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Abstract

In this thesis, parameter-umform numerical methods for certain classes of singularly per-
turbed differential equations with two small parameters are studied We 1mtially consider
a class of two-parameter ordinary differential equations Parameter explicit bounds on the
solution and 1ts derivatives are derived The solution 1s decomposed nto a sum of regu-
lar and singular components and based on this decomposition we construct a numerical
algorithm consisting of an upwind finite difference operator and an appropriately chosen
piecewise-umform mesh Parameter-umiform convergence of the numerical approximations
1s established Some numerical results are given to 1llustrate this convergence
Two-parameter parabolic and elliptic partial differential equations are considered We
derive parameter explicit bounds on the solutions and their derivatives for both problems,
these bounds are analogous to those obtained for the ordinary differential equation The
solutions are decomposed 1nto a sum of regular and singular components but for both
problems this decomposition differs from that for the ordinary differential equation In
both cases a numerical algorithm based on an upwind finite difference operator and an
appropriate piecewise-uniform mesh 1s constructed In the case of the parabolic problem,
parameter-uniform error bounds for the numerical approximations are established and
numerical results illustrating this convergence are given With the elliptic problem, we
show that, given certain assumptions and conjectures our numerical method 1s parameter-

uniform
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Chapter 1

Introduction

11 Introduction to numerical methods for singularly per-

turbed differential equations

Singularly perturbed differential equations arise in many areas of applied mathematics
They commonly appear in flmd dynamics, modelling of semiconductor devices and fi-
nancial modelling (see Morton [18]) Such differential equations typically involve a small
positive parameter ¢ {0 < ¢ < 1) multiplying the highest order derivative, and their
solutions exhibit layers as € tends to zero

We are concerned with parameter-uniform numerical methods for singulary perturbed
differential equations By parameter-uniform, we mean that the numerical approximations
converge to the solution of the problem independently of the small parameter More

exactly (see for example [16]),

Defimtion 111 Suppose u. 1s the solution to a problem that 1s parameterized by a
singular perturbation parameter ¢ where 0 < ¢ <1 We appromimate u. by a sequence
of numerical solutions {(U.,ON)}_, where U, 15 defined on the mesh QY and N 15 o
discretization parameter This sequence of functions {(Us, QN)}‘]’V":1 18 sard to converge e-
uniformly (of order p) to the ezact solution ue 1f there exists Ny, C, and p all independent
of €, such that for all N > Ny,

sup [|Uz — ug||lgy < CN7P,
0<e<1

where Ny, C and p are all positive numbers with Ny an integer

This thesis 15 concerned with the method of fimte differences Within the area of



finite differences, there are two main approaches to generate parameter-uniform numerical
methods for singularly perturbed problems Firstly there are fitted operator methods,
where, as the name suggests, the operator 1s fitted to resolve the singularity and therefore
capture the layer behaviour Such operators are usually combined with uniform meshes
Secondly there are fitted mesh methods where standard finite difference operators are
applied on a mesh that has been fitted to resolve the layer We are concerned with this
latter class of numerical methods

We must fit our mesh to resolve the layers [3] After a uniform mesh, the next simplest
mesh to consider 1s a piecewise-umiform mesh In [29], Shishkin showed that such a fitted
mesh was sufficient to obtain a parameter-uniform numerical method for many linear
partial differential equations One of the main advantages of using these Shishkin meshes
1s that results obtained m one-dimension can be extended to higher dimensions more easily
then with other approaches When working with such methods, the location and width of
the boundary layers must be known a prior:

The choice of norm to use 1s especially important when analysing the error in the
numerical approximations for problems that exhibit layers For a discussion and a com-
parison of the various norms that one might consider using when undertaking such analysis
see [3, 16] The conclusion reached 1s that 1 order to capture correctly boundary layer

functions, the appropriate norm to use is the Ly-norm (maximum pointwise norm)

12 Types of singularly perturbed problems
We now examine some examples of singularly perturbed differential equations Consider
the following two classes of singularly perturbed ordinary differential equations (ODEs),

e One-dimensional convection-diffusion problem

ey +ay —by =7, on Q= (0,1),
a>a>0, >8>0, 0<e<l1

¢ One-dimensional reaction-diffusion problem

ey’ —by=f, on Q=(0,1),
¥(0) = o, y(1) =m (122)
b>A>0, O0<e<l



Solutions of (12 1) typically exhibit boundary layers with width of order € in the neigh-
bourhood of z = 0 Solutions of the reaction-diffusion problem (1 2 2) exhibit layers of
width of order /¢ 1n the neighbourhood of both z = 0 and z =1 There 1s much litera-
ture already available for various methods to find the numerical solution of both of these
singularly perturbed ODEs (3, 25] Fitted operator methods based on exponentially fitted
finite difference operators have been developed for both problems [16, 25] Parameter-
uniform numerical methods composed of finite difference operators and Shishkin meshes
have also been established (see (3, 8, 16, 25, 29| and the survey articles [11, 24]) Using
standard finite difference operators, 1t has been shown [3, 17, 27] that the error i the
numerical approximations to the solution of (12 1) 1s of order CN~!In N and the error

in approximating (1 2 2) 1s of the form
lu=U"lgr < C(N~ I N)?

Higher order methods also exist for these problems, see for example [4, 27, 32, 33]
We now ntroduce a dependence on time Consider the parabolic versions of the above

problems,

e Parabolic convection-diffusion

EUgy + aUuy — bu — duy = f, on G =(0,1) x (0,7, (123)
’LL(O, t) = 70(7&)1 u(l,t) =N (t)7
u(z,0) = ¢(z),

a>a>0, b>p>0, d>i>0, 0<e<l1

e Parabolic reaction-diffusion

ElUgy — bu — duy = f, on G=(0,1) x (0,T], (124)
“(01 t) = 70(t)7 'U‘(la t) =M (t)a
u(z,0) = ¢(z),

b>p>0, d>6>0, 0<e<1

Problem (1 2 3) typically exhibits layers in the neighbourhood of the edge z = 0 Solutions
to (1 2 4) exhibit layers 1n the neighbourhood of both = 0 and 2 = 1 Numerical methods
for equation (1 2 3) have been considered 1n (8, 25, 29, 31] The reaction-diffusion problem
(12 4) has been analysed 1n [17, 29]



For the convection-diffusion type problem (1 2 3), fitted operator methods were derived
m [31] However, Shishkin [28] established that in order to obtain a parameter-umform
numerical method, 1t 1s necessary to fit the mesh when parabolic boundary layers are
present This imples that we cannot use fitted operators on a uniform mesh to ob-
tain parameter-uniform convergence n the case of (1 24) Parameter-uniform numerical
methods consisting of standard fimite difference operators and piecewise-uniform meshes
(8, 25, 29] have been established for both (1 2 3) and (1 2 4)

The final classes of singularly perturbed differential equations we will examine in this

section are the two-dimensional versions of problems (1 2 1) and (1 2 2),

e Elliptic convection-diffusion

on un

?undaryLayer

g eAu+a Vu—bu=f, on Q=(0,1)? (125)
Y u(z,0) = w0(z),  ulz,1) =),
T w0,9) =@, () =%,
” a>a>0, b>28>0, 0<e<1

¢ Elliptic reaction-diffusion

©} LR
Boundary Layer

Corner Layers € A u — bu = f, on Q = (0, ].)2, (1 2 6)
Y | —1— Boundary Layers —|— U-(.'E, 0) — ,YO(:E), U(.’L’, 1) =7 (l‘),
Corner Layers
B w09} =n(y),  w(ly) =),
’ Boundary Layer AN
oo XY : o) b226>0, 0<€S1

Numerical methods for such problems have been considered 1n the books [3, 16, 25, 29]
The analysis for such equations poses compatibility 1ssues not encountered with the ODE
or parabolic PDE

Linf and Stynes [14] analyse Shishkin-type decompositions for (1 2 5) Using such de-
compositions they obtain sharp bounds on the solution u of (12 5) and 1ts derivatives
The same authors consider a first-order convergent parameter-uniform numerical method
for this problem in [13] The authors use a special difference scheme on a Shishkin mesh,
the theoretical results in [14] are essential to showing convergence of this method The
article [15] contamns a comparison of the performance of several different numerical meth-
ods on Shishkin meshes for problem (125) In [10] numerical methods for (12 5) are
considered on modified Shishkin meshes A parameter-uniform second-order finite differ-

ence scheme for the reaction-diffusion problem (1 2 6) 1s discussed 1n [2] The book [29], 15



concerned with parameter-uniform numerical methods on Shishkin meshes for linear dif-
ferential equations The classes of problems considered in this book are vast and include
both (12 5) and (1 26) The more complicated N-dimension versions of these problems

are also examined

13 Two-parameter differential equations

The differential equations 1n the last section can be though of as one-parameter problems
as they depend on the small positive parameter ¢ multiplying the highest order derivative
We now mtroduce a second parameter p multiplying the convective term Such equations
are therefore known as two-parameter problems This thesis 1s concerned with numerical
methods for a certain class of two-parameter differential equations This class of differen-
tial equations includes both the convection-diffusion and reaction-diffusion type problems
described m the previous section and it also covers the transition from reaction-diffusion
to convection-diffusion type

Consider the following classes of two-parameter singularly perturbed differential equa-

tions

¢ Two-parameter ODE

ey’ + pay’ —by=f, on Q, (131)
y(0) =7, y(1)=m,
a>a>0, b>28>0, 0<e<l, 0<u<l1

o Two-parameter parabolic PDE

EUzy + poUy — bu — duy = f, on G, (132)
u(0,t) = o(t), u(l,t) = 7(t),
u(z,0) = ¢(z),
e>a>0, >8>0, d>246>0, 0<e<l]l, 0<pu<l1



e Two-parameter elliptic PDE

eNu+pa Vu—bu=f, on =(01)23 (133)
u(e,0) = yo(e),  ulz,1) =7(z),
u(0,9) =7(y),  u(l,y) =7y,
a>a>0, b>26>0, 0<e<l, 0<pu<l

When p = 1 we have convection-diffusion problems, and when y = 0 the equations are
of reaction-diffusion type In the past the special cases of u = 0 and g = 1 have been
considered separately (see previous section) The aim of this thesis 1s to take this analysis
and adapt 1t to deal with the two-parameter problem, thus obtaining one approach that
deals with a wider class of problems including both special cases

There 1s comparatively little hterature available on parameter-uniform numerical meth-
ods for problems with two small parameters Most of the articles published to date deal
with the two-parameter ODE (1 3 1) The asymptotic structure of the solutions to (1 3 1)
was examined by O’Malley [19, 20|, where the 1atio of u to /¢ was 1dentified as significant
Vulanovic [34] considered finite difference methods mn the case of 4 = 5%+’\, A > 0, however,
as we will see later, with this restriction the problem behaves similarly to one-dimensional
reaction-diffusion problems

Recently, parameter-uniform numerical methods for problem (1 3 1) were examined by
Linf and Roos [12], Roos and Uzelac [26] and O’Riordan et al [21] The main results of
Chapter 2 of this thesis have appeared mn [21] Both [12] and [21] are concerned with finite
difference methods and apply standard finite difference operators on special piecewise-
uniform meshes The method of analysis and the choice of transition points used to
generate the mesh differs in these two papers In [26] the ODE (1 3 1) 1s solved using the
streamhine-diffusion finite element method on a piecewise-uniform mesh and the operators
are adapted 1n order to achieve a higher order scheme The analysis 1n this paper follows
from the analysis in {12] Higher order schemes for problem (1 3 1) are also considered 1n
[5], where the approach follows that taken in {21] and [22]

Significantly less hiterature 1s available on the two-parameter parabolic and elliptic
PDEs Shishkin considered two-parameter elliptic problems m [30], however, these prob-
lems are different to those studied m this thesis Equation (1 3 2) 1s considered mn [22]
where a numerical method consisting of standard finite difference operators applied on a
piecewise-uniform mesh 1s constructed A form of the material in Chapter 3 of this thesis

has appeared mn [22] Equation (13 3) has been considered in [23] and the main results



from Chapter 4 have appeared 1n this article

14 Numerical methods for two-parameter differential equa-

tions

The analysis 1n this thesis 1s based on the principles laid down 1n [29] and 1n the books [3]
and [16] for a single parameter singularly perturbed problem The argument consists of
firstly establishing a maximum principle, and then decomposing the solution into regular
and layer components and deriving sharp parameter-explicit bounds on these components
and their derivatives The discrete solution 1s decomposed 1 an analogous fashion, and
the numenical error between the discrete and continuous components are analysed sepa-
rately using discrete maximum principle, truncation error analysis and appropriate barrier
functions

The analysis of equations (1 3 1), (1 3 2) and (1 3 3) naturally splits into the two cases
of 2 < Ce and p? > Ce In the first case the analysis follows closely that of reaction-
diffusion when p = 0, however, in the second case the analysis 1s more intricate Consid-
ering (13 1) and (1 3 2), when p? < Ce an O(\/€) layer appears in the neighbourhood of
£ =0and z =1 In the other case of u? > Ce, a layer of width O(-f;) appears 1n the
neighbourhood of z = 0 and a layer of width O(u) appears near z =1 With (1 3 3), when
u? < Ce, an O(y/€) layer appears in the neighbourhood of all four edges When p? > Ce,
we get layers of width O( i) i the neighbourhood of z = 0 and y = 0 and layers of width
O(u) 1 the neighbourhood of the other two edges

In Chapter 2, the two-parameter ODE (13 1) 1s examimmed We derive parameter
explicit bounds on the solution of this problem and its derivatives The solution 1s de-
composed mto regular and layer components and sharp bounds are obtained on these
components and their derivatives Using these bounds a numerical algorithm based on an
upwind finite difference operator and an appropriately chosen piecewise uniform mesh 1s
constructed The method 1s then shown to converge independently of both perturbation
parameters Numerical results are given to 1illustrate this convergence

Chapter 3 1s concerned with the two-parameter parabolic problem Difficulties arose
when attempting to extend some of the techniques of analysis used i Chapter 2 1n order
to deal with the parabolic PDE It became clear that some changes had to be made so
that the parabolic problem, and the more difficult elliptic PDE, could be considered The
method of analysis 1n this chapter 1s similar to that in the previous chapter apart from a

few notable exceptions



e The analysis in Chapter 3 splits entirely into two cases depending on the ratio of

to Ve

e The transition poimnts used 1n defining the Shishkin mesh also depend on this ratio

and are simpler then those used in Chapter 2

e When ;%2 > Ce¢, we define the regular component v using a double expansion, first

1 ¢ and then a further expansion i u

e In the case of u? > Ce, the definition of the nght singular layer component wpg in
Chapter 2 does not quite isolate the layer In Chapter 2 we manage to overcome this
problem 1n the error analysis, but 1n order to analyse the two-parameter parabolic
or elliptic differential equations, we need to define wg so that its effect 1s felt only

near £ = 1 Hence we decompose wg

A numerical method consisting of finite difference operators applied on a piecewise-uniform
mesh obtained with these new simpler transition points 1s constructed, and the numerical
approximations are shown to converge independently of the small parameters Numerical
results are given to 1llustrate this convergence The main results 1n the final section of this
chapter have appeared 1n [5] We apply the new approach detailed above to the regular
component and right singular layer component of (13 1) The bounds obtained 1n this
section are needed n [5] when analysing higher order methods for (13 1)

In Chapter 4, we extend the approach used 1n Chapter 3 to elliptic problems 1n the
case of u? < Ce Compatibility 1s now an 1ssue and the extension 1dea of Shishkin’s [29]
18 vital to ensure no overly artificial compatibility conditions are imposed A numerical
method 1s constructed and parameter-uniform error bounds are established

Chapter 5 deals with elliptic two-parameter problems 1n the case of u? > Ce, the style
of this chapter 1s different from that of the previous chapters The solution 1s decomposed
imto regular and layer components Parameter-explicit bounds are obtained on the regular
and boundary layer components and their derivatives It 1s when we consider the corner
layer functions that the style of the thesis changes Bounds on these components and
their derivatives are required for the error analysis We state and motivate conjectures
on the bounds of these functions, however, we leave rigorous proofs for future work A
numerical method 1s constructed and, assuming the conjectures on the bounds on corner
layer functions are true, parameter-umiform error bounds are established

The main findings of this thesis are as follows

e The original aim of this thesis was to take the hiterature for the convection-diffusion



and reaction-diffusion problems and adapt 1t to create one approach that dealt with
the two-parameter problem We now realise that the simplest and most extendable
approach to the two-parameter problem is to consider separately the cases of u? < Ce
and p? > Ce

e The analysis 1n this thesis highhghts the importance of using decompositions to
define the regular and layer components of the solution The key advantage of such

an approach 18 1ts extendability to problems of higher dimension

e Ensuring that the layer functions are defined so as to correctly 1solate the singularities
of our solution proved to be essential The order in which these components are
defined 1s also shown to be important When the regular and layer functions are
defined correctly, the choice of piecewise-umform mesh for our numerical method 1s

clear and the ensuing error analysis 1s relatively straight forward

15 Notation

e Throughout the thesis, 0 < ¢ < 1 1s a parameter multiplying all second order

denivatives and 0 < y < 118 a parameter multiplying all first order space derivatives

e We adopt the following notation
Ifllp = max|f(Z)],
7eD

and when the norm 1s not subscripted, the maximum 1s over the entire domain

e In Chapter 2 and Chapter 3, we take

b

a = mina, f=mmb, and v <min<-—,,
b D D le

while 1n the elliptic problem 1t 1s taken (for notational simpheity) as

1 b b
pemd = — b d < —_—
a ran{al, as}, Jé] 5 ml_;n , an 0% m[%n { 5 20, }



o The superscript = notation denotes an extended domain or an extended function (for
example Q*, f*) Superscripts such as [*,7'B] also tell us the direction in which the
domain or the functions are extended ([*,7B] implymng that we extend to the top

and bottom of the original domain)

e We use capital letters to denote discrete functions and small letters for continuous

functions

e Throughout this thesis, C' (sometimes subscripted) will denote a generic constant
imndependent of the parameters ¢ and x4 and the dimensions of the discrete problem

(N,M)

10



Chapter 2

Ordinary differential equations

21 Introduction

Consider the following two-parameter singularly perturbed boundary value problem

Loju = ed’(z) + po(o)i () - bla)u(e) = f(a), s€Q=(01), (211
u(0),u(l) given,

where a,b,f € C*(),0< e <1,0< u <1, 0<a<a(z)and 0 < 8 < b(z)
When the parameter u = 1, the problem 1s the well-studied one-dimensional convection-
diffusion problem ([16],[25]) In this case, a boundary layer of width O(e) appears n a
neighbourhood of the pomnt z = 0 When the parameter ;4 = 0, the problem is called
reaction-diffusion and boundary layers of width O(y/€) appear at both z = 0 and z =1
A discussion of these special cases and the two-parameter problem (2 1 1) can be found
i Chapter 1

In this chapter we construct and analyse a numerical method for this problem class
We show that the convergence of the numerical approximations to the exact solution is
independent of both small parameters The main results in this chapter have appeared 1n
[21]

In Section 2 2 we obtain parameter-exphcit a prior: bounds on the solution u of (2 1 1)
and 1ts dervatives In Section 2 3 we decompose the solution of (21 1) into regular and
layer components These components are then analysed separately and sharp parameter
explicit bounds are obtained on the components themselves and their derivatives Our

numerical method 1s defined 1n Section 24 We decompose our discrete solution U 1mto

11



components analogous to those in the continuous case and obtain bounds on these dis-
crete functions Section 2 5 1s concerned with analysing the error between the continuous
solution u of (21 1) and the discrete solution U This 1s achieved by analysing the error
in the regular and singular components separately We show that we have a parameter-
uniform numerical method Finally, Section 2 6 contains numerical results to support the

theoretical proofs given in the previous section

Notation particular to this chapter We define the zero order, first order and second

order differential operators Ly, L, and L., as follows

Loz = —bz,
L.,z = apz;+ Loz,
Leyz = €zzp+ Lyz

We should also note the following notation
90 =1{0,1},  [lullp = max|u(z)]

and 1f the norm 1s not subscripted we can assume || || = || ||

2 2 Bounds on the solution v and its derivatives

In this section we will establish a prior: bounds on the solution of (2 1 1) and 1ts deriva-
tives These bounds will be used 1n the error analysis 1n later sections We start by
stating a continuous minmimum principle for the differential operator mn (21 1), whose

proof 18 standard
Minimum Principle 1 Ifw € C?[0, 1] such that Le yw [o< 0 and w {9q> 0 thenw |g> 0

Lemma 2 2 1 The solution u of the differential equation (2 1 1), satisfies the following

bound

ullg < max{u(0)], [u(1)]} + %Ilfll

Proof Let us consider the following barrier functions

¥ (z) = max{ju(0)], [u(1)]} + %llf” + u(z)

12



Clearly the functions 4% (z) are nonnegative at + = 0 and z = 1 Also since

Leu¥™(2) = =b(z) max{|u(0)], lu(1)[} ~ b%)llfll + f(z) <0,

we can apply Mimmum Principle 1 to show that *(z) > 0 for all z € Q@ The required

result follows |

Lemma 2 2 2 The derwatives %,? of the solution u of (2 1 1) satisfy the following bounds

d*u C 7 k _
d®u C p\? ,
155 < (1 (&) ) metia s,
where C depends only on ||a||, ||a'||, ||b]| and ||¥']|

Proof Given any z € (0,1) we can construct a neighbourhood N, = (p,p +r) (where r 1s
some combination of ¢ and u yet to be determined and 0 < p < z < 1) such that z € N,
and N, C (0,1) The mean value theorem 1mples that there exists y € N, such that

’U,I( ) — u(p+'r) - u(p)
T
It follows that

|u'(y)] 52“:—” (222)

We have .
ul(z) = w'(y) + / o (€) de,
Yy

and therefore from the original differential equation (2 1 1) and using integration by parts

we obtain

@ =i + [ " HE) de+ e / “b(eyule) de
Yy

Y

el (uau

Using (2 2 2) and the fact that z — y < r, we have

: — /y T Eue) de)

017“ 2C2,u

2 r Csrp
)< 2l + S+l +

ul| +
2 jul| + =2

[l

13



We obtain the following bound,

W) <o+ Do B i+ Digl < o =+ Dk B mafipull 1711
T o) 9 13 T (2 £

If we choose 7 = /¢, then the rnight hand side of the above expression 1s minimised with
respect to 7 and we obtain the required result for £ =1 Using the differential equation
(211) we can obtain the required bounds for £ = 2 and by differentiating (21 1) the
result for k = 3 follows O

23 Decomposition of the solution

In order to obtain parameter-uniform error estimates we decompose the solution of (21 1)
into regular and singular components Firstly we want to show that there exists a function

v (regular component) where the boundary conditions can be chosen such that

dtv
dz?

Leyv=fon(0,1) and ’ <Cforv1=0,1,2

The analysis splits 1nto two cases depending on the ratio of u to /e
Starting with u? < Cje we consider the following differential equation

L. ,v=fon(0,1) (231)
We decompose v as follows
v= UO(J") + \/E’Ul(.’L' £, 1) + EUZ(:CaEaN)a (23 2a)
where
Lovg = [, (23 2b)
\/EL()’Ul = (L() - LS,“)vO (2 3 2C)
&'Ls’u’l)g = \/E(Lo — Le’ﬂ)vl on (0, 1), UQ(O) = 1)2(1) =0 (2 3 2d)
We know that ) .
d “l<c of & (f/b) <C,
dz? dz’

14



and since p? < Cie, we also have
¥

a2 (f/b)

dzt?

da

dzt

d'b
dzt

d’ v
dxt

<C

<o |

<C, and ‘

<C if ’

Hence, if we have f,b € C* and a € C?, we can use Lemma 2 2 2 1n order to obtain

solor ())(3) o). o

Therefore using the decomposttion (2 3 2), we conclude

d V2
dx?

dv
dzt

<Cfor2=0,1,2

In the second case u? > Cqe where Gy < C) and C; < I (v< mmﬁ{g}), we consider
the differential equation

-~ ~

Le 0= f on (0,d) d>1 9(d) =1, ©(0) chosen n (2 3 4}, (233)

where the differential operators Eg,u and Eu comcide with Le , and L, respectively on
the interval (0,1) and 4, b and [ are extensions of the functions a,b and f to the interval
(0,d) (they have the same properties as a,b and f and also coincide with the functions
on the mterval (0,1)) We extend the functions 1n such a way that ||a|| > ||all, ||Bl] > ||5]]

and v < mmg {2} Let us now decompose 9 as follows

b = g + by + €209 (23 4a)
where
Lyo = f on[0,d), Bo(d) = 1, (2 3 4b)
eLytr = (L~ Ley)do on [0,d), d1(d) =0, (2 3 4c)
2L, 400 = &(Ly — Le )91 on (0,d), 52(0) = 9o(d) =0 (23 4d)

We note that 4(0) = 0o(0) + €91(0)
In order to establish bounds on derivatives of the components 0y and 9;, we first need

the following lemma on the first order singularly perturbed operator E“

15



Lemma 2 31 Let y be the solution of the first order differential equation

Lly(z) = py'(z) — ky(z) = glwp), 0<z<d,
C
L
where i .
dxgz —O(l_i—ﬁe_j_(d_w))’ 7’:0:11 I<da
and for all z € [0, d]
. d k
k(z) > 4" >0, Jo <C, =01
then 7 .
y -1 (d-z) _
1z SC(I—i—Mpﬂe 2 z), 1=0,1, z<d

Proof Suppose z € C%([0,d]), we first note the following property can be established using
a simple proof by contradiction argument

If ZL”Z <0 and =z

(0,d)

>0 then =z
d

>0 (235)
(0,d]

Consider the following barrier functions

(0 =01 (1= 5 ) gt

7
Clearly the functions ¥*(z) are nonnegative at z = d for C; large enough We also have

G

. 1 g
7 (v — k)e = @ kCy + g(a, )

Lllpt =

Since k > v* we can choose C] such that Eﬂ}wi < 0 and therefore we can apply (2 3 5)

m order to obtain

1 g
ly(z)] < c<1+ 5 W z>) (236)
To derive the required bounds on the derivative of y, we decompose the solution as
follows (2. 1) (@)
g\z, p gla, p
- - d 237
vio) = ~Isd o+ (410 + G2 Jsto) + o), 237)

16



where
Ifs = 0 on[0,d), s(d)=1, (23 7b)
!
Eﬂ]z = (%) on{0,d), 2(d)=0 (23 7c)

Starting with (2 3 7b), we can use ¥*(z) = Ce™ w47 4 s(z) as our barrier functions n

order to obtan .
IPly=(z) = Cly* e w4 10

Again sice k(z) > +v* we find that the above expression 1s always nonpositive and we
g Y P p

therefore can apply (2 3 5) i order to obtain the following bound on the function s,
|s(z)| < ce™ W @

Using the above bound and (2 3 7b), we obtain

1§'(z)] < Ze” w4

®|Q

Next, since z satisfies a similar equation to y we have from (2 3 6) that
1 2 (d-q)
2(z)] < C 1+N—pﬁe *

The bounds on the derivative of z can be derived using (2 3 7¢) and the above result We

obtain . ,
1 (g
|uz'(z)] < C<1 + N_p-'__le @ x))

Combining this with (2 3 7a) we now have

0

Lemma 232 Ifu? > 2%, vy < mln{%} and f,a,b € C* then the solution © of (23 3)
satisfies the follounng bounds

d v
dzt

1 B
< c<1 + —le‘fﬁ‘d z)), 1=0,1,2,
7

17



where C depends only on ||a]|,||a'|], ||b]| and ||¥]|

Proof Note that & = 9y + e, + €20, We first consider 9y which 1s the solution of (2 3 4b)

Since 9y(d) =1 and H il tgi{a)

to obtan

< Cfor:1=0,1 we apply Lemma 2 3 1 with p = 0 1n order

d* vy
dzt
Differentiating (2 3 4b) we have

, b, AV IAW
u(dg) — 700 = (é) + (a) o9 = g1(x)

<O+ Le i) for s = 0,1 We
therefore can apply Lemma 2 3 1 with p = 1 1n order to obtain

>

& o

1 _1¢q..
<C(1+76 G z)>’ 1=0,1,
u

In this case [¢((d)| < ﬁ and we also know ’%}-

1 _
(o)l < 01+ o)

Continuing 1 this way (differentiating (2 3 4b) and applying Lemma 2 3 1 to differential

equations mvolving derivatives of 4y for the appropriate value of p), we obtain

d' i 1 _xgg-
Yl < C(1+ Zemutd “) 1=0,1,2,3,4
d p
Next we consider 9; which 1s the solution of (2 3 4c) Letting go(z) = *-%, we find

that 91 (d) = 0 and [gf (z)] < C(1+ e

231 with p =2 We now have the following

We therefore start by applying Lemma,

d* &y
dxt

1 -2 -
SC(1+FGH ’L——O,l

As with 9y, we differentiate (2 3 4c) mn order to obtain

b N\ by
syt 2 [ 20 3 4
(D7) 20 <&) +<&> U1

Applying the lemma with p = 3, we now have

d* o
dxt

gc<1+p—;§e“3(‘i">), 1=0,1,2 (238)

18



Finally we consider 9, Choosing 9= (z) = C; <1 + 76 ~zald—e )> + 92 as our barrier

functions we see that both are nonnegative at x =d We also have

T C a N
+ 1 Y d— R
b e) = =ib ,T(rz T2 ”)e w0 £ i
If we take u? > Z° we can show that the above expression 1s negative 1f C1 1s large enough

(smce v < mln{g}) We can therefore apply the mimimum principle in order to obtain
1 —3(d-2)
[52(z)| S C| 1+ —e 2 (239)
wt
We now need to bound the derivatives of o, Given any z € (0,d) we can construct a

neighbourhood N; = (p,p + €}, where z € N, and N, C {} The mean value theorem
mmplies there exists y € N such that

Using (2 3 9) we now obtain

) c 1 C :
6] < %(Hu Z(d (p+f))) 7( (- (+2\/‘))>

However this can be simphfied to

C 1 _ _p) 1/E
|93(y)] < %(1+Fe 2(d-2) g% )

ey
Since v < mln{g} and using u? > Coe, we know that e » < C We therefore obtain

R C 1 — L (d— ))
' x
Vo (Y < _(l+_e 24
| 2( )| —= \/E 4

From the original differential equation for 99, we have

ih(s) = 35(0) + [ “ae) de,
Yy

19



and using the bounds on 2 above and (2 3 8) we find (as 1n the proof of Lemma 2 2)

. 0] 1 3 (g—g) Cy [* 1 _a¢g-
rt< G4 Lot _/ 1 -8
o2(e)l < \/§< +N4e ] >+ € Jy <1+.U4e " 4
_;_9_3& <1+ le 2u(d 3))

€

Integrating, and remembering z — y < /€, we see

e Gl (ki)
2z-y)
Cu( ) —é’;(d—x) l—e 2

ept € ( (x—y))
2u
Using the mequality l’f_t < C we see

|65 ()] < C(“ +€‘/E> (1 + :46 7 (4= z)>

Also given that 2 > Che this can be simphfied 1n order to obtain
|94 (z)| < c(%) (1 + e m(d—ﬁ)) (2 3 10)
pt
Substituting (2 3 9) and (2 3 10) wto (2 3 4d),we now have the following bounds for 97,

<o b D) (14 L)

Finally we use the bounds for iy, 0; and 09 and their derivatives to obtain the required
result 0

- (2-y)
+

Using Lemma 2 3 2, we conclude that ¢ 1s bounded above away from z = d, and
imposing the condition that d > 1, we know 3 4 € C3(0,1) such that L. ,0 = f and
H H < Con (0,1) for + = 0,1,2 In this case we define the regular component v as the

solution to the following problem
Le,uv = fon (0) 1)) U(O) = ’6(0)> ‘U(].) = ﬁ(l)

Remark 231 When analysing the two-parameter ode (211), attention was always
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gwen to constructing proofs and using analytical tools that are extendable to problems of
higher dimensions However, one would encounter significant difficulties wn an attempt
to extend the approach taken wn Lemma 232 A new and more extendable approach
to define the regular component 1s needed when considering the two-parameter parabolic

problem Such an approach 1s detailed wn Chapter §

In both cases we now have the following decomposition of the solution u
U =0+ WL+ Wg, (23 11a)

where

L.,vo = fon(01), v(0),v(1) chosen 1in (232) or (234), (2311b)
L. ,w, = 0on(0,1), wr,(0) = u(0) —v(0), wr(l)=0, (23 11c)
L;,wp = 0on (0,1), wr(0) =0, wg(l)=1u(1) - v(1) (2311d)

The boundary conditions of v are chosen (as above) so that 1t satisfies the bounds

d3v
dz3

<< (2312)

£

dtv
dz

<C 1=0,1,2 and

and therefore we call v the regular component of the solution The singular components
wy, and wg satisfy the bounds in Lemma 2 2 2 However, we can also obtain the following

sharper bounds on the exponential character of the two components

Lemma 2 33 When the solution of (2 1 1) 1s decomposed as wn (2 3 11a), the singular

components wy and wgr satisfy the following bounds

fwr(z)] < Ce™7,

lwr(@)| < Ce 017,

where

9 — po+ /pa? + 4ef
1 - 2 )

and

4 —pA+ Ju?A? + 4ef3
2 p—
2e

(A = ||a|lg and 8, and 8, are respectively the positive roots of the equations €03 —pab—f =
0 and €03 + pAb; —f=0)
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Proof Consider the following barrier functions
¥=(2) = Ce™"® £ w(a),

where 0, 1s as stated We find that for C large enough, the functions are both nonnegative
at £ = 0 and z = 1, and after a simple calculation we also find that Lsyud)i(m) <0 We

therefore can apply the minimum principle 1n order to obtain
Jwy,(z)] < Ce™®®

The proof in the case of wg 1s similar O

Remark 2 3 2 The follounng properties of 01 and 0y can easildy be established They waill

be required in order to analyse the error wn the numerical approzvmations to the solution

o
91Zmax{£,—;—}, (23 13a)
2 9 2 ¢
if u® < Ce then 63 > — if p° > Ce then 6 > — (2 3 13b)

\/E‘)

kS

24 Daiscrete problem

Consider the following upwind finite difference scheme
LNU(a:l) = EéZU(J;Z) + /J.a(z:z)D+U(:I,‘1) —b(z,)U(z,) = f(=), T, € QN, (24 1a)

where

U(zy41) — Ulxy) D U(z,) = Ulz,) — U(z-1)

b
T4l — I Ty — Ty

DU(z,) =

d
an _ D*U(z,) - D U(z,)

0*U(z,) = (Zop1 — T2m1)/2

The piecewise-uniform mesh, QV, on which we apply the above finite difference operator

consists of two transition points

1 2

o1 = mln{Z,EInN}, (24 1b)
1 2

oy = mln{z,e—anN}

22



More specifically

i f o< f
QN_{;mzl_ o1+ (2 — )H, if J<o<N } (24 1c)
1—02+(z—3—41!)§7‘\’,1, if %gng

where NH = 2(1 — 01 — 03) We now state a discrete comparison principle for (2 4 1a),

whose proof 1s standard

Discrete Mimimum Principle If W 1s any mesh function and LYW |qv< 0 and
W lgqn > 0, then W |gn> 0

We have the following discrete decomposition
U=V + W, +Whp, (242&)

where the components are the solutions of the following

"V = f(z), V(0)=v(0), V(1)=0u(), (24 2b)
LW, = 0, Wy(0) =wg(0), Wi(1)=0, (24 2c)
L"Wgr = 0, Wg(0)=0, Wg(l)=wg(l) (2 4 2d)

We can prove the following bounds on the discrete counterparts of the singular components

wy, and wr

Theorem 2 41 We have the following bounds on Wy, and Wg

J
Wi(z,)| < CT[(1+6ch) ™ = Tp,;,  Tpo=C, (2 4 3a)
1=1
N
Wr(z,)) < C [] A+6rh)=Tr,, Try=C, (24 3b)
1=3+1

where Wy, and Wg are solutions of (2 4 2¢) and (2 4 2d) respectwely and h, = z, — T,—1

The parameters 05, and 05 are defined to be the positive roots of the following equations
2602 — pafy, —B=0 and 2e0% +pAfp—B=0, (A =]lal])

Proof We start with W;,  Consider @fd = ¥, + Wi(z,) Now LN@jL:J = 552\IIL,] +
paDT ¥y, —b¥ 40, and using
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\I’L,] > 03 D+\I’L,] = _GL\PL,3+1 <0 and (SZQLJ — OLZlI’L,]+1EJ}L‘ﬂ N 0’
J

we obtain

h
LN@f’] < 59L2\PL,J+1;1T+1 — kel Vi 41— BYL,,
I

where h_] = M Rewniting the right hand side of this equation we have

h
LVoT < W, (259L2 (2—3;—1 - 1) + (260.2 — paby — B) — BOLh]H) <0
7

Using the discrete minimum principle we obtain the required result
The same 1dea 1s applied to Wi We consider (I)E] =Ug, + Wg(z;) Now LNfIJiJ =
€6*Vp, +paD¥ g, — bl p; +0, and using

0z* h,

Vg, <Up,e1, Ury >0, DV Ug, =0p0p, and 6*°Tp, = m\p’z”i{_’
J 7

we obtain

Ugr h
Noz < —2L —{efp® | 2 - ; -
LY%< (1+0th) e0r , 2| +2e0p + pAOR(l + 0rhy) — B(1 + Orhy)

Rewriting the right hand side of this imequality we have

v h,

Ng+ Ry 2 2 3

—_— = — 2 2¢0 - 0 —2e0ph, ) <
LVo%, < (1+0th) (50 (h] >+( e0% + pAbg — B)(1 + Orh,) — 2603 J) <0,
and again we use the discrete mimimum principle to finish a

2.5 Error analysis

We now wish to analyse the bounds on the error between the discrete solution and the

continuous solution

Lemma 2 51 At each mesh point z, € QN the regular companent of the error satisfies

the following estitmate
[(V = v)(z,)] SCNTY,

where v 15 the solution of (2 8 11b) and V 1s the solution of (2 4 2b)
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Proof Using the usual truncation error argument and (2 3 12) we have
ILY(V = v)(z.)| < CH (ell”|| + pllv"|l) < CH < CN7,

where H 1s the maximum step size If we choose ¢*(z,) = C1N~! £ (V — v)(z,) as our
barrier functions, we know that these functions are both nonnegative at =0 and z =1
We also find that LV ¢* < 0 for C; large enough and therefore we can apply the discrete

minimmum principle in order to obtain the required result a

Lemma 2 5 2 At each mesh pownt 1, € QF the left singular component of the error

satisfies the following estimate
(WL —wi)(@,)] < CN~H(InN)?,

where wy, 15 the solution of (2 3 11c) and W, 1s the solution of (2 4 2¢)

Proof We can use a classical argument 1n order to obtain the following truncation error

bounds
1LY (W~ wi)(@)] € Clhugr + i) (ellw™[| + i)

Since wy, satisfies a similar equation to u, we can use Lemma 2 2 2 to obtain

0= e < O+ (35 (14 (3)') (1 (2)'))

Simplifying the right hand side of this expression we have

LYWy — wr)(@)] < Clhes + b (\%(1 ¥ (\ﬁ,))) (251)

Starting with when o1 = ;11-, we can show that 1n this case 6; < 8In NV and therefore

using (2 3 13a) our bound for the truncation error now becomes

1
N (Wi = w)(@)] < CNT(inNY, o1 =g

If we choose 9= (z,) = CN~}(In N)2 £+ (W, —wg)(z,) as our barrier functions we find that

we can apply the discrete mimimum principle 1n order to obtain

(Wi = wi)(z)] < CN“Y(InN)?, 1foy = %; (252)
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The next case to consider 1s o) < % In this case the mesh is piecewise uniform We
firstly analyse the error in the coarse mesh region [01,1) and then we proceed to analyse
the fine mesh on (0,0;) With the coarse mesh region, instead of using the usual truncation
error argument, we will use Lemma 2 3 3 and (2 4 3a) to obtain the required error bounds
From (2 4 3a) we have

NP

|WL($§)| <C(A+6rhy)”

where hy = 47‘{,1 When 01 < %, we can prove that phr > 4N"1InN We obtamn the

following
Wy(zn)] < C(L+4AN"InN)™%
4

Using the standard mequality In(1+£) > ¢(1 — £) and letting t = 4N " In N, we can show
that (1+4N~!In N)"% < 4N~! and therefore we conclude that on the interval [o1,1) we

have
(Wi(z,)] < CN™*

Looking at the continuous solution in this region we have
lwy(z)] < Ce ™% < Ce M n M) < CN™?
Combining these two results we now obtain the following error bounds
(We —wi)@)] <CN7Y, 3 €fon,l) and o) < 411 (25 3)

We now consider the fine mesh region The bound (2 5 1) on the truncation error still
holds and since we are in the fine mesh region with o7 < % we know that h,. 1 = h, =
%N‘l InN We can therefore use (2 3 13a) 1n order to obtain

2
ILY (Wy, — wp)(z,)| < CyN~'InN + CzN—l“? in N

If we choose 9¥(xz,) = C3N"1InN + C4N~Yoy — z,) (£) In N £ (W, — w)(z.) as our
barmer functions we find that both functions are nonnegative at z¢ and z y Cs3 and C4
can be chosen so that LN¢* < 0 and therefore applying the discrete minimum principle

we obtain

(WL —wi)(z,)| < CsN~'InN + Cy(oy — z,) (-’g) N-'lnN
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Therefore using o1 = % In N and 5-917 < C (see (23 13a)), we obtain

(W —wi)(@)] SCNT'INE, s €(0,0) and o<y (254)
Combining the bounds (2 5 2), (25 3) and (2 5 4) gives us the required result O

Lemma 2 53 At cach mesh pownt ©, € QO the mght singular component of the error

satisfies the following estimate
|(Wg — wg)(z.)] < CN"Y(InN)?, (255)

where wg 15 the solution of (2 8 11d) and Wg s the solution of (2 4 2d)

Proof We start with the case u? < Ce We again use a classical argument and Lemma
2 2 2 m order to obtain the following

LY (Wa — wr) (5] < Clhusr + ha) (-% (1+ (%)3)) (25 6)

However, 1n the case u? < Ce, this simphfies to

LN (Wr — wg)(2:)] < —=(hug1 + h) 257)

=0

If o9 = % and pu? < Ce, we can use (2 3 13b) to show % <0y < 8InN We now obtain

the following bounds on the truncation error
LY (Wg — wr)(z,)] < CN~'In N

If we choose 9 (z,) = CN~'In N & (Wg — wg)(z,) as our barrer functions on the entire

mterval [0, 1], we obtain
1
(Wr — wg){z,)] <CN'InN, u?<Ceandoy= 1 (25 8)

In the case where o2 < }1, we have to analyse the error 1n the fine and coarse mesh
regions separately As with wy we will start by examining the coarse mesh region (0, 1—o5]
Using (2 4 3b) we have

Wi(zan)| < C(L+ 0rhr) *

where hp = 51%,2 In this case we can prove that Ogphr > 4AN~!InN so, as with Wy, we
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obtain (after some calculations) |Wg(z sy )| < CN~! Therefore on the nterval (0,1 — o]
we have

|WR(QZZ)| < CN!

Using the fact that on the mterval (0,1 — g3] with og = % In N we have
lwg(z)] < Ce?20-2) < ON72,
we now obtain the following bounds on the error

1
(Wg —wg)(z,)] <CN7Y, u?<Ce z,€(0,1-0y]and oy < 1 (259)

We should note that this result i the coarse mesh region still holds when u? > Ce
and 02 < ; We now continue to the fine mesh region (1 — g2,1) The bounds on the
truncation error 1n (2 5 7) stall hold and given that we are i the fine mesh region we have
hi1=h, = N"'InN Using (23 13b) we now obtamn - (hy41 +h,) < CN~'InN and

hence

&
|ILY(Wg — wg)(z,)) <CN"'InN

As before, choosing ¥*(z,) = CN~'InN £ (Wg — wg) (z,) as our barrier functions we

obtain the following error bounds
1
(Wg —wg)(z,)] <CN"'InN, p?><Ce z,€(1—021)and oy < 1 (2510)

In the case u? > Ce, we need to look at wg differently We can decompose wg as

follows
wr(z) = y(z) - MwL(yc) (25 11a)
w (0)
where
Leyy(z) =0,  y(1) = wr(1), (2511b)

and wg(z) 15 defined as in (2 3 11c) Using this decomposition we have
[(Wr = wr)(z.)| < (Y = y)(z:)| + Cl(WL — wi)(=,)],

where Wg, Y, W are the discrete counterparts of wg, ¥ and wy, respectively We see

that y satisfies a similar equation to 9 n (2 3 3), therefore appropriately choosing y(0)
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and setting d = 1, we can use Lemma (2 3 2) to obtamn the following bounds for y

d'y
da?

I _2-¢
SC(I-&-Ee 21 )), 1=0,1,2

More simply

<% o012 (25 12)

_ul,

d'y
dz!

We know that |(W, — wz)(z,)] < CN~}(InN)? at each mesh pont z, € QV | so
we therefore only need to consider the error y generates In the case oy = % we know
that 6, < 81ln N and using (2 3 13b) we can therefore show that l% < CInN Using the
usual truncation error argument (noting that ey = (by)’ — u(ay')’) and a suitable barrier

function, we find that
(Y —y)(@)| < ON"H{ln N)?

Combining this with the bound obtained on the left smgular component of the error we

have

1
(Wr —wr)(z,)] <CN~YInN)?, 4?2 >Ceand op = 1

In the case of o7 < 1, the bound n the coarse mesh region (0,1 — a2], obtained mn the
case u° < Cé, still holds In the fine mesh region (1 —o2,1) we use (2 5 12) again 1n order

to obtain " "
LMY —y) ()] < cﬁ*—

In this case we know that h,o) = h, = %N‘l In N and using (2 3 13b) we can prove that
ILN(Y —y)(z,)] SCN~'InN
Therefore using a suitable barrier function we obtain
(Y = y}z)| SCN " In N
Hence, we now have the following bound on the error
(Wg = wr)(z)] SCN Y In N2 1?2 > Ce, z, € (L—09,1), and 02 < }1

Combining all the error bounds for wg 1n the different cases gives the required result [

Remark 2 51 Such a decomposition of wg wn (2 5 11) suggests that wn this case of p? >
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problem here

Figure 22 A zoom wn to the bottom-left corner of Figure 2 1

Ce, the defimition of wr wm (23 11d) does not correctly 1solate the right layer component
See for example the following sample problem

ey + pi'y — wr = 0, (2513)
we(0) =0, wgr(l)=1

Figure 2 1 s the solution of (25 13) when =273 and e =27'% Such a plot maght lead
us to nawely believe there 1s just a layer on the right, however, in Figure 2 2 we zoom n
to the bottom-left corner of Figure 2 1 and we see there 15 a problem We have not 1solated
our right layer component

Since, when p? > Ce, there 15 a layer of wndth O(u) on the rght, it seems more
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natural to assume that the function y defined wn (2 5 11b) behaves like the right singular
component However, as prewously discussed, such an approach to bound y(x) as detailed
i Lemma 2 3 2 may pose difficult to extend to higher dvmensions For these reasons a
new approach to correctly define the right layer component wg in the case of u? > Ce 1s

constructed i Chapter 3

Theorem 2 51 Let u be the solution of the differential equation (21 1) and U be the
solution of (24 1) Then at each mesh pownt z, € QY we have

(U - u)(z,)] < CN"HInN)? (2514)

Proof This result immediately follows from Lemmas 251,252 and 253 g

26 Numerical results

The scheme (the upwind finite difference operator (2 4 1a) appled on the mesh (2 4 1c))
has been tested with the following constant coefficient problem

() + pug (%) — ue u(2) = 1, Ue u(0) = uppu(l) =1 (261)

"
guy ,

Figures (2 3) and (2 4) are graphs of the exact solution of the above problem The pro-
gressively lower graphs in these figures correspond to progressively smaller values of the
parameter ¢ Note that in Figure (2 3b), the layer on the left 1s obvious while the layer

15 lslr

L

0 o 02 el 04 05 0§ o? oe 09 1

(a)

Figure 23 Exact solutions of 2 6 1 with ¢ = 272 for 2732 < & < 1 when (a) p* < ¢ and
(b) p? >0 75¢
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Figure 24 Exact solutions of 26 1 with u = 271 for 2732 < ¢ < 1 when (a) p? < e and
(b) p? >0 75¢

on the nght 1s notably weaker However, in Figure (2 4b) we see that as u 15 reduced the
layer on the right does in fact become more pronounced

We define the exact maximum pointwise error by

N — 1N
Ee,u,emct = ||Ue,u - Ue,u”QN
We also can find the maximum pointwise e-umiform errors using

N N
Ep,ezact = 2_1213;21 ”Us,p, - uE.ﬂ”QN:

and finally we define the maximum powntwise (e,u)-umiform errors by

EX max { max |[UN

= — Ug N
eract 2-32< <1 -r<e<1 &l ,MHQ }a

where p 15 chosen 1n order to achieve stability of E‘[‘V e

sact With respect to ¢ As u decreases,
we must also consider progressively smaller values of ¢ (larger values of p) in order to reach
this stability (e g when u = 2732 we must let ¢ decrease to 278°) Simuilarly we find the

exact order of convergence using

N
N =1 EE,,u.,ea:act
pe,u,ezact = 108y 2N .
E,14,eLQC
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We define the exact e-umform order of convergence by

N
N -1 Eu,ezact
pu,eracb - Og2 E2N ta
u,exac

and finally we define the exact (e,u)-umform order of convergence by

N

ezact

E2N

exact

N
Pezact = lOgQ

Table 2 1 contans values of EY, .., and EY ., for y = 271¢ and various values of
¢ The range 1 & we present 1s from 1 to 275, however, we can see that the errors have
stabilised with respect to ¢ after ¢ = 2746 The vertical dots in the N = 16,32, ,2048
columns ndicate that the values in these columns remain unchanged (the only exception
to this being the N = 8 case) and similar notation 1s used in Tables 22, 23 and 24
Table 2 2 contains values of p?j i ezact and p;’j, ezact fOr = 2718 and various values of € and
N Note that when p > /¢ the orders are approaching first order, however, 1n the region
where 1 < /¢ we observe rates of second order appearing

Table 2 3 contains the values of Eﬁ erace and EN

wract for various values of p and N

An nteresting effect to note 1s how quickly the error stablises with respect to p Finally
Table 2 4 contains the values of pﬁf ezact @nd p2. . for various values of y and N We
can see that this table validates the theory given in Theorem 251 Note that in this
theorem, theoretical error bounds of N~!(In N)? were obtained, however, the numerical
orders suggest a rate of N"'InN It 1s expected that more sophisticated barrier function

techniques could be used to achieve this result
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Table 2 1 The maximum pointwise errors EEJY 1ezact @nd the e-uniform maximum pointwise

€TTors Eﬁv ezace generated by the upwind finite difference operator (2 4 la) and the mesh
(2 4 1c) appled to problem (2 6 1) for 4 = 271% and for various values of € and N
Number of intervals N

€ 32 64 128 256 512 1024 2048

20 167e-05 | 419e-06 | 105e-06 | 2 67e-07 | 6 82e-08 | 1 78e-08 | 4 84e-09
272 161e-04 | 404e-05 | 102e-05 | 2 57e-06 | 6 57e-07 | 1 72e-07 | 4 66e-08
2—4 6 68c-04 | 168¢-04 | 422e-05 | 107e-05 | 2 73e-06 | 7 13e-07 | 193e-07
27 194e-03 | 4 88¢-04 { 123e-04 | 3 11e-05 | 795e-06 | 2 08e-06 | 5 64e-07
2-% 7 52e-03 | 192¢-03 | 4 84e-04 | 123e-04 | 3 13e-05 | 8 19e-06 | 2 22e-06
2-10 2 14e-02 | 7 54e-03 | 193e-03 | 490e-04 | 125¢-04 | 3 27e-05 | 8 89e-06
2-1% 2 15e-02 | 8 19e-03 | 2 84e-03 | 9 50e-04 | 3 09e-04 | 9 97e-05 | 3 26e-05
2-1d 217e-02 | 8 29¢-03 | 2 90e-03 | 9 82e-04 | 3 27e-04 | 1 10e-04 | 3 80e-05
2% 2 20e-02 | 8 49e-03 | 301e-03 | 105e-03 | 3 63e-04 | 129e-04 | 4 87e-05
2~ 18 227e-02 | 8 91e-03 | 3 25e¢-03 | 1 18e-03 | 4 34e-04 | 169e-04 | 7 03e-05
2—20 241e-02 | 973e-03 | 371e-03 | 143e-03 | 577e-04 | 247e-04 | 1 13e-04
272 269¢-02 | 114e-02 | 463e-03 | 195e-03 | 8 64e-04 | 4 05e-04 | 2 00e-04
2- 323e-02 | 146e-02 | 646e-03 | 298e-03 | 144e-03 | 7 20e-04 | 3 72e-04
2-% 4 28e-02 | 2 10e-02 | 101e-02 | 503e-03 | 2 57e-03 | 1 35e-03 | 7 15e-04
2728 6 25e-02 | 3 32e-02 | 171e-02 | 9 04e-03 | 4 81e-03 | 2 58¢-03 | 1 39e-03
2-%0 9 64e-02 | 553e-02 | 302e-02 | 166e-02 | 907e-03 | 495e-03 | 2 69e-03
2-3%2 1 45e-01 | 8 93e-02 | 5 12e-02 | 2 92e-02 | 163e-02 | 8 98e-03 | 4 92e-03
273 191e-01 | 1 26e-01 | 7 50e-02 | 4 41e-02 | 2 50e-02 | 140e-02 | 7 72e-03
2796 1 218e-01 | 148e-01 | 905e-02 | 542e-02 | 311e-02 | 175e-02 | 9 71e-03
2758 227e-01 | 156e-01 | 964e-02 | 581e-02 | 3 35e-02 | 189e-02 | 1 05e-02
2-10 2 30e-01 | 158e-01 | 981e-02 | 592e-02 | 342e-02 | 193e-02 | 1 07e-02
2-42 2 30e-01 | 159e-01 | 985¢-02 | 595e-02 | 344e-02 | 194e-02 | 1 08e-02
244 2 31e-01 | 15%-01 | 987e-02 | 59502 | 3 44e-02 | 195e-02 | 108e-02
2-1 2 31e-01 | 159e-01 | 9 87e-02 | 596e-02 | 344e-02 | 1 95e-02 | 1 08e-02

2750 17231e-01 | 159e-01 [ 9 87e-02 | 5 96e-02 | 3 44e-02 | 195¢-02 | 1 08e-02
CEY, 0 | 23Le-01 [ 159e-01 | 987e-02 [ 596e-02 | 3 44e-02 | 195¢-02 | 108e-02 |
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Table 2 2 Exact orders of convergence pf:\{ 1 ezact and e-uniform exact orders of convergence
pﬁf ozact Senerated by the upwind fimte difference operator (2 4 1a) and the mesh (2 4 1c)
applied to problem (2 6 1) for 2 = 2716 and for various values of € and N
Number of intervals NV

15 8 16 32 64 128 | 256 | 512 | 1024

20 200 (200200199 198|197 |194 | 188
9-2 199 | 200(200| 199|198 | 197|194 | 188
24 198 | 199199 | 199|198 | 197|194 | 188
2-6 191 (1971199199198 197 1194| 188
9-8 136 | 191 (197199198 197|194 | 188
2-10 057 118 (151197 (198197 194 | 188
2—12 052 117139153 |158|162|163| 161
2-1 049 | 1171139152 (156 (159|158 153
2-16 045 | 116 137149 | 153|153 |149 | 141
9-18 046 | 115|135 [146 146|144 |1 136 | 126
2-%0 046 | 112|131 (139137131122 113
2-22 045 (1081241130125 118 11091 102
2 043 | 102|114 {118 | 112106100 ) 095
2-26 041 (0931031106 100097093 | 0091
2-287 1038 [084[091]095[092][091 090 089
2—30 034 07408 | 087 |08 | 087 | 087 | 088
2=32 1 000|066 | 070| 080081 {084 | 086 | 087
2—34 027 {059 ({061 (074077 | 082|084 086
9-36 025 | 057|056 | 0701074080 | 083 | 085
238 024 | 056 | 055|069 (073|079 |082| 085
2—10 024 | 055|054 1069 (073|079 |082| 085

2760 | 008 [055]054[069[073[/079[082] 085
[ PY pnce | 024 [055]054][069]073[079][082] 085 |

Table 23 The e-uniform maximum pointwise errors E;IX ezact and the (e, p)-umform max-
imum powntwise errors EXY . generated by the upwind finite difference operator (2 4 la)
and the mesh (2 4 1c) applied to problem (2 6 1) for various values of 4 and N

Number of intervals N

n 32 64 128 256 512 1024 2048
20 157e-01 | 106e-01 | 6 51e-02 | 3 89¢-02 | 224e-02 | 126e-02 | 7 00e-03
2?2 2 37e-01 | 161e-01 | 992e-02 | 595e-02 | 343e-02 | 194e-002 | 107e-02
21 2 32e-01 | 159¢-01 | 989¢-02 | 596e-02 | 3 44e-02 1 95e-02 1 08e-02
2-° 2 31e-01 | 15%-01 | 987e-02 | 596e-02 | 3 44e-02 | 195e-02 | 1 08e-02

| 2777 [ 231e-01 [ 159e-01 | 987e-02 | 596e-02 | 3 44e-02 | 195e-02 | 108e-02
[EX... | 237e-01 | 161e01 | 992e02 | 596e-02 | 344e-02 | 195e-02 [ 108e-02 |

exact
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Table 24 Exact e-umform orders of convergence p¥,,,.; and the exact (¢, u)-umform
orders of convergence pY,.. generated by the upwind finite difference operator (24 la)
and the mesh (2 4 1¢) applied to problem (2 6 1) for various values of y and N
Number of intervals N

7 8 16 32 64 | 128 | 256 | 512 | 1024
20 048 | 067 | 057 | 070|074 | 080|083 | 085
272 [031]062{056 |[069|074[{079|082| 085
274 1026052054069 [073[079[082| 085
275 1024 [055[054[069[073[079{082| 085

2% [024 | 055054069 073|079|082] 085
"pN...]031]062]056[060]074][079]082] 085
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Chapter 3

Parabolic problems

31 Introduction

Consider the following class of singularly perturbed parabolic problems posed on the
domam G =Q x (0,7], Q=(0,1), I'=G\G

L. yu = €ugg + pougy — bu — duy = f(z,1), m G, (31 1a)
u = s(z), on I'p, (311b)

u=gq((t), only, u=g¢qo(t), onTlpg, (31 tc)
a(z,t) > a >0, b(z,t) >8>0, dz,t) >8>0, (311d)

where I'g = {(2,0) |0< 2z <1}, T, ={(0,t) | 0<t<T}and 'p = {(1,¢) |0 <t < T}
We assume sufficient regularity and compatibility at the corners so that the solution and
1ts regular component are sufficiently smooth for our analysis In this chapter we construct
a parameter-umform numerical method [3] for this class of singularly perturbed problems

When the parameter x4 = 1, the problem 1s the well-studied parabohic convection-
diffusion problem (8, 25, 31], when x = 0 we have a parabolic reaction-diffusion problem
[17) Parameter-uniform numerical methods composed of standard fimite difference opera-
tors and piecewise-unmiform meshes have been established [8, 25] for both the steady-state
and the time dependent versions of (3 1 1) m the two special cases of p = 0 and p =1
These methods have been discussed m Chapter 1

When considering the two-parameter parabolic problem (3 1 1), the mnitial aim was to
take the analysis in Chapter 2 and extend 1t to deal with the time-dependent problem

Dufficulties were encountered when attempting this extension, therefore some new 1deas
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were needed

e The analysis 1n this chapter splits completely into the two cases of u? < £ and
pr> L
- o

e New analytical approaches have been developed 1n this chapter to define the regular

component v and the right layer component wg 1n the case of u? > Ce

In Section 32, we derive parameter-explcit theoretical bounds on the solution of
{311) and 1ts derivatives We decompose the solution mto regular and singular com-
ponents The definition of these components differ depending on the ratio of u to /e
Sharp parameter-explicit bounds on these components and their derivatives are obtained
n Section 33 In Section 3 4, we apply an upwind fimite difference operator on a piece-
wise uniform mesh 1 the construction of our numerical algorithm to solve (3 1 1) for all
values of the parameters i the range i € [0,1] and € € (0,1] In Chapter 2, the piecewise

uniform mesh constructed consisted of the two transition points

1 2InN 1 2InN
- } and o= mm{z, —;1—}, (312)
2

where 7; 15 the positive root of the quadratic equation 67]% — pamn — B =0 and similarly
12 18 the positive root of the quadratic equation en? + ullal|lnz — B8 = 0 In this chapter the
choice of transition points in (3 4 1b) 1s sumpler then those given n (3 1 2) and depends

on the ratio of p to /e In [12], the similar problem of
—eu" +pbu' +eu=f m (0,1), wu(0)=wvo, u(l) =,

1s examined These new transition points 1 (3 4 1b) are also notably sumpler then those

given 1n [12] where the precewise umform mesh consists of two transition points,

1 2InN 1 2InN
g1 = mln{Za _;10_} and o3 = mln{17 %}a

where
= A <0 d = A > 0,
o0 = max o(z) an o = mmn 1(z)
with A;(z) and Xp(z) defined to be the solutions of the charactersitic equation

—eX(2)? + pb(z)M\(z) + c(z) =0
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The error between the continuous and discrete solution is analysed i Section 3 5 and
some numerical results are given to illustrate the parameter uniform convergence of the
numerical approximations The main results of this chapter have appeared 1n [22]

These new analytical techniques designed for the two-parameter parabolic problem, can
also be apphed when considering the ODE in Chapter 2 The final section of this chapter s
concerned with higher order methods for (21 1) We use the new approach developed for
(311) to define and bound the regular component v, the right layer component wg, and
their derivatives The results of this section were used 1n [5] to prove parameter-umform

asymptotic error bounds which are essentially second order

Notation particular to this chapter We define the zero order, first order and second
order differential operators Lg, L, and L., as follows

Loz = —bz—dz,

Lyz = apzg+ Loz,

We let v < rmnc—;{g} and we also adopt the following notation
lullg = mx fu(a, )

and 1f the norm 1s not subscripted then || || = ||&

3 2 Bounds on the solution uv and its derivatives

We will establish a prior: bounds on the solution of (3 11) and 1ts derivatives These
bounds will be needed 1 the error analysis 1n later sections We start by stating a contin-

uous mimimum principle for the differential operator 1n (3 1 1), whose proof 1s standard

Mmimum Principle 2 If w € C*(G) N C°(G) such that L. ,w |c< 0 and w |p> 0 then
w IG‘Z 0

The following lemma follows immediately from the above minimum principle and 1ts proof

again 18 standard

Lemma 3 21 The solution u of problem (3 1 1), satisfies the following bound
1
llull < llsllrg + llaalle, + llgzllr, + EIIfH
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Lemma 3 2 2 Assuming sufficient compatibility, the derwatwes of the solution u of
(3 1 1) satisfy the following bounds for all nonnegatwe integers k,m, such that 1 < k +
2m < 3, of u? < Ce then

gktmy, C 2 ak+mf
<
‘ azFotm || = (V) max{”“”’k; 0( 6z’“8th
24: ig dtql i dzq2 }
— dz e di* ||, e dt* ||p,
and 1f u? > Ce then
6k+mu ﬂ k “2 m 2 £ k ¢ m+1 6k+mf
— < Lad Ll — . - 4
dzFotm —C(g) (5) maX{HUHaH; o(“> (Mz) Bkatm'I’
24: L |d 24: d'q }
— dzl — || d¢* |lr, i de Tr

where C depends only on the coefficients a, b,and d and thewr derwatives

Proof The proof of such bounds follows a standard argument (see [17] for example) We
start by making a stretching of variables to transform our problem Local estimates in
[9] are then applied to this transformed problem and we obtain bounds on the solution
and 1ts derivatives We then transform back to our original variables i order to obtain
bounds on the solution of the original differential equation and 1its derivatives

The argument splits mto two cases u? < Ce and p? > Ce If u? < Ce consider the
transformation § = % Our transformed domain 15 given by G = (0, ﬁ) x (0,7] Also
we have 4(£,t) = u(z,t) with @, b, d and f defined similarly Applymg this transformation
0 (31 1) we obtan

fige + %aag ~bi—diy, = f, on G

Then for every ¢ € (0, -\}—E) and § > 0, we denote the rectangle ((¢ —&,¢ +68) x (0, 7)) NG
by R¢s The closure of R s 1s denoted R 5 For each (¢,t) € G, we use [9] (Lemma 10 1
pg 352) to obtan the following bounds for 1 <k +2m <3

2

grtmy { ak—}-mf H d 3
—— < Cwmax < |4, |l )
~ 8£katm A = H ” k+§r;:0 agkatm — dfl
Z d g }
= dti v, ool 4 i,
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where 'y = R¢os NTp, T} = Reas "Ly, T’y = Re 26 NTR and C 15 independent of the
rectangle R s These bounds hold for any pomnt (¢,t) € G Transformng back to the
origmal (z,t) variables gives us the required result If 4? > Ce, then we are required
to stretch 1in time also Introduce the transformation g = ‘ff-,'r = % Applying this

transformation to (3 1 1) we obtain for 4(p, 7) = u(z,t)
. .. £~ s £ .
Upp + Gllp — Fbu—duT = Pf, on G

Our transformed domam 1s given by G = (0, &) x (0, &Z—T] Repeat the argument for the

€

previous case to obtain the result O

Corollary 3 21 Assuming suffictent smoothness of f, s, ¢ and g2, the second order
time derwatwe of the solution of (1 1) satisfies the follownng bound

C, if p?<Ce
[Jugell < 4o )
Cue™, of p*2Ce

Proof Follows using the same argument as in Lemma 3 2 2 |

Note that similar parameter-dependent bounds on the time derivatives also appear in

Hembker et al [7] for the case of 4 =1

33 Decomposition of the solution

In order to obtain parameter-uniform error estimates, the solution of (3 1 1) 1s decomposed
mto a sum of regular and singular components The regular component will be constructed
so that the first two space derivatives of this component will be bounded independently

of both small parameters Consider the following differential equation
Leyv=fonG (331)
In the case of u? < X, we decompose v as follows

’U(:L‘,t,&‘,/l,) = ’U()(ﬂ),t) + \/Evl(:r,t,e, #) + EUQ(:E’tasaﬂ‘) (3 3 23‘)
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where

Lovg = f on G \ Ip, Uo(l‘, 0) = u(z,O), (3 3 2b)
\/ELOUI = (LO — Le,#)UO on G \ FB’ n ('T7 07 E,H) = 0: (3 3 2C)
eL.yvo = Ve(Lo—Ley)v onG vo|lr =0 (332d)

We see that v(0,t, €, u) = vo(0, £)+/ev1(0, ¢, e, 1) and v(1, t, €, u) = vo(1, t)+v/ev1 (1, ¢, €, 1)
Assuming sufficient smoothness on the coefficients (a, b, d, f € C%) and the mitial condi-
tion vg(z,0) and noting that au? < «ye, we see that vy and 1ts derivatives with respect to
z and t up to sixth order and v; and 1ts derivatives with respect to =z and ¢ up to fourth
order are bounded independently of € and y

Since vq satisfies a similar equation to u we can apply Lemma 3 2 1 and Lemma 3 2 2
to problem (3 3 2d) We obtain for 0 < k + 2m < 3,

sz se()

We conclude that when p? < 2, there exists a function v satisfying (3 3 1) where the

ak-l-mv?
dzkotm

boundary conditions of v can be chosen so that 1t satisfies the following bounds for 0 <

k+2m <3,
8k+mv

Jzkotm
From Corollary 3 2 1 we deduce that

C’(l—i—s%)

YE

Joall < €, of u? <
a

We consider the case of p? > L= We again consider the differential equation (3 3 1),

however, we decompose v as follows
’U(IL‘, ta &, ,u) = 7-’0(‘7:a ta lu) + evy (.’IJ, t, &, /1') + E2'02(‘/17’ i &, lu‘) (3 3 38')
where

Ly = f onGy, vo(z, 0, u) = u(z,0), wvo(1,t, 1) chosen n (3 36), (333b)
eLyvi = (Lp—Ley)vg on G, v1(z,0,e, 1) = v1(1,t,6,u) =0, (3 3 3c)
EQLE,#UQ = &(Ly—Ley)vi on G, volz, t,e,u)|r =0 (33 3d)
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Note that G; = [0,1)x(0,T] We can establish the following for the differential operator L,
by considering the transformation w = 1tz (5 < %) and using a proof by contradiction
argument Suppose z € C1(G1) N C°(G1) then

If L,z| <0 and z| >0, then z| >0, (334)
G I'; Gy

where L,z = apz; — bz —dz, 1 =g Ulg and G1 = [0,1) X (0,7] We note that the
proof only requires that a and d are strictly positive
We will now state and prove the following technical lemmas that are needed when

examining the dependence of the components vy and v; on the parameter p

Lemma 3 3 1 Suppose z(z,t) € CH{G1)NC%(G1) satisfies the first order instial-boundary

value problem

Lyz=apz; —bz—dzy = f (z,t) € [0,1) x [0,77, (335)
z(z,0) = g1i(z),  z(1,t) = ga(t),

where ¢ >0, d > 0 and b > 0, then
1
l2]] £ Bllfll + llgrllrs + llg2lrg

Proof Consider ¢*(z,t) = %HfH +lg1llrg + |lg2llrg £ 2(z,t) We see that the functions
% (z,t) are nonnegative for (r,t) € '} Also

L (z,1) = ~b(%llfll Fllgrlies +lgallg) = £ <0,

and the required bound on ||z|| follows by applying (3 3 4)
a

Lemma 3 32 Suppose z(z,t) € C¥™(Gy) satisfies the differentral equation (3 3 5),

assumang sufficient regularity of the coefficients, its derwatwes satisfy the following bounds
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for positive wntegers k and m,

k+m

Frrz || _ C [||@ms "*i‘l o[ I
dzkorm || = 4k | || agk+m H oot d o
r+s5=0 2=0
k+m djgg
~(k+m)AT
+J§:0 T || =l e ,

where A = mm{0, (§) (%)t} and the constant C depends only on the coefficients a, b, d

and thewr dervatives

Proof Differentiating (3 3 5) with respect to ¢, we obtain

Lia=pae— G+ (8)) 2~ dzu = (£) + ()=
z(1,t) = g(t), =z, 0) = ¢ (z),

where ¢;(z) can be expressed 1 terms of g1, g1, f and the coefficients of (3 3 5) Consider
the barrier functions ¥ (z, £) = CULF + £l + llgs) + llg} | + llghl + l|zll)e~4* 2, with
A as above For C large enough the functions % are nonnegative for (z,t) € Iy Also

LWy (e,t) = —C(E+(2),— 24) (AN + £l + lgull + Ngrll + lgall + 1zl)e*
+((£),+(2).7).

and, using the defimtion of A, we see that for C chosen correctly we have Lglzp{b(:c, t) <0
Therefore using (3 3 4) we obtain

1zl < CAN+ A+ ol + gt + llgall + [1z1De™ T,

and using (3 3 5} we have that

c / / -
|lz=(} < ;(Hf”"'“ft”+H91“+H91|‘+H92H+||3H)6 A

Proceed by mduction Assume the statement true for 0 < £+ m < [ Dafferentiate
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(335) I+ 1 times with respect to ¢ to obtain

oty 0tz b d otz d [0tz
[+~ _ oY _ (L e v =z _
Ly gt M (3tl+l )x <a +(1+1) (a>t) ((%Hl) s <6‘tl+1 )t = p(a,1),

oty dl+1g2 oit+1,
W(lat) = hto W(SC,O) = ¢ry1(z)

The expression p(z,t) mvolves z and 1ts ¢ dervatives up to order {, f and 1ts t derivatives
up to order ! + 1 and the coefficients and their derivatives The function ¢;41(z) mnvolves
g1 and all 1ts derivatives up to order [ + 1, the derivatives of f of the form ﬂrg;% up to
order ! and the coefficients and their derivatives

Consider the barrier functions

al-Hf ! 3r+sf 41 d ]g
+ _ 1
wH‘l(a"’t) = C ] B+l + Z W Oz Ots + Z d x7
r+s=0 1=0
i+1 141
d’gs —(+1)At . 9 Tz
+JZ=; dv ||t 2]l | e = oti+1

We see that for C large enough wﬁ_l(m,t) are nonnegative for (z,t) € I'; Also for C
chosen correctly we see that LEH} wﬁl(az, t) < 0, therefore using (3 3 4) we obtain

o+, o+l { grts i+1 d7
g | <\ |31+ X 7 |lgwanl|* 2|70
otitl ottt ozT ots d z?
r+s=0 7=0
1+1
d’g; —(I4+1)AT
+3° o ||l ) e
7=0
Differentiate (3 3 5) appropriately to obtain the required result for £ +m =1+ 1 d

We now continue with our analysis of vg and v; The following two Lemmas establish
that when the boundary condition vg(1, ¢, 1) 18 chosen correctly, the first two space deriva-
tives of wo(x,t, ) are bounded independent of 4 and the space dervatives of vi(z,t, i)

are bounded by inverse powers of u

Lemma 3 3 3 If vy satisfies the first order differential equation (8 3 3b) then there exists
a value for vo(1,t, 1) such that the following bounds hold for 0 < k+m < 6

ak+mv0

< 2—k
dzkotm C+u)
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Proof We further decompose vg(z,t, i) as follows

U()(:E,t, /J‘) = SQ(.’L‘,t) + “Sl(a:vt) + /‘252($7t7 #) (3 3 6&)
where
Loso = f on G\Tp, so(z,0) = u(z,0), (3 3 6b)
plosy = (Lo—Ly)so on G\Ig, s1(z,0) =0, (3 3 6¢)
piLysy = p(lop—Ly)si on Gy=[0,1)x (0,T], soIr, =0 (336d)

We see that vg(1, £, p) = so(1,2) +usi(1,t) and 1f a, b, d, f € C7(G) and u(z,0) € C7(['p),

we have

8k+m

S0
_— < <
32k 5 < C for 0<k+m<7, (337)
oktms, 975y
fi 0< < <
f Errrye| C or 0<k+m<6 and 52510 <C (338

Next we apply Lemma 3 3 1 and Lemma 3 3 2 to obtain for 0 < k+m <6

where A = min {0, a (%)t} Using the decomposition (3 3 6) and the bounds on the
components of this decomposition given m (337), (338) and (339), we obtain the

8k+m82

C
g | < e 39

—_e

—l_j,k )

required result O

Lemma 3 83 4 Ifv; satisfies the first order differential equation (8 8 3c) then the following

bounds hold for 0 <k+m <4
3Ic+mv1

C
2 e
Azkotm || — uk

;4
Proof We simply apply Lemma 3 3 1 and Lemma 3 3 2 to (3 3 3¢) O

Lemma 3 3 5 Ifvy(z,t,¢€,u) satisfies the differential equation (8 8 3d) then the follounng
bounds hold for 0 <k+m <3

2

SO v o

ak+m,u2
Ozkotm

46



Proof Since vy satisfies a similar equation to u, we use Lemma 3 2 1 to obtain
1
lva(z, b, €, u)|| < Jlvalir + Elivmﬂ
Applying the bounds in Lemma 3 3 4 we therefore have
C

jloal < F

Finally noting that the equation for v9 has zero boundary conditions, we use Lemma 3 2 2,
the bounds for v; and the fact that

()

to obtain the required result d

ak-}-mvlm:

T | <on(7) s 0w

7

Substituting these bounds for vg(z,t, 1), vi(z,t, 1) and ve(z,t, e, u) mto (3 3 3) and
noting that u? > Ce, we conclude that, m this case, there exists a function v satisfying
(3 3 1) where the boundary conditions of v can be chosen so that the following bounds

holds for 0 < k+ 2m < 3,
3k+m,v p k-2
—|<C|1 —
‘322’“325'"“‘ ( +(7) )

Assuming sufficient smoothness of the data, from Corollary 3 2 1 and extending the argu-

ment 1n the previous lemma to the case of k¥ + 2m = 4 we deduce that

vE

loall < C(L+ e 2u'e?) < C, of p?> -

In both cases we now have the following decomposition of the solution u nto regular

and singular components,

u(z,t) = v(z,t) + wi(z,t) + wr(z,?) (3 3 10a)
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where wy, and wg satisfy homogeneous differential equations and

Leyv = fonG, v(z,0) =u(z,0), (3 3 10b)
v(0,t) and v(1,t) chosen n (3 3 2) or (33 3),
Lejwr, = 0onG, wr(z,0)=wg(l,t) =0, (33 10c)
wp (0,¢) = u(0,t) — v(0,t) — wg(0,t),
Leywp = 0onG, wg(z,0)=0, wr(l,t) =u(l,t) —v(l,t), (33 10d)

if p? < %, then wr(0,t) =0,
else wr(0,t) 1s chosen m (3 3 12)

The boundary conditions of v are chosen 1 (3 3 2) or (3 3 3) so that the regular conponent
satisfies the bounds

When p? < I, the singular components wy, and wp satisfy the bounds in Lemma 3 2 2

6k+mv

ok om < C(1+e™), for 0<k+2m<3, ol < C (3311)

and Corollary 321 When u? > L, the value for wp(0,t) 1s taken from the following

decomposition
’U)R(Z, i, /J‘) = U)O(fL‘, 12 [L) + ewy (.7;, ¢ /1‘) + EQU]Q(J:’ 1€, /1') (3 3 123‘)

where v(1,t) = vp(1,1) 18 given m (3 3 6) and

Lu'wO = 0 on Gy, wO(:Ea 0, ”) =0, wo(l, t,u) = u(lvt) - UO(lat)a(3 3 12b)
eLywy = (Ly—Lep)wy on Gy, wi{z,0,u) = wi(Lt,p) =0, (3312)
e Leywy = e(Ly—Ley)wy on G, wo(z,t,e,4)lr =0 (3312d)

Lemma 3 36 When wg(z,t) s defined as wn (3 3 10d), the following bound holds
[wr(0,1)lr, < e e,

where B < A = mm {0, % (g)t}

Proof When p? < 2, the result 1s trivial Consider the case of p? > L Usmng the
decomposition (3 3 12), we see that wg(0,t) = we(0,t) + ew1(0,¢) We start by analysing

wy(z,t) Consider the barrier functions ¢=(z,t) = Ce w79 4 wo(z,t) We can show
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that for C large enough z,bilFBUFR > 0 and we have
Lyp*(z,t) = Clay — ble #1™ < 0
We can therefore apply (3 3 4) 1 order to obtamn
wo(z,1)] < Cew 72 (3313)

In order to analyse w{z,t), we first obtain sharp bounds on woz:(z,t) Differentiate
(3 3 12b) with respect to t to obtam

LB](th) = p(woy)z — (g + (g)t) wot — g(wot)t = (g)twm wo,(z,0) = 0,

a
woy(L,t) = (wr(l,t))

Consider the barrier functions ¢ (z, t) = Ce=Bte™u(172) +wos(z,t), where B 1s as defined

We can show that for C' large enough ;- >0 and Lglq,bli(:z, t) <0 Apply (33 4)

'FBUFR
1n order to obtain
woy(x, 1)| < CeBte™u(1—o)

Using the equation for wp, (3 3 12b), this implies that
C —2(1-
fwos(a, 1)) < —ePrew 7
n
If we differentiate (3 3 12b) twice with respect to ¢ and apply the same argument we obtain
[wos(, 1] < O™t 07,
Using the equation for wg, (3 3 12b), this imples that
% o~ 2Bt = 1(1-2)

C e
|w0xt($,t)|S;8_ZBt6 27 and gy (2, 8)] <

Since we have exponential bounds on wy and its derivatives, we can now examine
_ —X(1—
how w1 (z,t) depends on y Consider the barrier functions ¢ (z,t) = ﬂ%e 2Bte=(172) 4

wy (z,t) Note that w;(m,t){rguu > 0, also for C large enough

1 —_ -
LM’(,L‘;:(QZ, t) = 0[73 -b+ Bd] Ee_QBte %(1 z) + Wozg
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Therefore using the definitions of v and B we find L”wzi(:c,t) <0, and using (3 3 4), we
have o
jwn ()] < Se~?Btew077) (3314)
U

Smce p? > X we can use (3 3 12d), (3 3 13) and (3 3 14) to obtan
[wr(0,1)] < Ce™2Pte™i

0

Lemma 3 37 When the solution of (31 1) 1s decomposed as wn (3 3 10a), the singular

components wy, and wg satisfy the following bounds
[wi(z, )] < Ce™%,

|wr(z,t)] < Ce 2=

where
NAL oL 2 o e
91_ e 7 ’pruS:yE 92_ 2\/57 ?'f/J‘S:/E
= , =
o p2X o W2E

Proof Consider the following barrier functions
PE(z,1) = Ce " £ wi(z, 1),

In both cases, we find that for C large enough ¥+ (z,t) |r >0 and L, 4> (z,t) <0 We
apply the Minimum Principle 1n order to obtain the required bound on |wy (z,t)|

When p? < %., the proof in the case of wg 18 similar We consider the barrier functions
PE(z,t) = Ce—é%(l—x) + wp(zr,t) Agan we find that for C large enough ¥*(z, ) ‘F
and, using the definition of v,

+ ua\/WOf Y2 (1 )
= __b 2
Le b (2, 1) C( ; 2\/_ )e
7808 ) R o
< C( y + 7 2 b)e <0

Since wg(0,t) # 0 1 the case of u? > 25, we have to be more careful Consider the

barrier functions
(11—
zl)f(x,t) = Qe 24temm (172) 4 wr(z,t),

where 4 = mm {0, 4 F ( ) } Using the previous lemma we have that 7,[11 (z, t)] >0 for C
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large enough, we also find L, ,%i (z,t) <0 Use the Minimum Principle and the fact that
t € (0,7) to obtain the required bound a

Lemma 3 3 8 When p? > L, wg the solution of (3 3 10d), satisfies the following bounds

|

Proof Consider the decomposition (33 12), we start by analysing wo(z,t) Using the

d"wg
ot

(9ka
Ok

<C, m=1,2

<CpF+pte¥ ), 1<k <3 and l

same method as used for v1 in Lemma 3 3 4 we obtamn for 0 <k+m <6

Ftmuwg| _ C

—[J,k,

Wy
Oxktm

Using this method again for w;(z,?) we obtain for 0 <k +m <4

ak+mwl C
BIEkatm — #k+2

We can apply Lemma 3 2 1 to obtain

C

1
[lwallg < llwalle + Fllwizslle < o

Finally from Lemma 3 2 2 we obtain for 1 < k+ 2m < 3

k+m k 2
) o) ()"
ozkot™ || £ £
and by Corollary 3 2 1
0*wy 4,4_-2
— || <Cu"ue
ot? a #oH
Using (3 3 12) and p? > 2 gives us the required result (|

Lemma 3 39 When p? > X2, wy the solution of (3 3 10c), satisfies the following bounds

BQwL

ot?

O wy,

ok < C(L+p2e™h
T

go(g)k, 1<k<3 and

Proof The bounds on the derivatives of the space derivatives follow from Lemma 3 2 2
and the fact that

wr (0,1) = (u—wvo — wp)(0,t) — (v + w1 ) (0, t)
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To obtain the bound on the tune derivative we introduce the decomposition
wy(z,t) = wr,(0,8)¢(z, t) + ep >Rz, t)
where the function ¢ 1s the solution of the boundary value problem
€zs + pa(0,t)¢e =0, z € (0,1), (0,t) =1, ¢(1,1) =0
Note that, by using 2"e¢~% < Ce™%/2, n > 1, z > 0, we have

gk+m oz
9 < c(B)remene
ozkdtm| — ‘e

Note that R =0on I" and

n~%eLe, R = wr(0,6)(1(a(0,t) — a(z, )by +bg) + d(wr (0, 1))

Thus using
C 2 2:1: oz 2 oz C 2 oz
LeuR(m, 0] < T (14 E5)e % 4 oo < Zenti?

one can deduce that
|R(z,t)] < Ce™ %"

Finally note that for 1 < k+2m <3

3k+m(LE,MR) )k
dzkotm A

2
<ok
a £

o=

Using Lemma 32 2 (extended to the case of k¥ +2m = 4) and noting the exponent of

(m + 1) this imphes that
0’R

-2 4
| SCH

a

Remark 3 3 1 When considering the parabolic problem (3 1 1), compatibilaty 1s an issue

Let us consider the following problem unth zero boundary conditions

Leyu=f onG, wp=0 (3316)
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We note that any parabolic problem of the form (3 11) can be transformed wnto a problem
of the form (3 3 16) with zero boundary and wnitial conditions (see [31] for example) Using
[9, 17] 1t can be shown that of

ot f
oz ot?

1,0 aH—]fOO 0 < 29 <2
(1, )—W(a)— , 01+ 29 <

then u € C4(G)

Since our method of analysis involves decomposing the solution of (3 11) wmto a sum
of various components, we also need to ensure that each of the components considered
satisfy sufficient compatibility conditions However, in the case of zero boundary condi-
tions, all of these components can be traced back to depend on f Sufficient compatibility
conditions for these components therefore wnvolve ensuring that f and a sufficient number
of 1ts derwatives are zero at the corners (0,0) and (1,0) We should note that additronal
compatibility 15 required at the corner (1,0), since for ezample 1n the case of p* > %, S2
1s defined mn (33 6d) to be the solution of a first order problem We need s € C%(G)
therefore we must smpose the condition that f and a suffictent number of its derwatives
are zero at that corner (see for ezample [1, 14f) To be specific wn the case of (33 6d), by

assuming that
otif
ox* ot

(110):01 OSZ‘}_]S?
then

61'”80 g

= 0< < — < <
B:E"atJ(l’O) 0, <i1+4+3<7 and Baﬂ@ti(l’o) 0, 0<24+5<6

which (quen sufficient reqularity of the data) suffices for s, € C%(G)
It should be noted that this 1ssue of compatibility, while obuously important, 1s not the
mawn thrust of this thesis Zero order compatibility conditions have been checked in the

case of all the components in this chapter

34 Daiscrete problem

We discretize {31 1) using a numerical method that 1s composed of a fully implcit 1n
time and upwinded in space fimte difference operator L™ on a tensor product mesh

GNM = {(x,, tj)}f\r:’g";:o, which 1s piecewise-uniform 1n space and uniform 1n time We
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have the following discrete problem,

LMy (2,,t) = eb2U +paDIU —bU —dD7U = f,  (z,t,) € GVM
U=u, (2,t)eIVM=GNMnT (34 la)

where the finite difference operators D}, D; and 62 are

t,) — _ 1,
D+U(.Tl,1: ) — U($z+1) ]) U(xut]), D_U(Il,t ) _ U(CB,,tJ) U(.’L‘ 1 t])
’ ¢ Tyl — Iy “ ! Ty — X1 ’

U(Zl)tj) _ U(x’l)tj—l) and 62U($1 t]) — D;U(xut]) - D;U(I’Ht])

D—U :L‘l,t =
' ( J) tj - t_}~1 (Il+1 - 1'1_1)/2

The piecewise-umform mesh 1n space QY consists of two transition points

12 2
o1 = mm{z,\/%lnN}, if p* <X
mln{}i,z—ilnN}, if p? > 2 ’
(34 1b)
oy = mm{%,\g/{_glnN}, if p?<XE
mm{%,%’ilnN}, if p?>X
More specifically
2 f 1<
QN={$1|.’B1= o+ (1~ I)H, if %515% }, (34 1c¢)
1—02+(Z—‘§4ﬂ)47(\7]2', of %MSZSN

where NH = 2(1 — 01 — 03) and the mesh in time 1s taken to be uniform with ¢, = 7\%,
7=0, M Wenow state a discrete comparison principle for the finite difference operator

m (3 4 1a), whose proof 1s standard

Discrete Mimimum Principle If W s any mesh function and LMW |ov m< 0 and
W pnu> 0, then W lagv > 0

A standard corollary to this 1s that For any mesh function Z

1211 < CIILYMZ|| + 1| Z|rw (342)
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The disciete solution can be decomposed 1n an analogous fashion to the continuous solu-

tion We have the sum
U=V +W,+Wg (34 3a)

where the components V, Wy, and Wg are the solutions of the following

LMy = . Viww = m, (3 4 3b)
LN’MWL = 0, WLIFN M = ’lUL‘FN M, (3 4 3C)
LVMWe = 0,  Wgrlpvm = wr|pwm (34 3d)

Theorem 3 4 1 We have the following bounds on Wi, and Wg

J
|WL .’IJ],tk H (14+60ph,)~ ——-\I’L,J, \I’L}(]:C (34 4a)
N
Wr(zy, te) <C [] A +6rh)™ =Tr,;, ¥gpn=C (3 4 4b)
1=3+1

where Wy, and Wg are solutions of (3 4 3¢) and (3 4 8d) respectwvely, 0 <3 < N,0< k<
M, h, = z, — x,_1 and the parameters 01 and Og are defined as follows

Yo yo 2 £
9L={ W W<k eRz{%CE’ ST (3 4 4c)
2, o p>¥ s f B>k

We note that 0 = —L and Or = B, where 8; and 65 are defined in Lemma 3 3 7

Proof We start with W, Consider @%(mj,t;c) =V ,=Wy(z;,tx) Wehave LNvMéf(:v], te) =
5(5?[\1/1;,] + paDF ¥y, — 6T, Using the properties

h
Up,>0, D}Up,=—-60,9;,.1 <0, and &V, = 9L2\11L,]+1—;l-]+—1 >0,

we obtain N
1
LNMOT (z;,t4) = EGLQ\IIL,JH% = pafr ¥y — b1y,
7

where h, = ﬁf%ﬁl Rewrniting the right hand side of this equation we have

A
LVMeT < Wp (259L2 (—QJhi - 1) + (2601.% — pafr, — b) — 59th+1>
7
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Using this expression we can show that for both values of 6, LV ’M<I>:Lt‘] <0 Now using
the discrete mimimum principle we obtain the required bound (3 4 4a)

The same 1dea 1s applied to Wi Consider @ﬁ(x],tk) = Up,+Walz, tx) fu?< =,
1t 18 easy to see that @j&z(O,tk) >0, CI’}iz(l,tk) >0 and @ﬁ(xJ,O) > 0 However i the other
case we need to look at @,i{(o, t,) 1 more detall We know that

N
o5(0,1x) = C[J(1 + %hz)‘1 + W (0, t)
1=1

—_21p _ _1 _2vN _Ip
However, given that e »* < (I + %h,) Land e = e 2=t = H:\ile kT, we see

using Lemma 3 3 6 that @f{(O,tk) >0
Considering both cases together again, LN’M<I>§(:EJ,tk) =e62Up,+paDfUp, —bTg,,

and using

62 h

Up, <Ug,y1, Upy, >0, DiUg, =0p¥g,, and §2¥p, = mxymh_—’,
7 )

we obtain

v h
NMx+ R, 3
L @R(I],tk) S (1+—9;h:’)<2€032 (-2}33] - 1) +(2€9%1+M046R—b)(1+6Rh3)—256Rh3>

Again, we can see that for both values of g, that LN’Méﬁ(ac],tk) < 0 Therefore we
apply the discrete mimimum principle to obtain the required bound (3 4 4b) O
3 5 Error analysis

In this section, we analyse the error between the continuous solution of (31 1) and the
discrete solution of (34 1) This 1s done by analysing the error in approximating each of

the components 1 the decomposition (3 3 10a) separately

Lemma 3 51 At each mesh pownt (x,,t,) € GV'M the regular component of the error

satisfies the following estimate
[(V = v)(z, t,))| <C(NTI+ M7,

where v 15 the solution of (3 8 10b) and V 1s the solution of (3 4 3b)
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Proof Using the usual truncation error aigument and (3 3 11) we have
ILYM(V —v)(2,,8))] < CLN T (el lvgzal| + pllvzal]) + CoM Hlowl] < CNT'+ MY,

and we apply (3 4 2) to obtain the required result Q

Lemma 3 52 At each mesh pownt (z,,t,) € GMM the left singular component of the

error satisfies the following estymate

C(N-Y(InN) + M~1), of p?<Ce

Wy ~ vyl <
(Wi —wi)(zb,)] {C(N—l(lnN)2+M—11nN), f w2 Ce

where wy, 18 the solution of (8 3 10c) and W, 1s the solution of (3 4 3c)

Proof We use a classical argument 1n order to obtain the following truncation error bounds
|LN’M(WL —wL)(Zla t])| < Cl (h'1+1 +h'l) (6“sz:£:::|| + N‘le’mz”) +CQM—1 | lettH (3 S 1)

The proof splits into the two cases of (a) oy < & and (b) 01 = %

(a) We consider the case of o1 < § In this case the mesh QN 1s precewise uniform
We firstly analyse the error in the region [o1,1) x (0,7] and then we proceed to analyse
the fine mesh on (0,0;) x (0, 7] To obtain the required error bounds 1n [07,1) x (0,T], we
will use Lemma 3 3 7 and (3 4 4a) instead of the usual truncation error argument From
(3 4 4a) we have .

Wi(en, )| < C(1 +9L4;;;)_T,

where 07, and o, depend on the ratio of y? to £ and are given n (3 4 4c) and (3 4 1b)
respectively For both these choices of 1, and o; we can show that

N
4

Wiz, t,)l < C(1 +4N"'InN)~

Letting ¢ = 4N~'InN i the mequality In(1 +#) > #(1 — £), 1t follows that (1 +
4N-! lnN)_% < 4N~! Therefore

W (z:, )| < CN_la (z:,t) € [01,1) x (0,T7]
Looking at the continuous solution 1 this region we have from Lemma 3 3 7

lwr (2, t,)| < Ce™% < Ceft7 < CN72,
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for both choices of o) and §; Combining these two results we obtain the following error
bounds 1n the region [o1,1) x (0,7 when o; < %

(W, — we) (@ t)| < CN!

We now consider the fine mesh region (0,01) x (0,7] We start with the case p? < &

In this case the truncation error bound (3 5 1) simplifies to

a
Ve

lLN’M(WL - wL)(SE“ t]). < (hH—l + hz) + CZM_I (3 5 2)

Since 0y < %, using (3 4 1b) and (3 4 1c), we know that h,4y = h, = %N“l InN and

therefore we obtain
ILNM(W, — wp) (2, 8)] < CL(N " InN + MY

Finish using (34 2) to obtain the required error bound Next we consider the case of
u? > 3’05 Here we know that h, 1 = h, = S—ZN'l In N The bound on the truncation error
given 1n (3 5 1) still holds and therefore using Lemma 3 3 9 we obtain

2
ILYM (W, — wr)(z,,t,)] < C1N~'In N + CgN“lM—S— InN + C3M™Y(1 + p2eY)
Choosing
U (z,,t,) = c(zv-l InN+ M1+ ((01 - mz)g) (N"la N + M—l)) & (W, - wi)(z, t,)

as our barrier functions, we find that we can choose C large enough so that both func-

tions are nonnegative at all points in GV of the form (0,t,), (zx,¢,) and (z,,0) and
4

LNMyE(g, t,) <0 Therefore applying the discrete mimmum principle we obtain

(W, ~w)(anty)] <C(NT N+ M~ + (o1 - mt)g) (N In N + M)
Finally using o1 = 2—3 In N we have
(W, —w)(2,t,)] <C(N"'InN)>+M™'InN), (353)

(b) If oy = % and p? < T then ,/72‘3 < 8InN The truncation error bound (3 5 2)
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still holds, and we obtain
\LNM (W, — wp)(20,t,)] < Ci(N "' InN + M)

When 2 > '—Yaf and 01 = % we have %"— < 8InN Our bound (351) for the truncation

error becomes
\LNM (W, — wr)(z,,t,)| < C(N"H(In N2 + M~ In N)

In both cases above, we use (3 4 2) to finish
O

Lemma 3 53 At each mesh pownt (z,,t,) € GMM the right singular component of the

error satisfies the following estimate
(Wi = wr) (1) < OV In N + M7,

where wr 15 the solution of (8 8 10d) and Wpg 1s the solution of (3 4 3d)

Proof (a) The analysis of this component sphts depending on the value of oy We consider
the case of o2 < & We will start by examiming the region (0,1 — 03] x (0,7] Using the
discrete bounds (3 4 4b) we obtain

dog\ %
Waoa, ) < C(1+6e=2) ",
where 0 and oy depend on the ratio of ;? to € and are given 1 (3 4 4c) and (3 4 1b)
respectively We can show that for both choices of 8 and oo we have

FNF

Wr(zaw,t,)] < 0(1 4N~ lnN)_ ,
2

and using the same argument as with Wy, we conclude that 1f (z,,t,) € (0,1 —02} x (0,7,
then
|Wr(z,,t,)| <CN™?

Next, looking at the continuous solution n this region, we use Lemma 3 3 7, to obtain
[wr(z,,t,)] < Ce™0(1-2) < Ce~P272 < CN7,
for both choices of o3 and #3 We therefore have the following bounds on the error in the
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region (0,1 — 03] x (0,7] when o3 < 7
|(Wr — wg)(z,,t))] <ONT! (354)

We consider the mesh region (1 — o9,1) x (0,7}, we have a sumilar truncation error
bound to that mn (351) We start with the case of u* < I, we can show (3 5 1) simplifies

to

, C _
|LN’M(WR - U)R)(xut])l < —\/_'lg(hl+1 + hl) + C2M ! (3 ) 5)

Since we are 1n the fine mesh region we have A,y 1 = h, = 8VE N1y NV and using (35 5
g Jor g

we now obtain
|ILNM(Wg ~ wg)(z,,t,))] < CLN ' In N + CoM ™!

If 4? > 1=, using classical analysis we can obtain the following truncation error bounds
\LYM (W = wr)(21,15)] < Culhury + ) (ellwRees]| + pllwres]) + CoM ™ lwryll

Using the bounds on wg 1 Lemma 3 3 8, we find that this simplifies to

C -
ILYM(Wr — w) ()] < f(hm +h) + CoM ™! (356)

Since we are mn the fine mesh region we have h,1 = h, = §$N “lIn N, and therefore we

obtain
LN M (Wh = wg) (3, 1) S LN I N + CoM ™!

Use (3 4 2) to fimish 1n both cases

(b) Ifop = § and p? < L, then /22 < 8In N and since (3 5 5) holds we have

|ILYM(Wg — wg)(z,,4,)] < CIN ' InN + CoM ™t
If 42 > X and 0 = 1, then 2 < 81n N and using (3 5 6) we obtain
H a 4 m
ILYM(Wg — wr)(2.,t)| < CIN T DN + CoM ™!

In both cases, we use (3 4 2) to complete the proof
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Theorem 3 51 At each mesh pownt (z,,t;) € GNM the mazvmum powntunse error sat-

1sfies the follounng parameter-uniform error bound

C(N"Y(InN)+ M~1), 2<C

U —ullgnm £ ( l(n )2 3 oo sCe (357)
C(N"!(InN)?+ M~'InN), f p?>Ce

where u 15 the solution of (31 1) and U 1s the solution of (3 4 1)

Proof The proof follows from Lemma 3 5 1, Lemma 3 5 2 and Lemma 3 5 3 a

Remark 351 [t 1s worth noting that the error bound (35 7) extends to the case of
-1 < u <1, where the discrete problem 1s defined to be

LMy (z,,t,) = e8*U + paD,U — bU — dD; U = f, (z,t,) € GNM, (35 8a)

D, o u<O0
Dy = + )
Dy f p=20

and the transition points in the piecewise-uniform mesh in space are taken to be

((min {1, 24m N}, of ug—\/%

o = T mn {4, 22N}, of |u|g\/§ , (3 5 8b)
| mn (L ZWN), o p> | JE
(mn {4, 2N}, oy op< 2

oy = { mm{}, ZEWMNY, of |ul< /% (35 8¢)
| mn{z, %N}, o p> /%

3 6 Numerical results

The numerical method (3 4 1), has been applied to the following particular problem

(Cuzs + p(1 + 2)up — v —w)(z,1) = 162(1 - 1)%,(z,2) € (0,1) x (0,1],  (361)

u|r=0

In the numerical experiments, we have taken N = M We define the maximum pointwise
two-mesh differences to be

—2N
Dé\,,u = ” N UE,#”GNMi
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=N
where U, , 1s the piecewise linear interpolants of the numerical solutions UEN“ From these
values one can compute the e-uniform maximum pomtwise two-mesh differences D{LV and

the (¢, #)-uniform maximum pointwise two-mesh differences DV, which are defined by

DLV = max DY DV = max max D

N
c€R. “H pER, e€Re oM

where R, = [27%6,1] and R, = [27%%,1] Approximations for the order of local conver-
gence p u» the e-uniform order of local convergence pﬁ' and the (e, pu)-umform order of

convergence p" are computed from

DN DN DN
N y N N
e, = logy =2, p, = log, ——DQ”N, and p" = log, yord
&t b

The numerical results presented in Table 3 1, Table 3 2 and Table 3 3 are 1n agreement
with the theoretical asymptotic error bound (3 5 7)

Number of intervals N (= M)

€ 8 16 | 32 | 64 [ 128 | 256
20 1062[076]087 (0930960098
2-2 076089095097 099|099
24 1080 [090[095[097 (099099
27¢ 1078[085[092[095{098|099
2% 1068076090097 ]100] 102
210 1065 (076 {086 |[093 097099
212 106110751086 093097 |098
2= 1060 [075]086]093 (096|098
2-16 10591075086 ]093]096 0098
218 1059 ]075/086[093]096| 0098
2720 10591075/086]093|096 10098
2722 1059[075]/086[093]096 [ 098
220 10591075][086[093[096)0098
272 1059(075/086 (093|096 098

[P _,-. [ 059075086 ]093]096]0098]

Table 31 The orders of local convergence p?’] . and the e-umform orders of local conver-
gence pﬂ’ generated by the upwind finite difference operator (3 4 1a) and the mesh (3 4 1c)
apphed to problem (3 6 1) for u = 272 and for various values of ¢ and N(= M)
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Number of mtervals N(= M)

£ 8 16 | 32 [ 64 [ 128 | 256
20 0611075|087[093[096|0098
272 075088094097 098 (099
2=% 1080[090[095[098[099 099
27% 108 [093]097]098[099]100
27% 1092[096[098]099}099 100
210 1093]097[099[099 (1007100
2-12 1094097099099 100100
2-14 1094097099099 [100]100
2716 10941097 (099[099(100 100
2718 1094 1097]0991099|100]100
220 1094]097[099[099 (100|100
2722 1094097 (099({099 {099 099
2724 1094097098 [099[099 099
2726 10941097 {098 (0991099099

[pﬁ’zz_w |094[0971099|099 [100]100 ]

Table 3 2 The orders of local convergence pﬁ{ ., and the e-umform orders of local conver-
gence pﬁ’ generated by the upwind finite difference operator (3 4 1a) and the mesh (3 4 1c)
applied to problem (3 6 1) for 4 = 270 and for various values of € and N(= M)

37 Higher order methods

This method for the parabolic differential equation can also be applied to the ODE (21 1)
Moreover, the analysis can be extended n order to allow us obtain a higher order numerical
method for (211) We decompose the solution u of (211) mto regular and singular
components This section 18 concerned with obtaining bounds on these components and
their derivatives, these bounds are then used 1 [5] to prove that the numerical method
proposed 1n this article 1s of almost second order

The following notation 1s particular to this section We define the zero order, fiist

order and second order differential operators Ly, L, and L, , as follows

L()Z = —bz,
L,z = apzy+ Loz,
Lepyz = €20+ Lyz
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Number of intervals N(= M)

u 8 16 [ 32 [ 64 | 128 | 256
20 | 041|046 (058 (066071080
272 1059(075/086[093 096|098
2=4 1085091097 (098099 ] 100
2% 1089098097098 |101]100
271010941097 (0991099[1001] 100
2-14 10950971099 (099|100 100
2=18 10951097099 [099 100|100
272210951097 [099 {099 (100|100

[ pY [095[097]099[099[100]100|

Table 33 The orders of e-uniform local convergence pﬁ[ and the (e, u)-uniform orders of

local convergence p"¥ generated by the upwind finite difference operator (3 4 1a) and the
mesh (3 4 1c) applied to problem (3 6 1) for various values of €, 4 and N(= M)

Analogous to (3 3 10a), we have the following decomposition of u
u(z) = v(z) + wi(z) + wr(z), (37 2a)
where wy, and wg satisfy homogeneous differential equations and

Leyv = fon(0,1),  v(0) and v(1) chosen mn (37 3) or (37 4), (37 2b)
L.,wy = 0on(0,1), wg(0) =u(0)—v(0) —wr(0), wr(1) =0, (37 2c)
L. ,wp = Oon(0,1), wg(l)=u(l)-v(1), if p? < %E, then wg(0) =0,
else wr(0) 1 chosen m (3 7 8§) (372d)

Let us first consider the regular component v 1 the case of u? < jf We have the

following decomposition

’U(l‘,e, M) = ’U()(iE) + \/gvl(m7 5)“‘) + (\/5)27]2(3:357 ’J‘) + (\/5)3'03(12, 5)/1‘) (3 7 3d‘)
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where

by = (37 3b)
vy = Vev) + ﬁavo, (373¢c)
bv, = Veul + \/_avl, (373d)
Leyvs = —vevy — —avy on (0,1) v3(0,¢,1) = v3(l,e,u) =0 (37 3e)

\/_

We see that v(0,e,1) = vo(0) + Ve (0,¢,pu) + eva(0,e,p) and v(l,e,u) = wvo(l) +
vev(l,e,p) + eva(l,e,4)  Assuming sufficient smoothness on the coefficients (a, b, d,
f € C®) and noting that au® < e, we see that vy and 1ts derivatives up to order eight,
vy and 1ts derivatives up to sixth order and vy and 1its derivatives up to order four are
bounded independently of € and

Next we proceed to analyse v3(z,e,4) Using the mimmum principle for L¢ , and a

suitable barrier function we obtain (see Chapter 2, Lemma 2 2 1)
]' 1" !
lls |l < max {|vs ()], fes(1)|} + —ﬁ-(livzll +[lval])
Applying the bounds on v, we therefore have
sl < C

Using the differential equation (3 7 3e) and the mean value theorem on an interval of width
V€ and noting that p? < Ce, we obtain (see Chapter 2, Lemma 2 2 2),

Differentiating (3 7 3e) and using the above bounds we also obtain

< (f%kmax{Hvsu,nv;'||,nva||}s(%,; F=1,2

dkusy
d z*

dk’vg
d z*

o
VAL

Substituting all of these bounds for vo(z, p), vi(z, p), va(z,n) and vi(z,e, ) nto the

k=34

equation for v(z, e, 1) gives us

dl
d z?

c+ ey, 1=0,1,2,3,4
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When p? > 705, we consider the following decomposition

v(z, €, 1) = volz, p) + evi(z, ) + e*va(z, u) + 2 v3(z, €, 1) (37 4a)
where
L,ve = f(z) on(0,1), vo(1, ) chosen 1n (376), (374b)
Ly = —vy(z,u) on[0,1), wi(l,p)chosenm (377), (374c)
Lqu = _,Ulll(m?#‘) on [07 1)1 U?(l’ .U') = 01 (3 7 4d)
LE,uUS(IaEhu') = —’Ulg’(IL',,LL) on (0: 1)) v3(0,€,,u,) =’U3(1,€,M) =0 (3749)

We see that v(0,e,u) = vo(0, u) + ev1(0, 1) + €%v9(0, 4) The following lemmas establish
that when vo(1, 1) and v (1, ) are chosen correctly, the first three derivatives of vo(x, )
and the first derivative of v1(z, 1) are bounded imndependent of u

Lemma 3 7 1 If vy satusfies the first order differential equation (3 7 4b) then there exists
a value for vo(1, 1) such that the following bounds hold for 0 <1 <7

1
cofie )

Proof Suppose z € C°([0,1]), we start by noting that since a > 0 and b > 0 we can

d Vo
dz*

establish the following

If Lyz <0 and z(1) > 0, then z

< > 0, (375)
o)

{0.1]

using a sumple proof by contradiction argument We decompose v (z, 1) as follows

vo(x, 1) = so(w) + ps1(z) + plsa(z) + piss(z) (37 6a)
where
solz) = —%, (37 6b)
si(z) = “S%)(x), (37 6c)
so(z) = as’lb("”), (37 6d)
Lyss(z,p) = —asy(z) on[0,1), s3(1, 1) =0 (37 6e)



We see that vg(1, i) = so(1) + us1{1) + p?s2(1) and assuming sufficient smoothness of the

coeflicients, we have

d'sp d's; dtss
< < <1 <
d || =Y e <C and = <C for 0<2<3
Using (37 5) and (3 7 6e) we can also obtain
d183 C
= < E for 0<2<3

<Cfor0<1<3

We use these bounds for so(z), s1(z), s2(z) and s3(z) to obtan H‘g—;’?
Differentiate (3 7 4b) to obtain the required result

Lemma 3 7 2 Ifv, satisfies the first order differential equation (8 7 4c) then there exists
a value for vi(1, 1) such that the following bounds hold for 0 <v <5

sc(1+%)
1

Proof We decompose v(z, ) as follows

d"‘l)l
dx?

vi{z, 1) = po(x) + po1(z) + 4pa(z, ) (37 7a)
where
o) = —==, (37 7b)
pi(z) = @, (37 17c)
LMP?(ma /1') = —a,p’l(ﬂi) on [07 1)7 pg(l,,u) =0 (3 7 7d)

We see that vy (1, 1) = po(1)+pp1(1) and assuming sufficient smoothness of the coefficients,

we have

d P1
dx?

d*po
dxt

50(—1—) for 0<2<2
7

50(1%——-%) and
)

Using (3 75) and (3 7 7d) we can also obtain

|

C

- Nz—H

d'p2
dz?
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We use these bounds for py(z), p1(z), and p2(z, 1) and their derivatives to obtain H %—I'i}“ <

C(1+4p*~!) for 1 =0,1,2 The required result for 0 <1 < 5 follows by differentiating the
differential equation for v, O

Lemma 3 73 If vy satisfies the first order differential equation (8 7 4d) then the follow-
ing bounds hold for 0 <1< 4
1
S ¢ (uz—H )

Proof The proof follows using (3 7 5), the differential equation (3 7 4d) and the bounds
m Lemma 372 O

dx?

Lemma 3 74 If vz satisfies the differential equation (3 7 4e) then the following bounds

hold for 0 <1 < 4,
pyr (]
‘"C(E) <u3)

Proof Using the mmimum principle for L, ,, (Mmimum Principle 1) and a suitable barrier

dz’U3
dz?

function we obtain (see Chapter 2, Lemma 2 2 1),
1 n
floall < max {|vs(0 |W3N}+BMN
Applying the bounds 1n Lemma 3 7 3 we therefore have
C
lusl| < =
)

Using the differential equation (3 7 4e) and the mean value theorem on an interval of width
V€ we obtain (see Chapter 2, Lemma 2 2 2),

(1 () max (sl 1} k=12

Simphfying this expression using Lemma 3 7 3

A CON R

Differentiating the equation for v3 and applying these bounds gives

dk’ljg
dz*

dk V3
dxk

C

C
“ III“ < and H IIII“ < 2= #
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O

Substituting all of these bounds for vo(z, 4), v1(z, 1), vo(z, 1) and vz(z,¢€, 1) into the
equation for v(z, ¢, 4) and noting that u? > % gives

£\ B
<C 1+(;> . 1=0,1,2,3,4

We next consider the layer components defined in (3 7 2¢) and (3 72d) The defimtion
of the left-layer component wy, 1s similar to that in Chapter 2 (see 23 11c) In the case

&
dxt

of p? < L, we define wg as m (23 11d) Hence, we need only consider the right layer

component wg m the case of u? > 7a5 We have the following lemma

Lemma 375 When u? > LT, wg, the solution of (8 7 2d), satisfies the following bounds
for0 <1 <3,

dle C
dz* - uz
Proof Consider the following decomposition
wi(z, &, 1) = wo(z, 1) + ewn (2, 1) + 2wy (z, 1) + 3w (s, €, p) (37 8a)

whete v(1) = vo(1, p) + evi(L, 1) given 1 (376) and (37 7), and

Lywg = 0 on [0,1), wo(l, ) = u(1) — v(1), (378b)
eLywy = (Ly— Ley)wo on [0,1), wi(l,pn) =0, (378¢)
e’ Lywy = e(L, — Le)wy on [0,1), wsy(1, 1) =0, (37 8d)
L w3 = €*(L, — Ley)wy on (0,1), ws(z, e, u)|r =0 (37 8e)

We start by analysing wp(z) Using (37 5) and (3 7 8b) we obtain the following bounds
for 0<2<5

Using this method again for w;(z) and wy(z) we obtain

<< (379)

=

d wo
d xt

C
ke 'u,1+4

C
S_H—_f’ OSZS‘I, and ‘
M

d’wl
dx?

dl’wg

o 0<:<3  (3710)
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Finally we consider ws, we can apply Lemma 2 2 1 to obtain
C
w3l < —
I e
From Lemma 2 2 2 we have the following bounds for 1 <1 <2
C gy C
< —(1 + (—) >
~ (Ve Ve )uﬁ

Finally differentiating (3 7 8e) we obtain

d w3
dat

d3w3
dz3

<+ () )i+ i

The required bounds follow using (3 7 8) and the mequahty u* > =
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Chapter 4

Elliptic PDE’s - reaction

dominated case

41 Introduction

Consider the following class of singularly perturbed elliptic problems posed on the unit
square §) = (0,1)2,

Le pu = €(ugz + uyy) + plarusz + aguy) —bu = f m Q, (41 1a)
u=sij{z) on Tp, u = so(z) on I'p, (411b)
u=q(y)on I, u = g2(y) on g, (411c)

ai(z,y) > a1 >0, az,y) > a2 >0, blz,y)>26>0, (41 1d)

where I'g, I'p, ['y, and 'k are all subsets of the boundary d2 and are defined as follows

Pp={(z0)[0<z<1}, TIr={=1)]0<z<1},
FL={(O,U)|OSUS1}a ]-—‘Rz{(Ly)IOSySl}

We note that 0 < ¢ <1 and 0 < u < 1 are perturbation parameters Throughout this
chapter we consider the case of u? < L (v < mmp {%, %}) and we assume sufficient
regularity and compatibility so that the solution 1s sufficiently regular for the following
analysis to be valid

There 15 very little hterature available dealing with problems of this type When

p? < Z, an O(\/€) layer appears n the neighbourhood of all four edges When p? > &
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we get layers of width 0(5) i the neighbourhood of z = 0 and y = 0 and layers of width
O() mn the neighbourhood of the other two edges The aim of this chapter 1s to extend
the analytical techniques used in Chapter 3, so as to deal with the two-parameter elliptic
problem (4 1 1) 1n the case of u? < 2 A form of the material in this chapter has appeared
n {23]

In Section 4 2, we use a classical argument to obtain parameter-explicit bounds on the
solution of (41 1) and 1ts derivatives when u? < L We then decompose the solution
mnto regular and singular components Section 4 3 1s concerned with the defimtion of the
smooth or regular component v of the solution The layer components are defined in
Sections 4 4 and 4 5 Sharp parameter-explicit bounds are obtained on these components
and their derivatives In Section 4 6, we propose a numerical method We decompose the
discrete solution U 1n an analogous fashion to the continuous solution © The final section
of this chapter 1s concerned with error analysis We prove that, when p? < %, we have a

parameter uniform numerical method for (41 1)

Notation particular to this chapter We define the zero order, first order and second

order differential operators Lo, L, and L, ,, as follows

ng = —bz,
L,z = peyzz + pazzy + Loz,
Leyz = €lzgg +2yy) + Lyz
We let
< mun{--, -}
m — ———
7 f;n 20.1, 202

and we also adopt the following notation
llulla = max fu(z)| (413)

If the norm 1s not subscripted then || || =] ||a
For nonnegative mtegers k, we define the semi-norms on C*(D) by

lulg,p = Z sup

& tiu
oxroy?

b
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and the related norms using

lulleo = > lulyo

0<y<k
When D = Q we omit the D, and when the norm 1s not subscripted, we presume that
1t 15 the norm with k¥ = 0 as defined in (413) We next consider C**(D), the space of
functions m C*¥(D) whose derivatives of order & are Holder continuous of degree A We

define the associated Holder norms and Holder semi-norms by

lulea,p = Z

143=k

61+J u

O dyd and llulle.a,0 = Z |uly,p + [ulka0

0.AD 0<s<k

4 2 Bounds on the solution u and 1ts derivatives

In this section we will establish a prior: bounds on the solution of (4 1 1) and 1ts deriva-
tives These bounds are essential for the error analysis in subsequent sections We begin
by stating a contmuous minimum principle for the differential operator mn (411) The

proof of this comparison principle 1s standard

Mmimum Principle 3 If w € C?(Q) N CYQ) such that L. wla < 0 and wlag > 0,
then w|g > 0

The following lemma follows directly from the above comparison principle The proof of

this lemma 15 again standard

Lemma 4 21 The solution u of (411) satisfies the following bound
1
lull < Hlsillrp + llsallry + llaulie, + llgallr, + %llfll

Lemma4 22 If f € CYNQ), 5,q € C3*(0,1) are independent of € and p, and assuming
sufficient compatibility of the boundary data at the corners, the derwatives of the solution
of (411) satisfy the followwng bounds for all nonnegative integers k and m, where 1 <
k+m<3

gktmy, 1\ Ftm
- 421
<o) a+lu, @21)

where C depends on the coefficients a1, ao and b and thewr deriwatives
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Proof Firstly we consider the following function

h(z,y) = (s1(z) — s1(0)(1 — 2))(1 — y) + (s2(z) — s2(1)z)y
+a1(y) — a(Dy) (1 — z) + (g2(y) — ¢2(0)(1 — y))=

Assuming the boundary data of (4 1 1) 1s continuous at the four corners, we see that h
interpolates to the boundary conditions Consider w = u — A It 1s clear that w satisfies

an equation similar to (4 1 1) with zero boundary conditions We have

Leyw = f—Leyh=f on §, (42 2a)
w = 0 on 0f} (42 2b)

Consider the transformation ¢ = ME and n = Q%E)_y The transformed domam € 1s
given by Q = (0, %ﬁ)? Applyng this transformation, (4 2 2) now becomes

- ~ o Ho. P~ F
Wee +w,m + malwg + magw bo = f, on Q,

[

£

where @(¢,n) = w(z,y), 4, dz, b are defined similarly and f(£,7) = mf(x,y)
For each (¢1,(2) € €, we denote the rectangle ((¢; — 6,¢; 4 8) x ((a — 6,2 + 6)) N by
Rs(¢1,¢2) Using [14] we see that for all (¢,7) € Q and R; we have

03 ks S CUlA oy + 1@ 7,):

and for [ = 0,1

(@140 2 2gs S CUI i 2y T 1191 2,5)
Since we know that |w|i o < |wlk,x,n, We obtain
61, 2, < ol < CULlor 2y + 13115, (42 3)

and for ! = 0,1
©lig2,85 < Wlian iy < CUIFN A Ry T 1101 5,) (4 23b)

Transforming back to the original variables this implies for all (z,y) € Q and R; =
Rs(z,y) = ((z - b,z +8) x (y -4,y +48))NQ

AL
() ot < € (G5 (752) 1l + il ).
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and for [ = 0,1

{
(u-:\/g)H? |wli2,rs < (Z (u+\/_> ((u+i/5)2) ‘f]’U,R.g&

v=0
14 A
+ (M""E\/E) ((u_l_f/g)?) |f|[,/\,R25 + IleR25)

Replacing f by f — L¢ ,h and using the definition of h gives us

A
(7)ol < c(m(ﬁ) ||f—Le,uhHo,A,R25+||qu26),
A
< (g5 (52) (1Ml + Bl s+ el
Hlaillznres + la2llznras) + HwHRmS)’

and for [ =0,1

t
(p.-:\/g)Hz IwIHQ,R& < (Z (u+\/_) ((u_,_f/g)z) If - Lg,uh,v,R25

v=0

()™ () S = Beahlins + ol

!
v
C(ZO (=) () (Flouras + Istlusn g + [32lua2,m00
=l

IN

1oz, m05 + 1G2]u+2,R05) + (ﬁ)l” ((u+f ) (lflz M Ras

Hls1llig20,mos + 1182]l142,0,Ro5 + lla1llir2,0, Ros + HKIth+2,A,R25)
Hivll )

Rearranging these equations, we obtain

1—A
+
whp, < O((—ﬂ (E2) 7 (U o s + stz s + Usallzp s + lanllz s

Flazllon ) + (“—%ﬁ)vlwnm),

75



and for { = 0,1

{
{+2~v
+
wlisa,ps < C(Z(“—E\/—E) ((u—gﬁ) (1fbo,ras + [810042,Rs + [82]02,Ros

v=0
2-)
91 ut2,Rp5 + 1202, 75) + (%‘/—5_) ((u—f\/g—)z) (S 1t Ras

81 lli42,0, 705 + 152lli42,0, 105 + N llir2.0, Ros + llg2llivz A Rys)
+ 1+2
+(E55) ol )

When f € CUA€) and s, s9,q1, g2 € C3*(0,1) are independent of both small parameters,

we use the above to obtain

gkt+my, o+ \/E k+m
kB, m || — C (1 + ”’U)”)
oz* oy €
Finally, noting that u = w + h and using p? < 7(;5 we obtain the result |

Remark 4 21 Compatibility conditions to ensure u € C* ) are gwen m [6] Han
and Kellogg [6] also wndicate that for variable coefficient convection-diffusion problems,
compatibility conditrons to ensure that u € C**(Q) for k > 3 are wn general not avadable
The layer components and the boundary layer components are defined on extended domains
such that there are no compatibility 1ssues when a1, a2,b and f are extended to be constant
wn neighbourhoods of the extended-domain corners It can also be shown that the corner
layer functions, which are defined on the original domawn, inherit thewr compatibility from

U

4 3 Defimition of regular component

In order to obtain parameter-umform error bounds, the solution of (4 1 1) 1s decomposed
into the sum of regular and layer components The extension 1dea of Shishkin (29] 1s
essential to ensure no overly artificial compatibility conditions are imposed

The regular component will now be constructed so that 1ts derivatives up to second
order are bounded independently of both small parameters Consider the extended domain
Q* = (-d,1+d) x(—d,1+d) DQ,d >0 The differential operators L; , and Lj concide
with the operators L., and Ly respectively in  We also define smooth extensions af,

a3, b* and f* of the functions a;, a2, b and f to Q*
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We consider the differential equation

L; v =f"onQ (431)
We decompose v* as follows
v (2,9, € 1) = v5(z,y) + Vevi(z,y, €, 1) + evi(@,y, €, 1) (43 2a)
where
Lys = £, (43 2b)
veLjvi = (Lg = Lg v, (43 2c)
st’uvg = Ve(Lj - L;,p‘)vi‘, on ' vileqr =0 (43 2d)

Note that v§ and v} satisfy zero order differential equations so they pose no compatibility
issues  Gaven p? < 705, we see the functions vg, v and their derivatives are bounded
independently of both small parameters We need to be more careful with compatibility
when looking at v We construct our extensions of the functions a1, az, f and b so that
a} >0, a3 >0, and b* > 3 > 0 at all ponts 1n the extended domain 2*, and

ff=al=a5=0 b =28, (z,y)€Q"\D,

where D 1s an open set such that Q ¢ D C Q* This ensures the function ¢* = \/e(L§ —
L} ,)vi 1s zero at the corners of the extended domain We also assume the functions af,
a%, f* and b* are sufficiently regular so that we have g* € C1*(Q*) We conclude that
vy € C3*(Q*), and 1s therefore sufficiently regular for our analysis

Since v} satisfies a similar equation to (4 1 1), we can apply Lemma 4 2 1 and Lemma

422 toobtamnfor0<k+m<3
1 k+m
<C|—
<o(%)

We conclude that 1f we take the regular component v to be the solution of

k *
o -l-'m,u2
drkoy™

LE,uU:fa (z,y) GQ, ’U=’U*, (x,y) GBQ: (433)

assuming the coefficients are sufficiently smooth, we have the following bounds for 0 <
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k+m <3,
ak+mv

Ok Oym

<C+e75), p’ <

e

(43 4)

4 4 Definition of boundary layer functions

We consider the boundary layer function wy, associated with the left edge I';, In order
to obtain bounds on w;, we consider the extended domamn Q™ = (0,1) x (—d,1 + d)
with 05 > d >0 We define w] to be the solution of

Ly =0, (z,y) € ™, (44 1a)
wr(0,y) = (u—v)* (0, ) y €[-d,1+4d, (4 4 1b)
wi(l,y) = y € [—~d,1+d], (44 1c)

wi (z,—d) = wi(z,1+ d) =0, z € [0,1] (4 4 1d)

We define smooth extensions of the coefficients a;, as and b to the domain Q78] 5o that

we have
8’“ ¥
Sk L < Cd+y)(1+d-y), for :=1,2 and k£=0,1,2, (4 4 2a)
Y
and bt
‘By <Cd+y)(1+d—-vy) (4 4 2b)

We also extend the boundary function (u — v)(0,y) so that (u — v)*(0,y) =0 for y < —%
and y > 1 + &, we therefore can show that |w} (0,y)| < C(d+y)(1+d—y)

Lemma 441 Guwen p? < L the left layer function wy, satisfies the following bounds
dwy
1

_ e -
|w}(z,y)| < Ce” V%" and _<_C(1—+-\/g1 Y, 0<1<3

Proof Consider the barner functions
Y (z,y) = Ce VT ]

We can see that these functions are nonnegative on the boundary 80 T8 Also

LIy () = C(va—%ai\/a_'r—b*)e‘\/?“’SO
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The exponential bound on wj follows using the comparison principle
It can be shown that the crude bounds in Lemma 4 2 2 hold for w}, for 0 < k+m < 3,
o

‘ = aE

Remark 4 41 Note that the boundary data for u are independent of the singular per-

turbation parameters However, this 1s not the case for wy Nevertheless, even though the

3k+mwz
dzk oy™

(443)

thard derwatives of v may depend adversely on the parameters, this does not change the

validity of the above bounds on the derwatives of wy,

In the direction orthogonal to the layer we need to sharpen these bounds We refer
to derivatives in this direction as orthogonal derivatives Consider the barrier functions
pE(z,y) = C(d+y)(1 +d—y) £ w; We see that these functions are nonnegative on the
boundary 808! for C correctly chosen Also

[*TB,¢i( y) =C(=2c+ p(1 —2y)as —b*(d+y) (1 +d —y))

Using (44 2) and assuming u 1s sufficiently small (Cu(l + 2d) — b < 0), we obtan
L[EfLTB]gbi(m,y) < 0 The comparison principle gives us

wi(e, )l < Cd+y)(L+d-y), (zy)e"™ (449)
We can show that ‘%i( Y \ < C and —L(l,y) =0 Using (4 44) and the fact that

w} (z,~d) = 0 and wj (z,1 + d) = 0, we also obtamn

*

<, and }BwL
Ay

*
ow}

8y (IJ _d)

(:c,d+1)} <C

Dafferentiate the equation (4 4 1a) with respect to y, we obtain

ow} Oat Qw7 dal ow};  Ob* <
plre 9%L 061 0w, 06 OWp X _ [+,T8]

Using the bounds (4 4 3) and p? < 2, we see that ||f|| < C The comparison principle

along with smtably chosen barrer functlons yields the bound

owy
Oy

<C

We continue this approach so as to obtain sharper bounds on the higher orthogonal
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derivatives of wj Using (44 1a), (44 1d) and a3(z,1 + d) = a5(z,d) = 0, we see that
2 2 * 2, 2%
O (w,1+d) = %4 (2,~d) = 0 Also we note that H"’—ay%h(o, y)H < Cand T4 (1,y) = 0
Using Taylor expansions and the bounds (4 3 4), we obtain

2.k
d“w}

S C @ty +d-y)

NG

Differentiate (4 4 1a) twice with respect to y, we have

(O,y)’ <

2, % 2 * 02,,% *

L*’TB]B wy _ Yy dat 0w 2M602 0 wL+(23b 8 )BwL

o Gy? 8y Bsc8y oy 0y? dy 8y dy
32 ; Ow;, N %
e

— i @y) el

Again using (4 4 3) and the properties of a}, a5 and b* 1n (4 4 2}, we can show that 171l <
2wt
%(d—{—y)(l +d—y) Consider the barrier functions ¥ (z,y) = —%(d%—y)(l +d-y)+ a—ag{*
We can see that both these functions are nonnegative on Q™! and using the conditions
la¥| < Ci{d+y)(1 +d—y) and Crp(l + 2d) — b* < 0, we obtain L[ .Te] gbi(x,y) <0 We

conclude
asz
dy?

(may)‘ S g‘(d+y)(l+d_y), on Q[*’TB]

oy’

83 EY 3, *
We also have ‘—wf(o,y)l < % and —4(1,y) =0
Differentiate (4 4 1a) three times with respect to y to obtain L > TBJ—@:{‘ f2 We can
show that || f2]| < & % and using suitable barrier functions and the minimum principle for

L[E* ;TB] , we obtain

3, %

0wy < g

s |l ~ ¢
a

Define the boundary layer function wy associated with the left edge I'y, by

Ls,,qu =0, (.’E,y) €Q, (4 4 5a)
wr =u—1v, (I,y)EFL, wr, =0, (:I;ay)EFRa (445b)
wr(z,0) = wi(z,0), wr(z,1) =wi(z,1) (4 4 5¢)
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Remark 4 4 2 The condition Cipu(l + 2d) — b* < 0 15 a reasonable assumption to make
i the case of p? < = Thas 1s because of p > C, we also have & > % and we are
i the non-singularly perturbed case where all the derwatwves of the solution are bounded

independently of both € and i

We now consider wr, the boundary layer function associated with the top edge I'r
Our extended domain 1s given by Q' = (—d, 1 + d) x (0,1) and we define wr using

LEwg =0, (z,y) € Qo) (44 6a)

wr(z,1) = (u—-v)*(e,1), s€[-d1+d], (44 6b)
wp(z,0) =0, z¢€[~d,1+d, (4 4 6¢)

wh(—d,y) =wi(l +d,y) =0,  ye[0,1] (44 6d)

We have the following lemma analogous to that for wj

Lemma 44 2 Gwen p? < 75, the top layer function wy. satisfies the following bounds

Ve Lk _
lwr(z,y)| < Ce 700 g ‘88:31 50(14_\/51 ), 0<:<3

Proof The proof 1s similar to that in Lemma 441 We consider the barrier functions
YE(z,y) = Ce™V e -w) +wy These functions are nonnegative on the boundary AQ*LR]
Also

Loy a,y) = € (na-+ Leatvam o7 ) e VEO <0,

and we obtain the required result

Extensions of ay, a; and b to QYR are constructed so that

k%
%akl <Cld+z)(l+d-x), for :=1,2 and k=0,1,2,
T
and o5
<Cd+rt)(1+d—x)
T

We can then use the same approach as for w; in Lemma 441 to obtamn the required
orthogonal derivative bounds O
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Define the boundary layer function wr associated with the top edge I'r by

Le ywr =0, (z,y) €9, (44 7a)
wr =u-—v, (z,y) €lr, wy=0, (z,y) € p, (44 7b)
wr(0,9) = wr(0,7), wr(l,y) =wr(l,y) (447c)

We define the other two layer functions wr and wp analogously and obtam corre-
sponding bounds on the functions and their derivatives

4 5 Definition of corner layer functions

We now define our corner layer functions Note that compatibility 1s now more of an
1ssue as the equations defining these functions are all posed on the non-extended original
domain 2

Consider the corner layer function wyp associated with the corner 'yp = 'L, NTp
We define w;,p to be the solution of

La,quB =0 (m,y) €, (45 1a)
wLp = —wp, (¢,y) €L, wrp=-w, {(z,9) €Tp, (45 1b)
wrLp = 01 (may) € PR> wrLp = O: (:U:y) € FT (4 5 1C)

Note at the corner (0,0), wr,(z,0) 1s equal to wr(0,y) = (v — v)(0,y), which 1s equal to
(v — v)(z,0) = wp(z,0) which 1n turn 1s equal to wp(0,y) Hence wr(z,0) matches with
wg(0,y) at (0,0)

Consider the barrer functions %= (z,y) = Ce—%xe_%y +wpp Using the exponen-

tial bounds on wj, and wg we see that both functions are nonnegative on I' Also

and using the defimtions of v and « we see that L. ,%*(z,y) <0 Using the mimmum

principle we therefore obtain

wea(e,y)| < Cem Ve VEY (452)
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Associated with the corner I'pr = I'r N '+ we define a corner layer function wrr

Le ywrr =0 (z,y) € Q, (4 5 3a)
wrr = 0, (ZE, y) € FLa wrr =0, (33, y) € FB) (4 ) 3b)
wrr = —wr, (2,y) €Tr, wrr =-wg, (z,y) €T (45 3¢)
*( Y (1-z) — 3= (1-7)
Considering the barrier functions ¢=(z,y) = Ce Ve =+ wgrr, and noting

that

B /B
e

Lot (an) = 0 (8 + il 1) + (2 + wfffan— 1)) e WO <o

we establish the bound
‘/—(1 ¥)

lwrr| < Ce WD (454)

Analogous bounds hold for the other corner layer functions wyr and wrp

Remark 4 51 Since the corner layer functions satisfy ssmilar equations to w n (4 1 1),
an analogous argument to that in Lemma 4 2 2 holds to obtain bounds on theiwr derwatives
We continue from (4 2 3) and note that when considering the corner layer functions the f
wn thas equation depends on the transformed boundary data of the corner layer functions
and thewr derwatwes For all four corner layers, we can show that ||f”0,/\,il25 < C and
1Ny 2k, £ C  Transforming back to the original variables and using the crude bounds

on the layer functions in (4 4 3), we obtawn the following bounds for all the corner layer

< — 0<k <
l '“C(\/E> , 0<ktms3

Theorem 4 51 When p? < L the solution u of (411) can be decomposed as

components
6k+mw

dzkdym

u=v+wy+wr+wr+twpt+wrp +wWLT +WRB + WRT

where Le v = f, and the layer and corner layer functions are each solutions of the ho-
mogenous equation Le yw = 0 Boundary conditions for these functions can be specified

so that the bounds on the components and thewr derwatives given below hold
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gktmy 2-k-m
A |
lazkaym <CQl+ez ), 0<k+m<3, (45 5a)
_viE, _vE,
wi(z,y)l < Ce 7, fwpla, )| < Ce kY, (455b)
_Vian_ . Y&
lwr(z,y)} < Ce Ea ), lwr(z,y)| < Ce G 2 (4 5 5¢)
O wy, 1—k O wg 1-k
- gc(1+\£ ) s SC(I-{—\/E ) (45 5d)
Htwp 1—k Fwr 1-k
<
_ A
lwrp(z,y)| < Ce 7 % %y, (4 5 5f)
SRVA LSRN ) Y
wir(e,y)] < Ce™F % RA0N, (455)
_YTa oy Y%,
lwra(z,y)| < Ce™ 21" e F (4 5 5h)
lwrz (2, )] < C'e_%(l—z)e—%%(l_y), (45 51)
and for all the layer components we have
8k+mw 1 k+m
— 1 < — < <
dzkdym _O(\/E) O<k+m<3 (45 5)

Proof The result follows Lemma 4 2 2, Lemma 4 4 1, Lemma 4 4 2 and equations (4 3 4),
(452) and (4 5 4) a

Remark 4 52 We should note that even though the case of u? < I behaves simalarly
to that of reaction diffusion (u =0), the analysis and the resulting bounds on the compo-
nents and thewr derwatiwes are not exzactly alike One difference we should note 15 the 2’s
appearing in the exponential bounds of the corner layer functions associated with the mght
and top edges These extra 2’s are a result of the fact there 1s a convective term present in
(411) These bounds therefore differ shghtly from those obtained for the reaction-diffusion

problem

46 Discrete problem

In order to discretise (4 1 1), we use a numerical method that 1s composed of an upwind

fimte difference scheme apphed on a mesh QY Consider the following discrete problem
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LYMU(z,,y,) = €62U +e6.U + par1 DFU + pap DU — bU
f7 (:Elryj) € QN’M (4 6 la‘)

where D} and 62 are the standard forward difference operator and second order centered
difference operator respectively (D;' and 62 defined analogously) The mesh QV:M s
defined to be the tensor product of two piecewise-umiform meshes QY and QM QF s
divided nto three subregions [0,07], [0V,1 —o™] and [1 —o®,1] In each of these regions
a umform mesh 1s placed The transition point o 15 defined by

N
o -—mm{ lnN} (4 6 1b)
\/_
More specifically
43\!:'1, if < %’—
QN:{Q;1|:1:,= UN+(2—%)H, , if %S S% }, (46 1c)
1—oV 4+ (- 322 of << N

where NH = 2(1 — 20%") and QM 1s defined analogously with transition pomnt ™

[} of 02 03 04 0s 06 a7 o8 1] i

Figure 4 1 A sample piecewise-uniform mesh QY

Discrete Mimimum Principle If W 1s any mesh function eand LYMWign » < 0 and
Wiprnm >0 then Wlgyvm >0
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We decompose the discrete solution U nto the following sum

U=V+W,+Wr+Wp+Wr+Wip+ Wi+ Wgp+ Wgr (4 6 2a)
where
LVYMy = f Vi|wwm =vlpwu, (4 6 2b)
LN’MWL = 0, WLi[‘NM = 'Ll)[,ipN M, (4 6 2C)
LN’MWLB = 0, Wiglry M = wrp|py M, (46 2d)

with the other layer functions defined similarly

Theorem 4 6 1 We have the follownng bounds on the discrete boundary layer function
Wi and discrete corner layer function Wi p,

-1
(W (@, y;)] < CH <1 + \2/; ) =V,  Vpo=C, (46 3a)

-1 -1
\WLB(T:, ;)] <CH <1+h g\;) ]:[1 (1+k {\;) =V, ¥p,, (463b)

where Wi, and Wi, g are solutions of (4 6 2¢) and (4 6 2d) respectwely, hs = 5 —z5_1 and
kr = Yr — Yr—1

Proof We start with W, Consider the discrete barrier functions
(I):Lt(z“yj) =Wp, = Wi(z,y))

We see that @f(x;v,yi)l > 0and @f(O,y]) > 0 for C large enough Looking at CI)f(a:“O) =
Cllizs (1 + —g%hs) +wy,(x,,0), using Theorem 4 5 1, we see that |Wy(z,,0)| = |wg(z,,0)] <
Ce" V%% However

1 \/7 -1
S, T, /B,
e\/Tz <e \/—4:15_51;[16 1 <H(1+h2\/_)

A similar argument holds for @f(zl, yn) and we conclude that for C large enough OF|pwme >
0
Note that LN'M<I>f(a“1,yJ) = 553\1114,1 + aég\I/L,z + pa DIV, + pagD;\I!L,, — bV,
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Since ¥y, > 0 we can show that

Jya _ JTa JY
Div,, = —2—\/5‘1’L¢+1 <0, D V.= —Q—f‘I’L,Hl (1 + ﬁhz+1) ;
h
53.\11[/’1 = 4 \I’Lz-}-l it > 0,

hy

where h, = h—""‘2—+’ﬂ Also we have that D;\IIL,Z = (55\1111,Z =0 We see that

h VYo
LNJ{@%(.T“?/]) 1 \IJLH—l ;’jl '“ll'a'lé_\/—e—lpl'lﬂ'l —b\IJL;L:tO
2

Rearranging this equation we have

NM gt (e ( Tatr _ YE N VY, Ve
LYM () = (20 (57 1) + (2 —0) ~ Y kb pa Y ) B

Because of the defimition of -y, we see that LN’MQf(:B,, y;)|lov » < 0 and using the discrete

mimmum principle we obtain the required result
We next consider Wrg  We use the barrier functions <I>}f3(ml, Yy) = Y., ¥p,
Wirg(z.,y;) It 1s clear that @fB(x“yN) > 0 and @LB(xN,yj) > 0, and using (4 6 2d) and

-1
Theorem 4 51, we also know that |Wyp(z,,0)] < Ce 7"1' < Clli=n (1 + %%h )
This implies that @%B(ml,O) > 0 for C large enough and a similar argument holds for
@fB(O, y;) We can show that

Ve hot
DI Up,=—-X—=V;,1¥p, <0, 620, g, = ‘I’L a+19B;— 2 >0,
2\/_ h,
Do, U, =Y %, v 820, U —7aw Up 2l 5 g
v VLY, = —ﬁ L2¥By41 <0, yV0a¥By = VLB 0= 3 L >

We therefore obtain

« hiy1 Yo ki1 Vo
LYY o7 p(a,y,) = E:YE\I}Lyl—H\I}B,J% + 5zg‘I’L,z‘I’B,J+1J,T+ —Harg =V Ve,
2 2

NAT:
—Na2§$\I;L,1\pB,]+1 - b\pL,l\PB,] +0
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Rearranging this equation we have

h, b JVra
LVMeE (1, 4 = (@LIH\I:B,J <2e ( +L_ 1) + (25% - —) —pa Y22

2h, 4 2 2\/e
b /ra ya [ k,11 ya b
———h, U, v ppaniy (LN | 26— — —
4 e “>+ b B’]+1<€4e<2k:, e 2

e, YO bV,
a22\/g 4\/2 741

We see from the above expression that LYM @fB < 0 for C large enough and we use the

discrete mimimum principle to finish a

The other discrete layer functions satisfy analogous bounds to those in Theorem 4 6 1

We note that, using the defimtion of v, the expressions

(5 (1) (e omf3) (- 70) - (F5)')

and

() (o) (080 - (52

can be shown to be non-positive 1 the case of u? < Yaf

47 Error analysis

We now analyse the error between the continuous solution of (41 1) and the discrete
solution of (46 1) in the case p? <

Lemma 4 71 At each mesh pownt (z,,y;) € QY™ the regular component of the error

satisfies the following estimate
(V=) (=, 9,)] S CNTH+ M)V,

where v 15 the solution of (43 3) and V 1s the solution of (46 2b)
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Proof Using the usual truncation error argument and (4 3 4) we have

CiN ! (el|vgaa|| + pl|vas|]) + CoM ™ (elluyyy |l + plluyyl])
CIN"' 4+ M Y)e

ILYMV —v) (@, 95)

VAN

VAN

We consider the barrier functions ®*(z,,y,) = C1 (N ™'+ M~ 1)\/e £ (V —v) We see that
these functions are nonnegative on the boundary I'>¥, also we find LVM &% (z,,y,) < 0
for Cy large enough We apply the discrete mimimum principle to obtain the required
result ([

Lemma 4 72 At each mesh pownt (z,,y,) € QVM, the left singular component of the

error satisfies the following estimate
|(WL - wL)(xhyJ)l S C(N_l lnN + M_l)a

where wy, 15 the solution of (44 5) and Wi s the solution of (46 2c)

Proof We can use a classical argument to obtain the following truncation error bounds

ILYM(WL, —wi)(2,4)] < Crhugs + hy) (ellwigael| + pllwrsel))
+C2(k]+1 + k]) (Elleyyy” + .u”wLyyH)

We use the bounds 1n Theorem 4 5 1 to obtain

Ch
ILYM(WL — wi)(,y,)] < -\/--(hz+1 +h) +CoM™! (471)
The proof sphts mto the two cases of o < % and oV = % Starting with the former,
we consider the region [6?V,1) x (0,1) Using Theorem 4 6 1 we have

N
\/y—a4a e
Wity < (14 Y25
Using (4 6 1b) we see that § = In N, and therefore
N
4

Welzy,9,)| < C(L+4N" InN)~

Letting t = 4N~!In N 1n the nequality In(1 +t) > ¢t (1 — £}, we see that |WL(£EN,y])| <
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CN~1 Therefore in the region [0",1) x (0,1) we have
Wi(z,,y,)] < CNT!
Considering the continuous solution 1n this region, from Theorem 4 5 1 we have
wr ()l < F " <ON, o 20"

Combining these results we have the following bound in the region [GN’ 1) x (0,1) when
oV <1
1
(W, — wi)(z,, )] <CNT!

We next consider the region (0,0") x (0,1) Since oV < 1, we have h, = h,y; =

4
%N_l InN We then use (4 7 1) and obtain

ILYM(Wy —wp)| < C(N"HInN 4+ MY

Using an appropnately chosen barrier function and the discrete minimum principle we
obtain the required result in this region
We finally consider the case of oV = 41 We find l‘/le__ﬁ < 8In N and using the truncation

error bound (4 7 1) we obtan
|[LVM (W —wp)| < C(N"'InN + M7

Using a suitable barrier function we achieve the required result a

We note that similar proofs hold for the error components |(Wp —wg)|, |(Wr — wr)|
and |(Wp —wr)| We therefore have the following lemma

Lemma 4 7 3 At each mesh pownt (z,,y,) € QVM, the bottom, right and top singular

components of the error satisfies the follourng estimates

|(Wg — wp)(z,,,)] S C(N™' + M~ ' In M),
(Wg — wg)(2:,9,)| < C(N"'InN + M),
(W — wr)(z,,y,)| < C(N"H+ M~ in M),

where wg, wg and wyp are defined analogously to (44 5) and Wg, Wgr and Wr are defined
analogously to (4 6 2c)
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Proof See Lemma 47 2 O

Lemma 4 74 At each mesh pownt (z,,y,) € QM the bottom-left corner singular com-

ponent of the error satisfies the following estimate
(Wi —wig)(£,9,)| SC(N"'InN + M~ n M),
where wy g 15 the solution of (451) and Wyp 1s the solution of (46 2d)

Proof We can obtain the following truncation error bounds

\ILYM(Wip — wiB) (@, 9))] € Ci(hasr + ha) (el|wLBazsl| + pllwipzll)
+Ca(ky41 + ky) (€llwrpyyyll + pllwipy,ll)

Since wy, g satisfies a similar equation to u, we apply Lemma 4 2 2 to obtain (see Remark
451)

C] CQ
ILN"M(WLB - wLB)(a;l,y])| S %(hH-l + hz) + %(k]-%l + k]) (4 7 2)

We start by considering the case o/ < % and o™ < % We consider the region
QMM\(0,6") x (0,06™) Using Theorem 4 6 1 we have

and

Using (4 6 1b) we see that UN% = In N and similarly 01”52% = In M, we therefore

obtan N
|WLB(.’L‘_]!,yJ)| < C(l +4N_1 lnN)_T,
4

and y
\Wea(z,ym)| < CL+4M ' InM)~ 1
]

In an analogous fashion to wy, we can therefore prove that in this region we have
tWLB(Ilay])I SC(N—l'*'M‘l): leUN and/or Y, ZUM
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Consider the continuous solution n this region Using Theorem 4 5 1 we obtain

_ Ve _yYe _JIe N
wrB(T, ;)| S Ce” VF e Ve <e” V7 <CON7? z, > ol
J 3 )
and VAl Ve Ve
_ Yy _ ] - ya M
lwip(2,y)| < Ce” Ve e Ve¥ <e” Ve 7 <CM™2,  y >oM

We conclude that when oV < é and oM < 1

7» we have the following error bound in the
region QYM\(0,0%) x (0,0M)

|(Wis ~wip)(z:,y;)| < C(NTH+ M7

Next, we consider the region (0,0")x (0,0) We know that h, = h,; = 8e N-1InN

Naz
and k, =k, = %M‘l In M Using the truncation error bound (4 7 2) we obtain

ILNM (Wi g — wip)(z:,y,)] < C(N"'In N + M~ n M)

Therefore using a suitably chosen barrer function and the discrete mimnimum principle we

obtain
(Wi —wrg) (2, y;)] < C(N"'a N + M~ a M)

Finally we consider the case of o = }1— and oM = % In this case, we know that

@ < 8InN and Y2 < 8InM and using (4 72) and a suitable barrier function we
€ NG

obtain
|(Wep —wrp)(@,y,)l <C(N"'InN + M~ 1n M)

Combining these results for the different cases in the different regions gives us the required
result a

We note that similar proofs hold for the error components |(Wgrg — wgrg)|, |(Wgrr —
wgr)| and [(Wrr — wrr)] We therefore have the following lemma

Lemma 4 75 At each mesh pownt (z,,y,) € QM | the right-bottom, right-top and left-

top singular components of the error satisfies the follouing estimates

|(Wrg — wrp)(2:,y;)| <C(N"'InN + M~ '1n M),
{(Wrr ~ wrr)(:,4,)| < C(N"'InN + M~ 1n M),
|(Wir — wir)(20,y;)| < C(N"'InN + M~ In M),
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where wrp, wrr and wyr are defined analogously to wrg wn (45 1) and Wrp, Wgr and
Wit are defined analogously to Wrp wn (4 6 2d)

Proof See Lemma 47 4 O

Theorem 4 71 At each mesh pont (z,,y,) € QM the mazimum powntuise error sat-

isfies the followng parameter-uniform error bound when p? < =,
U —ullgymw <CWN'InN + M tin M),

where u 15 the solution of (4 1 1) and U 1s the solution of (4 6 1)

Proof The proof follows from Lemma 47 2, Lemma 47 3, Lemma 474 and Lemma
475 a
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Chapter 5

Elliptic PDE’s - the case of ,uz > %5

51 Introduction

This final chapter 1s different in style to the previous chapters The analysis relies on
various assumptions and conjectures and is more exploratory in spirit We consider the
same class of problems as (4 1 1}, however this time we examine the more complex case
of p? > L The mimmum principle and the bounds given in Lemma 4 2 1 and Lemma
422 still hold This case 1s significantly more complcated than that of u? < ., and this
analysis 1s seen merely as a starting point for those wishing to study this problem There
are possibly significant compatibility 1ssues with our approach, although the extension
idea of Shishkin [29] plays an essential part in mimmsing these difficulties We ignore
these 1ssues of compatibility and assume sufficient regularity for the analysis to be vahd
The notation 1n this chapter 1s as defined in Chapter 4

The assumptions given below restrict the class of problems that we are considering and
are sufficient to define and bound the regular component v and all four boundary layer

components
Assumption 1 Arbitrary regularity and compatibility assumed throughout

We note that the assumption of constant coefficients would reduce complications with com-

patibiity The following assumption 1s also used when necessary (We will state explicitly

n the text when this assumption 1s used)
Assumption 2 ai(z,y) = a1(z) and as(z,y) = az(y)

The case of u > 71, where 7 1s some constant (convection diffusion) 1s a subset of this

present case and will be dealt with 1n the final section of this chapter Parameter-explicit
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bounds on the derivatives of (4 1 1) are derived in Section 5 2 when p? > L The solution
18 decomposed mnto a sum of regular and singular components In Section 5 3, we define
a regular component v The boundary layer components are discussed in Sections 5 4
and 55 It 1s when considering the corner layer functions 1n Section 5 6 that the style
of the thesis really changes We state and motivate a series of conjectures on the corner
layer functions The validity of these conjectures remain open questions The numerical
method 1s then proposed and the discrete solution 1s decomposed 1n an analogous fashion
to the continuous solution The error between the solutions of the discrete and continuous
problems 1s then analysed We show that given the various assumptions and conjectures

made 1n this chapter, we have a parameter-uniform numerical method

5 2 Parameter-explicit bounds on the derivatives

We need to first obtan crude bounds on the continuous solution u of (41 1) and its
derivatives Such bounds were discussed 1n Lemma 4 2 2 1n Chapter 4 However, 1n
that proof we concentrated on obtaining bounds with the mimimal amount of regularity
assumptions on f and the boundary data In this chapter, we focus more on 1dentifying the

dependence on the parameters € and 4, and less on mimimising the regularity requirements

Lemma 5 2 1 The derwatwes of the solution u of (411) satisfy the following bounds

1
1-v
< €z 2 (%) {1+ elothusn, st + st +elssose

v=0

alSaluss + 52l + €latlosa + mlailust + [atly + elazlrz + slazloss + |q2|v>

Hsly + s + ol + laoh + (£2) 1]

and for 1 =0,1
i+1 e\ 2

luliye < C(ﬁi > ( - ) (Iflo + elstlota + plsilorr +Is1lo + €ls2lus
v=0

+pls2lusr + 1520y + elqilur2 + plailver + @ lo + elg2fora + plgzforr + \Q2|v>
42
+ls1li+2 + [s2liv2 + la1]142 + lg2l142 + (w;—‘/-g) HUH),
where C depends on the coefficients a1, as and b and thewr derwatives
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Proof We continue from equation (42 3) in Chapter 4, simplifying the RHS of these

equations, we obtain
@l 2, < O, +llz,,),

and for [ = 0,1
|©0l40,8, < CUIF i1, 2y T 1wl 55)

Transforming back to the original variables this imples for all (z,y) € Q and Rs = Rs(z,y)

1
(ﬁ) lwli,r, £ C ((” +€\/e_7)2 Z (u-:\/E) lf‘U’Rzé * HwHR25) ’

v=0

and for I = 0,1

i+1
+2 € v
L £ lwll+2,R5 S C ( 2 £ |f|v,R25 + H(A.)||R25>
(H‘\/E) (1 + VE) UZZO (;m/E)

Replacing Fby f— L, ,h and using the definition of h gives us

IN

1
() s < (g 32 ()1 - et ol

v=0

A

1
v
C((u+i/g)2 Z (M':\/E) (Ifl'U,Rglg + E|S]'|U+25R25 + I‘L|51IU+1,R25

v=0

+{81lv,Rys + El52|vt2,Ros + 1152|v41,R0s + [52u,Ros + €142, Ro5

18] q1lot 1, Ros + 19110, Ros + ElG2lut2,Ra5 + £1G2]u41,Ros + |0200,Ros)

+I|wllnga)
41

£ i+2 € £ v
() el < Ol gazar 2 (5) (Fhors + elstlurss + lstlori

v=0

and for I = 0,1

+,31|v,R25 + 5132lu+2,R25 + #132|v+1,R25 + ]3210,325

+elqilvr2,rys + a1 ot Rys + 191)0,Ros + £lg2lu+2,Rys

+1|q2|vr1,Ros + I(IZ|v,R25) + |IWHR25)
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Rearranging these equations, we obtain

1
1-v
+
lwll,Ra < C((u_,_e\/g)z Z (u g\/g) (lflv,Rza + 5131|v+2,R25 + .Uisllv+1,R25 + |51iv,R25
v=0
+5|32|v+2,325 + /J'Is?|v+1,R25 + |52|U,R25 + 5|Q1|u+2,R25 + I'LIQ1IU+1,R25
+]‘JI|U,R25 + 5|QQ]v+2,Rzé + 'U'|q2|v+1,R25 + |QZ|v,st) + (%ﬁ) ”w”Rza)
and for [ =0,1
I+1
+2—v
+
lw]l+2,R5 < C((u+i/g)2 Z (” 5\/2> (]fIV,Rza + 5‘31|U+27325 + li|31|v+1,1?.2,5 + |31|U,R26
v=0

+efs2lu+2,Rp5 + 1I52|u41,Ro5 T (5200, Ras + ElGIu+2,Ros + 1219101, Ros

+191]v,Rys + ElG2lu42,Ros + 1]G2)0+1,Rs + |QQ|v,R25>
1+2
+
# (255) ol )

Since {2 can be covered by the neighbourhoods Nj of a finite number of points and noting
that u = w + h, the result follows a

Remark 5 21 In the case where f € C%(Q), s, € C*([0,1]) are independent of € and
w, we obtamn for L <k+m <3

ak+mu

I k+m
sergpll <O(5) (I,

where C depends on f, s, and g and the coefficients a1, ap and b and thewr derwatives

5.3 Regular component 1n case of p? > 7;5

In order to obtain parameter-uniform error bounds for the numerical approximations gen-
erated m the final sections of this chapter, we decompose the solution « of (4 1 1) mnto a
sum of regular and singular components Consider the differential equation (4 3 1) 1n the
extended domamn QB = (~d,1)? Decompose v* as follows,

v (z,y,€ 1) = V3 (z,y, 1) + €V} (3,9, 1) + 203 (2, €, 1) (53 1a)
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where

Liwy = f* on Q(l*’LB], Vol pqr- 181 chosen 1n (5 3 4), (5 3 1b)

1
eLtvi = (Lh—Li, g, on QYA Uil pot 181 =0, (53 1c)
e w3 = e(Ly— L7 v, on QPBL (a6 1)|s0. e = 0 (53 1d)

Note that 215 = [—d,1)2 and 801"*® = TH U TH?) When 42 < %, v3 and v} were
defined as solutions of reduced problems obtained by setting both £ and i to zero in the
elliptic differential equation In this case, we see that vj and v} are solutions of singularly
perturbed first order differential equations obtained by letting just € be zero 1n the elliptic
problem Since v; satisfies an elliptic problem, there are potential 1ssues in relation to
compatibility at the inflow corner (1,1) We do not address this concern

We can establish the following for the first order differential operator L, using a proof
by contradiction argument Note b > 25 > 0 1s not used 1n the proof

Lemma 531 Let Q = [0,1)? and 0Q; =7 UTg Suppose z € C1(Q) N C(),

If L,z <0 and z >0, then zl >0
193] a0, 1931

8
Proof Let z = e_#me, where §; < mng, % Assume that ming, z < 0, this implies that
ming, w < 0 Consider a pomnt p = (2o, yp) such that w(p) = ming, w < 0 At this point
p we know that wg(p) > 0 and w,(p) > 0 We see that

By
L,z(p) = e+ (pajwe(p) + pawy(p) — (b — frar)w(p)) > 0,
which 15 a contradiction O

Lemma 5 3 2 If 2(z,y) satisfies the first order problem
Lyz = a\pzg + aguzy —bz = f  (z,y) € 2 = [0, 1)2, z|aq, =0, (532)

where a1 > 0, ax > 0 and b > 283 > 0, then we have the follourng bounds on z and its

derivatives

1
Izl < @Ilfll,
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and

3k+mz 1 ak+mf 3k+mf
' azkaym <C ((umm{k,m}> ”Z” + ' Ogk+m + ayk-i-m +
k+m—1 P
P Z o ) elk+m)a
+m !
eyt 0z y*

ag :1: a2 a)

where A = max {0 ( 1) (91> ,(‘—u> (ﬂ>y} and the constant C depends only on the

coeffictents aq, as, b and thewr derwatives

Proof Consider the barrier functions ¢¥*(z,y) = 2,@“ fll £z We see that these functions
are nonnegative for (z,y) € 0Q; We also have

Lt (a,y) = —%Hfil £7<0

Apply Lemma 5 3 1 to obtain the required bound on z We will establish by induction
that

k+m—1

k+m k+m r+.s

e SC((—%)IIzIH panais | PR R P [ e )e<k+m>A (533)
r+s=0

Differentiating equation (5 3 2) with respect to z we obtain

ies = piande ey - (-1 (2) )= () +(5) =

where zz(x,1) = 0 and using the differential equation (5 3 2) we have ||z;(1,y)|| < 1l

Consider the barnier functions
d
o=@ = 0 (Ll | 3|+ ) 202

where A 1s defined as above We see that for C large enough the functions ¢=(z,y) are

nonnegative on the boundary 0Q; Also

i = o(o(2)a- £or(2)) Game ) -
(629
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We see that for C chosen correctly Lﬂld)i(z, y) <0, therefore applying Lemma 5 3 1 and
using (53 2), we obtain (533) fork+m=1

We now prove the more general result (5 3 3) by induction We assume that the lemma
1s true for 0 < k +m <[ Differentiate (5 3 2) { + 1 times with respect to z to obtain

a+1 a 3l+lz al+lz b a al+lz

I+1 _ 1 1

LM(ax‘“) = “a?(az”l)z*“(axl“)y"(EE“““) (2) >(az'+l)
= plz,y),

where p(z,y) 1nvolves f and its derivatives with respect to = up to order [ + 1, z and 1ts
derivatives with respect to z up to order [ and the coefficients and their derivatives We
see that —;—(:c 1) =0 and —,—(l y) = ¢(x,y) Using the differential equation (5 3 2),

we can show that

1
(2, y)] < C Z Pt T
ey + s || Oz7 Qys
Consider the barner functions
al+1f 1 ar+5f 8t+1z
+ _ +1)A(1-x
y <x,y>—c(nzu+}5mm T s | <0 >i(m)
r—+s=0

We see that for C large enough the functions are both nonnegative on 92, Also we have

gt a,y) = ¢ (~(0+ D (—2) A- i w2 ) (1 +

z+1 Z ) lHDAN=2) 3 p(g y)

r+s5=0

al+1f

it +

erays

Using our induction assumption and the definition of A, we see that LEH]g[)i(x, y) <0
for C chosen correctly We therefore obtain

l (“ZH +‘ )e(l+l)A

Differentiating (5 3 2) k times with respect to z and m times with respect to y, we obtain

o+, 4

oz FyEN)

L1
,LLH'l

8l+1f
8 I+1

6r+5 f
9z7 Jy*

rs=0

100



fork+m=101+1

gk+m 1 gE+m f 1 kmt o+ f
< r+s (k+m)A
l amkaym <0 ((Mm> ”Z” + ' ogk+m l + uk-f—m HZS;O H amrays €

Similarly 1if we started the proof by differentiating (5 3 2) with respect to y, we would

obtamn
k k k+m—1
2 < ((ik) el + |t + e o el ) ol
m|| — m m T 3,8 !
ozk oy i oy i = 0z™ dy
and combining these two bounds gives the required result O

With this lemma, we can analyse the reduced solution v, the solution of (53 1b) We
show that 1f the inflow boundary conditions vj(z, 1) and v§(1,y) are chosen correctly, then
all the derivatives up to second order of v} are bounded independently of x (and obviously
€) We note that Lemma 53 1 and Lemma 53 2 also hold for the differential operator
L[;’LB] and the domain Q[l*’LB] defined as before

Lemma 5 33 When the boundary conditions v| aql~ LB OT€ chosen correctly, the solution
1
vy of the differential equation (53 1b) satisfies the followng bounds for 0 < k+m <6,

k+4-m, *
"My

< 2—Ic—m
Sakggm C(l+p )

Proof Consider the following secondary decomposition of vj(z,y, i)

vy(z,y, 1) = spl(@,y) + st (z,y) + p’sh(z,y, 1) (5 3 4a)
where
Lysy = [T, (53 4b)
pLysy = (Lg— Ly)sg, (53 4c)
WLy = wlly—Lisi on QUL 83| e =0 (53 4d)
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Since sj and s] do not depend on p, we have

6k+ms*
.E%y—:’]‘ C for 0<k+m<8, (535)
8k+ms*
‘W < C  for 0<k+m<7 (53 6)

The function s} satisfies a similar equation to z m (53 2) We can apply Lemma 5 3 2

and the bounds above to obtain

1 Js} Js}
< —= + < C,
it < 5 (|55 + |52 ) <
and for 1 <k+m<6
oFtmss 1 \ 3k+ms{ 3k+ms‘{y alc+msv{Z
kf,m < C min{k,m “32||+ k mz + k+m + k+m
, + + +
0z~ 0y pmn{k,m} oz 0z 0y
k+m % k+m—1 * +5 o *
+ 9 msly + 1 Z ur+3 ar+551m + o ssly e(k+m)A
ayk+m /Jk+m = oz Oy’ axrays

Therefore, using the fact that s} and 1ts derivatives are bounded independent of u we
obtain for 0 < k +m < 6,

ak-l»ms; C
‘ axkaym — ‘uk+m (5 3 7)
Using the decomposition (53 4) and the bounds (53 5), (53 6) and (53 7) gives us the
required result O

Lemma 5 3 4 If v} satisfies the first order differential equation (5 3 1c) then the follow-
g bounds hold for 0 < k+m < 4,

3k+m,uf
axkaym

C
— Nk+7n

Proof Since v} satisfies a similar equation to z 1n (5 3 2), we can apply Lemma 5 3 2 and

)sc,

the bounds above to obtain

2, %
v
Ox?

0* v
oy

It 50(

102



and for1<k+m<H4

k * k4 * *

3k+mv¥ <C 1 HU*H N o +mU0:ra: . 8 mUOyy ak+mU0zz
amkaym - umm{k,m} 1 grk+m orktm ayk—{—m

k4 k+m—1 * +5, %

9 mvayy + 1 Z ur+s (‘ ar-HUOzz + ‘ o SUOyy )) e(k+m)'4
k+ k-
ay m m m eyadt amrays 3w’6‘y5
Using the bounds on v 1n Lemma 5 3 3 we obtain the required result O

Lemma 5 3 5 Ifvi(z,y,¢,u) satisfies the differential equation (5 3 1d) then we have the
follounng bounds for 0 <k+m <3

ak+m,u§
Ok Oym

= %(ﬁ)(l + (%)Hm)

Proof Since v; satisfies a similar equation to u, applying Lemma 4 2 1 we obtain

1 52 9%p*
I3t )1 < ozl oo + 55 (| % | + | 5]
Using Lemma 5 3 4 we have
C
vzl < =
2 Iug
Finally we use Lemma 5 2 1 to obtamn for 1 < k+m < 3,
oFtmys C f \ k+m . 2 rs||arronr
_— - il _ +s v
‘ 5o |l o & T () ) max sl LB”,HZO(‘/E) T
2
oSyt
z (\/E)r—%& zfagl/%u }
r+s5=0
and applying the bounds for »} 1n Lemma 5 3 4 we obtain the required result O

Combining the results of Lemma 5 3 3, Lemma 5 3 4 and Lemma 5 3 5, we see that if

we take the regular solution v to be the solution of

Leyv=f(z,9) €Q, v=1v"(z,y) €09, (538)
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then when p? > X, v satisfies the following bounds for 0 < k +m < 3,

’ <C (1 + (g)k“H) , (539)

where v* 1s defined 1n the decomposition (5 3 1)

ak+m,v
Ak oym

54 DBoundary layer components at the inflow

In this section, we define the boundary layer functions wg and wr associated with the
right and top edges respectively In the case of u? > L, the order n which we define the
layer functions 1s crucial to correctly isolating the singularities of the solution =

We start by analysing wg, the layer function associated with the right edge 'r Con-
sider the extended domam Q7 = (0,1} x (0,1 +d), d > 0 We define wy to be the
solution of L,[;:f]w;{ =0 We need to chose the boundary conditions for w¥, so as to 1solate

the layer on the rnight Consider the following decomposition of wj,

wh(z,y,6 1) = wi(z,y, p) + ewl(z,y, p) + e2wi(z,y, €, ), (541a)

where v(1,y) = vo(l,y) = (-g - (%) a V(é))(l,y) 1s given 1 (5 3 4) and

Ty = 0on @ wi(z,14+d,p) =0, wi(l,y,p) = ((ly) -v(ly)", (54I1b)
ELE"T]wI = (Lgf’T] - Lgffl)wg on Qll*’T], wi(z, 1 +d,p) = wi(l,y, 1) =0, (54 1c)
2Ly = (gLl — LMwi)*,  on QT w2y, e, 1) |p0 1oy = 0 (54 1d)

Remark 541 We should note that the last function wj s defined on the eztended
doman Q78 = (0,1) x (—d,1 +d) This domawn 15 obtained by eztending to the top
and bottom of the original domawn, while w§ and w} are defined on the smaller extended
domain Q[I*’T} =[0,1) x [0,1 +d)

The following lemmas prove parameter-explicit bounds on the components wg, w}, w;
and their derivatives These results are then used to bound the layer function w} and 1ts

derivatives

Lemma 541 When wj 1s defined as wn (54 1b), gwen p < v, the function and s

derwatwes satisfy the followsng bounds for any positwe integer k (assuming sufficient
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reqularity and compatibility)

oF w;
ox*dyl

(),

(w,m‘ < %<d+ 1=y)e x07, (a,y) e, (cl <ce )
Proof Since wj(z,1 + d) = 0, we can show that |wj(1l,y)] £ C(1 +d—y) Consider
the barrier function ¥*(z,y) = C(1 +d - y)e_f:f(l_z)
E(z,y)

+ wj, we see that the functions

i~ 1 are nonnegative for C large enough Also
Lyt (w,y) = C (yaf(d+1 - y) ~ paj — b (d+ 1)) e s 7 x0,

and using our definition of -y, we see that LE:’T]’lﬁ:t((L‘, y) < 0 for C chosen correctly Apply

Lemma 5 3 1 to obtain
lwg] L C(d+1 - y)e—%(l_"")

Differentiate equation (5 4 1b) with respect to y , we have

« 1110w owp ay { Jwg b* aj dwy; b* .
LL'T’IJa():#(aO) +H*3‘("a—g> - —*"N(‘%) —0:(—*) wg
Y Y/, e\ /, \a ai/,) 9 ai/,

Clearly c%ugl(l, y) = ((u—v)(1,y))y and since wy satisfies a homogenous first order problem,

using 63—";5(:3, 1+d) = 0, we see that %’yﬁ(:c, 1+d) =0 Taylor expansions give \%&(l,y)l <
C(1+d—y) Consider the barrier functions

_%) (1—2) N o
Oy

PE(z,y) = C1 +d—y)e(

We see that the functions 1»*(z,7) are nonnegative on the boundary for C large enough

Also
LEI’T’”w*(m,y)zc«(v‘Z—;)+u<(§é) - ))(l+d—y)
1/y
a; )iE)e oy L
-#<E>)e( ) ﬂ:(a—,{)ywo,

and we can see that LL*’T’I]q,bi(a:,y) < 0 for C chosen correctly Applying Lemma 531
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o

<Ci(l+d—y)e w1

Using the differential equation (5 4 1b) we therefore obtain

26 < C1 4+ d—y)e 072
oz 7
We now continue by induction Assume for £ </
Fug | . O ~1(1-2) 4(3)
ozt 0y Sﬁ(d‘*l—y)e E , Ci<Ce My

We wish to prove true for £ =+ 1 Differentiating (5 4 1b) { + 1 tumes with respect to v,

we obtain

6l+l * aH-l * * 8[-{-1 *
s (St — () (G
Ay Jy - aj \ Oy y

b* a; 6l+1w6
(50mn(2)) (558)

where p(z,y) contans wy and 1its derivatives with respect to y up to order [ and the

coefficients and their derivatives Using the differential equation and 1ts derivatives with
{1, 1
respect to z and y we can express %—y,%o—(x,l + d) 1n terms the functions %’P(z, 1 +d)

ko, . ! .
where 2 <141 Since %—3%0(33,1 +d) = 0 for all k£, we obtain %g%ﬂ(z, 1+d) =0 Usmg
i -
this result and the fact that assuming sufficient regularity we have \%(l,y)‘ < C, we
l »
oqu%;@uwﬂgou+d—m

Consider the barrier functions

(I+1)

(#),

We see that the functions 1 (z,y) are nonnegative on the boundaries for C large enough

_:‘}) R

wi(w,y)=0(1+d—y)e( By

106



Also

Lyt (g y) = c(( (7 - b—) +u ((z +1) (Jl)y —(+1)

—H (%?) )e((l“) Gf)y

@), Jure

—g)u—z)

% p(z,y)

Choosing C correctly, we find LE:’T’lH]z/)i(z,y) < 0 and therefore applying Lemma 5 3 1
we have
8l+1,w* ((H—l) (:—zé) -%)(1—x) —1(1-g)
S| <0+ a=yel Iy <G+ d-yeE

Using the differential equation (5 4 1b) and 1ts derivatives with respect to z and y we can
obtain the required result for k =[+1 O

Lemma 5 4 2 When w} s defined as in (54 1c), then gwen u < v, and assumang suffi-
crent regqularity of the coefficients and the boundary data, the solution and its derwatives

satisfy the following bounds for any positive wnteger k,

A

PFwi % s . (k+2)( 2
m(w,y)‘s/—ﬁ(dﬂ—we W0 @y et ™8, [0y <Ce (

-

),

Proof Let fi = wg,, +wg,, Using Lemma (54 1) we see that

& £ (k+2) %2
3@21((;2;,) s uil-z (d+1-ye s, Cr<Ce ( 1)”

I(1-z)

Consider the barrer functions %= (z,y) = fy(l +d—y)e » tw] Swmce wi|yonm =0,
1

we see that the functions are nonnegative on the boundary Also

* c * * * - - *
Ly (z,y) = 2 (10 (d+ 1=y) — pa = b*(d+ 1 —y))e W79 4 g

and for C large enough LE’T]’IJ):E(JJ, y) <0 Using Lemma 5 3 1 we can therefore conclude
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that
C
03

1-z)

[wh| < —(d+1—y)e s’

=

As with wj, we proceed by mmduction Assume the lemma 1s true for 0 < k£ </,
()

We wish to prove the result true for £ =+ 1 Differentiating (54 1c) [ + 1 times with

respect to y, we have
L[*,T,l+l] 6‘”1w‘{ B al+lw1 N El‘i al-l—lw{
i Byl = oyt ) “‘IT Gyl .

_ (Z_l —(+ 1) (Z?)y) (%) = p(z,y),

where p(z,y) contains w} and its derivatives with respect to y up to order !, f! and its

% w?
0z dy?

C T k+2
< (A 1-yeTH 0, C1 < Ce

derivatives with respect to y up to order [ + 1 and the coefficients and their derivatives

k
Since for all & we have %507(@ 1+d) = 0 we can use equation (5 4 1c) and 1its derivatives

to obtamn %;%i(z,l +d) = 0 Clearly we also have Wl(l,y) = 0 Consider the

following barrier functions

C ((J-H)
F(l +d-ye

(%),

We see that the functions ¥ (z,y) are nonnegative on the boundaries, also

Ll (g ) = f,( ((7 —E) 4 ((z +1)(2) -w+n)(2), )) (1+d-y)
() >e<(l+l) (&) ), o(z,1)

For C large enough LH’T’lH]d)i(a:, y) < 0 and therefore using Lemma 5 3 1 we see that

.
a
vy

_ﬂ.> (1-x) 6l+1wT

¥ (z,y) = Eyey

—-Z-) (1-z) Cl

I+1, *
07 wi < S +d—y)e s

ayl-i—l

c ((l+1)
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The differential equation (54 1c) and 1ts derivatives with respect to z and y give the
required result for £ =1+ 1 O

Lemma 543 Gwen u < 1, when wy s defined as wn (54 1d), then the solution and
its derwatwes satisfy the follownng bounds for 0 < k < 3,

jwy] < Lhed0-2),
Fws C (u\k akwg C' I
<2 (E Lt
Oz oy || — pt (s) and r dy* ,u, <1+#(5) )

Proof On QT “+ ” ” < & 7 (1+d—y)e” I(1-x)

We extend f* = %’J— + %%wgi to QT8 so that f* (a:, —d) =0 We therefore obtain

<C

T(1+d—y){y +dle” u(1-2)

If1 <

t

We define smooth extensions of the coefficients a1, a3 and b to the domain QT8 so that

we have
aka*
" <Cd+y)(1+d-vy), for 2=1,2 and £=0,1,2, (54 2a)
Y
and
ab*
9 <Cd+y)1+d-vy) (5 4 2b)

Consider the barrier functions
C _14-
PE(z,y) = ;Ze w(=e) 4 w)

We see these functions are nonnegative on the boundary and using Lemma 5 4 2, we sce
that L[* e 'l,bi(x,y) < 0 Applying the elliptic comparison principle gives the required
exponential bound Since wj satisfies a similar equation to u, we use Lemma 521 to
obtaimn for 1 <1214+ <3,

*w} C ru\k
<= (& 4
Azrdyr || — pd (5) (543)

We need to sharpen these bounds in the direction orthogonal to the layer Consider

the barrier functions o

¢i(may) = 4(d+y)(1 +d_y):tw2

=
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Clearly %*(z,y) > 0 on the boundaries Also

* C * * *
LiTely® = (2= 0+ Y1+ d—y) + (1= yuaj) £ f

Gven (54 2), and the fact that u < 1, we see that LFT8ly¥ (2, 4) < 0 for C large enough
We can therefore apply the nunimum principle to obtain

(2, 9)] < S (d+y)(1+d—y)

i
Using the above bound we have

ow; C ows C

< — d 2 - < 2

lay ($’1+d)“u4 - '31; (= d)\‘u“

We also note that %li;i(l, y) = %“;i(o, y)=0
Differentiate (5 4 1d) with respect to y to obtamn

ows, dal\ dws dat\ ows ab* 93w B
L[*’TB]‘—2 - _ et § 2 2\ Y2 htll * 1 L px
Sy “(021) Oz “(3.1/) 3y+<0y)w2+0w28y+6y3 f

Using (54 3) and Lemma 54 2 we see that |f*| < C (;—}; + ;7%;) Consider the bar-
rier functions ¥ (z,y) = C) (glzr + Elrs) + %%2 We see that the functions ¥+ (z,y) are

nonnegative on Q™8 for C) large enough Also

: L B s
L (z,) = ~bCy (F + ﬁ) £/ <0,

for C; chosen correctly Therefore using the mimmum principle we obtain

1 1
<C(—=+—
- (u4+u26>
3w

Now we need to find %ﬂé[ag[, g Clearly %:—;in(l,y) = Z#(0,5) =0 Usmng (54 1d)

and our extension of ap and f* we also find %ﬂé(x,l +d) = Q;—;”,i(z,-—d) =0 We

o}
9y
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differentiate (5 4 1d) twice with respect to y,
[* TB]B w5 - 2 dal\ &ws o d%a}\ dw} 5 dag w3
Bl Gy? Oy ) 010y oy? | Oz Oy | Oy?
ob* d%al\\ ow} ot ., o *w} _
+(2(3y> <3y )) 3y*<6y2>w2+3w23y2+8y4 =7

*

Using the crude bounds (54 3) and the bounds on %%1 above, we see that |f***| <
‘% (1 + 'é;) Also, using the extension of the coefficients 1n (54 2) and the extension

of the function wj, we find

ok ok C
7 < (1 B

put

'E
w

)(y+d)(1+d—y)

Consider the barrier functions %% (z,y) = g—} (1 + “5) (y+d)(1+d—y)+ %@i Both

these functions are nonnegative on Q%78 Given u < ;, we have

3
Lirely® = o (1 + ) (—2€+,u(1—2y)a§—-b*(y+d)(1+d—y)> + <0

We apply the minimum principle to obtain

32 * C 3
et 1(1+'u>(d+y)(1+d—y)
gy? | = ut
Therefore, we have
w3 w
8wy ” _d){ |ty - S (=, —I| (1 N ,ﬁ)
R d+y =

Similarly we obtain ‘%ﬂgi(z, 1+ d)l < u% (1 + ’Ei;) and we also have "’—;;i’g?s(o,y) =0 and

63 -
B (Ly) =0
Differentiate (5 4 1d) three times with respect to y to obtain

L[*’TB]%‘;E = Zhwi+ (332”' —p (%3532)) 9wi (3 ( & ) - 3u (%‘1)) %’?
- (5) Gt - ou () 2 - e (57) 85 - (5F) 52

+"3;75L3' + _a?L f**** (22 y) € Q[* TB|
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We see that [|f***| < % (If;' + 1) and we can use barrier functions and the minimum

principle to obtain

63 * 4
will < & (141
o3 12 £3
Combining all the above bounds, we obtain the required result O

Lemma 54 4 When w}, ts defined as wn (54 1), gwen pu < 71, we see that
[wi(z,9)| < Ce™w 77

and its derwatives salisfy

F*w, c OFw? C
< — 0<k<2 Ei< = k=
oz oy || — pk Jor 0sk<2, Or oyl || ~ ep’ 3
Moreover, wn the direction orthogonal to the layer
* 2, % 3, ¢
owy, <c, 0“wk, Sg and wp Sg
oy ||~ dy? m Oy3 £

Proof This result follows from the decomposition (5 4 1) using u? > Z and the bounds
on wj, w} and w3 their dervatives given respectively in Lemma 5 4 1, Lemma 5 4 2, and
Lemma 54 3 a

Define the boundary layer function wg associated with the right edge ['g by

LE,[.LwR = 07 ("Ea y) € Qa (5 4 48.)
wrp=u—7v, (z,y) €Tr, wr(0,y) = wg(0,y), (54 4b)
U)R(il:, 0) = w;g(iE,O), wR(I: 1) = ’UJ;{(ZL‘, 1) (5 4 4C)

Since wr = wpy on {2 the bounds in Lemma 54 4 transfer across
We now consider wp the boundary layer function associated with the top edge I'r
Our extended domain 1s given by Q& = (0,1 +d) x (0,1) (with QE*’R] =[0,1+4d) x[0,1))

]

and we define wy to be the solution of L[ef;f‘ w} = 0, where the boundary data 1s chosen

mn the following decomposition

wi(z,y, €, 1) = W(z, y, p) + €} (2,y, ) + 205 (x, Y, €, 1), (54 5a)
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where v(z,1) = vo(z,1) = ({E -(8)a V(é))(z, 1) 1s given m (5 3 4) and

Ui = 0 on QP @51 4+d,y) =0, wi(z,1) = (u(z,1) —v(z,1))", (5 4 5b)

eLlMar = (LN - LMyap on QMM BT+ dy,p) = @i, 1,0) =0, (54 5¢)
gy = (e(LU™ - LEFyE)* on QR @3(z,y,e, p)lpne 1 =0 (5 45d)

We have the following lemma analogous to that for wg

Lemma 545 Guwen p < 7, the top layer function w}. defined wn (54 5), satisfies the
follounng bounds
[wi(z, )| < Ce™s )

and 1its derwatives satisfy

ko % k., *
OCwr | e C pprocker, |28 <& oy
Oz dy? pk dz*dy? Ep
Moreover, win the direction orthogonal to the layer
* 2, ,,% 3, %
i <G, Fuwp o O and Quwp) ¢
o0z 0r2 | =~ u ard ||~ ¢

Proof The proof 1s stmilar to that in Lemma 5 4 4 Bounding each of the components g,
w} and wj and their derivatives separatcly, we obtain the required exponential bounds
and bounds on the derivatives of wy. These derivative bounds need to be sharpened 1n
the direction orthogonal to the layer Extensions of a;, a2 and b to QLR are constructed
so that

oka*

1
Oz

<C(d+z)(1+d-1x), for :=1,2 and k=0,1,2,

and

ob*

X

<Cld+z2)(1+d—xz)

We can then use the same approach as for wj 1n Lemma 5 4 4 to obtain the required

orthogonal derivative bounds a
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Define the boundary layer function wp associated with the top edge I'y by

Le,uwT =0, (-T,y) € Q: ('5 4 63‘)
wr=u—v, (,y) € Try wp(z,0) = wh(z, 0), (5 4 6b)
wr(0,y) =wr(0,y), wr(l,y) = wir(l,y) (5 4 6c)

55 Boundary layer components at the outflow

Consider wy, the boundary layer function associated with the left edge I';, In order to
obtain bounds on wy, we consider the extended domain QT8 = (0,1) x (~d, 14+d), d > 0
We define w} to be the solution of

LTy =0, (z,y) € Qe (55 1a)
wh(0,) = (v —wp)(0,),  y€[—d,1+d] (55 1b)
wi(l,y) =0, y € [—d,1+d], (55 1c)

wj (z,—d) = wi(z,1+d) =0, z € [0, 1], (551d)

and we extend (u — y — wg)(0,y) to QT8 5o that sufficient compatibility conditions are
satisfied

Lemma 551 Assuming ai(z,y) = a1{z) and p < v1, when w] 15 defined as i (55 1)
we see that

jw}(z,y)| < Ce™ "

Its derwatives satisfy

oFwy
Oz Oy’

<(4)" jor0<k<s,

and wn the direction orthogonal to the layer

3211)*

dy?

<9 and

L

Puw? g
oy3

*
ow},

dy

£

<o |

Proof We proceed as i the case of u? < ff Using a suitably chosen barrier function, the
exponential bounds can be shown Using Lemma 4 2 2 and Remark 4 5 1, we can show
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that when p? > X we have for 0 < k+m < 3

k-+m,,*
9"y

ozkym ¢ (E)Hm (552)

€

In the direction orthogonal to the layer we must sharpen these bounds We only
consider functions a; where a1(z,y) = a1(z), and we smoothly extend a; to QT8 so 1t

15 1dentically zero on I'}. and I'; We extend the coefficients so that

Kk
86;;2 <Cd+y)(1+d-y), for k=0,1,2, (55 3a)
and a0
.3y <Cd+y)(1+d—vy) (55 3b)

Using the definition of u(0,y), the bounds on v in (53 9) and the bounds on wg in
Lemma 5 4 4, we can show using a Taylor series expansion that |w} (0,y)] < C(d+y)(1+

d —y) Consider the barrier functions
v (z,y) = Cld+y) (1 +d-y) tw],

The functions % (z,y) are nonnegative on Q™ Sice p < v, and p? > L, we see
that LLT,’JTBh/)i(z, y) < 0 and therefore using the mnimum principle we obtain

lwi(z,y)] <Cd+y)(1+d—1y), (z,y)e€ Q™ (55 4)

Equation (5 3 9) and Lemma 5 4 4 gives .%%L(O,y)l < C and %u;;‘(l,y) =0 Using (554)
and the fact that wj (z, —d) = 0 and w}(z,1 + d) = 0 we also obtain

Differentiate (55 1) with respect to y, remembering that a}(z,y) = aj(z), we obtain

E(WZy)m: + E(U)Zy)yy + paj (wzy)x + Nag(w;,y)y (A /J‘a‘;y)wa = b;jwi

= (my) e

Using (55 4) we see ||f*|| £ C Since p < 4, using barrier functions and the mimmum
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)

principle we can show that

owy,
dy

Equation (55 1) and the properties of a3 give us %‘;L(a:, 1+d) = %’{l(m, -d) =0
Also using (53 9) and Lemma 54 4 we obtamn “%@(O,y)“ < % and %L(l,y) =0
Differentiating (55 1) twice with respect to y, remembering that a] 1s a function of z

alone, we obtain

a(w;/yy)l‘m + E(way)yy + /"LaI(way)I + Ma’;(w[;yy)y - (b* - 2tu'agy)w2yy

= (2b; - “aayy)wh - b;y'w}: = f* (z,y) € Qlwel

We see that ||/**|] < C Using a suitable barrier function we can show that

2, %
o“wy,

C
oy? S

T op

In order to obtain bounds on the third derivative of w} 1n the direction orthogonal to
the layer, we need sharper bounds on the second derivative above Using Taylor expan-
sions, equation (5 3 9) and Lemma 5 4 4 we can show that ‘%UQL(O, y)’ < —Eq(d+y)(1+d—y)
Also we can show that |f**| < C(d + y){(1 +d — y) Consider the barrer functions
vE(z,y) = %(d +y)(l+d-y) £ %ﬁ* We can see that, choosing C large enough, both
these functions are nonnegative on T8 Using the condition that z < -;, we obtam
LE;LTB]d)i(:B, y) < 0 and applying the mmimum principle, we therefore conclude

2
0“wj
Ay?

<2 +y+d-y)

2,5
Since %w—zl‘(a;, —d) = 0, we have

8%w? 2w
B} o —a)| = - (2,Y) — 5z, —d) ¢
oy d+y ~ €

Similarly we obtain Hg%)gl(z,l—!—d)l < % and we also have “6—;%031(0,'7;)“ < % and
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3,,,*
%—;ﬁf‘(l,y) =0 We differentiate (55 1} three times with respect to y to obtain

s(wzyyy)m + e(Wlyyy )y T BT (Wyyy )z + ua’é(wzyyy)y —(b" - 3ﬂa§y)wzyyy

= by wi, + (3by, — pagy,, Jwiy, + (36) — 3uagy, Jwi,, = /™" (z,y) € el

We see that || f***|| < %, and noting p < 7y we can use barrier functions and the minimum

principle to obtain

This concludes our proof d

We therefore define the boundary layer function w; associated with the left edge I'y,
by

Leywr =0, (z,y) €9, (5 5 ba)
W =U —V— Wg, ($,y)EFL, ’LUL=O, (xay)EFR: (555b)
wr(z,0) = wi(z,0), wi(z,1)=wi(z,1) (55 5c¢)

The layer component wp 1s defined similarly We consider the extended domain QlxLr)

and we define w} to be the solution of

L™y =0,  (z,y) € QR (5 5 6a)
wp(zr,0) = (u— v —wr)*(z,0), z € [—-d,1+d], (55 6b)
wp(z,1) =0, z € [—d,1+d], (55 6¢)

wh(—d,y) =wh(l+dy) =0, yel01] (55 6d)

and we extend (u —y —wy)(z,0) to Q78] 5o that sufficient compatibility conditions are
satisfied

Lemma 5 5 2 Assuming az(z,y) = a2(y) and p < 1, when wh 15 defined as wn (55 6)
we see that
lw}(z,y)| < Ce™ <Y

Its derwatives satisfy

g(g)k for 0<k<3

Fwy
Az Oyl
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Moreover, wn the direction orthogonal to the layer

2,k
0“wy
0z

3,,.*
Jwp

C
<
oz3

—  and

7!

<G,

*
Ilc?wB

cC
oz ~ €

Proof The proof 1s similar to that in Lemma 551 We consider the barrier functions
YE(z,y) = Ce™ 5V & wpy These functions are nonnegative on the boundary A=Al
Also for C chosen correctly, L[ET,‘LLR];bi(m,y) < 0, and we obtain the required exponential
bound Using Lemma 4 2 2 and Remark 4 5 1, we can show that when p? > 2= we have

for0<k+m<3

In orde: to obtain the sharp orthogonal derivative bounds, extensions of a; and b to €l

k+m,, *
"My

Oxky™ s¢ (E)k+m (557)

€

*,LR}
are constructed so that

k %
0%aj
oxk

<Cld+z)1+d-1z), for k=0,1,2,

and

Ob*
oz

<Cld+z)(14+d—1x)

Assuming that ax(z,y) = a2(y), we extend as so that a3 1s 1dentically zero on I'y, and
I'r We then use the same approach as for wj 1n Lemma 551 to obtam the required
orthogonal derivative bounds a

We therefore describe the boundary layer function associated with the bottom edge
I's by

Ls,uwB =0, (may) €, (55 8a)
wp = (u~v)—wr, (z,y) €lg, wp=0, (z,y) € ['r, (55 8b)
wp(0,y) = wp(0,y), wa(l,y) =wh(l,y) (55 8c)

Remark 551 Since we have defined all of the above boundary layer functions on ex-
tended domains, we are not imposing overly artificial compatibility conditions at the cor-
ners When we move to the analysis of the corner layer functions we sometimes will be
considering elliptic problems on the non-extended original domain where compatibility may

be an 1ssue
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56 Corner layer components

The order in which we define the corner layer functions 1s vital to obtaining the correct
bounds on the components and their derivatives required for the error analysis The four
corners are treated differently in our analysis In order to correctly isolate the corner
layer components, we have to be careful about the boundary data chosen for each of the
functions As with wgp and wy, we use decompositions to chose these boundary conditions
so as to correctly 1solate the corner singularities In order to isolate the top-right corner
layer function wgrr, we use a decomposition of wgrr mto a sum of solutions to first order
problems and the solution of an elliptic problem The top-left and bottom-right layer
components are both decomposed mto a sum of a solution to a parabolic problem and the
solution of an elliptic problem It 15 not necessary to decompose wgp

In this section, we show how we believe the corner layer functions should be defined In
order to prove parameter-uniform convergence of our numerical method, we need to obtain
bounds on these components and their derivatives However, at present we do not have
a rigorous proof of these bounds Instead, we state a series of conjectures, the validity of
which remain an open question These conjectures are motivated using arguments similar
to those 1n the previous sections but the proofs of such bounds are left for future work

Starting with the corner layer function associated with the top right corner, we define

wgrr by

LE,/,LU)RT =0, (m: y) € Q’
WRT = —Wwr, (a:,y) € 'r, wRrr = —wp, (zay) €I'r,
wgr(z,0), wr(0,y) defined 1n (56 1)

In order to determine appropriate values for wrp(0,y) and wrr(1,y), we decompose wpT

as follows,
wRT(mi:’:hE,H) = TDO(%%H) + 6@1(.’E,y,u) + 62@2(2:,3/;5, “‘) (5 6 13‘)
where
L#U_JO = Oon Q= [Oa 1)27 ’u_)o(Z, 1) = —wR(x; 1)7 U_JO(]-:y) = _wT(lay)a (5 6 1b)
ELPL'LDI = (Lu - Ls,y)wo on Qh ’U_)l(.'B, 1a#’) = u_Jl(lsynu') =0, (5 6 IC)
E2L6,;LU_J2 = E(Lu - Ls,p)u—Jl on Q’ @2(53’?},5,#”69 =0 (5 6 1d)
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Conjecture 56 1 When wrr 1s defined as wn the decomposition (56 1), we have the

follounng bounds on the corner layer function associated with the top-right corner
wrr(z,y)] < Ce e 07,

and its derwatives satisfy

BkaT C
‘ leﬁyﬂ = ,IJ,_E, fO’I‘ ngg2a
and
Pwrr(  C g
00y || ~ eu’ B

Motivation In order to obtain the exponential character of the layer function wrr, we
must assume the boundary conditions wgr(0,y) = we(0,y) + €w1(0,y) and wrr(z,0) =
wg(z,0) + e (z,0), obtained using the decomposition (5 6 1), satisfy the bounds

lwrr(0,y)| < Ce™ e mY and |lwrp(z,0)| < Ce e 2

F(1-x) ~y)

Consider the barrier functions ¢*(z,y) = Ce™ % S wprr Using Lemma
544, Lemma 54 5 and this assumption, we see 1™ (z,9)|sn > 0 We also see that when

p? > X, for C large enough

Lg,uwi(x,y)=0<4‘u2’y +4 27 +%al+%a2—b>e 7 (1= m) -5z (1-y) <0

We therefore apply the minmimum principle to obtain the result

To obtain the derivative bounds on w0y, we could applying a similar argument to that
mn Lemma 541 toget for 0 <k <6

C
<

g
0x* Oyl

We should note that the proof of such bounds would require us to extend the derivative

bounds in Lemma 5 4 4 to give

BkwT
0x Oyl

§~C— for 0<k<p and

L

Fwp

C
B 90 < — for 0<k<p
Tty
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These bounds can possibly be achieved by the more complex decomposition of the compo-
nents into p terms, p — 1 of which are solutions of first order differential equations and the
final term a solution of an elliptic differential equation We do not discuss the resulting
compatibility or regularity 1ssues that arise from decomposing wy and wg mnto such sums
of p terms

If the above bounds hold, we can show using Lemma 5 3 2 that for 0 < & < 4 we have

C
- Mk-%—?

ok,
0ztdy?

Finally since 1, satisfies a similar equation to u, we can use Lemma 5 2 1 along with the
above bounds to obtain the required derivative bounds on wgr
The next component to consider 1s wrr, the corner layer function associated with the

top left corner 'y

Ls,quT =0, (x,y) € Q,
wrr = —Wr — WRT, (Iiy) € PL, wrr = —wr, (ﬁ?, y) € PT)
wrr(l,y) =0, wrr(z,0) defined i (56 2)

In order to determine the appropriate value for wpr(z,0) so as to 1solate the top-left

[*.B]

singularity, we consider the extended domain £2*®! and decompose wj into a sum of a

solution to a parabolic problem and a solution of an elliptic problem as follows,

wir(z,y. €, p) = Wz, y, 6, 1) + ewy(z,y, €, 1), (56 2a)
where
LEPLiy = etfy, + pajig, — b + pajig, =0, wi(z,1) = —wr(z,1), (56 2b)
'ED()(O, y) = (_wT(O’ y) - ’U)RT(O, y))*7 7'2)0(17 y) = 01
eLlBat = (LR - LPYag on QP D} (@, .6 1) lope 01 =0 (56 2)

Remark 5 6 1 We should note that, keeping with the style of the thesis, 1t would seem
more notural for the above decomposition to have three terms in the expansion However,
n this case such an expansion 1s not necessary for the discrete error analysis Having three
terms in the expansion would also make the establishment of the bounds on the derwatives
significantly more difficult We should also note that we are required to know wrr(0,vy)

before we define wip and for this reason it 1s essential to be extremely careful about the
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order wn which these layer functions are defined

Conjecture 5 6 2 When wj, 15 defined as wn the decomposition (56 2) we have the

follounng bounds on the corner layer function associated with the top-left corner
wir(z,y)| < Ce B Vg ter,

and its derwatives satisfy

FFwi 1N* & fuyk
2 LT < bl Iy
<o (() @) osrss

and .
"wip
0x*oyJ

gc(i—‘)k, 0<k<3

Motivation In order to obtain the required exponential bounds on wj,., we begin by
analysing the component w; We make a change of variables t = 1—:} Letting wig(z,y) =
no(z,t), and ai(z,y) = G1(z,t) with the other functions defined analogously, we obtain
LL*,’:LUO = ENogz + KG170z — 5770 —agnoe =0, 7o ("B) 0) = -'LZ)L(ma 0)’ 770(11 t) =0,
Mo (O,t) = ~ur(0, t) — wpr(0, t)

Consider the barrier functions
i —ua
Y (z,y) =Ce 7e™s St

Using the exponential bounds on w; and wy given i Lemma 551 and Lemma 545
and assuming Conjecture 56 1 holds, we see that ¢ (z,t)ir, > 0 for C large enough

(Tp = f‘g’B] U f‘%’B] UT'r) We also obtain

2

2 o —ua
ka}lwi(x’t) = (5 (g) o? — %aal —b+ a2%> e re et 0,

and we can show that Lé’iflz/zi(m, t) <0 for C large enough Using the minimum principle

for the parabolic problem, we obtain

t — o
oz, t)] < CeZe™e "
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Therefore, transforming back, we have

~2l=y) —pa
e ¢

[z, y)| < Ce™ ™ % (56 3)

To find the exponential character of the corner layer function wj,, consider the following

barrier functions on the extended domain Q®!

WE(z,y) = Ce m ¥emtos Loyt (g )

If the exponential bounds on @ m (5 6 3) hold then we have |i§(z, —d)| < Ce 3 (IHd)—tas
Using the exponential bounds in Lemma 5 5 1 and Lemma 5 4 5 and assuming Conjecture
56 1, we obtain ¥=(z,y)|sqw 51 > 0 for C large enough We can also show for C chosen
correctly we have LE;LB]g[)i < 0 and therefore we obtain the required exponential bound

The required bounds on the derivatives of w}, can possibly be obtained by analysing
the each of 1ts components separately Such a proof would however require that the bounds
in Lemma 551 and Lemma 5 4 5 can be extended as follows

& wr,

Oz dy?

OFwr

0z Oy?

gc(ﬁ)’c for 0<k<p (564)

<£ for 0<k<p and ]
£

We define the boundary layer function wyp associated with the top left corner I' . by

LE,,u,wLT =0, (.’E, y) € Qa (5 6 53‘)
wrr = —wr —wrr, (T,y) €T, wr =0, (z,y) € Tg, (5 6 5b)
wrr(z,0) = wip(z,0), wrr(z,1) = —wr(x, 1) (5 6 5¢)

We now consider wgrp, the corner layer function associated with the bottom-right corner

CrB

L. wrp =0, (z,y) € Q,
wrp = —wg, (z,y) € Cr, wgrp = —wg — wgr, (z,y) € s,
wrp(z,1) =0, wgrp(0,y) defined i (5 6 6)

We consider the extended domain Q% and decompose whp nto a sum of a solution to
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a parabolic and a solution of an elliptic problem as follows ,

wrp(T,y) = Wz, y) + ed](z,y) (5 6 6a)
where
35‘,’?,1@3 = e}y, + pajiy, — b + paiwl, =0, By(l,y) = —ws(l,y), (56 6b)
wy(z,0) = —wg(z,0) — wrr(z,0), wo(z,1) =0,
eLlhHor = (LM, — LIy, W} (z, 9,6, W) oo =0 (56 6c)

Conjecture 5 6 3 When wip 15 defined as wn the decomposition (56 6), we have the

follounng bounds on the corner layer function associated with the bottom-right corner
wha(a,y)| < Ce™ Bl Do oy,

and 1ts derwatives satisfy

Fwhp 1\* & /u\k
= — (£ <k<
’ ok || = (M) +u2(8) 0 >
and ot
Wrp < #\* <k<
dz'oy? _C(a) ’ Osks3

Motivation The motivation for this result 1s analogous to that of Conjecture 56 2 We
therefore define the boundary layer function wrp associated with the bottom-right corner

I'rp by

LE,prB - 05 (xay) € Qa (5 6 73‘)
WLT = —WR — WRT, (I,y) €l'p, wr =0, (a:,y) el'p, (5 6 7b)
wrr(0,y) = wip(0,y), wrr(l,y) =-—ws(l,y) (56 7c)

Fially we consider the corner layer function wy g associated with the corner 'y g We
define wy,p to be the solution of

Le ywrp =0 (z,y) € Q, (56 8a)
wrp = —wp — WRB, (r,y) €T, wrp=—wr —wrr, (2,y) € I'p, (56 8b)

wrpg =0, ($>y) €l'gr, wrp=0, (E,y) €l'r (5 6 SC)
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Conjecture 5 6 4 When wip 15 defined as in (56 8), we have the following bounds on

the corner layer function associated with the bottom-left corner

lwip(z,y)| < Ce™ "< %e Y,

] <oty
L2z

Motivation Consider the barrier functions y¥(z,y) = Ce™ =%~ ¥ Using the ex-

and its derwatives satisfy
Fwrp
oz Oyd

ponential bounds on w; and wg mm Lemma 551 and Lemma 55 2 and assuming the
exponential bounds on w;r and wgrp 1 Conjecture 5 6 2 and Conjecture 5 6 3 hold, we
see that both these functions are nonnegative on 9Q Also

Leyp*(z,y) =C <2u2a2 - aptar - auay - b) e~ Tem Y 10,
3 € €
and using the definition of o we see that L, ,%*(z,y) <0 Using the minimum principle
we obtain the required exponential bounds
The bounds on derivatives of wy g should follow using Lemma 521 However, such
a proof would require extensions of the derivative bounds in Lemma 5 5 1, Lemma 5 5 2,
Conjecture 5 6 2 and Conjecture 56 3

Remark 5 6 2 Fugures 5 1-5 4 show the boundary data picked up by the layer functions
defined 1n the prewious sections Since we see these functions are interdependent, the
order wn which they were defined was crucial n 1solating the layers and obtaining the
correct decomposition of u  The choice of boundary data for each function s also crucial to
obtaining bounds on these components and their derwatiwes With regards to compatibility,
looking at Figure 5 4 (h) for ezample, we see that at the corner (0,0), (—wp—wrp)(0,0) s
equal to (—u+v+wr+wr+wrr)(0,0) which s in turn equal to (—wp —wpr)(0,0) Swmalar
arguments hold wn the other three corners and for the other layer functions However, we
realise there are many compatibility 1ssues that have not been addressed We accept these

1ssues are significant and we hope to ezamine them wn some future publication
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WR u—-v

WR u—v wr wr

WR wr

(a) (b)

Figure 51 Figures illustrating the boundary data of the functions (a) wg and (b) wr

wr, 0

U—YV—WgR 0 wp wpg

wy, U—v—wr

(c) (d)

Figure 5 2 Figures illustrating the boundary data of the functions (c) wy, and (d) wg
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—WR —wy,

WRT —wT —WT — WRT 0

WRT wLr

(e) (f)

Figure 53 Figures 1illustrating the boundary data of the functions (e) wgr and (f) wrr

WRRB -wg —WpB — WRB 0

—WR — WRT ~—Wp —wLT

(&) (h)

Figure 5 4 Figures 1llustrating the boundary data of the functions (g) wgp and (h) wrp
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Theorem 5 6 1 When p? > L= the solution v of (41 1) can be decomposed as

u=v+w,+wr+wr+wptwrp +wpy +wrp + WRT

where L. v = f, and the layer and corner layer functions are each solutions of the ho-
mogenous equation L. 2w =0 Boundary condutions for these functions can be specified so

that given Assumptions 1 and 2, the bounds on the regular and boundary layer components

and thewr derwatwes given below hold

Lo

" lws(z,y)| < Ce™ e,

_ Xy
3 |wT($7y)| S Ce u(l Y 3

)

S(E) for 0<k <3,

ak'l'mfu I k+m—2
I | R Lt
‘3zk8ym _C<l+(5) )7 0<k+m<3,
hws (@, y) < Ce™ e
~1(1—z:)
|wR($ay)| < Ce &
Fwy < (H)k *wp 1k
oxrdy? ||~ \e/ ' || 050y
awb 82wL g_ 33’UJL g
¢ oy || T p’ oy ||~ €’
3w3 <0 0wpg 9 Pwpg _C_
oz ||~ oz ||~ p’ 0z3 ||~ €’
Bka C (9 C
< — <k< — =
Srag| < o 0Sk<2 - c')yf < k=3
Owr <C Pug g Fwg g
Oy ’ ||~ o’ oy ||~ €’
Fwp C OFw C
—_ <k< < — =
925y e for 0<k <2, 61"33}9 S o k=3,
8w:r Pwy < Cc Bwr < c
92 ||~ p’ azd ||~ €

(5 6 10a)

(5 6 10b)
(5 6 10c)

(5 6 10d)

~—~

56 10e)

—~—~

5 6 10f)
(5 6 10g)
(5 6 10h)
(56 101)

(5 6 10))
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Conjecture 56 5 When p? > L5, the solution u of (411) can be decomposed as in
(56 9), we congecture that the following bounds on the corner layer components and their

derwaties hold

wps| < Ce e tee Y, |wpr| < C’e‘[g—azeﬁg’:(l_y)’ (56 11a)

fwnsl < Ce™B0 DY, Jupr) < 0o B0 20D, (56 11b)
]3’;1";; <(4) pro<k<s, 61

Sl veen [BE]sS woe oo
g;’gyﬁ < ( ) for 0< k<3, (56 1le)

[ ee(() i), weven - en
g’;faﬂ;’j _c(g)k, for 0< k<3, (56 11g)

e so(() () vsrss oo

5.7 Discrete problem

As with the case of p? < 7045, we consider the following discrete problem

LNMU(z,y,) = 62U +e82U + payDFU + pap DU — bU
= [, (z,y) € VY, (57 la)

where QM 15 defined to be the tensor product of two precewise uniform meshes Q7 and
QM In this case, the mesh QY consists of two transition points, of and o', where

1 2 12
U{V:mm{— M—ZlnN} and @ —mm{a,%lnN} (57 1b)
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More specifically

40y N
N 1< 7
QY ={z,|lz, =4 ol + (e - J)H, << 3, (57 1c)
N
l—aév+(z—%)é%f—, W <L<N

where NH = 2(1 — o — ¢}’) and QM 1s defined analogously with transition points o3/

and aé‘”
The discrete mimmum principle 1 the previous chapter still holds and we have the

following analogous decomposition

U=V +W,+Wg+Wg+Wr+Wrg+Wrr+Wpgrp+Wpgr (57 2a)
where
LNMy  — f, Vipy m = v|pn M, (57 2b)
VMW, = 0, Wilpym = wp|pa m, (57 2¢)
LN’MWLB = 0, WLBIFNM = 'UJLB’FNM, (5 7 2d)

with the other layer functions defined similarly

Theorem 5 71 We have the follounng bounds on discrete boundary layer functions,
1 o -1
Wizl < O] (1+55h)  =%n  Tio=0C,

N -1
[WR(wHyJ), <0 H (1 + %hs) = \I’R,u Upnv = C,
s=1+1

¥
o —1
Wa(z.,y,)i < O] (1 + —_’Zg kr> —0p,  Upe=C,
r=1

M -1
Wrzau) <C ] (1+ %k) —Up,  Upy=C,
r=3+1

where hy = £5 — Ts_1 and ky = yp — Yr_1

Proof We start by considering Wy  The proof follows a similar argument to that n
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Theorem 4 6 1 1 the case of u? < 3’0—5 We consider the barrier functions
@f(xu yj) = \PL,z + WL(wzay])

We can show that for C large enough (I):[}f(ﬂiz, Y;)|lr~ m > 0 Also we obtamn

202 [ h 2o 2q o'
INM g O N e pre B G, ke <
7 (20, 9;) ‘ez \ on R G - e 1410 ) Upaq1 <0,

and we use the discrete munimum principle to obtain the required result The proof in the
case of Wp 1s analogous

Let us now look at Wgr We consider similar barrier functions
@ﬁ(:pz, y]) = lIJR,z + WR(-Tuy])

We need to check how the functions &% (z,,,) behave on the boundary Using a similar
argument to that for Wy, 1n Theorem 4 6 1 we can show that for C large enough @ﬁ(l, y;) >
0, @iR(a:,, 0) > 0and fb}t{(x,, 1) > 0 It remains to consider @1*{(0, Yy) iUsmg the exponential
bounds 1n Lemma 5 4 4 we see that [Wg(0,y)| = |lwg(0,y)] < Ce 2 We have

N -1
5(0,y,) H (1 +— s) + Wr(0,y,)

however,

We conclude that ®%(0,y,) > 0 for C large enough We also obtain
LA (r, y,) = — Pt (o ( 7 )2 < i 1) (25 ( . )2 + pear
’ 3] = YR oL YR Har5—
RTn Y (1+ Q’;h,) 2n) \on, 2 Y9

3
Y Y
b1+ —"—h}—2(=—] h
) () - () )
Using p? > 7(15 and the defimitions of o and «y we see that the above quantity 1s non-positive

and therefore we use the discrete mimmmum principle to obtain the required result The

proof for Wy 1s similar to the above and analogous bounds hold O

Theorem 5 7 2 Assuming Congecture § 6 5 15 true, we have the following bounds on

131



discrete corner layer functions

? J
po, 1 po, 1
Wes(zu)l < C ] (1+52h,) 11 (1+52k) " = 01,0p,,
z M -1
I -1
Wir(w,y) < CTL (1+55h) ] (1 + lkr) = 0,0y,
€ 2u
s=1 r=j+1
N y -1 7 g, -1
Was(@ou) <C [T (1450 ) [[(1+52k) = ¥ra¥s,,
s=1+1 K r=1 €
N -1 M -1
Wrr(z,y,) <€ ] (1+ th) I1 (1 +2lkr) = Vg,
s=1+1 H r=j+1 H

where hy and k. are as previously defined

Proof The proof of the bounds for the corner functions follow the same method for Wi g
in Theorem 4 6 1 A little more work 1s needed 1n some functions to show that the barrier
functions are nonnegative on the boundary and to show that after we apply the discrete

operator to the barrier function the resulting expression 1s non-positive O

~

58 Error analysis

We now analyse the error between the continuous solution of (41 1) and the discrete
solution of (57 1) m the case p® > 2

Lemma 5 8 1 At each mesh pownt (z,,y,) € QVM the regular component of the error

satisfies the following estimate
(V= v) (2, 9)] £ C(N' + M,
where v 1s the solution of (53 8) and V 1s the solution of (57 2b)

Proof Using the usual truncation error argument and (5 3 9) we have

C\N7! (ellvezzl| + pllvezl]) + 0'2—’\/—”_1 (EHUyyy” + “”UyyH)
< CIN"'+ M Y

|ILYMV = v)(z,,35))]

IA

We consider the barrier functions ¥=(z,,y,) = Ci(N~' + M~!) £ (V —v) We see that
these functions are nonnegative on the boundary I'y s, also we find LNMEE(g, 4,) <0
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for C) large enough We apply the discrete mimmmum principle to obtain the required
result a

Lemma 5 8 2 Guwen Assumption 2, at cach mesh pownt (z,,y,) € QNM | the left singular

component of the error satisfies the following estimate
(WL —wp)(,9)| SC(N ' (In N)? + MY,

where wy, 18 the solution of (55 5) and Wy, 1s the solution of (57 2¢)

Proof We can use a classical argument to obtan the following truncation error bounds

|LN’IM(WL - ’lUL)((lLL,yJ” < Cl(h‘H-l + hl) (6||wL$ICEH + #HwLme)

+02(k_7+1 + k]) (Sllwbyyy” +t“'“wbyy”) (581)
We use Theorem 5 6 1 and obtain
NM G1 p\? -1
(L5 (W, — wr ) (z,, 4y Sﬁ(hﬁl-#hz) 1+ % + CoM (582)

The proof splits into the two cases of of¥ < % and oV = % Starting with the former,

we consider the region [¢9,1) x (0,1) Using Theorem 57 1, equation (57 1b) and a

similar argument to that for Wi when pu? < 7‘15, we see that in this region we have
(WL(ze, )] < CN~!
Considering the continuous solution 1n this region, from Theorem 5 6 1 we have
wi(zs,y,)| < eT T <ONT T, > of
Combining these results we have the following in the region [o1V,1) x (0,1) when of¥ < ,
(Wi —wi) (2, ;)| <CNT!

We next consider the region (0,0)Y) x (0,1) We have h, = h,1 = ;—%N_l InN We
then use (5 8 2) and obtain

2
ILYM (W, —wp)l < CLN " In N + C,N~! 1nN% +C3M ™!
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We consider the barrier functions
U (z,y,) = C(N"'InN + N7 o} —z,)In Ng + MY+ (W, —wyp)

We can show that for C sufficiently large \I/i(:vz,yj) > 0 on the boundary Also

2
LMY= (g, y,) = —bC(N "' In N + N~ ol - mz)lnNg + M- ’%—al(N_llnN)

(LMW —wr)) <0,
for C chosen correctly Using the discrete mimmum principle we obtain
Wy, —w)| < CN " InN + N1 (ol —z,) lnN% + MY,
and simplifying even further using the definition of o 1 (5 7 1b),
(W —wp)] SC(N"'InN + N"YInN)2 + M)

The last case to consider 1s that of a{v = % Here we find "5—0“ < 8In N and using the

truncation error bound (5 8 2) we obtain
\ILNM(Wp, —wp)| < C(N " In N + uN~ (In N)2 + M)

Using a suitable barrier function we achieve the required result a
A proof analogous to the above holds for the error bound |(Wg — wg)|

Lemma 5 8 3 At each mesh pownt (7,,y,) € QVM | the right singular component of the

error satisfies the follounng estimate
(Wr —wg)(2.,y))| SC(N"'InN + M1,

where wg 18 the solution of (54 4) and Wr satisfies an analogous equation to Wi n
(57 2c)

Proof We can use a classical argument to obtain analogous truncation error bounds to
those m (58 1) We use Lemma 5 4 4 to obtain,

C _
|ILYM(Wr — wr)(,9,)] < i(hm +hy) + CM™! (58 3)
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We first consider the case of 03 < 3 We consider the region (0,1-05']x (0,1) Usmng
Theorem 5 7 1 and (5 7 1b) we have,

|Wr(z,,9)l < ONT
Considering the continuous solution 1n this region, from Theorem 5 6 1 we obtain
_lg—é" _92 N
lwr(z,yy)| S €7 w72 < ONT7, 7, <1—0p

Combining these results we have the following bound 1 the region (0,1 — o] x (0,1)

when aév < %

[(Wr — wR)(‘Thy])l < CN~!

We next consider the region (1 — o 1) x (0,1) We have h, = hy,y1 = ~8-,$N_1 InN
We can use (5 8 3) to obtain

ILVM (W — wg)| < CLN"'In N + CoM ™!

Using the discrete minmmum primciple and suitable barrier functions, we obtain the required

result

We finally consider the case of o = ;11- We see % < 8In N and using the truncation

error bound (5 8 3) we obtain,
ILYM(Wg —wg)| < C(N"'InN + M~1)

Again, using a suitable barrier function we achieve the required result (]
A similar proof holds for the error bound [(Wr —wr)| We therefore have the following
lemma

Lemma 5 8 4 At each mesh pownt (z,,y,) € QNM the bottom and top singular compo-

nents of the error satisfies the following estimates

|(Wa —wp)(z1,y;)] < C(NT'+ M (InM)?%),
(Wr —wr)(z,,y)] < C(N"'+ M~ lnM),

where wg and wr are defined wn (55 8a) and (54 6) respectively and Wp and Wr are
defined analogously to (57 2¢)

Proof See Lemma 5 8 2 and Lemma 58 3 O
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Lemma 5 8 5 At each mesh pownt (z,,y;) € QVM assuming Congecture 5 6 5 and As-
sumption 2 are true, the bottom-left corner singular component of the error salisfies the

followwng estimate
(Wep —wrp)(z,,y,)| < C(N~'(In N)? + M~ (In M)?),

where wp g 15 the solution of (56 8) and Wip 1s the solution of (57 2d)

Proof We can obtain the same truncation error bounds to those given for the left singular

component 1n (5 8 2) We use the bounds on wrp 1n Conjecture 5 6 5 to obtaln,

3 3
LYMWyp — wpp)| € G (hups + B (1 + (&) ) + Gk +y) (1 + (&) ) (584)

N

Consider the case oV < } and oM < 1 In the region QVM\(0,0)) x (0,077), the

1
4
proof follows the same method as when p? < T Therefore m this region we have
Wip(@,y,)| <CINT' + MY, z,> 0] andfor g, > o}

Considering the continuous solution 1 this region, using Conjecture 5 6 5 and (5 7 1b) we

obtain
ke, _po, _bBe N _
IwLB(mhy_’])l <Ce cefe e <e 71 <CN 27 -'L'1>U{V)
and
g _ g _ B M —
|wLB($layj)| <Ce « Tre” e ¥ <e = 7 < CcM 2: Yy > O’{M’

We conclude that when ¢V < 1 and ¢ < 1, we have the following error bound in the
1 <7 1 1 g

region QVM\(0, ) x (0,0M)
I(WLB - U)LB)(.’L‘“?JJ)I < C(Ngl + M_l)

We next consider the region (0,0{) x (0,047) In this region we know that h, = h,) =

%N‘l InN and k; = kj41 = %M‘l In M Using the truncation error bound (5 8 4) we

obtain
% I
ILYM(Wrg — wp)(:,4,)| SC(N"'InN + N"'inNZ + M~ InM + M7 In M=)
3
Choosing similar barrier functions to those in Lemma 5 8 2 we obtain
(Wi — wis) (2, y,)] < CNHInN) + N"'(InN)? + M~ (In M) + M~ (In M)?)
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We consider the case of of’ = % and oM = 7 We know that 2 < 8InN and

£2 < 8In M and using (5 8 4) and suitable barrier functions we obtan,
(Wep = wes)(@,y)l < C(NT!(In N)? + M~ (In M)?)

The other two possible combinations of ¢V and ¢ are trivial and give the same result
when N = M O

Remark 581 When p? > T 1t 15 not sufficient to cover the error analysis for one
corner layer function alone as it 15 not reflective of the error analysis of the other three

COTNErs

Lemma 5 8 6 At each mesh pownt (z,,y,) € QM| assuming Congecture 5 6 5 and As-
sumption 2 are true, the top-left corner singular component of the error satisfies the fol-

lowing estimate
(Wer — wrr)(2,,9)l < C(N"HIn N)? + M~} (ln M) (In NV)),

where wrr 15 the solution of (56 5) and Wi satisfies a ssmuar equation to Wipg wn
(57 2d)

Proof Usmg (58 1) and Conjecture 5 6 5, we have the following truncation error bounds

G G

1
+Co(kys1 + kj) <; + g) (586)

3
ILNM (W — wir) (2,3} < ﬁ(hzﬂ + h,) (1 + (i) )

We consider the case of o' < 1 and ¢! < 1 and start with the region 2%M\(0,01') x

(1 —oM,1) Using Conjecture 56 5 and Theorem 5 7 2 we obtain as with Wy g
(Wrr — wLT)(-'Euyy)y < C(N_l + M_l)

In the region (0,00) x (1 — o, 1) we have h, = b,y = i—iN'l InN and k; = k41 =
%‘iM ~11n M, therefore we obtain

2 2
|LYM (W p—wir) (2, y,)| < C1 (N—l N+ N"1in N) +Cy (M—l InM + M—”‘? In M)
£
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We consider the barrier functions
®*(1,,y,) =C3 (N"'InN+ M 'In M)+C4g(ofv—xl) (N"'InN + M7 In M) £(Wer—wir)

We can show that these functions are nonnegative on the boundary and for C' large enough
we obtain LV-M®*(z, y,) <0 Using the discrete mimmum principle and the defimition
of o m (5 7 1b) we obtain

|(Wir — wir)(z, )l S C (N Tla N+ M InM) + Cy (N"HIn N + M~ ' InN1n M)

The case of o = o) = % follows closely that for layer function associated with the

bottom-left corner We continue to the case of of’ < 1 and oM = % We start with the
region {of,1) x (0,1) Using Theorem 57 2 we see that |Wpp(z,,y,)] < CN™!in this
region Looking at Conjecture 5 6 5 we also obtain |wrr(z,, ;)| < CN~? and combining

these results we see that mn [01Y,1) x (0,1) we have

\Wir —wir| <CN7! (587)

Consider the region (0,0) x (0,1} Using (5 8 6) along with ‘I—L <ClnM and hyyy = h, =
2;—aN"1 In N we obtain,

2 2
LMW — wer) (@, y,)] < CiN'InN (1 + M?) + Cy (M_l InM + %M_l 1HM>

Using the barrier functions,
3% (z,,y,) = CL(N"'"InN + M~ In M) + 02’;‘(0{" —z)(N"'InN + M '1n M),

we see,

Wip —wrp| SCL(N T InN + M ' InM) 4+ Co(N"'(laN)* + M 'In M In N)

% and o} < 1, using Conjecture 56 5 and
Theorem 5 7 2, we see that in the region (0,1) x (0,1 — o) we have

Finally we consider the case of gi¥ =

|WLT—’LU[_,T‘ < CM™1 (588)
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Using (586), £ <ClnN and ky11 = k; = M~ In M we have
ILVM(Wir —wir) (@, y,)] < C(N "l N)? + M~ n M + M~ ' In N),

and using suitable barrier functions we obtain the required bounds We should note that

when N = M these bounds simplify to
(Wir —wir)(z,,y,)] £ CN7'(InN)?

This completes the error analysis for Wy O

The analysis for |Wgp — wgp| follows a similar argument to the above We obtain the

following lemma

Lemma 5 8 7 At each mesh pownt (z,,y,) € QNM, assuming Congecture 56 5 and As-
sumption 2 are true, the bottom-right corner singular component of the error satisfies the

following estimate
((Wep — weB) (2., y;)| < C(N~HIn N){In M) + M~ (In M)?),

where wrp 15 defined mn (56 7) and Wgp satisfies a svmalar equation to Wip wn (57 2d)
The final error component to consider 1s the top-right corner layer

Lemma 5 8 8 At each mesh pownt (z,,y,) € QONM - assuming Congecture 5 6 5 15 true,

the top-right corner singular component of the error satisfies the following estimate
|(War — wrr) (2., 4;)| < C(N "' (InN) + M~ (ln M),

where wrr 15 defined in (56 1) and Wrr satisfies a sumilar equation to Wirp wn (57 2d)

Proof Using (58 1), we obtain

C C
|LNM(Wrr — wrr) (2, )] < Il(hm +h) + f(kﬁl + k) (589)

M

By considering separately the cases of 0 < 1, oM < 1 and o) =} =

%, we achieve

the required result O

Theorem 5 8 1 At each mesh pont (z,,y,) € QMM - gssumang Congecture 5 6 5 and
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Assumption 2 are true, the mazimum pointunse error satisfies the following parameter-

unsform error bound when p® > L,
U —ullgy v < CNHIn N2+ MY InM)>?+ N 'InNInM + M~ InNln M),

where u 15 the solution of (4 1 1) and U 1s the solution of (5§ 7 1)

Proof The proof follows from Lemma 5 8 2, Lemma 5 8 3, Lemma 5 8 4, Lemma 5 8 3,
Lemma § 8 6, Lemma 5 8 7 and Lemma 5 8 8 O

5.9 The case of u> v

In the case of u > 7, the elliptic problem (41 1) 1s equvalent to a one-parameter
convection-diffusion problem Such problems are not the main interest of this thesis
Numerical methods for these differential equations have been considered in the books
(3, 16, 25, 29] For a discussion of the literature see Chapter 1 Solutions to such problems
exhibit boundary layers m the neighbourhood of the edges z =0 and y =0

We decompose 1 mnto a sum of regular and layer components as follows
u=v+wr+wp+wWLB

We define v* on the extended domain QL) asn (5 3 1), however, 1t 1s not necessary to

further decompose the components mn this decomposition as in (5 3 4) We let
vy =u* on ONMEEL

and 1t can be shown
&ty

} ox* 0y’
We define the layer function w} on the domam (0,1) X (—d, 1) and the function wj

on the domain (—d,1) x (0,1) The corner layer function wirp 15 defined on the origial

< C(1 + =0y

domain @ We have

Lg,ﬂ’wLB =0 (:L‘,y) €, (5 9 1)
wrp = —wg, (z,y) €T, wis=-wr, (z,9) € s, (592)
wrg =0, (z,y) €T, wrp=0, (z,y) €lr (593)

For all the layer components, we obtain the following bounds on the functions themselves
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and their derivatives
aH—]w

0z*Jy’

<Ce ) 4, 45<3

When considering the boundary layer functions wy, and wg, these bounds can be sharp-

ened 1 the directron orthogonal to the layer
The numerical method used to solve such a problem consists of an upwind finite differ-
ence operator applied on a mesh Q¥ This mesh 1s the tensor product of two piecewise

uniform meshes OV and QM In this case, 2V consists of one transition pomt, of¥ where
1 2
N
oy =mini=,—InN
1 { 2" « }

We should note that when px > -, the numerical method defined in (5 7 1) 1s equivalent
to the above and therefore even though the analysis differs, the same numerical method

as defined for the two-parameter problem works in this case
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