SINGULARLY PERTURBED PROBLEMS MODELLING REACTION-CONVECTION-DIFFUSION PROCESSES

Marıa L Pıckett, B Sc
School of Mathematical Sciences
Dublin City Unıversity

Supervisor Prof E O' Riordan
A Dissertation submitted for the Degree of Doctor of Philosophy

November 2005

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy in Applied Mathematical Sciences is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

Signed:
 ID No.: 97475220

Date: $27^{\text {th }}$ January 2006

Acknowledgements

I would like to thank my supervisor Prof Eugene O'Riordan, for his patience, wisdom, support and encouragement over the past years He has introduced me to a very interesting area of mathematics, an area that I would like to continue researching in the years ahead The completion of this thesis would not have been possible without him and I owe a great deal of debt to hım

I am also grateful to my fellow postgraduate student Ray Dunne, his essential assistance with Matlab and $\mathrm{AT} \mathrm{TEX}_{\mathrm{E}}$ and his patience answering my many questions, especially in the early years of my phd, is much appreciated

I would like to thank Prof G I Shishkin for his advice and guidance
I wish to thank my fellow postgraduates and the staff of the Mathematics Department for therr help and friendship

Thank you to all my friends, especially Eimear, for keeping me sane I also wish to thank Thomas for all his support over the past years

Finally, I would like to thank my parents Without their love and support, this thesis would never have been possible I am extremely grateful to them for all the opportunities they have given me

To Mum and Dad

Contents

Abstract v1
1 Introduction 1
11 Introduction to numerical methods for singularly perturbed differential equa- tions 1
12 Types of singularly perturbed problems 2
13 Two-parameter differential equations 5
14 Numerical methods for two-parameter differential equations 7
15 Notation 9
2 Ordinary differential equations 11
21 Introduction 11
22 Bounds on the solution u and its derivatives 12
23 Decomposition of the solution 14
24 Discrete problem 22
25 Error analysis 24
26 Numerical results 31
3 Parabolic problems 37
31 Introduction 37
32 Bounds on the solution u and its derivatives 39
33 Decomposition of the solution 41
34 Discrete problem 53
35 Error analysis 56
36 Numerıcal results 61
37 Hıgher order methods 63
4 Ellıptic PDE's - reaction dominated case 71
41 Introduction 71
42 Bounds on the solution u and its derivatives 73
43 Definition of regular component 76
44 Definition of boundary layer functions 78
45 Definition of corner layer functions 82
46 Discrete problem 84
47 Error analysis 88
5 Elliptic PDE's - the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ 94
51 Introduction 94
52 Parameter-explicit bounds on the derivatives 95
53 Regular component in case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ 97
54 Boundary layer components at the inflow 104
55 Boundary layer components at the outflow 114
56 Corner layer components 119
57 Discrete problem 129
58 Error analysis 132
59 The case of $\mu \geq \gamma_{1}$ 140
Biblography 142

Abstract

In this thesis, parameter-uniform numerical methods for certan classes of singularly perturbed differential equations with two small parameters are studied We initially consider a class of two-parameter ordmary differential equations Parameter explicit bounds on the solution and its derıvatives are derived The solution is decomposed into a sum of regular and singular components and based on this decomposition we construct a numerical algorithm consisting of an upwind finite difference operator and an appropriately chosen plecewise-umform mesh Parameter-uniform convergence of the numerical approximations is established Some numerical results are given to illustrate this convergence

Two-parameter parabolic and elliptic partial differential equations are considered We derive parameter explicit bounds on the solutions and their derivatives for both problems, these bounds are analogous to those obtanned for the ordmary differential equation The solutions are decomposed into a sum of regular and singular components but for both problems this decomposition differs from that for the ordınary differential equation In both cases a numerical algorithm based on an upwind finite difference operator and an appropriate plecewise-unform mesh is constructed In the case of the parabolic problem, parameter-uniform error bounds for the numerical approximations are established and numerical results illustrating this convergence are given With the elliptic problem, we show that, given certan assumptions and conjectures our numerical method is parameterunform

List of Tables

21 The maximum pointwise errors $E_{\varepsilon, \mu, \text { exact }}^{N}$ and the ε-uniform maximum pointwise errors $E_{\mu, \text { exact }}^{N}$ generated by the upwind finite difference operator (2 4 la) and the mesh (241c) apphed to problem (261) for $\mu=2^{-16}$ and for varıous values of ε and N
22 Exact orders of convergence $p_{\varepsilon, \mu, \text { exact }}^{N}$ and ε-uniform exact orders of convergence $p_{\mu, \text { exact }}^{N}$ generated by the upwind finte difference operator (241a) and the mesh (241c) apphed to problem (261) for $\mu=2^{-16}$ and for varıous values of ε and N
23 The ε-uniform maximum pointwise errors $E_{\mu, \text { exact }}^{N}$ and the (ε, μ)-uniform maxımum pomtwise errors $E_{\text {excct }}^{N}$ generated by the upwmd finite difference operator (2 41 a) and the mesh (241c) apphed to problem (261) for varrous values of μ and N
24 Exact ε-umiform orders of convergence $p_{\mu, e x a c t}^{N}$ and the exact (ε, μ)-unfform orders of convergence $p_{\text {exact }}^{N}$ generated by the upwind finte difference operator (241a) and the mesh (2 41 c) applied to problem (261) for various values of μ and N

31 The orders of local convergence $p_{\varepsilon, \mu}^{N}$ and the ε-uniform orders of local convergence p_{μ}^{N} generated by the upwind finite difference operator (341 a) and the mesh (341c) applied to problem (361) for $\mu=2^{-2}$ and for various values of ε and $N(=M)$
32 The orders of local convergence $p_{\varepsilon, \mu}^{N}$ and the ε-uniform orders of local convergence p_{μ}^{N} generated by the upwind finite difference operator (341a) and the mesh (341 c) apphed to problem (361) for $\mu=2^{-10}$ and for various values of ε and $N(=M)$

33 The orders of ε-uniform local convergence p_{μ}^{N} and the (ε, μ)-unform orders of local convergence p^{N} generated by the upwind finite difference operator (3 41 a) and the mesh (341 c) applied to problem (361) for various values of ε, μ and $N(=M)$

List of Figures

21 A plot of the solution of (2513) when $\mu=2^{-3}$ and $\varepsilon=2^{-18}$ 30
22 A zoom in to the bottom-left corner of Figure 21 30
23 Exact solutions of 261 with $\mu=2^{-2}$ for $2^{-32} \leq \varepsilon \leq 1$ when (a) $\mu^{2} \leq \varepsilon$ and (b) $\mu^{2} \geq 075 \varepsilon$ 31
24 Exact solutions of 261 with $\mu=2^{-4}$ for $2^{-32} \leq \varepsilon \leq 1$ when (a) $\mu^{2} \leq \varepsilon$ and (b) $\mu^{2} \geq 075 \varepsilon$ 32
41 A sample plecewise-uniform mesh $\Omega^{N, M}$ 85
51 Figures illustrating the boundary data of the functions (a) w_{R} and (b) w_{T} 126
52 Figures illustrating the boundary data of the functions (c) w_{L} and (d) w_{B} 126
53 Figures illustrating the boundary data of the functions (e) $w_{R T}$ and (f) $w_{L T}$ 127
54 Figures illustrating the boundary data of the functions (g) $w_{R B}$ and (h) $w_{L B}$ 127

Chapter 1

Introduction

11 Introduction to numerical methods for singularly perturbed differential equations

Singularly perturbed differential equations arise in many areas of applied mathematics They commonly appear in flud dynamics, modelling of semiconductor devices and financial modelling (see Morton [18]) Such differential equations typically involve a small positive parameter $\varepsilon(0<\varepsilon \leq 1)$ multiplying the highest order derivative, and their solutions exhibit layers as ε tends to zero

We are concerned with parameter-unform numerical methods for singulary perturbed differential equations By parameter-uniform, we mean that the numerical approximations converge to the solution of the problem independently of the small parameter More exactly (see for example [16]),

Defintion 111 Suppose u_{ε} is the solution to a problem that is parameterzzed by a singular perturbation parameter ε where $0<\varepsilon \leq 1$ We approximate u_{ε} by a sequence of numerıcal solutoons $\left\{\left(U_{\bar{\varepsilon}}, \bar{\Omega}^{N}\right)\right\}_{N=1}^{\infty}$ where U_{ε} is defined on the mesh Ω^{N} and N is a discretzzatıon parameter This sequence of functıons $\left\{\left(U_{\varepsilon}, \bar{\Omega}^{N}\right)\right\}_{N=1}^{\infty}$ is savd to converge ε uniformly (of order p) to the exact solution u_{ε} if there exists N_{0}, C, and p all independent of ε, such that for all $N \geq N_{0}$,

$$
\sup _{0<\varepsilon \leq 1}\left\|U_{\varepsilon}-u_{\varepsilon}\right\|_{\bar{\Omega}^{N}} \leq C N^{-p}
$$

where N_{0}, C and p are all positive numbers with N_{0} an integer
This thesis is concerned with the method of finte differences Within the area of
finite differences, there are two main approaches to generate parameter-uniform numerical methods for singularly perturbed problems Firstly there are fitted operator methods, where, as the name suggests, the operator is fitted to resolve the singularity and therefore capture the layer behaviour Such operators are usually combined with uniform meshes Secondly there are fitted mesh methods where standard finite difference operators are apphed on a mesh that has been fitted to resolve the layer We are concerned with this latter class of numerical methods

We must fit our mesh to resolve the layers [3] After a uniform mesh, the next simplest mesh to consider is a piecewise-uniform mesh In [29], Shishkin showed that such a fitted mesh was sufficient to obtain a parameter-uniform numerical method for many linear partial differential equations One of the main advantages of using these Shishkrn meshes is that results obtained in one-dımension can be extended to higher dımensions more easily then with other approaches When working with such methods, the location and width of the boundary layers must be known a prorer

The choice of norm to use is especially important when analysing the error in the numerical approxımations for problems that exhibit layers For a discussion and a comparison of the various norms that one might consider using when undertaking such analysis see $[3,16]$ The conclusion reached is that in order to capture correctly boundary layer functions, the appropriate norm to use is the L_{∞}-norm (maximum pointwise norm)

12 Types of singularly perturbed problems

We now examine some examples of singularly perturbed differential equations Consider the following two classes of singularly perturbed ordmary differential equations (ODEs),

- One-dimensional convection-diffusion problem

$$
\begin{align*}
& \varepsilon y^{\prime \prime}+a y^{\prime}-b y=f, \quad \text { on } \quad \Omega=(0,1), \\
& y(0)=\gamma_{0}, y(1)=\gamma_{1}, \tag{array}\\
& a \geq \alpha>0, \quad b \geq \beta>0, 0<\varepsilon \leq 1
\end{align*}
$$

- One-dimensional reaction-diffusion problem

$$
\begin{align*}
\varepsilon y^{\prime \prime}-b y=f, \quad \text { on } & \Omega=(0,1), \\
y(0)=\gamma_{0}, & y(1)=\gamma_{1} \tag{array}\\
b \geq \beta>0, & 0<\varepsilon \leq 1
\end{align*}
$$

Solutions of (121) typically exhibit boundary layers with width of order ε in the neighbourhood of $x=0$ Solutions of the reaction-diffusion problem (122) exhibit layers of width of order $\sqrt{\varepsilon}$ in the neighbourhood of both $x=0$ and $x=1$ There is much literature already avallable for various methods to find the numerical solution of both of these singularly perturbed ODEs [3, 25] Fitted operator methods based on exponentially fitted finite difference operators have been developed for both problems [16, 25] Parameteruniform numerical methods composed of finite difference operators and Shishkin meshes have also been established (see $[3,8,16,25,29]$ and the survey artıcles [11, 24]) Using standard finite difference operators, it has been shown $[3,17,27]$ that the error in the numerical approximations to the solution of (121) is of order $C N^{-1} \ln N$ and the error in approximating (122) is of the form

$$
\left\|u-U^{N}\right\|_{\Omega^{N}} \leq C\left(N^{-1} \ln N\right)^{2}
$$

Higher order methods also exist for these problems, see for example [4, 27, 32, 33]
We now introduce a dependence on tıme Consider the parabolic versions of the above problems,

- Parabolic convection-diffusion

$$
\begin{array}{r}
\varepsilon u_{x x}+a u_{x}-b u-d u_{t}=f, \quad \text { on } \quad G=(0,1) \times(0, T] \tag{array}\\
u(0, t)=\gamma_{0}(t), \quad u(1, t)=\gamma_{1}(t), \\
u(x, 0)=\phi(x), \\
a \geq \alpha>0, \quad b \geq \beta>0, \quad d \geq \delta>0, \quad 0<\varepsilon \leq 1
\end{array}
$$

- Parabolic reaction-dıffusion

$$
\begin{array}{r}
\varepsilon u_{x x}-b u-d u_{t}=f, \quad \text { on } \quad G=(0,1) \times(0, T], \tag{124}\\
u(0, t)=\gamma_{0}(t), \\
u(1, t)=\gamma_{1}(t), \\
u(x, 0)=\phi(x), \\
b \geq \beta>0, \quad d \geq \delta>0, \quad 0<\varepsilon \leq 1
\end{array}
$$

Problem (123) typically exhibits layers in the neaghbourhood of the edge $x=0$ Solutions to (124) exhıbit layers in the neıghbourhood of both $x=0$ and $x=1$ Numerical methods for equation (123) have been considered in $[8,25,29,31]$ The reaction-dıffusion problem (124) has been analysed in $\{17,29]$

For the convection-dıffusion type problem (123), fitted operator methods were derived in [31] However, Shishkin [28] established that in order to obtain a parameter-uniform numerical method, it is necessary to fit the mesh when parabolic boundary layers are present This mples that we cannot use fitted operators on a uniform mesh to obtain parameter-uniform convergence in the case of (124) Parameter-uniform numerical methods consisting of standard finite difference operators and plecewise-uniform meshes $[8,25,29]$ have been established for both (123) and (124)

The final classes of singularly perturbed differential equations we will examine in this section are the two-dimensional versions of problems (121) and (122),

- Elliptic convection-diffusion

$$
\begin{align*}
\varepsilon \Delta u+a & \nabla u-b u=f, \quad \text { on } \quad \Omega=(0,1)^{2} \tag{125}\\
& u(x, 0)=\gamma_{0}(x), \quad u(x, 1)=\gamma_{1}(x) \\
& u(0, y)=\gamma_{2}(y), \quad u(1, y)=\gamma_{3}(y) \\
& a \geq \alpha>0, \quad b \geq 2 \beta>0, \quad 0<\varepsilon \leq 1
\end{align*}
$$

- Elliptic reaction-diffusion

$$
\begin{array}{cc}
\varepsilon \triangle u-b u=f, \quad \text { on } \quad \Omega=(0,1)^{2} \tag{126}\\
u(x, 0)=\gamma_{0}(x), & u(x, 1)=\gamma_{1}(x) \\
u(0, y)=\gamma_{2}(y), & u(1, y)=\gamma_{3}(y) \\
b \geq 2 \beta>0, & 0<\varepsilon \leq 1
\end{array}
$$

Numerical methods for such problems have been considered in the books [3, 16, 25, 29] The analysis for such equations poses compatibılity issues not encountered with the ODE or parabolic PDE

Linß and Stynes [14] analyse Shishkin-type decompositions for (125) Using such decompositions they obtain sharp bounds on the solution u of (125) and its derivatives The same authors consider a first-order convergent parameter-uniform numerical method for this problem in [13] The authors use a special difference scheme on a Shishkin mesh, the theoretical results in [14] are essential to showing convergence of this method The article [15] contains a comparison of the performance of several different numerical methods on Shishkin meshes for problem (125) In [10] numerical methods for (125) are considered on modified Shishkan meshes A parameter-uniform second-order finite difference scheme for the reaction-diffusion problem (1 26) is discussed in [2] The book [29], is
concerned with parameter-unıform numerical methods on Shishkin meshes for linear differential equations The classes of problems considered in this book are vast and include both (125) and (126) The more complicated N-dimension versions of these problems are also exammed

13 Two-parameter differential equations

The differential equations in the last section can be though of as one-parameter problems as they depend on the small positive parameter ε multiplying the highest order derivative We now introduce a second parameter μ multıplying the convective term Such equations are therefore known as two-parameter problems This thesis is concerned with numerical methods for a certan class of two-parameter differential equations This class of differential equations includes both the convection-diffusion and reaction-diffusion type problems described m the previous section and it also covers the transition from reaction-diffusion to convection-diffusion type

Consider the following classes of two-parameter singularly perturbed differential equatıons

- Two-parameter ODE

$$
\begin{array}{r}
\varepsilon y^{\prime \prime}+\mu a y^{\prime}-b y=f, \quad \text { on } \Omega, \tag{array}\\
y(0)=\gamma_{0}, \quad y(1)=\gamma_{1}, \\
a \geq \alpha>0, \quad b \geq \beta>0, \quad 0<\varepsilon \leq 1, \quad 0 \leq \mu \leq 1
\end{array}
$$

- Two-parameter parabolic PDE

$$
\begin{array}{r}
\varepsilon u_{x x}+\mu a u_{x}-b u-d u_{t}=f, \quad \text { on } \quad G, \tag{132}\\
u(0, t)=\gamma_{0}(t), \quad u(1, t)=\gamma_{1}(t), \\
u(x, 0)=\phi(x), \\
a \geq \alpha>0, \quad b \geq \beta>0, \quad d \geq \delta>0, \quad 0<\varepsilon \leq 1, \quad 0 \leq \mu \leq 1
\end{array}
$$

- Two-parameter ellıptıc PDE

$$
\begin{array}{lll}
\varepsilon \triangle u+\mu a & \nabla u-b u=f, \quad \text { on } \quad \Omega=(0,1)^{2}, \tag{133}\\
& u(x, 0)=\gamma_{0}(x), \quad u(x, 1)=\gamma_{1}(x), \\
& u(0, y)=\gamma_{2}(y), \quad u(1, y)=\gamma_{3}(y), \\
a \geq \alpha>0, & b \geq 2 \beta>0, \quad 0<\varepsilon \leq 1, \quad 0 \leq \mu \leq 1
\end{array}
$$

When $\mu=1$ we have convection-diffusion problems, and when $\mu=0$ the equations are of reaction-diffusion type In the past the special cases of $\mu=0$ and $\mu=1$ have been considered separately (see previous section) The aim of this thesis is to take this analysis and adapt it to deal with the two-parameter problem, thus obtainng one approach that deals with a wider class of problems including both special cases

There is comparatively little literature available on parameter-uniform numerical methods for problems with two small parameters Most of the articles published to date deal with the two-parameter ODE ($\left.\begin{array}{lll}1 & 3 & 1\end{array}\right)$ The asymptotic structure of the solutions to ($\left.\begin{array}{lll}1 & 3 & 1\end{array}\right)$ was examıned by O'Malley [19, 20], where the ratıo of μ to $\sqrt{\varepsilon}$ was identıfied as sıgnuficant Vulanovic [34] considered finite difference methods in the case of $\mu=\varepsilon^{\frac{1}{2}+\lambda}, \lambda>0$, however, as we will see later, with this restriction the problem behaves similarly to one-dimensional reaction-diffusion problems

Recently, parameter-unfform numerical methods for problem (131) were examined by Linß and Roos [12], Roos and Uzelac [26] and O'Riordan et al [21] The mam results of Chapter 2 of this thesis have appeared in [21] Both [12] and [21] are concerned with finite difference methods and apply standard finite difference operators on special precewiseunform meshes The method of analysis and the choice of transition points used to generate the mesh differs in these two papers In [26] the ODE (131) is solved using the streamline-dfffusion finte element method on a precewise-uniform mesh and the operators are adapted in order to achieve a higher order scheme The analysis in this paper follows from the analysis in [12] Hıgher order schemes for problem (13ll) are also considered in [5], where the approach follows that taken in [21] and [22]

Significantly less literature is avalable on the two-parameter parabolic and elliptic PDEs Shishkın considered two-parameter ellıptıc problems m [30], however, these problems are different to those studied m this thesis Equation (132) is considered in [22] where a numerical method consisting of standard finite difference operators applied on a precewise-unform mesh is constructed A form of the material in Chapter 3 of this thesis has appeared in [22] Equation (133) has been considered in [23] and the man results
from Chapter 4 have appeared in this article

14 Numerical methods for two-parameter differential equations

The analysis in this thesis is based on the principles laid down in [29] and in the books [3] and [16] for a single parameter singularly perturbed problem The argument consists of firstly establishing a maxımum principle, and then decomposing the solution into regular and layer components and deriving sharp parameter-explicit bounds on these components and their derivatives The discrete solution is decomposed in an analogous fashion, and the numerical error between the discrete and continuous components are analysed separately using discıete maximum principle, truncation error analysis and appropriate barrier functions

The analysis of equations (131), (132) and (133) naturally splits into the two cases of $\mu^{2} \leq C \varepsilon$ and $\mu^{2} \geq C \varepsilon$ In the first case the analysis follows closely that of reactiondiffusion when $\mu=0$, however, in the second case the analysis is more intricate Considering (131) and (132), when $\mu^{2} \leq C \varepsilon$ an $O(\sqrt{\varepsilon})$ layer appears in the neighbourhood of $x=0$ and $x=1$ In the other case of $\mu^{2} \geq C \varepsilon$, a layer of width $O\left(\frac{\varepsilon}{\mu}\right)$ appears in the neighbourhood of $x=0$ and a layer of width $O(\mu)$ appears near $x=1$ With (133), when $\mu^{2} \leq C \varepsilon$, an $O(\sqrt{\varepsilon})$ layer appears in the neighbourhood of all four edges When $\mu^{2} \geq C \varepsilon$, we get layers of width $O\left(\frac{\varepsilon}{\mu}\right)$ in the neighbourhood of $x=0$ and $y=0$ and layers of width $O(\mu)$ in the nerghbourhood of the other two edges

In Chapter 2, the two-parameter ODE (131) is examined We derive parameter explicit bounds on the solution of this problem and its derivatives The solution is decomposed into regular and layer components and sharp bounds are obtaned on these components and therr derivatives Using these bounds a numerical algorithm based on an upwind finite difference operator and an appropriately chosen precewise uniform mesh is constructed The method is then shown to converge independently of both perturbation parameters Numerical results are given to illustrate this convergence

Chapter 3 is concerned with the two-parameter parabolic problem Difficulties arose when attempting to extend some of the techmiques of analysis used in Chapter 2 in order to deal with the parabolic PDE It became clear that some changes had to be made so that the parabolic problem, and the more difficult elliptic PDE, could be considered The method of analysis in this chapter is similar to that in the previous chapter apart from a few notable exceptions

- The analysis in Chapter 3 splits entirely into two cases depending on the ratio of μ to $\sqrt{\varepsilon}$
- The transition points used in defining the Shishkin mesh also depend on this ratio and are simpler then those used in Chapter 2
- When $\mu^{2} \geq C \varepsilon$, we define the regular component v using a double expansion, first in ε and then a further expansion in μ
- In the case of $\mu^{2} \geq C \varepsilon$, the definition of the right singular layer component w_{R} in Chapter 2 does not quite isolate the layer In Chapter 2 we manage to overcome this problem in the error analysis, but in order to analyse the two-parameter parabolic or elliptic differential equations, we need to define w_{R} so that its effect is felt only near $x=1$ Hence we decompose w_{R}

A numerical method consisting of finite difference operators applied on a piecewise-uniform mesh obtained with these new simpler transition points is constructed, and the numerical approximations are shown to converge independently of the small parameters Numerical results are given to illustrate this convergence The main results in the final section of this chapter have appeared in [5] We apply the new approach detarled above to the regular component and right singular layer component of (131) The bounds obtained in this section are needed in [5] when analysing higher order methods for ($\begin{aligned} & 1 \\ & 3\end{aligned}$ 1)

In Chapter 4, we extend the approach used in Chapter 3 to elliptıc problems in the case of $\mu^{2} \leq C \varepsilon$ Compatibility is now an issue and the extension idea of Shishkin's [29] is vital to ensure no overly artificial compatibility conditions are imposed A numerical method is constructed and parameter-uniform error bounds are established

Chapter 5 deals with elliptic two-parameter problems in the case of $\mu^{2} \geq C \varepsilon$, the style of this chapter is different from that of the previous chapters The solution is decomposed into regular and layer components Parameter-explicit bounds are obtained on the regular and boundary layer components and their derivatives It is when we consider the corner layer functions that the style of the thesis changes Bounds on these components and their derivatives are required for the error analysis We state and motivate conjectures on the bounds of these functions, however, we leave rigorous proofs for future work A numerical method is constructed and, assuming the conjectures on the bounds on corner layer functions are true, parameter-uniform error bounds are established

The main findings of this thesis are as follows

- The original aim of this thesis was to take the literature for the convection-diffusion
and reaction-diffusion problems and adapt it to create one approach that dealt with the two-parameter problem We now realise that the simplest and most extendable approach to the two-parameter problem is to consider separately the cases of $\mu^{2} \leq C \varepsilon$ and $\mu^{2} \geq C \varepsilon$
- The analysis in this thesis highlights the importance of using decompositions to define the regular and layer components of the solution The key advantage of such an approach is its extendability to problems of higher dimension
- Ensuring that the layer functions are defined so as to correctly isolate the singularities of our solution proved to be essential The order in which these components are defined is also shown to be important When the regular and layer functions are defined correctly, the choice of plecewise-umform mesh for our numerical method is clear and the ensuing error analysis is relatively straight forward

15 Notation

- Throughout the thesis, $0<\varepsilon \leq 1$ is a parameter multiplying all second order derıvatıves and $0 \leq \mu \leq 1$ is a parameter multıplyıng all first order space derıvatıves
- We adopt the following notation

$$
\|f\|_{D}=\max _{\vec{x} \in D}|f(\vec{x})|
$$

and when the norm is not subscripted, the maximum is over the entire domain

- In Chapter 2 and Chapter 3, we take

$$
\alpha=\min _{\bar{D}} a, \quad \beta=\min _{\bar{D}} b, \quad \text { and } \quad \gamma<\min _{\bar{D}}\left\{\frac{b}{a}\right\}
$$

while in the elliptic problem it is taken (for notational simplicity) as

$$
\alpha=\min _{\bar{D}}\left\{\alpha_{1}, \alpha_{2}\right\}, \quad \beta=\frac{1}{2} \min _{\bar{D}} b, \quad \text { and } \quad \gamma<\min _{\bar{D}}\left\{\frac{b}{2 a_{1}}, \frac{b}{2 a_{2}}\right\}
$$

- The superscript $*$ notation denotes an extended domain or an extended function (for example Ω^{*}, f^{*}) Superscripts such as $[*, T B]$ also tell us the direction in which the domain or the functions are extended ($[*, T B]$ implying that we extend to the top and bottom of the original domain)
- We use capital letters to denote discrete functions and small letters for continuous functions
- Throughout this thesis, C (sometimes subscripted) will denote a generic constant independent of the parameters ε and μ and the dimensions of the discrete problem (N, M)

Chapter 2

Ordinary differential equations

21 Introduction

Consider the following two-parameter singularly perturbed boundary value problem

$$
\begin{gather*}
L_{\varepsilon, \mu} u=\varepsilon u^{\prime \prime}(x)+\mu a(x) u^{\prime}(x)-b(x) u(x)=f(x), \quad x \in \Omega=(0,1), \tag{array}\\
u(0), u(1) \text { gıven, }
\end{gather*}
$$

where $a, b, f \in \mathcal{C}^{4}(\Omega), 0<\varepsilon \leq 1,0 \leq \mu \leq 1,0<\alpha \leq a(x)$ and $0<\beta \leq b(x)$ When the parameter $\mu=1$, the problem is the well-studied one-dimensional convectiondiffusion problem ([16],[25]) In this case, a boundary layer of width $O(\varepsilon)$ appears in a neighbourhood of the point $x=0$ When the parameter $\mu=0$, the problem is called reaction-diffusion and boundary layers of width $O(\sqrt{\varepsilon})$ appear at both $x=0$ and $x=1$ A discussion of these special cases and the two-parameter problem (211) can be found in Chapter 1

In this chapter we construct and analyse a numerical method for this problem class We show that the convergence of the numerical approximations to the exact solution is independent of both small parameters The main results in this chapter have appeared in [21]

In Section 22 we obtan parameter-explicit a priori bounds on the solution u of (211) and its derivatives In Section 23 we decompose the solution of (211) into regular and layer components These components are then analysed separately and sharp parameter explicit bounds are obtained on the components themselves and their derivatives Our numerical method is defined in Section 24 We decompose our discrete solution U into
components analogous to those in the continuous case and obtain bounds on these discrete functions Section 25 is concerned with analysing the error between the continuous solution u of (211) and the discrete solution U This is achieved by analysing the error in the regular and singular components separately We show that we have a parameteruniform numerical method Finally, Section 26 contains numerical results to support the theoretical proofs given in the previous section

Notation particular to this chapter We define the zero order, first order and second order differential operators L_{0}, L_{μ} and $L_{\varepsilon, \mu}$ as follows

$$
\begin{aligned}
L_{0} z & =-b z \\
L_{\mu} z & =a \mu z_{x}+L_{0} z, \\
L_{\varepsilon, \mu} z & =\varepsilon z_{x x}+L_{\mu} z
\end{aligned}
$$

We should also note the following notation

$$
\partial \Omega=\{0,1\}, \quad\|u\|_{\bar{\Omega}}=\max _{\bar{\Omega}}|u(x)|,
$$

and if the norm is not subscripted we can assume $\|\|=\| i\|_{\bar{\Omega}}$

22 Bounds on the solution u and its derivatives

In this section we will establish a priort bounds on the solution of (211) and its derivatives These bounds will be used in the error analysis in later sections We start by stating a contınuous minmum principle for the differential operator in (2 1 1), whose proof is standard

Minımum Prıncıple 1. If $w \in \mathcal{C}^{2}[0,1]$ such that $\left.L_{\varepsilon, \mu} w\right|_{\Omega} \leq 0$ and $\left.w\right|_{\partial \Omega} \geq 0$ then $\left.w\right|_{\bar{\Omega}} \geq 0$
Lemma 221 The solution u of the differentral equation (2 11), satisfies the following bound

$$
\left.\|\left. u\right|_{\bar{\Omega}} \leq \max \{|u(0)|,|u(1)|\}+\frac{1}{\beta}| | f \right\rvert\,
$$

Proof Let us consider the following barrier functions

$$
\left.\psi^{ \pm}(x)=\max \{\mid u(0)\},|u(1)|\right\}+\frac{1}{\beta}\|f\| \pm u(x)
$$

Clearly the functions $\psi^{ \pm}(x)$ are nonnegative at $x=0$ and $x=1$ Also since

$$
L_{\varepsilon, \mu} \psi^{ \pm}(x)=-b(x) \max \{|u(0)|,|u(1)|\}-\frac{b(x)}{\beta}\|f\| \pm f(x) \leq 0
$$

we can apply Minımum Principle 1 to show that $\psi^{ \pm}(x) \geq 0$ for all $x \in \bar{\Omega}$ The required result follows

Lemma 222 The derivatives $\frac{d^{k} u}{d x^{k}}$ of the solutzon u of (2 11) satisfy the following bounds

$$
\begin{gathered}
\left\|\frac{d^{k} u}{d x^{k}}\right\|_{\bar{\Omega}} \leq \frac{C}{(\sqrt{\varepsilon})^{k}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{k}\right) \max \{\|u\|,\|f\|\}, \quad k=1,2, \\
\left\|\frac{d^{3} u}{d x^{3}}\right\|_{\bar{\Omega}} \leq \frac{C}{(\sqrt{\varepsilon})^{3}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right) \max \left\{\|u\|,\|f\|,\left\|f^{\prime}\right\|\right\},
\end{gathered}
$$

where C depends only on $\|a\|,\left\|a^{\prime}\right\|,\|b\|$ and $\left\|b^{\prime}\right\|$
Proof Given any $x \in(0,1)$ we can construct a neighbourhood $N_{x}=(p, p+r)$ (where r is some combination of ε and μ yet to be determined and $0<p<x<1$) such that $x \in N_{x}$ and $N_{x} \subset(0,1)$ The mean value theorem implies that there exists $y \in N_{x}$ such that

$$
u^{\prime}(y)=\frac{u(p+r)-u(p)}{r}
$$

It follows that

$$
\begin{equation*}
\left|u^{\prime}(y)\right| \leq 2 \frac{\|u\|}{r} \tag{array}
\end{equation*}
$$

We have

$$
u^{\prime}(x)=u^{\prime}(y)+\int_{y}^{x} u^{\prime \prime}(\xi) d \xi
$$

and therefore from the original differential equation (211) and using integration by parts we obtan

$$
\begin{aligned}
u^{\prime}(x)=u^{\prime}(y) & +\varepsilon^{-1} \int_{y}^{x} f(\xi) d \xi+\varepsilon^{-1} \int_{y}^{x} b(\xi) u(\xi) d \xi \\
& -\varepsilon^{-1}\left(\left.\mu a u\right|_{y} ^{x}-\mu \int_{y}^{x} a^{\prime}(\xi) u(\xi) d \xi\right)
\end{aligned}
$$

Using (2 22) and the fact that $x-y \leq r$, we have

$$
\left|u^{\prime}(x)\right| \leq \frac{2}{r}\|u\|+\frac{r}{\varepsilon}\|f\|+\frac{C_{1} r}{\varepsilon}\|u\|+\frac{2 C_{2} \mu}{\varepsilon}\|u\|+\frac{C_{3} r \mu}{\varepsilon}\|u\|
$$

We obtain the following bound,

$$
\left|u^{\prime}(x)\right| \leq C\left(\frac{1}{r}+\frac{r}{\varepsilon}+\frac{\mu}{\varepsilon}\right)\|u\|+\frac{r}{\varepsilon}\|f\| \leq C\left(\frac{1}{r}+\frac{r}{\varepsilon}+\frac{\mu}{\varepsilon}\right) \max \{\|u\|,\|f\|\}
$$

If we choose $r=\sqrt{\varepsilon}$, then the right hand side of the above expression is minimised with respect to r and we obtain the required result for $k=1$ Using the differential equation (211) we can obtain the requred bounds for $k=2$ and by differentiating (211) the result for $k=3$ follows

23 Decomposition of the solution

In order to obtann parameter-unıform error estımates we decompose the solution of (2 111) into regular and singular components Firstly we want to show that there exists a function v (regular component) where the boundary conditions can be chosen such that

$$
L_{\varepsilon, \mu} v=f \text { on }(0,1) \quad \text { and } \quad\left\|\frac{d^{2} v}{d x^{2}}\right\| \leq C \text { for } \imath=0,1,2
$$

The analysis splits into two cases depending on the ratio of μ to $\sqrt{\varepsilon}$
Starting with $\mu^{2} \leq C_{1} \varepsilon$ we consider the following differential equation

$$
\begin{equation*}
L_{\varepsilon, \mu} v=f \text { on }(0,1) \tag{231}
\end{equation*}
$$

We decompose v as follows

$$
\begin{equation*}
v=v_{0}(x)+\sqrt{\varepsilon} v_{1}(x \quad \varepsilon, \mu)+\varepsilon v_{2}(x, \varepsilon, \mu), \tag{232a}
\end{equation*}
$$

where

$$
\begin{align*}
L_{0} v_{0} & =f \tag{232b}\\
\sqrt{\varepsilon} L_{0} v_{1} & =\left(L_{0}-L_{\varepsilon, \mu}\right) v_{0} \tag{232c}\\
\varepsilon L_{\varepsilon, \mu} v_{2} & =\sqrt{\varepsilon}\left(L_{0}-L_{\varepsilon, \mu}\right) v_{1} \text { on }(0,1), \quad v_{2}(0)=v_{2}(1)=0 \tag{232d}
\end{align*}
$$

We know that

$$
\left\|\frac{d^{2} v_{0}}{d x^{2}}\right\| \leq C \quad \text { if } \quad\left\|\frac{d^{2}(f / b)}{d x^{2}}\right\| \leq C
$$

and sunce $\mu^{2} \leq C_{1} \varepsilon$, we also have

$$
\left\|\frac{d^{2} v_{1}}{d x^{2}}\right\| \leq C \quad \text { if } \quad\left\|\frac{d^{2+2}(f / b)}{d x^{2+2}}\right\| \leq C, \quad\left\|\frac{d^{2} a}{d x^{2}}\right\| \leq C, \quad \text { and } \quad\left\|\frac{d^{2} b}{d x^{2}}\right\| \leq C
$$

Hence, if we have $f, b \in \mathcal{C}^{4}$ and $a \in \mathcal{C}^{2}$, we can use Lemma 222 in order to obtain

$$
\left\|\frac{d^{2} v_{2}}{d x^{2}}\right\| \leq C\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{2}\right)\left(\frac{1}{\sqrt{\varepsilon}}\right)^{\imath} \leq C\left(\frac{1}{\sqrt{\varepsilon}}\right)^{2}, \quad \imath \leq 2
$$

Therefore using the decomposition (2 32), we conclude

$$
\left\|\frac{d^{2} v}{d x^{2}}\right\| \leq C \text { for } \imath=0,1,2
$$

In the second case $\mu^{2} \geq C_{2} \varepsilon$ where $C_{2}<C_{1}$ and $C_{2} \leq \frac{\gamma}{\alpha},\left(\gamma<\min _{\bar{\Omega}}\left\{\frac{b}{a}\right\}\right)$, we consider the differential equation

$$
\widehat{L}_{\varepsilon, \mu} \hat{v}=\hat{f} \text { on }(0, d) \quad d \geq 1 \quad \hat{v}(d)=1, \quad \hat{v}(0) \text { chosen in }\left(\begin{array}{ll}
2 & 4 \tag{2}
\end{array}\right),
$$

where the differential operators $\widehat{L}_{\varepsilon, \mu}$ and \widehat{L}_{μ} comcide with $L_{\varepsilon, \mu}$ and L_{μ} respectively on the interval $(0,1)$ and \hat{a}, \hat{b} and \hat{f} are extensions of the functions a, b and f to the interval $(0, d)$ (they have the same properties as a, b and f and also coincide with the functions on the interval $(0,1))$ We extend the functions in such a way that $\|\hat{a}\|>\|a\|,\|\hat{b}\|>\|b\|$ and $\gamma<\operatorname{mm}_{\Omega}\left\{\frac{b}{a}\right\}$ Let us now decompose \hat{v} as follows

$$
\begin{equation*}
\hat{v}=\hat{v}_{0}+\varepsilon \hat{v}_{1}+\varepsilon^{2} \hat{v}_{2} \tag{234a}
\end{equation*}
$$

where

$$
\begin{array}{rlr}
\widehat{L}_{\mu} \hat{v}_{0} & =\hat{f} \text { on }[0, d), \quad \hat{v}_{0}(d)=1, \\
\varepsilon \widehat{L}_{\mu} \hat{v}_{1} & =\left(\widehat{L}_{\mu}-\widehat{L}_{\varepsilon, \mu}\right) \hat{v}_{0} \quad \text { on }[0, d), & \hat{v}_{1}(d)=0, \\
\varepsilon^{2} \widehat{L}_{\varepsilon, \mu} \hat{v}_{2} & =\varepsilon\left(\widehat{L}_{\mu}-\widehat{L}_{\varepsilon, \mu}\right) \hat{v}_{1} \quad \text { on }(0, d), & \hat{v}_{2}(0)=\hat{v}_{2}(d)=0 \tag{234d}
\end{array}
$$

We note that $\hat{v}(0)=\hat{v}_{0}(0)+\varepsilon \hat{v}_{1}(0)$
In order to establish bounds on derivatives of the components \hat{v}_{0} and \hat{v}_{1}, we first need the following lemma on the first order singularly perturbed operator \widehat{L}_{μ}

Lemma 231 Let y be the solutzon of the first order differentzal equation

$$
\begin{aligned}
\widehat{L}_{\mu}^{[1]} y(x)=\mu y^{\prime}(x)-k y(x) & =g(x, \mu), \quad 0 \leq x<d, \\
|y(d)| & \leq \frac{C}{\mu^{p}}, \quad p \geq 0
\end{aligned}
$$

where

$$
\left|\frac{d^{2} g}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{p+\imath}} e^{-\frac{\gamma^{*}}{\mu}(d-x)}\right), \quad \imath=0,1, \quad x \leq d,
$$

and for all $x \in[0, d]$

$$
k(x)>\gamma^{*}>0, \quad\left\|\frac{d^{2} k}{d x^{2}}\right\| \leq C, \quad \imath=0,1
$$

then

$$
\left|\frac{d^{\imath} y}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{p+2}} e^{-\frac{\gamma^{*}}{\mu}(d-x)}\right), \quad \imath=0,1, \quad x \leq d
$$

Proof Suppose $z \in C^{0}([0, d])$, we first note the following property can be established using a simple proof by contradiction argument

$$
\begin{equation*}
\text { If }\left.\hat{L}_{\mu}^{[1]} z\right|_{[0, d)} \leq 0 \text { and }\left.z\right|_{d} \geq 0 \text { then }\left.z\right|_{[0, d]} \geq 0 \tag{235}
\end{equation*}
$$

Consider the following barrier functions

$$
\psi^{ \pm}(x)=C_{1}\left(1+\frac{1}{\mu^{p}} e^{-\frac{\gamma^{*}}{\mu}(d-x)}\right) \pm y(x)
$$

Clearly the functions $\psi^{ \pm}(x)$ are nonnegative at $x=d$ for C_{1} large enough We also have

$$
\hat{L}_{\mu \mu}^{[1]} \psi^{ \pm}=\frac{C_{1}}{\mu^{p}}\left(\gamma^{*}-k\right) e^{-\frac{\gamma^{*}}{\mu}(d-x)}-k C_{1} \pm g(x, \mu)
$$

Since $k>\gamma^{*}$ we can choose C_{1} such that $\widehat{L}_{\mu}^{[1]} \psi^{ \pm} \leq 0$ and therefore we can apply (235) in order to obtan

$$
\begin{equation*}
|y(x)| \leq C\left(1+\frac{1}{\mu^{p}} e^{-\frac{\gamma^{*}}{\mu}(d-x)}\right) \tag{2}
\end{equation*}
$$

To derive the required bounds on the derivative of y, we decompose the solution as follows

$$
\begin{equation*}
y(x)=-\frac{g(x, \mu)}{k(x)}+\left(y(d)+\frac{g(d, \mu)}{k(d)}\right) s(x)+\mu z(x) \tag{237a}
\end{equation*}
$$

where

$$
\begin{align*}
& \widehat{L}_{\mu}^{[1]} s=0 \text { on }[0, d), \quad s(d)=1 \tag{237b}\\
& \widehat{L}_{\mu}^{[1]} z=\left(\frac{g}{k}\right)^{\prime} \text { on }[0, d), \quad z(d)=0 \tag{237c}
\end{align*}
$$

Starting with (237b), we can use $\psi^{ \pm}(x)=C e^{-\frac{\dot{x}^{*}}{\mu}(d-x)} \pm s(x)$ as our barrier functions in order to obtan

$$
\widehat{L}_{\mu}^{[1]} \cdot \psi^{ \pm}(x)=C\left(\gamma^{*}-k\right) e^{-\frac{\gamma^{*}}{\mu}(d-x)} \pm 0
$$

Again since $k(x)>\gamma^{*}$ we find that the above expression is always nonpositive and we therefore can apply (235) in order to obtan the following bound on the function s,

$$
|s(x)| \leq C e^{-\frac{\gamma^{*}}{\mu}(d-x)}
$$

Using the above bound and (2 37 b), we obtain

$$
\left|s^{\prime}(x)\right| \leq \frac{C}{\mu} e^{-\frac{\gamma^{*}}{\mu}(d-x)}
$$

Next, since z satisfies a similar equation to y we have from (236) that

$$
|z(x)| \leq C\left(1+\frac{1}{\mu^{p+1}} e^{-\frac{\gamma^{*}}{\mu}(d-x)}\right)
$$

The bounds on the derivative of z can be derived using (237c) and the above result We obtan

$$
\left|\mu z^{\prime}(x)\right| \leq C\left(1+\frac{1}{\mu^{p+1}} e^{-\frac{\gamma^{*}}{\mu}(d-x)}\right)
$$

Combining this with (2 37 a) we now have

$$
\left|y^{\prime}(x)\right| \leq C\left(1+\frac{1}{\mu^{p+1}} e^{-\frac{\dot{x}}{\mu}(d-x)}\right)
$$

Lemma 232 If $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}, \gamma<\min \left\{\frac{b}{a}\right\}$ and $\hat{f}, \hat{a}, \hat{b} \in \mathcal{C}^{4}$ then the solution \hat{v} of (233) satusfies the following bounds

$$
\left|\frac{d^{2} \hat{v}}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{2}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right), \quad \imath=0,1,2,
$$

where C depends only on $\|a\|,\left\|a^{\prime}\right\|,\|b\|$ and $\left\|b^{\prime}\right\|$
Proof Note that $\hat{v}=\hat{v}_{0}+\varepsilon \hat{v}_{1}+\varepsilon^{2} \hat{v}_{2}$ We first consider \hat{v}_{0} which is the solution of (234b) Since $\hat{v}_{0}(d)=1$ and $\left\|\frac{d^{2}(f / a)}{d x^{i}}\right\| \leq C$ for $\imath=0,1$ we apply Lemma 231 with $p=0 \mathrm{in}$ order to obtan

$$
\left|\frac{d^{2} \hat{v}_{0}}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{2}} e^{-\frac{\gamma}{\mu}(d-x)}\right), \quad \imath=0,1, \quad \frac{\hat{b}}{\hat{a}}>\gamma
$$

Differentiating (2 34 b) we have

$$
\mu\left(\hat{v}_{0}^{\prime}\right)^{\prime}-\frac{\hat{b}}{\hat{a}} \hat{v}_{0}^{\prime}=\left(\frac{\hat{f}}{\hat{a}}\right)^{\prime}+\left(\frac{\hat{b}}{\hat{a}}\right)^{\prime} \hat{v}_{0}=g_{1}(x)
$$

In this case $\left|\hat{v}_{0}^{\prime}(d)\right| \leq \frac{c}{\mu}$ and we also know $\left|\frac{d^{2} g_{1}}{d x^{i}}\right| \leq C\left(1+\frac{1}{\mu^{2}}-{ }^{-\frac{\gamma}{\mu}(d-x)}\right)$ for $\imath=0,1$ We therefore can apply Lemma 231 with $p=1$ in order to obtain

$$
\left|\hat{v}_{0}^{\prime \prime}(x)\right| \leq C\left(1+\frac{1}{\mu^{2}} e^{-\frac{\gamma}{\mu}(d-x)}\right)
$$

Contınuing in this way (differentiating (2 34 b) and applying Lemma 231 to differential equations involving derivatives of \hat{v}_{0} for the appropriate value of p), we obtain

$$
\left|\frac{d^{h^{2}} \hat{v}_{0}}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{2}} e^{-\frac{\gamma}{\mu}(d-x)}\right) \quad \imath=0,1,2,3,4
$$

Next we consider \hat{v}_{1} which is the solution of (234c) Letting $g_{2}(x)=-\frac{\hat{v}_{0}^{\prime \prime}(x)}{a(x)}$, we find that $\hat{v}_{1}(d)=0$ and $\left|g_{2}^{(2)}(x)\right| \leq C\left(1+\frac{1}{\mu^{2+i}} e^{-\frac{\gamma}{\mu}(d-x)}\right)$ We therefore start by applying Lemma 231 with $p=2$ We now have the following

$$
\left|\frac{d^{2} \hat{v}_{1}}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{2+2}} e^{-\frac{\gamma}{\mu}(d-x)}\right) \quad \imath=0,1
$$

As with \hat{v}_{0}, we differentiate (234 c) in order to obtaın

$$
\mu\left(\hat{v}_{1}^{\prime}\right)^{\prime}-\frac{\hat{b}}{\hat{a}} \hat{v}_{1}^{\prime}=-\left(\frac{\hat{v}_{0}^{\prime \prime}}{\hat{a}}\right)^{\prime}+\left(\frac{\hat{b}}{\hat{a}}\right)^{\prime} \hat{v}_{1}
$$

Applyıng the lemma with $p=3$, we now have

$$
\begin{equation*}
\left|\frac{d^{2} \hat{v}_{1}}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{2+2}} e^{-\frac{\gamma}{\mu}(d-x)}\right), \quad \imath=0,1,2 \tag{array}
\end{equation*}
$$

Finally we consider \hat{v}_{2} Choosing $\psi^{ \pm}(x)=C_{1}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right) \pm \hat{v}_{2}$ as our barrier functions we see that both are nonnegative at $x=d$ We also have

$$
\widehat{L}_{\varepsilon \mu} \psi^{ \pm}(x)=-C_{1} \hat{b}+\frac{C_{1}}{\mu^{4}}\left(\frac{\varepsilon \gamma^{2}}{4 \mu^{2}}+\frac{\hat{a} \gamma}{2}-\hat{b}\right) e^{-\frac{\gamma}{2 \mu}(d-x)} \pm \hat{v}_{1}^{\prime \prime}
$$

If we take $\mu^{2} \geq \frac{\gamma \epsilon}{\alpha}$ we can show that the above expression is negative if C_{1} is large enough (since $\gamma<\min \left\{\frac{b}{a}\right\}$) We can therefore apply the minmum prınciple in order to obtan

$$
\begin{equation*}
\left|\hat{v}_{2}(x)\right| \leq C\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right) \tag{239}
\end{equation*}
$$

We now need to bound the derivatives of \hat{v}_{2} Given any $x \in(0, d)$ we can construct a neighbourhood $N_{x}=(p, p+\sqrt{\varepsilon})$, where $x \in N_{x}$ and $N_{x} \subset \hat{\Omega}$ The mean value theorem imples there exists $y \in N_{x}$ such that

$$
\hat{v}_{2}^{\prime}(y)=\frac{\hat{v}_{2}(p+\sqrt{\varepsilon})-\hat{v}_{2}(p)}{\sqrt{\varepsilon}}
$$

Using (2 3 9) we now obtain

$$
\left|\hat{v}_{2}^{\prime}(y)\right| \leq \frac{C}{\sqrt{\varepsilon}}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-(p+\sqrt{\varepsilon}))}\right) \leq \frac{C}{\sqrt{\varepsilon}}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-(x+2 \sqrt{\varepsilon}))}\right)
$$

However this can be simplfied to

$$
\left|\hat{v}_{2}^{\prime}(y)\right| \leq \frac{C}{\sqrt{\varepsilon}}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)} e^{\frac{\gamma \sqrt{\varepsilon}}{\mu}}\right)
$$

Since $\gamma<\min \left\{\frac{b}{a}\right\}$ and using $\mu^{2} \geq C_{2} \varepsilon$, we know that $e^{\frac{\sqrt{\varepsilon} \gamma}{\mu}} \leq C$ We therefore obtain

$$
\left|\hat{v}_{2}^{\prime}(y)\right| \leq \frac{C}{\sqrt{\varepsilon}}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right)
$$

From the original differential equation for \hat{v}_{2}, we have

$$
\hat{v}_{2}^{\prime}(x)=\hat{v}_{2}^{\prime}(y)+\int_{y}^{x} \hat{v}_{2}^{\prime \prime}(\xi) d \xi,
$$

and using the bounds on \hat{v}_{2} above and (238) we find (as in the proof of Lemma 22)

$$
\begin{gathered}
\left|\hat{v}_{2}^{\prime}(x)\right| \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right)+\frac{C_{2}}{\varepsilon} \int_{y}^{x}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-\xi)}\right) d \xi \\
+\frac{C_{3} \mu}{\varepsilon}\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right)
\end{gathered}
$$

Integrating, and remembering $x-y \leq \sqrt{\varepsilon}$, we see

$$
\begin{aligned}
\left|\hat{v}_{2}^{\prime}(x)\right| \leq \quad \frac{C_{1}}{\sqrt{\varepsilon}}\left(1+\frac{\mu}{\sqrt{\varepsilon}}\right) & \left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right)+\frac{C_{2}}{\sqrt{\varepsilon}} \\
& +\frac{C_{3} \mu\left(\frac{\gamma(x-y)}{2 \mu}\right)}{\varepsilon \mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\left(\frac{1-e^{-\frac{\gamma}{2 \mu}(x-y)}}{\left(\frac{\gamma(x-y)}{2 \mu}\right)}\right)
\end{aligned}
$$

Using the inequality $\frac{1-e^{-t}}{t} \leq C$ we see

$$
\left|\hat{v}_{2}^{\prime}(x)\right| \leq C\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right)
$$

Also given that $\mu^{2} \geq C_{2} \varepsilon$ this can be simplfied in order to obtain

$$
\begin{equation*}
\left|\hat{v}_{2}^{\prime}(x)\right| \leq C\left(\frac{\mu}{\varepsilon}\right)\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right) \tag{array}
\end{equation*}
$$

Substituting (239) and (2 310) into (2 34 d), we now have the following bounds for $\hat{v}_{2}^{\prime \prime}$,

$$
\left|\hat{v}_{2}^{\prime \prime}(x)\right| \leq C\left(\frac{\mu^{2}}{\varepsilon^{2}}+\frac{1}{\varepsilon}\right)\left(1+\frac{1}{\mu^{4}} e^{-\frac{\gamma}{2 \mu}(d-x)}\right)
$$

Finally we use the bounds for \hat{v}_{0}, \hat{v}_{1} and \hat{v}_{2} and their derivatives to obtain the required result

Using Lemma 232 , we conclude that \hat{v} is bounded above away from $x=d$, and mposing the condition that $d>1$, we know $\exists \hat{v} \in \mathcal{C}^{3}(0,1)$ such that $L_{\varepsilon, \mu} \hat{v}=f$ and $\left\|\frac{d^{2} v}{d x^{i}}\right\| \leq C$ on $(0,1)$ for $\imath=0,1,2$ In this case we define the regular component v as the solution to the following problem

$$
L_{\varepsilon, \mu} v=f \text { on }(0,1), \quad v(0)=\hat{v}(0), \quad v(1)=\hat{v}(1)
$$

Remark 231 When analysing the two-parameter ode (211), attention was always
given to constructing proofs and using analytical tools that are extendable to problems of higher dimensions However, one would encounter signıficant difficulties in an attempt to extend the approach taken in Lemma 232 A new and more extendable approach to define the regular component is needed when considering the two-parameter parabolic problem Such an approach is detaled in Chapter 3

In both cases we now have the following decomposition of the solution u

$$
\begin{equation*}
u=v+w_{L}+w_{R}, \tag{2311a}
\end{equation*}
$$

where

$$
\begin{align*}
L_{\varepsilon, \mu} v & =f \text { on }(0,1), & & v(0), v(1) \text { chosen in }(232) \text { or }(234), \tag{231lb}\\
L_{\varepsilon, \mu} w_{L} & =0 \text { on }(0,1), & & w_{L}(0)=u(0)-v(0), \quad w_{L}(1)=0, \tag{2311c}\\
L_{\varepsilon, \mu} w_{R} & =0 \text { on }(0,1), & & w_{R}(0)=0, \quad w_{R}(1)=u(1)-v(1) \tag{23lld}
\end{align*}
$$

The boundary conditions of v are chosen (as above) so that it satisfies the bounds

$$
\begin{equation*}
\left\|\frac{d^{2} v}{d x^{2}}\right\| \leq C \quad \imath=0,1,2 \quad \text { and } \quad\left\|\frac{d^{3} v}{d x^{3}}\right\| \leq \frac{C}{\varepsilon}, \tag{2312}
\end{equation*}
$$

and therefore we call v the regular component of the solution The singular components w_{L} and w_{R} satisfy the bounds in Lemma 222 However, we can also obtain the following sharper bounds on the exponential character of the two components

Lemma 233 When the solutzon of (2 11) is decomposed as in (23 11a), the singular components w_{L} and w_{R} sattsfy the following bounds

$$
\begin{aligned}
\left|w_{L}(x)\right| & \leq C e^{-\theta_{1} x} \\
\left|w_{R}(x)\right| & \leq C e^{-\theta_{2}(1-x)}
\end{aligned}
$$

where

$$
\theta_{\mathrm{l}}=\frac{\mu \alpha+\sqrt{\mu^{2} \alpha^{2}+4 \varepsilon \beta}}{2 \varepsilon},
$$

and

$$
\theta_{2}=\frac{-\mu A+\sqrt{\mu^{2} A^{2}+4 \varepsilon \beta}}{2 \varepsilon}
$$

$\left(A=\|a\|_{\bar{\Omega}}\right.$ and θ_{1} and θ_{2} are respectively the postive roots of the equations $\varepsilon \theta_{1}^{2}-\mu \alpha \theta_{1}-\beta=$ 0 and $\varepsilon \theta_{2}^{2}+\mu A \theta_{2}-\beta=0$)

Proof Consider the following barrier functions

$$
\psi^{ \pm}(x)=C e^{-\theta_{1} x} \pm w_{L}(x)
$$

where θ_{1} is as stated We find that for C large enough, the functions are both nonnegative at $x=0$ and $x=1$, and after a simple calculation we also find that $L_{\varepsilon, \mu} \psi^{ \pm}(x) \leq 0$ We therefore can apply the minimum principle in order to obtain

$$
\left|w_{L}(x)\right| \leq C e^{-\theta_{1} x}
$$

The proof in the case of w_{R} is simular
Remark 232 The following propertues of θ_{1} and θ_{2} can easily be establashed They will be required in order to analyse the error in the numerical approximations to the solution

$$
\begin{gather*}
\theta_{1} \geq \max \left\{\frac{\sqrt{\beta}}{\sqrt{\varepsilon}}, \frac{\alpha \mu}{\varepsilon}\right\} \tag{2313a}\\
\text { of } \mu^{2} \leq C \varepsilon \text { then } \theta_{2} \geq \frac{C}{\sqrt{\varepsilon}}, \quad \text { of } \mu^{2} \geq C \varepsilon \text { then } \theta_{2} \geq \frac{C}{\mu} \tag{2313b}
\end{gather*}
$$

24 Discrete problem

Consider the following upwind finite difference scheme

$$
\begin{equation*}
L^{N} U\left(x_{\imath}\right)=\varepsilon \delta^{2} U\left(x_{\imath}\right)+\mu a\left(x_{\imath}\right) D^{+} U\left(x_{\imath}\right)-b\left(x_{\imath}\right) U\left(x_{\imath}\right)=f\left(x_{\imath}\right), \quad x_{\imath} \in \Omega^{N} \tag{241a}
\end{equation*}
$$

where

$$
D^{+} U\left(x_{\imath}\right)=\frac{U\left(x_{\imath+1}\right)-U\left(x_{\imath}\right)}{x_{\imath+1}-x_{2}}, \quad D^{-} U\left(x_{\imath}\right)=\frac{U\left(x_{\imath}\right)-U\left(x_{\imath-1}\right)}{x_{\imath}-x_{\imath-1}}
$$

and

$$
\delta^{2} U\left(x_{\imath}\right)=\frac{D^{+} U\left(x_{\imath}\right)-D^{-} U\left(x_{\imath}\right)}{\left(x_{\imath+1}-x_{\imath-1}\right) / 2}
$$

The plecewise-uniform mesh, Ω^{N}, on which we apply the above finite difference operator consists of two transition points

$$
\begin{align*}
& \sigma_{1}=\min \left\{\frac{1}{4}, \frac{2}{\theta_{1}} \ln N\right\} \tag{24lb}\\
& \sigma_{2}=\min \left\{\frac{1}{4}, \frac{2}{\theta_{2}} \ln N\right\}
\end{align*}
$$

More specifically

$$
\Omega^{N}=\left\{x_{\imath} \left\lvert\, x_{\imath}=\left\{\begin{array}{lll}
\frac{4 \sigma_{1} \imath}{N}, & \text { if } \quad \imath \frac{N}{4} \tag{24lc}\\
\sigma_{1}+\left(\imath-\frac{N}{4}\right) H, & \text { if } & \frac{N}{4} \leq \imath \leq \frac{3 N}{4} \\
1-\sigma_{2}+\left(\imath-\frac{3 N}{4}\right) \frac{4 \sigma_{2}}{N}, & \text { if } & \frac{3 N}{4} \leq \imath \leq N
\end{array}\right\}\right.\right.
$$

where $N H=2\left(1-\sigma_{1}-\sigma_{2}\right)$ We now state a discrete comparison principle for (2 41 a), whose proof is standard
Discrete Minımum Principle If W is any mesh function and $\left.L^{N} W\right|_{\Omega^{N}} \leq 0$ and $\left.W\right|_{\partial \Omega^{N}} \geq 0$, then $\left.W\right|_{\bar{\Omega}^{N}} \geq 0$

We have the following discrete decomposition

$$
\begin{equation*}
U=V+W_{L}+W_{R} \tag{242a}
\end{equation*}
$$

where the components are the solutions of the following

$$
\begin{align*}
L^{N} V & =f\left(x_{\imath}\right), \quad V(0)=v(0), \quad V(1)=v(1) \tag{242~b}\\
L^{N} W_{L} & =0, \quad W_{L}(0)=w_{L}(0), \quad W_{L}(1)=0 \tag{242c}\\
L^{N} W_{R} & =0, \quad W_{R}(0)=0, \quad W_{R}(1)=w_{R}(1) \tag{242d}
\end{align*}
$$

We can prove the following bounds on the discrete counterparts of the singular components w_{L} and w_{R}

Theorem 241 We have the following bounds on W_{L} and W_{R}

$$
\begin{gather*}
\left|W_{L}\left(x_{j}\right)\right| \leq C \prod_{\imath=1}^{\jmath}\left(1+\theta_{L} h_{2}\right)^{-1}=\Psi_{L, 3}, \quad \Psi_{L, 0}=C \tag{243a}\\
\left|W_{R}\left(x_{j}\right)\right| \leq C \prod_{\imath=\jmath+1}^{N}\left(1+\theta_{R} h_{2}\right)^{-1}=\Psi_{R, \jmath}, \quad \Psi_{R, N}=C \tag{243b}
\end{gather*}
$$

where W_{L} and W_{R} are solutions of (2 $42 c$) and (242d) respectively and $h_{2}=x_{2}-x_{\imath-1}$ The parameters θ_{L} and θ_{R} are defined to be the positzve roots of the following equations

$$
2 \varepsilon \theta_{L}^{2}-\mu \alpha \theta_{L}-\beta=0 \quad \text { and } \quad 2 \varepsilon \theta_{R}^{2}+\mu A \theta_{R}-\beta=0, \quad(A=\|a\|)
$$

Proof We start with W_{L} Consider $\Phi_{L, j}^{ \pm}=\Psi_{L, \jmath} \pm W_{L}\left(x_{j}\right) \quad$ Now $L^{N} \Phi_{L, \jmath}^{ \pm}=\varepsilon \delta^{2} \Psi_{L, \jmath}+$ $\mu a D^{+} \Psi_{L, 3}-b \Psi_{L, 3} \pm 0$, and usıng

$$
\Psi_{L, j}>0, \quad D^{+} \Psi_{L, j}=-\theta_{L} \Psi_{L, j+1}<0 \quad \text { and } \quad \delta^{2} \Psi_{L, j}=\theta_{L}^{2} \Psi_{L, j+1} \frac{h_{j+1}}{h_{j}}>0
$$

we obtan

$$
L^{N} \Phi_{L, \jmath}^{ \pm} \leq \varepsilon \theta_{L}^{2} \Psi_{L, j+1} \frac{h_{\jmath+1}}{\overline{h_{\jmath}}}-\mu \alpha \theta_{L} \Psi_{L, \jmath+1}-\beta \Psi_{L, \eta}
$$

where $\overline{h_{j}}=\frac{h_{y+1}+h_{2}}{2}$ Rewriting the rught hand side of this equation we have

$$
L^{N} \Phi_{L, \jmath}^{ \pm} \leq \Psi_{L, 3+1}\left(2 \varepsilon \theta_{L}^{2}\left(\frac{h_{\jmath+1}}{2 \overline{h_{j}}}-1\right)+\left(2 \varepsilon \theta_{L}^{2}-\mu \alpha \theta_{L}-\beta\right)-\beta \theta_{L} h_{\jmath+1}\right) \leq 0
$$

Using the discrete minımum principle we obtain the required result
The same idea 1s applied to W_{R} We consider $\Phi_{R, j}^{ \pm}=\Psi_{R, J} \pm W_{R}\left(x_{j}\right)$ Now $L^{N} \Phi_{R, j}^{ \pm}=$ $\varepsilon \delta^{2} \Psi_{R, \jmath}+\mu a D^{+} \Psi_{R, \jmath}-b \Psi_{R, \jmath} \pm 0$, and using

$$
\Psi_{R, J} \leq \Psi_{R, \jmath+1}, \Psi_{R, \jmath}>0, D^{+} \Psi_{R, \jmath}=\theta_{R} \Psi_{R, \jmath} \text { and } \delta^{2} \Psi_{R, \jmath}=\frac{\theta_{R}^{2}}{\left(1+\theta_{R} h_{\jmath}\right)} \Psi_{R, \jmath} \frac{h_{j}}{\overline{h_{j}}}
$$

we obtan

$$
L^{N} \Phi_{R, \jmath}^{ \pm} \leq \frac{\Psi_{R, \jmath}}{\left(1+\theta_{R} h_{y}\right)}\left(\varepsilon \theta_{R}^{2}\left(\frac{h_{3}}{\overrightarrow{h_{j}}}-2\right)+2 \varepsilon \theta_{R}^{2}+\mu A \theta_{R}\left(1+\theta_{R} h_{j}\right)-\beta\left(1+\theta_{R} h_{j}\right)\right)
$$

Rewriting the right hand side of this mequality we have

$$
L^{N} \Phi_{R, \jmath}^{ \pm} \leq \frac{\Psi_{R, \jmath}}{\left(1+\theta_{R} h_{j}\right)}\left(\varepsilon \theta_{R}^{2}\left(\frac{h_{j}}{\overline{h_{j}}}-2\right)+\left(2 \varepsilon \theta_{R}^{2}+\mu A \theta_{R}-\beta\right)\left(1+\theta_{R} h_{j}\right)-2 \varepsilon \theta_{R}^{3} h_{J}\right) \leq 0
$$

and agan we use the discrete minımum principle to finish

2.5 Error analysis

We now wish to analyse the bounds on the error between the discrete solution and the continuous solution

Lemma 251 At each mesh point $x_{\imath} \in \bar{\Omega}^{N}$ the regular component of the error satusfies the following estrmate

$$
\left|(V-v)\left(x_{2}\right)\right| \leq C N^{-1}
$$

where v is the solution of (2 311b) and V is the solution of (242b)

Proof Using the usual truncation error argument and (2 3 12) we have

$$
\left|L^{N}(V-v)\left(x_{\imath}\right)\right| \leq C H\left(\varepsilon\left\|v^{\prime \prime \prime}\right\|+\mu\left\|v^{\prime \prime}\right\|\right) \leq C H \leq C N^{-1}
$$

where H is the maximum step size If we choose $\psi^{ \pm}\left(x_{2}\right)=C_{1} N^{-1} \pm(V-v)\left(x_{2}\right)$ as our barrier functions, we know that these functions are both nonnegative at $x=0$ and $x=1$ We also find that $L^{N} \psi^{ \pm} \leq 0$ for C_{1} large enough and therefore we can apply the discrete minmum principle in order to obtan the required result

Lemma 252 At each mesh point $x_{\imath} \in \bar{\Omega}^{N}$ the left singular component of the error satusfies the following estrmate

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{2}\right)\right| \leq C N^{-1}(\ln N)^{2}
$$

where w_{L} is the solution of (2311c) and W_{L} is the solution of (242c)
Proof We can use a classical argument in order to obtain the following truncation error bounds

$$
\left|L^{N}\left(W_{L}-w_{L}\right)\left(x_{2}\right)\right| \leq C\left(h_{\imath+1}+h_{2}\right)\left(\varepsilon\left\|w^{\prime \prime \prime}\right\|+\mu\left\|w^{\prime \prime}\right\|\right)
$$

Since w_{L} satisfies a similar equation to u, we can use Lemma 222 to obtain

$$
\left|L^{N}\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)\right| \leq C\left(h_{\imath+1}+h_{\imath}\right)\left(\frac{1}{\sqrt{\varepsilon}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right)+\frac{\mu}{\varepsilon}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{2}\right)\right)
$$

Simplifying the right hand side of this expression we have

$$
\begin{equation*}
\left|L^{N}\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)\right| \leq C\left(h_{\imath+1}+h_{2}\right)\left(\frac{1}{\sqrt{\varepsilon}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right)\right) \tag{array}
\end{equation*}
$$

Starting with when $\sigma_{1}=\frac{1}{4}$, we can show that in this case $\theta_{1} \leq 8 \ln N$ and therefore using (2 3 13a) our bound for the truncation error now becomes

$$
\left|L^{N}\left(W_{L}-w_{L}\right)\left(x_{2}\right)\right| \leq C N^{-1}(\ln N)^{2}, \quad \text { if } \sigma_{1}=\frac{1}{4}
$$

If we choose $\psi^{ \pm}\left(x_{\imath}\right)=C N^{-1}(\ln N)^{2} \pm\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)$ as our barrier functions we find that we can apply the discrete minımum principle in order to obtain

$$
\begin{equation*}
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)\right| \leq C N^{-1}(\ln N)^{2}, \quad \text { if } \sigma_{1}=\frac{1}{4} \tag{252}
\end{equation*}
$$

The next case to consider is $\sigma_{1}<\frac{1}{4}$ In this case the mesh is plecewise uniform We firstly analyse the error in the coarse mesh region $\left[\sigma_{1}, 1\right.$) and then we proceed to analyse the fine mesh on $\left(0, \sigma_{1}\right)$ With the coarse mesh region, instead of using the usual truncation error argument, we will use Lemma 233 and (243a) to obtan the required error bounds From (2 43 a) we have

$$
\left|W_{L}\left(x_{\frac{N}{4}}\right)\right| \leq C\left(1+\theta_{L} h_{L}\right)^{-\frac{N}{4}}
$$

where $h_{L}=\frac{4 \sigma_{1}}{N}$ When $\sigma_{1}<\frac{1}{4}$, we can prove that $\theta_{L} h_{L} \geq 4 N^{-1} \ln N$ We obtan the following

$$
\left|W_{L}\left(x_{\frac{N}{4}}\right)\right| \leq C\left(1+4 N^{-1} \ln N\right)^{-\frac{N}{4}}
$$

Using the standard mequality $\ln (1+t)>t\left(1-\frac{t}{2}\right)$ and letting $t=4 N^{-1} \ln N$, we can show that $\left(1+4 N^{-1} \ln N\right)^{-\frac{N}{4}} \leq 4 N^{-1}$ and therefore we conclude that on the interval $\left[\sigma_{1}, 1\right)$ we have

$$
\left|W_{L}\left(x_{\imath}\right)\right| \leq C N^{-1}
$$

Looking at the continuous solution in this region we have

$$
\left|w_{L}(x)\right| \leq C e^{-\theta_{1} x} \leq C e^{-\theta_{1}\left(\frac{2}{\theta_{1}} \ln N\right)} \leq C N^{-2}
$$

Combining these two results we now obtain the following error bounds

$$
\begin{equation*}
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)\right| \leq C N^{-1}, \quad x_{\imath} \in\left[\sigma_{1}, 1\right) \quad \text { and } \quad \sigma_{1}<\frac{1}{4} \tag{253}
\end{equation*}
$$

We now consider the fine mesh region The bound (251) on the truncation error still holds and since we are in the fine mesh region with $\sigma_{1}<\frac{1}{4}$ we know that $h_{2+1}=h_{2}=$ $\frac{8}{\theta_{1}} N^{-1} \ln N$ We can therefore use (2313a) in order to obtain

$$
\left|L^{N}\left(W_{L}-w_{L}\right)\left(x_{2}\right)\right| \leq C_{1} N^{-1} \ln N+C_{2} N^{-1} \frac{\mu^{2}}{\varepsilon} \ln N
$$

If we choose $\psi^{ \pm}\left(x_{2}\right)=C_{3} N^{-1} \ln N+C_{4} N^{-1}\left(\sigma_{1}-x_{2}\right)\left(\frac{\mu}{\varepsilon}\right) \ln N \pm\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)$ as our barrier functions we find that both functions are nonnegative at x_{0} and $x_{\frac{N}{4}} \quad C_{3}$ and C_{4} can be chosen so that $L^{N} \psi^{ \pm} \leq 0$ and therefore applying the discrete minmum principle we obtain

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{2}\right)\right| \leq C_{3} N^{-1} \ln N+C_{4}\left(\sigma_{1}-x_{\imath}\right)\left(\frac{\mu}{\varepsilon}\right) N^{-1} \ln N
$$

Therefore using $\sigma_{1}=\frac{2}{\theta_{1}} \ln N$ and $\frac{\mu}{\varepsilon} \frac{1}{\theta_{1}} \leq C$ (see (2 3 13a)), we obtain

$$
\begin{equation*}
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)\right| \leq C N^{-1}(\ln N)^{2}, \quad x_{\imath} \in\left(0, \sigma_{1}\right) \quad \text { and } \quad \sigma_{1}<\frac{1}{4} \tag{254}
\end{equation*}
$$

Combining the bounds (252), (253) and (254) gives us the required result
Lemma 253 At each mesh point $x_{2} \in \bar{\Omega}^{N}$ the right singular component of the error satnsfies the following estrmate

$$
\begin{equation*}
\left|\left(W_{R}-w_{R}\right)\left(x_{2}\right)\right| \leq C N^{-1}(\ln N)^{2}, \tag{255}
\end{equation*}
$$

where w_{R} as the solution of (2 $311 d$) and W_{R} as the solution of (242d)
Proof We start with the case $\mu^{2} \leq C \varepsilon$ We agan use a classical argument and Lemma 222 m order to obtain the following

$$
\begin{equation*}
\left|L^{N}\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq C\left(h_{\imath+1}+h_{\imath}\right)\left(\frac{1}{\sqrt{\varepsilon}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right)\right) \tag{256}
\end{equation*}
$$

However, in the case $\mu^{2} \leq C \varepsilon$, this simplifies to

$$
\begin{equation*}
\left|L^{N}\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq \frac{C}{\sqrt{\varepsilon}}\left(h_{\imath+1}+h_{\imath}\right) \tag{257}
\end{equation*}
$$

If $\sigma_{2}=\frac{1}{4}$ and $\mu^{2} \leq C \varepsilon$, we can use (2313b) to show $\frac{C}{\sqrt{\varepsilon}} \leq \theta_{2} \leq 8 \ln N$ We now obtan the following bounds on the truncation error

$$
\left|L^{N}\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq C N^{-1} \ln N
$$

If we choose $\psi^{ \pm}\left(x_{\imath}\right)=C N^{-1} \ln N \pm\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)$ as our barrier functions on the entire interval $[0,1]$, we obtain

$$
\begin{equation*}
\left|\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq C N^{-1} \ln N, \quad \mu^{2} \leq C \varepsilon \text { and } \sigma_{2}=\frac{1}{4} \tag{258}
\end{equation*}
$$

In the case where $\sigma_{2}<\frac{1}{4}$, we have to analyse the error in the fine and coarse mesh regions separately As with w_{L} we will start by examining the coarse mesh region $\left(0,1-\sigma_{2}\right.$] Using (2 43 b) we have

$$
\left|W_{R}\left(x_{\frac{3 N}{4}}\right)\right| \leq C\left(1+\theta_{R} h_{R}\right)^{\frac{-N}{4}}
$$

where $h_{R}=\frac{4 \sigma_{2}}{N}$ In this case we can prove that $\theta_{R} h_{R} \geq 4 N^{-1} \ln N$ so, as with W_{L}, we
obtain (after some calculations) $\left|W_{R}\left(x_{\frac{3 N}{4}}\right)\right| \leq C N^{-1}$ Therefore on the interval ($0,1-\sigma_{2}$] we have

$$
\left|W_{R}\left(x_{\imath}\right)\right| \leq C N^{-1}
$$

Using the fact that on the interval $\left(0,1-\sigma_{2}\right]$ with $\sigma_{2}=\frac{2}{\theta_{2}} \ln N$ we have

$$
\left|w_{R}(x)\right| \leq C e^{-\theta_{2}(1-x)} \leq C N^{-2},
$$

we now obtan the following bounds on the error

$$
\begin{equation*}
\left|\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq C N^{-1}, \quad \mu^{2} \leq C \varepsilon, \quad x_{\imath} \in\left(0,1-\sigma_{2}\right] \text { and } \sigma_{2}<\frac{1}{4} \tag{259}
\end{equation*}
$$

We should note that this result in the coarse mesh region still holds when $\mu^{2} \geq C \varepsilon$ and $\sigma_{2}<\frac{1}{4}$ We now continue to the fine mesh region $\left(1-\sigma_{2}, 1\right)$ The bounds on the truncation error in (257) still hold and given that we are in the fine mesh region we have $h_{\imath+1}=h_{\imath}=\frac{8}{\theta_{2}} N^{-1} \ln N$ Using (2313b) we now obtain $\frac{C}{\sqrt{\varepsilon}}\left(h_{\imath+1}+h_{\imath}\right) \leq C N^{-1} \ln N$ and hence

$$
\left|L^{N}\left(W_{R}-w_{R}\right)\left(x_{2}\right)\right| \leq C N^{-1} \ln N
$$

As before, choosing $\psi^{ \pm}\left(x_{\imath}\right)=C N^{-1} \ln N \pm\left(W_{R}-w_{R}\right)\left(x_{i}\right)$ as our barrier functions we obtain the following error bounds

$$
\begin{equation*}
\left|\left(W_{R}-w_{R}\right)\left(x_{2}\right)\right| \leq C N^{-1} \ln N, \quad \mu^{2} \leq C \varepsilon, \quad x_{\imath} \in\left(1-\sigma_{2}, 1\right) \text { and } \sigma_{2}<\frac{1}{4} \tag{array}
\end{equation*}
$$

In the case $\mu^{2} \geq C \varepsilon$, we need to look at w_{R} differently We can decompose w_{R} as follows

$$
\begin{equation*}
w_{R}(x)=y(x)-\frac{y(0)}{w_{L}(0)} w_{L}(x) \tag{25lla}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\varepsilon, \mu} y(x)=0, \quad y(1)=w_{R}(1) \tag{2511b}
\end{equation*}
$$

and $w_{L}(x)$ is defined as in (2311c) Using this decomposition we have

$$
\left|\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq\left|(Y-y)\left(x_{\imath}\right)\right|+C\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)\right|
$$

where W_{R}, Y, W_{L} are the discrete counterparts of w_{R}, y and w_{L} respectively We see that y satisfies a similar equation to \hat{v} in (2 33), therefore appropriately choosing $y(0)$
and setting $d=1$, we can use Lemma (2 32) to obtan the following bounds for y

$$
\left|\frac{d^{2} y}{d x^{2}}\right| \leq C\left(1+\frac{1}{\mu^{2}} e^{-\frac{\gamma}{2 \mu}(1-x)}\right), \quad \imath=0,1,2
$$

More simply

$$
\begin{equation*}
\left\|\frac{d^{2} y}{d x^{2}}\right\| \leq \frac{C}{\mu^{2}}, \quad \imath=0,1,2 \tag{2512}
\end{equation*}
$$

We know that $\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}\right)\right| \leq C N^{-1}(\ln N)^{2}$ at each mesh point $x_{\imath} \in \Omega^{N}$, so we therefore only need to consider the error y generates In the case $\sigma_{2}=\frac{1}{4}$ we know that $\theta_{2} \leq 8 \ln N$ and using (2313 b) we can therefore show that $\frac{1}{\mu} \leq C \ln N$ Using the usual truncation error argument (noting that $\left.\varepsilon y^{\prime \prime \prime}=(b y)^{\prime}-\mu\left(a y^{\prime}\right)^{\prime}\right)$ and a suitable barrier function, we find that

$$
\left|(Y-y)\left(x_{\imath}\right)\right| \leq C N^{-1}(\ln N)^{2}
$$

Combining this with the bound obtained on the left singular component of the error we have

$$
\left|\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq C N^{-1}(\ln N)^{2}, \quad \mu^{2} \geq C \varepsilon \text { and } \sigma_{2}=\frac{1}{4}
$$

In the case of $\sigma_{2}<\frac{1}{4}$, the bound in the coarse mesh region $\left(0,1-\sigma_{2}\right]$, obtained in the case $\mu^{2} \leq C \varepsilon$, still holds In the fine mesh region $\left(1-\sigma_{2}, 1\right)$ we use (2 512) again in order to obtain

$$
\left|L^{N}(Y-y)\left(x_{\imath}\right)\right| \leq C \frac{h_{2+1}+h_{\imath}}{\mu}
$$

In this case we know that $h_{\imath+1}=h_{\imath}=\frac{8}{\theta_{2}} N^{-1} \ln N$ and using (2313b) we can prove that

$$
\left|L^{N}(Y-y)\left(x_{2}\right)\right| \leq C N^{-1} \ln N
$$

Therefore using a suitable barrier function we obtan

$$
\left|(Y-y)\left(x_{2}\right)\right| \leq C N^{-1} \ln N
$$

Hence, we now have the following bound on the error

$$
\left|\left(W_{R}-w_{R}\right)\left(x_{\imath}\right)\right| \leq C N^{-1}(\ln N)^{2} \quad \mu^{2} \geq C \varepsilon, x_{2} \in\left(1-\sigma_{2}, 1\right), \text { and } \sigma_{2}<\frac{1}{4}
$$

Combining all the error bounds for w_{R} in the different cases gives the required result
Remark 251 Such a decomposition of w_{R} in (2511) suggests that in this case of $\mu^{2} \geq$

Figure 21 A plot of the solution of (2513) when $\mu=2^{-3}$ and $\varepsilon=2^{-18}$

Figure 22 A zoom in to the bottom-left corner of Figure 21
$C \varepsilon$, the definition of w_{R} in (2 311 d) does not correctly asolate the right layer component See for example the followng sample problem

$$
\begin{array}{r}
\varepsilon \tilde{w}_{R}^{\prime \prime}+\mu \tilde{w}_{R}^{\prime}-\tilde{w}_{R}=0, \tag{array}\\
\tilde{w}_{R}(0)=0, \quad \tilde{w}_{R}(1)=1
\end{array}
$$

Figure 21 us the solutron of (2513) when $\mu=2^{-3}$ and $\varepsilon=2^{-18}$ Such a plot maght lead us to navvely believe there is just a layer on the right, however, in Figure 22 we zoom in to the bottom-left corner of Figure 21 and we see there is a problem We have not usolated our rught layer component

Since, when $\mu^{2} \geq C \varepsilon$, there is a layer of width $O(\mu)$ on the right, it seems more
natural to assume that the functıon y defined in (2511b) behaves like the right singular component However, as prevoously descussed, such an approach to bound $y(x)$ as detazled in Lemma 232 may pose difficult to extend to higher dimensions For these reasons a new approach to correctly define the right layer component w_{R} in the case of $\mu^{2} \geq C \varepsilon$ is constructed in Chapter 3

Theorem 251 Let u be the solution of the dufferentral equation (2 11) and U be the solution of (241) Then at each mesh point $x_{1} \in \bar{\Omega}^{N}$ we have

$$
\begin{equation*}
\left|(U-u)\left(x_{\imath}\right)\right| \leq C N^{-1}(\ln N)^{2} \tag{array}
\end{equation*}
$$

Proof This result immediately follows from Lemmas 251,252 and 253

26 Numerical results

The scheme (the upwind finite difference operator (241a) appled on the mesh (241c)) has been tested with the following constant coefficient problem

$$
\begin{equation*}
\varepsilon u_{\varepsilon, \mu}^{\prime \prime}(x)+\mu u_{\varepsilon, \mu}^{\prime}(x)-u_{\varepsilon, \mu}(x)=1, \quad u_{\varepsilon, \mu}(0)=u_{\varepsilon, \mu}(1)=1 \tag{261}
\end{equation*}
$$

Figures (23) and (24) are graphs of the exact solution of the above problem The progressively lower graphs in these figures correspond to progressively smaller values of the parameter ε Note that in Figure (2 3b), the layer on the left is obvious while the layer

Figure 23 Exact solutions of 261 with $\mu=2^{-2}$ for $2^{-32} \leq \varepsilon \leq 1$ when (a) $\mu^{2} \leq \varepsilon$ and (b) $\mu^{2} \geq 075 \varepsilon$

Figure 24 Exact solutions of 261 with $\mu=2^{-4}$ for $2^{-32} \leq \varepsilon \leq 1$ when (a) $\mu^{2} \leq \varepsilon$ and (b) $\mu^{2} \geq 075 \varepsilon$
on the right is notably weaker However, in Figure (24b) we see that as μ is reduced the layer on the right does in fact become more pronounced

We define the exact maxımum pointwise error by

$$
E_{\varepsilon, \mu, \text { exact }}^{N}=\left\|U_{\varepsilon, \mu}^{N}-u_{\varepsilon, \mu}\right\|_{\Omega^{N}}
$$

We also can find the maximum pointwise ε-uniform errors using

$$
E_{\mu, \text { exact }}^{N}=\max _{2^{-\rho} \leq \varepsilon \leq 1}| | U_{\varepsilon, \mu}^{N}-u_{\varepsilon, \mu} \|_{\Omega^{N}},
$$

and finally we define the maxımum pointwise (ε, μ)-unuform errors by

$$
E_{e x a c t}^{N}=\max _{2^{-32} \leq \mu \leq 1}\left\{\max _{2^{-\rho} \leq \varepsilon \leq 1}\left\|U_{\varepsilon, \mu}^{N}-u_{\varepsilon, \mu}\right\|_{\Omega^{N}}\right\},
$$

where ρ is chosen in order to acheve stability of $E_{\mu, e \text { exact }}^{N}$ with respect to ε As μ decreases, we must also consider progressively smaller values of ε (larger values of ρ) in order to reach this stability (eg when $\mu=2^{-32}$ we must let ε decrease to 2^{-80}) Sımılarly we find the exact order of convergence using

$$
p_{\varepsilon, \mu, \text { exact }}^{N}=\log _{2} \frac{E_{\varepsilon, 4, \text { exact }}^{N}}{E_{\varepsilon, \mu, \text { exact }}^{2 N}}
$$

We define the exact ε-uniform order of convergence by

$$
p_{\mu, \text { exact }}^{N}=\log _{2} \frac{E_{\mu, \text { exact }}^{N}}{E_{\mu, \text { exact }}^{2 N}},
$$

and finally we define the exact (ε, μ)-unform order of convergence by

$$
p_{\text {exact }}^{N}=\log _{2} \frac{E_{\text {exaci }}^{N}}{E_{\text {exact }}^{2 N}}
$$

Table 21 contans values of $E_{\varepsilon, \mu, \text { exact }}^{N}$ and $E_{\mu, \text { exact }}^{N}$ for $\mu=2^{-16}$ and various values of ε The range in ε we present is from 1 to 2^{-60}, however, we can see that the errors have stabilised with respect to ε after $\varepsilon=2^{-46}$ The vertical dots in the $N=16,32, \quad, 2048$ columns indicate that the values in these columns reman unchanged (the only exception to this beng the $N=8$ case) and simular notation is used in Tables 22, 23 and 24 Table 22 contams values of $p_{\varepsilon, \mu, \text { exact }}^{N}$ and $p_{\mu, \text { exact }}^{N}$ for $\mu=2^{-16}$ and varıous values of ε and N Note that when $\mu>\sqrt{\varepsilon}$ the orders are approaching first order, however, in the region where $\mu<\sqrt{\varepsilon}$ we observe rates of second order appearing

Table 23 contans the values of $E_{\mu, \text { exact }}^{N}$ and $E_{\text {exact }}^{N}$ for varıus values of μ and N An interesting effect to note is how quickly the error stablises with respect to μ Finally Table 24 contans the values of $p_{\mu, \text { exact }}^{N}$ and $p_{\text {exact }}^{N}$ for various values of μ and N We can see that this table validates the theory given in Theorem 251 Note that in this theorem, theoretical error bounds of $N^{-1}(\ln N)^{2}$ were obtaned, however, the numerical orders suggest a rate of $N^{-1} \ln N$ It is expected that more sophisticated barrier function technıques could be used to acheve this result

Table 21 The maximum pointwise errors $E_{\varepsilon, \mu, e x a c t}^{N}$ and the ε-uniform maximum pointwise errors $E_{\mu, e x a c t}^{N}$ generated by the upwind finite difference operator (2 41 a) and the mesh (2 41 c) applied to problem (261) for $\mu=2^{-16}$ and for various values of ε and N

ε	Number of $1 \mathrm{ntervals} N$						
	32	64	128	256	512	1024	2048
	$167 \mathrm{e}-05$	$419 \mathrm{e}-06$	$105 \mathrm{e}-06$	$267 \mathrm{e}-07$	$682 \mathrm{e}-08$	$178 \mathrm{e}-08$	$484 \mathrm{e}-09$
	$161 \mathrm{e}-04$	$404 \mathrm{e}-05$	$102 \mathrm{e}-05$	$257 \mathrm{e}-06$	$657 \mathrm{e}-07$	$172 \mathrm{e}-07$	$466 \mathrm{e}-08$
	$668 \mathrm{e}-04$	$168 \mathrm{e}-04$	$422 \mathrm{e}-05$	$107 \mathrm{e}-05$	$273 \mathrm{e}-06$	$713 \mathrm{e}-07$	$193 \mathrm{e}-07$
	$194 \mathrm{e}-03$	$488 \mathrm{e}-04$	$123 \mathrm{e}-04$	$311 \mathrm{e}-05$	$795 \mathrm{e}-06$	$208 \mathrm{e}-06$	$564 \mathrm{e}-07$
	$752 \mathrm{e}-03$	$192 \mathrm{e}-03$	$484 \mathrm{e}-04$	$123 \mathrm{e}-04$	$313 \mathrm{e}-05$	$819 \mathrm{e}-06$	$222 \mathrm{e}-06$
	$214 \mathrm{e}-02$	$754 \mathrm{e}-03$	$193 \mathrm{e}-03$	$490 \mathrm{e}-04$	$125 \mathrm{e}-04$	$327 \mathrm{e}-05$	$889 \mathrm{e}-06$
	$215 \mathrm{e}-02$	$819 \mathrm{e}-03$	$284 \mathrm{e}-03$	$950 \mathrm{e}-04$	$309 \mathrm{e}-04$	$997 \mathrm{e}-05$	$326 \mathrm{e}-05$
2^{-14}	$217 \mathrm{e}-02$	$829 \mathrm{e}-03$	$290 \mathrm{e}-03$	$982 \mathrm{e}-04$	$327 \mathrm{e}-04$	$110 \mathrm{e}-04$	$380 \mathrm{e}-05$
2^{-16}	$220 \mathrm{e}-02$	$849 \mathrm{e}-03$	$301 \mathrm{e}-03$	$105 \mathrm{e}-03$	$363 \mathrm{e}-04$	$129 \mathrm{e}-04$	$487 \mathrm{e}-05$
2^{-18}	$227 \mathrm{e}-02$	$891 \mathrm{e}-03$	$325 \mathrm{e}-03$	$118 \mathrm{e}-03$	$434 \mathrm{e}-04$	$169 \mathrm{e}-04$	$703 \mathrm{e}-05$
2^{-20}	$241 \mathrm{e}-02$	$973 \mathrm{e}-03$	$371 \mathrm{e}-03$	$143 \mathrm{e}-03$	$577 \mathrm{e}-04$	$247 \mathrm{e}-04$	$113 \mathrm{e}-04$
2^{-22}	$269 \mathrm{e}-02$	$114 \mathrm{e}-02$	$463 \mathrm{e}-03$	$195 \mathrm{e}-03$	$864 \mathrm{e}-04$	$405 \mathrm{e}-04$	$200 \mathrm{e}-04$
2^{-24}	$323 \mathrm{e}-02$	$146 \mathrm{e}-02$	$646 \mathrm{e}-03$	$298 \mathrm{e}-03$	$144 \mathrm{e}-03$	$720 \mathrm{e}-04$	$372 \mathrm{e}-04$
2^{-26}	$428 \mathrm{e}-02$	$210 \mathrm{e}-02$	$101 \mathrm{e}-02$	$503 \mathrm{e}-03$	$257 \mathrm{e}-03$	$135 \mathrm{e}-03$	$715 \mathrm{e}-04$
2^{-28}	$625 \mathrm{e}-02$	$332 \mathrm{e}-02$	$171 \mathrm{e}-02$	$904 \mathrm{e}-03$	$481 \mathrm{e}-03$	$258 \mathrm{e}-03$	$139 \mathrm{e}-03$
2^{-30}	$964 \mathrm{e}-02$	$553 \mathrm{e}-02$	$302 \mathrm{e}-02$	$166 \mathrm{e}-02$	$907 \mathrm{e}-03$	$495 \mathrm{e}-03$	$269 \mathrm{e}-03$
2^{-32}	$145 \mathrm{e}-01$	$893 \mathrm{e}-02$	$512 \mathrm{e}-02$	$292 \mathrm{e}-02$	$163 \mathrm{e}-02$	$898 \mathrm{e}-03$	$492 \mathrm{e}-03$
2^{-34}	$191 \mathrm{e}-01$	$126 \mathrm{e}-01$	$750 \mathrm{e}-02$	$441 \mathrm{e}-02$	$250 \mathrm{e}-02$	$140 \mathrm{e}-02$	$772 \mathrm{e}-03$
2^{-36}	$218 \mathrm{e}-01$	$148 \mathrm{e}-01$	$905 \mathrm{e}-02$	$542 \mathrm{e}-02$	$311 \mathrm{e}-02$	$175 \mathrm{e}-02$	$971 \mathrm{e}-03$
2^{-38}	$227 \mathrm{e}-01$	$156 \mathrm{e}-01$	$964 \mathrm{e}-02$	$581 \mathrm{e}-02$	$335 \mathrm{e}-02$	$189 \mathrm{e}-02$	$105 \mathrm{e}-02$
2^{-40}	$230 \mathrm{e}-01$	$158 \mathrm{e}-01$	$981 \mathrm{e}-02$	$592 \mathrm{e}-02$	$342 \mathrm{e}-02$	$193 \mathrm{e}-02$	$107 \mathrm{e}-02$
2^{-42}	$230 \mathrm{e}-01$	$159 \mathrm{e}-01$	$985 \mathrm{e}-02$	$595 \mathrm{e}-02$	$344 \mathrm{e}-02$	$194 \mathrm{e}-02$	$108 \mathrm{e}-02$
2^{-44}	$231 \mathrm{e}-01$	$159 \mathrm{e}-01$	$987 \mathrm{e}-02$	$595 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$
2^{-46}	$231 \mathrm{e}-01$	$159 \mathrm{e}-01$	$987 \mathrm{e}-02$	$596 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$
2^{-60}	$231 \mathrm{e}-01$	$159 \mathrm{e}-01$	$987 \mathrm{e}-02$	$596 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$
$E_{\mu, e x a c t}^{N}$	$231 \mathrm{e}-01$	$159 \mathrm{e}-01$	$987 \mathrm{e}-02$	$596 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$

Table 22 Exact orders of convergence $p_{\varepsilon, \mu, \text { exact }}^{N}$ and ε-uniform exact orders of convergence $p_{\mu, e x a c t}^{N}$ generated by the upwind finite difference operator (2 41 a) and the mesh (24 l c) applied to problem (261) for $\mu=2^{-16}$ and for various values of ε and N

	Number of intervals N							
	8	16	32	64	128	256	512	1024
2^{0}	200	200	200	199	198	197	194	188
2^{-2}	199	200	200	199	198	197	194	188
2^{-4}	198	199	199	199	198	197	194	188
2^{-6}	191	197	199	199	198	197	194	188
2^{-8}	136	191	197	199	198	197	194	188
2^{-10}	057	118	151	197	198	197	194	188
2^{-12}	052	117	139	153	158	162	163	161
2^{-14}	049	117	139	152	156	159	158	153
2^{-16}	045	116	137	149	153	153	149	141
2^{-18}	046	115	135	146	146	144	136	126
2^{-20}	046	112	131	139	137	131	122	113
2^{-22}	045	108	124	130	125	118	109	102
2^{-24}	043	102	114	118	112	106	100	095
2^{-26}	041	093	103	106	100	097	093	091
2^{-28}	038	084	091	095	092	091	090	089
2^{-30}	034	074	080	087	086	087	087	088
2^{-32}	-000	066	070	080	081	084	086	087
2^{-34}	027	059	061	074	077	082	084	086
2^{-36}	025	057	056	070	074	080	083	085
2^{-38}	024	056	055	069	073	079	082	085
2^{-40}	024	055	054	069	073	079	082	085
2^{-60}	008	055	054	069	073	079	082	085
$p_{\mu, e x a c t}^{N}$	024	055	054	069	073	079	082	085

Table 23 The ε-unıform maximum pointwise errors $E_{\mu, \text { exact }}^{N}$ and the (ε, μ)-uniform maximum pointwise errors $E_{\text {exact }}^{N}$ generated by the upwind finite difference operator (2 4 1a) and the mesh (241c) applied to problem (261) for various values of μ and N

μ	Number of 1ntervals N							
	32	64	128	256	512	1024	2048	
2^{0}	$157 \mathrm{e}-01$	$106 \mathrm{e}-01$	$651 \mathrm{e}-02$	$389 \mathrm{e}-02$	$224 \mathrm{e}-02$	$126 \mathrm{e}-02$	$700 \mathrm{e}-03$	
2^{-2}	$237 \mathrm{e}-01$	$161 \mathrm{e}-01$	$992 \mathrm{e}-02$	$595 \mathrm{e}-02$	$343 \mathrm{e}-02$	$194 \mathrm{e}-002$	$107 \mathrm{e}-02$	
2^{-4}	$232 \mathrm{e}-01$	$159 \mathrm{e}-01$	$989 \mathrm{e}-02$	$596 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$	
2^{-6}	$231 \mathrm{e}-01$	$159 \mathrm{e}-01$	$987 \mathrm{e}-02$	$596 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$	
2^{-32}	$231 \mathrm{e}-01$	$159 \mathrm{e}-01$	$987 \mathrm{e}-02$	$596 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$	
$E_{\text {exact }}^{N}$	$237 \mathrm{e}-01$	$161 \mathrm{e}-01$	$992 \mathrm{e}-02$	$596 \mathrm{e}-02$	$344 \mathrm{e}-02$	$195 \mathrm{e}-02$	$108 \mathrm{e}-02$	

Table 24 Exact ε-umform orders of convergence $p_{\mu, \text { exact }}^{N}$ and the exact (ε, μ)-uniform orders of convergence $p_{\text {exact }}^{N}$ generated by the upwind finte difference operator (241a) and the mesh (241c) apphed to problem (261) for various values of μ and N

μ	Number of intervals N							
	8	16	32	64	128	256	512	1024
	048	067	057	070	074	080	083	085
2^{-2}	031	062	056	069	074	079	082	085
2^{-4}	026	052	054	069	073	079	082	085
2^{-6}	024	055	054	069	073	079	082	085
2^{-32}	024	055	054	069	073	079	082	085
$p_{\text {exact }}^{N}$	031	062	056	069	074	079	082	085

Chapter 3

Parabolic problems

31 Introduction

Consider the following class of singularly perturbed parabolic problems posed on the doman $G=\Omega \times(0, T], \quad \Omega=(0,1), \quad \Gamma=\bar{G} \backslash G$

$$
\begin{gather*}
L_{\varepsilon, \mu} u \equiv \varepsilon u_{x x}+\mu a u_{x}-b u-d u_{t}=f(x, t), \quad \text { in } G, \tag{311a}\\
u=s(x), \tag{31lb}\\
u=q_{1}(t), \quad \text { on } \Gamma_{L}, \quad u=q_{2}(t), \tag{31lc}\\
a(x, t) \geq \alpha>0, \quad \text { on } \Gamma_{R}, \tag{311d}\\
a(x, t) \geq \beta>0, d(x, t) \geq \delta>0,
\end{gather*}
$$

where $\Gamma_{B}=\{(x, 0) \mid 0 \leq x \leq 1\}, \Gamma_{L}=\{(0, t) \mid 0 \leq t \leq T\}$ and $\Gamma_{R}=\{(1, t) \mid 0 \leq t \leq T\}$ We assume sufficient regularity and compatibility at the corners so that the solution and its regular component are sufficiently smooth for our analysis In this chapter we construct a parameter-uniform numerical method [3] for this class of singularly perturbed problems

When the parameter $\mu=1$, the problem is the well-studied parabolic convectiondiffusion problem $[8,25,31]$, when $\mu=0$ we have a parabolic reaction-diffusion problem [17] Parameter-uniform numerical methods composed of standard finite difference operators and piecewise-uniform meshes have been established $[8,25]$ for both the steady-state and the time dependent versions of (311) m the two special cases of $\mu=0$ and $\mu=1$ These methods have been discussed m Chapter 1

When considerıng the two-parameter parabolic problem (3 111), the initial aim was to take the analysis in Chapter 2 and extend it to deal with the time-dependent problem Difficulties were encountered when attempting this extension, therefore some new ideas
were needed

- The analysis in this chapter splits completely into the two cases of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ and $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$
- New analytical approaches have been developed in this chapter to define the regular component v and the raght layer component w_{R} in the case of $\mu^{2} \geq C \varepsilon$

In Section 32 , we derive parameter-explicit theoretical bounds on the solution of (311) and its derivatives We decompose the solution into regular and singular components The defintion of these components differ depending on the ratio of μ to $\sqrt{\varepsilon}$ Sharp parameter-explicit bounds on these components and their derivatives are obtained in Section 33 In Section 3 4, we apply an upwind finite difference operator on a plecewise uniform mesh in the construction of our numerical algorithm to solve (311) for all values of the parameters in the range $\mu \in[0,1]$ and $\varepsilon \in(0,1]$ In Chapter 2, the piecewise uniform mesh constructed consisted of the two transition points

$$
\begin{equation*}
\sigma_{1}=\min \left\{\frac{1}{4}, \frac{2 \ln N}{\eta_{1}}\right\} \quad \text { and } \quad \sigma_{2}=\min \left\{\frac{1}{4}, \frac{2 \ln N}{\eta_{2}}\right\} \tag{array}
\end{equation*}
$$

where η_{1} is the positive root of the quadratic equation $\varepsilon \eta_{1}^{2}-\mu \alpha \eta_{1}-\beta=0$ and similarly η_{2} is the positive root of the quadratic equation $\varepsilon \eta_{2}^{2}+\mu\|a\| \eta_{2}-\beta=0$ In this chapter the choice of transition points in (341b) is simpler then those given in (312) and depends on the ratio of μ to $\sqrt{\varepsilon} \operatorname{In}[12]$, the similar problem of

$$
-\varepsilon u^{\prime \prime}+\mu b u^{\prime}+c u=f \quad \text { in } \quad(0,1), \quad u(0)=v_{0}, u(1)=v_{1}
$$

is exammed These new transition points in (341b) are also notably simpler then those given in [12] where the piecewise unform mesh consists of two transition points,

$$
\sigma_{1}=\min \left\{\frac{1}{4}, \frac{2 \ln N}{\varrho_{0}}\right\} \quad \text { and } \quad \sigma_{2}=\min \left\{\frac{1}{4}, \frac{2 \ln N}{\varrho_{1}}\right\}
$$

where

$$
\varrho_{0}=\max _{x \in[0,1]} \lambda_{0}(x)<0 \quad \text { and } \quad \varrho_{1}=\min _{x \in[0,1]} \lambda_{1}(x)>0
$$

with $\lambda_{1}(x)$ and $\lambda_{2}(x)$ defined to be the solutions of the charactersitic equation

$$
-\varepsilon \lambda(x)^{2}+\mu b(x) \lambda(x)+c(x)=0
$$

The error between the continuous and discrete solution is analysed in Section 35 and some numerical results are given to illustrate the parameter unfform convergence of the numerical approximations The main results of this chapter have appeared in [22]

These new analytical techniques designed for the two-parameter parabolic problem, can also be apphed when considering the ODE in Chapter 2 The final section of this chapter is concerned with higher order methods for (211) We use the new approach developed for (311) to define and bound the regular component v, the right layer component w_{R}, and their derivatives The results of this section were used in [5] to prove parameter-umform asymptotic error bounds which are essentially second order

Notation partıcular to this chapter We define the zero order, first order and second order differential operators L_{0}, L_{μ} and $L_{\varepsilon, \mu}$ as follows

$$
\begin{aligned}
L_{0} z & =-b z-d z_{t}, \\
L_{\mu} z & =a \mu z_{x}+L_{0} z, \\
L_{\varepsilon, \mu} z & =\varepsilon z_{x x}+L_{\mu} z
\end{aligned}
$$

We let $\gamma<\min _{\bar{G}}\left\{\frac{b}{a}\right\}$ and we also adopt the following notation

$$
\|u\|_{\bar{G}}=\max _{\bar{G}}|u(x, t)|
$$

and if the norm is not subscripted then $\|\|=\|\|_{\tilde{G}}$

32 Bounds on the solution u and its derivatives

We will establish a priorl bounds on the solution of (311) and its derivatives These bounds will be needed in the error analysis in later sections We start by stating a continuous minimum principle for the differential operator in ($\left.\begin{array}{lll} & 1 & 1\end{array}\right)$, whose proof is standard

Minımum Principle 2 If $w \in C^{2}(G) \cap C^{0}(\bar{G})$ such that $\left.L_{\varepsilon, \mu} w\right|_{G} \leq 0$ and $\left.w\right|_{\Gamma} \geq 0$ then $\left.w\right|_{\bar{G}} \geq 0$

The following lemma follows immediately from the above minımum principle and its proof agan is standard

Lemma 321 The solution u of problem (3 11), satzsfies the following bound

$$
\|u\| \leq\|s\|_{\Gamma_{B}}+\left\|q_{1}\right\|_{\Gamma_{L}}+\left\|q_{2}\right\|_{\Gamma_{R}}+\frac{1}{\beta}\|f\|
$$

Lemma 322 Assuming sufficzent compatibility, the derivatives of the solution u of (31 1) satisfy the following bounds for all nonnegative integers k, m, such that $1 \leq k+$ $2 m \leq 3$, of $\mu^{2} \leq C \varepsilon$ then

$$
\begin{aligned}
&\left\|\frac{\partial^{k+m} u}{\partial x^{k} \partial t^{m}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{k}} \max \left\{\|u\|, \sum_{k+2 m=0}^{2}(\sqrt{\varepsilon})^{k}\left\|\frac{\partial^{k+m} f}{\partial x^{k} \partial t^{m}}\right\|\right. \\
&\left.\sum_{\imath=0}^{4}\left\|\frac{d^{2} s}{d x^{2}}\right\|_{\Gamma_{B}}, \sum_{z=0}^{4}\left\|\frac{d^{\imath} q_{1}}{d t^{2}}\right\|_{\Gamma_{L}}, \sum_{\imath=0}^{4}\left\|\frac{d^{2} q_{2}}{d t^{2}}\right\| \|_{\Gamma_{R}}\right\},
\end{aligned}
$$

and of $\mu^{2} \geq C \varepsilon$ then

$$
\begin{aligned}
&\left\|\frac{\partial^{k+m} u}{\partial x^{k} \partial t^{m}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k}\left(\frac{\mu^{2}}{\varepsilon}\right)^{m} \max \left\{\|u\|, \sum_{k+2 m=0}^{2}\left(\frac{\varepsilon}{\mu}\right)^{k}\left(\frac{\varepsilon}{\mu^{2}}\right)^{m+1}\left\|\frac{\partial^{k+m} f}{\partial x^{k} \partial t^{m}}\right\|\right. \\
&\left.\sum_{\imath=0}^{4}\left\|\frac{d^{\imath} s}{d x^{2}}\right\|_{\Gamma_{B}}, \sum_{\imath=0}^{4}\left\|\frac{d^{\imath} q_{1}}{d t^{2}}\right\|\left\|_{\Gamma_{L}}, \sum_{\imath=0}^{4}\right\| \frac{d^{2} q_{2}}{d t^{2}}\| \|_{\Gamma_{R}}\right\}
\end{aligned}
$$

where C depends only on the coefficients a, b, and d and their dervatives
Proof The proof of such bounds follows a standard argument (see [17] for example) We start by makıng a stretching of varıables to transform our problem Local estımates in [9] are then applied to this transformed problem and we obtain bounds on the solution and its derivatives We then transform back to our original variables in order to obtain bounds on the solution of the original differential equation and its derivatives

The argument splits into two cases $\mu^{2} \leq C \varepsilon$ and $\mu^{2} \geq C \varepsilon$ If $\mu^{2} \leq C \varepsilon$ consider the transformation $\xi=\frac{x}{\sqrt{\varepsilon}}$ Our transformed domain is given by $\tilde{G}=\left(0, \frac{1}{\sqrt{\varepsilon}}\right) \times(0, T]$ Also we have $\tilde{u}(\xi, t)=u(x, t)$ with $\tilde{a}, \tilde{b}, \tilde{d}$ and \tilde{f} defined simılarly Applying this transformation to (311) we obtain

$$
\tilde{u}_{\xi \xi}+\frac{\mu}{\sqrt{\varepsilon}} \tilde{a} \tilde{u}_{\xi}-\tilde{b} \tilde{u}-\tilde{d} \tilde{u}_{t}=\tilde{f}, \text { on } \tilde{G}
$$

Then for every $\zeta \in\left(0, \frac{1}{\sqrt{\varepsilon}}\right)$ and $\delta>0$, we denote the rectangle $((\zeta-\delta, \zeta+\delta) \times(0, T]) \cap \tilde{G}$ by $R_{\zeta, \delta}$ The closure of $R_{\zeta, \delta}$ is denoted $\bar{R}_{\zeta, \delta}$ For each $(\zeta, t) \in \tilde{G}$, we use [9] (Lemma 101 pg 352) to obtain the following bounds for $1 \leq k+2 m \leq 3$

$$
\begin{aligned}
&\left\|\frac{\partial^{k+m} \tilde{u}}{\partial \xi^{k} \partial t^{m}}\right\|_{\bar{R}_{\zeta \delta}} \leq C \max \left\{\|\tilde{u}\|, \sum_{k+2 m=0}^{2}\left\|\frac{\partial^{k+m} \tilde{f}}{\partial \xi^{k} \partial t^{m}}\right\|, \sum_{\imath=0}^{4}\left\|\frac{d^{\imath} \tilde{s}}{d \xi^{\imath}}\right\|_{\Gamma_{B}^{\prime}}\right. \\
&\left.\sum_{\imath=0}^{4}\left\|\frac{d^{\imath} \tilde{q_{1}}}{d t^{2}}\right\|_{\Gamma_{L}^{\prime}}, \sum_{\imath=0}^{4}\left\|\frac{d^{\imath} \tilde{q_{2}}}{d t^{2}}\right\|_{\Gamma_{R}^{\prime}}\right\}
\end{aligned}
$$

where $\Gamma_{B}^{\prime}=\bar{R}_{\zeta, 2 \delta} \cap \Gamma_{B}, \Gamma_{L}^{\prime}=\bar{R}_{\zeta, 2 \delta} \cap \Gamma_{L}, \Gamma_{R}^{\prime}=\bar{R}_{\zeta, 2 \delta} \cap \Gamma_{R}$ and C is independent of the rectangle $R_{\zeta, \delta}$ These bounds hold for any point $(\zeta, t) \in \tilde{G}$ Transformng back to the original (x, t) variables gives us the required result If $\mu^{2} \geq C \varepsilon$, then we are required to stretch in time also Introduce the transformation $\varrho=\frac{\mu x}{\varepsilon}, \tau=\frac{\mu^{2} t}{\varepsilon} \quad$ Applying this transformation to (311) we obtan for $\hat{u}(\varrho, \tau)=u(x, t)$

$$
\hat{u}_{\varrho \varrho}+\hat{a} \hat{u}_{\varrho}-\frac{\varepsilon}{\mu^{2}} \hat{b} \hat{u}-\hat{d} \hat{u}_{\tau}=\frac{\varepsilon}{\mu^{2}} \hat{f}, \text { on } \hat{G}
$$

Our transformed domam is given by $\hat{G}=\left(0, \frac{\mu}{\varepsilon}\right) \times\left(0, \frac{\mu^{2} T}{\varepsilon}\right]$ Repeat the argument for the previous case to obtam the result

Corollary 321 Assuming sufficient smoothness of f, s, q_{1} and q_{2}, the second order time derivative of the solution of (11) satisfies the following bound

$$
\left\|u_{t t}\right\| \leq\left\{\begin{array}{lll}
C, & \text { if } & \mu^{2} \leq C \varepsilon \\
C \mu^{4} \varepsilon^{-2}, & \text { if } & \mu^{2} \geq C \varepsilon
\end{array}\right.
$$

Proof Follows using the same argument as in Lemma 322
Note that simular parameter-dependent bounds on the time derivatives also appear in Hemker et al [7] for the case of $\mu=1$

33 Decomposition of the solution

In order to obtan parameter-uniform error estimates, the solution of (311) is decomposed into a sum of regular and singular components The regular component will be constructed so that the first two space derivatives of this component will be bounded independently of both small parameters Consider the following differential equation

$$
\begin{equation*}
L_{\varepsilon, \mu} v=f \text { on } G \tag{331}
\end{equation*}
$$

In the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, we decompose v as follows

$$
\begin{equation*}
v(x, t, \varepsilon, \mu)=v_{0}(x, t)+\sqrt{\varepsilon} v_{1}(x, t, \varepsilon, \mu)+\varepsilon v_{2}(x, t, \varepsilon, \mu) \tag{332a}
\end{equation*}
$$

where

$$
\begin{align*}
L_{0} v_{0} & =f \quad \text { on } \quad \bar{G} \backslash \Gamma_{B}, & & v_{0}(x, 0)=u(x, 0), \tag{332b}\\
\sqrt{\varepsilon} L_{0} v_{1} & =\left(L_{0}-L_{\varepsilon, \mu}\right) v_{0} \quad \text { on } \quad \bar{G} \backslash \Gamma_{B}, & & v_{1}(x, 0, \varepsilon, \mu)=0, \tag{32c}\\
\varepsilon L_{\varepsilon, \mu} v_{2} & =\sqrt{\varepsilon}\left(L_{0}-L_{\varepsilon, \mu}\right) v_{1} \quad \text { on } G & & \left.v_{2}\right|_{\Gamma}=0 \tag{332d}
\end{align*}
$$

We see that $v(0, t, \varepsilon, \mu)=v_{0}(0, t)+\sqrt{\varepsilon} v_{1}(0, t, \varepsilon, \mu)$ and $v(1, t, \varepsilon, \mu)=v_{0}(1, t)+\sqrt{\varepsilon} v_{1}(1, t, \varepsilon, \mu)$ Assuming sufficient smoothness on the coefficients ($a, b, d, f \in C^{6}$) and the mitial condition $v_{0}(x, 0)$ and noting that $\alpha \mu^{2} \leq \gamma \varepsilon$, we see that v_{0} and its derivatives with respect to x and t up to sixth order and v_{1} and its derivatives with respect to x and t up to fourth order are bounded independently of ε and μ

Since v_{2} satısfies a sımılar equation to u we can apply Lemma 321 and Lemma 322 to problem (3 32 d) We obtain for $0 \leq k+2 m \leq 3$,

$$
\left\|\frac{\partial^{k+m} v_{2}}{\partial x^{k} \partial t^{m}}\right\| \leq C\left(\frac{1}{\sqrt{\varepsilon}}\right)^{k}
$$

We conclude that when $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, there exists a function v satisfying (3 31) where the boundary conditions of v can be chosen so that it satisfies the following bounds for $0 \leq$ $k+2 m \leq 3$,

$$
\left\|\frac{\partial^{k+m} v}{\partial x^{k} \partial t^{m}}\right\| \leq C\left(1+\varepsilon^{\frac{2-k}{2}}\right)
$$

From Corollary 321 we deduce that

$$
\left\|v_{t t}\right\| \leq C, \quad \text { if } \quad \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}
$$

We consider the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ We again consider the differential equation (3 31), however, we decompose v as follows

$$
\begin{equation*}
v(x, t, \varepsilon, \mu)=v_{0}(x, t, \mu)+\varepsilon v_{1}(x, t, \varepsilon, \mu)+\varepsilon^{2} v_{2}(x, t, \varepsilon, \mu) \tag{333a}
\end{equation*}
$$

where

$$
\begin{array}{rlcll}
L_{\mu} v_{0} & =f \text { on } G_{1}, & v_{0}(x, 0, \mu)=u(x, 0), \quad v_{0}(1, t, \mu) \text { chosen in }(336), & (333 \mathrm{~b}) \\
\varepsilon L_{\mu} v_{1} & =\left(L_{\mu}-L_{\varepsilon, \mu}\right) v_{0} \quad \text { on } G_{1}, & v_{1}(x, 0, \varepsilon, \mu)=v_{1}(1, t, \varepsilon, \mu)=0, & (333 \mathrm{c}) \\
\varepsilon^{2} L_{\varepsilon, \mu} v_{2} & =\varepsilon\left(L_{\mu}-L_{\varepsilon, \mu}\right) v_{1} \quad \text { on } G, & v_{2}(x, t, \varepsilon, \mu) \mid \mathrm{r}=0 & (333 \mathrm{~d}) \tag{333d}
\end{array}
$$

Note that $G_{1}=[0,1) \times(0, T]$ We can establish the following for the differential operator L_{μ} by considering the transformation $w=e^{\beta_{1} t} z\left(\beta_{1}<\frac{b}{d}\right)$ and using a proof by contradiction argument Suppose $z \in C^{1}\left(G_{1}\right) \cap C^{0}\left(\bar{G}_{1}\right)$ then

$$
\begin{equation*}
\text { If }\left.\quad L_{\mu} z\right|_{G_{1}} \leq 0 \quad \text { and }\left.\quad z\right|_{\Gamma_{1}} \geq 0, \quad \text { then }\left.\quad z\right|_{\bar{G}_{1}} \geq 0 \tag{334}
\end{equation*}
$$

where $L_{\mu} z=a \mu z_{x}-b z-d z_{t}, \Gamma_{1}=\Gamma_{B} \cup \Gamma_{R}$ and $G_{1}=[0,1) \times(0, T]$ We note that the proof only requires that a and d are strictly positive

We will now state and prove the following technical lemmas that are needed when examming the dependence of the components v_{0} and v_{1} on the parameter μ

Lemma 331 Suppose $z(x, t) \in C^{1}\left(G_{1}\right) \cap C^{0}\left(\bar{G}_{1}\right)$ satisfies the first order initial-boundary value problem

$$
\begin{array}{rc}
L_{\mu} z=a \mu z_{x}-b z-d z_{t}=f & (x, t) \in[0,1) \times[0, T] \tag{335}\\
z(x, 0)=g_{1}(x), & z(1, t)=g_{2}(t)
\end{array}
$$

where $a>0, d>0$ and $b>0$, then

$$
\|z\| \leq \frac{1}{\beta}\|f\|+\left\|g_{1}\right\|_{\Gamma_{B}}+\left\|g_{2}\right\|_{\Gamma_{R}}
$$

Proof Consider $\psi^{ \pm}(x, t)=\frac{1}{\beta}\|f\|+\left\|g_{1}\right\| \Gamma_{B}+\left\|g_{2}\right\| \Gamma_{R} \pm z(x, t)$ We see that the functions $\psi^{ \pm}(x, t)$ are nonnegative for $(x, t) \in \Gamma_{1} \quad$ Also

$$
L_{\mu} \psi^{ \pm}(x, t)=-b\left(\frac{1}{\beta}\|f\|+\left\|g_{1}\right\|_{\Gamma_{B}}+\left\|g_{2}\right\| \Gamma_{R}\right) \pm f \leq 0
$$

and the required bound on $\|z\|$ follows by applying (3 3 4)

Lemma 332 Suppose $z(x, t) \in C^{k+m}\left(\bar{G}_{1}\right)$ satisfies the dufferentral equation (3 3 5), assuming sufficient regularity of the coefficients, its derivatives satisfy the following bounds
for positve integers k and m,

$$
\begin{aligned}
\left\|\frac{\partial^{k+m} z}{\partial x^{k} \partial t^{m}}\right\| \leq \frac{C}{\mu^{k}}\left(\left\|\frac{\partial^{k+m} f}{\partial t^{k+m}}\right\|+\right. & \sum_{r+s=0}^{k+m-1} \mu^{r}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial t^{s}}\right\|+\sum_{\jmath=0}^{k+m}\left\|\frac{d^{\jmath} g_{1}}{d x^{\jmath}}\right\| \\
& \left.+\sum_{j=0}^{k+m}\left\|\frac{d^{\jmath} g_{2}}{d t^{\jmath}}\right\|+\|z\|\right) e^{-(k+m) A T}
\end{aligned}
$$

where $A=\min \left\{0,\left(\frac{a}{d}\right)\left(\frac{d}{a}\right)_{t}\right\}$ and the constant C depends only on the coefficients a, b, d and their derivatives

Proof Differentiating (3 35) with respect to t, we obtain

$$
\begin{gathered}
L_{\mu}^{[1]} z_{t}=\mu z_{t x}-\left(\frac{b}{a}+\left(\frac{d}{a}\right)_{t}\right) z_{t}-\frac{d}{a} z_{t t}=\left(\frac{f}{a}\right)_{t}+\left(\frac{b}{a}\right)_{t} z, \\
z_{t}(1, t)=g_{2}^{\prime}(t), \quad z_{t}(x, 0)=\phi_{1}(x),
\end{gathered}
$$

where $\phi_{1}(x)$ can be expressed in terms of g_{1}, g_{1}^{\prime}, f and the coefficients of (3 35) Consider the barrier functions $\psi_{1}^{ \pm}(x, t)=C\left(\|f\|+\left\|f_{t}\right\|+\left\|g_{1}\right\|+\left\|g_{1}^{\prime}\right\|+\left\|g_{2}^{\prime}\right\|+\|z\|\right) e^{-A t} \pm z_{t}$ with A as above For C large enough the functions $\psi_{1}^{ \pm}$are nonnegative for $(x, t) \in \Gamma_{1}$ Also

$$
\begin{aligned}
L_{\mu}^{[1]} \psi_{1}^{ \pm}(x, t)=- & -C\left(\frac{b}{a}+\left(\frac{d}{a}\right)_{t}-\frac{d}{a} A\right)\left(\|f\|+\left\|f_{t}\right\|+\left\|g_{1}\right\|+\left\|g_{1}^{\prime}\right\|+\left\|g_{2}^{\prime}\right\|+\|z\|\right) e^{-A t} \\
& \pm\left(\left(\frac{f}{a}\right)_{t}+\left(\frac{b}{a}\right)_{t} z\right)
\end{aligned}
$$

and, using the definition of A, we see that for C chosen correctly we have $L_{\mu}^{[1]} \psi_{1}^{ \pm}(x, t) \leq 0$ Therefore using (3 3 4) we obtain

$$
\left\|z_{t}\right\| \leq C\left(\|f\|+\left\|f_{t}\right\|+\left\|g_{1}\right\|+\left\|g_{1}^{\prime}\right\|+\left\|g_{2}^{\prime}\right\|+\|z\|\right) e^{-A T}
$$

and using (3 35) we have that

$$
\left\|z_{x}\right\| \leq \frac{C}{\mu}\left(\|f\|+\left\|f_{t}\right\|+\left\|g_{1}\right\|+\left\|g_{1}^{\prime}\right\|+\left\|g_{2}^{\prime}\right\|+\|z\|\right) e^{-A T}
$$

Proceed by induction Assume the statement true for $0 \leq k+m \leq l$ Differentiate
(335) $l+1$ times with respect to t to obtain

$$
\begin{aligned}
L_{\mu}^{[l+1]} \frac{\partial^{l+1} z}{\partial t^{l+1}}= & \mu\left(\frac{\partial^{l+1} z}{\partial t^{l+1}}\right)_{x}-\left(\frac{b}{a}+(l+1)\left(\frac{d}{a}\right)_{t}\right)\left(\frac{\partial^{l+1} z}{\partial t^{l+1}}\right)-\frac{d}{a}\left(\frac{\partial^{i+1} z}{\partial t^{l+1}}\right)_{t}=\rho(x, t) \\
& \frac{\partial^{l+1} z}{\partial t^{l+1}}(1, t)=\frac{d^{l+1} g_{2}}{d t^{l+1}}, \quad \frac{\partial^{l+1} z}{\partial t^{l+1}}(x, 0)=\phi_{l+1}(x)
\end{aligned}
$$

The expression $\rho(x, t)$ involves z and its t derivatives up to order l, f and its t derivatives up to order $l+1$ and the coefficients and their derivatives The function $\phi_{l+1}(x)$ involves g_{1} and all its derıvatives up to order $l+1$, the derivatives of f of the form $\mu^{r} \frac{\partial^{r+s}}{\partial x^{r} \partial t^{s}}$ up to order l and the coefficients and their derivatives
Consider the barrier functions

$$
\begin{aligned}
\psi_{l+1}^{ \pm}(x, t)=C\left(\left\|\frac{\partial^{l+1} f}{\partial t^{l+1}}\right\|\right. & +\sum_{r+s=0}^{l} \mu^{r}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial t^{s}}\right\|+\sum_{j=0}^{l+1}\left\|\frac{d^{3} g_{1}}{d x^{3}}\right\| \\
& \left.+\sum_{j=0}^{l+1}\left\|\frac{d^{\jmath} g_{2}}{d t^{3}}\right\|+\|z\|\right) e^{-(l+1) A t} \pm \frac{\partial^{l+1} z}{\partial t^{l+1}}
\end{aligned}
$$

We see that for C large enough $\psi_{l+1}^{ \pm}(x, t)$ are nonnegative for $(x, t) \in \Gamma_{1}$ Also for C chosen correctly we see that $L_{\mu}^{[l+1]} \psi_{l+1}^{ \pm}(x, t) \leq 0$, therefore using (3 3 4) we obtain

$$
\begin{aligned}
\left\|\frac{\partial^{l+1} z}{\partial t^{l+1}}\right\| \leq C\left(\left\|\frac{\partial^{l+1} f}{\partial t^{l+1}}\right\|+\right. & \sum_{r+s=0}^{l} \mu^{r}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial t^{s}}\right\|+\sum_{j=0}^{l+1}\left\|\frac{d^{J} g_{1}}{d x^{3}}\right\| \\
& \left.+\sum_{j=0}^{l+1}\left\|\frac{d^{J} g_{2}}{d t^{3}}\right\|+\|z\|\right) e^{-(l+1) A T}
\end{aligned}
$$

Differentiate (335) appropriately to obtain the required result for $k+m=l+1$
We now continue with our analysis of v_{0} and v_{1} The following two Lemmas establish that when the boundary condition $v_{0}(1, t, \mu)$ is chosen correctly, the first two space derivatives of $v_{0}(x, t, \mu)$ are bounded independent of μ and the space derivatives of $v_{1}(x, t, \mu)$ are bounded by inverse powers of μ
Lemma 333 If v_{0} satisfies the first order differential equation (3330) then there extsts a value for $v_{0}(1, t, \mu)$ such that the followng bounds hold for $0 \leq k+m \leq 6$

$$
\left\|\frac{\partial^{k+m} v_{0}}{\partial x^{k} \partial t^{m}}\right\| \leq C\left(1+\mu^{2-k}\right)
$$

Proof We further decompose $v_{0}(x, t, \mu)$ as follows

$$
\begin{equation*}
v_{0}(x, t, \mu)=s_{0}(x, t)+\mu s_{1}(x, t)+\mu^{2} s_{2}(x, t, \mu) \tag{336a}
\end{equation*}
$$

where

$$
\begin{align*}
L_{0} s_{0} & =f \text { on } \bar{G} \backslash \Gamma_{B}, \quad s_{0}(x, 0)=u(x, 0) \tag{336b}\\
\mu L_{0} s_{1} & =\left(L_{0}-L_{\mu}\right) s_{0} \quad \text { on } \quad \bar{G} \backslash \Gamma_{B}, \quad s_{1}(x, 0)=0 \tag{336c}\\
\mu^{2} L_{\mu} s_{2} & =\mu\left(L_{0}-L_{\mu}\right) s_{1} \quad \text { on } \quad G_{1}=[0,1) \times(0, T], \quad s_{2} \mid \Gamma_{1}=0 \tag{336~d}
\end{align*}
$$

We see that $v_{0}(1, t, \mu)=s_{0}(1, t)+\mu s_{1}(1, t)$ and if $a, b, d, f \in C^{7}(G)$ and $u(x, 0) \in C^{7}\left(\Gamma_{B}\right)$, we have

$$
\begin{align*}
& \left\|\frac{\partial^{k+m} s_{0}}{\partial x^{k} \partial t^{m}}\right\| \leq C \quad \text { for } \quad 0 \leq k+m \leq 7 \tag{337}\\
& \left\|\frac{\partial^{k+m} s_{1}}{\partial x^{k} \partial t^{m}}\right\| \leq C \quad \text { for } \quad 0 \leq k+m \leq 6 \quad \text { and } \quad \quad\left\|\frac{\partial^{7} s_{1}}{\partial x \partial t^{6}}\right\| \leq C \tag{338}
\end{align*}
$$

Next we apply Lemma 331 and Lemma 332 to obtain for $0 \leq k+m \leq 6$

$$
\begin{equation*}
\left\|\left\lvert\, \frac{\partial^{k+m} s_{2}}{\partial x^{k} \partial t^{m}}\right.\right\| \leq \frac{C}{\mu^{k}} e^{-(k+m) A T} \tag{array}
\end{equation*}
$$

where $A=\min \left\{0, \frac{a}{d}\left(\frac{d}{a}\right)_{t}\right\} \quad$ Using the decomposition (336) and the bounds on the components of this decomposition given in (337), (3 38) and (3 39), we obtain the required result

Lemma 334 If v_{1} satisfies the first order differentıal equation (3 3 3c) then the following bounds hold for $0 \leq k+m \leq 4$

$$
\left\|\frac{\partial^{k+m} v_{1}}{\partial x^{k} \partial t^{m}}\right\| \leq \frac{C}{\mu^{k}}
$$

Proof We simply apply Lemma 331 and Lemma 332 to (3 3 3c)
Lemma 355 If $v_{2}(x, t, \varepsilon, \mu)$ satisfies the differential equation (393) then the following bounds hold for $0 \leq k+m \leq 3$

$$
\left\|\frac{\partial^{k+m} v_{2}}{\partial x^{k} \partial t^{m}}\right\| \leq \frac{C}{\mu^{2}}\left(\frac{\mu}{\varepsilon}\right)^{k}\left(\frac{\mu^{2}}{\varepsilon}\right)^{m}, \quad \text { if } \quad \mu^{2} \geq C \varepsilon
$$

Proof Since v_{2} satisfies a simılar equation to u, we use Lemma 321 to obtan

$$
\left\|v_{2}(x, t, \varepsilon, \mu)\right\| \leq\left\|v_{2}\right\|_{\Gamma}+\frac{1}{\beta}\left\|v_{1 x x}\right\|
$$

Applying the bounds in Lemma 334 we therefore have

$$
\left\|v_{2}\right\| \leq \frac{C}{\mu^{2}}
$$

Finally noting that the equation for v_{2} has zero boundary conditions, we use Lemma 322 , the bounds for v_{1} and the fact that

$$
\left(\frac{\varepsilon}{\mu}\right)^{k}\left\|\frac{\partial^{k+m} v_{1 x x}}{\partial x^{k} \partial t^{m}}\right\| \leq C \mu^{-2}\left(\frac{\varepsilon}{\mu^{2}}\right)^{k} \leq C \mu^{-2}
$$

to obtan the requred result
Substitutıng these bounds for $v_{0}(x, t, \mu), v_{1}(x, t, \mu)$ and $v_{2}(x, t, \varepsilon, \mu)$ into (333) and noting that $\mu^{2} \geq C \varepsilon$, we conclude that, in this case, there exists a function v satisfying (331) where the boundary conditions of v can be chosen so that the following bounds holds for $0 \leq k+2 m \leq 3$,

$$
\left\|\frac{\partial^{k+m} v}{\partial x^{k} \partial t^{m}}\right\| \leq C\left(1+\left(\frac{\mu}{\varepsilon}\right)^{k-2}\right)
$$

Assuming sufficient smoothness of the data, from Corollary 321 and extending the argument in the previous lemma to the case of $k+2 m=4$ we deduce that

$$
\left\|v_{t t}\right\| \leq C\left(1+\varepsilon^{2} \mu^{-2} \mu^{4} \varepsilon^{-2}\right) \leq C, \quad \text { if } \quad \mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}
$$

In both cases we now have the following decomposition of the solution u into regular and singular components,

$$
\begin{equation*}
u(x, t)=v(x, t)+w_{L}(x, t)+w_{R}(x, t) \tag{3310a}
\end{equation*}
$$

where w_{L} and w_{R} satisfy homogeneous differential equations and

$$
\begin{align*}
L_{\varepsilon, \mu} v=f \text { on } G, & v(x, 0)=u(x, 0), \tag{3310b}\\
& v(0, t) \text { and } v(1, t) \text { chosen in (332) or }(333), \\
L_{\varepsilon, \mu} w_{L}=0 \text { on } G, & w_{L}(x, 0)=w_{L}(1, t)=0, \tag{3310c}\\
& w_{L}(0, t)=u(0, t)-v(0, t)-w_{R}(0, t), \\
L_{\varepsilon, \mu} w_{R}=0 \text { on } G, & w_{R}(x, 0)=0, w_{R}(1, t)=u(1, t)-v(1, t), \tag{3310d}\\
& \text { if } \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}, \text { then } w_{R}(0, t)=0, \\
& \text { else } w_{R}(0, t) \text { is chosen m }(3312)
\end{align*}
$$

The boundary conditions of v are chosen in (3 32) or (3 33) so that the regular component satisfies the bounds

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} v}{\partial x^{k} \partial t^{m}}\right\| \leq C\left(1+\varepsilon^{2-k}\right), \quad \text { for } \quad 0 \leq k+2 m \leq 3, \quad\left\|v_{t t}\right\| \leq C \tag{array}
\end{equation*}
$$

When $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, the singular components w_{L} and w_{R} satisfy the bounds in Lemma 322 and Corollary 321 When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, the value for $w_{R}(0, t)$ is taken from the following decomposition

$$
\begin{equation*}
w_{R}(x, t, \varepsilon, \mu)=w_{0}(x, t, \mu)+\varepsilon w_{1}(x, t, \mu)+\varepsilon^{2} w_{2}(x, t, \varepsilon, \mu) \tag{3312a}
\end{equation*}
$$

where $v(1, t)=v_{0}(1, t)$ is given in (3 36) and

$$
\begin{align*}
L_{\mu} w_{0} & =0 \quad \text { on } \quad G_{1}, \quad w_{0}(x, 0, \mu)=0, \quad w_{0}(1, t, \mu)=u(1, t)-v_{0}(1, t),(3312 \mathrm{~b}) \\
\varepsilon L_{\mu} w_{1} & =\left(L_{\mu}-L_{\varepsilon, \mu}\right) w_{0} \quad \text { on } \quad G_{1}, \quad w_{1}(x, 0, \mu)=w_{1}(1, t, \mu)=0, \quad\left(\begin{array} { l l }
{ 3 } & { 3 1 2 \mathrm { c }) } \\
{ \varepsilon ^ { 2 } L _ { \varepsilon , \mu } w _ { 2 } } & { = \varepsilon (L _ { \mu } - L _ { \varepsilon , \mu }) w _ { 1 } \quad \text { on } G , \quad w _ { 2 } (x , t , \varepsilon , \mu) | _ { \Gamma } = 0 }
\end{array} \quad \left(\begin{array}{ll}
3 & 12 \mathrm{~d})
\end{array}\right.\right.
\end{align*}
$$

Lemma 336 When $w_{R}(x, t)$ is defined as in (3 3 10d), the following bound holds

$$
\left|w_{R}(0, t)\right|_{\Gamma_{L}} \leq e^{-2 B t} e^{\frac{-\gamma}{\mu}},
$$

where $B<A=\min \left\{0, \frac{a}{d}\left(\frac{d}{a}\right)_{t}\right\}$
Proof When $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, the result is trivial Consider the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ Using the decomposition (3 312), we see that $w_{R}(0, t)=w_{0}(0, t)+\varepsilon w_{1}(0, t)$ We start by analysing $w_{0}(x, t)$ Consider the barrier functions $\psi^{ \pm}(x, t)=C e^{-\frac{\gamma}{\mu}(1-x)} \pm w_{0}(x, t)$ We can show
that for C large enough $\left.\psi^{ \pm}\right|_{\Gamma_{B} \cup \Gamma_{R}} \geq 0$ and we have

$$
L_{\mu} \psi^{ \pm}(x, t)=C(a \gamma-b) e^{-\frac{\gamma}{\mu}(1-x)} \leq 0
$$

We can therefore apply (3 34) m order to obtain

$$
\begin{equation*}
\left|w_{0}(x, t)\right| \leq C e^{\frac{-\gamma}{\mu}(1-x)} \tag{3313}
\end{equation*}
$$

In order to analyse $w_{1}(x, t)$, we first obtan sharp bounds on $w_{0 x x}(x, t)$ Differentiate (3 312 b) with respect to t to obtam

$$
\begin{aligned}
L_{\mu}^{[1]}\left(w_{0 t}\right)=\mu\left(w_{0 t}\right)_{x}-\left(\frac{b}{a}+\left(\frac{d}{a}\right)_{t}\right) w_{0 t}-\frac{d}{a}\left(w_{0 t}\right)_{t}=\left(\frac{b}{a}\right)_{t} w_{0}, \quad w_{0 t}(x, 0) & =0 \\
w_{0 t}(1, t) & =\left(w_{R}(1, t)\right)_{t}
\end{aligned}
$$

Consider the barrier functions $\psi_{1}^{ \pm}(x, t)=C e^{-B t} e^{-\frac{\gamma}{\mu}(1-x)} \pm w_{0 t}(x, t)$, where B is as defined We can show that for C large enough $\left.\psi_{1}^{ \pm}\right|_{\Gamma_{B} \cup \Gamma_{R}} \geq 0$ and $L_{\mu}^{[1]} \psi_{1}^{ \pm}(x, t) \leq 0$ Apply (3 34) in order to obtaın

$$
\left|w_{0 t}(x, t)\right| \leq C e^{-B t} e^{-\frac{x}{\mu}(1-x)}
$$

Using the equation for w_{0}, (3312 b), this implies that

$$
\left|w_{0 x}(x, t)\right| \leq \frac{C}{\mu} e^{-B t} e^{-\frac{\gamma}{\mu}(1-x)}
$$

If we differentiate (3 312 b) twice with respect to t and apply the same argument we obtain

$$
\left|w_{0 t t}(x, t)\right| \leq C e^{-2 B t} e^{-\frac{\gamma}{\mu}(1-x)},
$$

Using the equation for w_{0}, (3312 b), this imphes that

$$
\left|w_{0 x t}(x, t)\right| \leq \frac{C}{\mu} e^{-2 B t} e^{-\frac{\gamma}{\mu}(1-x)} \quad \text { and } \quad\left|w_{0 x x}(x, t)\right| \leq \frac{C}{\mu^{2}} e^{-2 B t} e^{-\frac{\gamma}{\mu}(1-x)}
$$

Since we have exponential bounds on w_{0} and its derivatives, we can now examine how $w_{1}(x, t)$ depends on μ Consider the barrier functions $\psi_{2}^{ \pm}(x, t)=\frac{C}{\mu^{2}} e^{-2 B t} e^{-\frac{\gamma}{\mu}(1-x)} \pm$ $w_{1}(x, t)$ Note that $\left.\psi_{2}^{ \pm}(x, t)\right|_{\Gamma_{B} \cup \Gamma_{R}} \geq 0$, also for C large enough

$$
L_{\mu} \psi_{2}^{ \pm}(x, t)=C[\gamma a-b+B d] \frac{1}{\mu^{2}} e^{-2 B t} e^{-\frac{\gamma}{\mu}(1-x)} \pm w_{0 x x}
$$

Therefore using the definitions of γ and B we find $L_{\mu} \psi_{2}^{ \pm}(x, t) \leq 0$, and using (3 34), we have

$$
\begin{equation*}
\left|w_{1}(x, t)\right| \leq \frac{C}{\mu^{2}} e^{-2 B t} e^{-\frac{\gamma}{\mu}(1-x)} \tag{3314}
\end{equation*}
$$

Since $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ we can use (3312 d), (3313) and (3314) to obtain

$$
\left|w_{R}(0, t)\right| \leq C e^{-2 B t} e^{-\frac{\gamma}{4}}
$$

Lemma 337 When the solution of (311) as decomposed as in (3 3 10a), the sungular components w_{L} and w_{R} satzsfy the following bounds

$$
\begin{gathered}
\left|w_{L}(x, t)\right| \leq C e^{-\theta_{1} x} \\
\left|w_{R}(x, t)\right| \leq C e^{-\theta_{2}(1-x)}
\end{gathered}
$$

where

$$
\theta_{1}=\left\{\begin{array}{ll}
\frac{\sqrt{\gamma \alpha}}{\sqrt{\sqrt{\varepsilon}}}, & \text { if } \mu^{2} \leq \frac{\gamma \epsilon}{\alpha} \\
\frac{\alpha \mu}{\varepsilon}, & \text { if } \mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}
\end{array}, \quad \theta_{2}= \begin{cases}\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}, & \text { if } \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha} \\
\frac{\gamma}{2 \mu}, & \text { if } \mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}\end{cases}\right.
$$

Proof Consider the following barrier functions

$$
\psi^{ \pm}(x, t)=C e^{-\theta_{1} x} \pm w_{L}(x, t),
$$

In both cases, we find that for C large enough $\left.\psi^{ \pm}(x, t)\right|_{\Gamma} \geq 0$ and $L_{\varepsilon, \mu} \psi^{ \pm}(x, t) \leq 0$ We apply the Minımum Principle in order to obtain the required bound on $\left|w_{L}(x, t)\right|$

When $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, the proof in the case of w_{R} is similar We consider the barrier functions $\psi^{ \pm}(x, t)=C e^{-\frac{\sqrt[\gamma]{7 \alpha}}{2 \sqrt{\epsilon}}(1-x)} \pm w_{R}(x, t)$ Agan we find that for C large enough $\left.\psi^{ \pm}(x, t)\right|_{\Gamma} \geq 0$ and, using the defintion of γ,

$$
\begin{aligned}
L_{\varepsilon, \mu} \psi^{ \pm}(x, t) & =C\left(\frac{\gamma \alpha}{4}+\frac{\mu a \sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}-b\right) e^{-\frac{\sqrt{\alpha}}{2 \sqrt{\epsilon}}(1-x)} \\
& \leq C\left(\frac{\gamma a}{4}+\frac{\gamma a}{2}-b\right) e^{-\frac{\sqrt{\gamma \gamma}}{2 \sqrt{\varepsilon}}(1-x)} \leq 0
\end{aligned}
$$

Since $w_{R}(0, t) \neq 0 \mathrm{in}$ the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, we have to be more careful Consider the barrier functions

$$
\psi_{1}^{ \pm}(x, t)=C e^{-2 A t} e^{\frac{-\gamma}{2 \mu}(1-x)} \pm w_{R}(x, t)
$$

where $A=\operatorname{mm}\left\{0, \frac{a}{d}\left(\frac{d}{a}\right)_{t}\right\}$ Using the previous lemma we have that $\left.\psi_{1}^{ \pm}(x, t)\right|_{\Gamma} \geq 0$ for C
large enough, we also find $L_{\varepsilon, \mu} \psi_{1}^{ \pm}(x, t) \leq 0$ Use the Minımum Principle and the fact that $t \in(0, T]$ to obtan the required bound

Lemma 338 When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}, w_{R}$ the solution of (3 3 10d), satisfies the following bounds

$$
\left\|\frac{\partial^{k} w_{R}}{\partial x^{k}}\right\| \leq C\left(\mu^{-k}+\mu^{-1} \varepsilon^{2-k}\right), 1 \leq k \leq 3 \quad \text { and } \quad\left\|\frac{\partial^{m} w_{R}}{\partial t^{m}}\right\| \leq C, m=1,2
$$

Proof Consider the decomposition (3 312), we start by analysing $w_{0}(x, t)$ Using the same method as used for v_{1} in Lemma 334 we obtain for $0 \leq k+m \leq 6$

$$
\left|\frac{\partial^{k+m} w_{0}}{\partial x^{k} \partial t^{m}}\right| \leq \frac{C}{\mu^{k}},
$$

Using this method again for $w_{1}(x, t)$ we obtain for $0 \leq k+m \leq 4$

$$
\left|\frac{\partial^{k+m} w_{1}}{\partial x^{k} \partial t^{m}}\right| \leq \frac{C}{\mu^{k+2}}
$$

We can apply Lemma 321 to obtann

$$
\left\|w_{2}\right\|_{\bar{G}} \leq\left\|w_{2}\right\|_{\Gamma}+\frac{1}{\beta}\left\|w_{1 x x}\right\|_{\bar{G}} \leq \frac{C}{\mu^{4}}
$$

Finally from Lemma 322 we obtain for $1 \leq k+2 m \leq 3$

$$
\left\|\frac{\partial^{k+m} w_{2}}{\partial x^{k} \partial t^{m}}\right\|_{\vec{G}} \leq C \mu^{-4}\left(\frac{\mu}{\varepsilon}\right)^{k}\left(\frac{\mu^{2}}{\varepsilon}\right)^{m}
$$

and by Corollary 321

$$
\left\|\frac{\partial^{2} w_{2}}{\partial t^{2}}\right\|_{\bar{G}} \leq C \mu^{-4} \mu^{4} \varepsilon^{-2}
$$

Using (3 3 12) and $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ gives us the required result
Lemma 339 When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, w_{L} the solution of (3 3 10c), satisfies the following bounds

$$
\left\|\frac{\partial^{k} w_{L}}{\partial x^{k}}\right\|_{\|} \leq C\left(\frac{\mu}{\varepsilon}\right)^{k}, 1 \leq k \leq 3 \text { and }\left\|\frac{\partial^{2} w_{L}}{\partial t^{2}}\right\| \leq C\left(1+\mu^{2} \varepsilon^{-1}\right)
$$

Proof The bounds on the derıvatives of the space derivatives follow from Lemma 322 and the fact that

$$
w_{L}(0, t)=\left(u-v_{0}-w_{0}\right)(0, t)-\varepsilon\left(v_{1}+w_{1}\right)(0, t)
$$

To obtain the bound on the time derivative we introduce the decomposition

$$
w_{L}(x, t)=w_{L}(0, t) \phi(x, t)+\varepsilon \mu^{-2} R(x, t)
$$

where the function ϕ is the solution of the boundary value problem

$$
\varepsilon \phi_{x x}+\mu a(0, t) \phi_{x}=0, x \in(0,1), \quad \phi(0, t)=1, \phi(1, t)=0
$$

Note that, by using $z^{n} e^{-z} \leq C e^{-z / 2}, n \geq 1, z \geq 0$, we have

$$
\left|\frac{\partial^{k+m} \phi}{\partial x^{k} \partial t^{m}}\right| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k} e^{-\frac{\mu \alpha x}{(m+1) \varepsilon}}
$$

Note that $R=0$ on Γ and

$$
\mu^{-2} \varepsilon L_{\varepsilon, \mu} R=w_{L}(0, t)\left(\mu(a(0, t)-a(x, t)) \phi_{x}+b \phi\right)+d\left(w_{L}(0, t) \phi\right)_{t}
$$

Thus using

$$
\left|L_{\varepsilon, \mu} R(x, t)\right| \leq \frac{C \mu^{2}}{\varepsilon}\left(1+\frac{\mu^{2} x}{\varepsilon}\right) e^{-\frac{\mu \alpha x}{\varepsilon}}+C \frac{\mu^{2}}{\varepsilon} e^{-\frac{\mu \alpha x}{2 \varepsilon}} \leq \frac{C \mu^{2}}{\varepsilon} e^{-\frac{\mu \alpha x}{2 \varepsilon}}
$$

one can deduce that

$$
|R(x, t)| \leq C e^{-\frac{\mu \alpha x}{2 \varepsilon}}
$$

Finally note that for $1 \leq k+2 m \leq 3$

$$
\left\|\frac{\partial^{k+m}\left(L_{\varepsilon, \mu} R\right)}{\partial x^{k} \partial t^{m}}\right\|_{\bar{G}} \leq C \frac{\mu^{2}}{\varepsilon}\left(\frac{\mu}{\varepsilon}\right)^{k}
$$

Using Lemma 322 (extended to the case of $k+2 m=4$) and noting the exponent of $(m+1)$ this imphes that

$$
\left\|\frac{\partial^{2} R}{\partial t^{2}}\right\| \leq C \varepsilon^{-2} \mu^{4}
$$

Remark 331 When considering the paraboluc problem (311), compatibnluty is an issue Let us consider the following problem with zero boundary conditions

$$
\begin{equation*}
L_{\varepsilon, \mu} u=f \quad \text { on } G,\left.\quad u\right|_{\Gamma}=0 \tag{array}
\end{equation*}
$$

We note that any parabolvc problem of the form (311) can be transformed into a problem of the form (3 316) with zero boundary and invtial conditions (see [31] for example) Using [9, 17] at can be shown that uf

$$
\frac{\partial^{\imath+\jmath} f}{\partial x^{2} \partial t^{\jmath}}(1,0)=\frac{\partial^{\imath+\jmath} f}{\partial x^{2} \partial t^{\jmath}}(0,0)=0, \quad 0 \leq \imath+2 \jmath \leq 2
$$

then $u \in C^{4}(\bar{G})$

Since our method of analysis anvolves decomposing the solution of (311) anto a sum of various components, we also need to ensure that each of the components considered satısfy sufficient compatibility conditions However, in the case of zero boundary conditions, all of these components can be traced back to depend on f Sufficuent compatzbality conditions for these components therefore involve ensuring that f and a sufficient number of its dervatives are zero at the corners $(0,0)$ and $(1,0)$ We should note that additional compatzbility is required at the corner $(1,0)$, since for example in the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}, s_{2}$ ıs defined in (336 d) to be the solution of a first order problem We need $s_{2} \in C^{6}\left(\bar{G}_{1}\right)$ therefore we must impose the condition that f and a sufficient number of its dervatives are zero at that corner (see for example [1, 14]) To be specific in the case of (3 36 d), by assuming that

$$
\frac{\partial^{\imath+\jmath} f}{\partial x^{2} \partial t^{\jmath}}(1,0)=0, \quad 0 \leq \imath+\jmath \leq 7
$$

then

$$
\frac{\partial^{\imath+\jmath} s_{0}}{\partial x^{2} \partial t^{\jmath}}(1,0)=0, \quad 0 \leq \imath+\jmath \leq 7 \quad \text { and } \quad \frac{\partial^{\imath+\jmath} s_{1}}{\partial x^{\imath} \partial t^{\jmath}}(1,0)=0, \quad 0 \leq \imath+\jmath \leq 6
$$

which (given sufficient regularity of the data) suffices for $s_{2} \in C^{6}(\bar{G})$
It should be noted that this assue of compatibllity, whale obviously important, as not the main thrust of this thesis Zero order compatiblity conditions have been checked on the case of all the components in thes chapter

34 Discrete problem

We discretize (311) using a numerical method that is composed of a fully implicit in time and upwinded in space finte difference operator $L^{N, M}$ on a tensor product mesh $\bar{G}^{N, M}=\left\{\left(x_{\imath}, t_{j}\right)\right\}_{\imath=0, j=0}^{N, M}$, which is plecewise-uniform in space and uniform in time We
have the following discrete problem,

$$
\begin{align*}
L^{N, M} U\left(x_{\imath}, t_{j}\right)= & \varepsilon \delta_{x}^{2} U+\mu a D_{x}^{+} U-b U-d D_{t}^{-} U=f, \quad\left(x_{\imath}, t_{j}\right) \in G^{N, M} \\
& U=u, \quad\left(x_{\imath}, t_{j}\right) \in \Gamma^{N, M}=\bar{G}^{N, M} \cap \Gamma \tag{34la}
\end{align*}
$$

where the finite difference operators D_{x}^{+}, D_{t}^{-}and δ_{x}^{2} are

$$
\begin{gathered}
D_{x}^{+} U\left(x_{\imath}, t_{j}\right)=\frac{U\left(x_{\imath+1}, t_{j}\right)-U\left(x_{\imath}, t_{j}\right)}{x_{\imath+1}-x_{\imath}}, \quad D_{x}^{-} U\left(x_{\imath}, t_{j}\right)=\frac{U\left(x_{\imath}, t_{j}\right)-U\left(x_{\imath-1}, t_{j}\right)}{x_{\imath}-x_{\imath-1}}, \\
D_{t}^{-} U\left(x_{\imath}, t_{\jmath}\right)=\frac{U\left(x_{\imath}, t_{j}\right)-U\left(x_{\imath}, t_{\jmath-1}\right)}{t_{\jmath}-t_{\jmath-1}} \quad \text { and } \quad \delta_{x}^{2} U\left(x_{\imath}, t_{\jmath}\right)=\frac{D_{x}^{+} U\left(x_{\imath}, t_{j}\right)-D_{x}^{-} U\left(x_{\imath}, t_{j}\right)}{\left(x_{\imath+1}-x_{\imath-1}\right) / 2}
\end{gathered}
$$

The precewise-umform mesh in space Ω^{N} consists of two transition points

$$
\begin{align*}
& \sigma_{1}=\left\{\begin{array}{lll}
\min \left\{\frac{1}{4}, \frac{2 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} \ln N\right\}, & \text { if } & \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha} \\
\min \left\{\frac{1}{4}, \frac{2 \varepsilon}{\mu \alpha} \ln N\right\}, & \text { if } & \mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}
\end{array},\right. \tag{341b}\\
& \sigma_{2}=\left\{\begin{array}{lll}
\min \left\{\frac{1}{4}, \frac{2 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} \ln N\right\}, & \text { if } & \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha} \\
\min \left\{\frac{1}{4}, \frac{2 \mu}{\gamma} \ln N\right\}, & \text { if } & \mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}
\end{array}\right.
\end{align*}
$$

More specifically

$$
\Omega^{N}=\left\{x_{\imath} \left\lvert\, x_{\imath}=\left\{\begin{array}{lll}
\frac{4 \sigma_{1} \downarrow}{N}, & \text { if } \quad \imath \leq \frac{N}{4} \tag{array}\\
\sigma_{1}+\left(\imath-\frac{N}{4}\right) H, & \text { if } & \frac{N}{4} \leq \imath \leq \frac{3 N}{4} \\
1-\sigma_{2}+\left(\imath-\frac{3 N}{4}\right) \frac{4 \sigma_{2}}{N}, & \text { if } & \frac{3 N}{4} \leq \imath \leq N
\end{array}\right\}\right.,\right.
$$

where $N H=2\left(1-\sigma_{1}-\sigma_{2}\right)$ and the mesh in time is taken to be uniform with $t_{j}=\frac{3}{M}$, $\jmath=0, \quad M$ We now state a discrete comparison principle for the finite difference operator in (3 41 a), whose proof is standard

Discrete Mınımum Principle If W is any mesh function and $\left.L^{N, M} W\right|_{G^{N M}} \leq 0$ and $\left.W\right|_{\Gamma^{N M}} \geq 0$, then $\left.W\right|_{\bar{G}^{N} M} \geq 0$

A standard corollary to this is that For any mesh function Z

$$
\begin{equation*}
\|Z\| \leq C\left\|L^{N, M} Z\right\|+\|Z\|_{\Gamma^{N M}} \tag{342}
\end{equation*}
$$

The disciete solution can be decomposed in an analogous fashion to the continuous solution We have the sum

$$
\begin{equation*}
U=V+W_{L}+W_{R} \tag{343a}
\end{equation*}
$$

where the components V, W_{L} and W_{R} are the solutions of the following

$$
\begin{array}{rlrl}
L^{N, M} V & =f, & \left.V\right|_{\Gamma^{N M}}=\left.v\right|_{\Gamma^{N M}}, \\
L^{N, M} W_{L} & =0, & & \left.W_{L}\right|_{\Gamma^{N M}}=\left.w_{L}\right|_{\Gamma^{N M}}, \\
L^{N, M} W_{R} & =0, & & \left.W_{R}\right|_{\Gamma^{N M}}=\left.w_{R}\right|_{\Gamma^{N M}} \tag{343d}
\end{array}
$$

Theorem 341 We have the following bounds on W_{L} and W_{R}

$$
\begin{array}{r}
\left|W_{L}\left(x_{\jmath}, t_{k}\right)\right| \leq C \prod_{\imath=1}^{\jmath}\left(1+\theta_{L} h_{\imath}\right)^{-1}=\Psi_{L, \jmath}, \quad \Psi_{L, 0}=C \\
\left|W_{R}\left(x_{\jmath}, t_{k}\right)\right| \leq C \prod_{\imath=\jmath+1}^{N}\left(1+\theta_{R} h_{\imath}\right)^{-1}=\Psi_{R, \jmath}, \quad \Psi_{R, N}=C \tag{344b}
\end{array}
$$

where W_{L} and W_{R} are solutions of (343c) and (343d) respectively, $0 \leq \jmath \leq N, 0 \leq k \leq$ $M, h_{2}=x_{\imath}-x_{\imath-1}$ and the parameters θ_{L} and θ_{R} are defined as follows

$$
\theta_{L}=\left\{\begin{array}{ll}
\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}, & \text { if } \mu^{2} \leq \frac{\gamma \xi}{\alpha} \tag{344c}\\
\frac{\mu \alpha}{2 \varepsilon}, & \text { if } \mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}
\end{array}, \quad \theta_{R}= \begin{cases}\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}, & \text { if } \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha} \\
\frac{\gamma}{2 \mu}, & \text { if } \mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}\end{cases}\right.
$$

We note that $\theta_{L}=\frac{\theta_{1}}{2}$ and $\theta_{R}=\theta_{2}$, where θ_{1} and θ_{2} are defined in Lemma 337
Proof We start with W_{L} Consider $\Phi_{L}^{ \pm}\left(x_{j}, t_{k}\right)=\Psi_{L, \mathfrak{j}} \pm W_{L}\left(x_{j}, t_{k}\right)$ We have $L^{N, M} \Phi_{L}^{ \pm}\left(x_{j}, t_{k}\right)=$ $\varepsilon \delta_{x}^{2} \Psi_{L, \jmath}+\mu a D_{x}^{+} \Psi_{L, 3}-b \Psi_{L, 3} \quad$ Using the properties

$$
\Psi_{L, 3}>0, \quad D_{x}^{+} \Psi_{L, 3}=-\theta_{L} \Psi_{L, \lambda+1}<0, \quad \text { and } \quad \delta_{x}^{2} \Psi_{L, j}=\theta_{L}^{2} \Psi_{L, j+1} \frac{h_{y+1}}{h_{j}}>0
$$

we obtan

$$
L^{N, M} \Phi_{L}^{ \pm}\left(x_{j}, t_{k}\right)=\varepsilon \theta_{L}^{2} \Psi_{L, \jmath+1} \frac{h_{J+1}}{\overline{h_{j}}}-\mu a \theta_{L} \Psi_{L, j+1}-b \Psi_{L, \eta},
$$

where $\overline{h_{j}}=\frac{h_{j+1}+h_{2}}{2}$ Rewriting the right hand side of this equation we have

$$
L^{N, M} \Phi_{L, J}^{ \pm} \leq \Psi_{L, \jmath+1}\left(2 \varepsilon \theta_{L}^{2}\left(\frac{h_{\jmath+1}}{2 \bar{h}_{\jmath}}-1\right)+\left(2 \varepsilon \theta_{L}^{2}-\mu a \theta_{L}-b\right)-\beta \theta_{L} h_{\jmath+1}\right)
$$

Using this expression we can show that for both values of $\theta_{L}, L^{N, M} \Phi_{L, 3}^{ \pm} \leq 0$ Now using the discrete minumum principle we obtain the required bound (344a)

The same idea is apphed to W_{R} Consider $\Phi_{R}^{ \pm}\left(x_{j}, t_{k}\right)=\Psi_{R, \jmath} \pm W_{R}\left(x_{j}, t_{k}\right)$ If $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, it is easy to see that $\Phi_{R}^{ \pm}\left(0, t_{k}\right) \geq 0, \Phi_{R}^{ \pm}\left(1, t_{k}\right) \geq 0$ and $\Phi_{R}^{ \pm}\left(x_{j}, 0\right) \geq 0$ However in the other case we need to look at $\Phi_{R}^{ \pm}\left(0, t_{h}\right)$ in more detall We know that

$$
\Phi_{R}^{ \pm}\left(0, t_{k}\right)=C \prod_{\imath=1}^{N}\left(1+\frac{\gamma}{2 \mu} h_{2}\right)^{-1} \pm W_{R}\left(0, t_{k}\right)
$$

However, given that $e^{-\frac{\gamma}{\mu} h_{2}} \leq\left(1+\frac{\gamma}{2 \mu} h_{\imath}\right)^{-1}$ and $e^{-\frac{\gamma}{\mu}}=e^{-\frac{\gamma}{\mu} \sum_{i=1}^{N} h_{i}}=\prod_{\imath=1}^{N} e^{-\frac{\gamma}{\mu} h_{2}}$, we see using Lemma 336 that $\Phi_{R}^{ \pm}\left(0, t_{k}\right) \geq 0$

Considering both cases together again, $L^{N, M} \Phi_{R}^{ \pm}\left(x_{3}, t_{k}\right)=\varepsilon \delta_{x}^{2} \Psi_{R, 3}+\mu a D_{x}^{+} \Psi_{R, 3}-b \Psi_{R, j}$, and using

$$
\Psi_{R, \jmath} \leq \Psi_{R, \jmath+1}, \Psi_{R, \jmath}>0, D_{x}^{+} \Psi_{R, \jmath}=\theta_{R} \Psi_{R, \jmath}, \text { and } \delta_{x}^{2} \Psi_{R, \jmath}=\frac{\theta_{R}^{2}}{\left(1+\theta_{R} h_{j}\right)} \Psi_{R, \jmath} \frac{h_{J}}{\bar{h}_{j}},
$$

we obtaın
$L^{N, M} \Phi_{R}^{ \pm}\left(x_{3}, t_{k}\right) \leq \frac{\Psi_{R, 3}}{\left(1+\theta_{R} h_{j}\right)}\left(2 \varepsilon \theta_{R}{ }^{2}\left(\frac{h_{3}}{2 \breve{h}_{3}}-1\right)+\left(2 \varepsilon \theta_{R}^{2}+\mu a \theta_{R}-b\right)\left(1+\theta_{R} h_{3}\right)-2 \varepsilon \theta_{R}^{3} h_{3}\right)$
Again, we can see that for both values of θ_{R}, that $L^{N, M} \Phi_{R}^{ \pm}\left(x_{j}, t_{k}\right) \leq 0$ Therefore we apply the discrete mınımum princıple to obtan the required bound (344 b)

35 Error analysis

In this section, we analyse the error between the contmuous solution of (311) and the discrete solution of (341) This is done by analysing the error in approximating each of the components in the decomposition (3 3 10a) separately

Lemma 351 At each mesh point $\left(x_{2}, t_{j}\right) \in \bar{G}^{N, M}$ the regular component of the error satusfies the following estrmate

$$
\left|(V-v)\left(x_{2}, t_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right),
$$

where v is the solution of (3310b) and V is the solution of (343b)

Proof Using the usual truncation error aıgument and (3 311 1) we have

$$
\left|L^{N, M}(V-v)\left(x_{2}, t_{y}\right)\right| \leq C_{1} N^{-1}\left(\varepsilon\left\|v_{x x x}\right\|+\mu\left\|v_{x x}\right\|\right)+C_{2} M^{-1}\left\|v_{t t}\right\| \leq C\left(N^{-1}+M^{-1}\right),
$$

and we apply (3 42) to obtain the required result
Lemma 352 At each mesh point $\left(x_{\imath}, t_{j}\right) \in \bar{G}^{N, M}$ the left singular component of the error satrsfies the following estrmate

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{j}\right)\right| \leq\left\{\begin{array}{lll}
C\left(N^{-1}(\ln N)+M^{-1}\right), & \text { vf } & \mu^{2} \leq C \varepsilon \\
C\left(N^{-1}(\ln N)^{2}+M^{-1} \ln N\right), & \text { of } & \mu^{2} \geq C \varepsilon
\end{array}\right.
$$

where w_{L} is the solution of ($3310 c$) and W_{L} is the solution of ($343 c$)
Proof We use a classical argument in order to obtain the following truncation error bounds

$$
\begin{equation*}
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{\jmath}\right)\right| \leq C_{1}\left(h_{\imath+1}+h_{\imath}\right)\left(\varepsilon\left\|w_{L x x x}\right\|+\mu\left\|w_{L x x}\right\|\right)+C_{2} M^{-1}\left\|w_{L t t}\right\| \tag{351}
\end{equation*}
$$

The proof splits into the two cases of (a) $\sigma_{1}<\frac{1}{4}$ and (b) $\sigma_{1}=\frac{1}{4}$
(a) We consider the case of $\sigma_{1}<\frac{1}{4}$ In this case the mesh Ω^{N}, is piecewise uniform We firstly analyse the error in the regıo $\left[\sigma_{1}, 1\right) \times(0, T]$ and then we proceed to analyse the fine mesh on $\left(0, \sigma_{1}\right) \times(0, T]$ To obtain the required error bounds in $\left[\sigma_{1}, 1\right) \times(0, T]$, we will use Lemma 337 and (344 a) instead of the usual truncation error argument From (344a) we have

$$
\left|W_{L}\left(x_{\frac{N}{4}}, t_{j}\right)\right| \leq C\left(1+\theta_{L} \frac{4 \sigma_{1}}{N}\right)^{-\frac{N}{4}}
$$

where θ_{L} and σ_{1} depend on the ratio of μ^{2} to ε and are given in (344c) and (341b) respectively For both these choices of θ_{L} and σ_{1} we can show that

$$
\left|W_{L}\left(x_{\frac{N}{4}}, t_{j}\right)\right| \leq C\left(1+4 N^{-1} \ln N\right)^{-\frac{N}{4}}
$$

Letting $t=4 N^{-1} \ln N$ in the mequality $\ln (1+t)>t\left(1-\frac{t}{2}\right)$, it follows that $(1+$ $\left.4 N^{-1} \ln N\right)^{-\frac{N}{4}} \leq 4 N^{-1}$ Therefore

$$
\left|W_{L}\left(x_{\imath}, t_{j}\right)\right| \leq C N^{-1}, \quad\left(x_{\imath}, t_{j}\right) \in\left[\sigma_{1}, 1\right) \times(0, T]
$$

Looking at the continuous solution in this region we have from Lemma 337

$$
\left|w_{L}\left(x_{1}, t_{j}\right)\right| \leq C e^{-\theta_{1} x_{i}} \leq C e^{\theta_{1} \sigma_{1}} \leq C N^{-2}
$$

for both choices of σ_{1} and θ_{1} Combining these two results we obtain the following error bounds in the region $\left[\sigma_{1}, 1\right) \times(0, T]$ when $\sigma_{1}<\frac{1}{4}$

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{j}\right)\right| \leq C N^{-1}
$$

We now consider the fine mesh region $\left(0, \sigma_{1}\right) \times(0, T]$ We start with the case $\mu^{2} \leq \frac{\gamma \epsilon}{\alpha}$ In this case the truncation error bound (351) simplifies to

$$
\begin{equation*}
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{2}, t_{j}\right)\right| \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(h_{2+1}+h_{z}\right)+C_{2} M^{-1} \tag{352}
\end{equation*}
$$

Since $\sigma_{1}<\frac{1}{4}$, using (34 lb) and (341c), we know that $h_{\imath+1}=h_{\imath}=\frac{8 \sqrt{\epsilon}}{\sqrt{\gamma \alpha}} N^{-1} \ln N$ and therefore we obtan

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{j}\right)\right| \leq C_{1}\left(N^{-1} \ln N+M^{-1}\right)
$$

Fimsh using (3 42) to obtain the required error bound Next we consider the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ Here we know that $h_{\imath+1}=h_{\imath}=\frac{8 \varepsilon}{\mu \alpha} N^{-1} \ln N$ The bound on the truncation error given in (351) still holds and therefore using Lemma 339 we obtain

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{i}, t_{j}\right)\right| \leq C_{1} N^{-1} \ln N+C_{2} N^{-1} \frac{\mu^{2}}{\varepsilon} \ln N+C_{3} M^{-1}\left(1+\mu^{2} \varepsilon^{-1}\right)
$$

Choosıng

$\Psi^{ \pm}\left(x_{2}, t_{j}\right)=C\left(N^{-1} \ln N+M^{-1}+\left(\left(\sigma_{1}-x_{\imath}\right) \frac{\mu}{\varepsilon}\right)\left(N^{-1} \ln N+M^{-1}\right)\right) \pm\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{j}\right)$ as our barrier functions, we find that we can choose C large enough so that both functions are nonnegative at all points in $G^{N, M}$ of the form $\left(0, t_{j}\right),\left(x_{\frac{N}{4}}, t_{j}\right)$ and $\left(x_{2}, 0\right)$ and $L^{N, M} \Psi^{ \pm}\left(x_{2}, t_{j}\right) \leq 0$ Therefore applying the discrete mınımum princıple we obtain

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{\jmath}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}+\left(\left(\sigma_{1}-x_{2}\right) \frac{\mu}{\varepsilon}\right)\left(N^{-1} \ln N+M^{-1}\right)\right)
$$

Finally using $\sigma_{1}=\frac{2 \varepsilon}{\mu \alpha} \ln N$ we have

$$
\begin{equation*}
\left|\left(W_{L}-w_{L}\right)\left(x_{2}, t_{j}\right)\right| \leq C\left(N^{-1}(\ln N)^{2}+M^{-1} \ln N\right) \tag{3}
\end{equation*}
$$

(b) If $\sigma_{1}=\frac{1}{4}$ and $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ then $\sqrt{\frac{\gamma \alpha}{\varepsilon}} \leq 8 \ln N$ The truncation error bound (35 2)
still holds, and we obtain

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{\jmath}\right)\right| \leq C_{1}\left(N^{-1} \ln N+M^{-1}\right)
$$

When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ and $\sigma_{1}=\frac{1}{4}$ we have $\frac{\mu \alpha}{\varepsilon} \leq 8 \ln N$ Our bound (351) for the truncation error becomes

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{\imath}, t_{j}\right)\right| \leq C\left(N^{-1}(\ln N)^{2}+M^{-1} \ln N\right)
$$

In both cases above, we use (342) to finısh

Lemma 353 At each mesh point $\left(x_{2}, t_{j}\right) \in \bar{G}^{N, M}$ the rıght singular component of the error satisfies the following estimate

$$
\left|\left(W_{R}-w_{R}\right)\left(x_{i}, t_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}\right)
$$

where w_{R} is the solution of $(3310 d)$ and W_{R} is the solution of $(343 d)$
Proof (a) The analysis of this component sphts depending on the value of σ_{2} We consider the case of $\sigma_{2}<\frac{1}{4}$ We will start by examining the region $\left(0,1-\sigma_{2}\right] \times(0, T]$ Using the discrete bounds (344 b) we obtain

$$
\left|W_{R}\left(x_{\frac{3 N}{4}}, t_{j}\right)\right| \leq C\left(1+\theta_{R} \frac{4 \sigma_{2}}{N}\right)^{-\frac{N}{4}}
$$

where θ_{R} and σ_{2} depend on the ratio of μ^{2} to ε and are given in (344 c) and (34 lb) respectively We can show that for both choices of θ_{R} and σ_{2} we have

$$
\left|W_{R}\left(x_{\frac{3 N}{4}}, t_{\jmath}\right)\right| \leq C\left(1+4 N^{-1} \ln N\right)^{-\frac{N}{4}}
$$

and using the same argument as with W_{L}, we conclude that if $\left(x_{2}, t_{j}\right) \in\left(0,1-\sigma_{2}\right] \times(0, T]$, then

$$
\left|W_{R}\left(x_{2}, t_{j}\right)\right| \leq C N^{-1}
$$

Next, looking at the continuous solution in this region, we use Lemma 33 7, to obtain

$$
\left|w_{R}\left(x_{\imath}, t_{\jmath}\right)\right| \leq C e^{-\theta_{2}\left(1-x_{\imath}\right)} \leq C e^{-\theta_{2} \sigma_{2}} \leq C N^{-1}
$$

for both choices of σ_{2} and θ_{2} We therefore have the following bounds on the error in the
regron $\left(0,1-\sigma_{2}\right] \times(0, T]$ when $\sigma_{2}<\frac{1}{4}$

$$
\begin{equation*}
\left|\left(W_{R}-w_{R}\right)\left(x_{\imath}, t_{j}\right)\right| \leq C N^{-1} \tag{array}
\end{equation*}
$$

We consider the mesh region $\left(1-\sigma_{2}, 1\right) \times(0, T]$, we have a simular truncation error bound to that in (351) We start with the case of $\mu^{2} \leq \frac{\gamma \epsilon}{\alpha}$, we can show (351) simplifies to

$$
\begin{equation*}
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{2}, t_{j}\right)\right| \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(h_{2+1}+h_{2}\right)+C_{2} M^{-1} \tag{355}
\end{equation*}
$$

Since we are in the fine mesh region we have $h_{\imath+1}=h_{2}=\frac{8 \sqrt{\varepsilon}}{\sqrt{\alpha \gamma}} N^{-1} \ln N$ and using (3 5 5) we now obtain

$$
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{2}, t_{j}\right)\right| \leq C_{1} N^{-1} \ln N+C_{2} M^{-1}
$$

If $\mu^{2} \geq \frac{\gamma \epsilon}{\alpha}$, using classical analysis we can obtain the following truncation error bounds

$$
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{\imath}, t_{3}\right)\right| \leq C_{1}\left(h_{2+1}+h_{\imath}\right)\left(\varepsilon\left\|w_{R x x x}\right\|+\mu\left\|w_{R x x}\right\|\right)+C_{2} M^{-1}\left\|w_{R t t}\right\|
$$

Using the bounds on w_{R} in Lemmd 338 , we find that this simplifies to

$$
\begin{equation*}
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{\imath}, t_{j}\right)\right| \leq \frac{C_{1}}{\mu}\left(h_{\imath+1}+h_{\imath}\right)+C_{2} M^{-1} \tag{356}
\end{equation*}
$$

Since we are in the fine mesh region we have $h_{\imath+1}=h_{\imath}=\frac{8 \mu}{\gamma} N^{-1} \ln N$, and therefore we obtain

$$
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{2}, t_{j}\right)\right| \leq C_{1} N^{-1} \ln N+C_{2} M^{-1}
$$

Use (3 42) to fimsh in both cases
(b) If $\sigma_{2}=\frac{1}{4}$ and $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, then $\sqrt{\frac{\gamma \alpha}{\varepsilon}} \leq 8 \ln N$ and since (355) holds we have

$$
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{2}, t_{j}\right)\right| \leq C_{1} N^{-1} \ln N+C_{2} M^{-1}
$$

If $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ and $\sigma_{2}=\frac{1}{4}$, then $\frac{\gamma}{\mu} \leq 8 \ln N$ and using (356) we obtain

$$
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{2}, t_{j}\right)\right| \leq C_{\mathbf{1}} N^{-1} \ln N+C_{2} M^{-1}
$$

In both cases, we use (342) to complete the proof

Theorem 351 At each mesh point $\left(x_{2}, t_{j}\right) \in \bar{G}^{N, M}$ the maximum pointwise error satisfies the following parameter-unıform error bound

$$
\|U-u\|_{G^{N M}} \leq \begin{cases}C\left(N^{-1}(\ln N)+M^{-1}\right), & \text { if } \quad \mu^{2} \leq C \varepsilon \tag{357}\\ C\left(N^{-1}(\ln N)^{2}+M^{-1} \ln N\right), & \text { if } \quad \mu^{2} \geq C \varepsilon\end{cases}
$$

where u is the solution of (311) and U is the solution of (341)
Proof The proof follows from Lemma 35 1, Lemma 352 and Lemma 353
Remark 351 It is worth noting that the error bound (357) extends to the case of $-1 \leq \mu \leq 1$, where the discrete problem is defined to be

$$
\begin{gathered}
L^{N, M} U\left(x_{\imath}, t_{\jmath}\right)=\varepsilon \delta^{2} U+\mu a D_{x} U-b U-d D_{t}^{-} U=f, \quad\left(x_{\imath}, t_{\jmath}\right) \in G^{N, M} \\
D_{x}= \begin{cases}D_{x}^{-} & \text {if } \mu<0 \\
D_{x}^{+} & \text {if } \mu \geq 0\end{cases}
\end{gathered}
$$

and the transition points in the piecewise-uniform mesh in space are taken to be

$$
\begin{align*}
& \sigma_{1}=\left\{\begin{array}{lll}
\min \left\{\frac{1}{4}, \frac{2|\mu|}{\gamma} \ln N\right\}, & \text { if } \mu \leq-\sqrt{\frac{\gamma \varepsilon}{\mu}} \\
\min \left\{\frac{1}{4}, \frac{2 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} \ln N\right\}, & \text { if }|\mu| \leq \sqrt{\frac{\gamma \varepsilon}{\alpha}} \\
\min \left\{\frac{1}{4}, \frac{2 \varepsilon}{\mu \alpha} \ln N\right\}, & \text { if } \mu \geq \sqrt{\frac{\gamma \varepsilon}{\alpha}}
\end{array},\right. \tag{358b}\\
& \sigma_{2}=\left\{\begin{array}{lll}
\min \left\{\frac{1}{4}, \frac{2 \varepsilon}{|\mu| \alpha} \ln N\right\}, & \text { if } \mu \leq-\sqrt{\frac{\gamma \varepsilon}{\alpha}} \\
\min \left\{\frac{1}{4}, \frac{2 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} \ln N\right\}, & \text { if }|\mu| \leq \sqrt{\frac{\gamma \varepsilon}{\alpha}} \\
\min \left\{\frac{1}{4}, \frac{2 \mu}{\gamma} \ln N\right\}, & \text { if } \mu \geq \sqrt{\frac{\gamma \varepsilon}{\alpha}}
\end{array}\right. \tag{358c}
\end{align*}
$$

36 Numerical results

The numerical method (341), has been applied to the following particular problem

$$
\begin{array}{r}
\left(\varepsilon u_{x x}+\mu(1+x) u_{x}-u-u_{t}\right)(x, t)=16 x^{2}(1-x)^{2},(x, t) \in(0,1) \times(0,1] \tag{array}\\
\left.u\right|_{\Gamma}=0
\end{array}
$$

In the numerical experiments, we have taken $N=M$ We define the maximum pointwise two-mesh differences to be

$$
D_{\varepsilon, \mu}^{N}=\left\|U_{\varepsilon, \mu}^{N}-\bar{U}_{\varepsilon, \mu}^{2 N}\right\|_{G^{N M}}
$$

where $\bar{U}_{\varepsilon, \mu}^{N}$ is the precewise linear interpolants of the numerical solutions $U_{\varepsilon, \mu}^{N}$ From these values one can compute the ε-uniform maximum pomtwise two-mesh differences D_{μ}^{N} and the (ε, μ)-uniform maximum pointwise two-mesh differences D^{N}, which are defined by

$$
D_{\mu}^{N}=\max _{\varepsilon \in R_{\varepsilon}} D_{\varepsilon, \mu}^{N}, \quad D^{N}=\max _{\mu \in R_{\mu}} \max _{\varepsilon \in R_{\varepsilon}} D_{\varepsilon, \mu}^{N},
$$

where $R_{\varepsilon}=\left[2^{-26}, 1\right]$ and $R_{\mu}=\left[2^{-22}, 1\right]$ Approximations for the order of local convergence $p_{\varepsilon \mu}^{N}$, the ε-unform order of local convergence p_{μ}^{N} and the (ε, μ)-uniform order of convergence p^{N} are computed from

$$
p_{\varepsilon, \mu}^{N}=\log _{2} \frac{D_{\varepsilon, \mu}^{N}}{D_{\varepsilon, \mu}^{2 N}}, \quad p_{\mu}^{N}=\log _{2} \frac{D_{\mu}^{N}}{D_{\mu}^{2 N}}, \quad \text { and } \quad p^{N}=\log _{2} \frac{D^{N}}{D^{2 N}}
$$

The numerical results presented in Table 31, Table 32 and Table 33 are in agreement with the theoretical asymptotic error bound (357)

ε	Number of intervals $N(=M)$					
	8	16	32	64	128	256
	062	076	087	093	096	098
2^{-2}	076	089	095	097	099	099
2^{-4}	080	090	095	097	099	099
2^{-6}	078	085	092	095	098	099
2^{-8}	068	076	090	097	100	102
2^{-10}	065	076	086	093	097	099
2^{-12}	061	075	086	093	097	098
2^{-14}	060	075	086	093	096	098
2^{-16}	059	075	086	093	096	098
2^{-18}	059	075	086	093	096	098
2^{-20}	059	075	086	093	096	098
2^{-22}	059	075	086	093	096	098
2^{-24}	059	075	086	093	096	098
2^{-26}	059	075	086	093	096	098
$p_{\mu=2^{-2}}^{N}$	059	075	086	093	096	098

Table 31 The orders of local convergence $p_{\varepsilon, \mu}^{N}$ and the ε-unform orders of local convergence p_{μ}^{N} generated by the upwind finte difference operator (341a) and the mesh (341c) applied to problem (361) for $\mu=2^{-2}$ and for various values of ε and $N(=M)$

ε	Number of intervals $N(=M)$					
	8	16	32	64	128	256
2^{0}	061	075	087	093	096	098
2^{-2}	075	088	094	097	098	099
2^{-4}	080	090	095	098	099	099
2^{-6}	086	093	097	098	099	100
2^{-8}	092	096	098	099	099	100
2^{-10}	093	097	099	099	100	100
2^{-12}	094	097	099	099	100	100
2^{-14}	094	097	099	099	100	100
2^{-16}	094	097	099	099	100	100
2^{-18}	094	097	099	099	100	100
2^{-20}	094	097	099	099	100	100
2^{-22}	094	097	099	099	099	099
2^{-24}	094	097	098	099	099	099
2^{-26}	094	097	098	099	099	099
$p_{\mu=2^{-10}}^{N}$	094	097	099	099	100	100

Table 32 The orders of local convergence $p_{\varepsilon, \mu}^{N}$ and the ε-uniform orders of local convergence p_{μ}^{N} generated by the upwind finite difference operator (34 la) and the mesh (34 l c) applied to problem (361) for $\mu=2^{-10}$ and for various values of ε and $N(=M)$

37 Hıgher order methods

This method for the parabolic differential equation can also be apphed to the ODE (211) Morcover, the analysis can be extended in order to allow us obtain a higher order numerical method for (211) We decompose the solution u of (211) into regular and singular components This section is conccrned with obtaining bounds on these components and their delivatives, these bounds are then used in [5] to prove that the numerical method proposed in this article is of almost second order

The following notation is particular to this section We define the zero order, first order and second order differential operators L_{0}, L_{μ} and $L_{\varepsilon, \mu}$ as follows

$$
\begin{aligned}
L_{0} z & =-b z \\
L_{\mu} z & =a \mu z_{x}+L_{0} z \\
L_{\varepsilon, \mu} z & =\varepsilon z_{x x}+L_{\mu} z
\end{aligned}
$$

	Number of intervals $N(=M)$					
	8	16	32	64	128	256
2^{0}	041	046	058	066	071	080
2^{-2}	059	075	086	093	096	098
2^{-4}	085	091	097	098	099	100
2^{-6}	089	098	097	098	101	100
2^{-10}	094	097	099	099	100	100
2^{-14}	095	097	099	099	100	100
2^{-18}	095	097	099	099	100	100
2^{-22}	095	097	099	099	100	100
p^{N}	095	097	099	099	100	100

Table 33 The orders of ε-uniform local convergence p_{μ}^{N} and the (ε, μ)-unnform orders of local convergence p^{N} generated by the upwind finite difference operator (341a) and the mesh (341c) applied to problem (361) for varıous values of ε, μ and $N(=M)$

Analogous to (3 310 a), we have the following decomposition of u

$$
\begin{equation*}
u(x)=v(x)+w_{L}(x)+w_{R}(x), \tag{372a}
\end{equation*}
$$

where w_{L} and w_{R} satısfy homogeneous differential equations and

$$
\begin{align*}
L_{\varepsilon, \mu} v & =f \text { on }(0,1), \quad v(0) \text { and } v(1) \text { chosen in }(373) \text { or }(374), \tag{372b}\\
L_{\varepsilon, \mu} w_{L} & =0 \text { on }(0,1), \quad w_{L}(0)=u(0)-v(0)-w_{R}(0), \quad w_{L}(1)=0, \tag{372c}\\
L_{\varepsilon, \mu} w_{R} & =0 \text { on }(0,1), \quad w_{R}(1)=u(1)-v(1), \quad \text { ff } \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}, \text { then } w_{R}(0)=0, \tag{372d}
\end{align*}
$$ else $w_{R}(0)$ is chosen in (378)

Let us first consider the regular component v in the case of $\mu^{2} \leq \frac{\gamma \epsilon}{\alpha}$ We have the following decomposition

$$
\begin{equation*}
v(x, \varepsilon, \mu)=v_{0}(x)+\sqrt{\varepsilon} v_{1}(x, \varepsilon, \mu)+(\sqrt{\varepsilon})^{2} v_{2}(x, \varepsilon, \mu)+(\sqrt{\varepsilon})^{3} v_{3}(x, \varepsilon, \mu) \tag{373d}
\end{equation*}
$$

where

$$
\begin{align*}
-b v_{0} & =f \tag{373b}\\
b v_{1} & =\sqrt{\varepsilon} v_{0}^{\prime \prime}+\frac{\mu}{\sqrt{\varepsilon}} a v_{0}^{\prime} \tag{373c}\\
b v_{2} & =\sqrt{\varepsilon} v_{1}^{\prime \prime}+\frac{\mu}{\sqrt{\varepsilon}} a v_{1}^{\prime}, \tag{373d}\\
L_{\varepsilon, \mu} v_{3} & =-\sqrt{\varepsilon} v_{2}^{\prime \prime}-\frac{\mu}{\sqrt{\varepsilon}} a v_{2}^{\prime} \text { on }(0,1) \quad v_{3}(0, \varepsilon, \mu)=v_{3}(1, \varepsilon, \mu)=0 \tag{373e}
\end{align*}
$$

We see that $v(0, \varepsilon, \mu)=v_{0}(0)+\sqrt{\varepsilon} v_{1}(0, \varepsilon, \mu)+\varepsilon v_{2}(0, \varepsilon, \mu)$ and $v(1, \varepsilon, \mu)=v_{0}(1)+$ $\sqrt{\varepsilon} v_{1}(1, \varepsilon, \mu)+\varepsilon v_{2}(1, \varepsilon, \mu)$ Assumıng sufficient smoothness on the coefficients (a, b, d, $f \in C^{8}$) and noting that $\alpha \mu^{2} \leq \gamma \varepsilon$, we see that v_{0} and its derivatives up to order eight, v_{1} and its derivatives up to sixth order and v_{2} and its derivatives up to order four are bounded independently of ε and μ

Next we proceed to analyse $v_{3}(x, \varepsilon, \mu)$ Using the minımum princıple for $L_{\varepsilon, \mu}$ and a suitable barrier function we obtam (see Chapter 2, Lemma 22 1)

$$
\left\|v_{3}\right\| \leq \max \left\{\left|v_{3}(0)\right|,\left|v_{3}(1)\right|\right\}+\frac{1}{\beta}\left(\left\|v_{2}^{\prime \prime}\right\|+\left\|v_{2}^{\prime}\right\|\right)
$$

Applying the bounds on v_{2} we therefore have

$$
\left\|v_{3}\right\| \leq C
$$

Using the differential equation (373e) and the mean value theorem on an interval of width $\sqrt{\varepsilon}$ and noting that $\mu^{2} \leq C \varepsilon$, we obtain (see Chapter 2, Lemma 22 2),

$$
\left\|\frac{d^{k} v_{3}}{d x^{k}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{k}} \max \left\{\left\|v_{3}\right\|,\left\|v_{2}^{\prime \prime}\right\|,\left\|v_{2}^{\prime}\right\|\right\} \leq \frac{C}{(\sqrt{\varepsilon})^{k}} \quad k=1,2
$$

Differentiating (373 e) and using the above bounds we also obtain

$$
\left\|\frac{d^{k} v_{3}}{d x^{k}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{k}} \quad k=3,4
$$

Substituting all of these bounds for $v_{0}(x, \mu), v_{1}(x, \mu), v_{2}(x, \mu)$ and $v_{3}(x, \varepsilon, \mu)$ into the equation for $v(x, \varepsilon, \mu)$ gives us

$$
\left\|\frac{d^{2} v}{d x^{2}}\right\| \leq C\left(1+\sqrt{\varepsilon}^{(3-k)}\right), \quad \imath=0,1,2,3,4
$$

When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, we consider the following decomposition

$$
\begin{equation*}
v(x, \varepsilon, \mu)=v_{0}(x, \mu)+\varepsilon v_{\mathbf{1}}(x, \mu)+\varepsilon^{2} v_{2}(x, \mu)+\varepsilon^{3} v_{3}(x, \varepsilon, \mu) \tag{374a}
\end{equation*}
$$

where

$$
\begin{align*}
L_{\mu} v_{0} & =f(x) \text { on }[0,1), & & v_{0}(1, \mu) \text { chosen in }(376), \tag{374b}\\
L_{\mu} v_{1} & =-v_{0}^{\prime \prime}(x, \mu) \text { on }[0,1), & & v_{1}(1, \mu) \text { chosen in }(377), \tag{374c}\\
L_{\mu} v_{2} & =-v_{1}^{\prime \prime}(x, \mu) \text { on }[0,1), & & v_{2}(1, \mu)=0 \tag{374~d}\\
L_{\varepsilon, \mu} v_{3}(x, \varepsilon, \mu) & =-v_{2}^{\prime \prime}(x, \mu) \text { on }(0,1), & & v_{3}(0, \varepsilon, \mu)=v_{3}(1, \varepsilon, \mu)=0 \tag{374e}
\end{align*}
$$

We see that $v(0, \varepsilon, \mu)=v_{0}(0, \mu)+\varepsilon v_{1}(0, \mu)+\varepsilon^{2} v_{2}(0, \mu)$ The following lemmas establish that when $v_{0}(1, \mu)$ and $v_{1}(1, \mu)$ are chosen correctly, the first three derivatives of $v_{0}(x, \mu)$ and the first derivative of $v_{1}(x, \mu)$ are bounded independent of μ

Lemma 371 If v_{0} satısfies the first order differental equation (374b) then there exasts a value for $v_{0}(1, \mu)$ such that the following bounds hold for $0 \leq \imath \leq 7$

$$
\left\|\frac{d^{2} v_{0}}{d x^{2}}\right\| \leq C\left(1+\frac{1}{\mu^{2-3}}\right)
$$

Proof Suppose $z \in C^{0}([0,1])$, we start by noting that since $a>0$ and $b>0$ we can establish the following

$$
\begin{equation*}
\text { If }\left.\quad L_{\mu} z\right|_{[0,1)} \leq 0 \quad \text { and } \quad z(1) \geq 0, \quad \text { then }\left.\quad z\right|_{[0,1]} \geq 0 \tag{375}
\end{equation*}
$$

using a simple proof by contradiction argument We decompose $v_{0}(x, \mu)$ as follows

$$
\begin{equation*}
v_{0}(x, \mu)=s_{0}(x)+\mu s_{1}(x)+\mu^{2} s_{2}(x)+\mu^{3} s_{3}(x) \tag{376a}
\end{equation*}
$$

where

$$
\begin{align*}
s_{0}(x) & =-\frac{f}{b}, \tag{376b}\\
s_{1}(x) & =\frac{a s_{0}^{\prime}(x)}{b}, \tag{376c}\\
s_{2}(x) & =\frac{a s_{1}^{\prime}(x)}{b}, \tag{376d}\\
L_{\mu} s_{3}(x, \mu) & =-a s_{2}^{\prime}(x) \text { on }[0,1), \quad s_{3}(1, \mu)=0 \tag{376e}
\end{align*}
$$

We see that $v_{0}(1, \mu)=s_{0}(1)+\mu s_{1}(1)+\mu^{2} s_{2}(1)$ and assuming sufficient smoothness of the coefficients, we have

$$
\left\|\frac{d^{2} s_{0}}{d x^{2}}\right\| \leq C, \quad\left\|\frac{d^{2} s_{1}}{d x^{2}}\right\| \leq C \quad \text { and } \quad\left\|\frac{d^{2} s_{2}}{d x^{2}}\right\| \leq C \quad \text { for } \quad 0 \leq \imath \leq 3
$$

Using (375) and (3 76 e) we can also obtan

$$
\left\|\frac{d^{2} s_{3}}{d x^{2}}\right\| \leq \frac{C}{\mu^{2}} \quad \text { for } \quad 0 \leq \imath \leq 3
$$

We use these bounds for $s_{0}(x), s_{1}(x), s_{2}(x)$ and $s_{3}(x)$ to obtain $\left\|\frac{d^{d^{2}} v_{0} \| \leq C \text { for } 0 \leq \imath \leq 3}{d x^{2}}\right\| \leq$ Differentiate (374 b) to obtain the required result

Lemma 372 If v_{1} satisfies the first order differentral equation ($374 c$) then there exists a value for $v_{1}(1, \mu)$ such that the following bounds hold for $0 \leq \imath \leq 5$

$$
\left\|\frac{d^{2} v_{1}}{d x^{2}}\right\| \leq C\left(1+\frac{1}{\mu^{2-1}}\right)
$$

Proof We decompose $v_{1}(x, \mu)$ as follows

$$
\begin{equation*}
v_{1}(x, \mu)=\rho_{0}(x)+\mu \rho_{1}(x)+\mu^{2} \rho_{2}(x, \mu) \tag{377a}
\end{equation*}
$$

where

$$
\begin{align*}
\rho_{0}(x) & =-\frac{v_{0 x x}}{b} \tag{377b}\\
\rho_{1}(x) & =\frac{a \rho_{0}^{\prime}(x)}{b} \tag{37c}\\
L_{\mu} \rho_{2}(x, \mu) & =-a \rho_{1}^{\prime}(x) \text { on }[0,1), \quad \rho_{2}(1, \mu)=0 \tag{377d}
\end{align*}
$$

We see that $v_{1}(1, \mu)=\rho_{0}(1)+\mu \rho_{1}(1)$ and assuming sufficient smoothness of the coefficients, we have

$$
\left\|\frac{d^{2} \rho_{0}}{d x^{2}}\right\| \leq C\left(1+\frac{1}{\mu^{2-1}}\right) \quad \text { and } \quad\left\|\frac{d^{2} \rho_{1}}{d x^{2}}\right\| \leq C\left(\frac{1}{\mu^{2}}\right) \quad \text { for } \quad 0 \leq \imath \leq 2
$$

Using (375) and (377 d) we can also obtain

$$
\left\|\frac{d^{2} \rho_{2}}{d x^{2}}\right\| \leq \frac{C}{\mu^{\imath+1}} \quad \text { for } \quad 0 \leq \imath \leq 2
$$

We use these bounds for $\rho_{0}(x), \rho_{1}(x)$, and $\rho_{2}(x, \mu)$ and their derıvatives to obtain $\left\|\frac{d^{2} \nu_{1}}{d x^{2}}\right\| \leq$ $C\left(1+\mu^{2-1}\right)$ for $\imath=0,1,2$ The required result for $0 \leq \imath \leq 5$ follows by differentiating the differential equation for v_{1}

Lemma 373 If v_{2} satısfies the first order differentral equation (374d) then the following bounds hold for $0 \leq \imath \leq 4$

$$
\left\|\frac{d^{2} v_{2}}{d x^{2}}\right\| \leq C\left(\frac{1}{\mu^{2+1}}\right)
$$

Proof The proof follows using (375), the differential equation (374d) and the bounds m Lemma 372

Lemma 374 If v_{3} satzsfies the differentral equation (374e) then the following bounds hold for $0 \leq \imath \leq 4$,

$$
\left\|\frac{d^{2} v_{3}}{d x^{2}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{2}\left(\frac{1}{\mu^{3}}\right)
$$

Proof Using the mimmum principle for $L_{\varepsilon, \mu}$ (Minimum Prınciple 1) and a sutable barricr function we obtain (see Chapter 2, Lemma 22 1),

$$
\left\|v_{3}\right\| \leq \max \left\{\left|v_{3}(0)\right|,\left|v_{3}(1)\right|\right\}+\frac{1}{\beta}\left\|v_{2}^{\prime \prime}\right\|
$$

Applying the bounds in Lemma 373 we therefore have

$$
\left\|v_{3}\right\| \leq \frac{C}{\mu^{3}}
$$

Using the differential equation (374 e) and the mean value theorem on an interval of width $\sqrt{\varepsilon}$ we obtann (see Chapter 2, Lemma 22),

$$
\left\|\frac{d^{k} v_{3}}{d x^{k}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{k}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{k}\right) \max \left\{\left\|v_{3}\right\|,\left\|v_{2}^{\prime \prime}\right\|\right\} \quad k=1,2
$$

Simplifying this expression using Lemma 373

$$
\left\|\frac{d^{k} v_{3}}{d x^{k}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{k}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{k}\right) \frac{1}{\mu^{3}} \quad k=1,2
$$

Differentiating the equation for v_{3} and applying these bounds gives

$$
\left\|v_{3}^{\prime \prime \prime}\right\| \leq \frac{C}{\varepsilon^{3}} \quad \text { and } \quad\left\|v_{3}^{\prime \prime \prime \prime}\right\| \leq \frac{C \mu}{\varepsilon^{4}}
$$

Substituting all of these bounds for $v_{0}(x, \mu), v_{1}(x, \mu), v_{2}(x, \mu)$ and $v_{3}(x, \varepsilon, \mu)$ into the equation for $v(x, \varepsilon, \mu)$ and noting that $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ gives

$$
\left\|\frac{d^{2} v}{d x^{2}}\right\| \leq C\left(1+\left(\frac{\varepsilon}{\mu}\right)^{(3-k)}\right), \quad \imath=0,1,2,3,4
$$

We next consider the layer components defined in (372c) and (372d) The defintion of the left-layer component w_{L} is simular to that in Chapter 2 (see 2311 c) In the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, we define w_{R} as in (2311d) Hence, we need only consider the right layer component w_{R} in the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ We have the following lemma

Lemma 375 When $\mu^{2} \geq \frac{\gamma \epsilon}{\alpha}, w_{R}$, the solutzon of ($372 d$), satisfies the following bounds for $0 \leq \imath \leq 3$,

$$
\left\|\frac{d^{2} w_{R}}{d x^{2}}\right\| \leq \frac{C}{\mu^{2}}
$$

Proof Consider the following decomposition

$$
\begin{equation*}
w_{R}(x, \varepsilon, \mu)=w_{0}(x, \mu)+\varepsilon w_{1}(x, \mu)+\varepsilon^{2} w_{2}(x, \mu)+\varepsilon^{3} w_{3}(x, \varepsilon, \mu) \tag{378a}
\end{equation*}
$$

where $v(1)=v_{0}(1, \mu)+\varepsilon v_{1}(1, \mu)$ given in (376) and (377), and

$$
\begin{array}{rlrl}
L_{\mu} w_{0} & =0 \text { on }[0,1), \quad w_{0}(1, \mu)=u(1)-v(1), \\
\varepsilon L_{\mu} w_{1} & =\left(L_{\mu}-L_{\varepsilon, \mu}\right) w_{0} \quad \text { on }[0,1), & w_{1}(1, \mu)=0, \\
\varepsilon^{2} L_{\mu} w_{2} & =\varepsilon\left(L_{\mu}-L_{\varepsilon, \mu}\right) w_{1} \quad \text { on }[0,1), & w_{2}(1, \mu)=0, \\
\varepsilon^{3} L_{\varepsilon, \mu} w_{3} & =\varepsilon^{2}\left(L_{\mu}-L_{\varepsilon, \mu}\right) w_{2} \quad \text { on }(0,1), & \left.w_{3}(x, \varepsilon, \mu)\right|_{\Gamma}=0 \tag{378e}
\end{array}
$$

We start by analysing $w_{0}(x)$ Using (375) and (378b) we obtan the following bounds for $0 \leq \imath \leq 5$

$$
\begin{equation*}
\left\|\frac{d^{2} w_{0}}{d x^{2}}\right\| \leq \frac{C}{\mu^{2}} \tag{379}
\end{equation*}
$$

Using this method again for $w_{1}(x)$ and $w_{2}(x)$ we obtain

$$
\begin{equation*}
\left\|\frac{d^{2} w_{1}}{d x^{2}}\right\| \leq \frac{C}{\mu^{2+2}}, \quad 0 \leq \imath \leq 4, \quad \text { and } \quad\left\|\frac{d^{2} w_{2}}{d x^{2}}\right\| \leq \frac{C}{\mu^{2+4}} \quad 0 \leq \imath \leq 3 \tag{3710}
\end{equation*}
$$

Finally we consider w_{3}, we can apply Lemma 221 to obtan

$$
\left\|w_{3}\right\| \leq \frac{C}{\mu^{6}}
$$

From Lemma 222 we have the following bounds for $1 \leq \imath \leq 2$

$$
\left\|\frac{d^{2} w_{3}}{d x^{2}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{2}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{2}\right) \frac{C}{\mu^{\overline{6}}}
$$

Finally differentiating (378 e) we obtain

$$
\left\|\frac{d^{3} w_{3}}{d x^{3}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{3}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right) \frac{C}{\mu^{6}}+\frac{1}{\varepsilon} \frac{1}{\mu^{7}}
$$

The required bounds follow using (378) and the nequality $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$

Chapter 4

Elliptic PDE's - reaction dominated case

41 Introduction

Consider the following class of singularly perturbed elliptic problems posed on the unit square $\Omega=(0,1)^{2}$,

$$
\begin{gather*}
L_{\varepsilon, \mu} u=\varepsilon\left(u_{x x}+u_{y y}\right)+\mu\left(a_{1} u_{x}+a_{2} u_{y}\right)-b u=f \quad \text { in } \Omega, \tag{411a}\\
u=s_{1}(x) \text { on } \Gamma_{B}, \tag{41lb}\\
u=q_{1}(y) \text { on } \Gamma_{L}, \tag{array}\\
a_{1}(x, y) \geq \alpha_{1}>0, \quad a_{2}(x, y) \geq \alpha_{2}(y) \text { on } \Gamma_{R}, \tag{411d}\\
a_{1}, \quad b(x, y) \geq 2 \beta>0,
\end{gather*}
$$

where $\Gamma_{B}, \Gamma_{T}, \Gamma_{L}$ and Γ_{R} are all subsets of the boundary $\partial \Omega$ and are defined as follows

$$
\begin{array}{rlrl}
\Gamma_{B} & =\{(x, 0) \mid 0 \leq x \leq 1\}, & \Gamma_{T}=\{(x, 1) \mid 0 \leq x \leq 1\}, \\
\Gamma_{L} & =\{(0, y) \mid 0 \leq y \leq 1\}, & & \Gamma_{R}=\{(1, y) \mid 0 \leq y \leq 1\}
\end{array}
$$

We note that $0<\varepsilon \leq 1$ and $0 \leq \mu \leq 1$ are perturbation parameters Throughout this chapter we consider the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}\left(\gamma<\min _{\bar{D}}\left\{\frac{b}{2 a_{1}}, \frac{b}{2 a_{2}}\right\}\right)$ and we assume sufficient regularity and compatibility so that the solution is sufficiently regular for the following analysis to be valid

There is very little hiterature available dealing with problems of this type When $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, an $O(\sqrt{\varepsilon})$ layer appears in the nerghbourhood of all four edges When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$
we get layers of width $O\left(\frac{\varepsilon}{\mu}\right)$ in the neighbourhood of $x=0$ and $y=0$ and layers of width $O(\mu)$ in the nerghbourhood of the other two edges The aim of this chapter is to extend the analytical techniques used in Chapter 3, so as to deal with the two-parameter elliptic problem (411) in the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ A form of the material in this chapter has appeared in [23]

In Section 4 2, we use a classical argument to obtain parameter-explicit bounds on the solution of (411) and its derivatives when $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ We then decompose the solution into regular and singular components Section 43 is concerned with the definition of the smooth or regular component v of the solution The layer components are defined in Sections 44 and 45 Sharp parameter-explicit bounds are obtained on these components and therr derivatives In Section 46 , we propose a numerical method We decompose the discrete solution U in an analogous fashon to the continuous solution u The final section of this chapter is concerned with error analysis We prove that, when $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, we have a parameter uniform numerical method for (411)

Notation particular to this chapter We define the zero order, first order and second order differential operators L_{0}, L_{μ} and $L_{\varepsilon, \mu}$ as follows

$$
\begin{aligned}
L_{0} z & =-b z \\
L_{\mu} z & =\mu a_{1} z_{x}+\mu a_{2} z_{y}+L_{0} z \\
L_{\varepsilon, \mu} z & =\varepsilon\left(z_{x x}+z_{y y}\right)+L_{\mu} z
\end{aligned}
$$

We let

$$
\gamma<\min _{\bar{\Omega}}\left\{\frac{b}{2 a_{1}}, \frac{b}{2 a_{2}}\right\}
$$

and we also adopt the following notation

$$
\begin{equation*}
\|u\|_{\bar{\Omega}}=\max _{\bar{\Omega}}|u(x)| \tag{array}
\end{equation*}
$$

If the norm is not subscripted then $\|\|=\|\|_{\bar{\Omega}}$
For nonnegatıve integers k, we define the semı-norms on $C^{k}(D)$ by

$$
|u|_{k, D}=\sum_{\imath+\jmath=k} \sup _{(x, y) \in D}\left|\frac{\partial^{\imath+\jmath} u}{\partial x^{\imath} \partial y^{\imath}}\right|
$$

and the related norms using

$$
\|u\|_{k, D}=\sum_{0 \leq J \leq k}|u|_{J, D}
$$

When $D=\Omega$ we omit the D, and when the norm is not subscripted, we presume that it is the norm with $k=0$ as defined in (413) We next consider $C^{k, \lambda}(D)$, the space of functions in $C^{k}(D)$ whose derivatives of order k are Holder continuous of degree λ We define the assoclated Holder norms and Holder semı-norms by

$$
|u|_{k, \lambda, D}=\sum_{\imath+\jmath=k}\left|\frac{\partial^{2+\jmath} u}{\partial x^{\imath} \partial y^{\jmath}}\right|_{0, \lambda, D} \quad \text { and } \quad\|u\|_{k, \lambda, D}=\sum_{0 \leq \jmath \leq k}|u|_{\jmath, D}+|u|_{k, \lambda, D}
$$

42 Bounds on the solution u and its derivatives

In this section we will establish a proort bounds on the solution of (411) and its derivatives These bounds are essential for the error analysis in subsequent sections We begin by statıng a continuous minmum principle for the differential operator in (411) The proof of this comparison principle is standard

Minımum Prıncıple 3 If $w \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ such that $\left.L_{\varepsilon, \mu} w\right|_{\Omega} \leq 0$ and $\left.w\right|_{\partial \Omega} \geq 0$, then $\left.w\right|_{\bar{\Omega}} \geq 0$

The following lemma follows directly from the above comparison principle The proof of this lemma is again standard

Lemma 421 The solution u of (411) satzsfies the following bound

$$
\|u\| \leq\left\|s_{1}\right\| \Gamma_{B}+\left\|s_{2}\right\|_{\Gamma_{T}}+\left\|q_{1}\right\| \Gamma_{\Gamma_{L}}+\|\left. q_{2}\right|_{\Gamma_{R}}+\frac{1}{2 \beta}| | f| |
$$

Lemma 422 If $f \in C^{1, \lambda}(\bar{\Omega}), s, q \in C^{3, \lambda}(0,1)$ are independent of ε and μ, and assuming sufficient compatiblilty of the boundary data at the corners, the dervatives of the solution of (411) satzsfy the following bounds for all nonnegatzve integers k and m, where $1 \leq$ $k+m \leq 3$

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} u}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{1}{\sqrt{\varepsilon}}\right)^{k+m}(1+\|u\|) \tag{array}
\end{equation*}
$$

where C depends on the coefficients a_{1}, a_{2} and b and their derivatives

Proof Firstly we consider the following function

$$
\begin{aligned}
h(x, y)= & \left(s_{1}(x)-s_{1}(0)(1-x)\right)(1-y)+\left(s_{2}(x)-s_{2}(1) x\right) y \\
& +\left(q_{1}(y)-q_{1}(1) y\right)(1-x)+\left(q_{2}(y)-q_{2}(0)(1-y)\right) x
\end{aligned}
$$

Assuming the boundary data of (411) is contmuous at the four corners, we see that h interpolates to the boundary conditions Consider $\omega=u-h$ It is clear that ω satisfies an equation similar to (411) with zero boundary conditions We have

$$
\begin{align*}
L_{\varepsilon, \mu \mu} \omega & =f-L_{\varepsilon, \mu} h=\hat{f} \quad \text { on } \quad \Omega, \tag{422a}\\
\omega & \equiv 0 \quad \text { on } \quad \partial \Omega \tag{42ab}
\end{align*}
$$

Consider the transformation $\xi=\frac{(\mu+\sqrt{\varepsilon}) x}{\varepsilon}$ and $\eta=\frac{(\mu+\sqrt{\varepsilon}) y}{\varepsilon}$ The transformed domann $\tilde{\Omega}$ is given by $\tilde{\Omega}=\left(0, \frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{2}$ Applying this transformation, (42) now becomes

$$
\tilde{\omega}_{\xi \xi}+\tilde{\omega}_{\eta \eta}+\frac{\mu}{\sqrt{\varepsilon}+\mu} \tilde{a}_{1} \tilde{\omega}_{\xi}+\frac{\mu}{\sqrt{\varepsilon}+\mu} \tilde{a}_{2} \tilde{\omega}_{\eta}-\frac{\varepsilon}{(\sqrt{\varepsilon}+\mu)^{2}} \tilde{b} \tilde{\omega}=\tilde{f}, \quad \text { on } \tilde{\Omega},
$$

where $\tilde{\omega}(\xi, \eta)=\omega(x, y), \tilde{a_{1}}, \tilde{a_{2}}, \tilde{b}$ are defined similarly and $\tilde{f}(\xi, \eta)=\frac{\varepsilon}{(\sqrt{\varepsilon}+\mu)^{2}} \hat{f}(x, y)$ For each $\left(\zeta_{1}, \zeta_{2}\right) \in \tilde{\Omega}$, we denote the rectangle $\left(\left(\zeta_{1}-\delta, \zeta_{1}+\delta\right) \times\left(\zeta_{2}-\delta, \zeta_{2}+\delta\right)\right) \cap \tilde{\Omega}$ by $\tilde{R}_{\delta}\left(\zeta_{1}, \zeta_{2}\right)$ Using [14] we see that for all $(\xi, \eta) \in \tilde{\Omega}$ and \tilde{R}_{δ} we have

$$
|\tilde{\omega}|_{1, \lambda, \tilde{R}_{\delta}} \leq C\left(\|\tilde{f}\|_{0, \lambda \bar{R}_{2 \delta}}+\|\tilde{\omega}\|_{\tilde{R}_{2 \delta}}\right)
$$

and for $l=0,1$

$$
|\tilde{\omega}|_{l+2, \lambda, \dot{R}_{2 \delta}} \leq C\left(\|\tilde{f}\|_{l, \lambda, \tilde{R}_{2 \delta}}+\|\tilde{\omega}\|_{\tilde{R}_{2 \delta}}\right)
$$

Since we know that $|\omega|_{k, \Omega} \leq|\omega|_{k, \lambda, \Omega}$, we obtain

$$
\begin{equation*}
|\tilde{\omega}|_{1, \tilde{R}_{S}} \leq|\omega|_{1, \lambda, \tilde{R}_{\delta}} \leq C\left(\|\tilde{f}\|_{0, \lambda, \tilde{R}_{2 \delta}}+\|\tilde{\omega}\|_{\tilde{R}_{2 \delta}}\right) \tag{423a}
\end{equation*}
$$

and for $l=0,1$

$$
\begin{equation*}
|\tilde{\omega}|_{t+2, \tilde{R}_{\delta}} \leq|\omega|_{l+2, \lambda, \tilde{R}_{\delta}} \leq C\left(\|\tilde{f}\|_{l, \lambda, \tilde{R}_{2 \delta}}+\|\tilde{\omega}\|_{\tilde{R}_{2 \delta}}\right) \tag{423b}
\end{equation*}
$$

Transforming back to the original variables this imples for all $(x, y) \in \Omega$ and $R_{\delta}=$ $R_{\delta}(x, y)=((x-\delta, x+\delta) \times(y-\delta, y+\delta)) \cap \Omega$

$$
\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)|\omega|_{1, R_{2 \delta}} \leq C\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{\lambda}\|\hat{f}\|_{0, \lambda, R_{2 \delta}}+\|\omega\|_{R_{2 \delta}}\right)
$$

and for $l=0,1$

$$
\begin{aligned}
&\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{l+2}|\omega|_{l+2, R_{\delta}} \leq C\left(\sum_{v=0}^{l}\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{v}\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\right)|\hat{f}|_{v, R_{2 \delta}}\right. \\
&\left.+\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{l+\lambda}\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\right)|\hat{f}|_{i, \lambda, R_{2 \delta}}+\|\omega\|_{R_{2 \delta}}\right)
\end{aligned}
$$

Replacing \hat{f} by $f-L_{\varepsilon, \mu} h$ and using the defintion of h gives us

$$
\begin{aligned}
&\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)|\omega|_{1, R_{\delta}} \leq C\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{\lambda}\left\|f-L_{\varepsilon, \mu} h\right\|_{0, \lambda, R_{2 \delta}}+\|\omega\|_{R_{2 \delta}}\right) \\
& \leq C\left(\frac { \varepsilon } { (\mu + \sqrt { \varepsilon }) ^ { 2 } } (\frac { \varepsilon } { \mu + \sqrt { \varepsilon } }) ^ { \lambda } \left(\|f\|_{0, \lambda, R_{2 \delta}}+\left\|s_{1}\right\|_{2, \lambda, R_{2 \delta}}+\left\|s_{2}\right\|_{2, \lambda, R_{2 \delta}}\right.\right. \\
&\left.\left.+\left\|q_{1}\right\|_{2, \lambda, R_{2 \delta}}+\left\|q_{2}\right\|_{2, \lambda, R_{2 \delta}}\right)+\|\omega\|_{R_{2 \delta}}\right)
\end{aligned}
$$

and for $l=0,1$

$$
\begin{array}{rl}
\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{l+2}|\omega|_{l+2, R_{\delta}} \leq C & C\left(\sum_{v=0}^{l}\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{v}\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\right)\left|f-L_{\varepsilon, \mu} h\right|_{v, R_{2 \delta}}\right. \\
& \left.+\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{l+\lambda}\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\right)\left|f-L_{\varepsilon, \mu} h\right|_{l, \lambda, R_{2 \delta}}+\|\omega\|_{R_{2 \delta}}\right) \\
\leq C & C\left(\sum _ { v = 0 } ^ { l } (\frac { \varepsilon } { \mu + \sqrt { \varepsilon } }) ^ { v } (\frac { \varepsilon } { (\mu + \sqrt { \varepsilon }) ^ { 2 } }) \left(|f|_{v, R_{2 \delta}}+\left|s_{1}\right|_{v+2, R_{2 \delta}}+\left|s_{2}\right|_{v+2, R_{2 \delta}}\right.\right. \\
& \left.+\left|q_{1}\right|_{v+2, R_{2 \delta}}+\left|q_{2}\right|_{v+2, R_{2 \delta}}\right)+\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{l+\lambda}\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\right)\left(|f|_{l, \lambda, R_{2 \delta}}\right. \\
& \left.+\left\|s_{1}\right\|_{l+2, \lambda, R_{2 \delta}}+\left\|s_{2}\right\|_{l+2, \lambda, R_{2 \delta}}+\left\|q_{1}\right\|_{l+2, \lambda, R_{2 \delta}}+\left\|q_{2}\right\|_{l+2, \lambda, R_{2 \delta}}\right) \\
& \left.+\|\omega\|_{R_{2 \delta}}\right)
\end{array}
$$

Rearranging these equations, we obtain

$$
\begin{gathered}
|\omega|_{1, R_{\delta}} \leq C\left(\frac { \varepsilon } { (\mu + \sqrt { \varepsilon }) ^ { 2 } } (\frac { \mu + \sqrt { \varepsilon } } { \varepsilon }) ^ { 1 - \lambda } \left(\|f\|_{0, \lambda, R_{2 \delta}}+\left\|s_{1}\right\|_{2, \lambda, R_{2 \delta}}+\left\|s_{2}\right\|_{2, \lambda, R_{2 \delta}}+\left\|q_{1}\right\|_{2, \lambda, R_{2 \delta}}\right.\right. \\
\left.\left.+\left\|q_{2}\right\|_{2, \lambda, R_{2 \delta}}\right)+\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)\|\omega\|_{R_{2 \delta}}\right)
\end{gathered}
$$

and for $l=0,1$

$$
\begin{aligned}
|\omega|_{l+2, R_{\delta}} \leq C & \left(\sum _ { v = 0 } ^ { l } (\frac { \mu + \sqrt { \varepsilon } } { \varepsilon }) ^ { l + 2 - v } (\frac { \varepsilon } { (\mu + \sqrt { \varepsilon }) ^ { 2 } }) \left(|f|_{v, R_{2 \delta}}+\left|s_{1}\right|_{v+2, R_{2 \delta}}+\left|s_{2}\right|_{v+2, R_{2 \delta}}\right.\right. \\
& \left.+\left|q_{1}\right|_{v+2, R_{2 \delta}}+\left|q_{2}\right|_{v+2, R_{2 \delta}}\right)+\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{2-\lambda}\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\right)\left(|f|_{l, \lambda, R_{2 \delta}}\right. \\
& \left.+\left\|s_{1}\right\|_{l+2, \lambda, R_{2 \delta}}+\left\|s_{2}\right\|_{l+2, \lambda, R_{2 \delta}}+\left\|q_{1}\right\|_{l+2, \lambda, R_{2 \delta}}+\left\|q_{2}\right\|_{l+2, \lambda, R_{2 \delta}}\right) \\
& \left.+\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{l+2}| | \omega \|_{R_{2 \delta}}\right)
\end{aligned}
$$

When $f \in C^{1, \lambda}(\widetilde{\Omega})$ and $s_{1}, s_{2}, q_{1}, q_{2} \in C^{3, \lambda}(0,1)$ are independent of both small parameters, we use the above to obtam

$$
\left\|\frac{\partial^{k+m} w}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{k+m}(1+\|w\|)
$$

Finally, noting that $u=w+h$ and using $\mu^{2} \leq \frac{\gamma \epsilon}{\alpha}$ we obtann the result
Remark 421 Compatıbllity conditoons to ensure $u \in C^{3, \lambda}(\Omega)$ are given in [6] Han and Kellogg [6] also indıcate that for variable coefficuent convection-diffusion problems, compatzbultty condrtions to ensure that $u \in C^{k, \lambda}(\Omega)$ for $k>3$ are in general not avalable The layer components and the boundary layer components are defined on extended domains such that there are no compatibality issues when a_{1}, a_{2}, b and f are extended to be constant in nerghbourhoods of the extended-domain corners It can also be shown that the corner layer functions, which are defined on the original domain, inherit their compatiblity from u

43 Definition of regular component

In order to obtan parameter-uniform error bounds, the solution of (411) is decomposed into the sum of regular and layer components The extension idea of Shishkin [29] is essential to ensure no overly artificial compatibility conditions are imposed

The regular component will now be constructed so that its derivatives up to second order are bounded independently of both small parameters Consider the extended domain $\Omega^{*}=(-d, 1+d) \times(-d, 1+d) \supset \Omega, d>0$ The differential operators $L_{\varepsilon, \mu}^{*}$ and L_{0}^{*} coincide with the operators $L_{\varepsilon, \mu}$ and L_{0} respectively in Ω We also define smooth extensions a_{1}^{*}, a_{2}^{*}, b^{*} and f^{*} of the functions a_{1}, a_{2}, b and f to Ω^{*}

We consider the differential equation

$$
\begin{equation*}
L_{\varepsilon, \mu}^{*} v^{*}=f^{*} \text { on } \Omega^{*} \tag{431}
\end{equation*}
$$

We decompose v^{*} as follows

$$
\begin{equation*}
v^{*}(x, y, \varepsilon, \mu)=v_{0}^{*}(x, y)+\sqrt{\varepsilon} v_{1}^{*}(x, y, \varepsilon, \mu)+\varepsilon v_{2}^{*}(x, y, \varepsilon, \mu) \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
L_{0}^{*} v_{0}^{*} & =f^{*} \tag{432b}\\
\sqrt{\varepsilon} L_{0}^{*} v_{1}^{*} & =\left(L_{0}^{*}-L_{\varepsilon, \mu}^{*}\right) v_{0}^{*}, \tag{array}\\
\varepsilon L_{\varepsilon, \mu \mu}^{*} v_{2}^{*} & =\sqrt{\varepsilon}\left(L_{0}^{*}-L_{\varepsilon, \mu}^{*}\right) v_{1}^{*}, \quad \text { on }\left.\Omega^{*} \quad v_{2}^{*}\right|_{\partial \Omega} \cdot=0 \tag{432d}
\end{align*}
$$

Note that v_{0}^{*} and v_{1}^{*} satisfy zero order differential equations so they pose no compatibility issues Given $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, we see the functions v_{0}^{*}, v_{1}^{*} and therr derivatives are bounded independently of both small parameters We need to be more careful with compatibility when looking at v_{2}^{*} We construct our extensions of the functions a_{1}, a_{2}, f and b so that $a_{1}^{*} \geq 0, a_{2}^{*} \geq 0$, and $b^{*} \geq \beta>0$ at all points in the extended domain Ω^{*}, and

$$
f^{*}=a_{1}^{*}=a_{2}^{*}=0 \quad b^{*}=2 \beta, \quad(x, y) \in \Omega^{*} \backslash D
$$

where D is an open set such that $\bar{\Omega} \subset D \subset \Omega^{*}$ This ensures the function $g^{*}=\sqrt{\varepsilon}\left(L_{0}^{*}-\right.$ $\left.L_{\varepsilon, \mu}^{*}\right) v_{1}^{*}$ is zero at the corners of the extended doman We also assume the functions a_{1}^{*}, a_{2}^{*}, f^{*} and b^{*} are sufficiently regular so that we have $g^{*} \in C^{1, \lambda}\left(\Omega^{*}\right)$ We conclude that $v_{2}^{*} \in C^{3, \lambda}\left(\Omega^{*}\right)$, and is therefore sufficiently regular for our analysis

Since v_{2}^{*} satisfies a sımılar equation to (411), we can apply Lemma 421 and Lemma 422 to obtain for $0 \leq k+m \leq 3$

$$
\left\|\frac{\partial^{k+m} v_{2}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{1}{\sqrt{\varepsilon}}\right)^{k+m}
$$

We conclude that if we take the regular component v to be the solution of

$$
\begin{equation*}
L_{\varepsilon, \mu} v=f,(x, y) \in \Omega, \quad v=v^{*},(x, y) \in \partial \Omega \tag{433}
\end{equation*}
$$

assuming the coefficients are sufficiently smooth, we have the following bounds for $0 \leq$
$k+m \leq 3$,

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} v}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(1+\varepsilon^{\frac{2-k-m}{2}}\right), \quad \mu^{2} \leq \frac{\gamma \varepsilon}{\alpha} \tag{434}
\end{equation*}
$$

44 Definition of boundary layer functions

We consider the boundary layer function w_{L}, associated with the left edge Γ_{L} In order to obtain bounds on w_{L} we consider the extended domain $\Omega^{[*, \mathrm{~TB}]}=(0,1) \times(-d, 1+d)$ with $05>d>0$ We define w_{L}^{*} to be the solution of

$$
\begin{array}{rr}
L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} w_{L}^{*}=0, & (x, y) \in \Omega^{[*, \mathrm{~TB}]}, \\
w_{L}^{*}(0, y)=(u-v)^{*}(0, y), & y \in[-d, 1+d], \\
w_{L}^{*}(1, y)=0, & y \in[-d, 1+d], \\
w_{L}^{*}(x,-d)=w_{L}^{*}(x, 1+d)=0, \quad x \in[0,1] \tag{441d}
\end{array}
$$

We define smooth extensions of the coefficients a_{1}, a_{2} and b to the domain $\Omega^{[*, \mathrm{~TB}]}$ so that we have

$$
\begin{equation*}
\left|\frac{\partial^{k} a_{i}^{*}}{\partial y^{k}}\right| \leq C(d+y)(1+d-y), \quad \text { for } \quad \imath=1,2 \quad \text { and } \quad k=0,1,2, \tag{442a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\partial b^{*}}{\partial y}\right| \leq C(d+y)(1+d-y) \tag{442b}
\end{equation*}
$$

We also extend the boundary function $(u-v)(0, y)$ so that $(u-v)^{*}(0, y)=0$ for $y<-\frac{d}{2}$ and $y>1+\frac{d}{2}$, we therefore can show that $\left|w_{L}^{*}(0, y)\right| \leq C(d+y)(1+d-y)$

Lemma 441 Given $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, the left layer function w_{L}^{*}, satisfies the following bounds

$$
\left|w_{L}^{*}(x, y)\right| \leq C e^{-\frac{\sqrt{\sqrt{\gamma}}}{\sqrt{\varepsilon}} x} \quad \text { and } \quad\left\|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}\right\| \leq C\left(1+\sqrt{\varepsilon}^{1-2}\right), \quad 0 \leq \imath \leq 3
$$

Proof Consider the barrier functions

$$
\psi^{ \pm}(x, y)=C e^{-\sqrt{\frac{\sqrt{\alpha}}{\epsilon}} x} \pm w_{L}^{*}
$$

We can see that these functions are nonnegative on the boundary $\partial \Omega^{[*, \mathrm{~TB}]}$ Also

$$
L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \psi^{ \pm}(x, y)=C\left(\gamma \alpha-\frac{\mu}{\sqrt{\varepsilon}} a_{1}^{*} \sqrt{\alpha \gamma}-b^{*}\right) e^{-\sqrt{\frac{\alpha \alpha}{\varepsilon}} x} \leq 0
$$

The exponential bound on w_{L}^{*} follows using the comparison principle
It can be shown that the crude bounds in Lemma 422 hold for w_{L}^{*}, for $0 \leq k+m \leq 3$,

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} w_{L}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq \frac{C}{(\sqrt{\varepsilon})^{k+m}} \tag{443}
\end{equation*}
$$

Remark 441 Note that the boundary data for u are andependent of the singular perturbatzon parameters However, this is not the case for w_{L} Nevertheless, even though the thrrd dervatives of v may depend adversely on the parameters, thas does not change the valudity of the above bounds on the derivatives of w_{L}

In the direction orthogonal to the layer we need to sharpen these bounds We refer to derivatives in this direction as orthogonal derivatives Consider the barrier functions $\psi^{ \pm}(x, y)=C(d+y)(1+d-y) \pm w_{L}^{*}$ We see that these functions are nonnegative on the boundary $\partial \Omega^{[*, \mathrm{TE}]}$ for C correctly chosen Also

$$
L_{\varepsilon, \mu}^{[,, \mathrm{TB}]} \psi^{ \pm}(x, y)=C\left(-2 \varepsilon+\mu(1-2 y) a_{2}^{*}-b^{*}(d+y)(1+d-y)\right)
$$

Using (4 42) and assuming μ is sufficiently small $(C \mu(1+2 d)-b<0)$, we obtain $L_{\varepsilon, \mu}^{[*, \mathrm{TB]}} \psi^{ \pm}(x, y) \leq 0$ The comparison principle gives us

$$
\begin{equation*}
\left|w_{L}^{*}(x, y)\right| \leq C(d+y)(1+d-y), \quad(x, y) \in \bar{\Omega}^{[*, \text { T® }]} \tag{444}
\end{equation*}
$$

We can show that $\left|\frac{\partial w_{\dot{L}}^{*}}{\partial y}(0, y)\right| \leq C$ and $\frac{\partial w_{L}^{*}}{\partial y}(1, y)=0$ Using (444) and the fact that $w_{L}^{*}(x,-d)=0$ and $w_{L}^{*}(x, 1+d)=0$, we also obtam

$$
\left|\frac{\partial w_{L}^{*}}{\partial y}(x,-d)\right| \leq C, \quad \text { and } \quad\left|\frac{\partial w_{L}^{*}}{\partial y}(x, d+1)\right| \leq C
$$

Differentiate the equation (441a) with respect to y, we obtain

$$
L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \frac{\partial w_{L}^{*}}{\partial y}=-\mu \frac{\partial a_{1}^{*}}{\partial y} \frac{\partial w_{L}^{*}}{\partial x}-\mu \frac{\partial a_{2}^{*}}{\partial y} \frac{\partial w_{L}^{*}}{\partial y}+\frac{\partial b^{*}}{\partial y} w_{L}^{*}=\tilde{f} \quad(x, y) \in \Omega^{[*, \mathrm{~TB}]}
$$

Using the bounds (443) and $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, we see that $\|\tilde{f}\| \leq C$ The comparison principle along with suitably chosen barrier functions yields the bound

$$
\left\|\frac{\partial w_{L}^{*}}{\partial y}\right\| \leq C
$$

We contınue this approach so as to obtain sharper bounds on the higher orthogonal
derivatives of $w_{L}^{*} \quad \operatorname{Using}(441 \mathrm{a}),(441 \mathrm{~d})$ and $a_{2}^{*}(x, 1+d)=a_{2}^{*}(x, d)=0$, we see that $\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(x, 1+d)=\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(x,-d)=0$ Also we note that $\left\|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(0, y)\right\| \leq C$ and $\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(1, y)=0$

Using Taylor expansions and the bounds (434), we obtain

$$
\left|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(0, y)\right| \leq \frac{C}{\sqrt{\varepsilon}}(d+y)(1+d-y)
$$

Differentiate (4 4 1a) twice with respect to y, we have

$$
\begin{aligned}
L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}=-2 \mu \frac{\partial a_{1}^{*}}{\partial y} \frac{\partial^{2} w_{L}^{*}}{\partial x \partial y}-2 \mu \frac{\partial a_{2}^{*}}{\partial y} \frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}+ & \left(2 \frac{\partial b^{*}}{\partial y}-\mu \frac{\partial^{2} a_{2}^{*}}{\partial y^{2}}\right) \frac{\partial w_{L}^{*}}{\partial y} \\
& -\mu \frac{\partial^{2} a_{1}^{*}}{\partial y^{2}} \frac{\partial w_{L}^{*}}{\partial x}+\frac{\partial^{2} b^{*}}{\partial y^{2}} w_{L}^{*}=\tilde{f}_{1}(x, y) \in \Omega^{[*, \mathrm{~TB}]}
\end{aligned}
$$

Again using (443) and the properties of a_{1}^{*}, a_{2}^{*} and b^{*} in (442), we can show that $\left|\tilde{f}_{1}\right| \leq$ $\frac{C}{\sqrt{\varepsilon}}(d+y)(1+d-y)$ Consider the barrier functions $\psi^{ \pm}(x, y)=\frac{C}{\sqrt{\varepsilon}}(d+y)(1+d-y) \pm \frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}$ We can see that both these functions are nonnegative on $\partial \Omega^{[*, \mathrm{~TB}]}$, and using the conditions $\left|a_{2}^{*}\right| \leq C_{1}(d+y)(1+d-y)$ and $C_{1} \mu(1+2 d)-b^{*}<0$, we obtain $L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \psi^{ \pm}(x, y) \leq 0$ We conclude

$$
\left|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(x, y)\right| \leq \frac{C}{\sqrt{\varepsilon}}(d+y)(1+d-y), \quad \text { on } \quad \Omega^{[*, T B]}
$$

Using this bound we obtain

$$
\left|\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}(x,-d)\right| \leq \frac{C}{\sqrt{\varepsilon}} \quad \text { and } \quad\left|\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}(x, 1+d)\right| \leq \frac{C}{\sqrt{\varepsilon}}
$$

We also have $\left|\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}(0, y)\right| \leq \frac{C}{\sqrt{\varepsilon}}$ and $\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}(1, y)=0$
Differentiate (4 4 la) three times with respect to y to obtain $L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}=\tilde{f}_{2}$ We can show that $\left\|\tilde{f}_{2}\right\| \leq \frac{C}{\varepsilon}$ and using suitable bairier functions and the minimum principle for $L_{\varepsilon, \mu}^{[*, T \mathrm{TBj}}$, we obtain

$$
\left\|\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}\right\| \leq \frac{C}{\varepsilon}
$$

Define the boundary layer function w_{L} associated with the left edge Γ_{L} by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{L}=0,(x, y) \in \Omega \\
w_{L}=u-v,(x, y) \in \Gamma_{L}, \quad w_{L}=0,(x, y) \in \Gamma_{R} \\
w_{L}(x, 0)=w_{L}^{*}(x, 0), \quad w_{L}(x, 1)=w_{L}^{*}(x, 1) \tag{445c}
\end{array}
$$

Remark 442 The condition $C_{1} \mu(1+2 d)-b^{*}<0$ ss a reasonable assumption to make in the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ Thus as because of $\mu>C$, we also have $\varepsilon>\frac{C^{2} \alpha}{\gamma}$ and we are in the non-singularly perturbed case where all the dervatives of the solution are bounded independently of both ε and μ

We now consider w_{T}, the boundary layer function associated with the top edge Γ_{T} Our extended domain is given by $\Omega^{[*, L R]}=(-d, 1+d) \times(0,1)$ and we define w_{T} using

$$
\begin{array}{rr}
L_{\varepsilon, \mu}^{[*, L \mathrm{~L}]} w_{T}^{*}=0, & (x, y) \in \Omega^{[*, \mathrm{LR}]}, \\
w_{T}^{*}(x, 1)=(u-v) *(x, 1), & x \in[-d, 1+d], \\
w_{T}^{*}(x, 0)=0, & x \in[-d, 1+d], \\
w_{T}^{*}(-d, y)=w_{T}^{*}(1+d, y)=0, \quad y \in[0,1] \tag{446~d}
\end{array}
$$

We have the following lemma analogous to that for w_{L}^{*}
Lemma 442 Given $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, the top layer function w_{T}^{*} satisfies the following bounds

$$
\left|w_{T}^{*}(x, y)\right| \leq C e^{-\frac{\sqrt{\gamma \bar{\alpha}}}{\sqrt{\varepsilon}}(1-y)} \quad \text { and } \quad\left\|\frac{\partial^{2} w_{T}^{*}}{\partial x^{2}}\right\| \leq C\left(1+\sqrt{\varepsilon}^{1-\imath}\right), \quad 0 \leq \imath \leq 3
$$

Proof The proof is similar to that in Lemma 441 We consider the barrier functions $\psi^{ \pm}(x, y)=C e^{-\sqrt{\frac{\gamma \alpha}{\epsilon}}(1-y)} \pm w_{T}^{*}$ These functions are nonnegative on the boundary $\partial \Omega^{[*, \mathrm{LR}]}$ Also

$$
L_{\varepsilon, \mu}^{[\{, \mathrm{LR}]} \psi^{ \pm}(x, y)=C\left(\gamma \alpha+\frac{\mu}{\sqrt{\varepsilon}} a_{1}^{*} \sqrt{\alpha \gamma}-b^{*}\right) e^{-\sqrt{\frac{\sqrt{Y \alpha}}{\varepsilon}}(1-y)} \leq 0
$$

and we obtan the required result
Extensions of a_{1}, a_{2} and b to $\Omega^{[*, L \mathrm{RR}]}$ are constructed so that

$$
\left|\frac{\partial^{k} a_{i}^{*}}{\partial x^{k}}\right| \leq C(d+x)(1+d-x), \quad \text { for } \quad \imath=1,2 \quad \text { and } \quad k=0,1,2
$$

and

$$
\left|\frac{\partial b^{*}}{\partial x}\right| \leq C(d+x)(1+d-x)
$$

We can then use the same approach as for w_{L}^{*} in Lemma 441 to obtann the requred orthogonal derivative bounds

Define the boundary layer function w_{T} associated with the top edge Γ_{T} by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{T}=0,(x, y) \in \Omega, \\
w_{T}=u-v,(x, y) \in \Gamma_{T}, \quad w_{L}=0,(x, y) \in \Gamma_{B}, \\
w_{T}(0, y)=w_{T}^{*}(0, y), \quad w_{T}(1, y)=w_{T}^{*}(1, y) \tag{447c}
\end{array}
$$

We define the other two layer functions w_{R} and w_{B} analogously and obtan corresponding bounds on the functions and their derivatives

45 Definition of corner layer functions

We now define our corner layer functions Note that compatıbility is now more of an issue as the equations defining these functions are all posed on the non-extended original doman Ω

Consider the corner layer function $w_{L B}$ associated with the corner $\Gamma_{L B}=\Gamma_{L} \cap \Gamma_{B}$ We define $w_{L B}$ to be the solution of

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{L B}=0(x, y) \in \Omega, \\
w_{L B}=-w_{B},(x, y) \in \Gamma_{L}, \quad w_{L B}=-w_{L},(x, y) \in \Gamma_{B}, \\
w_{L B}=0,(x, y) \in \Gamma_{R}, \quad w_{L B}=0,(x, y) \in \Gamma_{T} \tag{45lc}
\end{array}
$$

Note at the corner $(0,0), w_{L}(x, 0)$ is equal to $w_{L}(0, y)=(u-v)(0, y)$, which is equal to $(u-v)(x, 0)=w_{B}(x, 0)$ which in turn is equal to $w_{B}(0, y)$ Hence $w_{L}(x, 0)$ matches with $w_{B}(0, y)$ at $(0,0)$

Consider the barrier functions $\psi^{ \pm}(x, y)=C e^{-\frac{\sqrt{\gamma}}{\sqrt{\epsilon}} x} e^{-\frac{\sqrt{\bar{\alpha}}}{\sqrt{\epsilon}} y} \pm w_{L B}$ Using the exponential bounds on w_{L} and w_{B} we see that both functions are nonnegative on Γ Also

$$
L_{\varepsilon, \mu} \psi^{ \pm}(x, y)=C\left(\left(\gamma \alpha-\mu \frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} a_{1}-\frac{b}{2}\right)+\left(\gamma \alpha-\mu \frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} a_{2}-\frac{b}{2}\right)\right) e^{-\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} x} e^{-\frac{\sqrt{\gamma \alpha}}{\sqrt{\epsilon}} y},
$$

and using the definitions of γ and α we see that $L_{\varepsilon, \mu} \psi^{ \pm}(x, y) \leq 0$ Using the minmum principle we therefore obtain

$$
\begin{equation*}
\left|w_{L B}(x, y)\right| \leq C e^{-\sqrt{\frac{\sqrt{x a}}{\epsilon}} x} e^{-\sqrt{\frac{\gamma \alpha}{\epsilon}} y} \tag{452}
\end{equation*}
$$

Associated with the corner $\Gamma_{R T}=\Gamma_{R} \cap \Gamma_{T}$ we define a corner layer function $w_{R T}$

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{R T}=0(x, y) \in \Omega, \\
w_{R T}=0,(x, y) \in \Gamma_{L}, \quad w_{R T}=0,(x, y) \in \Gamma_{B}, \\
w_{R T}=-w_{T},(x, y) \in \Gamma_{R}, \quad w_{R T}=-w_{R},(x, y) \in \Gamma_{T} \tag{453c}
\end{array}
$$

Considerıng the barrier functions $\psi^{ \pm}(x, y)=C e^{-\frac{\sqrt{\sqrt{x}}}{2 \sqrt{c}}(1-x)} e^{-\frac{\sqrt{\sqrt{6}}}{2 \sqrt{\varepsilon}}(1-y)} \pm w_{R T}$, and noting that
$L_{\varepsilon, \mu} \psi^{ \pm}(x, y)=C\left(\left(\frac{\gamma \alpha}{4}+\mu \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} a_{1}-\frac{b}{2}\right)+\left(\frac{\gamma \alpha}{4}+\mu \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} a_{2}-\frac{b}{2}\right)\right) e^{-\frac{\sqrt{\gamma \bar{\alpha}}}{2 \sqrt{\varepsilon}}(1-x)} e^{-\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}(1-y)} \leq 0$,
we establish the bound

$$
\begin{equation*}
\left|w_{R T}\right| \leq C e^{-\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}}(1-x) e^{-\frac{\sqrt{\gamma}}{2 \sqrt{\varepsilon}}}(1-y) \tag{454}
\end{equation*}
$$

Analogous bounds hold for the other corner layer functions $w_{L T}$ and $w_{R B}$
Remark 451 Since the corner layer functıons satısfy similar equations to u in $\left(\begin{array}{ll}4 & 1\end{array}\right)$, an analogous argument to that in Lemma 422 holds to obtain bounds on their derivatives We continue from (423) and note that when considering the corner layer functions the \tilde{f} in this equation depends on the transformed boundary data of the corner layer functions and their derivatives For all four corner layers, we can show that $\|\tilde{f}\|_{0, \lambda, \tilde{R}_{2 \delta}} \leq C$ and $\|\tilde{f}\|_{1, \lambda, \tilde{R}_{2 \delta}} \leq C \quad$ Transforming back to the original variables and using the crude bounds on the layer functions in (443), we obtain the followng bounds for all the corner layer components

$$
\left\|\frac{\partial^{k+m} w}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{1}{\sqrt{\varepsilon}}\right)^{k+m}, \quad 0 \leq k+m \leq 3
$$

Theorem 451 When $\mu^{2} \leq \frac{\gamma \epsilon}{\alpha}$ the solution u of (411) can be decomposed as

$$
u=v+w_{L}+w_{R}+w_{T}+w_{B}+w_{L B}+w_{L T}+w_{R B}+w_{R T}
$$

where $L_{\varepsilon, \mu} v=f$, and the layer and corner layer functions are each solutzons of the homogenous equatzon $L_{\varepsilon, \mu} w=0$ Boundary conditions for these functzons can be specified so that the bounds on the components and their dervatives given below hold

$$
\begin{array}{r}
\left\|\frac{\partial^{k+m} v}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(1+\varepsilon^{\frac{2-k-m}{2}}\right), \quad 0 \leq k+m \leq 3, \\
\left|w_{L}(x, y)\right| \leq C e^{-\frac{\sqrt{\gamma \alpha}}{\sqrt{\epsilon}} x},\left|w_{B}(x, y)\right| \leq C e^{-\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} y}, \\
\left|w_{R}(x, y)\right| \leq C e^{-\frac{\sqrt{\gamma} \alpha}{\sqrt{\varepsilon}}(1-x)}, \quad\left|w_{T}(x, y)\right| \leq C e^{-\frac{\sqrt{\gamma}}{\sqrt{\varepsilon}}}(1-y)
\end{array},
$$

and for all the layer components we have

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} w}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{1}{\sqrt{\varepsilon}}\right)^{k+m} \quad 0 \leq k+m \leq 3 \tag{455~J}
\end{equation*}
$$

Proof The result follows Lemma 42 2, Lemma 44 1, Lemma 442 and equations (4 3 4), (452) and (454)

Remark 452 We should note that even though the case of $\mu^{2} \leq \frac{\gamma \epsilon}{\alpha}$ behaves simalarly to that of reaction diffusion $(\mu=0)$, the analysis and the resulting bounds on the components and therr dervvatives are not exactly alke One drfference we should note $\imath s$ the 2 's appearing in the exponential bounds of the corner layer functions assocuated with the right and top edges These extra 2's are a result of the fact there is a convective term present in (4 1 1) These bounds therefore duffer slightly from those obtained for the reaction-duffusion problem

46 Discrete problem

In order to discretise (411), we use a numerical method that is composed of an upwind finte difference scheme apphed on a mesh $\Omega^{N, M}$ Consider the following discrete problem

$$
\begin{align*}
L^{N, M} U\left(x_{2}, y_{j}\right) & =\varepsilon \delta_{x}^{2} U+\varepsilon \delta_{y}^{2} U+\mu a_{1} D_{x}^{+} U+\mu a_{2} D_{y}^{+} U-b U \\
& =f, \quad\left(x_{1}, y_{j}\right) \in \Omega^{N, M} \tag{461a}
\end{align*}
$$

where D_{x}^{+}and δ_{x}^{2} are the standard forward difference operator and second order centered difference operator respectively (D_{y}^{+}and δ_{y}^{2} defined analogously) The mesh $\Omega^{N, M}$ is defined to be the tensor product of two plecewise-uniform meshes Ω^{N} and $\Omega^{M} \Omega^{N}$ is divided into three subregions $\left[0, \sigma^{N}\right],\left[\sigma^{N}, 1-\sigma^{N}\right]$ and $\left[1-\sigma^{N}, 1\right]$ In each of these regions a uniform mesh is placed The transition point σ^{N} is defined by

$$
\begin{equation*}
\sigma^{N}=\min \left\{\frac{1}{4}, \frac{2 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} \ln N\right\} \tag{46lb}
\end{equation*}
$$

More specifically

$$
\Omega^{N}=\left\{x_{\imath} \left\lvert\, x_{\imath}=\left\{\begin{array}{lll}
\frac{4 \sigma^{N}}{N}, & \text { if } \quad \imath \leq \frac{N}{4} \tag{array}\\
\sigma^{N}+\left(\imath-\frac{N}{4}\right) H, & \text { if } \frac{N}{4} \leq \imath \leq \frac{3 N}{4} \\
1-\sigma^{N}+\left(\imath-\frac{3 N}{4}\right) \frac{4 \sigma^{N}}{N}, & \text { if } \frac{3 N}{4} \leq \imath \leq N
\end{array}\right\}\right.\right.
$$

where $N H=2\left(1-2 \sigma^{N}\right)$ and Ω^{M} is defined analogously with transition point σ^{M}

Figure 41 A sample plecewise-uniform mesh $\Omega^{N, M}$

Discrete Minimum Principle If W is any mesh function and $\left.L^{N, M} W\right|_{\Omega^{N M}} \leq 0$ and $\left.W\right|_{\Gamma^{N M}} \geq 0$ then $\left.W\right|_{\bar{\Omega}^{N M}} \geq 0$

We decompose the discrete solution U into the following sum

$$
\begin{equation*}
U=V+W_{L}+W_{R}+W_{B}+W_{T}+W_{L B}+W_{L T}+W_{R B}+W_{R T} \tag{462a}
\end{equation*}
$$

where

$$
\begin{align*}
L^{N, M} V & =f, & & \left.V\right|_{\Gamma^{N M}}=\left.v\right|_{\Gamma^{N M}} \tag{462b}\\
L^{N, M} W_{L} & =0, & & \left.W_{L}\right|_{\Gamma^{N M}}=\left.w_{L}\right|_{\Gamma^{N M}} \tag{array}\\
L^{N, M} W_{L B} & =0, & & \left.W_{L B}\right|_{\Gamma^{N M}}=\left.w_{L B}\right|_{\Gamma^{N M}} \tag{462d}
\end{align*}
$$

with the other layer functions defined simularly
Theorem 461 We have the following bounds on the duscrete boundary layer function W_{L} and discrete corner layer function $W_{L B}$,

$$
\begin{gather*}
\left|W_{L}\left(x_{\imath}, y_{j}\right)\right| \leq C \prod_{s=1}^{2}\left(1+\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} h_{s}\right)^{-1}=\Psi_{L, \imath}, \quad \Psi_{L, 0}=C, \tag{463a}\\
\left|W_{L B}\left(x_{\imath}, y_{j}\right)\right| \leq C \prod_{s=1}^{\imath}\left(1+h_{s} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right)^{-1} \prod_{r=1}^{\jmath}\left(1+k_{r} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right)^{-1}=\Psi_{L, \imath} \Psi_{B, \jmath}, \tag{463b}
\end{gather*}
$$

where W_{L} and $W_{L B}$ are solutions of (4 $62 c$) and (4 $62 d$) respectively, $h_{s}=x_{s}-x_{s-1}$ and $k_{r}=y_{r}-y_{r-1}$

Proof We start with W_{L} Consider the discrete barrier functions

$$
\Phi_{L}^{ \pm}\left(x_{\imath}, y_{j}\right)=\Psi_{L, \imath} \pm W_{L}\left(x_{\imath}, y_{j}\right)
$$

We see that $\Phi_{L}^{ \pm}\left(x_{N}, y_{j}\right) \geq 0$ and $\Phi_{L}^{ \pm}\left(0, y_{j}\right) \geq 0$ for C large enough Looking at $\Phi_{L}^{ \pm}\left(x_{i}, 0\right)=$ $C \prod_{s=1}^{2}\left(1+\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} h_{s}\right)^{-1} \pm w_{L}\left(x_{2}, 0\right)$, using Theorem 451 , we see that $\left|W_{L}\left(x_{2}, 0\right)\right|=\left|w_{L}\left(x_{i}, 0\right)\right| \leq$ $C e^{-\sqrt{\frac{20}{\varepsilon}} x_{2}}$ However

$$
e^{-\sqrt{\frac{\gamma \alpha}{\epsilon}} x_{1}} \leq e^{-\sqrt{\frac{\gamma \alpha}{4 \epsilon}} x_{2}}=\prod_{s=1}^{2} e^{-\sqrt{\frac{\gamma \bar{q}}{4 \epsilon}} h_{s}} \leq \prod_{s=1}^{i}\left(1+h_{s} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right)^{-1}
$$

A similar argument holds for $\Phi_{L}^{ \pm}\left(x_{2}, y_{N}\right)$ and we conclude that for C large enough $\left.\Phi_{L}^{ \pm}\right|_{\Gamma^{N M}} \geq$ 0

$$
\text { Note that } L^{N, M} \Phi_{L}^{ \pm}\left(x_{2}, y_{j}\right)=\varepsilon \delta_{x}^{2} \Psi_{L, \imath}+\varepsilon \delta_{y}^{2} \Psi_{L, \imath}+\mu a_{1} D_{x}^{+} \Psi_{L, \imath}+\mu a_{2} D_{y}^{+} \Psi_{L, \imath}-b \Psi_{L, \imath}
$$

Sunce $\Psi_{L, \imath}>0$ we can show that

$$
\begin{gathered}
D_{x}^{+} \Psi_{L, \imath}=-\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \Psi_{L, \imath+1}<0, \quad D_{x}^{-} \Psi_{L, \imath}=-\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \Psi_{L, \imath+1}\left(1+\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} h_{\imath+1}\right), \\
\delta_{x}^{2} \Psi_{L, \imath}=\frac{\gamma \alpha}{4 \varepsilon} \Psi_{L, \imath+1} \frac{h_{2+1}}{\breve{h}_{2}}>0,
\end{gathered}
$$

where $\bar{h}_{2}=\frac{h_{2+1}+h_{2}}{2}$ Also we have that $D_{y}^{+} \Psi_{L, \imath}=\delta_{y}^{2} \Psi_{L, \imath}=0$ We see that

$$
L^{N, M} \Phi_{L}^{ \pm}\left(x_{2}, y_{j}\right)=\varepsilon \frac{\gamma \alpha}{4 \varepsilon} \Psi_{L, \downarrow+1} \frac{h_{2+1}}{\bar{h}_{2}}-\mu a_{1} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \Psi_{L, \imath+1}-b \Psi_{L, 2} \pm 0
$$

Rearranging this equation we have

$$
L^{N, M} \Phi_{L}^{ \pm}\left(x_{2}, y_{J}\right)=\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}\left(\frac{h_{2+1}}{2 \check{h}_{2}}-1\right)+\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}-b\right)-\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} h_{2+1} b-\mu a_{1} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right) \Psi_{L, \imath+1}
$$

Because of the definition of γ, we see that $\left.L^{N, M} \Phi_{L}^{ \pm}\left(x_{2}, y_{j}\right)\right|_{\Omega^{N M}} \leq 0$ and using the discrete minımum princıple we obtain the required result

We next consider $W_{L B}$ We use the barrier functions $\Phi_{L B}^{ \pm}\left(x_{\imath}, y_{j}\right)=\Psi_{L, 2} \Psi_{B, \jmath} \pm$ $W_{L B}\left(x_{i}, y_{j}\right)$ It is clear that $\Phi_{L B}^{ \pm}\left(x_{\imath}, y_{N}\right)>0$ and $\Phi_{L B}^{ \pm}\left(x_{N}, y_{j}\right)>0$, and using (462d) and Theorem 451 , we also know that $\left|W_{L B}\left(x_{i}, 0\right)\right| \leq C e^{-\frac{\sqrt{\gamma \bar{\sigma}}}{\sqrt{\varepsilon}} x_{i}} \leq C \prod_{s=1}^{2}\left(1+\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} h_{s}\right)^{-1}$ This implies that $\Phi_{L B}^{ \pm}\left(x_{1}, 0\right) \geq 0$ for C large enough and a similar argument holds for $\Phi_{L B}^{ \pm}\left(0, y_{j}\right)$ We can show that

$$
\begin{array}{ll}
D_{x}^{+} \Psi_{L, 2} \Psi_{B, \jmath}=-\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \Psi_{L, 2+1} \Psi_{B, \jmath}<0, & \delta_{x}^{2} \Psi_{L, 2} \Psi_{B, \jmath}=\frac{\gamma \alpha}{4 \varepsilon} \Psi_{L, 2+1} \Psi_{B, \jmath} \frac{h_{2+1}}{\bar{h}_{2}}>0, \\
D_{y}^{+} \Psi_{L, 2} \Psi_{B, \jmath}=-\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \Psi_{L, \imath} \Psi_{B, \jmath+1}<0, & \delta_{y}^{2} \Psi_{L, \imath} \Psi_{B, \jmath}=\frac{\gamma \alpha}{4 \varepsilon} \Psi_{L, \tau} \Psi_{B, \jmath+1} \frac{k_{j+1}}{\bar{k}_{3}}>0
\end{array}
$$

We therefore obtain

$$
\begin{aligned}
L^{N, M} \Phi_{L B}^{ \pm}\left(x_{\imath}, y_{\jmath}\right)=\varepsilon \frac{\gamma \alpha}{4 \varepsilon} \Psi_{L, \imath+1} \Psi_{B, \jmath} \frac{h_{\imath+1}}{\bar{h}_{2}}+ & +\frac{\gamma \alpha}{4 \varepsilon} \Psi_{L, \imath} \Psi_{B, \jmath+1} \frac{k_{\jmath+1}}{\bar{k}_{2}}-\mu a_{1} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \Psi_{L, \imath+1} \Psi_{B, \jmath} \\
& -\mu a_{2} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \Psi_{L, \imath} \Psi_{B, \jmath+1}-b \Psi_{L, \imath} \Psi_{B, \jmath} \pm 0
\end{aligned}
$$

Rearranging this equation we have

$$
\begin{aligned}
L^{N, M} \Phi_{L B}^{ \pm}\left(x_{\imath}, y_{j}\right)= & \left(\Psi _ { L , \imath + 1 } \Psi _ { B , 3 } \left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}\left(\frac{h_{\imath+1}}{2 \bar{h}_{\imath}}-1\right)+\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}-\frac{b}{2}\right)-\mu a_{1} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right.\right. \\
& \left.-\frac{b}{4} \frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} h_{\imath+1}\right)+\Psi_{L, \imath} \Psi_{B, \jmath+1}\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}\left(\frac{k_{\jmath+1}}{2 \bar{k}_{\jmath}}-1\right)+\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}-\frac{b}{2}\right)\right. \\
& \left.\left.-\mu a_{2} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}-\frac{b}{4} \frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} k_{\jmath+1}\right)\right)
\end{aligned}
$$

We see from the above expression that $L^{N, M} \Phi_{L B}^{ \pm} \leq 0$ for C large enough and we use the discrete minimum principle to finish

The other discrete layer functions satisfy analogous bounds to those in Theorem 461 We note that, using the definition of γ, the expressions

$$
\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}\left(\frac{h_{\imath+1}}{2 \bar{h}_{2}}-1\right)+\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}+\mu a_{1} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}-\frac{b}{2}\right)\left(1+\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} h_{2}\right)-2 \varepsilon\left(\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right)^{3} h_{\imath}\right)
$$

and

$$
\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}\left(\frac{k_{3+1}}{2 \bar{k}_{3}}-1\right)+\left(2 \varepsilon \frac{\gamma \alpha}{4 \varepsilon}+\mu a_{2} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}-\frac{b}{2}\right)\left(1+\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} k_{j}\right)-2 \varepsilon\left(\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right)^{3} k_{j}\right)
$$

can be shown to be non-positive in the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$

47 Error analysis

We now analyse the error between the continuous solution of (411) and the discrete solution of (461) in the case $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$

Lemma 471 At each mesh point $\left(x_{2}, y_{j}\right) \in \bar{\Omega}^{N, M}$ the regular component of the error satzsfies the followng estrmate

$$
\left|(V-v)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right) \sqrt{\varepsilon}
$$

where v zs the solution of (433) and V as the solution of (462b)

Proof Using the usual truncation error argument and (434) we have

$$
\begin{aligned}
\left|L^{N, M}(V-v)\left(x_{i}, y_{j}\right)\right| & \leq C_{1} N^{-1}\left(\varepsilon\left\|v_{x x x}\right\|+\mu\left\|v_{x x}\right\|\right)+C_{2} M^{-1}\left(\varepsilon\left\|v_{y y y}\right\|+\mu\left\|v_{y y}\right\|\right) \\
& \leq C\left(N^{-1}+M^{-1}\right) \sqrt{\varepsilon}
\end{aligned}
$$

We consider the barrier functions $\Phi^{ \pm}\left(x_{2}, y_{j}\right)=C_{1}\left(N^{-1}+M^{-1}\right) \sqrt{\varepsilon} \pm(V-v)$ We see that these functions are nonnegative on the boundary $\Gamma^{N, M}$, also we find $L^{N, M} \Phi^{ \pm}\left(x_{\imath}, y_{j}\right) \leq 0$ for C_{1} large enough We apply the discrete minimum principle to obtan the required result

Lemma 472 At each mesh point $\left(x_{2}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the left singular component of the error satusfies the following estimate

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}\right),
$$

where w_{L} is the solution of (445) and W_{L} is the solution of (462c)
Proof We can use a classical argument to obtain the following truncation error bounds

$$
\begin{aligned}
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{\imath}, y_{j}\right)\right| & \leq C_{1}\left(h_{2+1}+h_{2}\right)\left(\varepsilon\left\|w_{L x x x}\right\|+\mu\left\|w_{L x x}\right\|\right) \\
& +C_{2}\left(k_{3+1}+k_{j}\right)\left(\varepsilon\left\|w_{L y y y}\right\|+\mu\left\|w_{L y y}\right\|\right)
\end{aligned}
$$

We use the bounds in Theorem 451 to obtain

$$
\begin{equation*}
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{\imath}, y_{j}\right)\right| \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(h_{2+1}+h_{2}\right)+C_{2} M^{-1} \tag{471}
\end{equation*}
$$

The proof splits into the two cases of $\sigma^{N}<\frac{1}{4}$ and $\sigma^{N}=\frac{1}{4}$ Starting with the former, we consider the region $\left[\sigma^{N}, 1\right) \times(0,1)$ Using Theorem 461 we have

$$
\left|W_{L}\left(x_{\frac{N}{4}}, y_{j}\right)\right| \leq C\left(1+\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \frac{4 \sigma^{N}}{N}\right)^{-\frac{N}{4}}
$$

Using (461b) we see that $\frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}} \sigma^{N}=\ln N$, and therefore

$$
\left|W_{L}\left(x_{\frac{N}{4}}, y_{j}\right)\right| \leq C\left(1+4 N^{-1} \ln N\right)^{-\frac{N}{4}}
$$

Letting $t=4 N^{-1} \ln N$ in the mequality $\ln (1+t)>t\left(1-\frac{t}{2}\right)$, we see that $\left|W_{L}\left(x_{\frac{N}{4}}, y_{j}\right)\right| \leq$
$C N^{-1}$ Therefore in the region $\left[\sigma^{N}, 1\right) \times(0,1)$ we have

$$
\left|W_{L}\left(x_{\imath}, y_{\jmath}\right)\right| \leq C N^{-1}
$$

Considering the continuous solution in this region, from Theorem 451 we have

$$
\left|w_{L}\left(x_{\imath}, y_{j}\right)\right| \leq e^{-\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} \sigma^{N}} \leq C N^{-2}, \quad x_{\imath} \geq \sigma^{N}
$$

Combining these results we have the following bound in the region $\left[\sigma^{N}, 1\right) \times(0,1)$ when $\sigma^{N}<\frac{1}{4}$

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}, y_{\jmath}\right)\right| \leq C N^{-1}
$$

We next consider the region $\left(0, \sigma^{N}\right) \times(0,1)$ Since $\sigma^{N}<\frac{1}{4}$, we have $h_{\imath}=h_{\imath+1}=$ $\frac{8 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} N^{-1} \ln N$ We then use (471) and obtain

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}\right)
$$

Using an appropriately chosen barrier function and the discrete minımum principle we obtain the required result in this region

We finally consider the case of $\sigma^{N}=\frac{1}{4}$ We find $\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} \leq 8 \ln N$ and using the truncation error bound (471) we obtain

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}\right)
$$

Using a suitable barrier function we achieve the required result
We note that simılar proofs hold for the error components $\left|\left(W_{B}-w_{B}\right)\right|,\left|\left(W_{R}-w_{R}\right)\right|$ and $\left|\left(W_{T}-w_{T}\right)\right|$ We therefore have the following lemma

Lemma 473 At each mesh point $\left(x_{\imath}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the bottom, right and top singular components of the error satisfies the following estimates

$$
\begin{aligned}
& \left|\left(W_{B}-w_{B}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1} \ln M\right) \\
& \left|\left(W_{R}-w_{R}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}\right) \\
& \left|\left(W_{T}-w_{T}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1} \ln M\right)
\end{aligned}
$$

where w_{B}, w_{R} and w_{T} are defined analogously to (445) and W_{B}, W_{R} and W_{T} are defined analogously to (462c)

Proof See Lemma 472
Lemma 474 At each mesh point $\left(x_{\imath}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the bottom-left corner singular component of the error satesfies the followng estrmate

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{i}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right)
$$

where $w_{L B}$ is the solution of (451) and $W_{L B}$ is the solution of (462d)
Proof We can obtain the following truncation error bounds

$$
\begin{aligned}
\left|L^{N, M}\left(W_{L B}-w_{L B}\right)\left(x_{\imath}, y_{\jmath}\right)\right| & \leq C_{1}\left(h_{\imath+1}+h_{\imath}\right)\left(\varepsilon\left\|w_{L B x x x}\right\|+\mu\left\|w_{L B x x}\right\|\right) \\
& +C_{2}\left(k_{\jmath+1}+k_{\jmath}\right)\left(\varepsilon\left\|w_{L B y y y}\right\|+\mu\left\|w_{L B y y}\right\|\right)
\end{aligned}
$$

Sunce $w_{L B}$ satısfies a sımilar equation to u, we apply Lemma 422 to obtain (see Remark 451)

$$
\begin{equation*}
\left|L^{N, M}\left(W_{L B}-w_{L B}\right)\left(x_{\imath}, y_{\jmath}\right)\right| \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(h_{\imath+1}+h_{\imath}\right)+\frac{C_{2}}{\sqrt{\varepsilon}}\left(k_{\jmath+1}+k_{\jmath}\right) \tag{472}
\end{equation*}
$$

We start by considerıng the case $\sigma^{N}<\frac{1}{4}$ and $\sigma^{M}<\frac{1}{4}$ We consider the region $\Omega^{N, M} \backslash\left(0, \sigma^{N}\right) \times\left(0, \sigma^{M}\right)$ Using Theorem 461 we have

$$
\left|W_{L B}\left(x_{\frac{N}{4}}, y_{j}\right)\right| \leq C \prod_{s=1}^{\frac{N}{4}}\left(1+\frac{4 \sigma^{N}}{N} \frac{\sqrt{\gamma \bar{\alpha}}}{2 \sqrt{\varepsilon}}\right)^{-1}
$$

and

$$
\left|W_{L B}\left(x_{\imath}, y_{\frac{M}{4}}\right)\right| \leq C \prod_{r=1}^{\frac{M}{4}}\left(1+\frac{4 \sigma^{M}}{M} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}\right)^{-1}
$$

Using (4 $6 \mathrm{1b}$) we see that $\sigma^{N} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}=\ln N$ and simılarly $\sigma^{M} \frac{\sqrt{\gamma \alpha}}{2 \sqrt{\varepsilon}}=\ln M$, we therefore obtan

$$
\left|W_{L B}\left(x_{\frac{N}{4}}, y_{j}\right)\right| \leq C\left(1+4 N^{-1} \ln N\right)^{-\frac{N}{4}}
$$

and

$$
\left|W_{L B}\left(x_{2}, y_{\frac{M}{4}}\right)\right| \leq C\left(1+4 M^{-1} \ln M\right)^{-\frac{M}{4}}
$$

In an analogous fashon to w_{L}, we can therefore prove that in this regıon we have

$$
\left|W_{L B}\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right), \quad x_{\imath} \geq \sigma^{N} \text { and/or } y_{\jmath} \geq \sigma^{M}
$$

Consider the continuous solution in this region Using Theorem 451 we obtain

$$
\left|w_{L B}\left(x_{\imath}, y_{j}\right)\right| \leq C e^{-\frac{\sqrt{\gamma a}}{\sqrt{\epsilon}} x_{2}} e^{-\frac{\sqrt{\sqrt{x}}}{\sqrt{\bar{\varepsilon}}} y_{\jmath}} \leq e^{-\frac{\sqrt{\gamma a}}{\sqrt{\epsilon}} \sigma^{N}} \leq C N^{-2}, \quad x_{\imath}>\sigma^{N}
$$

and

$$
\left|w_{L B}\left(x_{2}, y\right)\right| \leq C e^{-\frac{\sqrt{\sqrt{\alpha}}}{\sqrt{\varepsilon}} x_{i}} e^{-\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} y_{j}} \leq e^{-\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} \sigma^{M}} \leq C M^{-2}, \quad y_{j}>\sigma^{M}
$$

We conclude that when $\sigma^{N}<\frac{1}{4}$ and $\sigma^{M}<\frac{1}{4}$, we have the following error bound in the region $\Omega^{N, M} \backslash\left(0, \sigma^{N}\right) \times\left(0, \sigma^{M}\right)$

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right)
$$

Next, we consider the region $\left(0, \sigma^{N}\right) \times\left(0, \sigma^{M}\right)$ We know that $h_{2}=h_{\imath+1}=\frac{8 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} N^{-1} \ln N$ and $k_{J}=k_{3+1}=\frac{8 \sqrt{\varepsilon}}{\sqrt{\gamma \alpha}} M^{-1} \ln M$ Using the truncation error bound (472) we obtan

$$
\left|L^{N, M}\left(W_{L B}-w_{L B}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right)
$$

Therefore using a suitably chosen barrier function and the discrete mimımum principle we obtan

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right)
$$

Finally we consider the case of $\sigma^{N}=\frac{1}{4}$ and $\sigma^{M}=\frac{1}{4}$ In this case, we know that $\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} \leq 8 \ln N$ and $\frac{\sqrt{\gamma \alpha}}{\sqrt{\varepsilon}} \leq 8 \ln M$ and using (472) and a suitable barrier function we obtan

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{i}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right)
$$

Combining these results for the different cases in the different regions gives us the required result

We note that sımilar proofs hold for the error components $\left|\left(W_{R B}-w_{R B}\right)\right|, \mid\left(W_{R T}-\right.$ $\left.w_{R T}\right) \mid$ and $\left|\left(W_{L T}-w_{L T}\right)\right|$ We therefore have the following lemma

Lemma 475 At each mesh point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the right-bottom, rught-top and lefttop singular components of the error satusfies the following estimates

$$
\begin{aligned}
\left|\left(W_{R B}-w_{R B}\right)\left(x_{i}, y_{j}\right)\right| & \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right), \\
\left|\left(W_{R T}-w_{R T}\right)\left(x_{\imath}, y_{j}\right)\right| & \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right), \\
\left|\left(W_{L T}-w_{L T}\right)\left(x_{\imath}, y_{j}\right)\right| & \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right),
\end{aligned}
$$

where $w_{R B}, w_{R T}$ and $w_{L T}$ are defined analogously to $w_{L B}$ in (451) and $W_{R B}, W_{R T}$ and $W_{L T}$ are defined analogously to $W_{L B}$ in (4 6 2d)

Proof See Lemma 474
Theorem 471 At each mesh point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}^{N, M}$ the maximum pointwise error sat${ }^{\text {isfies }}$ the following parameter-uniform error bound when $\mu^{2} \leq \frac{\gamma \epsilon}{\alpha}$,

$$
\|U-u\|_{\Omega^{N M}} \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right)
$$

where u is the solution of (411) and U as the solution of (461)
Proof The proof follows from Lemma 472 , Lemma 473 , Lemma 474 and Lemma 475

Chapter 5

Elliptic PDE's - the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$

51 Introduction

This final chapter is different in style to the previous chapters The analysis relies on various assumptions and conjectures and is more exploratory in spirit We consider the same class of problems as (411), however this time we examine the more complex case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ The minmum principle and the bounds given in Lemma 421 and Lemma 422 still hold This case is significantly more complicated than that of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, and this analysis is seen merely as a starting point for those wishing to study this problem There are possibly significant compatibility issues with our approach, although the extension ıdea of Shishkin [29] plays an essential part in minımısing these difficulties We ignore these issues of compatibility and assume sufficient regularity for the analysis to be valid The notation in this chapter is as defined in Chapter 4

The assumptions given below restrict the class of problems that we are considering and are sufficient to define and bound the regular component v and all four boundary layer components

Assumption 1 Arbitrary regularty and compatzbilty assumed throughout
We note that the assumption of constant coefficients would reduce complications with compatibility The following assumption is also used when necessary (We will state explicitly in the text when this assumption is used)

Assumption $2 a_{1}(x, y)=a_{1}(x)$ and $a_{2}(x, y)=a_{2}(y)$
The case of $\mu \geq \gamma_{1}$, where γ_{1} is some constant (convection diffusion) is a subset of this present case and will be dealt with in the final section of this chapter Parameter-explicit
bounds on the derivatives of (411) are derived in Section 52 when $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ The solution is decomposed into a sum of regular and singular components In Section 5 3, we define a regular component v The boundary layer components are discussed in Sections 54 and 55 It is when considering the corner layer functions in Section 56 that the style of the thesis really changes We state and motivate a series of conjectures on the corner layer functions The validity of these conjectures remain open questions The numerical method is then proposed and the discrete solution is decomposed in an analogous fashion to the continuous solution The error between the solutions of the discrete and continuous problems is then analysed We show that given the various assumptions and conjectures made in this chapter, we have a parameter-uniform numerical method

52 Parameter-explicit bounds on the derivatives

We need to first obtain crude bounds on the continuous solution u of (411) and its derivatives Such bounds were discussed in Lemma 422 in Chapter 4 However, in that proof we concentrated on obtaining bounds with the minmal amount of regularity assumptions on f and the boundary data In this chapter, we focus more on identifying the dependence on the parameters ε and μ, and less on mınımsing the regularity requirements

Lemma 521 The derivatives of the solution u of (411) satzsfy the following bounds

$$
\begin{aligned}
|u|_{1} \leq C\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}}\right. & \sum_{v=0}^{1}\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{1-v}\left(|f|_{v}+\varepsilon\left|s_{1}\right|_{v+2,}+\mu\left|s_{1}\right|_{v+1}+\left|s_{1}\right|_{v,}+\left.\left.\varepsilon\right|_{2}\right|_{v+2}\right. \\
& \left.+\mu\left|s_{2}\right|_{v+1}+\left|s_{2}\right|_{v,}+\varepsilon\left|q_{1}\right|_{v+2}+\mu\left|q_{1}\right|_{v+1}+\left|q_{1}\right|_{v}+\varepsilon\left|q_{2}\right|_{v+2}+\mu\left|q_{2}\right|_{v+1}+\left|q_{2}\right|_{v}\right) \\
& \left.+\left|s_{1}\right|_{1}+\left|s_{2}\right|_{1}+\left|q_{1}\right|_{1}+\left|q_{2}\right|_{1}+\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)| | u| |\right)
\end{aligned}
$$

and for $l=0,1$

$$
\begin{aligned}
&|u|_{\imath+2} \leq C\left(\frac { \varepsilon } { (\mu + \sqrt { \varepsilon }) ^ { 2 } } \sum _ { v = 0 } ^ { l + 1 } (\frac { \mu + \sqrt { \varepsilon } } { \varepsilon }) ^ { l + 2 - v } \left(|f|_{v}+\left.\left.\varepsilon\right|_{1}\right|_{v+2}+\mu\left|s_{1}\right|_{v+1}+\left|s_{1}\right|_{v}+\left.\left.\varepsilon\right|_{2}\right|_{v+2}\right.\right. \\
&\left.+\left.\left.\mu\right|_{s_{2}}\right|_{v+1}+\left|s_{2}\right|_{v}+\varepsilon\left|q_{1}\right|_{v+2}+\mu\left|q_{1}\right|_{v+1}+\left|q_{1}\right|_{v}+\varepsilon\left|q_{2}\right|_{v+2}+\left.\left.\mu\right|_{q_{2}}\right|_{v+1}+\left|q_{2}\right|_{v}\right) \\
&\left.+\left|s_{1}\right|_{\imath+2}+\left|s_{2}\right|_{l+2}+\left|q_{1}\right|_{1+2}+\left|q_{2}\right|_{1+2}+\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{l+2} \| u| |\right)
\end{aligned}
$$

where C depends on the coefficients a_{1}, a_{2} and b and their derivatives

Proof We contmue from equation (423) in Chapter 4, simplifying the RHS of these equations, we obtain

$$
|\bar{\omega}|_{1, \tilde{R}_{\delta}} \leq C\left(\|\tilde{f}\|_{1, \tilde{R}_{2 \delta}}+\|\omega\|_{\tilde{R}_{2 \delta}}\right)
$$

and for $l=0,1$

$$
|\tilde{\omega}|_{l+2, \tilde{R}_{\delta}} \leq C\left(\|\tilde{f}\|_{l+1, \tilde{R}_{2 \delta}}+\|\omega\|_{\tilde{R}_{2 \delta}}\right)
$$

Transforming back to the origınal variables this implies for all (x, y) $\in \Omega$ and $R_{\delta}=R_{\delta}(x, y)$

$$
\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)|\omega|_{1, R_{\delta}} \leq C\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}} \sum_{v=0}^{1}\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{v}|\hat{f}|_{v, R_{2 \delta}}+\|\omega\|_{R_{2 \delta}}\right),
$$

and for $l=0,1$

$$
\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{l+2}|\omega|_{l+2, R_{\delta}} \leq C\left(\frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}} \sum_{v=0}^{l+1}\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{v}|\hat{f}|_{v, R_{2 \delta}}+\|\omega\|_{R_{2 \delta}}\right)
$$

Replacing \hat{f} by $f-L_{\varepsilon, \mu} h$ and using the defintion of h gives us
and for $l=0,1$

$$
\begin{aligned}
\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{l+2}|\omega|_{l+2, R_{\delta}} \leq C(& \frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}} \sum_{v=0}^{l+1}\left(\frac{\varepsilon}{\mu+\sqrt{\varepsilon}}\right)^{v}\left(|f|_{v, R_{2 \delta}}+\left.\left.\varepsilon\right|_{1}\right|_{v+2, R_{2 \delta}}+\left.\left.\mu\right|_{1}\right|_{v+1, R_{2 \delta}}\right. \\
& +\left|s_{1}\right|_{v, R_{2 \delta}}+\left.\left.\varepsilon\right|_{\mid s_{2}}\right|_{v+2, R_{2 \delta}}+\mu\left|s_{2}\right|_{v+1, R_{2 \delta}}+\left|s_{2}\right|_{v, R_{2 \delta}} \\
& +\varepsilon\left|q_{1}\right|_{v+2, R_{2 \delta}}+\mu\left|q_{1}\right|_{v+1, R_{2 \delta}}+\left|q_{1}\right|_{v, R_{2 \delta}}+\varepsilon\left|q_{2}\right|_{v+2, R_{2 \delta}} \\
& \left.\left.+\mu\left|q_{2}\right|_{v+1, R_{2 \delta}}+\left|q_{2}\right|_{v, R_{2 \delta}}\right)+||\omega||_{R_{2 \delta}}\right)
\end{aligned}
$$

Rearranging these equations, we obtain

$$
\begin{aligned}
|\omega|_{1, R_{\delta}} \leq C(& \frac{\varepsilon}{(\mu+\sqrt{\varepsilon})^{2}} \sum_{v=0}^{1}\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{1-v}\left(|f|_{v, R_{2 \delta}}+\left.\left.\varepsilon\right|_{s_{1}}\right|_{v+2, R_{2 \delta}}+\mu\left|s_{1}\right|_{v+1, R_{2 \delta}}+\left|s_{1}\right|_{v, R_{2 \delta}}\right. \\
& +\varepsilon\left|s_{2}\right|_{v+2, R_{2 \delta}}+\left.\left.\mu\right|_{s_{2}}\right|_{v+1, R_{2 \delta}}+\left|s_{2}\right|_{v, R_{2 \delta}}+\varepsilon\left|q_{1}\right|_{v+2, R_{2 \delta}}+\mu\left|q_{1}\right|_{v+1, R_{2 \delta}} \\
& \left.\left.+\left|q_{1}\right|_{v, R_{2 \delta}}+\varepsilon\left|q_{2}\right|_{v+2, R_{2 \delta}}+\mu\left|q_{2}\right|_{v+1, R_{2 \delta}}+\left|q_{2}\right|_{v, R_{2 \delta}}\right)+\left.\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)| | \omega\right|_{R_{2 \delta}}\right)
\end{aligned}
$$

and for $l=0,1$

$$
\begin{aligned}
& |\omega|_{l+2, R_{\delta}} \leq C\left(\frac { \varepsilon } { (\mu + \sqrt { \varepsilon }) ^ { 2 } } \sum _ { v = 0 } ^ { l + 1 } (\frac { \mu + \sqrt { \varepsilon } } { \varepsilon }) ^ { l + 2 - v } \left(|f|_{v, R_{2 \delta}}+\varepsilon\left|s_{1}\right|_{v+2, R_{2 \delta}}+\mu\left|s_{1}\right|_{v+1, R_{2 \delta}}+\left|s_{1}\right|_{v, R_{2 \delta}}\right.\right. \\
& +\varepsilon\left|s_{2}\right|_{v+2, R_{2 \delta}}+\mu\left|s_{2}\right|_{v+1, R_{2 \delta}}+\left|s_{2}\right|_{v, R_{2 \delta}}+\left.\left.\varepsilon\right|_{q_{1}}\right|_{v+2, R_{2 \delta}}+\mu\left|q_{1}\right|_{v+1, R_{2 \delta}} \\
& \left.\quad+\left|q_{1}\right|_{v, R_{2 \delta}}+\varepsilon\left|q_{2}\right|_{v+2, R_{2 \delta}}+\mu\left|q_{2}\right|_{v+1, R_{2 \delta}}+\left|q_{2}\right|_{v, R_{2 \delta}}\right) \\
& \left.\quad+\left.\left(\frac{\mu+\sqrt{\varepsilon}}{\varepsilon}\right)^{l+2}| | \omega\right|_{R_{2 \delta}}\right)
\end{aligned}
$$

Since $\bar{\Omega}$ can be covered by the neighbourhoods N_{δ} of a finite number of points and noting that $u=w+h$, the result follows

Remark 521 In the case where $f \in C^{2}(\bar{\Omega}), s, q \in C^{4}([0,1])$ are independent of ε and μ, we obtain for $1 \leq k+m \leq 3$

$$
\left\|\frac{\partial^{k+m} u}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k+m}(1+\|u\|)
$$

where C depends on f, s, and q and the coefficients a_{1}, a_{2} and b and their dervatives

5.3 Regular component in case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$

In order to obtain parameter-umform error bounds for the numerical approximations generated in the final sections of this chapter, we decompose the solution u of (411) into a sum of regular and singular components Consider the differential equation (431) in the extended domann $\Omega^{[*, L B]}=(-d, 1)^{2}$ Decompose v^{*} as follows,

$$
\begin{equation*}
v^{*}(x, y, \varepsilon, \mu)=v_{0}^{*}(x, y, \mu)+\varepsilon v_{1}^{*}(x, y, \mu)+\varepsilon^{2} v_{2}^{*}(x, y, \varepsilon, \mu) \tag{531a}
\end{equation*}
$$

where

$$
\begin{align*}
L_{\mu}^{*} v_{0}^{*} & =f^{*} \text { on } \Omega_{1}^{[*, L B]},\left.\quad v_{0}^{*}\right|_{\partial \Omega_{1}^{[L L}} L \quad \text { chosen in }(534), \tag{53lb}\\
\varepsilon L_{\mu}^{*} v_{1}^{*} & =\left(L_{\mu}^{*}-L_{\varepsilon, \mu}^{*}\right) v_{0}^{*}, \quad \text { on } \Omega_{1}^{[* L B]},\left.\quad v_{1}^{*}\right|_{\partial \Omega_{1}^{[* L B]}}=0, \tag{531c}\\
\varepsilon^{2} L_{\varepsilon, \mu}^{*} v_{2}^{*} & =\varepsilon\left(L_{\mu}^{*}-L_{\varepsilon, \mu}^{*}\right) v_{1}^{*}, \quad \text { on } \Omega^{*, L B]},\left.\quad v_{2}^{*}(x, y, \varepsilon, \mu)\right|_{\left.\partial \Omega^{[*} L B\right]}=0 \tag{531d}
\end{align*}
$$

Note that $\Omega_{1}^{[*, L B]}=[-d, 1)^{2}$ and $\partial \Omega_{1}^{[*, L B]}=\Gamma_{T}^{[*, L]} \cup \Gamma_{R}^{[*, B]}$ When $\mu^{2} \leq \frac{\gamma \xi}{\alpha}, v_{0}^{*}$ and v_{1}^{*} were defined as solutions of reduced problems obtaned by setting both ε and μ to zero in the ellıptic differential equation In this case, we see that v_{0}^{*} and v_{1}^{*} are solutions of singularly perturbed first order differential equations obtaned by letting just ε be zero in the elliptic problem Since v_{2}^{*} satisfies an elliptic problem, there are potential issues in relation to compatibility at the inflow corner (1,1) We do not address this concern

We can establish the following for the first order differential operator L_{μ} using a proof by contradiction argument Note $b \geq 2 \beta>0$ is not used in the proof

Lemma 531 Let $\Omega_{1}=[0,1)^{2}$ and $\partial \Omega_{1}=\Gamma_{T} \cup \Gamma_{R}$ Suppose $z \in C^{1}\left(\Omega_{1}\right) \cap C^{0}\left(\bar{\Omega}_{1}\right)$,

$$
\text { If }\left.\quad L_{\mu} z\right|_{\Omega_{1}} \leq 0 \quad \text { and }\left.\quad z\right|_{\partial \Omega_{1}} \geq 0, \quad \text { then }\left.\quad z\right|_{\bar{\Omega}_{1}} \geq 0
$$

Proof Let $z=e^{\frac{\beta_{1}}{\mu} x} w$, where $\beta_{1}<\min _{\Omega_{1}} \frac{b}{a_{1}}$ Assume that $\min _{\Omega_{1}} z<0$, this imples that $\min _{\Omega_{1}} w<0$ Consider a point $p=\left(x_{0}, y_{0}\right)$ such that $w(p)=\min _{\Omega_{1}} w<0$ At this point p we know that $w_{x}(p) \geq 0$ and $w_{y}(p) \geq 0$ We see that

$$
L_{\mu} z(p)=e^{\frac{\beta_{1}}{\mu} x_{0}}\left(\mu a_{1} w_{x}(p)+\mu a_{2} w_{y}(p)-\left(b-\beta_{1} a_{1}\right) w(p)\right)>0,
$$

which is a contradiction
Lemma 532 If $z(x, y)$ satisfies the first order problem

$$
\begin{equation*}
L_{\mu} z=a_{1} \mu z_{x}+a_{2} \mu z_{y}-b z=f \quad(x, y) \in \Omega_{1}=[0,1)^{2},\left.\quad z\right|_{\partial \Omega_{1}}=0, \tag{532}
\end{equation*}
$$

where $a_{1}>0, a_{2}>0$ and $b \geq 2 \beta>0$, then we have the following bounds on z and ats derivatives

$$
\|z\| \leq \frac{1}{2 \beta}\|f\|
$$

and

$$
\begin{array}{r}
\left\|\frac{\partial^{k+m} z}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\left(\frac{1}{\mu^{\min \{k, m\}}}\right)\|z\|+\left\|\frac{\partial^{k+m} f}{\partial x^{k+m}}\right\|+\left\|\frac{\partial^{k+m} f}{\partial y^{k+m}}\right\|+\right. \\
\left.\frac{1}{\mu^{k+m}} \sum_{r+s=0}^{k+m-1} \mu^{r+s}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|\right) e^{(k+m) A},
\end{array}
$$

where $A=\max \left\{0,\left(\frac{a_{2}}{a_{1}}\right)\left(\frac{a_{1}}{a_{2}}\right)_{x},\left(\frac{a_{1}}{a_{2}}\right)\left(\frac{a_{2}}{a_{1}}\right)_{y}\right\}$ and the constant C depends only on the coefficients a_{1}, a_{2}, b and their dervatives

Proof Consider the barrier functions $\psi^{ \pm}(x, y)=\frac{1}{2 \beta}\|f\| \pm z$ We see that these functions are nonnegative for $(x, y) \in \partial \Omega_{1}$ We also have

$$
L_{\mu} \psi^{ \pm}(x, y)=-\frac{b}{2 \beta}\|f\| \pm f \leq 0
$$

Apply Lemma 531 to obtain the required bound on z We will establish by induction that

$$
\begin{equation*}
\left\|\frac{\partial^{k+m_{z}}}{\partial x^{\lambda} \partial y^{n}}\right\| \leq C\left(\left(\frac{1}{\mu^{m}}\right)\|z\|+\left\|\frac{\partial^{k+m}}{\partial x^{k+m}}\right\|+\frac{1}{\mu^{k+m}} \sum_{r+s=0}^{k+m-1} \mu^{r+s}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|\right) e^{(k+m) A} \tag{533}
\end{equation*}
$$

Differentiating equation (532) with respect to x we obtain

$$
L_{\mu}^{[1]} z_{x}=\mu \frac{a_{1}}{a_{2}}\left(z_{x}\right)_{x}+\mu\left(z_{x}\right)_{y}-\left(\frac{b}{a_{2}}-\mu\left(\frac{a_{1}}{a_{2}}\right)_{x}\right)\left(z_{x}\right)=\left(\frac{f}{a_{2}}\right)_{x}+\left(\frac{b}{a_{2}}\right)_{x} z
$$

where $z_{x}(x, 1)=0$ and using the differential equation (532) we have $\left\|z_{x}(1, y)\right\| \leq \frac{C}{\mu}\|f\|$ Consider the barrer functions

$$
\psi^{ \pm}(x, y)=C\left(\frac{1}{\mu}\|f\|+\left\|\frac{\partial f}{\partial x}\right\|+\|z\|\right) e^{A(1-x)} \pm z_{x}
$$

where A is defined as above We see that for C large enough the functions $\psi^{ \pm}(x, y)$ are nonnegative on the boundary $\partial \Omega_{1}$ Also

$$
\begin{aligned}
L_{\mu}^{[1]} \psi^{ \pm}(x, y)= & C\left(-\mu\left(\frac{a_{1}}{a_{2}}\right) A-\frac{b}{a_{2}}+\mu\left(\frac{a_{1}}{a_{2}}\right)_{x}\right)\left(\frac{1}{\mu}\|f\|+\left\|\frac{\partial f}{\partial x}\right\|+\|z\|\right) e^{A(1-x)} \\
& \pm\left(\left(\frac{f}{a_{2}}\right)_{x}+\left(\frac{b}{a_{2}}\right)_{x} z\right)
\end{aligned}
$$

We see that for C chosen correctly $L_{\mu}^{[1]} \psi^{ \pm}(x, y) \leq 0$, therefore applying Lemma 531 and using (5 32), we obtann (533) for $k+m=1$

We now prove the more general result (533) by induction We assume that the lemma is true for $0 \leq k+m \leq l$ Differentiate (532) $l+1$ times with respect to x to obtain

$$
\begin{aligned}
L_{\mu}^{[l+1]}\left(\frac{\partial^{l+1} z}{\partial x^{l+1}}\right) & =\mu \frac{a_{1}}{a_{2}}\left(\frac{\partial^{l+1} z}{\partial x^{l+1}}\right)_{x}+\mu\left(\frac{\partial^{l+1} z}{\partial x^{l+1}}\right)_{y}-\left(\frac{b}{a_{2}}-(l+1) \mu\left(\frac{a_{1}}{a_{2}}\right)_{x}\right)\left(\frac{\partial^{l+1} z}{\partial x^{l+1}}\right) \\
& =\rho(x, y),
\end{aligned}
$$

where $\rho(x, y)$ involves f and its derivatives with respect to x up to order $l+1, z$ and its derivatives with respect to x up to order l and the coefficients and their derivatives We see that $\frac{\partial^{l+1} z}{\partial x^{l+1}}(x, 1)=0$ and $\frac{\partial^{l+1} z}{\partial x^{l+1}}(1, y)=\phi(x, y)$ Using the differential equation (532), we can show that

$$
|\phi(x, y)| \leq C \sum_{r+s=0}^{l} \frac{1}{\mu^{l+1-r-s}}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|
$$

Consider the barrier functions

$$
\psi^{ \pm}(x, y)=C\left(\|z\|+\left\|\frac{\partial^{l+1} f}{\partial x^{l+1}}\right\|+\frac{1}{\mu^{l+1}} \sum_{r+s=0}^{l} \mu^{r+s}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|\right) e^{(l+1) A(1-x)} \pm\left(\frac{\partial^{l+1} z}{\partial x^{l+1}}\right)
$$

We see that for C large enough the functions are both nonnegative on $\partial \Omega_{1}$ Also we have

$$
\begin{array}{r}
L_{\mu}^{[l+1]} \psi^{ \pm}(x, y)=C\left(-(l+1) \mu\left(\frac{a_{1}}{a_{2}}\right) A-\frac{b}{a_{2}}+(l+1) \mu\left(\frac{a_{1}}{a_{2}}\right)_{x}\right)\left(\|z\|+\left\|\frac{\partial^{l+1} f}{\partial x^{l+1}}\right\|+\right. \\
\left.+\frac{1}{\mu^{l+1}} \sum_{r+s=0}^{l} \mu^{r+s}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|\right) e^{(l+1) A(1-x)} \pm \rho(x, y)
\end{array}
$$

Using our induction assumption and the definition of A, we see that $L_{\mu}^{[l+1]} \psi^{ \pm}(x, y) \leq 0$ for C chosen correctly We therefore obtan

$$
\left\|\frac{\partial^{l+1} z}{\partial x^{l+1}}\right\| \leq C\left(\|z\|+\left\|\frac{\partial^{l+1} f}{\partial x^{l+1}}\right\|+\frac{1}{\mu^{l+1}} \sum_{r+s=0}^{l} \mu^{r+s}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|\right) e^{(l+1) A}
$$

Differentiating (5 3 2) k times with respect to x and m times with respect to y, we obtain
for $k+m=l+1$

$$
\left\|\frac{\partial^{k+m} z}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\left(\frac{1}{\mu^{m}}\right)\|z\|+\left\|\frac{\partial^{k+m} f}{\partial x^{k+m}}\right\|+\frac{1}{\mu^{k+m}} \sum_{r+s=0}^{k+m-1} \mu^{r+s}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|\right) e^{(k+m) A}
$$

Similarly if we started the proof by differentiating (532) with respect to y, we would obtain

$$
\left\|\frac{\partial^{k+m} z}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\left(\frac{1}{\mu^{k}}\right)\|z\|+\left\|\frac{\partial^{k+m} f}{\partial y^{k+m}}\right\|+\frac{1}{\mu^{k+m}} \sum_{r+s=0}^{k+m-1} \mu^{r+s}\left\|\frac{\partial^{r+s} f}{\partial x^{r} \partial y^{s}}\right\|\right) e^{(k+m) A}
$$

and combining these two bounds gives the required result
With this lemma, we can analyse the reduced solution v_{0}^{*}, the solution of (531b) We show that if the inflow boundary conditions $v_{0}^{*}(x, 1)$ and $v_{0}^{*}(1, y)$ are chosen correctly, then all the derivatives up to second order of v_{0}^{*} are bounded independently of μ (and obviously E) We note that Lemma 531 and Lemma 532 also hold for the differential operator $L_{\mu}^{[*, L B]}$ and the domann $\Omega_{1}^{[*, L B]}$ defined as before

Lemma 533 When the boundary condations $\left.v_{0}^{*}\right|_{\partial \Omega_{1}^{[* L B]}}$ are chosen correctly, the solution v_{0}^{*} of the differential equation (5 31 b) satzsfies the following bounds for $0 \leq k+m \leq 6$,

$$
\left\|\frac{\partial^{k+m} v_{0}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(1+\mu^{2-k-m}\right)
$$

Proof Consider the following secondary decomposition of $v_{0}^{*}(x, y, \mu)$

$$
\begin{equation*}
v_{0}^{*}(x, y, \mu)=s_{0}^{*}(x, y)+\mu s_{1}^{*}(x, y)+\mu^{2} s_{2}^{*}(x, y, \mu) \tag{534a}
\end{equation*}
$$

where

$$
\begin{align*}
L_{0}^{*} s_{0}^{*} & =f^{*} \tag{534b}\\
\mu L_{0}^{*} s_{1}^{*} & =\left(L_{0}^{*}-L_{\mu}^{*}\right) s_{0}^{*} \tag{534c}\\
\mu^{2} L_{\mu}^{*} s_{2}^{*} & =\mu\left(L_{0}^{*}-L_{\mu}^{*}\right) s_{1}^{*} \quad \text { on } \quad \Omega_{1}^{[*, L B]},\left.\quad s_{2}^{*}\right|_{\partial \Omega_{1}^{[* L B]}}=0 \tag{534~d}
\end{align*}
$$

Snce s_{0}^{*} and s_{1}^{*} do not depend on μ, we have

$$
\begin{align*}
& \left\|\frac{\partial^{k+m} s_{0}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq C \quad \text { for } \quad 0 \leq k+m \leq 8 \tag{535}\\
& \left\|\frac{\partial^{k+m} s_{1}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq C \quad \text { for } \quad 0 \leq k+m \leq 7 \tag{536}
\end{align*}
$$

The function s_{2}^{*} satisfies a similar equation to z in (532) We can apply Lemma 532 and the bounds above to obtain

$$
\left\|s_{2}^{*}\right\| \leq \frac{1}{2 \beta}\left(\left\|\frac{\partial s_{1}^{*}}{\partial x}\right\|+\left\|\frac{\partial s_{1}^{*} \|}{\partial y}\right\|\right) \leq C
$$

and for $1 \leq k+m \leq 6$

$$
\begin{aligned}
\left\|\frac{\partial^{k+m} s_{2}^{*}}{\partial x^{k} \partial y^{m}}\right\| & \leq C\left(\left(\frac{1}{\mu^{\min \{k, m\}}}\right)\left\|s_{2}^{*}\right\|+\left\|\frac{\partial^{k+m} s_{1 x}^{*}}{\partial x^{k+m}}\right\|+\left\|\frac{\partial^{k+m} s_{1 y}^{*}}{\partial x^{k+m}}\right\|+\left\|\frac{\partial^{k+m} s_{1 x}^{*}}{\partial y^{k+m}}\right\|\right. \\
& \left.+\left\|\frac{\partial^{k+m} s_{1 y}^{*}}{\partial y^{k+m}}\right\|+\frac{1}{\mu^{k+m}} \sum_{r+s=0}^{k+m-1} \mu^{r+s}\left(\left\|\frac{\partial^{r+s} s_{1 x}^{*}}{\partial x^{r} \partial y^{s}}\right\|+\left\|\frac{\partial^{r+s} s_{1 y}^{*}}{\partial x^{r} \partial y^{s}}\right\|\right)\right) e^{(k+m) A}
\end{aligned}
$$

Therefore, using the fact that s_{1}^{*} and its derivatives are bounded independent of μ we obtan for $0 \leq k+m \leq 6$,

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} s_{2}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq \frac{C}{\mu^{k+m}} \tag{537}
\end{equation*}
$$

Using the decomposition (534) and the bounds (5 35), (5 3 6) and (5 37) gives us the required result

Lemma 534 If v_{1}^{*} satusfies the first order dufferentral equation (531c) then the following bounds hold for $0 \leq k+m \leq 4$,

$$
\left\|\frac{\partial^{k+m} v_{1}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq \frac{C}{\mu^{k+m}}
$$

Proof Since v_{1}^{*} satısfies a sımılar equation to z in (532), we can apply Lemma 532 and the bounds above to obtan

$$
\left\|v_{1}^{*}\right\| \leq C\left(\left\|\frac{\partial^{2} v_{0}^{*} \|}{\partial x^{2}}\right\|+\left\|\frac{\partial^{2} v_{0}^{*}}{\partial y^{2}}\right\|\right) \leq C
$$

and for $1 \leq k+m \leq 4$

$$
\begin{aligned}
&\left\|\frac{\partial^{k+m} v_{1}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\left(\frac{1}{\mu^{\min (k, m\}}}\right)\left\|v_{1}^{*}\right\|+\left\|\frac{\partial^{k+m} v_{0 x x}^{*}}{\partial x^{k+m}}\right\|+\left\|\frac{\partial^{k+m} v_{0 y y}^{*}}{\partial x^{k+m}}\right\|+\left\|\frac{\partial^{k+m} v_{0 x x}^{*}}{\partial y^{k+m}}\right\|+\right. \\
&\left.\left\|\frac{\partial^{k+m} v_{0 y y}^{*}}{\partial y^{k+m}}\right\|+\frac{1}{\mu^{k+m}} \sum_{r+s=0}^{k+m-1} \mu^{r+s}\left(\left\|\frac{\partial^{r+s} v_{0 x x}^{*}}{\partial x^{r} \partial y^{s}}\right\|+\left\|\frac{\partial^{r+s} v_{0 y y}^{*}}{\partial x^{r} \partial y^{s}}\right\|\right)\right) e^{(k+m) A}
\end{aligned}
$$

Using the bounds on v_{0}^{*} in Lemma 533 we obtain the required result
Lemma 535 If $v_{2}^{*}(x, y, \varepsilon, \mu)$ satısfies the dufferentral equatzon (531d) then we have the following bounds for $0 \leq k+m \leq 3$

$$
\left\|\frac{\partial^{k+m} v_{2}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq \frac{C}{\mu^{2}}\left(\frac{1}{(\sqrt{\varepsilon})^{k+m}}\right)\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{k+m}\right)
$$

Proof Since v_{2}^{*} satısfies a sımılar equation to u, applying Lemma 421 we obtain

$$
\left\|v_{2}^{*}(x, t, \varepsilon, \mu)\right\| \leq\left\|v_{2}\right\|_{\partial \Omega[* \text { LB] }}+\frac{1}{2 \beta}\left(\left\|\frac{\partial^{2} v_{1}}{\partial x^{2}}\right\|+\left\|\frac{\partial^{2} v_{1}}{\partial y^{2}}\right\|\right)
$$

Using Lemma 534 we have

$$
\left\|v_{2}^{*}\right\| \leq \frac{C}{\mu^{2}}
$$

Finally we use Lemma 521 to obtain for $1 \leq k+m \leq 3$,

$$
\begin{aligned}
&\left\|\frac{\partial^{k+m} v_{2}^{*}}{\partial x^{k} \partial y^{m}}\right\|_{\bar{\Omega}[\bullet L \mathrm{LB}]} \leq \frac{C}{(\sqrt{\varepsilon})^{k+m}}\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{k+m}\right) \max \left\{\left\|v_{2}^{*}\right\|_{\bar{\Omega}[* \mathrm{LB}]}, \sum_{r+s=0}^{2}(\sqrt{\varepsilon})^{r+s}\left\|\frac{\partial^{r+s} v_{1, x x}^{*}}{\partial x^{r} \partial y^{s}}\right\|\right. \\
&\left.\sum_{r+s=0}^{2}(\sqrt{\varepsilon})^{r+s}\left\|\frac{\partial^{r+s} v_{1 y y}^{*}}{\partial x^{r} \partial y^{s}}\right\|\right\}
\end{aligned}
$$

and applying the bounds for v_{1}^{*} in Lemma 534 we obtann the required result
Combining the results of Lemma 53 3, Lemma 534 and Lemma 535 , we see that if we take the regular solution v to be the solution of

$$
\begin{equation*}
L_{\varepsilon, \mu} v=f(x, y) \in \Omega, \quad v=v^{*}(x, y) \in \partial \Omega \tag{538}
\end{equation*}
$$

then when $\mu^{2} \geq \frac{\gamma \epsilon}{\alpha}, v$ satisfies the following bounds for $0 \leq k+m \leq 3$,

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} v}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(1+\left(\frac{\mu}{\varepsilon}\right)^{k+m-2}\right) \tag{array}
\end{equation*}
$$

where v^{*} is defined in the decomposition (5 3 1)

54 Boundary layer components at the inflow

In this section, we define the boundary layer functions w_{R} and w_{T} associated with the right and top edges respectively In the case of $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, the order in which we define the layer functions is crucial to correctly isolating the singularities of the solution u

We start by analysing w_{R}, the layer function associated with the right edge Γ_{R} Consider the extended domann $\Omega^{[*, \mathrm{~T}]}=(0,1) \times(0,1+d), d>0$ We define w_{R}^{*} to be the solution of $L_{\varepsilon, \mu}^{[*, \mathrm{~T}]} w_{R}^{*}=0$ We need to chose the boundary conditions for w_{R}^{*} so as to isolate the layer on the right Consider the following decomposition of w_{R}^{*}

$$
\begin{equation*}
w_{R}^{*}(x, y, \varepsilon, \mu)=w_{0}^{*}(x, y, \mu)+\varepsilon w_{1}^{*}(x, y, \mu)+\varepsilon^{2} w_{2}^{*}(x, y, \varepsilon, \mu), \tag{541a}
\end{equation*}
$$

where $v(1, y)=v_{0}(1, y)=\left(\frac{f}{b}-\left(\frac{\mu}{b}\right) a \nabla\left(\frac{f}{b}\right)\right)(1, y)$ is given in (534) and

$$
\begin{align*}
L_{\mu}^{[*, \mathrm{~T}]} w_{0}^{*} & =0 \text { on } \Omega_{1}^{[*, T]}, w_{0}^{*}(x, 1+d, \mu)=0, \quad w_{0}^{*}(1, y, \mu)=(u(1, y)-v(1, y)\rangle^{*}, \tag{541b}\\
\varepsilon L_{\mu,}^{[*, \mathrm{~T}]} w_{1}^{*} & =\left(L_{\mu}^{[* \mathrm{~T}]}-L_{\varepsilon, \mu, T]}^{[*, \mathrm{~T}]}\right) w_{0}^{*} \text { on } \Omega_{1}^{[*, T]}, w_{1}^{*}(x, 1+d, \mu)=w_{1}^{*}(1, y, \mu)=0, \tag{541c}\\
\varepsilon^{2} L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} w_{2}^{*} & \left.=\left(\varepsilon\left(L_{\mu}^{[*, \mathrm{~T}]}-L_{\varepsilon, \mu}^{* *, \mathrm{~T}]}\right) w_{1}^{*}\right)^{*}, \quad \text { on }\left.\Omega^{[*, T B]} \quad w_{2}^{*}(x, y, \varepsilon, \mu)\right|_{\partial \Omega \mid} \mathrm{TB}\right]=0 \tag{54ld}
\end{align*}
$$

Remark 541 We should note that the last function w_{2}^{*} is defined on the extended domain $\Omega^{[*, T B]}=(0,1) \times(-d, 1+d)$ This domain is obtained by extending to the top and bottom of the original domain, while w_{0}^{*} and w_{1}^{*} are defined on the smaller extended domain $\Omega_{1}^{[*, \tau]}=[0,1) \times[0,1+d)$

The following lemmas prove parameter-explicit bounds on the components $w_{0}^{*}, w_{1}^{*}, w_{2}^{*}$ and their derivatives These results are then used to bound the layer function w_{R}^{*} and its derivatives

Lemma 541 When w_{0}^{*} is defined as in (541b), given $\mu<\gamma_{1}$, the function and its dervaatives satusfy the following bounds for any positive integer k (assuming sufficient
regularıty and compatzbllty)

$$
\left|\frac{\partial^{k} w_{0}^{*}}{\partial x^{2} \partial y^{j}}(x, y)\right| \leq \frac{C_{1}}{\mu^{2}}(d+1-y) e^{-\frac{\gamma}{\mu}(1-x)}, \quad(x, y) \in \Omega_{1}^{[*, T]}, \quad\left(C_{1} \leq C e^{j\left\|\left(\frac{a_{2}}{a_{1}}\right)_{y}\right\|}\right)
$$

Proof Since $w_{0}^{*}(x, 1+d)=0$, we can show that $\left|w_{0}^{*}(1, y)\right| \leq C(1+d-y) \quad$ Consider the barrier function $\psi^{ \pm}(x, y)=C(1+d-y) e^{-\frac{\gamma}{\mu}(1-x)} \pm w_{0}^{*}$, we see that the functions $\left.\psi^{ \pm}(x, y)\right|_{\left.\Gamma^{[-T}\right]}$ are nonnegative for C large enough Also

$$
L_{\mu}^{[*, T]} \psi^{ \pm}(x, y)=C\left(\gamma a_{1}^{*}(d+1-y)-\mu a_{2}^{*}-b^{*}(d+1-y)\right) e^{-\frac{\gamma}{\mu}(1-x)} \pm 0,
$$

and using our definition of γ, we see that $L_{\mu}^{[*, ~ T]} \psi^{ \pm}(x, y) \leq 0$ for C chosen correctly Apply Lemma 531 to obtam

$$
\left|w_{0}^{*}\right| \leq C(d+1-y) e^{-\frac{x}{\mu}(1-x)}
$$

Differentiate equation (541b) with respect to y, we have

$$
L_{\mu}^{[*, T, 1]} \frac{\partial w_{0}^{*}}{\partial y}=\mu\left(\frac{\partial w_{0}^{*}}{\partial y}\right)_{x}+\mu \frac{a_{2}^{*}}{a_{1}^{*}}\left(\frac{\partial w_{0}^{*}}{\partial y}\right)_{y}-\left(\frac{b^{*}}{a_{1}^{*}}-\mu\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}\right) \frac{\partial w_{0}^{*}}{\partial y}=\left(\frac{b^{*}}{a_{1}^{*}}\right)_{y} w_{0}^{*}
$$

Clearly $\frac{\partial w_{0}^{*}}{\partial y}(1, y)=((u-v)(1, y))_{y}$ and since w_{0}^{*} satısfies a homogenous first order problem, using $\frac{\partial w_{0}^{*}}{\partial x}(x, 1+d)=0$, we see that $\frac{\partial w_{0}^{*}}{\partial y}(x, 1+d)=0$ Taylor expansions give $\left|\frac{\partial w_{0}^{*}}{\partial y}(1, y)\right| \leq$ $C(1+d-y)$ Consider the barrier functions

$$
\psi^{ \pm}(x, y)=C(1+d-y) e^{\left(\left\|\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}\right\|-\frac{\gamma}{\mu}\right)(1-x)} \pm \frac{\partial w_{0}^{*}}{\partial y}
$$

We see that the functions $\psi^{ \pm}(x, y)$ are nonnegative on the boundary for C large enough Also

$$
\begin{aligned}
L_{\mu}^{[*, \mathrm{~T}, 1]} \psi^{ \pm}(x, y)=C\left(\left(\left(\gamma-\frac{b^{*}}{a_{1}^{*}}\right)+\mu\right.\right. & \left.\left(\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}-\left\|\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)\right\|\right)\right)(1+d-y) \\
& \left.-\mu\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)\right) e^{\left(\left\|\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}\right\|-\frac{\gamma}{\mu}\right)(1-x)} \pm\left(\frac{b^{*}}{a_{1}^{*}}\right)_{y} w_{0}^{*}
\end{aligned}
$$

and we can see that $L_{\mu}^{[*, T, 1]} \psi^{ \pm}(x, y) \leq 0$ for C chosen correctly Applying Lemma 531
we have

$$
\left|\frac{\partial w_{0}^{*}}{\partial y}(x, y)\right| \leq C(1+d-y) e^{\left(\left\|\left(\frac{a_{2}^{*}}{a_{i}^{*}}\right)_{y}\right\|-\frac{\gamma}{\mu}\right)(1-x)} \leq C_{1}(1+d-y) e^{-\frac{\gamma}{\mu}(1-x)}
$$

Using the differential equation (541b) we therefore obtain

$$
\left|\frac{\partial w_{0}^{*}}{\partial x}\right| \leq \frac{C}{\mu}(1+d-y) e^{-\frac{\gamma}{\mu}(1-x)}
$$

We now contınue by induction Assume for $k \leq l$

$$
\left\|\frac{\partial^{k} w_{0}^{*}}{\partial x^{2} \partial y^{2}}\right\| \leq \frac{C_{1}}{\mu^{2}}(d+1-y) e^{-\frac{\gamma}{\mu}(1-x)}, \quad\left(C_{1} \leq C e^{k \|\left(\frac{\left(\sigma_{\underset{\sim}{*}}^{a_{1}^{*}}\right)_{y}}{y} \|\right.}\right)
$$

We wish to prove true for $k=l+1$ Differentiating (541 b) $l+1$ times with respect to y, we obtain

$$
\begin{aligned}
L_{\mu,}^{[*, \mathrm{~T}, l+1]}\left(\frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}\right)= & \mu\left(\frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}\right)_{x}+\mu \frac{a_{2}^{*}}{a_{1}^{*}}\left(\frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}\right)_{y} \\
& -\left(\frac{b^{*}}{a_{1}^{*}}-(l+1) \mu\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}\right)\left(\frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}\right)=\rho(x, y),
\end{aligned}
$$

where $\rho(x, y)$ contains w_{0}^{*} and its derivatives with respect to y up to order l and the coefficients and their derivatives Using the differential equation and its derivatives with respect to x and y we can express $\frac{\partial^{+1} w_{0}^{*}}{\partial y^{+1}}(x, 1+d)$ in terms the functions $\frac{\partial^{\top} w_{0}}{\partial x^{i}}(x, 1+d)$ where $\imath \leq l+1$ Since $\frac{\partial^{k} w_{0}^{*}}{\partial x^{k}}(x, 1+d)=0$ for all k, we obtain $\frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}(x, 1+d)=0$ Using this result and the fact that assuming sufficient regularity we have $\left|\frac{\partial^{l+2} w_{0}^{*}}{\partial y^{l+2}}(1, y)\right| \leq C$, we obtain $\left|\frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}(1, y)\right| \leq C(1+d-y)$

Consider the barrier functions

$$
\psi^{ \pm}(x, y)=C(1+d-y) e^{\left((l+1)\left\|\left(\frac{a_{\dot{*}}^{*}}{a_{i}^{*}}\right)_{y}\right\|-\frac{\gamma}{\mu}\right)(1-x)} \pm \frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}
$$

We see that the functions $\psi^{ \pm}(x, y)$ are nonnegative on the boundaries for C large enough

Also

$$
\begin{array}{r}
L_{\mu}^{[*, \mathbb{T}, l+1]} \psi^{ \pm}(x, y)=C\left(\left(\left(\gamma-\frac{b^{*}}{a_{1}^{*}}\right)+\mu\left((l+1)\left(\frac{a_{\dot{2}}}{a_{1}^{*}}\right)_{y}-(l+1)\left\|\left(\frac{a_{2}^{*}}{a_{\dot{1}}}\right)_{y}\right\|\right)\right)(1+d-y)\right. \\
\left.-\mu\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)\right) e^{\left((l+1)\left\|\left(\frac{a_{2}^{*}}{a_{\dot{1}}}\right)_{y}\right\|\left(-\frac{\gamma}{\mu}\right)(1-x)\right.} \pm \rho(x, y)
\end{array}
$$

Choosing C correctly, we find $L_{\mu}^{[*, T, l+1]} \psi^{ \pm}(x, y) \leq 0$ and therefore applying Lemma 531 we have

$$
\left|\frac{\partial^{l+1} w_{0}^{*}}{\partial y^{l+1}}(x, y)\right| \leq C(1+d-y) e^{\left((l+1)\left\|\left(\frac{\left(a_{2}^{*}\right.}{a_{1}^{*}}\right)_{y}\right\|-\frac{\gamma}{\mu}\right)(1-x)} \leq C_{1}(1+d-y) e^{-\frac{\gamma}{\mu}(1-x)}
$$

Using the differential equation (54 1b) and its derıvatives with respect to x and y we can obtain the required result for $k=l+1$

Lemma 542 When w_{1}^{*} is defined as in (541c), then gvven $\mu<\gamma_{1}$ and assuming sufficlent regularty of the coefficients and the boundary data, the solution and its dervvatives satzsfy the following bounds for any positive integer k,

$$
\left|\frac{\partial^{k} w_{1}^{*}}{\partial x^{\imath} \partial y^{j}}(x, y)\right| \leq \frac{C_{1}}{\mu^{2+2}}(d+1-y) e^{-\frac{\gamma}{\mu}(1-x)}, \quad(x, y) \in \Omega^{[*, T B]}, \quad\left(C_{1} \leq C e^{\left.(k+2)\left\|\left(\frac{a_{\dot{j}}^{\dot{i}}}{a_{\mathbf{i}}}\right)_{y}\right\|\right)}\right.
$$

Proof Let $f_{1}^{*}=w_{0 . x x}^{*}+w_{0 y y}^{*}$ Using Lemma (541) we see that

$$
\left|\frac{\partial^{k} f_{1}^{*}(x, y)}{\partial x^{\imath} \partial y^{\jmath}}\right| \leq \frac{C_{1}}{\mu^{l+2}}(d+1-y) e^{-\frac{\gamma}{\mu}(1-x)}, \quad\left(C_{1} \leq C e^{\left.(k+2)\left\|\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}\right\|\right)} \|\right)
$$

Consider the barrier functions $\psi^{\ddagger}(x, y)=\frac{C}{\mu^{2}}(1+d-y) e^{-\frac{\gamma}{\mu}(1-x)} \pm w_{1}^{*} \quad$ Since $\left.w_{1}^{*}\right|_{\partial \Omega_{1}^{\mid *}} \mathrm{~T} \mid=0$, we see that the functions are nonnegative on the boundary Also

$$
L_{\mu}^{[*, T]} \psi^{ \pm}(x, y)=\frac{C}{\mu^{2}}\left(\gamma a_{1}^{*}(d+1-y)-\mu a_{2}^{*}-b^{*}(d+1-y)\right) e^{-\frac{\gamma}{\mu}(1-x)} \pm f_{1}^{*}
$$

and for C large enough $L_{\mu}^{[*, T]} \psi^{ \pm}(x, y) \leq 0$ Using Lemma 531 we can therefore conclude
that

$$
\left|w_{1}^{*}\right| \leq \frac{C}{\mu^{2}}(d+1-y) e^{-\frac{\alpha}{\mu}(1-x)}
$$

As with w_{0}^{*}, we proceed by induction Assume the lemma is true for $0 \leq k \leq l$,

$$
\left\|\frac{\partial^{k} w_{1}^{*}}{\partial x^{2} \partial y^{j}}\right\| \leq \frac{C_{1}}{\mu^{2+2}}(d+1-y) e^{-\frac{\gamma}{\mu}(1-x)}, \quad\left(C_{1} \leq C e^{\left.k+2\left\|\left(\frac{a_{2}^{*}}{a_{1}^{2}}\right)_{y}\right\|\right)}\right.
$$

We wish to prove the result true for $k=l+1$ Differentiating (541c) $l+1$ times with respect to y, we have

$$
\begin{aligned}
L_{\mu}^{[*, \mathrm{~T}, l+1]}\left(\frac{\partial^{l+1} w_{1}^{*}}{\partial y^{l+1}}\right)= & \mu\left(\frac{\partial^{l+1} w_{1}^{*}}{\partial y^{l+1}}\right)_{x}+\mu \frac{a_{2}^{*}}{a_{1}^{*}}\left(\frac{\partial^{l+1} w_{1}^{*}}{\partial y^{l+1}}\right)_{y} \\
& -\left(\frac{b^{*}}{a_{1}^{*}}-(l+1) \mu\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}\right)\left(\frac{\partial^{l+1} w_{1}^{*}}{\partial y^{l+1}}\right)=\rho(x, y),
\end{aligned}
$$

where $\rho(x, y)$ contans w_{1}^{*} and its derivatives with respect to y up to order l, \int_{1}^{*} and its derivatives with respect to y up to order $l+1$ and the coefficients and their derivatives Since for all k we have $\frac{\partial^{k} w_{0}^{*}}{\partial x^{i} \partial y^{j}}(x, 1+d)=0$ we can use equation (541 c) and its derivatives to obtain $\frac{\partial^{l+1} w_{1}^{*}}{\partial y^{1+1}}(x, 1+d)=0 \quad$ Clearly we also have $\frac{\partial^{l+1} w_{i}^{i}}{\partial y^{+1}}(1, y)=0 \quad$ Consider the following barrier functions

$$
\psi^{ \pm}(x, y)=\frac{C}{\mu^{2}}(1+d-y) e^{\left((l+1)\left\|\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)_{y}\right\|^{\left.-\frac{\gamma}{\mu}\right)(1-x)} \pm \frac{\partial^{l+1} w_{1}^{*}}{\partial y^{l+1}}, ~\left(\frac{1}{\alpha^{*}}\right.\right.}
$$

We see that the functions $\psi^{ \pm}(x, y)$ are nonnegative on the boundaries, also

$$
\begin{array}{r}
L_{\mu}^{[*, \mathrm{~T}, l+1]} \psi^{ \pm}(x, y)=\frac{C}{\mu^{2}}\left(\left(\left(\gamma-\frac{b^{*}}{a_{\dot{i}}}\right)+\mu\left((l+1)\left(\frac{a_{\dot{i}}}{a_{1}}\right)_{y}-(l+1)\left\|\left(\frac{a_{2}}{a_{\mathbf{i}}}\right)_{y}\right\|\right)\right)(1+d-y)\right. \\
\left.-\mu\left(\frac{a_{\dot{2}}^{*}}{a_{\dot{1}}}\right)\right) e^{\left((l+1)\left\|\left(\frac{a_{\dot{2}}^{*}}{a_{\dot{i}}}\right)_{y}\right\|-\frac{\gamma}{\mu}\right)(1-x)} \pm \rho(x, y)
\end{array}
$$

For C large enough $L_{\mu}^{[*, ~},[l+1] \psi^{ \pm}(x, y) \leq 0$ and therefore using Lemma 531 we see that

$$
\left|\frac{\partial^{l+1} w_{1}^{*}}{\partial y^{l+1}}\right| \leq \frac{C}{\mu^{2}}(1+d-y) e^{\left((l+1)\left\|\left(\frac{a_{\dot{2}}^{*}}{a_{\dot{i}}}\right)_{y}\right\|-\frac{\gamma}{\mu}\right)(1-x)} \leq \frac{C_{1}}{\mu^{2}}(1+d-y) e^{-\frac{\gamma}{\mu}(1-x)}
$$

The differentıal equation (541c) and its derivatives with respect to x and y give the required result for $k=l+1$

Lemma 543 Given $\mu<\gamma_{1}$, when w_{2}^{*} ss defined as in (541d), then the solution and tts derivatives satısfy the following bounds for $0 \leq k \leq 3$,

$$
\begin{gathered}
\left|w_{2}^{*}\right| \leq \frac{C_{1}}{\mu^{4}} e^{-\frac{\gamma}{\mu}(1-x)}, \\
\left\|\frac{\partial^{k} w_{2}^{*}}{\partial x^{2} \partial y^{j}}\right\| \leq \frac{C}{\mu^{4}}\left(\frac{\mu}{\varepsilon}\right)^{k} \quad \text { and } \quad\left\|\frac{\partial^{k} w_{2}^{*}}{\partial y^{k}}\right\| \leq \frac{C}{\mu^{4}}\left(1+\mu\left(\frac{\mu}{\varepsilon}\right)^{k}\right)
\end{gathered}
$$

Proof On $\Omega \Omega^{[*, \tau]}$, using Lemma 542 , we know $\left\|\frac{\partial^{2} w_{i}^{*}}{\partial x^{2}}\right\|+\left\|\frac{\partial^{2} w_{i}^{*}}{\partial y^{2}}\right\| \leq \frac{C}{\mu^{4}}(1+d-y) e^{-\frac{\gamma}{\mu}(1-x)}$ We extend $f^{*}=\frac{\partial^{2} w_{i}}{\partial x^{2}}+\frac{\partial^{2} w_{1}^{*}}{\partial y^{2}}$ to $\Omega^{[*, \mathrm{~TB}]}$ so that $f^{*}(x,-d)=0$ We therefore obtain

$$
\left|f^{*}\right| \leq \frac{C}{\mu^{4}}(1+d-y)(y+d) e^{-\frac{x}{\mu}(1-x)}
$$

We define smooth extensions of the coefficients a_{1}, a_{2} and b to the domann $\Omega^{[*, T \mathrm{~TB}]}$ so that we have

$$
\begin{equation*}
\left|\frac{\partial^{k} a_{2}^{*}}{\partial y^{k}}\right| \leq C(d+y)(1+d-y), \quad \text { for } \quad \imath=1,2 \quad \text { and } \quad k=0,1,2, \tag{542a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\partial b^{*}}{\partial y}\right| \leq C(d+y)(1+d-y) \tag{542b}
\end{equation*}
$$

Consider the barrier functions

$$
\psi^{ \pm}(x, y)=\frac{C}{\mu^{4}} e^{-\frac{\gamma}{\mu}(1-x)} \pm w_{2}^{*}
$$

We see these functions are nonnegative on the boundary and using Lemma 54 2, we sce that $L_{\varepsilon, \mu^{*}}^{[*, \mathrm{~PB}]} \psi^{ \pm}(x, y) \leq 0 \quad$ Applyıng the ellhptıc comparıson prıncıple gives the required exponential bound Since w_{2}^{*} satisfies a similar equation to u, we use Lemma 521 to obtain for $1 \leq \imath+\jmath \leq 3$,

$$
\begin{equation*}
\left\|\frac{\partial^{k} w_{2}^{*}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\mu^{4}}\left(\frac{\mu}{\varepsilon}\right)^{k} \tag{543}
\end{equation*}
$$

We need to sharpen these bounds in the direction orthogonal to the layer Consider the barrier functions

$$
\psi^{ \pm}(x, y)=\frac{C}{\mu^{4}}(d+y)(1+d-y) \pm w_{2}
$$

Clearly $\psi^{ \pm}(x, y) \geq 0$ on the boundaries Also

$$
L_{\varepsilon, \mu}^{[*, T \mathrm{~B}]} \psi^{ \pm}=\frac{C}{\mu^{4}}\left(-2 \varepsilon-b^{*}(d+y)(1+d-y)+(1-2 y) \mu a_{2}^{*}\right) \pm f^{*}
$$

Given (542), and the fact that $\mu<\gamma_{1}$, we see that $L^{[*, \mathrm{TB]}} \psi^{ \pm}(x, y) \leq 0$ for C large enough We can therefore apply the nunımum principle to obtain

$$
\left|w_{2}^{*}(x, y)\right| \leq \frac{C}{\mu^{4}}(d+y)(1+d-y)
$$

Using the above bound we have

$$
\left|\frac{\partial w_{2}^{*}}{\partial y}(x, 1+d)\right| \leq \frac{C}{\mu^{4}} \quad \text { and } \quad\left|\frac{\partial w_{2}^{*}}{\partial y}(x,-d)\right| \leq \frac{C}{\mu^{4}}
$$

We also note that $\frac{\partial w_{z}^{*}}{\partial y}(1, y)=\frac{\partial w_{i}^{*}}{\partial y}(0, y)=0$
Differentiate (541 d) with respect to y to obtain

$$
L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \frac{\partial w_{2}^{*}}{\partial y}=-\mu\left(\frac{\partial a_{1}^{*}}{\partial y}\right) \frac{\partial w_{2}^{*}}{\partial x}-\mu\left(\frac{\partial a_{2}^{*}}{\partial y}\right) \frac{\partial w_{2}^{*}}{\partial y}+\left(\frac{\partial b^{*}}{\partial y}\right) w_{2}^{*}+\frac{\partial^{3} w_{1}^{*}}{\partial x^{2} \partial y}+\frac{\partial^{3} w_{1}^{*}}{\partial y^{3}}=f^{* *}
$$

Using (543) and Lemma 542 we see that $\left|f^{* *}\right| \leq C\left(\frac{1}{\mu^{4}}+\frac{1}{\mu^{2} \varepsilon}\right)$ Consider the barreer functions $\psi^{ \pm}(x, y)=C_{1}\left(\frac{1}{\mu^{4}}+\frac{1}{\mu^{2} \varepsilon}\right) \pm \frac{\partial w_{2}^{*}}{\partial y}$ We see that the functions $\psi^{ \pm}(x, y)$ are nonnegative on $\partial \Omega^{[*, T \mathrm{~TB}]}$ for C_{1} large enough Also

$$
L_{\varepsilon, \mu}^{[*, \mathrm{rB}]} \psi^{ \pm}(x, y)=-b C_{1}\left(\frac{1}{\mu^{4}}+\frac{1}{\varepsilon \mu^{2}}\right) \pm f^{* *} \leq 0,
$$

for C_{1} chosen correctly Therefore using the mınımum principle we obtain

$$
\left\|\frac{\partial w_{2}^{*}}{\partial y}\right\| \leq C\left(\frac{1}{\mu^{4}}+\frac{1}{\mu^{2} \varepsilon}\right)
$$

Now we need to find $\left.\frac{\partial^{2} w_{2}^{*}}{\partial y^{2}}\right|_{\partial \Omega[* \text { TB] }}$ Clearly $\frac{\partial^{2} w_{i}^{*}}{\partial y^{2}}(1, y)=\frac{\partial^{2} w_{2}}{\partial y^{2}}(0, y)=0$ Using (541d) and our extension of a_{2} and f^{*} we also find $\frac{\partial^{2} w_{2}^{*}}{\partial y^{2}}(x, 1+d)=\frac{\partial^{2} w}{\partial y^{2}}(x,-d)=0 \quad$ We
differentrate (541d) twice with respect to y,

$$
\begin{aligned}
L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \frac{\partial^{2} w_{2}^{*}}{\partial y^{2}}= & -2 \mu\left(\frac{\partial a_{1}^{*}}{\partial y}\right) \frac{\partial^{2} w_{2}^{*}}{\partial x \partial y}-\mu\left(\frac{\partial^{2} a_{1}^{*}}{\partial y^{2}}\right) \frac{\partial w_{2}^{*}}{\partial x}-2\left(\frac{\partial a_{2}^{*}}{\partial y}\right) \frac{\partial^{2} w_{2}^{*}}{\partial y^{2}} \\
& +\left(2\left(\frac{\partial b^{*}}{\partial y}\right)-\mu\left(\frac{\partial^{2} a_{2}^{*}}{\partial y^{2}}\right)\right) \frac{\partial w_{2}^{*}}{\partial y}-\left(\frac{\partial^{2} b^{*}}{\partial y^{2}}\right) w_{2}^{*}+\frac{\partial^{4} w_{1}^{*}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w_{1}^{*}}{\partial y^{4}}=f^{* * *}
\end{aligned}
$$

Using the crude bounds (543) and the bounds on $\frac{\partial w_{2}^{*}}{\partial y}$ above, we see that $\left|f^{* * *}\right| \leq$ $\frac{C}{\mu^{4}}\left(1+\frac{\mu^{3}}{\varepsilon^{2}}\right)$ Also, using the extension of the coefficients in (542) and the extension of the function w_{1}^{*}, we find

$$
\left|f^{* * *}\right| \leq \frac{C}{\mu^{4}}\left(1+\frac{\mu^{3}}{\varepsilon^{2}}\right)(y+d)(1+d-y)
$$

Consider the barrier functions $\psi^{ \pm}(x, y)=\frac{C_{1}}{\mu^{4}}\left(1+\frac{\mu^{3}}{\varepsilon^{2}}\right)(y+d)(1+d-y) \pm \frac{\partial^{2} w_{2}^{*}}{\partial y^{2}} \quad$ Both these functions are nonnegative on $\Omega^{[*, \mathrm{~TB}]}$ Given $\mu<\gamma_{1}$, we have

$$
L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \psi^{ \pm}=\frac{C_{1}}{\mu^{4}}\left(1+\frac{\mu^{3}}{\varepsilon^{2}}\right)\left(-2 \varepsilon+\mu(1-2 y) a_{2}^{*}-b^{*}(y+d)(1+d-y)\right) \pm f^{* * *} \leq 0
$$

We apply the minımum principle to obtain

$$
\left|\frac{\partial^{2} w_{2}^{*}}{\partial y^{2}}\right| \leq \frac{C_{1}}{\mu^{4}}\left(1+\frac{\mu^{3}}{\varepsilon^{2}}\right)(d+y)(1+d-y)
$$

Therefore, we have

$$
\left|\frac{\partial^{3} w_{2}^{*}}{\partial y^{3}}(x,-d)\right|=\left|\frac{\frac{\partial^{2} w_{2}^{*}}{\partial y^{2}}(x, y)-\frac{\partial^{2} w_{2}^{*}}{\partial y^{2}}(x,-d)}{d+y}\right| \leq \frac{C}{\mu^{4}}\left(1+\frac{\mu^{3}}{\varepsilon^{2}}\right)
$$

Sımularly we obtain $\left|\frac{\partial^{3} w_{3}}{\partial y^{2}}(x, 1+d)\right| \leq \frac{C}{\mu^{4}}\left(1+\frac{\mu^{3}}{\varepsilon^{2}}\right)$ and we also have $\frac{\partial^{3} w_{2}}{\partial y^{3}}(0, y)=0$ and $\frac{\partial^{3} w_{2}^{2}}{\partial y^{2}}(1, y)=0$

Differentiate (541d) three times with respect to y to obtain

$$
\begin{aligned}
L^{[*, \mathrm{~TB}]} \frac{\partial^{3} w_{2}^{*}}{\partial y^{3}}= & \frac{\partial^{3} b^{*}}{\partial y^{3}} w_{2}^{*}+\left(3 \frac{\partial^{2} b^{*}}{\partial y^{2}}-\mu\left(\frac{\partial^{3} a_{\dot{j}}^{*}}{\partial y^{3}}\right)\right) \frac{\partial w_{2}^{*}}{\partial y}+\left(3\left(\frac{\partial b^{*}}{\partial y}\right)-3 \mu\left(\frac{\partial^{2} a_{i}^{*}}{\partial y^{2}}\right)\right) \frac{\partial^{2} w_{i}^{*}}{\partial y^{2}} \\
& -3 \mu\left(\frac{\partial a_{2}^{*}}{\partial y}\right) \frac{\partial^{3} w_{i}^{*}}{\partial y^{3}}-3 \mu\left(\frac{\partial a_{j}^{*}}{\partial y^{2}}\right) \frac{\partial^{3} w_{2}^{*}}{\partial x \partial y^{2}}-3 \mu\left(\frac{\partial^{2} a_{1}^{*}}{\partial y^{2}}\right) \frac{\partial^{2} w_{j}^{*}}{\partial x \partial y}-\mu\left(\frac{\partial^{3} a_{j}}{\partial y^{3}}\right) \frac{\partial w_{2}^{*}}{\partial x} \\
& +\frac{\partial^{5} w_{i}^{i}}{\partial x^{2} \partial y^{3}}+\frac{\partial^{5} w_{i}}{\partial y^{5}}=f^{* * * *}(x, y) \in \Omega^{[*, \text { TB] }}
\end{aligned}
$$

We see that $\left\|f^{* * * *}\right\| \leq \frac{C_{4}}{\mu^{4}}\left(\frac{\mu^{4}}{\varepsilon^{3}}+1\right)$ and we can use barrier functions and the minımum principle to obtan

$$
\left\|\frac{\partial^{3} w_{2}^{*}}{\partial y^{3}}\right\| \leq \frac{C}{\mu^{4}}\left(1+\frac{\mu^{4}}{\varepsilon^{3}}\right)
$$

Combining all the above bounds, we obtain the required result
Lemma 544 When w_{R}^{*} is defined as in (541), given $\mu<\gamma_{1}$, we see that

$$
\left|w_{R}^{*}(x, y)\right| \leq C e^{-\frac{x}{\mu}(1-x)}
$$

and ats dervaatzues satusfy

$$
\left\|\frac{\partial^{k} w_{R}^{*}}{\partial x^{\imath} \partial y^{3}}\right\| \leq \frac{C}{\mu^{k}} \quad \text { for } 0 \leq k \leq 2, \quad\left\|\frac{\partial^{k} w_{R}^{*}}{\partial x^{2} \partial y^{j}}\right\| \leq \frac{C}{\varepsilon \mu}, k=3
$$

Moreover, in the direction orthogonal to the layer

$$
\left\|\frac{\partial w_{R}^{*}}{\partial y}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{R}^{*}}{\partial y^{2}}\right\| \leq \frac{C}{\mu} \quad \text { and } \quad\left\|\frac{\partial^{3} w_{R}^{*}}{\partial y^{3}}\right\| \leq \frac{C}{\varepsilon}
$$

Proof This result follows from the decomposition (541) using $\mu^{2} \geq \frac{\gamma \epsilon}{\alpha}$ and the bounds on w_{0}^{*}, w_{1}^{*} and w_{2}^{*} their derivatives given respectıvely in Lemma 541 , Lemma 54 2, and Lemma 543

Define the boundary layer function w_{R} associated with the right edge Γ_{R} by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{R}=0,(x, y) \in \Omega, \\
w_{R}=u-v,(x, y) \in \Gamma_{R}, \quad w_{R}(0, y)=w_{R}^{*}(0, y), \\
w_{R}(x, 0)=w_{R}^{*}(x, 0), \quad w_{R}(x, 1)=w_{R}^{*}(x, 1) \tag{544c}
\end{array}
$$

Since $w_{R}=w_{R}^{*}$ on Ω the bounds in Lemma 544 transfer across
We now consider w_{T} the boundary layer function associated with the top edge Γ_{T} Our extended domain is given by $\Omega^{[*, \mathrm{R}]}=(0,1+d) \times(0,1)\left(\right.$ with $\left.\Omega_{1}^{[*, \mathrm{R}]}=[0,1+d) \times[0,1)\right)$ and we define w_{T}^{*} to be the solution of $L_{\varepsilon, \mu}^{[*, \mathrm{R}]} w_{T}^{*}=0$, where the boundary data is chosen in the following decomposition

$$
\begin{equation*}
w_{T}^{*}(x, y, \varepsilon, \mu)=\tilde{w}_{0}^{*}(x, y, \mu)+\varepsilon \tilde{w}_{1}^{*}(x, y, \mu)+\varepsilon^{2} \tilde{w}_{2}^{*}(x, y, \varepsilon, \mu), \tag{545d}
\end{equation*}
$$

where $v(x, 1)=v_{0}(x, 1)=\left(\frac{f}{b}-\left(\frac{\mu}{b}\right) a \quad \nabla\left(\frac{f}{b}\right)\right)(x, 1)$ is given in (5 3 4) and

$$
\begin{align*}
L_{\mu}^{[*, \mathrm{R}]} \tilde{w}_{0}^{*} & =0 \text { on } \Omega_{1}^{[*, R]}, \quad \tilde{w}_{0}^{*}(1+d, y)=0, \quad w_{0}^{*}(x, 1)=(u(x, 1)-v(x, 1))^{*},(545 \mathrm{~b}) \\
\varepsilon L_{\mu}^{[*, \mathrm{R}]} \tilde{w}_{1}^{*} & =\left(L_{\mu}^{[*, \mathrm{R}]}-L_{\varepsilon, \mu}^{[*, \mathrm{R}]}\right) \tilde{w}_{0}^{*} \text { on } \Omega_{1}^{[*, R]}, \quad \tilde{w}_{1}^{*}(1+d, y, \mu)=\tilde{w}_{1}^{*}(x, 1, \mu)=0,(545 \mathrm{c}) \\
\varepsilon^{2} L_{\varepsilon, \mu}^{[*, \mathrm{LR}]} \tilde{w}_{2}^{*} & =\left(\varepsilon\left(L_{\mu}^{[*, \mathrm{R}]}-L_{\varepsilon, \mu}^{[*, \mathrm{R}]}\right) \tilde{w}_{1}^{*}\right)^{*} \text { on } \Omega^{[*, L R]},\left.\quad \tilde{w}_{2}^{*}(x, y, \varepsilon, \mu)\right|_{\partial \Omega^{[-L \mathrm{LR}]}} ^{[0}=0 \quad(545 \mathrm{~d}) \tag{545d}
\end{align*}
$$

We have the following lemma analogous to that for w_{R}
Lemma 545 Given $\mu<\gamma_{1}$, the top layer functıon w_{T}^{*} defined on (545), satusfies the follownng bounds

$$
\left|w_{T}^{*}(x, y)\right| \leq C e^{-\frac{\gamma}{\mu}(1-y)}
$$

and its dervvatives satusfy

$$
\left\|\frac{\partial^{k} w_{T}^{*}}{\partial x^{2} \partial y^{j}}\right\| \leq \frac{C}{\mu^{k}} \quad \text { for } 0 \leq k \leq 2, \quad\left\|\frac{\partial^{k} w_{T}^{*}}{\partial x^{2} \partial y^{j}}\right\| \leq \frac{C}{\varepsilon \mu}, k=3
$$

Moreover, in the direction orthogonal to the layer

$$
\left\|\frac{\partial w_{T}^{*}}{\partial x}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{T}^{*}}{\partial x^{2}}\right\| \leq \frac{C}{\mu} \quad \text { and } \quad\left\|\frac{\partial^{3} w_{T}^{*}}{\partial x^{3}}\right\| \leq \frac{C}{\varepsilon}
$$

Proof The proof is sımılar to that in Lemma 544 Bounding each of the components \tilde{w}_{0}^{*}, \tilde{w}_{1}^{*} and \tilde{w}_{2}^{*} and therr derivatives separately, we obtain the required exponential bounds and bounds on the derivatives of w_{T}^{*} These derivative bounds need to be sharpened in the direction orthogonal to the layer Extensions of a_{1}, a_{2} and b to $\Omega^{[*, \mathrm{LR}]}$ are constructed so that

$$
\left|\frac{\partial^{k} a_{2}^{*}}{\partial x^{k}}\right| \leq C(d+x)(1+d-x), \quad \text { for } \quad \imath=1,2 \quad \text { and } \quad k=0,1,2,
$$

and

$$
\left|\frac{\partial b^{*}}{\partial x}\right| \leq C(d+x)(1+d-x)
$$

We can then use the same approach as for w_{R}^{*} in Lemma 544 to obtan the required orthogonal derivative bounds

Define the boundary layer function w_{T} associated with the top edge Γ_{T} by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{T}=0,(x, y) \in \Omega, \\
w_{T}=u-v,(x, y) \in \Gamma_{T}, \quad w_{L}(x, 0)=w_{T}^{*}(x, 0), \\
w_{T}(0, y)=w_{T}^{*}(0, y), \quad w_{T}(1, y)=w_{T}^{*}(1, y) \tag{546c}
\end{array}
$$

55 Boundary layer components at the outflow

Consider w_{L}, the boundary layer function associated with the left edge Γ_{L} In order to obtain bounds on w_{L} we consider the extended domann $\Omega^{[*, T B]}=(0,1) \times(-d, 1+d), d>0$ We define w_{L}^{*} to be the solution of

$$
\begin{array}{rr}
L_{\varepsilon, \mu}^{*, \mathrm{~TB}]} w_{L}^{*}=0, & (x, y) \in \Omega^{[*, \mathrm{~TB}]}, \\
w_{L}^{*}(0, y)=\left(u-v-w_{R}\right)^{*}(0, y), & y \in[-d, 1+d], \\
w_{L}^{*}(1, y)=0, & y \in[-d, 1+d], \\
w_{L}^{*}(x,-d)=w_{L}^{*}(x, 1+d)=0, \quad x \in[0,1], \tag{551~d}
\end{array}
$$

and we extend $\left(u-y-w_{R}\right)(0, y)$ to $\Omega^{[*, T B]}$ so that sufficient compatibllity conditions are satısfied

Lemma 551 Assuming $a_{1}(x, y)=a_{1}(x)$ and $\mu<\gamma_{1}$, when w_{L}^{*} is defined as in (551) we see that

$$
\left|w_{L}^{*}(x, y)\right| \leq C e^{-\frac{\mu \alpha}{\epsilon} x}
$$

Its derivatives satisfy

$$
\left\|\frac{\partial^{k} w_{L}^{*}}{\partial x^{2} \partial y^{j}}\right\| \leq\left(\frac{\mu}{\varepsilon}\right)^{k} \quad \text { for } 0 \leq k \leq 3
$$

and in the direction orthogonal to the layer

$$
\left\|\frac{\partial w_{L}^{*}}{\partial y}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}\right\| \leq \frac{C}{\mu} \quad \text { and } \quad\left\|\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}\right\| \leq \frac{C}{\varepsilon}
$$

Proof We proceed as in the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ Using a suitably chosen barrier function, the exponential bounds can be shown Using Lemma 422 and Remark 45 1, we can show
that when $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ we have for $0 \leq k+m \leq 3$

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} w_{L}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k+m} \tag{552}
\end{equation*}
$$

In the direction orthogonal to the layer we must sharpen these bounds We only consider functions a_{1} where $a_{1}(x, y)=a_{1}(x)$, and we smoothly extend a_{1} to $\Omega^{[*, \mathrm{~TB}]}$ so it is identically zero on Γ_{T}^{*} and Γ_{B}^{*} We extend the coefficients so that

$$
\begin{equation*}
\left|\frac{\partial^{k} a_{2}^{*}}{\partial y^{k}}\right| \leq C(d+y)(1+d-y), \quad \text { for } \quad k=0,1,2 \tag{553a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\partial b^{*}}{\partial y}\right| \leq C(d+y)(1+d-y) \tag{553~b}
\end{equation*}
$$

Using the definition of $u(0, y)$, the bounds on v in (539) and the bounds on w_{R} in Lemma 544 , we can show using a Taylor series expansion that $\left|w_{L}^{*}(0, y)\right| \leq C(d+y)(1+$ $d-y$) Consider the barrier functions

$$
\psi^{ \pm}(x, y)=C(d+y)(1+d-y) \pm w_{L}^{*}
$$

The functions $\psi^{ \pm}(x, y)$ are nonnegative on $\partial \Omega^{[*, \mathrm{~TB}]}$ Since $\mu<\gamma_{1}$ and $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, we see that $L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \psi^{ \pm}(x, y) \leq 0$ and therefore using the mınımum principle we obtain

$$
\begin{equation*}
\left|w_{L}^{*}(x, y)\right| \leq C(d+y)(1+d-y), \quad(x, y) \in \bar{\Omega}^{[*, \mathrm{~TB}]} \tag{554}
\end{equation*}
$$

Equatıon (53 9) and Lemma 544 gives $\left|\frac{\partial w_{L}^{*}}{\partial y}(0, y)\right| \leq C$ and $\frac{\partial w_{L}^{*}}{\partial y}(1, y)=0$ Using (5 5 4) and the fact that $w_{L}^{*}(x,-d)=0$ and $w_{L}^{*}(x, 1+d)=0$ we also obtain

$$
\left|\frac{\partial w_{L}^{*}}{\partial y}(x,-d)\right| \leq C \quad \text { and } \quad\left|\frac{\partial w_{L}^{*}}{\partial y}(x, 1+d)\right| \leq C
$$

Differentiate (551) with respect to y, remembering that $a_{1}^{*}(x, y)=a_{1}^{*}(x)$, we obtain

$$
\begin{aligned}
\varepsilon\left(w_{L y}^{*}\right)_{x x}+\varepsilon\left(w_{L y}^{*}\right)_{y y}+\mu a_{1}^{*}\left(w_{L y}^{*}\right)_{x}+\mu a_{2}^{*}\left(w_{L y}^{*}\right)_{y}-\left(b^{*}-\mu a_{2 y}^{*}\right) w_{L y}^{*} & =b_{y}^{*} w_{L}^{*} \\
& =f^{*}, \quad(x, y) \in \Omega^{[*, \mathrm{~TB}]}
\end{aligned}
$$

Using (554) we see $\left\|f^{*}\right\| \leq C$ Since $\mu<\gamma_{1}$, using barrier functions and the minımum
principle we can show that

$$
\left\|\frac{\partial w_{L}^{*}}{\partial y}\right\| \leq C
$$

Equation (551) and the properties of a_{2}^{*} give us $\frac{\partial^{2} w_{i}^{*}}{\partial y^{2}}(x, 1+d)=\frac{\partial^{2} w_{\dot{p}}^{*}}{\partial y^{2}}(x,-d)=0$ Also using (539) and Lemma 544 we obtann $\left\|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(0, y)\right\| \leq \frac{C}{\mu}$ and $\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(1, y)=0$ Differentiating (551) twice with respect to y, remembering that a_{1}^{*} is a function of x alone, we obtain

$$
\begin{array}{r}
\varepsilon\left(w_{L y y}^{*}\right)_{x x}+\varepsilon\left(w_{L y y}^{*}\right)_{y y}+\mu a_{1}^{*}\left(w_{L y y}^{*}\right)_{x}+\mu a_{2}^{*}\left(w_{L y y}\right)_{y}-\left(b^{*}-2 \mu a_{2 y}^{*}\right) w_{L y y}^{*} \\
=\left(2 b_{y}^{*}-\mu a_{2 y y}^{*}\right) w_{L y}^{*}-b_{y y}^{*} w_{L}^{*}=f^{* *}(x, y) \in \Omega^{* *, \mathrm{~TB}]}
\end{array}
$$

We see that $\left\|f^{* *}\right\| \leq C$ Using a suitable barrier function we can show that

$$
\left\|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}\right\| \leq \frac{C}{\mu}
$$

In order to obtain bounds on the third derivative of w_{L}^{*} in the direction orthogonal to the layer, we need sharper bounds on the second derivatıve above Using Taylor expansions, equation (5 3 9) and Lemma 544 we can show that $\left|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(0, y)\right| \leq \frac{C}{\varepsilon}(d+y)(1+d-y)$ Also we can show that $\left|f^{* *}\right| \leq C(d+y)(1+d-y)$ Consider the barrier functions $\psi^{ \pm}(x, y)=\frac{C}{\epsilon}(d+y)(1+d-y) \pm \frac{\partial^{2} w_{i}^{*}}{\partial y^{2}}$ We can see that, choosing C large enough, both these functions are nonnegative on $\Omega^{[*, T \mathrm{~B}]}$ Using the condition that $\mu<\gamma_{1}$, we obtain $L_{\varepsilon, \mu}^{[*, \mathrm{~TB}]} \psi^{ \pm}(x, y) \leq 0$ and applying the minımum principle, we therefore conclude

$$
\left|\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}\right| \leq \frac{C}{\varepsilon}(d+y)(1+d-y)
$$

Snce $\frac{\partial^{2} w_{i}}{\partial y^{2}}(x,-d)=0$, we have

$$
\left\|\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}(x,-d)\right\|=\left\|\frac{\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(x, y)-\frac{\partial^{2} w_{L}^{*}}{\partial y^{2}}(x,-d)}{d+y}\right\| \leq \frac{C}{\varepsilon}
$$

Similarly we obtain $\left\|\frac{\partial^{3} w_{i}^{*}}{\partial y^{3}}(x, 1+d)\right\| \leq \frac{C}{\varepsilon}$ and we also have $\left\|\frac{\partial^{3} w_{i}^{*}}{\partial y^{3}}(0, y)\right\| \leq \frac{C}{\varepsilon}$ and
$\frac{\partial^{3} w_{j}^{*}}{\partial y^{3}}(1, y)=0$ We differentiate (551) three times with respect to y to obtain

$$
\begin{aligned}
& \varepsilon\left(w_{L y y y}^{*}\right)_{x x}+\varepsilon\left(w_{L y y y}^{*}\right)_{y y}+\mu a_{1}^{*}\left(w_{L y y y}^{*}\right)_{x}+\mu a_{2}^{*}\left(w_{L y y y}^{*}\right)_{y}-\left(b^{*}-3 \mu a_{2 y}^{*}\right) w_{L y y y}^{*} \\
= & b_{y y y}^{*} w_{L}^{*}+\left(3 b_{y y}^{*}-\mu a_{2 y y y}^{*}\right) w_{L y}^{*}+\left(3 b_{y}^{*}-3 \mu a_{2 y y}^{*}\right) w_{L y y}^{*}=f^{* * *}(x, y) \in \Omega^{(*, \mathrm{~TB})}
\end{aligned}
$$

We see that $\left\|f^{* * *}\right\| \leq \frac{C}{\mu}$, and noting $\mu<\gamma_{1}$ we can use barrier functions and the mınımum princıple to obtain

$$
\left\|\frac{\partial^{3} w_{L}^{*}}{\partial y^{3}}\right\| \leq \frac{C}{\varepsilon}
$$

This concludes our proof
We therefore define the boundary layer function w_{L} associated with the left edge Γ_{L} by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{L}=0,(x, y) \in \Omega, \\
w_{L}=u-v-w_{R},(x, y) \in \Gamma_{L}, \quad w_{L}=0,(x, y) \in \Gamma_{R}, \\
w_{L}(x, 0)=w_{L}^{*}(x, 0), \quad w_{L}(x, 1)=w_{L}^{*}(x, 1) \tag{555c}
\end{array}
$$

The layer component w_{B} is defined sımilarly We consider the extended domann $\Omega^{[*, L R]}$ and we define w_{B}^{*} to be the solution of

$$
\begin{array}{rr}
L_{\varepsilon, \mu}^{[,, \mathrm{LR}]} w_{B}^{*}=0, & (x, y) \in \Omega^{[*, \mathrm{LR}]}, \\
w_{B}^{*}(x, 0)=\left(u-v-w_{T}\right)^{*}(x, 0), & x \in[-d, 1+d], \\
w_{B}^{*}(x, 1)=0, & x \in[-d, 1+d], \\
w_{B}^{*}(-d, y)=w_{B}^{*}(1+d, y)=0, & y \in[0,1], \tag{556~d}
\end{array}
$$

and we extend $\left(u-y-w_{T}\right)(x, 0)$ to $\Omega^{[*, T B]}$ so that sufficient compatibility conditions are satısfied

Lemma 552 Assuming $a_{2}(x, y)=a_{2}(y)$ and $\mu<\gamma_{1}$, when w_{B}^{*} is defined as in (556) we see that

$$
\left|w_{B}^{*}(x, y)\right| \leq C e^{-\frac{\mu \alpha}{\varepsilon} y}
$$

Its derivatzves satasfy

$$
\left\|\frac{\partial^{k} w_{B}^{*}}{\partial x^{2} \partial y^{j}}\right\| \leq\left(\frac{\mu}{\varepsilon}\right)^{k} \quad \text { for } 0 \leq k \leq 3
$$

Moreover, in the durection orthogonal to the layer

$$
\left\|\frac{\partial w_{B}^{*}}{\partial x}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{B}^{*}}{\partial x^{2}}\right\| \leq \frac{C}{\mu} \quad \text { and } \quad\left\|\frac{\partial^{3} w_{B}^{*}}{\partial x^{3}}\right\| \leq \frac{C}{\varepsilon}
$$

Proof The proof is similar to that in Lemma 551 We consider the barrier functions $\psi^{ \pm}(x, y)=C e^{-\frac{\mu \alpha}{\epsilon} y} \pm w_{B}^{*} \quad$ These functions are nonnegative on the boundary $\partial \Omega^{[*, \mathrm{LR}]}$ Also for C chosen correctly, $L_{\varepsilon, \mu}^{[*, \mathrm{RR}]} \psi^{ \pm}(x, y) \leq 0$, and we obtain the required exponential bound Usmg Lemma 422 and Remark 451 , we can show that when $\mu^{2} \geq \frac{\gamma \epsilon}{\alpha}$ we have for $0 \leq k+m \leq 3$

$$
\begin{equation*}
\left\|\frac{\partial^{k+m} w_{B}^{*}}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k+m} \tag{557}
\end{equation*}
$$

In ordeı to obtain the sharp orthogonal derivative bounds, extensions of a_{1} and b to $\Omega^{[*, L \mathrm{LR}]}$ are constructed so that

$$
\left|\frac{\partial^{k} a_{1}^{*}}{\partial x^{k}}\right| \leq C(d+x)(1+d-x), \quad \text { for } \quad k=0,1,2
$$

and

$$
\left|\frac{\partial b^{*}}{\partial x}\right| \leq C(d+x)(1+d-x)
$$

Assuming that $a_{2}(x, y)=a_{2}(y)$, we extend a_{2} so that a_{2}^{*} is identically zero on Γ_{L} and Γ_{R} We then use the same approach as for w_{L}^{*} in Lemma 551 to obtan the required orthogonal derivative bounds

We therefore describe the boundary layer function associated with the bottom edge Γ_{B} by

$$
\begin{array}{r}
L_{\varepsilon ; \mu} w_{B}=0,(x, y) \in \Omega, \\
w_{B}=(u-v)-w_{T},(x, y) \in \Gamma_{B}, \quad w_{B}=0,(x, y) \in \Gamma_{T}, \\
w_{B}(0, y)=w_{B}^{*}(0, y), \quad w_{B}(1, y)=w_{B}^{*}(1, y) \tag{558c}
\end{array}
$$

Remark 551 Since we have defined all of the above boundary layer functions on extended domains, we are not imposing overly artuficzal compatibility conditions at the corners When we move to the analysis of the corner layer functions we sometimes will be consıdering elliptic problems on the non-extended original domain where compatibility may be an ıssue

56 Corner layer components

The order in which we define the corner layer functions is vital to obtaining the correct bounds on the components and their derivatives requred for the error analysis The four corners are treated differently in our analysis In order to correctly isolate the corner layer components, we have to be careful about the boundary data chosen for each of the functions As with w_{R} and w_{T}, we use decompositions to chose these boundary conditions so as to correctly isolate the corner singularities In order to isolate the top-right corner layer function $w_{R T}$, we use a decomposition of $w_{R T}$ into a sum of solutions to first order problems and the solution of an elliptic problem The top-left and bottom-rıght layer components are both decomposed mto a sum of a solution to a parabolic problem and the solution of an elliptic problem It is not necessary to decompose $w_{L B}$

In this section, we show how we beleve the corner layer functions should be defined In order to prove parameter-uniform convergence of our numerical method, we need to obtan bounds on these components and their derivatives However, at present we do not have a rigorous proof of these bounds Instead, we state a series of conjectures, the validity of which remain an open question These conjectures are motivated using arguments similar to those in the previous sections but the proofs of such bounds are left for future work

Starting with the corner layer function associated with the top right corner, we define $w_{R T}$ by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{R T}=0,(x, y) \in \Omega, \\
w_{R T}=-w_{T},(x, y) \in \Gamma_{R}, \quad w_{R T}=-w_{R},(x, y) \in \Gamma_{T}, \\
w_{R}(x, 0), w_{R}(0, y) \quad \text { defined in }(561)
\end{array}
$$

In order to determine appropriate values for $w_{R T}(0, y)$ and $w_{R T}(1, y)$, we decompose $w_{R T}$ as follows,

$$
\begin{equation*}
w_{R T}(x, y, \varepsilon, \mu)=\bar{w}_{0}(x, y, \mu)+\varepsilon \bar{w}_{1}(x, y, \mu)+\varepsilon^{2} \bar{w}_{2}(x, y, \varepsilon, \mu) \tag{56la}
\end{equation*}
$$

where

$$
\begin{align*}
L_{\mu} \bar{w}_{0} & =0 \text { on } \Omega_{1}=[0,1)^{2}, \quad \bar{w}_{0}(x, 1)=-w_{R}(x, 1), \quad \bar{w}_{0}(1, y)=-w_{T}(1, y), \tag{561b}\\
\varepsilon L_{\mu} \bar{w}_{1} & =\left(L_{\mu}-L_{\varepsilon, \mu}\right) \bar{w}_{0} \text { on } \Omega_{1}, \bar{w}_{1}(x, 1, \mu)=\bar{w}_{1}(1, y, \mu)=0, \tag{561c}\\
\varepsilon^{2} L_{\varepsilon, \mu} \bar{w}_{2} & =\varepsilon\left(L_{\mu}-L_{\varepsilon, \mu}\right) \bar{w}_{1} \quad \text { on } \Omega,\left.\bar{w}_{2}(x, y, \varepsilon, \mu)\right|_{\partial \Omega}=0 \tag{561d}
\end{align*}
$$

Conjecture 561 When $w_{R T}$ is defined as on the decomposition (561), we have the following bounds on the corner layer functzon assoczated with the top-rught corner

$$
\left|w_{R T}(x, y)\right| \leq C e^{-\frac{\gamma}{2 \mu}(1-x)} e^{-\frac{\gamma}{2 \mu}(1-y)}
$$

and its dervoatuves satısfy

$$
\left\|\frac{\partial^{k} w_{R T}}{\partial x^{2} \partial y^{\jmath}}\right\| \leq \frac{C}{\mu^{k}}, \quad \text { for } \quad 0 \leq k \leq 2
$$

and

$$
\left\|\frac{\partial^{k} w_{R T}}{\partial x^{\imath} \partial y^{3}}\right\| \leq \frac{C}{\varepsilon \mu}, \quad k=3
$$

Motivation In order to obtain the exponential character of the layer function $w_{R T}$, we must assume the boundary conditions $w_{R T}(0, y)=\bar{w}_{0}(0, y)+\varepsilon \bar{w}_{1}(0, y)$ and $w_{R T}(x, 0)=$ $\bar{w}_{0}(x, 0)+\varepsilon \bar{w}_{1}(x, 0)$, obtaned using the decomposition (561), satısfy the bounds

$$
\left|w_{R T}(0, y)\right| \leq C e^{-\frac{\gamma}{2 \mu}} e^{-\frac{\gamma}{2 \mu}(1-y)} \quad \text { and } \quad\left|w_{R T}(x, 0)\right| \leq C e^{-\frac{\gamma}{2 \mu}} e^{-\frac{\gamma}{2 \mu}(1-x)}
$$

Consider the barrier functions $\psi^{ \pm}(x, y)=C e^{-\frac{\gamma}{2 \mu}(1-x)} e^{-\frac{\gamma}{2 \mu}(1-y)} \pm w_{R T} \quad$ Using Lemma 544 , Lemma 545 and thıs assumption, we see $\left.\psi^{ \pm}(x, y)\right|_{\partial \Omega} \geq 0$ We also see that when $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, for C large enough

$$
L_{\varepsilon, \mu} \psi^{ \pm}(x, y)=C\left(\frac{\varepsilon}{4 \mu^{2}} \gamma^{2}+\frac{\varepsilon}{4 \mu^{2}} \gamma^{2}+\frac{\gamma}{2} a_{1}+\frac{\gamma}{2} a_{2}-b\right) e^{-\frac{\gamma}{2 \mu}(1-x)} e^{-\frac{\gamma}{2 \mu}(1-y)} \leq 0
$$

We therefore apply the minımum principle to obtain the result
To obtain the derivative bounds on \bar{w}_{0}, we could applying a sımılar argument to that in Lemma 541 to get for $0 \leq k \leq 6$

$$
\left\|\frac{\partial^{k} \bar{w}_{0}}{\partial x^{2} \partial y^{\jmath}}\right\| \leq \frac{C}{\mu^{k}}
$$

We should note that the proof of such bounds would require us to extend the derivative bounds in Lemma 544 to give

$$
\left\|\frac{\partial^{k} w_{R}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\mu^{k}} \text { for } 0 \leq k \leq p \text { and }\left\|\frac{\partial^{k} w_{T}}{\partial x^{\imath} \partial y^{3}}\right\| \leq \frac{C}{\mu^{k}} \text { for } 0 \leq k \leq p
$$

These bounds can possibly be achneved by the more complex decomposition of the components into p terms, $p-1$ of which are solutions of first order differential equations and the final term a solution of an elliptic differential equation We do not discuss the resulting compatibility or regularity issues that arise from decomposing w_{R}^{*} and w_{T}^{*} into such sums of p terms

If the above bounds hold, we can show using Lemma 532 that for $0 \leq k \leq 4$ we have

$$
\left\|\frac{\partial^{k} \bar{w}_{1}}{\partial x^{\imath} \partial y^{\jmath}}\right\| \leq \frac{C}{\mu^{k+2}}
$$

Finally since \bar{w}_{2} satisfies a simılar equation to u, we can use Lemma 521 along with the above bounds to obtain the required derivative bounds on $w_{R T}$

The next component to consider is $w_{L T}$, the corner layer function associated with the top left corner $\Gamma_{L T}$

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{L T}=0,(x, y) \in \Omega \\
w_{L T}=-w_{T}-w_{R T},(x, y) \in \Gamma_{L}, \quad w_{L T}=-w_{L},(x, y) \in \Gamma_{T} \\
w_{L T}(1, y)=0, \quad w_{L T}(x, 0) \quad \text { defined in }(562)
\end{array}
$$

In order to determine the appropriate value for $w_{L T}(x, 0)$ so as to isolate the top-left singularity, we consider the extended domain $\Omega^{[*, B]}$ and decompose $w_{L T}^{*}$ into a sum of a solution to a parabolic problem and a solution of an elliptic problem as follows,

$$
\begin{equation*}
w_{L T}^{*}(x, y, \varepsilon, \mu)=\hat{w}_{0}^{*}(x, y, \varepsilon, \mu)+\varepsilon \hat{w}_{1}^{*}(x, y, \varepsilon, \mu) \tag{562a}
\end{equation*}
$$

where

$$
\begin{gather*}
\hat{L}_{p, \varepsilon, \mu}^{[*, \mathrm{~B}]} \hat{w}_{0}^{*}=\varepsilon \hat{w}_{0 x x}^{*}+\mu a_{1}^{*} \hat{w}_{0 x}^{*}-b^{*} \hat{w}_{0}^{*}+\mu a_{2}^{*} \hat{w}_{0 y}^{*}=0, \quad \hat{w}_{0}^{*}(x, 1)=-w_{L}(x, 1), \tag{562b}\\
\hat{w}_{0}^{*}(0, y)=\left(-w_{T}(0, y)-w_{R T}(0, y)\right)^{*}, \quad \hat{w}_{0}^{*}(1, y)=0, \\
\varepsilon L_{\varepsilon, \mu}^{[*, \mathrm{~B}]} \hat{w}_{1}^{*}=\left(L_{p, \varepsilon, \mu}^{[*, \mathrm{~B}]}-L_{\varepsilon, \mu}^{[*, \mathrm{~B}]}\right) \hat{w}_{0}^{*} \text { on } \Omega^{* *, \mathrm{~B}]},\left.\quad \hat{w}_{1}^{*}(x, y, \varepsilon, \mu)\right|_{\left.\partial \Omega \Omega^{[* ~} \mathrm{B}\right]}=0 \tag{562c}
\end{gather*}
$$

Remark 561 We should note that, keepang with the style of the thesis, at would seem more natural for the above decomposition to have three terms in the expansion However, in this case such an expansion is not necessary for the discrete error analysis Having three terms in the expansion would also make the establishment of the bounds on the derivatives signaficantly more difficult We should also note that we are required to know $w_{R T}(0, y)$ before we define $w_{L T}^{*}$ and for this reason it is essential to be extremely careful about the
order in which these layer functions are defined
Conjecture 562 When $w_{L T}^{*}$ is defined as in the decomposition (562) we have the following bounds on the corner layer function assoczated with the top-left corner

$$
\left|w_{L T}^{*}(x, y)\right| \leq C e^{-\frac{\gamma}{2 \mu}(1-y)} e^{-\frac{\mu}{\varepsilon} \alpha x},
$$

and its derivatives satusfy

$$
\left\|\frac{\partial^{k} w_{L T}^{*}}{\partial y^{k}}\right\| \leq C\left(\left(\frac{1}{\mu}\right)^{k}+\frac{\varepsilon}{\mu^{2}}\left(\frac{\mu}{\varepsilon}\right)^{k}\right), \quad 0 \leq k \leq 3
$$

and

$$
\left\|\frac{\partial^{k} w_{L T}^{*}}{\partial x^{\imath} \partial y^{j}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k}, \quad 0 \leq k \leq 3
$$

Motivation In order to obtain the required exponential bounds on $w_{L T}^{*}$, we begin by analysing the component \hat{w}_{0}^{*} We make a change of variables $t=\frac{1-y}{\mu}$ Letting $\hat{w}_{0}^{*}(x, y)=$ $\eta_{0}(x, t)$, and $a_{1}^{*}(x, y)=\tilde{a}_{1}(x, t)$ with the other functions defined analogously, we obtan

$$
\begin{aligned}
L_{p, \varepsilon, \mu}^{[*, \mathrm{~B}]} \eta_{0}=\varepsilon \eta_{0 x x}+\mu \tilde{a}_{1} \eta_{0 x}-\tilde{b} \eta_{0}-\tilde{a}_{2} \eta_{0 t}=0, & \eta_{0}(x, 0)
\end{aligned}=-\tilde{w}_{L}(x, 0), \quad \eta_{0}(1, t)=0, ~(0, t)=-\tilde{w}_{T}(0, t)-\tilde{w}_{R T}(0, t),
$$

Consider the barrier functions

$$
\psi^{ \pm}(x, y)=C e^{-\frac{t \gamma}{2}} e^{\frac{-\mu \alpha}{\varepsilon} x} \pm \eta_{0}
$$

Using the exponential bounds on w_{L} and w_{T} given in Lemma 551 and Lemma 545 and assuming Conjecture 561 holds, we see that $\left.\psi(x, t)\right|_{\Gamma_{p}} \geq 0$ for C large enough $\left(\Gamma_{p}=\tilde{\Gamma}_{L}^{[*, B]} \cup \tilde{\Gamma}_{R}^{[*, B]} \cup \tilde{\Gamma}_{T}\right)$ We also obtann

$$
L_{p, c, \mu}^{[*, \mathrm{~B}]} \psi^{ \pm}(x, t)=\left(\varepsilon\left(\frac{\mu}{\varepsilon}\right)^{2} \alpha^{2}-\frac{\mu^{2}}{\varepsilon} \alpha a_{1}-b+a_{2} \frac{\gamma}{2}\right) e^{-\frac{t \gamma}{2}} e^{\frac{-\mu \alpha}{\varepsilon} x} \pm 0
$$

and we can show that $L_{p, \varepsilon, \mu}^{[*, B]} \psi^{ \pm}(x, t) \leq 0$ for C large enough Usıng the mınımum princıple for the parabolic problem, we obtain

$$
\left|\eta_{0}(x, t)\right| \leq C e^{-\frac{t \gamma}{2}} e^{\frac{-\mu \alpha}{s} x}
$$

Therefore, transforming back, we have

$$
\begin{equation*}
\left|\hat{w}_{0}^{*}(x, y)\right| \leq C e^{-\frac{\gamma(1-y)}{2 \mu}} e^{\frac{-\mu \alpha}{\epsilon} x} \tag{563}
\end{equation*}
$$

To find the exponential character of the corner layer function $w_{L T}^{*}$, consider the following barrier functions on the extended domain $\Omega^{[*, \mathrm{~B}]}$,

$$
\psi^{ \pm}(x, y)=C e^{-\frac{\gamma}{2 \mu}(1-y)} e^{-\frac{\mu^{2}}{\varepsilon} \alpha x} \pm w_{L T}^{*}(x, y)
$$

If the exponential bounds on $\hat{w}_{0}^{*} \mathrm{~m}(563)$ hold then we have $\left|\hat{w}_{0}^{*}(x,-d)\right| \leq C e^{-\frac{\gamma}{2 \mu}(1+d)} e^{-\frac{\mu}{\epsilon} \alpha x}$ Using the exponential bounds in Lemma 551 and Lemma 545 and assuming Conjecture 561 , we obtain $\left.\psi^{ \pm}(x, y)\right|_{\partial \Omega[* \text { B] }} \geq 0$ for C large enough We can also show for C chosen correctly we have $L_{\varepsilon, \mu}^{[*, \mathrm{~B}]} \psi^{ \pm} \leq 0$ and therefore we obtan the required exponential bound

The required bounds on the derivatives of $w_{L T}^{*}$ can possibly be obtained by analysing the each of its components separately Such a proof would however requre that the bounds in Lemma 551 and Lemma 545 can be extended as follows

$$
\begin{equation*}
\left\|\frac{\partial^{k} w_{T}}{\partial x^{2} \partial y^{j}}\right\| \leq \frac{C}{\mu^{k}} \text { for } 0 \leq k \leq p \text { and } \quad\left\|\frac{\partial^{k} w_{L}}{\partial x^{\imath} \partial y^{\jmath}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k} \text { for } 0 \leq k \leq p \tag{564}
\end{equation*}
$$

We define the boundary layer function $w_{L T}$ associated with the top left corner $\Gamma_{L T}$ by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{L T}=0,(x, y) \in \Omega \\
w_{L T}=-w_{T}-w_{R T},(x, y) \in \Gamma_{L}, \quad w_{L}=0,(x, y) \in \Gamma_{R}, \\
w_{L T}(x, 0)=w_{L T}^{*}(x, 0), \quad w_{L T}(x, 1)=-w_{L}(x, 1) \tag{565c}
\end{array}
$$

We now consider $w_{R B}$, the corner layer function associated with the bottom-right corner $\Gamma_{R B}$

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{R B}=0,(x, y) \in \Omega, \\
w_{R B}=-w_{B},(x, y) \in \Gamma_{R}, \quad w_{R B}=-w_{R}-w_{R T},(x, y) \in \Gamma_{B}, \\
w_{R B}(x, 1)=0, \quad w_{R B}(0, y) \quad \text { defined in }(566)
\end{array}
$$

We consider the extended doman $\Omega^{[*, \mathrm{~L}]}$ and decompose $w_{R B}^{*}$ into a sum of a solution to
a parabolic and a solution of an elliptic problem as follows,

$$
\begin{equation*}
w_{R B}^{*}(x, y)=\hat{w}_{0}^{*}(x, y)+\varepsilon \hat{w}_{1}^{*}(x, y) \tag{566a}
\end{equation*}
$$

where

$$
\begin{array}{r}
\hat{L}_{p, \varepsilon, \mu}^{[*, L]} \hat{w}_{0}^{*}=\varepsilon \hat{w}_{0 y y}^{*}+\mu a_{2}^{*} \hat{w}_{0 y}^{*}-b^{*} \hat{w}_{0}^{*}+\mu a_{1}^{*} \hat{w}_{0 x}^{*}=0, \quad \hat{w}_{0}^{*}(1, y)=-w_{B}(1, y), \\
\hat{w}_{0}^{*}(x, 0)=-w_{R}(x, 0)-w_{R T}(x, 0), \quad \hat{w}_{0}^{*}(x, 1)=0, \\
\varepsilon L_{\varepsilon, \mu}^{[*, \mathrm{~L}]} \hat{w}_{1}^{*}=\left(L_{p, \varepsilon, \mu}^{[*, \mathrm{~L}]}-L_{\varepsilon, \mu}^{[*, \mathrm{~L}]}\right) \hat{w}_{0}^{*}, \tag{566c}\\
\left.\hat{w}_{1}^{*}(x, y, \varepsilon, \mu)\right|_{\partial \Omega I * \mathrm{~L}]}=0
\end{array}
$$

Conjecture 563 When $w_{R B}^{*}$ is defined as in the decomposition (566), we have the following bounds on the corner layer function associated with the bottom-right corner

$$
\left|w_{R B}^{*}(x, y)\right| \leq C e^{-\frac{\gamma}{2 \mu}(1-x)} e^{-\frac{\mu}{\varepsilon} \alpha y}
$$

and its dervatives satisfy

$$
\left\|\frac{\partial^{k} w_{R B}^{*}}{\partial x^{k}}\right\| \leq C\left(\left(\frac{1}{\mu}\right)^{k}+\frac{\varepsilon}{\mu^{2}}\left(\frac{\mu}{\varepsilon}\right)^{k}\right), \quad 0 \leq k \leq 3
$$

and

$$
\left\|\frac{\partial^{k} w_{R B}^{*}}{\partial x^{2} \partial y^{3}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k}, \quad 0 \leq k \leq 3
$$

Motivation The motivation for this result is analogous to that of Conjecture 562 We therefore define the boundary layer function $w_{R B}$ associated with the bottom-right corner $\Gamma_{R B}$ by

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{R B}=0,(x, y) \in \Omega, \\
w_{L T}=-w_{R}-w_{R T},(x, y) \in \Gamma_{B}, \quad w_{L}=0,(x, y) \in \Gamma_{T}, \\
w_{L T}(0, y)=w_{L T}^{*}(0, y), \quad w_{L T}(1, y)=-w_{B}(1, y) \tag{567c}
\end{array}
$$

Finally we consider the corner layer function $w_{L B}$ associated with the corner $\Gamma_{L B}$ We define $w_{L B}$ to be the solution of

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{L B}=0(x, y) \in \Omega, \\
w_{L B}=-w_{B}-w_{R B},(x, y) \in \Gamma_{L}, \quad w_{L B}=-w_{L}-w_{L T},(x, y) \in \Gamma_{B}, \\
w_{L B}=0,(x, y) \in \Gamma_{R}, \quad w_{L B}=0,(x, y) \in \Gamma_{T} \tag{568c}
\end{array}
$$

Conjecture 564 When $w_{L B}$ is defined as in (568), we have the following bounds on the corner layer function assocuated with the bottom-left corner

$$
\left|w_{L B}(x, y)\right| \leq C e^{-\frac{\mu \alpha}{\varepsilon} x} e^{-\frac{\mu \alpha}{\varepsilon} y},
$$

and ats dervatuves satzsfy

$$
\left\|\frac{\partial^{k} w_{L B}}{\partial x^{2} \partial y^{j}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k}
$$

Motivation Consider the barrier functions $\psi^{ \pm}(x, y)=C e^{-\frac{\mu \alpha}{\varepsilon} x} e^{-\frac{\mu \alpha}{\varepsilon} y} \quad$ Using the exponential bounds on w_{L} and w_{B} in Lemma 551 and Lemma 552 and assuming the exponential bounds on $w_{L T}$ and $w_{R B}$ in Conjecture 562 and Conjecture 563 hold, we see that both these functions are nonnegative on $\partial \Omega$ Also

$$
L_{\varepsilon, \mu} \psi^{ \pm}(x, y)=C\left(\frac{2 \mu^{2} \alpha^{2}}{\varepsilon}-\frac{\alpha \mu^{2} a_{1}}{\varepsilon}-\frac{\alpha \mu^{2} a_{2}}{\varepsilon}-b\right) e^{-\frac{\mu \alpha}{\varepsilon} x} e^{-\frac{\mu \alpha}{\varepsilon} y} \pm 0
$$

and using the definition of α we see that $L_{\varepsilon, \mu} \psi^{ \pm}(x, y) \leq 0$ Using the minımum principle we obtain the required exponential bounds

The bounds on derivatives of $w_{L B}$ should follow using Lemma 521 However, such a proof would require extensions of the derivative bounds in Lemma 55 1, Lemma 55 2, Conjecture 562 and Conjecture 563

Remark 562 Figures $51-54$ show the boundary data picked up by the layer functions defined in the previous sectıons Since we see these functıons are interdependent, the order in which they were defined was cruczal in usolating the layers and obtaining the correct decomposition of u The chovce of boundary data for each function is also cruczal to obtaining bounds on these components and their derivatives With regards to compatibl2ty, looking at Figure $54(\mathrm{~h})$ for example, we see that at the corner $(0,0),\left(-w_{B}-w_{R B}\right)(0,0)$ is equal to $\left(-u+v+w_{T}+w_{R}+w_{R T}\right)(0,0)$ which is in turn equal to $\left(-w_{L}-w_{L T}\right)(0,0) \quad$ Simular arguments hold in the other three corners and for the other layer functions However, we realise there are many compatzbluty ussues that have not been addressed We accept these ussues are signaficant and we hope to examine them in some future publication

Figure 51 Figures illustrating the boundary data of the functions (a) w_{R} and (b) w_{T}

Figure 52 Figures illustrating the boundary data of the functions (c) w_{L} and (d) w_{B}

Figure 53 Figures illustrating the boundary data of the functions (e) $w_{R T}$ and (f) $w_{L T}$

Figure 54 Figures illustrating the boundary data of the functions (g) $w_{R B}$ and (h) $w_{L B}$

Theorem 561 When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ the solution u of (411) can be decomposed as

$$
\begin{equation*}
u=v+w_{L}+w_{R}+w_{T}+w_{B}+w_{L B}+w_{L T}+w_{R B}+w_{R T} \tag{5}
\end{equation*}
$$

where $L_{\varepsilon, \mu} v=f$, and the layer and corner layer functions are each solutions of the homogenous equation $L_{\varepsilon, \mu} w=0$ Boundary condttions for these functions can be spectfied so that given Assumptions 1 and 2 , the bounds on the regular and boundary layer components and their derivatuves given below hold

$$
\begin{array}{r}
\left\|\frac{\partial^{k+m_{v}}}{\partial x^{k} \partial y^{m}}\right\| \leq C\left(1+\left(\frac{\mu}{\varepsilon}\right)^{k+m-2}\right), \quad 0 \leq k+m \leq 3, \\
\left|w_{L}(x, y)\right| \leq C e^{-\frac{\mu \alpha}{\varepsilon} x},\left|w_{B}(x, y)\right| \leq C e^{-\frac{\mu \alpha}{\varepsilon} y}, \\
\left|w_{R}(x, y)\right| \leq C e^{-\frac{\gamma}{\mu}(1-x)}, \quad \mid w_{T}(x, y) \| \leq C e^{-\frac{\gamma}{\mu}(1-y)}, \\
\left\|\frac{\partial^{k} w_{L}}{\partial x^{2} \partial y^{3}}\right\| \leq\left(\frac{\mu}{\varepsilon}\right)^{k}, \quad\left\|\frac{\partial^{k} w_{B}}{\partial x^{2} \partial y^{3}}\right\| \leq\left(\frac{\mu}{\varepsilon}\right)^{k} \quad \text { for } 0 \leq k \leq 3, \\
\left\|\frac{\partial w_{L}}{\partial y}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{L}}{\partial y^{2}}\right\| \leq \frac{C}{\mu}, \quad\left\|\frac{\partial^{3} w_{L}}{\partial y^{3}}\right\| \leq \frac{C}{\varepsilon}, \\
\left\|\frac{\partial w_{B}}{\partial x}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{B}}{\partial x^{2}}\right\| \leq \frac{C}{\mu}, \quad\left\|\frac{\partial^{3} w_{B}}{\partial x^{3}}\right\| \leq \frac{C}{\varepsilon}, \\
\left\|\frac{\partial^{k} w_{R}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\mu^{k}} \text { for } \quad 0 \leq k \leq 2, \quad\left\|\frac{\partial^{k} w_{R}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\varepsilon \mu}, k=3, \\
\left\|\frac{\partial w_{R}}{\partial y}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{R}}{\partial y^{2}}\right\| \leq \frac{C}{\mu}, \quad\left\|\frac{\partial^{3} w_{R}}{\partial y^{3}}\right\| \leq \frac{C}{\varepsilon}, \\
\left\|\frac{\partial^{k} w_{T}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\mu^{k}} \| \text { for } 0 \leq k \leq 2, \quad\left\|\frac{\partial^{k} w_{T}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\varepsilon \mu}, k=3, \\
\left\|\frac{\partial w_{T}}{\partial x}\right\| \leq C, \quad\left\|\frac{\partial^{2} w_{T}}{\partial x^{2}}\right\| \leq \frac{C}{\mu}, \quad\left\|\frac{\partial^{3} w_{T}}{\partial x^{3}}\right\| \leq \frac{C}{\varepsilon} \tag{5610~J}
\end{array}
$$

Conjecture 565 When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$, the solution u of (411) can be decomposed as in (569), we conjecture that the following bounds on the corner layer components and their derivatives hold

$$
\begin{align*}
& \quad\left|w_{L B}\right| \leq C e^{-\frac{\mu \alpha}{\varepsilon} x} e^{-\frac{\mu \alpha}{\varepsilon} y}, \quad\left|w_{L \Gamma}\right| \leq C e^{-\frac{\mu \alpha}{\varepsilon} x} e^{-\frac{\gamma}{2 \mu}(1-y)}, \quad(5611 \mathrm{a}) \tag{5611a}\\
& \left|w_{R B}\right| \leq C e^{-\frac{\gamma}{2 \mu}(1-x)} e^{-\frac{\mu \alpha}{\varepsilon} y}, \quad\left|w_{R T}\right| \leq C e^{-\frac{\gamma}{2 \mu}(1-x)} e^{-\frac{\gamma}{2 \mu}(1-y)}, \tag{5611b}\\
& \left\|\frac{\partial^{k} w_{L B}}{\partial x^{2} \partial y^{3}}\right\| \leq\left(\frac{\mu}{\varepsilon}\right)^{k} \quad \text { for } 0 \leq k \leq 3, \tag{5611c}\\
& \left\|\frac{\partial^{k} w_{R T}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\mu^{k}}, \quad 0 \leq k \leq 2, \quad\left\|\frac{\partial^{k} w_{R T}}{\partial x^{2} \partial y^{3}}\right\| \leq \frac{C}{\varepsilon \mu}, \quad k=3, \\
& \left\|\frac{\partial^{k} w_{L T}}{\partial x^{\imath} \partial y^{j}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k}, \text { for } 0 \leq k \leq 3, \tag{5611e}\\
& \left\|\frac{\partial^{k} w_{L T}}{\partial y^{k}}\right\| \leq C\left(\left(\frac{1}{\mu}\right)^{k}+\frac{\varepsilon}{\mu^{2}}\left(\frac{\mu}{\varepsilon}\right)^{k}\right), \quad 0 \leq k \leq 3, \tag{5611f}\\
& \left\|\frac{\partial^{k} w_{R B}}{\partial x^{2} \partial y^{j}}\right\| \leq C\left(\frac{\mu}{\varepsilon}\right)^{k}, \text { for } 0 \leq k \leq 3, \tag{56llg}\\
& \left\|\frac{\partial^{k} w_{R B}}{\partial x^{k}}\right\| \leq C\left(\left(\frac{1}{\mu}\right)^{k}+\frac{\varepsilon}{\mu^{2}}\left(\frac{\mu}{\varepsilon}\right)^{k}\right), \quad 0 \leq k \leq 3 \tag{5611~h}
\end{align*}
$$

5.7 Discrete problem

As with the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, we consider the following discrete problem

$$
\begin{align*}
L^{N, M} U\left(x_{\imath}, y_{j}\right) & =\varepsilon \delta_{x}^{2} U+\varepsilon \delta_{y}^{2} U+\mu a_{1} D_{x}^{+} U+\mu a_{2} D_{y}^{+} U-b U \\
& =f, \quad\left(x_{\imath}, y_{j}\right) \in \Omega^{N, M} \tag{57la}
\end{align*}
$$

where $\Omega^{N, M}$ is defined to be the tensor product of two precewise uniform meshes Ω^{N} and Ω^{M} In this case, the mesh Ω^{N} consists of two transition points, σ_{1}^{N} and σ_{2}^{N}, where

$$
\begin{equation*}
\sigma_{1}^{N}=\operatorname{mm}\left\{\frac{1}{4}, \frac{2 \varepsilon}{\mu \alpha} \ln N\right\} \quad \text { and } \quad \sigma_{2}^{N}=\min \left\{\frac{1}{4}, \frac{2 \mu}{\gamma} \ln N\right\} \tag{571~b}
\end{equation*}
$$

More specifically

$$
\Omega^{N}=\left\{x_{\imath} \left\lvert\, x_{\imath}=\left\{\begin{array}{ll}
\frac{4 \sigma_{1}^{N} \imath}{N}, & \imath \leq \frac{N}{4} \tag{571c}\\
\sigma_{1}^{N}+\left(\imath-\frac{N}{4}\right) H, & \frac{N}{4} \leq \imath \leq \frac{3 N}{4} \\
1-\sigma_{2}^{N}+\left(\imath-\frac{3 N}{4}\right) \frac{4 \sigma_{2}^{N}}{N}, & \frac{3 N}{4} \leq \imath \leq N
\end{array}\right\}\right.\right.
$$

where $N H=2\left(1-\sigma_{1}^{N}-\sigma_{2}^{N}\right)$ and Ω^{M} is defined analogously with transition points σ_{1}^{M} and σ_{2}^{M}

The discrete minimum principle in the previous chapter stıll holds and we have the following analogous decomposition

$$
\begin{equation*}
U=V+W_{L}+W_{R}+W_{B}+W_{T}+W_{L B}+W_{L T}+W_{R B}+W_{R T} \tag{572a}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
L^{N, M} V & =f, & \left.V\right|_{\Gamma^{N M}}=\left.v\right|_{\Gamma^{N M}} \\
L^{N, M} W_{L} & =0, & & \left.W_{L}\right|_{\Gamma^{N M}}=\left.w_{L}\right|_{\Gamma^{N M}} \\
L^{N, M} W_{L B} & =0, & & \left.W_{L B}\right|_{\Gamma^{N M}}=\left.w_{L B}\right|_{\Gamma^{N M}} \tag{572d}
\end{array}
$$

with the other layer functions defined simılarly
Theorem 571 We have the following bounds on discrete boundary layer functions,

$$
\begin{aligned}
\left|W_{L}\left(x_{\imath}, y_{\jmath}\right)\right| \leq C \prod_{s=1}^{\imath}\left(1+\frac{\mu \alpha}{2 \varepsilon} h_{s}\right)^{-1}=\Psi_{L, \imath}, & \Psi_{L, 0}=C \\
\left|W_{R}\left(x_{\imath}, y_{\jmath}\right)\right| \leq C \prod_{s=\imath+1}^{N}\left(1+\frac{\gamma}{2 \mu} h_{s}\right)^{-1}=\Psi_{R, \imath}, & \Psi_{R, N}=C \\
\left|W_{B}\left(x_{\imath}, y_{\jmath}\right)\right| \leq C \prod_{r=1}^{j}\left(1+\frac{\mu \alpha}{2 \varepsilon} k_{r}\right)^{-1}=\Psi_{B, \jmath}, & \Psi_{B, 0}=C \\
\left|W_{T}\left(x_{\imath}, y_{\jmath}\right)\right| \leq C \prod_{r=3+1}^{M}\left(1+\frac{\gamma}{2 \mu} k_{r}\right)^{-1}=\Psi_{T, \jmath}, & \Psi_{T, M}=C
\end{aligned}
$$

where $h_{s}=x_{s}-x_{s-1}$ and $k_{r}=y_{r}-y_{r-1}$
Proof We start by considering W_{L} The proof follows a simılar argument to that in

Theorem 461 m the case of $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ We consider the barrier functions

$$
\Phi_{L}^{ \pm}\left(x_{\imath}, y_{j}\right)=\Psi_{L, i} \pm W_{L}\left(x_{\imath}, y_{j}\right)
$$

We can show that for C large enough $\left.\Phi_{L}^{ \pm}\left(x_{\imath}, y_{j}\right)\right|_{\Gamma^{N} M} \geq 0$ Also we obtan

$$
L^{N, M} \Phi_{L}^{ \pm}\left(x_{\imath}, y_{j}\right)=\left(2 \varepsilon \frac{\mu^{2} \alpha^{2}}{4 \varepsilon^{2}}\left(\frac{h_{\imath+1}}{2 \bar{h}_{2}}-1\right)+\left(\frac{\mu^{2} \alpha}{\varepsilon}-\frac{\mu^{2} a_{1}}{\varepsilon}-b\right)-\frac{\mu \alpha}{2 \varepsilon} h_{2+1} b\right) \Psi_{L, \imath+1} \leq 0,
$$

and we use the discrete minmum principle to obtain the required result The proof in the case of W_{B} is analogous

Let us now look at W_{R} We consider similar barrier functions

$$
\Phi_{R}^{ \pm}\left(x_{\imath}, y_{j}\right)=\Psi_{R, z} \pm W_{R}\left(x_{\imath}, y_{j}\right)
$$

We need to check how the functions $\Phi_{R}^{ \pm}\left(x_{2}, y_{j}\right)$ behave on the boundary Using a sımilar argument to that for W_{L} in Theorem 461 we can show that for C large enough $\Phi_{R}^{ \pm}\left(1, y_{j}\right) \geq$ $0, \Phi_{R}^{ \pm}\left(x_{i}, 0\right) \geq 0$ and $\Phi_{R}^{ \pm}\left(x_{i}, 1\right) \geq 0$ It remans to consider $\Phi_{R}^{ \pm}\left(0, y_{j}\right)$ Using the exponential bounds in Lemma 544 we see that $\left|W_{R}(0, y)\right|=\left|w_{R}(0, y)\right| \leq C e^{-\frac{\gamma}{2 \mu}}$ We have

$$
\Phi_{R}^{ \pm}\left(0, y_{j}\right)=C \prod_{s=1}^{N}\left(1+\frac{\gamma}{2 \mu} h_{s}\right)^{-1} \pm W_{R}\left(0, y_{j}\right)
$$

however,

$$
e^{-\frac{\gamma}{2 \mu}}=e^{-\frac{\gamma}{2 \mu} \sum_{s=1}^{N} h_{s}}=\prod_{s=1}^{N} e^{-\frac{\gamma}{2 \mu} h_{s}} \leq \prod_{s=1}^{N}\left(1+\frac{\gamma}{2 \mu} h_{s}\right)^{-1}
$$

We conclude that $\Phi_{R}^{ \pm}\left(0, y_{j}\right) \geq 0$ for C large enough We also obtaın

$$
\begin{array}{r}
L^{N, M} \Phi_{R}^{ \pm}\left(x_{\imath}, y_{j}\right)=\frac{\Psi_{R, 2}}{\left(1+\frac{\gamma}{2 \mu} h_{2}\right)}\left(2 \varepsilon\left(\frac{\gamma}{2 \mu}\right)^{2}\left(\frac{h_{2}}{2 \bar{h}_{2}}-1\right)+\left(2 \varepsilon\left(\frac{\gamma}{2 \mu}\right)^{2}+\mu a_{1} \frac{\gamma}{2 \mu}\right.\right. \\
\left.-b)\left(1+\frac{\gamma}{2 \mu} h_{2}\right)-2 \varepsilon\left(\frac{\gamma}{2 \mu}\right)^{3} h_{\imath}\right)
\end{array}
$$

Using $\mu^{2} \geq \frac{\gamma \epsilon}{\alpha}$ and the definitions of α and γ we see that the above quantity is non-positive and therefore we use the discrete mimmum principle to obtan the required result The proof for W_{T} is similar to the above and analogous bounds hold

Theorem 572 Assuming Conjecture 565 as true, we have the following bounds on

$$
\begin{array}{r}
\left|W_{L B}\left(x_{\imath}, y_{j}\right)\right| \leq C \prod_{s=1}^{\imath}\left(1+\frac{\mu \alpha}{2 \varepsilon} h_{s}\right)^{-1} \prod_{r=1}^{J}\left(1+\frac{\mu \alpha}{2 \varepsilon} k_{r}\right)^{-1}=\Psi_{L, \imath} \Psi_{B, y}, \\
\left|W_{L T}\left(x_{\imath}, y_{j}\right)\right| \leq C \prod_{s=1}^{2}\left(1+\frac{\mu \alpha}{2 \varepsilon} h_{s}\right)^{-1} \prod_{r=\jmath+1}^{M}\left(1+\frac{\gamma}{2 \mu} k_{r}\right)^{-1}=\Psi_{L, \imath} \Psi_{T, j}, \\
\left|W_{R B}\left(x_{\imath}, y_{j}\right)\right| \leq C \prod_{s=\imath+1}^{N}\left(1+\frac{\gamma}{2 \mu} h_{s}\right)^{-1} \prod_{r=1}^{3}\left(1+\frac{\mu \alpha}{2 \varepsilon} k_{r}\right)^{-1}=\Psi_{R, \imath} \Psi_{B, 3}, \\
\left|W_{R T}\left(x_{\imath}, y_{j}\right)\right| \leq C \prod_{s=\imath+1}^{N}\left(1+\frac{\gamma}{2 \mu} h_{s}\right)^{-1} \prod_{r=j+1}^{M}\left(1+\frac{\gamma}{2 \mu} k_{r}\right)^{-1}=\Psi_{R, 2} \Psi_{T, \jmath},
\end{array}
$$

where h_{s} and k_{r} are as prevzously defined
Proof The proof of the bounds for the corner functions follow the same method for $W_{L B}$ in Theorem 461 A hittle more work is needed in some functions to show that the barrier functions are nonnegative on the boundary and to show that after we apply the discrete operator to the barrier function the resulting expression is non-positive

58 Error analysis

We now analyse the error between the continuous solution of (411) and the discrete solution of (571) m the case $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$

Lemma 581 At each mesh point $\left(x_{2}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the regular component of the error satısfies the following estrmate

$$
\left|(V-v)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right)
$$

where v is the solution of (538) and V is the solution of (572 b)
Proof Using the usual truncation error argument and (539) we have

$$
\begin{aligned}
\left|L^{N, M}(V-v)\left(x_{2}, y_{j}\right)\right| & \leq C_{1} N^{-1}\left(\varepsilon\left\|v_{x x x}\right\|+\mu\left\|v_{x x}\right\|\right)+C_{2} M^{-1}\left(\varepsilon\left\|v_{y y y}\right\|+\mu\left\|v_{y y}\right\|\right) \\
& \leq C\left(N^{-1}+M^{-1}\right) \mu
\end{aligned}
$$

We consider the barrier functions $\Psi^{ \pm}\left(x_{2}, y_{j}\right)=C_{1}\left(N^{-1}+M^{-1}\right) \pm(V-v)$ We see that these functions are nonnegative on the boundary $\Gamma_{N, M}$, also we find $L^{N, M} \Psi^{ \pm}\left(x_{2}, y_{j}\right) \leq 0$
for C_{1} large enough We apply the discrete mimimum principle to obtan the required result

Lemma 582 Given Assumption 2, at each mesh point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the left singular component of the error satusfies the following estimate

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{i}, y_{j}\right)\right| \leq C\left(N^{-1}(\ln N)^{2}+M^{-1}\right),
$$

where w_{L} as the solution of (555) and W_{L} as the solution of (572c)
Proof We can use a classical argument to obtam the following truncation error bounds

$$
\begin{align*}
&\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C_{1}\left(h_{\imath+1}+h_{\imath}\right)\left(\varepsilon\left\|w_{L x x x}\right\|+\mu\left\|w_{L x x}\right\|\right) \\
&+C_{2}\left(k_{\jmath+1}+k_{j}\right)\left(\varepsilon\left\|w_{L y y y}\right\|+\mu\left\|w_{L y y}\right\|\right) \tag{581}
\end{align*}
$$

We use Theorem 561 and obtam

$$
\begin{equation*}
\left|L^{N, M}\left(W_{L}-w_{L}\right)\left(x_{2}, y_{\jmath}\right)\right| \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(h_{\imath+1}+h_{\imath}\right)\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right)+C_{2} M^{-1} \tag{582}
\end{equation*}
$$

The proof splits into the two cases of $\sigma_{1}^{N}<\frac{1}{4}$ and $\sigma_{1}^{N}=\frac{1}{4}$ Starting with the former, we consider the region $\left[\sigma_{1}^{N}, 1\right) \times(0,1)$ Using Theorem 571 , equation (571 b) and a similar argument to that for W_{L} when $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$, we see that in this region we have

$$
\left|W_{L}\left(x_{\imath}, y_{j}\right)\right| \leq C N^{-1}
$$

Considering the continuous solution in this region, from Theorem 561 we have

$$
\left|w_{L}\left(x_{\imath}, y_{j}\right)\right| \leq e^{-\frac{\mu \alpha}{\varepsilon} \sigma_{1}^{N}} \leq C N^{-2}, \quad x_{\imath} \geq \sigma_{1}^{N}
$$

Combining these results we have the following in the region $\left[\sigma_{1}^{N}, 1\right) \times(0,1)$ when $\sigma_{1}^{N}<\frac{1}{4}$,

$$
\left|\left(W_{L}-w_{L}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C N^{-1}
$$

We next consider the region $\left(0, \sigma_{1}^{N}\right) \times(0,1)$ We have $h_{\imath}=h_{\imath+1}=\frac{8 \varepsilon}{\mu \alpha} N^{-1} \ln N$ We then use (582) and obtan

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\right| \leq C_{1} N^{-1} \ln N+C_{2} N^{-1} \ln N \frac{\mu^{2}}{\varepsilon}+C_{3} M^{-1}
$$

We consider the barrier functions

$$
\Psi^{ \pm}\left(x_{2}, y_{\lambda}\right)=C\left(N^{-1} \ln N+N^{-1}\left(\sigma_{1}^{N}-x_{\imath}\right) \ln N \frac{\mu}{\varepsilon}+M^{-1}\right) \pm\left(W_{L}-w_{L}\right)
$$

We can show that for C sufficiently large $\Psi^{ \pm}\left(x_{i}, y_{j}\right) \geq 0$ on the boundary Also

$$
\begin{array}{r}
L^{N, M} \Psi^{ \pm}\left(x_{\imath}, y_{j}\right)=-b C\left(N^{-1} \ln N+N^{-1}\left(\sigma_{1}^{N}-x_{\imath}\right) \ln N \frac{\mu}{\varepsilon}+M^{-1}\right)-\frac{\mu^{2}}{\varepsilon} a_{1}\left(N^{-1} \ln N\right) \\
\pm\left(L^{N, M}\left(W_{L}-w_{L}\right)\right) \leq 0,
\end{array}
$$

for C chosen correctly Using the discrete mmimum principle we obtan

$$
\left|\left(W_{L}-w_{L}\right)\right| \leq C\left(N^{-1} \ln N+N^{-1}\left(\sigma_{1}^{N}-x_{\imath}\right) \ln N \frac{\mu}{\varepsilon}+M^{-1}\right)
$$

and sımplifying even further using the definition of $\sigma_{\mathrm{I}}^{N} \mathrm{~m}(57 \mathrm{lb})$,

$$
\left|\left(W_{L}-w_{L}\right)\right| \leq C\left(N^{-1} \ln N+N^{-1}(\ln N)^{2}+M^{-1}\right)
$$

The last case to consider is that of $\sigma_{1}^{N}=\frac{1}{4}$ Here we find $\frac{\mu \alpha}{\varepsilon} \leq 8 \ln N$ and using the truncation error bound (5 82) we obtain

$$
\left|L^{N, M}\left(W_{L}-w_{L}\right)\right| \leq C\left(N^{-1} \ln N+\mu N^{-1}(\ln N)^{2}+M^{-1}\right)
$$

Using a suitable barrier function we achieve the required result
A proof analogous to the above holds for the error bound $\left|\left(W_{B}-w_{B}\right)\right|$
Lemma 583 At each mesh point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the rught singular component of the error satusfies the following estimate

$$
\left|\left(W_{R}-w_{R}\right)\left(x_{i}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}\right),
$$

where w_{R} as the solution of (544) and W_{R} satisfies an analogous equatzon to W_{L} in (572c)

Proof We can use a classical argument to obtan analogous truncation error bounds to those in (581) We use Lemma 544 to obtain,

$$
\begin{equation*}
\left|L^{N, M}\left(W_{R}-w_{R}\right)\left(x_{\imath}, y_{j}\right)\right| \leq \frac{C_{1}}{\mu}\left(h_{\imath+1}+h_{\imath}\right)+C M^{-1} \tag{583}
\end{equation*}
$$

We first consider the case of $\sigma_{2}^{N}<\frac{1}{4}$ We consider the region $\left(0,1-\sigma_{2}^{N}\right] \times(0,1)$ Using Theorem 571 and (571 b) we have,

$$
\left|W_{R}\left(x_{\imath}, y_{j}\right)\right| \leq C N^{-1}
$$

Considering the continuous solution in this region, from Theorem 561 we obtain

Combining these results we have the following bound in the region $\left(0,1-\sigma_{2}^{N}\right] \times(0,1)$ when $\sigma_{2}^{N}<\frac{1}{4}$

$$
\left|\left(W_{R}-w_{R}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C N^{-1}
$$

We next consider the region $\left(1-\sigma_{2}^{N}, 1\right) \times(0,1)$ We have $h_{\imath}=h_{\imath+1}=\frac{8 \mu}{\gamma} N^{-1} \ln N$ We can use (5 83) to obtain

$$
\left|L^{N, M}\left(W_{R}-w_{R}\right)\right| \leq C_{1} N^{-1} \ln N+C_{2} M^{-1}
$$

Using the discrete minmum principle and suitable barrier functions, we obtain the requred result

We finally consider the case of $\sigma_{2}^{N}=\frac{1}{4}$ We see $\frac{\gamma}{\mu} \leq 8 \ln N$ and using the truncation error bound (583) we obtan,

$$
\left|L^{N, M}\left(W_{R}-w_{R}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1}\right)
$$

Again, using a suitable barrier function we acheve the required result
A similar proof holds for the error bound $\left|\left(W_{T}-w_{T}\right)\right|$ We therefore have the following lemma

Lemma 584 At each mesh point $\left(x_{2}, y_{j}\right) \in \bar{\Omega}^{N, M}$, the bottom and top singular components of the error satisfies the following estimates

$$
\begin{aligned}
\left|\left(W_{B}-w_{B}\right)\left(x_{i}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}(\ln M)^{2}\right) \\
\left|\left(W_{T}-w_{T}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1} \ln M\right)
\end{aligned}
$$

where w_{B} and w_{T} are defined in (558a) and (546) respectively and W_{B} and W_{T} are defined analogously to (5 72 c)

Proof See Lemma 582 and Lemma 583

Lemma 585 At each mesh point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}^{N, M}$, assuming Conjecture 565 and Assumption 2 are true, the bottom-left corner singular component of the error satisfies the following estrmate

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{l}, y_{j}\right)\right| \leq C\left(N^{-1}(\ln N)^{2}+M^{-1}(\ln M)^{2}\right)
$$

where $w_{L B}$ is the solution of (568) and $W_{L B}$ is the solution of (572d)
Proof We can obtain the same truncation error bounds to those given for the left singular component in (582) We use the bounds on $w_{L B}$ in Conjecture 565 to obtain,

$$
\begin{equation*}
\left.\mid L^{N, M} W_{L B}-w_{L B}\right) \left\lvert\, \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(h_{\imath+1}+h_{\imath}\right)\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right)+\frac{C_{2}}{\sqrt{\varepsilon}}\left(k_{\partial+1}+k_{\jmath}\right)\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right)\right. \tag{584}
\end{equation*}
$$

Consider the case $\sigma_{1}^{N}<\frac{1}{4}$ and $\sigma_{1}^{M}<\frac{1}{4}$ In the region $\Omega^{N, M} \backslash\left(0, \sigma_{1}^{N}\right) \times\left(0, \sigma_{1}^{M}\right)$, the proof follows the same method as when $\mu^{2} \leq \frac{\gamma \varepsilon}{\alpha}$ Therefore m this region we have

$$
\left|W_{L B}\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right), \quad x_{\imath} \geq \sigma_{1}^{N} \text { and/or } y_{j} \geq \sigma_{1}^{M}
$$

Considering the continuous solution in this region, using Conjecture 565 and (5 7 1b) we obtan

$$
\left|w_{L B}\left(x_{2}, y_{3}\right)\right| \leq C e^{-\frac{\mu \alpha}{\varepsilon} x_{i}} e^{-\frac{\mu \alpha}{\varepsilon} y_{j}} \leq e^{-\frac{\mu \alpha}{\varepsilon} \sigma_{1}^{N}} \leq C N^{-2}, \quad x_{2}>\sigma_{1}^{N}
$$

and

$$
\left|w_{L B}\left(x_{\imath}, y_{j}\right)\right| \leq C e^{-\frac{\mu \alpha}{\epsilon} x_{\imath}} e^{-\frac{\mu \alpha}{\varepsilon} y_{j}} \leq e^{-\frac{\mu \alpha}{\varepsilon} \sigma_{1}^{M}} \leq C M^{-2}, \quad y_{j}>\sigma_{1}^{M},
$$

We conclude that when $\sigma_{1}^{N}<\frac{1}{4}$ and $\sigma_{1}^{M}<\frac{1}{4}$, we have the following error bound in the region $\Omega^{N, M} \backslash\left(0, \sigma_{1}^{N}\right) \times\left(0, \sigma_{1}^{M}\right)$

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right)
$$

We next consider the region $\left(0, \sigma_{1}^{N}\right) \times\left(0, \sigma_{1}^{M}\right)$ In this region we know that $h_{\imath}=h_{\imath+1}=$ $\frac{8 \varepsilon}{\mu \alpha} N^{-1} \ln N$ and $k_{3}=k_{j+1}=\frac{8 \varepsilon}{\mu \alpha} M^{-1} \ln M$ Using the truncation error bound (584) we obtain

$$
\left|L^{N, M}\left(W_{L B}-w_{L B}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+N^{-1} \ln N \frac{\mu^{2}}{\varepsilon}+M^{-1} \ln M+M^{-1} \ln M \frac{\mu^{2}}{\varepsilon}\right)
$$

Choosing sımilar barrier functions to those in Lemma 582 we obtain

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}(\ln N)+N^{-1}(\ln N)^{2}+M^{-1}(\ln M)+M^{-1}(\ln M)^{2}\right)
$$

We consider the case of $\sigma_{1}^{N}=\frac{1}{4}$ and $\sigma_{1}^{M}=\frac{1}{4}$ We know that $\frac{\mu \alpha}{\varepsilon} \leq 8 \ln N$ and $\frac{\mu \alpha}{\varepsilon} \leq 8 \ln M$ and using (584) and suitable barrier functions we obtain,

$$
\left|\left(W_{L B}-w_{L B}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}(\ln N)^{2}+M^{-1}(\ln M)^{2}\right)
$$

The other two possible combinations of σ_{1}^{N} and σ_{1}^{M} are trivial and give the same result when $N=M$

Remark 581 When $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$ it is not sufficient to cover the error analyss for one corner layer function alone as it is not reflectuve of the error analysus of the other three corners

Lemma 586 At each mesh point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}^{N, M}$, assuming Conjecture 565 and Assumption 2 are true, the top-left corner singular component of the error satisfies the following estrmate

$$
\left|\left(W_{L T}-w_{L T}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}(\ln N)^{2}+M^{-1}(\ln M)(\ln N)\right),
$$

where $w_{L T}$ is the solution of (565) and $W_{L T}$ satisfies a simular equation to $W_{L B}$ in (572d)

Proof Using (5 8 1) and Conjecture 565 , we have the following truncation error bounds

$$
\begin{array}{r}
\left|L^{N, M}\left(W_{L T}-w_{L T}\right)\left(x_{2}, y_{j}\right)\right| \leq \frac{C_{1}}{\sqrt{\varepsilon}}\left(h_{i+1}+h_{v}\right)\left(1+\left(\frac{\mu}{\sqrt{\varepsilon}}\right)^{3}\right) \\
+C_{2}\left(k_{\jmath+1}+k_{3}\right)\left(\frac{1}{\mu}+\frac{\mu}{\varepsilon}\right) \tag{586}
\end{array}
$$

We consider the case of $\sigma_{1}^{N}<\frac{1}{4}$ and $\sigma_{2}^{M}<\frac{1}{4}$ and start with the region $\Omega^{N, M} \backslash\left(0, \sigma_{1}^{N}\right) \times$ $\left(1-\sigma_{2}^{M}, 1\right)$ Using Conjecture 565 and Theorem 572 we obtain as with $W_{L B}$

$$
\left|\left(W_{L T}-w_{L T}\right)\left(x_{2}, y_{j}\right)\right| \leq C\left(N^{-1}+M^{-1}\right)
$$

In the region $\left(0, \sigma_{1}^{N}\right) \times\left(1-\sigma_{2}^{M}, 1\right)$ we have $h_{\imath}=h_{\imath+1}=\frac{8 \varepsilon}{\mu \alpha} N^{-1} \ln N$ and $k_{\jmath}=k_{\jmath+1}=$ $\frac{8 \mu}{\gamma} M^{-1} \ln M$, therefore we obtain
$\left|L^{N, M}\left(W_{L T}-w_{L T}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C_{1}\left(N^{-1} \ln N+\frac{\mu^{2}}{\varepsilon} N^{-1} \ln N\right)+C_{2}\left(M^{-1} \ln M+M^{-1} \frac{\mu^{2}}{\varepsilon} \ln M\right)$

We consider the barrier functions
$\Phi^{ \pm}\left(x_{2}, y_{\jmath}\right)=C_{3}\left(N^{-1} \ln N+M^{-1} \ln M\right)+C_{4} \frac{\mu}{\varepsilon}\left(\sigma_{1}^{N}-x_{\imath}\right)\left(N^{-1} \ln N+M^{-1} \ln M\right) \pm\left(W_{L T}-w_{L T}\right)$
We can show that these functions are nonnegative on the boundary and for C large enough we obtain $L^{N, M} \Phi^{ \pm}\left(x_{2}, y_{j}\right) \leq 0$ Using the discrete minımum principle and the definition of $\sigma_{1}^{N} \mathrm{~m}(571 \mathrm{~b})$ we obtain

$$
\left|\left(W_{L T}-w_{L T}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1} \ln N+M^{-1} \ln M\right)+C_{2}\left(N^{-1}(\ln N)^{2}+M^{-1} \ln N \ln M\right)
$$

The case of $\sigma_{1}^{N}=\sigma_{2}^{M}=\frac{1}{4}$ follows closely that for layer function associated with the bottom-left corner We continue to the case of $\sigma_{1}^{N}<\frac{1}{4}$ and $\sigma_{2}^{M}=\frac{1}{4}$ We start with the region $\left[\sigma_{1}^{N}, 1\right) \times(0,1)$ Using Theorem 572 we see that $\left|W_{L T}\left(x_{i}, y_{j}\right)\right| \leq C N^{-1}$ in this region Looking at Conjecture 565 we also obtain $\left|w_{L T}\left(x_{i}, y_{j}\right)\right| \leq C N^{-2}$ and combining these results we see that in $\left[\sigma_{1}^{N}, 1\right) \times(0,1)$ we have

$$
\begin{equation*}
\left|W_{L T}-w_{L T}\right| \leq C N^{-1} \tag{587}
\end{equation*}
$$

Consider the region $\left(0, \sigma_{1}^{N}\right) \times(0,1)$ Using (5 86) along with $\frac{1}{\mu} \leq C \ln M$ and $h_{\imath+1}=h_{r}=$ $2 \frac{\varepsilon}{\mu \alpha} N^{-1} \ln N$ we obtain,

$$
\left|L^{N, M}\left(W_{L T}-w_{L T}\right)\left(x_{i}, y_{j}\right)\right| \leq C_{1} N^{-1} \ln N\left(1+\frac{\mu^{2}}{\varepsilon}\right)+C_{2}\left(M^{-1} \ln M+\frac{\mu^{2}}{\epsilon} M^{-1} \ln M\right)
$$

Using the barrier functions,

$$
\Phi^{ \pm}\left(x_{2}, y_{j}\right)=C_{1}\left(N^{-1} \ln N+M^{-1} \ln M\right)+C_{2} \frac{\mu}{\varepsilon}\left(\sigma_{1}^{N}-x_{2}\right)\left(N^{-1} \ln N+M^{-1} \ln M\right)
$$

we see,

$$
\left|W_{L T}-w_{L T}\right| \leq C_{1}\left(N^{-1} \ln N+M^{-1} \ln M\right)+C_{2}\left(N^{-1}(\ln N)^{2}+M^{-1} \ln M \ln N\right)
$$

Finally we consider the case of $\sigma_{1}^{N}=\frac{1}{4}$ and $\sigma_{2}^{M}<\frac{1}{4}$, using Conjecture 565 and Theorem 572 , we see that in the region $(0,1) \times\left(0,1-\sigma_{2}^{M}\right)$ we have

$$
\begin{equation*}
\left|W_{L T}-w_{L T}\right| \leq C M^{-1} \tag{588}
\end{equation*}
$$

Using (5 86), $\frac{\mu}{\epsilon} \leq C \ln N$ and $k_{j+1}=k_{j}=\frac{8 \mu}{\gamma} M^{-1} \ln M$ we have

$$
\left|L^{N, M}\left(W_{L T}-w_{L T}\right)\left(x_{\imath}, y_{\jmath}\right)\right| \leq C\left(N^{-1}(\ln N)^{2}+M^{-1} \ln M+M^{-1} \ln N\right),
$$

and using suitable barrier functions we obtain the required bounds We should note that when $N=M$ these bounds simplify to

$$
\left|\left(W_{L T}-w_{L T}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C N^{-1}(\ln N)^{2}
$$

This completes the error analysis for $W_{L T}$
The analysis for $\left|W_{R B}-w_{R B}\right|$ follows a sımılar argument to the above We obtan the following lemma

Lemma 587 At each mesh point $\left(x_{\imath}, y_{j}\right) \in \bar{\Omega}^{N, M}$, assuming Conjecture 565 and Assumption 2 are true, the bottom-right corner singular component of the error satisfies the following estrmate

$$
\left|\left(W_{R B}-w_{R B}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}(\ln N)(\ln M)+M^{-1}(\ln M)^{2}\right)
$$

where $w_{R B}$ is defined in (567) and $W_{R B}$ satisfies a simılar equation to $W_{L B}$ in (5 72 d)
The final error component to consider is the top-right corner layer
Lemma 588 At each mesh point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}^{N, M}$, assuming Conjecture 565 s true, the top-right corner singular component of the error satusfies the following estrmate

$$
\left|\left(W_{R T}-w_{R T}\right)\left(x_{\imath}, y_{j}\right)\right| \leq C\left(N^{-1}(\ln N)+M^{-1}(\ln M)\right)
$$

where $w_{R T}$ us defined in (561) and $W_{R T}$ satusfies a simular equation to $W_{L B}$ in (572 d) Proof Using (5 8 1), we obtain

$$
\begin{equation*}
\left|L^{N, M}\left(W_{R T}-w_{R T}\right)\left(x_{\imath}, y_{j}\right)\right| \leq \frac{C_{1}}{\mu}\left(h_{\imath+1}+h_{\imath}\right)+\frac{C_{2}}{\mu}\left(k_{\jmath+1}+k_{\jmath}\right) \tag{58}
\end{equation*}
$$

By considering separately the cases of $\sigma_{2}^{N}<\frac{1}{4}, \sigma_{2}^{M}<\frac{1}{4}$ and $\sigma_{2}^{N}=\sigma_{2}^{M}=\frac{1}{4}$, we achieve the requred result

Theorem 581 At each mesh point $\left(x_{1}, y_{j}\right) \in \bar{\Omega}^{N, M}$, assuming Conjecture 565 and

Assumption 2 are true, the maximum pontwise error satisfies the following parameterunuform error bound when $\mu^{2} \geq \frac{\gamma \varepsilon}{\alpha}$,

$$
\|U-u\|_{\Omega^{N M}} \leq C\left(N^{-1}(\ln N)^{2}+M^{-1}(\ln M)^{2}+N^{-1} \ln N \ln M+M^{-1} \ln N \ln M\right),
$$

where u is the solution of (411) and U is the solution of (571)
Proof The proof follows from Lemma 58 2, Lemma 58 3, Lemma 584 , Lemma 58 , Lemma 586 , Lemma 587 and Lemma 588

5.9 The case of $\mu \geq \gamma_{1}$

In the case of $\mu \geq \gamma_{1}$, the elliptic problem (411) is equivalent to a one-parameter convection-diffusion problem Such problems are not the man interest of this thesis Numerical methods for these differential equations have been considered in the books [$3,16,25,29$] For a discussion of the literature see Chapter 1 Solutions to such problems exhibit boundary layers m the nerghbourhood of the edges $x=0$ and $y=0$

We decompose u into a sum of regular and layer components as follows

$$
u=v+w_{L}+w_{B}+w_{L B}
$$

We define v^{*} on the extended domann $\Omega^{[*, L B]}$ as in (531), however, it is not necessary to further decompose the components in this decomposition as in (5 34) We let

$$
v_{0}^{*}=u^{*} \quad \text { on } \quad \partial \Omega^{[* L B]},
$$

and it can be shown

$$
\left\|\frac{\partial^{2+\jmath} v}{\partial x^{2} \partial y^{\jmath}}\right\| \leq C\left(1+\varepsilon^{2-(\imath+\jmath)}\right)
$$

We define the layer function w_{L}^{*} on the doman $(0,1) \times(-d, 1)$ and the function w_{B}^{*} on the domain $(-d, 1) \times(0,1)$ The corner layer function $w_{L B}$ is defined on the original domann Ω We have

$$
\begin{array}{r}
L_{\varepsilon, \mu} w_{L B}=0(x, y) \in \Omega, \\
w_{L B}=-w_{B},(x, y) \in \Gamma_{L}, \quad w_{L B}=-w_{L},(x, y) \in \Gamma_{B}, \\
w_{L B}=0,(x, y) \in \Gamma_{R}, \quad w_{L B}=0,(x, y) \in \Gamma_{T} \tag{593}
\end{array}
$$

For all the layer components, we obtain the following bounds on the functions themselves
and therr derıvatıves

$$
\left\|\frac{\partial^{\imath+\jmath} w}{\partial x^{2} \partial y^{\jmath}}\right\| \leq C \varepsilon^{-(\imath+\jmath)}, \quad \imath+\jmath \leq 3
$$

When considering the boundary layer functions w_{L}, and w_{B}, these bounds can be sharpened in the drection orthogonal to the layer

The numerical method used to solve such a problem consists of an upwind finite difference operator applied on a mesh $\Omega^{N, M}$ This mesh is the tensor product of two piecewise unform meshes Ω^{N} and Ω^{M} In this case, Ω^{N} consists of one transition point, σ_{1}^{N} where

$$
\sigma_{1}^{N}=\min \left\{\frac{1}{2}, \frac{2 \varepsilon}{\alpha} \ln N\right\}
$$

We should note that when $\mu \geq \gamma_{1}$, the numerical method defined in (571) is equivalent to the above and therefore even though the analysis differs, the same numerical method as defined for the two-parameter problem works in this case

Bibliography

[1] L Bobisud Second-order linear parabolic equations with a small parameter Arch Rational Mech Anal, 27 385-397, 1967
[2] C Clavero, J L Gracia, and E O'Riordan A parameter robust numerical method for a two dimensional reaction-diffusion problem Math Comp, 74 1743-1758, 2005
[3] PA Farrell, A F Hegarty, J J H Mıller, E O'Rıordan, and G I Shıshkın Robust Computational Techntques for Boundary Layers Chapman and Hall/CRC Press, Boca Raton, U S A, 2000
[4] J L Gracia, F Lısbona, and C Clavero Hıgh order ε-unıform methods for singularly perturbed reaction-diffusion problems Proceedings of the 2nd International Conference NAA 2000, Rousse, Bulgaria, June 11-15, 2000 (L Vulkov, J Wasnewskı and P Yalamov eds) Lecture Notes in Computer Science, Springer-Verlag, 1988 350-358, 2001
[5] J L Gracia, E O'Riordan, and ML Pickett A parameter robust higher order numerical method for a singularly perturbed two-parameter problem Accepted for publication in Apphed Numerical Mathematics, School of Mathematical Sciences, DCU Preprint MS-04-16 2004
[6] H Han and RB Kellog Differentiability properties of solutions of the equation $-\varepsilon^{2} \triangle u+r u=f(x, y)$ in a square SIAM J Math Anal, 21 394-408, (1990)
[7] P W Hemker, G I Shıshkın, and L P Shıshkına Hıgh-order, tıme-accurate parallel schemes for parabohc singularly perturbed problems with convection Computing, 66 139-161, (2001)
[8] N Kopteva Uniform pointwise convergence of difference schemes for convectiondiffusion problems on layer-adapted meshes Computing, 66 179-197, (2001) 2
[9] O A Ladyzhenskaya, V A Solonmkov, and N N Ural'tseva Linear and quaszlenear equatıons of parabolic type in Transl of Mathematics Monographs, Vol 23, American Math Soc, Providence, RI, 1968
[10] T Linß A novel Shishkın-type mesh for convection-diffusion problems Proceedıngs of workshop in analytical and numerical methods for convection-dominated and singularly perturbed problems L G Vulkov, J J H Mıller and G I Shıshkın (eds), Nova Science Publishers, New York, 2000
[11] T Linß Layer-adapted meshes for convection-diffusion problems Comput Methods Appl Mech Engrg, 192 1061-1105, 2003
[12] T Lmß and H-G Roos Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters J Math Anal Appl, 289 355-366, 2004
[13] T Linß and M Stynes A hybrid difference scheme on a Shıshkin mesh for linear convection-diffusion problems Applied numerical mathematıcs, 31 255-270, 1999
[14] T Linß and M Stynes Asymptotic analysis and Shishkm-type decomposition for an elliptic convection-diffusion problem Journal of mathematical analysis and applicatzons, 261 604-632, 2001
[15] T Linß and M Stynes Numerical methods on Shiskın meshes for linear convectiondiffusion problems Comput Methods appl Mech Engrg, 190 3527-3542, 2001
[16] J J H Miller, E O'Riordan, and G I Shishkın Fitted Numerical Methods for Singular Perturbation Problems World Scıentific Publishing Co Pte Ltd, Singapore, 1996
[17] J J H Mıller, E O'Rıordan, G I Shishkın, and L P Shishkına Fitted mesh methods for problems with parabolic boundary layers Mathematical Proceedings of the Royal Irssh Academy, 98A 173-190, 1998(2)
[18] K W Morton Numerical solution of convection-diffusion problems Chapman and Hall, London, 1996
[19] R E O'Malley Two-parameter singular perturbation problems for second order equations J Math Mech, 16 1143-1164, 1967
[20] R E O'Malley Introduction to singular perturbations Academıc Press, New York, 1974
[21] E O'Rıordan, M L Pıckett, and G I Shishkın Singularly perturbed problems modelng reaction-convection-diffusion processes Computational Methods in Applzed Mathematzcs, 3 424-442, 2003 No 3
[22] E O'Rıordan, M L Pıckett, and G I Shishkın Parameter-unıform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems Accepted for publication in Math Comp, School of Mathematical Sciences, DCU Preprint MS-04-08 2004
[23] E O'Riordan, M L Pıckett, and G I Shishkin Numerıcal methods for singularly perturbed elliptic problems containıng two perturbation parameters Submitted, School of Mathematical Scıences, DCU Preprint MS-05-16 2005
[24] H -G Roos Layer-adapted grids for singular perturbation problems Z Angew Math Mech, 78 291-309, (1998) 5
[25] H -G Roos, M Stynes, and L Tobiska Numerical methods for singularly perturbed differential equations, volume 24 Springer Series in Computational Mathematics, New York, 1996
[26] H -G Roos and Z Uzelac The sdfem for a convection diffusion problem with two small parameters Computatzonal Methods in Applied Mathematics, 3 443-458, 2003 No 3
[27] I A Savin On the rate of convergence, uniform with respect to a small parameter, of a difference scheme for an ordınary differential equation Comput Math Math Phys, 35 (11) 1417-1422, (1995)
[28] G I Shıshkın A difference scheme for a singularly perturbed equation of parabolic type with discontınuous intial condition Soviet Math Dokl, 37 792-796, 1988
[29] G I Shishkin Dascrete approximation of singularly perturbed elliptic and parabolic equations Russian Academy of Sciences, Ural Section, Ekaterınburg, 1992
[30] G I Shishkin Discrete approximation of multiscale problems elliptic equations in an unbounded doman in the presence of boundary layers of different types Proceedings Bail 2004 An international conference on boundary and interior layers - Lithuania, July 5th-9th 2004
[31] M Stynes and E O'Riordan Uniformly convergent difference schemes for singularly perturbed parabolic diffusion-convection problems without turning points Numer Math , 55 521-544, 1989
[32] M Stynes and H-G Roos The midpoint upwind scheme App Num Math , 23 361-374, (1997)
[33] M Stynes and L Tobiska A finite difference analysis of a streamline diffusion method on a Shıshkin mesh Numer Algortthms, 18 337-360, (1998)
[34] R Vulanovic A higher-order scheme for quasilnear boundary value problems with two small parameters Computing, 67 287-303, 2001

