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Abstract

Electronic forms of com m unication are abundan t in  todays world, and  much em­

phasis is placed on these m ethods of com m unication in  every day life. In order 

to guarantee the  secrecy and  au then ticity  of inform ation  exchanged, it is v ital to 

form ally verify the  cryptographic protocols used in  these forms of com m unications. 

This verification does, however, present m any challenges. T he system s to verify are 

infinite, w ith  an  infin ite num ber of sessions and  of p artic ipan ts . As if this was not 

enough, there  is also a  reactive element to deal w ith: th e  in truder. T he in truder 

will a ttack  the  protocol to  achieve his goal: usurp ing  identity, stealing confidential 

inform ation, etc. His behavior is unpredictable!

This thesis describes a  m ethod  of verification based 011 the  verification of systems 

by approxim ation. S ta rtin g  from an in itial configuration of the  network, an  over- 

approxim ation  of the  set of messages exchanged is au tom atically  com puted. Secrecy 

and  au th en tica tio n  properties can then  be checked on the approxim ated system.

S ta rtin g  from  an  existing sem i-autom atic proof m ethod  developed by Genet and 

Klay, an  au to m atic  so lu tion  is developed.

T his thesis defines a  p a rticu la r approxim ation function th a t  can be generated 

au tom atically  and  th a t  guarantees th a t the  com putation  of th e  approxim ated system  

term inates.

T h e  verification by approxim ation only tells if p roperties are verified. W hen 

th e  verification fails no conclusion can be draw n on the  property . Thus, this thesis 

also shows how the  approxim ation  technique can easily be com bined w ith  another 

verification technique to  com bine the strengths of b o th  approaches.

Finally, the  tool developed to validate these developm ents and  the results of



cryptographic protocol verifications carried out in  the  course of th is  research 

included.
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Chapter 1

Introduction

W ith the development of electronic communications (E-commerce, email, mobile 

phone services, etc.) it becomes vital to guarantee the secrecy and the authenticity of 

the information exchanged. Cryptographic protocols define precisely how messages 

using cryptographic primitives must be exchanged between agents participating in 

a transaction. They are used to secure the communications. Such protocols are 

already implemented in computer networks, ATM machines, commercial websites,

Designing and verifying protocols for these contexts are not easy, however it is 

necessary as flawed protocols can have serious consequences. The following examples 

illustrate some of the implication.

The “Yescards” in Prance [Sci02] can be used to pay transactions under 91.47 

euros. For transactions under 91.47 euros the system does not do a full authentica­

tion of the card. I t  only chocks a 320 bit key and does not do any verification with 

the GIE (Groupement d ’intérêt Bancaire) Carte bancaire server. This 320 bit key 

was broken by Serge Humpich1. For amounts above 91.47 euros the equipment in 

the shop calls an authentication server of the m erchant’s bank to authenticate the 

card. Moreover, the merchant can manually force the authentication if he wants to 

decrease the payment time at the cash register and then reduce the waiting time at

'information about Mr Humpich’s story can be found at http://w w w .parodie.com /hum pich/

1

http://www.parodie.com/humpich/


the lane. Nevertheless, at the end of the day all the payments made by card are 

sent to the m erchant’s bank computer. A full authentication of the cards used is 

then done over night, and identities of fraudulent cards are then reported to all the 

payment systems by the following morning. Serge Humpich, by studying the par­

tial authentication process, was able to find how to generate valid keys. W ith this 

information, he was able to create chip cards tha t were authenticated by terminals 

every time. However, Serge Humpich’s cards were valid for 24 hours at most.

An even more recent example of breaking protocols involved researchers from 

the Ecole Polytechnique Fédérale de Lausamie (EPFL), who broke the SSL (Secure 

Socket Layer) protocol and were able to recover usernames and passwords sent with 

Outlook Express 6 to an IM AP2 server. Vaudeney [Vau02] explains how an intruder 

can recover encrypted information in Cipher Block Chaining mode3 by exploiting 

error messages used in protocols. The sequence is as follow:

1. the attacker catches m  which is the encryption of the information e exchanged 

between a client and a server.

2. the attacker builds a new message using m  and some algorithms tha t take 

advantage of the properties of the CBC mode. The message is sent to the 

server.

3. the server sends an error message th a t the attacker analyzes to see if lie made 

a good guess (and now has access to a piece of e) or not.

4. the attacker repeats the steps 2 and 3 till he recovers the information e.

To work, the m ethod requires tha t the server does not end the communication after 

an error in the protocol. B ut as SSL does end the communication in the event of

2Internet Message Access Protocol (IMAP) is a method of accessing electronic messages kept on

a (possibly shared) mail server.
3the Cipher Block Chaining mode is a particular encryption process. First the information

that must be encrypted is split in blocks of same size. Then the first block is XORed with a

particular message before being encrypted. The second block is XORed with the result of the

previous encryption before it is encrypted; the same process is repeated to  encrypt the remaining 

the blocks.

2



an error message, several sessions of SSL sending the same information must be 

studied in order to succeed in recovering the information. The researchers from 

EPFL succeeded in recovering username and password sent w ith Outlook Express 6 

to an IMAP server using this flaw [CHSV03].

Cryptographic protocols are communication protocols th a t use cryptography. 

Messages are encrypted using encryption keys and cryptographic algorithms, and 

cannot be decrypted without the correct decryption keys in a reasonable timeframe.

1.1 C ryp tography

Cryptography (from the Greek hidden writing) is the study of means of converting 

information from comprehensible forms into incomprehensible forms. Cryptography 

concerns itself mainly w ith four objectives:

1. Confidentiality: the information camiot be understood by anyone for whom it 

was not intended.

2. Integrity: the information cannot be altered in storage or transit between the 

sender and intended receiver without the alteration being detected.

3. Non-repudiation: the creator/sender of the information cannot deny at a later 

stage his or her intentions in the creation or transmission of the information.

4. Authentication: the sender and receiver can confirm each o ther’s identity and 

the origin/destination of the information.

Procedures and protocols th a t meet some or all of the above criteria are known as 

cryptosystems.

Figure 1.1 introduces some basics terms used in cryptography. The plaintext 

refers to the comprehensible form of a piece of information while the ciphertext 

refers to the incomprehensible form. Encryption is the process of encoding the 

information, and decryption is the decoding process. The encryption and decryption 

keys are confidential, and are required for the corresponding process to work.

3



plaintext

encrjrption key 

ciphertext

decrjrption key 

plaintext
Encryption Decryption

Figure 1.1: Cryptography

A well-known cryptosystem is the Caesar Number [SueOO]. Caesar encoded his 

mails by moving forward letters. Figure 1.2 shows an example w ith a gap of four 

between letters. The encryption is done by moving of 4 letters forward as the 

encryption key X is equal to 4. The decryption is done by moving of 22 letters 

forward as the decryption key Y is equal to 22.

X =4 Y=22

Caesar Moving of X GEIW EV Moving of Y Caesar

letters forward letters forward

Figure 1.2: Caesar cipher

This encryption algorithm  is very simple and would not resist a brute force 

attack (attack where all the possible gaps will be tested). Today, cryptography is 

m ainly based on the num ber theory and takes advantage of the properties of specific 

classes of numbers. I t  is possible to distinguish between two types of cryptography: 

symmetric and asymmetric.

In  symmetric cryptography, the keys used to encrypt and to decrypt are the 

same. In asymmetric cryptography, keys are different. An example of asymmetric 

cryptography is the public key cryptography where one key is usually available to 

everybody (for encryption), the public key, and only one person knows the other key 

(for decryption), the private key.

One of the most popular algorithms in cryptography is RSA [RSA78] (Rivest, 

Shamir and Adleman were the inventors of this algorithm). RSA is an asymmetric

4



algorithm based on the assum ption th a t “factoring” is a difficult operation. Par­

ticular pairs of RSA keys have been broken over the years, most recently a 640 bit 

key pair in November 2005. More information about RSA and the contest to break 

the 2048 b it key pair (there are 200 000 dollars to win!) can be found online at 

http: / / ww w.rsasecurity.com /rsalabs/.

Breaking4 an encryption scheme (algorithm) is difficult and requires lots of re­

sources. For example, it took 4 months and 300 computers to break RSA with a 

512 b it key [Zim99]. Most of the attacks found on cryptographic protocols assume a 

perfect encryption (unbreakable encryption) and take advantage of flaws in the pro­

tocols (e.g. replaying previous messages, etc.). Later on in the chapter the following 

attacks will be introduced in more details:

■ m an in the middle attack: the attacker uses the protocol to usurp identity and 

to get critical information;

•  type attack: the attacker plays with the format of the messages to discover 

critical information;

•  replay attack: the attacker replays old messages hoping tha t he can receive 

critical information.

1.2 C ryptographic Protocols

Protocols define how messages between agents participating in a transaction are 

exchanged. In this section, the protocol notation is introduced using the Needhain- 

Schroeder protocol [NS78].

Protocols are used in possibly hostile networks as has been shown at the be­

ginning of this chapter. Nevertheless, they should be able to achieve their goals 

regardless of the attacks. The encryption algorithms briefly introduced in section 

Section 1.1 can be attacked but it would require powerful computing resources. In 

fact, many attacks on protocols do not depend on the weaknesses of the encryption

4trying to recover the keys used in the cryptosystem

5
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algorithm used. Examples of attacks tha t can be discovered a t an abstract level are 

presented in this section. More attacks are described in [CJ97] or on the SPORE 

website 5. Finally the properties that must be verified by protocols are presented.

1.2.1 Needham-Schroeder protocol

The Needham-Schroeder protocol defines the exchanges between two agents, Alice 

and Bob. The goal of this protocol is to establish m utual authentication between 

Alice and Bob. Figure 1.3 shows how this protocol is represented using the usual 

notation of cryptographic protocols. This protocol is composed of three messages6.

Message 1: A = }  B : {N a ,A }j(b

Message 2: B =>• A : {N a , N b }x a

Message 3: A B : {N b}xb

Figure 1.3: Needham-Schroeder protocol

In the first message, Alice sends her name A  and a nonce N a (a nonce is an 

unguessable num ber tha t is typically randomly generated) encrypted with the public 

key of Bob, K b. The encryption of a message m  w ith the key k is represented by 

{m}fc. Therefore {N a , in Figure 1.3 represents a message containing the nonce 

N a  and the agent name A  encrypted with the public key K b .

W hen Bob receives { N a , A }x b i since he has the private key corresponding to 

the public key K b , he has access to the encrypted information. He replies to Alice 

by sending her nonce, N a , and one he creates, N b, back to her. This information is 

encrypted w ith Alice’s public key, {N a , N b}K a-

In the last step of the protocol, Alice receives Message 2. After decrypting the

Bhttp://w w w .lsv.ens-cach an.fr/spore/
6The original protocol contains seven steps. The four extra steps explain that the agents get the 

public keys by contacting a server, which knows the public keys of all participants. As we are only 

interested in the authentication between the agents, we assume that each agent already knows the 

public key of the other and remove these four extra steps.

6

http://www.lsv.ens-cach


message w ith her private key, she recognizes her nonce N a , and replies to Bob with 

his nonce encrypted w ith his public key. When Bob receives Message 3, he recognizes 

his nonce and believes tha t he communicates with Alice. Both agents believe they 

are the only agents th a t know the nonce N b  and they will use it to authenticate 

themselves. Subsequently, when Alice receives any message w ith N b  inside, she will 

think tha t Bob sent it and vice versa.

Of course the protocol can be run several times by different agents with several 

nonces. One run  of a protocol is called a session. For this protocol we can also 

identify two roles: in itiator (sends Message 1 and Message 3) and responder (sends 

Message 2). Agents can play bo th  roles.

1.2.2 Attacks

It is dem onstrated here tha t by intercepting and possibly modifying the messages 

the intruder can catch secret information and usurp identities.

One of the common types of attacks is called the “m an in  the m iddle a ttack”. 

Figure 1.4 shows how this attack works on the Needham-Schroeder protocol using 

Lowe’s assum ption7 th a t participants can be dishonest [Low95]:

Message 1 Alice initiates a communication with Yves by sending { N a , A lic e }  Kyves-

Message 2 Yves usurps Alice’s identity by sending { N a , A lic e }  Kbob, the information he 

received encrypted with Bob’s public key.

Message 3 W hen Bob receives Message 2, he thinks th a t Alice wants to communicate with 

him so he sends the message { N a , Nb}Koiice (Alice’s nonce and his nonce) to 

Alice.

Message 4 Alice believes th a t Yves replied to her as she got back the nonce she used 

to communicate with Yves. Thus she sends back the nonce N b  to Yves

( { A f 6 }  Kyves)-

7 w ithout this assumption the protocol is secured

7



Yves

Figure 1.4: “Man in the middle a ttack”

Message 5 Yves can send Bob his nonce, {N b}xbob■ Henceforth each time th a t Bob 

receives a message with N b, he will think tha t it comes from Alice but it will 

be from Yves.

This flaw was found and corrected by G. Lowe [Low95] in 1995. The correction 

is simple; the sender of the second message adds his name in the message. So after 

correction the th ird  message looks like { N a , N b , B o b } Kalice fQr our example. In the 

later chapters, it is proven tha t the Lowe corrected version of the Needham-Schroeder 

protocol is safe, assuming th a t “type attacks” are prevented.

A second type of attack is called the “type a ttack”. In this attack, the intruder 

tricks the honest agents by changing the format of messages. Figure 1.5 presents a

8



slightly modified version of the Needham-Schroeder-Lowe protocol [Low96]; in the 

first message the agent’s names becomes the first element of the list of elements 

encrypted.

Message 1: A =$■ B : {A , N o )Kb

Message 2: B = >  A : { N a ,N b ,B } Ka

Message 3: A ==>• B : {N b }Kb

Figure 1.5: Modified Needham-Schroeder-Lowe protocol

Figure 1.6 shows how this protocol is vulnerable to a type attack:

Message 1 Yves sends Alice’s name and his name, {Alice, Y  ves} Kbobi to Bob hoping that 

Bob will believe th a t Alice wants to s tart a  communication.

Message 2 W hen Bob receives Message 1, he thinks tha t Alice initiated a communication.

For him  the information Y v e s  of the first message is Alice’s nonce. Thus as 

he received a name and a nonce by following the protocol, Bob sends to Alice 

{N b , B o b , Y v e s } K alice-

Message 3 W hen Alices receives Message 2, she interprets the concatenation of the two 

pieces of information N b  and B ob  as the nonce created by Yves. Thus she 

thinks th a t Yves initiated communication w ith her since he sent his name, 

Y v e s , and a nonce, (N b , B ob), to her. She then replies to his request of com­

munication by sending {N b , B ob, N a , A l ic e }  Kyves, and thus Yves can recover 

the nonce N b.

Nevertheless, [HLS03] proves th a t by tagging each field of the message with some 

information indicating its intended type, the “type attack” can easily be prevented. 

Moreover [HLS03] justifies the widely used assum ption w ithin the verification tech­

niques th a t all agents can identify the type of the information sent.

Another form of attack is the “replay a t tack”. Here the intruder replays old 

messages to  get the information he wants or to usurp an identity. To illustrate this
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Figure 1.6: “Type attack”

attack, we pick another protocol, the BAN-Yahalom protocol [BAN89, Syv94] (cf. 

Figure 1.7). In  this protocol, Alice and Bob trust a server, S, to generate the shared 

key tha t they will later use to exchange their confidential information.

Message 1: A = >  B : A, N a

Message 2: B ==>■ S : B , Nb, {A , Na}Kba

Message 3: S = »  A : N b, {B , Kab, N a}Kas, {A , K ab, N b}K ts

Message 4: A = *  B : {A , K ab, Nb}Kbe, {N b}xab

Figure 1.7: BAN-Yahalom protocol

10



Figure 1.7 introduces the protocol, first A sends his name, A,  and a nonce, Na  

to B (Message 1). In  the second message B sends his name, B, a nonce, Nb  and 

information encrypted w ith the shared key between S and B, { A ,  N a }x b s -  When 

the server S receives the message, it creates the key for a session between A and B, 

Kab  and sends Message 3 to A. To end the communication, A sends B the Message 

4 th a t contains the cypher text encrypted w ith the share key, K b s  and his nonce 

encrypted w ith the session key, { A ,  K a b ,  Nb}Kbs-

Figure 1.8 presents the attack:

Message 1 Alice initiates a communication with Bob by sending her name and her nonce.

Message 2 Bob follows the protocol and sends the second message (Bob, N b , {A lice ,  N a } n b s ) 

to the server. Yves intercepts and forwards the message.

Message 3 Yves sta rts  his attack  by sending A l ic e , (N a ,  N b ) ,  a message containing Alice’s 

name, and the nonces created by Alice and Bob.

Message 4 W hen Bob receives Message 3, he thinks th a t Alice wants to communicate 

w ith him  and he interprets the concatenation of N a  and N b  as one nonce 

if type flaw attacks are possible. Bob still follows the protocol and sends 

Bob, N b l ,  {A l ic e ,  N a ,  N b }x b s  ■

Message 5 Yves intercepts and blocks Message 4, and with the information he caught 

he builds the message {A lice , N a ,N b }K b s , {N b }N a- W hen Bob receives this 

message, he thinks tha t he and Alice can communicate safely. But in fact, 

what he interprets as his shared key with Alice is in reality a nonce. And Yves 

can use this nonce to usurp Alice’s identity.

This a ttack  differs from the man-in-the-middle one because the intruder re-sends 

information th a t he caught over the network and he is not replaying information sent 

to him.

Thus it has been shown that it is not always necessary for the intruder to break 

encryption algorithms to undermine protocols.
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Figure 1.8: “Replay attack”

1.2.3 Properties

W hen people think of exchanging information over open networks, two properties 

come to mind.

The first property usually required of a cryptographic protocol is the secrecy 

property. Here the verification tha t critical information remains secret during pro­

tocol runs is required. Two type of secrecy can be distinguished [AbaOO]:

•  information m  is secret when the intruder cannot find m  regardless what he 

does (sender fraudulent messages, usurping identities, etc.).
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■ information m  is secret when it is impossible to distinguish the session that 

uses m, from another one tha t uses a different piece of information m ’ instead 

of m.

Also two levels of secrecy can be distinguished, an  absolute level and a temporary 

level. In  the case of the absolute level, the information must be unknown by the 

intruder a t any time. For the tem porary level, we might want the secrecy of specified 

elements for a certain amount of time (for example only for one session of the 

protocol, etc.). In this thesis we will verify only secrecy properties w ith an absolute 

level of confidentiality.

The second property is the authentication property.  There are many definitions 

for this property, Lowe [Low97a] gives 4 different definitions of the authentication 

while Schneider [Sch97] identifies 10 different definitions. The m ain idea is to ensure 

that a t the end of the protocol the agents really communicate w ith the persons 

they intend to. As the intruder has the ability to replay all previous messages, 

authentication guarantees are usually expressed in  the form “if Alice receives a 

message m \  believed to be from Bob then Bob sent a message identical to m i” .

Depending on the protocol’s goals, other properties m ust also be studied. For 

example for a  protocol th a t is used to do online shopping, it may be required to 

ensure th a t the session keys used to encrypt credit card numbers cannot be re-used 

in another transaction instead of fresh session keys (freshness property)  [Gon93, 

AN95, BCF02, PSW+01],

For other protocols such as telecommunications protocols, it may be required to 

check that the protocol guarantees that the intruder is unable to deduce the identity 

of the sender or receiver of messages (p r iva cy /a n o n ym ity  property). Abadi [Aba02] 

gives two protocols th a t satisfy th a t property. Onion Router [GRS99] and Crowds [RR98] 

systems are designed to prevent an intruder from determining the origination or des­

tination of requests to servers.

For protocols used to sign contracts over the Internet, it may be required to 

ensure tha t the protocol satisfies a fa irness property  [MGK02], The property makes
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sure tha t an agent does not have an advantage over the others during the transaction. 

Kremer [KR02] presents an interesting approach based on the game theory, where a 

protocol is fair if a participant in collaboration with the communication subsystem 

does not have a strategy to receive a signed contract without the other participant

also having a strategy to receive a signed contract.

1.3 Problems Raised by Protocol Verification

The verification of protocols is difficult because:

•  the number of sessions is potentially infinite;

•  the number of participants is potentially infinite;

•  the message sizes could be undefined (as it was shown with type flaw attacks);

• after each step the intruder can learn new information and send fraudulent 

messages.

Even by assuming perfect encryption, the problem is still hard to  deal with. Several 

m ethods have been developed to solve this problem; some m ethods are more efficient 

than  others to verify specific properties. The verification of cryptographic protocols 

is equivalent to the verification of an infinite system and is undecidable [EG83].

1.4 Thesis

1.4.1 Contribution

The formal verification of cryptographic protocols is a very challenging area of re­

search, in light of the problems it raises and the critical role protocols play in modern 

life.

Being able to prove tha t protocols are safe in a reasonable time and for a wide 

range of properties is vital for the development of new cryptographic protocols. 

W hen this work started  only few autom atic proof techniques were available for cryp­

tographic protocols verification. One interesting approach among the user driven
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approaches was the Genet and Klay’s technique [GKOOa]. Instead of trying to prove 

properties on concrete traces of protocols, they build abstract models of protocols’ 

traces and then they check the safety of the protocols on the abstract systems. On 

the approxim ation of the reachable traces, it is possible to verify security properties 

such as no information got by the intruder or the participants communicate with 

the right person. The proof by approximation is very efficient as it allows us to only 

keep the information we are interesting in and then to quickly verify the desired 

properties. At the end of their article, they indicate tha t the approach can be auto­

mated. The challenge is to find an approximation that guarantees the termination 

of the com putation, tha t does not require user interactions and tha t is suitable for 

secrecy and authentication verification. This thesis investigates the development of 

such approximation. Nevertheless, the proof by approximation is not perfect, and 

when the verification fails no conclusion can be drawn on the property. Another 

approach must then be used to check the property. This thesis also investigates the 

combination of the new approach w ith another verification technique also presents 

the ease w ith which the new approach can be integrated into an existing technique.

1.4.2 Outline of the Thesis

Chapter 2 reviews the literature on the formal verification of cryptographic proto­

cols and motivates the work presented in this thesis. Chapter 3 introduces the basic 

definitions and details the m ethod developed by Genet and Klay. Chapter 4 details 

the improvements made to the original method. It explains how the computation 

of the abstract model can become automatic. It also presents a combination with 

Paulson’s technique [Pau98]. A prototype IS2TiF was developed to test the im­

provements made to [GKOOa], Chapter 5 briefly introduces this tool. To validate 

the work done several protocol verifications were conducted, the results of which 

are presented in Chapter 5. Chapter 6 outlines the conclusions of this research and 

identifies future directions.
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Chapter 2

Verification of Cryptographic 

Protocols: State of the Art

The formal verification of cryptographic protocols is a  critical stage in the design 

and development of cryptographic protocols. A number of models and tools have 

been developed to formally verify cryptographic protocols over the last twenty years.

In  this section, some of those models and tools are briefly introduced. Three 

types of approaches are distinguished, which correspond to ’’ways of explaining” to 

a user why a  protocol is unflawed. This is done by:

■ showing th a t w hat the user believes in  (secrecy, authenticity) matches the 

reality;

•  showing th a t messages or sequence of message th a t compromise the protocol 

cannot be found;

•  describing the protocol as a num ber of little boxes. If  the interactions between 

those boxes are free of mistakes the protocol is safe.

2.1 B elief approaches

One way to  verify protocols is to reason about the beliefs of the participants involved 

in the  communications.
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One of the first approaches developed for the verification of cryptographic pro­

tocols was “the logic of authentication” [BAN89] (also called BAN logic). Michael 

Burrows, M artin  Abadi and Roger Needham developed this logic in 1989. In this 

method, the verification is done by reasoning about the beliefs of the agents in the 

network and the evolution of these beliefs after each protocol step. An example of 

this reasoning would be: “If Paul has received a message encrypted with the key K, 

and he believes th a t only Alice and he share K, then he believes th a t Alice has sent 

the message” .

To verify a protocol w ith this method, first the initial beliefs of all the protocol’s 

actors are defined. Then after each protocol step, the receiving agent may be able to 

derive information previously unknown to him. W ith  this new information and the 

logic inference rules, new beliefs are found by derivation. If the set of beliefs fits with 

the beliefs desired for the protocol, it is assumed th a t the protocol has been proven 

correct. Otherwise, a security flaw might have been discovered in the protocol. The 

BAN logic has found flaws and redundancies in several protocols [BAN89].

[Nes90] was one of the first to criticize the BAN logic. He created an example to 

prove the logic was flawed. In  tha t example, the verification concluded tha t authenti­

cation could be established with a compromised key. Burrows, Abadi and Needham 

position was th a t the BAN logic was incapable of detecting an unauthorized release 

of information. Those criticisms were the first bases of new logics:

•  GNY logic [GNY90]: this logic makes the distinction between what the par­

ticipants believe in  and what they possess. Thus it is possible to reason at a 

lower level than  the BAN logic. Unfortunately, the 40 inference rules of this 

logic make it difficult to use.

•  Abadi and T uttle’s logic [AT91]: gives a formal semantic of the BAN by im­

proving the logic’s syntax and inference rules. The modifications lead to a 

simpler logic. Nevertheless, [Sv094] proved that the logic was not sound.

•  van Oorschot’s logic [v093]: this logic offers an extension of the BAN and the 

GNY to verify protocols with key agreement.

17



•  AUTLOG logic [KG94]: this logic introduces a simulated spy who can detect 

information leaks. This logic contains 42 inference rules.

■ SvO logic [Sv094]: this logic unifies the [BAN89], [GNY90], [AT91] and 

[v093]. The logic contains the negation, makes the distinction between be­

lief/possession and does not contain the idealisation step. It captures all the 

desirable features of the other logics w ithout introducing new rules/axioms.

W ith the exception of the Abadi and Tuttle, and SvO logics, these logics are more 

complicated and more difficult to use than  the BAN logic as they have more inference 

rules. The BAN logic only has 19 inference rules.

One can also refer to K ailar’s logic [Kai95], and Kessler and Neumann’s logic 

[KN98], tha t were used to verify e-commerce protocols. These logics are still baaed 

on the BAN logic, bu t they introduce the notion of accountability. Accountability is 

the property whereby the association of a unique originator w ith an object or action 

can be proved to a  th ird  party (i.e.: a party who is different from the originator and 

the prover). K ailar’s logic [Kai96] has been used to  verify two versions of Carnegie 

Mellon’s Internet Billing Server protocol, the University of Southern California In­

formation Science In stitu te ’s anonymous payment protocol and the SPX protocol. 

The SET [Gro96a](Secure Electronic Transaction) and the Payword protocols have 

been studied w ith Kessler and Neumann’s logic [KN98].

Those logics are usually decidable. In [Mon99b], belief logics are automatically 

transformed in another logic on which a forward chaining search can be launched (the 

completeness and term ination of the algorithm are given in the paper). The BAN 

logic was implemented in the theorem-provers SETHEO [Sch96] and EVES [CS96] 

(these two tools produce fully autom atic proofs of protocols). Kindred generated 

autom atic checkers for bo th  K ailar’s logic and AUTLOG logic using Revere [Kin99], 

Nevertheless, if there is no tool yet developed for the logic required it can still be 

implemented in a  theorem-prover like HOL [Bra96] (Higher Order Logic), SETHEO 

or any other suitable theorem-prover. Kessler and Neum ann started  to implement 

their logic in this tool, however the workload was very heavy, since SETHEO is 

actually not suited to this logic and the run-tim e for most of their proofs was so
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long tha t they preferred to carry out proofs by hand.

An interesting work in th a t area was [BGOO]. [BGOO] introduces a model-checking 

approach tha t is able to deal w ith beliefs.

Each agent is seen as a  process having beliefs about itself and other agents. They 

define a “view” as the evolution of a principal’s beliefs over time. They extend 

the tem poral logic CTL to use model-checking on belief formulae. To each view 

a language is associated to express properties about the process associates to the 

view. W hen authors consider the tem poral evolution, formulae expressing beliefs 

are treated as atomic propositions.

CTL deals w ith finite state machines. Nevertheless, their model deals with an 

infinite number of views and belief atoms. So they have to create the MultiAgent 

Finite State Machine th a t is an  extension of finite state machines for their model 

by:

•  fixing the num ber of views. They only consider the views of an external ob­

server and associate a finite state machine to each view.

•  introducing the notion of explicit belief a tom s ; the only atoms which are ex­

plicitly represented in a finite state machine.

A M ultiAgent Finite S tate Machine can then be seen as a set of finite state  machines.

They had to extend also the notion of satisfiability in  a M ultiAgent Finite State 

Machine because of the im p lic it belief atom s  (the atom s th a t are not explicit). The 

finite state  machine satisfiability does not work w ith those atoms. The explicit belief 

atoms induce a  “com patibility relation” between states of different views. They use 

this relation to express the satisfiability of implicit belief atoms (explicit atoms are 

used to study the veracity of implicit atom s).

The protocol’s properties can then be checked under a tem poral aspect or a  belief 

aspect. This approach has been used to study the Andrew protocol [Sat89].
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Cryptographic protocols can also be verified by studying and reasoning about their 

traces. A trace is a sequence of in form ation  th a t is derived from the protocol steps 

or operations on messages. The nature of the information depends on what the 

verifier is interested in; it can be:

•  a message, if the user only wishes to look at all messages sent during protocol 

runs.

•  a message +  a sta tus of the knowledge of the intruder if the user wishes to 

follow the protocols and also to look at the information which the intruder 

learns after each protocol step.

2.2.1 Dolev Yao’s model

Dolev and Yao [DY83] were among the first to offer an approach to verify crypto­

graphic protocols. In  their work, they specify a model of the intruder tha t has since 

been re-used in  most other approaches. The intruder is in full control of the network. 

He can read, modify, delete messages and create fraudulent messages. Moreover, the 

other participants see him  as a legitimate participant; he can then follow the pro­

tocol and establish valid communication with them. Initially, he does not know the 

initial secret information such as encryption keys belonging to honest agents. Since 

their intruder can intercept and replay any message, and can also create his own 

messages, Dolev and Yao consider any message sent as sent to the intruder and any 

message received as received by the intruder. Thus the network is a machine used 

by the intruder to generate messages (words). Messages follow rewrite rules, such 

as encryption and decryption with the same key cancel each other. The goal of the 

intruder is to find information tha t should be secret. If he succeeds then the protocol 

is flawed. Thus the verification of secrecy properties can be seen as a search problem 

in a  term-rewriting system, which means proving th a t a certain message is not in 

the set of messages th a t can be generated (sent or received) by the intruder.

This model is quite lim ited as it considers only secrecy, and models only encryp-

2.2 Trace approaches
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tion and decryption of messages, and the addition and removal of agents.

In  [DY83], two classes of protocols are also defined and studied:

• cascade protocols where only encryption and decryption operators are used by 

the participants;

• nam e-stam p protocols where the participants can encrypt and decrypt but can 

also append, delete and check names encrypted with the plaintext.

Sufficient and necessary conditions for two-party cascade protocols to be secure are 

provided in  the paper [DY83]. A polynomial algorithm to decide if a two-party 

name-stamp protocol is secure is also introduced.

In [Mea92], Meadows extends the Dolev-Yao model to  cover the intruder’s ability 

to cheat a principal. Meadows’ tool can find attacks where for example the intruder 

learns a  word K and convinces an honest agent tha t K is a session key. Nevertheless 

this model was not able to deal with the freshness of the information.

This ability was added later in the NRL Protocol Analyser [Mea94]. In this tool, 

the protocols are specified as a set of transitions of sta te  machines. The user then 

queries the program by entering words/information known by the intruder and values 

of local variables. The program takes each subset of the words and variables and for 

each transition rule uses a narrowing algorithm to find a complete set of substitutions 

that make the output of the rule reducible to tha t subset. The program returns the 

complete description of the states that may precede the specified states. The user 

can prove th a t a  protocol is flawed by repeating this process. The idea is to start 

from insecure configuration (for example, one tha t violates a secrecy property), to 

look for a sequence of messages that lead to a valid message of the protocol (any 

message exchanged between two participants). If a sequence is found the protocol 

is flawed. The two m ain drawbacks of this approach are firstly, th a t the expertise 

of the user is im portant to find a flaw, and secondly tha t the com putation may not 

term inate.
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2.2.2 Paulson’s model

Paulson [Pau98] developed a m ethod based on the proof by induction on traces 

(messages sent). In this technique, the protocols are modeled by the set of all 

possible traces th a t they can generate. It is assumed in this m ethod tha t there is 

an intruder or bad agent in the network. This intruder has access to all traces, can 

decrypt messages if he has caught the right decryption keys and finally, can build 

and send fraudulent messages if he has the correct encryption keys. To verify the 

protocol properties, we prove tha t each protocol step preserves the desired properties 

by induction on traces.

This m ethod allows the verification of a large range of properties. But in this ap­

proach the secrecy and authenticity properties/theorem s are very difficult to prove. 

The proofs require an experienced user to introduce the correct lemma at the cor­

rect tim e to  ensure the proofs term inate. The proofs of the remaining properties 

(freshness, regularity, ...) are more simple and are generally similar for all protocols.

This m ethod was implemented in the theorem-prover Isabelle [Pau94] and used 

to verify the Internet protocol TLS [Gro96b, Pau99] and Kerberos protocol [BP98a, 

BP97, BP98b] amongst others. The proofs of these protocols are available on the 

Isabelle website1. This technique has also been used to verify the SET protocol 

[Gro96a] in  a project “Verifying E-Commerce Protocols a t the University of Cam­

bridge.

2.2.3 Rewriting techniques

[CDL+99] explains how a multiset rewrite rule model can be applied to protocol

verification. Here, a system state  is a finite set of ground terms: states of protocol

agents, messages transm itted  and information saved by the intruder. The protocol

rules, modeled as rewrite rules, express how system states are updated (the left hand

side of the rewrite rule is replaced by the right hand side of the rule). The model

also contains rules to model the intruder’s abilities. One interesting feature is the

use of the existential quantifier in rules to express the freshness of information. The

1 h ttp ://w w w .cl.cam .ac.uk/R esearch/H V G /Isabelle/
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model is not a m ethod to verify protocols rather a formalism to model them. One 

advantage of the formalism is th a t it allows the modeling of unbounded runs of a 

protocol.

This model has been incorporated into the CAPSL [DM00] specification lan­

guage for authentication protocols. This language is translated to an intermediate 

language th a t can be exploited by the model-checker M aude [DMT98]. In Maude, 

the verification of the properties is carried out on an exhaustive search of the reach­

able states. If a state does not satisfy the property, the protocol is flawed and the 

trace of the attack is available. A depth-first algorithm is used to compute the 

reachable states. Thus it has the advantage of being able to verify a large range of 

protocols, however, it is lim ited to small protocols and a small number of partici­

pants. The approach was improved by typing the messages and by placing priority 

on rules to apply.

Jacquem ard and al. [JRV00] also introduced an autom atic tool that has been 

successfully tested on simple protocols [CJ97]. The protocol, the intruder’s initial 

knowledge and the intruder’s abilities described in an input file, are transformed 

into rewrite rules by their compiler CASRUL. For Jacquem ard and al., protocols 

and intruders are rewrite rules executed on initial data  by applying a variant of ac- 

narrowing [Hul80]. [JRV00] shows how these “narrowed” rules can be used by the 

theorem-prover daTac [Vig95]. A protocol execution is a sequence of terms describ­

ing the messages sent, the messages expected and the knowledge of the participants. 

W hen the prover arrives a t an inconsistency (a term that models a violation of a 

property, for example the intruder knows information th a t should be secret) then 

the protocol is flawed. The verification is limited to small numbers of participants 

and of protocols’ runs.

The rules generated by CASRUL have been used in theorem-provers for first- 

order logic, on-the-fly model-checking or SAT-based state exploration in the Eu­

ropean Union Project AVISS2 (Automated Verification of Infinite State Systems) 

[ABB+02],

2h ttp :/ /w w w .inform atik .un i-fT eiburg .de/~ so ftech /reseaich /p ro jec ts/av iss/
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In  [GKOOa], tree autom ata are used to model the network (traces of the protocol 

+  capabilities of the intruder) as well as the current in truder’s knowledge. A term 

rewriting system is used to model the protocol steps and some intruder abilities. In 

this approach the properties are verified on an over-approximation of the reachable 

states of the network. At the end of the com putation (if the com putation termi­

nates), the tree autom aton contains all messages sent by the participant and all 

information the intruder has acquired during the runs. Properties are checked by 

checking th a t from all the information recognized by the autom aton nothing violates 

the properties. As the set of information is an over-approximation of the concrete 

execution, if the property is verified on the over-approximation it is also verified on 

the concrete execution. Otherwise nothing can be said about the protocol. In this 

approach the authors try  to prove tha t properties are verified and not to find an 

attack. The approach is not limited by the number of participants or the number 

of sessions. However, it does require user interactions to make the computation 

term inate.

2.2.4 Horn clauses

[BlaOl, CLC03] use Horn clauses to model protocols. This approach is closely related 

to the rewriting approach. Predicates are used to model:

•  basic information: honest agents, dishonest agents, agent names, numbers, 

nonces.

•  a message: basic information is a message, a composition of messages is a 

message, keys are messages, etc.

•  a trace is a possibly empty sequence of events, where an event is a message 

sent by an  agent or a view of an agent’s internal memory.

There are also predicates to model the intruder and any auxiliary functionality. 

Horn classes are used to model the abilities of the intruder, freshness, symmetry, 

etc w ith their predicates. The protocol steps and its properties are also modeled 

as Horn clauses. The advantage of such approach is tha t techniques tha t have
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been developed to deal with Horn clauses over the years can be re-used for the 

com putation of the reachable states of the system and the proof of its properties. 

The proofs are autom atically done on the trace, however, to make the computation of 

a trace tractable, approximations are applied (those approximations are introduced 

in Section 5.3.3).

2.2.5 Automata model

In [Bol96], Bolignano introduced a m ethod based on the idea of trustable and un- 

trustable agents. A set of trustable agents and one intruder are defined. This in­

truder stores all the information exchanged between the agents, decrypts messages if 

he has the appropriate decryption keys, and builds and sends fraudulent messages if 

he has the appropriate encryption keys. Protocols are formalized as autom ata where 

each sta te  is a n-tuple of the agents’ current states, and the transitions are the pro­

tocols steps. The protocols properties are verified by induction on the automaton 

states.

Bolignano used the theorem-prover Coq [BBC+ 97] to implement this method, 

and presented an extension of his m ethod for e-commerce protocols [Bol97]. Like 

[Pau98], this technique imposes no limits on the size of the messages and the number 

of sessions, bu t it requires user interactions.

M onniaux was the first to use tree autom ata to verify cryptographic proto­

cols [Mon99a]. His idea was to model w ith the set of messages th a t the intruder 

can create after each protocol step using tree autom ata. For tractability  reasons, 

a superset of the attacks is computed using an abstract interpretation technique 

[CC92]. The verification of protocol properties is carried out on the superset. If no 

attacks are found, then the properties are verified, however if an attack is found, 

these may not be any attack in reality. Moreover, even though the verification is 

fully autom atic, the results are valid for a concrete model w ith bounded numbers of 

participants and sessions.

[GLOO] extends M onniaux’s idea by using an extension of tree autom ata that
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integrates some deductive abilities (V-parameterized tree autom ata) and also by 

using some ideas from [Bol96] (protocol model) and [DMTY97] (honest agents can be 

seen as accomplices of intruders). This technique also uses abstract interpretation to 

build an abstract model of the intruder’s knowledge. The result is a fully automatic 

technique. The main drawback of the approach is the exponential complexity of 

the exploration algorithm. Depending on the mode the protocol is running; mono­

session or multi-session, and on the complexity of the protocol, the run time can go 

from few seconds to few minutes to return  a result. A nice feature of this approach is 

tha t the com putation does not stop after the first possible flaw. Rather, it explores 

all possible exchanges between the participants.

2.2.6 Strand Space model

[THG99] presents a new model for the verification of cryptographic protocols: Strand 

Spaces. A strand  is a sequence of messages sent and received by an agent. A strand 

space is a set of strands (agents’ strands and in truder’s strands). A bundle consists of 

a number of strands hooked together, where one strand sends a message and another 

one receives th a t same message. A protocol will be correct when each bundle consists 

of one strand for each agent and each agent agrees on the participants, nonces, and 

session keys. Intruder strands are also included in a bundle, so long as they do not 

prevent honest agents agreeing on a secret, or from keeping their secrets.

A thena [SBP01] is a tool based on this model. It uses model-checking and 

theorem proving approaches. [SBP01] refines the strand spaces model and defines 

a logic to specify security properties. Their logic is a propositional logic in which 

strands are used as constants and bundles as variables. Secrecy and authentication 

properties are specified as well-formed formulae. If Athena com putation terminates, 

it either provides a counterexample if the formula does not hold, or generates a proof 

of the correctness of the security. The verification is fully autom atic and holds for 

an infinite num ber of protocol runs. The main drawback is th a t the computation 

might not term inate. Nevertheless, the term ination can be forced by bounding the 

number of concurrent sessions of protocol and the size of the messages sent.
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2.2.7 Mure/?

Mury> [DDHY92] is a  tool especially designed for protocol verification by state ex­

ploration. It has been successfully used to verify multiprocessor cache coherence 

protocols and multiprocessor memory models. The user models his protocol in the 

Mur<^ language and adds to this model the desired properties. The language is 

based on a collection of guarded commands (condition/action rules) to model the 

protocol steps. Then the possible traces (sequence of rules) are computed and the 

Murip system checks if the rules of the traces satisfy the desired properties.

[MMS97] explains how Murip can be used to verify cryptographic protocols. 

Firstly, they model the protocol, the intruder and the properties they intend to check 

for this protocol. Mur</j is launched for exploration for four to five participants and 

three to five runs of the protocol. If a  property is not satisfied, they have the trace 

that leads to the flaw.

2.2.8 Marrero, Clarke and Jha’s model

In [MCJ97], protocols are modeled by a sequence of commands such as SEND, 

RECEIVE, NEW NONCE, etc. The principals and the intruder are also modeled 

by a sequence of commands. By interleaving these sequences, traces of the protocol 

are built. Then from these traces it is possible to investigate whether one leads to a 

configuration th a t violates the protocol’s properties. This approach only works for 

a finite num ber of protocol runs.

2.2.9 Challenging model

[DMTY97] presents an autom atic m ethod to verify authentication properties using 

inference rules. After having extracted the role of each participant (information they 

are sending and receiving), their intruder will try  to usurp identities. In addition 

to the usual abilities of the intruder (decryption and encryption of information with 

already known keys, composition and decomposition of message, etc.), the intruder 

also has some abilities regarding the protocol (For example if the intruder knows 

some information then, by encrypting and sending th a t information to an agent he
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gets the cipher text of that information). For each role, an agent is expecting a 

particular message to launch the next one. If the intruder is able to make an agent 

launch all his messages then there is an  authentication flaw in the protocol. The 

search is not guaranteed to terminate.

2.3 Process algebraic approaches

The final m ethod of dealing w ith cryptographic protocols, reviewed within this sec­

tion, considers protocols as processes w ith well-defined algebra. Each role (sender, 

receiver, and intruder) is seen as an independent process running together with other 

processes (roles). A process will be able to send, receive and create information, etc. 

W ith process algebra, systems can be interpreted using two main semantics:

•  operational semantics; Operational semantics describes how protocols are per­

formed. It shows the evolution of the protocol’s configuration in time. A 

useful and well used paradigm to describe protocols from an operational point 

of view is the state  transition systems. It gives transitions between states 

where states are process descriptions. Thus starting  from an  initial configura­

tion of the processes, the set of the possible configurations can be computed 

and the properties can be checked on those configurations.

■ denotational semantics; Denotational semantics describes the meaning of a 

protocol as a m athem atical object in  some domain. The protocol P  is mapped 

by a valuation function F  into its meaning (denotation) D:

F (P )  =  D .

From the process algebraic description the following information is built:

1. syntactic domain which is the set of m athem atical objects,

2. semantic functions which map object from the process algebra into object 

in the semantic domain,

3. semantic equations which specify how functions act on each process.
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Then protocols are proven safe if their meaning verify properties.

The language of Communicating Sequential Processes (CSP) [Hoa85] has been 

used for the verification of cryptographic protocols. This language can describe 

interactions of processes in a system where they are interacting via message passing.

Due to the ambiguity of the informal specifications, passing from a protocol spec­

ification to a CSP model is difficult [Sch98] and requires design decisions to be taken. 

An attem pt to simplify this process was the work of Roscoe [Ros95] where a CSP 

protocol model is presented. The model consists of a communication medium with 

two channels th a t link it to each participant. One channel is for messages sent and 

the other channel is for those received. The abilities of the intruder are modeled by 

adding extra-channels. In order to simplify the transform ation specification to CSP 

model, Lowe implemented Casper [Low97b], a protocol compiler, which produces 

CSP description from protocol specifications.

Once a CSP model is available, the Failures Divergences Refinement (FDR,) 

model checker is used to discover attacks on the protocol. One of the m ain drawback 

of model-checkers generally, and FDR is no exception, is th a t they are inefficient on 

systems with infinite number of states to explore. To restrict the behaviour of 

the model, lim itations on the numbers of participants, nonces and protocol runs 

are applied. Thus the model-checker guarantees the safety of the protocol for the 

“reduced” model bu t it does not mean th a t a bigger model will be safe. Research has 

been carried on CSP and FDR, to achieve more complete results. [BLROO] applied 

data independence  techniques which allow the allocation of an infinite number of 

fresh information but still m aintain a finite number of values in FD R for unbounded 

runs. To deal w ith an infinite number of nonces, an extra-process m ust be added 

to the model. This process delivers fresh nonces to participants when required and 

checks the m apping of the nonces onto a finite set of values. A subset of those values 

is allocated to the fresh nonces used by trustable participants. The remaining values 

are m apped onto by all the nonces known to the intruder and those redundant in 

the current session. To work, the technique requires messages to be typed. One 

drawback of the approach is that every agent is limited to one session at a time;
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otherwise the num ber of states to explore will increase drastically.

In  [Low99], Lowe presents sufficient conditions on protocols and their environ­

ments, such tha t, if there is no secrecy breach on a small model of the protocol then 

the protocol is secure. Thus, there is no attack possible on any bigger system. His 

small model restricts the role of the agents, the in truder’s initial knowledge and the 

data  type of the messages. Conditions are placed on the requirements of distinct 

text values of encrypted components, the ability to determine the identities running 

the protocol from the messages and the exclusion of tem porary secrets. This analy­

sis is lim ited to secrecy properties and Lowe adm itted there was a small risk that a 

flaw could be found when in fact the protocol was safe.

Despite their lim itations, CSP and FDR are very efficient for the verification 

of cryptographic protocols. In [Low96], Lowe used FD R model-checker to find his 

flaw in the Needham-Schroeder public key authentication protocol [NS78]. A com­

bination of Casper and FDR, has been proven to be a very powerful tool for the 

verification of cryptographic protocols. In  [DNL99], this approach was used to ver­

ify 50 protocols of [CJ97]. The results showed th a t they were unable to verify one 

protocol, failed to rediscover attacks on five protocols, found new attacks on 10 

protocols assumed to be secure and new attacks on 6 flawed protocols.

In  [CJM00] introduced a tool, known as Brutus, which was developed to simplify 

the protocol designers work. Here the protocol is modeled as an asynchronous 

composition of a  set of named communicating processes which model honest agents 

and the intruder. In their model, all messages sent by honest agents are caught by 

the intruder and the intruder sends all the messages received by honest agents. To 

make the model finite, the amount of tim e a participant may execute the protocol 

is limited. Each a ttem pt is a session and for each session an  agent can play the 

role of initiator or responder. To complete this model, an intruder is added and 

they are able to explore the different states of their system. The protocol properties 

are expressed and verified with a first-order logic tha t includes a past-tim e modal 

operator.
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The spi-calculus [AG98] is another process algebra developed for the crypto­

graphic protocol verification. It extends the 'K-calculus w ith cryptographic primi­

tives. In  this approach, each actor is modeled as a process, and the protocol is an 

instance of those processes running in parallel. In  this framework it is possible to 

express secrecy and authenticity properties. In order to verify whether a property is 

satisfied, the equivalence3 between two instances of the protocol must be checked. If 

In st(M ) describes an instance of the whole protocol parameterized by the message 

M  and if F (x) is an instantiation of the abstraction F  on rc, then:

A u th e n tic a t io n  p ro p e r ty :  In st(M )  is equivalent to I n s t spec(M ), for any 

M; I n s t spec is a magical version of In st where processes react as if they have 

received the correct information.

S ec recy  p ro p e r ty :  In st(M )  is equivalent to In s t(M ’)  if F (M )  is equivalent to 

F (M ’) , for any M  and M ’.

In  the spi-calculus, there is no explicit definition of an in truder’s abilities. The 

intruder is assumed to be able to carry out any of the actions defined in the language, 

and carries out attacks on a protocol using only these actions. Therefore, the verifier 

must be wary th a t this could result in missing particular attacks on the protocol 

due to the lim itations of the calculus. The language has been used to verify small 

protocols [AG98], and the proofs were carried out by hand. Because of the use of 

the quantification over all possible contexts in their definition, the implementation of 

an autom atic tool for this approach is difficult. Nevertheless, work to develop tools 

and techniques based on this model can be found [Aba99, GLLOO, FA01, Azi03].

In  [Aba99], Abadi explains how to verify secrecy properties by typechecking the 

protocols. He distinguishes three possible types for the data  sent: Public , Secret 

and A ny. Public  d a ta  can be known by anyone. Secret data  m ust be kept secret. 

A n y  d a ta  is an  arb itrary  type bu t it should not be leaked as A n y  d a ta  could be of 

Secret type. On those three types, he builds a set of typing rules for the spi-calculus.

3T w o  processes P and Q are equivalent if the behaviours of processes P  and Q are indistinguish­

able from each other. A third process cannot distinguish running in parallel w ith P from running 

in parallel w ith Q.
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He also guarantees th a t if the protocol typechecks then the secrecy of messages is 

protected. He shows th a t the proofs are more simple to do with typechecking than 

without. Moreover, the rules specified are neither necessary nor sufficient for the 

security of protocols. Not necessary as they are incomplete, and not sufficient as 

they take only secrecy issues into account.

In  [GLLOO], Gnesi et al. modify the syntax of the spi-calculus (by removing 

mobility and by embedding the “let” and “case” constructs into the output and 

input primitives respectively) and define a semantics for their language based on 

labeled transition  systems. They then show how security properties can be specified 

with the Brutus logic [CJMOO]. To make their transition systems finite, they used 

results of previous work in this domain [MMS97, HLS03] (such as typing input 

messages).

In  [FA01], symbolic techniques for studying the traces of particular cryptographic 

protocols (incorporecting shared key encryption/decryption th a t use arbitrary  mes­

sages as keys) are presented. They use a dialect close to the spi-calculus to describe 

the protocols. The symbolic com putation leads to a finite representation of models 

embodying the interactions between the agents and the intruder. These models can 

then be used to analyze protocol properties.

[Azi03] introduces a denotational semantics for the pi-calculus and the spi- 

calculus. Using an abstract analysis approach on his models, he explains the verifi­

cation of the secrecy and authentication properties. Autom atic tools for each of the 

calculus are also presented in this thesis. The results are guaranteed for unbounded 

numbers of sessions and participants.

2.4 Summary

As is dem onstrated in  this chapter, large numbers of models and tools are available 

for the verification of cryptographic protocols. Choosing the most appropriate model 

is difficult. Moreover, the properties verified might differ from one model to another. 

Nevertheless these approaches can be compared on the basis of:

■ whether they try  to find attacks or to prove tha t properties are satisfied;
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•  whether an  autom atic tool is available to do the verification.

Table 2.1 presents the comparison of the m ethods studied in of this section. From 

this table, two conclusions can be drawn:

•  more “attack search” techniques were available;

■ “attack search” techniques were more accessible as autom atic verification tools 

were available.

Techniques P roo f A ttack A utom atic

BAN [BAN89] V V
Dolev Yao [DY83] V V
Meadows [Mea92] V V
Paulson [Pau98] V
Maude [DMT98] x/ V
CASRUL [JRVOO] V V
Genet and Klay [GKOOa] V
Bolignano [Bol96] V
Monniaux [Mon99a] V V

Mur</j [MMS97] V V

Marrero and al. [MCJ97] V V
Debbadi and al. [DMTY97] V V
Casper+FDR [Low97b] V V
spi-calculus [AG98] V

Table 2.1: Starting point of the thesis

Verifications using proof techniques are very powerful as their results are guar­

anteed for an  infinite num ber of sessions and an  infinite num ber of participants. But 

such m ethods require many user interactions to do the proofs.

O n the other hand, the “attack search” techniques look for attacks on small 

models of the protocol (bounded sessions, bounded num ber of agents, etc.) and 

offer no guarantees for the whole protocol, if no attack is found. Nevertheless the 

search can be done automatically.
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To make the problem of the search for attacks tractable and to develop automatic 

tools, the following two approaches have been used.

The first approach consists of fixing the param eters th a t can be infinite to reduce 

the size of the system. For example, the messages exchanged can be typed [MMS97, 

HLS03] to fix their size. The number of agents in the network can also be bounded. 

[CLC03] proved tha t two agents are sufficient for the analysis of security properties 

of cryptographic protocols when the protocols allow an agent to talk to himself. If 

the protocol does not allow “agents to talk to themselves” and there is an attack 

involving n  agents, then there is an attack involving at most k +  1 agents (k is the 

number of roles th a t an agent can play). W ith this approach if a flaw is found on 

the small model then the larger model, from which the smaller was derived, is also 

flawed. The lack of flaws on the small model does not necessarily mean tha t the 

original model is safe.

The second approach is to build an abstraction-based approximation of the con­

crete model [CouOl]. Here the idea is to build a finite model by compounding 

information regarding the system properties to be checked or by making abstraction 

of irrelevant information to the properties to be checked. W ith this approach, if a 

flaw is not found in the abstract model, then the concrete model is safe. Flaws in 

the abstract model do not necessarily mean th a t the concrete model is flawed.

To illustrate these points consider Figure 2.1, 2.2 and 2.3. Figure 2.1 models the 

system th a t m ust be verified. Figure 2.2 gives an idea of the system to verify when 

the number of agents are bounded [CLC03]. In Figure 2.3, Agent 2 to Agent n  are 

compounded into an Agent R. The communications between these agents are then 

modeled by a transition  from Agent R to himself; th a t is the approximation chosen 

by [GKOOa],

W ith  the abstraction technique, some proofs of cryptographic protocols have 

been carried out since this research work started [BlaOl, CLC03, BLP02, Azi03]. 

Moreover by choosing this technique, the tool implemented should be easily com­

bined w ith another approach in order to get a result when the proof fails (i.e. the 

property is not satisfied on the abstract model).
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Figure 2.1: Infinite system

Figure 2.2: Fixing the unbound param eters

Figure 2.3: Compounding together information
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Finally, the approaches introduced in this chapter are mainly “specialized” for 

authentication and secrecy properties. However, other properties may also be stud­

ied as indicated in  C hapter 1.

Thus to  summarize a good verification technique should:

•  autom atically prove properties;

•  be easily combined with other approaches (to get a better feedback on the 

protocol safety or to verify a wider range of properties)

2.5 Conclusion

As only few autom atic proof approaches are available, we decided to work on an 

autom atic proof approach. The Genet and Klay’s technique looks like a nice starting 

point as it can be autom ated and it seems to be easily combinable with another 

approach. As it will be seen in Chapter 5, other people also decided to work on 

developing autom atic proof tools to verify cryptographic protocols. Nevertheless, it 

was not the only active fields over the last years, two other fields were:

•  extending the power of the intruder used during the verification [MeaOO, CLT03, 

CRZ05],

■ extending the verification to other protocol properties: freshness [NRV04], 

fairness [BDD+05, TVV05] and anonymity [GHvRP05].
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Chapter 3

Genet and Klay’s approach

This chapter starts by introducing some basic notation and definitions required to 

understand the following overview of rewriting systems and tree autom ata. Following 

this, the Genet’s concept [Gen98a], later re-used by Genet and Klay [GKOOa] to  verify 

cryptographic protocols, is introduced. The final part of this chapter explains how 

Genet and Klay verify protocols, and highlights the pros and cons of the technique.

3.1 Definitions

A n alphabet F  is a finite set of elements of the form f:i where /  is a  symbol and 

i  =  a r ( f )  w ith o r an arity  function from T  to  N . Symbols of arity zero are called 

constants.

Let X  be a set of constants th a t are different from the constants of an alphabet 

F , then the set T {T , X ) of terms is defined as follows:

1. X  C T { T ,  X) and

2. {a;|a: 6 T  andar(x) =  0} Q T ( F ,  X ) and

3. { / ( i i , . . .  , t n) \ f  e  F a n d a r ( x )  >  0 a n d  a ll h , . . .  , t n G. T (T , X )}  C X )

Constants of X  used in the terms are called variables and V ar(s) denotes the 

set of variables of the term  s € T (T , X ). Terms without variables are called ground
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terms. The set of ground terms is written T (^ ) . Finally, a term is linear if  none of 

its variables occurs more than once.

Terms can also be seen as trees labeled by elements of T  U X.  For example, the 

term / ( i i ,  ¿2, ¿3) can be represented by the tree:

It is possible to navigate through terms. We need the set Vos(s) of positions in 

the term s  in T{J~, X) .  Vos(s)  — {e} U Vosi(s)  with e the top-most position in a 

term1 and Vosi(s)  inductively defined as follows:

1. Vosi(s) =  0 i f s€*%’ o r s e  {x|a; € T  andar(x) =  0} and

2. V osi(f{tu . . .  , tn)) =  ±  0 and p e  P o s j f o ) } )  if /  6  F ,

a r ( f ) =  n  - )*n £  T i F i X ) .

Now that all the positions in 3 are known, it is easy to navigate trough the 

subterms of the term s; s|p denotes the subterm of s at the position p E Vos(s). It 

is also possible to replace the subterm s|p by the term t; the notation is s[i]p.

It is also possible to access the symbol at the e position using 'R.oot(s) which 

denotes the symbol at position e in s.

Vos(s) gives all the positions in s, moreover, only the positions of the symbols 

of T  can be required. Thus this set for the term s, Vosjr(s), is defined as follow:

• Posjr(s)={p  6  Vos(s) | p  ^ c A Tloot(a\p) : z £ f  with i =  ar{Jtoot(s\p))}.

Example 1 Let T={m esg:3, A:0, B:0} where ar(m esg) = 3 and ar(A) =  ar(B ) =  

0 and X = {x , y, z}, then:

•  T (F , X)={m esg(x, y, z), mesg(x, B, z), ...}

• T (T )  ={m esg(A, B, A), mesg(B, A, B), ...}
x i f  8  =  . .  , t n )  t h e n  t h e  t o p - m o s t  p o s i t i o n  i s  t h e  p o s i t i o n  o f  / .

38



• V a r(m esg (x ,y ,z ))= {x , y, z}

•  if s =  m esg(A, B , x) then

-  Vos(s)  =  {e, 1, 2, 3}

-  VoSjr(s) =  {1,2}

— TZoot(s) =  mesg =  7loot(s |e)

— t \  =  A  and s[i?]i = m esg(B , B , x)

To conclude this section, the definition of a substitution is given. A substitution 

a  is an endomorphism from T(J-, X ) to T(J-, X ). sc  is the result of the substitution 

a  on the term s E T ( T ,  X ).

Example 2 Let F={m esg:3, A:0, B:0}, a = {x = A , y -B , z= A } and s=mesg(x, y,

z);

sa=m esg(A , B, A).

3.1.1 Term Rewriting Systems

Equational reasoning [AKN89a, AKN89b, H6189] is an important concept in sym­

bolic algebra, automated theorem proving and program verification. Reasoning with 

equations can prove the validity of equations and can be used to solve equations.

Dershowitz and Jouannaud [DJ90] give the following definition of rewriting sys­

tems. Rewrite systems are directed equations (rewrite rules) used to compute new 

equations by repeatedly replacing subterms of a given formula with equal terms until 

the simplest form possible is obtained. Since the computational power of rewrite 

systems is as strong as Turing machines [Tur36], and as they are easy to understand, 

rewriting theory is a very efficient form of equational reasoning.

To illustrate the ideas behind this theory, a simple example is considered [DP01] 

(called by some the Grecian um  problem and by others the coffee can problem). We 

have black and green beans in an urn. We remove two beans at a time. If they have 

the same colour, a black bean is added to the urn. If they are different, then a green
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bean is added. The process is repeated until no more actions can be performed. 
Now, it is required to know if the colour of the last bean in the urn is predetermined 
and, if so, what is it?

The urn can be seen as a sequence of black and green beans (for example: black 

greengreen black). The removal operation is expressed by four rules:

1. black black — > black

2. green green — > black

3. black green — > green

4. green black — > green

For example, a possible sequence of moves is rule 3, rule 2 and rule 1 (the rule 
is applied to the head of the sequence):

black green green black

black black 
\  

black

A first remark is that the number of beans in the urn decreases after each oper­
ation so the rewrite system terminates.

Taking the same initial urn but changing the sequence of moves: rule 4, rule 2 
and rule 1; and applying the rule to the end of the sequence, it yields:

black green green black 

~~S~
black preen green

¡¡lack black.
~~S~

black

A second remark is that no matter which sequence of rules is used, the same 

result is achieved.
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In general the result is that the colour of the last bean is predetermined. If an 
even number of green beans axe in the urn then the last bean will be black, else the 

last bean will be green.

Term Rewriting Systems (TRS) are a type of computational model based on 
rewriting. The following definitions, built on each other, introduce the basic in­
formation required to understand the approach of Genet ([DP01] is an interesting 
reference on rewriting systems in general).

Definition 1 (Term rewriting system [Gen98a]) A term rewriting system V, is 

a set of rewrite rules I —► r, where I, r  G T {T , X ), I £  X , and V ar(r) C V ar(l).

The relation -+ r, means that for any s , t  e T(JF,X) we have s — t if there 

exists a rule I -»• r in TL, o position p  £  P os(s), where V os(s) is the set of positions 

in s, and a substitution a  such that la  =  s|p and t  =  s[r<r]p.

Example 3 Let TZ={f(a,b) ->• g(a,b,a), g(a,b,a) —► g(b,a,b), g(a,b,a) —»■ t(a)},

A G T (^ ,X ) ,  B € T ( ^ , X )  and a  =  {a =  A, b =  B } .

We have f(A ,B ) -*■% g(A,B ,A) as:

1. we have the rewrite rule f(a,b) -»■ g(a,b,a) 6 Tt,

2. applying the substitution a  to f(a,b) gives us f(A ,B ); f(a ,b )a  =  f(A ,B ),

3. substituting the term f(A ,B ) by the term obtained by applying a  to g(a,b,a) 

gives us g(A ,B ,A); f(A,B)[g(a,b,a)<r] =  g(A,B,A).

Some notation and properties can be defined on —

• — denotes the transitive closure of

• — denotes the reflexive transitive closure -*n- The set that contains all 
the terms reachable from a set E  of ground terms using — is called 72.- 
descendants. This set is denoted by H*(E).
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• Two terms s and t  are joinable, written s 4-r t, if there exists a term v such
that s v and t  — v.

•  A term s is reducible when there exists a term t  such that a —¥■% t.

• A term a is irreducible or in normal form when it is impossible to find a term
t such that s t. The set of normal terms that are reachable from E  is 
called 72-normal forms and is denoted by TZ)(E). At last, IR R (7t) is the set 
of irreducible terms by the TRS 72-

Definition 2 (R-descendants and 71-normal forms [Gen98a]) Let 71 be a TRS and 

E  a set of terms.

7V{E) =  {t € T(.F) t}.
7Zl(E) =  {t 6 T { F )  | 3« € E . 8 t  A t  € IR R ( 72)} where IR R (7t) is the set 

of irreducible terms by the TRS 71.

Example 4 Let 7l={f(a ,b) —► g(a,b,a), g(a,b,a) -¥  g(b,a,b), g(a,b,a) —► t(a)} and 

E = {f(A ,B ),f(B ,A )}:

• IR R (K )= {t(A ), t(B), t(a)},

•  the term g(B,A,B) € 72*{E) as f(A ,B )-¥^ g(B,A,B),

•  the term t(A ) 6 7Z'(E) as f ( A ,B ) - ^  t(A ) and t(A) e IRR (R ).

It is possible to link IRR(Tt), 72*(E) and 72'(.E): Proposition 1.

Proposition 1 7V(E) =  H*(E) C\IRR{R.)

If the left hand side of the rewrite rule i —> r (resp. right-hand side) contains 
only one occurrence of each variable, the rule I - ¥ r  is left-linear (resp. right-linear). 
A rewrite rule is linear if it is right and left linear.

Definition 3 Let 71 be a TRS defined on T (F , X ). 72 is left-linear (resp. right- 

linear, linear) if  every rewrite rule of 72 is left-linear (resp. right-linear, linear).
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Example 5 Let 7 t= {f(a ,b) -> g(a,b,a), g(a,b,c) —► g(b,a,b), g(a,b,c) —>• t(a)}, this 

TRS is left linear as all the rules of 72, are left linear but it is not linear as the 

right-hand side of the rewrite rule g(a,b,c) —>• g(b,a,b) contains 2 occurrences of the 

variable b. On the other hand, R = {f(a ,b ) —> g(b,a), g(a,b)  —>■ t(b)} is linear as all 

the rules of 71 are linear.

Two important properties that a TRS may possess are termination and conflu­

ence.

3.1.1.1 Termination

Definition 4 (Termination [Gen98a]) A TRS 71 is terminating if there are no in­

finite derivations of term Si € X ) (i €  N ) such that so si -+n 3% —t n __

The rules in Grecian urn problem decrease the size of the system after each 

step so it always terminates. Proving or disproving the termination of TRS is an  

undecidable [HL78]. Lankford [Lan79] explained of the termination of TRS and 

orders are linked.

Before the concepts o f Lankford are introduced, some basic notions on binary 

relations are given. A binary relation R  on a set E  is reflexive if and only if for all 

a in E  then aRa. R  is antisymmetric if and only if for all a, b in E  it holds that 

if aRb and bRa then a — b. R  is transitive if, and only if  for all a, b and c in E  it 

holds that if aRb and bRc then aRc. R  is a partial-ordering and is written >  if R  is 

transitive, antisymmetric and reflexive.

Definition 5 (Well-founded Ordering [Gen98a]) A partial ordering >  is well-founded 

on the set E  if there are no infinite decreasing series.

Example 6 The partial ordering >  on N is well-founded as the decreasing series 

are bounded by 0.

Proposition 2 ([MN70]) A TRS R, defined on T (T , X ) is terminating if and only 

if there exists a well-founded partial ordering >  on T (T , X ) such that:
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Vs,f € T (T , X ).s  - I ti t =>- s >  t.

The number of pairs s, t that satisfy the condition are usually infinite, so other 
properties are usually used. These properties prove the termination by looking at 
orders that can be checked on the rewrite rule instead of all the rewriting steps. 

Three approaches to prove the termination can be distinguished:

• semantical methods: the idea is to look for a marker (the size of the term used 
in the rewrite rules, a symbol used in all the rules, etc.) and to check that the 
marker decreases after each rewriting step.

One of the most commonly used techniques is to prove that the order for the 
set on which the marker is defined is well founded and monotone.

• syntactical methods: the idea is to find well-founded orders that guarantee 
that each rewriting rule is decreasing with respect to the orders.

Orders here are defined inductively on the terms. The main two orders here 
are the recursive path ordering [Der82] and the Knuth-Bendix order [KB70].

• transformational methods: the idea is to transform the current TRS into an­
other TRS on which the termination is easier to prove and which guarantees 
the termination of the original TRS.

More information about the different methods can be found in [Zan97].

3.1.1.2 Confluence

Definition 6 (Confluence [DP01]) A TRS is confluent if for all terms s, t, u £  

T (F , X ) such that s t  and s —̂  u> then 1 4-rc. u.

Like the case of the termination property, this property is generally undecidable. 
Confluence becomes decidable, however, if the TRS is terminating, thanks to the 
“critical pair” (cf. Definition 7) computation and to Newman’s lemma (cf. Lemma 

1)-
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Definition 7 ( Critical pair [DP01]) Let H  be a TRS and I -4- r and g -4 d be 

two rules of H. with distinct variables. If there exists a position p  € Vos?(I) and a 

substitution <7 such that l\p<r = go then (l[d\pcr, ra ) is a critical pair of 71.

Example 7 Let 72. = {e.x —>■ x, I(i) .i -4 e, (x.y).z —t x .(y .z)} be a TRS.

If the substitution a —{x  = I(i), y =  i, z  =  z }  is applied on (x.y).z  the resulting 

term is (I ( i) .i) .z . Two reductions can then be applied on this term (I (i) .i) .z  -4 
I(i) .(i.z) (using (x .y).z  —> x .(y.z); the I -4 r of Definition 7) and (I (i) .i) .z  —> e.z  

(using I (i) .i —> e; the g —► d of Definition 7), thus the critical pair (e.z, I (i) .(i.z)) 
is deduced.

Lemma 1 ([Newl2]) Let 72. be a terminating TRS. 72. is confluent if and only if for 

all critical pairs (p,q) of 72. there exists w  € T (T ,X )  such that p  — uj and that

q ^ n  w -

If a TRS is not confluent, it is possible to make it become confluent using the 
Knuth-Bendix completion algorithm [KB70]. This algorithm transforms a finite set 
of identities into a terminating confluent TRS, in Appendix A an example of how it 
works can be found.

If the algorithm is initialized with a non-confluent TRS 72. and a reduction or­
dering > that guarantees the termination of 72., then a confluent TRS 72/ is built 
such that —bfcCHtn>. For each critical pair (p, q), the completion will add the rule 
p  —i q if p  >  q and q —> p  if q >  p  to guarantee the confluence of the system. Again 
more details about the confluence property can be found in [DP01] and [Zan97].

3.1.2 Tree Automata

Automata theory is an essential part of theoretical computer science. It can be used 
in many fields: natural languages, modeling biological phenomena, programming 
languages, cryptography, computer graphics, etc.

The main advantage of this theory is that with a finite alphabet and a finite set 
of grammar rules, an infinite set of words (terms) can be recognized. This set is 
called a language. The language corresponding to the automaton A  is noted £(.A).
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Figure 3.1: Basic automaton

For example given the alphabet {a, nil} and the grammar {n ilf  —> 0, Og —» 1, 
la 1} where 0 is the initial state and 1 is the final state, then it is possible to 
recognize «ill the words in the {nila, nilaa, nilaaa, ...}. This concept is illustrated in 
Figure 3.1.

This diagram gives the graphical form of this automaton. In this figure, the state 
0 is reached by the transition labeled by nil. Then to go from the state 0 to the 
state 1 (final state), there is one transition labeled by a. With those transitions, the 
word nila is built. Then another transition labeled by a is looping on the state 1, 
with this transition all subsequent words in the language can be built.

By looping once, the word nilaa (transition to 0, then transition from 0 to 1 plus 
transition from 1 to 1) is built, by looping twice the word nilaaa, etc.

In this thesis, a special form of automata is used: tree automata. These axe 
called “tree” automata because of the graphical view that can be made of the terms 
recognized by those automata.

For example, the term cons (a, cons(b, c)) can be viewed as the tree:

The symbol cons at the top is called the root, and a, b and c are called leaves. To
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recognize this term, the automaton can either start from the leaves to go to the root 
or it can start from the root to go to the leaves. It is then possible to distinguish two 
categories of tree automata depending on how the automata recognize the terms:

• bottom-up automata: the automata start by recognizing the leaves and then 
move up to the root. Figure 3.2 gives an example of how the term cons(a, 

cons(b, c)) would be recognized by a bottom-up automaton. The automaton 
starts (transition —>1) by recognizing the leaf a (when a subterm is recognized 
it becomes green), then the leaf b (transition ->2), and so on until it reaches 
the root.

cprw

-> 4  a m m  -» 5

b \

Figure 3.2: Bottom-up process

• top-down automata: the automata start by recognizing the root and then go 
down to the leaves. Figure 3.3 gives an example of how the term cons (a, cons(b, 

c)) would be recognized by a top-down automaton. The automaton starts 
(transition —h) by recognizing the root cons (when a subterm is recognized it 
becomes green), then the leaf a (transition —>2), and so on until it reaches the 
last leaf c.

In this thesis, a subset of the bottom-up tree automata, the bottom-up non- 
deterministic finite tree automata, is considered. In this section, definitions and 
properties of the bottom-up non-deterministic finite tree automata are revisited. 
More information about tree automata can be found in [CDG+98, GS84].
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Figure 3.3: Top-down process

Definition 8 Let T  be a finite set of symbols and Q be a finite set of symbols of 

arity zero called states.

A transition is a rewrite rule c - y  q, where c €  T ( T  (J Q) and q e  Q.

A normalised transition is a transition c - t  q where c =  qr €  Q or 

c =  f(q u  • • • ,Qn) € T(.FU Q) with f e ? ,  ar ( f )  = n  and qlt . . . ,  qn e  Q.

Definition 9 (  bottom-up non-deterministic finite tree automaton [Gen98aJ) A bottom- 
up non-deterministic finite tree automaton is a quadruplet A  =  {F , Q,Qf,  A} 

where T  is a finite set of symbols, Q is a finite set of symbols of arity zero called 

states, Q f is the set o f terminal states such that Q f C Q, and A is a set of normal­

ized transitions.

A tree autom aton A  is deterministic if for any term  t  € T(.F) there exists at 

most one state  q 6 Q such th a t t  — q.

Definition 10 (Tree language) The tree language recognized by A  is

C ( A )  =  { t  € T (T )  | 3g € Qf  . t  q}.

The tree language recognized by the state q of the automaton A  is

C ( A ,  q) =  { t € T ( F ) \ t - + y Lq}.

A tree language (set of terms) E  is regular if  there exists a bottom-up finite tree 

automaton A  such that C ( A ) = E .



Figure 3.4: Graphical view of reduction process

From now on, only bottom -up non-deterministic finite tree autom ata are consid­

ered and we will refer to these as tree autom ata for short.

Example 8 Let T —{cons:2, a:0, b:0, nil:0}, Q = {q 0> q^, Q f= {q 0} and

A = {con(qi,qo) -)• qo, nil -¥  go, a -»• qi, b -¥  gri}, then A  = {T , Q,Qf,  A} is a 

tree automaton.

This automaton recognizes the set of lists composed of “a ” and “b”,

C(A) =  C(A, qo) =  {n il, cons(a, nil), cons(b, nil), cons(a, cons(a, n il)),...}.

This automaton also gives C(A,  6}.

Figure 3-4 shows how the term cons(a, cons(b, nil)) can be reduced to the state 

Qo by applying transitions from A. The sequence applied is the following: a —► qi, 

b ->• qi, nil -> qo, con(qi,qo) —> qo and con(qi,qo) —► qo- As q$ is the final state of 

the automaton, cons(a, cons(b, nil)) is recognized by A .

In  this thesis, the emphasis is placed on non-deterministic autom ata, bu t it is 

im portant to know th a t for each non-deterministic autom aton there is an equivalent 

deterministic autom aton.

Theorem 1 ([CDG+ 98]) Let L be a recognizable set of ground terms. Then there 

exists a deterministic finite tree automaton that accepts L.

Algorithm 1 (Determinization [CDG+98]) The algorithm takes a non-deterministic 

finite tree automaton A = { T , Q,Qf,  A} as input and returns a deterministic finite 

tree automaton A& ={T, Qd, Qdf, Aj}:
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1. Qd =  0, A d =  0

2. repeat

if  s= {q  G Q|3?i G 3U . . .  , qn € sn, f (qu . . .  , qn) -> q G A} then 

add s to Qd 

if  ( f  G T )  and (su  • ■ • , sn G Qd) then 

add f ( s u . . .  , s n) -*■ s to Ad 

until no rule can be added to Ad

3. Qdf = {s £ Qd|s n Q f ±  0}

Prom Algorithm 1, we can deduce that the generation of a deterministic automa­
ton is exponential.

In Algorithm 1 only the accessible states2 are considered. Example 9 details an 
example from [CDG+98] to illustrate the use of that particular algorithm.

Example 9 Let F = { f  : 2, g : 1, a : 0}. Consider the automaton A = {F , Q, Q f , A}t
9Ì<l) -> Q

with Q =  {q, qg, qf }, Qf  =  {qf }  and A= g(q) _> Qg g(qg) Qf

. / ( ? ,? ) ->  <7
By applying Algorithm 1 on A , the deterministic automaton A d = {F , Qd, Qdf, Ad} 

is produced:

•  Qd={{Qh {q,Vg}> {q>Qg>qf}}

•  Qdf={{q,qg,q f} }

a ^ { q }

s ( M )  -*■ {q,qg} 

9({q,qg}) ->• {q,qg,qf}

, s({?. ?/})->• (9 .9s.?/} ,

To understand how Ad is built, a few steps of the computation are presented:

A d=  < > u { f ( s u s2) -► {g}|«i,»2 £  Qd}

1- Oaj Oq«* (8teP 1 of Algorithm 1)
2a state q is accessible if there exists a ground term t such that t q
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2. |  a -4 {g} |  {q} (step 2 of Algorithm 1)

3.
a -4  {g } iff}

A, <• <«'«»> /  &
(repeat step 2)

( \ 
*-► {?}

( 1
w

4 -< s({?}) “>• {Q,Qg} ► i {Q’Qg} > (repeat step 2)

, 9({Q,Qg}) -*• {Q,Qg,Qf} , A  t k {Q,Qg,Qf} ; Qd

5. . . .  (repeat step 2)

a ^ { q } w
0(M ) -»• {Q,Qg} {Q,Qq}

... J
* t {Q>Qg,Qf} ,

{  {q,qg>Qf} } Qdj (8teP 3)

Qd
A  is a non-deterministic automaton because in A there are two transitions with 

the same left-hand side: g(q) -4  q and g(q) -4  qg. This non-determinism disappears 

in Ad:

i

g(q) ->■ q I

ffi?) -*■ Qg f  algorithm  {  ff({g}) -4  {<7, qg} . ■.

> A

To conclude on tree automata, the usual set operations apply on the tree lan­
guages (cf. Proposition 3). Let A —{T , Qy4, Q j J  1A^} and B = {T , Qb, Q b As} be 
two tree automata:

•  union (U): L (A  U B)—C(A)  U C(B) and A  U B= { F ,  Q , Qf ,  A^  x As} where 

Q =  Qa * Q b , Q f  =  ( Q a * x Q b ) U ( Q a x Q b * )  and
f ( ( Q i , o i , (9n,9n)) («V)l , Q n ) - > q £  AA and

/(«i,--- ,9n) “►«'€ Ab 

intersection (fl): C(A  fl B)—C(A)  fl C(B) and A  fl B={!F, Q, Qf ,  A.4 x Ag} 
where Q — Q,4. x Qb  and Q f  — Q j J  x Qb^■

A ^ x A b= <
}

complement of a language C(A),  (£(.4.)): A d = { F ,  Qd, Qdfi&d}  is computed 
with Algorithm 1 and A = { T ,  Qd, Qd \  Q-ifi A<j}
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•  inclusion (C): C(A)  C £(B)  if and only if L ( A  H B) =  0.

• difference between two languages £( A)  and C(B) (£(A)  \C(B)):  A \ B —A f ) B

P ro p o s it io n  3 ([C D G + 98] The class o f regular tree languages is closed under union, 

in tersection  and com plem ent.

The em ptiness, inclusion, m em bership, in tersection , in tersection  non-em ptiness, 

fin iten ess and equivalence are decidable.

Now that the basic definitions have been presented, the method developed by 

Genet and Klay is introduced.

3.2 Genet and Klay’s idea

Genet and Klay [GKOOa] use a term rewriting system to model the protocol and 

a tree automaton to model the communications. Starting from an initial set of 

communications, and by using the term rewriting system, an over-approximation 

of the set of reachable configurations is computed. The secrecy and authentication 

properties are then checked on the approximation automaton built.

In this section, the theory behind this approach is introduced and the Needham- 

Schroeder-Lowe protocol [Low95] is used as an example.

3.2.1 Theory

Genet and Klay [GKOOa] re-used the PhD work of Genet [Gen98a]. In [Gen98a], 

for a TRS 71 and a set of terms defined by the tree automaton A = {F , Q,Qf, A} 

E  C T { T )  it is explored how to compute 7Z*(C(A)).

Genet’s idea is to get 7l*(C(A)) starting from A  and 7L by extending the set of 

transitions A such that the automaton guarantees:

Vi . ( t G 7l*(£(A)) A t  -+*A q A

As noted by Genet, this property is similar to the confluence property introduced 

in Section 3.1.1.2 applied on the term rewriting system: (72.UA). Thus Genet worked 

on an algorithm similar to the completion algorithm.
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Figure 3.5: Intuition to build 7Z*(C(A))

With tha t approach, the set of final states and the previous transitions remain 

unchanged, so after each step the new language contains all the previous languages 

(cf Figure 3.5).

Moreover for a language £(-4) and a TRS 7L, 7Z*(C(A)) is not always regular 

[GT95, Jac96]. [Gen98a] explains how to compute an approximation automaton 

7fct(*4) {E  S  £(-4) and 71 left linear) such that 7V(L(A)) C £(7^t(-4 ))-

Let A = { J 7, Q ,Q f ,  A} be a tree automaton. First, an explanation of what is 

meant by abstraction and normalized transitions is given. Then his approxi­
mation function and his algorithm to compute the abstract model are introduced.

For Genet, an abstraction is a function that maps all subterms of a term to 

states.

Definition 11 (Abstraction function [Gen98a]) Given a configuration s € Q )\

Q .

An  abstraction of s is a mapping a :

a  : {s|p | p  € Vo8jr(s)} Q 

The mapping a  is extended on T(T[_}Q)  by defining a  as the identity on Q.

Example 10 L e t A = { F ,  Q, Qf, A}, whereT={f,h ,a,b}, Q={9o,9i,92,93h QS={q0} 
and A = {f(q 0,q0)  -*■ go, h(qi) -+ q0, a ->■ qu b -* q0}-
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I f  o term  s= f(h (a ), b) is  given  then a = { h ( a )  -4 q \, a -4 q2, b -4 <73} is  an  

abstraction  o f  s ( i t  is  m apping each subterm  o f  s to  a sta te ).

In  order to keep the set of final states unchanged, Genet needs to  add normal­

ized transitions to his current autom aton to keep it normalized. The normalization 

process can be defined inductively with the abstraction in Definition 11.

Definition 12 (N orm aliza tion  fu n ction  [Gen98a])  L e t s  -¥  q be a transition  such  

tha t s €  T ( T  U fi), q €  Q , and a  an abstraction o f  s . The se t N o r m a (s  -4 q) o f  

normalized transitions is  inductively  defined by:

1. i f  s  =  q , then N o r m a (s  -4 q) =  0, and

2. i f  s  €  Q  and s ^ q ,  then N o r m a (s  -4 q) =  {s 4  q } , and

3. i f  s  =  f ( t \ , . . .  , tn) , then N o r m a (s  -4 q) =

{/(a(ti),... , a(tn)) -4 q} U U?=1 Norm a(ti -4 a(t<))-

Example 11 L e tA = {! F , Q , Qf, A}, where T = { f ,h ,0;b}> Q = {qo ,qu < l2,q s } ,  Q f= {q o } , 

A = {f(q o ,q o )  -4 qo, h (q i)  -4 q0, a  -4 q i, b -4 q0}  and a = { h ( a )  -4 qu  a -4 q2, 

b -4 93}-

Following D efin ition  12:

N orm a (f(h (a), b) -4 q0) =  {J (q i, q$) -4 90} U N orm a(h (a ) -4 q i)

U N orm a (b -4 q3)

=  {f(qi, Qi) -+ Qo} U qi]
U N orm a (a  -4 q2){J  {b  -4 g3}

=  Qi) ->■ 90, h(q2)  -4 qu  a - + q2, b ^  q3}

At this stage Genet’s approximation function can be introduced. This function 

link« a rewrite rule from the TRS, a  state  of the current autom aton and a  substitution

of the rewrite rule variables by states of the current autom aton to a sequence of

states.
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Definition 13 (Approximation Function [Gen98a]) Let Q be a set of states, Qnew 

be any set of new states such that Qf) Qnew = 0, and Q*new the set of sequences 

<71... <7*; of states in Qnew Let £(<2, X ) be the set of substitutions of variables in X  

by the states in Q.

An approximation function is a mapping 7 :
f t  X Q*new, such th a t7(1 -»■ r,g,cr) =  g i . . .  qk

where k =  C a r d {P o s ? (r ) ) .

This 7  function is linked to  the abstraction function a . If y ( l  -¥  r,q,cr) =  g i . ■ ■ gjt 

and if a(rcr\P{) — gi with pi €E Pos? (r )={p i , . . .  ,Pk} then qi =  q[ for ¿ = 1 . . .  k.

Example 12 Consider the alphabet T  = {0 : 0, s : 1}, the set of states Q = {go, <7i} 
and the term rewriting system  ft = {s(x) —>• s(s(ar))}. Possible approximation 

functions are:

• 7 (s (x)  - f  s(s(x)) ,  qu {x =  go}) =  02!

we only have one state because Pos^(s(s(go)))={i} as ftoot(s(go)) £  T  and 

Hoot(qo) £  T ,

•  y( s (x )  ->■ s(s(x)),  gi, { x  =  g2})  =  g3,

•  7 (s(x)  ->• s(s(x)) ,  g2, { x  =  go}) =  g4,

•  7 (s(*) -► «(s(ar)), g2, {* =  g2}) =  q&.

With Qnew =  {g2, g3, Qa, q*>}- These approximation functions are not the only possible

approximation functions for that system, four were picked to illustrate Definition 13.

In  the rest of the thesis, let Qnew be any set of new states such th a t Q  f] Q new =  0, 

and Q u =  Q U Qnew

Algorithm 2 (Completion [Gen98a]) Starting from a left-linear TRS ft, an initial 

automaton A® =  A  and an approximation function 7 , Genet and Klay construct 

A i+i from Ai by:
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1. searching fo r  a critica l p a ir  (ra , q) w ith a s ta te  q  £  Q , a  rew rite rule I 

and a su bstitu tion  a  €  £ (G , X )  such that la  -4^ . q and r a  q.

n
la • ra

A

2. A + i  =  A i  U N o r m y (r a  -4 q).

A i  U N o rm -y{ra  -4  q) adds the s ta tes  created by N om rU f(ra  -4  q) to  the s e t  o f  

s ta te s  o f  A i- I t  also increases the se t o f  transitions o f  A i  w ith  the norm alized  

tran sition s o f  N o r m y ( r a  -4  q).

The above process is iterated  until it stops on a tree autom aton A k  such that 

there are no further critical pairs.

Example 13 illustrates the com putation process. This example demonstrates one 

of the drawbacks of the technique; the computation might not stop.

E x a m p le  13 In this exam ple taken from  [Gen98bJ, A  =  { F ,  {tfo, ?i> <72}, {91}, A} is  

a tree au tom aton  where T  =  {a p p  : 2, con s  : 2, m i : 0 ,o  : 0}, A = {a p p (q o , qo) -4  q i, 

c o n s f a ,  q i)  -4 qo, n il  -4  q0, n il  -4  q i, a  -4  q2}, 7L =  {r l } with

r l  =  a p p (c o n s (x ,y ) ,z )  -4  c o n s (x ,a p p (y ,z ) ) ,  and  7  (D efin ition  13) the approxi­

m a tion  fu n ction  m apping every tuple (r l, q, a )  to  one sta te  (con s(x , a p p (y , z ) )  o f  r l  

contains only one subterm  a p p (y , z ) ) .

G en et and K la y  process is  now  used to  com pute A i+ i  from  A t:

1. the critica l p a ir ( c o n s fa ,  a p p (q i,q o )) ,q i)  is  deduced from  

app(cons(q2,q i) ,q a )  -+*A q i and con s(q2, app(qu  q0)) ~»*A qu-
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2. A i =  A l)N o r m y (cons(q2 , app(qu 9o)) -> gi):

• 7  (rl, gi, {x =  q2, y  =  Quz  =  9o}) is computed; the state <73 is introduced 

and 7  (rl, qu {x  =  q2,V =  Qu z  =  9o}) =  93-

•  Norm y(cons(g2,app(qi,qo)) -> qi) is computed with the 7  given just 

above;

N orrrU f(cons(<72, app(qu  go)) -4 9i) =  {cons(q2,q 3) -4 gi}U
Norm y(app(qu q0) -4 93)

={cons(g2,93) -4 91, aPP(9i>9o) -4 93>;

• the sets of A  are updated to produce A i;

The transitions cons(q2,q3) -4 91 and app(gi,go) -4 93 are added to 

A the current automaton set of transitions and q3 is added to the set of 

states.

3. the critical pair (cons(q2, app(q3, 90)), 93) is deduced from  

app(cons(q2,g3),qo) 93 and cons(q2, app(q3, 90)) 93,'

^ 2  = -4i l)N o rm 1(cons(q2, app(q3, go)) -4 3̂):

• 7  O'/, 93, i 27 — 92,2/ — 93, z = 9o}) w computed; A new state qi is intro­

duced and 7  (rl, q3, {a: =  q2, y  =  q3, z  = g0}) =  q4.

• Norm^(cons(q2, app(q3, 50)) -4 93) is computed with 7  above;

N or m y (cons (g2, app(g3,9o)) -4 93) = {cons(q2, 94) -4 g3}U

N orm y (app(q3, q0) -4 g4)

={cona(?2,94) -4 93, opp(93,9o) -4 g4};

• the sets of A i are increased with the new states and transitions to produce 

A 2;

The transitions cons(q2,q<i) -4 q3 and app(q3,qo) -4 g4 are added to 

A the current automaton set of transitions and g* is added to the set of 

states.

5. the critical pair (con sfa , app(g4, 90)), 94) is deduced from

app(cons(q2, 9d), 9o) -4^ 94 and cons(q2, app(g4, g0)) 94/ eic.
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The computation of the approximation automaton goes forever.

In his thesis, Genet refined the definition of the 7  function that guarantees that 

the completion algorithm terminates: Definition 14. With this refined approxima­

tion, the computation in the above example terminates.

D e fin itio n  14 (A n cestor A pproxim ation  Function [ G en98a])

A n  approxim ation  fu n ction  7  is  an ancestor approxim ation fu n ction  if:

1. V l - > r € K , V q €  Q u, G E (G u, X ) ,

7(1 -*■ r ,q ,(T i) =  7 (I -4 r ,q ,c r2), and

V/i —► r i ,  ¡2 ► r 2 G Tt, Vq G Q u, V g i...%  G Qnew> V<ti,<72 G E (Q u, X ) ,

7 (/i -4 n , q, <Ti) =  q i . . .  % =► V* = 1 • • • A;, 7(̂ 2 -4  r2, qu <r2) =  7 (/2 4 r j , ? ,  <r2)

T h e o re m  2 E very  au tom aton  built w ith an ancestor approxim ation fu n ction  is fi­

nite.

The proof of this theorem is given in Appendix B

Theorem 3 [Gen98a] on the other hand gives the main advantage of the technique, 

which is that the completeness is guaranteed for any approximation function that 

meets Definition 13. This means that if a property is verified on the abstract model 

then this property will be also guaranteed by the concrete model.

T h e o re m  3 [GKOOaJ(Completeness) G iven a tree autom aton  A  and a left-linear  

T R S  72., fo r  any approxim ation fu n ction  7  m atching D efin ition  13:

K*(C{A)) C C{Tk X{A))

The above theorem is limited to left-linear rewriting system. From a practical 

point of view, this is a big restriction; using a left linear term rewriting to model 

a protocol might change the protocol. For example, we have a protocol where a 

participant only sends nonces that he created for himself and we have nonces that
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are modeled by N ( x , y )  with x  the name of the creator and y  the name of the 

receiver. Then to follow the protocol in the term  rewriting system a  term  N ( x , x )  

should be found but instead if we want to use the approximation approach we have 

to have N ( x ,  y).  This means th a t the agent will be sending any nonce not only 

the one he created for himself; thus the verified protocol is different from the real 

one. Luckily, Theorem 3 can be extended to non left-linear TRS under specific 

conditions: Theorem 4 [GKOOa]. W hen we will explain how the approach is used to 

verify cryptographic protocols, we will see tha t the conditions axe verified and thus 

tha t the theorem can apply. But first, we introduce the following definition:

D e fin itio n  15 (S ta tes m atching) L et A  be a tree autom aton, Q  i ts  s e t  o f  sta tes, 

t  €  T ( F , X )  a non linear term , and  {pi,...,pn} C V o s(t)  the s e t  o f  position s o f  a 

non linear variable x  in  t.

tu n denotes the linearized fo rm  o f the term  t ,  where all occurrences o f  non  linear 

variables are replaced by d is jo in t variables (ie. i f  t  =  f ( x , y , g ( x , x ) )  g ives  

tim =  f(x',V,9(x",y"'))).

I t  is  defined that s ta te s  q i , ..., qn G Q  are m atched by x  i f  and  only i f  there exits  

a  €  E(Q , X )  such th a t tu ncr -+*A q € Q ,  an d  tuna \pi =  qu  tHn<r\Pn =  qn .

T heorem . 4 ( C om pleteness extended to  non left-linear T R S ) G iven a tree autom a­

ton A  and a T R S  72, T k  t  (-4) the corresponding approxim ation autom aton  and Q  

its  se t o f  sta tes. For a ll non left-linear rule I —► r  G 72, fo r  a ll non linear vari­

ables x  o f  I, fo r  all s ta te s  q i , - - , q n £  Q m atched by x, i f  either q\ =  ... =  qn or  

£ ( T n t ( A ) ,  q i)  f |  -  D  £ ( T n t ( A ) ,  qn) =  0 then:

K*(C(A)) C  £ (7 » tM ))

The proof of Theorem 4 done by Genet and Klay [GKOOa] is given in  Appendix

In a recent report [GFT03], conditions on the TRS, the tree autom aton and 

the approximation function are given to  get TV{C{A)) — t  (*4)). The

main definitions and theorems regarding the equality introduced in the following
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paragraphs are taken from [GFT03] (for more details about the proofs, the reader 
can refer to [GFT03]). However the equality cannot happen with cryptographic 
protocols as shown in the next section.

Definition 16 (Rigkt-lineariiy condition) A tree automaton A  = {F , Q,Qf,  A} and 

a TRS 71 satisfy the right-linearity condition if

1. 71 is right-linear, or

2. Vg G A  : 3i € T { ? )  : C{A,  q) C 71*(t)

The following example illustrates the necessity of these two conditions. 

Example 14 We have:

• T  = { /  : 1, g : 2, a : 0, b : 0} an alphabet,

•  71 =  { f ( x)  —► g(x, a:)} a non right-linear TRS and

•  A  =  {£, {io, i i } ,  {go}, { / ( g i)  -> go, O ->• gi, 6 ->■ g i} }  a tree automaton.

Given C{A) =  {/(o), /(&)}. For any abstraction function 7 , the completion process 

adds the transition g{qu gi) ->■ go to the current automaton and

f(^)) = { f(a) , f (b) ,g(a,a) ,g(b,b) ,g(a,b) ,g(b,a)}

which is a superset of

7V(C{A))  =  { / (a), f{b),  g(a, a),g(b, 6)}.

If 7t was right linear or if there was no transition b qi, then:

=  K*(£(A)) .

Similarly, by adding the rule a —► b into 71, the exact case would be generated, 

and the right-linearity condition would be satisfied since for gi G A  there would exist 

the term a such that £ {A , gi) C 71* ({a}) = {a, 6}.

To be coherent with a tree automaton A  and a TRS 7Z, an abstraction function 
7  must guarantee for each of its states:
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•  the state  is not in the states of A , or

•  term s recognized by the state in A  are either a  term t' recognized by the

subterm  linked to the sta te  by 7  or ft-descendants of t ' .

In  [GFT03], a  (Definition 11) is redefined in Definition 17. The normalization 

process Definition 12 is also redefined in Definition 19. This is done in  order to 

introduce a coherent abstraction function (Definition 20) for which the autom aton 

completion algorithm is exact.

D efinition 17 (N ew  abstraction  fu n c tio n ) L e t T  be a se t o f  sym bols, and Q  a se t 

o f s ta tes. A n  abstraction  a  m aps every  norm alized configuration in to  a sta te:

«  *• { /(tfi,---  >in)I /  € a r { f )  =  n a n d q u . . .  ,q n €  Q )  t-+ Q.

D efinition 18 (A bstraction  s ta te )  L et T  be a s e t  o f  sym bols, and  Q a se t o f  sta tes. 

For a g iven  abstraction  fu n ction  a  (D efin ition  17) and fo r  a ll configuration t  €  

T ( ^ F D Q )  the abstraction  s ta te  o f t ,  denoted by topa ( t) , is  defined by:

1. i f  t  €  Q , then topa (t)  =  t ,

2. i f t  =  f ( q u • • • ,Qn) then topa (t)  =  a ( f ( t o p a ( t i ) , . . .  , to p a ( tn))) .

D efinition 19 (N ew  norm alization  fu n ction )  L e t T  be a se t o f  sym bols, and Q  a

se t o f  s ta tes , s  —► q a transition  such that s  G T ( F  U Q ), q £  Q , and a  an abstrac­

tion  fu n ction  (D efin ition  17). The se t N o r m a (s  -* q) o f  norm alized transitions is  

in du ctively  defined by:

1. i f  s  =  q, then N o r m a (s  - f  q) =  0, and

2. i f  s  €  Q  and s ^ q ,  then N o r m a (s  4 } )  =  { « - f  q } , and

3. i f  s  =  f  ( t i , . . .  , t n) , then N o r m a (s  -¥  q) =

{ f ( to p a ( t 1),... , topa ( tn)) 4?}U U?=1 N o rm a(U -+ toPaiU))-
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Definition 20 (Coherent abstraction function) Let A  Q,Qf, A} be a tree au­

tomaton, H be a TRS and a  be an abstraction function. The function a  is said to 

be coherent with 72. and A  if for a llt G Dom(a), for allq € Q,r\Ran(a) if 

a(t) =  q then t -¥ q G A  and there exists a term if G {T{T)) called the representative 

of q such that t? t and C(A,q) Q 72* ({i7}).

We have A  = {F , Q,Qf, A} a tree automaton. During the completion, the coher­

ence will stand with the 7  function when the normalizations (Definition 12) produce 

transitions of the form f(q  1, . . .  ,qn) —► q with /  G T , a r (f) =  n, q i , - . . ,q n G 

Qu and q G Q fl Qu that satisfy:

•  f{Qu • • • , Qn) -* Q G A, and

•  there exists a term t' G (T (F)) such that t' f(qu  • • • 1 qn) and 

C (A ,q )c n * ({ t'} ) .

T h eo rem  5 Let A  be a tree automaton, 72. be a TRS and a  (Definition 17) be an

injective abstraction function coherent with A  and 72. If A  and 72 satisfy the right-

Unearity condition, and ifT n t(A ) is the automaton produced by completion with a. 

then:

C ( W ( A ) )  Q n \C {A )) .

T h eo rem  6  Let A  be a tree automaton, 72 be a TRS and a  (Definition 17) be an

injective abstraction function coherent with A  and 72.. Let Tk t  (.4) the automaton

produced by completion with a . If A  and Ti satisfy the right-linearity condition and 

if 72. and T u t (A) fulfill the condition of Theorem 4, then:

(A)) =  n*(£(A )).

The proofs of these theorems can be found in [GFT03].

The next subsection shows how the theory introduced in this subsection 

Definition 13 and the completion algorithm) is used to verify cryptographic 

cols.

(the 7  

proto-
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In the introduction, the Needham-Schroeder-Lowe protocol [Low95] was briefly men­

tioned. This protocol is used in this section to illustrate Genet and Klay’s approach.

In the Needham-Schroeder-Lowe protocol [Low95], two agents, Alice and Bob, 

want to establish a secure communication using a public key infrastructure. Before 

they exchange any vital information, they use the Needham-Schroeder-Lowe protocol 

(cf. Figure 3.6) to exchange nonces. The role of these nonces in later messages is to 

identify the sender.

3.2.2 C ryptographie protocol verification

Alice initiates a protocol run, sending a nonce Na and her name A to Bob

encrypted by Bob’s public key.

Message 1: A =}► B : {N a ,A }Kb

Bob responds to Alice’s message with a further nonce Nb encrypted by

Alice’s public key.

Message 2: B =>• A : {N a ,N b ,B }Ka

Alice proves her existence by sending Nb back to Bob encrypted by Bob’s

public key.

Message 3: A ==► B : {N b}Kb

Figure 3.6: Needham-Schroeder-Lowe protocol

The goal of Genet and Klay’s technique is to compute an automaton that rec­

ognizes an over-approximation of the reachable configurations of the network from 

an initial automaton that models the initial configurations and a TRS that models 

the protocol.

Their initial automaton models the initial configuration of the network and the 

intruder’s initial knowledge and abilities. Their TRS models the protocol steps and 

also some intruder’s abilities. Their approximation function has been introduced in 

Section 3.2.1.

The syntax and the semantics used in [GKOOa] are summarized in Table 3.1.

63



agt(x) x is an agent

c_init(x, y, 7) x  thinks he has established a communication with y but 

he really communicates with z

c_resp(x, y, z) x thinks he responds to a request of communication from 

y  but he really communicates with z

cons(x, y) concatenation of the information x and y

encr(x, y, z) z  is encrypted by participant y  with the key x

goal(x, y) x wants to communicate with y

m esg(x, y, z) z  is a message sent by a; to y

N (x, y) nonce created by x to communicate with y

null end of list

pubkey(x) public key of x

Table 3.1: Description of the terms used

3.2.2.1 Initial automaton for the Needham-Schroeder-Lowe protocol

Figure 3.7 gives the initial automaton for the Needham-Schroeder-Lowe protocol 

(later in this document, it will be shown that this initial automaton is also valid for 

other protocols). This automaton has seven states Q = {ç0, gi, q2 , <73, 94, 95, 913} 

and one final state Q f —{qis}-  The automaton uses the alphabet J 7={A :0, B:0, 

0:0, s:l, agt:l, U:2, goal:2, mesg:3, cons:2, pubkey:l, encr:3, N:2, null:0}3. All the 

automaton transitions are normalized transitions4.

Transitions of Part 1 in Figure 3.7 model the initial configuration of the network.

In this network, A (Alice) and B (Bob) sure two trusted agents. They follow the 

protocol rules and the intruder does not have access to their private information, un­

less he catches it by spying on their exchanges. We also have an unbounded number 

of untrusted agents: 0, s(0), s(s(0)), etc. . They are untrustable as the intruder has 

access to their private information and can then usurp their identity. A, B, 0, s(0),

3format of the alphabet is “term : axity of the term”
tran sition s have the format f (q i,  ■■■,qk) —► q where /  €  T , q €  Q and G Q (k is the arity of 

f  and t e  [1---&])
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Automaton nspk

States 9o 9l 92 93 94 <75 <713
Final States «13
Transitions

Part 1 0 —► 9o s(9o) 9o
A —> </i B —► 92

agt(io) -> 93 agt(9i) ->• 94 agt(92) -> 95

U(9i 3j 913) -> 9i3

goal(93, 93) -> 913 goal(93, 94) ->• 913 goal (93, 95) -> 913

goal(94, 94) -*■ 9i3 goal(94, 95) -> 913 goal (95, 93) -> 913

goal(9s, 95) -► 913 goal(95, 94) -> 9i3 goal(95, 93) -4 913

Part 2 agt(«j) ->• 9i3 agt(9i) -»■ 9i3 agt(92) -> 9i3
mesg(9i3, 913, 913) ->■ 913 null -*  913

cons(9i3, 913) -4 913

pubkey(93) ->• 913 pubkey(94) ->• 913 pubkey(95) ->• 913

encr(9i3, 93, 913) ->• 913

N(93) 93) -4 913 N(93, 94) -4 913 N(93? 9s) -► 913

Figure 3.7: Initial automaton of the Needham-Schroeder-Lowe protocol

s(s(0)), . . .  are just names, they are linked to  their role by the transitions agt(go) 

—> <73, agt(qi) —> <74 and agt(<j2) —> <75- Those transitions allow us to distinguish 3 

agents; two trusted ones recognized by 94 and <75, and one untrusted one recognized 

by 93. The untrusted agents Me compounded to one agent (like Agent R in Figure 

2.3 in Section 2.4). The communications between the three agents are studied.

Initially, all the agents want to communicate with each other. To express this, a 

transition o f the form goal(qi,qj)  —► 913 (the agent recognized by the state qi wants 

to commu nicate with the one recognize by the state qj) is used. B y doing this a 

special meaning is attached to the state <713: gi3 is the state that corresponds to 

the network. There are nine transitions of this form to cover all the possible initial 

configurations involving our three agents:

•  93 wants to communicate with to <73 or <74 or q§
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•  <j4 wants to communicate with to 93 or <74 or <75

•  95 wants to communicate with to <73 or <74 or <75

The transition U (gi3, <713) —► Ç13 represents sets of configurations. W ithout this 

transition, the automaton would only be able to recognize one configuration of the 

network at a time; for example goal(agt(A),agt(B)) or goal(agt(B),agt(A)). W ith  

this transition, the concatenation of two or more configurations can be modeled. The 

automaton is then able to recognize sets of configurations such ¿is U (goal(agt(A),agt(B)), 

goal(agt(B),agt(A ))), the set containing the configurations goal(agt(A),agt(B)) and 

goaJ(agt(B),agt(A)).

Transitions of Part 2 in Figure 3.7 model some intruder initial knowledge and 

abilities. It means that <713 corresponds to the network but also to the intruder 

knowledge.

In [GKOOa], the intruder is the network and he has the capabilities of the Dolev- 

Yao intruder [DY83]. The intruder can intercept all messages exchanged on the 

network and can decrypt messages if he has captured the appropriate decryption 

keys. In addition he can build and send fraudulent messages if  he has the appropriate 

encryption keys.

The intruder initially knows:

•  all the agents in the network, which is why we have the transitions of the form 

agt(qi) 913,

•  all the agents’ public keys; the transitions of the form pubkey(qi) —¥ <713,

•  the nonces created by the untrusted agents; the transitions o f the form 

N (q3>qi) -»  9 i 3-

He can create and send fraudulent messages using his knowledge. In Figure 3.7 those 

abilities are modeled by three transitions:

•  cons(çi3, 913) —► 913: he can associate two known pieces of information to 

create new information,
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•  encr(<7i3 , q3, q i3) -¥  <713: he can encrypt information with what he knows5,

•  mesg(<7i 3, <713, 913) -> q i3: he can send fraudulent messages using what he 

knows.

3.2.2.2 TRS for the Needham-Schroeder-Lowe protocol

A term rewriting system (TRS) is used to model the protocol steps (cf. Figure 

3.8).

1. x initiates a communication with y\

goal(x,y) — ► U(LHS, mesg(x, y, encr(pubkey(y), x, cons(N(x, y), cons(x, null)))))

2. agt(u) answers to NS1 by NS2;

mesg(x, agt(u), encr(pubkey(agt(u)), z, cons(v, cons(agt(x2), null)))) — ► U(LHS, 

mesg(agt(u), agt(x2), encr(pubkey(agt(x2)), agt(u), cons(v, cons(N(agt(u), agt(x2)), 

cons(agt(u), null))))))

3. agt(y) answers to NS2 by NS3:

mesg(x, agt(y), encr(pubkey(agt(y)), z2, cons(N(agt(y), agt(z)), cons(u, cons(agt(z), null))))) 

— ► U(LHS, mesg(agt(y), agt(z), encr(pubkey(agt(z)), agt(y), cons(u, null))))

4. after he received NS2, agt(y) believes that he has initiated a communication 

with agt(z) but he talks with z 2:

mesg(x, agt(y), encr(pubkey(agt(y)), z2 , cons(N(agt(y), agt(z)), cons(u, cons(agt(z),null))))) 

— ► U(LHS, c_init(agt(y), agt(z), z2))

5. after he received NS3, agt(y) believes that he talks to agt(z) but he talks with z2:

mesg(x, agt(y), encr(pubkey(agt(y)), z2, cons(N(agt(y), z), null))) — ►

U(LHS, c_resp(agt(y), z, z2))

Figure 3.8: Rules for the Needham-Schroeder-Lowe protocol

sthe second element of “encr” always refers to the person that encrypts; the intruder cannot 
usurp honest agent identities to encrypt.
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Cumulative rules of the form I — > U  (I, new . in fo rm a tio n )  are used, which means 

that when the term I is found, the term new . in fo rm a tio n  is added to I. The 

first term of the rules, the part before — >, is a pre-condition (message received or 

initial configuration (goal(...)) that must be satisfied for a message to be sent. The 

second term is the concatenation of the current configuration (the pre-condition) 

with the message that will be sent (or established communication at the end of a 

run; cJnit( . . .) ,  cjresp(...)).

Thus in Figure 3.8, the first rule means that when the state goaI(x,y), “x  wants to 

communicate with y” is found, the message mesg(x, y, encr(pubkey(y), x, cons(N(x, 

y), cons(x, null)))), “x  sends y a nonce, and his name encrypted w ith the public key 

of y”, is added to the current trace LHS. LHS stands for Left-Hand-Side is equal to 

the left hand side terms of the rule, it is used to simplify the notation. It means 

that

g o a l(x , y )  — > U  (L H S , m esg (x , y , en cr(p u b k ey(y ), x , c o n s (N (x , y ) , co n s(x , n u ll)))))  

is equivalent to:

goa l(x , y )  — > U (g o a l(x , y ), m esg (x , y , en cr(p u b k ey(y), x , c o n s(N (x , y ) ,c o n s (x , n u ll))))) .

In the initial automaton, we only express a part of the intruder’s abilities. We 

still need to model that he can: decompose complex information, decrypt informa­

tion encrypted with the public keys of the untrusted agents and access to all the 

information exchanged. Those operations are expressed with rewrite rules and are 

added to the T R S  (cf. Figure 3.9):

In Figure 3.9, it is apparent that instead of having for example

U (c o n s (x ,y ) ,z )  — >• U (L H S ,x ) ,

we have

U (c o n s (x ,y ) ,z )  — ► U (L H S ,a d d (x )) .

Using add(x) instead of x  allows us to keep one final state q\:$ for the automaton.

Each time a ride is used, the variables are replaced by states. For example, if 

U(cons(x, y), z) — > TJ(LHS, x) and during a computation x — <745 then the term
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U(LHS, <745) has to be normalized to be added to the current automaton. <745 is 

already a state and so cannot be altered, but the fact that the intruder knows the 

information recognized by <745 still needs to be expressed. For that <745 would have 

to be added to the set of final states as the final states model the network and 

the knowledge of the intruder. W ith add(x) the problem disappears, the transition 

add (<745) —> (713 is used during the normalization and is added to the current au­

tomaton. The intruder will use the last rewrite rule add(x) — > x  to access the 

information and to link the term to the final state 913 when needed.

1. decomposition o f complex information - add(x) means that

the intruder caught the information x by analyzing the network

U(cons(x, y), z) — ► U(LHS, add(x))

U(cons(x, y), z) — ► U(LHS, add(y))

2. decryption o f information encrypted with untrusted agents’ public key

U(encr (pubkey(agt(0)), y, z), u) — ► U(LHS, add(z))

U(encr (pubkey(agt(s(x))), y, z), u) — > U(LHS, add(z))

3. access to all the information exchanged

U(mesg(x, y, z), u) — > U(LHS, add(z))

4. access to caught data

add(x) — ► x

Figure 3.9: Rules for the intruder’s abilities

Finally in the TRS, there are also rules, Figure 3.10, to express the associativity 

and commutativity (for short AC) of the U  symbol used in the previous rules.

U(x, U(y, z)) — > U(U(x, y), z)

U(U(x, y), z) — ► U(x, U(y, z))

U(x, y) —» U(y, x)___________

Figure 3.10: AC rules
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As already said, Genet and Klay decided to approximate the system by studying 

the exchanges between two trusted agents and another one that is obtained by 

compounding all other agents in the network (the state q3 in the automaton of 

Figure 3.7).

When the approximation function 7  is built, it means that for each rewrite rule, 

there axe only nine possible substitutions for the variables corresponding to the 

sender and the receiver.

For example, for the first rule of the TRS: goal(x,y) — > U(LHS, mesg(x,...)).

Let R =  goal(x,y) — > U(LHS, mesg(x, y, encr(pubkey(y), x, cons(N(x, y), 

cons(x,null))))), then using Definition 13:

i (R ,  913, {a = g3, y  =  93}) i (R , 913, {x  = 94, y = 93}) i (R , 913, = 95, y =  93})
7 (R, q13, {x =  q3, y = 94}) rf(R, 913. = 94, y =  94}) l iR ,  913, {x  = 95, y = 94})

7 {R, 913, {x  = 93, y  = 95}) 7 (R, 913, {x  = 94, y = 95}) i (R , 913, {x  = 95, y  = 95})

In practice, users do not see those 7  (but they can deduce them). They only see 

the Norrriy(r<T —> q) of the completion algorithm (Algorithm 2). In [GKOOa], the 

Norm~[(rcr —> q) seen by the users are referred to as “approximation” rules.

Figure 3.11 is an example of an “approximation” rule that the user is going to 

deal with. That rule gives the normalization process applied on the left hand side 

of the rule R, w ith the substitution a  =  {x= g 4, y = q $ }  and the state q \3.

[term that must be normalized before it could be added 

to the current automaton] — ¥

[transitions that will be added to the current automaton]

[U(LHS, m esg(^ ,q5,encr(pubkey (95),94,cons(N(94,Qs), cons(94, null))))) -»• 513] — ►

[LHS -4 013 null—> qls cons(94,91s) -> Qn N(94,95) ->■ qie cons(q16,q17) -> q15 

pubkey(9S) 914 encr(9i4,94,9i 5) ->• 913 m esg(94,95,9i 3) ->• 913]

3.2.2.3 Approximation for the Needham-Schroeder-Lowe protocol

Figure 3.11: Example of “approximation” rule
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W hen a rewrite rule, R, a substitution, a  =  {x=<j4, y=g5}, and a normalization 

state, <713, have been identified then 7  is computed (Definition 13):

7 (- f t )  913, o ') =  9 i3 9 i3 9 i3 9 i4 9 i5 9 i6 9 ir 9 i8 -

A state is linked to each functional position of U(LHS, m esg(x, y, encr ( . . .) ) ) ,  here 

for example q\s to  null, q n  to cons(x,null), . . . ,  913 to LHS.

Using the normalization process (Definition 12) and using 7 (i?, <713, <r), with

R l= m esg (q < i, 05, encr(pubkey(q§), <74, c o n s(N (q 4, q s ) ,c o n s(q i, n u ll))))  the transitions

to be added to the current autom aton are produced as follow:
Normy (U(LHS, i i l )  -4 q13) ={U(qi3, 913) -4 C13} \JNorm-,(LHS  -4 q13) \JN orm 7(E l -¥ qi3)

={U(<?i3, 913) -4 9i3, LHS —► ^13, null-> 0i8, 

cons(04,0i8) -> 017, N (04,05) -4 9ie,

console,<717) -4 015, pub key (05) -4 014,

encr(014,04,0!5) -4  0i3, me8g(04,05,0i3) -4  0i3}

In  this way, the “approximation” rules are generated to normalize each term.

W hen the completion algorithm identifies a  term  th a t must be normalized, an 

“approximation” rule will be used to normalize the term  and add it to the current 

autom aton.

The TRS, used here, is not left-linear. In  section 3.2.1 we explained tha t the 

completeness (Theorem 4) was guaranteed for non left-linear TRS by keeping deter­

ministic states matched by the non-linear variables.

Here, the 11011-linear variables m atch the terms A, B, 0, s(0), s(s(0)), etc. which 

are recognized by the states <71, <72 and qo- Initially, these states are deterministic and 

they will stay deterministic if the user does not do any error in his approximation 

function (for example by linking those states to other terms than  the initial ones).

Assuming no error from user, we have T V (C (A ))  C £ ( T n t ( A ) ) ,  where T 'n 't(A ) is 

the approximation autom aton computed. One interesting point th a t goes with our 

idea of autom ating the process is th a t making sure those conditions are satisfied is 

easy if the “approximation” rules are autom atically generated but it requires more 

a ttention when it is done manually. If the user makes an  error, then  the whole
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process is flawed.

The TRS is not right linear and it will often be the case for cryptographic 

protocols w ithin our syntax6. In the initial automaton, the state  713 will always not 

satisfy the second condition of the right linearity condition (Definition 16). Moreover 

the abstraction function 7  is not injective. So there will never be:

C {T n U A )) = n*{C{A)).

3.2 .2 .4  V erifica tio n

The approximation autom aton models the intruder knowledge; thus it is possible to 

check the confidentiality of a piece of information by making sure that the informa­

tion is not recognized by the autom aton.

For the Needham-Schroeder-Lowe protocol, the confidentiality of the nonces be­

tween A and B is required to be confirmed. The secrecy of these nonces will be 

guaranteed, if they are not valid terms recognized by the current autom aton. To do 

so, the intersection of the approximation autom aton with an autom aton th a t recog­

nizes these nonces (cf Figure 3.12) is checked. If the intersection is empty then the 

property is verified on the approximated model. As “ft.* (£(.4.)) Ç  £ ( 7 f t t  (*4))” > the 

property is also verified on the concrete system. For this protocol we have an empty 

intersection. Nevertheless, no conclusion could have been drawn from a non-empty 

intersection.

The approximation autom aton also contains the belief of the agent when a com­

munication is established w ith the terms c J n it  and c-resp. So it is possible to check 

the authentication property: “If A or B thinks th a t he communicates w ith B or A 

then  he really speaks w ith B or A” .

This property will be verified if the approximation autom aton does not recognize 

terms of the from c jr e s p ( x ,y ,z )  and c J n it( t ,u , ,v ) ,  where y  ^  z  and u ^  u for 

x  e  {a g t{A ) , a g t(B ) } ,  y  €  {a g t{A ) , a g t{B )} , t  €  {a g t(A ), a g t(B ) }  and 

u  e  {a g t(A ) , a g t(B ) } .  Again the intersection of the approximation autom aton

6often we will have at least one message of the protocol that gives a  rewrite rule of the form: 

• . .  — ► U ( L H S , m e s g ( x , y , . . .  x . . .  ))
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Automaton Not-Secret

States 01 02 04 06 013
Final States 013
Transitions

A —► 0i agt(0i) -4 Ç4

B —► 02 agt(02) -> 05

U(0i3, 013) -4 913

N(g4, 0s) -> 013 N(g5, 94) -4 013
N(04, 04) —► 013 N(05) 95) "4 013

Figure 3.12: Nonces between Alice and Bob

w ith an autom aton recognizing the faulty terms (cf Figure 3.13) is checked. The 

intersection is empty so the property is verified.

Automaton Wrong_Belief

States 00 01 02 03 04 05 06 013

Final States 013
Transitions

O 4 0 o

s(0 o ) - 4  90 agt(0o) - 4  03
A -4  91 agt(0i) - 4  04

B - 4  02 agt(02) - 4  05

U (013, 9 is )  "4 913

C-init(04 , 05, 03) - 4  013 c i n i t ( 0 4 , 05, 94) - 4  913

c j e s p ( 95, 04, 03) - 4  913 c_resp(05, 04, 05) -4 013

c in it(05 , 04, 03) -> 013 cin it(05, 04, 05 ) - 4  013

c-reap  (04, 95, 93) - 4  013 c -re sp (0 4 , 95, 94) - 4  0i3

Figure 3.13: Alice and Bob do not really communicate w ith each other

The same verification done on an approximation autom aton computed with an­

cestor approximation Figure 3.14 give different results. Only the authentication 

seems to be verified even though the secrecy is been proven for this protocol. This
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failure is not a  surprise as the approximation applied on the secret information is 

too large; all the nonces are gathered together so it is impossible to verify if any of 

them  are unknown of the intruder.

[U (L H S ,m e8g(x ,y ,en cr(pu bkey(y),x ,con 8(N (x ,y ),co n 8(x ,nu ll))))) -+ 0i3] — >

[ LHS -» 017 null —► 0i8 cona(x,null) —► 019 N (x ,y )  -> 020 cons(02o ,0i f l ) -4 021 

pubkey{y) —► 022 encr(q22, x, q21) -> 923 m eag(x ,y ,q23) -► 024]

[ U (L H S ,m esg(ag t(u ),ag t(x2) ,encr(pubkey(agt(x2)),agt(u),cons(v,cons(N (agt(u),agt(x2)), 

cons(agt(u),null)))))) ->• 0 i 3 ] — ► [ LHS - ¥  025 n u l l  ->  q26 agt(u) - »  027 cons(q27,q26) - »  0 28

agt(x2) -¥  029 N(q27,q29) -*■ 030 con8(03O, 028) 031 cons(v,q3i ) q 32

pubkey(q29) -► 033 encr(033, 027, 032) -»• 034 m e8g(q27,q2o,q3i) -► 036 ]

[ U (L H S ,m esg(ag t(y),ag t(z),en cr(pu bkey(ag t(z)),ag t(y),u ))) rightarrow  gi3] — ►

[ LHS -4 036 a g t ( y ) q 37 a g t ( z ) -> q3S pubkey(q3S) -> 039 encr(qi9,qi 7,u ) -> 04O

^ a g ( 037 , 038 , 04o ) - >  041 ] _______________________________________________________________

Figure 3.14: Ancestor approximation for Needham-Schroeder-Lowe protocol

3.3 C onclusion

Genet and Klay’s approach is an effective, quick and simple approach for the verifi­

cation of secrecy and authentication properties, however:

•  the approximation function used m ust be given by hand;

•  the user must choose carefully his approximation function in order to guarantee 

the term ination of the com putation of T u t  (A ) . The ancestor approximation 

camiot be used as it is inefficient to verify secrecy properties.

•  if the intersection is not empty, another m ethod must be used to verify the 

property.

The next chapter will present the improvements made in the course of this research 

to solve these problems.
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Chapter 4

Improvements

In the previous chapter, two approximations of Genet and the m ethod by which 

they can be used to  verify cryptographic protocols were introduced. The m ethod 

has some drawbacks th a t make it difficult to use in  an industrial context. Two 

improvements to the approximation approach are introduced in this chapter. The 

first one is directly linked to the approximation function; a new approximation 

function is defined. The challenge is to find an approximation function that:

•  guarantees the term ination of the computation,

•  does not require user interactions and

•  is suitable for secrecy and authentication verification.

The second improvement is more general, it is an  investigation on the combination 

of two cryptographic protocol verification techniques. The approximation technique 

will be one of them. The challenge is to find another verification approach such as 

bo th  approaches are complementary and the passage from one to  the other is easy.

4.1 N ew  approxim ation  function

Table 4.1 summarizes the pros and cons of the approximations introduced in the 

previous chapter.
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A pproxim ation Pros Cons

Basic approximation 

(Definition 13)

can verify protocols’ properties computation may not terminate 

unless users intervene

Ancestor approximation 

(Definition 14)

computation terminates too abstract to verify protocols

Table 4.1: Pros and Cons of Genet’s approximations

In this section, a new approximation function 7 f  (Definition 25), th a t takes the 

pros of the basic and the ancestor approximation, is introduced. This approximation 

guarantees the term ination of the com putation of the approximation autom aton by 

restricting the set of new states created by the approximation function to a  finite 

set (like the ancestor approximation); Section 4.1.3 shows tha t the information lost 

as a result of our approximation does not affect the verification of the secrecy and 

authentication properties. This approximation also introduces rules to optimize the 

use of the states. The idea is to  use the same state for identical terms. Three 

particular cases can be identified:

•  If the current term  t is already recognized by the state  q in the current au­

tom aton then 7 /  links it to  a state  <7.

For example, assume N (q$, qs) is recognized by the state  <714 in the current 

autom aton. If this term  is met again during the completion it will be linked 

to qu -

•  If the current term  t loops on itself, then the same state is used every tim e it 

loops during the completion.

For example, assume e n c r ( . e n c r ( . .. , . . .  , . . . ) ) )  —> <722 has been nor­

malized to  en c r(q j, (75, (716) -► <722- If e n c r ( . . .  , encr(qr, 95, q ^ ))  -»■ 922 has

to be normalized, then en cr(qr, <75, <722) Q22 is produced, encT(q-?, q$, q iG) is

linked to the sta te  <722-

•  If two identical terms Eire found, the new normalization links them  to the same 

state.
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For example, if co n s{N (q s, qs), N(q&, q5)) ->• 922 has to  be normalized, then 

co n s(q i6, Qie) —> 922 is produced; bo th  N (q s , q$) are linked to qie-

4.1.1 A pproxim ation function 7 /

In order to  lim it the number of new states, an intermediate function ¡3 (Definition 21) 

tha t introduces a finite number of new states is used. We make sure tha t the ap­

proximation function 7 f  (Definition 25) only uses the states of the initial autom aton 

and those of /3 (Proposition 8).

The way it works is described below:

1. a set of 7 f  th a t must be computed: 7 f ( x  —> s(s(x)),<7o, { x  — 91}),

7 f ( x  - 4  s ( s ( x ) ) ,  <70, { x  =  92» ,  7 / (*  - 4  « ( « ( * ) ) ,  9o , { x  =  93} ) ,  etc.

2. we have @(x —► a (s (x )) ,q o , {a: =  a:}) =  q. I t  gives the state tha t can be used 

in 7 f  for x  —> s(s(a;)), <70 and any substitutions of x

3. instead of introducing a  new state for every 7 f ,  and if there is no reason for

l f { x  -*  s(s(a;)),go,{® =  9i}) ^ 7 /(®  s ( s (x ) ) ,q 0, { x  =  q2 })

^  7 f i x  -> s(s(a:)), q0, {® =  q3})

^  etc,

as for the user those terms normalized using 7 j  are used in the same way in 

the rest of the system, then

7 f (x  -» s(s(a;)),go,{a; =  91}) =  7f ( x  -► s(a(ar)),g0,{a; =  92})

=  7 f (x  -4 s ( s (x ) ) ,q 0, {ar =  g3>)

=  q, using 0 .

In  the above example the 7 /  is an ancestor approximation, as no m atter what

the substitution is, the same state is used. B ut the ¡3 function used to  define the

7 / ’s states in general is more complex so the 7 /  will not always be an ancestor 

approximation.

I t is im portant for an  agent to distinguish information created by him from that 

created by other participants. The TRS allows this by typing the messages. For
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example, if an agent recognizes his nonce, then the notation N(agt(x), agt(y)) is 

found in the TRS rule. W hen this is a  nonce created by someone else, the notation 

N (w, z) is used. Moreover there is no need for an agent to distinguish the unknown 

information of different exchanges of the same message. The agent replies to mes­

sages, not to unknown information. Those messages contain information about the 

presumed sender (i.e. a  name or a nonce created by the receiver to  communicate 

w ith a particular agent). Thus whatever is the value of the unknown information 

received; the same message will be sent.

Thus it is possible to identify two categories of states, those linked to a  specific 

term  (this is the case when the term  contains variables th a t can be substituted by 

terms of arity zero) and those linked to  a set of terms. The function 0  is going to 

define states according to this last concept.

Initially the number of rewrite rules, the number of terms of arity zero and the 

number of states linked to  those term s are finite. For each rewrite rule, 0  will be 

computed for all possible substitutions of variables by states linked to terms of arity 

zero, plus the identity (thus a variable x can be substituted by itself). For example, 

if we have the term  N (x , y )  and the state  q\ th a t is linked to  a  term  of arity zero then 

0  is computed for: N ( q i ,q i ) ,  N ( q \ , y ) , N (x , q \ ) and N (x , y ) . As substitutions do not 

allow the mapping from variables to variables, we call our m apping 0 —su b stitu tio n .

D e fin itio n  21 (In term edia te fu n ction ) L et Q  be the s e t  o f  autom aton's in itia l s ta tes  

and Qnew be the se t o f  s ta tes  introduced by the com putation. L e t Q* be the s e t  o f  

sequences q i ■■ -Qk o f s ta tes in Q u where Qu =  Q  U  Qnew L et I t  be a term  rewriting  

system  containing a f in ite  se t o f  rew rite rules. L et A  =  { f , Q , Q f ,  A} be a tree 

autom aton . L et Qao C Q be the s e t  o f  s ta te s  corresponding to  the term s o f  arity  zero  

and X  be the se t o f variables used in  7L. L et © =  { x  =  y| (y =  x  A x  G X )  V y G Qao} 

be a se t o f  0 —substitu tions. L e t P o s jr (r )  =  {pi, . . .  ,P k} be the se t o f  functional 

position s in  r ,  k  =  C a r d ( P o s ? ( r j )  and  pq =  e where e denotes the root position  in  

the tree when the term  is  view ed as a tree.

78



0(1 ~+r,q0,9) =  q i . . .q k

w ith qi G Qnew fo r  i  €  [1, Ar] by default.

Then fo r  all i  £  [1, fc]:

1. i f 3 q >€ Q  such th a t (r0|Pi) -4 ^  q1 then qi =  <f;

2. i f  31' ^  r 1 E n ,  3 z  =  C a rd (P o s jr (r ') ) , 3 j  €  [0,*], 3 #  e  S ,  3q '0 €  Q u, 

3 q [ , . . .  ,q'z E Q u such that ¡3(1’ -4 =  q [ . . .< /z  A (r0 |Pi) =  (r/0/ |Pj)

then qi =  </j.

T he two rules used in  the definition of 0  optimize the use of the states available, 

following the idea tha t the same state should be linked to identical terms:

•  the first rule says th a t if a  subterm  of a term  is already recognized by a state 

q' in  the current autom aton, then (3 also links this subterm  to q'.

•  the second rule says th a t two identical subterms are linked to the same state 

by ¡3.

Proposition 4 Iden tica l subterm s in  two ¡3 com putations (D efin ition  21) using the 

sam e autom aton  A , the sam e T R S  72., and the sam e se t o f  s ta tes  Q u, are linked to 

the sam e sta te.

Proof [Proof by contradiction] Let I -4 r and V —> r ' be two rules of 7Z. Let 

6 and O' be two elements of 0 .  Let q o ,. . .  , qn, q'Q, <^,. . .  , q'z be states of Q u with 

n  — C a rd (P o s jr (r ) )  and z  =  C a rd (P o s j? (r ')) .

This proposition is proven by showing that for 0(1 -4  r ,q o ,0 )  — q i . . . q n and 

0(1' -4 r',qQ ,0') — q [ . . .q ' z if two subterms rQ |p< and r '6‘ \Pj are such th a t r 0 \Pi=  

r'O'lpj, then it is impossible to have ^  qj.

Let us assume th a t for 0(1 4  r, qo, 0) — q \ . . . q n and 0(1' -4  r', q'0, O') — q [ . . .  q'z , 

3 i E [0, n], j  €  [0, A:] such tha t r0\Pi =  r'O'lvs and qi /  q'j.

The function 0  is a mapping: H x Q„ x 0 14  Q*, such that
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1. If 3q' G A  such that (r0|p<) — q' then q i= q ' with the first optimization rule 

of Definition 21. Thus as rO\Pi=  r'9'\Pj, r'O'\Pj =  q'. = >  C o n tra d ic tio n

2. For i by assumption 31' 4  r '  e  R , 30' G 0 ,  3 q [ , . . .  ,q'z G Q u such that 

rO\Pi=  r'9'\pj and 0(1' —> r \  q'0, O') =  q[ . . .  q'z . Thus with the second optimizar 

tion rule of Definition 21, q¡ ^  q'j. (the same result is obtained starting  from 

j ) .  = >  C o n tra d ic tio n

Following Definition 21 it is impossible to have rd \Pi=  r'O'\Pj and <?,- ^  q'y So 

identical subterms in two 0 computations are linked to the same state. O

A direct consequence of Proposition 4 is Proposition 5.

P ro p o s it io n  5 Starting from  the sam e autom aton A , the sam e T R S 7Z, and the 

sam e se t o f  s ta tes  Q u, iden tical subterm s in  two 0  com putations (D efin ition  21 )  on 

the sam e rule using the sam e substitu tion  are linked to the sam e state.

The following algorithm explains how to compute the set containing all the 

possible approximation functions 0 . This particular set, Vt (Definition 22) will be 

useful later.

Definition 22 (Set of 0 )  is the set containing one occurrence of each possible 

function 0  defined by Definition 21 and computed as explained by Algorithm 3.

If X  is the set of variables used in 1Z and Q ao is the set of states corresponding 

to the term s of arity zero, then 0={a; =  y\ (y  =  x  A x  e  X )  V j/6  Qao} is a  finite 

set as both  X  and Qao are finite sets.

By definition, the set of 0 —substitutions 0  and the set of rules TZ stay the same 

during the com putation of (no rewrite rule or new 0 —substitution is added during 

the computation). Thus the computation of can be broken up into two “for” loops 

tha t explore all the triplets (r, q, 0) for r  ETZ, q G Q u and 0 G 0 .

A lg o r ith m  3 S tartin g  with tw o em pty sets, Q new and S , is com puted as follow:

1. fo r  all (r  G 7Z, q G Q , 0 G Q ) do

i f  Q, 0) =  Çi-Çn) £  S) then
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s  =  { p ( r ,  q, 9) =  Çi...gn> U S  

f o r a i l l  < i < n  do

i f  ((Q* ^  2 )  A (çi £  Qnew)) th en  

Qnew =  {?*} *-* Qnew

f i

done

f i

done

2. fo r  a il (r  E U ,  q E  Qnew, 9 € & )  do

i f  ((00*, q, 9) =  qi...qn) £  S )  th e n  

S  =  { 0 ( r ,  g, 0) =  qi...qn}  U S

f i

done

3. V  =  S

Basically, the first loop adds new states to  Qnew, the set of new states, and 0  

functions to  S ,  the set of 0  functions. The second loop, fo r  all (r  E ft , q E Qnew, 9 E

& ), only adds 0  functions to S  as no new states are created because of Proposition 5 

(the set 6  is the same for both  loops).

P r o p o s it io n  6 The com putation  o f the s e t  term inates.

P roo f[T he  com putation of i  terminates]

By definition the sets f t,  Q and © are finite. Thus the com putation of the loop 

fo r  all (r E U ,  q E Q , 9 E Q )  term inates and introduces a finite set of new states 

Qnew

The com putation of the loop fo r  all (r  E U ,  q E Qnew, 9 E & ) also term inates 

as f t ,  Qnew and © are finite sets.

B oth loops term inate, so the com putation of term inates. O
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Let n  be the number of rewrite rules, s  be the number of states, Si be the number 

of states linked to a term  of arity zero, snew be the number of new states introduced 

by the computation, v  be the number of variables and nb^  the number of /3 in 

computed. The complexity C of Algorithm 3 is the complexity C l of the first loop 

plus the complexity C2 of the second loop:

•  C l = a * n * ( ' E vi= t ( s l - 1 * ( i +  l)) +  1) * E T = o~ l 3 * * * E j= o '_11

.  C 2 = s new * n  * ( E U K “ 1 * (< +  !)) +  !) * E i i o _1i

•  C =C 1+C 2

It is possible to rewrite this expression using only n by saying s = n + a ,  si= n + b , 

Snew—n + c : v = n + d  and n b y = n + e  where a,b,c,d,e are real numbers. A simple ex­

pression can then  be deduced C= 0 ( n n). Thus the complexity of Algorithm 3 is 

exponential.

The introduction of this section states tha t (3 were used to reduce the number 

of states used in the new approximation function 7 / .  For example, by assuming 

f3(x —► s(s(x)), qo, { x  =  x}) =  q, it was said that

7 f {x  -4  s(s(x)), q0, { x  =  gi}) =  7 / (x  -4 s(s(x)), q0, {x =  q2})

=  7 f ( x  -4 s(s(x)), q0, {x =  g3})

=  /3(x -4 s(s(x)), go, {x =  x}).
To give the formal definition of 7 f , the relation <Sm0I th a t links 7 f  and ¡3 must be

introduced. and are relations between the elements of 0  and of E(Q U, X).

£ (Q U, X ) is a set of substitutions for which all the variables are substituted by states 

and 0  is a set of ¡3—substitutions for which the variables can either stay the same 

or be substitu ted  by states linked to terms of arity zero, thus •Cmorr and «C will be 

linking one or more substitutions from E (Q U, X ) to one ¡3—substitution from 0 .

Definition 23 (Substitution inclusion) Let H  be a term rewriting system. Let X  be 

the set of variables in H. Let A  =  { f ,  Qu, Q f, A } be a tree automata.

82



Let 0 E © and a  € £(QU, X ) be two substitutions of the same variables. There 

is the relation between 9 and a , 6 •< ct, if  for all (x =  g) € a  with x  € X  and 

q €  Qu then:

•  (x =  q) E 9 or

•  (x = x) G 9.

Example 15 Let cr =  {x  =  q i ,y  =  q2, z  =  g3}, 9X =  {x  =  qu y =  q2, z  =  g3} and 

02 =  {x = x ,y  =  q2, z  = g3}, assuming that gi, q2 and g3 are states linked to some 

terms of arity zero (this is to satisfy the definition o /0 ):

•  9i -C <7 as:

— for (x =  gi) G a  we have (x =  qi) G 0i, and

-  for (y =  q2) E a  we have (y = q2) G Oi, and

-  for (z = g3) E a  we have (z =  g3) G 91-

• 02 <  o as:

— for (x =  qi) E cr we have (x =  x) E 02, and

-  for (y  =  q2) €  <r we have (y =  q2) E 02, and

— for (z =  g3) Ecr we have (z = g3) G 9\.

Proposition 7 Let 71 be a term rewriting system. Let X  be the set of variables in 

71. Let A  = {T , Qf, A} be a tree automata.

For all <7 G E(Q „, X )  there exists at least one 9 G © such that 0 «C cr.

P r o o f  Let 71 be a  term  rewriting system. Let X  be the set of variables in 71. 

Let A  =  { T ,  Qui Qfi A} be a tree autom ata. Let Q ao C Q„ be the set of states 

corresponding to the terms of arity zero.

For all cr G £ (Q U) X )  and for all (x =  g) G a  then q E Qao or g ^  Q a0. For any 

<t G S (Q U, X ) , it is possible to generate a /?—substitution 0 for all (x =  g) G a  if:

• g € Qao then (x = g) G 0 and

83



•  Q $  Qao then (x =  x) G 0

0 only contains identity substitutions, (x  — x ), or substitutions of variables by 

states linked to term s of arity zero, as (rc =  q) only if q G Q ao- So 0 €  0 .

Therefore for all (a: =  q) G a  with x  G X  and q G Q u:

•  {x  — q) €  0 or

•  (x  =  x)  6 0.

This means tha t 0 <7.

So for all a  G E (Q U, X )  there exists a t least one 0 e  0  such tha t 0 <g a . O

D e fin itio n  24 (Substitu tion  m axim um  inclusion) L et %  be a term  rew riting  system  

containing a fin ite  s e t  o f  rules. L et X  be the se t o f  variables in  H . L et A  =  

{ T ,  ßu , Q /, A} be a tree autom ata. L e t Q^o C Q^ be the se t o f  s ta tes  corresponding  

to  the term s o f a rity  zero. L et a  G E (Q U,X ) be a substitu tion .

F or a ll 9  €  0  such that 9 a  then 9  •Cma® a  */ and only i f  fo r  a ll (x  =  q) G <r:

•  i f  q  G Q ao then (x  =  q) G 9  and

•  i f  q  £  QoO then  (x =  x) €  9.

The relation •Cmox is used to guarantee that amongst all the possible 0, such 

tha t 0 ■C ct, the one th a t satisfies this relation is the one tha t has the maximum

num ber of identical substitutions of variables by states with a .

E x a m p le  16 L et ffi =  {x =  qu y  =  q2, z  =  q z} , a 2 =  { x  =  q2, y  =  q2, z  =  ?3}, 

01 =  {x =  q u  V =  Q2, z  =  02 =  { x  =  x, y  =  q2, z  =  ?3} and

03 =  {x =  x, y  =  q2, z  =  z } ,  assum ing th a t q i, q2 and q$ are s ta tes  linked to  som e

term s o f a rity  zero (th is is  to  sa tisfy  the definition o f & ):

•  9 1 <7i ,  02 <Ti and 9% <7i but 0i has the m axim um  o f  iden tical elem ents

with so  9 1 ^ x̂na,x

•  02 <r2 and  03 <3C <72 but 02 has m ore elem ents in  com m on w ith <r2 than  03

SO  0 2  0 "2 -
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Now th a t ß , 'S/ and <&max have been introduced, the approximation function 7 /  

can be defined.

D e fin itio n  25 (N ew  approxim ation  fu n ctio n ) L e t K  be a term  rew riting system . 

L et A  =  {^ , Qu, Q f, A} be a tree autom ata. L et P o s ? { r )  =  {p i, . . .  ,p*} be the set 

o f  fu n ction a l position s in  r ,  k  =  C a rd (P o s jr (r ) )  and po =  e where e den otes the root 

position  in  the tree when the te rm  is  view ed as a tree. L e t E (Q U, X )  be the se t o f  

su bstitu tion s o f variables in  X  by the s ta te s  in  Qu. L et ß  be a fu n ction  corresponding  

to  D efin ition  21. L et "t be the s e t  defined by D efin ition  22.

A n  approxim ation fu n ction  7 /  t i  a m apping  7 / :  72. x Qw x E (Q U, X )  t-4 with

- * r ,q , ( r )  = q l . . . q k.

F or the 8 6 0  such that 8 < .̂max a  (possible because o f  P roposition  7  and D efin ition  

24)  there exists

ß ( l - > r t q ,8) 

thus by default qi =  <fi f o r  a ll i  €  [1, k].

Then fo r  a ll i  €  [1, k]:

1. i f  3 j  €  [0,*], 3 z  =  C a r d ( P o s A r \Pj)) , 3 /  €  T ,  V o e  C», 3 t f , . . .  ,«# e  Qu 

such that:

•  Qo — 9 and

•  r lpy= / ( * i , ,**) ond

•  ™\pi= / « » • • •  ,9Ü) and

•  fo r  a ll h €  [1, z] there exists m  €  [1, k] such th a t =  <fm A =  r |Pm 

then qi =  gj;

2. i f  3j  €  [1, fc] such th a t ( i  j  A (r<r|Pi) =  (r<r|Pj.)) then q j = q i .
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The default generation of the sequence of states makes sure that 7 /  is produced 

using 0.  Then as in Definition 21, two rules are employed to modeling the use of the 

states available following the principal that during the normalization, two identical 

terms will be linked to the same state.

The first rule is used so that, after applying the substitution, a term to be 

normalized and its normalization are linked to the same state.

For example, assume that agt(qi)  -> <73 and agt(q2) —► <Ja are transitions o f the 

current automaton A .

If /?(... -4  cons(N (agt(a),  agt{b)), N (x ,  y)), q , {a  =  qu b =  q2, x  =  x , y  =  

y } )  =  9593949s

If {a =  qu b =  q2, x  =  x , y  =  y }  {a  =  9 1, b =  92, x  =  q$,y =  94}

Then by default 7 / ( . . .  —>■ cons(N(agt(a), agt(b)), N (x ,  y )), 9 , {a =  qi, b =

9 2 , x  =  q3, y  =  9 4 »  =  9 5 9 3 9 4 9 6 -

But the substitutions of x  by 93 and y  by 94 reveal the term N(q^,q^) which is the 

normalized form of N (ag t(q \ ), agt(agt{q2)) as agt(q{) -4  <73 and agt(q2) -»■ 94. The 

first rule makes sure that the same state is linked to both of them, that is why 

7 /( . .. ,  q, {o  =  9 1, 6 =  q2, x  =  q3, y  =  94}) =  95939495 after optimization.

The second rule is used to ensure that two terms, which become identical after 

substitutions, are linked to the same state.

For example, assume that agt(qi)  —>■ 93 and agt(q2 ) —► <74 are transitions o f the 

current automaton A.

If A function /? w ith substitutions {a  =  a, b — b, x  =  x, y  =  y }  -Cmax

{a  =  93, b =  94, x  =  93, y  =  94} had been computed and yields /?(... —>•

cons(N (a, b), N (x ,  y)), 9 , {a  =  a, b =  b, x  =  x, y  =  y } )  =  9596-

Then by default 7 / ( . . .  —»■ cons(N(a, b), N (x ,  y )), 9 , {a =  93, b =  94, x  =

93, y =  9 4 »  =  9596-

But the substitutions of a  by q$, b by 94, x  by 93 and y  by 94 reveal the two identical 

terms N (qz,  94) which had been linked to 95 and 96 . The second simplification rule
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makes sure that those identical terms are linked to the same state, so:

7/(•••> 9, { o  =  <73, b =  04, x  — g3, y  — ?4} )  =  4545.

After having introduced the new approximation function, its properties can be 

studied.

Proposition 8 The se t o f  states used by 7 /  is bounded by the se t o f  states of '£ .

This proposition is proven by showing that it is impossible to have a rule / —> r, 

a state q and a substitution a  that map to a sequence of states in which one of the 

states in the sequence is new (not used in and not in the initial automaton).

Proof[Proof by contradiction] The set Qu contains the states of the initial au­

tomaton and those introduced by \fr.

Let us assume 3/ -*• r  G H, 3q G Qu, 3 cr £  £ (Q U, X )  such that 

7 f( l  -> r, q, o) — qi...qk, and there is G {01, —,qk}  such that ^ Qu and 

k — Card(Posjr(r)) .

As a consequence of Proposition 7 and Definition 24 there exists a 9 G 0  such 

that 8 •Cmox <7 . B y default, we have in Definition 25:

7/(* -4 r ,9,c) =  9Î •■■q'k =  r,q, 9)

w ith (/?(/ —► r ,q ,0 )  — q\ ...q'k) G ^  and qj =  qi for j  G [1, k}. Moreover with the 

definition of (Definition 22), we have q \ , ...,<& are use in ^  = >  Contradiction 

The default sequence of states contradicts the assumption.

But may be the optimization rules introduce the new state and then validate the 

assumption. Both optimization rides substitute a state of the default sequence by 

another one:

•  in the first rule, the state  is substituted by q'j for j  G [1, k] or by Çq with 

q'0 =  q. By definition ?i, • •. , 9* G Qu and q G Qu. = >  Contradiction

•  in the second rule, the state qj is substituted by the state
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If qi has not been modified by the first rule, =  gj G Q u. =>• C o n tra d ic tio n  

If qi has been modified by the first rule then

Qi e  {q , g i , ■ ■ ■ , q'k} <™d {q , . . .  , q'k}  C Q u. = ^  C o n tra d ic tio n

So it is impossible to  create a 7 / ( /  —> r ,q ,a )  =  qi-..qn where there is 

Qi G {91, . such tha t qt 0  Q u. O

P ro p o s it io n  9 L et H  be a TRS. L e t 7 f  be an approxim ation fu n ction  such that 7 f  

is  defined by D efin ition  25. L et A o = { T ,  Q ,Q j ,A }  and A fk  be two tree autom ata  

such that A fk  is  com puted using the com pletion algorithm  (D efin ition  2)  with 11, 

7 /  and the in itia l au tom aton  A q. The com pletion algorithm  f ir s t  looks fo r  a critical 

pair, term  T  n o t recognized by the current autom aton and a sta te  S  that recognizes 

the term  that gave T  by rewriting. Then the norm alized fo rm  o f  T  ->• S  and all 

the in term edia te  tran sition s required by the norm alization  are added to  the current 

autom aton  by the com pletion  to  produce the new  autom aton.

For all non left-linear rules ! -> r  €  U , fo r  all non linear variables x o f  I, fo r  all 

sta tes q \ , qn €  Q th at su bstitu te  x, i f  e ither q i =  ... =  qn or 

£ { A fk , q i)  H -  f l  £ (A fk ,Q n ) =  0 then: 7l* (£ (A o ))  C C (A fk ) .

Proposition 9 is proven the same way Theorem 4 was (cf. Appendix C). B ut it 

could have also been proven using 7  Definition 13 and Theorem 4.

P ro o fp d ea  of the proof using 7 ] Let A k =  { F , Q, Qfinal, A} be the autom aton 

produced with 7  and let A fk  — { F ,Q f ,  Qfinal, A /}  be the autom aton produced 

w ith 7 / .  The com putation of both  autom ata starts from the same initial autom aton 

A o  and from the same TRS 7Z.

Let t  6 £ (A y ):

•  If t  is recognized by the initial autom aton then t  G C (A l f )

•  Every term  not recognized by the initial autom aton will be recognized by a 

unique sequence of transitions of A as 7  creates new states for every completion 

step. Moreover the completion process does not modify the set of final states
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so every new term  recognized by the language must have been added by the 

completion. Thus t  was added to  L(A~,) by a completion step.

Assuming tha t j ( l  -4 r,q,<r) =  q\...qk  was used to add t  into the language, 

it is possible to find a 8 such th a t 8 <g. a  (Definition 24 and Proposition

7). W ith 6  it is possible to look into j f  to find a a '  such th a t 0 <?C o'  and 

7 ¡(1 —>• r,q ,cr') =  q[...q tk. This means t  was also added to C (A yf ) by the 

completion.

Therefore, for any term  t  of £(A y) such tha t t —► *^ q ,  it is possible to find an 

equivalent sequence of transitions of A f  such that t  Q- So £ (.47) C L(A1})

is guaranteed. As Theorem 4 is guaranteed for £(Ay), the completeness is also 

guaranteed for C (A yf ) under the same assumptions. O

T h e o re m  7 Let H  be a T R S  containing a fin ite  num ber o f  rules. L et A fo  =  

{J7, Q ,Q f , A} be a tree autom aton. L et 7 /  be an approxim ation fu n ction  such, that 

7 /  is  defined by D efin ition  25. I f  the num ber o f  rules in  TL and the num ber o f  sta tes  

in  Q are fin ite  then the com putation  o f  A fk  w ill stop.

The completion algorithm  term inates when no more new transitions can be added 

to the current autom aton. So, like for the ancestor approximation (Definition 14), 

this theorem th a t states tha t the approximation autom aton is finite is proven by 

showing tha t a finite number of states are introduced by the completion.

P r o o f  Starting from a TRS 71 containing a finite number of rules, an initial 

autom aton Afo— {J7, Q, Qf, A} and an approximation function 7f, is built

from Afi1 by:

1. searching for a critical pair (rcr,q) with a state q G Q u, a rewrite rule I —>■ r  

and a substitution a  G £ (Q U, X) such tha t la  q and rcr - » A fi q

2. Af(i+1) =  Afi U N o r m J f (r a  -4 q).

The sets 7Z, X,  Qu and E(QU,X)  are used by the completion.

*it is assumed A /i=  { T , Qu, Q f, A ’} where Qu = Q \J Qnew and Qnem the set of states 
introduced by 7/
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By assumption, the set of rules, 71, and the set of variables used in 71, X , are 

finite.

By looking a t the above definition q G Qu and Qu =  Q (J Qnew Q is the set of 

initial states and is finite by assumption. Qnew is the set of states introduced during 

the completion by 7 / .  Proposition 8 says that the states used by 7 /  are bounded by 

those of '5 and \Lr introduces a finite number of new states (cf. proof of term ination 

of Algorithm 3), so Qnew is a  finite set. This means that Qu is a finite set. O

Figure 4.1 summarizes the way A fk  is computed. First, the set is computed 

according to the Algorithm 22. Then the completion process (Algorithm 2) is ap­

plied. It uses the 7 /  (Definition 25), the normalization process (Definition 12), the 

finite set of states Q„ (states of the initial autom aton and those introduced by '£), 

the finite set of rewriting rules 71 and the finite set of substitution £ {Q U,X ) .

Figure 4.2 is a more detailed version of Figure 4.1 w ith the algorithms and 

definitions detailed. F irst the sets '£ and Q u are computed, for all the substitutions 

9. The first loop using the set Q  introduces a  finite set of new states and a  finite 

num ber of 0 . The second loop using Qnew, the set of new states introduced by the 

first loop, only adds 0  functions to the set of 0  functions. W hen the sets and Q u 

are available, A fk  can be computed. Critical pairs are searched:

•  when a  pair is found, a 7 /  for the term  to normalize is computed. W ith that 

7 f  a normalization of the term  is deduced. Finally the current autom aton is 

updated to recognize bo th  terms of the critical pair.

•  when no more critical pairs are found (in the worst case, when all the com­

binations of rewrite rules, states and substitutions have been explored), the 

com putation stops.

I t can be seen on Figure 4.2, the computation of A fk  relies on the critical pairs 

search which apply sill the possible substitutions a  €  S (Q u, X )  for every automaton. 

Thus the complexity of the com putation of A fk  is exponential.

W hen we will be verifying protocol, we will have between two and four states 

linked to  terms of arity zero, the com putation time of and Q u is then only 

depending of size of the term  rewriting system and the number of variables. The
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Compute sets: 
VandQ,,

Compute by 
completion:

u j b y

h critical pairs witli'
R ,Q U, I

Figure 4.1: A bstract com putation of the approximation autom aton A f k with the 

TRS H , the initial autom aton A q =  Qu, Q /, A}, the set of variables X  and 

initially =  5  =  0

protocols tha t we will be using in  the next chapter, will be small or medium size 

regarding the num ber of steps and the size of the messages, thus the com putation of 

and Q u is done quickly and their sizes are small. So the sizes of the sets used in 

the completion are reasonable so the computation of the approximation autom aton 

is done quickly.

4.1 .2  Exam ple

This example was taken from [Gen98b] and presented in Chapter 3 to  show that 

the com putation of the approxim ation w ith 7  could run  forever. Here, it is used to 

show th a t with 7 /  the same com putation terminates.
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Computation of set \|/
for r'eR, q€Q. 6eQ  for r'eR, qeQneu, 060

if ( (ß(r',q,0)=ql...qI1)iS) then 
S = {  ( ß  (r ' ,q,0) =q1-.qn) } u S  

if ( (qj£Q) & (qi«QMW)) 
Qnew={qi}'-,Qnaw

¡ m m p u ' t M l o n  t  e r m i n a  ces 
WStMter.mina t.io n  px'oof 
of A l g o r i  t h m  :■>

Cjj=S & Qu=Q uQ ^>

Computation of Afk

while 3 l-»r eR, q eQu, o eZ(Qu,] 
such that lC->, q and r c w . a

Used tv ys b o u n d s  t h e  s e t  o f  s t a t e s  
u s e d  b y  yf  
c f  P r o p o s i t i o n  1 0

C o m p u t a t i o n  t e r m i n a t e s  
c f  T h e o r e m  6  
a n d  i t s  p r o o f

Computation of yf
3(ß(l -» r,q,0)=q1™qn)ey such that 
Yf(l -» r , q, o) = (ß (1 -> r,q,0)=q1...qn

If applicable simplification rules

7,(1 r ,q,G) =q'1...q'n with q'ieQu

Term tA at position i is 
normalised by state q ^  a<ti)=qi T

Computation of Norrn^ (rc—>q)
"-----------------------------------------------------------------------------  s

l.if ro=q then Norma(rO—>q) = 0
2.if seQnew and s*q then Norma (rC—>q) = {r<T-»q}
3.if s=f (tlf_, tm) then Norm„ ( rc—>q ) =_________

{f < « ^ 1 )..«(tm) ) ^ q } u  fNornla(ti_,a(ti)) .
_  _ "X

for ieTi.-.m)
Update the sets of the current

Ai+i=A i u N orm Y ( r o —>q)
automaton

Figure 4.2: Detailed com putation of the approximation autom aton A /k  with the 

TRS 1Z, the initial autom aton A o — { T ,  Q f. A}, the set of variables X  and 

initially Qnew =  5  =  0
92
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E x a m p le  17 L et A  =  {!F, {go,gi,g2}>{gi}, A} be a tree au tom aton  where :

•  T  =  { a p p : 2, cons : 2, n i i : 0,a  : 0},

•  A={app(go, go) ->• Qi, c o n s f a ,  q i)  -► g0, n il  -4  g0, ni/ 4  gb  a 4  g2},

W =  a p p (c o n s (x ,y ) ,z )  -»• co n s(x , app (y , z ) ) ,

•  T i =  {r/}, and

•  y f  (D efin ition  25) the approxim ation  fu n ction  m apping every  tuple ( r l ,  q, a )  to  

one s ta te  (co n s(x , a p p (y , z )) o f  r l  contains only one subterm  a p p (y ,z ) ) .

A fte r  having com puted a ll the possible 0 ,  the G enet and K la y  process is  used to  

com pute A i+ i fro m  A i:

1. w e have a p p (c o n s fa , gi), qo) -V 4 q i and con s f a ,  a p p f a ,  go)) q i so we 

have the critica l p a ir  (cons f a ,  a p p f a ,  q o )) ,q i);

2. A i  =  .4. U N o r m yf ( c o n s fa ,  a p p f a ,  go)) gi) built:

0  ( r l ,  q i ,  { x  =  q<z,y =  qu  z  =  g0}) =  ?3

( a) we have 0  (r /, qu  { x  =  q2, y  =  y , z  =  go}) =  gi

0  ( r l , q i , { x  =  x , y  =  y , z  =  z } )  =  q&

(b) 7 f  (r l , gi, {x =  q2, y  =  q i , z  =  go}) is  computed:

i. w e have { x  =  q2, y  =  q i , z  =  g0} « max {» =  q2, y  =  q i , z  =  g0}

ii. and  0 (r l, qu  {» =  g2, y  =  gi, * =  g0}) =  qs

Hi. so  t f  (r l, gi,{®  =  g2, y  =  q x ,z  =  go» =  0 (r l, q i , { x  =  q2, y  =  q i , z  =  

qo}) -  93-

(c ) Norm -yf  ( c o n s fa , a p p f a ,  go)) -¥  gi) is  com puted w ith  j f  ( r l ,q u  {x =

92, V =  gi, H =  go}) <W follow :

N o rm y f ( c o n s f a ,  a p p f a ,  qo)) ~ + q i)  =  { c o n s f a ,  93) -*• gi}U

N o r m v  (a p p fa , qo) -»  93)

=  { c o n s f a ,  q$) -+ gi, a p p f a ,  qo) 93}
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(d) the sets of A  are updated to produce A \;

The transitions con sfa , q3) —>■ qi and appfa , go) ->• g3 are added to 

A, the current automaton set of transitions and g3 is added to the set of 

states.

S. as app(consfa, q$), qo) 93 and cons f a ,  appfa , go)) q$, the critical

pair (con sfa , a p p fa , qo)),qz) is deduced;

4- A 2 =  A l U Norm-,f (con sfa , a p p fa , qo)) -)• g3):

P (W, q3, {x =  qi,y  =  qu z  =  q0}) =  g3

we have P K  93, {x =  q2,V =  V,z =  go}) =  q\

P (r l ,q s ,  {ar =  x , y  =  y , z  =  z } )  =  g5

•  7 /  (r l , q3 , { x  =  q2, y  =  q3, z  =  g0}) is  computed:

(a ) w e have 0 (r l, gi, { x  =  q2, y  =  y , z  =  go}) =  g4

(b) an d  { x  =  q2, y  =  y , z  =  go} < m ax  { x  =  q2,V  =  q3, z  =  g0}

(c ) so  7 /  (r l ,  g3, { x  =  q2, y  =  q3, z  =  q0}) =  P (r l, g3, { x  =  q2, y  =  y , z  =

9o}) =  94

•  N om U ff ( c o n s f a , a p p f a ,  qo)) -¥  g3) is com puted w ith  7 /  (ri,g 3,{ x  =  

g2, V =  Q3, z  =  go}) as follow :

N o r m l f  ( c o n s fa ,  a p p f a ,  g0)) ->• g3) =  { c o n s f a ,  g4) -)• g3}U

N o r m v (a p p fa ,q o )  -+ g4)

=  { c o n s f a ,  g4) -► g3, a p p f a ,  qo) -4  g4};

•  the se ts  o f  A t are updated to  produce A 2;

The tran sition s c o n s f a ,  q i)  -V g3 and a p p f a ,  qo) —► g4 ore added to  

A, the curren t au tom aton  se t o f  transitions and q i is  added to  the s e t o f  

sta tes.

5. the critica l p a ir  ( c o n s f a ,  a p p f a ,  go)),g4) is deduced fro m  app(cone f a ,  Qi),  go) 

q i and c o n s f a ,  a p p f a ,  g0)) g4;
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6. A s  =  A 2 U N o r m v (cons(q2, app(q 4 ,  g0)) -4  g4):

P  (r l , 94, { x  =  q2, y  =  q i , z  =  9o}) =  <73

•  we /mve /? (r/, <74, { x  =  q2, y  =  y , z  =  g0}) =  94

/3 ( r l ,q \ ,  { x  =  x , y  =  y , z  =  z } )  =  g5

•  V  (r l, <74, { x  =  q2, y  =  q4, z  =  go}) is  computed:

(a ) w e have ¡3(rl,qu  { x  =  q2, y  =  y , z  =  g0}) =  g4

(b) and { x  =  q2, y  =  y , z  =  g0} «.max { x  =  q t ,y  =  q s ,z  =  g0}

(c )  7 /  {r l, g4, {a: =  q2, y  =  g4, 2; =  g0}) =  0 (r l, g3, {x  =  q2, y  =  y , z  =  g0})

=  g4

•  N orrriyf(con s(q2, oj?p(g4, go)) —► g4) is com puted w i t h y /  (ri,g4,{ z  =

92, y  =  q ± ,z  =  g0}) as fo llow  :

N orrriyf  (cons(q2, opp(g4, g0)) -4 g4) =  {cons(g2, g4) -4 g4}U

N o r m y f {app(q i, g0) -4 g4)

=  {con s{q2,q i )  -4 g4, app(g4,g0) -)• g4};

•  the sets o f  A 2 are updated to  produce A 3;

The transitions cons(q2, 94) —>■ g4 and app(g4,go) —► 94 are added to  

A, i/ie current au tom aton  se t o f  transitions.

7. N o  m ore critica l pairs are found. The com putation  stops unlike the com puta­

tion s w ith  the 7  fu n ction  o f [G en98b, GKOOa] given  in  D efin ition  13.

4.1 .3  W hy is it  ok for protocols?

The syntax and semantics introduced in  [GKOOa] had been extended to  deal with 

shared keys, session/complex keys, private keys, servers and hashed information (cf. 

Figure 4.2). In order to reduce the number of states used in the approximation 

function, the nu ll term  used by Genet and Klay to end a list of information had 

been removed. Thus a list ends w ith its last element, for example con(a, cons(b, 

n u ll))  becomes cons(a, b).
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agt(x) x is an agent

c _init(x, y, z) x thinks he has established a communication with y  but 

he really communicates with z

c_resp(x, y, z) x thinks he responds to a request for communication from 

y  but he really communicates with z

cons(x, y) concatenation of the information x and y

encr(x, y, z) z  is encrypted by y  with the key x

goal(x, y) x wants to communicate with y

h a sh l(x , y) y is hashed by x

haah2(x, y, z) z  is hashed by y with the key x

key(x, y, z) key created by z  for y and x

or key created by x to communicate with y

with the information z

m esg(x, y, z) z  is a message sent by x to y

N (x, y, oc) nonce created by x  to communicate with y and where oc is 

a nonce number.

When there is only one nonce between x  and y, oc is equal to 

tO (by default tO for the nonce number 0).

But when in a protocol run you have 2 different nonces 

created by x for y each nonce will have a different oc for 

example tO and t l .

To simplify the notations and as in the examples used only 

one nonce is created by an agent for another,

N (x , y) is used except in Chapter 5 where a prototype is introduced.

pubkey(x) public key of x

prikey(x) private key of x

serv(x) a; is a server

sharekey(x, y, oc) key shared by x  and y with oc a key number.

When in a protocol rim you have 2 keys shared by x  and y 

each key will have a different oc for example tO and tl.

Table 4.2: Description of the terms used

96



The messages exchanged during the protocol rims are composed of basic pieces 

of information (i.e. agent name, shared key, etc.) or of concatenations of basic 

pieces of information (i.e. agent name and shared key encrypted, etc.). To reduce 

the number of messages tha t can be sent, the format of the messages is fixed by 

typing them. So in the term  rewriting system (TRS) for example jm b k ey(a g t(x ))  

is used to indicate tha t x  can only be an agent name instead of having pu bkey(x ). 

It makes analysis incapable of determining “type attacks” . Nevertheless, [HLS03] 

justifies the assumption th a t all agents can identify the type of the information sent.

In  a  message, two types of information can be distinguished, one type that can 

be understood by the agent (i.e. agent names, etc.) and the other tha t cannot be 

understood by the agent (i.e. an agent cannot access a piece of information that has 

been encrypted if he does not have the right decryption key, etc.).

In the TRS, this distinction is visible. For example, an agent can identify a 

nonce if he has created the nonce. In the TRS when a g t(x )  has created a nonce to 

communicate with a g t(y ) , N (agt(x),agt(y)) is found in the TRS and when it is a 

nonce created by someone else N(w,z) is used instead.

The new approximation also makes this distinction. In one case the state cor­

responding to the precise nonce is used and in the other, a state  (because of the 

approximation /?) th a t gathers together all the possible cases is used. The approxi­

m ation ¡5 gives precise states for known information (as known information contains 

variables th a t can be substitu ted  by terms of arity zero) and abstract states for 

unknown ones.

To avoid unknown information from different messages being gathered together 

by 7 f  during the normalization process, each unknown piece of information in the 

TR S’s rules has different variables. Thus it is impossible to find two rules within 

the TRS containing two unknown pieces of information w ith the same variables. For 

example, in the TRS it is impossible to have N (x , y )  in two rules; instead N (x , y) 

and N ( x i, y \)  are found. There is an exception; it is possible to find unknown pieces 

of information with the same variables when the protocol states these are identical 

in a  message. For example, if the agent forwards an unknown nonce and writes it
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twice in the message, then the term N ( x , y )  is found twice in the rule.

The goal is to verify tha t information is kept secret during protocol runs (se­

crecy properties) and th a t actors can identify senders of messages (authentication 

properties). These properties are checked only for communications between trusted 

agents. The computation of the approximation autom aton with 7  [GKOOa] guar­

antees th a t communications between trusted agents are not gathered together with 

other communications. The introduction of states for known and unknown informa­

tion w ith 7 f  does not modify this. The “known” states are linked to one agent, who 

created the information. The “unknown” states are linked to  a particular message 

of a specific communication as 7 /  creates them  for one message involving particular 

agents. The approximation function and the normalization process tha t use these 

states distinguish communications between Alice and Bob from those between Bob 

and someone else, etc. Thus, the verification of the secrecy and authentication prop­

erties is not affected by the introduction of particular state  for known and unknown 

information.

Moreover the distinction introduced between known and unknown information is 

very helpful, when the intersection of the approximation autom aton and the negation 

property autom aton is not empty (i.e. when the property being verified is not guar­

anteed to be valid, the property may be verified). By looking at the approximation 

autom aton with the approxim ation function, information th a t can help the user to 

verify whether the property is satisfied with other methods [Mea96, Pau98, JRVOO] 

or otherwise, can be deduced. In  particular, by studying the states of the autom a­

ton, the user can find the particular step which may lead to  an attack and thus have 

an idea as to how to direct the verification using other verification techniques.

4.2 C om bining approach

W hen the intersection of the approximation autom aton and the negation autom aton 

is not empty2, another verification technique must be used to check if the property

2Prom the experiments we carried out with our approximation only when the protocol was flawed 

it happened. But for some protocols, it could happen when the approximation is too abstract. For
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is verified or not. The inductive approach of Paulson [Pau98] has succeeded in 

verifying a large range of protocols, bu t requires experts to carry out the proofs. 

The inductive technique, on the other hand, offers a very powerful framework to 

backup the approximation when it fails while the approximation approach simplifies 

the work of the experts. It seems a good idea to combine the approximation approach 

with the inductive technique as both approaches deal with traces of events, their 

intruder has the same properties, and the protocol steps can easily extract from the 

Isabelle specification to be transform  into a term  rewriting system.

In  this section, first the inductive approach is detailed, followed by an introduc­

tion to  the combination of the techniques.

4.2.1 Inductive approach

This technique was briefly introduced in Chapter 2. In his approach, Paulson reasons 

on the set of all the possible traces reachable with a particular protocol.

As initial assumptions, he has an infinite number of agents in the network and 

an intruder tha t matches Dolev and Yao’s intruder model [DY83]. He also considers 

th a t traces are lists of events and an event contains information about agents and 

messages.

In  his method, there are three types of agents:

•  The server who can always be trusted.

•  The user who can be safe or not (depending on whether the spy knows his 

secret key, for example).

•  The spy who is an attacker and is accepted as a valid user.

These agents can extend the trace in any way perm itted by the protocol and can 

forward messages th a t they cannot read. Messages may include:

agent names, nonces, timestamps, keys, compound messages, hashed messages, 

encrypted messages. There are two kinds of events:

example with the approximation o f Genet and Klay, no distinction is made for two nonces sent 

by the same agent, so the no emptiness is observed even if one nonce is secured like for IS0611  

protocol.
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•  S a y s  A B  X :  the agent A sends the message X  to the agent B.

•  N o te s  A X  : the agent A stores the message X  internally.

To m anipulate the event lists, he defines three operations: p a r ts ,  a n a lz  and 

sy n th .  These operations are needed to express assertions and describe the possible 

actions of the attacker. They are defined by induction on possibly infinite sets of 

messages.

If the set H  contains an agent’s initial knowledge and the history of all messages 

sent in  a trace, then we have:

•  p a r ts  H , the components of messages in H  th a t could be obtained by decom­

posing complex messages and breaking every encryption.

•  a n a lz  H , the components of messages in H  th a t could be decrypted using only 

the information contained in H .

•  s y n th  H , the set of all messages th a t could be built up using messages in H  

as components.

So if the set H  shows all the traffic in the network, then the attacker can send 

fraudulent messages drawn from the set sy n th (a n a lz  H ).

The evolution of a trace is defined by 4 types of messages tha t model precise 

events:

1. initial trace th a t is an empty list (Nil on Figure 4.3);

2. protocol step tha t adds events to  the current trace if some pre-conditions are 

satisfied. NS1 in Figure 4.3 models the first step of the Needham-Schroeder- 

Lowe protocol [Low95] (cf. Figure 3.6);

3. fake message that defines how the message is created (pre-condition) and sent 

by the intruder (Fake on Figure 4.3);

4. accidental message tha t models the accidental loss of information by an agent 

(Oops on Figure 4.3 models the loss of the session key in the symmetric key 

Needham-Schroeder protocol [NS78]).
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Theory NS_Public =  Public:

consts ns-public :: “event list set”

• • •

(^Initial trace is empty*)

Nil: “[] : nB-public”

(*If X is what the intruder can learn from the trace evsf

the event “Says...” is added to the trace evsf.*)

Fake: “[|evsf: ns.public; X : synth (analz (spies evsf))|] = >

Says Spy B X #  evsf : ns.public”

(*If evsl is a trace and NABO is a nonce not previously used in evsl

the event “Says...” is added to the trace evsl.*)

NS1: “[| evsl : ns.public; Nonce NABO used evsl |] = >

Says A B {¡Crypt (pubK B) {|Nonce NABO, Agent A|}|}

#  evsl : ns.public”

• • •

(*This message models possible leaks of session keys.*)

Oops: “[|evso : ns.public; Says Server B {|Nonce NABO, X,

Crypt (shrK B) {|Nonce NBAO, Key K|}|} : set evso |] ==>•

Notes Spy {|Nonce NABO, Nonce NBAO, Key K|} #  evso : ns.public”

Figure 4.3: Example of Isabelle specification

Several protocol properties can be verified by induction on the trace. This means 
that the method checks that each type of message introduced above preserves the 
properties. If a rule does not satisfy the property, then a flaw has been discovered. 
The properties that can be verified with this technique are:

• possibility properties, which assure that message formats agree from one step 
to the next.

• forwarding lemmas, which assure that the spy will not learn anything new by 
seeing a message that an agent forwards and can not decrypt.

• regularity lemmas, which assure that whatever the spy does he can never
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get hold of particular information (excluding information known by the bad 

agents). For example the intruder never acquires of a secret key initially shared 

by two trusted  agents.

•  unicity theorems, which assure th a t session keys and timestamps uniquely 

identify their message.

•  secrecy theorems, which assure that secret information can not be caught by 

the intruder.

•  authenticity guarantees, which assure the authenticity of information.

Using the Isabelle theorem prover [Pau94], Paulson verified a  large range of pro­

tocols: the Internet protocol TLS [Gro96b, Pau99], the Kerberos protocol [BP98a, 

BP97, BP98b], the SET protocol [BMPTOO, PauOl, BMP02, BMP03] and some 

other protocols[Pau98]. The proofs of these protocols are available on the Isabelle 

website3.

The inductive approach has successfully verified many protocols, so what is the 

advantage of combining it w ith the approximation technique and how are these 

techniques combined?

4.2.2 W hy and How?

By combining the inductive approach [Pau98] and the approximation technique, the 

advantages of each m ethod are exploited. Both approaches reason on traces and are 

easy to understand.

The inductive approach is a  good m ethod of verification which can verify several 

properties. But in this approach, the secrecy and authenticity properties/theorem s 

are very difficult to prove (to have an idea, look at the proof of the Needham- 

Schroeder protocol on the Isabelle website). The proofs require an experienced user 

to introduce the right lemma at the right tim e to make the proofs stop.

On the other hand, with the approximation technique, a quick and semi-automatic 

(the user only enters the TRS, the approximation function, the initial automaton)
3http://wTvw .cl.cam .ac.uk/Research/H VG /Isabelle/library/H O L/A uth/
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verification of these two properties can be done. The user does not need to be 

an expert to write the TRS, the initial autom aton and the approximation function. 

Chapter 5 will explain how the TRS, the approximation function, the initial autom a­

ton can be automatically generated from an Isabelle specification. The autom aton 

for the negation of the secrecy is autom atically generated and the autom aton for 

the negation of the authentication based on “c_resp” and “c_init” can be re-used for 

different protocols.

In  both  techniques, the secrecy of the information is proven for honest agents 

and assumes th a t no accident reveals the information to the intruder. In the induc­

tive approach, the authenticity is proven for honest agents. This is established if 

honest agents received their last message with the information they expected, given 

tha t they sent the correct messages previously. In the approximation approach, au­

thenticity is proven for honest agents. This is established if honest agents received 

their last message with the information they expected, if the message was created by 

the right agent, and there was no accidental loss. The approximation computes an 

over-approximation of the set of all the messages that can be sent, thus the second 

condition to establish the authenticity in the inductive approach is guaranteed.

Hence, by using the approximation in the inductive proof, the user’s work can 

be simplified and the tim e spent in the verification of protocols can be reduced. 

W hen the properties cannot be verified by the approximation, the results of the 

unsuccessful verification will give information that will help the user to carry the 

inductive approach.

The techniques will be combined as follow:

1. The approximation technique is used to  verify the secrecy and authentication 

properties.

2. If the properties are satisfied, these results are used as axioms in the inductive 

m ethod. If  the properties are not satisfied, the inductive approach is used to 

check if a flaw really exists.

By looking at the approximation function and at the approximation automa-
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ton, the user can find the protocol step which might lead to  a flaw and use 

th a t information to do his inductive proof. Each state  used in the approximar 

tion function is linked to a specific term  (known information like ag t(q2)) or 

a specific rewrite rule (unknown information like encr(o_l, 6.1, c_l)). Thus by 

looking at states tha t are used in  the transition add(...) —> q i3 in  the  approxi­

m ation autom aton, it is possible to  trace back messages th a t might lead to  a 

flaw in the protocol.

3. The inductive approach is used to prove the remaining properties (the proofs 

of those properties are mainly the same for all the protocols [Pau98]).

Chapter 5.3 will illustrate using real examples how the idea works. The approx­

imation technique can simplify the work of an Isabelle user.

4.3 C onclusion

In this chapter, we introduced a substantial and significant improvement to Genet 

and Klay’s approach by:

1. defining an  autom atically generated approximation function th a t ensures that:

•  the com putation of the autom aton terminates,

•  and the secrecy and authentication can be verified on the resulting au­

tomaton;

2. combining this improved approach with the inductive approach of Paulson to 

take advantage of the strengths of bo th  techniques.

The next chapter will introduce the tool developed to test these improvements 

and will detail the results of experiments carried out.
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Chapter 5

Prototype

In [GKOOa], a  prototype based on a tree autom ata library1 developed by Thomas 

Genet [Gen98b] for the ELAN2 prototyping environment had been used to carry 

out experiments on the Needham-Schroeder-Lowe protocol. The prototype was not 

optimized for the completion algorithm (cf. Algorithm 2). Thomas Genet and 

Valérie Viet Triem Tong [GT01] implemented Tim buk3. Timbuk is a library for 

OCAML4 [RV98, LDG+01] th a t is optimized for the com putation of reachable con­

figurations of a  system using the completion algorithm.

To be able to validate the improvements described in Chapter 4, in particular 

the approxim ation function, a prototype was implemented around Timbuk. The 

prototype extracts the protocol steps from an Isabelle specification and generates 

the input file for Tim buk (alphabet +  variables +  TRS +  initial autom aton +  

approxim ation function). The prototype also generates the autom aton to verify 

secrecy properties. Before the prototype is presented, the Tim buk library must be 

introduced.

1 http://w w w .loria.fr/equipes/protheo/SO FTW A R ES/ELA N /exam ples/elan-autom ata.htm l
2http://w w w .loria.fr/equipes/protheo/SO FT W A R E S/E L A N /
3h ttp ://www.irisa.fi:/lande/genet /tim buk/index.htm l
4h ttp ://cam l.inria.fr/ocam l/index.htm l
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5.1 T im buk library

Thig library offers basic functions on non-deterministic finite tree autom ata, such

■ boolean operations: intersection, union, inversion;

■ norm alization of transitions;

■ reading and writing autom ata to disk.

This tool was chosen as it offers the possibility to  compute the approximation 

of a  set of descendants of an  initial autom aton from a  TRS w ith an  approximation 

function according to  the completion algorithm (cf. Algorithm  2).

The form at of the input file to compute this approxim ation is given by Figure 5.1.

Ops ... alphabet used

Vara ... list of variables used

TRS R

... list of rules: first term  — > second term

Automaton automat

States ... list of states

Final States ... list of states

Transitions

... list of transitions: first term  —► second term

Approximation R1

States ... list of states

Rules

... list of normalization rules: [term  to normalize] —-> [normalization process]

Figure 5.1: Tim buk input file

The approxim ation R 1  in  5.1 is optional as Tim buk offers 4 modes:



■ autom atic: no approxim ation R1 has been given and the algorithm uses the 

approxim ation function 7  (Definition 13). It means th a t new states are created 

for each step of the completion and the com putation may not terminate.

• step-by-step: no approxim ation R1 has been given and the user normalizes the 

terms at each step of the completion.

• semi-automatic: an  approximation R1 is given by the user. In tha t mode the 

user can either enter approximation rules where all the variables are substi­

tu ted  or where some variables are kept.

For example, the user can enter [N(q2 ,  <73)] — > [N(q2, q3) —> <75] and 

[N(q2,q 4 )] — ► [N(q2,q4) -4  qs] or he can enter [JV (x ,j/)] — ► [N( x, y )  - 4  q5]. 

During the com putation Timbuk will substitute the variables, and N (q2,q3) 

and N (q 2, <74) will be linked to <75. Thus at the end, in the approximation 

autom aton in bo th  cases, we have N (q 2, q3) - 4  <75 and N (q 2, <74) - 4  <75.

» combination of the previous modes.

It was decided to use Tim buk in the semi-automatic mode by developing a tool 

that autom atically generates the input file for Timbuk. The user would only have 

to give the protocol specification and then would get the input file for Timbuk.

5.2 IS2TiF (Isabelle Specification to  T im buk File)

This section explains how our prototype IS2TiF (Isabelle Specification to Timbuk 

File) works and also how to use it. The tool simplifies the user’s work by generating 

the correct input file for Tim buk from a protocol specification and also the negation 

autom ata for the secrecy properties.

As the previous section shows, the Timbuk file can roughly be split into 3 parts: 

the TRS, the initial autom aton and the approximation function. The prototype 

translates the protocol specification into rewrite rules using compiler translation 

techniques. The TRS is then used to generate the approxim ation function. Since 

the initial autom aton is the same for all protocols, it is saved into a file.
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The negation autom aton ia produced using compiler translation techniques from 

a specification of the information that must be secret.

5.2.1 T R S +  In itia l autom aton  +  A pproxim ation function

The user is presented w ith two options, depending on whether he wishes to use the 

combining approach (cf. Section 4.2) or ju st the approxim ation technique. The 

protocol specification can be saved in the file in p u tI T .tx t  or an ISABELLE speci­

fication can be w ritten and the prototype used to extract the protocol’s steps into 

in p u tIT .tx t

In  in pu tIT .tx t, messages follow the ISABELLE form at Says A B M  where A 

and B are agent names and M is the message sent by A to B. Messages can contain 

(cf. Table 5.1):

•  agent names;

•  nonces;

•  keys (public keys, shared keys, complex keys);

•  session identifier;

•  pre-m aster secret;

•  hashed messages (using a key or not);

•  encrypted messages.

In  Table 5.1, one notices th a t the nonces and shared keys end w ith a number, 

for example N once NABO. This is because agents can share more than  one key and 

nonce in a protocol run.

This is well illustrated in  the following example: in  a protocol an agent can 

create two nonces, one known by everybody and one th a t should be secret. In 

[GKOOa], those nonces would have been modeled by the same term, for example 

N (a g t(a ),a g t(b ) )  and the verification of the secrecy of the second nonce would have 

BThe file where the prototype ia going to look for the protocol’s steps
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A gent A name of agent A

Nonce NABO nonce number 0 created by A to communicate with B

If in the same protocol you have two nonces between A and B,

you have NABO and NAB1

P ubK  A public key of A

P riK  A private key of A

ShrK  ABO key number 0 shared by A and B

If in the same protocol you have two keys between A and B, 

you have ABO and AB1

K ey (Ij) (I2) I 3 complex key built with information I i , /2 and I3

Sid AB session identifier created by A to communicate with B

PM S AB pre-master secret created by A  to communicate with B

H ash M M  is hashed information

H ash (K) M M  is hashed information with the key K

C ryp t (K) M M  is encrypted with the key K

{IIivM} concatenation of the information 7i and J2

Table 5.1: Syntax and semantics used in inputIT.txt

failed. By adding a number at the end of nonces, those nonces can now been 

distinguished by having for example N(agt(a),agt(b),0)  and N(agt(a),agt(b),l).

W hen the file inputIT.txt is available, the program does a lexical and syntax 

analysis of this file. It builds an abstract syntax tree of the protocol steps. The 

lexical analysis reduces the text of each line to independent lexical units. Then the 

syntax analysis uses those units to build the abstract syntax tree.

To illustrate this process, in Table 5.2, we have the information {| Agent A, Nonce 

NAB0\}.  We first apply a  lexical analysis to this information and get the following 

sequence of lexical units: Lsymbol “{ | ”, LAgent, LString “A ”, Lsymbol LNonce, 

LString “NABO” and Lsymbol “|} ”. Then by applying a syntax analysis, we get an 

abstract syntax tree of the initial information.
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Isabelle line {|Agent A, Nonce NAB0|}

■JJ- S y n t a x  a n a ly s is ^  L e x ic a ]  a n alysiB

Sequence o f lexical Lsymbol LAgent, LString “A”, Lsymbol

un its LNonce, LString “NABO”, Lsymbol “|}”

JJ- S y n t a x  a n a ly s is Ĵ- S y n t a x  a n a ly s is

T lin
Syntax tree Agent ^ ^ N o n c e  “NABO”

Table 5.2: Lexical and syntax analysis example

5.2.1.1 TRS

Using the syntax tree in memory, our prototype generates the TRS.

A message sent will be used as a pre-condition to  send another one. Each protocol 

step is used to generate the first term , pre-condition , of one rewrite rule and the 

second term , response, of another one.

For each of the protocol steps, the prototype creates and saves all the first terms 

in the file T R S l.tx t  and all the second terms in the file T R S2.tx t. To generate the 

terms, the following rules are applied to each step:

•  for the first term  of a rewrite rule:

1. only information known by the receiver appears clearly.

For example, if an agent receives a nonce th a t he had created, we have 

N(agt(a),agt(b),tO). Otherwise we have N (ai, b i, ti) .

2. if the receiver has the right decryption key then he has access to the 

encrypted information.

So for example, if an agent receives information encrypted w ith his public

key then he has access to th a t information and we have encr(pubkey(agt(b)),ai,...).

Otherwise we have encr(ai, b 2, C3) .

•  for the second term  of a rewrite rule:

1. only information known by the sender appears clearly.

2. sender can encrypt information if he has the right encryption key.
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In  order to reduce the com putation time of the approxim ation automaton, the 

messages are typed. T hat means th a t agents know the format of messages and will 

only reply to messages following the right format.

Table 5.3 shows the TRS rules generated for the first step of the Needham- 

Schroeder-Lowe protocol.

Isabelle

specification

Says A B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|}

TRS — > U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)), agt(a), 

cons(N(agt(a), agt(b), tO), agt(a)))))

mesg(a_4, agt(b), encr(pubkey(agt(b)), a_3, cons(N(a.l, b_l, t_l), 

agt(a)))) — > U(LHS, - ■ ■ )

Table 5.3: Example of transform ation

In  the row “TR S”, the first rule is easy to understand, the agent knows all the 

information, which is why everything appears clearly.

The second rewrite rule is a bit more complex, here the message is the first 

term  of the rewrite rule. Therefore when the agent receives the message, he does 

not know who sent and encrypted it, which is why we have a_4 and a_3 (and not 

agt(a_4) and agt(a_3) as it could be from a server). However, the agent has access 

to the information encrypted as the message has been encrypted w ith his public key, 

pubkey(agt(b)), and he knows his private key, needed to decrypt the message. As 

messages are typed, he knows th a t the first information is a nonce, but as he did 

not create it, we have N(a_l, b_l, t_l). He is also expecting an agent’s name, which 

explains the agt(a) subterm.

The tool does not generate the rewrite rules for the authentication (rules with 

c Jn it and c_resp). As the authentication might require a more complex condition 

than  ju st the reception of the last message sent, the user has to enter these rules 

by hand if he wants to verify such properties. These rules will be saved in Sin it.tx t 

and Sresp.txt. The program then generates T R S .tx t by linking all the first terms
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of T R S l.tx t  to tlieir m atch in T R S 2 .tx t and then by adding the rules from S in it.tx t 

and Sresp.txt.

5.2.1.2 Initial automaton

The in truder’s abilities are the same for all protocols (Dolev-Yao model [DY83]). 

The initial configuration of the network is also the same for all protocols: everybody 

wants to communicate with everyone. T hat is why the initial autom aton can be 

saved in a file, which will be re-used for every verification.

The initial autom aton defines the number of participants and the communica­

tions tha t will be established. [CLC03] proved th a t two agents are sufficient for the 

analysis of security properties of cryptographic protocols when the protocols allow 

an agent to talk to himself ( “self talking” protocol). If the protocol does not allow 

“agents to talk to themselves” ( “not self talking” protocol) and there is an attack 

involving n  agents, then there is an attack involving at most k +  1 agents (k  is the 

number of roles th a t an agent can play). So in order to use these results to opti­

mize the run-tim e of the com putation of the approximation autom aton, four initial 

autom ata are identified:

■ if the protocol allows an agent to talk to himself:

— one autom aton with an honest agent A and a set of untrusted agents and 

where the communications between A and A, A and the set, the set and 

the set are going to be established;

— one autom aton with a server S, an honest agent A and a set of untrusted 

agents and where the communications between A and A, A and the set, 

the set and the set are going to be established. This is when a trusted 

server is used by the agents to establish their communications.

•  if the protocol does not allow an agent to talk to himself:

— one autom aton with two honest agents, A and B, and a set of untrusted 

agents and where the communications between A and B, A and the set, 

B and the set, the set and the set are going to be established;
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— one autom aton with a server S, two honest agents, A and B, and a set 

of untrusted  agents and where the communications between A and B, A 

and the set, B and the set, the set and the set are going to be established.

The rewrite rules criticize the in truder’s capacities, the AC rewrite rules and 

the initial autom aton for protocols w ithout a server are saved in the file automa- 

tonwosl.tx t  if protocols allow “self talking” and in the file automatonwos2.txt if 

protocols do not allow “self talking” . Those files do not include rewrite rules and 

transitions involving a server. The rewrite rules and initial autom aton for protocols 

with a server are in the files automatonwsl.txt for “self talking” protocols (same file 

as automatonwosl.txt +  rewrite rules and transitions involving a server) and files 

automatonws2.txt for “none self talking” protocols. The user is also free to add 

rewrite rules or transitions into those files if he wants to  change the initial assump­

tions (for example if he decides th a t initially the intruder knows a shared secret 

between trusted  agents).

5.2.1.3 Approximation function

In Timbuk, an approxim ation rule is composed of two terms. The first term  cor­

responds to the term  th a t will be normalized and the second to the normalization 

process th a t will be used during the computation of the approximation automaton 

by Timbuk.

The process to  generate the approximation function is identical to the process 

for generating the TRS:

1. generation of the first terms, file approxl.txt (terms to normalize),

2. generation of the second terms, file approx2.txt (normalization processes),

3. creation of a  file approx.txt (cf. Figure 5.2) w ith approxl.txt, approx2.txt and 

finapprox.txt th a t contains approximation rules for c Jn it rules, c_resp rules 

and AC rules.

The approxim ation rules are generated from the second term s of rewrite rules of 

the protocol steps. For each rule, the sender and receiver variables are replaced by
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the states linked to  the agents. There are nine substitutions corresponding to the 

nine possible exchanges between Alice, Bob and the rest (cf. Section 3.2.2). The 

reader may wonder why there are nine cases whereas in the initial automaton, the 

nine possible exchanges are not considered anymore. This is to make sure tha t the 

user can alter the initial autom aton without caring about the approximation, since 

the approxim ation is generated for the nine possible exchanges.

Figure 5.2 gives an idea of the format of the approximation produced by the 

tool. On this figure, two approximation rules, one when an agent creates and sends 

a nonce (first rule) and one when an agent forwards a nonce (second rule), are given.

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(agt(ql), agt(q2), qtO), 

agt(ql))))) —► ql3] — > [LHS -4 ql3 agt(ql) —► q4 agt(q2) —► q5 N(q4, q5, qtO) -> q l6 

cons(ql6, q4) —> ql5 pubkey(q5) -* ql4 encr(ql4, q4, ql5) —> ql3 

mesg(q4, q5, ql3) ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(x, y, t), agt(qO)))))

-»• ql3] — y [LHS —> ql3 agt(qO) —► q3 N(x, y, t) -> q70 cons(q70, q3) —> q69 

pubkey(q3) —► q66 encr(q66, q3, q69) -4 ql3 mesg(q3, q3, ql3) ql3]

Figure 5.2: Example of approximations

We said th a t the com putation of the set of /3 functions is exponential (cf. previous 

chapter) bu t to  deal w ith protocols there is no need to compute the whole set. Only 

the (3 w ith substitutions in  which only the variables of known term s are substituted 

by states are interesting. This is because only known terms contain variables that 

are substitu ted  by states linked to term s of arity zero during the completion. Only 

agents’ names, indices of nonces, indices of keys and freshness levels have an arity 

zero. Thus the approxim ation rules produced only care about terms in  which agents’ 

names, indices of nonces, indices of keys and freshness levels are states and not 

variables like on Figure 5.2. The normalization process of a rule is then:

•  defined using a 0  function when the term  to normalize still contains some 

free variables (i.e. x , y  and t  in the second rule in Figure 5.2). During the
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completion by Timbuk, the free variables are replaced only by relevant states 

(those really required by the computation); the result of this substitution will 

give the normalization process using 7 f  because of the relation between (3 and 

7 /  (cf. Definition 25).

■ defined using a 7 /  function when the term to normalize has all his variable 

substitu ted  (i.e. the first rule in Figure 5.2).

Moreover, in the set of approximation rules, rules are added for particular ap­

proximations covered by the two simplification rules of Definition 25. For example 

if a message contains a t least two terms of identical information (for example one 

nonce known and one unknown or two unknown nonces), approximation rules are 

added. Those extra rules cover equality cases:

•  the message contains one known nonce, N(agt(q2), agt(q2), qtO) and one un­

known nonce N (ai, b i, t i) , 2 rules must be found in the approximation func­

tion.

One w ith N(agt(q2), agt(q2), qtO) and N(q5, q5, qtO) (assuming that agt(q2) is 

linked to the state q5) for the case where after substitution and normalization, 

the two nonces are identical. Another with N(agt(q2), agt(q2), qtO) and N(ai, 

b i, t i )  to cover the other cases.

•  the message contains two unknown nonces, N (ai, b i, t i )  and N(a2, b2, t 2), 2 

rules m ust be found

in the approxim ation function.

One w ith only N (ai, b i, t i)  or only N(a2, b2, t2) for the case where the two 

nonces are identical. And one with N (ai, b i, t i )  and N(a2, b2, t 2) to cover the 

other cases.

The rule w ith only N (ai, b i, t i)  or N(a2, b2, t2) has to be added to cover the 

case in which after substitution, the two nonces are equal (second simplification 

rule of Definition 25). Between N (ai, b i, t i)  and N(a2, b2, t2), the nonce (in 

general the information) tha t is the more accessible to the intruder will be 

picked. The following rules apply in tha t order:
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1. if one of the nonces, N(a2, b 2, t 2), is not encapsulated in a  cryptographic 

primitive then  N(a2, b 2, t 2) is picked.

The intruder already has access to N(a2, b 2, t2), so the state linked to 

this nonce is already (or will be) in his possession. Using N (ai, b i, ti)  

would give him access to N (ai, b i, t i)  bu t also to all the nonces linked 

to the state  q, which we do not want to do as this may give him access 

to other nonces th a t might perfectly be inaccessible for the intruder.

2. if one of the nonces, N(a2, b2,t2), is encapsulated in  a cryptographic 

prim itive but the intruder has access to it (for example if N(a2, b2, t2) 

is encrypted with the key of an untrusted agent) then N(a2, b2, t 2) is 

picked.

3. if bo th  nonces are encrypted but one of the them, say N(a2, b2,t2), has 

been encrypted more than  the other one, then N(a2, b 2, t 2) is picked.

4. if bo th  nonces have the same “encapsulation level” then  N (ai, b i, ti)  is 

picked.

The goal of these rules is to ensure tha t the approximation reveals as little informa­

tion as possible to the intruder.

The com putation of the rules only takes a couple of seconds as in the protocol 

context :

•  all the terms to  normalize will point only to the term inal sta te  <713 ;

■ only the term  w ith valid substitutions of variables by states linked to terms 

of arity  zero are considered (terms with only the sub term s of the form agt(x) 

where x is substituted).

The normalization for c_init, c_resp and AC terms is always the same so the 

approxim ation rules for those terms are saved in finapprox.txt. W hen approxl.tx t 

and approx2.tx t are available, the program generates approx.tx t th a t contains the 

approxim ation function (protocol steps -approxl —>■ approx2- +  finapprox.txt).
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By concatenating T R S.tx t, au to m a to n w o sl.tx t or au tom aton w os2 .tx t or automa- 

to n w s l.tx t  or au tom atonw s2.tx t, and approx.txt, the prototype creates the input file 

for Timbuk. In Appendix D, the Tim buk file uaed to verify the Needham-Schroeder 

protocol where an agent cannot talk to himself, is presented.

5 .2 .2  N e g a t io n  a u to m a to n

The user enters the information that he wants to check in a  file, for example se­

crecy. txt. In tha t file, the information must have the form I n f  A B M  where A is 

the sender and B the receiver of the message where the information M first appears. 

M m ust follow the syntax presented in Table 5.1.

The program does a lexical and syntax analysis of the file, then from the syntax 

tree it generates the autom aton criticize tha t the information M known by the honest 

agents (Alice and Bob) is also known by the intruder. If the user wants to check if a 

nonce between Alice and Bob is secret, then he has to enter In f  A  B  {\N A B 0 \}  and 

the prototype will produce the autom aton in Figure 5.3.

Automaton Not-Secret

States ql q2 q4 q5 ql3 qtO

Final States ql3

Transitions

A -4 ql agt(ql) q4
B q2 agt(q2) -4 q5

U(ql3, ql3) -» ql3 tO —> qtO

N(q4, q5) ql3 N(q5, q4, qtO) -> ql3

N(q4, q4, qtO) ql3 N(q5, q5, qtO) -> çl3

Figure 5.3: Nonces between Alice and Bob

5 .2 .3  U s e r  g u id e l in e s  t o  u s e  t h e  I S 2 T iF

In Ocaml, the user has to load the file is2 tif.m l and then enter go ();; to launch 

IS2Tif. The user can enter his commands (cf. Table 5.4) after the prompt. When 

the user has generated his Tim buk input file and all the negation autom ata for the
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secrecy properties6, he can leave IS2TiF. He can then use his files in Timbuk to 

compute the approximation autom aton of his protocol and check the properties.

For the user who is not familiar with Timbuk, we have a file approx.m l that the 

user can load in Ocaml and enter:

let aut_comp=MyComp.complet r protot r l [];;

This file can be used to compute the approximation if the user has saved his input 

file under approx.txt. W hen the user has done that, he has access to a menu and 

can launch the com putation of the approximation.

Figure 5.4 summarizes how a user verifies protocols with IS2TiF and Timbuk. He 

has to give the protocol and the properties to IS2TiF (except for the authentication, 

the negation autom aton is the same for all the protocol so this autom aton is provided 

to the user). Then he uses the files produced by IS2TiF to launch the computation 

of the approxim ation before he can check the autom ata intersection with Timbuk.

5.3 E xperim ents

To validate the improvements and the prototype some tests were conducted on simple 

protocols taken from [CJ97] and on the Transport Layer Security protocol [Gro96b]. 

The tests have been carried out on a Pentium  III (733 MHz) with 128Mb of RAM 

+  500Mb of v irtual memory managed by Windows NT.

The objectives of those experiments are multiple. The theory behind the approx­

imation approach is w atertight if used under the right conditions (cf. Proposition 9). 

The first objective of those experiments is to test tha t our prototype is producing 

the correct input file for Timbuk and to check th a t the produced approximations 

are correct (i.e. no bug in Timbuk). The second objective is to check that the 

approach can be used on concrete protocol verification and more im portantly that 

the verification of those protocols does not miss any of the known flaws. The third

flthe negation autom aton for the authentication property will be the same for all the protocols 

so it is saved in file authen.txt; this automaton was presented in Chapter 3 Figure 3.13
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A ddSinit r replaces the current TRS rule in Sinit.txt by r 

(ie. mesg(agt(a_6), agt(a), encr (pubkey(agt(a)), 

agt(a_5), cons(N(agt(a), agt(b)), a_2))) U(LHS, 

c-init(agt(a), agt(b),agt(a_5))));

if the user does not want any rule it just does AddSinit

A ddSrep r replaces the current TRS rule in Sresp.txt by r;

if the user does not want any rule it just does AddSrep

End closes IS2T1F

E x trac t filename extracts the protocol steps from the Isabelle file 

filename and saves them in inputIT.txt 

(ie. Extract ns.txt)

G en e ra te l filename generates the input file, filename, for Timbuk for 

protocols allowing an agent to talk to himself 

(ie. Generatel toto.txt)

G enerate2 filename generates the input file, filename, for Timbuk for 

protocols allowing an agent to talk to himself 

(ie. Generate2 toto.txt)

G enerate_autom aton  filename generates the file, filename, which contains the 

automaton to check a secrecy property 

(ie. Generate-automaton Nonce.txt)

Load filename loads the file in memory (ie. Load input.txt)

List lists the TRS rules

Table 5.4: IS2TiF commands

objective is to test the effectiveness of the implemented solution for the combination 

approach. The prototype was not define w ith the help of a model (Z,B, UML) and 

the test campaign was not built around the protocol functionalities bu t around a set 

of protocols. Thus the prototype is reliable only for the protocols we checked as we 

manually checked the results. The prototype should have been unit tested to gain 

in reliability.
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< 1 ____ USER
Isabelle Specification 

or
Protocol Specification

Secrecy property 
or

Freshness property

TRS
+

Initial automaton
+

Approximation function,

Negation
automaton

Negation
automaton

^authentication]

 I ..

Intersection of automata

Figure 5.4: IS2TiF +  Timbuk

5.3.1 Standard protocols

The protocols studied here are well known, as are their flaws, and are usually used 

to validate new verification techniques:

•  Needham-Schroeder-Lowe [Low95];

•  Needham-Schroeder [NS78];

■ Otway-Rees simplified [AN96];

■ Otway-Rees modified by us;

•  Woo-Lam Pi3 [WL94];

•  Andrew Secure R P C  [Sat89].

For each protocol, the secrecy and authentication properties were checked. Table 5.5

summarizes the results7 obtained w ith our approximation. W here it indicates “may
7the first tim e is the tim e to  compute the approximation autom aton when the protocol allows 

an agent to  talk  to  himself. The second tim e is the tim e to  compute the approximation automaton
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be a flaw” , then the flaw was found using the inductive approach. Table 5.5 also 

illustrates the main drawback of the approach, the com putation tim e ia exponential; 

just by adding one agent the execution times increase drastically. B ut the expensive 

time approach can cover an extra constraint th a t stands th a t an agent cannot speak 

to himself. Thus the few exra minutes are not im portant if tha t constraint is strong 

for the protocol verified.

P ro to c o ls

(com putational time)

P r o

S e c recy

p e r tie s

A u th e n tic a t io n

Needham-Schroeder sym m etric key (41s and 6min 10s) 

Needham-Schroeder (18s and 3min 50s) 

Needham-Schroeder-Lowe (16s and lm in  59s)

Otway Rees simplified (lm in  03s and 17min 12s) 

Otway Rees (ours) (lm in  22s and 20min)

Woo Lam  Pi3 (31s and  14min)

Andrew Secure R PC  (48s and 10min 50s)

verified 

may be a  flaw 

verified 

verified 

verified 

none 

verified

verified 

may be a flaw 

verified 

verified 

may be a flaw 

verified 

verified

Table 5.5: Test results

No unknown flaws were discovered. The work (with the new approximation 

function and the combining approach) done on each protocol is the same. The ver­

ification of the Needham-Schroeder-Lowe is detailed in  the following section. Then 

the properties for each protocol are described.

5.3.1.1 New function + combining approach

The Needham-Schroeder-Lowe protocol was introduced in Section 3.2.2. Alice and 

Bob want to establish a  secure communication using a public key infrastructure. 

Before they send any vital information, they use the Needham-Schroeder-Lowe pro­

tocol (cf. Figure 5.5) to exchange nonces tha t later should perm it the identification 

of senders of messages.

To verify the protocol, the first step is to write the Isabelle specification. Figure 

5.6 shows the protocol specification using Isabelle syntax. T hen the prototype is 

when the protocol does not allow an agent to talk to himself
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Alice initiates a protocol run, sending a nonce Na and her name A to Bob.

Message 1: A =£• B : {iVa,A}*t

Bob responds to Alice’s message with a further nonce Nb.

Message 2: B ==>• A : {TVa, JV6,5}j<-q

Alice proves her existence by sending Nb back to Bob.

Message 3: A = »  B : {N b }Kb

Figure 5.5: Needham-Schroeder-Lowe protocol

used to generate the Tim buk input file. W hen this file is created, the Timbuk 

library is used to compute the approximation autom aton.

W hen the com putation of the approximation autom aton is over, the secrecy and 

the authentication properties can be verified.

T h e  se c re c y  p r o p e r ty  The secrecy property th a t m ust be guaranteed by the pro­

tocol is: “The intruder can never access the nonces created by Alice (to communicate 

with Bob) or Bob (to communicate with Alice)”.

To verify this property w ith the approximation technique, first an autom aton 

of the negation of this property is autom atically generated w ith IS2TiF. This au­

tom aton is identical to the one in [GKOOa] and given in Figure 3.12 in Chapter 

3.2.2.

To refresh the reader’s memory the autom aton is given in Figure 5.7. “Not_Secret” 

recognizes the nonces created by Alice and Bob to communicate with each other. 

The intersection of this autom aton with the approxim ation one is empty, so the 

protocol satisfies the property.

T h e  a u th e n t ic a t io n  p r o p e r ty  The authentication property is: “If Alice thinks 

that she communicates with Bob, then she really speaks with Bob. And if  Bob thinks 

that he communicates with Alice then he really talks with Alice”.

This autom aton is identical to the one in [GKOOa] and given in Figure 3.13 in
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Theory NS-Public =  Public:

• • •

(* Alice initiates a protocol run, sending a nonce to Bob*)

NS1: “[| evsl : ns.public; Nonce NABO used evsl |] = >

Says A B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|}

#  evsl : ns_public”

(*Bob responds to Alice’s message with a further nonce*)

NS2: “[| evs2 : ns-public; Nonce NBAO used evs2;

Says A’ B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|} : set evs2 |] ==>

Says B A {[Crypt (pubK A) {|Nonce NABO, Nonce NBAO, Agent B|}|}

#  evs2 : ns-public”

(*Alice proves her existence by sending NBAO back to Bob.*)

NS3: “[| evs3 : ns.public;

Says A B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|} : set evs3;

Says B’ A {|Crypt (pubK A) {|Nonce NABO, Nonce NBAO, Agent B|}|}: 

set evs3|] =>■ Says A B {|Crypt (pubK B) {|Nonce NBA0|}|}

#  evs3 : ns.public”

Figure 5.6: Inductive specification of the Needham-Schroeder-Lowe protocol

Automaton Not-Seer et

States «1 «2 94 «S «13
Final States «13
Transitions

A -> Ql agt(«i) ->■ «4

B —> q-2 agt(«2) -> «5

U(«i3, «is) —>• «13 

N(«4, 95) «13 N(«5, «4) —> «13

N(«4, «4) ->■ «13 N(«5, «5) -> «13

Figure 5.7: Nonces between Alice and Bob
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Chapter 3.2.2.

A u tom aton W rong .Belief

States «o qi «2 «3 «4 Qs «0 qi3

F in al States «13
Transitions

0 -► «o

s(«o) - 4  qo agt(«0) ->■ «3

A qi agt(« i) -¥ qi

B q2 agt(«2) -> «5

U(«13, «13) —> «13

cJnit(<?4, q5, Qs) «13 cinit(ç4, qs, qi) «13

c_resp(«5, «4, «3) -> 913 c_resp(gs, «4, «5) ->• «13
c-init(<?s , q4, q3) -> qi3 c jn it(« s , qi, q6) -> «13

c_resp(g4, qs , q3) -» q13 c_resp(«4, «5, qi) -> «13

Figure 5.8: Alice and Bob do not really communicate with each other

In Figure 5.8, “WrongJBelief” recognizes all the possible wrong beliefs for commu­

nications between Alice and Bob. Again by checking the intersection of “Wrong_Belief ’ 

w ith the approxim ation autom aton, it is checked tha t the approxim ation automaton 

can recognize wrong beliefs. In other words, it is checked if the com putation of the 

reachable states can lead Alice or Bob to wrong beliefs.

For this version of the Needham-Schroeder protocol, the intersection of this au­

tom aton w ith the approxim ation one is empty, so the protocol satisfies the property.

How are approximation results used? The secrecy and the authentication 

properties are verified by the protocol. These results can be used in  our inductive 

proof.

In  the inductive proof for this protocol8, the theorems corresponding to those 

properties are:

•  for the secrecy:

8http ://w w w .cl. cam .ac.uk/R eaearch/H V G /Isabelle/library/H O L /A uth/
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-  Spy_not_see_NAB: the Spy does not see the nonce sent in 

the message N S1  if Alice and Bob are secure;

— Spy_not_see_NBA: the Spy does not see the nonce sent in the message 

N S 2  if Alice and Bob are secure.

With the automata technique, it is proven that the intruder never catches the 

nonces exchanged between Alice and Bob. If the intruder cannot see the nonces of 

Alice and Bob, then he does not see the one sent in N S1  and the one sent in NS2.

The first time the protocol was proven with Isabelle, these two theorems could 

have had been added as axioms in the Isabelle specification using the result of the 

approximation instead of having been proven by the user.

• for the authentication:

-  A_trusts_NS2: if Alice receives message N S2  and has used NAB to start 

a run, then Bob has sent message NS2;

— B_trusts_NS3: if Bob receives message N S3  and has used NBA in NS2, 

then Alice has sent message NS3.

The Genet and Klay approach checks that when Alice wants to establish a com­

munication with Bob, after N S2  she really speaks with him. We also verified that 

when Bob thinks that he is responding to Alice, he really speaks with Alice after 

NS3. So the theorems “A_trusts JNS2” and “B_trusts_NS3” are also true. Once again 

instead of having to prove these theorems with Isabelle, the result of the approxi­

mation would have allowed the user to insert them in the Isabelle specification as 

axioms (cf. Figure 5.9).

For the Needham-Schroeder-Lowe protocol, the secrecy and authentication prop­

erties by approximation are verified. The next section presents the work done on 

other basic protocols.
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Theory NS-Public =  Public: 
• • •

axioms
Spy-not-see_NAB “[|Saya A B {|Crypt(pubK B) {|Nonce NABO, Agent A|}|} : set evs; 

A ~: bad; B ~: bad; evs : ns_public|] =>•
Nonce NABO ~: analz (spies evs)”

Spy-not-see-NBA “[|Says B A {|Crypt (pubK A) {|Nonce NABO, Nonce NBAO, 

Agent B|}|} : set evs;
A bad; B ~: bad; evs : ns.public|] =ÿ- 

Nonce NBAO ~: analz (spies evs)”

A.trusts_NS2 “[|Says A B {|Crypt(pubK B) {|Nonce NABO, Agent A|}|} : set evs; 
Says B’ A {|Crypt(pubK A) {|Nonce NABO, Nonce NBAO,

Agent B|}|} : set evs;
A ~: bad; B ~: bad; evs : ns_public|] =£•

Says B A {|Crypt(pubK A) {|Nonce NABO, Nonce NBAO, 
Agent B|}|} : set evs”

B_trusts_NS3 “[|Says B A {|Crypt (pubK A) {|Nonce NABO, Nonce NBAO, 
Agent B|}|} : set evs;
Says A’ B {|Crypt (pubK B) {|Nonce NBA0|}|} : set evs;
A ~: bad; B bad; evs : ns_public|] =$■

Says A B {|Crypt (pubK B) {|Nonce NBA0|}|} : set evs”

end

Figure 5.9: New inductive specification of the Needham-Schroeder-Lowe protocol
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Since the secrecy properties are different from one protocol to another, this section 

details the verification done on the other simple protocols.

N eedham -Schroeder sym m etric key In this version of the protocol, Alice and 

Bob trust a server (S in Figure 5.10) to create a session key K ab. Then they use 

this key to authenticate each other with a nonce.

5.3.1.2 Properties verified on the other protocols

Message 1: A = >  S : A, B , N a

Message 2: S A : {N a ,B ,K a h , {Kab, A}Kba}Kaa

Message 3: A =>■ B : {Kab, A }kìs

Message 4: B A :

Message 5: A = > B :{ iV 6 -l}K a 6

Figure 5.10: Needham-Schroeder symmetric key protocol

For this protocol it is proven that K a b  and N b  can not be discovered by the 

intruder, and so at the end of the protocol, Alice and Bob communicate with each 

other.

N eedham -Schroeder This protocol has already been introduced in Chapter 1, 

as well as its flaw (cf. Figure 1.4). The proof of the same properties also failed on 

the approximation automaton computed with the new approximation function.

In Section 4.2, it was indicated that for a non-empty intersection, the approxi­

mation could be useful to validate the existence of a flaw with Isabelle. The Timbuk 

file and the approximation automaton of that version of Needham-Schroeder axe 

available in Appendix D and Appendix E. For this protocol, the secrecy is not veri­

fied; this means that there is at least one transition from the information captured, 

add(q- ■ ■), to the state 913 in the automaton. In the approximation automaton, 19
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Message 1: A = »  B : {iVa,A} * 6

Message 2: B =$■ A : {N a ,N b }Ka

Message 3: A =£• B : {N b}Kb

Figure 5.11: Needham-Schroeder protocol

transitions of the form add(q -•■ )—> <713 can be found:

add(q53) -4 gi3 add(qw ) -4 <713 add(q76) -4 (713

add(qS2) -4 «13 add(q3) -4 Ç13 add(q4) -4 #13

add(q5) -4 gi3 add(q42) -4 Q13 add(q33) -4 913

add(q-a ) -4 <713 add(q6Q) -4 ç13 add(q5i)  -4 <713

add(ç88) ->■ «13 add(q43) -4 ç13 add(q3i) -4 g13

add(q2i)  -4 <713 add(qai) -4 qt3 add(q52) -4 <713

add(qu ) -4 «13

Only the rules that involve the honest agents’ nonces (for example such that 

a d d (q •■■) -4 <713 and JV(94,<75, qtO) -4  </• • • are in the automaton) are kept. Thus 

only 4 transitions remain:

add{q76) -4 <713 add(q82) -4 <713 

add(qeo) -4 çI3 add(q5\) -4 <713

By looking at the states at the right side of the transitions and at the approxi­

mation function, messages leading to the non-empty intersection are found:
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[U(LHS, mesg(agt(<?2), agt(<?o), encr(pubkey(agt(g0)), agt(<?2), cons(N(a.3, b_3, t_3), 
N(agt(«j), agt(«0), qtO))))) -4 <zi3]
—> [LHS -4 q13 agt(<z2) -> «5 ser\(q7) -4 q6 agt(g0) -4 q3 N(q5, q3, qtO) -4 q23

N(a.3, b_3, t.3) -> q51 cona(q51, q23) -4 q52 pubkey(g3) -4 q25 encr(q25, q5, q52) -4 «13

mesg(q5, q3, qX3) -4 «13]

[U(LHS, mesg(agt(gi), agt(«o), encr(pubkey(agt(^0)), agt(Qi), cons(N(a.6, b.6, t_6), 
N(agt(gi), agt(go), qtO))))) -4 «13]
— ¥ [LHS -4 gi3 agt(gfi) -4 q4 seiv(q7) -4 % agt(gr0) -4 N(</4, «3, qtO) -4 q33

N(a_6, b_6, t_6) -4 «6o cons(g6o> «33) -4 q61 pubkey(g3) -4 «25 encr(g2S, 94, qe 1) «13

mesg(g4, g3, 913) -4 «13]

[U(LHS, mesg(agt(q2), agt(«0), encr(pubkey(agt(g0)), agt(gr2), N(a_12, b.12, t.12)))) -4 Qi3] 
—» [LHS -4 Qi3 agt(qa) -4 <?B serv(<j7) -4 g6 agt(g0) -4 q3 N(a_12, b_12, t.12) -4 q76 

pubkey(g3) -4 q25 encrfes, « 5 ,  Q7g )  -4 « 1 3  mesg(g5, g 3 ,  q 1 3 )  -4 < ? i 3 ]

[U(LHS, mesg(agt(«i), agt(<?0), encr(pubkey(agt(g0)), agt(gi), N(a_15, b_15, t_15)))) -4 «13] 

—► [LHS -4 «i3 agt(gi) -4 «4 serv(«7) -4 qe agt(q0) -4 q3 N(a_15, b_15, t.15) -4 «82
pubkey(g3) -4 q25 encr(g25, q4, qa2) -4 g13 mesg(g4, «3, «13) gis]_______________

The user knows now that in the inductive proof he must study carefully the 

secrecy on the last two messages.

After having proven regularity and unicity lemmas (cf. Section 4.2.1), the user 

can go straight to the proof of the secrecy of nonce NBAO in the second message:

“[|Says B A {|Crypt (pubK A) {|Nonce NABO, Nonce NBA0|}|} : set evs;

A bad; B ~: bad; evs : ns_public|] ==> Nonce NBAO ~: analz (spies evs)”

But the proof of this theorem terminates by “false”, so the secrecy of NBAO is not 

guaranteed by the protocol.

Otway R ees sim plified In this version of the protocol [AN96], Alice and Bob 

trust a server (S in Figure 5.12) to create a session key, K ab. It was verified that the 

session key K a b  could not be caught by the intruder and that Alice and Bob really 

communicate with the person they believe they are communicating at the end.
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Message 2: B ==>• S : A ,B ,N a ,N b

Message 3: S =>■ B : {N a, A, B ,Kab}Kaa,{Nb, A, B,Kab}i<bs

Message 4: B =>• A : {N a ,A , B , Kab}Kaa

Figure 5.12: Otway Rees simplified protocol

Otway R ees m odified by us In this version of the protocol, we modified the 

previous protocol by removing the names of the agents from the information en­

crypted. The secrecy property of the session key K a b  is still verified on this version 

of the protocol. Nevertheless, the verification of the authenticity property (Alice 

and Bob really communicate with the person they think they are) failed.

Message 1: A B : A,B,Na

Message 1: A =>■ B : A ,B ,N a

Message 2: B =>■ S : A ,B ,N a ,N b

Message 3: S =*• B : N a ,{N a ,K a b }K a sA N b,Kab}Kba

Message 4: B A : N a, {Na,Kab}Kaa

Figure 5.13: Otway Rees protocol modified by us

This was not surprising as the Otway-Rees protocol is known to be flawed when 

the names of the agents are not sent with the session key [CJ97]. When Alice receives 

the last message, she has no way to know that she really shares a key with the person 

she intended to.

Figure 5.14 shows how the intruder can manage to make Alice use a session key 

thinking that this key is also known by Bob. The attack is simple, Alice starts to 

initiate a communication with Bob. Yves, the intruder, has then enough information 

to send a fraudulent message to the server. This generates a session key which is
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sent to Yvea in the third message. Then Yves sends Alice the last message. From 

now on, each time Alice receives a message encrypted with the key K a y ,  she will 

think that Bob sent that message.

A ==>• B : A ,B ,N a

Y =4- S : A, Y, N a, N y

S =>• Y : N a, {N a, Kay}Kas, {N y, K a y}Kys

Y =>■ A : N a, {N a, K ay} Kan

Figure 5.14: Otway Rees protocol attack

W oo Lam P i3  This protocol is a one way authentication protocol, that means if 

Alice initiates a communication with Bob, then in the end, Bob is sure to commu­

nicate with Alice.

Message 1: A ==> B : A

Message 2: B =>• A : Nb

Message 3: A =>■ B {JVÒ}x„

Message 4: B S: {A,

Message 5: S =>  B: {N b]Kbe

Figure 5.15: Woo Lam protocol

There was no secrecy property to check on this protocol. The authentication 

property that when Bob receives the last message, he really receives the nonce 

created to communicate with Alice, was checked. The property was verified by the 

protocol.
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Andrew Secure R PC  In this protocol Alice and Bob initially shared a key K a b , 

and Alice, who wants to communicate with Bob, will trust him to create a session 

key K 'a b  (cf. Figure 5.16).

Message 1: A ==> B : A, {N a }Kab

Message 2: B ==>• A : {succNa,Nb}jiab

Message 3: A ==>■ B : {succNb}Kab

Message 4: B = => A : {K'ab, N 'b]Kab

Figure 5.16: Andrew Secure RPC protocol

It was proven that the intruder could not catch the session key K 'ab. It was also 

checked that when Alice received a session key, this key was created by Bob and 

that when she thinks she is speaking with Bob, she is indeed speaking with him.

5 .3 .2  T ran sp ort Layer S ecu rity  p ro to co l

If you have bought something on the Internet, you almost certainly saw on the web 

page a message such as “Secure Mode. SSL (Secure Socket Layer) technology is used 

to protect your personal information”. SSL [KFK96] was originally developed by 

“Netscape Communications Corporation” in order to protect information conveyed 

by HTTP applications. Basically, SSL is a protocol where server and client machines 

compute session keys from nonces they have exchanged. The latest version of this 

protocol is studied here: Transport Layer Security [Gro96b] (TLS for short).

Let us assume that the client wants to buy something on a commercial website 

(the server). To conclude the transaction, the client will have to give his credit card 

number. The credit card number will be encrypted and sent to the server. But to 

encrypt it, the client needs an encryption key and the client needs to be sure that he 

is communicating with the server. TLS is there for that. Before critical information 

is exchanged, at least two actors need to agree on a common secret and be able to 

identify each other. This is the function of the handshake protocol and this is the
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part of TLS that is verified here.

Figure 5.17 shows the messages exchanged in TLS. The client initializes the com­

munication by sending his name, a nonce, a session identifier and a set of preferences 

for encryption and compression. The server replies with a nonce, the session identi­

fier that he received and his encryption and compression preference. Then he sends 

another message that contains his public key certificate. The client can also send his 

public key certificate. The client generates a 48-byte pre-master-secret (PMS) and 

sends it encrypted with the server’s public key. The client can also hash the sever’s 

name and nonce, and the pre-master-secret to send them encrypted with his private 

key (if he has sent his public key certificate to the server). Now both, the client 

and the server calculate the master-secret from the nonces exchanged and the PMS 

using a pseudo-random number function (PRF). Then they hash all the previous 

messages and the PRF, and they encrypt this piece of information with a session 

key created with the PRF and the nonces. Finally they send this cipher text to each 

other to confirm the communication.

5.3.2.1 R elated  work on SSL/TLS

In [WS96], Wagner and Schneier give their conclusion on their analysis of SSL 3.0. 

They do not use any formal technique for this work. They check the resistance of SSL 

to well known attacks of protocols, such as replay attacks, cryptanalysis techniques, 

etc. Their conclusion is that the protocol has some flaws that can be corrected 

without major modifications of the protocol (i.e. passes from the cryptographic 

MAC to the HMAC one). Their flaws cannot be found by approximation because 

these flaws are cryptanalytic flaws and the approximation cannot detect these flaws.

In his PhD thesis [Die97], Dietrich uses the Non-monotonic Cryptographic Pro­

tocols (NCP) belief logic to analyze SSL 3.0. He proved that SSL was secure against 

attacks from a passive eavesdropper. Most of his work was done manually.

In [MSS98], Mitchell, Shmatikov and Stern use a model-checking technique ap­

proach to verify SSL. They start from a simple model of the protocol and check the 

properties they want. Then they insert new information into their model and check 

new properties. They repeat this process until they arrive at a model that looks
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Message 1: Client =>  Server: {C, Nc, Sid, Pc}

Message 2: Server =>  Client: {N s , Sid, Pa}

Message 3: Server ==> Client: {C ert(S ,K s)}

Message 4: Client ==>■ Server: {Cert(C, K c)} -optional-

Message 5: Client ==?■ Server: {PM S}j<a

Message 6: Client =$■ Server: { H a sh (N s ,S ,P M S )}Kc- 1

M  = P R F (P M S , N c, N s)

F inished = H ash(M ,previous messages)

-optional-

Message 7: Client =>• Server: {F in ished}clientK(Nc,Ns,m )

Message 8: Server =>• Client: {F inished}serverK(NCiNl>iM)

Figure 5.17: TLS protocol

like SSL. But their technique works only for a small number of participants in the 

protocol, otherwise they will crash the computer memory.

In [Pau99], Paulson, with his inductive approach, successfully used on simple 

protocols, presents a verification of the TLS handshake protocol. He verified secrecy 

and authenticity properties on a simplified version of TLS (the same as the one we 

use in our verification). He wrote the proof script for the Isabelle theorem prover in 

2 weeks. And his results are for an unbound number of participants and runs of the 

protocol.

In [BPST02], a symbolic model-checker NuMAS [BC01] is used to verify a sim­

plified version of SSL/TLS which is modeled with MATL (MultiAgent Temporal 

Logic). MATL can represent both time and beliefs. With this logic they were able 

to verify that the protocol guarantees the freshness of the secret information (PMS
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a n d  s e s s io n  k e y ) .

5.3.2.2 M odelling TLS

A simplified version of TLS (cf. Figure 5.18) is verified in this thesis:

• the optional messages (Messages 4 and 6 in Figure 5.17) are removed;

■ Messages 2 and 3 are gathered together;

■ In Messages 7 and 8, the only information to be hashed is the information to 

be exchanged.

These simplifications have been done to reduce the computation time of the 

approximation. Without the second simplification (gathering together Messages 2 

and 3), the computation requires substantial memory. The reason for this is that 

in order to send the last message the client needs to have received Message 2 and 

Message 3. This implies a rule of the form “U (Message 3, Message 4) —> Message 7” 

in the term rewriting system criticize the protocol steps. Computing “U(Message 3, 

Message 4)” requires more time as the size of the protocol trace increases.

The pseudo-random number function (PRF) is modeled as a hash function. The 

reason is that the approximation for a PRF is the same as the one for a hash function.

In the full version Messages 4 and 6 are optional so removing them should not 

affect the correctness of the protocol.

Gathering together information in Messages 2 and 3 does not affect the correct­

ness of the full protocol as the information can be caught by the intruder whether 

it is sent in two separate messages or in one.

Finally hashing message components rather than messages in Message 7 and 

8 also does not affect the correctness here. In our approach, the intruder cannot 

guess complex information (concatenation of two information, encrypted informa­

tion, etc.) from the hashing of that information and some of the information that 

composed the complex information; he needs to know all the information that com­

posed the complex information. This means that if the intruder knows the hashing 

of { P M S } ks  and the key K s  then he cannot deduce { P M S } k s as long as he does
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Message 1: Client =>■ Server: { C , N c , S i d , P c }

Message 2: Server =>■ Client: { N s , S i d , P a , C e r t ( S , K a ) }

Message 3: Client = >  Server: { P M S } k „

M  = H a a h ( P M S , N c , N a )

F i n i a h e d  =  H a s h ( M , C , N c , S i d , P c , S , N s , P s , P M S )

Message 4: Client =*■ Server: { F i n i s h e d } cu e n t K ( N c , N a , M )

Message 5: Server — V Client: { F i T i i s h 6 d y B e r v e r j ( ^ j ^ c iN a lM )

Figure 5.18: Simplified version of TLS

not get P M S .  Thus, for our intruder, assuming that he knows K s , the hashing of 

{ P M S } k s and the hashing of P M S  are equivalent, in the sense that he needs to 

know P M S  to deduce { P M S } k s -

The TRS9 for TLS contains five rules for the protocol steps and the intruder’s 

abilities and commutativity rules introduced in Section 3.2.2. A rule to express that 

when the intruder knows a complex key, he has access to the information encrypted 

with this key, has to be added: U(key(x, y, z), encr(key(x, y, z), a, m)) — > U(LHS, 

add(m)). The TLS also contains 2 rules to express the authentication properties; one 

of the form U(message_sent, message_received) — ► U(LHS, c_init(- • ■)) for the Client 

and one of the form U(message_sent, message_received) — > U(LHS, c_resp(- ■ •)) for 

the Server.

The initial automaton is also the same as the one introduced in Section 3.2.2

assuming that A is Client and B is Server. Transitions have been also added to

deal with the new information types used in TLS. The intruder knows the session

identifier created by the unsafe agents, so the transitions sid(<?3, q%) —► qi3\ aid(93, <74)
9The syntax and the sem antics used are summarized in Tcible 4.2.
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—> fj]3 and sid(q3, 175) —> 513 are found in the automaton. For the same reason, the 

pre-master-secret the transitions pms((/3, 93) —>■ <713; pins(93, q^) —> 913 and pms(®, 

Q5) —>■ 913 have been added to the automaton. The fact that the intruder can hash 

information and create complex keys must be expressed, so the automaton also has 

the transitions hashl(g3, <713) ->■ <713 and key(713, <713, qi3) -¥  <713.

After having extended IS2TiF to deal with the session identifier and the pre- 

master-secret, IS2TiF is used to compute the approximation function for TLS.

As for the previous protocols two computations were done; one where an agent is 

allowed to speak to himself and the other where an agent cannot talk to himself. It 

took 27 minutes to get the approximation automaton for the first case and 6 hours 

23 minutes for the second case. As for the small protocols, the execution times 

highlight the fact that the complexity of the approach is exponential. Nevertheless, 

we can be happy as in less than a man day we can verify a medium size protocol.

5.3.2.3 TLS verification

Five properties have been verified for TLS:

• the intruder does not catch the pre-master-secret between the trusted agents 

(Server and Client);

•  the intruder does not catch the master-secret between the trusted agents 

(Server and Client);

• the intruder does not catch the session key between the trusted agents (Server 

and Client);

• at the end of the protocol, when the Client thinks that he communicates with 

the Server, he really does communicate with the Server;

• at the end of the protocol, when the Server thinks that he responds to the 

Client, he really does communicate with the Client.

Secrecy Properties When the approximation automaton has been computed, it 

is possible to check secrecy guarantees about:
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• the pre-master-secret;

• the master secret (M on Figure 5.18);

• server and client session keys.

For each property, an automaton of the negation of the property ( “the intruder 

has...”) is automatically generated by IS2TÌF. Thus Figure 5.19, Figure 5.20 and 

Figure 5.21 respectively model “the intruder caught the pre-master-secret”, “the in­

truder caught the master-secret” and “the intruder caught the session keys” negation 

automata.

Then intersections of those automata with the approximation automaton are 

computed. Those intersections are em pty , so the properties are verified for the 

protocol.

Automaton PMS-Not-Secret

States «0  «1 «2  «3 «4 «5  «6 «13

Final States «13

Transitions

0 —► «o sue (go) -*• q0 a g t ( « o )  -► «3

A -)• «1 hashl(gf4, <212) -> «13 agt(«i) -+ «4

B -4 «2 agt(«2) -> « s

U(«13, «13) —► «13
pms(«5, «s) -4 «13 pms(«4, «5) -»■ q13

pms(«B, «4 ) -> q 13 pms(g4, q4) -» «13

Figure 5.19: PMS between Client and Server

A uthentication  properties Two authentication properties can be checked on 

our protocol one for each role, Server and Client. At the end of the protocol the 

client must be sure that he speaks to the server and vice versa.

The verification is carried out using the terms c-resp and c-in it and the same 

automaton as for the other protocols.

The intersection of the approximation automaton with the one for the property 

was empty. So the property is verified by the protocol.
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Automaton PRF-N ot -Secret

States Qo «1 «2 «3 «4 «5 «6 «9 «10 «11 «12 «13
Final States 
Transitions

«13

0 -> q0 suc(g0) -> «0 agt(«0) -> «3

A qi agt(«i) -> «4

B -> «2

U(«i3> «is) ~► «13

agt(«2) -> «s

pms(«5, «5) -> «9 pms(î4, «5)  ̂«9

pmsfe, q4) -> 59 pms(«4, «4) -»• «9

N(«5> «5) —► «10 N(«4, «5) -> «10

N(«s, «4) ->■ «10 N(«4, «4) -4 «10

cons(«10,«10) -»• «11 cons(g9,qn) -> q12

hashl(g4, «12) «is 
hashl(g3, «12) -4 «13

hashl(g5, <?i2) -> «13

Figure 5.20: Master secret between Client and Server

Consequence in Isabelle proof As for the simple protocols, the previous results 

can be inserted as axioms in the Isabelle proof.

These axioms were theorems in Paulson’s proof, as he had to prove them:

•  for the secrecy:

— Spyjiot_see_PMS: the intruder cannot see the pre-master-secret between 

honest agent;

[| Notes A {¡Agent B, Nonce PMS|} : set evs; 

evs : tls; A bad; B ~: bad |] =>•

Nonce PMS ~: analz(knows Spy evs)
— Spy_not_see_MS: the intruder cannot see the master-secret;

[| Notes A {|Agent B, Nonce PMS|} : set evs; 

evs : tls; A ~: bad; B bad |] =4-

Nonce (PRF (PMS, NA, NB)) ~: analz(knows Spy evs)
— ClientK_not_spied: the intruder cannot guess the client’s key if the key 

has not been sent to him;
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Automaton SesK_Not_Secret

States «0 «1 «2 «3 «4 «5 <?6 «9 «10 «11 «12 «13 «14
Final States «13
Transitions

0 -> «o suc(«0) -4 «0 agt(«0) -4 «3

A ->■ «i agt(«i) -> «4

B -> «2 agt(«2) -> «s

U(«i3) «is) «13 
pms(«5, qB) -> «g pms(«4, «5)  ̂ «9

pms(ç5, qi) -> «9 pms(«4, «4) -> «9

N(«5) «5) —► «10 N(«4, «5) ->■ «10

N(«5, «4) ->■ «10 N(«4, «4 ) -4 «10

cons («10 ,gio ) «11 cons(gg,gn) 912

hashl(?4, «12) -4 «14 hashl(g5, 912) -4 «14

hashl(ç3, q12) -► 914 

cons((gio, «14) -> «15 cons((«io, «is) «10

key(«4 , «5 , «îe) -> «13 key(«5, «4, «ie) -> «13

key(«5) «e, «ie) «13 key(«4, «4, «ie) -»• «13

Figure 5.21: Session key between Client and Server

[| Notes A {|Agent B, Nonce PMS|} : set evs;

Says A Spy (Key (clientK (NA, NB, PRF (PMS, NA, NB)))) ~: set evs; 

evs : tls; A bad; B ~: bad |] =^-

Key (clientK (NA, NB, PRF (PMS, NA, NB))) ~: parts(knows Spy evs)

— ServerK_not_spied: the intruder cannot guess the server’s key if the key 

has not been sent to him;

[| Notes A {[Agent B, Nonce PMS|} : set evs;

Says B Spy (Key (serverK (NA, NB, PRF (PMS, NA, NB)))) ~: set evs; 

evs : tls; A bad; B bad |] =£•

Key (serverK (NA, NB, PRF (PMS, NA, NB))) ~: parts(knows Spy evs)

■ for the authentication:

-  Client-Guarantee: the server had created the last message received by
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the client;

[| X =  Crypt (serverK (NA, NB, M))

(Hash {| Number SID, Nonce M, Nonce NA, Number PA, Agent A, 

Nonce NB, Number PB, Agent B, Nonce PMS|});

M =  PRF (PMS, NA, NB); evs : tls; A bad; B bad;

Says B Spy (Key (serverK (NA, NB, M))) set evs;

Notes A {|Agent B, Nonce PMS|} : set evs; X : parts(knows Spy evs) |] ==>■ 

Says B A X : set evs 

— Server_Guarantee: the client had created the last message received by the 

server;

[| X =  Crypt (clientK (NA, NB, M))

(Hash {| Number SID, Nonce M, Nonce NA, Number PA, Agent A, 

Nonce NB, Number PB, Agent B, Nonce PMS|});

M =  PRF (PMS, NA, NB); evs : tls; A bad; B bad;

Says A Spy (Key (clientK (NA, NB, M))) set evs;

Notes A {|Agent B, Nonce PMS|} : set evs; X : paxts(knows Spy evs) |] = >  

Says A B X : set evs 

Then the proofs of the other lemmas regarding possibility properties, unicity 

properties, forwarding lemmas, the validity of the certificates sent, etc. did not take 

long, as they could be deduced from other protocols’ proofs. The inductive proof 

was done in one day, by picking the properties to prove from the proof of Paulson10 

and using other protocols’ proofs11 to prove them.

The whole verification (approximation+inductive proof) took 2 days. Without 

knowing the remaining properties to prove by induction in advance, the process 

would have taken more time.

After having extended our prototype to deal with the pre-master-secret and 

complex keys built with three pieces of information, the computation of the approx­

imation automaton with Timbuk and our function took 27 minutes when an agent

can talk to himself and 6 hours 23 minutes when an agent cannot talk to himself.
10http://w w w .cl.cam .ac.uk/R esearch/H V G /Isabelle/library/H O L /A uth/T L S.htm l
11 http://w w w .cl.cain.ac.uk/R esearch/H V G /Isabelle/library/H O L /A utli/index.htm l
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The verification of properties took only 20 minutes.

5 .3 .3  C on clu sion

Now that the prototype and the results of our experiments have been introduced, it 

is time to compare our solution with those of others.

5.3.3.1 G enet’s approxim ations

With Timbuk, approximation automata with Genet’s approximations had been com­

puted.

Figure 5.22 compares the computation times. Our approximation function is 

faster than the ancestor most of the time. The only time the ancestor approxima­

tion is faster is for a protocol for which no secrecy has to be checked. The basic 

approximation without user helps does not terminate. One interesting point is the 

preparation time required to before the computation. For the basic approximation 

and our approximation, this time is null when for the ancestor approximation it is 

more than 10 minutes. For the ancestor approximation, the user has to check the 

states used in every approximation rule. In the other approaches everything is done 

by the computer.

Protocol Name Basic

approximation

Ancestor 

appr oximat ion

Our approximation

Needham-Schroeder out of memory 3min 27s 3min 50s

Needham-Schroeder-Lowe out of memory 9min 50s lmin 59s

Needham-Schroeder symmetric key out of memory 10min 34s 6min 10s

Woo Lam out of memory 9min 04s 14min

Otway Rees out of memory 19min 45s 17 min 12s

Figure 5.22: Time for computation of approximation automaton

With the basic approximation no properties were checked, as no automaton was 

produced. At the same time, the ancestor approximation was less efficient to verify
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properties as it failed with protocols with secrecy properties as shown on Figure 

5.23.

Hence, our approximation seems better adapted for the cryptographic protocol 

verification for these experiments. More experiments should confirm whether this is 

in fact the case. The reasons are:

• the basic approximation failed to give us an automaton, and

• the ancestor approximation is not suitable for secrecy properties.

Protocol Name Basic

approximation

Ancestor

approximation

Our approximation

Needham-Schroeder no automaton may be flawed may be flawed

Needham-Schroeder-Lowe no automaton may be flawed secured

Needham-Schroeder symmetric key no automaton may be flawed secured

Woo Lam no automaton safe safe

Otway Rees Simplified no automaton may be flawed secured

Figure 5.23: Verification of secrecy and authentication properties

5.3.3.2 Other proof approaches

Since this work started, other approaches have been developed to “automatically 

prove” protocols. This section introduces these approaches and compares them to 

our approach.

Blanchet Blanchet [BlaOl] checks the secrecy by whether the attacker can or 

cannot access confidential information. He uses Horn clauses to model the protocol 

and the attacker. Basically, he looks for the answer to the question attacker(s) 

where s is the confidential information and attacker the predicate for the intruder. 

He implemented a search algorithm in Prolog that is guaranteed to terminate and 

is based on two abstractions:
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• Any step of a protocol can be repeated several times if the previous step had 

been executed at least once.

• The freshness of nonces is modeled by considering fresh values as function of 

the messages previously received by the creator of the value. This means that 

for the same previous messages, the same nonces are found.

Thus the verification is done for an unbounded number of sessions and for an un­

bounded message size. When the tool finds an attack, it might be a false attack due 

to the abstraction on nonces.

Herm es In [BLP02, BLP03], the secrecy is checked by first looking at the evolu­

tion of secret information over the set of reachable messages. Then conditions to 

guarantee the secrecy are deduced, and the verification that the protocol guarantees 

those conditions is done. The termination of the computation is guaranteed by an 

algorithm based on the following abstractions:

• two agents are considered: an agent A and an agent I that models the intruder 

and all the agents different from A.

• four sessions are considered: a session between A and I, a session between I 

and A, one particular session between A and A and one session that models 

all the sessions between A and A that are different from the specific session 

between As.

So with this tool, the secrecy is guaranteed for an unbounded number of sessions, 

an unbounded message size and an unbounded number of agents for self-talking 

protocols.

Securify Securify12 [Cor02] can be seen as the automated version of Paulson’s 

approach for the verification of the secrecy. This tool is based on the conditions 

defined in [CMR01] to guarantee the secrecy; for every step of the protocol and 

every part of the message sent:
12http://w w w .lsv.ens-cach an.fr/~cortier/EVA /eva-com p.php
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■ either this part is a freshly generated nonce, thus it cannot compromise the 

secret

• or this part was already sent over the network, encrypted with at least the 

same set of keys,

■ or this part is a secret but it is encrypted with a protected key.

Securify runs these tests, if they fail, a backward search is done to get more 

information on the messages sent over the network, and then it tests again. The 

process (backward search +  tests) is repeated as many times as is necessary. The 

tool returns:

• “yes” if secret is guaranteed;

• “fail” if the proof fails. No conclusion about the secrecy can be drawn but the 

“failure” tree returned might help to build an attack;

• no answer the computation does not terminate.

So with this tool the secrecy is guaranteed for an unbounded number of sessions, an 

unbounded message size and an unbounded number of agents.

Spicasso Aziz [Azi03] introduced Spicasso, a static analyzer for the Spi-calculus 

[AG98]. This tool was used to check the secrecy and authenticity on some simple 

protocols. The results are guaranteed for an unbounded number of sessions and an 

unbounded number of agents. The verification is also guaranteed to terminate. The 

run-times of the tests carried out are unpublished.

With our prototype, the verification is also done for an infinite number of sessions 

and agents. Unlike the other tools [BlaOl, BLP02, Cor02], the verification of secrecy 

and authentication properties can be performed. The run-times of the tests carried 

out are a bit slower than those of other tools [BlaOl, BLP02, Cor02], if it is assumed 

that protocols do not allow an agent to talk to himself. Even when protocols allow 

an agent to talk to himself, IS2TiF plus Timbuk are still slower (cf. Figure 5.24).
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Protocol Name Blanchet Hermes Securify IS2TiF+Timbuk

Needham-Schroeder shared key 0.76s 0.04s - 41s

Needham-Schroeder 0.07s 0.01s 0.001s 18s

Needham-Schroeder-Lowe 0.06s 0.02s 0.001s 16s

Woo-Lam - 0.06s 0.0001s 31s

Figure 5.24: Comparison table of automatic proof approaches

The PC performances are not responsible as tests have been performed for two 

other tools on less powerful PCs 13. Our computation is slower as it repeats two 

searches until no critical pair is found:

1 . to find a “critical pair”, so it has to check all the terms of the automaton on 

which rewrite rules can be applied;

2. to find the good approximation rule to apply on the critical pair.

These processes are done by Timbuk. The version used for these experiments 

runs exponentially as the critical pairs search of the current algorithm applies all 

the possible substitutions to the term rewriting system for every automaton A f i -  A 

little optimization to reduce the computational time was implemented in Timbuk, 

A fi+ \  is computed by applying on A f i  one rewrite rule with several substitutions 

not just one rule and one substitution. With the new release of Timbuk we could 

expect faster run-times as the completion algorithm should be optimized.

Nevertheless, more experiments on more complex protocols should be done in 

order to appreciate the behaviors and the effectiveness of the different approaches.

13Blanchet used a Pentium  233MHz, Hermes was used on a Pentium III 600MHz, Security was 

ran on a Pentium  III 933MHz +  256Mb of RAM and we used Pentium III 733MHz +  128Mb of 

RAM
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C hapter 6

Conclusion and Future Work

The formal verification of cryptographic protocols is vital in our society due to 

the proliferation of electronic communications. The problems raised by the ver­

ification of protocols are complex [EG83]; potentially an infinite number of ex­

changes, intruders that can play around the protocol, etc. Nevertheless, several 

approaches and tools are now available to carry out the task, employing some as­

sumptions (i.e. finite number of session, perfect encryption, etc.). When this work 

started many automatic tools were available to “search for attacks” against protocols 

[DY83, Mea94, Low96, DMT98, MMS97]. Now automatic tools to prove properties 

are becoming available [BlaOl, OCKS02, BLP03, Azi03]. Those approaches are es­

sentially based on the proof by abstraction; the idea is to prove a property on an 

abstract model of the protocol that guarantees the validity of the property on the 

concrete model. Among these techniques, the association of Timbuk and IS2TiF 

can be found.

6.1 W ork Accom plished

The work is based on a semi-automatic approach introduced by Genet and Klay [GKOOa]. 

Their idea is to compute a tree automaton, A avpTOXimationi modeling an over-approximation 

of the set of messages exchanged. The drawbacks of this approach are:

• the approximation function used must be given by hand and must be chosen

147



• when the verification of the properties fails, no conclusion can be drawn about 

the protocols and its properties;

• the verification is limited to secrecy and authentication properties.

An improved version of Genet and Klay’s approach was introduced in this thesis.

A new approximation function was defined, the new features of which are:

• that it is automatically generated;

• that it guarantees the termination of computation of A a p p ro x im a tio n -

This thesis also presents a concrete way of combining this approximation tech­

nique with another technique, for the case where our verification fails. The inductive 

approach of Paulson was selected because the combination would strengthen both 

techniques.

The difficulty was not in finding why the completion was not terminating as 

Genet presented the problem in his thesis [Gen98a]. The problem was in finding an 

approximation that was precise enough to allow the verification of the secrecy and 

authentication properties. For example, the ancestor approximation is not able to 

verify both properties. Moreover the approximation function should also allow the 

verification of a wild range of protocols in a reasonable time. The results of the 

validation are limited to the examples covered as they have been manually checked 

after while. No unit tests and no integration tests have been implemented during 

the development of the prototype so it is not totally reliable. Nevertheless, on our 

set of acceptance tests (the protocols that we used) the approximation approach 

correctly worked and was effective.

The prototype IS2TiF uses the improved version of Genet and Klay’s technique 

to generate an input file for Timbuk. Timbuk then computes Approximation with the 

TRS, the initial automaton and the approximation contained in the input file. To

carefully to guarantee the termination of the computation of A ap p ro x im a tio n l
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modeling the computation of A a p p ro x im a tio m  Timbuk uses [CLC03]1 to decide how 

m a n y  agents must be defined in the initial automaton. If the protocol allows agents 

to talk to themselves, then one honest agent and a set of dishonest agents are in the 

initial automaton; otherwise two honest agents and a set of dishonest agents.

Depending on the protocol and whether an agent is allowed to talk to himself, the 

run-times of Timbuk+IS2TiF can be less impressive than the ones of the automatic 

“attack search” approaches [Low96, Mon99a, GLOO, JRVOO]. But unlike those ap­

proaches, the results are not bounded to a finite number of sessions. The run-times 

can be also less impressive than those of the other automatic “proof’ approaches 

[BlaOl, Cor02, BLP03] however, unlike those approaches, the method can also ver­

ify the authentication property. It also offers the possibility to verify protocols that 

explicitly state that an agent cannot talk to himself, unlike [BlaOl, BLP03]. To be 

able to compare fairly our approach with other existing software (other than the 

ones presented in the previous chapter); a set of protocols should be verified on the 

same machine using different tools and the results should be analyzed and compared 

regarding the intruder abilities, the model constrains and the properties verified.

[BHK004] offers a comparison between the new model and the initial Genet and 

Klay model. With the original representation, the protocols IS0611 and Woolham- 

pi were not automatically checkable; now they are with the new model. The 

IS0611 protocol uses two nonces, one encrypted and one non-encrypted. Thus 

when no difference is made between the nonces of the same protocol run (Genet 

and Klay’s model), it is impossible to check the secrecy of the encrypted nonce. 

With our model that distinguishes the two nonces (ie. nonce  1 and nonce2), if 

nonce2 is the one encrypted it is possible to check its secrecy. In the Woolham- 

pi protocol, in order to send the third message to Bob, Alice has to remember 

that she initiated a communication with him, as there is no information about 

the identities of the sender of the second message. Our model makes sure that 
'tw o agents are sufficient for the analysis of security properties of cryptographic protocols when 

the protocols allow an agent to  talk to  himself. If the protocol does not allow “agents to talk to  

them  selves” and there is an attack involving n agents, then there is an attack involving at most 

k +  1 agents (k  is the number of roles that an agent can play)
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the variables used in the right hand side of TRS are also in the left hand side, 

if not, it adds previous messages (sent or received) into the left hand side until 

the sender has all the information he needs to send the message. For example, 

the rewrite rule, m esg(ae, agt(a), N (a i ,  b\, ¿1)) ==*• U (L H S ,m esg (a g t(a ),a g t(b ), 

en cr(sh a rekey(a g t(a ), se rv (S ), to), agt(a), N (ai,b i, ii)))), that models the third step 

of the Woolham-pi protocol is not valid, as the variable b does not appear in the 

left-hand side. So the TRS is cannot be run. Our approach produces

U (m esg (a g t(a ),a g t(b ),a g t(a )) , m e sg (a e ,a g t(a ) ,N (a i ,b i,t i ) ) )  =3-

U (L H S , m esg (ag t(a ), agt(b), en cr(sharekey(ag t(a ), se rv (S ), to), agt(a), N (a \ ,  61, ii)))), 

which is a valid rewrite rule.

Nevertheless, the approach has some drawbacks:

■ computation time is linked to the complexity of the TRS, to “allowing an agent 

to talk to himself” and to whether the protocol is safe or not. The success of 

the computation depends on the computer resources (essentially memory) for 

complex protocols.

• because of the typing used in the term rewriting system, the results of the 

verification are valid, assuming that protocols are free from type attacks.

■ for the verification to be valid, protocols must satisfy the conditions of Propo­

sition 9. This is usually the case, as the variables that will have several oc­

currences in the TRS will be substituted by the states linked to the agents.

These states are deterministic.

•  for the combining approach, there is a compatibility problem in practice be­

tween the two tools, one is running on SML and the other on OCAML, so it 

requires the development of a user interface on top of both tools to simplify 

the use of this approach.

6.2 F u tu re  W ork

Starting from the current stage of this research three subprojects could be carried 

out:
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The first subproject is the logical continuation of this MSc work. The current 

cryptographic protocol verification approaches make an initial assumption that the 

encryption is perfect; that means that the intruder cannot get encrypted informa­

tion if he does not have the right decryption key (our approach makes no excep­

tion). This is a very strong assumption, that could lead some flaws being masked. 

For example, under this assumption, Paulson proved that the recursive authenti­

cation protocol of John Bull was safe, but by considering the algebraic properties 

of the XOR, attacks can be found [Pau97]. In reality, the intruder could take ad­

vantage of some algebraic properties of the encryption (XOR, abelian groups) in 

his quest for critical information. For example, we have a nonce, N a , encrypted 

with a public key, K a , using the XOR. (N a  X O R  K a )  = { N a } x a  then the XOR 

properties states that (N a  X O R , {N a } K a) =  K a  and (K a  X O R  { N a } K a) =  N a .  

A rule for the decryption of the information with the correct decryption key, the 

(K a  X O R  { N o} k 0)  =  N a , is already in the TRS. Moreover allowing the intruder 

to exploit the XOR properties requires in the TRS to also include a rule stating 

that from the nonce and the encrypted message the key can be recovered, the 

(N a  X O R  { N a jj ia )  =  K a .  Thus the integration of those new abilities and their 

consequences in the verification should be explored. The starting point would be to 

add into IS2TiF an option such that the user selects algebraic properties that the 

user can use. Then extra rewriting rules criticize the properties are added into the 

input file for Timbuk.

Also, to improve the approach, one can develop a tool that gives as many guar­

antees as possible on the protocols verified and to facilitate the choice of users 

between the verification tools available. Another part of this subproject is to see if 

the technique could be extended to verify other properties that might be required 

by particular protocol; for example freshness, anonymity, equity properties. The 

primary task here is to see how those properties could be modeled with a tree au­

tomaton and if so, then to have a library of automaton that could be used to verify 

them and have a procedure to automatically build automata for those properties. 

If we take the freshness property, we will need to distinguish different runs to check 

if a piece of information is fresh. Thus an idea is to attach a marker to the fresh
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information; for example m a k e r ( l ,N ( A ,B )) indicates that N ( A ,B )  was created for 

the run 1 of the protocol. IS2TiF must be updated to propose initial automata and 

term rewriting systems dealing with this new term. The computation of the approx­

imation for all the possible runs of a particular protocol is then impossible as the 

number of markers will infinitely increase. Thus second idea, reducing the number 

of marker to two (to only have m a rk e r (  1 ,...) and m a r k e r (2,...) in our model) and 

proving that is sufficient to verify freshness properties.

The second subproject involves the use of the main result of this research, the 

approximation function, for the invariant generation and verification. An invariant 

is a clause/condition that is satisfied by all the reachable states of a system.

Properties such as safety properties, which must be guaranteed at any stage 

of runs, can be seen as invariants. Finding and strengthening invariants is crucial 

for the analysis and verification of re-active systems, especially for infinite state 

systems. The invariant search and verification is a very active field of research 

[BL03, BSOO, TRSS01]. As for protocol verification, the current techniques to find 

and verify invariants might fail due to the size of the system studied.

With the approximation function defined in this thesis, the computation of an 

over approximation of the reachable states of the system can be done; then either an 

invariant can be checked on the last automaton or an invariant can be deduced from 

the final automaton. In fact on simple examples, the new approximation function 

appears to be efficient in that domain. However a tool must be developed that 

automatically returns the invariant of a system (on a simple example Appendix F, 

the abstract model computed had to be analyzed manually to find the invariant). A 

new generator of input files for Timbuk should be implemented as IS2TiF is taking 

in input an ISABELLE file that models a protocol. In order to be able to deal 

with a large range of systems, the prototype will be taking specifications in Z or 

B language to produce the term rewriting system, the initial automaton and the 

approximation. Then Timbuk will be used to compute an over-approximation of 

all the configuration of the system. The prototype will either take an invariant and 

check if the system verifies it or return a possible invariant. The verification of the
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invariant is easier as it only requires to check the intersection of the approximation 

automaton with the automaton modeling the negation of the invariant. Returning 

the invariant will be more difficult, it will require algorithms (depth search or best 

first search or ...) to be implemented in the prototype to explore the transitions of 

the final automaton in order to extract an invariant. The invariant will be an over 

invariant as it will be valid for the configurations of the concrete system but also 

for the configurations that are not in the concrete system.

Once the prototype is available, tests on real systems and comparisons of the 

results given by the prototype with the ones on other tools should be carried out.

The last subproject involves the use of another model to reason about crypto­

graphic protocols: the Strand Spaces. A strand is a sequence of messages sent and 

received by an agent. A strand space is a set of strands (agents’ strands plus intruder 

ones). A bundle consists of a number of strands hooked together where one strand 

sends a message and another one receives that same message. A protocol will be 

correct when each bundle consists of one strand for each agent all agreeing on the 

participants, nonces (random numbers), and session keys. Intruder strands are also 

included in a bundle but as long as they do not prevent honest agents agreeing on a 

secret or keeping their secrets. An interesting aspect of this model is that it allows 

reasoning for an unbounded number of sessions.

[CDL+00] explains how to pass from a multiset rewriting model to a strand space 

model and vice versa. This paper concludes by saying that algorithms developed for 

rewriting models could be brought to deal with strands.

Therefore an attempt to adapt the technique presented in this thesis to strand 

space models could be possible. The first part will be to translate the rewriting model 

used here into strands using [CDL+00] and then modify the completion algorithm 

to get a completion algorithm for Strand Spaces. After that the new results should 

be compared with our current ones, and also with the ones of the CASRUL+IS2TiF 

(ongoing work at Laboratoire Informatique de Franche-Comte) to see if this idea is 

efficient or not.
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Appendix A

Example of completion w ith the 

Knuth-Bendix algorithm

To demonstrate how the completion algorithm [KB70] works, let E be our set of
e.x  =  x

identities and TZ the TRS that is built. I ( x ) .x  =  e

(x .y ) .z  =  x {y .z )
The completion algorithm:

1. e .x  —► x

orientates the equation to produce TZ=< 2. I ( x ) .x  -> e: > using a

{x .y ).z  -4 x ( y .z )
“sensible” reduction ordering relation based >  on the format of the terms.

searches a critical pair and finds (e.z, I ( x ) .(x .z ) )  with rules 2 and 3.

e.z can be reduced to z, so we have now the pair (z, I ( x ) .( x .z ) ) .  Using > , we 

add to TZ the rule I ( x ) .{ x .z )  —> z ,

1 . e .x  —> x

so 7£=<
2. I ( x ) .x  —> e

3. (x .y ) .z  -» x{y .z)

4. I ( x ) .{ x .z )  -¥  z

searches a critical pair and finds (y, I ( I (y ) ) .e )  with rules 2 and 4.
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So 7Ü=<

So n=<

So n = l

So TZ=<

1. e.æ -> æ

2 . I(x).x -> e

3. (a?.y).2 ->■ æ (y .z) >

4. I(x).(x.z) -» 2:

5. 7 (7 (j /) ) .e  -> y

a critical pair and finds (z, I (

1. e.æ -> x

2. I(x).x -> e

3. (a;.y ).z - 4  a,-(î/.2) »
4, I(x).(x.z) —► z

5. I(I{y)).e -> j/

6 . J ( e ).2 2

a critical pair and finds (I (I(i

1. e.a; -4  a;

2. /(a;).a; -» e

3. (x .2/ ) .z  -> a:(j/.z)

4. I(x).(x.z) -> 2 Ü

5. /(J (2/)).e-> y

6. /(e ).2 -> 2

7. I(I{y))-(e-x) -+ 2/-^ ,

a critical pair and finds (j/.e,

1. e.a: -> a;

2. I(x).x  —» e

3. (a:.y).2 -> a;(2/ .2)

4. I(x).(x.z) -4 2
►

5. 7 ( / ( y ) ) .e  -4  y

6 . I(e).z —► 2

7. / ( / ( y ) ) . (e.a:) -4  y.æ

8 . y .e  -> y
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searches a critical pair and finds (y, I(I(y))) with rules 8 and 5. It gives the 

rule I(I(y)) - 4  y that makes rule 5 redundant as I(I(y)).e —Vfa y by applying 

firstly the new rule, and then rule 8 ; thus rule 5 is removed from the TRS. 

Rule 7 can be removed for the same reason.

So 7t=<

1. e.x -4  x

2. I(x).x -> e

3. (x.y).z x(y.z)

4. I(x).(x.z) - 4  z

6. I(e).z - 4  z

8. y.e -4  y

9. i(i{y)) -> y

searches a critical pair and finds (e, /(e)) with rules 8 and 6 . Rule 6 is not 

necessary anymore as the rule I(I(y)) - 4  y is deduced.

So TZ=<

1. e.x *4 x

2. I{x).x - 4  e

3. (x.y).z ->• x(y.z)

4. I(x).(x.z) - 4  z

8. y . e - t y

9. i ( i { y ) )  -* y

10 . 7 (e )  —Y e

searches a critical pair and finds (e, y-I(y)) with rules 2 and 9. 
/

So Tl— <

1. e.x —t x  2.

3. (x.y).z -4  x(y.z) 4.

8 . y.e y 9.

10. 7(e) - 4  e 11.

I(x).x -4 e 

I(x).(x.z) - 4  Z

m y ) )  -> y
2/ 7 (2/) -► e

searches a critical pair and finds (x , y.(I(y).x)) with rules 3 and 11.
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So 71 = <

So 1Z=<

1 . e.x  -4 x 2. I ( x ) .x  -4 e

3. (x .y ) .z  -4 x (y .z ) 4. I ( x ) . ( x .z ) -4 z

8. y.e -> y 9. /( / ( y ) ) - > y

10. 1(e) -4 e 11. y .I (y )  -4 e

12. y .( I ( y ) .x )  -4 x

critical pair and finds (e, x (y .I(x .y )))  with r

1 . e,x  -4 x 2. I ( x ) .x  -4 e

3. (x .y ) .z  -4 x (y .z ) 4. I ( x ) . ( x .z )  -4 z

8. y . e ^ y 9. m v ) ) - > v

10. 1(e) -4 e 11. y .I (y )  -4 e

12. y .( I ( y ) .x )  -4 x 13. æ.(y./(æ.y)) -

searches a critical pair and finds (y .I (x .y ) , I (x ) .e )  with rules 4 and 13. Rule 

13 becomes redundant.

1 . e .x  - 4  x  2. I ( x ) .x  - 4  e

3. (x .y ) .z  - 4  x (y .z )  4. I ( x ) .( x .z )  -4  z

So TZ—i 8. y .e  - 4  y  9. J(J(j/)) -> y
10. 7(e) -4  e 11. y.7(y) -4 e

12 .
V

y .( I ( y ) .x )  - 4  x  14. y .I (x .y )  - 4  I (x ) .e

searches a critical pair and finds (I(x .y ) , I ( x ) . I ( y ) )  with rules

this new rule, rule 14 can be removed.
f

1 . e.x  4 i  2. I ( x ) .x  - 4  e

3. (x .y ) .z  - 4  x ( y .z ) 4. I ( x ) .(x .z )  - 4  2

So 7Z=< 8. y.e - 4  y 9. /(/(» )) -> y
10. 7(e) - 4  e 11. y.7(y) -4  e

12 .
V

y .( I ( y ) .x )  - 4  æ 15. 7(x.y) - 4  I ( x ) . I ( y )

no more critical pairs are found and the computation stops.
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Proof that the ancestor 

approximation gives a finite 

automaton [Gen98a]

The ancestor approximation does not depend of the substitution, so 7 (I -4 r, q, a) 

can be written 7 (Z -4 r,q).

If the arity of the symbols of J- and !F are finite, if Q is finite and if the new 

states Qnew is finite then Qu is finite. Moreover the number of transitions that can 

be added to A is finite, thus the automaton £ (7 ^ t(^ ))  is finite.

By assumption F  and Q are finite, it is sufficient to prove that Qnew is finite to 

prove the theorem.

For the ancestor approximation,

(1 ) Qnew =  ->• r,q)\l - 4  r G 11,q G Qu, 1 <  i  <  Card(Posr(r))}.

If we apply Qu = Q |J Qnew on (), then Qnew = Qx (J Q 2 with:

• Qi =  {^¿(7 (i —> r, g))|Z —¥ r G H, q G Q, 1 < i < Card(Posj^(r))}

•  Q 2 = {xi{y{l -4 r,q))\l -4 r EH, q  G Q new, l < i <  Card(Poaj:(r))}

Every state of Q2 has the form:

x i\(7 O1 -► n , ^¿2(7 ^ 2  -4  r2,---Xin('y(ln -4 rn,q)) ■■■))))

Appendix B
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With lj —»• rj G 71, q G Q, 1 <  ij < Card(Posf(r)) and 1 < j  < n. The second

condition of Definition 14 states:

VJi —► ri, 71, Vq G Qu, 1 < i < Card(Posjr(r))

702 -*• ra,®i(70i ri,g))) = 702 -> J"2,g)

Thus

7 ^ 1  - >  H i 35*2(7̂ 2 -^ T ’2 , " - ® i » ( 7 0 n  - >  »n. « ) ) ” ■))) = 7 0 1  

And so 

®ii(701 -> ^ .^ ( 7 0 2  -»■ r2,**-afin{70B “» >"„,9)) •••)))) =  (tĈ i

It gives Q2 C Qi and Qnew =  6 1 . As Q, 72, Posj?(r) are finite, then Qi and 

Qneiu are also finite.
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Proof of the completeness 

extended to non left-linear TRS

Appendix C

The Theorem 4 says: Given a tree automaton A  and a TRS 1Z, C(Tn f  (.A)) the 

corresponding approximation automaton and Q its set of states. For all non left- 

linear rule I r  G 1Z, for all non linear variables x of 1, for all states <71,..., qn G Q 

matched by x, if either qx =  ... =  qn or £(T jit{A ),  tfi) f |  ■■■ fl Qn) = 0

then:

1Z*{C{A)) c  C(Tn tM ))

To prove this theorem we need to introduce the notion of ground context. A 

ground context is a term of T (J -  U {□}) with exactly one occurremce of □, where □ 

is a special constant not occurring in T .  For any term t  G T (J - ) , C[t] denotes the 

term obtained after the replacement of □ by t  in the ground context C[].

The proof had been extracted from [GKOOb].

P ro o f Assume that there exists a term t  such that t G 1Z*(C(A)) and t ^ C (Tn t  

(.A)). The term t is such that t  £  L(A).  Otherwise, t G £ ( T n t  (A)) by Theorem 3, 

since by contruction of £(Tr , t  (*4)) we trivially have £(»4) C C iX n tiA )) .  Hence, 

there exists a term s G C(A) such that t. On this rewite chain, from s to t, let

¿1 , ¿2 be the first two terms such that t\ G £(7ftt(A .)), ¿ 1  —>-7?, t% and t2 $ ¿-{Tut 

(*4)). Assume that ¿ 1 =  C[lo], ¿2 =  C\rcr\ and I -¥ r G 7Z. Furthermore, let C"[] be a 

ground context such that I = C'[x 1 , ■ • ■ , xn] with {x \ , ■ • • , x n} = Varl(l). Thus lo =
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C'[xi<r, ■ • ■ , x no\. Since t\ =  C[lcr] G £(7ft.t (A.)), we know that there exists a final 

state 7  G Q/ of T ^ tM ) such that C[la] ~^Tt$(A) Q- Furthermore, by construction of 

tree automata, we obtain that there exists also a state q' G Q such that la ^ T r̂ A) 

q' and C[q'] — q' ■ Similarly, from la = C'[xia,--- , x na] — q\ we 

can deduce that there exists states , qn G Q such that x \a  ~^j --ji\{A) 9*’ "'■>

Xn& Qn d  fe ll ' ' ' i Qn] Q '

Now, assume that there exists a Q-substitution // G £(Q, X)  such that fxxi = qi 

for i G [1, ■ ■ ■ , n]. Then, we would have If/, = C'[q\, ■ ■ ■ , qn\ and thus Ifi -fy-diA) ^ ' 

By construction of T nti 'A ) ,  we know that Ifi —>T-rf\(A) implies rfi — q'. We

thus have x \a  ~^Tn\A) " i x na ~*Titf{A) qn an<̂  ~^Tnt^) q> wliere ^ maPs Xi
to qi for i G [1, ■ ■ ■ , n]. Hence, ra Q1 an(l finally ¿2 =  C[ra\ -^TntA) Q with

q G Qf, which is a contradiction with the fact that ¿2 ^ >C(TR.t(A.)).

Consequently, it is not possible to build a Q-substitution fi G H(Q, X)  such that 

fiX{ = qi for i G [1, • ■ • , n\. The only reason why // cannot be a Q-substitution is that 

there is at least two distinct indexes i , j  G [1, ■ • • , n] such that Xi =  xj  and qi ^  qj. 

Hence the rule is not left linear and the non linear variable Xi = Xj matches, at 

least, two distinct states qi and qj. We can generalize this to all the occurrences of 

varible X{. Let C = {k\xk = X{}. Since all variable x k with k  G C are the same, we 

obtain that there exists a term u G T(!F) such that Vk G C : x^o  =  u ~^TntA) Qk- 

Hence, VA; G C : {w} C £(7^,t (A), qk)- Moreover, since we already know that we 

have at least i , j  G C and Qi ^  qj we obtain that {w} C Hitec (*A)iQk) 7̂

which contredicts the hypothesis of the theorem.

Hence, ¿2 G £ (7 j i t (A ) )  and by applying the same reasoning on all the terms on 

the rewrite chain between and t, we finally obtain that t G £ ( 7 7 j t ( - 4 )). ^
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Appendix D

Needham-Schroeder input file 

for Timbuk

Ops mesg:3 encr:3 N:3 cons:2 A:0 B:0 S:0 o:0 snc:l agt:l servrl U:2 sharekey:2

pubkey:l c_init:3 c_resp:3 add:l goal:2 LHS:0 hashl:2 hash2:3 pref:l sid:2

key:3 cert:2 pms:2 session:2 un:0 deux:0 null:0 t0:0
Vars x x l y z u s m t a b  a_18 a_17 a_16 a_15 a_14 a_13 a_12 a_ll a_10 a_9

a .8 a_7 a_6 a_5 a.4 a.3 a_2 a_l a_0 b.18 b.17 b_16 b_15 b_14 b.13 b_12 b_U

b_10 b_9 b_8 b_7 b_6 b.5 b.4 b_3 b_2 b_l b.O t_18 t.17 t_16 t_15 t.14 t.13

t_12 t . l l  t_10 t_9 t_8 t_7 t_6 t.5 t_4 t_3 t_2 t_l t_0

TRS R
goal(agt(a), agt(b)) -> U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)), 

agt(a), cons(N(agt(a), agt(b), tO), agt(a)))))

mesg(a_4, agt(b), encr(pubkey(agt(b)), a_3, cons(N(a_l, b_l, t_l), agt(a)))) 

->  U(LHS, mesg(agt(b), agt(a), encr(pubkey(agt(a)), agt(b), cons(N(a_l, 

b-1 , t_l), N(agt(b), agt(a), tO)))))

mesg(a_6, agt(a), encr(pubkey(agt(a)), a.5, cons(N(agt(a), agt(b), tO), 

N(a_2, b-2, t_2)))) ->  U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)),

agt(a), N(a_2, b.2, t.2))))

mesg(a_6, agt(a), encr(pubkey(agt(a)), a_5, cons(N(agt(a), agt(b), tO), 

N(a_2, b_2, t_2)))) ->  U(LHS, cjnit(agt(a), agt(b), a_5))
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mesg(a_8, agt(b), encr(pubkey(agt(b)), a_7, N(agt(b), agt(a), tO))) -> 

U(LHS, c_resp(agt(b), agt(a), a_7))

U(cons(x, y), z) ->  U(LHS, add(x))

U(cons(x, y), z) -> U(LHS, add(y))

U(encr(pubkey(agt(o)), y, z), u) -> U(LHS, add(z)) 

U(encr(pubkey(agt(suc(x))), y, z), u) -> U(LHS, add(z))

U(mesg(x, y, z), u) -> U(LHS, add(z)) 

add(x) ->  x

U(x, U(y, z)) -> U(U(x, y), z)

U(U(x, y), z) ->  U(x, U(y, z))

U(x, y) ->  U(y, x)

Automaton automat

States qO q l q2 q3 q4 q5 q6 q7 q ll  ql3 qsl qs2 qt[0-5]

Final States ql3 

Prior

null ->  ql3 t0-> qtO 
Transitions

o -> qO suc(qO) -> qO agt(qO) -> q3

A -> q l agt(ql) -> q4

B ->  q2 agt(q2) -> q5

U(ql3, ql3) -> ql3

goal(q4, q5) -> ql3 goal(q5, q4) -> ql3

goal(q3, q3) -> ql3 goal(q4, q3) -> ql3

goal(q3, q4) -> ql3 goal(q5, q3) -> ql3

agt(qO) -> ql3 agt(ql) ->  ql3

mesg(ql3, ql3, ql3) -> ql3 cons(ql3, ql3) -> ql3 encr(ql3, q3, ql3) -> ql3

pubkey(q3) ->  ql3 pubkey(q4) -> ql3 pubkey(q5) -> ql3

N(q3, q3, qtO) -> ql3 N(q3, q4, qtO) ->  ql3 N(q3, q5, qtO) ->  ql3

goal(q3, q5) -> ql3 

agt(q2) -> ql3

Approximation R1
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States q[0-89] qt[0-5]

Rules

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(agt(q2), 

agt(q2), qtO), agt(q2))))) ->  ql3] ->  [LHS ->  ql3 agt(q2) -> q5 serv(q7) -> q6 

agt(q2) ->  q5 N(q5, q5, qtO) -> ql5 cons(ql5, q5) ->  q l6 pubkey(q5) -> ql7 

encr(ql7, q5, q l6) ->  ql3 mesg(q5, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cons(N(agt(q2), 

agt(ql), qtO), agt(q2))))) ->  ql3] ->  [LHS ->  ql3 agt(q2) ->  q5 serv(q7) -> q6 

agt(ql) ->  q4 N(q5, q4, qtO) -> ql9 cons(ql9, q5) ->  q20 pubkey(q4) -> q21 

encr(q21, q5, q20) ->  ql3 mesg(q5, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), cons(N(agt(q2), 

agt(qO), qtO), agt(q2))))) ->  ql3] ->  [LHS ->  ql3 agt(q2) ->  q5 serv(q7) ->  q6 

agt(qO) ->  q3 N(q5, q3, qtO) -> q23 cons(q23, q5) ->  q24 pubkey(q3) ->  q25 

encr(q25, q5, q24) ->  ql3 mesg(q5, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(agt(ql), 

agt(q2), qtO), agt(ql))))) ->  ql3] ->  [LHS -> ql3 agt(ql) ->  q4 serv(q7) -> q6 

agt(q2) ->  q5 N(q4, q5, qtO) ->  q27 cons(q27, q4) ->  q28 pubkey(q5) -> ql7 

encr(ql7, q4, q28) ->  ql3 mesg(q4, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(agt(ql), 

agt(ql), qtO), agt(ql))))) ->  ql3] ->  [LHS -> ql3 agt(ql) ->  q4 serv(q7) -> q6 

agt(ql) ->  q4 N(q4, q4, qtO) ->  q30 cons(q30, q4) ->  q31 pubkey(q4) ->  q21 

encr(q21, q4, q31) ->  ql3 mesg(q4, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), cons(N(agt(ql), 

agt(qO), qtO), agt(ql))))) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 serv(q7) -> q6 

agt(qO) ->  q3 N(q4, q3, qtO) ->  q33 cons(q33, q4) ->  q34 pubkey(q3) ->  q25 

encr(q25, q4, q34) ->  ql3 mesg(q4, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), cons(N(agt(qO),
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agt(q2), qtO), agt(qO))))) -> ql3] -> [LHS ->  ql3 agt(qO) -> q3 serv(q7) -> q6 

agt(q2) ->  q5 N(q3, q5, qtO) ->  q36 cons(q36, q3) ->  q37 pubkey(q5) -> ql7 

encr(ql7, q3, q37) ->  ql3 mesg(q3, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), cons(N(agt(qO), 

agt(ql), qtO), agt(qO))))) ->  ql3] -> [LHS ->  ql3 agt(qO) ->  q3 serv(q7) -> q6 

agt(ql) ->  q4 N(q3, q4, qtO) ->  q39 cons(q39, q3) ->  q40 pubkey(q4) ->  q21 

encr(q21, q3, q40) ->  ql3 mesg(q3, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(agt(qO), 

agt(qO), qtO), agt(qO))))) ->  ql3] -> [LHS ->  ql3 agt(qO) ->  q3 serv(q7) -> q6 

agt(qO) ->  q3 N(q3, q3, qtO) ->  q42 cons(q42, q3) ->  q43 pubkey(q3) -> q25 

encr(q25, q3, q43) ->  ql3 mesg(q3, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(q5, q5, 

qtO), N(agt(q2), agt(q2), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(q2) ->  q5 serv(q7) 

-> q6 agt(q2) ->  q5 N(q5, q5, qtO) -> ql5 N(q5, q5, qtO) ->  ql5 cons(ql5, ql5) ->  

q47 pubkey(q5) ->  ql7 encr(ql7, q5, q47) ->  ql3 mesg(q5, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(a_l, b_l, 

t_l), N(agt(q2), agt(q2), qtO))))) ->  ql3] -> [LHS -> ql3 agt(q2) ->  q5 serv(q7) ->  

q6 agt(q2) ->  q5 N(q5, q5, qtO) ->  ql5 N(a_l, b_l, t_l) ->  q45 cons(q45, ql5) ->  

q46 pubkey(q5) ->  ql7 encr(ql7, q5, q46) ->  ql3 mesg(q5, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cons(N(q5, q4, 

qtO), N(agt(q2), agt(ql), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(q2) ->  q5 serv(q7) 

->  q6 agt(ql) ->  q4 N(q5, q4, qtO) -> ql9 N(q5, q4, qtO) ->  ql9 cons(ql9, ql9) ->  

q50 pubkey(q4) ->  q21 encr(q21, q5, q50) ->  ql3 mesg(q5, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cona(N(a_2, b_2, 

t_2), N(agt(q2), agt(ql), qtO))))) ->  ql3] -> [LHS ->  ql3 agt(q2) ->  q5 serv(q7) ->  

q6 agt(ql) ->  q4 N(q5, q4, qtO) ->  ql9 N(a_2, b_2, t_2) ->  q48 cona(q48, ql9) ->  

q49 pubkey(q4) ->  q21 encr(q21, q5, q49) -> ql3 mesg(q5, q4, ql3) ->  ql3]
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[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), cons(N(q5, q3, 

qtO), N(agt(q2), agt(qO), qtO))))) -> ql3] -> [LHS ->  ql3 agt(q2) -> q5 serv(q7) 

->  q6 agt(qO) -> q3 N(q5, q3, qtO) ->  q23 N(q5, q3, qtO) ->  q23 cons(q23, q23) ->  

q53 pubkey(q3) ->  q25 encr(q25, q5, q53) -> ql3 meag(q5, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), cons(N(a_3, b_3, 

t_3), N(agt(q2), agt(qO), qtO))))) -> ql3] ->  [LHS -> ql3 agt(q2) ->  q5 serv(q7) ->  

q6 agt(qO) ->  q3 N(q5, q3, qtO) -> q23 N(a_3, b_3, t_3) ->  q51 cons(q51, q23) ->  

q52 pubkey(q3) ->  q25 encr(q25, q5, q52) ->  ql3 mesg(q5, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(q4, q5, 

qtO), N(agt(ql), agt(q2), qtO))))) -> ql3] ->  [LHS ->  ql3 agt(ql) -> q4 serv(q7) 

->  q6 agt(q2) ->  q5 N(q4, q5, qtO) ->  q27 N(q4, q5, qtO) ->  q27 cons(q27, q27) ->  

q56 pubkey(q5) ->  ql7 encr(ql7, q4, q56) -> ql3 mesg(q4, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(a_4, b_4, 

t_4), N(agt(ql), agt(q2), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 serv(q7) ->  

q6 agt(q2) ->  q5 N(q4, q5, qtO) ->  q27 N(a_4, b_4, t_4) ->  q54 cons(q54, q27) ->  

q55 pubkey(q5) ->  ql7 encr(ql7, q4, q55) ->  ql3 mesg(q4, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(q4, q4, 

qtO), N(agt(ql), agt(ql), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 serv(q7) 

->  q6 agt(ql) ->  q4 N(q4, q4, qtO) ->  q30 N(q4, q4, qtO) ->  q30 cons(q30, q30) ->  

q59 pubkey(q4) ->  q21 encr(q21, q4, q59) ->  ql3 mesg(q4, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(a_5, b_5, 

t_5), N(agt(ql), agt(ql), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 serv(q7) ->  

q6 agt(ql) ->  q4 N(q4, q4, qtO) ->  q30 N(a_5, b_5, t_5) ->  q57 cons(q57, q30) -> 

q58 pubkey(q4) ->  q21 encr(q21, q4, q58) ->  ql3 mesg(q4, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), cons(N(q4, q3, 

qtO), N(agt(ql), agt(qO), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 serv(q7) 

->  q6 agt(qO) ->  q3 N(q4, q3, qtO) ->  q33 N(q4, q3, qtO) ->  q33 cons(q33, q33) ->
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q62 pubkey(q3) ->  q25 encr(q25, q4, q62) ->  ql3 mesg(q4, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), cons(N(a_6, b_6, 

t_6) , N(agt(ql), agt(qO), qtO))))) ->  ql3] ->  [LHS -> ql3 agt(ql) ->  q4 serv(q7) ->  

q6 agt(qO) -> q3 N(q4, q3, qtO) ->  q33 N(a_6, b_6, t_6) ->  q60 cons(q60, q33) ->  

q61 pubkey(q3) ->  q25 encr(q25, q4, q61) -> ql3 mesg(q4, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), cons(N(q3, q5, 

qtO), N(agt(qO), agt(q2), qtO))))) ->  ql3] ->  [LHS -> ql3 agt(qO) -> q3 serv(q7) 

-> q6 agt(q2) ->  q5 N(q3, q5, qtO) -> q36 N(q3, q5, qtO) ->  q36 cons(q36, q36) ->  

q65 pubkey(q5) ->  ql7 encr(ql7, q3, q65) -> ql3 mesg(q3, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), cons(N(a_7, b_7, 

t_7), N(agt(qO), agt(q2), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(qO) ->  q3 serv(q7) ->  

q6 agt(q2) ->  q5 N(q3, q5, qtO) ->  q36 N(a_7, b_7, t_7) ->  q63 cons(q63, q36) ->  

q64 pubkey(q5) ->  ql7 encr(ql7, q3, q64) ->  ql3 mesg(q3, q5, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), cons(N(q3, q4, 

qtO), N(agt(qO), agt(ql), qtO))))) ->  ql3] ->  [LHS -> ql3 agt(qO) -> q3 serv(q7) 

-> q6 agt(ql) ->  q4 N(q3, q4, qtO) ->  q39 N(q3, q4, qtO) ->  q39 cons(q39, q39) ->  

q68 pubkey(q4) ->  q21 encr(q21, q3, q68) -> ql3 mesg(q3, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), cons(N(a_8, b_8, 

t_8), N(agt(qO), agt(ql), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(qO) ->  q3 serv(q7) ->  

q6 agt(ql) ->  q4 N(q3, q4, qtO) ->  q39 N(a_8, b_8, t_8) ->  q66 cons(q66, q39) ->  

q67 pubkey(q4) ->  q21 encr(q21, q3, q67) ->  ql3 mesg(q3, q4, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(q3, q3, 

qtO), N(agt(qO), agt(qO), qtO))))) ->  ql3] ->  [LHS ->  ql3 agt(qO) ->  q3 serv(q7) 

-> q6 agt(qO) ->  q3 N(q3, q3, qtO) ->  q42 N(q3, q3, qtO) ->  q42 cons(q42, q42) ->  

q71 pubkey(q3) ->  q25 encr(q25, q3, q71) ->  ql3 mesg(q3, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(a_9, b_9,
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t-9), N(agt(qO), agt(qO), qtO))))) ->  ql3] ->  [LHS -> ql3 agt(qO) -> q3 serv(q7) ->  

q6 agt(qO) ->  q3 N(q3, q3, qtO) ->  q42 N(a_9, b_9, t_9) ->  q69 cons(q69, q42) ->  

q70 pubkey(q3) ->  q25 encr(q25, q3, q70) ->  ql3 mesg(q3, q3, ql3) ->  ql3]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), N(a_10, b_10, 

t_10)))) ->  ql3] ->  [LHS -> ql3 agt(q2) ->  q5 serv(q7) ->  q6 agt(q2) ->  q5 N(a_10, 

b-10, t_10) ->  q72 pubkey(q5) -> ql7 encr(ql7, q5, q72) ->  ql3 mesg(q5, q5, ql3) 

-> qi3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), N(a_ll, b_ll, 

t_ll)))) ->  ql3] ->  [LHS -> ql3 agt(q2) ->  q5 serv(q7) ->  q6 agt(ql) ->  q4 N(a_ll, 

b_ll, t_ll) ->  q74 pubkey(q4) -> q21 encr(q21, q5, q74) ->  ql3 mesg(q5, q4, ql3) 

-> qi3]

[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), N(a_12, b_12, 

t_12)))) ->  ql3] ->  [LHS ->  ql3 agt(q2) ->  q5 serv(q7) ->  q6 agt(qO) ->  q3 N(a_12, 

b_12, t_12) ->  q76 pubkey(q3) -> q25 encr(q25, q5, q76) ->  ql3 mesg(q5, q3, ql3) 

-> ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), N(a_13, b_13, 

t_13)))) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 aerv(q7) ->  q6 agt(q2) -> q5 N(a_13, 

b_13, t_13) ->  q78 pubkey(q5) ->  ql7 encr(ql7, q4, q78) ->  ql3 mesg(q4, q5, ql3) 

-> ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), N(a_14, b_14, 

t_14)))) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 serv(q7) ->  q6 agt(ql) ->  q4 N(a_14, 

b_14, t -14) ->  q80 pubkey(q4) -> q21 encr(q21, q4, q80) ->  ql3 mesg(q4, q4, ql3) 

-> ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), N(a_15, b_15, 

t_15)))) ->  ql3] ->  [LHS -> ql3 agt(ql) ->  q4 serv(q7) ->  q6 agt(qO) -> q3 N(a_15, 

b_15, t J.5) ->  q82 pubkey(q3) ->  q25 encr(q25, q4, q82) ->  ql3 mesg(q4, q3, ql3) 

-> ql3]
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[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), N(a_16, b_16, 

t_16)))) ->  ql3] ->  [LHS -> ql3 agt(qO) -> q3 serv(q7) ->  q6 agt(q2) ->  q5 N(a_16, 

b_16, t_16) ->  q84 pubkey(q5) ->  ql7 encr(ql7, q3, q84) ->  ql3 meag(q3, q5, ql3)

-> qi3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), N(a_17, b_17, 

t_17)))) ->  ql3] ->  [LHS ->  ql3 agt(qO) -> q3 serv(q7) ->  q6 agt(ql) ->  q4 N(a_17, 

b_17, t_17) ->  q86 pubkey(q4) ->  q21 encr(q21, q3, q86) ->  ql3 mesg(q3, q4, ql3)

-> ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), N(a_18, b_18, 

t_18)))) ->  ql3] ->  [LHS ->  ql3 agt(qO) ->  q3 serv(q7) ->  q6 agt(qO) -> q3 N(a_18, 

b_18, t_18) ->  q88 pubkey(q3) ->  q25 encr(q25, q3, q88) ->  ql3 mesg(q3, q3, ql3)

-> ql3]

[U(LHS, c_mit(agt(q2),agt(q2),z)) -> ql3] ->  [LHS ->  ql3 agt(q2) ->  q5 c_init(q5,q5,z) 

->  ql3]

[U(LHS, c_mit(agt(q2),agt(ql),z)) ->  ql3] ->  [LHS ->  ql3 agt(q2) ->  q5 agt(ql)

->  q4 c_init(q5,q4,z) ->  ql3]

[U(LHS, cJnit(agt(q2),agt(qO),z)) ->  ql3] ->  [LHS ->  ql3 agt(q2) -> q5 agt(qO)

->  q3 C_mit(q5,q3,z) ->  ql3]

[U(LHS, cJmt(agt(ql),agt(ql),z)) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 cJnit(q4,q4,z) 

-> ql3]

[U(LHS, cJnit(agt(ql),agt(q2),z)) ->  ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 agt(q2)

->  q5 C_init(q4,q5,z) ->  ql3]

[U(LHS, c_init(agt(ql),agt(qO),z)) -> ql3] ->  [LHS ->  ql3 agt(ql) ->  q4 agt(y)

-> q3 c_init(q4,q3,z) ->  ql3]

[U(LHS, c_init(agt(q0),agt(q2),z)) ->  ql3] ->  [LHS ->  ql3 agt(qO) ->  q3 agt(q2)
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->  q5 cJnit(q3,q5,z) ->  ql3]

[U(LHS, c_init(agt(qO),agt(ql),z)) ->  ql3] ->  [LHS ->  q l3  agt(qO) ->  q3 agt(ql)

->  q4 c_init(q3,q4,z) ->  ql3]

[U(LHS, c_mit(agt(qO),agt(qO),z)) ->  ql3] ->  [LHS ->  q l3  agt(qO) ->  q3 cJnit(q3,q3,z) 

->  ql3]

[U(LHS, c_resp(agt(q2),agt(q2),z)) ->  ql3] ->  [LHS ->  q l3  agt(q2) ->  q5 c_resp(q5,q5,z) 

->  ql3]

[U(LHS, c_resp(agt(q2),agt(ql),z)) ->  ql3] ->  [LHS ->  q l3  agt(q2) ->  q5 agt(ql)

->  q4 c_resp(q5,q4,z) ->  ql3]

[U(LHS, c_resp(agt(q2),agt(qO),z)) ->  ql3] ->  [LHS ->  q l3  agt(q2) ->  q5 agt(qO)

->  q3 c_resp(q5,q3,z) ->  ql3]

[U(LHS, c_resp(agt(ql),agt(ql),z)) ->  ql3] ->  [LHS ->  q l3  agt(ql) ->  q4 c_resp(q4,q4,z) 

->  ql3]

[U(LHS, c_resp(agt(ql),agt(q2),z)) ->  ql3] ->  [LHS ->  q l3  agt(ql) ->  q4 agt(q2)

->  q5 c_resp(q4,q5,z) ->  q l3]

[U(LHS, c_resp(agt(ql),agt(qO),z)) ->  ql3] ->  [LHS ->  q l3  agt(q l) ->  q4 agt(y)

->  q3 c_resp(q4,q3,z) ->  ql3]

[U(LHS, c_resp(agt(qO),agt(q2),z)) ->  ql3] ->  [LHS ->  q l3  agt(qO) ->  q3 agt(q2)

->  q5 c_resp(q3,q5,z) ->  ql3]

[U(LHS, c_resp(agt(qO),agt(ql),z)) ->  ql3] ->  [LHS ->  q l3  agt(qO) ->  q3 agt(ql)

->  q4 c_resp(q3,q4,z) ->  ql3]

[U(LHS, c_reap(agt(qO),agt(qO),z)) ->  ql3] ->  [LHS ->  q l3  agt(qO) ->  q3 c_resp(q3,q3,z) 

->  ql3]
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[U(LHS, add(x)) ->  ql3] ->  [LHS ->  q l3  add(x) ->  ql3] 

[U(U(x,y),z) ->  ql3] ->  [U(x,y) ->  ql3]

[U(x, U(y,z)) ->  ql3] ->  [U(y,z) ->  ql3]
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N eedham -Schroeder  

approxim ation autom aton

Appendix E

Ops mesg:3 encr:3 N:3 cons:2 A:0 B:0 S:0 o:0 suc:l agt:l serv:l U:2 sharekey:2

pubkeyrl c_init:3 c_resp:3 add:l goal:2 LHS:0 hashl:2 hash2:3 pref:l sid:2

key:3 cert:2 pma:2 session:2 un:0 deux:0 null:0 t0:0 
Autom aton current

States q8:0 q9:0 ql0:0 ql2:0 ql4:0 ql5:0 ql6:0 ql7:0 ql8:0 ql9:0 q20:0 q21:0 

q22:0 q23:0 q24:0 q25:0 q26:0 q27:0 q28:0 q29:0 q30:0 q31:0 q32:0 q33:0 q34:0 q35:0

q36:0 q37:0 q38:0 q39:0 q40:0 q41:0 q42:0 q43:0 q44:0 q45:0 q46:0 q47:0 q48:0 q49:0

q50:0 q51:0 q52:0 q53:0 q54:0 q55:0 q56:0 q57:0 q58:0 q59:0 q60:0 q61:0 q62:0 q63:0

q64:0 q65:0 q66:0 q67:0 q68:0 q69:0 q70:0 q71:0 q72:0 q73:0 q74:0 q75:0 q76:0 q77:0

q78:0 q79:0 q80:0 q81:0 q82:0 q83:0 q84:0 q85:0 q86:0 q87:0 q88:0 q89:0 q0:0 ql:0 

q2:0 q3:0 q4:0 q5:0 q6:0 q7:0 q ll:0  ql3:0 qsl:0 qs2:0 qt0:0 q tl:0  qt2:0 qt3:0 qt4:0 

qt5:0

Final States q l3  

Prior

null ->  q l3  S ->  q7 t0->  qtO 

Transitions
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add(q53) ->  q l3  

add(q82) ->  q l3  

add(q5) ->  q l3  

add(q23) ->  q l3  

add(q88) ->  q l3  

add(q24) ->  q l3  

add(ql3) ->  q l3  

C_resp(q4,q4,q5) ->  ql3 

c_resp(q4,q3,q4) ->  ql3 

c_resp(q5,q5,q4) ->  q l3  

C_resp(q4,q4,q3) ->  q l3  

C_resp(q3,q3,q5) ->  q l3  

C_resp(q3,q5,q4) ->  q l3  

C_resp(q3,q5,q5) ->  q l3  

C_resp(q5,q4,q4) ->  ql3 

c_resp(q3,q5,q3) ->  ql3 

C_init(q4,q5,q4) ->  q l3  

cJnit(q5,q4,q5) ->  q l3  

cJnit(q5,q5,q3) ->  q l3  

cJnit(q4,q3,q5) ->  q l3  

cJnit(q4,q5,q5) ->  q l3  

cJnit(q5,q4,q4) ->  q l3  

cJnit(q3,q3,q4) ->  q l3  

cJnit(q3,q3,q5) ->  q l3  

C_init(q3,q5,q3) ->  q l3  

LHS ->  q l3  

tO ->  qtO 

A ->  ql

goal(q4,q5) ->  q l3  

goal(q5,q5) ->  q l3  

goal(q3,q4) ->  q l3  

agt(qO) ->  q3 

agt(qO) ->  q l3

ad d (q 6 2 ) - >  q l3  

a d d (q 3 ) - >  q l3  

ad d (q 4 2 ) - >  q l3  

add(q 60 ) - >  q l3  

ad d (q 4 3 ) - >  q l3  

a d d (q 6 1) - >  q l3

C_resp(q4,q3,q5) - >  q l3  

c_ resp(q5,q4,q5) - >  q l3  

C_resp(q5,q3,q4) - >  q l3  

c_ resp(q5,q5,q3) - >  q l3  

C_resp(q3,q4,q5) - >  q l3  

C_resp(q4,q5,q5) - >  q l3  

C_resp(q3,q4,q4) - >  q l3  

c_ resp(q4,q3,q3) - >  q l3  

c_ resp(q3,q4,q3) - >  q l3  

c J n it(q 4 ,q 4 ,q 5 )  - >  q l3  

C_init(q4,q5,q3) - >  q l3  

C_init(q5,q4,q3) - >  q l3  

C_init(q5,q3,q4) - >  q l3  

c_ in it(q 4,q 3,q 3) - >  q l3  

c J n it(q 5 ,q 5 ,q 5 )  - >  q l3  

C_init(q3,q4,q4) - >  q l3  

c J n it(q 3 ,q 4 ,q 5 )  - >  q l3  

c J n it(q 3 ,q 4 ,q 3 )  - >  q l3  

n u ll - >  q l3  

o ->  qO 

B ->  q2

g o al(q 5 ,q 4 ) - >  q l3  

go al(q 3 ,q 3 ) - >  q l3  

g o al(q 5 ,q 3 ) - >  q l3  

a g t ( q l)  - >  q4 

a g t ( q l)  - >  q l3

add(q76) ->  q l3  

add(q4) ->  q l3  

add(q33) ->  q l3  

add(q51) ->  q l3  

add(q34) ->  q l3  

add(q52) ->  q l3

C_resp(q4,q5,q4) ->  ql3 

c_resp(q5,q3,q5) ->  ql3 

c_resp(q4,q5,q3) ->  ql3 

c_resp(q5,q4,q3) ->  ql3 

C_resp(q3,q3,q4) ->  ql3 

C_resp(q4,q4,q4) ->  ql3 

c_resp(q5,q5,q5) ->  ql3 

c_resp(q5,q3,q3) ->  ql3 

C Jresp(q3,q3,q3) - >  q l3  

c_init(q5,q5,q4) ->  ql3 

cJnit(q4,q4,q3) ->  ql3 

cJnit(q4,q3,q4) ->  ql3 

C_init(q5,q3,q5) ->  ql3 

C_init(q4,q4,q4) ->  ql3 

cJnit(q5,q3,q3) ->  ql3 

cJnit(q3,q5,q4) ->  ql3 

c_init(q3,q5,q5) ->  ql3 

c init(q3,q3,q3) ->  ql3 

S - >  q7 

suc(qO) ->  qO 

U (ql3,ql3) ->  ql3 

goal(q4,q4) ->  q l3  

goal(q4,q3) ->  q l3  

goal(q3,q5) ->  q l3  

agt(q2) ->  q5 

agt(q2) ->  ql3
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m esg(q3,q5,ql3) ->  q l3  

m esg(q4,q3,ql3) ->  q l3  

m esg(q4,q4,ql3) ->  q l3  

m esg(q l3 ,q l3 ,q l3) ->  ql3  

cons(q27,q27) ->  q56 

cons(q23,q23) ->  q53 

cons(q63,q36) ->  q64 

cons(q48,ql9) ->  q49 

cons(q57,q30) ->  q58 

cons(q23,q5) ->  q24 

cons(q42,q3) ->  q43 

cons(ql9,q5) ->  q20 

cons(q23,q23) ->  q l3  

cons(q23,q5) ->  q l3  

cons(q l3 ,q l3) ->  q l3  

pubkey(q3) ->  q25 

pubkey(q3) ->  q l3  

encr(ql7,q4,q56) 

encr(q25,q5,q53 

encr(q21,q4,q80 

encr(q25,q5,q76 

encr(ql7,q3,q84 

encr(ql7,q3,q64 

encr(q21,q5,q49 

encr(q21,q4,q58 

encr(q25,q5,q24 

encr(q25,q3,q43 

encr(q21,q5,q20

meag(q5,q3,ql3) ->  q l3  

mesg(q3,q3,ql3) ->  q l3  

mesg(q5,q4,ql3) ->  q l3

cons(ql9,q l9) ->  q50 

cons(q30,q30) ->  q59 

cons(ql5,q l5) ->  q47 

cons(q51,q23) ->  q52 

cons(q60,q33) ->  q61 

cons(q39,q3) ->  q40 

cons(ql5,q5) ->  q l6  

cons(q27,q4) ->  q28 

cons(q51,q23) ->  q l3  

cons(q33,q4) ->  q l3

pubkey(q4) ->  q21 

pubkey(q4) ->  q l3

mesg(q3,q4,ql3) ->  ql3  

mesg(q5,q5,ql3) ->  ql3  

mesg(q4,q5,ql3) ->  ql3

cons(q33,q33) ->  q62 

cons(q66,q39) ->  q67 

cons(q45,ql5) ->  q46 

cons(q54,q27) ->  q55 

cons(q36,q3) ->  q37 

cons(q33,q4) ->  q34 

cons(q30,q4) ->  q31 

cons(q33,q33) ->  q l3  

cons(q60,q33) ->  q l3  

cons(q42,q3) ->  q l3

pubkey(q5) ->  q l7  

pubkey(q5) ->  q l3

) -> q l3 encr(q21,q5,q50) -> q l3 encr(q25,q4,q62) -> ql3

) -> q l3 encr(ql7,q4,q78) -> q l3 encr(q25,q4,q82) -> ql3

) -> q l3 encr(q21,q5,q74) -> q l3 encr(ql7,q5,q72) ->

COHa
1

) -> q l3 encr(q25,q3,q88) -> q l3 encr(q21,q3,q86) ->

COa1

) -> q l3 encr(q21,q4,q59) -> q l3 encr(q21,q3,q67) -> ql3

) -> q l3 encr(ql7,q5,q47) -> q l3 encr(ql7,q5,q46) -> ql3

) -> q l3 encr(q25,q5,q52) -> q l3 encr(ql7,q4,q55) -> ql3

) -> q l3 encr(q25,q4,q61) -> q l3 encr(ql7,q3,q37) -> ql3

) -> q l3 encr(q21,q3,q40) -> q l3 encr(q25,q4,q34) -> ql3

) -> q l3 encr(ql7,q5,ql6) -> q l3 encr(q21,q4,q31) -> ql3

) -> q l3 encr(ql7,q4,q28) -> q l3 encr(ql3,q3,ql3) -> ql3

>  q l3 key(q l3 ,q l3 ,q l3) -> q l3 pref(q3) ->  q l3
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N(q3,q5,qtO) -> »a 00

N(q5,q3,qtO) -> q78

N(q4,q5,qt0) -> q78

N(q5,q5,qtO) -> q82

N(q3,q3,qtO) -> q82

N(q4,q4,qt0) -> q82

N(q3,q5,qtO) -> q80

N(q5,q3,qtO) -> q80

N(q4,q5,qt0) -> q80

N(q3,q5,qtO) -> q74

N(q5,q3,qtO) -> q74

N(q5,q4,qt0) -> q74

N(q3,q5,qtO) -> q72

N(q5,q3,qtO) -> q72

N(q5,q4,qt0) -> q72

N(q5,q4,qt0) -> q76

N(q3,q3,qtO) -> q76

N(q4,q5,qt0) -> q76

N(q4,q3,qt0) -> q88

N(q5,q3,qtO) -> q86

N(q4,q3,qt0) -> q66

N(q5,q4,qt0) -> q45

N(q5,q3,qtO) -> q45

N(q3,q3,qtO) -> q45

N(q5,q3,qt0) -> oo

N(q3,q5,qtO) -> q48

N(q5,q5,qtO) -> q51

N(q4,q4,qt0) -> q51

N(q3,q4,qtO) -> q51

N(q4,q4,qt0) -> q54

N(q5,q4,qt0) -> q54

N(q3,q3,qtO) -> q54

N(q5,q4,qt0) -> q57

N(q3,q4,qtO) -> & 00

N(q4,q3,qt0) -> q78

N(q4,q4,qt0) -> q78

N(q4,q5,qt0) -> q82

N(q5,q3,qtO) -> q82

N(q5,q4,qtO) -> q82

N(q3,q4,qtO) -> q80

N(q4,q3,qt0) -> q80

N(q5,q4,qt0) -> q80

N(q3,q4,qt0) -> q74

N(q4,q3,qt0) -> q74

N(q4,q4,qt0) -> q74

N(q3,q4,qt0) -> q72

N(q4,q3,qt0) -> q72

N(q4,q4,qt0) -> q72

N(q4,q4,qt0) -> q76

N(q5,q3,qtO) -> q76

N(q5,q5,qtO) -> q76

N(q5,q3,qt0) -> q88

N(q4,q3,qt0) -> q84

N(q5,q3,qt0) -> q63

N(q4,q4,qt0) -> q45

N(q3,q5,qt0) -> q45

N(q5,q5,qt0) -> q48

N(q4,q3,qt0) -> q48

N(q3,q4,qt0) -> ¿2 OO

N(q4,q5,qt0) -> q51

N(q4,q3,qt0) -> q51

N(q3,q3,qt0) -> q51

N(q4,q3,qt0) -> q54

N(q3,q5,qt0) -> q54

N(q5,q5,qt0) -> q57

N(q5,q3,qt0) -> q57

N(q3,q3,qtO) -> q78

N(q5,q5,qt0) -> q78

N(q5,q4,qt0) -> -C
l

00

N(q3,q5,qtO) -> q82

N(q4,q3,qt0) -> q82

N(q3,q4,qt0) -> q82

N(q3,q3,qt0) -> q80

N(q5,q5,qt0) -> q80

N(q4,q4,qt0) -> q80

N(q3,q3,qtO) -> q74

N(q5,q5,qt0) -> q74

N(q4,q5,qt0) -> q74

N(q3,q3,qtO) -> q72

N(q4,q5,qt0) -> q72

N(q5,q5,qtO) -> q72

N(q3,q4,qt0) -> q76

N(q4,q3,qt0) -> q76

N(q3,q5,qtO) -> q76

N(q4,q3,qt0) -> q86

N(q5,q3,qtO) -> q84

N(q4,q5,qt0) -> q45

N(q4,q3,qt0) -> q45

N(q3,q4,qt0) -> q45

N(q4,q4,qt0) -> q48

N(q4,q5,qt0) -> q48

N(q3,q3,qt0) -> O
O

N(q5,q4,qt0) -> q51

N(q3,q5,qtO) -> q51

N(q5,q5,qtO) -> q54

N(q5,q3,qtO) -> q54

N(q3,q4,qtO) -> q54

N(q4,q5,qt0) -> q57

N(q4,q3,qt0) -> q57



N(q3,q5,qlO 

N(q5,q5,qtO 

N(q4,q4,qt0 

N(q3,q4,qt0 

N(q5,q3,qtO 

N{q3,q3,qL0 

N (q5,q4,qfc0 

N(q5,q4,qtO 

N(q4,q3,qtO 

N(q3,q4,qtO

->  q57 N(q3,q4,qt0) ->

->  q60 N(q4,q5,qt0) ->

->  q60 N(q5,q3,qtO) ->

->  q60 N(q3,q3,qt0) ->

->  q23 N(q3,q4,qt0) ->

->  q42 N(q5,q5,qtO) ->

->  q l9 N(q4,q5,qt0) ->

->  q l3 N(q4,q5,qt0) ->

->  q l3 N(q5,q3,qt0) ->

->  q l3 N(q3,q5,qt0) ->

q57 N(q3,q3,qt0) ->  q57

q60 N(q5,q4,qt0) ->  q60

q60 N{q3,q5,qtO) ->  q60

q60 N(q3,q5,qtO) ->  q3ß

q39 N(q4,q3,qt0) ->  q33

q l5 N(q4,q4,qt0) ->  q30

q27 N(q4,q4,qtO) ->  q l3

q l3 N(q5,q5,qtO) ->  q l3

q l3 N(q3,q3,qt0) ->  q l3

q l3
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Appendix F

Invariant Exam ple

We are looking here at an example [TRSS01] from the theroy of linear arithmetic. 

We have our system  that runs as follow:

p c = l  — ¥ x : = x + 2 ;  y : = y + 2 ;  p c : = 2  

p c = 2  — y x := x - 2 ;  y : = y + 2 ;  p c : = l

The variable pc can only takes two values, 1 or 2, and the variables x  and y are 

integers.

The initial state of the system  is: p c = l  A x = 0  A y= 0 .

We can model the system  behaviour with a TRS:

s y s te m ( o n e ,  x ,  y )  - 4  s y s te m ( tw o ,  s ( s ( x ) ) ,  s ( s ( y ) ) )  

s y s te m ( tw o ,  s ( s ( w ) ) ,  z )  —> s y s te m ( o n e ,  w , s ( s ( z ) ) )

The initial configuration of the system can be recognized by a tree automaton:

States qO q l q2 qf

Final States qf

Transitions

o - 4  qO

one - 4  q l

system(ql,qO,qO) - 4  qf

We can also define an approximation function:
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[system(two, s(s(qO)), s(s(qO))) —¥ qf] — > [two —¥ q2 s(qO) —¥ q3 s(q3) -¥ q4]

[system(two, s(a(qO)), s(s(y))) -¥ qf] — ¥ [two -¥ q2 s(qO) -¥ q3 s(q3) —¥ q4 s(y) -¥ q7 s(q7) -¥ q8] 

[system(two, s(s(x)), s(s(qO))) -¥ qf] — ¥ [two —¥ q2 s(x) —► q5 s(q5) —¥ q6 s(qO) -¥ q3 s(q3) -¥ q4] 

[system(two, s(a(x)), s(s(y))) -¥ qf] — ¥ [two -¥ q2 a(x) -¥ q5 s(q5) —¥ q6 s(y) —¥ q7 s(q7) —¥ q8]

[system(one, qO, s(s(qO))) —¥ qf] — ► [one —¥ q l s(qO) —¥ q3 a(q3) -¥ q4]

[system(one, w, s(a(qO))) —¥ qf] — > [one —¥ ql s(qO) —¥ q3 a(q3) -¥ q4]

[ay8tem(one, qO, a(a(z))) —> qf] — > [one -¥ q l s(z) -¥ q9 s(q9) -¥ qlO]

[ayatem(one, w, a(a(z))) —¥ qf] — ¥ [one -¥ q l a(z) -¥ q9 s(q9) -¥ qlO]

Using the completion algorithm (Algorithm 2) we get the following approximar 

tion automaton:

States q3 q4 q5 q6 q7 q8 qO q l q2 qf

Final States qf
Transitions

s(q8) - 4  q5

s(q5) - 4  qG

s(q6) - 4  q7

s(q4) - 4  q7

s(q7) -4  q8

s(q0) - 4  q3

s(q3) - 4  q4

o  - 4  qO

o n e  - 4  q l

tw o  - 4  q2

system(q2,q4,q6) -4  qf

system (ql,q0,q8) - 4  qf

system(q2,q4,q4) - 4  qf

s y s te m (q l,q O ,q O )  —>■ q f

By looking at this automaton we can deduce the following invariant: 

p c = l  (x = 0  A y= 0) V (x=0 A y  =  4) V (x= 0  A y  >  8) 

p c= 2  =£* (x= 2  A y= 2 ) V (x=2 A y =  6) V (x= 2  A y  >  10)
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(x= 0  A y= 0 ) and (x= 0  A y =  4) for p c = l  are easy to deduce, they are transitions 

of the automaton. It is the same for (x= 2  A y= 2) and (x= 2  A y =  6) for pc=2. The 

last parts of the invariant, (x= 0  A y  >  8) and (x= 2 A y  >  10), are deduced from 

the looping on the states q6 and q8 w ith s(q6) - 4  q7, s(q7) - 4  q8, s(q8) - 4  q5 and 

s(q5) - 4  q6.

Our invariant is identical to the one in [TRSS01]. T he computation of the 

approximation autom aton took less than 2 seconds.
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