest identified is the RasGAP- 

associated endoribonuclease G3BP, which showed a 1.86 fold increase in 

expression compared to pcDNA control cells. Recent studies have shown 

overexpression of this protein induces the formation of cellular bodies known 

as stress granules. Stress granules are described as cytoplasmic foci at which 

untranslated mRNAs accumulate in cells subjected to environmental stress. 

Stress granules have been shown to contain poly-A mRNA complexed with 

eIF4E and other translation initiation factors. Upregulation of G3BP in 4E-HA  

overexpressing cells may represent a mechanism whereby translation initiation 

is kept under control by sequestering eIF4E-bound mRNAs in stress granules 

and also by possible activation of mRNA degradation.

•  2D DIGE proteomic analysis was also used to detect differentially-expressed 

proteins between the two 4E-HA-overexpressing clones used in this 

experiment. As 4E-HA expression and invasiveness in 4E-HA 5 cells was at a 

higher level than 4E-HA 10 cells we hoped to identify proteins that are 

involved in regulating invasiveness and also may be affected by increased 4E- 

HA expression. A number of differentially-expressed proteins were identified 

which correlated with the invasive profiles of these cells and also may have 

been subject to translational regulation by increased 4E-HA expression.
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•  Oligonucleotide microarray analysis of the mRNA expression levels of genes 

in eIF4E overexpressing cells was conducted to determine the effects of eIF4E 

overexpression on transcriptional regulation downstream of its effects on 

translation regulation Microarray analysis showed changes in the expression 

of a large number of genes with diverse cellular functions This indicates 

changes in transcriptional regulation occur as a result of eIF4E 

overexpression The highly overexpressing 4E-HA clone 4E-HA 5 and 4E 

S209-HA overexpressing clone 6 were analysed in comparison to pcDNA 2 

control cells A  large number of differentially expressed genes were identified 

which function in pathways regulating cellular morphology and migration 

including cytoskeletal genes, focal adhesion/integnn signalling genes, 

invasion regulation genes and neuron guidance cue genes

•  Microarray analysis showed a large number of genes were differentially 

expressed at the mRNA level in the 4E-HA and 4E S209-HA overexpressing 

cells examined One of the mam areas of interest in our studies was the 

expression of mtegrins in our cell lines and the possible effects of tntegnn 

expression in regulating growth and differentiation The Focal Adhesion 

Kinase (FAK) gene which plays a central role in mtegnn signalling, was found 

to be down-regulated in the 4E-HA and 4E S209-HA overexpressing clones 

analysed Western blot analysis confirmed that protein expression of this gene 

was down-regulated Immunoflourescent confocal microscope analysis also 

showed decreased expression and altered localisation of FAK  in these cells 

FAK  is considered to play a central role in mtegrin signalling and is an 

important regulator of cellular morphology, growth, motility and invasion 

This result also provides verification of results from microarray analysis

•  Both proteomic and oligonucleotide microarray analysis of gene expression 

identified changes in the expression a large number of genes involved in 

regulating actin cytoskeletal dynamics in 4E-HA and 4E S209-HA 

overexpressing cells It was therefore decided to analyse the actin cytoskeleton
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in these cells using flourescently labelled phalloidin which binds specifically 

to filamentous (F) actin structures 4E-HA 5 cells which express high levels of 

transfected 4E-HA showed a dramatic change in F -actin compared to 4E 

S209-HA and pcDNA control cells 4E-HA 5 cells showed intense staining for 

actin structures such as stress fibres, lammelopodia and filopodia Regulation 

of F-actin structures is intimately linked to cell morphology, motility and 

mvasiveness 4E-HA 5 cells exhibit a high level of invasiveness and the high 

intensity staining seen for F-actin structures associated with cellular motility 

would indicate F-actin regulation may be playing a significant role in 

mediating the invasive properties of these cells These results also contribute 

to the hypothesis for localised translation of actin cytoskeletal genes mRNAs 

developed from our proteomic analysis

•  Western blot analysis of C/EBPp expression in BrdU treated DLKP cells 

showed decreased expression of C/EBPP in BrdU treated cells 

Immunocytochemical analysis of C/EBPP expression showed increased 

nuclear localisation of C/EBPP in BrdU treated DLKP cells

•  Expression of the transcriptional co-activator CBP is reduced in BrdU treated 

DLKP cells
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6.0 Future work
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1 Future work comparing the effects of wild type eIF4E overexpression vs S209 

phosphorylation site mutant eIF4E overexpression should involve samples 

more closely matched in the expression level of transfected eIF4E protein The 

wild type and S209 mutant eIF4E overexpressing DLKP clones selected for 

examination in a large part of this thesis did not all express the same level of 

transfected eIF4E protein Further work involving transient transfections, or 

analysis of more evenly matched clones, should reinforce previous 

observations or determine if differing levels of eIF4E overexpression affect 

previous observations

2 Further examination of the role of eIF4E expression and eIF4E 

phosphorylation in regulating the mvasiveness of DLKP cells could be carried 

out using transiently transfected cells and other eIF4E overexpressing clones 

eIF4E overexpression in other non-invasive or low level-invasive lung 

carcinoma cell lines could be examined to examine if eIF4E affects the 

mvasiveness of lung carcinoma cells in a similar manner to DLKP

3 Integnn expression is known to regulate the ability of cells to adhere to 

extracellular matrix components and also affects the migratory and invasive 

capabilities of cells The effect of increased mtegrin expression in eIF4E 

overexpressing cells could be examined further by using blocking antibodies 

to assess if blockage of integnn binding reduces adhesion or invasion in these 

cells

4 Overexpression of wild type eIF4E caused changes in the organisation of the 

actin cytoskeleton in DLKP cells The effect of eIF4E overexpression on the 

actin cytoskeleton of other cell lines could be examined to determine if this is 

a general effect of eIF4E overexpression The actin cytoskeleton is known to 

be important for generating motile force in migrating cells The abilty of 

eIF4E overexpressing cells to migrate could also be assessed by in vitro 

wound assays
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5 The expression and localisation of the mtegnn-signalling protein FAK  was 

altered in eIF4E overexpressing cells FAK expression could be analysed 

further with phosphospecific antibodies which bind to the activated form of 

this protein It would also be interesting to analyse if FAK  is co-locahsed in 

cells with pi mtegrin Microarray analysis also identified other focal adhesion 

proteins which were differentially expressed in 4E-HA and 4E-S209-HA  

overexpressing cells and in our hypothesis for localised translation the focal 

adhesion protein Src is involved in translational activation It would therefore 

be of interest to further analyse the expression of focal adhesion proteins m 

these cells

6 Microarray analysis has shown changes in the mRNA levels of a large number 

of genes in eIF4E overexpressing cells The regulation of the expression of 

these genes by eIF4E overexpression could be examined further and the 

effects of these genes on the phenotype of these cells could be examined by 

altering the expression levels of the corresponding protein using RNAi

7 Actively translating mRNAs are usually associated with multiple ribosomes 

and form large structures called poynbosomes or polysomes mRNA 

associated with polysomes can be separated from translationally inactive 

mRNAs by sucrose gradient centrifugation These two pools of mRNA can 

then be analysed by microarrays to determine what mRNAs are being actively 

translated This analytical method could be employed to analyse the 

translational status of mRNAs in eIF4E overexpressing cells

8 We have proposed a hypothesis where cytoskeletal regulatory mRNAs are 

localised and translated in areas of cellular outgrowth Analysis of proteins 

and mRNAs present in areas of cellular outgrowth (pseudopodia) can be 

achieved through a procedure for purification of pseudopodia which separates 

pseudopodial projections which extend through a porous polycarbonate 

membrane (similar to invasion assay) from the cell body The proteins and 

mRNA profile of harvested pseudopodia can then be analysed by a variety of 

methods
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