Hierarchical Impostors for the
Flocking Algorithm in Three

Dimensional Space.

Ph.D. in Computer Applications

Noel O’ Hara B.Sc., M.Sc.

Computer Applications
Dublin City University

Dublin
Supervisor: Dr. Mike Scott

February 2002

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Doctor of Philosophy in Computer
Applications 1s entirely my own work and has not been taken from the work of

others save and to the extent that such work has been cited and acknowledged

within the text of my work

Signed (\OQ\O\ MO(ZA ID qﬁ?’\?Z%
Date 2& ’Saq QOOZ

Acknowledgements

I would like to thank my supervisor Mike Scott for his help and guidance throughout my
post graduate time 1n DCU [would Iike to thank all the other post grads and staff in the
Computer Application Department Special thanks to John Kelleher, Darragh O’ Brien,
Alan Egan, Jerh O’ Connor, Ger Quinn, Tom Sodring and the DCU basketball club for
making 1t a more fun place to work I would like to thank my famly for their support all
through my education

Chapter 1
11
12
13
14
15

Chapter 2
21
22

23
24

Table of Contents

Introduction

Rendering

Flocking

Hierarchical Neighbouring Finding

Hierarchical Impostors

Thesis Outline

State of the Art Review

Introduction

Rendering

221
222
223
224
225
226
227

Visible Surface Determination
Binary Space Partition (BSP) Tree
Planar BSP Tree Based Rendernng

K-D Tree Based Rendering
Dynamic Environments
Level of Detail Rendering

Discussion

Particle Systems
Flocking Algorithm

241
242
243
244
245
246
247
248
249

[nitialisation

Geometric Model

Fhight Model

Perceptions

Match Velocity

Flock Centring

Avoidance

Combining the Behaviours

Impromptu Flocking

[I S . I

25
26

27

Chapter 3

31

32

2410 Scnpted Flocking
2411 Avoiding Obstacles
2412 Algornthmic Considerations

Levels Of Details for Behaviours

Accelerating The Flocking Algorithm

261

Locality Queries

Review

K-d Tree Neighbour Finding for Flocking Behaviours

The Flocking Algorithm

311
312
313
314
315
316
317
318

Representation

Separation

Match Velocity

Flock Centring

Computation of Nearby Neighbours
Avoiding Obstacles

Seek Goal

Computing Acceleration

K-d Tree Based Neighbour Finding

321
322
323
324
325
326
327
328

Initialisation of the K-d Tree

Updating the Behaviour

Find Neighbour

Updating Position and Orientatton of the Boids
Obstacle Avordance

K-d Tree Garbage Collection

Visibility Culling

Rendering the Display List

35
36
42
42
45
46
46

48

49
49
50
51
51
52
52
54
55

56
56
57
58
59
60
62
63
65

Chapter 4 Haerarchical Impostors for Flocking Algorithm 66

41 Introduction 66
42 Flocking At Runtime 67
43 Stablegroup Creation 68
44 Updating Velocity 73
45 Updating K-D Tree 74
46 Combining Stablegroups 75
47 Updating the Stablegroups 80
48 Avoiding Obstacles 82
49 Change 1n Goal 86
410 Stablegroup Interaction with Another flock 87
411 Outof View Stablegroups 88
412 Rendering 88
Chapter S Tests and Results 90
51 Introduction 91
52 K-d Tree Neighbour Finding Algorithm 96
53 Comparnson Netghbour Finding
with Reynolds’87 and K-d Tree 100
54 Stablegroup Algorithm 103
55 Outof View Stablegroup 107
56 Viewer Trnals 109
Chapter 6 Conclusions and Future Work 110
61 Amortize Behaviour Computation 111
62 Adaptive Algonthm 112
63 Rendering 113
64 Obstacle Avoidance 114
65 Animation 114
66 Temporal Bounding Volumes 115

67 Extension to Multi-body Animations. 115

Appendix A 116
Demonstration of K-d Tree and Stablegroup Algorithm 116

Bibliography 119

Abstract

The availability of powerful and affordable 3D PC graphics boards has made rendering of
rich immersive environments possible at interactive speeds The scene update rate and the
appropriate behaviour of objects within the world are central to this immersive feeling
This thesis 1s concerned with the behaviour computations involved in the flocking
algorithm, which has been used extensively to emulate the flocking behaviour of
creatures found 1n nature The mam contribution of this thesis 1s a new method for
hierarchically combining portions of the flocks into groups to reduce the cost of the
behavioural computation, allowing far larger flocks to be updated 1n real-time 1n the

world

Chapter 1

Introduction

11 Rendering

Real-time visual simulation of complex three dimensional computer graphic
environments has become increasingly important as the personal computer becomes more
capable of handling complex graphical imagery As the viewer moves around the world,
the view of the scene must be updated by the graphics system Computer graphics
environments are typically constructed from polygons The time taken for this update 1s
related to the number of polygons that must be drawn for a given viewpoint Navigating
these environments requires a trade-off between realism and speed Either slow drawing
of a scene contamning many polygons or faster rendering of a scene containing fewer
polygons Complex environments could contain many muillions of polygons, from any
given viewpoint and the number of polygons to be drawn may overload even the most
powerful graphics workstations Many algorithms combat this by imposing a hierarchical
structure on the scene The algorithms associated with these structures are used to cull
large portions of the scene from the rendering process [Air91, Cha95, Tel92, Lue95]
These approaches work best for static environments where large portions of the scene are

erther outside the viewer’s field of view or are obscured from view by nearer objects

The visible portions of the scene may still contain many thousand polygons and must be
drawn on the screen Several approaches are based on impostors where objects or groups
of objects are replaced by a faster and simpler version to be drawn to screen [Che96,
L1n94, Mac95, McM95, Sch96, Sh96] The 1dea behind these algorithms 1s to trade image

quality for interactivity 1n situations where the environment 1s too complex to be rendered
in full detail

The above approaches work well for mostly static scenes, but for moving objects
expensive update operations are performed on the hierarchical structure to reflect the new
positions of the objects Sudarsky’s [Sud96] approach replaces hidden moving objects
with a static volume that contains the object for a time period, so the structure need not

updated until the object becomes visible or the time period elapses

The goal of our research 1s the development of a system that allows interactive rendering
of large numbers of objects, which exhibit flock-like motion This 1s achieved by

applying an impostor algorithm to the flocking behaviour

12 Flocking

Craig Reynolds [Rey87] introduced a distributed agent based flocking model in which
each flock member follows some simple rules This 1s an extension of particle systems
introduced by [Ree83], and 1s closely related to behavioural animation His paper refers
to each simulated bird, fish etc as a boid The same terminology 1s used 1n this thesis

The behaviours involved 1n flocking, schooling or herding are as follows

Avoudance Avoud colliding with nearby flock-members
Match Velocity Attempt to match the velocity of nearby flock-member
Flock Centring Attempt to stay close to the nearby flock-members

Avoid Obstacles Avoid obstacles in the environment

Only obstacles and other boids within a certain visibility range R are accounted for in the
behavioural computations If an obstacle or boid 1s within a certain distance of a
particular boid, then 1t 1s visible to that boid and 1s included i 1ts behavioural
computations Each of the behaviours has a weighting assoctated with 1t, closer flock
members having more an effect than a more distant one The weighting 1s proportional to
the square of the distance between the two flock members The flock members adhere to
a basic flight model whereby each has a maximum and mimimum speed and maximum
acceleration After considering the above behaviours, the resulting acceleration 1s
trimmed to stay in comphiance with the flight model Some research has been performed
to optimise the behavioural computations of herding creatures [Car97] Their approach
focuses on replacing computationally expensive rigid-body dynamics with a simpler
particle simulation of herding for one-legged creatures Another approach [Che97}
focuses on a virtual fun park with bumper cars and tilt-a-whirl rides Their approach uses

buffering of states and computing the probability of a particular state after a certain time

interval to increase the efficiency of the state computation Our approach 1s more specific

to the flocking algorithm

13 Hierarchical Neighbouring Finding.

In the flocking algonthm, each boid 1s tested against every other in the world to erther
mnclude 1t as a nearby neighbour (within a certamn range of the boid) or disregard 1t
Therefore the complexity of the algorithm 1s O(nz) where n 1s the number of boids in the
world Reynolds presents an approach using a spatial grid to accelerate the neighbour
finding algonthm [Rey2000] Our approach to neighbour finding acceleration 1s more
memory efficient for very larger environments This thesis introduces an algorithm,
which computes the behaviour of a group of flock members as a whole rather than

computing flocking behaviour for each boid individually

To accelerate the nearby neighbour finding algorithm the scene 1s first pre-processed by
mserting all the objects 1n a hierarchical structure During runtime, as the boids move
around the world, the structure 1s updated to reflect the new positions of the boids The
neighbours of each boid are found by traversing the hierarchical structure, culling large
numbers of boids from the computation To accelerate the update phase, we use a

technique presented by Sudarsky [Sud96]

14 Hierarchical Impostors

During the imtial period when the boids are forming nto a flock, each of the boids’
nearby neighbours may change frequently Once the flock begins to fly 1n a stable pattern
1t will remain 1n a stable state until (a) 1t meets another flock, (b) or the goal 1s changed
for the boids, (c) or an obstacle 1s 1n 1ts path As a flock of boids becomes stable, the
boids’ velocity varies little from frame to frame There 1s very little acceleration, only
small adjustments 1 velocity enable the boids to stay close to their neighbours while
travelling 1n the same direction These attributes of the flock are used in devising a more

effictent flocking algorithm

The main contribution of the thesis 1s our approach to group together stable groups within
the flock and to compute their behaviour as a whole rather than computing each boid’s
behaviour 1n the group individually Computing the group’s behaviour is an order of

magnitude faster than computing the individual boids behaviour

1 5 Thesis Outhne

Chapter 2 outlines some of the considerations needed to render 3D worlds on a computer
screen We give a brief history of the field, and outline current research, especially
rendering of scenes that contain large numbers of dynamic objects In chapter 2 we also
outhine a brief history and overview of behavioural ammmation and flocking behaviour of
creatures on computer We outline current research that attempts to increase the
efficiency of the behaviour computation of objects 1n the scene Chapter 3 outlines our
approaches to increasing the efficiency of the flocking algorithm n a 3D world using a
hierarchical structure to accelerate locality queries Chapter 4 describes our novel
approach to further accelerating the flocking behaviour computations by using
hierarchical impostors Chapter 5 contains our test and results, obtained from running the
implementation of our algorithm The results are obtained directly form the code Chapter

6 contains our conclusions and discussion on future avenues of research 1n this area

Chapter 2

State Of The Art Review

21 Introduction

In this chapter we give an outhine of current research for rendering computer graphics
worlds outlining some of the fundamental algonthms for correct rendering of a model
These will form a foundation for the reader for the following sections Section 2 2
outlines the current research in rendening Sections 2 3 outlines the particle systems
approach to animation Section outlines come of the areas where behaviour animation 1s
used 1n computer graphics Section 2 4 outlines the algorithm used to emulate flocking
Section 24 12 describes the efficiency considerations in 1mplementing the flocking
algorithm Sections 2 5 and 2 6 outline current techmques for acceleration behaviour

computations used 1n animation The final section presents a short review of the chapter

2.2 Rendermng
221 Visible Surface Determination

Computer graphics 1s roughly divided into two areas One considers the hardware aspects
and the other studies algorithmic aspects It 1s the latter area where the focus of this

section lies

The system must compute the objects that are visible for the observer The problem of
determining which parts of the objects that are visible and which parts are hidden 1s
called the hidden surface removal problem The system decides which object 1s visible

for each pixel on the screen so that it can be given the colour of the object

Another approach 1s to compare each object with every other object and determine which
part of the object 1s visible from the viewpoint and then draw that part of the object This
1s referred as an obyect precision algonthm, object precision algorithms are performed at

the precision at which the object 1s defined

Both of the above approaches get very time consuming as the number of objects grows 1n
the scene This can be especially said for the second approach Typically 1n an interactive
walk/fly-through of an environment the visible portion of the model and the projected
image changes very lhitle from frame to frame Sutherland, Sproull, and Schumaker
[Sut74] shows how visible-surface algorithms can take advantage of coherence -the

degree to which parts of an environment or 1ts projection exhibit local similarities

2.2 2 Binary Space Partition (BSP) Tree

The BSP algorithm 1s based on the work of Schumaker [Sch69] and more recently
[Fuc79] [Tel92] A BSP tree 1s a data structure that represents a recursive, hierarchical

subdivision of a three dimensional (3D) space mto 3D convex regions

A planar BSP tree 1s efficient for rendering a static scene of polygons in the correct order
A planar BSP tree 1s imitialised with all the polygons in the scene in the root The planar

BSP tree 1s then recursively built as follows

e Choose a split plane Some heunstic method 1s used to choose a polygon’s plane to be
the split plane This polygon and all others that are coplanar with 1t are added to this
BSP node

e The remaining polygons are split into two nodes, the front node and the back node
Polygons are placed 1n the front node 1if they have a positive dot-product with splitting
plane, and places in the back node 1f they have a negative dot-product Polygons that
traverse the split plane are partitioned mnto two polygons by the split plane

e Recursion continues from the back and the front nodes, halting when there 1s no
longer any polygons 1n the node

To produce a correct ordering of polygons in the scene the planar BSP 1s traversed

recursively as follows starting from the root of the planar BSP tree

e Render the polygons n the node

o If the viewer 1s 1n front of the node, traverse the back node then traverse the front
node If the dot-product of the viewer’s position and the split plane 1s positive then
the viewer 1s 1n front of the plane

e If the viewer 1s 1n back of the node, traverse the front node then traverse the back
node If the dot-product of the viewer’s position and the split plane 1s negative then

the viewer 1s behind the plane

The traversal will produce a correct back to front ordering of the scene Finding a near
optimal BSP tree for a collection of polygons 1s still a difficult problem to perform 1n less
than NP time A planar BSP will visit every node 1n the tree to render the polygons in the

correct order

223 Planar BSP Tree Based Rendering

Outlined 1n this section are some ways that a BSP tree can also be used to cull or
eliminate a large portion of the scene from rendering altogether The purpose of these
algonithms 1s to quickly cull hidden parts of the scene A feature of all these algorithms 1s
that they exploit spatial coherence by using a BSP structure [Fuc79] [Tel92] [Sch69] to
draw the objects 1n the scene 1n the correct order The environment 1s first pre-processed
by using a BSP tree to hierarchically subdivide the scene by using each polygon as a split
plane Then during the interactive walk-through phase the BSP tree 1s recursively
traversed from the root only visiting children of nodes that have a positive intersection

with the viewer’s field of view

Teller [Tel92] presents an augmented BSP where each leaf node maintains a list of nodes
that are potentially visible from any pomnt within the current node His approach 1s very
efficient 1n architectural indoor environments and 1s used widely 1n the gaming industry
[Abr96] During the interactive walk-through the node to node visibility information 1s
culled against the observer’s field of view and the set of visible or partially visible objects
are sent to the render list to be displayed A lengthy pre-processing stage 1s required and

there are quite high memory requirements This technique has been shown to work very

well for indoor environments The game “Quake” [Qua96] [Abr96] by ID Software uses

this technique to render complex worlds at 50 frames a second on a Pentium computer

More recently Luebke and George [Lue95] developed a dynamic version of [Tel92] that
eliminates the pre-processing but the interactive phase may be slightly less efficient that
Teller at al [Tel92] when the average polygon count maybe below 100 as in the game
Quake [Qua96] To a large extent the efficiency of these algorithms rely on the
environments they are applied to They rely on the fact that most of the environment 1s

hidden from view at any time during the rendering process

The main drawback of the planar BSP approach 1s the high cost of updating the tree 1f
any of the polygons move 1n the environment The planar BSP approach does not work
well when there are many moving objects mn the scene, because of the high cost of

updating the tree to reflect the current correct ordering of polygons in the scene

224 K-D Tree Based Rendering

The above techmques only work well for indoor environments, for more general
environments a k-d tree hierarchical structure is more suitable A k-d tree 1s practically
identical to a BSP tree The differences between a BSP and a k-d tree include that a k-d
tree 1s forced to use axis aligned planes and the current level of the tree 1s used to
determine which axis to split on The current node 1s split in half by the axially aligned
spht plane The split plane 1s chosen by cycling through the 3 axes in turn In Figure 2 1
at the top level the Z plane 1s chosen to sphit the 3D space, into two equal halves At the
next level each of those spaces 1s split by the Y plane, at the next level the Z plane 1s used

to split the space Figure 2 1 illustrates a k-d tree that cycles through Z, Y then X planes

Z plane

/\

Y plane Y plane

ANEVAN
AL

Z plane Zplane Z plane Z plane Z plane Z plane Z plane Z plane

Figure 21 At each level, an axially aligned plane splits the space

The main benefit of a k-d tree 1s that 1t 1s much faster to update 1t when the polygons

move

In this section we will give an outline of some of the techniques that utilise a K-d tree to

subdivide the object-space The following techniques share some attributes

e Traversing a k-d tree allows a large portion of the scene to be culled from the
rendering phase but does not produce a correct ordering of the visible or partially
polygons 1n the scene

o The visible or partially visible polygons are rendering using an image based visibihity
algorithm

11

Ned Greene [Gre93] has a different approach in that the visibility-culling algonthm 1s
image based rather the object based as in [Tel92] The method described in [Gre93] uses
two hierarchical data structures, again an object space k-d tree and also an image space
based Z-pyramid In order to combine the Z-buffer and k-d tree the following observation
1s stated If a k-d tree node 1s hidden with respect to a Z-buffer, then all the polygons fully
contained in that node are also hidden What this means 1s, 1if the faces of the k-d tree
cube are scan converted and 1t 1s found that each pixel of the cube 1s behind the current
surface 1n the Z-buffer, then all the geometry in that cube can be ignored The
Hierarchical Z-buffer works very well for complex general environments where most of
the scene 1s occluded from any viewpoint Later papers by the same author improved on
the algorithm by introducing coverage masks to accelerate the image based portion of the
algorithm [Gre96] Due to the complexities of the Z-pyramid the algorithm works best in

a static environment

Satyan Coorg [Co097] developed an object space based visibility technique The
technique exploits the presence of large occluders (an occluder obstructs the view of
other objects 1n the scene) near the viewpoint to identify a superset of visible polygons,
without touching most invisible polygons Each node in the object-space contains a link
to an occluder that would be potentially “large” 1f a viewer were 1n that k-d tree node
When the viewer 1s moving around the environment the k-d tree nodes are classified as
mnvisible, visible or partially visible with respect to the set of occluders The technique
uses separating and supporting planes between the large occluder and the k-d tree node
to quickly determine the classification of the node Once the state of each k-d tree node 1s
known, a final traversal 1ssues visible and partially visible polygons to the rendering
hardware’s Z-buffer for per-pixel visibility determination As n [Tel92] this techmque
exploits the availability of fast hardware z-buffers by over estimating the number of
visible polygons, which simplifies the visibility determination algorithm Since the
algonthm requires the maintenance of the large occluders in each node the algorithm
works best for indoor architectural environments where most of the scene 1s hidden at any

one time

12

225 Dynamic Environments

A planar BSP tree 1s very costly to update as the polygons are used as split planes in the
tree Moving a polygon may require the entire tree to be rebuilt A k-d tree 1s much more
efficient to update as 1t only requires inserting each polygon nto the correct node rather
than rebwlding entire sections of the tree as in a planar BSP tree A straightforward k-d

tree approach to rendering a dynamic environment 1s as follows

o Create a k-d tree for the scene

e During runtime traverse the k-d tree and polygons that are at least partial visible are
rendered using the Z-buffer techmque

e Update the position of any moving objects 1n the scene Re-insert each of the dynamic

objects back mnto the k-d tree

Temporal Bounding Volumes

Sudarsky and Gotsman [Sud96] introduces the 1dea of temporal bounding volumes to cull
dynamic objects from the rendering pipeline for as long as possible As shown above the
hierarchical structure needs to be updated to reflect the new position of the moving
objects A method whereby moving objects could be somehow 1gnored until they are
visible would greatly increase the efficiency of rendering of dynamic environments Such
an algorithm would be output sensitive 1 e 1t would cull objects that are not visible A
naive method would have to update the hierarchical structure for all objects seen or
unseen The problem 1s that the update of the structure for currently unseen objects
cannot simply be 1gnored from the moment 1t 1s hidden, as 1t might be displayed again
next frame Since the culling algorithm only traverses visible regions of the structure, the

object’s position 1n the structure would be outdated and 1t may be missed

The algonthm avoids updating the structure for hidden dynamic objects, yet circumvents
the problems above by employing Temporal Bounding Volumes (TBV) This 1s a volume
guaranteed to contain a dynamic object from the moment of the TBV’s creation until

some Jater time This time 1s called ‘expiration date’ and the length of time from the

TBV’s creation until its expiration 1s called the ‘validity period” TBVs are based on
some known constraints of the object’s behaviour For example some objects may have
preset trajectonies, for these the TBV can be a swept surface, or if only maximum

velocities or maximum acceleration are known, spheres can be used

These TBV’s are inserted into data structures in lieu of dynamic objects that the
occlusion culling algorithm deems visible It 1s important to note that the TBVs are static
objects, and only need to be nserted nto the structure once A hidden object 1s 1gnored
until the TBV become visible or the TBV expires The latter means that the TBV 1s no
longer guaranteed to contain the object, hence the object itself may be visible too, and
should be re-inserted into the structure A prionty queue of TBV expirations similar to
event queues 1n a simulation notifies when the TBVs cease to be valid As long as the
expiration dates are chosen with sufficient care, most volumes remain invisible

throughout their validity period

TBYV Vahdity Periods

Once the culling algorithm had determined that a dynamic object 1s occluded, the correct
validity period for the TBV must be chosen If 1t 1s chosen too soon the dynamic object
will have to be considered again before long, thus decreasing the efficiency If the date 1s
too distant then the bounding volume 1s too big and may become visible after a short

time, also hindering performance

One approach to computing validity periods 1s starting with one frame and doubling this
time until the bounding volume 1s visible The iteration before the volume becomes

visible 1s used for the TBV The bounding volume 1s then associated with the object

Another method used 1s Adaptive validity periods If a TBV expires before 1t 1s visible,
then 1t means 1t was too short, because it would have been possible to postpone the
reference to the object by choosing a later expiry date In the opposite case, if the TBV 1s
visible before 1t expires, the period was too long Maybe a shorter period would have

produced a smaller TBV that might have remained occluded for a longer time If the

14

object 1s still hidden, a shorter validity period 1s chosen for the TBV The strategy makes
validity periods adapt to objects behaviour and visibility status Dynamic objects that are
fast moving or stay near visible regions have smaller TBV’s, objects in obscured regions

have longer periods, and are sampled less frequently as time passes
Updating K-d Tree

After the new position of the objects has been computed the k-d tree 1s updated to reflect
the new position of the boids There are several methods of performing this The whole
tree could be rebuilt from scratch which would take nlogn® [Sud96] operations where n 1s
the number of boids Another approach is to re-insert each boid at its new positions into
the tree from the root which would again takes nlogn2 time Neither of these approaches
takes advantage of frame-to-frame coherence The objects have a maximum acceleration
and velocity, therefore their new position will be close to their position 1n the last frame

The objects will usually be 1n the same node as 1t was 1n, or m a node very close to 1t A
bottom up search begins from the node that object was contained 1n, using the object at
1ts new position Recursion halts when the object 1s fully contained within the volume of
the node This node 1s called the Lowest Common Ancestor (LCA) Since 1t’s the lowest

node that contains both the object and the object at its new position

15

o

-
g
\
A

(a)

Insert from
node 3

(b)

9§
\\1 we)

5

Figure 2.2 Shows update of k-d tree by first finding LCA
of object at 1ts new position

Figure 2 2 shows a 2D representation of LCA update of the k-d tree Object A represents
the boid’s position 1n the previous frame, and object B represents the object’s new
position Figure 2 2(a) shows the bounding boxes of the nodes of a k-d tree Figure 2 2(b)
represents the hierarchical structure of the same k-d tree Each node (represented by its

bounding box) has either

16

1 left and right pointers (the solid line arrow) or

2 1t’s aleaf and 1t has no pointers

From the diagram, 1t can be seen that B 1s not within the same node as A The recursive
algorithm to find the node which fully contains B begins from the node 1 At each
recursive step, recursion halts if the B 1s fully contained within the node Otherwise, 1t
continues with the parent of the node From figure 2 2(b), object B 1s outside leaf node 1,
which contains B at 1ts previous position The algorithm goes onto to node 2, the object 1s
still not fully contained with the node It then proceeds to node 3, and object B 1s found to
be fully inside node 3 Therefore, node 3 1s the LCA, which contains both the objects at
position A, and positton B Object at position B 1s inserted into the tree from node 3 In
this example B 1s inserted into node 4 Below the algorithm 1s outlined 1n pseudo-code 1n

figure 2 3

KdtreeNode LCANode

FindLCA (KdtreeNode N, Object B)
If N fully contains B
LCANode = N
Return

Find.CA (N->Parent, B)
End

UpdateKdtree (KdtreeNode N)

for each object B in Node N
De-link B from list In Node N
FindLCA of B from N
Insert B into tree from Node LCA
End

Figure 2 3 The FindLCA() and UpdateKdtree() algorithm

226 Level of Detail Rendering

The techniques outlined 1n section 2 2 2 to 2 2 5 works well for scenes where most of the
scene 1s occluded from the viewer but are less effective for environments with a high
visibility complexity such as s landscape contaimng many thousand trees

There are two different approaches

1 Geometric Level of detail

2 Texture mapped impostors

Geometric Level of Detail

Geometnic level of detail (LOD) varies the number of polygons that 1s used to render an
object or part of an object so as to accelerate the rendering of the scene Funkhouser and
Sequin [Fun93] presents an adaptive display algorithm in which each model 1s described
by multiple levels of detail Lower LODs contain less polygons and are thus faster to
render The system decides which LOD to use for each object depending on how much 1t
benefits the overall image In 1t’s self this not enough to guarantee an interactive frame
rate (> 5 frames per second) For situations when all the potentially visible objects cannot
be rendered even at the lowest LOD only the most “valuable™ objects are rendered so as
frame time constraint 1s not violated Each LOD of each object has a Cost heuristic and
Benefit heuristic The Cost heuristic estimates the cost or rendering the object at that
level of detail The Benefit heuristic estimates the perceived benefit to the final image of
the object rendered at that level of detail The approach 1s adaptive 1n that 1t uses an
optimisation algonthm to determine which objects and at what level of detail they are

rendered at each frame so that the frame time 1s constant

A drawback of this method 1s that for a smooth transition between consecutive LOD’s of
an object the designer would have to create and store many LODs depending on the size
and complexity of the object In recent years mesh optimisation algorithm have been used

to render complex geometric mesh madels such as mountan terrain [Hop98]{Duc97] In

18

the simplest case a mesh consists of a set of vertices and a set of faces Each vertex
represents a point 1n space and each face defines a polygon by connecting together an
ordered subset of vertices Triangular meshes are one of the most common and have at

most three vertices per face

Each LOD for the mesh 1s computed automatically and the mesh optimisation algorithm
decides at what LOD each portion of the mesh 1s rendered Pivotal to a mesh optimisation
algorithms are smooth transitions between different parts of the mesh that are represented
by different LODs Hoppes [Hop98] presents a progressive mesh which stores a coarse
base mesh together with a sequence of detail records, which indicate how to refine the
mesh by adding one more vertex This structure is traversed at runtime and the system
decides whether to refine the mesh or not They use a technique called edge split to refine
the mesh This approach provides smooth transitions between different levels of details 1in

the mesh

Luebke and George [lue96] present an approach more suited to very complex CAD

models consisting of thousands of parts and hundreds of thousands of polygons They use

a structure called a Vertex Tree to represent the entire database Each node in the tree

contains one more vertices, the view dependent simplification works by traversing the

Vertex Tree and collapsing all the vertices in the node to a single vertex where

appropniate The criteria to choose when to collapse are

e screen space error 1f the difference between the single vertex and the contained
vertices 1s below a certain value then collapse to a single vertex

o silhouette 1f the node 1s part of a silhouette (the edge of an object as the viewer sees
1t) then 1t requires more detail

e polygon budget optimize the resulting image to present the best image within a given
frame time

These three criteria combine to provide the viewer with an acceptable 1image of complex

CAD models within a certain time lmit There are many geometric level of detail

algorithms but the methods outlined above give a good representation of the concepts

involved

19

Texture Mapped Impostors

The techmque presented 1n [A1r91] takes a different approach to the rendering problem
The 1dea behind the algorithm 1s to trade image quality for interactivity in situations

where the environment 1s too complex to be rendered 1n full detail

Maciel and Shirley [Mac95] developed a system, which uses texture-mapped primitives
to represent clusters of objects to maintain high and approximately constant high frame
rates Schaufler and Sturzlinger [Sch96] and also Shade [Sha96] present techmiques to
automatically and dynamically create view-dependent image-based LOD models thus
greatly reducing the memory requirements Maciel [Mac95] presents a new method that
utilises path coherence to accelerate the walk-through of geometrically complex static
scenes (their research focuses on outdoor scenes) There 1s a similar technique [Sch96],
which dynamically creates impostors, by texture mapping the contents of a BSP tree node
onto a plane perpendicular to the current view plane A draw back of the above
approaches 1s that the geometry surrounding the texture does not match the geometry
sampled 1n the texture causing a cracks to appear The second problem occurs when
switching between geometry and texture Ahaga’s [Al196] approach to the first problem
1s the warp the geometry close to the texture to match the texture to avoid this
discontinuity Their system handles the switch back to geometry to texture by morphing
the geometry from their projected position on the texture to their original position 1n the

scene

Aubel, [Aub98]j] presents and image based rendering technique to represent virtual
humans 1n real-time Their technique 1s called animated impostor because 1t takes into
account changes 1n the character’s appearance Their techmque takes advantage of the
considerable coherence between two successive frames when rendering human motion
The techmque 1s similar to [Reg94] 1n that parts of the frame buffer content are reused
over several frames thus avoiding rendering the whole scene each frame Aubel shows

how to generate a single quadnlateral textured impostor for a virtual human by facing the

20

quadnlateral at the viewer and updating the texture regularly Their more recent paper
mtroduces a multi-plane impostor since a single plane impostor may produce incorrect
visibility information In the multi-plane approach the virtual human 1s divided into parts
that no overlapping can occur € g head, lower leg, torso Each body part has 1its single-
plane impostor so that 1t faces the viewer Each virtual human has joint positions and
these are used to compute when to invalidate the texture of a body part If the distances
between certain joints are greater than a predefine threshold then the texture 1s to be
regenerated The system tests four such distances The texture can also be invalhidated 1f
the difference between the current viewing angle of the human and the viewing angle
when the texture was last created 1s greater than a predefined threshold The cache
invalidation algorithm combines these two values to produce a vamation ratio The
distance to the viewer 1s also accounted for so that more distance characters have a lower
contribution The third consideration 1s rendering cost All the humans are inserted in a
“to be updated” list 1n order ascending order of the weighting, combining the four factors
above Once the list 1s sorted the first K actors are refreshed, so as to not exceed a
polygon-rendering threshold A test crowd of 120 virtual humans performing a “mexican
wave” type motion The frame rate using geometric models 1s 3 frames per sec They
achieve a steady rate of 24 frames a second (24 Hz) using the amimated impostor
techmque When the posture vanation threshold 1s relaxed to 30 percent the frame rate
increased to a steady rate of 36 Hz with a very little loss 1n visual quality The extensions
they outline for Collaborative Virtual Environment where virtual humans are visually
more complex 1s to maintain a list of important humans for each participant and un-

important humans are discarded from the computation

Their technique works well for humans no attempt has been made to gather groups of
humans together and produce an impostor for the group as a whole Their work makes no
attempt to accelerate the behaviour computation for the virtual humans, 1t 1s solely related

to the rendering of the virtual humans

21

227 Discussion

The efficiency of the scene rendering techmques relies largely on the type of scene that 1s
been rendered There are basically two different kinds of static scenes, firstly where a
large portion of the model inside the viewer field of view 1s hidden and secondly where
most of the model nside the viewer’s field of view 1s visible Object space culling
[Co097] can process densely occluded complex scenes extremely efficiently,

considerably faster than the hierarchical z-buffer {Gre93]

A major drawback of the techmique 1s that all the visible objects have to be rendered
individually for each frame, which for complex scenes may overload even the most
expensive graphics workstations In order to rapidly render complex scenes where a large
number of polygons are visible rendering algorithms must intelligently limit the number
of geometric primitives rendered 1n each frame [Hop98, Lue96, Fun93] It would be
desirable to reuse image data generated from the previous frames 1if the changes to these
frames may be neglected in the current frame This can be achieved by replacing
expensive 3D-1mage synthesis with fast image processing where possible This approach
1s exemplified 1n [Sch96, Mac95, Al196] where impostors are dynamically created for

large portions of the model

The goal of our research 1s to develop a system, which allows mteractive rendering of
large flocks of virtual creatures In chapter 4 we outline our approach to achieving

substantial speed-ups 1n this area

22

The rest of the chapter nvestigates the background of the algorithm widely used in
computer animation to simulate the flocking, schooling or herding behaviour of creatures
in the natural world During the early years of computer animation, animation was
performed 1n a similar way to tradrtional pen and paper approaches The amimator drew
every frame individually on the computer rather than on a page Using this approach
many visual effects such as explosions, fire and clouds were difficult 1f not impossible to
model effectively Reeves [Ree83] introduced an approach called particle systems, which
allows for these effects to be modelled easily This was further developed to behavioural
animation which 1s used to model many natural phenomena including flocking For
example 1n the wildebeest herding stampede in the amimated feature film “The Lion
King” [L1094] also the bat scene in “Batman Returns” [Bat92] We outline Reynolds
[Rey87] approach to modelling flocking behaviour Finally we outhine some current
approaches to increasing the efficiency of the computation of specific behavioural

animation systems

23 Particle Systems

There are many phenomena that are very difficult to model effectively using traditional
anmmation techniques especially in a 3D environment where the scene 1s viewed from a
number of angles Fire, clouds, smoke are very difficult to model in 3D Reeves [Ree83]
presents a novel approach to modelling such objects which he calls fuzzy objects He
presents techniques for modelling them called Particle Systems A particle system 1s a
collection of many minute particles that together represent a fuzzy object He outlines the

number of steps involved 1n an animation sequence as follows

e new particles are generated into the system
e cach new particle 1s assigned its imitial attributes
e any particles that have passed their prescribed lifetime are deleted

e The remaining particles are moved and transformed according to their dynamic

attnbutes

23

¢ Animage of the hiving particles 1s rendered in the frame buffer

To control the shape, appearance and dynamics of the particles the model designer has
access to a set of parameters Stochastic processes that randomly select each particle’s
appearance and movement are constrained by these parameters In general each
parameter specifies a mean and a range in which particle’s value must lie The mean

number of particles generated at a frame 1s chosen by the designer

Nparts = MeanParts + Rand() + VarParts (21)

In equation 2 1 MeanParts 1s the mean selected by the designer and Rand() 1s a random
value between +1 and —1 VarParts 1s the vanance To allow a system to shrink and grow
during 1ts life, the designer 1s able to vary the mean number of particles generated per

frame as follows

MeanParts = IntialMeanParts + deltaMeanparts * (f— fy) (22)

where f1s the current frame and fys the first frame during which the particle system 1s
created InfialMeanParts 1s the mean number of particles at this first frame, and
deltaMeanparts 1ts rate of change To control the particle generation of a particle system

the designer specifies fy and parameters IntialMeanParts, DeltaMeanParts and VarParts

Particle Attributes

As each new particle 1s created the system must determine values for the following

attributes

e Imtial position

o Imitial velocity

24

e Initial size

o Imtial colour

e Imtial transparency
e Shape

o Lifetime

The mmtial position of the particles 1s defined by the ongin (centre) and orientation of the
particle system A particle system also has a generation shape, which defines a region
about 1ts ongin into which newly born particles are randomly placed The author
implements a sphere, circle m a plane and a rectangle 1n a plane The generation shape

also descnbes the imtial direction in which new particles move For instance in a

Upward direction f

l

Ejection angle Particle

Figure 2 4 Illustrates the ejection angle of a particle

rectangular generation shape, particles move in upward from the x-y plane of the
rectangle, but are allowed to vary from the vertical according to an ejection angle This
enables the modelling of different types of explosions by allowing the ejection angle to
vary [figure 2 4] The mmtial speed 1s determined by the parameters MeanSpeed and
VarSpeed (the mean speed and the variance), both of which are set by the des:gner
Particle colour, transparency and size are set in the same manner, by setting a mean value
and a maximum variance Each particle also has a shape, which can be spherical,

rectangular and streaked sphencal (used in motion blurring techmques)

25

Particle Dynamics

At each frame every particle 1s moved by simply adding 1ts velocity vector to its position
vector An acceleration vector can be used to add more complexity to the particle system
The acceleration vector 1s used to modify the velocity vector The designer can simulate
gravity and cause particles to move 1n a curved path The colour and transparency are

changed over time 1n a stmilar manner

Particle Extinction

When created, each particle 1s given a lifetime measured in frames and 1s decremented
each frame A particle 1s killed when its lifetime reaches zero Other mechanisms may
kill off a particle, for instance 1f the particle 1s too fant to be seen on the screen, or 1t 1s

too distant from the origin of 1ts parent particle system

Particle Rendering

Once the attnbutes of each particle have been computed, the particle system can be
rendered Rendenng hundreds of moving objects on the screen can be a time consuming
computation, since each particle may occlude another or cast shadows on others The
author makes two assumptions about the particles that significantly reduces the cost of
rendering First the particle system does not intersect with other geometric models 1n the
scene, hence the rendering system need only handle particles Each particle 1s displayed
as a point hight source, thus each particle adds a little light to the pixel that 1s covers A
particle that 1s behind another 1s not obscured from another but rather adds to more light
to the pixels covered With this algorithm and assumptions no sorting of particles 1s

required 1n the rendering process

26

Particle Hierarchy

The model designer can also design a particle system where the particle themselves are
particle system When the parent particle system 1s transformed, so are the child systems

Thus can be used to create effects like multiple explosions

Conclusion

Particle systems presented in [Ree83] have been shown to be very good at creating
models that would be very difficult or impossible to design adequately by traditional
methods Particle Systems and systems based on particle systems have been used in many
motion pictures, to model such effects as clouds, water, waves, dust, and recently
flocking creatures The latter [Rey87] uses a more advanced form of particle system His
approach 1s to model each flock member as a particle, each having a number of more
complex behaviours Reynolds’ work has some overlap with behavioural ammation that
followed on from the original particles system In the next section WE outline some of

the more current approaches to behavioural anmimation

Behavioural Animation

There are a few different aspects of behavioural ammations 1t 1s used to model different

types of 3D models and animations

1 Artificial Evolution for Graphics and Ammation [Sims94] Artificial evolution
allows virtual entities to be created without requiring detailled design and assembly
Complex genetic codes are evolved that describe the computational procedures for
automatically growing entittes useful in graphics and amimation Graphics designer
simply specifies which results are more and less desirable as the entities evolve This 1s a
form of digital Darwimism Several types of graphical entities, includmg virtual plants,
textures, animations, 3D sculptures, and virtual creatures have been created using

artificial evolution He has created some incredibly compelling ammation from this work

27

2, Behavioural Animation and Evolution of Behaviour [Rey87]: Complex animations
can emerge with minimal effort on the part of the animator from behavioural rules
governing the interaction of many autonomous agents within their virtual world, The
flocking of “boids” convincingly bridged the gap between artificial life and computer
animation. This behavioural animation technique has been used to create special effects
for feature films, such as the animation of flocks of bats in Batman Returns and herds of
wildebeests in The Lion King,

3. Artificial Animals [Ter94]: Highly realistic models of animals for use in animation
and virtual reality have been built using this approach. It is a modelling approach in
which the physics ofthe animal in the environment is simulated in its world, the animal’s
use of physics for locomotion, and its ability to link perception to action through adaptive
behaviour. One such example of this is that of an autonomous virtual fish model. The
artificial fish has (1) a 3D body with internal muscles and functional fins which moves in
accordance with bio-mechanic and hydrodynamic principles, (I1) sensors, including eyes
that can image the virtual environment, and (I11) & brain with motor, perception,
behaviour, and learning centres,

4, Artificial Humans in Virtual Worlds [Tha2001]): There are even techniques for
modelling and animating the most complex living systems-human beings. In particular,
the increasingly important role of perception in human modelling. Virtual humans are
made aware of their virtual world by equipping them with visual, tactile, and auditory
sensors. These sensors provide information to support human behaviour such as visually
directed locomotion, manipulation of objects, and response to sounds. A number of
avenues of research are sensor-hased navigation, game playing, walking on challenging
terrain, grasping, etc. Communication between virtual humans, behaviour of crowds of
virtual humans, and communication between real and virtual humans are all important
aspects of simulating human behaviour,

b Interactive Synthetic Characters [BIu95]: An Interactive Synthetic character system
enables full-body interaction between human participants and qraphical worlds inhabited

28

by artificial life forms that people find engaging Entertaining agents can be modelled as
autonomous, behaving entities These agents have their own goals and can sense and
interpret the actions of participants and respond to them in real time The ALIVE
(Artificial Life Interactive Video Environment) system, employs immersive, non-

intrusive interaction techniques requiring no goggles, data-gloves/suits, or tethers

This thesis 1s primarily concerned with the flocking algorithm [Rey87]

24 Flocking Algorithm

Natural flocks of birds, schools of fish, or herds of amumals are an intriguing natural
phenomena Huge groups of creatures seem to take on a life all by themselves Each
creature has a imited view of the other members of the flock and uses this information to
determine the correct flight path to stay in the flocking formation The flocking algorithm
presented by Reynolds has been shown to accurately mimic the flocking nature 1n a
computer model He simulates the flocking behaviour, the flight model and perception
mode] for each simulated creature Reynolds presents a distnbuted behavioural model for
simulating a flock of birds, or herd of ammals or school of fish We will use the term
flock to mean any of the above In his paper he calls each flock member a boid, and we

will use this terminology Each boid has a number of attributes

1 Velocity,

2 Acceleration

3 Position

4 Onentation

5 Geometry (including shape and colour)

6 Visibility Range (the perception volume for the boid)

There are a number of steps 1n the animation sequence The basic outline 1s as follows

e Each new boid 1s generated iitialising 1ts attributes

¢ The behaviour for each boid 1s computed

20

¢ Each boid 1s moved and transformed according to the behaviour computed

e The boids are rendered in the scene

241 Inmtiahsation

The designer selects the number of boids m the environment at start up Each boid’s
mitial position can be assigned by the designer or can be randomly chosen Each boid’s
velocity, acceleration, orientation and position are restricted by the movement
characteristics of the creature being simulated Each boid can be set randomly within the
limits of the movement model or assigned directly by the designer The mmtial position
and orientation are similarly limited by the creature’s characteristics For mnstance 1f an
anmimal like a wildebeest 1s being simulated, then each creature would be constrained to

ground level, and be oriented 1n an upward direction

2 4 2 Geometric Model

Typically the designer creates a geometric model for the creature The geometric model 1s
a mesh of polygons representing what the creature looks like on the screen Then an

animation cycle 1s designed for the creature, for instance a run cycle for a land animal

2 4 3 Fhight Model

The flocking algorithm we are most interested n 1s flocking birds The mechanics and
physics of bird flight 1s quite complex [Dav94] For the purposes of this flocking model a
very simple flight model 1s used The flight model is based on the character moving 1n the
direction 1t 1s pomnting, utilising a number of steering rotations (pitch and yaw), which

realign the global origin A maximum speed and maximum acceleration 1s defined for the
boid model

To model gravity the boid would be accelerated due to gravity every frame This would
have the effect of the boid falling towards the ground unless another force was applied to
keep 1t 1n the air Modelling aerodynamic lift which 1s aligned to the boid ‘up’ direction,

produces an effect like the boid moving quicker flying down and slowing down when

30

flymg up, and normal level flight Steering 1s performed by applying thrust in the

approprate direction

2.44 Perceptions

Modeling vision 1s a difficult and complicated task and much research 1s being conducted
in this area The perception model used makes available to the boids the same
information that would be available to a real creature 1 € nearby neighbours position and

velocity and any visible obstacles

Reynolds decided upon boids only being given information about nearby flock-mates
Simulated boids could have direct access to all information about each of the other boids
mn the flock Real flock members have limited vision and nearby flock members obscure
the further away members They have inaccurate information about the surrounding
flock In fish schools, the fish have even less vision, because of the decreased visibility in
water Also in herding ammals their view 1s very much restricted to a few surrounding
animals These factors combine to only allow boids information about close-by flock

members

If all boids had information about all the other boids then the urge of the boids to stay
close to 1its surrounding neighbours makes the boids want to move towards the central
point 1n the flock When the boids are imtially created, widely separated boids within the
world will converge to a single point at the centre of all the boids 1n the space This 1s
very un-flock-like behaviour Reynolds found that flocking behaviour depends on each
flock member having a localised view of the flock A nearby flock-mate 1s simply a boid
within a sphencal region about another boad The boids are more sensitive to closer

neighbours This sensitivity 1s proportional to the distance between the boids

31

We start with a model that supports geometric flight or geometric swimming or in the
case of animals geometric runming The three behaviours mvolved 1 flocking, schooling

or herding are as follows

1 Match Velocity Attempt to match the velocity of nearby flock-mates
2 Flock Centring Attempt to stay close to the nearby flock-mates

3 Avoidance Avoid colliding nearby flock-mates

245 Match Velocity

Figure 2 5 Tllustrates Match Velocity behaviour

The Match Velocity behaviour enables the flock members to go in the same direction and
at the same speed as their nearby flock-mates This behaviour on its own causes nearby
flock-mates to travel in the same direction and speed Closer neighbours cause the boid to
steer more to match their velocity The relationship 1s proportional to the square of the

distance between them Figure 2 5 1llustrates the match velocity behaviour

32

2 4 6 Flock Centring

Fig 2 6 Illustrates the Flocking Centring urge of the flock
member

The Flock Centring behaviour makes a boid want to be near the centre of the flock as
lustrated 1n figure 2 6 Each boid’s notion of the centre of the flock 1s a localised centre
It 1s actually the centre of the nearby flock-mates The flock-centring urge depends on
where the boid 1s 1n relation to the rest of the flock At the centre of the flock, its’
neighbours being approximately evenly distnbuted about the boid, the flock centring urge
1s low At the outside of the flock the boid’s local flock-mates are more distributed
towards the 1nside of the flock and the flock centring behaviour causes the boid to steer
towards this centre The farther away the boid 1s from the flock centre the more it 1s

attracted to 1t The force of this attraction 1s proportional to the square of the distance

33

2.47 Avoidance

Figure 2 7 Illustrates Collision Avoidance behaviours

To make the boids stay a certain distance from each other Avoidance 1s employed as 1s
lustrated 1n figure 27 When a boid 1s within a certain distance from one of its
neighbours 1t 1s repelled from 1t so as not to collide with 1t As the boid moves closer to
the neighbouring boid, the force of repulsion increases proportionally to the square of the

distance between the boid and 1ts neighbour

2.48 Combining the Behaviours

These three behaviours allow the boids to exhibit flock like motion A simple average of
the three behaviours 1s used by [Rey87] He finds that a simple combination of weighted
behavioural acceleration works well to mimic the aggregate motion of creatures
exhibiting flocking behaviour Tu and Terzopoulos [Tu96] present a more complex
technique for combiming behaviours 1n their “Artificial Fish” environment The virtual
fishes are also concerned with such behaviours as eating, mating, predator avoidance and
also schooling Each fish has three mental state variables, hunger, libido and fear, the

range of each being, between 00 and 1 0 These mental states are computed using a

34

number of vanables In the case of Hunger 1t would depend on the amount of food
consumed, digestion rate, and time since last meal The higher values correspond to
stronger urges to eat, mate, or avoid danger Having computed the mental state variables
the intention generator 1s used to determine the new velocity of the fish For instance first
check 1f there 1s immediate danger 1e from a predator, 1f no danger then depending on

the mental state of the fish 1t may eat, mate or school

249 Impromptu Flocking

With the above behaviours, the direction of a flock 1s very difficult to determine from a
given imitial position and velocities of the individual boids Boids that are near each other
form into flocks After a brief time the group will settle down and each member will go 1n

approximately the same direction and at the same speed

If the flock members are too close together there will be a brief expansion period where
the desire of the boids not to collide with 1s neighbors will cause them to move further
apart from each other until the flock becomes stable That 1s moving in the same direction
and speed and a approximately a constant distance between flock members Also when

flocks meet each other they tend to join together into larger flocks

2410 Scripted Flocking

It 1s sometimes necessary 1n animation, interactive or pre-rendered, to be able to control
the direction of the flock This 1s the case 1n a computer game, where the flock may go
from one point to another at a predefined moment in time The flocking behaviours alone
will not allow for directed control over the flock Another behaviour such as a ‘seek
Goal’ 15 required which tells the boids to go towards a global target [figure 2 8] The
global target could be moved to guide the flock around a 3D world

35

Goal

ﬁ Acceleration
f Velocity

Fig 2.8 1llustrates the seek-goal steering behaviour

2.4 11 Avoiding Obstacles

In nature, flocks will sometimes split while going around an obstacle and join together at
the other side of the obstacle The simulated flock must also act in the same way If an
obstacle 1s small enough, when the boids reach the other side they are still nearby enough

to be within visible range of each other and will group together into a flock

There are a number of methods for collision avoidance with obstacles n virtual
environments As objects move around the scene, techmques are needed to steer to avoid
collisions with other objects To be more realistic this steering acceleration 1s bounded,

and collisions may be possible as in the real world

Complex Planning These methods can be very complex and may involve the object
going in the opposite direction to its goal to navigate a series of obstacles, mainly to
avord going down dead-ends etc There are complicated avoidance techmiques using Al

concepts such as memory, learmng and planning [Cha87] Others apply incremental

36

heuristics frame by frame with no memory, no planning and no learming The following

are less sophisticated schemes [Rey87]

Complicated motion planning requires a global knowledge of the world This can be
achieved by an entity navigating around an environment and learning information about 1t
and storing 1t so 1t can be used to navigate more efficiently The planning described here
1s planning done “on the fly” with no global knowledge, no learming or storing of

information

Avoidance techniques are based on the geometric models of the obstacles For an object
to avoid collision with another 1t must determine the obstacles in 1ts path and compute a

direction to steer

Steer Away from Surface

The steer away from surface or force field approach supposes that a force field 1s
emanating from the surface of the obstacle The moving object 1s accelerated away from
the surface of the obstacle by a force whose magnitude 1s inversely proportional to the
distance to the object Using this approach the steering acceleration can be easily
calculated The motion produced by the techmque does not correspond very well to our
intuitive notion of steering control If the object 1s moving directly towards a wall, the
force would be directly m the opposite direction so would have only a slowing down

effect on the moving object This approach works well when an object approximates a

sphere

37

Force R Surface S

A

Figure 2 9 Boids are steered away from Surface by the Force vector
Boid A 1s steered away and avoid possible collision Boids B was not on
an ntercept course, yet still 1s steered away from surface

The steer away from surface obstacle avoidance techmque doesn’t take into account the
direction the character 1s moving 1n as in Figure 2 9 The global direction of the steering
force 1s the same 1n a given position regardless of the direction the object 1s travelling 1n
This has the effect of steering a character away from the obstacle even though 1t may be
travelling along the side of the obstacle A moving object need only react to obstacles in

1ts path

Steer away from Centre

With the steer away from centre approach the obstacle is considered as a point and the
object steers 1n the direction opposite to the centre of the obstacle (see figure 2 10) If the
centre of the obstacle 1s to the nght then 1t steers to the left, 1f the centre 1s above the path
of the moving object then the object dives down The technique works well with
obstacles that closely resemble spheres Simular to the steer away from surface method,
there 1s a dead spot 1n the middle of the obstacle, 1n this stance the object merely slows

down

In the above techniques small adjustments 1n velocity far away from the obstacle can

make robust colliston avoidance for simple environments The steering behaviour’s

38

strength could be made a function of distance similarly to the steer away from surface. A
minimum distance to which an obstacle has an effect on a moving object could also be
used. As the object goes close to the obstacle the steering force increases so as to avoid
collision,

Figure 2.10 Steer away from Center. The vector from the center of the obstacle
to the boid is used to steer the boid away from the obstacle. Boid A is steered
towards the left and Boid B towards the right of the object.

Steer Along Surface

The steer along surface approach is familiar to anybody who has walked down a dark
corridor using their hands to quide them by feeling for the wall. Only when you touch the
wall with your hands do you change direction. In this instance, your arms are used as
probes to test for nearby obstacles. A computational simulation of such a probe can be
used to implement a simple and robust collision avoidance technique, As mentioned
earlier a moving object is most concerned with obstacles directly in front of it and in it
path. Consider a simulated probe or feeler that extends directly forward feeling for 4
moving object. When the probe touches it will be deflected laterally. 1fthe moving object
then steers in the direction of the deflection the probe will swing away from an obstacle
(see figure 2.11). This feedback will tend to keep the moving object from aiming at
nearby objects; hence it will steer away from collisions. This technique has a certain

39

amount of predictiveness. What the probe does is give an indication of where the object
Will be after a certain amount of time if it continues on the same path. The length of the
probe can be increased as the velocity is increased, The length of the probe determines
how much time prior to a potential collision is allocated to steering away from obstacles,

4’5 probe in ersects the surface and itis

corN (Wh |c s anormal of the

ows the BOI B as itmoves along,
the surface itis deflected |

Steer Towards Silhouette Edge,

This approach by Canny [Can87) steers the object towards its nearest silhouette edge.
With regard to collision avoidance the most important feature of an obstacle is its
silhouette from the pointofthe view of amoving object (see figure 2.12). A closed curve
representing the silhouette can be directly computed from the obstacle’s geometric shape,
S0 a5 10 enable the moving object to miss the obstacle the curve must be enlarged by a
size related to the object and the amount of clearance wanted between the obstacle and
the moving object. The silhouette is computed by projecting the obstacle onto the local
XYZ plane of the moving object. If the enlarged silhouette contains the origin then the
obstacle is dead ahead on its current course. The moving object must steer to avoid it, the
most efficient direction to turn toward is that portion of the silhouette curve that is closest
to the origin. There may be better points on the silhouette to steer towards, for instance

40

maybe a point closer to the projection of the goal would be more efficient for the hoid to
steer around the obstacle.

Figure 2.12 The abject steers towards the closest point on the
silhouette that it can steer bg the obstacle. Point 11s the
nearestpom ton the silhoueté, Point 2 15 a similar point on
the enlarged silhouette, The boid steers towards point 2,

L-Buffer based Techniques

Obstacle avoidance based on a Z-buffer image can be used [Kuf99). The algorithm
attempts to find the pixel representing the longest clear path through the obstacles. To
increase the efficiency it may work with very low-resolution images, which work well
with simple environments, but not well for crowded worlds as by the time the image is
filtered down to the lower resolution image, it is too fuzzy to resolve small clear spaces

Using & -huffer to steer towards the largest clear path is a very robust technique even in
avery complex environment. It requires a constant time to make decisions about steering
regardless of the complexity of the world, Although it may still lead an object into dead,
ends more sophisticated learning and planning is needed to navigate through some
complex environments,

41

2412 Algonthmic Considerations.

In the flocking system described in section 3 4 the algorithm checks each boid against
every other boid 1n the world to either include it as a nearby neighbour or disregard 1t
Therefore the complexity of the algorithm 1s O(n?) where n 1s the number of boids in the
world It 1s this complexity that we have improved in our research The first potential
improvement 1s to cull most of the boids from the computation This 1s accomplished by
imposing a hierarchical structure on the boids which when traversed to find nearby flock-

mates will cull a large number of the boids

The next section some of the techmiques currently used to increase the efficiency of

behavioural animation are outlined

2 5§ Levels Of Details for Behaviours

Ideally virtual worlds should contain a rich environment, with objects that move 1n a way
appropriate to the environment Such as cars driving on the roads, people walking about,
birds flying It 1s computationally expensive to update possibly thousands of moving
objects 1n a world each frame The problem of reducing computing time to update these
objects 1s similar to the problem of rendering three-dimensional scenes There are three
steps firstly determine 1f an object or group of objects 1s visible, secondly determine how
important 1t 1s to the viewer, then lastly render 1t using an appropriate appearance

Determining visibility 1s performed usually by first preprocessing a scene into a
hierarchical cellular structure and by traversing this structure large invisible portions of
the world can be culled These visible objects are then assigned an importance, usually
depending on the size of object to the viewer, more important objects are modeled mn
finer detail [Fun94]

In a virtual world with many moving objects, each object may follow a number of rules
or be driven by a script The scripts or rules are the behaviours of the objects The
behaviour 1s simply a functional unit that 1s given some nput and produces output The

behaviour will adjust the state of the object in some way, such as applying some

42

transformation The aim would be to reduce or eliminate altogether these computations

for invisible objects

Such algorithms are the behavioural equivalent of visibility culling and level of detail for

geometry Chenney [Che97] 1dentifies three difficulties involved, which are as follows

1 Consistency The state of a system when 1t re-enters the view 1s consistent with its

last known state

2 Completeness Everything that would happen within view when not culling, still

happens with culling enabled

3 Modeling Causality means maintaining causal relationships and constraints

between event and objects

The authors only discuss the consistency problem The consistency 1s trivially solved if
the state of the system can be expressed as a simple function of time Generating a new,
consistent state 1n such a case only requires evaluating the function at any given time
However many interesting systems cannot be described as such functions and may
require significant computational effort to generate a new state The simplest way to
generate a new state when an object re-enters the view 1s to fully simulate the system to
determine what happened when the system was out of view The problem 1s that the
longer the system 1s invisible the longer this computation will take This slows down the
frame rate and introduces lag The system presented 1s a walkthrough of a fairground
containing bumper cars and whirly-gigs If either 1s out of view for even a short period of
time the viewer finds 1t difficult to infer their correct state when they re-enter the view If
this short time period has elapsed and the ride has re-entered the view the system uses
statistical probabilities to estimate 1ts current state This computation 1s far faster than the

full stmulation mentioned above

43

The system shows that dynamics can be culled when the objects are not in view and

speedups can be achieved for certain dynamical systems

Carlson and Hodgins [Car97] presents a method of reducing the computational cost of
simulating groups of creature by using less accurate simulations for individuals when
they are less important to the viewer or to the action of the virtual world This 1s more
related to the algorithm we presented in chapter 4, than the previous approach The
authors present a system to decrease the cost of computing the motion of a herd of one-
legged creatures The system uses dynamic simulation for generating motion It provides
a realistic and natural looking motion, and responds nteractively to changes in the
environment and to the actions of the viewer The compound cost of computing the
motion for many nteracting creatures 1s expensive and may not be performed in real-
time The approach the author takes to decrease the computational cost 1s to select the
level of detail or accuracy of each simulation depending on certain criteria Such factors
as the dynamic state of the system, 1ts proximity to the important action in the scene, and
1ts position relative to the viewer’s field of view In the paper they use multiple levels of
simulation of the creatures The tested their system in a world containing a number of

one-legged creatures attempting to escape a giant puck

The levels of detail they use 1n the simulations are pomt masses, hybrid
kinematics/dynamic and full nngid body dynamic simulations Rules are needed for
selecting a level of detail for each creature at each mstant in time If the primary goal 1s
visual realism them the system should switch to simpler simulations when the creature
are out of view or too far away to be seen clearly If the dynamic behaviours of the
creature are important, then the system should select the most physically accurate

simulation for creatures where dynamic events such as collisions are immunent

They test the system using a herding algorithm, [Car97] 1n one instance each member
computed 1ts motion via dynamic simulation and the other uses a particle point mass
system The herding algonithm computes the velocity for each creature In the particles

point mass system this velocity 1s used as the new velocity for the creature In the

44

dynamical system the control system for each legged robot then uses the desired velocity
supplied by the herding algorithm to determine how the leg should be positioned during
motion to achieve the desired change in forward velocity Depending on how many
creatures need to be simulated using full dynamics the system shows speedups of as

much as four times that of using only full dynamuics for the creatures

2 6 Accelerating The Flocking Algorithm

Reynolds [Rey2000] presents an approach to accelerating the neighbour query in the
flocking algonthm He describes a demonstration program called “ Pigeons in the Park”
in which the user interacts with a large group of characters The flock of pigeon like

characters follow a number of behaviours

o Flocking behaviour as presented in (rey87)
e Obstacle Avoidance behaviour
e React to the user
e Discrete Reaction A hand clap type reaction can cause the birds to switch
states between walking and flying
e Continuos Reaction The birds flee from the Remote Controlled car When

the birds sense the car 1s getting close they move in a direction that will take

them away from the car

In his demonstration there are 280 birds in the park and the desired frame rate 1s 60
frames per second The rendering of the scene 1s only 15-20% of the over all cost He

splits up the analysis into two different parts Thinking and Locality Queries

Thinking 1s the time taken for each character to steer in the desired direction This
computation 1s performed for each bird therefore has a complexaty of O (n) He cuts this
computation cost by only updating the steering acceleration every 6 frames of amimation
The cost of this 1s amortised over consecutive by selecting at random one sixth of the
flock This means that the character will apply the same steering for 6 frames The

characters’ thinking about obstacles 1s performed ever second frame

45

2.6.1 Locality Queries

He identifies the locality as potentially the most troublesome source of com putation
effort, The birds must decide with which other birds to interact with, thus must test every
other bird to decide if it is to interact with it

A method to accelerate the locality queries is to store the characters in a L0x10x10 bin-

lattice spatial subdivision. A box shaped region of space is divided into a collection of
smaller axially aligned boxes called “bins”. At the beginning of the application the

characters are distributed into bins based on their initial position. Each time they move
they check to see if they have crossed into & new bin, and if so update their bin

membership,

The locality query is performed by specifying a sphere and a function, The locality query
code identifies all of the bins, which at least partially overlap with the sphere; it examines
objects in each of the bins and test to see if they fall within the query sphere, 150 the
characters within the sphere are supplied to the bird, Updating the bins can be done in
constant time using doubly linked list. Because the number of characters within a given
radius in bounded the maximum number ofboids in each bin is bounded.

He mentions in one test using a flying flock of 1000 simulated birds performing locality
queries with the bin lattice spatial subdivision was about 16 times faster than the naive 0
(n 2) Implementation. The drawback of using the bin-lattice structure is that it is very
memory intensive and is therefore not very scalable. Our approach uses a k- tree
accelerate locality queries which have been shown to be very effective in culling large
portions of very large environments from the rendering com putation,

2.7 Review

In this chapter we outline the techniques used to accelerate the rendering of complex 3D
environments, There are two stages, firstly a hierarchical structure is used to cull a large

46

portion of the scene from the rendering computation and secondly quickly render the
visible portions of the scene efficiently We also outline the background of behavioural
anmmmation and 1ts roots in particle systems Some techmiques to accelerate behaviour
computations are introduced There are two parts first to consider with regard to the
flocking algonthm Firstly the neighbour-query computation, which can be accelerated
using a hierarchical structure similar to those outlined 1n section 2 24 Secondly using an
impostor-like technique, which will be outlined in the next chapter, can accelerate the

behaviour computation itself

47

Chapter 3

K-d Tree Neighbour Finding for Flocking
Behaviours

48

3.1 The Flocking Algorithm

In this chapter we introduce our approach to accelerating the flocking algorithm Firstly
the flocking algorithm 1s described 1n more detail Our approach to the neighbour finding
portion of the algorithm 1s introduced This involves the creation, and the efficient update
of a hierarchical structure called a k-d tree described 1n section 2 2 4, which allows for

the culling of large numbers of boids from the computation

311 Representation

The boids 1n the simulation adhere to a straightforward flight model The boids are
oriented 1n the direction of their velocity Each boid has a bounded acceleration and
velocity For each update of the scene these behaviours are computed for each of the

boids 1n the scene Each boid has a number of attributes associated with 1t

1 Geometric Model This is the geometric representation of the boid A triangular
mesh usually represents 1t

2 Velocity The bounded velocity of the boid It is represented by a 3D vector

3 Acceleration The bounded acceleration of the boid 1s represented by a 3D vector

4 Position The position of the centre in 3D space

The three behaviours are each computed in turn Only neighbours within visible range of

the boid are included 1n the behaviour computation This controlling algorithm 1s shown

in figure 3 1

49

ComputeBehaviour

{

for each Boid B in Scene

{
FindNearNeighbours(B)

Separation(B)
MatchVelocity(B)
FlockCentring(B)
SteerAwayFromSurface(B)
SeekGoal(B)
CombineBehaviours(B)

Figure 3 1 ComputeBehaviour() Algorithm

312 Separation

If two boids get too close together a force 1s applied 1n the opposite direction to steer the
boids away from each other The strength of the force 1s proportional to the square of the

distance between them The pseudo-code 1s shown in figure 3 2

Separation(Boid B)

{
For each neighbouring boid N of boid B
{
d = Distance(N,B)
If d < Range
{
Steering equals vector between N and B
Set Length of steering vector to 1 0-(d? / range?)
TotalSteenng = TotalSteering + Steering
}
}
SeparationSteering = TotalSteering / number of Neighbours
}

Figure 3.2 Separation Algorithm

50

The average steering 1s used as the separation acceleration vector As the boids get closer
together 1t increases in magnitude at a rate proportional to the square of the distance

between the boids

313 Match Veloaty

This behaviour allows the boids to align with close by neighbours In the absence of
alignment the boids tend to act more like a swarm of insects rather than a flock or herd
Velocity matching 1s computed by finding the average velocity of the nearby neighbours
The weighting associated with each neighbour’s velocity 1s proportional to the square of
the distance between the boid and the neighbour Nearer neighbours have a greater effect

than more distant one The pseudo code 1s shown in figure 3 3

Match Velocity(Boid B)

{
For each Neighbour N of Boid B
{
d = Distance (N’, B)
Steering = N's Velocity
Set Steering magnitude = 1- (d¥range?)
TotalSteering = TotalSteering + Steering
}
MatchVelocitySteering = TotalSteering / number of Neighbours
}

Figure 3 3 Match Velocity Algorithm

31.4 Flock Centring

Flock Centring enables the boid to stay close to its near neighbours In this context the
centre of the flock 1s the centre of its nearby neighbours The centre of the flock 1s easily
computed as the average of the centers of the surrounding boids As with the other
behaviours the magnitude of the steering vector 1s weighted A more distant flock centre
has a greater effect on the boid than a nearer one This weighting 1s proportional to the

square of the distance between the boid and the flock centre A boid 1n the nside of the

51

flock has boids approximately evenly distributed around the boid The centre of the
localized flock 1s very close to the boid and the flock centring urge 1s small A boid on
the outside of the flock has boids on one side of it and 1s steered in towards the centre of
the flock This behaviour also causes close-by flocks to join into one larger flock The

pseudo code [Figure 3 4] below 1llustrates the algorithm

Flock Centring(Boid B)

{
for each neighbour N of B

{
}

flockCenter = flockCenter / number of neighbours
FlockCentringSteering = Vector from B to flockCenter
d = distance to flockCenter

Set FlockCentringSteering magnitude to d®/ range?

flockCenter = flockCenter + N's position

Figure 3 4 Flock Centring Algorithm

31.5 Computation of Nearby Neighbours

A naive method to compute the nearby neighbours 1s to visit each other boid in the world
and determine 1f 1t 1s within a certain range This computation 1s performed for each boid
in the world As the number of boids increases the computation time increases by an
order of magmtude For large flocks in the order of thousands of boids this would

produce millions of calculations, thus slowing the frame rate to an unacceptable level for

interactive viewing

316 Avowding Obstacles

The “Steer away from Surface” approach described in section 24 11 1s used The
obstacles used are spheres, which are approximated using polygons The surface of the
spheres 1s made up of a mesh of polygons and each of these polygons 1s seen as a surface

Each boid has a fixed length probe associated with 1t, which 1s a vector from the centre of

the boid pointing in the direction the boid 1s travelling in An outline of the “Steer away

52

from surface”, which 1s actually an extended version of the method introduced earhier
[section 2 4 11] 1s given below The extension 1s that only obstacles that are closer to the
boids than the length of the probe and are on a collision course with the boid are tested
for collision avoidance The boid 1s on a collision course with the obstacle 1f the probe
intersects the obstacle If the boid’s probe intersects the obstacle, the surface 1s found that
1t intersects with The normal of the surface 1s added to the boid’s velocity to produce the
steering vector The magnitude of this steering vector 1s proportional to the square of the
distance to the obstacle The resultant steering 1s the collision avoidance vector One
drawback of this approach 1s that boids that are travelling in a direction directly
perpendicular to the surface will only slow down In our application, obstacle avoidance
1s used as part of the flocking algorithm and the other steering forces also have an effect
on the boid (such as flock centring) to cause 1t to veer off its perpendicular course and
thus steer around the obstacle The pseudo code [Figure 3 5] below outlines the algorithm

and figure 3 6 1llustrates the vectors involved

Steer Away from Surface(Boid B)

{
if (distance D of Boid B to obstacle O < probe length L and probe P
Intersects surface S on O)
{
SteerAwaySteering = normal to S + Boid B’s velocity,
Set magnitude of SteerAwaySteering = 1 - (D?/L?)
}
else no collision avoidance
}

Figure 3 S Steer away from Surface

33

Surface

normal

probe

new velocity velocity

Figure 3.6 Shows how the boid steers away from
the surface

31.7 Seek Goal

The Seek Goal behaviour 1s uitilised so that the flock will fly towards a point in space
This aids in the testing process so that the flock can be directed towards obstacles and
other flocks etc The following pseudo code [figure 3 7] outlines the computation The

boid steers towards the 3D point

Seek Goal(Boid B)
{

Vector Steerning = Goal - Boid B's position,

Set Magnitude of Steering vector to (MAXSPEED),
Steering= Steering- B's velocity,

return Steering,

Figure 3 7. SeekGoal() Algorithm

54

318 Computing Acceleration

The behaviours must be combined to compute an acceleration vector for the boid Each
of the flocking behaviours 1s computed n turn The mean of these behaviour vectors and
of the SeekGoal() 1s computed The acceleration from the SeekGoal() behaviour 1s
weighted so that 1t does not overshadow the flocking behaviour (See figure 3 8) If the
mean acceleration 1s greater than the max acceleration, allowed by the flight model
computed, 1t 1s truncated This acceleration vector 1s added to the velocity to produce a
new velocity for the boid and this 1s used to update its position There are other methods
using hierarchies of decisions [Tu96] but a simple combination has been shown to mimic

the flocking behaviour [Rey87]

Steering Acceleration

Truncate
A
+ /4
Combined Behaviour
Seek Goal
+ + +
Flock
Match Centring Avoidance

Velocity

Figure 3.8 Combining Behaviours

55

32 K-d Tree Based Neighbour Finding

In this section the approach used to increase the efficiency of the neighbour finding
algorithm 1s introduced To increase the efficiency of the nearby neighbour finding
algonthm, a technique simuilar to that presented in Sudarsky and Gotsman [Sud96] paper

1s used Firstly the scene 1s pre-processed by inserting all the boids 1n a K-d tree

During runtime as the boids move around the world the k-d tree 1s updated each frame to
reflect the new positions of the boids The algorithm outlined here relies on the fact that
boids have a limited acceleration and velocity, therefore their position 1 each
consecutive frame 1s quite close to each other The algorithm first tests 1f the boid 1s still
1in the same node 1t was 1n the last frame, 1f so 1t need not be nserted elsewhere in the
tree Otherwise, the boid 1s inserted 1n a bottom-up direction At each recursive step,
recursion halts if the boid (at its new position) 1s fully contained within the current node
This node 15 called the Lowest Common Ancestor (LCA) Its sub-tree 1s recursively
searched for the correct node to insert the boid into, creating a new node 1f necessary
This substantially cuts down the update time This technique 1s used in a number of our
algornithms A more detailed description 1s given 1n section 2 2 5 The following section

outlines the imtialization and updating algorithms used

321 Imtiahsation of the K-d Tree

We will begin by outhning the properties of the k-d tree Each k-d tree contains a root
node at the top of the tree Each internal node in a k-d tree has a pointer to its left child
and 1ts night child, and a partition plane that splits the node 1nto 1ts left and rnight children
[figure 3 9] The partition 1s an axially aligned plane that splits the node nto two equal

halves At each level the axis to choose 1s cycled through

56

Root

Left Right Left Right

Leaf Leaf Leaf Leaf

Figure 3.9 Illustrates the root, internal nodes and leaves of a k-d Tree

Each node contains a list of boids that are contained within the node It also contains an
axially aligned bounding box A node contains a boid 1f the boid 1s contained within the
axially ahigned bounding box of the node Any node that doesn’t have a left or right
pointer 1s called a leaf Imtially the root node 1s a leaf The k-d tree 1s initialised by first
placing all the boids 1n the root node and setting the bounding box to be the bounding
volume of the scene The root can be partitioned by one of three planes, each one being
parallel to an axis In this implementation, at each recursive step the axes are simply
cycled through At each step if the number of boids in the node 1s greater than a
predefined threshold selected by the designer, the selected partition plane partitions them

32.2 Updating the Behaviour

To fully update the flock the tree 1s traversed twice Firstly, the tree 1s traversed in a
depth first manner and the behaviours for each boid 1s computed The first part of this
computation 1s to find the other boids that are within steering range Next the behavioural

acceleration for the boid 1s computed using these nearby neighbours as outlined n section
31

57

The tree 1s again traversed to update the boids by adding the computed velocity vector to
the boid position vector, and each boid 1s inserted in the correct node in the tree as

outlined 1in section22 5

32.3 Fmd Neighbour

The following section outlines the method used to utilize the k-d tree structure to
accelerate neighbour finding algornthm introduced 1 section 31 To find the nearby
neighbours of each boid, firstly a sphere with the boid at its centre and radius of visible
range R 1s associated with each boid The algorithm finds the LCA, which wholly
contains this sphere From this node the tree 1s recursively searched for all boids
mtersecting this volume, adding each one to the neighbour list for the boid The figure
3 10 1llustrates a 2D representation of the nodes and boids included in the search The
pseudo code [figure 3 11] below outlines the algorithm to find the neighbours of a boid

Figure 3 10 Shows a 2D representation of the regions 1n the nearby finding
algonthm The shaded circular region 1s the nearby neighbour region for the
Boid B with range R The dark box 1s the LCA of the shaded region Only
boids within the un-shaded region in the LCA are included in the nearby
neighbour test

58

FindNeighbour(Tree Node T)
ForeachbodBInT
Compute B’s range volume
Find LCA of B's range from Node T
FindNeighbour(B, LCA)
End

TreeNode LCANode

FindLCA (TreeNode N, Boid B)
If N does fully contain B
LCANode = N
Return

FindLCA(N->Parent, B)
End

FindNeighbour(Boid B, TreeNode T)
foreachboid NiIn T
if N 1s within range of B then
add to B's neighbour list

if T's left child intersects with B’s range
FindNeighbour(B, T's left child)

if T's right child intersects with B’s range
FindNeighbour(B, T's nght child)

End

Figure 3.11 K-d tree FindNeighbour functions

324 Updating Position and Orientation of the Boids

It may seem unusual not to update the boid's position at the same time that the
acceleration 1s computed There 1s a very good reason not to do this Since the behaviour
computation 1s based on the relative positions of the boids, 1f some of the boids have their
position updated before others have computed their behaviours then their resulting
accelerations will be incorrect Consequently, all the behaviours are computed first, and

then the new positions are computed separately as follows

59

The k-d tree 1s traversed 1n a depth first manner, each node being visited in turn The new
velocity vector 1s computed by adding the acceleration vector to the velocity vector as in
section 3 1 8 The new position 1s determined by adding the new velocity vector to the
position vector According to the flight model used, the boid 1s oriented 1n the direction

of the velocity (See Figure 3 12)

new position

acceleration

New velocity

New orientation

Onginal position

Fig 3 12 2D Example of computing new Position and Orientation of
a boid

3 2 5 Obstacle Avordance

This section outlines how obstacle avordance 1s performed The obstacle avoidance
algonithm 1s invoked only for boids within the nodes that are within Range R of the
obstacle The length of the probe 1s equal to the visibility range of the boid A similar
approach 1s used as 1n the neighbour finding algorithm section 3 23 To determine 1f any
boids are within range of an obstacle, a new volume 1s created which has a radius equal to
the obstacle radius plus the visibility range R of the boids The k-d tree 1s searched from
the root using this volume to find the nodes that intersect with that volume (see figure
313)

60

As each ntersected node 1s found the function ComputeBoidsBehaviour() [figure 3 14]
1s called For each node the ComputeBoidsBehaviour() computes the behaviour of the
boid so that 1t avoids the obstacle outlined 1n section 3 1 6 If the volume 1s wholly to the
left of the nodes partition plane, then recursion continues from the node's left child If the
volume 1s wholly to the nght of the nodes partition plane, then recursion continues from
the node's night child If the volume splits the partition plane then both the left and right
child nodes are searched Recursion halts 1f the node 1s a leaf With this approach many
of the boids will not have to compute their obstacle avoidance behaviour, as they will be
culled from the computation The following pseudo code [figure 3 14] outlines the
algorithm used Figure 3 13 shows the boids and nodes that are included and culled from

the obstacle avoidance algorithm

Figure 3 13 Shows a 2D representation of the regions mn the obstacle avoidance algorithm
The shaded circular region is the region for the obstacle B plus range R The dark box 1s the
LCA of the shaded region Only boids within 1n the un-shaded region n the LCA are included
1n the obstacle avoidance test

61

ComputeBoidsBehaviour(Obstacle Obs, kdtreenode N)

{
foreachBod BinN

{
steering= ComputeObstableAvoidanceBehaviour(Obs, B)}

}

FindintersectingNodes(kdtreenode N, Obstacle Obs)

{
ComputeBoidsBehaviour(Obs,N)

if (N 1s a leaf)
{

exit

}

If obs 1s wholly to the left of N's partition plane
FindIntersectingNodes(N's left child, Obs)

if obs 1s wholly to the nght of N's partition plane
FindintersectingNodes(N's right child, Obs)

if Obs 1s split be partition plane
FindintersectingNodes(N's left child, Obs)
FindintersectingNodes(N's right child, Obs)

Figure 3 14 Obstacle Avoidance algorithm

32 6 K-d Tree Garbage Collection

As the k-d Tree 1s updated new nodes will be created and boids will move between
nodes During this process, as boids move on from certain regions, nodes 1n the k-d tree
will become empty Any nodes or sub-trees that are empty when the k-d tree update has
been completed are deleted from the tree If this was not performed there would be a
build up of empty nodes as the flock moves around the world The critena for deletion
are 1f the node contains no objects and if it 1s a leaf, then 1t 1s deleted from the tree The
k-d tree 1s traversed in a top down direction from the root, processing the leaves of the
tree first If the node 1s a leaf and contains no boids then 1t 1s deleted by removing the
leaf’s parent child pointer The following pseudo-code [figure 3 16] and figure 3 15
illustrates the algorithm

62

& Parent Parent
Null Pointer
Node N e
Node N
Figure 3 15 (a) Figure 31 5(b)

Figure 3 15(a) shows the Node N 1n the k-d tree
Figure 3 15(b) shows the Node N de-linked from the tree Its parent’s pointer to 1t
1s converted to a Null pointer or zero pointer

CleanUp(KdtreeNode N)

{
if N has a left child

CleanUp(N'’s left child)
If N has a nght child
CleanUp(N’s rnight child)
If N 1s a leaf and 1s empty
Delete N parents pointer to N

Figure 316 Cleanup Algorithm

327 Visibility Culling

In Chapter 2 we outline some current methods of rendering three-dimensional
environments The first consideration 1s to determine what parts of the environment are
visible to the viewer A volume called a frustum represents the portion of the scene
visible to the viewer A frustum is a truncated pyramid with a rectangular base The

figure 3 17 shows an example of a frustum

Any objects that hie within this volume are potentially visible to the viewer The k-d tree

that represents the scene can be used to cull large numbers of boids from the visibility

63

computation This 1s performed in stmilar fashion to that outlined in section 24 The k-d
tree 1s traversed from the root, testing nodes for intersection with the view frustum At
each recursive step, the algorithm tests each of its children for intersection with the view
frustum volume If a child node intersects with the view volume then recursion continues
from that node Recursion halts when a leaf node 1s reached As each node 1s visited by
the recursive algorithm, any boid that intersects the view volume 1s added to the display
list All the boids added to a list for display are further processed to determine the correct
ordering to draw the boids Below 1s the pseudo-code [figure 3 18] for the algorithm

Far Clip Pl

\ View frustum

/ Near Chip Plane

View point

Figure 3.17 shows the view frustum This volume 1s created from the viewpoint
and the near clip plane and the far clip plane Any items inside this volume are
visible

FindVisibleBoids(KdTreeNode N, DisplayList D, ViewVolume V)

{
if (V intersects with N’s left child)
FindVisibleBoids(N's left child, D, V)
if (V intersects with N's night child)
FindVisibleBoids(N's nght child,D,V)
ForeachBod B in N
If B Iintersects V
Append Bto D
}

Figure 3.18 Find Visible Boids algonthm

64

328 Rendering the Display List

Since the k-d tree stores the boids in the internal nodes as well as 1n the leaves, a strict
back to front ordering of the boids 1s not possible Once the objects that are to be
displayed are added to the display list they must be processed so that they are displayed
1n the correct order The display list 1s rendered using the Z-Buffer algorithm

65

Chapter 4

Hierarchical Impostors for Flocking
Algorithm

66

4.1 Introduction

A further increase 1n efficiency 1s gained from recogmsing stable regions of the flock,
where individual behaviour update 1s not needed The behaviour for individual boids in
these groups of boids 1s replaced by a faster behaviour update for the group as a whole
Care must be taken 1in making sure that these stablegroups interact properly with the
neighbouring individual boids 1n the flock We outline how to create, mantain and
destroy these stablegroups during the hfetime of the simulation In the last section we
outline our algorithm to greatly increase the efficiency of the stablegroup algorithm when

the stablegroup 1s out of view

4.2 Flocking At Runtime

Depending on the imtial attributes of each boid 1e position and velocity, a number of
different situations may occur If the boids are all within range of each other then there
will be a period where all the boids will converge to a central pomnt until the collision
avoidance behaviour becomes more predomiant and they become aligned with each
other, thus forming a more stable pattern If the boids are too close together the
separation behaviour will cause the boids to move further apart until the other behaviours
start to take over and the flock will become more stable If the boids are not within range
of each other then they will wander around until they are close enough to passing-by
boids to join with them As smaller flocks meet other flocks they will gradually gather
together mto larger flocks If walls bound the world in which the boids can fly or the
boids wrap around to the other side of the world then a flock will eventually form
contaiming all the boids If the boids are flying towards certain goals 1n the world, then

only boids flying towards the same goals will join together

Once the flock has become stable 1t will remain 1n a stable state until it meets another
flock, or the goal 1s changed for the boids, or an obstacle 1s 1n its path As a flock of boids
becomes more stable the boids velocity stays more or less the same each frame There 1s
very little acceleration, only small adjustments in velocity enable the boid to stay in

flocking formation with 1ts neighbours

67

The above 1s in contrast to the situation where a single boid 1s close to a flock of boids
The single boid’s flock centring acceleration 1s large, as it wants to join with the nearby
flock As 1t moves closer to a suitable position in the nearby flock its acceleration
decreases Simularly as two flocks come close to each other, the boids’ local flock centre
changes, as some of the boids in the neighbouring flock are included as neighbours
There 1s a period of instability where the velocities of the boids change more rapidly as
they attempt to flock with the neighbouring boids If the two flocks have different goals
then they will eventually break away from each other, otherwise they may join together

to form a larger flock

43 Stablegroup Creation

As mentioned above, once a group of boids has stabilised in a flock the boids will deviate
only slightly from their current course or their relative positions For distant or hidden
flocks there 1s no need to update the individual behaviours when a flock 1s 1n such a state
(which usually occurs after a short period) Once the flock has a stable pattern the

behaviours can be reduced greatly

There are several issues involved here determining when a group of boids 1s stable,
grouping them together into a separate stablegroup object, updating that object and
finally, determining when a stable group reverts to computing individual behaviour The
method troduced involves hierarchically combining stable nodes in the k-d tree and
remnserting the stablegroup object 1n the k-d tree as a single object The velocity of the
stablegroup is computed by deterrmning the average acceleration of the outermost boids
in the group and adding this to the velocity We will outline the algorithms for creating,
updating and destroying the stablegroups 1n the following sections

The determination of the stability 1s performed on a leaf by leaf basis when the k-d tree 1s
being updated to reflect the new positions of the boids 3 2 4 Tthe tree 1s traversed 1n a top
down fashion starting from the root and visiting each leaf in turn If every boid in the

node 1s stable then the node 1s marked as stable A bod 1s set as stable 1f its acceleration

68

has been less than a certain value for a given number of frames Once the node has been
set as stable a stablegroup maybe created The pseudo code below [Figure 4 1] illustrates

how to 1dentify a boid as stable and set a node as stable

IsStable(Boid B)

{
set B's StableFlag to False
if B's acceleration < threshold
add 1 to number of stable frames
else number of stable frames = 0
if number of stable frames > threshold value(10)
{
Set B's stableFlag to True
Set number of stableframes = threshold value (10)
else
Set B's stableFlag to False
}
return stableFlag
}
UpdateBoidsPos(KdTreeNode node)
{
if node is a leaf
{
unstable = False
for each Boid B in node
{
Update Position of B and velocity of B
if B i1s not stable
unstable = True
}
If (unstable is False)
node Is set as Stable
else node Is set as unStable
}
}

Figure 4 1 IsStable() for boids and code fragment from updating boids position code to

set a node as stable

69

After the k-d tree 15 updated to reflect the new positions of the boids, any stable leaf
nodes are converted to stablegroup objects The attributes of a stablegroup object are

outlined below

1 A reference to the stable sub-tree This 1s a k-d tree of the boids contained within the

stablegroup

2 Bounding Box This 1s the axial aligned bounding box of the stable sub-tree It 1s
computed by processing all the boids 1n the stable sub tree

3 List of Outer boids This list of outer boids 1s the boids whose spherical range
volume 1ntersects with the sides of the bounding box of the stable groups Ths list 1s
used to enable the stablegroup to determine the best velocity to allow 1t to flock with
1t nearby stablegroups or individual boids The list 1s computed once when the

stablegroup 1s created

4 Veloaity This 1s a 3D vector representing the velocity of the stablegroup When the
stablegroup 1s created the velocity 1s set to the average velocity of all the boids 1n the

stable sub-tree The velocity 1s updated at each frame using the outer-boids behaviour

5 Acceleration This 1s a 3D vector representing the behavioural acceleration It 1s the

average acceleration of the outer-boids

The figure 4 2 1llustrates some of the features of the stablegroup

70

Stablegroup

&—Bounding Box

Figure 4 2 The dark coloured boids are the boids whose range intersects
with the sides of the bounding box of the StableGroup These boids are
members of the outer-boids lists

Firstly 1f the node 1s a leaf and 1t 1s marked as being stable, then 1t can be further
processed N may contain stablegroups, and these must be re-inserted into the k-d tree
also Each stablegroup 1s visited and 1s inserted into the k-d tree using the LCA approach
outlined n section 22 5 The new stablegroup 1s created from the boids in N and the
attributes of 1t are imtialized The Bounding Box 1s computed by visiting each boid and
finding the maximum and mimimum value of each coordinate These values are then used
to create the bounding box of the stablegroup The node also has a bounding box, but this
maybe much larger than the bounding box of the actual boids The pseudo-code below

[figure 4 3] outlines the algorithm with the Node N being tested

71

if (N 1s a leaf and i1s Stable)
{

numBoidsinStableGroup=0,
ComputeBoundingBox(root),

de-link the node from the tree

for each Stablegroup sG in N
{

}

NewSg Is the new stablegroup
ComputeBounding Box for NewSg

Determine Outer Boids for NewSg

Compute Velocity

Insert NewSg in K-d Tree using LCA approach

Insert sG In K-d tree

Figure 4 3 Code fragment for identifying and creating stablegroup

The outer-boids list 1s determined by traversing the boid list, any boid whose range
mntersects any of the boundary planes of the bounding box are added to the outer boid list
The intersection computation 1s a sphere to plane intersection, but since the sides of the

bounding box are axially aligned, a less complicated calculation 1s employed

Figure 4.4 If distance Q 1s greater than distance P then 1t 1s
an outer-boid It 1s then added to the outer-boid list

72

Boid B 15 tested 1f 1t 1s to be added to the outer boid list Each axis 1s test in turn For the

X coordinates the test 1s as follows

if absolute (B's X + Range — Centre’s X) >BB’s max X- Centre’'s X

The “absolute (B’s X + Range — Centre’s X)” 1s the value Q 1n figure 3 4 and “BB’s max
X- Centre’s X 1s the P 1n figure 4 4 If the condition 15 true for each of the coordinates of
the boid’s centre then the boid 1s added to the outer-boid list The algorithm 1s outlined

below

If(absolute (B's X + Range — Centre’s X) > BB’s max X- Centre’s X)
or absolute (B's Y + Range — Centre’s Y) > BB’s max Y- Centre’s Y)
or absolute (B's Z + Range — Centre’s Z } > BB’s max Z- Centre's Z)

{
}

Add B to Outer-boid list of SG

The centre of the stablegroup 1s the centre of the bounding Box BB of Stablegroup SG

The initial velocity 1s computed by acquiring the mean velocity vector of the outer-boids

The newly created Stablegroup 1s then inserted into the k-d tree

44 Updating Velocity

Our approach to determine the velocity of the stablegroup 1s quite straightforward The
list of outer-boids 1s traversed and the behaviour acceleration vector for each 1s computed
as 1n section 3 1 8 The average of these accelerations 1s determined using simple vector
addition and division This value 1s then used to add to the velocity of the stablegroup
The position of each boid 1s updated by traversing each node 1n the k-d tree, and adding
the new velocity of the stablegroup to each as 1n section 3 2 4 The bounding box 1s also

updated to reflect 1ts new position

73

When the stablegroup 1s small the majonty of the boids will be outer-boids As the
stablegroups grow 1n size a smaller portion of boids will be outer-boids [figure 4 5]
Since each outer-boid must determine 1ts near neighbours at each frame, larger groups
lead to a more efficient algonthm We will outline our approach to ensure that

stablegroups are larger rather than smaller 1n a later section 4 5

A
A A
A

A
A

A A

Figure 4.5 The shaded boids outside the stablegroup are those
that are used in the behaviour computation for the stablegroup

4 5 Updating K-d Tree

As the stablegroup moves around the world the k-d tree for the world must be updated
This 1s performed 1n a similar way to the approach used to update the boids position the
world, as outlined 1n section 2 2 5 Firstly the LCA 1s found for the stablegroup at its new
position A bottom up search 1s performed for the stablegroup at 1ts new position from the
node that stablegroup was contained in Recursion halts when the stablegroup 1s fully
contained within the volume of the node This node 1s called the Lowest Common
Ancestor (LCA), since 1t’s the lowest node that contains both the stablegroup and the
stablegroup at 1ts new position The stablegroup 1s inserted into the k-d tree The pseudo-

code [Figure 4 6] below outlines the algorithm

74

Kdtree Node LCANode

Find_LCA (K-d treeNode N, StableGroup S)
If N does fully contain S
LCANode = N
Return
Find_LCA(N->Parent, S)
End

UpdateKdtree (Kdtree Node N)

for each stablegroup S in Node N
De-link S from list in Node N
Find LCA of S from Node N
Insert S into tree from Node LCA

End

Figure 4 6 Shows Find LCA and updatekdtree for stablegroup S

4 6 Combining Stablegroups

Stablegroups can be jomed together to produce a larger stablegroup The criteria for

combining stablegroups 1s

o 1f all the neighbouring stablegroups of a stablegroup have been 1ts neighbour for

longer than a certain number of frames then the stablegroups are combined

Each stablegroup 1s wisited durlng\ the CombineStablegroups recursive algorithm
CombineStablegroups() wvisits each node in the K-d tree and processes any
stablegroups that may be contained within 1t Each stablegroup holds a list of all the
stablgroups that are within range of 1t At each update a counter 1s incremented for each
neighbour If all the neighbours have a count greater than a predefined threshold value

then the stablegroups are combined

75

A neighbour of a stablegroup SG 1s defined as a nerghbour 1f 1t’s within range of the
bounding box of SG This 1s approximated by finding the smallest sphere that the
bounding box will fit inside and increasing 1its radius by Range Any stablegroup within

this volume 1s a neighbour and 1s added to the neighbour list [See figure 4 7]

Enlarged volume

S2

Figure 4 7 Shows a 2D representation The S1 and S2 are
neighbours of SG They are within the volume

When a stablegroup’s neighbours all have a count greater than the threshold value then a
new stablegroup 1s created by combining the stablegroups together Firstly the k-d tree
for the new stablegroup 1s created Initially a list 1s created from all the boids 1n each of
the stablegroups As each node 1s visited 1n each of the stablegroup’s k-d tree all the
boids are de-linked from the boid list in the node Then the node itself 1s deleted from the

k-d tree An outhine of the algorithm 1s shown 1n pseudo-code [Figure 4 8] below

76

Boidlist Initialised to empty list
GetBoids() first called with k-d tree Root and empty boid list

getBoids(KdTreeNode Node , List boidlist)

{
if (Node has a left child)
getBoids(Node’s left child , Boidlist),
If (Node has a nght child)
getBoids(Node’s right child , Boidlist),
If (Node 1s a Leaf)
{
for each Boid B in Node boids lists
{
De-link from Nodes boid hst,
Append B onto boidlist
}
De-link Node from its parent
Delete Node,
}
}

Figure 4.8 Getboids() algorithm

From the pseudo code we see that starting at the root the tree 1s traversed visiting the
leaves first Each boid in the leaf’s list 1s de-linked from the list and appended to the
boidlist Diagram 4 9 shows an example of how the algorithm moves all the boids 1n the

tree to a list while at the same time deleting the tree

77

Figure 4.9 Shows a k-d tree with root 1, with 3
leaves and 2 internal nodes

Running the algorithm on the k-d tree in figure 4 9 with node no 1 as the root Before the
algorithm deletes each node 1t moves all the boids in the node to the boid list The
sequence of nodes visited and deleted are as follows Firstly, node 2 1s deleted since the
algonthm processes the left side of the tree first Then 1t traverses the right side of the
root It deletes node 4 then node § With these 2 nodes deleted the recursive algorithm 1s
back at node on 3, since 1t 1s now a leaf 1t deletes this nodes also Now recursion brings 1t
back to node 1 (the root), which 1s now also a leaf so it too 1s deleted The tree has been
deleted and all the boids contained within 1t have been moved to a list so that another k-d

tree can be built

The method outlined 1n section 2 2 5 1s used to imitiahize the k-d tree of the stablegroup

with this hist
The boundng box of the new stablegroup 1s determined by processing each bounding

box of the neighbouring stablegroups The pseudo code [figure 4 10] below show

illustrates the approach for the X values

78

Intialise new_minx to SG s Bounding Box minx
Intialise new_maxx to SG s Bounding Box maxx

For each stablegroup SG1 neighbour of SG

if (newminx > SG1's Bounding Box minx)
newminx = SG1's Bounding Box minx
If (newmaxx < SG1’s Bounding Box maxx)
newmaxx = SG1's Bounding Box maxx
end

Figure 4 10 Identify neighbour

The velocity of the new stablegroup 1s a weighted average velocity of each of the

neighbouring stablegroups

The outer-boid list 1s computed by traversing the outer-boid list of the stablegroups
Each neighbouring boid 1s tested against the newly computed bounding box, and where
applicable are then added to outer-boids list The outer-boid list of the neighbouring
stablegroups need only be tested since only boids that are outer-boids of the stablegroups

will be an outer-boid of the combined stablegroup

After the new stablegroup has been created 1t 1s inserted into K-d tree of the scene

The above approach has the effect of gathering together close-by stable-groups The aim
1s to combine the neighbouring stable groups into larger ones, and the combined group

approximating a flock of boids

Any stable individual boids that are also mside the newly formed stablegroup are also

removed from the world k-d tree and inserted into the k-d tree of the stablegroup

79

4.7 Updating the Stablegroups

As well as combining stablegroups, when a stablegroup becomes unstable it needs to he
split up. New stablegroups are created from the stable portions of the stablegroups and
any hoids that are in the unstable portion are inserted back into the k-d tree for the world.

Events that may cause the stablegroups to become unstable are: change in goal, avoiding
an obstacle, or meeting other boids. These will cause the boids in the stable group to
divert from their original course. The approach used is conceptually straightforward. As
mentioned the outer-boids list is traversed and the behaviours for each are computed. The
stablegroup becomes unstable if the outer-boids become unstable. From the behavioural
acceleration values, the algorithm decides whether the stable group is still stable. Our
approach is, ifthe maximum acceleration of the boids is greater than a given threshold for
a certain number of frame then the group is marked as unstable. The algorithm is as
follows [Figure 4.11]

For each stable-group SG
For each of the outer-boids B
Compute Behavioural acceleration A
If A >threshold and number of frames > threshold
SG is unstable
Else

Increment number of frames
Figure 4.11 Determine stability of Stablegroup

Each Stablegroup is visited by traversing the tree in a top down depth first manner,
marking stablegroups as unstable when applicable. Once the stablegroup is marked as
unstable, it is removed from the list in the k-d tree node. The sub-tree associated with it,
is traversed and stablegroups are created from any of the sub-trees that remain stable.
Below is an outline of the algorithm.[See figure 4.12]

80

UpdateStableGroup(KdTreeNode N)

{
UpdateStableGroup(N'’s left child)
UpdateStableGroup(N’s right child)
For each stable Group SG iIn N
If 8G I1s unstable
{
remove SG from listin N
UpdateStableGroup(sub tree of SG)
Destroy SG
lelse
insert SG in tree
If N s unstable
{
for each Boid B in N
remove B from boid list in N
Insert In tree
}
else if N I1s stable
create new stablegroup new SG
Insert new SG In tree
}

Figure 4 12 Illustrates the update Stablegroup algorithm

For very large flocks 1t 1s important that as much as possible of the stable portion of the

flock remains 1n stablegroups to increase efficiency of the algorithm

81

48 Avoiding Obstacles

As stablegroups move around an environment, there may be obstacles 1n their path The
algorithm must determine when an obstacle 1s within range of any of the boids 1n the
stablegroup and, within its path If an obstacle 1s in 1ts path then the collision avoidance
routines for the individual boids are called to steer around the obstacle For an efficient
algonthm, only those boids that are actually avoiding the obstacle should have their
behaviours updated As a flock goes around an obstacle some of the boids will be
accelerating to go around the obstacle while other boids will ether be too far away from

1t or have already negotiated the obstacle

As mentioned before in section 3 2 5 the obstacles are contained in same k-d tree as the
boids and stablegroups Firstly, the algorithm determines the obstacles within range of the
stablegroup

From the diagram [Figure 4 13] we see that the stablegroups bounding box 1s increased
by RANGE, the tree 1s traversed starting from the node N that contains the increased
range volume RV Since the increase in the volume due to the range volume 1s relatively
small N should be close to the stablegroups current node, typically it will be the node
itself, 1ts parent or 1ts grandparent A recursive bottom up search from its current node 1s
performed, at each recursive step if RV 1s not wholly contained 1n the node the search

continues with 1ts parent Otherwise, the correct node CN 1s found

82

Fully contained with this
node

Obstacle A 1s within
stablegroups range
volume

Stablegroup S’s
Range volume

—>

Figure 4.13 Illustrates the nodes involved in computing the nodes within range of the

stablegroup

Below 1s an outline of the algorithm [See figure 4 14]

FindNode(Bounding Volume RV, Tree Node N)

{
If RV i1s not wholly contained in N
FindNode(RV, N’s parent)
Else CN=N
}

Figure 4 14 Find mtersecting nodes algorithm

83

To determine if any obstacles are within range of the stablegroup the k-d tree is traversed
from this node N in a top-down manner. As each node is visited the algorithm processes
each obstacle in the node. If the obstacle intersects the increased bounding box, and is
within the path of the stablegroup the stablegroup is then processed to determine which
nodes are affected. The tree associated with the stablegroup is traversed and any nodes
that are with range and on collision course with the obstacle are further processed. The
node becomes unstable if the maximum acceleration of the boids in the node are greater
than a certain threshold. The stablegroup is updated to reflect to change as shown in

section 4.6. The algorithm is as follows [figure 4.15]:

DetermineObstacles (StableGroup SG, TreeNode N)
{ for each obstacle O in N
if SG’s is within range of O and O is in path of SG
determine nodes N of SG that are within range of O and O is in
path of N
if N has a left child
DetermineObstacles (SG, left child of N)
If N has a right child
DetermineObstacles(SG, right child of N)

Figure 4.15 Determine Obstacles that are with Range of stablegroup SG.

As the stablegroup nears the obstacle or obstacles, it will be broken up into smaller
stablegroups and groups of boids. This is performed by traversing each k-d tree of each
stablegroup that is within range of an obstacle. The pseudo-code [figure 4.16] below
outlines the algorithm. The k-d tree of the stablegroup is traversed to determine any

nodes that are within range of the obstacle. If a node is within range then each boid in the

node is tested it it nas to accelerate o Steer around the obstacle. i it has to steer to avoid

the obstacle then the node 1s marked as unstable, Each boid that steers to avoid the

obstacle 1s also marked as unstable and the 1ts new velocity 1s computed [figure 4 17]

FindintersectingNode(k-d treenode N, Obstacle O)
ObsAccel(N,0)

If N has a left node
If N’s left node LEFT 1s within range of O
FindintersectingNode(LEFT , O)
if N has a right node
If N's nght node RIGHT i1s within range of O
FindIntersectingNode(RIGHT , O)

Figure 4 16 Find the nodes that are with range of the obstacle

ObsAccel(KdtreeNode N,Obstacle O)

{
for each boid B iIn Node N

{

compute obstacle avoidance for Obstacle O
If (obstacle avoidance vector > threshold
distance to O <= O’s radius + PROBERANGE)

boid B s set as unstable
Update B's velocity with obstacle avoidance acceleration

Figure 4 17 Steer each boid 1n the node around the obstacle and set the node as unstable

For large flocks the number of unstable nodes 1s relatively small compared to the size of
the flock, thus leaving most of the flock 1n a stablegroup

During this phase there 1s quite a lot of rebuilding of the stablegroups and determining
affected nodes Another event that can happen to disrupt the stability of a stablegroup 1s

when 1t changes 1ts goal

85

4 9 Change in Goal

A change 1n goal 1s another event, which can cause the boids to change course Each boid
has a goal associated with 1t The goal 1s a point in space the boid fhes towards, this 1s to
allow scripted movements of flocks Once the boid reaches 1ts goal, 1t will be given
another goal to fly towards The change 1n goal for a stablegroup 1s processed n a similar
manner to the obstacle avoidance algorithm Any part of the stablegroup that 1s within a
certain distance of the goal 1s marked as unstable and the stablegroup 1s updated as in
section 4 7 above If the stablegroup intersects with a spherical volume centered at the
goal then the stablegroup 1s marked as unstable and any nodes that intersect with the
volume are also marked as unstable As outlined 1n section 4 7 the unstable nodes are
nserted 1nto the K-d tree and stablegroups are created from the stable sub-trees, if any, in
the stablegroup The diagram [fig 4 18(a)] below shows the unstable nodes and [Fig
4 18(b)] the individual boids within a certain range of the change in goal point

Stablegroup

rd

Goal

Figure 4.18(a) Nodes marked as
unstable are shown as the shaded
regions

86

9 [q] g ¢

Goal
/ 3 Separate stablegroups created

Boids behaviour
computed separately

Figure 4 18(b) Boids behaviour are computed individually Three
separate stablegroups are also created

4.10 Stablegroup Interaction with Another flock

As the stablegroups move around the environment, they may meet other boids or other
stablegroups As the other boids come within range, there will be some interaction
between the two The boids from both flocks close to each other will be drawn closer to
each other, thus causing them to divert from their course Any nodes associated with
these boids may become unstable and must be 1dentified The approach used 1s similar to

the Obstacle Avoidance techniques shown above

As outlined 1n section 4 3 at each update the behaviour of the stablegroup 1s computed by
traversing the outer-boids of the stablegroup The behavioural acceleration for each outer-
boid 1s computed, 1f the acceleration 1s greater than a certain value then the stablegroup 1s
marked as unstable For instance this could happen when a group of boids come within
range of a stablegroup The stablegroup 1s marked as unstable The tree 1s traversed and
any nodes that contain the outer-boids that are unstable are marked as unstable The

stablegroup 1s then updated as in section 4 7 to reflect the new situation

87

4.11 Out of View Stablegroups

So far only visible flocks and stablegroups have been mentioned Substantial speedups
can be gamed by treating out of view stablegroups differently For instance when a
stablegroup 1s 1n view the position of each of its boids must be updated every frame
There are two reasons for updating the boids positions First obviously being that the
viewer sees the proper position of the boxd 1n the scene The second reason 1s so that the
stablegroup can interact with the environment and other boids correctly When a
stablegroup 1s out of view the user cannot see the boid therefore 1t does not have to be
updated to fulfil the first reason If the stablegroup has no nearby neighbours then the
boids do not have to be update for behavioural calculations We can test 1f a stablegroup
has a neighbour by checking 1f there are any objects (other boids, other stablegroups or
obstacles or goals) visible to the stablegroup An object 1s visible to a stablegroup if its
within visibility range of the stablegroup This test requires only information about the
centre of the stablegroup and the bounding box of the stablegroup Therefore if a
stablegroup 1s out of view and has no neighbours then the centre and the bounding box
need only be updated For a stablegroup of possibly a thousand boids this 1s a substantial
saving 1n computing cycles Initially when a stablegroup 1f found to have no neighbours
and 1s out of view an offset 1s stored with the stablegroup This 1s intialised to zero and 1s
updated each frame When the out of view stablegroup goes into view or 1s found to have
a neighbour then boids are updated to their correct position by adding the offset to their

position

The tests 1n chapter 5 1llustrate the substantial speedup gained by using this algonthm It
performs especially well 1n sparsely populated, very large environments where there are

many large flocks of boids that seldom 1nteract with each other and the environment

412 Rendering

As outlined 1n the Chapter 2 there are various methods for rendering environments The
boids are stored within the stablegroup n a k-d tree structure This structure 1s traversed

during the rendering process in the same way as the scene k-d tree 1s traversed to

88

determune visible boids As each node 1s visited in the scene’s k-d tree any stablegroups
1n the node are tested for visibility using the bounding box of the stablegroup If 1t 1s
visible then the k-d tree of the stablegroup 1s traversed to determine visibility of the boids
with 1n the stablegroup Any visibie boids are added to the render list for the scene

89

Chapter 5
Tests and Results

90

51 Introduction

In this chapter we will outline the results gained by running the system outline in chapter
3 and 4 In the first we will show results from runming Reynolds algorithm 1illustrating
where the computational bottlenecks lie In the first section we present results obtained
from running our implementation of the flocking algorithm presented by Reynolds
[Rey87] In the second section we present timing from running the k-d tree based
neighbour finding algonthm i chapter 3 We show how a number of factors have an
effect on the efficiency of the algorithm Finally in the final section we present the results

of the stablegroup algorithm as described 1n chapter 4

The tests were run on a 400mhz PC running Windows 98 The timing results are acquired
from using the clock() function m Visual C++ to time the behaviour computation The
timings are then written to a text file and loaded into MS Excel The graphs are created
directly from this data and pasted into to this MS word document The graphs showing
the break down of the algonthm are obtained using the Visual C++ Profiling tool

The boid’s position 1s imitialised to a random value inside a sphere, the size of the sphere
1s proportional to the number of boids in the simulation This 1s so that the boids group
into a single flock Each of the flock in the test has the same density, one boid per 9 5
squared umts For the purposes of testing the boids fly towards a goal positioned 1in space

using the seekGoal() behaviour 1n section 3 1 7

Reynolds’87 Flocking Algorithm

We mmplement the flocking algonthm as presented by Reynolds [Rey87] The graph
below show the frame rate for varying number of boids with a steering range or 10 0
umts In all these tests the mtial flock density 1s one boid per 9 5 squared units Each
boid has an average of approximately 9 nearby neighbours As 1s clearly seen from the

graph [figure 5 1] as the number of boids increase the frames per second (fps) decreases

91

The main factor that causes the decrease in frame rate 1s the FindNeighbour() algorithm

as 1n section 3 4

Reynolds 87 Flocking Algorithm

" = o]
m”‘éi’a&%@w{ Pt
35 wgiaas s g LA

50 100 200 400 800 1600
Number of Boids

Average Frames
per Second

Figure S 1 Frames per second Reynolds 87

Reynolds 87 Frame Time Break Down

004

0035 frois
0 03 %§§W%£v &&§%¢iaw¥s @

v&wwaw{%&%ﬁ%ﬁ
0025 Jmi IR
002 =
0015 fgf@%@w@%ﬁ%@%&
001

0 005
0

1

OoMisc
g UpdateBehaviour

\ @ Find Neighbour |

Average Time In
Seconds

50 100 200

Number of Boids

Figure 5 2 (a) Break Down of Frame Time for Reynolds 87 varying
number of boids from 50 to 200 using C++ Profiler

92

Reynolds 87 Frame Time Break Up
. 25
o
c
S 2
D
n
§ 15
E UpdateBehawviour
'é, 1 & FindNeighbour |}
g 05 1
<

0

400 800 1600
Number of Boids

Figure 5 2 (b) Break Down of Frame Time for Reynolds 87 varying
number of boids from 400 to 1600 using C++ Profiler

Figure 5 2(a) and figure 5 2(b) illustrate the time the system 1s inside the main functions
FindNeighbour() and UpdateBehaviour() These results are gained by runming the C++
Profiler As you can see the computation time for FindNeighbour() increases rapidly as

the number of boids increase

The other main factor that determines the frame rate 1s the number of nearby neighbours
as each nearby neighbour 1s used in the behaviour computation If the range 1s increased

the number of nearby neighbours will be increased also

93

‘ Reynolds 87 Flocking Algorithm Varying Range
400 Boids

-— =

o O o O

'BFlocking |
Computation ||

Average Frames
Per Second

5 7 10 15 20 40
Visibility Range

a

Figure 5 3 Varying range from 5 units to 40 units
Figure 5 3 shows the effect of increasing the visibility range of each boid in the flock of

400 boids As the range increases the average frame rate decreases, as more neighbouring

boids are included 1n the flocking computation for each boid

94

Reynolds 87 Varying Visibility Range
400 Bouds
o 08
5 086 O UpdatePos |
E :g’ 04 A BehaviourUpdate
g 02 FindNeighbour
- S

5 7 10 15 20 40
Visibility Range

Figure 5 4 Frame Break Down while varying range

Figure 5 4 shows the average frame time break down From the figure 1t 1s shown that

time taken to compute the flocking behaviour increases as the range increases The

Neighbouring finding algorithm does not change as the range increases

| Reynolds 87 Varying VI;II;IM; Range
400 Boids
S 400 |
[}

2 £ 300 + - -
58 | B Number of |
25 200 Neighbours
g2 100 - —_—

3
2 0

5 7 10 15 20 40)
Visibility Range |

Figure 5 5 Illustrates that in Reynolds 87 average number of neighbour increases with

range

95

From these test 1t has been shown that three main factors contribute to the time taken

computing the flocking behaviour for a group of boids They are as follows

1 Number of boids
2 Visibility Range of each boids
3 Number of neighbours of each boid

In the next section results are presented for test results of the k-d tree approach to

neighbour finding

5 2 K-d Tree Neighbour Finding Algorthm

Out first set of tests use a flock of 800 boids Each boids has a range of 7 units and has on
average S neighbours The flock 1s created so as to have one boids per 9 5 square units
As described 1n section 3 4 a threshold 1s used to decide when to split a node 1n the k-d
tree 1nto two nodes The choice of this threshold value has a large affect on the efficiency

of the neighbour finding algorithm

Figure 5 6 1illustrates the average frame rate of the neighbour finding query with differing
threshold values The frame rate 1s at 1s highest when the threshold 1s between 30 and 40
The neighbour query has three mam parts,

1 the number of boids it must test

2 the time taken to find those boids

3 the time take to update the k-d tree

96

K-D Tree Algorithm Range 7
800 Boids

|

| —}
3K d Trej

Algonthm
Q,g

Average Frames per
Second

5 10 20 40 80 200 400
‘ Threshold

Figure 5 6 K-d Tree Algorithm Average Frame per Second With Range 7

K-d Tree Neigbour Finding Range 7 i

800 Bmds
03 : N
TR G T FEET
B GBS ST ; o 3
“‘%ﬁ%mmwﬁ@h e
T
e @%ﬁw’”%‘

UpdateTree 1
|mCom puteDist ‘
@ FindBoid ‘

g %?ﬂéﬁ&*&
il By L e 1

Average Time In Seconds

[10 20 46 80 200 400
Threshold

Figure 5 7 K-d Tree Algonthm Frame Time Break-Down with Range 7 using C++
Profiler

From the figure we see that the time taken to update the k-d tree 1s a very small
percentage of the overall cost With a low threshold of 5 boids the time take to find the
boids 1s quite high since 1t has to traverse a lot of nodes of the tree to find the boids As
the threshold increase the time taken to find the boids decreases but also the number of
boids tested also increases In figure 5 8 1t 1s shown that the number of boids tested
increases as the threshold value increases The threshold value between 30 and 40 gives
the best trade of between these two factors It culls less boids than a lesser threshold but

finds those boids faster as shown in figure 5 7

97

K-d Tree Algorithm Range 7
800 Bowds

400
350

300
250 £
200
150 +—
100

50 s

K-d Tree
Algorithm

Average Number
Boids Tested

5 10 20 40 80 200 400
Threshold

Figure 5 8 Average Number of Boids Tested 1n k-d Tree Algorithm

In the next tests we will 1llustrate how changing the range alters the frame rate The

number of boids and density of the flock remains the same

As we can see as the range increases the frame decreases, 1n figure 5 6 (range 7) the best
fps 1s 14 where as 1n figure 5 9 (range 10) the best frame rate 1s 9 As the range increases
the k-d tree algorithm can cull less boids from the computation In figure 5 9 the range of
10 1s used for each boid From the graph we see that a threshold value of approximately
20 gives the best results

K-d Tree Algonthm Range 10
800 Boids \

£ Behaviour |

Second

Average Frames per

5 20 80

Figure § 9 K-d Tree Algorithm with Range 10 fps

98

F K-d Tree Algorithm Range 10
800 Boids

£

= Update

8 a CalcDistance
g # FindNeighbour
4

Threshold

Figure 5.10 K-d Tree Algorithm Range 10 Frame Time Break Down using C++ Profiler
Figure 5 10 shows a time take to find the boids and the time to determine their distance
We see that a threshold of 20 yields the best results as 1t the best combination of number
boids checked and time take to find those boids Figure 5 11 shows the average frame
rate for 800 boids while varymng the threshold from 5 to 160 Threshold 40 has been

shown to produce the fastest frame times

K-d Tree Algorithm Range 20
800 Boids

g 25 ‘?igf? L %w& ;;““ %i\%*’;m 5§
(7] b B, e ol oy
5 2 0@ Computation
:‘ 161 Time
E o]
§ 051 B
W Q- T -

5 40 160

Threshold

Figure S 11 K-d Tree Algorithm Range 20 Fps

99

K-d Tree Algonthm Range 20 T

o
[o)]

H O
= 1

N

O O O O O
w

Average Frame Time in Seconds

O =
} |
T

Figure S 12 K-d Tree Algorithm Frame Time Break Down using C++ Profiler

As 15 1llustrated 1n figure 5 12 the threshold 40 yields the fastest combination of number
of boids tested and time take to find those boids As the range increases two factors cause
the k-d tree nerghbour query to decrease
1 As the range increases, the algorithm traverses more nodes to find all the boids
that are potentially included as nearby neighbours
2 As the range increases, more boids are included as nearby neighbours thus culling

a smaller percentage of the overall flock than a lesser range

S 3 Comparison Neighbour Finding with Reynolds’87 and K-d Tree

In this section we compare our k-d tree approach to Reynolds °87 method of

implementing his flocking algorithm

Figure S 13 compares the average frame rate of the k-d tree approach to Neighbour
finding versus the approach by Reynolds 87 There 1s a marked improvement as the
number of boids increases, the k-d tree approach 1s far more efficient than the brute force
search imphed by Reynolds ‘87 As the number of boids increases the k-d tree culls a

larger percentage of the boids 1n the entire flock

100

K-D Tree Vs Reynolds 87
Neighbour Query

—

—k-_d Tree
Algorithm

Reynolds 87

L

Average Frames per
Second

400 800 1600
Number of Boids

L

Figure 5.13 K-d Tree Vs Reynolds 87 Neighbour Query Frame rates

The neighbour query 1s only a part of the flocking computation, figure 514 and 5 15
illustrate the comparison between the k-d tree approach and Reynolds’87 The tests are
preformed with each boids having a range of 10 umits The average frame rate relates to
the computation of flocking algonthm As the number of boids increase the k-d tree
approach proves to be more efficient due to the faster neighbour query computations For

nstance for 1600 boids our approach 1s 10 times faster that Reynolds’87

101

K-d Tree Vs Reynolds Flocking Algonthm

o
Q.
w 300 - —
g - Bk-d Tree
g 52 Algorithm
o
09 1 Reynolds 87
Sn
o
4 |
< 100 200

Number of Boids

Average Frames per Sec

K-D Tree Vs Reynolds 87 Flocking
Algorithm

40 e T ——
RS T Wﬁ@fi‘”}ié%%“%&% B

L e : e

& g PR e

A

@KD Tree

Algorithm
E Reynolds 87 |
|

200 400 800 1600
Number of Boids

Figure 5 15 K-D Tree Algorithm Vs Reynolds Frame rates

102

Avoiding Obstacles and Changing Goal

In the test environment there are only a few obstacles and a couple of goals So only a
small percentage of the cost 1s used in computing these two steering acceleration
compared to the cost of the flocking behaviour Neither have a marked effect on the

frame rate

54 Stablegroup Algorithm

This section investigates the fps of the stablegroup algorithm varying the number of
boids There are three tests contaimng 100, 200 and 400 boids respectively, each test
contains a single obstacle and one change 1n goal There 1s one boid per 9 5 units squared
and each boid has a visibility range of 10 units The obstacle 1s spherical in shape with a

radius of 12 units and 1s 1n the direct path of the boids

Figure 3 16 to 3 18 all have similar features The frame rate mitially 1s approximately the
same as the k-d approach then as the stablegroups are created the frame rate jumps
considerably When the flock reaches the obstacle the frame rate reduces to a value
similar to the k-d tree approach Once the flock has cleared the obstacle the frame rate
increases once again as the stable group 1s created When the flock reaches a goal and 1s
steered toward the next goal the frame rate once again 1s reduce to the same speed as the

k-d tree approach

103

100 Boids StableGroup Algorithm

£1 StableGroup
Algonthm

Average Frames per Secnd

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time 1n Seconds

Figure 5 16 Shows average frame rates of stablegroup algorithm with a flock of 100

boids as 1t moves around obstacle and changes goal

Figure 5 16 1llustrates the average frame rates as the flock moves around the world
Initially the frame rate 1s approximately 65 fps, which 1s approximately the same as the k-
d tree approach As the stablegroup 1s created the frame rate quickly jumps to 800 fps It
remains at 800 fps until 1t 1s meets an obstacle or changes goal The frame rate returns to

65 fps duning those periods, but quickly increases to approximately 800 fps as the

stablegroup 1s created again

104

200 Boids StableGroup Algorithm

600

o 500 &

c

[~]

(2]

&S 400

5

Q. £ StableGroup
é 300 Algornthm
]

(V9

g 200

4

g

< 100

Time 1n Seconds

Figure 5 17 Average frame rates over a time period as flock of 200 moves around an

obstacle and changes goal

Figure 5 17 1illustrates the average frame rates as the flock moves around the world

Similarly to figure 5 16 the frame rate 1s high as the stablegroup 1s created and decreases
to that of the k-d tree approach while the flock avoids an obstacle or changes goal In this
case the frame rate increases to 510 fps as the stablegroup 1s created and decreases to 34

as the individual boid behaviours are computed

105

400 Boids Using Stablegroup Algorithm

200 -

150

E Stablegroup
Algorithm

100

Average Frames per Second

50

Time in Seconds

Figure 5 17 Average frame rates over a time period as flock of 400 moves around an

obstacle and changes goal

Above (Figure 5 17) the fps for a flock of 400 boids 1s shown As the stablegroup 1s
created the fps increases to 250 fps, the frame rate drops 14 fps as the flock steers avoids

an obstacle and changes goal

Meeting another flock

The test contains two flocks of 200 boids each, each having a different goal The two
flocks collide with each other and shortly there after veer away from each other Figure
518 shows the fps change as two flocks meets The frame rate decreases as each
individual boid’s behaviour 1s computed The fps increases again as the two flocks move

away from each other The frame rate dips to the k-d tree frame rate as the flock meets

106

another flock As soon as the flocks start to depart from each other they become stable

again the frame rate increases

Flock to Flock Interaction
Stablegroup Algorithm
Two Flocks of 200 Boids

o sk?;wx
ﬁ%ﬁsw:
»ﬁfmémm S
A?W??&w S

Stablegroup\
Algonthm |

Average Frames per Second

Figure S 18 Average fps as two flocks of 200 boids meet each other then depart

55 Out of View Stablegroup

As described 1n section 4 11 when a stablegroup goes out of view there 1s no need to
update each boids position in the stablegroup Thus accelerating the frame rate
dramatically The test illustrated in figure 5 19 contains 200 boids, which move out of
view During that time the fps increases to approx 1600 fps, the stablegroup then moves
into view and the frame rate decreases to approximately 510 fps As the stablegroup

again moves out of view the frame rate increase once again to 1600 fps

107

- . .
Out of View Stablegroup Algorithm 200 Boids

@ Stablegroup
Algonthm

Average Frames per Second

12 3 45 6 7 8 9 10111213 1415

Time 1n Seconds ‘

Figure 5 19 Out of View Stablegroup containing 200 boids

Out of View Stablegroup Algorithm
400 Boids

Out of
Zniaview

s e &

Stablegroup
! Algorthm

3 Rl e

e,

Average per Second

A [sp] wn M~ - (30 w
~ -

Time in Seconds

Figure 5 20 Out of View Stablegroup containing 400 boids

The test 1llustrated 1n figure 5 20 contains 400 boids which move out of view During that

time the fps increases to approx 1600 fps, the stablegroup then moves into view and the

108

frame rate decreases to approximately 250 fps As the stablegroup again moves out of

view the frame rate increase once again to 1600 fps

56 Viewer Trals

This viewer trial was conducted to test if viewers of the stablegroup ammation could
notice a difference to the flocking animation where each boids behaviour 1s computed
separately The tnal consisted of 2 demos 1n Appendix A Demol 1s the kdtreedemo and
demo? 1s the stablegroupdemo Each demo was shown side by side on 400mhz PC The
participant looked at the demos for a short period and then commented on the two demos
There were fifteen people involved 1n the trial Of those 15, 12 people felt that the only
difference was that demo2 ran at a faster rate when between the goals Three people felt
that the flock 1n demo2 accelerated between the goals but also on more careful scrutiny
noticed that demo2 has slightly less relative motion of each of the boids when 1t
accelerated None of the participants felt that there was a significant difference in the

demos and they both acted 1n a fish like manner

109

Chapter 6
Conclusions and Future Work

110

In the preceding chapters we outline our approach to increasing the efficiency of the
flocking algorithm introduced by Craig Reynolds 1 introduce the naive algorithm to
compute the flocking behaviour for each boid 1n the flock For each individual boid the
naive algorithm tests each other boid to find its nearest neighbours The flocking
behaviour 1s computed each anmimation frame computing the boids new position and
orientation I outline our approach 1n detail, on how we increase the efficiency of the
flocking algorithm There are a number of steps involved, firstly the k-d tree 1s created
and the boids n the scene are inserted into 1t The k-d tree 1s used to cull much of the
boids from the neighbour finding computation The tests we run shows that our approach
1s more than the Reynolds original algorithm The next step 1s to decrease the time taken

for behaviour computation for the boids

Our new approach 1s to group together a number of boids into a single group and to
compute the behaviour for the group as a whole The behaviour 1s determined by
computing the individual behaviour for the outermost boids 1n the stablegroup object
The behavioural vector for the stablegroup 1s obtained by computing average acceleration
vector for the outer-boids We outline the creation, update, combining and destruction of
stablegroups 1n the scene In chapter 5 our tests show that this method allows for much
larger flocks to be updated at interactive rates on a PC Our tests 1llustrate large decreases
in the cost behaviour computation for the flock We also outline how obstacle avoidance
and flying to a goal 1s performed for individual boids and Stablegroups We then present
our novel algorithm for updating out of view stablegroups This novel algorithm reduces
possibly millions of computations to a few dozen in many situations There are a number

of avenues of future direction

6.1 Amortize Behaviour Computation

Reynolds presents a method of [Rey2000] of amortizing the cost of the behaviour
computation across 6 frames Each boid only updates 1ts behaviour every 6 frames At
each frame the algonthm chooses one sixth of the boids at random to update their

behaviour The other boids use the acceleration from the previous frame This technique

111

could be applied to our algorithm This would result 1n a large increase in frame rate
when the boid’s behaviour 1s being individually computed For instance 400 boids are
currently updated every frame at a rate of 15 fps Using the above approach this could be
increased to 90 fps The behaviour computation of the stablegroup could also utilise the
same technique by only computing the behaviour every sixth boid in the outer-boids list
Indeed since stablegroup acceleration 1s small only one boids in ten or twenty could be

updated depending on the acceleration of the stablegroup

62 Adaptive Algorithm
Funkhouser and Sequin [Fun93] present an approach to rendering a 3D scene within a
bounded frame rate Their research 1s only concerned with the visual appearance of the

object on the screen

To bound the frame rate of flocking behaviour computation both the benefit and cost of
updating individual boids and the stablegroups 1n the scene need to be determined The
benefit of individual boids depends mainly on its acceleration, higher acceleration
yielding higher benefit Increased acceleration 1s caused by

e Meeting other boids

e Steering around obstacles

e Changing goal

Boids that are performing the above behaviours have increased benefit to the
environment These boids should be updated at a higher rate than other boids Benefit
also depends on the distance of the boids to the user, closer boids having a higher benefit
The time since last update 1s used 1n the benefit computation also, the benefit increases as
the time since last updated grows This ensures all boids do eventually get updated Bods

that have not been updated use their acceleration from the previous frame

The cost of computing the behaviour can be estimated from the number of neighbours
that boid has

112

A hist of candidates boids to be updated sorted by benefit 1s created N number of boids
are chosen to be updated from the candidate list N 1s chosen so that cost of the first N
boids does not exceed the threshold frame rate We compute the behaviour of these boids
We then update the position and orientation of the boids in the environment We render
the scene and then compute the new benefit and cost of each boid and create a newly

sorted list

Stablegroups are updated adaptively in a similar manner Since the acceleration of a
stablegroup 1s low the main factor in determining the benefit 1s the size of 1t on screen,
and number of boids contained within 1t As outlined in 6 1 only a percentage of the
outer-boids behaviour need be computed each frame More distant stablegroups would be
updated less frequently and when updated would compute a smaller percentage of its
outer-boids to determine 1ts acceleration As with individual boids the benefit increases as
the time since last update increases The cost 1s estimated from the cost of updating the
outer-boids that are to be updated These stablegroups are inserted mn the sorted list of
candidates to be updated

This adaptive algorithm will yield a bounded frame rate and update boids based on their

behavioural importance to the scene

63 Rendermg

There are many methods of rendering distant objects im computer graphics More
efficient rendering may make use of stablegroups, which can be treated as a single object
Impostor selection 1s one approach swited to more efficient visualisation of distant flocks
The rendering of individual boids 1n stablegroups may be replaced by a texture mapped

impostor as 1n [Sha96] or multiple impostors as in [Aub98]

113

6 4 Obstacle Avoidance

The algorithm used for obstacle avoidance 1s quite straightforward More complex
obstacle avoidance could be employed One such avoidance techmique 1s silhouette
avoidance as outlined 1n section 2 4 11 There are a number of possibilities for caching of
information For instance as boids move to avoid the obstacle they find a point on the
silhouette of the object to steer towards Many of the boids behind in the flock will take

very similar avoidance measures

Ideally stablegroups that are out of view for a considerable amount of time need not have
their behaviours updated Take for instance a stablegroup that 1s out of view, which
avolds an obstacle and gather back together into a single stablegroup again If the above
happens while 1t 1s out of view and the obstacle avoidance has little effect on the
appearance of the stablegroup then the obstacle avoidance routines need not be
computed An out of view stablegroup can merely i1gnore the obstacle There are a
number of 1ssues mnvolved, how to determine the effect of an obstacle on a stablegroup
There are a number of cnteria, the size of the stablegroup, the size of the obstacle, the
flocking behaviour characteristics Each of which have to be included in determining the
effect an obstacle will have on a stablegroup Secondly the stablegroup must be out of
view until 1t has regrouped at the other side of the obstacle If not then the user must be
shown a consistent view of what the stablegroup would look like if the full obstacle
avoidance algorithm had been used There are many 1ssues involved, which warrants

further research

6.5 Anmimation

Currently the flock 15 not ammated Obviously for a more realistic simulation ammation
would be advantageous In a large flock of birds, the amimation of boids maybe
duplicated 1n the flock Once a boid 1s rendered the resulting rendered 1mage maybe used

to render other boids 1n the flock more efficiently

114

6.6 Temporal Bounding Volumes

As outhined 1n Section 2 2 5 [Sud96] introduced the 1dea of temporal bounding volumes
(TBV) Dynamic objects are replaced by a static TBV The TBV is inserted into the tree
unt:l 1t becomes visible or the time limit 1s up on 1t The TBV could be extended to
replace stablegroups with a TBV Determining the volume of the TBV 1s complicated
because the stablegroups interact with each other and the environment The TBV created
cannot overlap other stablegroups or their TBV’s or indeed obstacles in the scene This
approach may work well for sparsely populated environments or in conjunction with

obstacle avoidance techniques outlined 1n Section 2 4 11

6 7 Extension to Multi-body Animation.

The only algorithm described 1n this thesis 1s the flocking algorithm The approach may
be extended to other group behaviour systems where a stable region of the group maybe
identified and the behaviour computation replaced by a simpler more efficient
calculation Flocking algorithms are not confined to the air they can also be used for earth
bound creatures, such as sheep, wildebeest For virtual animals that follow a terrain the
stablegroup would have to be augmented to account for the terrain following behaviour
When the stablegroup 1s created the stablegroup should follow the terrain also Instead of
each member of the herd or flock computing 1ts terrain hugging acceleration and flocking
behaviour, the stablegroup would compute one value for the terrain following and

flocking behaviour
Crowding behaviour 1s very similar to flocking behaviour and the stablegroup approach
could be adapted to accelerate crowding behaviour using the acceleration of each member

to determine when to convert to a stablegroup

The stablegroup approach could be also investigated to acceleration real-time fluid

dynamics and soft body simulations

115

Appendix A

Demonstration of K-d Tree and Stablegroup Algorithm

Fig A 1 1illustrates the 3D environment for the k-d tree and stablegroup algonithm There
1s one obstacle, three goals and one flock containing 50 boids The demo programs are on
the CD accompanying this thesis The demo programs are based on the client server
model, each demo program contains a server and a client To run each demo, the server

program 1s executed then the user runs the corresponding client demo

L“%@w@w
o B %1;:&?;:; myz&
w m o B i
ﬁ s %ﬁ%@%‘%w“ww
0“5,, & &ﬁ%am«%% m‘;&@ gM & %fm, i
" B mg;g oy R o sz;m§x
'R’:ﬁ)) i

e @mm@mgw

i o
e
e 2‘#‘{ i sgwgn& o R A{@
i
e 8 Ry
'%

i p%.s

J
’“\rg*‘di&xzww ok A -':

w N
%s& o,

FigAl

The boids are intialised near goal 3 The boids first head towards goals 1 then 2 then back
to 3 As the boids change goal from 3 to goal 1 1t passes by the obstacle Any boids on
collision course with the obstacle steer to avoid it The boids continue to travel from goal

to goal until the window 1s closed by clicking on the top nght of the window

116

K-d Tree Demo

This demonstration application illustrates the k-d tree finding algornithm as outhined 1n
section 3 2 The frame stays relatively constant throughout the lifetime of the program
To run the application double click on the KdTreeDemoServer exe followed by
KdTreeDemoClient,exe m windows Explorer When closing the demo, close both the

client and the server

Stablegroup Demo

This demonstration application 1llustrates the Stablegroup algorithm as outlined 1n section
41 The boids follow the same path as in the k-d tree algorithm (1llustrated 1n Fig A 1)
To run the application double click on the StableGroupDemoServer exe followed by
StableGroupDemoClient exe 1n windows explorer When closing the demo, close both
the client and the server The stablegroup algorithm causes the frame rate to increase
dramatically when the entire flock becomes stable This is especially noticeable as the

flock travels from Goal 1 to Goal 2

Out of View K-d Tree demo

This demo 1llustrates the k-d tree algorithm with the first goal much further away (three
times further than the first demo) To run the application, double click on the
OutOfViewKdTreeServer exe followed by OutOfViewKdTreeDemoClient exe 1n windows

explorer When closing the demo, close both the chient and server

Out of View Stablegroup Demo

This demo 1llustrates the speedup gained by applying the out of view stablegroup
algorithm outlined 1n section 4 11 This demo differs from the previous two n that the
first goal 1s further away (three times further) To run the application, double click on the

117

OutOfViewStableGroupServer exe followed by OutOfViewStableGroupClient exe 1n

windows explorer When closing the demo, close both the client and server/

118

Bibliography

[Abr96] M Abrash Inside Quake Visible Surface Determination Dr Dobb's
Sourcebook January/February 1996 pp 41-45

[Air91] John M Aurey, John Rohlf, Frederick Brooks Jnr Towards Image Realism with
Interactive Update Rates in Complex Virtual Environments SIGGRAPH ‘91 pp 41-50

[AlL96] Aliaga, D G Dynamic Simplification Using Textures, UNC Technical Report
No TR96-007, Deptartment of Computer Science, University of North Carolina, Chapel
Hill, NC 1996

[Aub98] Aubel, R Boulic, D Thalmann Ammated Impostors for Real-time Display of
Numerous Virtual Human, Proc Virtual Worlds '98, Paris, France, 1998, pp 1428

[Bat92] Batman Returns (1992), Motion Picture, Warner Bros , 1992

[Blu9S5] Bruce Blumberg and Tinsley Galyean Multi-level control for ammated
autonomous agents Do the right thing oh, not that Creating Personalities for
Synthetic Actors, pages 74--82 SpringerVerlag Lecture Notes in Artificial Intelligence,
1997

[Can87] John Francis Canny The Complexity of Robot Motion Planming PhD Thesis,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, May 1987

[Car97] Deborah A Carlson and Jessica K Hodgins Simulation Level of Detail for
Real-time Amimation Georgia Institute of Technology Graphics Interface 97

[Cha95] Chamberlain B, Derose T, Lischinki D, Salesin D, Sinder J Fast Rendering
of Complex Environments Using a Spatial Hierarchy. SIGGRAPH ‘95

119

[Cha87] David Chapman Planming for Conjunctive Goals Artificial Intelligence volume
32, number 3, July 1987 pp 333-378

[Che96] Han-Ming Chen, Wen-Teng Wang, The Feudal Priority Algorithm on Hidden-
Surface Removal SIGGRAPH 96 pp 55-64

[Che93] Shenchang Eric Chen and Lance Willlams View Interpolation for image
synthesis SIGGRAPH ‘93 pp 279-288

[Che95] Shenchang Eric Chen, QuickTime VR- an Image Based Approach to Virtual
Environment Navigation, SIGGRAPH 95, August 1995, pp 29-38

[Che97] Stephen Chenney Culling Dynamical Systems in Virtual Environments
Symposium on Interactive 3D Graphics April 27-30, 1997 Providence, RI

[C0097] Satyan Coorg Seth Teller SIG MIT.4 Spatially and Temporally Coherent
Object Space Visibility Algorithm Symposium on Interactive 3D Graphics, Providence,
Rhode Island, Apnil 27-30, 1997

[Dav94] Mark Davies and Patrick Green Perception and Motor Control in Birds
Springer-Verlag 1994 P 258

[Duc97] M Duchaineau, M Wolinsky, D E Sigeti, M C Miller, C Aldnch, and M B
Mineed-Weinstein Roaming terrain Real-time optimally adapting meshes In

Proceedings IEEE Visualization'97, pages 81--88, 1997

[Fue79] Fuchs , Kedem and Naylor Predetermining Visibility Priority in 3D Scenes
SIGGRAPH ‘79, pp-175-181

120

[Fun93]Thomas A Funkhouser, Carlo H Sequin UNC at Berkeley Adapfive Display
Algorithm for Interactive Visualisation of Complex Virtual Environments SIGGRAPH
‘03 pp 247-252

[Gre94] Ned Greene and Michael Kass. Error-Bounded Antialised Rendering of
Complex Environments SIGGRAPH ‘94 pp 59 - 66

[Gre96] Ned Greene Hierarchical Polygon Tiling with Coverage Mask SIGGRAPH
‘96 pp 65-72

[Gre93]Green N, Kass M, Miller G, Hierarchical Z-Buffer Visibility In Computer
SIGGRAPH ‘93, pp 231-238

[Hop98] Hugues Hoppe Smooth view-dependent level-of detail control and its
application to terrain rendering In David Ebert, Holly Rushmeier, and Hans Hagen,
editors, Proceedings Visualization '98, pages 35--42 IEEE Computer Society Press,
October 1998

{Hub 82] Hubschman H and Zucker S Frame to Frame Coherence and the Hidden
Surface Computation Constraints for a Convex World ACM Trans on Gfaphlcs 1982,

pp129-162

[Kuf99] JJ Kuffner and J C Latombe Fast Synthetic Vision, Memory and Learning
Models for Virtual Humans Computer Animation ‘99 , pages 118-127

{Lin 96] Lindstrom P ,Koller D , Hodges L , Ribarsky W , Faust N ,Turner G Leve/-Of-
Detail Management for Real-Time Rendering of Phototextured Terrain. SIGGRAPH 96

[L1094] The Lion King (1994), Animated Motion Picture, Walt Disney Productions, 1994

121

[Lue95] David Luebke and Chris Georges Portal and Mirrors Simple, Fast Evaluation
of Potentially Visible Sets 1995 Symposium on Interactive Graphics, pp 105-106

[Mac95] Paulo W C Maciel and Peter Shirley Visual Navigation of Large

Environments Using Textured Clusters 1995 Symposium on Interactive 3D graphics
ACM

[McM95] Leonard McMillian and Gary Bishop Plenoptic Modelling An Image-based
rendering system SIGGRAPH ‘95 pp 39-46

[Mea82] D Meagher Efficient Synthetic Image Generation of Arbitrary 3-D Objects
Proc, IEEE Conference on Pattern Recognition and Image Processing, pp 473-278, June

1982

[M1c95] Microsoft, DirectDraw API Specification and Dwrect3D API Specification.,
Microsoft Corporation , Redmond WA, 1995

[Mol92] Molnar, S, J Eyles , J Poulton PixelFlow High Speed Rendering Using
Image Composition SIGGRAPH ‘92, pp 231-240

[Qua96] Quake, 1d Sofitware, Mesquite, TX, 1996

[Reg94] Regan, M, and Pose, R Priority rendering with a virtual reality address
recalculation pipeline SIGGRAPH '94 pp 155--162

[Ree83] Reeves, W, T Particle Systems-A Technmque for Modelling a Class of Fuzzy
Objects ACM Transactions on Graphics, V2 #2, April 1983

[Rey87] Craig Reynolds Flock, Herds and Schools A distributed Behavioural Model,
SIGGRAPH ‘87, pp 25 34

122

[Rey2000] Craig Reynolds Interaction with Groups of Autonomous Characters Game

Developer’s Conference 2000

[Sch69] Schumaker, Brand, Gillard and Sharp Study for Applying Computer Generated
Images in Visual Simulation AFHRL-TR-69-14, US-AF Human Resources Lab, 1969

[Sch96] Gernot Schaufler and Wolfgang Sturzlinger 4 Three Dimensional Image Cache
for Virtual Reality Eurographics 96, pp ¢-227 - ¢-235

[Sha84] Shaw, E Fish in Schools Natural History 84, no 8 (1975), pp 4046

[Sha96) J Shade, D Lischinski, D Salesin, T DeRose, and] Snyder Hierarchical
Image Caching for Accelerated Walkthroughs of Complex Environments SIGGRAPH
"96

[Sims94] K Sims Evolving Creatures SIGGRAPH'94 pp 15-22

[Sud96] Oded Sudarsky and Craig Gotsman Oufput-Sensitive Visibility Algorithms for
Dynamic Scenes with Applications to Virtual Reality Proceedings of Eurographics 96

[Sud99] O Sudarsky and Craig Gotsman, Dynamic Scene Occlusion Culling, IEEE
Transactions on Visualization and Computer Graphics Vol 5,No 1 1999

[Suth74] Sutherland, [E, R F Sproull, and R A Schumaker 4 Characterisation of Ten
Hidden Surface Removal Algorithms ACM Computing Surveys, 6(1), March 1974, 1-55

[Tel91] Seth J Teller Carlo H Sequin UNC at Berkeley Visibility Pre-processing for
Interactive Walkthroughs SIGGRAPH ‘91 pp 61-69

[Tel92] Teller S J (1992 October) Visibility Computations in Densely Occluded
Polyhedral Environments Ph D Thesis Computer Science Division (EECS) , UC
Berkeley, Berkeley, California 94720 Available as report No UCB/CSD-92-708

123

[Ter94] D Terzopoulos, X Tu, R Grzeszczuk Artificial fishes Autonomous
Locomotion, Perception, Behaviour, and Learming in a Simulated Physical World,
Artificial Lafe ‘94, 327-351

[Tha2001] D Thalmann, The Role of Virtual Humans wn Virtual Environment
Technology and Interfaces, In Frontiers of Human-Centred Computing, Online

Communities and Virtual Environments, Springer, London, pp 27-38 (invited paper)

[Tor90] E Torres, Optimization of the Binary Space Partition Algorithm (BSP) for the
Visualization of Dynamic Scenes Eurographics 1990, (Montreux, Switzerland) pp 507-
518, Elsevier Science Publishers B V (North-Holland), Sept 1990

[Tor96) Jay Torborg and Jum kajiya Talisman Commodity Real-time 3D Graphics for
the PC SIGGRAPH ‘96

[Tu96] Xiaoyuan Tu and Demetr1 Terzopoulos Artificial Fishes Physics, Locomotion,

Perception, Behaviour Deparment of Computer Science, University of Toronto, Ontario,
M56 1A4 1996

[War69] J Warnock, 4 Hidden Surface Algoruthm for Computer Generated Halftone
pictures Computer Science Dept Univ of Utah, TR 4-15, June 1969

124

