
Defining an Approximation to Formally Verify

Cryptographic Protocols

Frédéric E noha O EH L D .E.A .

Thesis for Degree of M aster of Science

Dublin C ity University

School of Comput ing

Supervisor: Dr. David Sinclair

July 2006

I hereby certify that this material, which I now submit foe assessment, on the

programme of study leading to the award Master of Science is entirely my own work

and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed:

ID No.: 5 Ô U ty Zh

Date: 2 £ / 0 3 / 0 C

Î

Abstract

Electronic forms of com m unication are abundan t in todays world, and much em­

phasis is placed on these m ethods of com m unication in every day life. In order

to guarantee the secrecy and au then ticity of inform ation exchanged, it is v ital to

form ally verify the cryptographic protocols used in these forms of com m unications.

This verification does, however, present m any challenges. T he system s to verify are

infinite, w ith an infin ite num ber of sessions and of p artic ipan ts . As if this was not

enough, there is also a reactive element to deal w ith: th e in truder. T he in truder

will a ttack the protocol to achieve his goal: usurp ing identity, stealing confidential

inform ation, etc. His behavior is unpredictable!

This thesis describes a m ethod of verification based 011 the verification of systems

by approxim ation. S ta rtin g from an in itial configuration of the network, an over-

approxim ation of the set of messages exchanged is au tom atically com puted. Secrecy

and au th en tica tio n properties can then be checked on the approxim ated system.

S ta rtin g from an existing sem i-autom atic proof m ethod developed by Genet and

Klay, an au to m atic so lu tion is developed.

T his thesis defines a p a rticu la r approxim ation function th a t can be generated

au tom atically and th a t guarantees th a t the com putation of th e approxim ated system

term inates.

T h e verification by approxim ation only tells if p roperties are verified. W hen

th e verification fails no conclusion can be draw n on the property . Thus, this thesis

also shows how the approxim ation technique can easily be com bined w ith another

verification technique to com bine the strengths of b o th approaches.

Finally, the tool developed to validate these developm ents and the results of

cryptographic protocol verifications carried out in the course of th is research

included.

Acknowledgements

W ithout the help and support of some people, I would not have been able to write

thia dissertation. This section gives me the opportunity to thank them.

Firstly, I’d like to thank my supervisor Dr. David Sinclair for his assistance and

guidance over the last six years.

Secondly, I ’d like to thank my examiners for having accepted to review this

thesis.

I want also to thank all the researchers from the Computing School in Dublin

City University and those from the Laboratoire Informatique de Franche-Comté for

their comments and questions that helped me to go forward. I also want to thank

Paula from the School Office for her precious help regarding administrative matters.

Finally, I cannot finish without thanking my girlfriend, my parents, my brother

and my grand-parents for their ever present love and support.

Contents

1 Introduction 1

1.1 C ryptography.. 3

1.2 Cryptographie P ro toco ls ... 5

1.2.1 Needham-Scliroeder p ro to c o l... 6

1.2.2 A t ta c k s ... 7

1.2.3 P roperties ... 12

1.3 Problems Raised by Protocol Verification ... 14

1.4 T h e s is ... 14

1.4.1 C o n tr ib u tio n .. 14

1.4.2 Outline of the Thesis... 15

2 Verification o f Cryptographic Protocols: State o f the Art 16

2.1 Belief approaches.. 16

2.2 Trace approaches.. 20

2.2.1 Dolev Yao’s m o d e l.. 20

2.2.2 Paulson’s model .. 22

2.2.3 Rewriting techniques.. 22

2.2.4 Horn c la u s e s .. 24

2.2.5 Automata m o d e l.. 25

2.2.6 Strand Space m o d e l ... 26

2.2.7 M u r p ... 27

2.2.8 Marrero, Clarke and Jha’s m o d e l... 27

2.2.9 Challenging m o d e l.. 27

v

2.3 Process algebraic a p p r o a c h e s ■ - 28

2.4 S u m m a r y .. - - - - ... 32

2.5 Conclusion .. 36

3 G enet and K lay’s approach 37

3.1 D efin itions.. 37

3.1.1 Term Rewriting S y stem s... 39

3.1.1.1 T e r m in a tio n ... 43

3.1.1.2 C o n flu en ce .. 44

3.1.2 Tree A u to m a ta ... 45

3.2 Genet and Klay’s i d e a .. 52

3.2.1 Theory ... 52

3.2.2 Cryptographic protocol verification ... 63

3.2.2.1 Initial automaton for the Needham-Schroeder-Lowe

p ro to co l.. 64

3.2.2.2 TRS for the Needham-Schroeder-Lowe protocol . . 67

3.2.2.3 Approximation for the Needham-Schroeder-Lowe pro­

tocol .. 70

3.2.2.4 V erification .. 72

3.3 Conclusion .. 74

4 Im provem ents 75

4.1 New approximation fu n ction 75

4.1.1 Approximation function 7 f ... 77

4.1.2 E x a m p le ... 91

4.1.3 W hy is it ok for protocols? ... 95

4.2 Combining a p p r o a c h ... 98

4.2.1 Inductive approach .. 99

4.2.2 W hy and H o w ? ..102

4.3 Conclusion ...104

vi

5 P rototype 105

5.1 T im buk l i b r a r y ... 106

5.2 IS2T iF (Isabelle Specification to T im buk File) 107

5.2.1 TRS + In itia l au tom aton + A pproxim ation fu n c t io n 108

5.2.1.1 T R S .. 110

5.2.1.2 In itia l a u t o m a t o n .. 112

5.2.1.3 A pproxim ation function ..113

5.2.2 N egation a u to m a to n .. 117

5.2.3 U ser guidelines to use the IS 2 T iF ... 117

5.3 E x p e r im e n ts ...118

5.3.1 S tan d ard p ro to c o ls ..120

5.3.1.1 New function + com bining a p p ro a c h121

5.3.1.2 P roperties verified on the o ther p r o to c o l s 127

5.3.2 T ran sp o rt Layer Security p r o t o c o l ..132

5.3.2.1 R elated work on S S L / T L S ... 133

5.3.2.2 M odelling T L S .. 135

5.3.2.3 TLS v e r if ic a t io n .. 137

5.3.3 C o n c lu s io n ... 142

5.3.3.1 G enet’s a p p ro x im a tio n s 142

5.3.3.2 O th er proof a p p ro a c h e s ...143

6 Conclusion and Future Work 147

6.1 W ork Accom plished ... 147

6.2 F u tu re W ork ... 150

A Exam ple o f com pletion w ith the K nuth-Bendix algorithm 171

B P roof that the ancestor approximation gives a finite autom aton

[Gen98a] 175

C P roof o f the com pleteness extended to non left-linear TRS 177

D N eedham -S ch ro ed er in p u t file for T im buk 179

E N e e d h a m -S c h r o e d e r a p p r o x im a t io n a u to m a to n

F I n v a r ia n t E x a m p le

List of Figures

1.1 C ryptography... 4

1.2 Caesar c ip h e r 4

1.3 Needliam-Schroeder protocol .. 6

1.4 “Man in the middle attack” .. 8

1.5 Modified Needhain-Schroeder-Lowe pro toco l... 9

1.6 ‘“IVPe attack” ... 10

1.7 BAN-Yahalom protocol .. 10

1.8 “Replay attack” .. 12

2.1 Infinite s y s t e m .. 35

2.2 Fixing the unbound param eters... 35

2.3 Compounding together inform ation... 35

3.1 Basic a u to m a to n ... 46

3.2 Bottom-up p ro c e s s ... 47

3.3 Top-down process.. 48

3.4 Graphical view of reduction process .. 49

3.5 Intuition to build ft* (£ (.4)) .. 53

3.6 Needliarn-Schroeder-Lowe p ro to c o l... 63

3.7 Initial automaton of the Needham-Scliroeder-Lowe p ro to c o l 65

3.8 Rules for the Necdham-Schroeder-Lowe protocol 67

3.9 Rules for the intruder’s abilities... 69

3.10 AC ru le s ... 69

3.11 Example of “approximation” rule ... 70

ix

3.12 Nonces betw een Alice and B o b ... 73

3.13 Alice and Bob do no t really com m unicate w ith each o t h e r 73

3.14 A ncestor approxim ation for Needham -Schroeder-Lowe protocol . . . 74

4.1 A b strac t com pu tation of the approxim ation au to m ato n Afk w ith the

T R S f t , th e in itia l au tom aton Ao = {!F. Qu, Qf , A}, the set of vari­

ables X and in itia lly Qnew = 5 = 0 ... 91

4.2 D etailed com pu tation of the approxim ation au to m ato n A fk w ith the

T R S f t , th e in itia l au tom aton Ao = {F , Qu j Qf, A}, th e set of vari­

ables X and in itia lly Qnew = 5 = 0 ... 92

4.3 Exam ple of Isabelle s p e c if ic a t io n ... 101

5.1 T im buk in p u t f i l e ... 106

5.2 Exam ple of a p p ro x im a tio n s 114

5.3 Nonces betw een Alice and B o b ...117

5.4 IS2T iF + T i m b u k ... 120

5.5 N eedham -Schroeder-Lowe p r o t o c o l ... 122

5.6 Inductive specification of the Needham -Schroeder-Lowe protocol . . 123

5.7 Nonces betw een Alice and B o b .. 123

5.8 Alice and Bob do no t really com m unicate w ith each o t h e r124

5.9 New inductive specification of the Needham -Schroeder-Lowe protocol 126

5.10 N eedham -Schroeder sym m etric key p ro to c o l .. 127

5.11 N eedham -Schroeder p r o t o c o l 128

5.12 O tw ay R ees sim plified p r o t o c o l ... 130

5.13 O tw ay Rees protocol modified by u s .. 130

5.14 O tw ay R ees pro tocol a t t a c k ..131

5.15 Woo Lam p r o t o c o l ... 131

5.16 A ndrew Secure R P C p r o to c o l ... 132

5.17 TLS p r o t o c o l ..134

5.18 Simplified version of T L S ... 136

5.19 PM S betw een C lient and S e rv e r ... 138

5.20 M aster secret betw een C lient and S e r v e r ... 139

x

5.21 Session key betw een Client and S e r v e r ... 140

5.22 T im e for com putation of approxim ation a u to m a to n142

5.23 Verification of secrecy and au then tica tion p r o p e r t i e s 143

5.24 C om parison tab le of au tom atic p roof a p p r o a c h e s 146

xi

List of Tables

2.1 S ta rtin g po in t o f th e thesis .. 33

3.1 D escrip tion of th e term s u s e d .. 64

4.1 P ro s an d Cons of G enet’s a p p ro x im a tio n s .. 76

4.2 D escrip tion of the term s u s e d ... 96

5.1 S yn tax and sem antics used in in p u tIT .tx t .. 109

5.2 Lexical and syn tax analysis e x a m p l e ... 110

5.3 E xam ple of transfo rm ation ... I l l

5.4 IS2T iF c o m m a n d s .. 119

5.5 Test r e s u l t s ...121

xii

Chapter 1

Introduction

W ith the development of electronic communications (E-commerce, email, mobile

phone services, etc.) it becomes vital to guarantee the secrecy and the authenticity of

the information exchanged. Cryptographic protocols define precisely how messages

using cryptographic primitives must be exchanged between agents participating in

a transaction. They are used to secure the communications. Such protocols are

already implemented in computer networks, ATM machines, commercial websites,

Designing and verifying protocols for these contexts are not easy, however it is

necessary as flawed protocols can have serious consequences. The following examples

illustrate some of the implication.

The “Yescards” in Prance [Sci02] can be used to pay transactions under 91.47

euros. For transactions under 91.47 euros the system does not do a full authentica­

tion of the card. I t only chocks a 320 bit key and does not do any verification with

the GIE (Groupement d ’intérêt Bancaire) Carte bancaire server. This 320 bit key

was broken by Serge Humpich1. For amounts above 91.47 euros the equipment in

the shop calls an authentication server of the m erchant’s bank to authenticate the

card. Moreover, the merchant can manually force the authentication if he wants to

decrease the payment time at the cash register and then reduce the waiting time at

'information about Mr Humpich’s story can be found at http://w w w .parodie.com /hum pich/

1

http://www.parodie.com/humpich/

the lane. Nevertheless, at the end of the day all the payments made by card are

sent to the m erchant’s bank computer. A full authentication of the cards used is

then done over night, and identities of fraudulent cards are then reported to all the

payment systems by the following morning. Serge Humpich, by studying the par­

tial authentication process, was able to find how to generate valid keys. W ith this

information, he was able to create chip cards tha t were authenticated by terminals

every time. However, Serge Humpich’s cards were valid for 24 hours at most.

An even more recent example of breaking protocols involved researchers from

the Ecole Polytechnique Fédérale de Lausamie (EPFL), who broke the SSL (Secure

Socket Layer) protocol and were able to recover usernames and passwords sent with

Outlook Express 6 to an IM AP2 server. Vaudeney [Vau02] explains how an intruder

can recover encrypted information in Cipher Block Chaining mode3 by exploiting

error messages used in protocols. The sequence is as follow:

1. the attacker catches m which is the encryption of the information e exchanged

between a client and a server.

2. the attacker builds a new message using m and some algorithms tha t take

advantage of the properties of the CBC mode. The message is sent to the

server.

3. the server sends an error message th a t the attacker analyzes to see if lie made

a good guess (and now has access to a piece of e) or not.

4. the attacker repeats the steps 2 and 3 till he recovers the information e.

To work, the m ethod requires tha t the server does not end the communication after

an error in the protocol. B ut as SSL does end the communication in the event of

2Internet Message Access Protocol (IMAP) is a method of accessing electronic messages kept on

a (possibly shared) mail server.
3the Cipher Block Chaining mode is a particular encryption process. First the information

that must be encrypted is split in blocks of same size. Then the first block is XORed with a

particular message before being encrypted. The second block is XORed with the result of the

previous encryption before it is encrypted; the same process is repeated to encrypt the remaining

the blocks.

2

an error message, several sessions of SSL sending the same information must be

studied in order to succeed in recovering the information. The researchers from

EPFL succeeded in recovering username and password sent w ith Outlook Express 6

to an IMAP server using this flaw [CHSV03].

Cryptographic protocols are communication protocols th a t use cryptography.

Messages are encrypted using encryption keys and cryptographic algorithms, and

cannot be decrypted without the correct decryption keys in a reasonable timeframe.

1.1 C ryp tography

Cryptography (from the Greek hidden writing) is the study of means of converting

information from comprehensible forms into incomprehensible forms. Cryptography

concerns itself mainly w ith four objectives:

1. Confidentiality: the information camiot be understood by anyone for whom it

was not intended.

2. Integrity: the information cannot be altered in storage or transit between the

sender and intended receiver without the alteration being detected.

3. Non-repudiation: the creator/sender of the information cannot deny at a later

stage his or her intentions in the creation or transmission of the information.

4. Authentication: the sender and receiver can confirm each o ther’s identity and

the origin/destination of the information.

Procedures and protocols th a t meet some or all of the above criteria are known as

cryptosystems.

Figure 1.1 introduces some basics terms used in cryptography. The plaintext

refers to the comprehensible form of a piece of information while the ciphertext

refers to the incomprehensible form. Encryption is the process of encoding the

information, and decryption is the decoding process. The encryption and decryption

keys are confidential, and are required for the corresponding process to work.

3

plaintext

encrjrption key

ciphertext

decrjrption key

plaintext
Encryption Decryption

Figure 1.1: Cryptography

A well-known cryptosystem is the Caesar Number [SueOO]. Caesar encoded his

mails by moving forward letters. Figure 1.2 shows an example w ith a gap of four

between letters. The encryption is done by moving of 4 letters forward as the

encryption key X is equal to 4. The decryption is done by moving of 22 letters

forward as the decryption key Y is equal to 22.

X =4 Y=22

Caesar Moving of X GEIW EV Moving of Y Caesar

letters forward letters forward

Figure 1.2: Caesar cipher

This encryption algorithm is very simple and would not resist a brute force

attack (attack where all the possible gaps will be tested). Today, cryptography is

m ainly based on the num ber theory and takes advantage of the properties of specific

classes of numbers. I t is possible to distinguish between two types of cryptography:

symmetric and asymmetric.

In symmetric cryptography, the keys used to encrypt and to decrypt are the

same. In asymmetric cryptography, keys are different. An example of asymmetric

cryptography is the public key cryptography where one key is usually available to

everybody (for encryption), the public key, and only one person knows the other key

(for decryption), the private key.

One of the most popular algorithms in cryptography is RSA [RSA78] (Rivest,

Shamir and Adleman were the inventors of this algorithm). RSA is an asymmetric

4

algorithm based on the assum ption th a t “factoring” is a difficult operation. Par­

ticular pairs of RSA keys have been broken over the years, most recently a 640 bit

key pair in November 2005. More information about RSA and the contest to break

the 2048 b it key pair (there are 200 000 dollars to win!) can be found online at

http: / / ww w.rsasecurity.com /rsalabs/.

Breaking4 an encryption scheme (algorithm) is difficult and requires lots of re­

sources. For example, it took 4 months and 300 computers to break RSA with a

512 b it key [Zim99]. Most of the attacks found on cryptographic protocols assume a

perfect encryption (unbreakable encryption) and take advantage of flaws in the pro­

tocols (e.g. replaying previous messages, etc.). Later on in the chapter the following

attacks will be introduced in more details:

■ m an in the middle attack: the attacker uses the protocol to usurp identity and

to get critical information;

• type attack: the attacker plays with the format of the messages to discover

critical information;

• replay attack: the attacker replays old messages hoping tha t he can receive

critical information.

1.2 C ryptographic Protocols

Protocols define how messages between agents participating in a transaction are

exchanged. In this section, the protocol notation is introduced using the Needhain-

Schroeder protocol [NS78].

Protocols are used in possibly hostile networks as has been shown at the be­

ginning of this chapter. Nevertheless, they should be able to achieve their goals

regardless of the attacks. The encryption algorithms briefly introduced in section

Section 1.1 can be attacked but it would require powerful computing resources. In

fact, many attacks on protocols do not depend on the weaknesses of the encryption

4trying to recover the keys used in the cryptosystem

5

http://www.rsasecurity.com/rsalabs/

algorithm used. Examples of attacks tha t can be discovered a t an abstract level are

presented in this section. More attacks are described in [CJ97] or on the SPORE

website 5. Finally the properties that must be verified by protocols are presented.

1.2.1 Needham-Schroeder protocol

The Needham-Schroeder protocol defines the exchanges between two agents, Alice

and Bob. The goal of this protocol is to establish m utual authentication between

Alice and Bob. Figure 1.3 shows how this protocol is represented using the usual

notation of cryptographic protocols. This protocol is composed of three messages6.

Message 1: A = } B : {N a ,A }j(b

Message 2: B =>• A : {N a , N b }x a

Message 3: A B : {N b}xb

Figure 1.3: Needham-Schroeder protocol

In the first message, Alice sends her name A and a nonce N a (a nonce is an

unguessable num ber tha t is typically randomly generated) encrypted with the public

key of Bob, K b. The encryption of a message m w ith the key k is represented by

{m}fc. Therefore {N a , in Figure 1.3 represents a message containing the nonce

N a and the agent name A encrypted with the public key K b .

W hen Bob receives { N a , A }x b i since he has the private key corresponding to

the public key K b , he has access to the encrypted information. He replies to Alice

by sending her nonce, N a , and one he creates, N b, back to her. This information is

encrypted w ith Alice’s public key, {N a , N b}K a-

In the last step of the protocol, Alice receives Message 2. After decrypting the

Bhttp://w w w .lsv.ens-cach an.fr/spore/
6The original protocol contains seven steps. The four extra steps explain that the agents get the

public keys by contacting a server, which knows the public keys of all participants. As we are only

interested in the authentication between the agents, we assume that each agent already knows the

public key of the other and remove these four extra steps.

6

http://www.lsv.ens-cach

message w ith her private key, she recognizes her nonce N a , and replies to Bob with

his nonce encrypted w ith his public key. When Bob receives Message 3, he recognizes

his nonce and believes tha t he communicates with Alice. Both agents believe they

are the only agents th a t know the nonce N b and they will use it to authenticate

themselves. Subsequently, when Alice receives any message w ith N b inside, she will

think tha t Bob sent it and vice versa.

Of course the protocol can be run several times by different agents with several

nonces. One run of a protocol is called a session. For this protocol we can also

identify two roles: in itiator (sends Message 1 and Message 3) and responder (sends

Message 2). Agents can play bo th roles.

1.2.2 Attacks

It is dem onstrated here tha t by intercepting and possibly modifying the messages

the intruder can catch secret information and usurp identities.

One of the common types of attacks is called the “m an in the m iddle a ttack”.

Figure 1.4 shows how this attack works on the Needham-Schroeder protocol using

Lowe’s assum ption7 th a t participants can be dishonest [Low95]:

Message 1 Alice initiates a communication with Yves by sending { N a , A lic e } Kyves-

Message 2 Yves usurps Alice’s identity by sending { N a , A lic e } Kbob, the information he

received encrypted with Bob’s public key.

Message 3 W hen Bob receives Message 2, he thinks th a t Alice wants to communicate with

him so he sends the message { N a , Nb}Koiice (Alice’s nonce and his nonce) to

Alice.

Message 4 Alice believes th a t Yves replied to her as she got back the nonce she used

to communicate with Yves. Thus she sends back the nonce N b to Yves

({ A f 6 } Kyves)-

7 w ithout this assumption the protocol is secured

7

Yves

Figure 1.4: “Man in the middle a ttack”

Message 5 Yves can send Bob his nonce, {N b}xbob■ Henceforth each time th a t Bob

receives a message with N b, he will think tha t it comes from Alice but it will

be from Yves.

This flaw was found and corrected by G. Lowe [Low95] in 1995. The correction

is simple; the sender of the second message adds his name in the message. So after

correction the th ird message looks like { N a , N b , B o b } Kalice fQr our example. In the

later chapters, it is proven tha t the Lowe corrected version of the Needham-Schroeder

protocol is safe, assuming th a t “type attacks” are prevented.

A second type of attack is called the “type a ttack”. In this attack, the intruder

tricks the honest agents by changing the format of messages. Figure 1.5 presents a

8

slightly modified version of the Needham-Schroeder-Lowe protocol [Low96]; in the

first message the agent’s names becomes the first element of the list of elements

encrypted.

Message 1: A =$■ B : {A , N o)Kb

Message 2: B = > A : { N a ,N b ,B } Ka

Message 3: A ==>• B : {N b }Kb

Figure 1.5: Modified Needham-Schroeder-Lowe protocol

Figure 1.6 shows how this protocol is vulnerable to a type attack:

Message 1 Yves sends Alice’s name and his name, {Alice, Y ves} Kbobi to Bob hoping that

Bob will believe th a t Alice wants to s tart a communication.

Message 2 W hen Bob receives Message 1, he thinks tha t Alice initiated a communication.

For him the information Y v e s of the first message is Alice’s nonce. Thus as

he received a name and a nonce by following the protocol, Bob sends to Alice

{N b , B o b , Y v e s } K alice-

Message 3 W hen Alices receives Message 2, she interprets the concatenation of the two

pieces of information N b and B ob as the nonce created by Yves. Thus she

thinks th a t Yves initiated communication w ith her since he sent his name,

Y v e s , and a nonce, (N b , B ob), to her. She then replies to his request of com­

munication by sending {N b , B ob, N a , A l ic e } Kyves, and thus Yves can recover

the nonce N b.

Nevertheless, [HLS03] proves th a t by tagging each field of the message with some

information indicating its intended type, the “type attack” can easily be prevented.

Moreover [HLS03] justifies the widely used assum ption w ithin the verification tech­

niques th a t all agents can identify the type of the information sent.

Another form of attack is the “replay a t tack”. Here the intruder replays old

messages to get the information he wants or to usurp an identity. To illustrate this

9

Yves

: i Nb. Hoh. Na. AliccK

Alice

McsjKtec 2:! Yves. Nh. Rnhi „

Figure 1.6: “Type attack”

attack, we pick another protocol, the BAN-Yahalom protocol [BAN89, Syv94] (cf.

Figure 1.7). In this protocol, Alice and Bob trust a server, S, to generate the shared

key tha t they will later use to exchange their confidential information.

Message 1: A = > B : A, N a

Message 2: B ==>■ S : B , Nb, {A , Na}Kba

Message 3: S = » A : N b, {B , Kab, N a}Kas, {A , K ab, N b}K ts

Message 4: A = * B : {A , K ab, Nb}Kbe, {N b}xab

Figure 1.7: BAN-Yahalom protocol

10

Figure 1.7 introduces the protocol, first A sends his name, A, and a nonce, Na

to B (Message 1). In the second message B sends his name, B, a nonce, Nb and

information encrypted w ith the shared key between S and B, { A , N a }x b s - When

the server S receives the message, it creates the key for a session between A and B,

Kab and sends Message 3 to A. To end the communication, A sends B the Message

4 th a t contains the cypher text encrypted w ith the share key, K b s and his nonce

encrypted w ith the session key, { A , K a b , Nb}Kbs-

Figure 1.8 presents the attack:

Message 1 Alice initiates a communication with Bob by sending her name and her nonce.

Message 2 Bob follows the protocol and sends the second message (Bob, N b , {A lice , N a } n b s)

to the server. Yves intercepts and forwards the message.

Message 3 Yves sta rts his attack by sending A l ic e , (N a , N b) , a message containing Alice’s

name, and the nonces created by Alice and Bob.

Message 4 W hen Bob receives Message 3, he thinks th a t Alice wants to communicate

w ith him and he interprets the concatenation of N a and N b as one nonce

if type flaw attacks are possible. Bob still follows the protocol and sends

Bob, N b l , {A l ic e , N a , N b }x b s ■

Message 5 Yves intercepts and blocks Message 4, and with the information he caught

he builds the message {A lice , N a ,N b }K b s , {N b }N a- W hen Bob receives this

message, he thinks tha t he and Alice can communicate safely. But in fact,

what he interprets as his shared key with Alice is in reality a nonce. And Yves

can use this nonce to usurp Alice’s identity.

This a ttack differs from the man-in-the-middle one because the intruder re-sends

information th a t he caught over the network and he is not replaying information sent

to him.

Thus it has been shown that it is not always necessary for the intruder to break

encryption algorithms to undermine protocols.

11

Bob * 5: i Alice, Na. NbiKhs. [Nb>Na YvCS

Figure 1.8: “Replay attack”

1.2.3 Properties

W hen people think of exchanging information over open networks, two properties

come to mind.

The first property usually required of a cryptographic protocol is the secrecy

property. Here the verification tha t critical information remains secret during pro­

tocol runs is required. Two type of secrecy can be distinguished [AbaOO]:

• information m is secret when the intruder cannot find m regardless what he

does (sender fraudulent messages, usurping identities, etc.).

12

■ information m is secret when it is impossible to distinguish the session that

uses m, from another one tha t uses a different piece of information m ’ instead

of m.

Also two levels of secrecy can be distinguished, an absolute level and a temporary

level. In the case of the absolute level, the information must be unknown by the

intruder a t any time. For the tem porary level, we might want the secrecy of specified

elements for a certain amount of time (for example only for one session of the

protocol, etc.). In this thesis we will verify only secrecy properties w ith an absolute

level of confidentiality.

The second property is the authentication property. There are many definitions

for this property, Lowe [Low97a] gives 4 different definitions of the authentication

while Schneider [Sch97] identifies 10 different definitions. The m ain idea is to ensure

that a t the end of the protocol the agents really communicate w ith the persons

they intend to. As the intruder has the ability to replay all previous messages,

authentication guarantees are usually expressed in the form “if Alice receives a

message m \ believed to be from Bob then Bob sent a message identical to m i” .

Depending on the protocol’s goals, other properties m ust also be studied. For

example for a protocol th a t is used to do online shopping, it may be required to

ensure th a t the session keys used to encrypt credit card numbers cannot be re-used

in another transaction instead of fresh session keys (freshness property) [Gon93,

AN95, BCF02, PSW+01],

For other protocols such as telecommunications protocols, it may be required to

check that the protocol guarantees that the intruder is unable to deduce the identity

of the sender or receiver of messages (p r iva cy /a n o n ym ity property). Abadi [Aba02]

gives two protocols th a t satisfy th a t property. Onion Router [GRS99] and Crowds [RR98]

systems are designed to prevent an intruder from determining the origination or des­

tination of requests to servers.

For protocols used to sign contracts over the Internet, it may be required to

ensure tha t the protocol satisfies a fa irness property [MGK02], The property makes

13

sure tha t an agent does not have an advantage over the others during the transaction.

Kremer [KR02] presents an interesting approach based on the game theory, where a

protocol is fair if a participant in collaboration with the communication subsystem

does not have a strategy to receive a signed contract without the other participant

also having a strategy to receive a signed contract.

1.3 Problems Raised by Protocol Verification

The verification of protocols is difficult because:

• the number of sessions is potentially infinite;

• the number of participants is potentially infinite;

• the message sizes could be undefined (as it was shown with type flaw attacks);

• after each step the intruder can learn new information and send fraudulent

messages.

Even by assuming perfect encryption, the problem is still hard to deal with. Several

m ethods have been developed to solve this problem; some m ethods are more efficient

than others to verify specific properties. The verification of cryptographic protocols

is equivalent to the verification of an infinite system and is undecidable [EG83].

1.4 Thesis

1.4.1 Contribution

The formal verification of cryptographic protocols is a very challenging area of re­

search, in light of the problems it raises and the critical role protocols play in modern

life.

Being able to prove tha t protocols are safe in a reasonable time and for a wide

range of properties is vital for the development of new cryptographic protocols.

W hen this work started only few autom atic proof techniques were available for cryp­

tographic protocols verification. One interesting approach among the user driven

14

approaches was the Genet and Klay’s technique [GKOOa]. Instead of trying to prove

properties on concrete traces of protocols, they build abstract models of protocols’

traces and then they check the safety of the protocols on the abstract systems. On

the approxim ation of the reachable traces, it is possible to verify security properties

such as no information got by the intruder or the participants communicate with

the right person. The proof by approximation is very efficient as it allows us to only

keep the information we are interesting in and then to quickly verify the desired

properties. At the end of their article, they indicate tha t the approach can be auto­

mated. The challenge is to find an approximation that guarantees the termination

of the com putation, tha t does not require user interactions and tha t is suitable for

secrecy and authentication verification. This thesis investigates the development of

such approximation. Nevertheless, the proof by approximation is not perfect, and

when the verification fails no conclusion can be drawn on the property. Another

approach must then be used to check the property. This thesis also investigates the

combination of the new approach w ith another verification technique also presents

the ease w ith which the new approach can be integrated into an existing technique.

1.4.2 Outline of the Thesis

Chapter 2 reviews the literature on the formal verification of cryptographic proto­

cols and motivates the work presented in this thesis. Chapter 3 introduces the basic

definitions and details the m ethod developed by Genet and Klay. Chapter 4 details

the improvements made to the original method. It explains how the computation

of the abstract model can become automatic. It also presents a combination with

Paulson’s technique [Pau98]. A prototype IS2TiF was developed to test the im­

provements made to [GKOOa], Chapter 5 briefly introduces this tool. To validate

the work done several protocol verifications were conducted, the results of which

are presented in Chapter 5. Chapter 6 outlines the conclusions of this research and

identifies future directions.

15

Chapter 2

Verification of Cryptographic

Protocols: State of the Art

The formal verification of cryptographic protocols is a critical stage in the design

and development of cryptographic protocols. A number of models and tools have

been developed to formally verify cryptographic protocols over the last twenty years.

In this section, some of those models and tools are briefly introduced. Three

types of approaches are distinguished, which correspond to ’’ways of explaining” to

a user why a protocol is unflawed. This is done by:

■ showing th a t w hat the user believes in (secrecy, authenticity) matches the

reality;

• showing th a t messages or sequence of message th a t compromise the protocol

cannot be found;

• describing the protocol as a num ber of little boxes. If the interactions between

those boxes are free of mistakes the protocol is safe.

2.1 B elief approaches

One way to verify protocols is to reason about the beliefs of the participants involved

in the communications.

16

One of the first approaches developed for the verification of cryptographic pro­

tocols was “the logic of authentication” [BAN89] (also called BAN logic). Michael

Burrows, M artin Abadi and Roger Needham developed this logic in 1989. In this

method, the verification is done by reasoning about the beliefs of the agents in the

network and the evolution of these beliefs after each protocol step. An example of

this reasoning would be: “If Paul has received a message encrypted with the key K,

and he believes th a t only Alice and he share K, then he believes th a t Alice has sent

the message” .

To verify a protocol w ith this method, first the initial beliefs of all the protocol’s

actors are defined. Then after each protocol step, the receiving agent may be able to

derive information previously unknown to him. W ith this new information and the

logic inference rules, new beliefs are found by derivation. If the set of beliefs fits with

the beliefs desired for the protocol, it is assumed th a t the protocol has been proven

correct. Otherwise, a security flaw might have been discovered in the protocol. The

BAN logic has found flaws and redundancies in several protocols [BAN89].

[Nes90] was one of the first to criticize the BAN logic. He created an example to

prove the logic was flawed. In tha t example, the verification concluded tha t authenti­

cation could be established with a compromised key. Burrows, Abadi and Needham

position was th a t the BAN logic was incapable of detecting an unauthorized release

of information. Those criticisms were the first bases of new logics:

• GNY logic [GNY90]: this logic makes the distinction between what the par­

ticipants believe in and what they possess. Thus it is possible to reason at a

lower level than the BAN logic. Unfortunately, the 40 inference rules of this

logic make it difficult to use.

• Abadi and T uttle’s logic [AT91]: gives a formal semantic of the BAN by im­

proving the logic’s syntax and inference rules. The modifications lead to a

simpler logic. Nevertheless, [Sv094] proved that the logic was not sound.

• van Oorschot’s logic [v093]: this logic offers an extension of the BAN and the

GNY to verify protocols with key agreement.

17

• AUTLOG logic [KG94]: this logic introduces a simulated spy who can detect

information leaks. This logic contains 42 inference rules.

■ SvO logic [Sv094]: this logic unifies the [BAN89], [GNY90], [AT91] and

[v093]. The logic contains the negation, makes the distinction between be­

lief/possession and does not contain the idealisation step. It captures all the

desirable features of the other logics w ithout introducing new rules/axioms.

W ith the exception of the Abadi and Tuttle, and SvO logics, these logics are more

complicated and more difficult to use than the BAN logic as they have more inference

rules. The BAN logic only has 19 inference rules.

One can also refer to K ailar’s logic [Kai95], and Kessler and Neumann’s logic

[KN98], tha t were used to verify e-commerce protocols. These logics are still baaed

on the BAN logic, bu t they introduce the notion of accountability. Accountability is

the property whereby the association of a unique originator w ith an object or action

can be proved to a th ird party (i.e.: a party who is different from the originator and

the prover). K ailar’s logic [Kai96] has been used to verify two versions of Carnegie

Mellon’s Internet Billing Server protocol, the University of Southern California In­

formation Science In stitu te ’s anonymous payment protocol and the SPX protocol.

The SET [Gro96a](Secure Electronic Transaction) and the Payword protocols have

been studied w ith Kessler and Neumann’s logic [KN98].

Those logics are usually decidable. In [Mon99b], belief logics are automatically

transformed in another logic on which a forward chaining search can be launched (the

completeness and term ination of the algorithm are given in the paper). The BAN

logic was implemented in the theorem-provers SETHEO [Sch96] and EVES [CS96]

(these two tools produce fully autom atic proofs of protocols). Kindred generated

autom atic checkers for bo th K ailar’s logic and AUTLOG logic using Revere [Kin99],

Nevertheless, if there is no tool yet developed for the logic required it can still be

implemented in a theorem-prover like HOL [Bra96] (Higher Order Logic), SETHEO

or any other suitable theorem-prover. Kessler and Neum ann started to implement

their logic in this tool, however the workload was very heavy, since SETHEO is

actually not suited to this logic and the run-tim e for most of their proofs was so

18

long tha t they preferred to carry out proofs by hand.

An interesting work in th a t area was [BGOO]. [BGOO] introduces a model-checking

approach tha t is able to deal w ith beliefs.

Each agent is seen as a process having beliefs about itself and other agents. They

define a “view” as the evolution of a principal’s beliefs over time. They extend

the tem poral logic CTL to use model-checking on belief formulae. To each view

a language is associated to express properties about the process associates to the

view. W hen authors consider the tem poral evolution, formulae expressing beliefs

are treated as atomic propositions.

CTL deals w ith finite state machines. Nevertheless, their model deals with an

infinite number of views and belief atoms. So they have to create the MultiAgent

Finite State Machine th a t is an extension of finite state machines for their model

by:

• fixing the num ber of views. They only consider the views of an external ob­

server and associate a finite state machine to each view.

• introducing the notion of explicit belief a tom s ; the only atoms which are ex­

plicitly represented in a finite state machine.

A M ultiAgent Finite S tate Machine can then be seen as a set of finite state machines.

They had to extend also the notion of satisfiability in a M ultiAgent Finite State

Machine because of the im p lic it belief atom s (the atom s th a t are not explicit). The

finite state machine satisfiability does not work w ith those atoms. The explicit belief

atoms induce a “com patibility relation” between states of different views. They use

this relation to express the satisfiability of implicit belief atoms (explicit atoms are

used to study the veracity of implicit atom s).

The protocol’s properties can then be checked under a tem poral aspect or a belief

aspect. This approach has been used to study the Andrew protocol [Sat89].

19

Cryptographic protocols can also be verified by studying and reasoning about their

traces. A trace is a sequence of in form ation th a t is derived from the protocol steps

or operations on messages. The nature of the information depends on what the

verifier is interested in; it can be:

• a message, if the user only wishes to look at all messages sent during protocol

runs.

• a message + a sta tus of the knowledge of the intruder if the user wishes to

follow the protocols and also to look at the information which the intruder

learns after each protocol step.

2.2.1 Dolev Yao’s model

Dolev and Yao [DY83] were among the first to offer an approach to verify crypto­

graphic protocols. In their work, they specify a model of the intruder tha t has since

been re-used in most other approaches. The intruder is in full control of the network.

He can read, modify, delete messages and create fraudulent messages. Moreover, the

other participants see him as a legitimate participant; he can then follow the pro­

tocol and establish valid communication with them. Initially, he does not know the

initial secret information such as encryption keys belonging to honest agents. Since

their intruder can intercept and replay any message, and can also create his own

messages, Dolev and Yao consider any message sent as sent to the intruder and any

message received as received by the intruder. Thus the network is a machine used

by the intruder to generate messages (words). Messages follow rewrite rules, such

as encryption and decryption with the same key cancel each other. The goal of the

intruder is to find information tha t should be secret. If he succeeds then the protocol

is flawed. Thus the verification of secrecy properties can be seen as a search problem

in a term-rewriting system, which means proving th a t a certain message is not in

the set of messages th a t can be generated (sent or received) by the intruder.

This model is quite lim ited as it considers only secrecy, and models only encryp-

2.2 Trace approaches

20

tion and decryption of messages, and the addition and removal of agents.

In [DY83], two classes of protocols are also defined and studied:

• cascade protocols where only encryption and decryption operators are used by

the participants;

• nam e-stam p protocols where the participants can encrypt and decrypt but can

also append, delete and check names encrypted with the plaintext.

Sufficient and necessary conditions for two-party cascade protocols to be secure are

provided in the paper [DY83]. A polynomial algorithm to decide if a two-party

name-stamp protocol is secure is also introduced.

In [Mea92], Meadows extends the Dolev-Yao model to cover the intruder’s ability

to cheat a principal. Meadows’ tool can find attacks where for example the intruder

learns a word K and convinces an honest agent tha t K is a session key. Nevertheless

this model was not able to deal with the freshness of the information.

This ability was added later in the NRL Protocol Analyser [Mea94]. In this tool,

the protocols are specified as a set of transitions of sta te machines. The user then

queries the program by entering words/information known by the intruder and values

of local variables. The program takes each subset of the words and variables and for

each transition rule uses a narrowing algorithm to find a complete set of substitutions

that make the output of the rule reducible to tha t subset. The program returns the

complete description of the states that may precede the specified states. The user

can prove th a t a protocol is flawed by repeating this process. The idea is to start

from insecure configuration (for example, one tha t violates a secrecy property), to

look for a sequence of messages that lead to a valid message of the protocol (any

message exchanged between two participants). If a sequence is found the protocol

is flawed. The two m ain drawbacks of this approach are firstly, th a t the expertise

of the user is im portant to find a flaw, and secondly tha t the com putation may not

term inate.

21

2.2.2 Paulson’s model

Paulson [Pau98] developed a m ethod based on the proof by induction on traces

(messages sent). In this technique, the protocols are modeled by the set of all

possible traces th a t they can generate. It is assumed in this m ethod tha t there is

an intruder or bad agent in the network. This intruder has access to all traces, can

decrypt messages if he has caught the right decryption keys and finally, can build

and send fraudulent messages if he has the correct encryption keys. To verify the

protocol properties, we prove tha t each protocol step preserves the desired properties

by induction on traces.

This m ethod allows the verification of a large range of properties. But in this ap­

proach the secrecy and authenticity properties/theorem s are very difficult to prove.

The proofs require an experienced user to introduce the correct lemma at the cor­

rect tim e to ensure the proofs term inate. The proofs of the remaining properties

(freshness, regularity, ...) are more simple and are generally similar for all protocols.

This m ethod was implemented in the theorem-prover Isabelle [Pau94] and used

to verify the Internet protocol TLS [Gro96b, Pau99] and Kerberos protocol [BP98a,

BP97, BP98b] amongst others. The proofs of these protocols are available on the

Isabelle website1. This technique has also been used to verify the SET protocol

[Gro96a] in a project “Verifying E-Commerce Protocols a t the University of Cam­

bridge.

2.2.3 Rewriting techniques

[CDL+99] explains how a multiset rewrite rule model can be applied to protocol

verification. Here, a system state is a finite set of ground terms: states of protocol

agents, messages transm itted and information saved by the intruder. The protocol

rules, modeled as rewrite rules, express how system states are updated (the left hand

side of the rewrite rule is replaced by the right hand side of the rule). The model

also contains rules to model the intruder’s abilities. One interesting feature is the

use of the existential quantifier in rules to express the freshness of information. The

1 h ttp ://w w w .cl.cam .ac.uk/R esearch/H V G /Isabelle/

22

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

model is not a m ethod to verify protocols rather a formalism to model them. One

advantage of the formalism is th a t it allows the modeling of unbounded runs of a

protocol.

This model has been incorporated into the CAPSL [DM00] specification lan­

guage for authentication protocols. This language is translated to an intermediate

language th a t can be exploited by the model-checker M aude [DMT98]. In Maude,

the verification of the properties is carried out on an exhaustive search of the reach­

able states. If a state does not satisfy the property, the protocol is flawed and the

trace of the attack is available. A depth-first algorithm is used to compute the

reachable states. Thus it has the advantage of being able to verify a large range of

protocols, however, it is lim ited to small protocols and a small number of partici­

pants. The approach was improved by typing the messages and by placing priority

on rules to apply.

Jacquem ard and al. [JRV00] also introduced an autom atic tool that has been

successfully tested on simple protocols [CJ97]. The protocol, the intruder’s initial

knowledge and the intruder’s abilities described in an input file, are transformed

into rewrite rules by their compiler CASRUL. For Jacquem ard and al., protocols

and intruders are rewrite rules executed on initial data by applying a variant of ac-

narrowing [Hul80]. [JRV00] shows how these “narrowed” rules can be used by the

theorem-prover daTac [Vig95]. A protocol execution is a sequence of terms describ­

ing the messages sent, the messages expected and the knowledge of the participants.

W hen the prover arrives a t an inconsistency (a term that models a violation of a

property, for example the intruder knows information th a t should be secret) then

the protocol is flawed. The verification is limited to small numbers of participants

and of protocols’ runs.

The rules generated by CASRUL have been used in theorem-provers for first-

order logic, on-the-fly model-checking or SAT-based state exploration in the Eu­

ropean Union Project AVISS2 (Automated Verification of Infinite State Systems)

[ABB+02],

2h ttp :/ /w w w .inform atik .un i-fT eiburg .de/~ so ftech /reseaich /p ro jec ts/av iss/

23

http://www.informatik.uni-fTeiburg.de/~softech/reseaich/projects/aviss/

In [GKOOa], tree autom ata are used to model the network (traces of the protocol

+ capabilities of the intruder) as well as the current in truder’s knowledge. A term

rewriting system is used to model the protocol steps and some intruder abilities. In

this approach the properties are verified on an over-approximation of the reachable

states of the network. At the end of the com putation (if the com putation termi­

nates), the tree autom aton contains all messages sent by the participant and all

information the intruder has acquired during the runs. Properties are checked by

checking th a t from all the information recognized by the autom aton nothing violates

the properties. As the set of information is an over-approximation of the concrete

execution, if the property is verified on the over-approximation it is also verified on

the concrete execution. Otherwise nothing can be said about the protocol. In this

approach the authors try to prove tha t properties are verified and not to find an

attack. The approach is not limited by the number of participants or the number

of sessions. However, it does require user interactions to make the computation

term inate.

2.2.4 Horn clauses

[BlaOl, CLC03] use Horn clauses to model protocols. This approach is closely related

to the rewriting approach. Predicates are used to model:

• basic information: honest agents, dishonest agents, agent names, numbers,

nonces.

• a message: basic information is a message, a composition of messages is a

message, keys are messages, etc.

• a trace is a possibly empty sequence of events, where an event is a message

sent by an agent or a view of an agent’s internal memory.

There are also predicates to model the intruder and any auxiliary functionality.

Horn classes are used to model the abilities of the intruder, freshness, symmetry,

etc w ith their predicates. The protocol steps and its properties are also modeled

as Horn clauses. The advantage of such approach is tha t techniques tha t have

24

been developed to deal with Horn clauses over the years can be re-used for the

com putation of the reachable states of the system and the proof of its properties.

The proofs are autom atically done on the trace, however, to make the computation of

a trace tractable, approximations are applied (those approximations are introduced

in Section 5.3.3).

2.2.5 Automata model

In [Bol96], Bolignano introduced a m ethod based on the idea of trustable and un-

trustable agents. A set of trustable agents and one intruder are defined. This in­

truder stores all the information exchanged between the agents, decrypts messages if

he has the appropriate decryption keys, and builds and sends fraudulent messages if

he has the appropriate encryption keys. Protocols are formalized as autom ata where

each sta te is a n-tuple of the agents’ current states, and the transitions are the pro­

tocols steps. The protocols properties are verified by induction on the automaton

states.

Bolignano used the theorem-prover Coq [BBC+ 97] to implement this method,

and presented an extension of his m ethod for e-commerce protocols [Bol97]. Like

[Pau98], this technique imposes no limits on the size of the messages and the number

of sessions, bu t it requires user interactions.

M onniaux was the first to use tree autom ata to verify cryptographic proto­

cols [Mon99a]. His idea was to model w ith the set of messages th a t the intruder

can create after each protocol step using tree autom ata. For tractability reasons,

a superset of the attacks is computed using an abstract interpretation technique

[CC92]. The verification of protocol properties is carried out on the superset. If no

attacks are found, then the properties are verified, however if an attack is found,

these may not be any attack in reality. Moreover, even though the verification is

fully autom atic, the results are valid for a concrete model w ith bounded numbers of

participants and sessions.

[GLOO] extends M onniaux’s idea by using an extension of tree autom ata that

25

integrates some deductive abilities (V-parameterized tree autom ata) and also by

using some ideas from [Bol96] (protocol model) and [DMTY97] (honest agents can be

seen as accomplices of intruders). This technique also uses abstract interpretation to

build an abstract model of the intruder’s knowledge. The result is a fully automatic

technique. The main drawback of the approach is the exponential complexity of

the exploration algorithm. Depending on the mode the protocol is running; mono­

session or multi-session, and on the complexity of the protocol, the run time can go

from few seconds to few minutes to return a result. A nice feature of this approach is

tha t the com putation does not stop after the first possible flaw. Rather, it explores

all possible exchanges between the participants.

2.2.6 Strand Space model

[THG99] presents a new model for the verification of cryptographic protocols: Strand

Spaces. A strand is a sequence of messages sent and received by an agent. A strand

space is a set of strands (agents’ strands and in truder’s strands). A bundle consists of

a number of strands hooked together, where one strand sends a message and another

one receives th a t same message. A protocol will be correct when each bundle consists

of one strand for each agent and each agent agrees on the participants, nonces, and

session keys. Intruder strands are also included in a bundle, so long as they do not

prevent honest agents agreeing on a secret, or from keeping their secrets.

A thena [SBP01] is a tool based on this model. It uses model-checking and

theorem proving approaches. [SBP01] refines the strand spaces model and defines

a logic to specify security properties. Their logic is a propositional logic in which

strands are used as constants and bundles as variables. Secrecy and authentication

properties are specified as well-formed formulae. If Athena com putation terminates,

it either provides a counterexample if the formula does not hold, or generates a proof

of the correctness of the security. The verification is fully autom atic and holds for

an infinite num ber of protocol runs. The main drawback is th a t the computation

might not term inate. Nevertheless, the term ination can be forced by bounding the

number of concurrent sessions of protocol and the size of the messages sent.

26

2.2.7 Mure/?

Mury> [DDHY92] is a tool especially designed for protocol verification by state ex­

ploration. It has been successfully used to verify multiprocessor cache coherence

protocols and multiprocessor memory models. The user models his protocol in the

Mur<^ language and adds to this model the desired properties. The language is

based on a collection of guarded commands (condition/action rules) to model the

protocol steps. Then the possible traces (sequence of rules) are computed and the

Murip system checks if the rules of the traces satisfy the desired properties.

[MMS97] explains how Murip can be used to verify cryptographic protocols.

Firstly, they model the protocol, the intruder and the properties they intend to check

for this protocol. Mur</j is launched for exploration for four to five participants and

three to five runs of the protocol. If a property is not satisfied, they have the trace

that leads to the flaw.

2.2.8 Marrero, Clarke and Jha’s model

In [MCJ97], protocols are modeled by a sequence of commands such as SEND,

RECEIVE, NEW NONCE, etc. The principals and the intruder are also modeled

by a sequence of commands. By interleaving these sequences, traces of the protocol

are built. Then from these traces it is possible to investigate whether one leads to a

configuration th a t violates the protocol’s properties. This approach only works for

a finite num ber of protocol runs.

2.2.9 Challenging model

[DMTY97] presents an autom atic m ethod to verify authentication properties using

inference rules. After having extracted the role of each participant (information they

are sending and receiving), their intruder will try to usurp identities. In addition

to the usual abilities of the intruder (decryption and encryption of information with

already known keys, composition and decomposition of message, etc.), the intruder

also has some abilities regarding the protocol (For example if the intruder knows

some information then, by encrypting and sending th a t information to an agent he

27

gets the cipher text of that information). For each role, an agent is expecting a

particular message to launch the next one. If the intruder is able to make an agent

launch all his messages then there is an authentication flaw in the protocol. The

search is not guaranteed to terminate.

2.3 Process algebraic approaches

The final m ethod of dealing w ith cryptographic protocols, reviewed within this sec­

tion, considers protocols as processes w ith well-defined algebra. Each role (sender,

receiver, and intruder) is seen as an independent process running together with other

processes (roles). A process will be able to send, receive and create information, etc.

W ith process algebra, systems can be interpreted using two main semantics:

• operational semantics; Operational semantics describes how protocols are per­

formed. It shows the evolution of the protocol’s configuration in time. A

useful and well used paradigm to describe protocols from an operational point

of view is the state transition systems. It gives transitions between states

where states are process descriptions. Thus starting from an initial configura­

tion of the processes, the set of the possible configurations can be computed

and the properties can be checked on those configurations.

■ denotational semantics; Denotational semantics describes the meaning of a

protocol as a m athem atical object in some domain. The protocol P is mapped

by a valuation function F into its meaning (denotation) D:

F (P) = D .

From the process algebraic description the following information is built:

1. syntactic domain which is the set of m athem atical objects,

2. semantic functions which map object from the process algebra into object

in the semantic domain,

3. semantic equations which specify how functions act on each process.

28

Then protocols are proven safe if their meaning verify properties.

The language of Communicating Sequential Processes (CSP) [Hoa85] has been

used for the verification of cryptographic protocols. This language can describe

interactions of processes in a system where they are interacting via message passing.

Due to the ambiguity of the informal specifications, passing from a protocol spec­

ification to a CSP model is difficult [Sch98] and requires design decisions to be taken.

An attem pt to simplify this process was the work of Roscoe [Ros95] where a CSP

protocol model is presented. The model consists of a communication medium with

two channels th a t link it to each participant. One channel is for messages sent and

the other channel is for those received. The abilities of the intruder are modeled by

adding extra-channels. In order to simplify the transform ation specification to CSP

model, Lowe implemented Casper [Low97b], a protocol compiler, which produces

CSP description from protocol specifications.

Once a CSP model is available, the Failures Divergences Refinement (FDR,)

model checker is used to discover attacks on the protocol. One of the m ain drawback

of model-checkers generally, and FDR is no exception, is th a t they are inefficient on

systems with infinite number of states to explore. To restrict the behaviour of

the model, lim itations on the numbers of participants, nonces and protocol runs

are applied. Thus the model-checker guarantees the safety of the protocol for the

“reduced” model bu t it does not mean th a t a bigger model will be safe. Research has

been carried on CSP and FDR, to achieve more complete results. [BLROO] applied

data independence techniques which allow the allocation of an infinite number of

fresh information but still m aintain a finite number of values in FD R for unbounded

runs. To deal w ith an infinite number of nonces, an extra-process m ust be added

to the model. This process delivers fresh nonces to participants when required and

checks the m apping of the nonces onto a finite set of values. A subset of those values

is allocated to the fresh nonces used by trustable participants. The remaining values

are m apped onto by all the nonces known to the intruder and those redundant in

the current session. To work, the technique requires messages to be typed. One

drawback of the approach is that every agent is limited to one session at a time;

29

otherwise the num ber of states to explore will increase drastically.

In [Low99], Lowe presents sufficient conditions on protocols and their environ­

ments, such tha t, if there is no secrecy breach on a small model of the protocol then

the protocol is secure. Thus, there is no attack possible on any bigger system. His

small model restricts the role of the agents, the in truder’s initial knowledge and the

data type of the messages. Conditions are placed on the requirements of distinct

text values of encrypted components, the ability to determine the identities running

the protocol from the messages and the exclusion of tem porary secrets. This analy­

sis is lim ited to secrecy properties and Lowe adm itted there was a small risk that a

flaw could be found when in fact the protocol was safe.

Despite their lim itations, CSP and FDR are very efficient for the verification

of cryptographic protocols. In [Low96], Lowe used FD R model-checker to find his

flaw in the Needham-Schroeder public key authentication protocol [NS78]. A com­

bination of Casper and FDR, has been proven to be a very powerful tool for the

verification of cryptographic protocols. In [DNL99], this approach was used to ver­

ify 50 protocols of [CJ97]. The results showed th a t they were unable to verify one

protocol, failed to rediscover attacks on five protocols, found new attacks on 10

protocols assumed to be secure and new attacks on 6 flawed protocols.

In [CJM00] introduced a tool, known as Brutus, which was developed to simplify

the protocol designers work. Here the protocol is modeled as an asynchronous

composition of a set of named communicating processes which model honest agents

and the intruder. In their model, all messages sent by honest agents are caught by

the intruder and the intruder sends all the messages received by honest agents. To

make the model finite, the amount of tim e a participant may execute the protocol

is limited. Each a ttem pt is a session and for each session an agent can play the

role of initiator or responder. To complete this model, an intruder is added and

they are able to explore the different states of their system. The protocol properties

are expressed and verified with a first-order logic tha t includes a past-tim e modal

operator.

30

The spi-calculus [AG98] is another process algebra developed for the crypto­

graphic protocol verification. It extends the 'K-calculus w ith cryptographic primi­

tives. In this approach, each actor is modeled as a process, and the protocol is an

instance of those processes running in parallel. In this framework it is possible to

express secrecy and authenticity properties. In order to verify whether a property is

satisfied, the equivalence3 between two instances of the protocol must be checked. If

In st(M) describes an instance of the whole protocol parameterized by the message

M and if F (x) is an instantiation of the abstraction F on rc, then:

A u th e n tic a t io n p ro p e r ty : In st(M) is equivalent to I n s t spec(M), for any

M; I n s t spec is a magical version of In st where processes react as if they have

received the correct information.

S ec recy p ro p e r ty : In st(M) is equivalent to In s t(M ’) if F (M) is equivalent to

F (M ’) , for any M and M ’.

In the spi-calculus, there is no explicit definition of an in truder’s abilities. The

intruder is assumed to be able to carry out any of the actions defined in the language,

and carries out attacks on a protocol using only these actions. Therefore, the verifier

must be wary th a t this could result in missing particular attacks on the protocol

due to the lim itations of the calculus. The language has been used to verify small

protocols [AG98], and the proofs were carried out by hand. Because of the use of

the quantification over all possible contexts in their definition, the implementation of

an autom atic tool for this approach is difficult. Nevertheless, work to develop tools

and techniques based on this model can be found [Aba99, GLLOO, FA01, Azi03].

In [Aba99], Abadi explains how to verify secrecy properties by typechecking the

protocols. He distinguishes three possible types for the data sent: Public , Secret

and A ny. Public d a ta can be known by anyone. Secret data m ust be kept secret.

A n y d a ta is an arb itrary type bu t it should not be leaked as A n y d a ta could be of

Secret type. On those three types, he builds a set of typing rules for the spi-calculus.

3T w o processes P and Q are equivalent if the behaviours of processes P and Q are indistinguish­

able from each other. A third process cannot distinguish running in parallel w ith P from running

in parallel w ith Q.

31

He also guarantees th a t if the protocol typechecks then the secrecy of messages is

protected. He shows th a t the proofs are more simple to do with typechecking than

without. Moreover, the rules specified are neither necessary nor sufficient for the

security of protocols. Not necessary as they are incomplete, and not sufficient as

they take only secrecy issues into account.

In [GLLOO], Gnesi et al. modify the syntax of the spi-calculus (by removing

mobility and by embedding the “let” and “case” constructs into the output and

input primitives respectively) and define a semantics for their language based on

labeled transition systems. They then show how security properties can be specified

with the Brutus logic [CJMOO]. To make their transition systems finite, they used

results of previous work in this domain [MMS97, HLS03] (such as typing input

messages).

In [FA01], symbolic techniques for studying the traces of particular cryptographic

protocols (incorporecting shared key encryption/decryption th a t use arbitrary mes­

sages as keys) are presented. They use a dialect close to the spi-calculus to describe

the protocols. The symbolic com putation leads to a finite representation of models

embodying the interactions between the agents and the intruder. These models can

then be used to analyze protocol properties.

[Azi03] introduces a denotational semantics for the pi-calculus and the spi-

calculus. Using an abstract analysis approach on his models, he explains the verifi­

cation of the secrecy and authentication properties. Autom atic tools for each of the

calculus are also presented in this thesis. The results are guaranteed for unbounded

numbers of sessions and participants.

2.4 Summary

As is dem onstrated in this chapter, large numbers of models and tools are available

for the verification of cryptographic protocols. Choosing the most appropriate model

is difficult. Moreover, the properties verified might differ from one model to another.

Nevertheless these approaches can be compared on the basis of:

■ whether they try to find attacks or to prove tha t properties are satisfied;

32

• whether an autom atic tool is available to do the verification.

Table 2.1 presents the comparison of the m ethods studied in of this section. From

this table, two conclusions can be drawn:

• more “attack search” techniques were available;

■ “attack search” techniques were more accessible as autom atic verification tools

were available.

Techniques P roo f A ttack A utom atic

BAN [BAN89] V V
Dolev Yao [DY83] V V
Meadows [Mea92] V V
Paulson [Pau98] V
Maude [DMT98] x/ V
CASRUL [JRVOO] V V
Genet and Klay [GKOOa] V
Bolignano [Bol96] V
Monniaux [Mon99a] V V

Mur</j [MMS97] V V

Marrero and al. [MCJ97] V V
Debbadi and al. [DMTY97] V V
Casper+FDR [Low97b] V V
spi-calculus [AG98] V

Table 2.1: Starting point of the thesis

Verifications using proof techniques are very powerful as their results are guar­

anteed for an infinite num ber of sessions and an infinite num ber of participants. But

such m ethods require many user interactions to do the proofs.

O n the other hand, the “attack search” techniques look for attacks on small

models of the protocol (bounded sessions, bounded num ber of agents, etc.) and

offer no guarantees for the whole protocol, if no attack is found. Nevertheless the

search can be done automatically.

33

To make the problem of the search for attacks tractable and to develop automatic

tools, the following two approaches have been used.

The first approach consists of fixing the param eters th a t can be infinite to reduce

the size of the system. For example, the messages exchanged can be typed [MMS97,

HLS03] to fix their size. The number of agents in the network can also be bounded.

[CLC03] proved tha t two agents are sufficient for the analysis of security properties

of cryptographic protocols when the protocols allow an agent to talk to himself. If

the protocol does not allow “agents to talk to themselves” and there is an attack

involving n agents, then there is an attack involving at most k + 1 agents (k is the

number of roles th a t an agent can play). W ith this approach if a flaw is found on

the small model then the larger model, from which the smaller was derived, is also

flawed. The lack of flaws on the small model does not necessarily mean tha t the

original model is safe.

The second approach is to build an abstraction-based approximation of the con­

crete model [CouOl]. Here the idea is to build a finite model by compounding

information regarding the system properties to be checked or by making abstraction

of irrelevant information to the properties to be checked. W ith this approach, if a

flaw is not found in the abstract model, then the concrete model is safe. Flaws in

the abstract model do not necessarily mean th a t the concrete model is flawed.

To illustrate these points consider Figure 2.1, 2.2 and 2.3. Figure 2.1 models the

system th a t m ust be verified. Figure 2.2 gives an idea of the system to verify when

the number of agents are bounded [CLC03]. In Figure 2.3, Agent 2 to Agent n are

compounded into an Agent R. The communications between these agents are then

modeled by a transition from Agent R to himself; th a t is the approximation chosen

by [GKOOa],

W ith the abstraction technique, some proofs of cryptographic protocols have

been carried out since this research work started [BlaOl, CLC03, BLP02, Azi03].

Moreover by choosing this technique, the tool implemented should be easily com­

bined w ith another approach in order to get a result when the proof fails (i.e. the

property is not satisfied on the abstract model).

34

Figure 2.1: Infinite system

Figure 2.2: Fixing the unbound param eters

Figure 2.3: Compounding together information

35

Finally, the approaches introduced in this chapter are mainly “specialized” for

authentication and secrecy properties. However, other properties may also be stud­

ied as indicated in C hapter 1.

Thus to summarize a good verification technique should:

• autom atically prove properties;

• be easily combined with other approaches (to get a better feedback on the

protocol safety or to verify a wider range of properties)

2.5 Conclusion

As only few autom atic proof approaches are available, we decided to work on an

autom atic proof approach. The Genet and Klay’s technique looks like a nice starting

point as it can be autom ated and it seems to be easily combinable with another

approach. As it will be seen in Chapter 5, other people also decided to work on

developing autom atic proof tools to verify cryptographic protocols. Nevertheless, it

was not the only active fields over the last years, two other fields were:

• extending the power of the intruder used during the verification [MeaOO, CLT03,

CRZ05],

■ extending the verification to other protocol properties: freshness [NRV04],

fairness [BDD+05, TVV05] and anonymity [GHvRP05].

36

Chapter 3

Genet and Klay’s approach

This chapter starts by introducing some basic notation and definitions required to

understand the following overview of rewriting systems and tree autom ata. Following

this, the Genet’s concept [Gen98a], later re-used by Genet and Klay [GKOOa] to verify

cryptographic protocols, is introduced. The final part of this chapter explains how

Genet and Klay verify protocols, and highlights the pros and cons of the technique.

3.1 Definitions

A n alphabet F is a finite set of elements of the form f:i where / is a symbol and

i = a r (f) w ith o r an arity function from T to N . Symbols of arity zero are called

constants.

Let X be a set of constants th a t are different from the constants of an alphabet

F , then the set T {T , X) of terms is defined as follows:

1. X C T { T , X) and

2. {a;|a: 6 T andar(x) = 0} Q T (F , X) and

3. { / (i i , . . . , t n) \ f e F a n d a r (x) > 0 a n d a ll h , . . . , t n G. T (T , X)} C X)

Constants of X used in the terms are called variables and V ar(s) denotes the

set of variables of the term s € T (T , X). Terms without variables are called ground

37

terms. The set of ground terms is written T (^) . Finally, a term is linear if none of

its variables occurs more than once.

Terms can also be seen as trees labeled by elements of T U X. For example, the

term / (i i , ¿2, ¿3) can be represented by the tree:

It is possible to navigate through terms. We need the set Vos(s) of positions in

the term s in T{J~, X) . Vos(s) — {e} U Vosi(s) with e the top-most position in a

term1 and Vosi(s) inductively defined as follows:

1. Vosi(s) = 0 i f s€*%’ o r s e {x|a; € T andar(x) = 0} and

2. V osi(f{tu . . . , tn)) = ± 0 and p e P o s j f o) }) if / 6 F ,

a r (f) = n -)*n £ T i F i X) .

Now that all the positions in 3 are known, it is easy to navigate trough the

subterms of the term s; s|p denotes the subterm of s at the position p E Vos(s). It

is also possible to replace the subterm s|p by the term t; the notation is s[i]p.

It is also possible to access the symbol at the e position using 'R.oot(s) which

denotes the symbol at position e in s.

Vos(s) gives all the positions in s, moreover, only the positions of the symbols

of T can be required. Thus this set for the term s, Vosjr(s), is defined as follow:

• Posjr(s)={p 6 Vos(s) | p ^ c A Tloot(a\p) : z £ f with i = ar{Jtoot(s\p))}.

Example 1 Let T={m esg:3, A:0, B:0} where ar(m esg) = 3 and ar(A) = ar(B) =

0 and X = {x , y, z}, then:

• T (F , X)={m esg(x, y, z), mesg(x, B, z), ...}

• T (T) ={m esg(A, B, A), mesg(B, A, B), ...}
x i f 8 = . . , t n) t h e n t h e t o p - m o s t p o s i t i o n i s t h e p o s i t i o n o f / .

38

• V a r(m esg (x ,y ,z))= {x , y, z}

• if s = m esg(A, B , x) then

- Vos(s) = {e, 1, 2, 3}

- VoSjr(s) = {1,2}

— TZoot(s) = mesg = 7loot(s |e)

— t \ = A and s[i?]i = m esg(B , B , x)

To conclude this section, the definition of a substitution is given. A substitution

a is an endomorphism from T(J-, X) to T(J-, X). sc is the result of the substitution

a on the term s E T (T , X).

Example 2 Let F={m esg:3, A:0, B:0}, a = {x = A , y -B , z= A } and s=mesg(x, y,

z);

sa=m esg(A , B, A).

3.1.1 Term Rewriting Systems

Equational reasoning [AKN89a, AKN89b, H6189] is an important concept in sym­

bolic algebra, automated theorem proving and program verification. Reasoning with

equations can prove the validity of equations and can be used to solve equations.

Dershowitz and Jouannaud [DJ90] give the following definition of rewriting sys­

tems. Rewrite systems are directed equations (rewrite rules) used to compute new

equations by repeatedly replacing subterms of a given formula with equal terms until

the simplest form possible is obtained. Since the computational power of rewrite

systems is as strong as Turing machines [Tur36], and as they are easy to understand,

rewriting theory is a very efficient form of equational reasoning.

To illustrate the ideas behind this theory, a simple example is considered [DP01]

(called by some the Grecian um problem and by others the coffee can problem). We

have black and green beans in an urn. We remove two beans at a time. If they have

the same colour, a black bean is added to the urn. If they are different, then a green

39

bean is added. The process is repeated until no more actions can be performed.
Now, it is required to know if the colour of the last bean in the urn is predetermined
and, if so, what is it?

The urn can be seen as a sequence of black and green beans (for example: black

greengreen black). The removal operation is expressed by four rules:

1. black black — > black

2. green green — > black

3. black green — > green

4. green black — > green

For example, a possible sequence of moves is rule 3, rule 2 and rule 1 (the rule
is applied to the head of the sequence):

black green green black

black black
\

black

A first remark is that the number of beans in the urn decreases after each oper­
ation so the rewrite system terminates.

Taking the same initial urn but changing the sequence of moves: rule 4, rule 2
and rule 1; and applying the rule to the end of the sequence, it yields:

black green green black

~~S~
black preen green

¡¡lack black.
~~S~

black

A second remark is that no matter which sequence of rules is used, the same

result is achieved.

40

In general the result is that the colour of the last bean is predetermined. If an
even number of green beans axe in the urn then the last bean will be black, else the

last bean will be green.

Term Rewriting Systems (TRS) are a type of computational model based on
rewriting. The following definitions, built on each other, introduce the basic in­
formation required to understand the approach of Genet ([DP01] is an interesting
reference on rewriting systems in general).

Definition 1 (Term rewriting system [Gen98a]) A term rewriting system V, is

a set of rewrite rules I —► r, where I, r G T {T , X), I £ X , and V ar(r) C V ar(l).

The relation -+ r, means that for any s , t e T(JF,X) we have s — t if there

exists a rule I -»• r in TL, o position p £ P os(s), where V os(s) is the set of positions

in s, and a substitution a such that la = s|p and t = s[r<r]p.

Example 3 Let TZ={f(a,b) ->• g(a,b,a), g(a,b,a) —► g(b,a,b), g(a,b,a) —»■ t(a)},

A G T (^ ,X) , B € T (^ , X) and a = {a = A, b = B } .

We have f(A ,B) -*■% g(A,B ,A) as:

1. we have the rewrite rule f(a,b) -»■ g(a,b,a) 6 Tt,

2. applying the substitution a to f(a,b) gives us f(A ,B); f(a ,b)a = f(A ,B),

3. substituting the term f(A ,B) by the term obtained by applying a to g(a,b,a)

gives us g(A ,B ,A); f(A,B)[g(a,b,a)<r] = g(A,B,A).

Some notation and properties can be defined on —

• — denotes the transitive closure of

• — denotes the reflexive transitive closure -*n- The set that contains all
the terms reachable from a set E of ground terms using — is called 72.-
descendants. This set is denoted by H*(E).

41

• Two terms s and t are joinable, written s 4-r t, if there exists a term v such
that s v and t — v.

• A term s is reducible when there exists a term t such that a —¥■% t.

• A term a is irreducible or in normal form when it is impossible to find a term
t such that s t. The set of normal terms that are reachable from E is
called 72-normal forms and is denoted by TZ)(E). At last, IR R (7t) is the set
of irreducible terms by the TRS 72-

Definition 2 (R-descendants and 71-normal forms [Gen98a]) Let 71 be a TRS and

E a set of terms.

7V{E) = {t € T(.F) t}.
7Zl(E) = {t 6 T { F) | 3« € E . 8 t A t € IR R (72)} where IR R (7t) is the set

of irreducible terms by the TRS 71.

Example 4 Let 7l={f(a ,b) —► g(a,b,a), g(a,b,a) -¥ g(b,a,b), g(a,b,a) —► t(a)} and

E = {f(A ,B),f(B ,A)}:

• IR R (K)= {t(A), t(B), t(a)},

• the term g(B,A,B) € 72*{E) as f(A ,B)-¥^ g(B,A,B),

• the term t(A) 6 7Z'(E) as f (A ,B) - ^ t(A) and t(A) e IRR (R).

It is possible to link IRR(Tt), 72*(E) and 72'(.E): Proposition 1.

Proposition 1 7V(E) = H*(E) C\IRR{R.)

If the left hand side of the rewrite rule i —> r (resp. right-hand side) contains
only one occurrence of each variable, the rule I - ¥ r is left-linear (resp. right-linear).
A rewrite rule is linear if it is right and left linear.

Definition 3 Let 71 be a TRS defined on T (F , X). 72 is left-linear (resp. right-

linear, linear) if every rewrite rule of 72 is left-linear (resp. right-linear, linear).

42

Example 5 Let 7 t= {f(a ,b) -> g(a,b,a), g(a,b,c) —► g(b,a,b), g(a,b,c) —>• t(a)}, this

TRS is left linear as all the rules of 72, are left linear but it is not linear as the

right-hand side of the rewrite rule g(a,b,c) —>• g(b,a,b) contains 2 occurrences of the

variable b. On the other hand, R = {f(a ,b) —> g(b,a), g(a,b) —>■ t(b)} is linear as all

the rules of 71 are linear.

Two important properties that a TRS may possess are termination and conflu­

ence.

3.1.1.1 Termination

Definition 4 (Termination [Gen98a]) A TRS 71 is terminating if there are no in­

finite derivations of term Si € X) (i € N) such that so si -+n 3% —t n __

The rules in Grecian urn problem decrease the size of the system after each

step so it always terminates. Proving or disproving the termination of TRS is an

undecidable [HL78]. Lankford [Lan79] explained of the termination of TRS and

orders are linked.

Before the concepts o f Lankford are introduced, some basic notions on binary

relations are given. A binary relation R on a set E is reflexive if and only if for all

a in E then aRa. R is antisymmetric if and only if for all a, b in E it holds that

if aRb and bRa then a — b. R is transitive if, and only if for all a, b and c in E it

holds that if aRb and bRc then aRc. R is a partial-ordering and is written > if R is

transitive, antisymmetric and reflexive.

Definition 5 (Well-founded Ordering [Gen98a]) A partial ordering > is well-founded

on the set E if there are no infinite decreasing series.

Example 6 The partial ordering > on N is well-founded as the decreasing series

are bounded by 0.

Proposition 2 ([MN70]) A TRS R, defined on T (T , X) is terminating if and only

if there exists a well-founded partial ordering > on T (T , X) such that:

43

Vs,f € T (T , X).s - I ti t =>- s > t.

The number of pairs s, t that satisfy the condition are usually infinite, so other
properties are usually used. These properties prove the termination by looking at
orders that can be checked on the rewrite rule instead of all the rewriting steps.

Three approaches to prove the termination can be distinguished:

• semantical methods: the idea is to look for a marker (the size of the term used
in the rewrite rules, a symbol used in all the rules, etc.) and to check that the
marker decreases after each rewriting step.

One of the most commonly used techniques is to prove that the order for the
set on which the marker is defined is well founded and monotone.

• syntactical methods: the idea is to find well-founded orders that guarantee
that each rewriting rule is decreasing with respect to the orders.

Orders here are defined inductively on the terms. The main two orders here
are the recursive path ordering [Der82] and the Knuth-Bendix order [KB70].

• transformational methods: the idea is to transform the current TRS into an­
other TRS on which the termination is easier to prove and which guarantees
the termination of the original TRS.

More information about the different methods can be found in [Zan97].

3.1.1.2 Confluence

Definition 6 (Confluence [DP01]) A TRS is confluent if for all terms s, t, u £

T (F , X) such that s t and s —̂ u> then 1 4-rc. u.

Like the case of the termination property, this property is generally undecidable.
Confluence becomes decidable, however, if the TRS is terminating, thanks to the
“critical pair” (cf. Definition 7) computation and to Newman’s lemma (cf. Lemma

1)-

44

Definition 7 (Critical pair [DP01]) Let H be a TRS and I -4- r and g -4 d be

two rules of H. with distinct variables. If there exists a position p € Vos?(I) and a

substitution <7 such that l\p<r = go then (l[d\pcr, ra) is a critical pair of 71.

Example 7 Let 72. = {e.x —>■ x, I(i) .i -4 e, (x.y).z —t x .(y .z)} be a TRS.

If the substitution a —{x = I(i), y = i, z = z } is applied on (x.y).z the resulting

term is (I (i) .i) .z . Two reductions can then be applied on this term (I (i) .i) .z -4
I(i) .(i.z) (using (x .y).z —> x .(y.z); the I -4 r of Definition 7) and (I (i) .i) .z —> e.z

(using I (i) .i —> e; the g —► d of Definition 7), thus the critical pair (e.z, I (i) .(i.z))
is deduced.

Lemma 1 ([Newl2]) Let 72. be a terminating TRS. 72. is confluent if and only if for

all critical pairs (p,q) of 72. there exists w € T (T ,X) such that p — uj and that

q ^ n w -

If a TRS is not confluent, it is possible to make it become confluent using the
Knuth-Bendix completion algorithm [KB70]. This algorithm transforms a finite set
of identities into a terminating confluent TRS, in Appendix A an example of how it
works can be found.

If the algorithm is initialized with a non-confluent TRS 72. and a reduction or­
dering > that guarantees the termination of 72., then a confluent TRS 72/ is built
such that —bfcCHtn>. For each critical pair (p, q), the completion will add the rule
p —i q if p > q and q —> p if q > p to guarantee the confluence of the system. Again
more details about the confluence property can be found in [DP01] and [Zan97].

3.1.2 Tree Automata

Automata theory is an essential part of theoretical computer science. It can be used
in many fields: natural languages, modeling biological phenomena, programming
languages, cryptography, computer graphics, etc.

The main advantage of this theory is that with a finite alphabet and a finite set
of grammar rules, an infinite set of words (terms) can be recognized. This set is
called a language. The language corresponding to the automaton A is noted £(.A).

45

Figure 3.1: Basic automaton

For example given the alphabet {a, nil} and the grammar {n ilf —> 0, Og —» 1,
la 1} where 0 is the initial state and 1 is the final state, then it is possible to
recognize «ill the words in the {nila, nilaa, nilaaa, ...}. This concept is illustrated in
Figure 3.1.

This diagram gives the graphical form of this automaton. In this figure, the state
0 is reached by the transition labeled by nil. Then to go from the state 0 to the
state 1 (final state), there is one transition labeled by a. With those transitions, the
word nila is built. Then another transition labeled by a is looping on the state 1,
with this transition all subsequent words in the language can be built.

By looping once, the word nilaa (transition to 0, then transition from 0 to 1 plus
transition from 1 to 1) is built, by looping twice the word nilaaa, etc.

In this thesis, a special form of automata is used: tree automata. These axe
called “tree” automata because of the graphical view that can be made of the terms
recognized by those automata.

For example, the term cons (a, cons(b, c)) can be viewed as the tree:

The symbol cons at the top is called the root, and a, b and c are called leaves. To

46

recognize this term, the automaton can either start from the leaves to go to the root
or it can start from the root to go to the leaves. It is then possible to distinguish two
categories of tree automata depending on how the automata recognize the terms:

• bottom-up automata: the automata start by recognizing the leaves and then
move up to the root. Figure 3.2 gives an example of how the term cons(a,

cons(b, c)) would be recognized by a bottom-up automaton. The automaton
starts (transition —>1) by recognizing the leaf a (when a subterm is recognized
it becomes green), then the leaf b (transition ->2), and so on until it reaches
the root.

cprw

-> 4 a m m -» 5

b \

Figure 3.2: Bottom-up process

• top-down automata: the automata start by recognizing the root and then go
down to the leaves. Figure 3.3 gives an example of how the term cons (a, cons(b,

c)) would be recognized by a top-down automaton. The automaton starts
(transition —h) by recognizing the root cons (when a subterm is recognized it
becomes green), then the leaf a (transition —>2), and so on until it reaches the
last leaf c.

In this thesis, a subset of the bottom-up tree automata, the bottom-up non-
deterministic finite tree automata, is considered. In this section, definitions and
properties of the bottom-up non-deterministic finite tree automata are revisited.
More information about tree automata can be found in [CDG+98, GS84].

47

Figure 3.3: Top-down process

Definition 8 Let T be a finite set of symbols and Q be a finite set of symbols of

arity zero called states.

A transition is a rewrite rule c - y q, where c € T (T (J Q) and q e Q.

A normalised transition is a transition c - t q where c = qr € Q or

c = f(q u • • • ,Qn) € T(.FU Q) with f e ? , ar (f) = n and qlt . . . , qn e Q.

Definition 9 (bottom-up non-deterministic finite tree automaton [Gen98aJ) A bottom-
up non-deterministic finite tree automaton is a quadruplet A = {F , Q,Qf, A}

where T is a finite set of symbols, Q is a finite set of symbols of arity zero called

states, Q f is the set o f terminal states such that Q f C Q, and A is a set of normal­

ized transitions.

A tree autom aton A is deterministic if for any term t € T(.F) there exists at

most one state q 6 Q such th a t t — q.

Definition 10 (Tree language) The tree language recognized by A is

C (A) = { t € T (T) | 3g € Qf . t q}.

The tree language recognized by the state q of the automaton A is

C (A , q) = { t € T (F) \ t - + y Lq}.

A tree language (set of terms) E is regular if there exists a bottom-up finite tree

automaton A such that C (A) = E .

Figure 3.4: Graphical view of reduction process

From now on, only bottom -up non-deterministic finite tree autom ata are consid­

ered and we will refer to these as tree autom ata for short.

Example 8 Let T —{cons:2, a:0, b:0, nil:0}, Q = {q 0> q^, Q f= {q 0} and

A = {con(qi,qo) -)• qo, nil -¥ go, a -»• qi, b -¥ gri}, then A = {T , Q,Qf, A} is a

tree automaton.

This automaton recognizes the set of lists composed of “a ” and “b”,

C(A) = C(A, qo) = {n il, cons(a, nil), cons(b, nil), cons(a, cons(a, n il)),...}.

This automaton also gives C(A, 6}.

Figure 3-4 shows how the term cons(a, cons(b, nil)) can be reduced to the state

Qo by applying transitions from A. The sequence applied is the following: a —► qi,

b ->• qi, nil -> qo, con(qi,qo) —> qo and con(qi,qo) —► qo- As q$ is the final state of

the automaton, cons(a, cons(b, nil)) is recognized by A .

In this thesis, the emphasis is placed on non-deterministic autom ata, bu t it is

im portant to know th a t for each non-deterministic autom aton there is an equivalent

deterministic autom aton.

Theorem 1 ([CDG+ 98]) Let L be a recognizable set of ground terms. Then there

exists a deterministic finite tree automaton that accepts L.

Algorithm 1 (Determinization [CDG+98]) The algorithm takes a non-deterministic

finite tree automaton A = { T , Q,Qf, A} as input and returns a deterministic finite

tree automaton A& ={T, Qd, Qdf, Aj}:

49

1. Qd = 0, A d = 0

2. repeat

if s= {q G Q|3?i G 3U . . . , qn € sn, f (qu . . . , qn) -> q G A} then

add s to Qd

if (f G T) and (su • ■ • , sn G Qd) then

add f (s u . . . , s n) -*■ s to Ad

until no rule can be added to Ad

3. Qdf = {s £ Qd|s n Q f ± 0}

Prom Algorithm 1, we can deduce that the generation of a deterministic automa­
ton is exponential.

In Algorithm 1 only the accessible states2 are considered. Example 9 details an
example from [CDG+98] to illustrate the use of that particular algorithm.

Example 9 Let F = { f : 2, g : 1, a : 0}. Consider the automaton A = {F , Q, Q f , A}t
9Ì<l) -> Q

with Q = {q, qg, qf }, Qf = {qf } and A= g(q) _> Qg g(qg) Qf

. / (? ,?) -> <7
By applying Algorithm 1 on A , the deterministic automaton A d = {F , Qd, Qdf, Ad}

is produced:

• Qd={{Qh {q,Vg}> {q>Qg>qf}}

• Qdf={{q,qg,q f} }

a ^ { q }

s (M) -*■ {q,qg}

9({q,qg}) ->• {q,qg,qf}

, s({?. ?/})->• (9 .9s.?/} ,

To understand how Ad is built, a few steps of the computation are presented:

A d= < > u { f (s u s2) -► {g}|«i,»2 £ Qd}

1- Oaj Oq«* (8teP 1 of Algorithm 1)
2a state q is accessible if there exists a ground term t such that t q

50

2. | a -4 {g} | {q} (step 2 of Algorithm 1)

3.
a -4 {g } iff}

A, <• <«'«»> / &
(repeat step 2)

(\
*-► {?}

(1
w

4 -< s({?}) “>• {Q,Qg} ► i {Q’Qg} > (repeat step 2)

, 9({Q,Qg}) -*• {Q,Qg,Qf} , A t k {Q,Qg,Qf} ; Qd

5. . . . (repeat step 2)

a ^ { q } w
0(M) -»• {Q,Qg} {Q,Qq}

... J
* t {Q>Qg,Qf} ,

{ {q,qg>Qf} } Qdj (8teP 3)

Qd
A is a non-deterministic automaton because in A there are two transitions with

the same left-hand side: g(q) -4 q and g(q) -4 qg. This non-determinism disappears

in Ad:

i

g(q) ->■ q I

ffi?) -*■ Qg f algorithm { ff({g}) -4 {<7, qg} . ■.

> A

To conclude on tree automata, the usual set operations apply on the tree lan­
guages (cf. Proposition 3). Let A —{T , Qy4, Q j J 1A^} and B = {T , Qb, Q b As} be
two tree automata:

• union (U): L (A U B)—C(A) U C(B) and A U B= { F , Q , Qf , A^ x As} where

Q = Qa * Q b , Q f = (Q a * x Q b) U (Q a x Q b *) and
f ((Q i , o i , (9n,9n)) («V)l , Q n) - > q £ AA and

/(«i,--- ,9n) “►«'€ Ab

intersection (fl): C(A fl B)—C(A) fl C(B) and A fl B={!F, Q, Qf , A.4 x Ag}
where Q — Q,4. x Qb and Q f — Q j J x Qb^■

A ^ x A b= <
}

complement of a language C(A), (£(.4.)): A d = { F , Qd, Qdfi&d} is computed
with Algorithm 1 and A = { T , Qd, Qd \ Q-ifi A<j}

51

• inclusion (C): C(A) C £(B) if and only if L (A H B) = 0.

• difference between two languages £(A) and C(B) (£(A) \C(B)): A \ B —A f) B

P ro p o s it io n 3 ([C D G + 98] The class o f regular tree languages is closed under union,

in tersection and com plem ent.

The em ptiness, inclusion, m em bership, in tersection , in tersection non-em ptiness,

fin iten ess and equivalence are decidable.

Now that the basic definitions have been presented, the method developed by

Genet and Klay is introduced.

3.2 Genet and Klay’s idea

Genet and Klay [GKOOa] use a term rewriting system to model the protocol and

a tree automaton to model the communications. Starting from an initial set of

communications, and by using the term rewriting system, an over-approximation

of the set of reachable configurations is computed. The secrecy and authentication

properties are then checked on the approximation automaton built.

In this section, the theory behind this approach is introduced and the Needham-

Schroeder-Lowe protocol [Low95] is used as an example.

3.2.1 Theory

Genet and Klay [GKOOa] re-used the PhD work of Genet [Gen98a]. In [Gen98a],

for a TRS 71 and a set of terms defined by the tree automaton A = {F , Q,Qf, A}

E C T { T) it is explored how to compute 7Z*(C(A)).

Genet’s idea is to get 7l*(C(A)) starting from A and 7L by extending the set of

transitions A such that the automaton guarantees:

Vi . (t G 7l*(£(A)) A t -+*A q A

As noted by Genet, this property is similar to the confluence property introduced

in Section 3.1.1.2 applied on the term rewriting system: (72.UA). Thus Genet worked

on an algorithm similar to the completion algorithm.

52

Figure 3.5: Intuition to build 7Z*(C(A))

With tha t approach, the set of final states and the previous transitions remain

unchanged, so after each step the new language contains all the previous languages

(cf Figure 3.5).

Moreover for a language £(-4) and a TRS 7L, 7Z*(C(A)) is not always regular

[GT95, Jac96]. [Gen98a] explains how to compute an approximation automaton

7fct(*4) {E S £(-4) and 71 left linear) such that 7V(L(A)) C £(7^t(-4))-

Let A = { J 7, Q ,Q f , A} be a tree automaton. First, an explanation of what is

meant by abstraction and normalized transitions is given. Then his approxi­
mation function and his algorithm to compute the abstract model are introduced.

For Genet, an abstraction is a function that maps all subterms of a term to

states.

Definition 11 (Abstraction function [Gen98a]) Given a configuration s € Q)\

Q .

An abstraction of s is a mapping a :

a : {s|p | p € Vo8jr(s)} Q

The mapping a is extended on T(T[_}Q) by defining a as the identity on Q.

Example 10 L e t A = { F , Q, Qf, A}, whereT={f,h ,a,b}, Q={9o,9i,92,93h QS={q0}
and A = {f(q 0,q0) -*■ go, h(qi) -+ q0, a ->■ qu b -* q0}-

53

I f o term s= f(h (a), b) is given then a = { h (a) -4 q \, a -4 q2, b -4 <73} is an

abstraction o f s (i t is m apping each subterm o f s to a sta te).

In order to keep the set of final states unchanged, Genet needs to add normal­

ized transitions to his current autom aton to keep it normalized. The normalization

process can be defined inductively with the abstraction in Definition 11.

Definition 12 (N orm aliza tion fu n ction [Gen98a]) L e t s -¥ q be a transition such

tha t s € T (T U fi), q € Q , and a an abstraction o f s . The se t N o r m a (s -4 q) o f

normalized transitions is inductively defined by:

1. i f s = q , then N o r m a (s -4 q) = 0, and

2. i f s € Q and s ^ q , then N o r m a (s -4 q) = {s 4 q } , and

3. i f s = f (t \ , . . . , tn) , then N o r m a (s -4 q) =

{/(a(ti),... , a(tn)) -4 q} U U?=1 Norm a(ti -4 a(t<))-

Example 11 L e tA = {! F , Q , Qf, A}, where T = { f ,h ,0;b}> Q = {qo ,qu < l2,q s } , Q f= {q o } ,

A = {f(q o ,q o) -4 qo, h (q i) -4 q0, a -4 q i, b -4 q0} and a = { h (a) -4 qu a -4 q2,

b -4 93}-

Following D efin ition 12:

N orm a (f(h (a), b) -4 q0) = {J (q i, q$) -4 90} U N orm a(h (a) -4 q i)

U N orm a (b -4 q3)

= {f(qi, Qi) -+ Qo} U qi]
U N orm a (a -4 q2){J {b -4 g3}

= Qi) ->■ 90, h(q2) -4 qu a - + q2, b ^ q3}

At this stage Genet’s approximation function can be introduced. This function

link« a rewrite rule from the TRS, a state of the current autom aton and a substitution

of the rewrite rule variables by states of the current autom aton to a sequence of

states.

54

Definition 13 (Approximation Function [Gen98a]) Let Q be a set of states, Qnew

be any set of new states such that Qf) Qnew = 0, and Q*new the set of sequences

<71... <7*; of states in Qnew Let £(<2, X) be the set of substitutions of variables in X

by the states in Q.

An approximation function is a mapping 7 :
f t X Q*new, such th a t7(1 -»■ r,g,cr) = g i . . . qk

where k = C a r d {P o s ? (r)) .

This 7 function is linked to the abstraction function a . If y (l -¥ r,q,cr) = g i . ■ ■ gjt

and if a(rcr\P{) — gi with pi €E Pos? (r)={p i , . . . ,Pk} then qi = q[for ¿ = 1 . . . k.

Example 12 Consider the alphabet T = {0 : 0, s : 1}, the set of states Q = {go, <7i}
and the term rewriting system ft = {s(x) —>• s(s(ar))}. Possible approximation

functions are:

• 7 (s (x) - f s(s(x)) , qu {x = go}) = 02!

we only have one state because Pos^(s(s(go)))={i} as ftoot(s(go)) £ T and

Hoot(qo) £ T ,

• y(s (x) ->■ s(s(x)), gi, { x = g2}) = g3,

• 7 (s(x) ->• s(s(x)) , g2, { x = go}) = g4,

• 7 (s(*) -► «(s(ar)), g2, {* = g2}) = q&.

With Qnew = {g2, g3, Qa, q*>}- These approximation functions are not the only possible

approximation functions for that system, four were picked to illustrate Definition 13.

In the rest of the thesis, let Qnew be any set of new states such th a t Q f] Q new = 0,

and Q u = Q U Qnew

Algorithm 2 (Completion [Gen98a]) Starting from a left-linear TRS ft, an initial

automaton A® = A and an approximation function 7 , Genet and Klay construct

A i+i from Ai by:

55

1. searching fo r a critica l p a ir (ra , q) w ith a s ta te q £ Q , a rew rite rule I

and a su bstitu tion a € £ (G , X) such that la -4^ . q and r a q.

n
la • ra

A

2. A + i = A i U N o r m y (r a -4 q).

A i U N o rm -y{ra -4 q) adds the s ta tes created by N om rU f(ra -4 q) to the s e t o f

s ta te s o f A i- I t also increases the se t o f transitions o f A i w ith the norm alized

tran sition s o f N o r m y (r a -4 q).

The above process is iterated until it stops on a tree autom aton A k such that

there are no further critical pairs.

Example 13 illustrates the com putation process. This example demonstrates one

of the drawbacks of the technique; the computation might not stop.

E x a m p le 13 In this exam ple taken from [Gen98bJ, A = { F , {tfo, ?i> <72}, {91}, A} is

a tree au tom aton where T = {a p p : 2, con s : 2, m i : 0 ,o : 0}, A = {a p p (q o , qo) -4 q i,

c o n s f a , q i) -4 qo, n il -4 q0, n il -4 q i, a -4 q2}, 7L = {r l } with

r l = a p p (c o n s (x ,y) ,z) -4 c o n s (x ,a p p (y ,z)) , and 7 (D efin ition 13) the approxi­

m a tion fu n ction m apping every tuple (r l, q, a) to one sta te (con s(x , a p p (y , z)) o f r l

contains only one subterm a p p (y , z)) .

G en et and K la y process is now used to com pute A i+ i from A t:

1. the critica l p a ir (c o n s fa , a p p (q i,q o)) ,q i) is deduced from

app(cons(q2,q i) ,q a) -+*A q i and con s(q2, app(qu q0)) ~»*A qu-

56

2. A i = A l)N o r m y (cons(q2 , app(qu 9o)) -> gi):

• 7 (rl, gi, {x = q2, y = Quz = 9o}) is computed; the state <73 is introduced

and 7 (rl, qu {x = q2,V = Qu z = 9o}) = 93-

• Norm y(cons(g2,app(qi,qo)) -> qi) is computed with the 7 given just

above;

N orrrU f(cons(<72, app(qu go)) -4 9i) = {cons(q2,q 3) -4 gi}U
Norm y(app(qu q0) -4 93)

={cons(g2,93) -4 91, aPP(9i>9o) -4 93>;

• the sets of A are updated to produce A i;

The transitions cons(q2,q3) -4 91 and app(gi,go) -4 93 are added to

A the current automaton set of transitions and q3 is added to the set of

states.

3. the critical pair (cons(q2, app(q3, 90)), 93) is deduced from

app(cons(q2,g3),qo) 93 and cons(q2, app(q3, 90)) 93,'

^ 2 = -4i l)N o rm 1(cons(q2, app(q3, go)) -4 3̂):

• 7 O'/, 93, i 27 — 92,2/ — 93, z = 9o}) w computed; A new state qi is intro­

duced and 7 (rl, q3, {a: = q2, y = q3, z = g0}) = q4.

• Norm^(cons(q2, app(q3, 50)) -4 93) is computed with 7 above;

N or m y (cons (g2, app(g3,9o)) -4 93) = {cons(q2, 94) -4 g3}U

N orm y (app(q3, q0) -4 g4)

={cona(?2,94) -4 93, opp(93,9o) -4 g4};

• the sets of A i are increased with the new states and transitions to produce

A 2;

The transitions cons(q2,q<i) -4 q3 and app(q3,qo) -4 g4 are added to

A the current automaton set of transitions and g* is added to the set of

states.

5. the critical pair (con sfa , app(g4, 90)), 94) is deduced from

app(cons(q2, 9d), 9o) -4^ 94 and cons(q2, app(g4, g0)) 94/ eic.

57

The computation of the approximation automaton goes forever.

In his thesis, Genet refined the definition of the 7 function that guarantees that

the completion algorithm terminates: Definition 14. With this refined approxima­

tion, the computation in the above example terminates.

D e fin itio n 14 (A n cestor A pproxim ation Function [G en98a])

A n approxim ation fu n ction 7 is an ancestor approxim ation fu n ction if:

1. V l - > r € K , V q € Q u, G E (G u, X) ,

7(1 -*■ r ,q ,(T i) = 7 (I -4 r ,q ,c r2), and

V/i —► r i , ¡2 ► r 2 G Tt, Vq G Q u, V g i...% G Qnew> V<ti,<72 G E (Q u, X) ,

7 (/i -4 n , q, <Ti) = q i . . . % =► V* = 1 • • • A;, 7(̂ 2 -4 r2, qu <r2) = 7 (/2 4 r j , ? , <r2)

T h e o re m 2 E very au tom aton built w ith an ancestor approxim ation fu n ction is fi­

nite.

The proof of this theorem is given in Appendix B

Theorem 3 [Gen98a] on the other hand gives the main advantage of the technique,

which is that the completeness is guaranteed for any approximation function that

meets Definition 13. This means that if a property is verified on the abstract model

then this property will be also guaranteed by the concrete model.

T h e o re m 3 [GKOOaJ(Completeness) G iven a tree autom aton A and a left-linear

T R S 72., fo r any approxim ation fu n ction 7 m atching D efin ition 13:

K*(C{A)) C C{Tk X{A))

The above theorem is limited to left-linear rewriting system. From a practical

point of view, this is a big restriction; using a left linear term rewriting to model

a protocol might change the protocol. For example, we have a protocol where a

participant only sends nonces that he created for himself and we have nonces that

58

are modeled by N (x , y) with x the name of the creator and y the name of the

receiver. Then to follow the protocol in the term rewriting system a term N (x , x)

should be found but instead if we want to use the approximation approach we have

to have N (x , y). This means th a t the agent will be sending any nonce not only

the one he created for himself; thus the verified protocol is different from the real

one. Luckily, Theorem 3 can be extended to non left-linear TRS under specific

conditions: Theorem 4 [GKOOa]. W hen we will explain how the approach is used to

verify cryptographic protocols, we will see tha t the conditions axe verified and thus

tha t the theorem can apply. But first, we introduce the following definition:

D e fin itio n 15 (S ta tes m atching) L et A be a tree autom aton, Q i ts s e t o f sta tes,

t € T (F , X) a non linear term , and {pi,...,pn} C V o s(t) the s e t o f position s o f a

non linear variable x in t.

tu n denotes the linearized fo rm o f the term t , where all occurrences o f non linear

variables are replaced by d is jo in t variables (ie. i f t = f (x , y , g (x , x)) g ives

tim = f(x',V,9(x",y"'))).

I t is defined that s ta te s q i , ..., qn G Q are m atched by x i f and only i f there exits

a € E(Q , X) such th a t tu ncr -+*A q € Q , an d tuna \pi = qu tHn<r\Pn = qn .

T heorem . 4 (C om pleteness extended to non left-linear T R S) G iven a tree autom a­

ton A and a T R S 72, T k t (-4) the corresponding approxim ation autom aton and Q

its se t o f sta tes. For a ll non left-linear rule I —► r G 72, fo r a ll non linear vari­

ables x o f I, fo r all s ta te s q i , - - , q n £ Q m atched by x, i f either q\ = ... = qn or

£ (T n t (A) , q i) f | - D £ (T n t (A) , qn) = 0 then:

K*(C(A)) C £ (7 » tM))

The proof of Theorem 4 done by Genet and Klay [GKOOa] is given in Appendix

In a recent report [GFT03], conditions on the TRS, the tree autom aton and

the approximation function are given to get TV{C{A)) — t (*4)). The

main definitions and theorems regarding the equality introduced in the following

59

paragraphs are taken from [GFT03] (for more details about the proofs, the reader
can refer to [GFT03]). However the equality cannot happen with cryptographic
protocols as shown in the next section.

Definition 16 (Rigkt-lineariiy condition) A tree automaton A = {F , Q,Qf, A} and

a TRS 71 satisfy the right-linearity condition if

1. 71 is right-linear, or

2. Vg G A : 3i € T { ?) : C{A, q) C 71*(t)

The following example illustrates the necessity of these two conditions.

Example 14 We have:

• T = { / : 1, g : 2, a : 0, b : 0} an alphabet,

• 71 = { f (x) —► g(x, a:)} a non right-linear TRS and

• A = {£, {io, i i } , {go}, { / (g i) -> go, O ->• gi, 6 ->■ g i} } a tree automaton.

Given C{A) = {/(o), /(&)}. For any abstraction function 7 , the completion process

adds the transition g{qu gi) ->■ go to the current automaton and

f(^)) = { f(a) , f (b) ,g(a,a) ,g(b,b) ,g(a,b) ,g(b,a)}

which is a superset of

7V(C{A)) = { / (a), f{b), g(a, a),g(b, 6)}.

If 7t was right linear or if there was no transition b qi, then:

= K*(£(A)) .

Similarly, by adding the rule a —► b into 71, the exact case would be generated,

and the right-linearity condition would be satisfied since for gi G A there would exist

the term a such that £ {A , gi) C 71* ({a}) = {a, 6}.

To be coherent with a tree automaton A and a TRS 7Z, an abstraction function
7 must guarantee for each of its states:

60

• the state is not in the states of A , or

• term s recognized by the state in A are either a term t' recognized by the

subterm linked to the sta te by 7 or ft-descendants of t ' .

In [GFT03], a (Definition 11) is redefined in Definition 17. The normalization

process Definition 12 is also redefined in Definition 19. This is done in order to

introduce a coherent abstraction function (Definition 20) for which the autom aton

completion algorithm is exact.

D efinition 17 (N ew abstraction fu n c tio n) L e t T be a se t o f sym bols, and Q a se t

o f s ta tes. A n abstraction a m aps every norm alized configuration in to a sta te:

« *• { /(tfi,--- >in)I / € a r { f) = n a n d q u . . . ,q n € Q) t-+ Q.

D efinition 18 (A bstraction s ta te) L et T be a s e t o f sym bols, and Q a se t o f sta tes.

For a g iven abstraction fu n ction a (D efin ition 17) and fo r a ll configuration t €

T (^ F D Q) the abstraction s ta te o f t , denoted by topa (t) , is defined by:

1. i f t € Q , then topa (t) = t ,

2. i f t = f (q u • • • ,Qn) then topa (t) = a (f (t o p a (t i) , . . . , to p a (tn))) .

D efinition 19 (N ew norm alization fu n ction) L e t T be a se t o f sym bols, and Q a

se t o f s ta tes , s —► q a transition such that s G T (F U Q), q £ Q , and a an abstrac­

tion fu n ction (D efin ition 17). The se t N o r m a (s -* q) o f norm alized transitions is

in du ctively defined by:

1. i f s = q, then N o r m a (s - f q) = 0, and

2. i f s € Q and s ^ q , then N o r m a (s 4 }) = { « - f q } , and

3. i f s = f (t i , . . . , t n) , then N o r m a (s -¥ q) =

{ f (to p a (t 1),... , topa (tn)) 4?}U U?=1 N o rm a(U -+ toPaiU))-

61

Definition 20 (Coherent abstraction function) Let A Q,Qf, A} be a tree au­

tomaton, H be a TRS and a be an abstraction function. The function a is said to

be coherent with 72. and A if for a llt G Dom(a), for allq € Q,r\Ran(a) if

a(t) = q then t -¥ q G A and there exists a term if G {T{T)) called the representative

of q such that t? t and C(A,q) Q 72* ({i7}).

We have A = {F , Q,Qf, A} a tree automaton. During the completion, the coher­

ence will stand with the 7 function when the normalizations (Definition 12) produce

transitions of the form f(q 1, . . . ,qn) —► q with / G T , a r (f) = n, q i , - . . ,q n G

Qu and q G Q fl Qu that satisfy:

• f{Qu • • • , Qn) -* Q G A, and

• there exists a term t' G (T (F)) such that t' f(qu • • • 1 qn) and

C (A ,q)c n * ({ t'}) .

T h eo rem 5 Let A be a tree automaton, 72. be a TRS and a (Definition 17) be an

injective abstraction function coherent with A and 72. If A and 72 satisfy the right-

Unearity condition, and ifT n t(A) is the automaton produced by completion with a.

then:

C (W (A)) Q n \C {A)) .

T h eo rem 6 Let A be a tree automaton, 72 be a TRS and a (Definition 17) be an

injective abstraction function coherent with A and 72.. Let Tk t (.4) the automaton

produced by completion with a . If A and Ti satisfy the right-linearity condition and

if 72. and T u t (A) fulfill the condition of Theorem 4, then:

(A)) = n*(£(A)).

The proofs of these theorems can be found in [GFT03].

The next subsection shows how the theory introduced in this subsection

Definition 13 and the completion algorithm) is used to verify cryptographic

cols.

(the 7

proto-

62

In the introduction, the Needham-Schroeder-Lowe protocol [Low95] was briefly men­

tioned. This protocol is used in this section to illustrate Genet and Klay’s approach.

In the Needham-Schroeder-Lowe protocol [Low95], two agents, Alice and Bob,

want to establish a secure communication using a public key infrastructure. Before

they exchange any vital information, they use the Needham-Schroeder-Lowe protocol

(cf. Figure 3.6) to exchange nonces. The role of these nonces in later messages is to

identify the sender.

3.2.2 C ryptographie protocol verification

Alice initiates a protocol run, sending a nonce Na and her name A to Bob

encrypted by Bob’s public key.

Message 1: A =}► B : {N a ,A }Kb

Bob responds to Alice’s message with a further nonce Nb encrypted by

Alice’s public key.

Message 2: B =>• A : {N a ,N b ,B }Ka

Alice proves her existence by sending Nb back to Bob encrypted by Bob’s

public key.

Message 3: A ==► B : {N b}Kb

Figure 3.6: Needham-Schroeder-Lowe protocol

The goal of Genet and Klay’s technique is to compute an automaton that rec­

ognizes an over-approximation of the reachable configurations of the network from

an initial automaton that models the initial configurations and a TRS that models

the protocol.

Their initial automaton models the initial configuration of the network and the

intruder’s initial knowledge and abilities. Their TRS models the protocol steps and

also some intruder’s abilities. Their approximation function has been introduced in

Section 3.2.1.

The syntax and the semantics used in [GKOOa] are summarized in Table 3.1.

63

agt(x) x is an agent

c_init(x, y, 7) x thinks he has established a communication with y but

he really communicates with z

c_resp(x, y, z) x thinks he responds to a request of communication from

y but he really communicates with z

cons(x, y) concatenation of the information x and y

encr(x, y, z) z is encrypted by participant y with the key x

goal(x, y) x wants to communicate with y

m esg(x, y, z) z is a message sent by a; to y

N (x, y) nonce created by x to communicate with y

null end of list

pubkey(x) public key of x

Table 3.1: Description of the terms used

3.2.2.1 Initial automaton for the Needham-Schroeder-Lowe protocol

Figure 3.7 gives the initial automaton for the Needham-Schroeder-Lowe protocol

(later in this document, it will be shown that this initial automaton is also valid for

other protocols). This automaton has seven states Q = {ç0, gi, q2 , <73, 94, 95, 913}

and one final state Q f —{qis}- The automaton uses the alphabet J 7={A :0, B:0,

0:0, s:l, agt:l, U:2, goal:2, mesg:3, cons:2, pubkey:l, encr:3, N:2, null:0}3. All the

automaton transitions are normalized transitions4.

Transitions of Part 1 in Figure 3.7 model the initial configuration of the network.

In this network, A (Alice) and B (Bob) sure two trusted agents. They follow the

protocol rules and the intruder does not have access to their private information, un­

less he catches it by spying on their exchanges. We also have an unbounded number

of untrusted agents: 0, s(0), s(s(0)), etc. . They are untrustable as the intruder has

access to their private information and can then usurp their identity. A, B, 0, s(0),

3format of the alphabet is “term : axity of the term”
tran sition s have the format f (q i, ■■■,qk) —► q where / € T , q € Q and G Q (k is the arity of

f and t e [1---&])

64

Automaton nspk

States 9o 9l 92 93 94 <75 <713
Final States «13
Transitions

Part 1 0 —► 9o s(9o) 9o
A —> </i B —► 92

agt(io) -> 93 agt(9i) ->• 94 agt(92) -> 95

U(9i 3j 913) -> 9i3

goal(93, 93) -> 913 goal(93, 94) ->• 913 goal (93, 95) -> 913

goal(94, 94) -*■ 9i3 goal(94, 95) -> 913 goal (95, 93) -> 913

goal(9s, 95) -► 913 goal(95, 94) -> 9i3 goal(95, 93) -4 913

Part 2 agt(«j) ->• 9i3 agt(9i) -»■ 9i3 agt(92) -> 9i3
mesg(9i3, 913, 913) ->■ 913 null -* 913

cons(9i3, 913) -4 913

pubkey(93) ->• 913 pubkey(94) ->• 913 pubkey(95) ->• 913

encr(9i3, 93, 913) ->• 913

N(93) 93) -4 913 N(93, 94) -4 913 N(93? 9s) -► 913

Figure 3.7: Initial automaton of the Needham-Schroeder-Lowe protocol

s(s(0)), . . . are just names, they are linked to their role by the transitions agt(go)

—> <73, agt(qi) —> <74 and agt(<j2) —> <75- Those transitions allow us to distinguish 3

agents; two trusted ones recognized by 94 and <75, and one untrusted one recognized

by 93. The untrusted agents Me compounded to one agent (like Agent R in Figure

2.3 in Section 2.4). The communications between the three agents are studied.

Initially, all the agents want to communicate with each other. To express this, a

transition o f the form goal(qi,qj) —► 913 (the agent recognized by the state qi wants

to commu nicate with the one recognize by the state qj) is used. B y doing this a

special meaning is attached to the state <713: gi3 is the state that corresponds to

the network. There are nine transitions of this form to cover all the possible initial

configurations involving our three agents:

• 93 wants to communicate with to <73 or <74 or q§

65

• <j4 wants to communicate with to 93 or <74 or <75

• 95 wants to communicate with to <73 or <74 or <75

The transition U (gi3, <713) —► Ç13 represents sets of configurations. W ithout this

transition, the automaton would only be able to recognize one configuration of the

network at a time; for example goal(agt(A),agt(B)) or goal(agt(B),agt(A)). W ith

this transition, the concatenation of two or more configurations can be modeled. The

automaton is then able to recognize sets of configurations such ¿is U (goal(agt(A),agt(B)),

goal(agt(B),agt(A))), the set containing the configurations goal(agt(A),agt(B)) and

goaJ(agt(B),agt(A)).

Transitions of Part 2 in Figure 3.7 model some intruder initial knowledge and

abilities. It means that <713 corresponds to the network but also to the intruder

knowledge.

In [GKOOa], the intruder is the network and he has the capabilities of the Dolev-

Yao intruder [DY83]. The intruder can intercept all messages exchanged on the

network and can decrypt messages if he has captured the appropriate decryption

keys. In addition he can build and send fraudulent messages if he has the appropriate

encryption keys.

The intruder initially knows:

• all the agents in the network, which is why we have the transitions of the form

agt(qi) 913,

• all the agents’ public keys; the transitions of the form pubkey(qi) —¥ <713,

• the nonces created by the untrusted agents; the transitions o f the form

N (q3>qi) -» 9 i 3-

He can create and send fraudulent messages using his knowledge. In Figure 3.7 those

abilities are modeled by three transitions:

• cons(çi3, 913) —► 913: he can associate two known pieces of information to

create new information,

66

• encr(<7i3 , q3, q i3) -¥ <713: he can encrypt information with what he knows5,

• mesg(<7i 3, <713, 913) -> q i3: he can send fraudulent messages using what he

knows.

3.2.2.2 TRS for the Needham-Schroeder-Lowe protocol

A term rewriting system (TRS) is used to model the protocol steps (cf. Figure

3.8).

1. x initiates a communication with y\

goal(x,y) — ► U(LHS, mesg(x, y, encr(pubkey(y), x, cons(N(x, y), cons(x, null)))))

2. agt(u) answers to NS1 by NS2;

mesg(x, agt(u), encr(pubkey(agt(u)), z, cons(v, cons(agt(x2), null)))) — ► U(LHS,

mesg(agt(u), agt(x2), encr(pubkey(agt(x2)), agt(u), cons(v, cons(N(agt(u), agt(x2)),

cons(agt(u), null))))))

3. agt(y) answers to NS2 by NS3:

mesg(x, agt(y), encr(pubkey(agt(y)), z2, cons(N(agt(y), agt(z)), cons(u, cons(agt(z), null)))))

— ► U(LHS, mesg(agt(y), agt(z), encr(pubkey(agt(z)), agt(y), cons(u, null))))

4. after he received NS2, agt(y) believes that he has initiated a communication

with agt(z) but he talks with z 2:

mesg(x, agt(y), encr(pubkey(agt(y)), z2 , cons(N(agt(y), agt(z)), cons(u, cons(agt(z),null)))))

— ► U(LHS, c_init(agt(y), agt(z), z2))

5. after he received NS3, agt(y) believes that he talks to agt(z) but he talks with z2:

mesg(x, agt(y), encr(pubkey(agt(y)), z2, cons(N(agt(y), z), null))) — ►

U(LHS, c_resp(agt(y), z, z2))

Figure 3.8: Rules for the Needham-Schroeder-Lowe protocol

sthe second element of “encr” always refers to the person that encrypts; the intruder cannot
usurp honest agent identities to encrypt.

67

Cumulative rules of the form I — > U (I, new . in fo rm a tio n) are used, which means

that when the term I is found, the term new . in fo rm a tio n is added to I. The

first term of the rules, the part before — >, is a pre-condition (message received or

initial configuration (goal(...)) that must be satisfied for a message to be sent. The

second term is the concatenation of the current configuration (the pre-condition)

with the message that will be sent (or established communication at the end of a

run; cJnit(. . .) , cjresp(...)).

Thus in Figure 3.8, the first rule means that when the state goaI(x,y), “x wants to

communicate with y” is found, the message mesg(x, y, encr(pubkey(y), x, cons(N(x,

y), cons(x, null)))), “x sends y a nonce, and his name encrypted w ith the public key

of y”, is added to the current trace LHS. LHS stands for Left-Hand-Side is equal to

the left hand side terms of the rule, it is used to simplify the notation. It means

that

g o a l(x , y) — > U (L H S , m esg (x , y , en cr(p u b k ey(y), x , c o n s (N (x , y) , co n s(x , n u ll)))))

is equivalent to:

goa l(x , y) — > U (g o a l(x , y), m esg (x , y , en cr(p u b k ey(y), x , c o n s(N (x , y) ,c o n s (x , n u ll))))) .

In the initial automaton, we only express a part of the intruder’s abilities. We

still need to model that he can: decompose complex information, decrypt informa­

tion encrypted with the public keys of the untrusted agents and access to all the

information exchanged. Those operations are expressed with rewrite rules and are

added to the T R S (cf. Figure 3.9):

In Figure 3.9, it is apparent that instead of having for example

U (c o n s (x ,y) ,z) — >• U (L H S ,x) ,

we have

U (c o n s (x ,y) ,z) — ► U (L H S ,a d d (x)) .

Using add(x) instead of x allows us to keep one final state q\:$ for the automaton.

Each time a ride is used, the variables are replaced by states. For example, if

U(cons(x, y), z) — > TJ(LHS, x) and during a computation x — <745 then the term

68

U(LHS, <745) has to be normalized to be added to the current automaton. <745 is

already a state and so cannot be altered, but the fact that the intruder knows the

information recognized by <745 still needs to be expressed. For that <745 would have

to be added to the set of final states as the final states model the network and

the knowledge of the intruder. W ith add(x) the problem disappears, the transition

add (<745) —> (713 is used during the normalization and is added to the current au­

tomaton. The intruder will use the last rewrite rule add(x) — > x to access the

information and to link the term to the final state 913 when needed.

1. decomposition o f complex information - add(x) means that

the intruder caught the information x by analyzing the network

U(cons(x, y), z) — ► U(LHS, add(x))

U(cons(x, y), z) — ► U(LHS, add(y))

2. decryption o f information encrypted with untrusted agents’ public key

U(encr (pubkey(agt(0)), y, z), u) — ► U(LHS, add(z))

U(encr (pubkey(agt(s(x))), y, z), u) — > U(LHS, add(z))

3. access to all the information exchanged

U(mesg(x, y, z), u) — > U(LHS, add(z))

4. access to caught data

add(x) — ► x

Figure 3.9: Rules for the intruder’s abilities

Finally in the TRS, there are also rules, Figure 3.10, to express the associativity

and commutativity (for short AC) of the U symbol used in the previous rules.

U(x, U(y, z)) — > U(U(x, y), z)

U(U(x, y), z) — ► U(x, U(y, z))

U(x, y) —» U(y, x)___________

Figure 3.10: AC rules

69

As already said, Genet and Klay decided to approximate the system by studying

the exchanges between two trusted agents and another one that is obtained by

compounding all other agents in the network (the state q3 in the automaton of

Figure 3.7).

When the approximation function 7 is built, it means that for each rewrite rule,

there axe only nine possible substitutions for the variables corresponding to the

sender and the receiver.

For example, for the first rule of the TRS: goal(x,y) — > U(LHS, mesg(x,...)).

Let R = goal(x,y) — > U(LHS, mesg(x, y, encr(pubkey(y), x, cons(N(x, y),

cons(x,null))))), then using Definition 13:

i (R , 913, {a = g3, y = 93}) i (R , 913, {x = 94, y = 93}) i (R , 913, = 95, y = 93})
7 (R, q13, {x = q3, y = 94}) rf(R, 913. = 94, y = 94}) l iR , 913, {x = 95, y = 94})

7 {R, 913, {x = 93, y = 95}) 7 (R, 913, {x = 94, y = 95}) i (R , 913, {x = 95, y = 95})

In practice, users do not see those 7 (but they can deduce them). They only see

the Norrriy(r<T —> q) of the completion algorithm (Algorithm 2). In [GKOOa], the

Norm~[(rcr —> q) seen by the users are referred to as “approximation” rules.

Figure 3.11 is an example of an “approximation” rule that the user is going to

deal with. That rule gives the normalization process applied on the left hand side

of the rule R, w ith the substitution a = {x= g 4, y = q $ } and the state q \3.

[term that must be normalized before it could be added

to the current automaton] — ¥

[transitions that will be added to the current automaton]

[U(LHS, m esg(^ ,q5,encr(pubkey (95),94,cons(N(94,Qs), cons(94, null))))) -»• 513] — ►

[LHS -4 013 null—> qls cons(94,91s) -> Qn N(94,95) ->■ qie cons(q16,q17) -> q15

pubkey(9S) 914 encr(9i4,94,9i 5) ->• 913 m esg(94,95,9i 3) ->• 913]

3.2.2.3 Approximation for the Needham-Schroeder-Lowe protocol

Figure 3.11: Example of “approximation” rule

70

W hen a rewrite rule, R, a substitution, a = {x=<j4, y=g5}, and a normalization

state, <713, have been identified then 7 is computed (Definition 13):

7 (- f t) 913, o ') = 9 i3 9 i3 9 i3 9 i4 9 i5 9 i6 9 ir 9 i8 -

A state is linked to each functional position of U(LHS, m esg(x, y, encr (. . .))) , here

for example q\s to null, q n to cons(x,null), . . . , 913 to LHS.

Using the normalization process (Definition 12) and using 7 (i?, <713, <r), with

R l= m esg (q < i, 05, encr(pubkey(q§), <74, c o n s(N (q 4, q s) ,c o n s(q i, n u ll)))) the transitions

to be added to the current autom aton are produced as follow:
Normy (U(LHS, i i l) -4 q13) ={U(qi3, 913) -4 C13} \JNorm-,(LHS -4 q13) \JN orm 7(E l -¥ qi3)

={U(<?i3, 913) -4 9i3, LHS —► ^13, null-> 0i8,

cons(04,0i8) -> 017, N (04,05) -4 9ie,

console,<717) -4 015, pub key (05) -4 014,

encr(014,04,0!5) -4 0i3, me8g(04,05,0i3) -4 0i3}

In this way, the “approximation” rules are generated to normalize each term.

W hen the completion algorithm identifies a term th a t must be normalized, an

“approximation” rule will be used to normalize the term and add it to the current

autom aton.

The TRS, used here, is not left-linear. In section 3.2.1 we explained tha t the

completeness (Theorem 4) was guaranteed for non left-linear TRS by keeping deter­

ministic states matched by the non-linear variables.

Here, the 11011-linear variables m atch the terms A, B, 0, s(0), s(s(0)), etc. which

are recognized by the states <71, <72 and qo- Initially, these states are deterministic and

they will stay deterministic if the user does not do any error in his approximation

function (for example by linking those states to other terms than the initial ones).

Assuming no error from user, we have T V (C (A)) C £ (T n t (A)) , where T 'n 't(A) is

the approximation autom aton computed. One interesting point th a t goes with our

idea of autom ating the process is th a t making sure those conditions are satisfied is

easy if the “approximation” rules are autom atically generated but it requires more

a ttention when it is done manually. If the user makes an error, then the whole

71

1

process is flawed.

The TRS is not right linear and it will often be the case for cryptographic

protocols w ithin our syntax6. In the initial automaton, the state 713 will always not

satisfy the second condition of the right linearity condition (Definition 16). Moreover

the abstraction function 7 is not injective. So there will never be:

C {T n U A)) = n*{C{A)).

3.2 .2 .4 V erifica tio n

The approximation autom aton models the intruder knowledge; thus it is possible to

check the confidentiality of a piece of information by making sure that the informa­

tion is not recognized by the autom aton.

For the Needham-Schroeder-Lowe protocol, the confidentiality of the nonces be­

tween A and B is required to be confirmed. The secrecy of these nonces will be

guaranteed, if they are not valid terms recognized by the current autom aton. To do

so, the intersection of the approximation autom aton with an autom aton th a t recog­

nizes these nonces (cf Figure 3.12) is checked. If the intersection is empty then the

property is verified on the approximated model. As “ft.* (£(.4.)) Ç £ (7 f t t (*4))” > the

property is also verified on the concrete system. For this protocol we have an empty

intersection. Nevertheless, no conclusion could have been drawn from a non-empty

intersection.

The approximation autom aton also contains the belief of the agent when a com­

munication is established w ith the terms c J n it and c-resp. So it is possible to check

the authentication property: “If A or B thinks th a t he communicates w ith B or A

then he really speaks w ith B or A” .

This property will be verified if the approximation autom aton does not recognize

terms of the from c jr e s p (x ,y ,z) and c J n it(t ,u , ,v) , where y ^ z and u ^ u for

x e {a g t{A) , a g t(B) } , y € {a g t{A) , a g t{B)} , t € {a g t(A), a g t(B) } and

u e {a g t(A) , a g t(B) } . Again the intersection of the approximation autom aton

6often we will have at least one message of the protocol that gives a rewrite rule of the form:

• . . — ► U (L H S , m e s g (x , y , . . . x . . .))

72

Automaton Not-Secret

States 01 02 04 06 013
Final States 013
Transitions

A —► 0i agt(0i) -4 Ç4

B —► 02 agt(02) -> 05

U(0i3, 013) -4 913

N(g4, 0s) -> 013 N(g5, 94) -4 013
N(04, 04) —► 013 N(05) 95) "4 013

Figure 3.12: Nonces between Alice and Bob

w ith an autom aton recognizing the faulty terms (cf Figure 3.13) is checked. The

intersection is empty so the property is verified.

Automaton Wrong_Belief

States 00 01 02 03 04 05 06 013

Final States 013
Transitions

O 4 0 o

s(0 o) - 4 90 agt(0o) - 4 03
A -4 91 agt(0i) - 4 04

B - 4 02 agt(02) - 4 05

U (013, 9 is) "4 913

C-init(04 , 05, 03) - 4 013 c i n i t (0 4 , 05, 94) - 4 913

c j e s p (95, 04, 03) - 4 913 c_resp(05, 04, 05) -4 013

c in it(05 , 04, 03) -> 013 cin it(05, 04, 05) - 4 013

c-reap (04, 95, 93) - 4 013 c -re sp (0 4 , 95, 94) - 4 0i3

Figure 3.13: Alice and Bob do not really communicate w ith each other

The same verification done on an approximation autom aton computed with an­

cestor approximation Figure 3.14 give different results. Only the authentication

seems to be verified even though the secrecy is been proven for this protocol. This

73

failure is not a surprise as the approximation applied on the secret information is

too large; all the nonces are gathered together so it is impossible to verify if any of

them are unknown of the intruder.

[U (L H S ,m e8g(x ,y ,en cr(pu bkey(y),x ,con 8(N (x ,y),co n 8(x ,nu ll))))) -+ 0i3] — >

[LHS -» 017 null —► 0i8 cona(x,null) —► 019 N (x ,y) -> 020 cons(02o ,0i f l) -4 021

pubkey{y) —► 022 encr(q22, x, q21) -> 923 m eag(x ,y ,q23) -► 024]

[U (L H S ,m esg(ag t(u),ag t(x2) ,encr(pubkey(agt(x2)),agt(u),cons(v,cons(N (agt(u),agt(x2)),

cons(agt(u),null)))))) ->• 0 i 3] — ► [LHS - ¥ 025 n u l l -> q26 agt(u) - » 027 cons(q27,q26) - » 0 28

agt(x2) -¥ 029 N(q27,q29) -*■ 030 con8(03O, 028) 031 cons(v,q3i) q 32

pubkey(q29) -► 033 encr(033, 027, 032) -»• 034 m e8g(q27,q2o,q3i) -► 036]

[U (L H S ,m esg(ag t(y),ag t(z),en cr(pu bkey(ag t(z)),ag t(y),u))) rightarrow gi3] — ►

[LHS -4 036 a g t (y) q 37 a g t (z) -> q3S pubkey(q3S) -> 039 encr(qi9,qi 7,u) -> 04O

^ a g (037 , 038 , 04o) - > 041] ___

Figure 3.14: Ancestor approximation for Needham-Schroeder-Lowe protocol

3.3 C onclusion

Genet and Klay’s approach is an effective, quick and simple approach for the verifi­

cation of secrecy and authentication properties, however:

• the approximation function used m ust be given by hand;

• the user must choose carefully his approximation function in order to guarantee

the term ination of the com putation of T u t (A) . The ancestor approximation

camiot be used as it is inefficient to verify secrecy properties.

• if the intersection is not empty, another m ethod must be used to verify the

property.

The next chapter will present the improvements made in the course of this research

to solve these problems.

74

Chapter 4

Improvements

In the previous chapter, two approximations of Genet and the m ethod by which

they can be used to verify cryptographic protocols were introduced. The m ethod

has some drawbacks th a t make it difficult to use in an industrial context. Two

improvements to the approximation approach are introduced in this chapter. The

first one is directly linked to the approximation function; a new approximation

function is defined. The challenge is to find an approximation function that:

• guarantees the term ination of the computation,

• does not require user interactions and

• is suitable for secrecy and authentication verification.

The second improvement is more general, it is an investigation on the combination

of two cryptographic protocol verification techniques. The approximation technique

will be one of them. The challenge is to find another verification approach such as

bo th approaches are complementary and the passage from one to the other is easy.

4.1 N ew approxim ation function

Table 4.1 summarizes the pros and cons of the approximations introduced in the

previous chapter.

75

A pproxim ation Pros Cons

Basic approximation

(Definition 13)

can verify protocols’ properties computation may not terminate

unless users intervene

Ancestor approximation

(Definition 14)

computation terminates too abstract to verify protocols

Table 4.1: Pros and Cons of Genet’s approximations

In this section, a new approximation function 7 f (Definition 25), th a t takes the

pros of the basic and the ancestor approximation, is introduced. This approximation

guarantees the term ination of the com putation of the approximation autom aton by

restricting the set of new states created by the approximation function to a finite

set (like the ancestor approximation); Section 4.1.3 shows tha t the information lost

as a result of our approximation does not affect the verification of the secrecy and

authentication properties. This approximation also introduces rules to optimize the

use of the states. The idea is to use the same state for identical terms. Three

particular cases can be identified:

• If the current term t is already recognized by the state q in the current au­

tom aton then 7 / links it to a state <7.

For example, assume N (q$, qs) is recognized by the state <714 in the current

autom aton. If this term is met again during the completion it will be linked

to qu -

• If the current term t loops on itself, then the same state is used every tim e it

loops during the completion.

For example, assume e n c r (. e n c r (. .. , . . . , . . .))) —> <722 has been nor­

malized to en c r(q j, (75, (716) -► <722- If e n c r (. . . , encr(qr, 95, q ^)) -»■ 922 has

to be normalized, then en cr(qr, <75, <722) Q22 is produced, encT(q-?, q$, q iG) is

linked to the sta te <722-

• If two identical terms Eire found, the new normalization links them to the same

state.

76

For example, if co n s{N (q s, qs), N(q&, q5)) ->• 922 has to be normalized, then

co n s(q i6, Qie) —> 922 is produced; bo th N (q s , q$) are linked to qie-

4.1.1 A pproxim ation function 7 /

In order to lim it the number of new states, an intermediate function ¡3 (Definition 21)

tha t introduces a finite number of new states is used. We make sure tha t the ap­

proximation function 7 f (Definition 25) only uses the states of the initial autom aton

and those of /3 (Proposition 8).

The way it works is described below:

1. a set of 7 f th a t must be computed: 7 f (x —> s(s(x)),<7o, { x — 91}),

7 f (x - 4 s (s (x)) , <70, { x = 92» , 7 / (* - 4 « (« (*)) , 9o , { x = 93}) , etc.

2. we have @(x —► a (s (x)) ,q o , {a: = a:}) = q. I t gives the state tha t can be used

in 7 f for x —> s(s(a;)), <70 and any substitutions of x

3. instead of introducing a new state for every 7 f , and if there is no reason for

l f { x -* s(s(a;)),go,{® = 9i}) ^ 7 /(® s (s (x)) ,q 0, { x = q2 })

^ 7 f i x -> s(s(a:)), q0, {® = q3})

^ etc,

as for the user those terms normalized using 7 j are used in the same way in

the rest of the system, then

7 f (x -» s(s(a;)),go,{a; = 91}) = 7f (x -► s(a(ar)),g0,{a; = 92})

= 7 f (x -4 s (s (x)) ,q 0, {ar = g3>)

= q, using 0 .

In the above example the 7 / is an ancestor approximation, as no m atter what

the substitution is, the same state is used. B ut the ¡3 function used to define the

7 / ’s states in general is more complex so the 7 / will not always be an ancestor

approximation.

I t is im portant for an agent to distinguish information created by him from that

created by other participants. The TRS allows this by typing the messages. For

77

example, if an agent recognizes his nonce, then the notation N(agt(x), agt(y)) is

found in the TRS rule. W hen this is a nonce created by someone else, the notation

N (w, z) is used. Moreover there is no need for an agent to distinguish the unknown

information of different exchanges of the same message. The agent replies to mes­

sages, not to unknown information. Those messages contain information about the

presumed sender (i.e. a name or a nonce created by the receiver to communicate

w ith a particular agent). Thus whatever is the value of the unknown information

received; the same message will be sent.

Thus it is possible to identify two categories of states, those linked to a specific

term (this is the case when the term contains variables th a t can be substituted by

terms of arity zero) and those linked to a set of terms. The function 0 is going to

define states according to this last concept.

Initially the number of rewrite rules, the number of terms of arity zero and the

number of states linked to those term s are finite. For each rewrite rule, 0 will be

computed for all possible substitutions of variables by states linked to terms of arity

zero, plus the identity (thus a variable x can be substituted by itself). For example,

if we have the term N (x , y) and the state q\ th a t is linked to a term of arity zero then

0 is computed for: N (q i ,q i) , N (q \ , y) , N (x , q \) and N (x , y) . As substitutions do not

allow the mapping from variables to variables, we call our m apping 0 —su b stitu tio n .

D e fin itio n 21 (In term edia te fu n ction) L et Q be the s e t o f autom aton's in itia l s ta tes

and Qnew be the se t o f s ta tes introduced by the com putation. L e t Q* be the s e t o f

sequences q i ■■ -Qk o f s ta tes in Q u where Qu = Q U Qnew L et I t be a term rewriting

system containing a f in ite se t o f rew rite rules. L et A = { f , Q , Q f , A} be a tree

autom aton . L et Qao C Q be the s e t o f s ta te s corresponding to the term s o f arity zero

and X be the se t o f variables used in 7L. L et © = { x = y| (y = x A x G X) V y G Qao}

be a se t o f 0 —substitu tions. L e t P o s jr (r) = {pi, . . . ,P k} be the se t o f functional

position s in r , k = C a r d (P o s ? (r j) and pq = e where e denotes the root position in

the tree when the term is view ed as a tree.

78

0(1 ~+r,q0,9) = q i . . .q k

w ith qi G Qnew fo r i € [1, Ar] by default.

Then fo r all i £ [1, fc]:

1. i f 3 q >€ Q such th a t (r0|Pi) -4 ^ q1 then qi = <f;

2. i f 31' ^ r 1 E n , 3 z = C a rd (P o s jr (r ')) , 3 j € [0,*], 3 # e S , 3q '0 € Q u,

3 q [, . . . ,q'z E Q u such that ¡3(1’ -4 = q [. . .< /z A (r0 |Pi) = (r/0/ |Pj)

then qi = </j.

T he two rules used in the definition of 0 optimize the use of the states available,

following the idea tha t the same state should be linked to identical terms:

• the first rule says th a t if a subterm of a term is already recognized by a state

q' in the current autom aton, then (3 also links this subterm to q'.

• the second rule says th a t two identical subterms are linked to the same state

by ¡3.

Proposition 4 Iden tica l subterm s in two ¡3 com putations (D efin ition 21) using the

sam e autom aton A , the sam e T R S 72., and the sam e se t o f s ta tes Q u, are linked to

the sam e sta te.

Proof [Proof by contradiction] Let I -4 r and V —> r ' be two rules of 7Z. Let

6 and O' be two elements of 0 . Let q o ,. . . , qn, q'Q, <^,. . . , q'z be states of Q u with

n — C a rd (P o s jr (r)) and z = C a rd (P o s j? (r ')) .

This proposition is proven by showing that for 0(1 -4 r ,q o ,0) — q i . . . q n and

0(1' -4 r',qQ ,0') — q [. . .q ' z if two subterms rQ |p< and r '6‘ \Pj are such th a t r 0 \Pi=

r'O'lpj, then it is impossible to have ^ qj.

Let us assume th a t for 0(1 4 r, qo, 0) — q \ . . . q n and 0(1' -4 r', q'0, O') — q [. . . q'z ,

3 i E [0, n], j € [0, A:] such tha t r0\Pi = r'O'lvs and qi / q'j.

The function 0 is a mapping: H x Q„ x 0 14 Q*, such that

79

1. If 3q' G A such that (r0|p<) — q' then q i= q ' with the first optimization rule

of Definition 21. Thus as rO\Pi= r'9'\Pj, r'O'\Pj = q'. = > C o n tra d ic tio n

2. For i by assumption 31' 4 r ' e R , 30' G 0 , 3 q [, . . . ,q'z G Q u such that

rO\Pi= r'9'\pj and 0(1' —> r \ q'0, O') = q[. . . q'z . Thus with the second optimizar

tion rule of Definition 21, q¡ ^ q'j. (the same result is obtained starting from

j) . = > C o n tra d ic tio n

Following Definition 21 it is impossible to have rd \Pi= r'O'\Pj and <?,- ^ q'y So

identical subterms in two 0 computations are linked to the same state. O

A direct consequence of Proposition 4 is Proposition 5.

P ro p o s it io n 5 Starting from the sam e autom aton A , the sam e T R S 7Z, and the

sam e se t o f s ta tes Q u, iden tical subterm s in two 0 com putations (D efin ition 21) on

the sam e rule using the sam e substitu tion are linked to the sam e state.

The following algorithm explains how to compute the set containing all the

possible approximation functions 0 . This particular set, Vt (Definition 22) will be

useful later.

Definition 22 (Set of 0) is the set containing one occurrence of each possible

function 0 defined by Definition 21 and computed as explained by Algorithm 3.

If X is the set of variables used in 1Z and Q ao is the set of states corresponding

to the term s of arity zero, then 0={a; = y\ (y = x A x e X) V j/6 Qao} is a finite

set as both X and Qao are finite sets.

By definition, the set of 0 —substitutions 0 and the set of rules TZ stay the same

during the com putation of (no rewrite rule or new 0 —substitution is added during

the computation). Thus the computation of can be broken up into two “for” loops

tha t explore all the triplets (r, q, 0) for r ETZ, q G Q u and 0 G 0 .

A lg o r ith m 3 S tartin g with tw o em pty sets, Q new and S , is com puted as follow:

1. fo r all (r G 7Z, q G Q , 0 G Q) do

i f Q, 0) = Çi-Çn) £ S) then

80

s = { p (r , q, 9) = Çi...gn> U S

f o r a i l l < i < n do

i f ((Q* ^ 2) A (çi £ Qnew)) th en

Qnew = {?*} *-* Qnew

f i

done

f i

done

2. fo r a il (r E U , q E Qnew, 9 € &) do

i f ((00*, q, 9) = qi...qn) £ S) th e n

S = { 0 (r , g, 0) = qi...qn} U S

f i

done

3. V = S

Basically, the first loop adds new states to Qnew, the set of new states, and 0

functions to S , the set of 0 functions. The second loop, fo r all (r E ft , q E Qnew, 9 E

&), only adds 0 functions to S as no new states are created because of Proposition 5

(the set 6 is the same for both loops).

P r o p o s it io n 6 The com putation o f the s e t term inates.

P roo f[T he com putation of i terminates]

By definition the sets f t, Q and © are finite. Thus the com putation of the loop

fo r all (r E U , q E Q , 9 E Q) term inates and introduces a finite set of new states

Qnew

The com putation of the loop fo r all (r E U , q E Qnew, 9 E &) also term inates

as f t , Qnew and © are finite sets.

B oth loops term inate, so the com putation of term inates. O

81

Let n be the number of rewrite rules, s be the number of states, Si be the number

of states linked to a term of arity zero, snew be the number of new states introduced

by the computation, v be the number of variables and nb^ the number of /3 in

computed. The complexity C of Algorithm 3 is the complexity C l of the first loop

plus the complexity C2 of the second loop:

• C l = a * n * (' E vi= t (s l - 1 * (i + l)) + 1) * E T = o~ l 3 * * * E j= o '_11

. C 2 = s new * n * (E U K “ 1 * (< + !)) + !) * E i i o _1i

• C =C 1+C 2

It is possible to rewrite this expression using only n by saying s = n + a , si= n + b ,

Snew—n + c : v = n + d and n b y = n + e where a,b,c,d,e are real numbers. A simple ex­

pression can then be deduced C= 0 (n n). Thus the complexity of Algorithm 3 is

exponential.

The introduction of this section states tha t (3 were used to reduce the number

of states used in the new approximation function 7 / . For example, by assuming

f3(x —► s(s(x)), qo, { x = x}) = q, it was said that

7 f {x -4 s(s(x)), q0, { x = gi}) = 7 / (x -4 s(s(x)), q0, {x = q2})

= 7 f (x -4 s(s(x)), q0, {x = g3})

= /3(x -4 s(s(x)), go, {x = x}).
To give the formal definition of 7 f , the relation <Sm0I th a t links 7 f and ¡3 must be

introduced. and are relations between the elements of 0 and of E(Q U, X).

£ (Q U, X) is a set of substitutions for which all the variables are substituted by states

and 0 is a set of ¡3—substitutions for which the variables can either stay the same

or be substitu ted by states linked to terms of arity zero, thus •Cmorr and «C will be

linking one or more substitutions from E (Q U, X) to one ¡3—substitution from 0 .

Definition 23 (Substitution inclusion) Let H be a term rewriting system. Let X be

the set of variables in H. Let A = { f , Qu, Q f, A } be a tree automata.

82

Let 0 E © and a € £(QU, X) be two substitutions of the same variables. There

is the relation between 9 and a , 6 •< ct, if for all (x = g) € a with x € X and

q € Qu then:

• (x = q) E 9 or

• (x = x) G 9.

Example 15 Let cr = {x = q i ,y = q2, z = g3}, 9X = {x = qu y = q2, z = g3} and

02 = {x = x ,y = q2, z = g3}, assuming that gi, q2 and g3 are states linked to some

terms of arity zero (this is to satisfy the definition o /0):

• 9i -C <7 as:

— for (x = gi) G a we have (x = qi) G 0i, and

- for (y = q2) E a we have (y = q2) G Oi, and

- for (z = g3) E a we have (z = g3) G 91-

• 02 < o as:

— for (x = qi) E cr we have (x = x) E 02, and

- for (y = q2) € <r we have (y = q2) E 02, and

— for (z = g3) Ecr we have (z = g3) G 9\.

Proposition 7 Let 71 be a term rewriting system. Let X be the set of variables in

71. Let A = {T , Qf, A} be a tree automata.

For all <7 G E(Q „, X) there exists at least one 9 G © such that 0 «C cr.

P r o o f Let 71 be a term rewriting system. Let X be the set of variables in 71.

Let A = { T , Qui Qfi A} be a tree autom ata. Let Q ao C Q„ be the set of states

corresponding to the terms of arity zero.

For all cr G £ (Q U) X) and for all (x = g) G a then q E Qao or g ^ Q a0. For any

<t G S (Q U, X) , it is possible to generate a /?—substitution 0 for all (x = g) G a if:

• g € Qao then (x = g) G 0 and

83

• Q $ Qao then (x = x) G 0

0 only contains identity substitutions, (x — x), or substitutions of variables by

states linked to term s of arity zero, as (rc = q) only if q G Q ao- So 0 € 0 .

Therefore for all (a: = q) G a with x G X and q G Q u:

• {x — q) € 0 or

• (x = x) 6 0.

This means tha t 0 <7.

So for all a G E (Q U, X) there exists a t least one 0 e 0 such tha t 0 <g a . O

D e fin itio n 24 (Substitu tion m axim um inclusion) L et % be a term rew riting system

containing a fin ite s e t o f rules. L et X be the se t o f variables in H . L et A =

{ T , ßu , Q /, A} be a tree autom ata. L e t Q^o C Q^ be the se t o f s ta tes corresponding

to the term s o f a rity zero. L et a G E (Q U,X) be a substitu tion .

F or a ll 9 € 0 such that 9 a then 9 •Cma® a */ and only i f fo r a ll (x = q) G <r:

• i f q G Q ao then (x = q) G 9 and

• i f q £ QoO then (x = x) € 9.

The relation •Cmox is used to guarantee that amongst all the possible 0, such

tha t 0 ■C ct, the one th a t satisfies this relation is the one tha t has the maximum

num ber of identical substitutions of variables by states with a .

E x a m p le 16 L et ffi = {x = qu y = q2, z = q z} , a 2 = { x = q2, y = q2, z = ?3},

01 = {x = q u V = Q2, z = 02 = { x = x, y = q2, z = ?3} and

03 = {x = x, y = q2, z = z } , assum ing th a t q i, q2 and q$ are s ta tes linked to som e

term s o f a rity zero (th is is to sa tisfy the definition o f &):

• 9 1 <7i , 02 <Ti and 9% <7i but 0i has the m axim um o f iden tical elem ents

with so 9 1 ^ x̂na,x

• 02 <r2 and 03 <3C <72 but 02 has m ore elem ents in com m on w ith <r2 than 03

SO 0 2 0 "2 -

84

Now th a t ß , 'S/ and <&max have been introduced, the approximation function 7 /

can be defined.

D e fin itio n 25 (N ew approxim ation fu n ctio n) L e t K be a term rew riting system .

L et A = {^ , Qu, Q f, A} be a tree autom ata. L et P o s ? { r) = {p i, . . . ,p*} be the set

o f fu n ction a l position s in r , k = C a rd (P o s jr (r)) and po = e where e den otes the root

position in the tree when the te rm is view ed as a tree. L e t E (Q U, X) be the se t o f

su bstitu tion s o f variables in X by the s ta te s in Qu. L et ß be a fu n ction corresponding

to D efin ition 21. L et "t be the s e t defined by D efin ition 22.

A n approxim ation fu n ction 7 / t i a m apping 7 / : 72. x Qw x E (Q U, X) t-4 with

- * r ,q , (r) = q l . . . q k.

F or the 8 6 0 such that 8 < .̂max a (possible because o f P roposition 7 and D efin ition

24) there exists

ß (l - > r t q ,8)

thus by default qi = <fi f o r a ll i € [1, k].

Then fo r a ll i € [1, k]:

1. i f 3 j € [0,*], 3 z = C a r d (P o s A r \Pj)) , 3 / € T , V o e C», 3 t f , . . . ,«# e Qu

such that:

• Qo — 9 and

• r lpy= / (* i , ,**) ond

• ™\pi= / « » • • • ,9Ü) and

• fo r a ll h € [1, z] there exists m € [1, k] such th a t = <fm A = r |Pm

then qi = gj;

2. i f 3j € [1, fc] such th a t (i j A (r<r|Pi) = (r<r|Pj.)) then q j = q i .

85

The default generation of the sequence of states makes sure that 7 / is produced

using 0. Then as in Definition 21, two rules are employed to modeling the use of the

states available following the principal that during the normalization, two identical

terms will be linked to the same state.

The first rule is used so that, after applying the substitution, a term to be

normalized and its normalization are linked to the same state.

For example, assume that agt(qi) -> <73 and agt(q2) —► <Ja are transitions o f the

current automaton A .

If /?(... -4 cons(N (agt(a), agt{b)), N (x , y)), q , {a = qu b = q2, x = x , y =

y }) = 9593949s

If {a = qu b = q2, x = x , y = y } {a = 9 1, b = 92, x = q$,y = 94}

Then by default 7 / (. . . —>■ cons(N(agt(a), agt(b)), N (x , y)), 9 , {a = qi, b =

9 2 , x = q3, y = 9 4 » = 9 5 9 3 9 4 9 6 -

But the substitutions of x by 93 and y by 94 reveal the term N(q^,q^) which is the

normalized form of N (ag t(q \), agt(agt{q2)) as agt(q{) -4 <73 and agt(q2) -»■ 94. The

first rule makes sure that the same state is linked to both of them, that is why

7 /(. .. , q, {o = 9 1, 6 = q2, x = q3, y = 94}) = 95939495 after optimization.

The second rule is used to ensure that two terms, which become identical after

substitutions, are linked to the same state.

For example, assume that agt(qi) —>■ 93 and agt(q2) —► <74 are transitions o f the

current automaton A.

If A function /? w ith substitutions {a = a, b — b, x = x, y = y } -Cmax

{a = 93, b = 94, x = 93, y = 94} had been computed and yields /?(... —>•

cons(N (a, b), N (x , y)), 9 , {a = a, b = b, x = x, y = y }) = 9596-

Then by default 7 / (. . . —»■ cons(N(a, b), N (x , y)), 9 , {a = 93, b = 94, x =

93, y = 9 4 » = 9596-

But the substitutions of a by q$, b by 94, x by 93 and y by 94 reveal the two identical

terms N (qz, 94) which had been linked to 95 and 96 . The second simplification rule

86

makes sure that those identical terms are linked to the same state, so:

7/(•••> 9, { o = <73, b = 04, x — g3, y — ?4}) = 4545.

After having introduced the new approximation function, its properties can be

studied.

Proposition 8 The se t o f states used by 7 / is bounded by the se t o f states of '£ .

This proposition is proven by showing that it is impossible to have a rule / —> r,

a state q and a substitution a that map to a sequence of states in which one of the

states in the sequence is new (not used in and not in the initial automaton).

Proof[Proof by contradiction] The set Qu contains the states of the initial au­

tomaton and those introduced by \fr.

Let us assume 3/ -*• r G H, 3q G Qu, 3 cr £ £ (Q U, X) such that

7 f(l -> r, q, o) — qi...qk, and there is G {01, —,qk} such that ^ Qu and

k — Card(Posjr(r)) .

As a consequence of Proposition 7 and Definition 24 there exists a 9 G 0 such

that 8 •Cmox <7 . B y default, we have in Definition 25:

7/(* -4 r ,9,c) = 9Î •■■q'k = r,q, 9)

w ith (/?(/ —► r ,q ,0) — q\ ...q'k) G ^ and qj = qi for j G [1, k}. Moreover with the

definition of (Definition 22), we have q \ , ...,<& are use in ^ = > Contradiction

The default sequence of states contradicts the assumption.

But may be the optimization rules introduce the new state and then validate the

assumption. Both optimization rides substitute a state of the default sequence by

another one:

• in the first rule, the state is substituted by q'j for j G [1, k] or by Çq with

q'0 = q. By definition ?i, • •. , 9* G Qu and q G Qu. = > Contradiction

• in the second rule, the state qj is substituted by the state

87

If qi has not been modified by the first rule, = gj G Q u. =>• C o n tra d ic tio n

If qi has been modified by the first rule then

Qi e {q , g i , ■ ■ ■ , q'k} <™d {q , . . . , q'k} C Q u. = ^ C o n tra d ic tio n

So it is impossible to create a 7 / (/ —> r ,q ,a) = qi-..qn where there is

Qi G {91, . such tha t qt 0 Q u. O

P ro p o s it io n 9 L et H be a TRS. L e t 7 f be an approxim ation fu n ction such that 7 f

is defined by D efin ition 25. L et A o = { T , Q ,Q j ,A } and A fk be two tree autom ata

such that A fk is com puted using the com pletion algorithm (D efin ition 2) with 11,

7 / and the in itia l au tom aton A q. The com pletion algorithm f ir s t looks fo r a critical

pair, term T n o t recognized by the current autom aton and a sta te S that recognizes

the term that gave T by rewriting. Then the norm alized fo rm o f T ->• S and all

the in term edia te tran sition s required by the norm alization are added to the current

autom aton by the com pletion to produce the new autom aton.

For all non left-linear rules ! -> r € U , fo r all non linear variables x o f I, fo r all

sta tes q \ , qn € Q th at su bstitu te x, i f e ither q i = ... = qn or

£ { A fk , q i) H - f l £ (A fk ,Q n) = 0 then: 7l* (£ (A o)) C C (A fk) .

Proposition 9 is proven the same way Theorem 4 was (cf. Appendix C). B ut it

could have also been proven using 7 Definition 13 and Theorem 4.

P ro o fp d ea of the proof using 7] Let A k = { F , Q, Qfinal, A} be the autom aton

produced with 7 and let A fk — { F ,Q f , Qfinal, A /} be the autom aton produced

w ith 7 / . The com putation of both autom ata starts from the same initial autom aton

A o and from the same TRS 7Z.

Let t 6 £ (A y):

• If t is recognized by the initial autom aton then t G C (A l f)

• Every term not recognized by the initial autom aton will be recognized by a

unique sequence of transitions of A as 7 creates new states for every completion

step. Moreover the completion process does not modify the set of final states

88

so every new term recognized by the language must have been added by the

completion. Thus t was added to L(A~,) by a completion step.

Assuming tha t j (l -4 r,q,<r) = q\...qk was used to add t into the language,

it is possible to find a 8 such th a t 8 <g. a (Definition 24 and Proposition

7). W ith 6 it is possible to look into j f to find a a ' such th a t 0 <?C o' and

7 ¡(1 —>• r,q ,cr') = q[...q tk. This means t was also added to C (A yf) by the

completion.

Therefore, for any term t of £(A y) such tha t t —► *^ q , it is possible to find an

equivalent sequence of transitions of A f such that t Q- So £ (.47) C L(A1})

is guaranteed. As Theorem 4 is guaranteed for £(Ay), the completeness is also

guaranteed for C (A yf) under the same assumptions. O

T h e o re m 7 Let H be a T R S containing a fin ite num ber o f rules. L et A fo =

{J7, Q ,Q f , A} be a tree autom aton. L et 7 / be an approxim ation fu n ction such, that

7 / is defined by D efin ition 25. I f the num ber o f rules in TL and the num ber o f sta tes

in Q are fin ite then the com putation o f A fk w ill stop.

The completion algorithm term inates when no more new transitions can be added

to the current autom aton. So, like for the ancestor approximation (Definition 14),

this theorem th a t states tha t the approximation autom aton is finite is proven by

showing tha t a finite number of states are introduced by the completion.

P r o o f Starting from a TRS 71 containing a finite number of rules, an initial

autom aton Afo— {J7, Q, Qf, A} and an approximation function 7f, is built

from Afi1 by:

1. searching for a critical pair (rcr,q) with a state q G Q u, a rewrite rule I —>■ r

and a substitution a G £ (Q U, X) such tha t la q and rcr - » A fi q

2. Af(i+1) = Afi U N o r m J f (r a -4 q).

The sets 7Z, X, Qu and E(QU,X) are used by the completion.

*it is assumed A /i= { T , Qu, Q f, A ’} where Qu = Q \J Qnew and Qnem the set of states
introduced by 7/

89

By assumption, the set of rules, 71, and the set of variables used in 71, X , are

finite.

By looking a t the above definition q G Qu and Qu = Q (J Qnew Q is the set of

initial states and is finite by assumption. Qnew is the set of states introduced during

the completion by 7 / . Proposition 8 says that the states used by 7 / are bounded by

those of '5 and \Lr introduces a finite number of new states (cf. proof of term ination

of Algorithm 3), so Qnew is a finite set. This means that Qu is a finite set. O

Figure 4.1 summarizes the way A fk is computed. First, the set is computed

according to the Algorithm 22. Then the completion process (Algorithm 2) is ap­

plied. It uses the 7 / (Definition 25), the normalization process (Definition 12), the

finite set of states Q„ (states of the initial autom aton and those introduced by '£),

the finite set of rewriting rules 71 and the finite set of substitution £ {Q U,X) .

Figure 4.2 is a more detailed version of Figure 4.1 w ith the algorithms and

definitions detailed. F irst the sets '£ and Q u are computed, for all the substitutions

9. The first loop using the set Q introduces a finite set of new states and a finite

num ber of 0 . The second loop using Qnew, the set of new states introduced by the

first loop, only adds 0 functions to the set of 0 functions. W hen the sets and Q u

are available, A fk can be computed. Critical pairs are searched:

• when a pair is found, a 7 / for the term to normalize is computed. W ith that

7 f a normalization of the term is deduced. Finally the current autom aton is

updated to recognize bo th terms of the critical pair.

• when no more critical pairs are found (in the worst case, when all the com­

binations of rewrite rules, states and substitutions have been explored), the

com putation stops.

I t can be seen on Figure 4.2, the computation of A fk relies on the critical pairs

search which apply sill the possible substitutions a € S (Q u, X) for every automaton.

Thus the complexity of the com putation of A fk is exponential.

W hen we will be verifying protocol, we will have between two and four states

linked to terms of arity zero, the com putation time of and Q u is then only

depending of size of the term rewriting system and the number of variables. The

90

Compute sets:
VandQ,,

Compute by
completion:

u j b y

h critical pairs witli'
R ,Q U, I

Figure 4.1: A bstract com putation of the approximation autom aton A f k with the

TRS H , the initial autom aton A q = Qu, Q /, A}, the set of variables X and

initially = 5 = 0

protocols tha t we will be using in the next chapter, will be small or medium size

regarding the num ber of steps and the size of the messages, thus the com putation of

and Q u is done quickly and their sizes are small. So the sizes of the sets used in

the completion are reasonable so the computation of the approximation autom aton

is done quickly.

4.1 .2 Exam ple

This example was taken from [Gen98b] and presented in Chapter 3 to show that

the com putation of the approxim ation w ith 7 could run forever. Here, it is used to

show th a t with 7 / the same com putation terminates.

91

Computation of set \|/
for r'eR, q€Q. 6eQ for r'eR, qeQneu, 060

if ((ß(r',q,0)=ql...qI1)iS) then
S = { (ß (r ' ,q,0) =q1-.qn) } u S

if ((qj£Q) & (qi«QMW))
Qnew={qi}'-,Qnaw

¡ m m p u ' t M l o n t e r m i n a ces
WStMter.mina t.io n px'oof
of A l g o r i t h m :■>

Cjj=S & Qu=Q uQ ^>

Computation of Afk

while 3 l-»r eR, q eQu, o eZ(Qu,]
such that lC->, q and r c w . a

Used tv ys b o u n d s t h e s e t o f s t a t e s
u s e d b y yf
c f P r o p o s i t i o n 1 0

C o m p u t a t i o n t e r m i n a t e s
c f T h e o r e m 6
a n d i t s p r o o f

Computation of yf
3(ß(l -» r,q,0)=q1™qn)ey such that
Yf(l -» r , q, o) = (ß (1 -> r,q,0)=q1...qn

If applicable simplification rules

7,(1 r ,q,G) =q'1...q'n with q'ieQu

Term tA at position i is
normalised by state q ^ a<ti)=qi T

Computation of Norrn^ (rc—>q)
"--- s

l.if ro=q then Norma(rO—>q) = 0
2.if seQnew and s*q then Norma (rC—>q) = {r<T-»q}
3.if s=f (tlf_, tm) then Norm„ (rc—>q) =_________

{f < « ^ 1)..«(tm)) ^ q } u fNornla(ti_,a(ti)) .
_ _ "X

for ieTi.-.m)
Update the sets of the current

Ai+i=A i u N orm Y (r o —>q)
automaton

Figure 4.2: Detailed com putation of the approximation autom aton A /k with the

TRS 1Z, the initial autom aton A o — { T , Q f. A}, the set of variables X and

initially Qnew = 5 = 0
92

I

E x a m p le 17 L et A = {!F, {go,gi,g2}>{gi}, A} be a tree au tom aton where :

• T = { a p p : 2, cons : 2, n i i : 0,a : 0},

• A={app(go, go) ->• Qi, c o n s f a , q i) -► g0, n il -4 g0, ni/ 4 gb a 4 g2},

W = a p p (c o n s (x ,y) ,z) -»• co n s(x , app (y , z)) ,

• T i = {r/}, and

• y f (D efin ition 25) the approxim ation fu n ction m apping every tuple (r l , q, a) to

one s ta te (co n s(x , a p p (y , z)) o f r l contains only one subterm a p p (y ,z)) .

A fte r having com puted a ll the possible 0 , the G enet and K la y process is used to

com pute A i+ i fro m A i:

1. w e have a p p (c o n s fa , gi), qo) -V 4 q i and con s f a , a p p f a , go)) q i so we

have the critica l p a ir (cons f a , a p p f a , q o)) ,q i);

2. A i = .4. U N o r m yf (c o n s fa , a p p f a , go)) gi) built:

0 (r l , q i , { x = q<z,y = qu z = g0}) = ?3

(a) we have 0 (r /, qu { x = q2, y = y , z = go}) = gi

0 (r l , q i , { x = x , y = y , z = z }) = q&

(b) 7 f (r l , gi, {x = q2, y = q i , z = go}) is computed:

i. w e have { x = q2, y = q i , z = g0} « max {» = q2, y = q i , z = g0}

ii. and 0 (r l, qu {» = g2, y = gi, * = g0}) = qs

Hi. so t f (r l, gi,{® = g2, y = q x ,z = go» = 0 (r l, q i , { x = q2, y = q i , z =

qo}) - 93-

(c) Norm -yf (c o n s fa , a p p f a , go)) -¥ gi) is com puted w ith j f (r l ,q u {x =

92, V = gi, H = go}) <W follow :

N o rm y f (c o n s f a , a p p f a , qo)) ~ + q i) = { c o n s f a , 93) -*• gi}U

N o r m v (a p p fa , qo) -» 93)

= { c o n s f a , q$) -+ gi, a p p f a , qo) 93}

93

(d) the sets of A are updated to produce A \;

The transitions con sfa , q3) —>■ qi and appfa , go) ->• g3 are added to

A, the current automaton set of transitions and g3 is added to the set of

states.

S. as app(consfa, q$), qo) 93 and cons f a , appfa , go)) q$, the critical

pair (con sfa , a p p fa , qo)),qz) is deduced;

4- A 2 = A l U Norm-,f (con sfa , a p p fa , qo)) -)• g3):

P (W, q3, {x = qi,y = qu z = q0}) = g3

we have P K 93, {x = q2,V = V,z = go}) = q\

P (r l ,q s , {ar = x , y = y , z = z }) = g5

• 7 / (r l , q3 , { x = q2, y = q3, z = g0}) is computed:

(a) w e have 0 (r l, gi, { x = q2, y = y , z = go}) = g4

(b) an d { x = q2, y = y , z = go} < m ax { x = q2,V = q3, z = g0}

(c) so 7 / (r l , g3, { x = q2, y = q3, z = q0}) = P (r l, g3, { x = q2, y = y , z =

9o}) = 94

• N om U ff (c o n s f a , a p p f a , qo)) -¥ g3) is com puted w ith 7 / (ri,g 3,{ x =

g2, V = Q3, z = go}) as follow :

N o r m l f (c o n s fa , a p p f a , g0)) ->• g3) = { c o n s f a , g4) -)• g3}U

N o r m v (a p p fa ,q o) -+ g4)

= { c o n s f a , g4) -► g3, a p p f a , qo) -4 g4};

• the se ts o f A t are updated to produce A 2;

The tran sition s c o n s f a , q i) -V g3 and a p p f a , qo) —► g4 ore added to

A, the curren t au tom aton se t o f transitions and q i is added to the s e t o f

sta tes.

5. the critica l p a ir (c o n s f a , a p p f a , go)),g4) is deduced fro m app(cone f a , Qi), go)

q i and c o n s f a , a p p f a , g0)) g4;

94

6. A s = A 2 U N o r m v (cons(q2, app(q 4 , g0)) -4 g4):

P (r l , 94, { x = q2, y = q i , z = 9o}) = <73

• we /mve /? (r/, <74, { x = q2, y = y , z = g0}) = 94

/3 (r l ,q \ , { x = x , y = y , z = z }) = g5

• V (r l, <74, { x = q2, y = q4, z = go}) is computed:

(a) w e have ¡3(rl,qu { x = q2, y = y , z = g0}) = g4

(b) and { x = q2, y = y , z = g0} «.max { x = q t ,y = q s ,z = g0}

(c) 7 / {r l, g4, {a: = q2, y = g4, 2; = g0}) = 0 (r l, g3, {x = q2, y = y , z = g0})

= g4

• N orrriyf(con s(q2, oj?p(g4, go)) —► g4) is com puted w i t h y / (ri,g4,{ z =

92, y = q ± ,z = g0}) as fo llow :

N orrriyf (cons(q2, opp(g4, g0)) -4 g4) = {cons(g2, g4) -4 g4}U

N o r m y f {app(q i, g0) -4 g4)

= {con s{q2,q i) -4 g4, app(g4,g0) -)• g4};

• the sets o f A 2 are updated to produce A 3;

The transitions cons(q2, 94) —>■ g4 and app(g4,go) —► 94 are added to

A, i/ie current au tom aton se t o f transitions.

7. N o m ore critica l pairs are found. The com putation stops unlike the com puta­

tion s w ith the 7 fu n ction o f [G en98b, GKOOa] given in D efin ition 13.

4.1 .3 W hy is it ok for protocols?

The syntax and semantics introduced in [GKOOa] had been extended to deal with

shared keys, session/complex keys, private keys, servers and hashed information (cf.

Figure 4.2). In order to reduce the number of states used in the approximation

function, the nu ll term used by Genet and Klay to end a list of information had

been removed. Thus a list ends w ith its last element, for example con(a, cons(b,

n u ll)) becomes cons(a, b).

95

agt(x) x is an agent

c _init(x, y, z) x thinks he has established a communication with y but

he really communicates with z

c_resp(x, y, z) x thinks he responds to a request for communication from

y but he really communicates with z

cons(x, y) concatenation of the information x and y

encr(x, y, z) z is encrypted by y with the key x

goal(x, y) x wants to communicate with y

h a sh l(x , y) y is hashed by x

haah2(x, y, z) z is hashed by y with the key x

key(x, y, z) key created by z for y and x

or key created by x to communicate with y

with the information z

m esg(x, y, z) z is a message sent by x to y

N (x, y, oc) nonce created by x to communicate with y and where oc is

a nonce number.

When there is only one nonce between x and y, oc is equal to

tO (by default tO for the nonce number 0).

But when in a protocol run you have 2 different nonces

created by x for y each nonce will have a different oc for

example tO and t l .

To simplify the notations and as in the examples used only

one nonce is created by an agent for another,

N (x , y) is used except in Chapter 5 where a prototype is introduced.

pubkey(x) public key of x

prikey(x) private key of x

serv(x) a; is a server

sharekey(x, y, oc) key shared by x and y with oc a key number.

When in a protocol rim you have 2 keys shared by x and y

each key will have a different oc for example tO and tl.

Table 4.2: Description of the terms used

96

The messages exchanged during the protocol rims are composed of basic pieces

of information (i.e. agent name, shared key, etc.) or of concatenations of basic

pieces of information (i.e. agent name and shared key encrypted, etc.). To reduce

the number of messages tha t can be sent, the format of the messages is fixed by

typing them. So in the term rewriting system (TRS) for example jm b k ey(a g t(x))

is used to indicate tha t x can only be an agent name instead of having pu bkey(x).

It makes analysis incapable of determining “type attacks” . Nevertheless, [HLS03]

justifies the assumption th a t all agents can identify the type of the information sent.

In a message, two types of information can be distinguished, one type that can

be understood by the agent (i.e. agent names, etc.) and the other tha t cannot be

understood by the agent (i.e. an agent cannot access a piece of information that has

been encrypted if he does not have the right decryption key, etc.).

In the TRS, this distinction is visible. For example, an agent can identify a

nonce if he has created the nonce. In the TRS when a g t(x) has created a nonce to

communicate with a g t(y) , N (agt(x),agt(y)) is found in the TRS and when it is a

nonce created by someone else N(w,z) is used instead.

The new approximation also makes this distinction. In one case the state cor­

responding to the precise nonce is used and in the other, a state (because of the

approximation /?) th a t gathers together all the possible cases is used. The approxi­

m ation ¡5 gives precise states for known information (as known information contains

variables th a t can be substitu ted by terms of arity zero) and abstract states for

unknown ones.

To avoid unknown information from different messages being gathered together

by 7 f during the normalization process, each unknown piece of information in the

TR S’s rules has different variables. Thus it is impossible to find two rules within

the TRS containing two unknown pieces of information w ith the same variables. For

example, in the TRS it is impossible to have N (x , y) in two rules; instead N (x , y)

and N (x i, y \) are found. There is an exception; it is possible to find unknown pieces

of information with the same variables when the protocol states these are identical

in a message. For example, if the agent forwards an unknown nonce and writes it

97

twice in the message, then the term N (x , y) is found twice in the rule.

The goal is to verify tha t information is kept secret during protocol runs (se­

crecy properties) and th a t actors can identify senders of messages (authentication

properties). These properties are checked only for communications between trusted

agents. The computation of the approximation autom aton with 7 [GKOOa] guar­

antees th a t communications between trusted agents are not gathered together with

other communications. The introduction of states for known and unknown informa­

tion w ith 7 f does not modify this. The “known” states are linked to one agent, who

created the information. The “unknown” states are linked to a particular message

of a specific communication as 7 / creates them for one message involving particular

agents. The approximation function and the normalization process tha t use these

states distinguish communications between Alice and Bob from those between Bob

and someone else, etc. Thus, the verification of the secrecy and authentication prop­

erties is not affected by the introduction of particular state for known and unknown

information.

Moreover the distinction introduced between known and unknown information is

very helpful, when the intersection of the approximation autom aton and the negation

property autom aton is not empty (i.e. when the property being verified is not guar­

anteed to be valid, the property may be verified). By looking at the approximation

autom aton with the approxim ation function, information th a t can help the user to

verify whether the property is satisfied with other methods [Mea96, Pau98, JRVOO]

or otherwise, can be deduced. In particular, by studying the states of the autom a­

ton, the user can find the particular step which may lead to an attack and thus have

an idea as to how to direct the verification using other verification techniques.

4.2 C om bining approach

W hen the intersection of the approximation autom aton and the negation autom aton

is not empty2, another verification technique must be used to check if the property

2Prom the experiments we carried out with our approximation only when the protocol was flawed

it happened. But for some protocols, it could happen when the approximation is too abstract. For

98

is verified or not. The inductive approach of Paulson [Pau98] has succeeded in

verifying a large range of protocols, bu t requires experts to carry out the proofs.

The inductive technique, on the other hand, offers a very powerful framework to

backup the approximation when it fails while the approximation approach simplifies

the work of the experts. It seems a good idea to combine the approximation approach

with the inductive technique as both approaches deal with traces of events, their

intruder has the same properties, and the protocol steps can easily extract from the

Isabelle specification to be transform into a term rewriting system.

In this section, first the inductive approach is detailed, followed by an introduc­

tion to the combination of the techniques.

4.2.1 Inductive approach

This technique was briefly introduced in Chapter 2. In his approach, Paulson reasons

on the set of all the possible traces reachable with a particular protocol.

As initial assumptions, he has an infinite number of agents in the network and

an intruder tha t matches Dolev and Yao’s intruder model [DY83]. He also considers

th a t traces are lists of events and an event contains information about agents and

messages.

In his method, there are three types of agents:

• The server who can always be trusted.

• The user who can be safe or not (depending on whether the spy knows his

secret key, for example).

• The spy who is an attacker and is accepted as a valid user.

These agents can extend the trace in any way perm itted by the protocol and can

forward messages th a t they cannot read. Messages may include:

agent names, nonces, timestamps, keys, compound messages, hashed messages,

encrypted messages. There are two kinds of events:

example with the approximation o f Genet and Klay, no distinction is made for two nonces sent

by the same agent, so the no emptiness is observed even if one nonce is secured like for IS0611

protocol.

99

• S a y s A B X : the agent A sends the message X to the agent B.

• N o te s A X : the agent A stores the message X internally.

To m anipulate the event lists, he defines three operations: p a r ts , a n a lz and

sy n th . These operations are needed to express assertions and describe the possible

actions of the attacker. They are defined by induction on possibly infinite sets of

messages.

If the set H contains an agent’s initial knowledge and the history of all messages

sent in a trace, then we have:

• p a r ts H , the components of messages in H th a t could be obtained by decom­

posing complex messages and breaking every encryption.

• a n a lz H , the components of messages in H th a t could be decrypted using only

the information contained in H .

• s y n th H , the set of all messages th a t could be built up using messages in H

as components.

So if the set H shows all the traffic in the network, then the attacker can send

fraudulent messages drawn from the set sy n th (a n a lz H).

The evolution of a trace is defined by 4 types of messages tha t model precise

events:

1. initial trace th a t is an empty list (Nil on Figure 4.3);

2. protocol step tha t adds events to the current trace if some pre-conditions are

satisfied. NS1 in Figure 4.3 models the first step of the Needham-Schroeder-

Lowe protocol [Low95] (cf. Figure 3.6);

3. fake message that defines how the message is created (pre-condition) and sent

by the intruder (Fake on Figure 4.3);

4. accidental message tha t models the accidental loss of information by an agent

(Oops on Figure 4.3 models the loss of the session key in the symmetric key

Needham-Schroeder protocol [NS78]).

100

Theory NS_Public = Public:

consts ns-public :: “event list set”

• • •

(^Initial trace is empty*)

Nil: “[] : nB-public”

(*If X is what the intruder can learn from the trace evsf

the event “Says...” is added to the trace evsf.*)

Fake: “[|evsf: ns.public; X : synth (analz (spies evsf))|] = >

Says Spy B X # evsf : ns.public”

(*If evsl is a trace and NABO is a nonce not previously used in evsl

the event “Says...” is added to the trace evsl.*)

NS1: “[| evsl : ns.public; Nonce NABO used evsl |] = >

Says A B {¡Crypt (pubK B) {|Nonce NABO, Agent A|}|}

evsl : ns.public”

• • •

(*This message models possible leaks of session keys.*)

Oops: “[|evso : ns.public; Says Server B {|Nonce NABO, X,

Crypt (shrK B) {|Nonce NBAO, Key K|}|} : set evso |] ==>•

Notes Spy {|Nonce NABO, Nonce NBAO, Key K|} # evso : ns.public”

Figure 4.3: Example of Isabelle specification

Several protocol properties can be verified by induction on the trace. This means
that the method checks that each type of message introduced above preserves the
properties. If a rule does not satisfy the property, then a flaw has been discovered.
The properties that can be verified with this technique are:

• possibility properties, which assure that message formats agree from one step
to the next.

• forwarding lemmas, which assure that the spy will not learn anything new by
seeing a message that an agent forwards and can not decrypt.

• regularity lemmas, which assure that whatever the spy does he can never

101

get hold of particular information (excluding information known by the bad

agents). For example the intruder never acquires of a secret key initially shared

by two trusted agents.

• unicity theorems, which assure th a t session keys and timestamps uniquely

identify their message.

• secrecy theorems, which assure that secret information can not be caught by

the intruder.

• authenticity guarantees, which assure the authenticity of information.

Using the Isabelle theorem prover [Pau94], Paulson verified a large range of pro­

tocols: the Internet protocol TLS [Gro96b, Pau99], the Kerberos protocol [BP98a,

BP97, BP98b], the SET protocol [BMPTOO, PauOl, BMP02, BMP03] and some

other protocols[Pau98]. The proofs of these protocols are available on the Isabelle

website3.

The inductive approach has successfully verified many protocols, so what is the

advantage of combining it w ith the approximation technique and how are these

techniques combined?

4.2.2 W hy and How?

By combining the inductive approach [Pau98] and the approximation technique, the

advantages of each m ethod are exploited. Both approaches reason on traces and are

easy to understand.

The inductive approach is a good m ethod of verification which can verify several

properties. But in this approach, the secrecy and authenticity properties/theorem s

are very difficult to prove (to have an idea, look at the proof of the Needham-

Schroeder protocol on the Isabelle website). The proofs require an experienced user

to introduce the right lemma at the right tim e to make the proofs stop.

On the other hand, with the approximation technique, a quick and semi-automatic

(the user only enters the TRS, the approximation function, the initial automaton)
3http://wTvw .cl.cam .ac.uk/Research/H VG /Isabelle/library/H O L/A uth/

102

http://wTvw.cl.cam.ac.uk/Research/HVG/Isabelle/library/HOL/Auth/

verification of these two properties can be done. The user does not need to be

an expert to write the TRS, the initial autom aton and the approximation function.

Chapter 5 will explain how the TRS, the approximation function, the initial autom a­

ton can be automatically generated from an Isabelle specification. The autom aton

for the negation of the secrecy is autom atically generated and the autom aton for

the negation of the authentication based on “c_resp” and “c_init” can be re-used for

different protocols.

In both techniques, the secrecy of the information is proven for honest agents

and assumes th a t no accident reveals the information to the intruder. In the induc­

tive approach, the authenticity is proven for honest agents. This is established if

honest agents received their last message with the information they expected, given

tha t they sent the correct messages previously. In the approximation approach, au­

thenticity is proven for honest agents. This is established if honest agents received

their last message with the information they expected, if the message was created by

the right agent, and there was no accidental loss. The approximation computes an

over-approximation of the set of all the messages that can be sent, thus the second

condition to establish the authenticity in the inductive approach is guaranteed.

Hence, by using the approximation in the inductive proof, the user’s work can

be simplified and the tim e spent in the verification of protocols can be reduced.

W hen the properties cannot be verified by the approximation, the results of the

unsuccessful verification will give information that will help the user to carry the

inductive approach.

The techniques will be combined as follow:

1. The approximation technique is used to verify the secrecy and authentication

properties.

2. If the properties are satisfied, these results are used as axioms in the inductive

m ethod. If the properties are not satisfied, the inductive approach is used to

check if a flaw really exists.

By looking at the approximation function and at the approximation automa-

103

ton, the user can find the protocol step which might lead to a flaw and use

th a t information to do his inductive proof. Each state used in the approximar

tion function is linked to a specific term (known information like ag t(q2)) or

a specific rewrite rule (unknown information like encr(o_l, 6.1, c_l)). Thus by

looking at states tha t are used in the transition add(...) —> q i3 in the approxi­

m ation autom aton, it is possible to trace back messages th a t might lead to a

flaw in the protocol.

3. The inductive approach is used to prove the remaining properties (the proofs

of those properties are mainly the same for all the protocols [Pau98]).

Chapter 5.3 will illustrate using real examples how the idea works. The approx­

imation technique can simplify the work of an Isabelle user.

4.3 C onclusion

In this chapter, we introduced a substantial and significant improvement to Genet

and Klay’s approach by:

1. defining an autom atically generated approximation function th a t ensures that:

• the com putation of the autom aton terminates,

• and the secrecy and authentication can be verified on the resulting au­

tomaton;

2. combining this improved approach with the inductive approach of Paulson to

take advantage of the strengths of bo th techniques.

The next chapter will introduce the tool developed to test these improvements

and will detail the results of experiments carried out.

104

Chapter 5

Prototype

In [GKOOa], a prototype based on a tree autom ata library1 developed by Thomas

Genet [Gen98b] for the ELAN2 prototyping environment had been used to carry

out experiments on the Needham-Schroeder-Lowe protocol. The prototype was not

optimized for the completion algorithm (cf. Algorithm 2). Thomas Genet and

Valérie Viet Triem Tong [GT01] implemented Tim buk3. Timbuk is a library for

OCAML4 [RV98, LDG+01] th a t is optimized for the com putation of reachable con­

figurations of a system using the completion algorithm.

To be able to validate the improvements described in Chapter 4, in particular

the approxim ation function, a prototype was implemented around Timbuk. The

prototype extracts the protocol steps from an Isabelle specification and generates

the input file for Tim buk (alphabet + variables + TRS + initial autom aton +

approxim ation function). The prototype also generates the autom aton to verify

secrecy properties. Before the prototype is presented, the Tim buk library must be

introduced.

1 http://w w w .loria.fr/equipes/protheo/SO FTW A R ES/ELA N /exam ples/elan-autom ata.htm l
2http://w w w .loria.fr/equipes/protheo/SO FT W A R E S/E L A N /
3h ttp ://www.irisa.fi:/lande/genet /tim buk/index.htm l
4h ttp ://cam l.inria.fr/ocam l/index.htm l

105

http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/examples/elan-automata.html
http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/
http://www.irisa.fi:/lande/genet
http://caml.inria.fr/ocaml/index.html

5.1 T im buk library

Thig library offers basic functions on non-deterministic finite tree autom ata, such

■ boolean operations: intersection, union, inversion;

■ norm alization of transitions;

■ reading and writing autom ata to disk.

This tool was chosen as it offers the possibility to compute the approximation

of a set of descendants of an initial autom aton from a TRS w ith an approximation

function according to the completion algorithm (cf. Algorithm 2).

The form at of the input file to compute this approxim ation is given by Figure 5.1.

Ops ... alphabet used

Vara ... list of variables used

TRS R

... list of rules: first term — > second term

Automaton automat

States ... list of states

Final States ... list of states

Transitions

... list of transitions: first term —► second term

Approximation R1

States ... list of states

Rules

... list of normalization rules: [term to normalize] —-> [normalization process]

Figure 5.1: Tim buk input file

The approxim ation R 1 in 5.1 is optional as Tim buk offers 4 modes:

■ autom atic: no approxim ation R1 has been given and the algorithm uses the

approxim ation function 7 (Definition 13). It means th a t new states are created

for each step of the completion and the com putation may not terminate.

• step-by-step: no approxim ation R1 has been given and the user normalizes the

terms at each step of the completion.

• semi-automatic: an approximation R1 is given by the user. In tha t mode the

user can either enter approximation rules where all the variables are substi­

tu ted or where some variables are kept.

For example, the user can enter [N(q2 , <73)] — > [N(q2, q3) —> <75] and

[N(q2,q 4)] — ► [N(q2,q4) -4 qs] or he can enter [JV (x ,j/)] — ► [N(x, y) - 4 q5].

During the com putation Timbuk will substitute the variables, and N (q2,q3)

and N (q 2, <74) will be linked to <75. Thus at the end, in the approximation

autom aton in bo th cases, we have N (q 2, q3) - 4 <75 and N (q 2, <74) - 4 <75.

» combination of the previous modes.

It was decided to use Tim buk in the semi-automatic mode by developing a tool

that autom atically generates the input file for Timbuk. The user would only have

to give the protocol specification and then would get the input file for Timbuk.

5.2 IS2TiF (Isabelle Specification to T im buk File)

This section explains how our prototype IS2TiF (Isabelle Specification to Timbuk

File) works and also how to use it. The tool simplifies the user’s work by generating

the correct input file for Tim buk from a protocol specification and also the negation

autom ata for the secrecy properties.

As the previous section shows, the Timbuk file can roughly be split into 3 parts:

the TRS, the initial autom aton and the approximation function. The prototype

translates the protocol specification into rewrite rules using compiler translation

techniques. The TRS is then used to generate the approxim ation function. Since

the initial autom aton is the same for all protocols, it is saved into a file.

107

The negation autom aton ia produced using compiler translation techniques from

a specification of the information that must be secret.

5.2.1 T R S + In itia l autom aton + A pproxim ation function

The user is presented w ith two options, depending on whether he wishes to use the

combining approach (cf. Section 4.2) or ju st the approxim ation technique. The

protocol specification can be saved in the file in p u tI T .tx t or an ISABELLE speci­

fication can be w ritten and the prototype used to extract the protocol’s steps into

in p u tIT .tx t

In in pu tIT .tx t, messages follow the ISABELLE form at Says A B M where A

and B are agent names and M is the message sent by A to B. Messages can contain

(cf. Table 5.1):

• agent names;

• nonces;

• keys (public keys, shared keys, complex keys);

• session identifier;

• pre-m aster secret;

• hashed messages (using a key or not);

• encrypted messages.

In Table 5.1, one notices th a t the nonces and shared keys end w ith a number,

for example N once NABO. This is because agents can share more than one key and

nonce in a protocol run.

This is well illustrated in the following example: in a protocol an agent can

create two nonces, one known by everybody and one th a t should be secret. In

[GKOOa], those nonces would have been modeled by the same term, for example

N (a g t(a),a g t(b)) and the verification of the secrecy of the second nonce would have

BThe file where the prototype ia going to look for the protocol’s steps

108

A gent A name of agent A

Nonce NABO nonce number 0 created by A to communicate with B

If in the same protocol you have two nonces between A and B,

you have NABO and NAB1

P ubK A public key of A

P riK A private key of A

ShrK ABO key number 0 shared by A and B

If in the same protocol you have two keys between A and B,

you have ABO and AB1

K ey (Ij) (I2) I 3 complex key built with information I i , /2 and I3

Sid AB session identifier created by A to communicate with B

PM S AB pre-master secret created by A to communicate with B

H ash M M is hashed information

H ash (K) M M is hashed information with the key K

C ryp t (K) M M is encrypted with the key K

{IIivM} concatenation of the information 7i and J2

Table 5.1: Syntax and semantics used in inputIT.txt

failed. By adding a number at the end of nonces, those nonces can now been

distinguished by having for example N(agt(a),agt(b),0) and N(agt(a),agt(b),l).

W hen the file inputIT.txt is available, the program does a lexical and syntax

analysis of this file. It builds an abstract syntax tree of the protocol steps. The

lexical analysis reduces the text of each line to independent lexical units. Then the

syntax analysis uses those units to build the abstract syntax tree.

To illustrate this process, in Table 5.2, we have the information {| Agent A, Nonce

NAB0\}. We first apply a lexical analysis to this information and get the following

sequence of lexical units: Lsymbol “{ | ”, LAgent, LString “A ”, Lsymbol LNonce,

LString “NABO” and Lsymbol “|} ”. Then by applying a syntax analysis, we get an

abstract syntax tree of the initial information.

109

Isabelle line {|Agent A, Nonce NAB0|}

■JJ- S y n t a x a n a ly s is ^ L e x ic a] a n alysiB

Sequence o f lexical Lsymbol LAgent, LString “A”, Lsymbol

un its LNonce, LString “NABO”, Lsymbol “|}”

JJ- S y n t a x a n a ly s is Ĵ- S y n t a x a n a ly s is

T lin
Syntax tree Agent ^ ^ N o n c e “NABO”

Table 5.2: Lexical and syntax analysis example

5.2.1.1 TRS

Using the syntax tree in memory, our prototype generates the TRS.

A message sent will be used as a pre-condition to send another one. Each protocol

step is used to generate the first term , pre-condition , of one rewrite rule and the

second term , response, of another one.

For each of the protocol steps, the prototype creates and saves all the first terms

in the file T R S l.tx t and all the second terms in the file T R S2.tx t. To generate the

terms, the following rules are applied to each step:

• for the first term of a rewrite rule:

1. only information known by the receiver appears clearly.

For example, if an agent receives a nonce th a t he had created, we have

N(agt(a),agt(b),tO). Otherwise we have N (ai, b i, ti) .

2. if the receiver has the right decryption key then he has access to the

encrypted information.

So for example, if an agent receives information encrypted w ith his public

key then he has access to th a t information and we have encr(pubkey(agt(b)),ai,...).

Otherwise we have encr(ai, b 2, C3) .

• for the second term of a rewrite rule:

1. only information known by the sender appears clearly.

2. sender can encrypt information if he has the right encryption key.

110

In order to reduce the com putation time of the approxim ation automaton, the

messages are typed. T hat means th a t agents know the format of messages and will

only reply to messages following the right format.

Table 5.3 shows the TRS rules generated for the first step of the Needham-

Schroeder-Lowe protocol.

Isabelle

specification

Says A B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|}

TRS — > U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)), agt(a),

cons(N(agt(a), agt(b), tO), agt(a)))))

mesg(a_4, agt(b), encr(pubkey(agt(b)), a_3, cons(N(a.l, b_l, t_l),

agt(a)))) — > U(LHS, - ■ ■)

Table 5.3: Example of transform ation

In the row “TR S”, the first rule is easy to understand, the agent knows all the

information, which is why everything appears clearly.

The second rewrite rule is a bit more complex, here the message is the first

term of the rewrite rule. Therefore when the agent receives the message, he does

not know who sent and encrypted it, which is why we have a_4 and a_3 (and not

agt(a_4) and agt(a_3) as it could be from a server). However, the agent has access

to the information encrypted as the message has been encrypted w ith his public key,

pubkey(agt(b)), and he knows his private key, needed to decrypt the message. As

messages are typed, he knows th a t the first information is a nonce, but as he did

not create it, we have N(a_l, b_l, t_l). He is also expecting an agent’s name, which

explains the agt(a) subterm.

The tool does not generate the rewrite rules for the authentication (rules with

c Jn it and c_resp). As the authentication might require a more complex condition

than ju st the reception of the last message sent, the user has to enter these rules

by hand if he wants to verify such properties. These rules will be saved in Sin it.tx t

and Sresp.txt. The program then generates T R S .tx t by linking all the first terms

111

of T R S l.tx t to tlieir m atch in T R S 2 .tx t and then by adding the rules from S in it.tx t

and Sresp.txt.

5.2.1.2 Initial automaton

The in truder’s abilities are the same for all protocols (Dolev-Yao model [DY83]).

The initial configuration of the network is also the same for all protocols: everybody

wants to communicate with everyone. T hat is why the initial autom aton can be

saved in a file, which will be re-used for every verification.

The initial autom aton defines the number of participants and the communica­

tions tha t will be established. [CLC03] proved th a t two agents are sufficient for the

analysis of security properties of cryptographic protocols when the protocols allow

an agent to talk to himself (“self talking” protocol). If the protocol does not allow

“agents to talk to themselves” (“not self talking” protocol) and there is an attack

involving n agents, then there is an attack involving at most k + 1 agents (k is the

number of roles th a t an agent can play). So in order to use these results to opti­

mize the run-tim e of the com putation of the approximation autom aton, four initial

autom ata are identified:

■ if the protocol allows an agent to talk to himself:

— one autom aton with an honest agent A and a set of untrusted agents and

where the communications between A and A, A and the set, the set and

the set are going to be established;

— one autom aton with a server S, an honest agent A and a set of untrusted

agents and where the communications between A and A, A and the set,

the set and the set are going to be established. This is when a trusted

server is used by the agents to establish their communications.

• if the protocol does not allow an agent to talk to himself:

— one autom aton with two honest agents, A and B, and a set of untrusted

agents and where the communications between A and B, A and the set,

B and the set, the set and the set are going to be established;

112

— one autom aton with a server S, two honest agents, A and B, and a set

of untrusted agents and where the communications between A and B, A

and the set, B and the set, the set and the set are going to be established.

The rewrite rules criticize the in truder’s capacities, the AC rewrite rules and

the initial autom aton for protocols w ithout a server are saved in the file automa-

tonwosl.tx t if protocols allow “self talking” and in the file automatonwos2.txt if

protocols do not allow “self talking” . Those files do not include rewrite rules and

transitions involving a server. The rewrite rules and initial autom aton for protocols

with a server are in the files automatonwsl.txt for “self talking” protocols (same file

as automatonwosl.txt + rewrite rules and transitions involving a server) and files

automatonws2.txt for “none self talking” protocols. The user is also free to add

rewrite rules or transitions into those files if he wants to change the initial assump­

tions (for example if he decides th a t initially the intruder knows a shared secret

between trusted agents).

5.2.1.3 Approximation function

In Timbuk, an approxim ation rule is composed of two terms. The first term cor­

responds to the term th a t will be normalized and the second to the normalization

process th a t will be used during the computation of the approximation automaton

by Timbuk.

The process to generate the approximation function is identical to the process

for generating the TRS:

1. generation of the first terms, file approxl.txt (terms to normalize),

2. generation of the second terms, file approx2.txt (normalization processes),

3. creation of a file approx.txt (cf. Figure 5.2) w ith approxl.txt, approx2.txt and

finapprox.txt th a t contains approximation rules for c Jn it rules, c_resp rules

and AC rules.

The approxim ation rules are generated from the second term s of rewrite rules of

the protocol steps. For each rule, the sender and receiver variables are replaced by

113

the states linked to the agents. There are nine substitutions corresponding to the

nine possible exchanges between Alice, Bob and the rest (cf. Section 3.2.2). The

reader may wonder why there are nine cases whereas in the initial automaton, the

nine possible exchanges are not considered anymore. This is to make sure tha t the

user can alter the initial autom aton without caring about the approximation, since

the approxim ation is generated for the nine possible exchanges.

Figure 5.2 gives an idea of the format of the approximation produced by the

tool. On this figure, two approximation rules, one when an agent creates and sends

a nonce (first rule) and one when an agent forwards a nonce (second rule), are given.

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(agt(ql), agt(q2), qtO),

agt(ql))))) —► ql3] — > [LHS -4 ql3 agt(ql) —► q4 agt(q2) —► q5 N(q4, q5, qtO) -> q l6

cons(ql6, q4) —> ql5 pubkey(q5) -* ql4 encr(ql4, q4, ql5) —> ql3

mesg(q4, q5, ql3) ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(x, y, t), agt(qO)))))

-»• ql3] — y [LHS —> ql3 agt(qO) —► q3 N(x, y, t) -> q70 cons(q70, q3) —> q69

pubkey(q3) —► q66 encr(q66, q3, q69) -4 ql3 mesg(q3, q3, ql3) ql3]

Figure 5.2: Example of approximations

We said th a t the com putation of the set of /3 functions is exponential (cf. previous

chapter) bu t to deal w ith protocols there is no need to compute the whole set. Only

the (3 w ith substitutions in which only the variables of known term s are substituted

by states are interesting. This is because only known terms contain variables that

are substitu ted by states linked to term s of arity zero during the completion. Only

agents’ names, indices of nonces, indices of keys and freshness levels have an arity

zero. Thus the approxim ation rules produced only care about terms in which agents’

names, indices of nonces, indices of keys and freshness levels are states and not

variables like on Figure 5.2. The normalization process of a rule is then:

• defined using a 0 function when the term to normalize still contains some

free variables (i.e. x , y and t in the second rule in Figure 5.2). During the

114

completion by Timbuk, the free variables are replaced only by relevant states

(those really required by the computation); the result of this substitution will

give the normalization process using 7 f because of the relation between (3 and

7 / (cf. Definition 25).

■ defined using a 7 / function when the term to normalize has all his variable

substitu ted (i.e. the first rule in Figure 5.2).

Moreover, in the set of approximation rules, rules are added for particular ap­

proximations covered by the two simplification rules of Definition 25. For example

if a message contains a t least two terms of identical information (for example one

nonce known and one unknown or two unknown nonces), approximation rules are

added. Those extra rules cover equality cases:

• the message contains one known nonce, N(agt(q2), agt(q2), qtO) and one un­

known nonce N (ai, b i, t i) , 2 rules must be found in the approximation func­

tion.

One w ith N(agt(q2), agt(q2), qtO) and N(q5, q5, qtO) (assuming that agt(q2) is

linked to the state q5) for the case where after substitution and normalization,

the two nonces are identical. Another with N(agt(q2), agt(q2), qtO) and N(ai,

b i, t i) to cover the other cases.

• the message contains two unknown nonces, N (ai, b i, t i) and N(a2, b2, t 2), 2

rules m ust be found

in the approxim ation function.

One w ith only N (ai, b i, t i) or only N(a2, b2, t2) for the case where the two

nonces are identical. And one with N (ai, b i, t i) and N(a2, b2, t 2) to cover the

other cases.

The rule w ith only N (ai, b i, t i) or N(a2, b2, t2) has to be added to cover the

case in which after substitution, the two nonces are equal (second simplification

rule of Definition 25). Between N (ai, b i, t i) and N(a2, b2, t2), the nonce (in

general the information) tha t is the more accessible to the intruder will be

picked. The following rules apply in tha t order:

115

1. if one of the nonces, N(a2, b 2, t 2), is not encapsulated in a cryptographic

primitive then N(a2, b 2, t 2) is picked.

The intruder already has access to N(a2, b 2, t2), so the state linked to

this nonce is already (or will be) in his possession. Using N (ai, b i, ti)

would give him access to N (ai, b i, t i) bu t also to all the nonces linked

to the state q, which we do not want to do as this may give him access

to other nonces th a t might perfectly be inaccessible for the intruder.

2. if one of the nonces, N(a2, b2,t2), is encapsulated in a cryptographic

prim itive but the intruder has access to it (for example if N(a2, b2, t2)

is encrypted with the key of an untrusted agent) then N(a2, b2, t 2) is

picked.

3. if bo th nonces are encrypted but one of the them, say N(a2, b2,t2), has

been encrypted more than the other one, then N(a2, b 2, t 2) is picked.

4. if bo th nonces have the same “encapsulation level” then N (ai, b i, ti) is

picked.

The goal of these rules is to ensure tha t the approximation reveals as little informa­

tion as possible to the intruder.

The com putation of the rules only takes a couple of seconds as in the protocol

context :

• all the terms to normalize will point only to the term inal sta te <713 ;

■ only the term w ith valid substitutions of variables by states linked to terms

of arity zero are considered (terms with only the sub term s of the form agt(x)

where x is substituted).

The normalization for c_init, c_resp and AC terms is always the same so the

approxim ation rules for those terms are saved in finapprox.txt. W hen approxl.tx t

and approx2.tx t are available, the program generates approx.tx t th a t contains the

approxim ation function (protocol steps -approxl —>■ approx2- + finapprox.txt).

116

By concatenating T R S.tx t, au to m a to n w o sl.tx t or au tom aton w os2 .tx t or automa-

to n w s l.tx t or au tom atonw s2.tx t, and approx.txt, the prototype creates the input file

for Timbuk. In Appendix D, the Tim buk file uaed to verify the Needham-Schroeder

protocol where an agent cannot talk to himself, is presented.

5 .2 .2 N e g a t io n a u to m a to n

The user enters the information that he wants to check in a file, for example se­

crecy. txt. In tha t file, the information must have the form I n f A B M where A is

the sender and B the receiver of the message where the information M first appears.

M m ust follow the syntax presented in Table 5.1.

The program does a lexical and syntax analysis of the file, then from the syntax

tree it generates the autom aton criticize tha t the information M known by the honest

agents (Alice and Bob) is also known by the intruder. If the user wants to check if a

nonce between Alice and Bob is secret, then he has to enter In f A B {\N A B 0 \} and

the prototype will produce the autom aton in Figure 5.3.

Automaton Not-Secret

States ql q2 q4 q5 ql3 qtO

Final States ql3

Transitions

A -4 ql agt(ql) q4
B q2 agt(q2) -4 q5

U(ql3, ql3) -» ql3 tO —> qtO

N(q4, q5) ql3 N(q5, q4, qtO) -> ql3

N(q4, q4, qtO) ql3 N(q5, q5, qtO) -> çl3

Figure 5.3: Nonces between Alice and Bob

5 .2 .3 U s e r g u id e l in e s t o u s e t h e I S 2 T iF

In Ocaml, the user has to load the file is2 tif.m l and then enter go ();; to launch

IS2Tif. The user can enter his commands (cf. Table 5.4) after the prompt. When

the user has generated his Tim buk input file and all the negation autom ata for the

117

secrecy properties6, he can leave IS2TiF. He can then use his files in Timbuk to

compute the approximation autom aton of his protocol and check the properties.

For the user who is not familiar with Timbuk, we have a file approx.m l that the

user can load in Ocaml and enter:

let aut_comp=MyComp.complet r protot r l [];;

This file can be used to compute the approximation if the user has saved his input

file under approx.txt. W hen the user has done that, he has access to a menu and

can launch the com putation of the approximation.

Figure 5.4 summarizes how a user verifies protocols with IS2TiF and Timbuk. He

has to give the protocol and the properties to IS2TiF (except for the authentication,

the negation autom aton is the same for all the protocol so this autom aton is provided

to the user). Then he uses the files produced by IS2TiF to launch the computation

of the approxim ation before he can check the autom ata intersection with Timbuk.

5.3 E xperim ents

To validate the improvements and the prototype some tests were conducted on simple

protocols taken from [CJ97] and on the Transport Layer Security protocol [Gro96b].

The tests have been carried out on a Pentium III (733 MHz) with 128Mb of RAM

+ 500Mb of v irtual memory managed by Windows NT.

The objectives of those experiments are multiple. The theory behind the approx­

imation approach is w atertight if used under the right conditions (cf. Proposition 9).

The first objective of those experiments is to test tha t our prototype is producing

the correct input file for Timbuk and to check th a t the produced approximations

are correct (i.e. no bug in Timbuk). The second objective is to check that the

approach can be used on concrete protocol verification and more im portantly that

the verification of those protocols does not miss any of the known flaws. The third

flthe negation autom aton for the authentication property will be the same for all the protocols

so it is saved in file authen.txt; this automaton was presented in Chapter 3 Figure 3.13

118

A ddSinit r replaces the current TRS rule in Sinit.txt by r

(ie. mesg(agt(a_6), agt(a), encr (pubkey(agt(a)),

agt(a_5), cons(N(agt(a), agt(b)), a_2))) U(LHS,

c-init(agt(a), agt(b),agt(a_5))));

if the user does not want any rule it just does AddSinit

A ddSrep r replaces the current TRS rule in Sresp.txt by r;

if the user does not want any rule it just does AddSrep

End closes IS2T1F

E x trac t filename extracts the protocol steps from the Isabelle file

filename and saves them in inputIT.txt

(ie. Extract ns.txt)

G en e ra te l filename generates the input file, filename, for Timbuk for

protocols allowing an agent to talk to himself

(ie. Generatel toto.txt)

G enerate2 filename generates the input file, filename, for Timbuk for

protocols allowing an agent to talk to himself

(ie. Generate2 toto.txt)

G enerate_autom aton filename generates the file, filename, which contains the

automaton to check a secrecy property

(ie. Generate-automaton Nonce.txt)

Load filename loads the file in memory (ie. Load input.txt)

List lists the TRS rules

Table 5.4: IS2TiF commands

objective is to test the effectiveness of the implemented solution for the combination

approach. The prototype was not define w ith the help of a model (Z,B, UML) and

the test campaign was not built around the protocol functionalities bu t around a set

of protocols. Thus the prototype is reliable only for the protocols we checked as we

manually checked the results. The prototype should have been unit tested to gain

in reliability.

119

< 1 ____ USER
Isabelle Specification

or
Protocol Specification

Secrecy property
or

Freshness property

TRS
+

Initial automaton
+

Approximation function,

Negation
automaton

Negation
automaton

^authentication]

 I ..

Intersection of automata

Figure 5.4: IS2TiF + Timbuk

5.3.1 Standard protocols

The protocols studied here are well known, as are their flaws, and are usually used

to validate new verification techniques:

• Needham-Schroeder-Lowe [Low95];

• Needham-Schroeder [NS78];

■ Otway-Rees simplified [AN96];

■ Otway-Rees modified by us;

• Woo-Lam Pi3 [WL94];

• Andrew Secure R P C [Sat89].

For each protocol, the secrecy and authentication properties were checked. Table 5.5

summarizes the results7 obtained w ith our approximation. W here it indicates “may
7the first tim e is the tim e to compute the approximation autom aton when the protocol allows

an agent to talk to himself. The second tim e is the tim e to compute the approximation automaton

120

be a flaw” , then the flaw was found using the inductive approach. Table 5.5 also

illustrates the main drawback of the approach, the com putation tim e ia exponential;

just by adding one agent the execution times increase drastically. B ut the expensive

time approach can cover an extra constraint th a t stands th a t an agent cannot speak

to himself. Thus the few exra minutes are not im portant if tha t constraint is strong

for the protocol verified.

P ro to c o ls

(com putational time)

P r o

S e c recy

p e r tie s

A u th e n tic a t io n

Needham-Schroeder sym m etric key (41s and 6min 10s)

Needham-Schroeder (18s and 3min 50s)

Needham-Schroeder-Lowe (16s and lm in 59s)

Otway Rees simplified (lm in 03s and 17min 12s)

Otway Rees (ours) (lm in 22s and 20min)

Woo Lam Pi3 (31s and 14min)

Andrew Secure R PC (48s and 10min 50s)

verified

may be a flaw

verified

verified

verified

none

verified

verified

may be a flaw

verified

verified

may be a flaw

verified

verified

Table 5.5: Test results

No unknown flaws were discovered. The work (with the new approximation

function and the combining approach) done on each protocol is the same. The ver­

ification of the Needham-Schroeder-Lowe is detailed in the following section. Then

the properties for each protocol are described.

5.3.1.1 New function + combining approach

The Needham-Schroeder-Lowe protocol was introduced in Section 3.2.2. Alice and

Bob want to establish a secure communication using a public key infrastructure.

Before they send any vital information, they use the Needham-Schroeder-Lowe pro­

tocol (cf. Figure 5.5) to exchange nonces tha t later should perm it the identification

of senders of messages.

To verify the protocol, the first step is to write the Isabelle specification. Figure

5.6 shows the protocol specification using Isabelle syntax. T hen the prototype is

when the protocol does not allow an agent to talk to himself

121

Alice initiates a protocol run, sending a nonce Na and her name A to Bob.

Message 1: A =£• B : {iVa,A}*t

Bob responds to Alice’s message with a further nonce Nb.

Message 2: B ==>• A : {TVa, JV6,5}j<-q

Alice proves her existence by sending Nb back to Bob.

Message 3: A = » B : {N b }Kb

Figure 5.5: Needham-Schroeder-Lowe protocol

used to generate the Tim buk input file. W hen this file is created, the Timbuk

library is used to compute the approximation autom aton.

W hen the com putation of the approximation autom aton is over, the secrecy and

the authentication properties can be verified.

T h e se c re c y p r o p e r ty The secrecy property th a t m ust be guaranteed by the pro­

tocol is: “The intruder can never access the nonces created by Alice (to communicate

with Bob) or Bob (to communicate with Alice)”.

To verify this property w ith the approximation technique, first an autom aton

of the negation of this property is autom atically generated w ith IS2TiF. This au­

tom aton is identical to the one in [GKOOa] and given in Figure 3.12 in Chapter

3.2.2.

To refresh the reader’s memory the autom aton is given in Figure 5.7. “Not_Secret”

recognizes the nonces created by Alice and Bob to communicate with each other.

The intersection of this autom aton with the approxim ation one is empty, so the

protocol satisfies the property.

T h e a u th e n t ic a t io n p r o p e r ty The authentication property is: “If Alice thinks

that she communicates with Bob, then she really speaks with Bob. And if Bob thinks

that he communicates with Alice then he really talks with Alice”.

This autom aton is identical to the one in [GKOOa] and given in Figure 3.13 in

122

Theory NS-Public = Public:

• • •

(* Alice initiates a protocol run, sending a nonce to Bob*)

NS1: “[| evsl : ns.public; Nonce NABO used evsl |] = >

Says A B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|}

evsl : ns_public”

(*Bob responds to Alice’s message with a further nonce*)

NS2: “[| evs2 : ns-public; Nonce NBAO used evs2;

Says A’ B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|} : set evs2 |] ==>

Says B A {[Crypt (pubK A) {|Nonce NABO, Nonce NBAO, Agent B|}|}

evs2 : ns-public”

(*Alice proves her existence by sending NBAO back to Bob.*)

NS3: “[| evs3 : ns.public;

Says A B {|Crypt (pubK B) {|Nonce NABO, Agent A|}|} : set evs3;

Says B’ A {|Crypt (pubK A) {|Nonce NABO, Nonce NBAO, Agent B|}|}:

set evs3|] =>■ Says A B {|Crypt (pubK B) {|Nonce NBA0|}|}

evs3 : ns.public”

Figure 5.6: Inductive specification of the Needham-Schroeder-Lowe protocol

Automaton Not-Seer et

States «1 «2 94 «S «13
Final States «13
Transitions

A -> Ql agt(«i) ->■ «4

B —> q-2 agt(«2) -> «5

U(«i3, «is) —>• «13

N(«4, 95) «13 N(«5, «4) —> «13

N(«4, «4) ->■ «13 N(«5, «5) -> «13

Figure 5.7: Nonces between Alice and Bob

123

Chapter 3.2.2.

A u tom aton W rong .Belief

States «o qi «2 «3 «4 Qs «0 qi3

F in al States «13
Transitions

0 -► «o

s(«o) - 4 qo agt(«0) ->■ «3

A qi agt(« i) -¥ qi

B q2 agt(«2) -> «5

U(«13, «13) —> «13

cJnit(<?4, q5, Qs) «13 cinit(ç4, qs, qi) «13

c_resp(«5, «4, «3) -> 913 c_resp(gs, «4, «5) ->• «13
c-init(<?s , q4, q3) -> qi3 c jn it(« s , qi, q6) -> «13

c_resp(g4, qs , q3) -» q13 c_resp(«4, «5, qi) -> «13

Figure 5.8: Alice and Bob do not really communicate with each other

In Figure 5.8, “WrongJBelief” recognizes all the possible wrong beliefs for commu­

nications between Alice and Bob. Again by checking the intersection of “Wrong_Belief ’

w ith the approxim ation autom aton, it is checked tha t the approxim ation automaton

can recognize wrong beliefs. In other words, it is checked if the com putation of the

reachable states can lead Alice or Bob to wrong beliefs.

For this version of the Needham-Schroeder protocol, the intersection of this au­

tom aton w ith the approxim ation one is empty, so the protocol satisfies the property.

How are approximation results used? The secrecy and the authentication

properties are verified by the protocol. These results can be used in our inductive

proof.

In the inductive proof for this protocol8, the theorems corresponding to those

properties are:

• for the secrecy:

8http ://w w w .cl. cam .ac.uk/R eaearch/H V G /Isabelle/library/H O L /A uth/

124

http://www.cl

- Spy_not_see_NAB: the Spy does not see the nonce sent in

the message N S1 if Alice and Bob are secure;

— Spy_not_see_NBA: the Spy does not see the nonce sent in the message

N S 2 if Alice and Bob are secure.

With the automata technique, it is proven that the intruder never catches the

nonces exchanged between Alice and Bob. If the intruder cannot see the nonces of

Alice and Bob, then he does not see the one sent in N S1 and the one sent in NS2.

The first time the protocol was proven with Isabelle, these two theorems could

have had been added as axioms in the Isabelle specification using the result of the

approximation instead of having been proven by the user.

• for the authentication:

- A_trusts_NS2: if Alice receives message N S2 and has used NAB to start

a run, then Bob has sent message NS2;

— B_trusts_NS3: if Bob receives message N S3 and has used NBA in NS2,

then Alice has sent message NS3.

The Genet and Klay approach checks that when Alice wants to establish a com­

munication with Bob, after N S2 she really speaks with him. We also verified that

when Bob thinks that he is responding to Alice, he really speaks with Alice after

NS3. So the theorems “A_trusts JNS2” and “B_trusts_NS3” are also true. Once again

instead of having to prove these theorems with Isabelle, the result of the approxi­

mation would have allowed the user to insert them in the Isabelle specification as

axioms (cf. Figure 5.9).

For the Needham-Schroeder-Lowe protocol, the secrecy and authentication prop­

erties by approximation are verified. The next section presents the work done on

other basic protocols.

125

Theory NS-Public = Public:
• • •

axioms
Spy-not-see_NAB “[|Saya A B {|Crypt(pubK B) {|Nonce NABO, Agent A|}|} : set evs;

A ~: bad; B ~: bad; evs : ns_public|] =>•
Nonce NABO ~: analz (spies evs)”

Spy-not-see-NBA “[|Says B A {|Crypt (pubK A) {|Nonce NABO, Nonce NBAO,

Agent B|}|} : set evs;
A bad; B ~: bad; evs : ns.public|] =ÿ-

Nonce NBAO ~: analz (spies evs)”

A.trusts_NS2 “[|Says A B {|Crypt(pubK B) {|Nonce NABO, Agent A|}|} : set evs;
Says B’ A {|Crypt(pubK A) {|Nonce NABO, Nonce NBAO,

Agent B|}|} : set evs;
A ~: bad; B ~: bad; evs : ns_public|] =£•

Says B A {|Crypt(pubK A) {|Nonce NABO, Nonce NBAO,
Agent B|}|} : set evs”

B_trusts_NS3 “[|Says B A {|Crypt (pubK A) {|Nonce NABO, Nonce NBAO,
Agent B|}|} : set evs;
Says A’ B {|Crypt (pubK B) {|Nonce NBA0|}|} : set evs;
A ~: bad; B bad; evs : ns_public|] =$■

Says A B {|Crypt (pubK B) {|Nonce NBA0|}|} : set evs”

end

Figure 5.9: New inductive specification of the Needham-Schroeder-Lowe protocol

126

Since the secrecy properties are different from one protocol to another, this section

details the verification done on the other simple protocols.

N eedham -Schroeder sym m etric key In this version of the protocol, Alice and

Bob trust a server (S in Figure 5.10) to create a session key K ab. Then they use

this key to authenticate each other with a nonce.

5.3.1.2 Properties verified on the other protocols

Message 1: A = > S : A, B , N a

Message 2: S A : {N a ,B ,K a h , {Kab, A}Kba}Kaa

Message 3: A =>■ B : {Kab, A }kìs

Message 4: B A :

Message 5: A = > B :{ iV 6 -l}K a 6

Figure 5.10: Needham-Schroeder symmetric key protocol

For this protocol it is proven that K a b and N b can not be discovered by the

intruder, and so at the end of the protocol, Alice and Bob communicate with each

other.

N eedham -Schroeder This protocol has already been introduced in Chapter 1,

as well as its flaw (cf. Figure 1.4). The proof of the same properties also failed on

the approximation automaton computed with the new approximation function.

In Section 4.2, it was indicated that for a non-empty intersection, the approxi­

mation could be useful to validate the existence of a flaw with Isabelle. The Timbuk

file and the approximation automaton of that version of Needham-Schroeder axe

available in Appendix D and Appendix E. For this protocol, the secrecy is not veri­

fied; this means that there is at least one transition from the information captured,

add(q- ■ ■), to the state 913 in the automaton. In the approximation automaton, 19

127

Message 1: A = » B : {iVa,A} * 6

Message 2: B =$■ A : {N a ,N b }Ka

Message 3: A =£• B : {N b}Kb

Figure 5.11: Needham-Schroeder protocol

transitions of the form add(q -•■)—> <713 can be found:

add(q53) -4 gi3 add(qw) -4 <713 add(q76) -4 (713

add(qS2) -4 «13 add(q3) -4 Ç13 add(q4) -4 #13

add(q5) -4 gi3 add(q42) -4 Q13 add(q33) -4 913

add(q-a) -4 <713 add(q6Q) -4 ç13 add(q5i) -4 <713

add(ç88) ->■ «13 add(q43) -4 ç13 add(q3i) -4 g13

add(q2i) -4 <713 add(qai) -4 qt3 add(q52) -4 <713

add(qu) -4 «13

Only the rules that involve the honest agents’ nonces (for example such that

a d d (q •■■) -4 <713 and JV(94,<75, qtO) -4 </• • • are in the automaton) are kept. Thus

only 4 transitions remain:

add{q76) -4 <713 add(q82) -4 <713

add(qeo) -4 çI3 add(q5\) -4 <713

By looking at the states at the right side of the transitions and at the approxi­

mation function, messages leading to the non-empty intersection are found:

128

[U(LHS, mesg(agt(<?2), agt(<?o), encr(pubkey(agt(g0)), agt(<?2), cons(N(a.3, b_3, t_3),
N(agt(«j), agt(«0), qtO))))) -4 <zi3]
—> [LHS -4 q13 agt(<z2) -> «5 ser\(q7) -4 q6 agt(g0) -4 q3 N(q5, q3, qtO) -4 q23

N(a.3, b_3, t.3) -> q51 cona(q51, q23) -4 q52 pubkey(g3) -4 q25 encr(q25, q5, q52) -4 «13

mesg(q5, q3, qX3) -4 «13]

[U(LHS, mesg(agt(gi), agt(«o), encr(pubkey(agt(^0)), agt(Qi), cons(N(a.6, b.6, t_6),
N(agt(gi), agt(go), qtO))))) -4 «13]
— ¥ [LHS -4 gi3 agt(gfi) -4 q4 seiv(q7) -4 % agt(gr0) -4 N(</4, «3, qtO) -4 q33

N(a_6, b_6, t_6) -4 «6o cons(g6o> «33) -4 q61 pubkey(g3) -4 «25 encr(g2S, 94, qe 1) «13

mesg(g4, g3, 913) -4 «13]

[U(LHS, mesg(agt(q2), agt(«0), encr(pubkey(agt(g0)), agt(gr2), N(a_12, b.12, t.12)))) -4 Qi3]
—» [LHS -4 Qi3 agt(qa) -4 <?B serv(<j7) -4 g6 agt(g0) -4 q3 N(a_12, b_12, t.12) -4 q76

pubkey(g3) -4 q25 encrfes, « 5 , Q7g) -4 « 1 3 mesg(g5, g 3 , q 1 3) -4 < ? i 3]

[U(LHS, mesg(agt(«i), agt(<?0), encr(pubkey(agt(g0)), agt(gi), N(a_15, b_15, t_15)))) -4 «13]

—► [LHS -4 «i3 agt(gi) -4 «4 serv(«7) -4 qe agt(q0) -4 q3 N(a_15, b_15, t.15) -4 «82
pubkey(g3) -4 q25 encr(g25, q4, qa2) -4 g13 mesg(g4, «3, «13) gis]_______________

The user knows now that in the inductive proof he must study carefully the

secrecy on the last two messages.

After having proven regularity and unicity lemmas (cf. Section 4.2.1), the user

can go straight to the proof of the secrecy of nonce NBAO in the second message:

“[|Says B A {|Crypt (pubK A) {|Nonce NABO, Nonce NBA0|}|} : set evs;

A bad; B ~: bad; evs : ns_public|] ==> Nonce NBAO ~: analz (spies evs)”

But the proof of this theorem terminates by “false”, so the secrecy of NBAO is not

guaranteed by the protocol.

Otway R ees sim plified In this version of the protocol [AN96], Alice and Bob

trust a server (S in Figure 5.12) to create a session key, K ab. It was verified that the

session key K a b could not be caught by the intruder and that Alice and Bob really

communicate with the person they believe they are communicating at the end.

129

Message 2: B ==>• S : A ,B ,N a ,N b

Message 3: S =>■ B : {N a, A, B ,Kab}Kaa,{Nb, A, B,Kab}i<bs

Message 4: B =>• A : {N a ,A , B , Kab}Kaa

Figure 5.12: Otway Rees simplified protocol

Otway R ees m odified by us In this version of the protocol, we modified the

previous protocol by removing the names of the agents from the information en­

crypted. The secrecy property of the session key K a b is still verified on this version

of the protocol. Nevertheless, the verification of the authenticity property (Alice

and Bob really communicate with the person they think they are) failed.

Message 1: A B : A,B,Na

Message 1: A =>■ B : A ,B ,N a

Message 2: B =>■ S : A ,B ,N a ,N b

Message 3: S =*• B : N a ,{N a ,K a b }K a sA N b,Kab}Kba

Message 4: B A : N a, {Na,Kab}Kaa

Figure 5.13: Otway Rees protocol modified by us

This was not surprising as the Otway-Rees protocol is known to be flawed when

the names of the agents are not sent with the session key [CJ97]. When Alice receives

the last message, she has no way to know that she really shares a key with the person

she intended to.

Figure 5.14 shows how the intruder can manage to make Alice use a session key

thinking that this key is also known by Bob. The attack is simple, Alice starts to

initiate a communication with Bob. Yves, the intruder, has then enough information

to send a fraudulent message to the server. This generates a session key which is

130

sent to Yvea in the third message. Then Yves sends Alice the last message. From

now on, each time Alice receives a message encrypted with the key K a y , she will

think that Bob sent that message.

A ==>• B : A ,B ,N a

Y =4- S : A, Y, N a, N y

S =>• Y : N a, {N a, Kay}Kas, {N y, K a y}Kys

Y =>■ A : N a, {N a, K ay} Kan

Figure 5.14: Otway Rees protocol attack

W oo Lam P i3 This protocol is a one way authentication protocol, that means if

Alice initiates a communication with Bob, then in the end, Bob is sure to commu­

nicate with Alice.

Message 1: A ==> B : A

Message 2: B =>• A : Nb

Message 3: A =>■ B {JVÒ}x„

Message 4: B S: {A,

Message 5: S => B: {N b]Kbe

Figure 5.15: Woo Lam protocol

There was no secrecy property to check on this protocol. The authentication

property that when Bob receives the last message, he really receives the nonce

created to communicate with Alice, was checked. The property was verified by the

protocol.

131

I

Andrew Secure R PC In this protocol Alice and Bob initially shared a key K a b ,

and Alice, who wants to communicate with Bob, will trust him to create a session

key K 'a b (cf. Figure 5.16).

Message 1: A ==> B : A, {N a }Kab

Message 2: B ==>• A : {succNa,Nb}jiab

Message 3: A ==>■ B : {succNb}Kab

Message 4: B = => A : {K'ab, N 'b]Kab

Figure 5.16: Andrew Secure RPC protocol

It was proven that the intruder could not catch the session key K 'ab. It was also

checked that when Alice received a session key, this key was created by Bob and

that when she thinks she is speaking with Bob, she is indeed speaking with him.

5 .3 .2 T ran sp ort Layer S ecu rity p ro to co l

If you have bought something on the Internet, you almost certainly saw on the web

page a message such as “Secure Mode. SSL (Secure Socket Layer) technology is used

to protect your personal information”. SSL [KFK96] was originally developed by

“Netscape Communications Corporation” in order to protect information conveyed

by HTTP applications. Basically, SSL is a protocol where server and client machines

compute session keys from nonces they have exchanged. The latest version of this

protocol is studied here: Transport Layer Security [Gro96b] (TLS for short).

Let us assume that the client wants to buy something on a commercial website

(the server). To conclude the transaction, the client will have to give his credit card

number. The credit card number will be encrypted and sent to the server. But to

encrypt it, the client needs an encryption key and the client needs to be sure that he

is communicating with the server. TLS is there for that. Before critical information

is exchanged, at least two actors need to agree on a common secret and be able to

identify each other. This is the function of the handshake protocol and this is the

132

part of TLS that is verified here.

Figure 5.17 shows the messages exchanged in TLS. The client initializes the com­

munication by sending his name, a nonce, a session identifier and a set of preferences

for encryption and compression. The server replies with a nonce, the session identi­

fier that he received and his encryption and compression preference. Then he sends

another message that contains his public key certificate. The client can also send his

public key certificate. The client generates a 48-byte pre-master-secret (PMS) and

sends it encrypted with the server’s public key. The client can also hash the sever’s

name and nonce, and the pre-master-secret to send them encrypted with his private

key (if he has sent his public key certificate to the server). Now both, the client

and the server calculate the master-secret from the nonces exchanged and the PMS

using a pseudo-random number function (PRF). Then they hash all the previous

messages and the PRF, and they encrypt this piece of information with a session

key created with the PRF and the nonces. Finally they send this cipher text to each

other to confirm the communication.

5.3.2.1 R elated work on SSL/TLS

In [WS96], Wagner and Schneier give their conclusion on their analysis of SSL 3.0.

They do not use any formal technique for this work. They check the resistance of SSL

to well known attacks of protocols, such as replay attacks, cryptanalysis techniques,

etc. Their conclusion is that the protocol has some flaws that can be corrected

without major modifications of the protocol (i.e. passes from the cryptographic

MAC to the HMAC one). Their flaws cannot be found by approximation because

these flaws are cryptanalytic flaws and the approximation cannot detect these flaws.

In his PhD thesis [Die97], Dietrich uses the Non-monotonic Cryptographic Pro­

tocols (NCP) belief logic to analyze SSL 3.0. He proved that SSL was secure against

attacks from a passive eavesdropper. Most of his work was done manually.

In [MSS98], Mitchell, Shmatikov and Stern use a model-checking technique ap­

proach to verify SSL. They start from a simple model of the protocol and check the

properties they want. Then they insert new information into their model and check

new properties. They repeat this process until they arrive at a model that looks

133

Message 1: Client => Server: {C, Nc, Sid, Pc}

Message 2: Server => Client: {N s , Sid, Pa}

Message 3: Server ==> Client: {C ert(S ,K s)}

Message 4: Client ==>■ Server: {Cert(C, K c)} -optional-

Message 5: Client ==?■ Server: {PM S}j<a

Message 6: Client =$■ Server: { H a sh (N s ,S ,P M S)}Kc- 1

M = P R F (P M S , N c, N s)

F inished = H ash(M ,previous messages)

-optional-

Message 7: Client =>• Server: {F in ished}clientK(Nc,Ns,m)

Message 8: Server =>• Client: {F inished}serverK(NCiNl>iM)

Figure 5.17: TLS protocol

like SSL. But their technique works only for a small number of participants in the

protocol, otherwise they will crash the computer memory.

In [Pau99], Paulson, with his inductive approach, successfully used on simple

protocols, presents a verification of the TLS handshake protocol. He verified secrecy

and authenticity properties on a simplified version of TLS (the same as the one we

use in our verification). He wrote the proof script for the Isabelle theorem prover in

2 weeks. And his results are for an unbound number of participants and runs of the

protocol.

In [BPST02], a symbolic model-checker NuMAS [BC01] is used to verify a sim­

plified version of SSL/TLS which is modeled with MATL (MultiAgent Temporal

Logic). MATL can represent both time and beliefs. With this logic they were able

to verify that the protocol guarantees the freshness of the secret information (PMS

134

a n d s e s s io n k e y) .

5.3.2.2 M odelling TLS

A simplified version of TLS (cf. Figure 5.18) is verified in this thesis:

• the optional messages (Messages 4 and 6 in Figure 5.17) are removed;

■ Messages 2 and 3 are gathered together;

■ In Messages 7 and 8, the only information to be hashed is the information to

be exchanged.

These simplifications have been done to reduce the computation time of the

approximation. Without the second simplification (gathering together Messages 2

and 3), the computation requires substantial memory. The reason for this is that

in order to send the last message the client needs to have received Message 2 and

Message 3. This implies a rule of the form “U (Message 3, Message 4) —> Message 7”

in the term rewriting system criticize the protocol steps. Computing “U(Message 3,

Message 4)” requires more time as the size of the protocol trace increases.

The pseudo-random number function (PRF) is modeled as a hash function. The

reason is that the approximation for a PRF is the same as the one for a hash function.

In the full version Messages 4 and 6 are optional so removing them should not

affect the correctness of the protocol.

Gathering together information in Messages 2 and 3 does not affect the correct­

ness of the full protocol as the information can be caught by the intruder whether

it is sent in two separate messages or in one.

Finally hashing message components rather than messages in Message 7 and

8 also does not affect the correctness here. In our approach, the intruder cannot

guess complex information (concatenation of two information, encrypted informa­

tion, etc.) from the hashing of that information and some of the information that

composed the complex information; he needs to know all the information that com­

posed the complex information. This means that if the intruder knows the hashing

of { P M S } ks and the key K s then he cannot deduce { P M S } k s as long as he does

135

Message 1: Client =>■ Server: { C , N c , S i d , P c }

Message 2: Server =>■ Client: { N s , S i d , P a , C e r t (S , K a) }

Message 3: Client = > Server: { P M S } k „

M = H a a h (P M S , N c , N a)

F i n i a h e d = H a s h (M , C , N c , S i d , P c , S , N s , P s , P M S)

Message 4: Client =*■ Server: { F i n i s h e d } cu e n t K (N c , N a , M)

Message 5: Server — V Client: { F i T i i s h 6 d y B e r v e r j (^ j ^ c iN a lM)

Figure 5.18: Simplified version of TLS

not get P M S . Thus, for our intruder, assuming that he knows K s , the hashing of

{ P M S } k s and the hashing of P M S are equivalent, in the sense that he needs to

know P M S to deduce { P M S } k s -

The TRS9 for TLS contains five rules for the protocol steps and the intruder’s

abilities and commutativity rules introduced in Section 3.2.2. A rule to express that

when the intruder knows a complex key, he has access to the information encrypted

with this key, has to be added: U(key(x, y, z), encr(key(x, y, z), a, m)) — > U(LHS,

add(m)). The TLS also contains 2 rules to express the authentication properties; one

of the form U(message_sent, message_received) — ► U(LHS, c_init(- • ■)) for the Client

and one of the form U(message_sent, message_received) — > U(LHS, c_resp(- ■ •)) for

the Server.

The initial automaton is also the same as the one introduced in Section 3.2.2

assuming that A is Client and B is Server. Transitions have been also added to

deal with the new information types used in TLS. The intruder knows the session

identifier created by the unsafe agents, so the transitions sid(<?3, q%) —► qi3\ aid(93, <74)
9The syntax and the sem antics used are summarized in Tcible 4.2.

136

—> fj]3 and sid(q3, 175) —> 513 are found in the automaton. For the same reason, the

pre-master-secret the transitions pms((/3, 93) —>■ <713; pins(93, q^) —> 913 and pms(®,

Q5) —>■ 913 have been added to the automaton. The fact that the intruder can hash

information and create complex keys must be expressed, so the automaton also has

the transitions hashl(g3, <713) ->■ <713 and key(713, <713, qi3) -¥ <713.

After having extended IS2TiF to deal with the session identifier and the pre-

master-secret, IS2TiF is used to compute the approximation function for TLS.

As for the previous protocols two computations were done; one where an agent is

allowed to speak to himself and the other where an agent cannot talk to himself. It

took 27 minutes to get the approximation automaton for the first case and 6 hours

23 minutes for the second case. As for the small protocols, the execution times

highlight the fact that the complexity of the approach is exponential. Nevertheless,

we can be happy as in less than a man day we can verify a medium size protocol.

5.3.2.3 TLS verification

Five properties have been verified for TLS:

• the intruder does not catch the pre-master-secret between the trusted agents

(Server and Client);

• the intruder does not catch the master-secret between the trusted agents

(Server and Client);

• the intruder does not catch the session key between the trusted agents (Server

and Client);

• at the end of the protocol, when the Client thinks that he communicates with

the Server, he really does communicate with the Server;

• at the end of the protocol, when the Server thinks that he responds to the

Client, he really does communicate with the Client.

Secrecy Properties When the approximation automaton has been computed, it

is possible to check secrecy guarantees about:

137

• the pre-master-secret;

• the master secret (M on Figure 5.18);

• server and client session keys.

For each property, an automaton of the negation of the property (“the intruder

has...”) is automatically generated by IS2TÌF. Thus Figure 5.19, Figure 5.20 and

Figure 5.21 respectively model “the intruder caught the pre-master-secret”, “the in­

truder caught the master-secret” and “the intruder caught the session keys” negation

automata.

Then intersections of those automata with the approximation automaton are

computed. Those intersections are em pty , so the properties are verified for the

protocol.

Automaton PMS-Not-Secret

States «0 «1 «2 «3 «4 «5 «6 «13

Final States «13

Transitions

0 —► «o sue (go) -*• q0 a g t (« o) -► «3

A -)• «1 hashl(gf4, <212) -> «13 agt(«i) -+ «4

B -4 «2 agt(«2) -> « s

U(«13, «13) —► «13
pms(«5, «s) -4 «13 pms(«4, «5) -»■ q13

pms(«B, «4) -> q 13 pms(g4, q4) -» «13

Figure 5.19: PMS between Client and Server

A uthentication properties Two authentication properties can be checked on

our protocol one for each role, Server and Client. At the end of the protocol the

client must be sure that he speaks to the server and vice versa.

The verification is carried out using the terms c-resp and c-in it and the same

automaton as for the other protocols.

The intersection of the approximation automaton with the one for the property

was empty. So the property is verified by the protocol.

138

Automaton PRF-N ot -Secret

States Qo «1 «2 «3 «4 «5 «6 «9 «10 «11 «12 «13
Final States
Transitions

«13

0 -> q0 suc(g0) -> «0 agt(«0) -> «3

A qi agt(«i) -> «4

B -> «2

U(«i3> «is) ~► «13

agt(«2) -> «s

pms(«5, «5) -> «9 pms(î4, «5) ̂«9

pmsfe, q4) -> 59 pms(«4, «4) -»• «9

N(«5> «5) —► «10 N(«4, «5) -> «10

N(«s, «4) ->■ «10 N(«4, «4) -4 «10

cons(«10,«10) -»• «11 cons(g9,qn) -> q12

hashl(g4, «12) «is
hashl(g3, «12) -4 «13

hashl(g5, <?i2) -> «13

Figure 5.20: Master secret between Client and Server

Consequence in Isabelle proof As for the simple protocols, the previous results

can be inserted as axioms in the Isabelle proof.

These axioms were theorems in Paulson’s proof, as he had to prove them:

• for the secrecy:

— Spyjiot_see_PMS: the intruder cannot see the pre-master-secret between

honest agent;

[| Notes A {¡Agent B, Nonce PMS|} : set evs;

evs : tls; A bad; B ~: bad |] =>•

Nonce PMS ~: analz(knows Spy evs)
— Spy_not_see_MS: the intruder cannot see the master-secret;

[| Notes A {|Agent B, Nonce PMS|} : set evs;

evs : tls; A ~: bad; B bad |] =4-

Nonce (PRF (PMS, NA, NB)) ~: analz(knows Spy evs)
— ClientK_not_spied: the intruder cannot guess the client’s key if the key

has not been sent to him;

139

Automaton SesK_Not_Secret

States «0 «1 «2 «3 «4 «5 <?6 «9 «10 «11 «12 «13 «14
Final States «13
Transitions

0 -> «o suc(«0) -4 «0 agt(«0) -4 «3

A ->■ «i agt(«i) -> «4

B -> «2 agt(«2) -> «s

U(«i3) «is) «13
pms(«5, qB) -> «g pms(«4, «5) ̂ «9

pms(ç5, qi) -> «9 pms(«4, «4) -> «9

N(«5) «5) —► «10 N(«4, «5) ->■ «10

N(«5, «4) ->■ «10 N(«4, «4) -4 «10

cons («10 ,gio) «11 cons(gg,gn) 912

hashl(?4, «12) -4 «14 hashl(g5, 912) -4 «14

hashl(ç3, q12) -► 914

cons((gio, «14) -> «15 cons((«io, «is) «10

key(«4 , «5 , «îe) -> «13 key(«5, «4, «ie) -> «13

key(«5) «e, «ie) «13 key(«4, «4, «ie) -»• «13

Figure 5.21: Session key between Client and Server

[| Notes A {|Agent B, Nonce PMS|} : set evs;

Says A Spy (Key (clientK (NA, NB, PRF (PMS, NA, NB)))) ~: set evs;

evs : tls; A bad; B ~: bad |] =^-

Key (clientK (NA, NB, PRF (PMS, NA, NB))) ~: parts(knows Spy evs)

— ServerK_not_spied: the intruder cannot guess the server’s key if the key

has not been sent to him;

[| Notes A {[Agent B, Nonce PMS|} : set evs;

Says B Spy (Key (serverK (NA, NB, PRF (PMS, NA, NB)))) ~: set evs;

evs : tls; A bad; B bad |] =£•

Key (serverK (NA, NB, PRF (PMS, NA, NB))) ~: parts(knows Spy evs)

■ for the authentication:

- Client-Guarantee: the server had created the last message received by

140

the client;

[| X = Crypt (serverK (NA, NB, M))

(Hash {| Number SID, Nonce M, Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B, Nonce PMS|});

M = PRF (PMS, NA, NB); evs : tls; A bad; B bad;

Says B Spy (Key (serverK (NA, NB, M))) set evs;

Notes A {|Agent B, Nonce PMS|} : set evs; X : parts(knows Spy evs) |] ==>■

Says B A X : set evs

— Server_Guarantee: the client had created the last message received by the

server;

[| X = Crypt (clientK (NA, NB, M))

(Hash {| Number SID, Nonce M, Nonce NA, Number PA, Agent A,

Nonce NB, Number PB, Agent B, Nonce PMS|});

M = PRF (PMS, NA, NB); evs : tls; A bad; B bad;

Says A Spy (Key (clientK (NA, NB, M))) set evs;

Notes A {|Agent B, Nonce PMS|} : set evs; X : paxts(knows Spy evs) |] = >

Says A B X : set evs

Then the proofs of the other lemmas regarding possibility properties, unicity

properties, forwarding lemmas, the validity of the certificates sent, etc. did not take

long, as they could be deduced from other protocols’ proofs. The inductive proof

was done in one day, by picking the properties to prove from the proof of Paulson10

and using other protocols’ proofs11 to prove them.

The whole verification (approximation+inductive proof) took 2 days. Without

knowing the remaining properties to prove by induction in advance, the process

would have taken more time.

After having extended our prototype to deal with the pre-master-secret and

complex keys built with three pieces of information, the computation of the approx­

imation automaton with Timbuk and our function took 27 minutes when an agent

can talk to himself and 6 hours 23 minutes when an agent cannot talk to himself.
10http://w w w .cl.cam .ac.uk/R esearch/H V G /Isabelle/library/H O L /A uth/T L S.htm l
11 http://w w w .cl.cain.ac.uk/R esearch/H V G /Isabelle/library/H O L /A utli/index.htm l

141

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/HOL/Auth/TLS.html
http://www.cl.cain.ac.uk/Research/HVG/Isabelle/library/HOL/Autli/index.html

The verification of properties took only 20 minutes.

5 .3 .3 C on clu sion

Now that the prototype and the results of our experiments have been introduced, it

is time to compare our solution with those of others.

5.3.3.1 G enet’s approxim ations

With Timbuk, approximation automata with Genet’s approximations had been com­

puted.

Figure 5.22 compares the computation times. Our approximation function is

faster than the ancestor most of the time. The only time the ancestor approxima­

tion is faster is for a protocol for which no secrecy has to be checked. The basic

approximation without user helps does not terminate. One interesting point is the

preparation time required to before the computation. For the basic approximation

and our approximation, this time is null when for the ancestor approximation it is

more than 10 minutes. For the ancestor approximation, the user has to check the

states used in every approximation rule. In the other approaches everything is done

by the computer.

Protocol Name Basic

approximation

Ancestor

appr oximat ion

Our approximation

Needham-Schroeder out of memory 3min 27s 3min 50s

Needham-Schroeder-Lowe out of memory 9min 50s lmin 59s

Needham-Schroeder symmetric key out of memory 10min 34s 6min 10s

Woo Lam out of memory 9min 04s 14min

Otway Rees out of memory 19min 45s 17 min 12s

Figure 5.22: Time for computation of approximation automaton

With the basic approximation no properties were checked, as no automaton was

produced. At the same time, the ancestor approximation was less efficient to verify

142

properties as it failed with protocols with secrecy properties as shown on Figure

5.23.

Hence, our approximation seems better adapted for the cryptographic protocol

verification for these experiments. More experiments should confirm whether this is

in fact the case. The reasons are:

• the basic approximation failed to give us an automaton, and

• the ancestor approximation is not suitable for secrecy properties.

Protocol Name Basic

approximation

Ancestor

approximation

Our approximation

Needham-Schroeder no automaton may be flawed may be flawed

Needham-Schroeder-Lowe no automaton may be flawed secured

Needham-Schroeder symmetric key no automaton may be flawed secured

Woo Lam no automaton safe safe

Otway Rees Simplified no automaton may be flawed secured

Figure 5.23: Verification of secrecy and authentication properties

5.3.3.2 Other proof approaches

Since this work started, other approaches have been developed to “automatically

prove” protocols. This section introduces these approaches and compares them to

our approach.

Blanchet Blanchet [BlaOl] checks the secrecy by whether the attacker can or

cannot access confidential information. He uses Horn clauses to model the protocol

and the attacker. Basically, he looks for the answer to the question attacker(s)

where s is the confidential information and attacker the predicate for the intruder.

He implemented a search algorithm in Prolog that is guaranteed to terminate and

is based on two abstractions:

143

• Any step of a protocol can be repeated several times if the previous step had

been executed at least once.

• The freshness of nonces is modeled by considering fresh values as function of

the messages previously received by the creator of the value. This means that

for the same previous messages, the same nonces are found.

Thus the verification is done for an unbounded number of sessions and for an un­

bounded message size. When the tool finds an attack, it might be a false attack due

to the abstraction on nonces.

Herm es In [BLP02, BLP03], the secrecy is checked by first looking at the evolu­

tion of secret information over the set of reachable messages. Then conditions to

guarantee the secrecy are deduced, and the verification that the protocol guarantees

those conditions is done. The termination of the computation is guaranteed by an

algorithm based on the following abstractions:

• two agents are considered: an agent A and an agent I that models the intruder

and all the agents different from A.

• four sessions are considered: a session between A and I, a session between I

and A, one particular session between A and A and one session that models

all the sessions between A and A that are different from the specific session

between As.

So with this tool, the secrecy is guaranteed for an unbounded number of sessions,

an unbounded message size and an unbounded number of agents for self-talking

protocols.

Securify Securify12 [Cor02] can be seen as the automated version of Paulson’s

approach for the verification of the secrecy. This tool is based on the conditions

defined in [CMR01] to guarantee the secrecy; for every step of the protocol and

every part of the message sent:
12http://w w w .lsv.ens-cach an.fr/~cortier/EVA /eva-com p.php

144

http://www.lsv.ens-cach

■ either this part is a freshly generated nonce, thus it cannot compromise the

secret

• or this part was already sent over the network, encrypted with at least the

same set of keys,

■ or this part is a secret but it is encrypted with a protected key.

Securify runs these tests, if they fail, a backward search is done to get more

information on the messages sent over the network, and then it tests again. The

process (backward search + tests) is repeated as many times as is necessary. The

tool returns:

• “yes” if secret is guaranteed;

• “fail” if the proof fails. No conclusion about the secrecy can be drawn but the

“failure” tree returned might help to build an attack;

• no answer the computation does not terminate.

So with this tool the secrecy is guaranteed for an unbounded number of sessions, an

unbounded message size and an unbounded number of agents.

Spicasso Aziz [Azi03] introduced Spicasso, a static analyzer for the Spi-calculus

[AG98]. This tool was used to check the secrecy and authenticity on some simple

protocols. The results are guaranteed for an unbounded number of sessions and an

unbounded number of agents. The verification is also guaranteed to terminate. The

run-times of the tests carried out are unpublished.

With our prototype, the verification is also done for an infinite number of sessions

and agents. Unlike the other tools [BlaOl, BLP02, Cor02], the verification of secrecy

and authentication properties can be performed. The run-times of the tests carried

out are a bit slower than those of other tools [BlaOl, BLP02, Cor02], if it is assumed

that protocols do not allow an agent to talk to himself. Even when protocols allow

an agent to talk to himself, IS2TiF plus Timbuk are still slower (cf. Figure 5.24).

145

Protocol Name Blanchet Hermes Securify IS2TiF+Timbuk

Needham-Schroeder shared key 0.76s 0.04s - 41s

Needham-Schroeder 0.07s 0.01s 0.001s 18s

Needham-Schroeder-Lowe 0.06s 0.02s 0.001s 16s

Woo-Lam - 0.06s 0.0001s 31s

Figure 5.24: Comparison table of automatic proof approaches

The PC performances are not responsible as tests have been performed for two

other tools on less powerful PCs 13. Our computation is slower as it repeats two

searches until no critical pair is found:

1 . to find a “critical pair”, so it has to check all the terms of the automaton on

which rewrite rules can be applied;

2. to find the good approximation rule to apply on the critical pair.

These processes are done by Timbuk. The version used for these experiments

runs exponentially as the critical pairs search of the current algorithm applies all

the possible substitutions to the term rewriting system for every automaton A f i - A

little optimization to reduce the computational time was implemented in Timbuk,

A fi+ \ is computed by applying on A f i one rewrite rule with several substitutions

not just one rule and one substitution. With the new release of Timbuk we could

expect faster run-times as the completion algorithm should be optimized.

Nevertheless, more experiments on more complex protocols should be done in

order to appreciate the behaviors and the effectiveness of the different approaches.

13Blanchet used a Pentium 233MHz, Hermes was used on a Pentium III 600MHz, Security was

ran on a Pentium III 933MHz + 256Mb of RAM and we used Pentium III 733MHz + 128Mb of

RAM

146

C hapter 6

Conclusion and Future Work

The formal verification of cryptographic protocols is vital in our society due to

the proliferation of electronic communications. The problems raised by the ver­

ification of protocols are complex [EG83]; potentially an infinite number of ex­

changes, intruders that can play around the protocol, etc. Nevertheless, several

approaches and tools are now available to carry out the task, employing some as­

sumptions (i.e. finite number of session, perfect encryption, etc.). When this work

started many automatic tools were available to “search for attacks” against protocols

[DY83, Mea94, Low96, DMT98, MMS97]. Now automatic tools to prove properties

are becoming available [BlaOl, OCKS02, BLP03, Azi03]. Those approaches are es­

sentially based on the proof by abstraction; the idea is to prove a property on an

abstract model of the protocol that guarantees the validity of the property on the

concrete model. Among these techniques, the association of Timbuk and IS2TiF

can be found.

6.1 W ork Accom plished

The work is based on a semi-automatic approach introduced by Genet and Klay [GKOOa].

Their idea is to compute a tree automaton, A avpTOXimationi modeling an over-approximation

of the set of messages exchanged. The drawbacks of this approach are:

• the approximation function used must be given by hand and must be chosen

147

• when the verification of the properties fails, no conclusion can be drawn about

the protocols and its properties;

• the verification is limited to secrecy and authentication properties.

An improved version of Genet and Klay’s approach was introduced in this thesis.

A new approximation function was defined, the new features of which are:

• that it is automatically generated;

• that it guarantees the termination of computation of A a p p ro x im a tio n -

This thesis also presents a concrete way of combining this approximation tech­

nique with another technique, for the case where our verification fails. The inductive

approach of Paulson was selected because the combination would strengthen both

techniques.

The difficulty was not in finding why the completion was not terminating as

Genet presented the problem in his thesis [Gen98a]. The problem was in finding an

approximation that was precise enough to allow the verification of the secrecy and

authentication properties. For example, the ancestor approximation is not able to

verify both properties. Moreover the approximation function should also allow the

verification of a wild range of protocols in a reasonable time. The results of the

validation are limited to the examples covered as they have been manually checked

after while. No unit tests and no integration tests have been implemented during

the development of the prototype so it is not totally reliable. Nevertheless, on our

set of acceptance tests (the protocols that we used) the approximation approach

correctly worked and was effective.

The prototype IS2TiF uses the improved version of Genet and Klay’s technique

to generate an input file for Timbuk. Timbuk then computes Approximation with the

TRS, the initial automaton and the approximation contained in the input file. To

carefully to guarantee the termination of the computation of A ap p ro x im a tio n l

148

modeling the computation of A a p p ro x im a tio m Timbuk uses [CLC03]1 to decide how

m a n y agents must be defined in the initial automaton. If the protocol allows agents

to talk to themselves, then one honest agent and a set of dishonest agents are in the

initial automaton; otherwise two honest agents and a set of dishonest agents.

Depending on the protocol and whether an agent is allowed to talk to himself, the

run-times of Timbuk+IS2TiF can be less impressive than the ones of the automatic

“attack search” approaches [Low96, Mon99a, GLOO, JRVOO]. But unlike those ap­

proaches, the results are not bounded to a finite number of sessions. The run-times

can be also less impressive than those of the other automatic “proof’ approaches

[BlaOl, Cor02, BLP03] however, unlike those approaches, the method can also ver­

ify the authentication property. It also offers the possibility to verify protocols that

explicitly state that an agent cannot talk to himself, unlike [BlaOl, BLP03]. To be

able to compare fairly our approach with other existing software (other than the

ones presented in the previous chapter); a set of protocols should be verified on the

same machine using different tools and the results should be analyzed and compared

regarding the intruder abilities, the model constrains and the properties verified.

[BHK004] offers a comparison between the new model and the initial Genet and

Klay model. With the original representation, the protocols IS0611 and Woolham-

pi were not automatically checkable; now they are with the new model. The

IS0611 protocol uses two nonces, one encrypted and one non-encrypted. Thus

when no difference is made between the nonces of the same protocol run (Genet

and Klay’s model), it is impossible to check the secrecy of the encrypted nonce.

With our model that distinguishes the two nonces (ie. nonce 1 and nonce2), if

nonce2 is the one encrypted it is possible to check its secrecy. In the Woolham-

pi protocol, in order to send the third message to Bob, Alice has to remember

that she initiated a communication with him, as there is no information about

the identities of the sender of the second message. Our model makes sure that
'tw o agents are sufficient for the analysis of security properties of cryptographic protocols when

the protocols allow an agent to talk to himself. If the protocol does not allow “agents to talk to

them selves” and there is an attack involving n agents, then there is an attack involving at most

k + 1 agents (k is the number of roles that an agent can play)

149

i

the variables used in the right hand side of TRS are also in the left hand side,

if not, it adds previous messages (sent or received) into the left hand side until

the sender has all the information he needs to send the message. For example,

the rewrite rule, m esg(ae, agt(a), N (a i , b\, ¿1)) ==*• U (L H S ,m esg (a g t(a),a g t(b),

en cr(sh a rekey(a g t(a), se rv (S), to), agt(a), N (ai,b i, ii)))), that models the third step

of the Woolham-pi protocol is not valid, as the variable b does not appear in the

left-hand side. So the TRS is cannot be run. Our approach produces

U (m esg (a g t(a),a g t(b),a g t(a)) , m e sg (a e ,a g t(a) ,N (a i ,b i,t i))) =3-

U (L H S , m esg (ag t(a), agt(b), en cr(sharekey(ag t(a), se rv (S), to), agt(a), N (a \ , 61, ii)))),

which is a valid rewrite rule.

Nevertheless, the approach has some drawbacks:

■ computation time is linked to the complexity of the TRS, to “allowing an agent

to talk to himself” and to whether the protocol is safe or not. The success of

the computation depends on the computer resources (essentially memory) for

complex protocols.

• because of the typing used in the term rewriting system, the results of the

verification are valid, assuming that protocols are free from type attacks.

■ for the verification to be valid, protocols must satisfy the conditions of Propo­

sition 9. This is usually the case, as the variables that will have several oc­

currences in the TRS will be substituted by the states linked to the agents.

These states are deterministic.

• for the combining approach, there is a compatibility problem in practice be­

tween the two tools, one is running on SML and the other on OCAML, so it

requires the development of a user interface on top of both tools to simplify

the use of this approach.

6.2 F u tu re W ork

Starting from the current stage of this research three subprojects could be carried

out:

150

The first subproject is the logical continuation of this MSc work. The current

cryptographic protocol verification approaches make an initial assumption that the

encryption is perfect; that means that the intruder cannot get encrypted informa­

tion if he does not have the right decryption key (our approach makes no excep­

tion). This is a very strong assumption, that could lead some flaws being masked.

For example, under this assumption, Paulson proved that the recursive authenti­

cation protocol of John Bull was safe, but by considering the algebraic properties

of the XOR, attacks can be found [Pau97]. In reality, the intruder could take ad­

vantage of some algebraic properties of the encryption (XOR, abelian groups) in

his quest for critical information. For example, we have a nonce, N a , encrypted

with a public key, K a , using the XOR. (N a X O R K a) = { N a } x a then the XOR

properties states that (N a X O R , {N a } K a) = K a and (K a X O R { N a } K a) = N a .

A rule for the decryption of the information with the correct decryption key, the

(K a X O R { N o} k 0) = N a , is already in the TRS. Moreover allowing the intruder

to exploit the XOR properties requires in the TRS to also include a rule stating

that from the nonce and the encrypted message the key can be recovered, the

(N a X O R { N a jj ia) = K a . Thus the integration of those new abilities and their

consequences in the verification should be explored. The starting point would be to

add into IS2TiF an option such that the user selects algebraic properties that the

user can use. Then extra rewriting rules criticize the properties are added into the

input file for Timbuk.

Also, to improve the approach, one can develop a tool that gives as many guar­

antees as possible on the protocols verified and to facilitate the choice of users

between the verification tools available. Another part of this subproject is to see if

the technique could be extended to verify other properties that might be required

by particular protocol; for example freshness, anonymity, equity properties. The

primary task here is to see how those properties could be modeled with a tree au­

tomaton and if so, then to have a library of automaton that could be used to verify

them and have a procedure to automatically build automata for those properties.

If we take the freshness property, we will need to distinguish different runs to check

if a piece of information is fresh. Thus an idea is to attach a marker to the fresh

151

information; for example m a k e r (l ,N (A ,B)) indicates that N (A ,B) was created for

the run 1 of the protocol. IS2TiF must be updated to propose initial automata and

term rewriting systems dealing with this new term. The computation of the approx­

imation for all the possible runs of a particular protocol is then impossible as the

number of markers will infinitely increase. Thus second idea, reducing the number

of marker to two (to only have m a rk e r (1 ,...) and m a r k e r (2,...) in our model) and

proving that is sufficient to verify freshness properties.

The second subproject involves the use of the main result of this research, the

approximation function, for the invariant generation and verification. An invariant

is a clause/condition that is satisfied by all the reachable states of a system.

Properties such as safety properties, which must be guaranteed at any stage

of runs, can be seen as invariants. Finding and strengthening invariants is crucial

for the analysis and verification of re-active systems, especially for infinite state

systems. The invariant search and verification is a very active field of research

[BL03, BSOO, TRSS01]. As for protocol verification, the current techniques to find

and verify invariants might fail due to the size of the system studied.

With the approximation function defined in this thesis, the computation of an

over approximation of the reachable states of the system can be done; then either an

invariant can be checked on the last automaton or an invariant can be deduced from

the final automaton. In fact on simple examples, the new approximation function

appears to be efficient in that domain. However a tool must be developed that

automatically returns the invariant of a system (on a simple example Appendix F,

the abstract model computed had to be analyzed manually to find the invariant). A

new generator of input files for Timbuk should be implemented as IS2TiF is taking

in input an ISABELLE file that models a protocol. In order to be able to deal

with a large range of systems, the prototype will be taking specifications in Z or

B language to produce the term rewriting system, the initial automaton and the

approximation. Then Timbuk will be used to compute an over-approximation of

all the configuration of the system. The prototype will either take an invariant and

check if the system verifies it or return a possible invariant. The verification of the

152

invariant is easier as it only requires to check the intersection of the approximation

automaton with the automaton modeling the negation of the invariant. Returning

the invariant will be more difficult, it will require algorithms (depth search or best

first search or ...) to be implemented in the prototype to explore the transitions of

the final automaton in order to extract an invariant. The invariant will be an over

invariant as it will be valid for the configurations of the concrete system but also

for the configurations that are not in the concrete system.

Once the prototype is available, tests on real systems and comparisons of the

results given by the prototype with the ones on other tools should be carried out.

The last subproject involves the use of another model to reason about crypto­

graphic protocols: the Strand Spaces. A strand is a sequence of messages sent and

received by an agent. A strand space is a set of strands (agents’ strands plus intruder

ones). A bundle consists of a number of strands hooked together where one strand

sends a message and another one receives that same message. A protocol will be

correct when each bundle consists of one strand for each agent all agreeing on the

participants, nonces (random numbers), and session keys. Intruder strands are also

included in a bundle but as long as they do not prevent honest agents agreeing on a

secret or keeping their secrets. An interesting aspect of this model is that it allows

reasoning for an unbounded number of sessions.

[CDL+00] explains how to pass from a multiset rewriting model to a strand space

model and vice versa. This paper concludes by saying that algorithms developed for

rewriting models could be brought to deal with strands.

Therefore an attempt to adapt the technique presented in this thesis to strand

space models could be possible. The first part will be to translate the rewriting model

used here into strands using [CDL+00] and then modify the completion algorithm

to get a completion algorithm for Strand Spaces. After that the new results should

be compared with our current ones, and also with the ones of the CASRUL+IS2TiF

(ongoing work at Laboratoire Informatique de Franche-Comte) to see if this idea is

efficient or not.

153

Bibliography

[Aba99]

[AbaOO]

[Aba02]

[ABB+02]

[AG98]

[AKN89a]

[AKN89b]

Martin Abadi. Secrecy by Typing in Security Protocols. In Journal of

the A C M , volume 46(5), pages 749-786, 1999.

M. Abadi. Security Protocols and their Properties. In 20th In t. Sum m er

School, Foundations o f Secure C om putation , pages 39-60, 2000.

M. Abadi. Private Authentication. In Proceedings o f Workshop on

Privacy Enhancing Technologies, pages 27-40, 2002.

A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna,

S. Moedersheim, M. Rusinowitch, M. Turuani, L. Viganò, and L. Vi-

gneron. The AVISS Security Protocol Analysis Tool. In Proceedings o f

the 14th Conference on Computer-Aided Verification (C A V ’02), Lec­

ture Notes in Computer Science, pages 349-353. Springer-Verlag, 2002.

M. Abadi and A. D. Gordon. A Calculus for Crypto­

graphic Protocols: The Spi Calculus. Technical report,

DIGITAL, Systems Research Center, N 149, January 1998.

http://www.research.digital.com/SRC/publications/.

H. Ait-Kaci and M. Nivat. Resolution o f Equations in Algebraic Struc­

tures (Volum e I): Algebraic Techniques. Academic Press, 1989.

H. Ait-Kaci and M. Nivat. Resolution o f Equations in Algebraic Struc­

tures (Volum e II): Rew riting Techniques. Academic Press, 1989.

154

http://www.research.digital.com/SRC/publications/

[A N 95]

[AN96]

[AT91]

[Azi03]

[BAN89]

[BBC+97]

[BC01]

[BCF02]

[B D D + 0 5]

M. Abadi and R. Needham. Prudent Engineering Practice for Crypto­

graphic Protocols. Technical report, Digital Systems Research Center,

N 125, November 1995.

M. Abadi and R. Needham. Prudent Engineering Practice for Cryp­

tographic Protocols. In IE E E Transactions on Software Engineering,

volume 22(1), pages 6-15, 1996.

M. Abadi and M. Tuttle. A Semantics for a Logic of Authentication.

In Proceedings o f the 10th A nnua l A C M Sym posium on Principles of

D istributed Computing , pages 201-216, 1991.

B. Aziz. A Static A nalysis Framework fo r Security Properties o f Mobile

System s and Cryptographic Protocols. PhD thesis, Dublin City Univer­

sity. School of Computing, 2003.

M. Burrows, M. Abadi, and R,. Needham. A Logic of Authentication.

Technical report, Digital Systems Research Center, N 39, February

1989. http://www.research.digital.com/SRC/publications/.

B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,

H. Herbelin, G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin-

Mohring, A. Saibi, and B. Werner. The Coq Proof Assistant Reference

Manual : Version 6.1, 1997. RT-0203.

M. Benerecetti and A. Cimatti. Symbolic Model Checking for Multi-

Agent Systems. In Proceedings o f Workshop on C om putational Logic

in M ulti-A gent System s, C LIM A-2001 , pages 312-323, 2001.

C. Braghin, A. Cortesi, and R. Focardi. Freshness Analysis in Security

Protocols. In Proceedings o f 14 th Nordic Workshop on Programming

Theory (N W P T ’02), pages 30-33, 2002.

M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turuani. Com­

positional analysis of contract signing protocols. In C S F W ’05: Pro­

155

http://www.research.digital.com/SRC/publications/

[BGOO]

[BHK004]

[BL03]

[BlaOl]

[BLP02]

[BLP03]

[BLROO]

[BMP02]

ceedings o f the 18th IE E E Com puter Security Foundations Workshop

(C S F W ’05), pages 94-110, 2005.

M. Benerecetti and F. Giunchiglia. Model Checking Security Protocols

Using a Logic of Belief. In T A C A S 2000, pages 519-534, 2000.

Y. Boichut, P.-C. Héam, O. Kouchnarenko, and F. Oehl. Improvements

on the Genet and Klay Technique to Automatically Verify Security

Protocols. In 3rd International Workshop on A utom ated Verification o f

In fin ite -S ta te System s (A V IS ’04), pages 1-11, April 2004.

S. Bensalem and Y. Lakhnech. Automatic Generation of Invariants. In

Form al M ethods in System D esign , pages 75-92, 2003.

B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on

Prolog Rules. In Proceedings o f the 14th Com puter Security Foundations

W orkshop , pages 82-96. IEEE Computer Society Press, 2001.

L. Bozga, Y. Lakhnech, and M. Périn. L’Outil de Verification HER­

MES. Technical report, Verimag, 2002.

L. Bozga, Y. Lakhnech, and M. Périn. Pattern-Based Abstraction for

Verifying Secrecy in Protocols. In Tools and A lgorithm s fo r the Con­

struction and Analysis o f System s (T A C A S ’03), pages 299-314, 2003.

P. J. Broadfoot, G. Lowe, and A. W. Roscoe. Automating Data Inde­

pendence. In The Proceedings o f 6th European Sym posium on Research

in Com puter Security, Lecture Notes in Computer Science, pages 175-

190. Springer-Verlag, 2000.

G. Bella, F. Massacci, and L. C. Paulson. The Verification of an In­

dustrial Payment Protocol: The SET Purchase Phase. In 9th A C M

Conference on Com puter and Com m unications Security (A C M Press),

pages 12- 20, 2002.

156

[BMP03]

[BMPTOO]

[Bol96]

[Bol97]

[BP97]

[BP 9 8a]

[BP 9 8b]

[BPST02]

G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET Registra­

tion Protocols. In IE E E Journal on Selected Areas in Communications,

volume 21(1), pages 77-87, 2003.

G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal

Verification of Cardholder Registration in SET. In E SO R IC S, pages

159-174, 2000.

D. Bolignano. An Approach to the Formal Verification of Cryptographic

Protocols. In A C M Conference on Com puter and Communications Se­

curity, pages 106-118, 1996.

D. Bolignano. Towards the Formal Verification of Electronic Commerce

Protocols. In Proceeding o f the 1997 IE E E C om puter Security Foun­

dations Workshop X , pages 133-146. IEEE Computer Society Press,

1997.

G. Bella and L. C. Paulson. Using Isabelle to Prove Properties of the

Kerberos Authentication System. In Workshop on D esign and Formal

Verification o f Security Protocols. D IM A C S, 1997.

G. Bella and L. C. Paulson. Kerberos Version IV: Inductive Analysis of

the Secrecy Goals. In Proceedings o f the 5th European Sym posium on

Research in Computer Security, pages 361-375. Springer-Verlag LNCS

1485, 1998.

G. Bella and L. C. Paulson. Mechanising BAN Kerberos by the Induc­

tive Method. In Com puter A ided Verification, pages 416-427, 1998.

M. Benerecetti, M. Panti, L. Spalazzi, and S. Tacconi. Verification

of the SSL/TLS Protocol Using a Model Checkable Logic of Belief and

Time. In Proceedings o f Computer Safety, Reliability and Security, 21st

In terna tiona l Conference, SA F E C O M P 2002, volume 2434 of Lecture

N otes in Com puter Science. Springer, 2002.

157

[Bra96]

[BSOO]

[CC92]

[CDG+98]

[CDL+99]

[CDL+OO]

[CHSV03]

[CJ97]

S. H. Brackin. A HOL Extension of GNY for Automatically Analysing

Cryptographic Protocols. In Proceedings o f the 1996 IE E E Computer

Security Foundations Workshop IX , pages 62-76. IEEE Computer So­

ciety Press, 1996.

R. Bharadwaj and S. Sims. Salsa: Combining Constraint Solvers with

BBDs for Automatic Invariant Checking. In Tools and A lgorithm s for

the Construction and A nalysis o f System s (T A C A S ’OO), pages 378-394,

2000.

P. Cousot and R. Cousot. Abstract Interpretation and Application to

Logic Programs. In Journal o f Logic Programming, volume 13(2-3),

pages 103-179, 1992.

H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tom-

masi. Tree Automata Techniques and Applications, 1998.

I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov.

A Meta-Notation for Protocol Analysis. In Proc. 12th IE E E Computer.

Security Foundations Workshop (C S F W ’99), pages 55-69, 1999.

I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Sce­

drov. Relating Strands and Multiset Rewriting for Security Protocol

Analysis. In Proceedings o f the 13th Computer Security Foundations

Workshop, pages 35-51. IEEE Computer Society Press, 2000.

B. Canvel, A. Hiltgen, S.Vaudenay, and M. Vuagnoux. Password In­

terception in a SSL/TLS Channel. In C R Y P T O 2003, number 2729

in Lecture Notes in Computer Science, pages 583-599. Springer-Verlag,

2003.

J. Clark and J. Jacob. A Survey of Authentication Protocol literature:

Version 1.0., 1997.

158

I

[CJMOO]

[CLC03]

[CLT03]

[CMROl]

[Cor02]

[CouOl]

[CRZ05]

[CS96]

E. M. Clarke, S. Jha, and W. Marrero. Verifying Security Protocols with

Brutus. In A C M Transactions on Software Engineering and Methodol­

ogy, volume 9(4), pages 443-487, 2000.

H. Comon-Lundh and V. Cortier. Security Properties: Two Agents

Are Sufficient. In Proc. 12th European Sym posium on Programming

(E S O P ’2003'), Lecture Notes in Computer Science, pages 99-113.

Springer-Verlag, 2003.

H. Comon-Lundh and R. Treinen. Easy Intruder Deductions. In Ver­

ification : Theory and Practice, Essays Dedicated to Zohar M anna on

the Occasion o f H is 64th B irthday, L N C S Volume 2772, pages 225-242,

2003.

V. Cortier, J. Millen, and H. Ruess. Proving Secrecy is Easy

Enough. In Proc. 14 th IE E E Computer. Security Foundations Work­

shop (C S F W ’01), pages 97-108, 2001.

V. Cortier. Outil de Vérification SECURIFY. Technical report, Ecole

Normale Supérieure de Cachan, 2002.

P. Cousot. Abstract Interpretation Based Formai Methods and Future

Challenges, invited paper. In Wilhelm, R., editor, In form atics — 10

Years Back, 10 Years Ahead , volume 2000 of Lecture N otes in Computer

Science , pages 138-156. Springer-Verlag, 2001.

V. Cortier, M. Rusinowitch, and E. Zalinescu. A resolution strategy for

verifying cryptographic protocols with CBC encryption and blind sig­

natures. In Proceedings o f the 7th In ternational A C M S IG P L A N Con­

ference on Principles and Practice o f Declarative Programming, pages

12-22, 2005.

D. Craigen and M. Saaltink. Using EVES to Analyze Authentication

Protocols. Technical report, Technical Report TR-96-5508-05, ORA

Canada, March 1996. http://www.ora.on.ca/eves/documentation.html.

159

http://www.ora.on.ca/eves/documentation.html

[Der82]

[Die97]

[D.T90]

[DMOO]

[DMT98]

[DMTY97]

[DNL99]

[DP01]

[DDHY92]

[DY83]

D. L. Dill, A. J. Drexler, A. J. Hu, and C. Han Yang. Protocol Ver­

ification as a Hardware Design Aid. In In ternational Conference on

Com puter Design , pages 522-525, 1992.

N. Dershowitz. Orderings for Term-Rewriting Systems, Theoretical

Computer Science, 17:279-301, 1982.

S. Dietrich. A Formal Analysis o f the Secure Sockets Layer Protocol.

PhD thesis, Adephi University, Garden City, New York. Department of

Mathematics and Computer Science, 1997.

N. Dershowitz and J.P. Jouannaud. Chapter 6 of Handbook of Theo­

retical Computer Science (Volume B): Formal Methods and Semantics,

1990.

G. Denker and J. Millen. CAPSL Intermediate Language. In D A R P A

In form ation Survivability Conference (D IS C E X 2000), IE E E Computer

Society , pages 207-221, 2000.

G. Denker, J. Meseguer, and C. Talcott. Protocol Specification and

Analysis in Maude. In Proc. o f Workshop on Formal Methods and

Security Protocols, 1998.

M. Debbabi, M. Mejri, N. Tawbi, and I. Yahmadi. Formal Automatic

Verification of Authentication Cryptographic Protocols. In Proceed­

ings o f 1st International Conference on Formal Engineering Methods

(IC F E M ’97). IEEE Computer Society Press, 1997.

B. Donovan, P. Norris, and G. Lowe. Analyzing a library of Security

Protocols using Casper and FDR. In Proceedings o f the Workshop on

Form al M ethods and Security Protocols, 1999.

N. Dershowitz and D. A. Plaisted. Chap. 9 in: Handbook o f Autom ated

Reasoning, volume 1. Elsevier and MIT Press, 2001.

D. Dolev and A. Yao. On the Security of Public-Key Protocols. In IE E E

Transactions on In form ation Theory, 2(29), pages 198-208, 1983.

160

[FA01]

[Gen98a]

[Gen98b]

[GFT03]

[GHvRP05]

[GKOOa]

[GKOOb]

[GLOO]

[EG83] S. Even and O. Goldreich. On the Security of Multi-Party Ping-Pong

Protocols. In IE E E Sym posium on Foundations o f Com puter Science,

pages 34-39, 1983.

M. Fiore and M. Abadi. Computing Symbolic Models for Verifying

Cryptographic Protocols. In Proceedings o f 14 th IE E E Computer Se­

curity Foundations Workshop (C S F W ’01), pages 160-173. IEEE Com­

puter Society Press, 2001.

T. Genet. Contraintes dOrdre et A utom ates dArbres pour les Preuves

de Terminaison. PhD thesis, INRIA, 1998.

T. Genet. Decidable Approximations of Sets of Descendants and Sets

of Normal Forms. In Rewriting Techniques and Applications: 9th In ­

ternational Conference, R.TA-98, Lecture Notes in Computer Science,

pages 151-165. Springer-Verlag, 1998.

T. Genet G. Feuillade and V. Viet Triem Tong. Reachability Analysis of

Term Rewriting Systems. Technical Report 4970, I.N.R.I.A., October

2003.

F. D. Garcia, I. Hasuo, P. van Rossum, and W. Pieters. Provable

anonymity. In Ralf Kiisters and John Mitchell, editors, Proceedings of

the 2005 A C M Workshop on Formal Methods in Security Engineering

(F M SE >05), pages 63-72. ACM, 2005.

T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verifi­

cation. In CADE: In ternational Conference on A utom ated Deduction,

pages 271-290, 2000. http://citeseer.nj.nec.com/genet99rewriting.html.

T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verifica­

tion. Technical Report 3921, I.N.R.I.A., Avril 2000.

J. Goubault-Larrecq. A Method for Automatic Cryptographic

Protocol Verification (extended abstract). In Proc. Work­

shop on Formal Methods in Parallel Programming, Theory and

161

http://citeseer.nj.nec.com/genet99rewriting.html

[GLLOO]

[GNY90]

[Gon93]

[Gro96a]

[Gro96b]

[GRS99]

[GS84]

[GT95]

[GTOl]

Applications (F M P P T A ’2000), number 1800 in Lecture Notes

in Computer Science, pages 977-984. Springer-Verlag, 2000.

http://www.dyade.fr/fr/actious/vip/publications.html.

S. Gnesi, D. Latella, and G. Lenzini. A BRUTUS Logic for the Spi-

Calculus Dialect. In Proceedings o f the Workshop on Formal Methods

and C om puter Security (FM C S 2000), 2000.

L. Gong, R. Needham, and R. Yahalom. Reasoning About Belief in

Cryptographic Protocols. In Deborah Cooper and Teresa Lunt, edi­

tors, Proceedings 1990 IE E E Sym posium on Research in Security and

P rivacy , pages 234-248. IEEE Computer Society Press, 1990.

L. Gong. Variations on the Themes of Message Freshness and Replay.

In Proceedings o f the IE E E Computer Security Foundations Workshop

V I pages 131-136, 1993.

SET Working Group. S E I ™ Specification, hooks 1 ,2 and 3. SETCO,

1996. http://www.setco.org/set.specifications.html.

TLS Working Group. The T L S Protocol Version 1.0. The Internet

Engineering Task Force, 1996. http://www.ietf.org/html.charters/tls-

charter.html.

D. Goldschlag, M. Reed, and P. Syverson. Onion Routing for Anony­

mous and Private Internet Connections. In Comm unications o f the

A C M (U SA), volume 42(2), pages 39-41, 1999.

F. Gecseg and M. Steinby. Tree Autom ata. Budapest : Akademiai

Kiado, 1984.

R. Gilleron and S. Tison. Regular Tree Languages and Rewrite Systems.

In F undam enta Inform aticae, volume 24, pages 157-175, 1995.

T. Genet and V. Viet Triem Tong. Reachability Analysis of Term

Rewriting Systems with Timbuk. In Proc. Logic fo r Programming, Ar-

162

http://www.dyade.fr/fr/actious/vip/publications.html
http://www.setco.org/set.specifications.html
http://www.ietf.org/html.charters/tls-

[HLS03]

[Hoa85]

[HÖ189]

[Hul80]

[Jac96]

[JRVOO]

[Kai95]

[HL78]

[Kai96]

tificial Intelligence and Reasoning (L P A R 2001), LNAI, pages 695-706.

Springer-Verlag, 2001.

G. Huet and D. S. Lankford. On the Uniform Halting Problem for Term

Rewriting Systems. Technical report, INRIA, 1978.

J. Heather, G. Lowe, and S. Schneider. How to Prevent type Flaw

Attacks on Security Protocols. In Journal o f Com puter Security, volume

11(2), pages 217-244, 2003.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985.

S. Hölldobler. Foundations o f Equational Logic Programming. Springer-

Verlag, 1989.

J. M. Hullot. Canonical Forms and Unification. In Proceedings o f 5th

In terna tiona l Conference on A utom ated Deduction, Lecture Notes in

Computer Science, pages 318-334. Springer-Verlag, 1980.

F. Jacquemard. Decidable Approximations of Term Rewriting Systems.

In Proceedings o f 7th Conference on Rew riting Techniques and Appli­

cations, number 1103 in Lecture Notes in Computer Science, pages

362-376. Springer-Verlag, 1996.

F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and Ver­

ifying Security Protocols. In Logic Programming and Autom ated Rea­

soning, pages 131-160, 2000.

R. Kailar. Reasoning about Accountability in Protocols for Electronic

Commerce. In Proceeding o f the 1995 IE E E Sym posium on Security

and Privacy, pages 236-250. IEEE Compter Society Press, 1995.

R. Kailar. Accountability in Electronic Commerce Protocols. In IE E E

Transaction on Software Engineering, volume 22(5), pages 313-328,

1996.

163

[KFK96]

[KG 94]

[Kin99]

[KN98]

[KR02]

[Lan79]

[LDG+01]

[Low95]

[KB70]

[Low96]

D. E. Knuth and P. B. Bendix. Simple Word Problem in Universal

Algebra. In Computational Problems in A bstract Algebras, pages 263-

297. Pergamon Press, Oxford, 1970.

P. Kocker, A. Freier, and P. Karlton. The SSL Protocol Version 3.0,

1996. http://wp.netscape.com/eng/ssl3/index.html.

V. Kessler and G.Wedel. AUTLOG-An advanced Logic of Authentica­

tion. In Proceedings o f the 1994 IE E E C om puter Security Foundations

Workshop V II, pages 90-99. IEEE Compter Society Press, 1994.

D. Kindred. Theory Generation fo r Security Protocols. PhD the­

sis, Technical Report CMU-CS-99-130, Computer Science Department,

Carnegie Mellon University, Pittsburg, PA, 1999.

V. Kessler and H. Neumann. A Sound Logic for Analysing Electronic

Commerce Protocols. In Proceedings o f the 5th European Sym posium on

Research in Computer Security , pages 345-360. Springer Verlag, 1998.

S. Kremer and J.-F. Raskin. Game Analysis of Abuse-free Contract

Signing. In Proceedings o f the 15th IE E E C om puter Security Founda­

tions Workshop, Cape Breton, pages 206-222, 2002.

D. S. Lankford. On Proving Term Rewriting Systems are Noetherian.

Technical report, Louisiana Tech. Univ., 1979.

X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Ob­

jective Caml system release 3.02. In D ocum entation and u ser’s manual,

2001.

G. Lowe. An Attack on the Needham-Schroeder Public-Key Authenti­

cation Protocol. In Inform ation Processing L etters, volume 56(3), pages

131-133, 1995.

G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Pro­

tocol Using FDR. In Proceedings o f T A C A S, L N C S 1055, pages 147-

166. Springer-Verlag, 1996.

164

http://wp.netscape.com/eng/ssl3/index.html

[Low97a]

[Low97b]

[Low99]

[MCJ97]

[Mea92]

[Mea94]

[Mea96]

[MeaOO]

[MGK02]

G. Lowe. A Hierarchy of Authentication Specifications. In PCSFW :

Proceedings o f the 10th Computer Security Foundations Workshop,

pages 31-44. IEEE Computer Society Press, 1997.

G. Lowe. Casper: A Compiler for the Analysis of Security Protocols.

In P C SF W : Proceedings o f The 10th Com puter Security Foundations

W orkshop , pages 18-30. IEEE Computer Society Press, 1997.

G. Lowe. Towards a Completeness Result for Model Checking of Se­

curity Protocols. In Journal o f Computer Security , volume 7(1), pages

89-146, 1999.

W. Marrero, E. Clarke, and S. Jha. A Model Checker for Authentication

Protocols. In Proceedings o f the D IM A C S W orkshop on Design and

Form al Verification o f Security Protocols, 1997.

C. Meadows. Applying Formal Methods to the Analysis of a Key Man­

agement Protocol. In Journal o f Computer Security , volume 1(1), pages

5-53, 1992.

C. Meadows. A Model of Computation for the NRL Protocol Analyzer.

In Proceedings o f 7th Com puter Security Foundations Workshop, pages

84-89, 1994.

C. Meadows. The NRL Protocol Analyser: An Overview. In Journal

o f Logic Programming, 26(2):113-131, February 1996.

C. Meadows. Extending formal cryptographic protocol analysis tech­

niques for group protocols and low-level cryptographic primitives. In

F irst Workshop on Issues in the Theory o f Security , pages 87-92, 2000.

O. Markowitch, D. Gollmann, and S. Kremer. On Fairness in Exchange

Protocols. In Proceedings 5th Int. Conf. on In form ation Security and

Cryptology (IS IS C 2002), pages 451-464, 2002.

165

[MMS97]

[MN70]

[Mon99a]

[Mon99b]

[MSS98]

[Nes90]

[New42]

[NRV04]

[NS78]

J. C. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Cryp­

tographic Protocols Using Muryj. In Proceedings o f the 1997 IE E E

Symposium, on Security and Privacy , pages 141-153. IEEE Computer

Society Press, 1997.

Z. Manna and S. Ness. On the Termination of Markov Algorithms. In

Proceedings 3rd In ternational Conference System Science, pages 789-

792, 1970.

D. Monniaux. Abstracting Cryptographic Protocols with Tree

Automata. In Static Analysis Sym posium , Lecture Notes

in Computer Science, pages 149-163. Springer-Verlag, 1999.

http://citeseer.nj.nec.com/monniaux99abstracting.html.

D. Monniaux. Decision Procedures for the Analysis of Cryptographic

Protocols by Logics of Belief. In P C SF W : Proceedings o f the 12th Com­

p u ter Security Foundations Workshop, pages 44-54. IEEE Computer

Society Press, 1999.

J.C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL

3.0. In 7th U SE N IX Security Sym posium , pages 201- 216, 1998.

D. M. Nessett. A Critique of the BAN Logic. In A C M Operating System

Review, pages 35-38, 1990.

M. H. A. Newman. On Theories with a Combinatorial Definition of

Equivalence. In A nnals o f M athem atics, volume 43(2), pages 223-243,

1942.

M. Nesi, G. Rucci, and M. Verdesca. On Rewriting Protocol Specifica­

tions. In Proceedings o f International Workshop on Security Analysis

o f System s: Form alisms and Tools, 2004.

R. Needham and M. Schroeder. Using Encryption for Authentication in

Large Networks of Computers. In Comm unications o f the AC M , volume

21(12), pages 993-999, 1978.

166

http://citeseer.nj.nec.com/monniaux99abstracting.html

[0CKSQ2]

[Pau94]

[Pau97]

[Pau98]

[Pau99]

[PauOl]

[PSW+Ol]

[Ros95]

[RR98]

F. Oehl, G. Cécé, O. Kouchnarenko, and D. Sinclair. Automatic Ap­

proximation for the Verification of Cryptographic Protocols. Technical

report, Dublin City University and I.N.R.I.A., October 2002.

L. C. Paulson. Isabelle: a Generic Theorem Prover. Springer-Verlag

Inc., LNCS 828, 1994.

L. Paulson. Mechanized Proofs for a Recursive Authentication Protocol.

In 10th IE E E Computer Security Foundations Workshop (1997), pages

84-95, 1997.

L. C. Paulson. The Inductive Approach to Verifying Cryptographic

Protocols. In Journal o f Computer Security , volume 6, pages 85-128,

1998. http://www.cl.cam.ac.uk/users/lcp/papers/protocols.html.

L. C. Paulson. Inductive Analysis of the Internet Protocol TLS. In

A C M Transactions on In form ation and System Security , volume 2(3),

pages 332-351, 1999.

L. C. Paulson. SET Cardholder Registration: the Secrecy Proofs. In

In terna tiona l Jo in t Conference on A utom ated (IJC A R 2001), pages 5-

12, 2001.

A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D. Tygar. SPINS:

Security Protocols for Sensor Networks. In Mobile Computing and N et­

working, pages 189-199, 2001.

A. W. Roscoe. Modelling and Verifying Key-Exchange Protocols Using

CSP and FDR. In 8th Com puter Security Foundations Workshop, pages

98-107. IEEE Press, 1995.

M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Trans­

actions. In A C M Transactions on In form ation and System Security,

volume 1(1), pages 66-92, 1998.

167

http://www.cl.cam.ac.uk/users/lcp/papers/protocols.html

[RV98]

[Sat89]

[SBPOl]

[Sch96]

[Sch97]

[Sch98]

[Sci02]

[SueOO]

[Sv094]

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adelman. A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems. In Communications

o f the A C M , volume 21(2), pages 120-126, 1978.

D. Rémy and J. Vouillon. Objective ML: An Effective Object-Oriented

Extension to ML. In Theory A nd Practice o f Objects System s, 4 (1)'27 -

50, 1998.

M. Satyanarayanan. Integrating Security in Large Distributed System.

In A C M Transactions on Computer System s, volume 7(3), pages 247-

280, 1989.

D. Song, S. Berezin, and A. Perrig. Athena: A Novel Approach to

Efficient Automatic Security Protocol Analysis. In Journal o f Computer

Security , volume 9(1/2), pages 47-74, 2001.

J. Schumann. Automatic Verification of Cryptographic Protocols Using

SETHEO. Technical report, Technical Report AR-96-03, TU München,

Institut für Informatik, 1996. http://wwwjessen.informatik.tu-

muenchen.de/~schumann/crypt.html.

S. Schneider. Verifying Authentication Protocols with CSP. In PC SFW :

Proceedings o f The 10th Computer Security Foundations Workshop,

pages 3-17. IEEE Computer Society Press, 1997.

S. Schneider. Verifying Authentication Protocols in CSP. In IE E E

Trans. Softw. Eng., volume 24(9), pages 741-758. IEEE Press, 1998.

Sciences & Avenir, N.659, Janvier 2002.

Suetonius. Lives o f the Twelve Caesars. Publisher Penguin, 2000.

P. Syverson and P. C. van Oorschot. On Unifying some Cryptographic

Protocol Logics. In Proceedings o f the 1994 IE E E Computer Security

F oundations Workshop V II, pages 14-29. IEEE Compter Society Press,

1994.

168

http://wwwjessen.informatik.tu-

[Syv94]

[THG99]

[TRSSOl]

[Tur36]

[TVV05]

[Vau02]

[Vig95]

[v093]

[WL94]

P. Syverson. A taxonomy of replay attacks. In Com puter Security

Foundations Workshop VII, pages 211-254. IEEE Computer Society

Press, 1994.

J. Thayer, J. Herzog, and J. Guttman. Strand Spaces: Proving Security

Protocols Correct. In Journal o f Com puter Security 7, pages 191-230,

1999.

A. Tiwari, H. Rueß, H. Sai'di, and N. Shankar. A Technique for Invariant

Generation. In Lecture N otes in Com puter Science, volume 2031, pages

113-127, 2001.

A. Turing. On Computable Numbers, With an Application to the

Entscheidungsproblem. In Proceedings o f the London M athem atical So­

ciety, volume 42(2), pages 230-265, 1936.

M. Turuani and H. Vu-Van. Validation of the asw contract signing

protocol. In Proceedings o f A P P S E M II Workshop (A P P SE M 05), 2005.

S. Vaudenay. Security Flaws Induced by CBC Padding - Applications

to SSL, IPSEC, WTLS... In Advances in Cryptology E U R O C R Y P T ’02,

number 2332 in Lecture Notes in Computer Science, pages 534-545.

Springer-Verlag, 2002.

L. Vigneron. Positive Deduction modulo Regular Theories. In Proceed­

ings o f the A n n u a l Conference o f the European Association fo r Com­

p u ter Science Logic, Lecture Notes in Computer Science, pages 468-485.

Springer-Verlag, 1995.

P. van Oorschot. Extending Cryptographic Logics of Belief to Key

Agreement Protocols. In Proceedings o f the A C M Conference on Com­

pu ter and Com m unications Security, pages 232-243, 1993.

T. Y. C. Woo and S. S. Lam. A Lesson on Authentication Protocol

Design. In Operating System s Review, volume 28(3), pages 24-37, 1994.

169

[W S 9 6] D. Wagner and B. Schneier. Analysis of the SSL 3.0 Protocol. In The

Second U S E N IX Workshop on Electronic Commerce Proceedings, pages

29-40, 1996.

[Z a n 9 7] H. Zantema. Termination of Term Rewriting. Technical report, Uni­

versity of Utrecht, 1997.

[Zim99] P. Zimmermann. http://www.loria.fr/ zimmerma/records/rsal55.html,

1999.

170

http://www.loria.fr/

Appendix A

Example of completion w ith the

Knuth-Bendix algorithm

To demonstrate how the completion algorithm [KB70] works, let E be our set of
e.x = x

identities and TZ the TRS that is built. I (x) .x = e

(x .y) .z = x {y .z)
The completion algorithm:

1. e .x —► x

orientates the equation to produce TZ=< 2. I (x) .x -> e: > using a

{x .y).z -4 x (y .z)
“sensible” reduction ordering relation based > on the format of the terms.

searches a critical pair and finds (e.z, I (x) .(x .z)) with rules 2 and 3.

e.z can be reduced to z, so we have now the pair (z, I (x) .(x .z)) . Using > , we

add to TZ the rule I (x) .{ x .z) —> z ,

1 . e .x —> x

so 7£=<
2. I (x) .x —> e

3. (x .y) .z -» x{y .z)

4. I (x) .{ x .z) -¥ z

searches a critical pair and finds (y, I (I (y)) .e) with rules 2 and 4.

171

So 7Ü=<

So n=<

So n = l

So TZ=<

1. e.æ -> æ

2 . I(x).x -> e

3. (a?.y).2 ->■ æ (y .z) >

4. I(x).(x.z) -» 2:

5. 7 (7 (j /)) .e -> y

a critical pair and finds (z, I (

1. e.æ -> x

2. I(x).x -> e

3. (a;.y).z - 4 a,-(î/.2) »
4, I(x).(x.z) —► z

5. I(I{y)).e -> j/

6 . J (e).2 2

a critical pair and finds (I (I(i

1. e.a; -4 a;

2. /(a;).a; -» e

3. (x .2/) .z -> a:(j/.z)

4. I(x).(x.z) -> 2 Ü

5. /(J (2/)).e-> y

6. /(e).2 -> 2

7. I(I{y))-(e-x) -+ 2/-^ ,

a critical pair and finds (j/.e,

1. e.a: -> a;

2. I(x).x —» e

3. (a:.y).2 -> a;(2/ .2)

4. I(x).(x.z) -4 2
►

5. 7 (/ (y)) .e -4 y

6 . I(e).z —► 2

7. / (/ (y)) . (e.a:) -4 y.æ

8 . y .e -> y

172

searches a critical pair and finds (y, I(I(y))) with rules 8 and 5. It gives the

rule I(I(y)) - 4 y that makes rule 5 redundant as I(I(y)).e —Vfa y by applying

firstly the new rule, and then rule 8 ; thus rule 5 is removed from the TRS.

Rule 7 can be removed for the same reason.

So 7t=<

1. e.x -4 x

2. I(x).x -> e

3. (x.y).z x(y.z)

4. I(x).(x.z) - 4 z

6. I(e).z - 4 z

8. y.e -4 y

9. i(i{y)) -> y

searches a critical pair and finds (e, /(e)) with rules 8 and 6 . Rule 6 is not

necessary anymore as the rule I(I(y)) - 4 y is deduced.

So TZ=<

1. e.x *4 x

2. I{x).x - 4 e

3. (x.y).z ->• x(y.z)

4. I(x).(x.z) - 4 z

8. y . e - t y

9. i (i { y)) -* y

10 . 7 (e) —Y e

searches a critical pair and finds (e, y-I(y)) with rules 2 and 9.
/

So Tl— <

1. e.x —t x 2.

3. (x.y).z -4 x(y.z) 4.

8 . y.e y 9.

10. 7(e) - 4 e 11.

I(x).x -4 e

I(x).(x.z) - 4 Z

m y)) -> y
2/ 7 (2/) -► e

searches a critical pair and finds (x , y.(I(y).x)) with rules 3 and 11.

173

So 71 = <

So 1Z=<

1 . e.x -4 x 2. I (x) .x -4 e

3. (x .y) .z -4 x (y .z) 4. I (x) . (x .z) -4 z

8. y.e -> y 9. /(/ (y)) - > y

10. 1(e) -4 e 11. y .I (y) -4 e

12. y .(I (y) .x) -4 x

critical pair and finds (e, x (y .I(x .y))) with r

1 . e,x -4 x 2. I (x) .x -4 e

3. (x .y) .z -4 x (y .z) 4. I (x) . (x .z) -4 z

8. y . e ^ y 9. m v)) - > v

10. 1(e) -4 e 11. y .I (y) -4 e

12. y .(I (y) .x) -4 x 13. æ.(y./(æ.y)) -

searches a critical pair and finds (y .I (x .y) , I (x) .e) with rules 4 and 13. Rule

13 becomes redundant.

1 . e .x - 4 x 2. I (x) .x - 4 e

3. (x .y) .z - 4 x (y .z) 4. I (x) .(x .z) -4 z

So TZ—i 8. y .e - 4 y 9. J(J(j/)) -> y
10. 7(e) -4 e 11. y.7(y) -4 e

12 .
V

y .(I (y) .x) - 4 x 14. y .I (x .y) - 4 I (x) .e

searches a critical pair and finds (I(x .y) , I (x) . I (y)) with rules

this new rule, rule 14 can be removed.
f

1 . e.x 4 i 2. I (x) .x - 4 e

3. (x .y) .z - 4 x (y .z) 4. I (x) .(x .z) - 4 2

So 7Z=< 8. y.e - 4 y 9. /(/(»)) -> y
10. 7(e) - 4 e 11. y.7(y) -4 e

12 .
V

y .(I (y) .x) - 4 æ 15. 7(x.y) - 4 I (x) . I (y)

no more critical pairs are found and the computation stops.

174

Proof that the ancestor

approximation gives a finite

automaton [Gen98a]

The ancestor approximation does not depend of the substitution, so 7 (I -4 r, q, a)

can be written 7 (Z -4 r,q).

If the arity of the symbols of J- and !F are finite, if Q is finite and if the new

states Qnew is finite then Qu is finite. Moreover the number of transitions that can

be added to A is finite, thus the automaton £ (7 ^ t(^)) is finite.

By assumption F and Q are finite, it is sufficient to prove that Qnew is finite to

prove the theorem.

For the ancestor approximation,

(1) Qnew = ->• r,q)\l - 4 r G 11,q G Qu, 1 < i < Card(Posr(r))}.

If we apply Qu = Q |J Qnew on (), then Qnew = Qx (J Q 2 with:

• Qi = {^¿(7 (i —> r, g))|Z —¥ r G H, q G Q, 1 < i < Card(Posj^(r))}

• Q 2 = {xi{y{l -4 r,q))\l -4 r EH, q G Q new, l < i < Card(Poaj:(r))}

Every state of Q2 has the form:

x i\(7 O1 -► n , ^¿2(7 ^ 2 -4 r2,---Xin('y(ln -4 rn,q)) ■■■))))

Appendix B

175

With lj —»• rj G 71, q G Q, 1 < ij < Card(Posf(r)) and 1 < j < n. The second

condition of Definition 14 states:

VJi —► ri, 71, Vq G Qu, 1 < i < Card(Posjr(r))

702 -*• ra,®i(70i ri,g))) = 702 -> J"2,g)

Thus

7 ^ 1 - > H i 35*2(7̂ 2 -^ T ’2 , " - ® i » (7 0 n - > »n. «)) ” ■))) = 7 0 1

And so

®ii(701 -> ^ .^ (7 0 2 -»■ r2,**-afin{70B “» >"„,9)) •••)))) = (tĈ i

It gives Q2 C Qi and Qnew = 6 1 . As Q, 72, Posj?(r) are finite, then Qi and

Qneiu are also finite.

176

Proof of the completeness

extended to non left-linear TRS

Appendix C

The Theorem 4 says: Given a tree automaton A and a TRS 1Z, C(Tn f (.A)) the

corresponding approximation automaton and Q its set of states. For all non left-

linear rule I r G 1Z, for all non linear variables x of 1, for all states <71,..., qn G Q

matched by x, if either qx = ... = qn or £(T jit{A), tfi) f | ■■■ fl Qn) = 0

then:

1Z*{C{A)) c C(Tn tM))

To prove this theorem we need to introduce the notion of ground context. A

ground context is a term of T (J - U {□}) with exactly one occurremce of □, where □

is a special constant not occurring in T . For any term t G T (J -) , C[t] denotes the

term obtained after the replacement of □ by t in the ground context C[].

The proof had been extracted from [GKOOb].

P ro o f Assume that there exists a term t such that t G 1Z*(C(A)) and t ^ C (Tn t

(.A)). The term t is such that t £ L(A). Otherwise, t G £ (T n t (A)) by Theorem 3,

since by contruction of £(Tr , t (*4)) we trivially have £(»4) C C iX n tiA)) . Hence,

there exists a term s G C(A) such that t. On this rewite chain, from s to t, let

¿1 , ¿2 be the first two terms such that t\ G £(7ftt(A .)), ¿ 1 —>-7?, t% and t2 $ ¿-{Tut

(*4)). Assume that ¿ 1 = C[lo], ¿2 = C\rcr\ and I -¥ r G 7Z. Furthermore, let C"[] be a

ground context such that I = C'[x 1 , ■ • ■ , xn] with {x \ , ■ • • , x n} = Varl(l). Thus lo =

177

C'[xi<r, ■ • ■ , x no\. Since t\ = C[lcr] G £(7ft.t (A.)), we know that there exists a final

state 7 G Q/ of T ^ tM) such that C[la] ~^Tt$(A) Q- Furthermore, by construction of

tree automata, we obtain that there exists also a state q' G Q such that la ^ T r̂ A)

q' and C[q'] — q' ■ Similarly, from la = C'[xia,--- , x na] — q\ we

can deduce that there exists states , qn G Q such that x \a ~^j --ji\{A) 9*’ "'■>

Xn& Qn d fe ll ' ' ' i Qn] Q '

Now, assume that there exists a Q-substitution // G £(Q, X) such that fxxi = qi

for i G [1, ■ ■ ■ , n]. Then, we would have If/, = C'[q\, ■ ■ ■ , qn\ and thus Ifi -fy-diA) ^ '

By construction of T nti 'A) , we know that Ifi —>T-rf\(A) implies rfi — q'. We

thus have x \a ~^Tn\A) " i x na ~*Titf{A) qn an<̂ ~^Tnt^) q> wliere ^ maPs Xi
to qi for i G [1, ■ ■ ■ , n]. Hence, ra Q1 an(l finally ¿2 = C[ra\ -^TntA) Q with

q G Qf, which is a contradiction with the fact that ¿2 ^ >C(TR.t(A.)).

Consequently, it is not possible to build a Q-substitution fi G H(Q, X) such that

fiX{ = qi for i G [1, • ■ • , n\. The only reason why // cannot be a Q-substitution is that

there is at least two distinct indexes i , j G [1, ■ • • , n] such that Xi = xj and qi ^ qj.

Hence the rule is not left linear and the non linear variable Xi = Xj matches, at

least, two distinct states qi and qj. We can generalize this to all the occurrences of

varible X{. Let C = {k\xk = X{}. Since all variable x k with k G C are the same, we

obtain that there exists a term u G T(!F) such that Vk G C : x^o = u ~^TntA) Qk-

Hence, VA; G C : {w} C £(7^,t (A), qk)- Moreover, since we already know that we

have at least i , j G C and Qi ^ qj we obtain that {w} C Hitec (*A)iQk) 7̂

which contredicts the hypothesis of the theorem.

Hence, ¿2 G £ (7 j i t (A)) and by applying the same reasoning on all the terms on

the rewrite chain between and t, we finally obtain that t G £ (7 7 j t (- 4)). ^

178

Appendix D

Needham-Schroeder input file

for Timbuk

Ops mesg:3 encr:3 N:3 cons:2 A:0 B:0 S:0 o:0 snc:l agt:l servrl U:2 sharekey:2

pubkey:l c_init:3 c_resp:3 add:l goal:2 LHS:0 hashl:2 hash2:3 pref:l sid:2

key:3 cert:2 pms:2 session:2 un:0 deux:0 null:0 t0:0
Vars x x l y z u s m t a b a_18 a_17 a_16 a_15 a_14 a_13 a_12 a_ll a_10 a_9

a .8 a_7 a_6 a_5 a.4 a.3 a_2 a_l a_0 b.18 b.17 b_16 b_15 b_14 b.13 b_12 b_U

b_10 b_9 b_8 b_7 b_6 b.5 b.4 b_3 b_2 b_l b.O t_18 t.17 t_16 t_15 t.14 t.13

t_12 t . l l t_10 t_9 t_8 t_7 t_6 t.5 t_4 t_3 t_2 t_l t_0

TRS R
goal(agt(a), agt(b)) -> U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)),

agt(a), cons(N(agt(a), agt(b), tO), agt(a)))))

mesg(a_4, agt(b), encr(pubkey(agt(b)), a_3, cons(N(a_l, b_l, t_l), agt(a))))

-> U(LHS, mesg(agt(b), agt(a), encr(pubkey(agt(a)), agt(b), cons(N(a_l,

b-1 , t_l), N(agt(b), agt(a), tO)))))

mesg(a_6, agt(a), encr(pubkey(agt(a)), a.5, cons(N(agt(a), agt(b), tO),

N(a_2, b-2, t_2)))) -> U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)),

agt(a), N(a_2, b.2, t.2))))

mesg(a_6, agt(a), encr(pubkey(agt(a)), a_5, cons(N(agt(a), agt(b), tO),

N(a_2, b_2, t_2)))) -> U(LHS, cjnit(agt(a), agt(b), a_5))

179

mesg(a_8, agt(b), encr(pubkey(agt(b)), a_7, N(agt(b), agt(a), tO))) ->

U(LHS, c_resp(agt(b), agt(a), a_7))

U(cons(x, y), z) -> U(LHS, add(x))

U(cons(x, y), z) -> U(LHS, add(y))

U(encr(pubkey(agt(o)), y, z), u) -> U(LHS, add(z))

U(encr(pubkey(agt(suc(x))), y, z), u) -> U(LHS, add(z))

U(mesg(x, y, z), u) -> U(LHS, add(z))

add(x) -> x

U(x, U(y, z)) -> U(U(x, y), z)

U(U(x, y), z) -> U(x, U(y, z))

U(x, y) -> U(y, x)

Automaton automat

States qO q l q2 q3 q4 q5 q6 q7 q ll ql3 qsl qs2 qt[0-5]

Final States ql3

Prior

null -> ql3 t0-> qtO
Transitions

o -> qO suc(qO) -> qO agt(qO) -> q3

A -> q l agt(ql) -> q4

B -> q2 agt(q2) -> q5

U(ql3, ql3) -> ql3

goal(q4, q5) -> ql3 goal(q5, q4) -> ql3

goal(q3, q3) -> ql3 goal(q4, q3) -> ql3

goal(q3, q4) -> ql3 goal(q5, q3) -> ql3

agt(qO) -> ql3 agt(ql) -> ql3

mesg(ql3, ql3, ql3) -> ql3 cons(ql3, ql3) -> ql3 encr(ql3, q3, ql3) -> ql3

pubkey(q3) -> ql3 pubkey(q4) -> ql3 pubkey(q5) -> ql3

N(q3, q3, qtO) -> ql3 N(q3, q4, qtO) -> ql3 N(q3, q5, qtO) -> ql3

goal(q3, q5) -> ql3

agt(q2) -> ql3

Approximation R1

180

States q[0-89] qt[0-5]

Rules

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(agt(q2),

agt(q2), qtO), agt(q2))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) -> q6

agt(q2) -> q5 N(q5, q5, qtO) -> ql5 cons(ql5, q5) -> q l6 pubkey(q5) -> ql7

encr(ql7, q5, q l6) -> ql3 mesg(q5, q5, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cons(N(agt(q2),

agt(ql), qtO), agt(q2))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) -> q6

agt(ql) -> q4 N(q5, q4, qtO) -> ql9 cons(ql9, q5) -> q20 pubkey(q4) -> q21

encr(q21, q5, q20) -> ql3 mesg(q5, q4, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), cons(N(agt(q2),

agt(qO), qtO), agt(q2))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) -> q6

agt(qO) -> q3 N(q5, q3, qtO) -> q23 cons(q23, q5) -> q24 pubkey(q3) -> q25

encr(q25, q5, q24) -> ql3 mesg(q5, q3, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(agt(ql),

agt(q2), qtO), agt(ql))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) -> q6

agt(q2) -> q5 N(q4, q5, qtO) -> q27 cons(q27, q4) -> q28 pubkey(q5) -> ql7

encr(ql7, q4, q28) -> ql3 mesg(q4, q5, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(agt(ql),

agt(ql), qtO), agt(ql))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) -> q6

agt(ql) -> q4 N(q4, q4, qtO) -> q30 cons(q30, q4) -> q31 pubkey(q4) -> q21

encr(q21, q4, q31) -> ql3 mesg(q4, q4, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), cons(N(agt(ql),

agt(qO), qtO), agt(ql))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) -> q6

agt(qO) -> q3 N(q4, q3, qtO) -> q33 cons(q33, q4) -> q34 pubkey(q3) -> q25

encr(q25, q4, q34) -> ql3 mesg(q4, q3, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), cons(N(agt(qO),

181

agt(q2), qtO), agt(qO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) -> q6

agt(q2) -> q5 N(q3, q5, qtO) -> q36 cons(q36, q3) -> q37 pubkey(q5) -> ql7

encr(ql7, q3, q37) -> ql3 mesg(q3, q5, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), cons(N(agt(qO),

agt(ql), qtO), agt(qO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) -> q6

agt(ql) -> q4 N(q3, q4, qtO) -> q39 cons(q39, q3) -> q40 pubkey(q4) -> q21

encr(q21, q3, q40) -> ql3 mesg(q3, q4, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(agt(qO),

agt(qO), qtO), agt(qO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) -> q6

agt(qO) -> q3 N(q3, q3, qtO) -> q42 cons(q42, q3) -> q43 pubkey(q3) -> q25

encr(q25, q3, q43) -> ql3 mesg(q3, q3, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(q5, q5,

qtO), N(agt(q2), agt(q2), qtO))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7)

-> q6 agt(q2) -> q5 N(q5, q5, qtO) -> ql5 N(q5, q5, qtO) -> ql5 cons(ql5, ql5) ->

q47 pubkey(q5) -> ql7 encr(ql7, q5, q47) -> ql3 mesg(q5, q5, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(a_l, b_l,

t_l), N(agt(q2), agt(q2), qtO))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) ->

q6 agt(q2) -> q5 N(q5, q5, qtO) -> ql5 N(a_l, b_l, t_l) -> q45 cons(q45, ql5) ->

q46 pubkey(q5) -> ql7 encr(ql7, q5, q46) -> ql3 mesg(q5, q5, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cons(N(q5, q4,

qtO), N(agt(q2), agt(ql), qtO))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7)

-> q6 agt(ql) -> q4 N(q5, q4, qtO) -> ql9 N(q5, q4, qtO) -> ql9 cons(ql9, ql9) ->

q50 pubkey(q4) -> q21 encr(q21, q5, q50) -> ql3 mesg(q5, q4, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cona(N(a_2, b_2,

t_2), N(agt(q2), agt(ql), qtO))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) ->

q6 agt(ql) -> q4 N(q5, q4, qtO) -> ql9 N(a_2, b_2, t_2) -> q48 cona(q48, ql9) ->

q49 pubkey(q4) -> q21 encr(q21, q5, q49) -> ql3 mesg(q5, q4, ql3) -> ql3]

182

[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), cons(N(q5, q3,

qtO), N(agt(q2), agt(qO), qtO))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7)

-> q6 agt(qO) -> q3 N(q5, q3, qtO) -> q23 N(q5, q3, qtO) -> q23 cons(q23, q23) ->

q53 pubkey(q3) -> q25 encr(q25, q5, q53) -> ql3 meag(q5, q3, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), cons(N(a_3, b_3,

t_3), N(agt(q2), agt(qO), qtO))))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) ->

q6 agt(qO) -> q3 N(q5, q3, qtO) -> q23 N(a_3, b_3, t_3) -> q51 cons(q51, q23) ->

q52 pubkey(q3) -> q25 encr(q25, q5, q52) -> ql3 mesg(q5, q3, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(q4, q5,

qtO), N(agt(ql), agt(q2), qtO))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7)

-> q6 agt(q2) -> q5 N(q4, q5, qtO) -> q27 N(q4, q5, qtO) -> q27 cons(q27, q27) ->

q56 pubkey(q5) -> ql7 encr(ql7, q4, q56) -> ql3 mesg(q4, q5, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(a_4, b_4,

t_4), N(agt(ql), agt(q2), qtO))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) ->

q6 agt(q2) -> q5 N(q4, q5, qtO) -> q27 N(a_4, b_4, t_4) -> q54 cons(q54, q27) ->

q55 pubkey(q5) -> ql7 encr(ql7, q4, q55) -> ql3 mesg(q4, q5, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(q4, q4,

qtO), N(agt(ql), agt(ql), qtO))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7)

-> q6 agt(ql) -> q4 N(q4, q4, qtO) -> q30 N(q4, q4, qtO) -> q30 cons(q30, q30) ->

q59 pubkey(q4) -> q21 encr(q21, q4, q59) -> ql3 mesg(q4, q4, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(a_5, b_5,

t_5), N(agt(ql), agt(ql), qtO))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) ->

q6 agt(ql) -> q4 N(q4, q4, qtO) -> q30 N(a_5, b_5, t_5) -> q57 cons(q57, q30) ->

q58 pubkey(q4) -> q21 encr(q21, q4, q58) -> ql3 mesg(q4, q4, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), cons(N(q4, q3,

qtO), N(agt(ql), agt(qO), qtO))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7)

-> q6 agt(qO) -> q3 N(q4, q3, qtO) -> q33 N(q4, q3, qtO) -> q33 cons(q33, q33) ->

183

q62 pubkey(q3) -> q25 encr(q25, q4, q62) -> ql3 mesg(q4, q3, ql3) -> ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), cons(N(a_6, b_6,

t_6) , N(agt(ql), agt(qO), qtO))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) ->

q6 agt(qO) -> q3 N(q4, q3, qtO) -> q33 N(a_6, b_6, t_6) -> q60 cons(q60, q33) ->

q61 pubkey(q3) -> q25 encr(q25, q4, q61) -> ql3 mesg(q4, q3, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), cons(N(q3, q5,

qtO), N(agt(qO), agt(q2), qtO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7)

-> q6 agt(q2) -> q5 N(q3, q5, qtO) -> q36 N(q3, q5, qtO) -> q36 cons(q36, q36) ->

q65 pubkey(q5) -> ql7 encr(ql7, q3, q65) -> ql3 mesg(q3, q5, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), cons(N(a_7, b_7,

t_7), N(agt(qO), agt(q2), qtO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) ->

q6 agt(q2) -> q5 N(q3, q5, qtO) -> q36 N(a_7, b_7, t_7) -> q63 cons(q63, q36) ->

q64 pubkey(q5) -> ql7 encr(ql7, q3, q64) -> ql3 mesg(q3, q5, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), cons(N(q3, q4,

qtO), N(agt(qO), agt(ql), qtO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7)

-> q6 agt(ql) -> q4 N(q3, q4, qtO) -> q39 N(q3, q4, qtO) -> q39 cons(q39, q39) ->

q68 pubkey(q4) -> q21 encr(q21, q3, q68) -> ql3 mesg(q3, q4, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), cons(N(a_8, b_8,

t_8), N(agt(qO), agt(ql), qtO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) ->

q6 agt(ql) -> q4 N(q3, q4, qtO) -> q39 N(a_8, b_8, t_8) -> q66 cons(q66, q39) ->

q67 pubkey(q4) -> q21 encr(q21, q3, q67) -> ql3 mesg(q3, q4, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(q3, q3,

qtO), N(agt(qO), agt(qO), qtO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7)

-> q6 agt(qO) -> q3 N(q3, q3, qtO) -> q42 N(q3, q3, qtO) -> q42 cons(q42, q42) ->

q71 pubkey(q3) -> q25 encr(q25, q3, q71) -> ql3 mesg(q3, q3, ql3) -> ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), cons(N(a_9, b_9,

184

t-9), N(agt(qO), agt(qO), qtO))))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) ->

q6 agt(qO) -> q3 N(q3, q3, qtO) -> q42 N(a_9, b_9, t_9) -> q69 cons(q69, q42) ->

q70 pubkey(q3) -> q25 encr(q25, q3, q70) -> ql3 mesg(q3, q3, ql3) -> ql3]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), N(a_10, b_10,

t_10)))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) -> q6 agt(q2) -> q5 N(a_10,

b-10, t_10) -> q72 pubkey(q5) -> ql7 encr(ql7, q5, q72) -> ql3 mesg(q5, q5, ql3)

-> qi3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), N(a_ll, b_ll,

t_ll)))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) -> q6 agt(ql) -> q4 N(a_ll,

b_ll, t_ll) -> q74 pubkey(q4) -> q21 encr(q21, q5, q74) -> ql3 mesg(q5, q4, ql3)

-> qi3]

[U(LHS, mesg(agt(q2), agt(qO), encr(pubkey(agt(qO)), agt(q2), N(a_12, b_12,

t_12)))) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 serv(q7) -> q6 agt(qO) -> q3 N(a_12,

b_12, t_12) -> q76 pubkey(q3) -> q25 encr(q25, q5, q76) -> ql3 mesg(q5, q3, ql3)

-> ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), N(a_13, b_13,

t_13)))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 aerv(q7) -> q6 agt(q2) -> q5 N(a_13,

b_13, t_13) -> q78 pubkey(q5) -> ql7 encr(ql7, q4, q78) -> ql3 mesg(q4, q5, ql3)

-> ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), N(a_14, b_14,

t_14)))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) -> q6 agt(ql) -> q4 N(a_14,

b_14, t -14) -> q80 pubkey(q4) -> q21 encr(q21, q4, q80) -> ql3 mesg(q4, q4, ql3)

-> ql3]

[U(LHS, mesg(agt(ql), agt(qO), encr(pubkey(agt(qO)), agt(ql), N(a_15, b_15,

t_15)))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 serv(q7) -> q6 agt(qO) -> q3 N(a_15,

b_15, t J.5) -> q82 pubkey(q3) -> q25 encr(q25, q4, q82) -> ql3 mesg(q4, q3, ql3)

-> ql3]

185

[U(LHS, mesg(agt(qO), agt(q2), encr(pubkey(agt(q2)), agt(qO), N(a_16, b_16,

t_16)))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) -> q6 agt(q2) -> q5 N(a_16,

b_16, t_16) -> q84 pubkey(q5) -> ql7 encr(ql7, q3, q84) -> ql3 meag(q3, q5, ql3)

-> qi3]

[U(LHS, mesg(agt(qO), agt(ql), encr(pubkey(agt(ql)), agt(qO), N(a_17, b_17,

t_17)))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) -> q6 agt(ql) -> q4 N(a_17,

b_17, t_17) -> q86 pubkey(q4) -> q21 encr(q21, q3, q86) -> ql3 mesg(q3, q4, ql3)

-> ql3]

[U(LHS, mesg(agt(qO), agt(qO), encr(pubkey(agt(qO)), agt(qO), N(a_18, b_18,

t_18)))) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 serv(q7) -> q6 agt(qO) -> q3 N(a_18,

b_18, t_18) -> q88 pubkey(q3) -> q25 encr(q25, q3, q88) -> ql3 mesg(q3, q3, ql3)

-> ql3]

[U(LHS, c_mit(agt(q2),agt(q2),z)) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 c_init(q5,q5,z)

-> ql3]

[U(LHS, c_mit(agt(q2),agt(ql),z)) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 agt(ql)

-> q4 c_init(q5,q4,z) -> ql3]

[U(LHS, cJnit(agt(q2),agt(qO),z)) -> ql3] -> [LHS -> ql3 agt(q2) -> q5 agt(qO)

-> q3 C_mit(q5,q3,z) -> ql3]

[U(LHS, cJmt(agt(ql),agt(ql),z)) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 cJnit(q4,q4,z)

-> ql3]

[U(LHS, cJnit(agt(ql),agt(q2),z)) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 agt(q2)

-> q5 C_init(q4,q5,z) -> ql3]

[U(LHS, c_init(agt(ql),agt(qO),z)) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 agt(y)

-> q3 c_init(q4,q3,z) -> ql3]

[U(LHS, c_init(agt(q0),agt(q2),z)) -> ql3] -> [LHS -> ql3 agt(qO) -> q3 agt(q2)

186

-> q5 cJnit(q3,q5,z) -> ql3]

[U(LHS, c_init(agt(qO),agt(ql),z)) -> ql3] -> [LHS -> q l3 agt(qO) -> q3 agt(ql)

-> q4 c_init(q3,q4,z) -> ql3]

[U(LHS, c_mit(agt(qO),agt(qO),z)) -> ql3] -> [LHS -> q l3 agt(qO) -> q3 cJnit(q3,q3,z)

-> ql3]

[U(LHS, c_resp(agt(q2),agt(q2),z)) -> ql3] -> [LHS -> q l3 agt(q2) -> q5 c_resp(q5,q5,z)

-> ql3]

[U(LHS, c_resp(agt(q2),agt(ql),z)) -> ql3] -> [LHS -> q l3 agt(q2) -> q5 agt(ql)

-> q4 c_resp(q5,q4,z) -> ql3]

[U(LHS, c_resp(agt(q2),agt(qO),z)) -> ql3] -> [LHS -> q l3 agt(q2) -> q5 agt(qO)

-> q3 c_resp(q5,q3,z) -> ql3]

[U(LHS, c_resp(agt(ql),agt(ql),z)) -> ql3] -> [LHS -> q l3 agt(ql) -> q4 c_resp(q4,q4,z)

-> ql3]

[U(LHS, c_resp(agt(ql),agt(q2),z)) -> ql3] -> [LHS -> q l3 agt(ql) -> q4 agt(q2)

-> q5 c_resp(q4,q5,z) -> q l3]

[U(LHS, c_resp(agt(ql),agt(qO),z)) -> ql3] -> [LHS -> q l3 agt(q l) -> q4 agt(y)

-> q3 c_resp(q4,q3,z) -> ql3]

[U(LHS, c_resp(agt(qO),agt(q2),z)) -> ql3] -> [LHS -> q l3 agt(qO) -> q3 agt(q2)

-> q5 c_resp(q3,q5,z) -> ql3]

[U(LHS, c_resp(agt(qO),agt(ql),z)) -> ql3] -> [LHS -> q l3 agt(qO) -> q3 agt(ql)

-> q4 c_resp(q3,q4,z) -> ql3]

[U(LHS, c_reap(agt(qO),agt(qO),z)) -> ql3] -> [LHS -> q l3 agt(qO) -> q3 c_resp(q3,q3,z)

-> ql3]

187

[U(LHS, add(x)) -> ql3] -> [LHS -> q l3 add(x) -> ql3]

[U(U(x,y),z) -> ql3] -> [U(x,y) -> ql3]

[U(x, U(y,z)) -> ql3] -> [U(y,z) -> ql3]

188

N eedham -Schroeder

approxim ation autom aton

Appendix E

Ops mesg:3 encr:3 N:3 cons:2 A:0 B:0 S:0 o:0 suc:l agt:l serv:l U:2 sharekey:2

pubkeyrl c_init:3 c_resp:3 add:l goal:2 LHS:0 hashl:2 hash2:3 pref:l sid:2

key:3 cert:2 pma:2 session:2 un:0 deux:0 null:0 t0:0
Autom aton current

States q8:0 q9:0 ql0:0 ql2:0 ql4:0 ql5:0 ql6:0 ql7:0 ql8:0 ql9:0 q20:0 q21:0

q22:0 q23:0 q24:0 q25:0 q26:0 q27:0 q28:0 q29:0 q30:0 q31:0 q32:0 q33:0 q34:0 q35:0

q36:0 q37:0 q38:0 q39:0 q40:0 q41:0 q42:0 q43:0 q44:0 q45:0 q46:0 q47:0 q48:0 q49:0

q50:0 q51:0 q52:0 q53:0 q54:0 q55:0 q56:0 q57:0 q58:0 q59:0 q60:0 q61:0 q62:0 q63:0

q64:0 q65:0 q66:0 q67:0 q68:0 q69:0 q70:0 q71:0 q72:0 q73:0 q74:0 q75:0 q76:0 q77:0

q78:0 q79:0 q80:0 q81:0 q82:0 q83:0 q84:0 q85:0 q86:0 q87:0 q88:0 q89:0 q0:0 ql:0

q2:0 q3:0 q4:0 q5:0 q6:0 q7:0 q ll:0 ql3:0 qsl:0 qs2:0 qt0:0 q tl:0 qt2:0 qt3:0 qt4:0

qt5:0

Final States q l3

Prior

null -> q l3 S -> q7 t0-> qtO

Transitions

189

add(q53) -> q l3

add(q82) -> q l3

add(q5) -> q l3

add(q23) -> q l3

add(q88) -> q l3

add(q24) -> q l3

add(ql3) -> q l3

C_resp(q4,q4,q5) -> ql3

c_resp(q4,q3,q4) -> ql3

c_resp(q5,q5,q4) -> q l3

C_resp(q4,q4,q3) -> q l3

C_resp(q3,q3,q5) -> q l3

C_resp(q3,q5,q4) -> q l3

C_resp(q3,q5,q5) -> q l3

C_resp(q5,q4,q4) -> ql3

c_resp(q3,q5,q3) -> ql3

C_init(q4,q5,q4) -> q l3

cJnit(q5,q4,q5) -> q l3

cJnit(q5,q5,q3) -> q l3

cJnit(q4,q3,q5) -> q l3

cJnit(q4,q5,q5) -> q l3

cJnit(q5,q4,q4) -> q l3

cJnit(q3,q3,q4) -> q l3

cJnit(q3,q3,q5) -> q l3

C_init(q3,q5,q3) -> q l3

LHS -> q l3

tO -> qtO

A -> ql

goal(q4,q5) -> q l3

goal(q5,q5) -> q l3

goal(q3,q4) -> q l3

agt(qO) -> q3

agt(qO) -> q l3

ad d (q 6 2) - > q l3

a d d (q 3) - > q l3

ad d (q 4 2) - > q l3

add(q 60) - > q l3

ad d (q 4 3) - > q l3

a d d (q 6 1) - > q l3

C_resp(q4,q3,q5) - > q l3

c_ resp(q5,q4,q5) - > q l3

C_resp(q5,q3,q4) - > q l3

c_ resp(q5,q5,q3) - > q l3

C_resp(q3,q4,q5) - > q l3

C_resp(q4,q5,q5) - > q l3

C_resp(q3,q4,q4) - > q l3

c_ resp(q4,q3,q3) - > q l3

c_ resp(q3,q4,q3) - > q l3

c J n it(q 4 ,q 4 ,q 5) - > q l3

C_init(q4,q5,q3) - > q l3

C_init(q5,q4,q3) - > q l3

C_init(q5,q3,q4) - > q l3

c_ in it(q 4,q 3,q 3) - > q l3

c J n it(q 5 ,q 5 ,q 5) - > q l3

C_init(q3,q4,q4) - > q l3

c J n it(q 3 ,q 4 ,q 5) - > q l3

c J n it(q 3 ,q 4 ,q 3) - > q l3

n u ll - > q l3

o -> qO

B -> q2

g o al(q 5 ,q 4) - > q l3

go al(q 3 ,q 3) - > q l3

g o al(q 5 ,q 3) - > q l3

a g t (q l) - > q4

a g t (q l) - > q l3

add(q76) -> q l3

add(q4) -> q l3

add(q33) -> q l3

add(q51) -> q l3

add(q34) -> q l3

add(q52) -> q l3

C_resp(q4,q5,q4) -> ql3

c_resp(q5,q3,q5) -> ql3

c_resp(q4,q5,q3) -> ql3

c_resp(q5,q4,q3) -> ql3

C_resp(q3,q3,q4) -> ql3

C_resp(q4,q4,q4) -> ql3

c_resp(q5,q5,q5) -> ql3

c_resp(q5,q3,q3) -> ql3

C Jresp(q3,q3,q3) - > q l3

c_init(q5,q5,q4) -> ql3

cJnit(q4,q4,q3) -> ql3

cJnit(q4,q3,q4) -> ql3

C_init(q5,q3,q5) -> ql3

C_init(q4,q4,q4) -> ql3

cJnit(q5,q3,q3) -> ql3

cJnit(q3,q5,q4) -> ql3

c_init(q3,q5,q5) -> ql3

c init(q3,q3,q3) -> ql3

S - > q7

suc(qO) -> qO

U (ql3,ql3) -> ql3

goal(q4,q4) -> q l3

goal(q4,q3) -> q l3

goal(q3,q5) -> q l3

agt(q2) -> q5

agt(q2) -> ql3

190

m esg(q3,q5,ql3) -> q l3

m esg(q4,q3,ql3) -> q l3

m esg(q4,q4,ql3) -> q l3

m esg(q l3 ,q l3 ,q l3) -> ql3

cons(q27,q27) -> q56

cons(q23,q23) -> q53

cons(q63,q36) -> q64

cons(q48,ql9) -> q49

cons(q57,q30) -> q58

cons(q23,q5) -> q24

cons(q42,q3) -> q43

cons(ql9,q5) -> q20

cons(q23,q23) -> q l3

cons(q23,q5) -> q l3

cons(q l3 ,q l3) -> q l3

pubkey(q3) -> q25

pubkey(q3) -> q l3

encr(ql7,q4,q56)

encr(q25,q5,q53

encr(q21,q4,q80

encr(q25,q5,q76

encr(ql7,q3,q84

encr(ql7,q3,q64

encr(q21,q5,q49

encr(q21,q4,q58

encr(q25,q5,q24

encr(q25,q3,q43

encr(q21,q5,q20

meag(q5,q3,ql3) -> q l3

mesg(q3,q3,ql3) -> q l3

mesg(q5,q4,ql3) -> q l3

cons(ql9,q l9) -> q50

cons(q30,q30) -> q59

cons(ql5,q l5) -> q47

cons(q51,q23) -> q52

cons(q60,q33) -> q61

cons(q39,q3) -> q40

cons(ql5,q5) -> q l6

cons(q27,q4) -> q28

cons(q51,q23) -> q l3

cons(q33,q4) -> q l3

pubkey(q4) -> q21

pubkey(q4) -> q l3

mesg(q3,q4,ql3) -> ql3

mesg(q5,q5,ql3) -> ql3

mesg(q4,q5,ql3) -> ql3

cons(q33,q33) -> q62

cons(q66,q39) -> q67

cons(q45,ql5) -> q46

cons(q54,q27) -> q55

cons(q36,q3) -> q37

cons(q33,q4) -> q34

cons(q30,q4) -> q31

cons(q33,q33) -> q l3

cons(q60,q33) -> q l3

cons(q42,q3) -> q l3

pubkey(q5) -> q l7

pubkey(q5) -> q l3

) -> q l3 encr(q21,q5,q50) -> q l3 encr(q25,q4,q62) -> ql3

) -> q l3 encr(ql7,q4,q78) -> q l3 encr(q25,q4,q82) -> ql3

) -> q l3 encr(q21,q5,q74) -> q l3 encr(ql7,q5,q72) ->

COHa
1

) -> q l3 encr(q25,q3,q88) -> q l3 encr(q21,q3,q86) ->

COa1

) -> q l3 encr(q21,q4,q59) -> q l3 encr(q21,q3,q67) -> ql3

) -> q l3 encr(ql7,q5,q47) -> q l3 encr(ql7,q5,q46) -> ql3

) -> q l3 encr(q25,q5,q52) -> q l3 encr(ql7,q4,q55) -> ql3

) -> q l3 encr(q25,q4,q61) -> q l3 encr(ql7,q3,q37) -> ql3

) -> q l3 encr(q21,q3,q40) -> q l3 encr(q25,q4,q34) -> ql3

) -> q l3 encr(ql7,q5,ql6) -> q l3 encr(q21,q4,q31) -> ql3

) -> q l3 encr(ql7,q4,q28) -> q l3 encr(ql3,q3,ql3) -> ql3

> q l3 key(q l3 ,q l3 ,q l3) -> q l3 pref(q3) -> q l3

191

N(q3,q5,qtO) -> »a 00

N(q5,q3,qtO) -> q78

N(q4,q5,qt0) -> q78

N(q5,q5,qtO) -> q82

N(q3,q3,qtO) -> q82

N(q4,q4,qt0) -> q82

N(q3,q5,qtO) -> q80

N(q5,q3,qtO) -> q80

N(q4,q5,qt0) -> q80

N(q3,q5,qtO) -> q74

N(q5,q3,qtO) -> q74

N(q5,q4,qt0) -> q74

N(q3,q5,qtO) -> q72

N(q5,q3,qtO) -> q72

N(q5,q4,qt0) -> q72

N(q5,q4,qt0) -> q76

N(q3,q3,qtO) -> q76

N(q4,q5,qt0) -> q76

N(q4,q3,qt0) -> q88

N(q5,q3,qtO) -> q86

N(q4,q3,qt0) -> q66

N(q5,q4,qt0) -> q45

N(q5,q3,qtO) -> q45

N(q3,q3,qtO) -> q45

N(q5,q3,qt0) -> oo

N(q3,q5,qtO) -> q48

N(q5,q5,qtO) -> q51

N(q4,q4,qt0) -> q51

N(q3,q4,qtO) -> q51

N(q4,q4,qt0) -> q54

N(q5,q4,qt0) -> q54

N(q3,q3,qtO) -> q54

N(q5,q4,qt0) -> q57

N(q3,q4,qtO) -> & 00

N(q4,q3,qt0) -> q78

N(q4,q4,qt0) -> q78

N(q4,q5,qt0) -> q82

N(q5,q3,qtO) -> q82

N(q5,q4,qtO) -> q82

N(q3,q4,qtO) -> q80

N(q4,q3,qt0) -> q80

N(q5,q4,qt0) -> q80

N(q3,q4,qt0) -> q74

N(q4,q3,qt0) -> q74

N(q4,q4,qt0) -> q74

N(q3,q4,qt0) -> q72

N(q4,q3,qt0) -> q72

N(q4,q4,qt0) -> q72

N(q4,q4,qt0) -> q76

N(q5,q3,qtO) -> q76

N(q5,q5,qtO) -> q76

N(q5,q3,qt0) -> q88

N(q4,q3,qt0) -> q84

N(q5,q3,qt0) -> q63

N(q4,q4,qt0) -> q45

N(q3,q5,qt0) -> q45

N(q5,q5,qt0) -> q48

N(q4,q3,qt0) -> q48

N(q3,q4,qt0) -> ¿2 OO

N(q4,q5,qt0) -> q51

N(q4,q3,qt0) -> q51

N(q3,q3,qt0) -> q51

N(q4,q3,qt0) -> q54

N(q3,q5,qt0) -> q54

N(q5,q5,qt0) -> q57

N(q5,q3,qt0) -> q57

N(q3,q3,qtO) -> q78

N(q5,q5,qt0) -> q78

N(q5,q4,qt0) -> -C
l

00

N(q3,q5,qtO) -> q82

N(q4,q3,qt0) -> q82

N(q3,q4,qt0) -> q82

N(q3,q3,qt0) -> q80

N(q5,q5,qt0) -> q80

N(q4,q4,qt0) -> q80

N(q3,q3,qtO) -> q74

N(q5,q5,qt0) -> q74

N(q4,q5,qt0) -> q74

N(q3,q3,qtO) -> q72

N(q4,q5,qt0) -> q72

N(q5,q5,qtO) -> q72

N(q3,q4,qt0) -> q76

N(q4,q3,qt0) -> q76

N(q3,q5,qtO) -> q76

N(q4,q3,qt0) -> q86

N(q5,q3,qtO) -> q84

N(q4,q5,qt0) -> q45

N(q4,q3,qt0) -> q45

N(q3,q4,qt0) -> q45

N(q4,q4,qt0) -> q48

N(q4,q5,qt0) -> q48

N(q3,q3,qt0) -> O
O

N(q5,q4,qt0) -> q51

N(q3,q5,qtO) -> q51

N(q5,q5,qtO) -> q54

N(q5,q3,qtO) -> q54

N(q3,q4,qtO) -> q54

N(q4,q5,qt0) -> q57

N(q4,q3,qt0) -> q57

N(q3,q5,qlO

N(q5,q5,qtO

N(q4,q4,qt0

N(q3,q4,qt0

N(q5,q3,qtO

N{q3,q3,qL0

N (q5,q4,qfc0

N(q5,q4,qtO

N(q4,q3,qtO

N(q3,q4,qtO

-> q57 N(q3,q4,qt0) ->

-> q60 N(q4,q5,qt0) ->

-> q60 N(q5,q3,qtO) ->

-> q60 N(q3,q3,qt0) ->

-> q23 N(q3,q4,qt0) ->

-> q42 N(q5,q5,qtO) ->

-> q l9 N(q4,q5,qt0) ->

-> q l3 N(q4,q5,qt0) ->

-> q l3 N(q5,q3,qt0) ->

-> q l3 N(q3,q5,qt0) ->

q57 N(q3,q3,qt0) -> q57

q60 N(q5,q4,qt0) -> q60

q60 N{q3,q5,qtO) -> q60

q60 N(q3,q5,qtO) -> q3ß

q39 N(q4,q3,qt0) -> q33

q l5 N(q4,q4,qt0) -> q30

q27 N(q4,q4,qtO) -> q l3

q l3 N(q5,q5,qtO) -> q l3

q l3 N(q3,q3,qt0) -> q l3

q l3

193

Appendix F

Invariant Exam ple

We are looking here at an example [TRSS01] from the theroy of linear arithmetic.

We have our system that runs as follow:

p c = l — ¥ x : = x + 2 ; y : = y + 2 ; p c : = 2

p c = 2 — y x := x - 2 ; y : = y + 2 ; p c : = l

The variable pc can only takes two values, 1 or 2, and the variables x and y are

integers.

The initial state of the system is: p c = l A x = 0 A y= 0 .

We can model the system behaviour with a TRS:

s y s te m (o n e , x , y) - 4 s y s te m (tw o , s (s (x)) , s (s (y)))

s y s te m (tw o , s (s (w)) , z) —> s y s te m (o n e , w , s (s (z)))

The initial configuration of the system can be recognized by a tree automaton:

States qO q l q2 qf

Final States qf

Transitions

o - 4 qO

one - 4 q l

system(ql,qO,qO) - 4 qf

We can also define an approximation function:

194

[system(two, s(s(qO)), s(s(qO))) —¥ qf] — > [two —¥ q2 s(qO) —¥ q3 s(q3) -¥ q4]

[system(two, s(a(qO)), s(s(y))) -¥ qf] — ¥ [two -¥ q2 s(qO) -¥ q3 s(q3) —¥ q4 s(y) -¥ q7 s(q7) -¥ q8]

[system(two, s(s(x)), s(s(qO))) -¥ qf] — ¥ [two —¥ q2 s(x) —► q5 s(q5) —¥ q6 s(qO) -¥ q3 s(q3) -¥ q4]

[system(two, s(a(x)), s(s(y))) -¥ qf] — ¥ [two -¥ q2 a(x) -¥ q5 s(q5) —¥ q6 s(y) —¥ q7 s(q7) —¥ q8]

[system(one, qO, s(s(qO))) —¥ qf] — ► [one —¥ q l s(qO) —¥ q3 a(q3) -¥ q4]

[system(one, w, s(a(qO))) —¥ qf] — > [one —¥ ql s(qO) —¥ q3 a(q3) -¥ q4]

[ay8tem(one, qO, a(a(z))) —> qf] — > [one -¥ q l s(z) -¥ q9 s(q9) -¥ qlO]

[ayatem(one, w, a(a(z))) —¥ qf] — ¥ [one -¥ q l a(z) -¥ q9 s(q9) -¥ qlO]

Using the completion algorithm (Algorithm 2) we get the following approximar

tion automaton:

States q3 q4 q5 q6 q7 q8 qO q l q2 qf

Final States qf
Transitions

s(q8) - 4 q5

s(q5) - 4 qG

s(q6) - 4 q7

s(q4) - 4 q7

s(q7) -4 q8

s(q0) - 4 q3

s(q3) - 4 q4

o - 4 qO

o n e - 4 q l

tw o - 4 q2

system(q2,q4,q6) -4 qf

system (ql,q0,q8) - 4 qf

system(q2,q4,q4) - 4 qf

s y s te m (q l,q O ,q O) —>■ q f

By looking at this automaton we can deduce the following invariant:

p c = l (x = 0 A y= 0) V (x=0 A y = 4) V (x= 0 A y > 8)

p c= 2 =£* (x= 2 A y= 2) V (x=2 A y = 6) V (x= 2 A y > 10)

195

(x= 0 A y= 0) and (x= 0 A y = 4) for p c = l are easy to deduce, they are transitions

of the automaton. It is the same for (x= 2 A y= 2) and (x= 2 A y = 6) for pc=2. The

last parts of the invariant, (x= 0 A y > 8) and (x= 2 A y > 10), are deduced from

the looping on the states q6 and q8 w ith s(q6) - 4 q7, s(q7) - 4 q8, s(q8) - 4 q5 and

s(q5) - 4 q6.

Our invariant is identical to the one in [TRSS01]. T he computation of the

approximation autom aton took less than 2 seconds.

196

