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Abstract

Bilinear pairings have been recently used to construct cryptographic schemes with new and
novel properties, the most celebrated example being the Identity Based Encryption scheme
of Boneh and Franklin As pairing computation 1s gencrally the most computationally n-
tensive part of any pairing-based cryptosystem, it 1s essential to investigate new ways 1n
which to compute painngs efficiently

The vast majority of the literature on pairing computation focuses solely on using ellip-
tic curves In this thesis we investigate pairing computation on supersingular hyperelliptic
curves of genus 2 Our aim 1s to provide a practical alternative to using elliptic curves for
pairing based cryptography Specifically, we tllustrate how to implement pairings efficiently
using genus 2 curves, and how to attain performance comparable to using elliptic curves

We show that pairing computation on genus 2 curves over Fo= can outperform elliptic
curves by using a new vanant of the Tate pairing, called the n; pairing, to compute the
fastest paining implementation tn the literature to date We also show for the first time how
the final exponentiation required to compute the Tate pairing can be avoided for certain
hyperelliptic curves

We investigate pairing computation using genus 2 curves over large prime fields, and
detail various techniques that lead to an efficient implementation, thus showing that these

curves are a viable candidate for practical use
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Chapter 1

Introduction

1.1 Public Key Cryptography

In 1976, a semnal paper by Diffie and Hellman [22] gave a solution to the key agreement
problem, and introduced the revolutionary concept of public key cryptography Symmetric
key cryptography uses a single secret key for both encryption and decryption purposes In
this context, the key agreement problem 1s to devise an efficient protocol to allow muitiple
parties to agree upon a secret key over an insecure channel, even if the participants in the
protocol have not met before The secunty of Diffie and Hellman’s elegant solution to this
problem 1s based on the intractability of the so-called Diffie-Hellman Problem 1n a cyclic
Abelian group However, Diffie and Hellman restrict this definition to the multiplicative
group of a finite field, denoted F}, in their paper

Aside from the problem of key agrecement, symmetric key cryptography has inherent
problems in distributing keys 1n a practical and secure manner, thus hampering its deploy-
ment 1n commercial or digital environments Public key cryptography consists of two keys,
one which 1s kept public and distributed freely, and the other which 1s private The two
keys are linked by a one-way function, such that knowledge of the public key reveals no
information about the private key However, a party that knows the private key can decrypt

information that 1s encrypted with the public key The security of a public key scheme re-



lies on a problem that 1s believed to be intractable 1f an adversary lacks certain information,
such as the Discrete Logarithm Problem or the Diffic-Hellman Problum mentioned above
In this section, let (71 be an additively written cyclic group of prime-order n with gen-

erator P, such that Gy = (P),

Defimition 1 The Discrete Logarithm Problem (DLP) in G115 the following given (P, [z]P)

€ G? find the integer x € [0,n — 1), where [z|P denotes P+ P+ P
———

1 tunes

Pohlig and Hellman [89] showed that an instance of the DLP 1n an arbitrary cyclic group
can be reduced to an instance of the DLP 1nn a prime-order subgroup Therefore, the order n
of G; should be a large prime number, or at lcast divisible by a large prime that 1s approxi-
mately the size of n The Pollard-rho algonthm [90] is the best algorithm that 1s known for
solving the DLP 1n a generic group (see also Pollard’s Kangaroo method [90]), and 1t has
a fully exponential running time of \/m group operations However, Nechaev [87] and
Shoup [108] showed that the best possible algorithm to solve the DLP in a generic group
runs in time 2(y/n) This shows that Pollard-rho 1s essentially the best possible generic
algorithm to attack the DLP As Pollard-rho has a fully exponential running time, the DLP
15 an ntractable problem in the abstract setting

However, every cyclic group of order n 1s 1somorphic to the additive group of integers
(modulo n) with generator 1, and the DLP 1s trivial to solve in this group This implies that
the difficulty of the DLP 1n a particular group depends on the representation of the group
elements [nother words, although the best possible generic algorithm to attack the DLP has
an exponential running time, there may be efficient aigorithms to attack the DLP in specific
groups, that exploit the way that group elements are represented Therefore, 1t 1s crucial
to consider attacks on specific groups when choosing a group to implement cryptographic
schemes based upon the intractability of the DLP

The Diffic-Hellman Problem 1s closcly related to the DLP

Defimtion 2 The (computational) Diffie-Hellman Problem (DHP) in G4 is the following
gwen (P, [a|P, [b|P) € G3 find the element [ab]P € G,



The DHP reduces to the DLP 1n polynomial time, meaning that 1f the DLP 1s tractable
1n a given group, then the DHP 1s also tractable To sce why this 1s so, let (P[] P [b]P) be
an nstance of the DHP 1n G; Then an adversary can compute the DHP by first finding the
integer « by computing the DLP instance ( P, [«]P), and then computing [a}([b} P) = [eb] P
There 1s some evidence that the DLP also reduces to the DHP 1n polynomal time e g, see
den Boer [10], Maurer [76], and Maurcr and Wolf [77] However, this remains unproven
for the general case

To motivate the discussion on the DLP and DHP, we briefly describe the key agreement
protocol due to Diffie and Hellman in the case of three parties, which requires two rounds of
communication The order n and the generator P of the group are public parameters Each
party ¢ € [0, 1, 2] generates a secret integer x, € [0, n— 1], and computcs the element [z,] P
In the first round of communication, each participant sends their [x,] P value to one of the
other participants, such that each party recetves a value Each participant then computes
the multiple of this element by their secret integer x,, and sends this value again to another
participant  Each party then has the shared value K = [zgz;72]P Any eavesdropper 1s left
with the task of computing K given (P, [zo] P, [z1]P, (2] P, [2021] P, [x172) P, [za12) P)
which implies solving the DHP When all of the participants have a shared secret, some
publicly agreed method 1s used to extract a key from 1t, which can then be used tn a sym-
metric key cryptosystem

The first practical public key encryption and signature scheme was devised by Rivest,
Shamir and Adleman (RSA) [93] in 1978 The security of RSA 1s based on the so-called
RSA assumption, a problem believed to be equivalent to the integer factorisation problem
In 1985, the ElGamal [26] cryptosystem was published, which was the first complete cryp-
tographic scheme for encryption/decryption that was based on the intractability of the DLP
At this point, cryptographic schemes that used the DLP as a cryptographic primitive typi-
cally followed the original Diffie and Hellman paper, by using the multiplicative group of a
surtable finite field Fy of charactenstic p Although the multiplicative group of a finite field

1s easy to describe and to implement, the DLP 1n this setting 1s vulnerable to sub-exponential



time index calculus attacks This means that large cryptographic key sizes must be used 1n
practice to maintain sccurity lcvels

As the DLP 1s described in a generic setting, 1t 1s natural to examine groups other than
F; The ideal candidate group would be impervious to all attacks that are faster than the
generic Pollard-rho algorithm The other requirements are that the group clements can be
represented 1in a compact manner, that the group operation can be computed efficiently and

that the group order can be computed 1n polynomial time Schnorr [100] proposed using

*
[’k

a subgroup of prime order n of F?, where n can be substantially smaller than ¢ In 1985,
Miller [83] and Koblitz [63] independently suggested using the group of rational points on
an elhptic curve over a fimite field F, No sub-exponential attacks are known to exist for this
particular group, and thus key sizes can remaimn small The group elements are simply points
on the curve, and the group operation corresponds to the inexpensive geometric chord-and-
tangent operation The group order can also be computed efficiently and thus elliptic curves
fulfil all of the requirements for use in DLP based cryptosystems

In 1989, Koblitz [64] suggested using a more general class of curves over F,;, namely
hyperelhptic curves of arbitrary genus We note that 1t 1s not theoretically exact to equate
elliptic curves with hyperelliptic curves of genus 1 However, for cryptographic purposes
this equivalence holds true, as we concentrate on the arithmetical properties which are the
same 1n both cases, and thus elliptic curves are also automatically considered

The set of rational points on a hyperelhptic curve of genus g > 1 over F,, denoted
C(F,), does not form a group Instead the divisor class group of degree zero 1s used,
denoted PIC% (F,) The group elements can be represented tn a compact manner, and an
efficient algorithm due to Cantor [14] exists to perform the group arithmetic It remains
to examine the security of Pick(F,) The running time for the Pollard-rho algonthm 1n
Picd(F,) 1s O(¢9/%) The best index calculus attack on the DLP in Pic%(F,) is due to
Gaudry et al {40] The complexity of this attack 1s O(g?~2/9), and 1s therefore faster than

Pollard-rho for genus ¢ > 3, as long as q is sufficiently large However, hyperelliptic

curves of genus 2 are invulnerable to these attacks, and along with elliptic curves are a



good candidate for implementing DLP bascd cryptosystems

1.2 Bihnear Parings

Bilinear pairings were first introduced to cryptology by Mencees et al |80] and Frey and
Ruck {30], to attack instances of the DLP on elliptic curves and hyperelliptic curves How-
ever, 1n 2000 Joux [52] and Sakai et al [99] showed how bilinear pairings could be used
constructively, to build cryptographic protocols with unique properties The literature now
contains a vast amount of pairing based protocols, many of which provide long-destred
solutions to outstanding protocol questions In this scction, bilinear pairings and their asso-
ciated hard problems are defined For a more detailed discussion on this topic, the reader 1s
referred to Menezes [79], or Galbraith and Menezes [34]

Let Gy = (P), be an additively wnitten Abelian group of prime order n and identity
element co, and let Gy be a multiplicatively wnitten Abehan group of prime order n with
identity element 1 A restricted definition of a bilinear pairing 1s now provided that 15
surtable for most cryptographic applications This definition, which 1s commonly deployed
both 1n theory and in practice, restricts both input elements to the pairing as belonging to

the same additive group

Defimtion 3 A bilinear pairing on (G, G2) 1s a map

e G1xG; > Gy

that satisfies the following requirements

I (Bihmeanty) Forall R, S,T € Gy, e(R+S,T) = e(R,T)e(S,T) and e(R, S+T) =
e(R, S)e(R,T)

2 (Non-degeneracy) e(P, P) # 1, where P # oo

3 (Computability) e can be effictently computed 1 e n polynomial time



Forall 5,7 € Gy, a bilinear pairing has the properties

1 e(S,00)=¢€(c0,S)=1

2 (Bilineanity) e([a)S, [b]T) = ¢(S, T)% forall a,b € Z
3 (Symmetry) e(S,T) = e(T 5)

It 1s the bilineanty property that allows the development of new and exciting cryptographic
protocols, as detailed later on 1n this chapter A large number of pairing based cryptosys-
tems rely on the property of symmetry associated with the restriction of both input elements
to the same additive group The non-degeneracy requirement ensures that cryptographic
applications are not trivial Finally, the stipulation that the pairing e can be efficiently com-
puted 1s fulfilled by computing either the Weil or Tate pairings using the degree zero divisor
class group of a hyperelliptic curve, as will be detailed in the following chapter

The bilinearity property implies that the DLP 1n G can be reduced efficiently to the
DLP in G2 Let (P, [z]P) be an instance of the DLP in G; Then the bilineanty property
gives the equality e(P, [r]P) = e(P, P)" € G2 Therefore, solving the DLP instance
(P, [7]P) € G? 1s equivalent to solving the DLP nstance (¢(P P), e(P,[z]P)) € G3

Defimtion 4 Let € be a bilimear pairing on (G, Gy) The (computational) Bilinear Diffie-
Hellman Problem (BDHP) is the following given (P,[a|P [WP,[c|P) € Gi compute
e(P, P)® € Gy

The BDHP 1s assumed to be just as hard as the DHP 1n Gy and G5 It 1s known that
if the DHP 15 tractable in either G or Go, then the BDHP 1s also tractable However, 1t
1S not known 1f the converse 1s true 1If the DHP in G5 1s tractable, then the BDHP can be
computed as [ab} P and then e([ab] P, [c|P) = e(P P)%< Alternatively, if the DHP in G
1s tractable, then the BDHP can be computed by letting g = e(P, P}, and then computing
g = e([a) P, [b)P), ¢° = e(P,[c]P) and g**¢ Therefore, the DHP (and hence the DLP)
in both G; and G5 needs to be intractable to guarantee the (assumed) security of a pairing

based cryptosystem that uses the BDHP as a cryptographic primitive



Interestingly, Joux and Nguyen [53] show that that the Decisional Diffie-Hellman Prob-

lem 1s efficiently computable in G using bilinear pairings, even 1f the DHP 15 intractable

Defimtion 5 The Decisional Diffie-Hellman Probiem (DDHP) 1s the followmng given

(P,[a]P [b]P,[c]P) € GY decide whether [c|P = [ab] P

The DDHP 1n G; can be computed as follows Let v; = e(P,[c]P) = e(P, P)° and
Yo = e([a] P, [b] P} = e(P P)® Then [c]P = [ab]P ifand only if v; = 7

1.3 Cryptographic Apphcations of Bilinear Pairings

As mentioned 1n the previous section, following the introduction of pairings 1n a construc-
tive manner, a large amount of attention has been devoted to using bilinear pairings to build
cryptosystems with new and novel properties  As mottvation for the work in this thesis, brief
descriptions of two important pairing based protocols are given, namely the key agreement

protocol of Joux and the 1dentity based encryption scheme of Boneh and Frankhin

131 A one-round, three-person key agreement protocol

As noted previously, the Diffie-Hellman key agreement protocol can be used to agree keys
between three participants in only two rounds However, in 2000 Joux [52] showed the
surprising result that 1t 1s possible to achieve this 1n only one round using bilinear pairings,
thus solving a long outstanding question as to whether this was possible at all Here this
protocol 1s described as modified by Verheul [113] to reduce the bandwidth requirements
Agam, each party © € [0,1,2] generates a secret integer z, € [0,n — 1], but this time
broadcasts the element [2,] P to both of the other parties, and receives the elements |z, ;] P
and [z,41) P (where the subscript of z 1s considered modulo 3) Note that the three messages
are independent of each other, and thus all communication between the participants can
be said to occur 1n a single round Each party can then establish a shared secret key as
K = e([z,-1] P, [z141| P)™ = e(P, P)™-1%:%41 A (passive) eavesdropper must solve an
instance of the BDHP to determine the shared key

)



Joux’s one-round key agrecment protocol can be extended to 1; participants, by using an
cfficiently computable multilinear map G'l’_1 — (9, for which a suitable extension of the
BDHP 1s intractable However, the construction of multilinear maps that can be efficiently
computed 1s an open problem In fact, Bonch and Silverberg [13] present cvidence that
1t may not be possible to construct such multilinear maps using techniques from algebraic
geometry In any case, Joux’s protocol 1s not fcasible from a practical point of view, as
1t only resists passive attacks, and must have an extra round of communication to resist a
man-in-the-middle attack by an active adversary However, 1t 1s useful as an example of
how bilinear pairings can be used to provide an elegant solution to cryptographic protocols

previously thought impossible

132 Identity based encryption

In 1984, Shamir [107] called for a public key, identity based encryption scheme tn which
the public key can be an arbitrary string Shamur’s original motivation for this scheme
was to simplify the management of certificates in email systems For example, 1f Alice
wants to send an encrypted email to Bob, she encrypts the message using Bob’s public
key string, which simply corresponds to his email address This differs considerably from
traditional certificate-based schemes, where Alice needs to obtain the certificate containing
Bob’s public key from some trusted source When Bob receives the encrypted message
he contacts a third party, known as the Private Key Generator (PKG) Bob authenticates
himself to the PKG and obtains his private key Of course, this means that key-escrow
1s inherent in Identity Based Encryption (IBE), as the PKG knows Bob’s private key By
appending a future date to Bob’s public key string, Alice can also ensure that a fresh key 15
used 1f she thinks that Bob’s private key has been compromised

In 2000, Sakai et al [99] suggested that bilincar pairings could be used to achieve
identity based cryptography In 2001, Boneh and Franklin [11] realised the first concrete
implementation of IBE, which 1s based on bilinear pairings (and hence on the intractability

of the BDHP) Here, the basic 1dea of Boneh and Franklin’s IBE scheme 1s presented



Lete G; x G; — G2 be a bilinear pairing for which the BDHP 1s intractable, and let
M {0,1}* — G1\{oo} and I7> G2 — {0, 1} be cryptographic hash functions, where
[ 1s the bat length of the plaintext /1. to be encrypted The PKG selects a private key s at
random from [1, » — 1], and computes its public key as Q = [s]P [t s assumed that all
entitics have an authentic copy of ¢

Bob’s private key 1s dg = [s]@p, where Qg = I1(IDpg), and IDg 1s the public
key string associated with Bob’s identity Note that computing d from (P, Q,@p) 1s an
mnstance of the DHP i G|, which only the PKG can compute as 1t has access to the secret
value s Alice encrypts a message m € {0,1}, by first randomly selecting an integer

r € [1,n — 1] and then computing the following values

Qp=H(IDg), Cr =[1]P Co=md Hao(e(Qp,Q)")

The ciphertext that Alice sends to Bob 1s then (C;,C;) Bob can recover the original

message . from the ciphertext (Cy, Ca) by using his private key dg to compute
m=Cy QD IIQ(P(dB, Cl))

To see how the bilinearity property of the pairing enables the decryption of the ciphertext,

observe that

e(dp,C1) = e([s|@B, [r|P) = e(QB, [s|P)" = e(Qr, Q)"

An adversary who attempts to recover m from the ciphertext (C;, Cz)} has to compute

e(Qp, Q)" from (P,Qg, Q, Cy), which 1s an instance of the BDHP

1.4 Motivation for this Work

Bilinear pairings have been described thus far in a generic sense To implement pairing

based cryptographic protocols, such as the two protocols described 1n the previous section,



it must be shown how to construct pairings i a more concrete manner There are only two
bilinear pamrings that are of interest for cryptographic purposes, namely the Tate pairng
and the Weil pairing In these cascs, the group G s (loosely) the subgroup of order n of
the degree zero divisor class group of a hyperclliptic curve defined over a finute field F,
where % 1s known as the embedding degree of the curve, and the group G5 1s the group
of the nth roots of unity in F . Ideally, the embedding degree should be large enough
to protect against index calculus attacks in Ga, yet small enough to allow for the efficient
implementation of F o« In an unpublished manuscript in 1986 (later published in 2004),
Miller [82, 84] described how to implement the Weil pairing efficiently using a double-and-
add algorithm This algorithm, now known as Miller’s algorithm, can be easily adapted to
compute the Tate pairing

Computing either the Weil or the Tate pairing 1n an efficient manner 1s essential, as
paring computation 1s generally the most intensive task 1n any pairing based cryptosystemn
Therefore, 1t 1s important to mvestigate ways n which to speed up pairing computation, 1f
cryptographic protocols that are based on patrings are to be adopted in practice In recent
years, a large body of work has appeared in the literature to address this 1ssue, and much
progress has been made 1 implemeating bilinear painngs 1n an efficient manner as a re-
sult Indeed, over the course of twenty years, the time to compute cryptographically secure
bihnear pairings has decreased dramatically, from several minutes to only a few mullisec-
onds [5, 103] Although the performance of pairing-based cryptosystems 1s approaching
that of cryptographic schemes such as RSA, there 1s still considerable motivation to 1m-
prove pairing computation, as it 1s an opcn question as to whether pairing based schemes
mught offer improved performance over traditional public key protocols

The vast majority of the hterature on pairing computation focuses solely on using ellip-
tic curves The reasons for using elliptic curves to compute pairings are largely the same
reasons as to why elliptic curves are preferred for discrete-log based cryptosystems Firstly,
the description of the group elements as rational points on the curve ts far simpler than the

complicated divisor theory involved m using hyperelliptic curves of genus greater than one

10



Secondly, the represcntation of group clements in the elliptic curve case requires only 2 field
elements, as opposed to 4 1n the genus 2 case, 6 1n the genus 3 case, etc Thirdly, the group
law 1s vastly simplified in the elliptic case as it corresponds to the simple manipulation of
geometric lines, as opposed to using Cantor’s algorithm for composition and reduction of
divisors The group operation for elliptic curves costs less in general than the group law for
hypcrelhptic curves of higher genus

However, despite the numerous apparent advantages of using elliptic curves, there are
compelling reasons to investigate pairing computation on other hyperelliptic curves Firstly,
no efficient pairing implementations on curves of genus g > 1 exist, meaning that protocol
designers can only consider using elliptic curves It 1s of considerable theoretical and prac-
tical importance to provide an alternative to using elliptic curves for pairing computation
However, we focus solely on using hyperelhptic curves of genus 2 The added complexity
of the group law for hyperelliptic curves of genus ¢ > 2 makes the group arthmetic dif-
ficult to implement 1n an efficient manner, and there are very few examples of such curves
that are useful for pairing based cryptography

Sccondly, considerable effort has gone into deriving explicit formulae for the group
law for genus 2 curves ¢ g, sec Lange [70], which improve substantially on the genertc
algorithm due to Cantor [14] Avanzi [1] uses these formulae to show that a careful imple-
mentation of scalar multiplication on genus 2 curves over large prime fields 1s extremely
competitive with elliptic curves It 1s natural to wonder then whether painng computation
on genus 2 curves 1s competitive also with the equivalent elliptic curve implementations
Thurdly, curves of genus 2 have a richer algebraic structure than those of genus 1 It 1s possi-
ble that this additional structure can be exploited in some way to speed up the computation

Rubin and Silverberg [96] show that the maximum embedding degree A of supersingular
genus 2 curves 1s 12 over Fom and 6 over Fy, The interesting value for security purposes
1s k/g, where g 1s the genus of the curve  The maximum security parameter for genus 2
curves 18 attained in characteristic 2 (k/g = 6), as opposed to characteristic 3 for elliptic

curves (k/g = 6) This 1s another reason to consider using genus 2 curves, as working in
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characteristic 2 1s preterable to using fields of characteristic 3 Supersingular genus 2 curves
over Fom with a maximum embedding degree of k = 12 are known to exist However, there
are no known curves over F, with an embedding degree of & = 6 Instead, a supersingular
genus 2 curve defined over I, with an cmbedding degree of & = 4 15 known to exist
The vast majority of efficient implementations of finite ficld arithmetic use cither binary
extension fields Fom, or large prime fields I, Coincidentally, supersingular genus 2 curves
only have interesting embedding degrees over these fields

In this thesis, pairing computation on supersingular hyperelliptic curves of genus 2 over
both Fam and F,, 1s investigated, using curves with the maximum embedding degree that
1s known 1n each case Spectfically, 1t 1s tllustrated how to implement pairings efficiently
using these curves, and how to attain performance comparable to using elliptic curves The
handful of papers that exist on this topic tn the hterature yield inefficient implementations
relative to elliptic curves In this thesis, the open question as to whether genus 2 curves
provide a viable alternative to using elliptic curves for pairing computation 1s answered in
the affirmative This thesis deals solely with improvements to the actual computation of
pairings, and does not focus at all on cryptographic protocols that are based on bilinear
pairings

The structure of this thesis 1s as follows Chapter 2 provides an overview of elliptic
and hyperelliptic curve cryptography, the Weil and Tate parings, and Mtller’s algorithm
Chapter 3 1s a literature review of papers dealing with advances 1n the computation of
pairings The research contribution of this thests 1s split into three chapters Chapter 4
explores the computation of the Tate pairing on a supersingular genus 2 curve over Fom
Chapter 5 uses a new variant of the Tate pairing, called the 77 pairing, to compute the fastest
pairing implementation 1n the Iiterature Is 1s also shown for the first time how the final
exponentiation required to compute the Tate pairing can avoided for certain supersingular
curves Chapter 6 details the computation of pairings on a supersingular genus 2 curve
over F, vastly improving on results available in the literature A new varant of Miller’s

algorithm 15 also described Finally, the thesis 1s concluded in chapter 7
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Chapter 2

Mathematical Background

2.1 Introduction

Cryptography that 1s based on the properties of algebraic curves is not an easy discipline as
it involves deep mathematical concepts In this chapter, an overview of the mathematical
techniques that are fundamental to the work 1n this thesis i1s provided This chapter states
some of the rcsults given 1n the previous chapter in a more concrete manner [t 1s not our
intention to be comprehensive, instead the interested reader can pursue any of the numerous
references that are cited throughout the chapter

Firstly, finite fields are examined Finite fields play an important role in modern cryp-
tography, and 1t 1s essential to represent finite field elements in such a way that allows for
an efficient implementation  Various bases for representing finite fields, as well as details
about how to implement arithmetic, are investigated The relative cost of various funda-
mental finite field operations is also explored See Lid] and Niederreiter [75] for a more
comprehensive treatment on this topic

Secondly, hyperelliptic curves and their applications n cryptography are examined
Seme divisor theory 1s given, and a group 1s constructed with a compact representation
of the group elements An algonthm 1s given to perform the group operation It 1s then

detailed how this group 1s suitable for cryptography, and the DLP 1s defined in this context
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Meneccs et al [81] provide a good “elementary” overview of using hyperelliptic curves
in cryptography Another thorough review 1s found in Jacobson ct al [56], Galbraith and
Menezes [34], and in various chapters of Cohen ct al [19] A compact treatment of this
topic 1s given 1n Hietalahti [49]

Thirdly, two concrete implementations of hyperelliptic curves are examined, namely
hyperelliptic curves of genus 1 (elliptic curves), and hyperelliptic curves of genus 2 The
vast majority of implementations 1n the hterature use one of these types of curves Fourthly,
we make concrete the abstract notion of a bilinear pairing, by introducing the Tate pairing
and the Weil pairing These pairings are given 1n the more general setting of hyperelliptic
curves, rather than using elliptic curves, as 1s common n the literature An algorithm 1s
given to compute pairings, and finally the chapter 1s concluded Good references on this

topic are chapter 9 of Blake et al [9], as well as chapters 6 and 16 of Cohen et al [19]

2.2 Fmte Fields

A field 1s a commutative ring for which every non-zero element has a multiplicative inverse
Let & and L be fields such that K C L Anelement o € L 15 sard to be algebraic over K 1f
there 1s a polynomual f(z) in one variable with coefficients in K, such that f(a) = 0 The

field L 1s an algebraic extension of K 1if every element of L 1s algebraic over K

Defimtion 6 An algebraic closure of a field K, 15 a field K containing K, such that K 1s
algebraic over K and every nonconstant polynomial with coefficients in K has a root in

K 1e K is algebraically closed

The field K has prime characteristic p, if there 1saprime psuchthat1+1+4+ +1=0
(p times), where 1 1s the multiplicative 1dentity, and 0 s the additive identity of the field
Otherwise, K 1s said to have charactenistic 0 If a field K has prime charactenstic, then K
contans the finite field of integers modulo p, 1e {0,1, ,p — 1}, denoted F, For any
prime p, and any positive integer m, there exists a finite field with ¢ = p™ elements This

field 1s unique up to 1somorphism and 1s denoted I, The algebraic closure of F 1s defined
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as

. oo
]Fq = U IFql
=1

The muluplicative group of nonzero elements of F,,, denoted Fy, forms a cyclic Abelian

group of order ¢ — 1 For any element o € Fy, then a9~1 = 1 due to the theorem of La-

grange, and therefore @ = o This map can be generalised, as 1n the following definition

Defimtion 7 The ¢-th power Frobenius automorphism ¢, of F,, 1s defined as

T = 7!

Jorall x € F_q We will sometimes refer to the p-th power Frobenius automorphism ¢, of a

Sfimite field F g of characteristic p which 1s defined as

PR

z +— zP

Jorallx € Ty

Let F, and quk be finite fields, such that ]Fqk is a finite extension of F; Then ]Fqk
can be regarded as a vector space of dimension k over F; This means that there 1s a
basis (6o, 51,  Br-1), where 8, € F«, such that every element a € F has a unique

representation of the form

k—1
=3 af,
=0
where a, € F, The element o € F« 1s denoted by the F,-vector (ag, a1, ,ar—1) The

addrtion of two finite field elements 1s performed on the a, components of the two elements
However, the multiplication of two elements requires knowledge about the dependencies

between the elements of the basis There are many different bases of F « over F,, however
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two bases are mainly used 1n practice

The most commonly implemented basis 1s the polynomual basis Let Fg[.] be the ning
of polynomials 1 + A polynomial f € F,[4] 1s said to be wrreducible if f has positive
degree, and the equation f = bc implies that either b € Fylu] or ¢ € Fyz] 1s a constant
polynomial If } € F,[s] 1s an ureducible polynomial over F, of degree &, then a finite
field with ¢* elements 1s constructed by adjoining a root of f to F, For every fimte ficld
F,, and every positive integer k, there exists an irreducible polynomual m F,[z] of degree
k If B € Fuu1saroot of f, then (1,8,8%, ,B%1) 1s called the polynomial basis of
F .« over F, Addition, subtraction and multiplication are performed modulo f Inversion
can be computed using the extended Euclidean algorithm in Fg[z] Irreducible binomials,
trinomials and pentanomtals are commonly used to define extensions of a finte field, as
they allow for a fast reduction

A less commonly used basis 1s known as the normal basis The element § € Fx 1s
said to be normal over IF,, if the elements (3, 59 ,6‘12, , ﬁqk—l) are linearly independent
over F, Then the basis (£ ﬁ",ﬁQQ, ,ﬂ"kll) ts called a normal basis of F« over F,
For every fimte ficld F; and positive integer k, there exists a normal basis of F« over Iy
Using a normal basis, exponentiating an element @ € F+ to the power of g can be achieved
with a simple shift of the vector representation This 1s particularly useful for finite fields
of characteristic two, as squarings become trivial as a result However, squaring can also
be speedily implemented in characteristic 2 using a polynomial basis, by mserting the 0
bit between every other bit of the binary representation of the element, and then reducing
modulo the irreducible polynomial A further advantage of using a polynomial basis 1s
that the multiplication of two elements 1n the normal basis 1s complicated and requires the
precomputation of a table Therefore, in this thesis only polynomual bases are considered

Two particular types of finite fields are commonly used in cryptography, namely bimary
fields Fom, where 7n 15 prime to avoid Weil descent attacks (see Gaudry et al [39]), and
large prime fields F, Addition in Fom reduces to a bitwise XOR operation, and hence this

field 1s commonly deployed in hardware implementations Fom also has the advantage that
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Tablc 2 1 The ratios S/M and I/M in MIRACL

Fimite Field | S/M I/M
F, 08—10 |10—-40
| Fom 01-025),9—13

squaring in this field 1s substantially faster than multiphcation Note that no 1rreducible
binomials exist over Fo, and therefore either a trinomial or pentanormial should be used
as the irreducible polynommal Large prime fields I, have the advantage of being simple
to implement, as no field extensions are mvolved However, the ratio between squarings
and multiplications 1s far larger than for Fom  Optimal extension fields F ., where the
irreducible polynomial defining the extension allows for a fast reduction, are sometimes also
used (particularly in embedded applications) These fields are deployed 1f it 1s necessary to
avoid the specific disadvantages of Fom or IF,

Computing the ratios S/M and I/M 1n F,, and Fom 1s of considerable interest when
implementing finite field anthmetic, where S, M, I denote a squaring, multiplication and
mnversion respectively However, the ratios depend on a wide range of parameters, such as
the representation used, whether the implementation is 1n software or hardware, how much
optimisation 1s used, etc This implies that different implementations yield widely differing
estimates Nonetheless, 1t 1s useful to provide these ratios to assess the cost of inversion
in particular The MIRACL [102] library provides a suite of test programs for calculating
the ratios S/M and I/M 1n both Fam and F,, The implementation of both Fom and I,
includes numerous platform-specific enhancements and 1s highly optimised The testing
includes different parameters for m and p, that range from 103 to 2048 bits The results are
included 1n Table 2 1, on our platform of a Pentium IV, 2 8 GHz Note that the ratio I /M
can be far more expensive for IF, than 1t 1s for Fom We emphasise that /M 1s expenstve
in F, due mainly to the highly efficient way multiplication 1s tmplemented in MIRACL

If f € Fgla] 1s an 1rreductble polynomral of degree A, then f has a root o 1n Foe All
of the roots of f are given by the k distinct elements (o, a9, ,oﬂk_l) € F,x, which are

called the conjugates of o with respect to IF,,
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Defimtion 8 Let o € ¥« Then the trace of « 15 given by

A
Tie, ey (o) = 3,
1=1

and the norm of « 15 given by

k
NIFqk/IFq (O’) = H af

1=1

2.3 Hyperelhptic Curves

Defimtion 9 An (imaginary quadratic) hyperelliptic curve C of genus g > 1 over the field

K 1s defined by an equation of the form

where (z) € K[1]1s of degree at most g and f(1) € K|a] 1s monic of degree 2g + 1

C must be non-singular, meantng that there are no pairs (z 3) € K x K which satisfy

both the equation of the curve C, and the partial denivative equations

2y +h(z) =0, h(z)y — f'(a) =0

When the charactenistic of K 1s not equal to 2, then the equation C can be transformed into

y® = f(x), where f(z) has degree 2¢ -+ 1, by the change of variables
z—z y— (y- h(z)/2)

In this case, the condition on the partial derivatives 1s met if and only 1f f(z) has no repeated

roots m K

Defimtion 10 Let L be a field contatning K Then the set of L-rational ponts on the curve

C, denoted L(C} 15 defined to be the set of finite pownts {(z,y) € L x L} that satsfy the
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equation of the curve C along with the pomnt at mfinity oo The set of K -1ational points

C(K) 15 denoted C for short

The opposite of a point P = (z,y) € C, denoted — P, 1s the unique other point on the
curve with the same z-coordinate, and 1s computed as —P = (z, —y — h(z)) If P = oo,
then —P = oo If a finite point 1s equal to 1ts opposite 1t 1s called special, otherwise 1t is

said to be ordinary

Defimtion 11 A divisor D 1s a finite formal sum of pownts on C such that

D= m(P)

where m, € Z, and m, = Q for all but finitely many P, € C

The degree of a divisor 1s the mteger Y rn, The support of a divisor 1s the fimte set
{P, € C|m, # 0} The set of divisors forms a free Abehan group, denoted Div, under

the addition law

Non(PY+ Y miP) = (n,+m,)(P)

The (sub)group of divisors of degree 0 is denoted DIVOC The greatest common divisor of
two divisors Dy = > n,(P,) € DIV% and Dy =Y m,(P) € DlV% 1s also an element of

DIV%, and 1s computed as

ged(Dy, Do) = Znnn(ml,nt)(PL) - (Z min(m,,n,))(oo)

Given a point P € C, and a function f considered on C, if f(P) = 0 then f 1s said to
have a zero at P If { 1s not defined at P, then f 1s said to have a pole at P, in which case
S{P) = co The order of a function at a point, or the number of zeros or poles at a point,

can be computed 1n the following way
Defimtion 12 Let G(x, ) be a polynomial with coefficients in K considered as a function
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on C' As y* can be repeatedly replaced with (1) — h(1)y, an equivalent polynomial
G4, y) can be obtained such that G(u,y) = a(x) — b(a)y Then the order of G(v,y) ata

pomnt P € C denoted ordp G 1s computed as follows

I P = (ap,yp) s afimte pomnt Let G be n the form (v — 1p) (ap(s) ~ bo(2)y),
where (1 — 1.p) does not divide both ag(z) and bo() If ag(ap) — bo(ap)yp # 0
thenlet s = 0 otherwise let s be the exponent of the highest power of (1 — 1 p) which
dides u3(2) + h(2)ao(w)bo(a) — f(2)63(2) If P is an ordinary point then define

oidp G = 1 + s otherwise define ordp G = 21 + s
2 P=oo Thenorde G = —max(2deg(a),2g + 1 + 2deg(b))

To any G(z,y) such that G # 0, the divisor (G) = 3 (ordp, G)(P,) 1s associated A
rational function R on C 1s defined as a ratio R = G(z, y)/H(z, y), with H # 0 To such
a rational function the divisor (G/H) = (G} — (H) € Div¥ 1s associated The order of R
ata pomnt P € C 1s defined to be ordp R = o1dp G — ovdp H, 1if H(P) # 0 Note that
ordp R does not depend on the choice of G and H Evaluating a divisor D = > m,(P,) at

a rational function R 1s computed as

R(D) = [[R&)™,

assuming that (R) and D have disjoint support If R and D are both defined over K, then
R(D} € K The divisor of a rational function 1s called a principal divisor, and such divisors

form a subgroup of Div, A principal divisor also has the property that Y m,P,=c0

Defimtion 13 The (degree zero) divisor class group PICOC(K Y of C over K 1s the quotient
group of the degree zero divisors defined over K modulo the principal divisors defined over

K 1Itis also known as the Picard group of C

Two divisors D; and D, are equivalent (when considered as elements of PIC%(K D,
denoted Dy ~ Dy, if their difference Dy — Dy 1s a principal divisor, 1e¢ Dy = Dj + (R),

for some rational function R
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Defimtion 14 4 semt-reduced divisor D 1s of the form D = 3 i, (P,) — (3 i) (00) such

that
1 All m, > 0 and the P, are finite points
2 If P, # — P, then only one of them occurs in the sum with m, # 0
3 IfP,=—~P, thenmn, <1

Any D € Div% can be modified by a ptincipal divisor to obtain an equivalent Dy ~ D
such that Dy 1s a semi-reduced divisor This implies that every coset of Pic}(K) can be
represented by a semi-reduced divisor

The field K 1s defined from now on to be [, the finite ficld of ¢ elements A divisor D
1s said to be defined over Fy 1f D7 = 3" m,(P7) = D, for all automorphisms o of F,, over
F,, where P7 = (o(z),0(y)) if P = (z,y) and 00” = 0o The theorem of Riemann-Roch
implies that every element of Pick(F,) can be represented uniquely by a semi-reduced
divisor D = )" m,(P,) — (3_ m,)(co), with the additional property that Y m, < g, where
g 1s the genus of the curve Semi-reduced divisors with this property are known as reduced
divisors

The degree zero divisor class group PICOC(K } 1s 1somorphic to the Jacobian of the curve
C defined over K, denoted Jo(K) The Jacobian ts an Abehan variety of dimension g
Picd(K) 15 also 1somorphic to the 1deal class group of the function field K (C), which 1s
the field of rational functions on C Mumford [86] introduced a way of representing a semi-
reduced divisor as the greatest common divisor of two prmcipal divisors of functions of the
form u(x) and v(a) — y This uses the 1deal class group representation, and 1s extremely

useful for implementation

Defimtion 15 A4 (non-trivial) semi-reduced divisor D = 5 m,(P,) — (3. m,)(c0) €
D (K) can be represented by two polynomials [u,v] with coefficients in Fq such that

uw(z) = [[(z — z,)™ and v(z,) = y, with the following properties
!l wis monic
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2 degu<degu<yg
3 ul|vP+uvh—f

The 1dentity element of Pic(K) 1s represented in Mumford notation as [1,0] A divisor
in Mumford representation [u, v] 1s reduced if and only if deg(u) < g If D 1s defined over
I, then v and v are also defined over F; However, this does not necessarily mean that the
points in the support of the divisor are defined over I,

Cantor [14] showed how to perform group arithmetic in PIC%(I( ) using Mumford rep-
resentation, assuming that i(z) = 0 and p # 2 This algorithm was later generalised by
Koblitz {64] to remove these conditions The group operation 1s split into two steps The
first step, called composition, takes as input two semi-reduced divisors D7 and D5, and
outputs a semi-reduced divisor D' ~ Dq + Dy This 1s given 1n Algorithm | The second
step of the group operation 1s called reduction, and reduces the semi-reduced divisor D’ to

an equivalent reduced divisor This 1s given in Algorithm 2

Algorithm 1 Divisor Composition

INPUT Dp = [’u,], ‘UI], Dy = [ug,’UQ]

OUuTPUT D'~ Dy + Do, D' = [u 7]

Compute d; = ged(u), uz) = eju; + egua

Compute d = ged(dy v + v2 + h) = cidy + ca{v1 + vo + h)
81 ¢ C1€1, 82 +— C1€2, 53 « C2

u — (uyug)/(d?)

vV — (slu1U2 -+ SV + 83(U1U2 + f))/d mod u

Return [u ]

[ SRV N

Algorithm 2 Divisor Reduction

INrUT D = [u, v] semi-reduced

Outpur D' = [/, '] reduced with D' ~ D
v (f — vh —v?)/u, v — (~h —v) mod v’
if deg v’ > g then

1

2

3 wue—u,ve—v
4 pGotostepl

5 endf

6 ©> Make »' monic
7 Return [u/,v/]
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PIC?; (F,) 1s a fimte Abchan group which fulhills all the enteria given in Chapter 1 for
implementing a DLP-based cryptosystem The group elements can be represented in a
compact and simple manner due to the representation of Mumford The group operation
can be performed efficiently due to the algorithm of Cantor The DLP 1s defined tn the

hyperelliptic context as follows

Defimtion 16 The Hyperelliptic Discrete Logarithm Problem (HCDLP) in Plc%(qu) 1s the
following given (D, [x]D) € Pic&(F,)?, find an integer x € [0, #P1ch(F,) — 1] where
|z)D denotes D+ D+ D

—————

r times

Computing [+]D cfficiently 1s essential for cryptosystems based on the intractability of
the DLP It 1s nefficient to repeatedly add D to itself when 4 1s a large integer Instead, it 1s
tar more cfficient to use the double-and-add algorithm (also known as square-and-multiply
when using multiplicative notation) The double-and-add algorithm takes 2|logy () | oper-
ations 1n the worst case, and 3{log,(z) | /2 operations on average, assuming that a doubling
1s computationally equivalent to an addition On average, . will have a Hamming weight
of logy(+)/2, which necessitates log,(1)/2 additions It 1s possible to improve the per-
formance of the double-and-add algorithm by using a windowing algorithm to reduce the
number of additions If z 1s written 1n non-adjacent form (NAF), it 1s possible to reduce
the number of additions to log,(z)/3 This method 1s effective if = does not have a low
Hamming weight

The best attack on the HCDLP 1s duc to Gaudry et al [40], which has complexity
O(¢*72/9) This s faster than the generic Pollard-rho attack for genus g > 3 There-
fore, hyperelliptic curves of genus 1 or 2 are typically used when implementing DLP-based

cryptography It remains to examine how to determne the cardinality of the group

Defimtion 17 The Hasse-Wetl bound gives a bound on the group order that depends only

on the underlying finite field ¥, and the genus q of the curve,

(Va = 1)* < #Picg(Fy) < (Vg +1)*
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Therefore, the group order for an arbitrary hyperelliptic curve of genus ¢ over Iy 1s

roughly given as #P1cX (F,) =~ ¢9

Defimtion 18 The g-th power Frobenius endomorphism ¢, on a hyperelliptic curve C

defined over ¥ is given by

Picg (Fy) = Picg (Fy)

bq o
mez(Pz) = mez(Pz )

where P91 = (79,49) and co®t = co

When a divisor 1s written 1n Mumford representation [u v], then the g-th power Frobe-
nius endomorphism of Plcg(Fq) operates on the coeflicients of w and v as the g-th power
field automorphism Therefore, applying the g-th power Frobenius endomorphism to a di-
visor in Mumford representation requires at most 2g operations 1n F, For a hyperelliptic
curve C of genus g defined over I, the Frobenius endomorphism ¢, satisfies a character-

istic polynomial of degree 2g of the form
xc(T)=T*+aT*  +  +eT9+ +ag" 'T+¢,

where @, € Z The characteristic polynomial of the Frobenius endomorphism factors as
ac(T) = Hfil (T = o), where the o, are complex numbers of absolute value /g Once the
values a, are known, then both the number of the points on the curve C and the cardinality

of PIC% (IFyr), for some integer r > 1, can be computed efficiently

Lemma 1 Let C be a hyperelliptic curve of genus g over Fy and let x¢ (T) = 1% (T -

=1
a,) be the characteristic polynomial of the Frobenius endomorphism Then for any integer

r>1

29
#COFp)=q +1-) o,
=1
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and

29

#PicG(For) = [[(1 - o)
=1

Therefore, 1t 1s possible to compute #PIC%(qu) by first deriving the a, coefficients of
xc¢(T), and then factoring xc(T) to obtain the «, Each «, coefficient can be obtained by
computing #C(F,.} Fora curve of genus g, this involves computing the number of points
on the curve C(Fy) for 1 < 2 < g This technique 1s useful for Koblitz curves, which
are curves defined over a small field, and then considered over a large extension field For
example, all of the genus 2 curves in charactenstic 2 that are examined 1n this thesis are
defined over [F2, but considered over Fam  However, this method 1s not gencrally useful for
determining the cardinality of Pic (F,,) for large p, as computing #C (Fj:) 15 a non-trivial
task In this case, an algorithm can be used to compute y¢ directly (1e without computing
the number of points on the curve} Once y¢ 1s known, the group order can be computed
as #P1c%(F,) = xc(1) Chapter 17 of Cohen et al [19] provides an overview of such
algorithms

Menezes et al [80] show how to reduce the (HC)DLP 1n PicZ (F,) to the DLP in ]F:‘;k n
probabilistic polynomial time using the Weil patring (actually their paper gives this result
for elliptic curves) Frey and Ruck [30] use the Tate pairing to achieve the same effect for
curves of arbitrary genus, and hence the attack 1s frequently referred to by the initials of
the authors as MOV/FR As index calculus attacks exist with sub-exponential complexity
n ]F:k, then the reduction implies that the DLP in Pic3(F,) can be compromused if & 1s

small k 1s a positive integer that is defined 1n the following way

Definttion 19 Let C be a hyperelliptic curve of genus g over F, and let D € Picl(F,) be
a dwisor of prime-order n, which 1s co-prime to ¢ Then the embedding degree k of (D),
is the smallest positive integer such that n. | ¢* — 1 In other words Fox 15 the smallest field

that contains the group of the nth roots of umty

When selecting a curve to implement a DLP-based cryptosystem, 1t 1s desirable to have
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an embedding degree & that 1s as large as posstble to avoid the attack of MOV/FR For the
majority of hyperelliptic curves this 1s automatically satisfied, and when considering the
same curve over different fields, A varies over the whole range 1 ,q? However, for a
certain class of curves that arc called supersingular, the embedding degree 4 1s relatively
small, which makes supersingular curves unsuited to implementing DLP-based cryptogra-
phy Yet 1t 1s precisely this property that makes supersingular curves excellent candidates
for pairing based cryptography An Abeclian vaniety over F; 1s supersingular 1f 1t 1s 1soge-
nous (over F,) to a product of supersingular elliptic curves A hyperelliptic curve C' over
IF, 1s called supersingular if the Jacobran, J¢(F,), 1s supersingular

As hyperelliptic curves of genus g over Iy have a group size of approximately ¢9 ele-
ments, they can be defined over the field F,/, where ¢’ ~ {/3, to attain the same group size
as an elliptic curve defined over I, However, this also implies that the genus of a curve
should be taken into account when assessing the security afforded by an embedding degree
k This 1s due to the MOV/ER attack, which uses the Tate pairing or the Weil pairing to
transfer the DLP to the group IF:;k s, The so-called security parameter 1s then defined as the
embedding degree divided by the genus of the curve

Galbraith [32] gives a bound k(g) on the embedding degrce of supersingular Abelian
varieties of dimension g over F; This bound depends solely on the genus, and not on
the Abelian variety 1itself For example, for supersingular Abelian varieties of dimension
2 the bound 15 A(2) = 12, and for supersingular Abelian varieties of dimension 3, the
bound 1s £(3) = 30 As the embedding degrce must be divided by the genus to give a more
accurate estimation of the security, low genus supersingular hyperelliptic curves cannot give
much more security from the MOV/FR attack than supersingular elliptic curves However,
Rubin and Silverberg [96] show that Galbraith’s bounds are not achieved by simple Abelian
varieties of dimension g > 3 An Abelian variety 1s simple if it does not decompose as a
product of lower dimension Abelian varieties As 1t 1s essential to work 1n large primc-order
subgroups 1n cryptography, splitting Abelian varieties are not interesting For the dimension

3 example, the actual bound that can be attained 1s k(3) = 18 (1¢ again k/g = 6)
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Table 22 The maxmmum embedding degrees of supersingular hyperelliptic curves over
I, [96]

genus (g) 112 |3
¢ arbitrary (Galbraith’s bounds) | 6 | 12 | 30
g square 3 9
g nonsquare, p = 2 4112 | *
q nonsquare, p = 3 6 18
g nonsquare, p > 3 216 |14

1t 1s important to note that supersingular hyperelhptic curves of genus ¢ may not be
known with the maximum embedding degree as given by Rubin and Silverberg For exam-
ple, there 1s no known example of a supersingular hyperelliptic curve of genus 2 over F,,
with an embedding degree of k = 6, only an embedding degree of & = 4 The maximum
embedding degrees for supersingular hyperelliptic curves of small genus are summarised
in Table 2 2 Supersingular hyperelliptic curves of genus 3 with embedding degree 14 only
exist 1n characteristic p = 7, not for large p, and so this case 1s not interesting for cryp-
tography As can be seen 1n Table 2 2, supersingular hyperelliptic curves only attain large
embedding degrees in small characteristic However, due to Coppersmith [21] a subexpo-
nential attack exists on the DLP in the finite field F7,.,, which is faster than in IE‘;k This 1s
an argument against using supersingular curves for pairing based cryptography, as opposed

to ordinary curves over [, as larger finite field parameters must be used

2.4 Implementing Hyperelliptic Curve Cryptography

As explained 1n the previous chapter, only hyperelliptic curves of genus 1 (elliptic curves)
and hypcrelliptic curves of genus 2 are interesting for implementing cryptosystems that are
based on the intractability of the DLP In this section, more details are given on how these

curves are used 1n cryptography
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241 Elhptic curves

A non-singular elliptic curve E' defined over a field K 1s given by an equation of the form

E y2 +ayzy + azy = 3+ a0z’ + a4z + ag,

where a1, az,a3,a4,06 € A As detailed 1n the previous scction, the elements of the group
Plc%(]Fq) of a hyperelliptic curve C of genus ¢ can be represented by a semi-reduced divisor
D =% m,(PR,)— (> m,)(co), with the property that > m, < g For an elliptic curve, this
means that D has only a single finite point Py € E(F,) 1n 1its support with mg = 1, such
that D s of the form D = (Py) — (c0) Therefore, there 1s a one-to-one correspondence
between elements of Pic%,(F,) and the pomts in E(F,), where [1,0] 1s equivalent to the
point at mnfimty co In other words, E(F,) 1s 1somorphic to Pic},(F,) Therefore, 1t ts
possible to work solely with E(F,), the F,-rational points on the curve, rather than use
Mumford representation as for elements of PIC%(FQ) Note that for a hyperelliptic curve of
genus g > 1, the points on the curve do not form a group

The pomnt at infinity oo can be thought of as a point on the y-axis, which lies so far away
from the z-axis, that any vertical line (1 e = = ¢, where ¢ 1s a constant) passes through 1t
Cantor’s algorithm for performing group arithmetic in P1c% (IF4) corresponds exactly to the

geometric chord and tangent operation on E(F,), which 1s descnbed as follows

Defimtion 20 Ler P, Q) € E(F,), ! be the line connecting P and Q (or tangent line to E
if P = () and R be the third point of intersection of | with E Let v be the vertical line

connecting It and oo Then P + Q) 1s the point such that v intersects E at R, oo and P+ Q

This definition easily yields explicit formulae for the group law that depend on the
coordinates of the input points These formulae are far simpler and faster to implement than
the generic algorithm due to Cantor for arithmetic in P1c2 (F;) Many different coordinate
systems are available with which to perform group arithmetic The advantage of using
alternatives to the standard affine coordinates 1s to elimmate expensive field inversions,

or to reduce the cost of doubling a point, which 1s the most prevalent operation in scalar
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Table 23 Cost of group anthmetic for elliptic curves in IF,,

Coordinate System Addition | Doubling
Affine Coordinates 1,2M,S | 1,2M 25
Projective Coordinates 12M,2S5 | TM,5S
Jacobian Coordinates 12M,45 | 4A] 65

Chudnovsky Jacobian Coordinates | 11M,3S | 5M, 65
Modi:fied Jacobian Coordinates 13M,6S | 4M,48
Montgomery Scalar Multiplication | 9Af, 25 | 60,35

Table 2 4 Cost of group anthmet:c for elliptic curves 1 Fom

Coordinate System Addition { Doubling
Affine Coordinates I1,2M, S | I,2M, 5
Projective Coordinates 16M,25 | 8M,45
Jacobian Coordnates 16M,35 | BM, 55
Lopez-Dahab Coordinates 13M,4S | BM, 45
Montgomery Scalar Multiplication | 4M,1S | 20,35

multiplication The cost of the group operation using different coordinates in F,, 1s given in
Table 2 3, and 1n Fom in Table 2 4 Note that 7, M, S denote a field inversion, multiphication
and squaring, respectively A clear conclusion to be drawn from Table 2 3 1s that affine
coordinates 1n I, should be avoided, as the ratio I /M 1s large The situation 1s not so clear
in Fpm as field inversion 1s not as expensive as 1n I,

The set of points on an elliptic curve forms a fintte Abelian group which meets all of
the requirements for implementing a DLP-based cryptosystem It has the added advantage
of having an extremely sumplc representation and algorithm to compute the group law The
group E(IF,) has thus far resisted any successful attempt to apply the index-calculus As a
result, 1t 1s possible to use smaller field sizes for elliptic curve cryptography than for finite
field cryptography It remains to determine the cardinality of the group The Hasse-Wel

bound on the cardinality of Plc%(]Fq) for a general hypcrelhiptic curve C over F 1s

(V@ - 1)% < #P1cL(F,) < (V7 + 1)%
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In the elliptic curve case this simplifies to

(¢—2yq+1) <#EF,) <(¢+2y/q+1),

from which the identity #£(F,) = q +- 1 — ¢ 15 obtaned, where [¢| < 2,/§ The valuc
t 1s called the trace of the Frobenius endomorphism The characteristic polynomal of the
Frobenius endomorphism for an elliptic curve E over Fy1s xg(T) = T? + 1T + q The
cardinality of E(F,) can be evaluated with v (1) = 1+ a1 + ¢, where a; = —f Once
#E(F,) 1s known, 1t 1s tnivial to find #E(F,-) for some mnteger r > 1 Let xg(T) =

(T — ag)(T — 1), then
#EFyr)=q +1~of —aof,

where o and o are conjugates Several algonthms exist to compute the group order of an
elliptic curve E defined over a large prime field F,, in polynomial time, the first of which
was given by Schoof [101]

In the previous section, an Abelian vanety was defined as supersingular 1f it 1s 1sogenous
to a product of supersingular elliptic curves (over F,) Clearly, this defimtion 1s mcomplete

without defining supersingularity in the context of elliptic curves

Defimtion 21 An elliptic curve E over Fy = Fym 1s supersingular if and only if t = 0

mod p where t 1s the trace of the Frobenius Otherwise the curve is ordinary

In other words, for a curve to be supersingular the characteristic p must divide the trace
of the Frobenius ¢ This can only happen if #E(F;) = 1 mod p If p > 5, then E
1s supersingular over IF,, only if the trace of the Frobeniws ¢ equals zero, in which case
#E(F,) = p+ 1 This yields an extremely fast method to evaluate a scalar multiple of
apomt P = (x y) As the trace 1s zero, the charactenstic polynomial of the Frobenius 1s
Xu(Pp) = qﬁ%—}-p = () Therefore [p](z,y) = —qﬁ%(z, y) = (x”z, —yP), which 1s extremely

efficient to compute, as raising an element in F,, to the power of p? 18 a linear operation
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This technique can be used 1n scalar multiplication by writing the scalar to the base p and
using multi-exponentation
The set of torsion points are the points whose order 1s finite, which 1s the case for all

pomts on E over F, The set of si-torsion points 1s defined as follows

E[n} = {P| P € E(F,), [n]P = (c0)}

There are exactly n? n-torsion points When p 1s the characteristic of F,, then a curve 1s
ordinary 1f E[p] >~ Z,,, and supersingular if E[p] ~ 0 In other words, supersingular curves

have no finite points of order p with coordmates in T,

242 Genus 2 curves

A non-singular (1imaginary quadratic) hyperelliptic curve C of genus 2 over a field K 1s

given by the equation

C v +h(r)y = f(r),

where h(z) 1s a polynomial in K of degree at most 2, and f(z) 1s a monic polynomial
in K of degrce 5 All genus 2 curves are hyperelliptic, which 1s not the case for curves
of genus ¢ > 2 There 1s no 1somorphism between Pich(F,) and C(F,), unlike 1n the
elliptic case, and therefore C(F,) does not form a group The clements of Picl(F,) arc
represented by a reduced divisor D = 3~ m,(P,) — (3. m,)(c0), where Y- m, < 2 Itis
possible to enumerate all the different types of reduced divisors that anise for genus 2 curves,
D =(0), D = (Fo) — (00), D = 2(Py) —2(00) and D = (Fy) + (P1) — 2(c0) Divisors
with a single finite point in the support are called degenerate divisors, and will prove to be
extremely useful in pairing computation later in this thesis Elements of Plc“c (F,) for genus
2 curves are represented as [22 + u1T + ug, vi2 + vg], using the notation of Mumford

It 1s relatively inefficient to use Cantor’s algorithm to compute the group law for genus

2 curves, as 1t 1s a generic algonthm designed to cater for all possible curve equations and
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Table 2 5 Cost of group arithmetic for genus 2 curves in I,
Coordinate System Addition Doubling
Affine Coordinates 1,22M,35 | T 22M,55
Projective Coordinates | 47M,45 38M,6S
New Coordinates 47M,7S 34M, 7S

genera A large amount of work has been done on deriving explicit formulae from Cantor’s
algorithm for genus 2 curves Tt 1s only necessary to derive formulae for the most common
case, which 1s when the divisors have maximal degree 2 and the finite pounts 1n the support
all have different z-coordinates Cantor’s algorithm can then be used to handle the other
rarely-occurring cases This work culminated 1in Lange’s formulae [70] for the affine case
Miyamoto et al [85] introduced projective coordinates, which Lange [68] improved and
extended to even characteristic Lange [69] also introduced “new” coordinates as a general-
1sation of elliptic Jacobian, Chudnovsky Jacobian and modified Jacobian coordinates from
elliptic curves to hyperelliptic curves of genus 2

The cost of doubling and addition using the explicit formulae and various coordinate
systems 1s given 1n Table 2 5 in IF;, and Table 2 6 in Fom  Genus 2 curves over Fom can be
classified depending on the h(z) polynomial The cost in Table 2 6 assumes that h(z) =
hox? + hyx + ho, where the leading coefficient hy # 0 Large speedups can be obtained
when some of the coefficients of k() are equal to 0 For example, curves of genus 2 where
h(z) 1s constant are supersingular, and extremely efficient explicit formulae can be derived
for the group operation Examining the tables, 1t s clear that inversion must be costly to
Justify using the alternative coordinate systems over affine coordinates Using the ratios of
I/M and S/M over Fp, and Fom m Table 2 1, affine coordmates are more efficient for Fom
as well as in all but the most inefficient parameters for IF,, Recently, Gaudry [38] and others
have extended Montgomery scalar multiplication to the genus 2 case, which promises to be
much more efficient than the coordinate systems given in Tables 2 5and 2 6

Therefore, genus 2 curves are a good alternative to using elliptic curves for DLP-based

cryptography Group elements can be represented in a reasonably compact manner as 4
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Table 2 6 Cost of group anthmetic for genus 2 curves in Fom
Coordinate System Addition Doubling
Affine Coordinates 1,220,385 | I 20M,6S
Projective Coordinates | 49M, 45 38M,7S8
New Coordinates 48M ., 48 39M, 65

elements of Fy, and the explicit formulae for performing the group law are far more ef-
fictent than using Cantor’s algonthm As with clliptic curves, no algorithm exists to date
for attacking the DLP mn Pic%(F,) with complexity lower than the generic Pollard-rho al-
gonthm The Hasse-Weil bound on the order of Picd (F,) for genus 2 curves implies that
#P1cl(F,) ~ ¢* However, the size of the group for elliptic curves over F, 1s only around
g This means that a genus 2 curve can be defined over a finite field of /g elements to
maintain the same security as an elliptic curve defined over a finite field of ¢ elements
Smaller field sizes lead to more efficient implementations, particularly 1f a ficld element
can fit inside a hardware register However, this must be balanced against the more difficult
arithmetic required 1n the genus 2 case

As with elliptic curves, the Frobenius endomorphism can be used to speed up scalar
multiplication for genus 2 Koblitz curves over Fam, e g see Gunther et al [44] The
charactenistic polynomial of the Frobenius endomorphism for a genus 2 curve C over Fy 1s

given as

4
xe(T) =T* + T + asT* + a1qT + ¢* = [[(T - )
=1

where a; az € Z, and the o, are complex numbers of absolute value /g The group order

over IF,r, for some integer » > 1, can be computed as

4
#P1cL(Fyr) = H(1 - af)

=1

The group order over F, can be computed by determming the coefficients a; and ag of

xc(T), and then evaluating xc(1) These coefficients are given as a1 = #C(F,) — g - 1
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and az = (#C(Fpz2) — ¢° — 1+ a?)/2 Using this method to compute the group order
over an extension of I, mvolves determining the «, by factoring vc(T") However, this
technique 1s only practical for curves defined over small ficlds Numerous algorithms exist
to compute #PIC%(FQ) for genus 2 curves 1n a more general way, see chapter 17 of Cohen
et al [19] for more details

The set of n-torsion divisors, Picd [11], 1s given as
Pick(n] = {D| D € Picd(F,), [+]D = (0)}

Pic%[n] has group structure (Z/nZ)* in the genus 2 case As with elliptic curves, supersin-
gular genus 2 curves have no divisor D of order p in F, See Galbraith [32] for more details

on supersimgular (genus 2) curves 1n cryptography

2.5 The Tate Pairmg

The Tate pairing (also called the Tate-Lichtenbaum pairing) was introduced to cryptogra-
phy by Frey and Ruck [30], as an alternative bilinear pairing to the Weil pairing In the
context of pairing based cryptography, the Tate pairing 1s a pairing of Jacobian varieties
defined over a finite field Let C be a hyperelliptic curve defined over a finite field F,
and let n be a (large) pnime such that n|#PicX(F,) n s also required to be co-prime
to ¢ to avoid the attack of Ruck [98] Let k be the embedding degree as defined previ-
ously, and let D; € PIC%(]Fqk)[IL], such that [n]D; = (), for some function f Let
Dy € Picg(F x)/nPicG(Fx) To ensure a non-trivial paring value, Dy and D must have

disjoint support

Defimtion 22 The Tate pairing of level n is a map

() Jn PcG(Fp)n] x Picq(F ) /nPich(F ) — o /(F)"
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and 1s defined as
(D1, Do) = f(D2)

The Tate pairing satisfies the following properties
| (Bilinearity) {[a) Dy, [b}D2)n, = (D1, D2)% for all a,b € Z (modulo nith powers)

2 (Non-degeneracy) For each divisor D) € PIC%(Fqﬁc)[n] Dy # (0) there 15 some
divisor Dy € Picg(F ) /nPick(F 1) such that (Dy, D) ¢ (Fre)”

3 (Computability) (D, D3),, can be efficiently computed

The subscript n1n (, },, can be dropped 1f it 1s obvious from the context The first input
to the Tate patring 1s an element of P1c%(IFqk)[n], the group of n-torsion divisors in F .
Howecver, the second input 1s an element of Plc%(quk) /nPick (F,x), where nPlC%(]Fqk) =
{mMlD| D € PIC%(IF,,k)} 1s a subgroup of PIC%(IFqk) The quotient group Plcoc(]F,,k) /
T?PIC%(]Fqk) 1s the set of equivalence classes of elements i Pich(F ,x) under the equiva-
lence relation Dy ~ Da such that (D) — Da) € nPics(F )

Let n be a prime as defined, and let P1c2.(F,) have no elements of order n? In other
words, n? should not divide #P1c2(F,) Then the group Plcoc(]Fqk) /nPlcOC(IF,Ik) IS 1S0-
morphic to Pick (F )[n] Therefore, the second mput to the Tate pairing can be taken to
be an element of the n-torsion group However, it 1s unnecessary to restrict Dy to this
group, as the output of the Tate pairing 1s not affected by the choice of D € PICOC(]F(]}:) as

representative of the class Therefore, the Tate pairing 1s defined as the simplificd map
0 * n
Pict(F e )] x Picg(F x) — Foi/(Fr)

The output of the Tate pairing is an element of the quotient group F ;k / (]F;k)" Let pu, =
{ue F;k | u™ = 1} be the group of the nth roots of unity, and define (IFZ")" ={u"|ue€
F ;k}, which 1s a subgroup of ]F;k The quotient group F;k / (]F;k)" 1S 1somorphic to u,,

Two elements a,b € IF;,k are equivalent (when considered as elements of ]F;k/(]FZk)")
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if a/b € (F7.)" In other words, a = b for some ¢ € F7,  As the output of the
Tate pairing 1s defined up to a multiple by the nth power of ¢ € IF:;U 1t 1S necessary to
modify the output to obtain a unique value suttable for cryptography An obvious way to
r(emove the nth powers 1s to exponentiate the pairing value to the power of (¢* — 1)/n, as
()@ -D/n = [&*-1) = 1 This exponentiation 1s known as the “final exponentiation”,

and the resulting patring 1s known as the reduced Tate pairing

Defimtion 23 The reduced Tate paming 1s defined as
k_ T k_ !
(Dl,Dg)ﬁﬂ Dfn _ f(D2)(fl U e,

The non-degeneracy property of the (reduced) Tate pairing states that for a given divi-
sor D; € Pic? (F)[n], apart from Dy = (0), there 1s a dvisor Dy € Pic? (F,x) such
that (D), Dz) # 1 However, a method 1s needed to construct Dy such that the pair-
ing 1s non-degenerate As will be detailed in the following chapter, instead of defining
D, € Picl (Fyx)[n], 1t 1s common n practice to define Dy over Fg,1e Dy € Pic (F,)(n)
If Dy 1s also defined over F, and k£ > 1 then the pairing value 1s degenerate, as 1t will be
eliminated by the final exponentiation Two techniques are known to construct Do to guar-
antee non-degencracy 1n the case that D; € Plcg (Fq) The first technique uses distortion
maps on supersingular curves, and the second uses trace maps on ordinary curves

Verhcul [113] introduces distortion maps and shows how to apply them to pairing com-
putation Let D € Pic%(F,) be a non-trivial divisor with prime order n, such that n? does
not divide #Plc%(lﬁ‘q), and let the embedding degree & > 1 A distortion map 1) 1s then
a non-rational endomorphism which maps D € Pick(F,) to D' € Plc%(F,lk)\Plc%(]F,,)
Distortion maps are used to guarantee non-degencracy, as the so-called modified pairing of

random clements D’ 1n a specific subgroup of order n 1n Plcg.(IFqk)

Defimtion 24 Let Dy, Dy € Pich(F,)[n) Then the modified pairing is defined as

(D1, 9(D2))d" ~D/m 1
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The modified pairing 1s guaranteed to be non-degenerate as the distorted divisor I, =
(D2) 1s inearly mdependent from Dy Another advantage to using distortion maps 1s that
they facihtate the generation of random elements D' € PlC%(]Fqk), which can be done by
simply generating a random D € PIC% (F,) and then using ¢ to map D into the larger
field As distortion maps always exist for supersingular curves, the modificd Tate pairing 1s
commonly used 1n practice

Distortion maps do not exist on ordinary curves, and hence a different technique must
be used 1n tius case to guarantee non-degeneracy Let D; € PIC%(IFqk) The trace map on

D1 1s defined as

k
Tr(D1) = Y ¢ (D1) € Prc(F,),

1=1

wherc ¢, 15 the g"th power Frobenius endomorphism  The trace map can be used to
guarantee a non-degenerate pairing m the following way Let Dy, D, € PICOC(Fqk)[TL],

D1, D2 ¢ Pick(F,) and Te(D;) # (0) Then
(Tr(Dy), Da)g" =/ 1

Another bilinear pairing 1s the Weil painng  An additional constraint on the prime
subgroup order n|#P10%(IE‘,]), 7 co-prime to ¢, 18 that n must also be co-prime to g —
1 This condition ensures that the Weil pairing 1s efficiently computable Let Dy, Dy €
PIC%(Fqk)[n], where D; and D, are n distinct cyclic subgroups of order n Let f be a
function such that (f) = [n]Ds, and g be a function such that (g} = [n]Dy Again, to

ensurc a non-trivial pairing value, Dy and D, must have disjoint support

Defimtion 25 The Weil pairing 1s a map

eal’, ) PIC%(]Fqk)[[L] X PlC%(Fqk)[n] — fip,
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and 1s defined as

Cn(Dla D2) =
q

The Weil patring has the following properties
[ (Bilinearity) e,(|a) D1, [b] D) = en(D1, D2)% for all a, b € Z

2 (Non-degeneracy) For each diisor D € PICOC(IFqk)[TL] Dy # (0) there is some
divisor Dy € P (F ) [n] such that e, (D1, D2} # 1

3 (Computabihty) e, (D1, D2) can be efficiently computed
4 (Alternaning) For all Dy Dy € PIC%(IFqk)[n] then e,(Dy, Da) = en(Ds, Dy)~!

5 (Companbility) If D, € PIC%(Fqk)[TL'nl] and Dy € Picl(F ) [n] then enm (D1, Do) =
en([m| Dy, Dy)

~

6 If¢ E — E'isanisogeny with dual ¢ then ea(d(P), Q) = e, (P, ¢(Q))

The Weil pairing can be computed using two applications of the Tate pairing such that

(D1, D2)n

en(D1, Da) = Dy, D1y’

where the equivalence 1s up to nth powers Note that this implies that e, (Dy, D) = 1,
which 1s not necessarily the case for the Tate pairing When assessing which 1s the more
efficient pairing, the comparison 1s between the final exponentiation to (¢* — 1) /n required
for the (reduced) Tate paining, and the computation of (D, Dy}, required for the Weil
paining This question will be explored further in the following chapter, however 1t suffices
to say for the moment that the Tate pairing can be computed more efficiently Therefore,
the Tate pairing 1s the most interesting pairing for cryptographic applications

A bihinear pairing 1s said to be symmetric if swapping the arguments yields the same

patring output As the Weil pairing can be calculated with two applications of the Tate
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pairing, 1t follows that the Tate pairing 1s not symmetnc, as this would violate the non-
degeneracy property of the Weil pairing  However, both the reduced Tate pairing and the
Weil pairing are symmetric when a distortion map 1s applied to the second argument, or the
trace map 1s apphed to the first argument, as both are then restricted to a cyclic subgroup

For example, let Do = [|D; and let » be a distortion map Then

(D1, ¥(D2)) = cn( D1, [m]p(D1)) = ca(lime] Dy, $(D1)) = en(Dz, $(D1))

Therefore, as supersmgular hyperelliptic curves of genus 2 are considered in this thesis,
the property of symmetry, as required 1n the definition of a bilinear pairing in Chapter 1, 1s
provided by restricting both input elements to the pairing to the same group Pic%(F,)(n]
and using a distortion map

The computabihity property of the Tate pairing simply states that the Tatc pairing can
be computed cfficiently The main task involved in computing the Tate pairing (D7 D3),,
1s to construct the function f such that () = [n]D; In an unpublished manuscript in 1986
by Muller [82] (and later published 1n 2004 as Muller [84]), it was shown how to efficiently
construct this function 1n stages by using a double-and-add algorithm This algorithm,
known universally as Miller’s algorithm, was originally used to compute the Weil patring
n polynomial time However, 1t can be easily adapted to compute the Tate pairing

Let D), Dy € PIC%(IFqk), and let D3 € PIC%(]Fqk) be the divisor that 1s formed from

the Cantor composition and reduction of Dy and Dy Then
D1+ Dy — Dy = (f) = (¢/d),

where f = ¢/d 1s a function on C which 1s independent of the choice of the representatives
for Dy, Dy and D3 The goal 1s to construct a function f,,, such that (f,,) = [n]D; Let

f1 =1, and let {/, be the functton appearing in
(f) =)D - []D,
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where (:) D stands for the (symbolic) addition of the divisor ¢ times to itself, while [:] D

stands for the reduced result Then f, , 1s defined as

(fH-j) = (’ +39)D - [’ +J]D
= (D-[D+(ND-DID-L+3]D+ D+ []D

= (f1f]§)

If « = y, then the addition 1s replaced by a doubling, and f2 appcars n the function There-
fore, the function f,, can be constructed 1n stages by using a double-and-add algonthm
The actual valuc for the function f,, 1s not of interest, rather 1t 1s the value of f,, at a divi-
sor D that 1s required Each iteration of the algonthm, the rational functions ¢ and d are
evaluated at the image divisor Dy € PICOC(IFQI:) This 1s possible due to the fact that only
multiplication, and not addition, 1s required to compute f, 4, This result 1s then multiphed
with an accumulating variable f € Fx, which must also be squared each time the iterating
divisor 1s doubled The resulting algorithm 1s known as Miller’s algorithm, and 1s given
Algorithm 3

If any of the itermediate functions in Miller’s algorithm has a zero at the evaluating
divisor Dy, the algorithm will fall There are a number of techniques to ensure that this
does not happen One strategy 1s to evaluate at the divisor D) = (D + D') — (D’), rather
than evaluate at Dy, where D’ 1s a randomly chosen element of PlCOC(IFqk) This techmque
involves evaluating the rational functions ¢ and d at the divisors (D2 + D) and D’ at each
iteration, and multiplying the the accumulating function by the result However, this 1s quite
inefficient and techniques will be described in the following chapter to avoid this penalty

It remains to examine how to derive the necessary intermediate functions ¢ and d for the
two cases of interest for cryptography, namely elliptic and genus 2 curves The intermediate
functions are calculated implicitly as part of the composition and reduction process on the
iterating divisor In the case of elliptic curves, the functions are sumply the straight lines

used n the addition process So when adding two ponts P, Q € E(F ), the function c 1s
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Algorithm 3 Miller’s algorithm to compute the Tate pairing
INPUT D € Picg(F i) [n), D € Picg (F i)
OuTrUT (D1, Ds),,
b fe1
2 T+ D
3 Dy« (Dy+ D) - (D)
4 for: — |logy(n)] — 1 downto 0 do
s o Compute 7”7, ¢, d such that T" = (2)T — (¢/d)
6 fef 55D
7 T«T
8 if n, =1 then
9 > Compute 77, ¢, d such that 7' = T' 4 D — (¢/d)
10 fet %
1 TT
12 endif
13 end for

14 Return [

the straight line through P and ), and the function d 1s the vertical line through the point
P+ Q Inthis thesis, we follow the convention of calling the function ¢ the “line function”,
and d the “vertical line function” However, 1t must be emphasised that this 1s not strictly
accurate for higher genus curves

For genus 2 curves 1t 1s not quite so straightforward Let Dy, Dy € PIC%(]F(’k) be
the two divisors that arc being added, given in Mumford representation as Dy = [u1, v1]
and Dy = [ug, v2] In the composition stage of Cantor’s algorithm, the polynomial § =
ged(ug ug, v1 + we + h) 1s computed Now let D3 = [u3, u3] be the output of the Cantor
composition algorithm on Dy and Dy, and let D} = [uj, v}] be the reduced divisor equiv-
alent to D3 If the divisor D3 1s already reduced following the composition stage, then
the function f(z,y) = c(a, y)/d(r,y) = 6(a) If this 1s not the case, then the function
Hez,y) = (e, 9)/d(a,y) = 0(2)(y — v3(2))/us(2) In the overwhelmingly common case
d = land thus (1, y) = y — v3(a) and d(z, y) = (1)

As Muller’s algorithm has |log,(n)] iterations, there will be |log,(n) | doublings Also
if n has a random Hamming weight, there will be [log,(n)/2] additions to be performed 1n

the loop In Algorithm 3 the iterating divisor T 1s an F x-rational divisor Therefore, per-
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forming doubling or addition on this divisor 1s computationally expensive, even assuming
the usc of explicit formulae The rational functions that are extracted from the addition pro-
cess for both doubling and addition are then evaluated at the image dvisor 10, € PIC%(Fqk)
After thus, the accumulating vaniable f € F « (also known as the Miller variable) must be
updated by the result of evaluating ¢ and d at D, However, this operation 1s extremely
expensive, as with a naive implementation an inversion 1s required over F«  Finally, the
accumulating vanable 1s squared whenever a doubling takes places, which again 1s not a

cheap operation

2.6 Conclusion

In this chapter, it has been described how finite field anthmetic can be implemented 1n an
efficient manner using a polynomial basis Hyperelliptic curves have been introduced, and
their application to cryptography has been detalled In particular, hyperelhptic curves of
genus 1 and 2 have been shown to be suitable for implementation due to their compact
representation, efficient explicit formulae for the group law, and lack of effective index
calculus attacks

The Tate pairing and Weil pairing have been defined in the context of hyperelliptic
curves It has been shown how to construct pairings to avoid trivial values, and an efficient
algorithm due to Miller to compute pairings has been described Both the Weil pairing and
the Tate pairing are suited to implementing cryptographic protocols that are based on the

intractability of the BDHP in PIC%(]Fqk)
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Chapter 3

Optimisations to Miller’s Algorithm

3.1 Introduction

In 1993, Meneces [78] reported an implementation of the Weil pairing that ran in “just a few
minutes” on a SUN-2 SPARC-station using an elliptic curve over Fom, where m = 200
This was when pairings were used to reduce the HCDLP on supersingular curves to the DLP
n ]F;k, and hence the speed of pairing computation was not particularly important How-
ever, with the emergence of cryptographic protocols that are based on computing either the
Wel or Tate pairings, 1t quickly became obvious that it was of paramount importance to 1m-
prove the relatively slow computational speed of Miller’s algorithm as originally described

In this chapter, an overview of various methods to improve the performance of Miller’s
algonthm 1s provided To the best of our knowledge, this 1s the first comprehensive review
on this matter in the literature The emphasis 1s mainly on elliptic curves, as ncarly all
of the improvements were derived 1n this context However, a substantial number of the
techniques can be generalised to the hyperelliptic case Firstly, the early optimisations to
Miller’s algorithm are examined These include defining the iterating point over a subfield,
as well as modifying the image point in such a way that the calculation of vertical line
functions can be omitted from the algorithm entirely

Secondly, the concept of squared pairings 1s examined Initially 1t appeared that these
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pairings could be computed more efhciently than plain pairings However, 1t was later
shown that plain pairings always yield a more etficient implementation Thirdly, the gener-
alisation of patring calculation to hyperelliptic curves of genus greater than one 1s detailed
Certain curves are shown to be cxtremely suited to pairing implementation, as the Tate pair-
ing can be computed with a shortened loop size and a trivial final exponentiation These
curves also support a simple choice of function 1n the loop which eliminates the need for
explicitly computing multiples of the iterating point

Fourthly, the concept of pairing compression 1s detailed Pairing compression involves
modifying the output of Miller’s algorithm to take up less bandwidth Both the trace-based
approach as well as the alternative method of using algebraic tor are exammed 1t 1s then
shown how to compute the Weil pairing efficiently, using many of the optimisations defined
earlier in the chapter A metric for implementing finite field arithmetic 1n an efficient man-
ner 1s also examined This metric can be used to analyse the cost of pairing computation 1n
a theoretical manner Finally, a small number of recent optimisations are examined and the

chapter 1s concluded

3.2 Early Optimisations

Here the Tate painng 1s considered 1n the elliptic case F, rather than in the more general
hyperclliptic setting Let D; = (P) — (o00) € P]C%(Fqk)[n], such that [n]D; = n(P) —
n(o0) = (f), and let Dy = (Q) — (00) € P]C%(Fqk) Rather than compute the Tate pairing
using D; and Dy, 1t 1s more convenient to exploit the 1somorphism between PIC%(Fqk) and
E(F ), and compute the pairing on P and Q To ensure that none of the intermediate
functions 1n Miller’s algonthm have a zero at @, the second argument to the Tate pairing 1s
defined as Q" = (Q + R) - (R), where R € E(F ) 1s a random point on the curve such

that R ¢ {oo, —P} Thereforce, the Tate pairing 1s computed as

(PRI = (@) in
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Galbraith et al [31] introduce three improvements to Miller’s algorithm for computing
the Tate pairing 1 he mam observation 1s that the first input point P in (P, Q’), should
be defined over F, rather than over I« This observation was previously made by Boneh
and Franklin [11] 1n the case of the Weil pairing Galbraith et al suggest representing the
field F« as a degree k extension of the basc field F; = Fym, rather than working with
extenstons of F . of degree ., as suggested by Boneh et al [12] However, arithmetic in
Fx 15 still far more expensive than in ¥, If P is defined over Fy, then the coefficients of
the straight lines used in the addition process wili also be defined over F, This leaves only
the evaluation of the line functions, and the subsequent multiplication by the accumulating
Miller vanable (which 1s also squared), to be performed in F o« This 1dea substantially
reduces the computational cost of Miller’s algonthm Galbraith et al also show that the
random point 2 n Miller’s algorithm can be defined over F, instead of F «

The second observation of Galbraith et al relates to removing versions from the al-
gortthm The line functions must be divided by the vertical line functions at each iteration
of the loop However, inversion in the field F « 1s extremely expensive The idea of Gal-
braith ct al 1s to usc two accumulating variables in Miller’s algorithm, and to perform a
single inversion after the loop One vanable keeps track of the numerator, or line functions,
and the other keeps track of the denomunator, or vertical line functions Each variable must
be squared whenever a point doubling 1s performed This technique effectively trades an
mversion for a squaring at each iteration of Miller’s algorithm, which results 1n a dramatic
improvement, as squaring 1s a relatively cheap operation in F «» compared to inversion

The third observation 1s that windowing methods can be used to compute Miller’s al-
gonthm This observation was also made by Boneh et al [12] Windowing methods are
routinely used for scalar multiplication on elliptic curves Given a point P € E(F,), the
basic 1dea 1s to precompute the values [¢] P for all values ¢ 1n a window of size 3 or 4 buts
Windowing methods reduce the number of additions that must be performed, but do not
affect the number of doubling operations However, 1n chapter 9 of Blake et al [9], Gal-

braith shows that using windowing methods to compute the Tate pairing 1s not efficient, as
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there 1s an increase tn the number of field multiplications in the addition stage of Miller’s
algorithm

Galbraith et al also discuss how to select the order n used to compute the Tate pairing
Let H(n) be the Hamming weight of n Then the number of additions to be performed in
Miller’s algorithm corresponds to H(n) — 1 Galbraith et al discuss how n can be chosen
so that 1t has as low a Hamming weight as possible It 1s also shown how the actual group
order can be used, rather than a subgroup order This 1s useful for certain supersingular
curves 1n small characteristic, which have a group order of low Hamming weight, but do
not have a large prime factor of low Hamming weight In this case, the Tate pairing can
be computed using the group order N, and the final exponentiation becomes (q* — 1)/N,
which also has a low Hamming weight Notc that while the result 1s still a unique nth root
of unity, it may not be the same value as when the Tate pairing 1s computed with respect to
the large prime n

Some supersingular curves 1n low characteristic p have extremely efficient formulae to
compute [p'] P, where 2 > 0 1s an integer and P s a point on the curve Galbraith et al
show how this property can be exploited in pairing computation An example 1s given of two
supersingular curves in characteristic 3 with an embedding degree of kK = 6 These curves
have a formula for computing [3] P which does not involve inversion As this formula 1s
very efficient, 1t 1s natural to consider using it to compute the Tate pairing for these curves
This can be done by using a ternary basis 1n Miller’s algorithm, instead of a binary basis
as 1s standard The accumulating variable must then be cubed each time a point tripling 1s
performed, which can be computed efficiently in characteristic 3

Barreto et al [5] also present an mmproved variant of Miller’s algorithm to compute
the Tate pairtng The most important contribution of this paper 1s a deterministic vartant
of Miller’s algorithm to compute the Tate pairing, which 1s far less expensive to compute
that the conventional algorithm This algorithm depends on the first point P in (P, Q"),,
being defined over I, rather than over the larger field F» As discussed, Galbraith et

al [31] independently discovered the benefits of defining P over F, However, Barreto et
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Table 3 1 Some supersingular clliptic curves with low A

Curve cquation Finate field | Curve order k
Fig y*=2*+z—dr+dde {01} |Fpp>3 | p+1 2
Bog *+y=23+2+dde{0,1} |Fam om  om+1)/2 1 | 4
Esqg v*=2-z+d,de{-1,1} F3m 3m 4 3(m+1)/2 11 | ¢

al achieve further computational savings by introducing two new optimisations Barreto
etal first of all show that (g — 1) 1s a factor of (¢¥ — 1)/n for the curves in Tablc 3 1, all
of which have an even embedding degree £ If the random point R 1s also defined over F,
rather than F «, then by Fermat’s little theorem f(R)?~! = 1, and hence j(R)(qk‘l)/” =1
Thercfore, the evaluation at R can be onutted altogether from Miller’s algornthm, resulting
1n a deterministic algonthm that ts computed as (P, Q),(fk"l)/" = f(Q)W"-D/n

Barreto et al ’s second contribution 1s the 1dea of ‘denomunator ehmination’ Recall that
two functions are extracted from the addition process in Miller’s algorithm In the elliptic
case, the line function corresponds to the tangent at the iterating point (if doubling), or
the line between two points (if adding) The vertical hine function consists of the equation
of the vertical line through the resulting point The line function must be divided by the
vertical hine function each time a doubling or additton takes place Galbraith et al [31]
avoid this by using two accumulating vanables and performing a single inversion after the
loop However, Barreto et al show how to completely avoid computing the vertical line
functions, which improves the speed of Galbraith et al ’s algonthm by nearly 50%

As detailed in Chapter 2, the modified Tate pairing 1s typically used when implementing
pairings using supersingular curves In the elliptic case, this involves generating a point
Q € E(F,) and using a distortion map to obtamn a pownt ¥(Q) € E(F), which can
then be used as the image pownt in Miller’s algonthm Table 3 2 gives a suitable distortion
map for some of the curves defined previously in Table 3 1 Barreto et al show that the
vertical hine functions can be discarded when computing the modified Tate pairing using
any of these distortion maps The key reason for this is that the distortion maps given 1n

Table 3 2 map the z-coordinate of the point @ to a subfield of F «, whereas the y-coordinate
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Table 3 2 Dustortion maps for (most of) the curves given in Table 3 |
Curve Finite field | Distortion map Conditions
Eo F, Wiz, y) = (~xz,1y) p=3 mod 4,
1€ ]Fp2,
2 =-1
Ezp, E21 Fom zl)g(w,y) = ($+32,y+sx+t) 5, ¢ € Foam,
sths=0,
24 t+sb+52=0
Es 1,FE31 | Fym P3(z y) = (—z + 14 2y) T4 € Faam,1 € Faom,
73 —1g—d =40,
¥ =—1

1s mapped to the full field F «

The vertical line functions are defined by an equation © — z;p = 0, where z(,jp 1s the
z-coordinate of some multiple 2 of P, and z 1s a variable which will be later evaluated at
z(Q) (the value of which remains constant throughout the algorithm) As P 1s defined over
the base field Fy, the r-coordinate of z|, p, a multiple of P, will also be defined over F,
In addition, the distortion map v leaves the z-coordinate of (@) defined over a subfield
of Fox  Therefore, the vertical line functions i Miller’s algorithm will not be defined over
FF %, but over some subfield It can be shown that when 2 divides the embedding degree k,
then (¢* — 1) divides (¢* — 1) This exponentiation elimnates all terms defined over Fg,
and thus there 1s no need to include the vertical line functions in Miller’s algorithm

The denominator climination technique of Barreto et al 1s approximately 50% faster
than the algorithm of Galbraith et al This 1s because the denominator elimination techmque
removes the need for the second vartable, and hence saves a squaring and a multiplication
in F« each time a doubling 1s performed in the loop Barreto et al also examine the use of
prime order subgroups of low Hamming weight They propose using a Solinas [109] prime
as the subgroup order, which 1s a prime number of the form p = 2% + 28 + 1 As a result,
only two additions must be performed in Miller’s algorithm, which can then be unrolled to
remove conditional logic

Barreto et al give a techmque to speed up the final exponentiation required for the
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Tate pairing One way to cvaluate this function 1s to precompute (q" —1)/nand to usc a
square-and-multiply algorithm with windowing techniques to compute the exponentiation
However, Barreto et al observe that for an even embedding degree k, the factor (¢*/2 — 1)
can be extracted from the final exponentiation This exponentiation can be evaluated with

k/2 15 trivially

a single field mversion and multiplication 1n F , as raising to the power of ¢
computed as a conjugation with respect to ¥ x/»  The remaining exponentiation to (M? +
1)/n can sometimes be factored further, but remains an expensive operation to compute

[zu and Takagi [51] investigate the computation of the Tate pairing using elliptic curves
over large prime fields Their main contribution s to evaluate the use of alternative co-
ordinate systems tn Miller’s algorithm As with scalar multiplication, the best coordinate
system to use depends on the finite field They also show how to optimise the generation
of the coefficients of the line functions when random pounts are included n the algorithm
However, this optimisation 1s not useful in practice due to the determuustic algonthm to
compute the Tate pairing given by Barreto et al [5] Izu and Takagi also investigate using
an explicit formula to compute [2!] P, instead of using the double-and-add approach

Chatterjee et al [15] also examine the implementation of the Tate pairing using elliptic
curves over large prime fields The main contribution of this paper 1s a method to encapsu-
late the computation of the line function with the doubling process on the iterating point P
Jacobian coordinates are used to represent P, and 1t 1s shown how some of the operations
in the encapsulated method do not need to be calculated, as they are eliminated by the final
exponentiation This techmque 1s also shown to apply in the addition stage of Miller’s al-
gorithm when mixed addition 1s used Chatterjee et al examine the memory requirements
of Miller’s algonthm, as well as showing how certain operations can be parallelised for
implementation 1n hardware 1t 1s alse shown how to explott the NAF to compute the Tate
pairing

The denominator elimination technique was previously defined for certain supersingular
curves with distortion maps of a special form Barreto et al [6, 7] generalise this technique

to ordinary elliptic curves, by removing the need for a distortion map It 1s shown that when
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k 15 even and d|A, then ¢¢ — 1 1s a factor of ¢* — 1 This implies that the accumulating
function can be multiplied by any nonzero element 1 € F « without changing the pairing
output Therefore, the denominator elimination technique can be generalised for the case
that the .-coordinate of the image point @ 1s defined over some subficld F .« of F ¢, where
d|k Note that the y-coordinate of @ must be defined over F« or else the entire painng
value will be defined over F 4 and will be eliminated by the final exponentiation

Barreto et al then give two techniques to show how denominator elumination can work
1n the absence of supersingular curves and suitable distortion maps Letd = k/2 (and hence
the embedding degree k 1s even) The first techmque uses twists Let £ 3° = 23 +az +b
be an elliptic curve over the finite field I, of characteristic p > 3 Then the quadratic twist

of E over Fla1s B/ 3*

= 7 + v?ax + v°b, for some quadratic non-residue v € F
Let v be a quadratic residue in Fx, then the map ¢(z,y) — (v™'z,(vy/v)"'y) 1s an
1somorphism that maps the group of potnts of E'(F4) to a subgroup of E(F )

Now let Q' be a pont on the twisted curve E'(F,¢) The mapping given above can
be used to map Q' to the pomnt @ on the curve E defined over F,x, and @ can then be
used as the image point in Miller’s algorithm Note that the z-coordinate of @ 1s defined
over F 4, and thus the denominator elimination technique applies Barreto et al [6, 7] also
note that cryptographic operations which do not involve pairing computation, such as scalar
multiplication, can be performed solely using anthmetic in F .« The points of £'(F 4} can
then be mapped back to E(F ;) when needed for pairing computation Scott [103] uses the
twist idea to implement the Tate pairing efficiently using ordinary elliptic curves over F,
with embedding degree k = 2

The second technique given by Barreto et al exploits the fact that the group ¥(E'(F 1))
15 a subgroup of the trace zero subgroup of E(F ) Therefore, an alternative to using
twists 15 to simply choose a random R € E(F ), and then set @ = R — R Q 1sthena
trace-zero point with the property that its z-coordinate 1s defined over Fa This method 1s
especially useful for hyperelliptic curves of genus g > 1 However, the disadvantages are

that generating random points over I« 1s slower than dotng so over F 4, and the ability to
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speed up non-pairing based operations does not apply

3.3 Squared Pamrings

Eisentrager et al [25] present algorithms to compute the squared Weil and Tate pairings
on elliptic curves, and the squarcd Tate pairing on hyperelliptic curves The squared Weil
and Tate pairings are deterministic, unhi<c the plain Weil and Tate pairings (as originally
defined) Furthermore, the authors claim a speedup of approximately 20% by computing
the squared Tate pairing using their method over the plain Tate pairing, and by extension,
the same speedup for computing the squared Weil pairing over the plain Weil pairing The
authors also present a method to compute the squared Tate pairing on hyperelliptic curves,
and claim a speedup of approximately 30% on the standard algorithm This aigorithm s
notable for being the first detailed implementation of a bilinear pairing on a hyperelliptic
curve of genus 2

However, there 1s no real advantage to computing the squared Wetl or Tate pairings
using the methods given by Eisentrager et al, as they have been surpassed by superior
methods to compute the plamn Weil or Tate pairings, as detailed 1n the previous section
Barreto et al show that there 1s no need to include random points in Miller’s algorithm,
as they can be defined over a subfield and are eliminated by the final exponentiation as
a result Therefore, there 15 no real advantage to the determmnistic algorithms to compute
the squared Weil and Tate painngs The authors use Cantor’s algorithm 1n the genus 2
case to double and add divisors and to extract the necessary functions required by Miller’s
algorithm However, 1n practice Lange’s explicit formulae (e g see [70]) for the group law
would be used

The relationship between the squared Weil/Tate pairings and the plain Weil/Tate pair-
ings 1s investigated further by Kang and Park [58] The authors show that a squared pairing
can be transformed into a plain pairing when the image point 1s a trace zero pomnt As

seen previously, for a random pomnt R € E(F ), a trace zero point Q can be generated
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as @ =R-— R%'* Let e, be either the reduced Tate pairing or the Weil pairing, and let

P € E(F,) Then Kang and Park show that
en(P,R)' " = en(P,R)? = en(P, Q),

as1 — ¢*? =2 mod n This result shows that evaluating at a random pont R € E(F )
when computing a squared pairing 1s equivalent to evaluating at the trace zero point ) =
R — R%” when computing the corresponding plain pairing As the r-coordinate of a
trace zero point 1s defined over a subfield, the denommator elimination technique applies
Therefore, 1t may be concluded that there 1s no real advantage 1n computing squared pairings
using the methods of Eisentrager et al [25], as 1t will always be more efficient to use a plain
pairing with a trace zero point

In a separate paper, Eisentrager et al [24] present formulae which eliminate a field
multiphication from the standard way of computing {2) P + Q, where P and Q are points on
an elliptic curve Thus 1dea can be used to speed up both scalar multiplication and pairing
computation Instead of constructing a function hgy. . by first computing hgp, and then Agy.
in an independent manner, the 1dea 1s to compute Agpy. directly using the faster formulae
However, this 1dea 1s not useful when the order has a low Hamming weight, as 1s normally
the case It also does not take the standard denominator elimination idea into account

Freeman [28] adapts this method to hyperelliptic curves of genus 2

3.4 Pairings on Hyperelhptic Curves

Duursma and Lee [23] were the first to examine pairing implementation on hyperelliptic
curves mn a constructtve manner In particular, they introduce several optimisations to the
computation of the Tate pairing on hyperelhptic curves of the form C 42 = 7 —x-+d over
Fym, where d = £1, p = 3 mod 4 and gcd(m,2p) = 1 These curves have embedding
degree k = 2p Firstly, Duursma and Lee propose using a multiple of the group order of the

form pP™ + 1 which has Hamming weight 2 1n base p It 1s shown how the final additton
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does not need to be evaluated, as the line function that 1s calculated 1s a vertical line function
and 1s ehminated by the final exponentiation Therefore, using the order p”™ + 1 results in
a loop of pin iterations (to the base p) with no logical decisions, which helps to simplify the
implementation An additional advantage 1s that the final exponentiation can be computed

as

(P =1/ + 1) = (T - 1)

As described previously, an exponentiation of thus form can be trivially computed with a
multiplication, inversion and some Frobenius actions i F2pm

Duursma and Lee also propose computing pairings on hyperelliptic curves using points
1n the support as 1mage elements rather than divisors A reduced divisor on a genus g curve
typically has g finite pomnts 1n the support,1e D = (P;)+  + (Py) — g(o0) However,
Duursma and Lee propose using degenerate divisors instead, which are divisors with sup-
port consisting of a single affine point, 1e D = (P) — (co) Rather than represent these
divisors using Mumford notation, 1t 1s easier to simply work with the point 7 Duursma and
Lee also give an explicit formula to compute the line functions that are required in Matler’s

algorithm, rather than extract them from the addition process

Lemma2 LetC y® = aP - x + d be a hyperelliptic curve over Fpn d=+%landp=3

mod 4 and let P = (zp,yp) € C(Fym) Then the function

he = yhy — (&h — 2+ d) P72

has divisor (hp) = p(P) + (—[p](P — c0)) — p(c0) where
~[PI(P ~ 00) = (&} + " +d,yfp) - (o)

Combining this function with a loop size of pm iterations results 1n the following closed
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formula to compute the Tate pairning

pmn

(P, ¢(Q)) = 1p(4(Q)) Hh[,,u CI(O)

Using the double-and-add approach of Miller’s algorithm, the accumulating variable | €

F

»2mp 18 €xponentiated to p cach iteration of the loop Although this exponcntiation 1s effi-

cient, 1t must be performed prn times 1n total, meaning that 1t has a non-trivial cumulative
cost However, Duursma and Lee show how it 1s possible to absorb the p*"' ™' exponen-
tiation nto the formulae, thus elimmating the exponentiation to p from Miller’s algorithm
altogether In addition, Duursma and Lee show how the loop size of pm 1terations can be
replaced with a loop of 1 iterations Rather than loop to pin, the key 1dea 1s to loop to
and to absorb the powcr to p nside the explicit formulae

Among the relevant hyperelliptic curves are two curves extremely suited to painng 1m-
plementation These are the elliptic curves E y'z =13 — 1 + d over Fgm, where d = +1,
as defined previously in Table 31 Note that the group order for these curves divides
P+ 1= 33" 41 These curves have embedding degree k = 6, which 1s the maximum
embedding degree for supersingular clliptic curves Let p € Fgs be aroot of p —p—d = 0,
and let o € Fyz be aroot of 02 + 1 = 0 Then the distortion map (1, y) = (p — 2, 0y)
supports the denominator elimination technique of Barreto et al [5] Scalar multiplication
by 3 1s extremely efficient on these curves, as exploited by Galbraith et al [31] Therefore,
1t 1s convenient to use a ternary basis in Miller’s algorithm  The Duursma-Lee algorithm
for computing the Tate pairing on these curves 1s given in Algorithm 4

Kwon [66] adapts the techmques of Duursma and Lee to elliptic curves in characteris-
tic 2 There are exactly three 1isomorphism classes of supersingular elliptic curves over Fom,
where 7 1s odd, and Kwon’s method applies to all such curves Two curves 1n particular
are suitable for pairing based cryptography, as they have the maximum embedding degree
of k = 4 for supersingular elliptic curves 1n characteristic 2 These curves are defined as

Ey y*+y=2*+z+d whered € {0, 1}, as given previously in Table 3 1 These curves
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Algonithm 4 The Duursma-Lee algorithm for the curve £ y? = 73 — z 4 d over Fan,
d==1
INPUT P = ("I:vap):Q = (J’Q)yQ) € E(Fyn)
OUTPUT (P, %(Q))

1 f«1

2 for? —1tomdo

3 Ip e :C:]))Da yp — y?’
4 [ [ (-oypyg — (zp +zq — p+d)?)
5
6
7

1/3 1/3
end for
Return f

support a doubling formula, such that for the point P € E(Fpm), where P = (z,y), [2]P

1S given as
2P = (' + 1,07 +4")

A distortion map for these curves 1s given 1n Table 3 2 Instead of using the group order to

compute the Tate pairing, 1t 1s possible to use the multiple 2°™ + 1 nstead, as
n2m +1= (2m + o(m+1)/2 +1)(2™ - o(m+1)/2 +1)

As the final addition can be omutted, this results in a closed formula to compute the Tate
paring on these curves, with a loop size of 2m 1iterations Following Duursma and Lee,
Kwon shows how the loop to 2m can be reduced to m iterations, by absorbing the exponen-
tiation to 2 into the formulae Kwon shows that 7 multiplications in Fom are required per
iteration of the loop This compares favourably with the charactenistic 3 case as modified
by Granger et al {43], which costs 14 multiplications in F4m per tteration Kwon'’s algo-
nthm 1s given 1in Algorithm 5 Note that the extenston field Fysm 15 represented using the
polynomial basis {1,z,z%, 23}, where 2* + z +1 =0

Kwon also gives a vanant of the algorithm which requires no square rooting Kwon’s
stated motivation 1s that square rooting in a finite field 1s an expensive operation, roughly

equivalent to that of a multiplication with a precomputation However, square rooting can
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Algorithm 5 Kwon’s algorithm for the curves £ y?+y = 2°+z+d over Fom,d = {0,1}
INPUT P = (IP,yP),Q = (TQ::UQ) € E(]FQ"‘)
OutpuT (P,¢(Q))

I fe1

2 fori < 1tomdo

3 ®mp Hw?o,yp Hy%
4 zezptag,wez+TpTgtyptyot+d
s fef (wtzet(z+1)a?)
6
7
8

1/2 1/2
LQ T Ig YQ T Ug
end for

Return f

be as fast as squaring in characteristic 2 [27] In characteristic 3, cube-rooting can also be
performed efficiently (e g see Barreto [3]), although 1t 1s not as efficient as cubing In this
case, 1t 1s better to precompute all of the m cubes of a value zg € Fz= 1n a table, and to
access the table in reverse order 1n the algorithm to obtain the cube-roots

Choie and Lee [17] detail the efficient computation of the Tate paining on hyperelliptic
curves of genus 2 1n a more general way than that of Duursma and Lee Instead of using
Cantor’s algorithm to derive the functions that are required 1n Miller’s algorithm, Choie
and Lec use Lange’s explicit formulae [70] for the group law on genus 2 curves These
formulae are modified shightly to obtain the required functions, as the formulae are designed
for scalar multiplication and hence do not calculate the line function that is required n an
explicit manner The formulae given by Choie and Lee are actually 1dentical to formulae
given 1n an earher (Japanese only) paper by Takahashi [111] Choie and Lee then present
the first computational results for the Tate pairing on a hyperelliptic curve of genus g > 1

The maximum embedding degree of a supersingular genus 2 curve over a large prime
field Fp, 1s £ = 6 However, no example of such curves 1s known Instead, Choie and Lee
implement the Tate pairing on the curve y? = z54-a,a € F;, wherep = 2,3 mod 5 This
1s a superstngular genus 2 curve with embedding degree £ = 4 This curve has a distortion
map ¥(z,y) — ((sz,y) where (5 1s a prnimitive 5-th root of unity mn F,« Note that this
distortion map does not support the denominator elimination techmque The group order

of this curve 1s #P1cl(F,) = p? + 1 Choie and Lee choose log,(p) &~ 256 and choose
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a prime factor n of #Pic%(F,) such that logy(n) = 160 On a 2 GHz Pentium IV their
timings to compute the Tate pairing vary between 515 and 594 ms, depending on the form
of the divisors and whether prccomputatton 1s used or not

Harasawa et al [45] construct a distortion map for the genus 2 curve € y% = 1% — o
over Frm, where v = +2 Secondly, they show how to compute the modified Tate pairing
on this curve The authors take advantage of a simple quintuple operation for computing
[5] P for a point P € C(Fsm), by rewriting Miller’s algorithm to the base 5 The authors
compare the efficiency of their algorithm to that of the prime field curve utihised by Choie
and Lee [17], as both curves have embedding degree ¥ = 4 Harasawa et al give a
theoretical metric to show that their method 1s about twice as efficient as the metric given

by Choie and Lee However, this claim docs not take 1nto account the fact that 1t 1s easter to

optimise arithmetic in F, than in Fgm

3.5 Compressed Pairings

Scott and Barreto [106] show how to compress pairing values and how to speed up the
subsequent exponentiation of these elements The first contribution of this paper uses Lucas
sequences to speed up the final exponentiation required to compute the Tate pairing Lucas
sequences provide an efficicnt means of 1implementing exponentiation 1n a subgroup of

M2 41 An efficient laddening algonthm has been developed

F(’;k whose order divides ¢
(e g see Joye and Quisquater [S4]) to compute Lucas sequences The laddering algorithm
requires very little memory, facilitates parallel computing, and has a natural resistance to
side-channel attacks [55]

Lucas sequences consist of a pair of functions U,(a,b) and V,,(a,b), evaluating as

elements of Foes2 Letb = 1, 1n which case the arguments to U, and V;, can be omitted

The sequences are given as

Up=0,U; =1 Upy1 =alUy — Up-1,

Vo=2,V1=a,Vy1=aV, - Vo
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The laddering algorithm to compute V;, 1s given mn Algorithm 6 It 1s only necessary to
compute V,,, as U, can be computed from V,, with the formula

aVi =2V,

Un = a?—-4

Algorithm 6 Computing Lucas sequence elements
INPUT a,ny = (ny—1 no)e, withmy_; =1
OoutruT V, = Vo(g,1)

1 vy« 2

2 Uy —a

3 for:+«t— 2downtoe O do

4 if n, = 1 then
Vg — Vg1 — G

vy — v -2
else

V] «— g1 — a

vp — VA — 2
10 end if
11 end for

12 Return v

o0 N N w»n

The final exponentiation required to compute the Tate paring 1s (¢* — 1)/n Assum-
ing that the embedding degree k 15 even, an element 7 € F, « can be represented using
a polynomial basis as © = (a + by/5), where a,b € F /2 and 2 — 3 = 01s an 1re-
ducible polynomial over F x> The conjugate of 7 with respect to F g+/2 can be computed
as7 = (a — by/B) As the embedding degree k 1s even, (¢*/2 — 1) can be factored out of
the final exponentiation, and can be trivially evaluated Sometimes, other easily computed
factors may also be extracted, but an expensive exponentiation to ¢ (q)/n remans, where
¢y 15 the k-th cyclotomic polynomal

After exponentiating to (q*/? — 1), the element » € F & Will have norm 1 In other

words, the product of r by 1ts conjugate with respect to ¥ /2 will be equalto 1,1

1T =(a+byv/B)a—by/B)=a* - b =1
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Note that an element of norm 1 can be determined up to the sign of b from « alone There-
fore, the output of the Tatc pairing can be represented as one element in F /. and a single
bit to determine the sign of b, rather than the full value in F , thus giving a compression
factor of (almost) 2 An element of norm 1 also has the property that an otherwise expensive
field inversion can be computed with a simple conjugation This follows from .Z = 1 and
therefore 1/ =2

Scott and Barreto show how to efficiently raise an element z € F « of norm 1 to the

power m by means of Lucas sequences with the formula

Vin(2a)

L™= (a4 by/B)" = —5 + Um(2a)by/B

As stated previously, only V,,,(2¢)/2 needs to be explicitly calculated Scott and Barreto
proposc using this formula to compute the expensive exponentiation to m = ¢ (q)/n re-
quired for the Tate pairing, where & 1s even The cost to compute +™ using the laddering
algorithm given in Algorithm 6 15 M + S per tteration, where A and S are a multiplica-
tion and a squaring respectively 1n IF x> The conventional binary algonthm takes around
S + M /2 per iteration assuming a random exponent, where S and M are a squaring and a
multiphication respectively in F . This 1s roughly equivalent to 35 + 3M /2, assuming the
ratios 3M ~ M and 35 ~ S Therefore, the Lucas sequence approach gives a speedup of
about 60% over the basic binary square-and-multiply algorithm

The second contribution of Scott and Barreto 1s to show how to compress pairing values
to half length assuming an even embedding degree For an element . € F «, the trace with

respect to F x> 15 equal to TrFqk F o (T) =T+ 2" Letz = (a+bVB) € F be the

/2

output of the Tate pairing after the final exponentiation Then

Top /8 ja(4) = 2+ 27 = (a+byv/B) + (a - by/B) = 2

As the second component of . has been discarded, the pairing has been compressed to

half length This i1dea can be effectively combined with that of using Lucas sequences to
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compute the final txponentiation Scott and Barreto also show how to compruss pairings to
a thuird of their length when the curve has an embedding degree that 1s a multiple of 6 This
nvolves using the trace with respect to F +/; Note that any subscquent cxponentiation of
compressed pairing values must take into account the fact that they are traces of full pairings
values, they cannot be handled as general finite ficld elements

Granger et al [43] adopt techniques from torus-based cryptography to achieve pairing
compression First of all, Granger et al give an alternative to computing the final expo-
nentiation required to compute the reduced Tate pairing for the superstngular elliptic curves
in characteristic 3 as studicd by Duursma and Lee [23] These curves have an embedding
degree of £ = 6 Duursma and Lee propose computing the Tate pairing on these curves
using the order ¢® + 1 = 3% + 1 The output of Miller’s algorithm prior to the final

exponentiation 1s then an clement of the quotient group
S
G =TFlo/(Flp) +1

Exponentiating an element in IF;G to ¢° + 1 gives an element 1n IF; 3, as this exponentiation
1s the norm map with respect to F s Therefore G simplifies to ]F;‘6 /]F;J Two elements
a,b € ]FZG are equivalent (when considered as elements of G) if ¢ = be, where ¢ € 1F23
Leta € F;a /]F;j be the output of the Tate pairing prior to the final exponentiation Then
exponentrating to the power of (¢® — 1) yields a unique value suitable for cryptographic
purposes, as a1 = (b )@’ -1 = p(a*~1)

Let elements of the field F s be represented using a polynomial basis as a = (aq +
a1V/p) € Fo6, where ag,a1 € Fs, and 3 15 a suitable quadratic non-residue  Then the

output of Miller’s algonthm a € F;" / IF;3 1s written as

a = be = (g + cbi/B)

Note that dividing by cb; gives the value o’ = ¥ = by/b; + /B As the value c has been

eliminated, o’ can be used as a unique representative of the coset of G to which « belongs
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Therefore, the final exponentiation 1s just a multiphication and inversion in F s This 1s 1n
contrast to the standard cxponcntiation to ¢® — 1, which requires a multiplication and an
mversion in F e However, the alternative means of secuning a unique value 1s essentiaily
no morc efficicnt than the standard approach, as both inversion and multiplication in Foo
can be efficiently reduced to their counterparts in F s

The approach of Granger et al has two interesting imphcations The first 1s that 1t
results 1n a two-fold compression of the pairing value The output of the pairing o’ =
ap/a1 + /B can be represented by the element ag/a; € F,s, which results in a two-
fold compression It 1s mmportant to note that this value cannot be treated simply as a
general clement of F,s The sccond advantage 1s that any subsequent exponentiation of
the pairing value 1s faster than a general exponentiation in Fo  Each time a multiplication
must be performed 1n the square-and-multiply algonthm to compute the exponentiation, the
accumulating value 1s multiphed by the value (ag/a; + /B) Wrniting z = aq/aq, observe

that

.

(x + V/B)(bo + b1/B) = (xbo — b1) + (wby + by) /B

The multiplication of two generic elements 1n F s costs 3 multiplications in F s using the
Karatsuba approach However, this method costs only 2 multiplications in F s

Granger etal then remark that the output of the Tate pairing on an elliptic curve over F,
may be viewed as an element of an algebraic torus Rubin and Silverberg [97] introduce the
concept of torus-based cryptography as an alternative to using traces to obtain compression
Granger et al give an alternative representation for the quotient group G as G = T5(Fs)
This enables compression by a factor of 2 Additionally, Granger et al show how the torus
Ts(IF,) gives a compression ratio of 3 for these curves

Granger et al also show how to use loop-unrolling to speed up the algorithm given
by Duursma and Lee [23] to compute the Tate pairing for certain supersingular elliptic

curves of characteristic 3 Some of the terms in the representation of the line function
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that 1s calculated at each iteration of the loop are equal to zero This can be explotted by
unrolling the loop times two, and by writing a special multiplication routine to multiply the
two sparse functions together, before multiplying the result with the accumulating variable
Thas approach costs only 14 multiplications 1n Fzm per iteration of the loop This compares
favourably the original Duursma-Lec algorithm (20 multiplications) and the trace-based

vanant by Scott and Barreto [106] (17 multiplications)

3.6 The Weil Pairing

Koblitz and Menezes [65] examine the task of computing the Weil pairing on elliptic curves
in deta1l In order to compare the performance of the Tate pairing and the Weil pairing in a
fair manner, Koblitz and Menezes give a metric for estimating the running time of pairings
Firstly, the cost of arithmetic in the finite field F« 1s analysed, by introducing so-called
pairing-friendly fields For the rest of this section, let k > 2beevenand ¢ = p Let sand m
be a squaring and a multiplication respectively in , Simularly, let S and M be a squaring
and a multiplication respectively in F«, and S and M be a squaring and multiplication in
F k2 Assume that S ~ M, s =~ m and S~ M Also note that multiplying an element n
F,« by an element 12 F, takes time km

Let k = 2'3’ and ¢ = 1 mod 12, and let 3 € F, be neither a squarc nor a cube
in F, Then the binomial z* — 3 1s irreducible over F, and hence defines the extension
field F«  Therefore, F o« can be constructed from F, as a tower of quadratic and cubic
extensions, by adjoining the squareroot or cuberoot of 3, then the squareroot or cuberoot
of that, etc Using the Karatsuba [59] technique, a multiplication n a quadratic extension
takes 3 multiplications 1n the subfield This technique will be detailed later in this thesis
Simularly a multiplication 1n a cubic extension takes 5 multiplications 1n the subfield, using
the Toom-Cook [112, 20] method However, this analysis omits the large amount of add:-
tions and divisions by constants that must be performed with this method Using these two

multiphication methods, Koblitz and Menezes estimate the cost of a multiplication in F « as
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M =35 m

As discussed before, it 1s common that the subgroup order n 1s defined to have a low
Hamming weight In this case, the number of additions 1n Miller’s algorithm 1s negligible
compared to the number of doublings Therefore, Koblitz and Menezes analyse the cost of
computing a pairing by focusing solely on the computation that takes place when a point
doubling 13 performed To compute the Weil pairing e, (P, @), the functions ! /v and
l3/vo are extracted from the addition process for each bit of n These functions can be
accumulated by using the two variable algorithm of Galbraith et al [31] in the following

way

)

fo f3L(Qn(Q)
This function, along with the associated point doubling, 1s termed a Miller operation
Koblitz and Menezes point out that the denominator eltmination technique also applies
to the Weil pairing assuming that the output of the pairing 1s exponentiated to (¢*/? — 1)
(alternatively to (1 — ¢*/2)), which can be trivially reahsed as a conjugation with respect
to F+/2, and a multiplication and an mversion in F i In this case, the function evaluation

simphifies to

f_ JEh(Q)
fo 121(Q)

Note that for the Tate painng this simplifies to f1 = f21;(Q)

As the Weil pairing consists of two loops, the first 1s termed Miller lite (due to Soli-
nas [110]), as the 1terating point 1s defined over F,, The second loop 1s called the full Miller
loop, as the iterating point 1s defined over F, . The full Miller loop 1s much more compu-
tationally expensive than the Miller lite loop, as the anthmetic 1s n F x»  However, Koblitz
and Mene<es tollow the 1dea of Barreto et al [6, 7], in defining the image point @ as a point
on a quadratic twist of the curve defined over the quadratic subfield Fqk s2 This leads to a

gain both 1n evaluating at Q 1n the Miller lite loop, and n performing arithmetic on Q 1n
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Table 3 3 Mimimum bitlengths of  and ¢*

Sccurity level (in bits) | 80 128 [ 192 256
b, 160 | 256 | 384 | 512
byt 1024 | 3072 | 8192 | 15360
Y = bk /bn 64 12 2133 30

Table 3 4 Opcration counts for each bit of n
k Final exponentiation | Miller lite Full Miller
k=2|(/2-1)(s+m) |4s+8m+S+M 4s+8m+ S+ M
L>a | (ny - DS +M) |ds+(k+Tm+S+M | kin+4S+6M+S+M

the full Miller loop To compare the Tate pairing with the Weil pairing, the cost of the full
Miller loop must be compared with the final exponentiation to (q'“/2 +1)/n required by the
Tate pairing (as both pairings have the (¢*/2 — 1) exponentiation 1n common)

Koblitz and Menezes estimate the cost of the Miller operation for the Miller lite loop as
4s+8m+ S+ M fork = 2,and 4s + (k + 7)m + S + M for L > 4 assuming the use of
Jacobtan coordinates The cost of the full Miller loop 1s the same as Miller lite for k = 2,
and 1s given as km + 45 + 6M + S + M for b > 4 Kobhtz and Meneces use the security
parameters defined by Lenstra [73], that are reproduced in Table 3 3 Let b,, be the number
of bits of the prime subgroup order n, b« be the number of bits of g and let y = bk /br
Let7y, = 1/21fk = 2,0 > 1, elselet 7, = 1/3 (if A = 2'3%,1,75 > 1) Then, using
the Lucas sequence approach of Scott and Barreto [106], Koblitz and Menezes estimate the
cost of the exponentiation to (¢*/% + 1) /n as (147 — 1)(S + M) for cach bit of n These
results are summarised 1n Table 3 4

For the embedding degree k¥ = 2, Koblitz and Menezes estimate that the Tate pairing
will be faster when v < 20 However, they estimate that the Weil pairing will become more
efficient to compute for higher values of -y, starting at the 192-bit security level When
k > 4, the Weil pairing becomes more efficient to compute when v = 28 8 for k = 6,
v =282for k =12 and vy = 27 8 for k = 24 Therefore, when k > 4 the Weil pairing

becomes more efficient than the Tate pairing at the 256-bit security level
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Granger et al [42] examine pairing implementation using ordinary elliptic curves and
various practical levels of security Firstly, they analyse the cost of computing the final
cxponentiation required for the Tate pairing Recall, that for an cven embedding degree, the
factor (¢*/2 — 1) can be extracted from the final exponentiation and easily evaluated The
remaiming exponentiation that must be performed can sometimes be simphfied further as
("% 4+ 1)/¢r(q) and ¢ (g)/n However, the exponentiation to ¢y, (g)/n 1s an expensive
operation Rather than use the Lucas sequence approach of Scott and Barreto, Hu et al [50]
introduce the 1dea of exploiting the g-th power Frobenius endomorphism to compute this
exponentiation This can be done by simply wnting ¢ (¢)/n to the base ¢ Granger et
al suggest using multi-exponentiation (e g see Avanzi [2]) to compute all of the resulting
exponentiatrons using a single square-and-multiply algonthm

Granger et al examine the theoretical costs of using this method to compute the final
exponentiation They conclude that the Lucas sequence approach 1s more efficient for em-
bedding degree k < 6 However, for k > 6 the multi-exponentiation 1dea 1s more efficient
As discussed previously, Koblitz and Menezes conclude that the Weil pairing 1s more effi-
cient than the Tate pamrng at high levels of security However, this analysis does not take
into account the techmique of multi-exponentiation Granger et al conclude that the Tate
pairing 1s always faster than the Weil pairing for all of the interesting sccurnity sizes used 1n
practice

Scott [105] also examines the relative efficiency of the Tate pairing and the Weil pairing
In public key schemes that are based on the DLP in F;k, security ts traditionally increased
by increasing the size of ¢, for example from 1024 bits to 2048 bits However, this leads
to a substantial increase 1n the cost of arithmetic in ]F;k, which can be problematic 1n con-
stramned environments Scott points out that pairing based cryptography has another option,
to keep the size of the underlying field constant and to double the embedding degree k This
has the added advantage of requiring only minimal changes to the underlying software or
hardware implementation Scott advocates fixing the base field size at 512 bits, and using

elliptic curves with embedding degrees 2, 4 and 8, depending on the level of security that 1s
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required

Scott also addresses the practical considerations of computing the expensive ¢y (¢)/n
exponentiation required for the Tate pairing Using the techniques of Granger et al [42],
Scott points out that it 15 easiest to precompute ¢; (¢)/n and store 1t as a number to the
base ¢, and then to exploit the ¢-th power Frobenius action to allow a multi-exponentiation
Scott also shows how the entire final exponentiation to (¢* — 1)/n can be included in the
multi-exponentiation This approach does not require an nversion, which may be useful
in restricted environments where nversion 1s particularly expensive Scott provides ex-
perimental evidence that the exponentiation to ¢ (¢)/n 1s faster using the Lucas sequence
approach when k < 4

Scott then gives an algorithm to compute the Weil pairng for an even embedding de-
gree, which 1s more efficient than that given by Koblitz and Menezes The algorithm given
by Kobhtz and Menezes includes an exponentiation to (¢*/2 — 1) after the loop, to avoid
computing the vertical ine functions However, raising the output of Miller’s algorithm
to this power also means that inversion can be replaced inside the loop with a simple con-
Jugation with respect to F /2  Thus Scott shows that only one accumulating varable 1s
needed to compute the Weil pairing, rather than the two variable approach previously used
in analysing the cost of computing the Weil pairing

It 1s possible to precompute the required multiples of the first input point to the Tate
painng and to store them for use 1n Miller’s algonthm This technique 1s useful if a pairing 1s
computed multiple times using the same 1terating point, and 1if storage space 1s not an 1ssue
Scott shows that this technique 1s applicable to the second input point when computing the
Weil pairing  This greatly reduces the computational complexity of the Weil paining, as 1t
1s no longer required to double and add the point defined over the extension field inside the
algorithm Scott concludes by giving experimental results that validate the assertion that the
Tate pairing 1s faster than the Weil paining for all interesting security levels, except when 1t
15 possible to precompute points

The results mentioned 1n this section so far are apphcable to all curves, as no special
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properties are exploited However, Park et al [88] describe a technique to implement the
Weil pairing efficiently on supersingular curves, when the modified pairing 1s used In
particular, they show how the full Miller loop can be effectively replaced with a Miller lite

loop First of all, the distortion map that 1s used must be separable

Defimtion 26 An endomorphism ¢ 1s inseparable if and only if

¢(z,y) = (u(2”,y"), v(z", y"))

Jfor some ratronal functions u,v where p 1s the characteristic of F

Most distortion maps used in practice are of degree one and are therefore separable

Park et al then show how the Weil pairing can be computed as

_ 1p(#(@) + R) o(~471(R)

en(P,9(Q)) fr(R)  Jo(u=Y (P —R))

In fact, the random point R can be omitted as explained earlier Clearly, this dchnition
replaces the full Miller loop on the point ¢»(Q) with a Miller lite loop on @ Also, the
function evaluation 1s at 1y~ ( P) rather than at P, where ¢! 1s the inverse of the distortion

map Park et al then show that a self-pairing can be computed as

— . n fP(l[)(P)

en(P (P} = %W,

where cj; 15 a constant that depends on the distortion map  Self-pairings are required for a
certain number of cryptographic applications Park et al s self-pairing formula can be com-
puted with a single Miller loop, and 1t has no final exponentiation However, the complexity
of the algorithm 1s not the same as that of the Tate pairing without the final powering, con-
trary to the claim of Park ct al This 1s due to the fact that it 1s necessary to evaluate the line
functions at ¢(P) and ¢~1(P) each iteration of the loop, whereas only one evaluation 1s

required using the standard denominator elimination technique with the Tate pairing
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3.7 More Recent Optimisations

Hu ctal [50] implement the Tatc pairing using a supersingular elhiptic curve over F,2 with
an embedding degree of A = 3 Thus 1s the first ieported implementation in the literature of a
pairing on a curve with an odd embedding degree As detailed earlier, this paper also shows
how the Frobenius endomorphism can be exploited to speed up the final exponentiation
required for the Tate pairing The disadvantage to using an odd embedding degree is that
the denomator elimination technique of Barreto et al [5] does not apply Therefore, Hu
ct al [50] use the algorithm of Galbraith et al {311 Another argument against using this
curve 1s that the iterating point 1s defined over F 2, instcad of F, as 1s more common
Blake et al [8] give some refinements to Miller’s algorithm for general elliptic curves
Their improvements reduce the total number of line functions in Miller’s algorithm How-
ever, as these techniques do not incorporate denominator elimination, they are not partic-
ularly useful n practice Let 1(Q) be a hnear function in two vanables that 1s evaluated
at the point Q@ = (x,y) Then the conjugate of /(Q), which 1s denoted /(Q), 1s equal to
h(—Q), where —Q 1s the opposite of ) Let [p(Q) be the evaluation of the point Q at the

line function when doubling P, and let vy »(@) be the vertical line through [2]P Then

—lp(Q)p(—Q) = ~1p(Q)Ip(Q) = vp(Q)vpp(Q)

The minus sign can be omitted 1n Miller’s algorithm, as the pairing value 1s not affected
by non-zero constants This technique 1s used later in this thesis to prove a result about the
Tate pairing

Scott [104] shows how to efficiently implement the Tate pairing on certain ordinary
elliptic curves These curves are closely related to the supersmgular elliptic curves used by
Boneh and Frankhn [11] However, Scott shows that a speedup of up to 20% 1s possible
when computing the Tate pairing in the ordinary clliptic curve case Alternatively, only half
the amount of storage 1s required 1f 1t 1s possible to precompute the lines that are required

mn Miller’s algorithm The ordinary curves 1n question have the same equations as the two
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Boneh and Franklin supersingular elliptic curves, but with different congruence conditions
attaching to the large prime p  So the curves are no longer supersingular and have no
distortion maps as a result

However, the same maps are still ecndomorphisms of the curve and are useful in the
context of scalar multiplication, as examined by Gallant etal [37] Gallantetal give endo-
morphisms for these curves such that given a point P, a fixed multiple of the point can be
deterrmned with a single field multiplication Scott transfers this idea to the area of painng
computation, by observing that the line functions in the first half of Miller’s algorithm are
related by the endomorphism to the line functions 1n the second half Therefore, the line
functions from the first half of the algorithm can be stored, before they are multiplied by the
accumulating variable In the second half of the loop, the group arithmetic can be avoided

by reusing the stored functions

3.8 Conclusion

Various methods 1n the literature to compute parings efficiently have been described in this
chapter A number of conclusions arise naturally from the optimisations that have been
detalled Firstly, a number of generic techniques cxist that improve the running tiume of
Mller’s algorithm as originally defined The first input divisor should be defined over the
field Fy, rather than F . In this way, the group arithmetic takes place over the smaller
field, which 1s a large saving An even embedding degree should be used with a distortion
map for supersingular curves, 1n order to use the denominator elimination technique Any
random divisor used to guarantee the non-degeneracy of the Tate pairing can be omitted as
1t can be defined over a subfield, and hence eliminated by the final exponentiation
Secondly, the Tate pairing should be used, rather than the Weil pairing, as 1t 1s always
more efficient to compute The final exponentiation can be evaluated reasonably efficiently
using erther Lucas sequences or multi-exponentiation, depending on the embedding degree

of the curve 1n question Thirdly, numerous optimisations exist when computing the Tate
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pairing using certain supersingular curves over low characteristic These optumisations in-
clude a shortened loop size, a trivial final exponentiation, and no conditional statements n
the loop

There 1s no iherent obstacle to using any of these optimtsations to compute pairings
efficiently on genus 2 curves However, the papers that have been described 1n this chapter
are largely unclear on this 1ssue Duursma and Lee [23] provide a family of hyperelliptic
curves suitable for fast pairing implementation However, this family of curves contains
no hypcrelhptic curves of genus 2 over finite fields of a suitable characteristic Any im-
plementation of genus 2 pairings that exists in the literature hes far behind the equivalent

implementation on elliptic curves This deficit 1s addressed in the remainder of this thesis
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Chapter 4

Pairings on Supersingular Genus 2

Curves over [Fom

41 Introduction

In this chapter, the first efficient implementation of the Tate parring on a supersingular genus
2 curve over Fom 15 described Furstly, various supersingular curves over Fom arc examined,
and two curves are selected that have the maximum embedding degree of & = 12 for genus
2 curves 1n characteristic 2 It 1s shown how to compute the group order for these curves,
and how to select the field Fom such that the group order has a large prime factor Explicit
formulae are given for doubling divisors 1n Picls (Fom ) for the curves in question

Various aspects of the arithmetic of the selected curves are then explored It 1s shown
how to construct the extension fields that are required, and how to perform arithmetic n
these fields m an efficient manner An octupling automorphism 1s given on the curves,
which can be exploited 1n Miller’s algorithm by using an octic basis Degenerate divisors
and their application to pairing computation are examined Explicit formulae are derived
for the intermediate functions that are required 1n Miller’s algorithm, and 1t 1s shown how
the final exponentiation can be computed efficiently

The implementation of the Tate pairing 1s then considered 1n detail using an octic ba-
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s1s and explicit formulac  As degenerate divisors are used, the input elements to Miller’s
algonthm are points on the curve However, using a standard “double-and-add” algorithm
destroys the special form of the iterating divisor, due to the additions 1n the group order It
1s shown how this can be avoided by splitting the function that 1s required nto several other
functions which are computed separately 1t 1s also shown how a large amount of computa-
tron 1n Miller’s algonthm can be avoided by precomputing certain powers of the first input
pont

Whenever a doubling 1s performed 1n Miller’s algorithm, the accumulating vaniable
must be squared As an octic basts 1s used 1n this chapter, this operation must be performed 3
times per iteration of the loop However, 1t 1s shown how this can be avoided by building the
exponentiation into the explicit formulae inside the loop, at the cost of some extra operations
n the extension field This optimisation requires the precomputation of certain powers of
the second mput pomnt Finally, some experumental results are given and the chapter 1s
concluded

This chapter contains joint work with Paulo SL M Barreto, Steven D Galbraith and
Michael Scott, which has been accepted for publication in Designs, Codes and Cryptogra-

phy A preprint 1s available at the ePrint archive as Barreto et al [4]

4.2 The Curve

The first task 1s to select a suitable genus 2 curve over Fom with a low embedding degree
As no ordinary genus 2 curves are known that have a low embedding degree, the search
must be restricted to supersingular curves In the context of finite fields of characteristic
2, Koblitz curves are curves that are defined over the binary field Fa, and the degree zero
divisor class group of the curve 1s considered over Fom, for some prime m  As detailed 1n
Chapter 2, 1t is a simple matter to compute the group order #Pic (Fom ) for Koblitz curves
Also, as the coefficients of the equation of the curve are either 0 or 1, 1t 1s posstble to reduce

the computational complexity of the group law Therefore, Koblitz curves are attractive for
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pairing implementation For information on how to speed up scalar multiplication on genus
2 Koblitz curves see Gunther et al [44] and Lange [67]

Recall that a genus 2 curve 1s given by the equation C' y24-h(w)y = f(1), where f (1)
1s monic of degree 5, and /1() 15 of degree < 2 Choie and Yun [18] classify genus 2 curves
over Fon 1nto three types, which depend on the degree and form of the 1i(1) polynomual
Curves with a constant /i(.) are defined as Type-IlI curves The following lemma due to
Galbraith [32] shows that all Type-1II curves are supersingular Note that no genus 2 curve

defined over F» with a non-constant 2(z) polynomial 1s supersmgular

Lemma 3 Let C be a genus 2 curve over Fom of the form y? + cy = f(z) where f(7) 1s

monic of degree 5 and ¢ € F3,. Then C s supersimgular

When considering the equation of Type-IIT curves over the ficld Iy, the left-hand side
of the equation s fixed as y* +y The nght-hand side of the equation 1s f(z) = 25 + faz? +
f323 + for? 4+ f1z + fo, whereall f, € {0,1} This implies that there are a maximum of
25 different curve equations for Type-III curves over F However, by a linear change of

variables, Choic and Yun show that all Type-III curves arc of the form

C y2+y=:v5+f3:ra+f1:v+fg

This equation implies a maximum of 22 possible curve equations In fact, there are 6 differ-
ent curves up to 1somorphism, as the curve y% + y = z° + 1 1s 1somorphic to % + y = z°,
and the curve % +y = z® + 23 + 2 + 1 15 1s0morphic to the curve 52 + y = 2 + 23 + z
Therefore, there arc essentially 6 different supersingular Koblitz curves of genus 2 over Fom
that must be investigated for pairing computation

Table 4 1 gives a representative of each of the 6 different isomorphism classes of Type-
IIT curves defined over Fy, along with the embedding degree of each curve For all of these
curves, Koblitz [64] gives an automorphism to compute a fixed scalar multiple [2¢]P of a
pont P € C(Fam ), by applying the 2nd power Frobenius endomorphism to the coordinates

of P The Frobemus endomorphism ¢» 1s trivially computed in characteristic 2 as it equates
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Table 4 1 Supersingular genus 2 curves over Fy

Curve Automorphism Embedding degree
v4+y=2"+2> +1z | [8]P = dys(P) 3

Y +y =2 [P =-¢u(P) 14
Pry=1"+a [16]P = ¢gos(P) | 4
vV4y=a>4+z+1 | [16]P = ¢gs(P) 4

Y 4y =2+’ (64] P = —dgr2(P) | 12

Y 4+y=2"+23+1 | 4P = —dp2(P) | 12

Table 4 2 Supersingular genus 2 curves over Fo with 4 = 12
Isomorphism class 1 Isomorphism class 2
v 4+y=a +2° y2+y=$‘ﬁ|-z3+1
V4y=a 423+t +x y2+y=$5+$3+x2+$+1
Cry=O+t 8+ [Py =ab 84
Vdy=a +zt+2?+22 |y +y=2S+zt+ 23+t +1

to a squaring As a result, the automorphisms that are given enable an extremely efficient
method to perform the group operation This 1s not useful for systems based on the DLP,
as these curves are all supersingular and hence are vulnerable to the attack of MOV/FR
However, this property 1s exploited later in this chapter to compute the Tate pairing

As can be seen 1n Table 4 1, two curves have the maximum embedding degree of k = 12

given by Rubin and Silverberg for genus 2 curves over Fom These curves are
Cq v*+y=2"+23+d, de{0,1}

Table 4 2 gives the other curve equations over Fy that are 1somorphic to the curves Cy
However, as the curve equattons Cy have the smallest number of coefficients of all of these
curves, the other curves are not considered for pairing tmplementation 1n this chapter

The next step 1s to determinc the group order #P1cX (Fam) for the curves Cy Again, we

largely follow Koblitz [64] in this treatment The characteristic polynomial of the Frobenius
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endomorphism for a genus 2 curve C over Fy 1s given as

4
xe(T) =T" + a1T° + 0T? + 20, T + 4 = [ [(T - ),
=1
where 01,02 € Z, and the o, are complex numbers of absolute value V2 As detailed
in Chapter 2, once the cocllicients ¢ and ap are known, the group order over [y can be

evaluated as yo(1) = #P1cl(F2) lo determine the group order over some uxtension field

Fam, 1t 1s necessary to find the factors ¢, of x¢(T'), and then to compute

4
#P1l(Fpn) = [ (1 - o)
=1

To determine a; and aq for the curves Cy, 1t 1s necessary to first count the points on the
curves over F; and Fy2  The results are #C(F) = 5 and #Cp(Fy2) = 5, and #Cy (Fo) =
1 and #C1(F,2) = 5 The coefficients a; and az of ) ¢(7") are then computed as a) =
#C(F2) — 3and ag = (#C(Fy2) — 5+ a3)/2 For Cp these values are a; = ag = 2, and
for C these values are a; = —2, as = 2 The characteristic polynomial of the Frobenius

endomorphism for these curves 1s then
xc,(T) = T + (=1)9273 + 2T?% + (-1)U4T + 4

It 1s now necessary to derive the o, First of all, the quadratic equation z%+-a 2+ (aa —4) =
0 must be solved to obtain the two roots v, and v5 For Cj these roots are —1 + /3 and for
C) the roots are 1+ /3 The o, are then found by solving the quadratic equation z2 — 7, +
2 = 0, and the group order over Fam 15 computed as #PicX(Fam) = H:‘zl(l — o) As
m must be prime to avoid the Weil descent attack, the group order over Fam can be written

for Cj as

#PICOCU (Fgm) = 92m + (_1)[(1}1+1)/t1]2(3n7+1)/2 +om 4 (_1)[(1n+1)/4]2(1n+1)/2 +1,
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and for C; as
#PIC%I (Fgm) —92m _ (71)[(111+1)/4]2(37n+1)/2 4om (41)[(m+1)/4]2(m+1)/2 +1

where [] denotes the greatest integer function When describing details of the painng im-
plementation later n this chapter, the group order for both curves 1s written for convemence

as
#PIC%(FQWIJ = 92m ¢ 2(3m+])/2 L 2(m+])/2 +1

There are two criteria on the selection of the prime . First of all, 1t should be large
enough so that the group P1c? (Fom ) 1s mvulnerable to the Pollard-rho attack, and Foim 18
resistant to index calculus attacks Secondly, the group order #P1c(Fam ) must be divisible
by a large prime number to avoid the attack of Pohlig and Hellman In other words, only a
small co-factor should divide the group order As m 1s prime, only the group order over the
base field, #Pic(IF2), divides the group order over the full field, #Pic(Fom) Therefore,
to give the maximum resistance to the attack of Pohlig and Hellman, #PlC%(]FQm) should
be divisible by as small a multiple of #P1c2 (IFy) as possible

Computing the group order over F2 for both curves can be done by simply evalu-
ating the charactenistic polynomial of the Frobenius endomorphism at 1, which yields
NGo(1) = #Pick (F2) = 13 and x¢, (1) = #Pick (F2) = 1 Therefore, for the curve
Cp 1t 15 desirable to find a prime ), such that as small a multiple of 13 as possible divides
#Plc%0 (Fam), leaving a prime number In fact, an exhaustive search yields some examples
where the co-factor 1s the lowest possible value of 13 For C1, as #PlCOCl (F2) = 1,1t 18
theoretically possible to find instances of m where the group order itself 1s prime How-
ever, 1n the range of 7 which 1s large enough for secunty, yet small enough for practical
mmplementation, only one such example was found Table 4 3 gives a number of examples
for both curves

Lange [70] gives explicit formulae for performing the group anthmetic on genus 2
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Table 4 3 Fam, where #P1c2 (Fom ) 1s equal to a small cofactor times a prime

Finite Field | Curve Co-factor

Fy103 Yy +y=a’+2 13 1237

Forer v ty=2ad+a? 13

Foau1 y2+y:95+z3 13

Fore v 4+y=2a"+2°+1 151681

Foi2r v y=2%+134+1 | 198168459411337
Fo0 v +y=2"+z24+1| 2389 121789
Fo2s0 vty=22+zd+1 |1

curves over finite fields of arbitrary characteristic These formulae are more effictent than
the generic algorithm due to Cantor As mentioned earher, the group artthmetic for curves
defined over [Fy can be more efficient than for curves defined over Fam, especially if the
equation of the curve 1s sparse In Algorithm 7, explicit formulae are given for doubling a
divisor on the curves Cy As this 1s the most common operation in scalar multiplication, the
other cases can be handled by Cantor’s algorithm We note that formulae by Stevens given
later 1n chapter 14 of Cohen et al [19] slightly improve on the efficiency of some of these

formulae

4.3 Curve Arithmetic

In this section, all of the background information that s needed to implement pairings on

the selected curves 1s described

431 Fimte field arithmetic

As the embedding degree of the curves Cy 1s £ = 12, 1t 18 necessary to show how to
construct the extension field Fyi2m A polynomial basis representation will be used rather
than a normal basis representation, for reasons outlined in chapter 2 There are a number
of different ways to construct the field Foi2.  As the curve 1s initially considered over the
field Fom, 1t makes sense to choose this field as the base field Rather than construct Foi2m

as a degree 12 extension of Fom, 1t 1s more conventent to first construct the field Fyem, using
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Algonithm 7 Doubling of a divisor [u, v] on the curves Cy

INPUT  [u, ]
OuTPUT [u/,v'] = 2[u, v]
1 1f deg(u) = 0 then
2 [ )~ [10]
3 elseif deg(u) = 1 then
4 ufy e ud vy - uf? A uf, o) — B4 d
s [, v] e« (22 4 up, viz + )] > (3S)
6 else
7 fu; =0 then
8 sp — v}, I — sy
9

uf — S
10 wy — Sy + 1, wo — w1 + up + ug, w1 ugwr + 1,
11 vy — wo + v1,v) — w1 +vp + 1
12 [, 0] — [2? + z + ug, viz + v)] > (28, 2M)
13 else if u; = 1 then
14 b6<—U%,U;IO<Jb’2
15 vg — splug + up” + o) + upvy +vp + 1
16 [, V) — [z + ugp,vp] © (38, 2M)
17 else
18 §h e 1T+ ud, Iy — v?
19 Boe—ud Il —vg+d
20 wlf—l/s’l,wo«—léwl + U
21 uh — w, v — w?
22 wq — wy + l,2’ wsg — U6U)2
23 v e (uy +up)(we + 87) +ws +w + 1
24 vy — ws + 15+ 1
25 [u, V'] — [x% + ulz + u), vz + v)] > (1, 6S,3M)
26  endif
27 endaf
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an trreducible trinomial or pentanomual of degree 6 defined over Fo  Then the field Fyiom
can be constructed by using an irreducible trinomial of degree 2 defined over Foom

The curves Cy have been studied in coding theory (e g see [41]), and a distortion map
such that C'(Fgm) — C(Fji2) 1s known Normally, the random irreducible polynomials
that define the fields Foem and Fyi2m are chosen so that they are defined over the subfield
F, However, 1t 18 better to carefully choose the ureducible polynomals so that applying
the distortion map to a point P € C(Fym ) simply involves manipulating the basis repre-
sentation The base field Fam 15 constructed in the standard manner by using an urreducible
polynomual of degree m over ' Foem 1s constructed by using an irreducible pentanomual

of degree 6 that 1s defined over [y, given as

WS+ 34 +1=0

Let w € Fys be a root of this polynomial Then a polynomial basis for the finite field Fosm

18

4 24
{1, w,w?, w3 w*w’}

Note that w” = w® 4+ w? 4+ w? +w+ 1 and w® = w+1 To define the quadratic extension

of Fyem, the rreducible trinomial of degree 2 over Foem that 1s used 1s

2tz + W +uw?)=0

Let 59 € Foiz be a root of this polynomial Then a polynomial basis for the finite field

Fyi12m 18 given by adjoining sg to the field Fosm, to yield the 12-tuple

{1, w, w?, wl, w, W, s, wso, w?so, wlse, wsg, w550}

Now define s; = w? 4+ w* and 53 = w* + 1 The distortion map which maps elements
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of C(Fm) to C(Fgizm) 1s given as
W(a,y) = (z+w y+sa? + 510+ sp)

To see why the basis for Fyi12. was chosen, note that applying the distortion map to a point

P = (r,y) € C(Fam) can be computed using a single squaring in Fym as

z +— {z1,0,0,0,0,0,0,0,0,0,0}
P(z,y)
y — {y+220,2,0 c+2%0,1,0,0,0,0,0}
Note that the distortion map maps the z-coordmate of P to Fyem, and the y-coordinate of
P to Fyi2:n  Therefore, this distortion map supports the denominator elimination technique
of Barreto et al [5]
[t remains to consider the cost of arithmetic in Fosr. and Fo12.  As addition 1s extremely

cheap 1n characteristic 2, this operation 1s 1gnored 1n the analysis A squaring in Foem can

be achieved extremely efficiently as
{a,b,c,d e, f}2 = {a® +d* + 2, b2+ d% + 2, d> + /2,2 d%)}

This takes only 6 squarings in Fom  Multiplication 1s far more costly, and takes 18 mul-
tiplications 1n Fam using the Karatsuba technique A multiplication m Fgi2 15 computed

as
(a + bop)(c + dsp) = (ac + bd{w® + w?) + so({a + b)(c + d) + ac))

This costs 3 multiplications 1n Fyem, as the multiplication by (w® + w?) can be handled by

a series of additions A squaring 1n Fyi12m 1s computed as

(a+ bso)? = (a® + b*(w® + w’) + so(b?))
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This costs only 2 squarings in Foor.  Therefore, a squaring in Fyi2m takes 12 squarings in
Fgm, and a multiplication 1n Fy12m takes 54 multiplications in Fom  As multiplication 1n the

extension fields 1s costly, 1t 1s imperative to try to avoid 1t whenever possible

432 Octuphng

Recall that Koblitz [64] gives a map for the curves C, such that for an element P ¢
C(Fgm), an explicit formula to compute a fixed scalar multiple of P 1s [64] P = —¢q12(P)
Let D € Pic%(Fam) be a dvisor with a single point P = (z1,%;) 1n the support, 1 ¢
in Mumford representation D = [z + z1,y;] Then [64]D can be computed simply as
[64]D = [z + z%lZ,yflz + 1] This explicit formula provides an extremely cheap means
of performing scalar multiplication on D, as 1t requires only 24 field squarings 1n Fom It
would seem a good idea to use this explicit formula to compute the Tate pairing using the
curves Cy, rather than use the formulae given in Algorithm 7 to repeatedly double D
However, the curves Cy also have an octupling formula to compute [8] D, for any D €
Pick(Fam) If D = (P) — (o), this formula has the property that [8]D = (P') — (o)
P’ can be computed as P’ = o ¢y (P), where ¢ 1 the 2nd power Frobenius map, and o 1s

given as
olzy,y1) = (z1+ Ly + 27 +1)

Note that applying the o map twice 1n succession yields 02 = (z1, 41 + 1) As (21,91 + 1)
15 equal to the formula for — P, the opposite of P, then 6> = —1 Although not strictly
accurate, the result of the octupling map on P 1s denoted as P* = (8]P = o¢ys(P), and
thus [8] D = (8] P)— (o0) Therefore, for a divisor D = [z + 21, 1], 8] D can be computed

as
81D = o + (x1 + D%, (31 + 27 + 1)%),

which takes 12 squarings in Fom It 1s worth examining how the octupling map [8] P relates
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to the map [64]P = —¢@o12(P) given by Kobhtz As 02 = —1, then using the octupling
map twice 1n succession gives [8}([8]P) = o%¢q12(P) = —¢o12(P), which 1s exactly the
map given by Koblitz

The octupling formula as defined applies only to a divisor with a single finite point
in the support However, 1t can be easily extended to general divisors Let D = (P) +
(P2) — 2(o0) be a general divisor, where P, = (a1,y1) and P» = (19, 42} Using Mumford
representation, [ 1s represented as two polynomials u(z) = 2% + w1z + ug and v(z) =

Mz -+ vg, such that

u = 2%+ (a1 22)e + (2122)

v = (y2+twy)/ (w2 +z)x+ (172 + z132) /(22 + 21))

The goal 1s to compute [8]2 1n such a way as to use the octupling formula that s given on

each of the points P, and P, By linearnty

D' = [8]D = [8]((F1) — (00)) + [8]((P2) — (00)) = () + (P2} — 2(o0),

where

Pio= @+ 1,80+ n®+1), o= (28 + 1,050 1 2d® 4+ 1)

The Mumford representation for D' = [/, '] 1s given as v/(z) = z* + v}z + uj and

V{(z) = viz + v§ «(z) 1s computed as

Wy = ) +xh=(zg +x2)%
= ’u,?‘l’
uy = zizh= (28 + 1)(2 + 1) = (2122)% + (21 + )% + 1

= (up+u +1)%,
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and v'(4) 1s computed as

o= (u g/ (ah +ag) = (R P+ 8t gt Y
= (1 +y2)/ (@1 + 22)*" + (21 + £2)™
= (v +w)™,
vy = (Whzy +yazh)/ () + 23)
= (W +2® + a8+ 1) + @8 + 2% + D + 1))/ (@) +25Y)
= ((mz2 +1z1)/ (31 +22))% + (01 +32)/ (21 + 22)) + (w122)™ +
(z1+22)% + 1

= (vo+wvy+ug+u +1)%

Algonthm 8 summarises this mformation, by giving complete formulae for octupling a
divisor of any form in Mumford representation This algorithm can be used for straightfor-
ward scalar multiplication of divisors on the curves Cy, as 1t 1s extremely cfficient, taking

at worst 24 ficld squarings to compute [8] D

Algorithm 8 Octuphing of a divisor [w, v] on the curves Cy

INPUT  divisor [u, v
output [u',v'] = 8[u, ]
1 1fdeg(u) = 2 then
[, v) — (2% + uS*z + (uy +up + 1 (w1 +u1)®z 4 (w1 4 uo + v1 + vo + 1))
else 1f deg(u) = 1 then
[ul,’U’] — [£ + (UO + 1)64’ (’UD + 1"5 + 1)64]
else
[w', v’} — 1,0
end if

~N AN s N

433 Using degenerate divisors

For genus 2 curves, a general (reduced) divisor D & Plcoc(]Fq) 1s of the form D = (Py) +
(P2) — 2(00), where Py, P, are elements of C(F,;) or C(F2) However, certain divisors
D' € Pick(F,) have only a single fimte point m the support, 1e D' = (P) — (o)

These divisors are called degenerate divisors In general, multiplying a degenerate divisor
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D = (P) - (00) by a scalar n does not result 1 a divisor [n]D = (@) — (c0), but nstead
1n a general divisor In fact, simply doubling D = (P) — (o0) gives the divisor [2]D =
(P) 4+ (P) — 2(oc0) which 1s a general divisor However, as shown 1n the previous section,
multiplying a degenerate divisor on the curves C, by 8 gives a degenerate divisor again

The group anthmetic on degenerate divisors 1s much more efhcient than for general
divisors  For example, adding two gencral divisors takes I 35,22M 1 Fom, using the
formulae of Lange [70] for the genus 2 group law 1n characteristic 2 However, adding a
degenerate divisor to a general divisor takes only 7, S, 10M 1n Fom  Katagi et al [60, 61]
exploit degenerate divisors in the context of scalar multiplication, by using a degencrate
dwvisor as the “base-divisor” This does not reduce the computational cost of the doubling
operations in the double-and-add algonthm to compute the scalar multiple However, each
time an addition 1s performed, a general divisor 1s added to the imtial degenerate divisor,
which 1s cheaper than a general addition, as detailed above Katag et al [61] also show that
solving the DLP using a degenerate divisor as the base-divisor 1s as intractable as using a
general divisor

Duursma and Lee [23] use degenerate divisors 1n the context of pairings on hyperelliptic
curves In this way, rather than use a divisor D = (P) — (o0) as one of the wputs to
Miller’s algorithm, 1t 1s possible to simply use the finite point P, in a similar manner to
pairing computation on elliptic curves Pairing computation using degenerate divisors can
be more efficient than using general divisors In particular, if a degenerate divisor 1s used
as the second argument to the Tate pairing, then 1t 1s posstble to evaluate the functions in
Miller’s algorithm at a single pomt, rather than at two points 1n the general casc, which can
be a significant saving

In general, there 15 little advantage in defining the first argument to be a point as well, as
a general divisor will be obtained with the first doubling 1n Miller’s algonthm The benefit
of having a reduced cost for addition also tends to be negligible compared to the cost of
arithmetic in the extension field However, it has been shown that an octupling operation

exists on the curves Cy such that for a divisor D = (P) — (c0), then [8]D = (P’) — (o),
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where P’ = a¢,5(P) As this octupling operation 1s extremely efficient, 1t makes sense to
consider pairings on degenerate divisors  Therefore, 1n this chapter the pairing of degencrate
divisors Dy = (P) — (o0) and Dy = (Q) — (co) 1s examined Computing a pairing using
points, rather than divisors in Mumford representatton, also allows for a stmpler description
which 15 used to optimise the painng computation later

Pairing based protocols that use degenerate divisors to speed up pairing computation
typically require computing a pairing of general divisors as well There are a number of
different ways to compute pairings on two general divisors D = (P;) + (P2) — 2(c0) and
Dy = (@Q1) + (Q2) — 2(c0) Furst of all, a pairing can be computed on D; and D, using
their Mumford representation However, as explicit and fast algorithms will be derived later
in this chapter for painings using degenerate divisors, 1t 1s more convenient to exploit the

bilinearity property of the Tate painng by computing

(D1, Da)n = (P1 Q1)n{P1, Q2)n{Po, Q1)n{P2 Q2)n

Therefore, computing a general divisor using this method 1s at worst 4 times the cost of
computing a pairing using degenerate divisors However, a number of techniques are avail-
able to 1mprove this bound, that are largely the same as the techniques that are known to
optimise the computation of multiple pairing values 1n the case of elliptic curves A sin-
gle accumulating variable can be shared for all the pairings, rather than have four separate
variables, and thus only a single squaring over Fo12m must be computed at each iteration
Any precomputation that 1s done need only take place once The final exponentiation can
also be shared, rather than computed after each separate pairing However despite these
optimusations, this approach 1s still substantially slower than the degenerate pairing

The previous paragraphs detail how degenerate divisors can be used 1n pairing compu-
tation However, there has been no discussion of when 1t 1s permissible to use degenerate
divisors Frey and Lange [29] examine these 1ssues 1n detail In particular, they state that

if the group order of a supersingular curve has a sufficiently large co-factor, then 1t 1s not
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possible to find a divisor D € Pich(F,) of prime order, such that D 1s degenerate How-
ever, Table 4 3 gives several examples where the group order #PlC%(Fgm) for the curves
Cy has a small co-factor Frey and Lange motivate the discussion on degenerate divisors
by showing how they can be used in both Identity Based Encryption and Short Signature
schemes

It 1s essential to test any implementation of the Tate pairing thoroughly, to ensure that
1t meets the required properties of a bilinear pairmg The computability property 1s ad-
dressed by simply implementing the algonthm efficiently, and the non-degeneracy property
1s met in this case by using a modified pairing The implementation can be tested for the
remainng property, that of bilineanty, by comparing the output of certain pairing computa-
tions, as will be explained later We emphasise that this 1s only necessary to ensure that the
implementation s correct - mathematics guarantees the bilinearity of the Tate pairing

To generate random divisors 1n Picl (I, ), 1t 1s first necessary to generate random points
on the curve C, over Fom or Fo2m  The following solution 1s due to Koblitz [64] Let
g = 2™ or g = 2°™ To generate a random pomnt P = (z,y) € C(F,), first generate a
random z € F,; Then the equation of the curve C; 3% + y = x° + 2% + d has a solution

y € F, 1f and only if the trace of the right-hand side of the equation 1s equal to zero, 1e
Tug, pp,(2° +2° +d) =0

If the trace 1s not equal to 0, random values for . should be repeatedly generated until
this condition 1s met As m 1s defined to be a prime (and hence odd), the y coordinate 1s

computed using the half-trace as follows

(m—1)/2
y= . P+t
1=0

Once a solution y has been found, then the other root 1s given by y + 1
As degenerate divisors are associated with points on the curve, 1t suffices to generate

random points to construct a range of degenerate divisors for testing purposes Two random
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pomts Py = (21, y1) and P, = (42, y3) are used to construct a general divisor D as D =
(P1) + (P2) — 2(c0) However, it 1s often useful to use Mumford’s representation, rather
than keep the finite points P; and P 1n the support of D separate This can be done by

representing D as D = {u, v| such that

u o= 224 (a1 +22)2 + (2122)

vo= (ye+y)/(z2+z)7 + (yr +21(y2 + v1)/ (22 + 21))

This conversion requires just 3 multiplications and 1 inversion

To test that an implementation of the Tate painng 1s bilinear, two random divisors
Dy, Dy € Picd(Fon) arc generated The divisor D) € Picd(Fgi2m) 15 then obtained
by applying the distortion map to 2, Let M be the final exponentiation required to com-
pute the Tate pairing  Then the Tate pairing 1s computed using D; and D), as (D1, Dj)M
Scalar multiplication 1s then performed on D) using a random scalar [, to obtain the divisor
[1]Dy The Tate painng 1s computed again as {[!]Dq, D)™ The output of the first pairing
1s then exponentiated to the power of I, and compared to the output of the second pairing

If the two values are equal this implies that the painng 1s bilinear, as

(D1, D)™ = ()1, DM

For a more “thorough” test of the bilinearity property, 1t 1s also possible to perform scalar
multiplication on the second divisor D, using a random value r, and then to compute the
second pairing as ([/| D1, [r] D4)™ This can be equated with the first pairing value, raised
to the power of Ir

If degenerate divisors are used, then Dq and Dy are associated with the finite points
Py and P;, which are used as the input to Miller’s algorithm The bilineanty test involves
multiplying the divisor D; by the scalar I However, assuming [ 1s a random scalar, this
approach will normally yield a general divisor, rather than another degenerate divisor In

this case, the pairing can be computed using Mumford representation, or by splitting the
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divisor to obtain the two finite points in the support This can be done using the following
method Let [{|D; = {«, v], where u = W2+ uje +ugand v = via + g Once the u-
coordinates .1 and .. have been found, then y; and y; are trivially recovered by substituting
41 and .5 1nto the equation of v Finding 21 and .19 requires solving the quadratic equation

u(asu = (v +21)(e + 22)) This can be done by first rewriting u in the form

24z= (uo)/(ul)z,

where 2 = r/u; This equation can be solved by using the method given previously for
generating random points on the curve Once this 1s done, z; and x3 can be recovered by

multiplymmg the two roots by u;

434 Octuphng functions for the Tate pairing

As an efficient octupling operation has been derived for the curves Cy, 1t makes sense to
use this operation to compute the Tate pairing As degenerate divisors are being used,
rather than general divisors, 1t must be shown how to derive the necessary functions that
are required 1in Miller’s algorithm from the octupling operation Let Dy = (P) — (o0)
be the mitial divisor, where P = (4 p,yp) To obtain the divisor Dg, D must be doubled
continually to get D2, D4 and then Dg For each D, = n{P)— n(c0), an equivalent divisor
D), 1s considered, such that D,, = D!, + (f,) The function fg 1s the required function that

has divisor

(f8) = 8(P) — ([8]P) — 7(c0)

The function fg 1s built up in stages, by extracting a function f], at each iteration such that
= (y+v(z))/v/(z), where v(x) 1s from the Cantor composition step, and v'(z) 1s from

n

the Cantor reduction step
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The imtial divisor D) = (P) — (00) 1s represented in Mumford notation as

(ur n]=lo+ap yp]

The function f; can be taken to be 1 Dj 1s then doubled to obtain Dy = 2(P) — 2(o00)

This 1s done by using Cantor composition on [uy, v}, which yields

[ug, vo] = [2° + 2% (2 + 7%)z + yb]

As this divisor 1s already reduced, then D), = Dy and fo = 1 Do 1s then doubled to obtain

Dy = 4(P) — 4(o0) Agam, doubling [uy, v] using Cantor composition gives
[ug, va] = [z* + 25 @ + (2 + 2p)2” + (a})z + y})

This divisor 1s clearly not reduced, as u4 has degree 2g Therefore, Cantor reduction must

be applied to [u4, v4], which yields the divisor D}y = [u)}, v}] such that
[y, 0] = [2* + 2+ (28 +23), @F + D7 + (v} + 2 + 23 + 1)

Therefore, Dy = D} + (f4), where f4 = (y - v4(r))/u (&) Fnally, Dg 1s obtained by
4 4

doubling D}, using Cantor composition on [u], v}] to give
[us vs] = [u4(z)?, (@B + 1)2® + (@F + 2F)e + (WP + 2P +2F + 1)]
Again, this divisor 1s not reduced Reducing [ug, vs] gives a divisor D§ = [ug, vg] such that
128

[ug, vg] = (& + (WP + 1), 4% + 258 +1]

Note that Di = (P') — (00), where P’ = g ¢qe (), which confirms the octupling formula

that was given previously fg 1s given as fg = (y + vs(1))/ug(2), and therefore Dg =
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&+ (Jg), where

Y+ m(fu))z y+ vs(7)
wy(x) ug(r)

fo=FE i 120 = (

435 The final exponentiation

The group order for the curves Cy 15 #P1ck (Fam ) = 227 £ 20m+1)/2 L gm 4 o(m+1)/2 4 1
It 1s more convement to use this group order, rather than a subgroup order, to compute the
Tate pairing This 1s because #PlC%(]Fgm) has a Hamming weight of 5, which means that
only 4 additions must be performed in Miller’s algornithm All cryptographic applications
require a unique value, and so 1t 1s required to add the final exponentiation at some point it

the protocol Using the group order, the final exponentiation M for the curves Cj; 1s

12m 12m
M 2 1 2 1
 H#Pich(Fam) 22 £ 2BmAD/2 4 gm g o(maD)/2 4
#P1cc(Fam) +

Evaluating the exponentiation to M using standard exponentiation techmques in Fpi2m
1s computationally expensive However, the cost can be greatly reduced by using the tdea
of Barreto et al [5] The exponentiation to (212" — 1) can be factored as (21" — 1) =
(267~ 1)(25™ + 1) As detailed 1n chapter 3, an element .. € F, can be exponentiated to

k2

the power of ¢"/* using a trivial operation In this case, an element & = (a + bsg) € Foizm

can be exponentiated to the power of 26™ as 12" = ((a + b) + bsg) Thereforc, the
exponentiation to the power of 2°™ ~ 1 can be computed with a single multiphication and
mversion in Foizm

Once an element + € Fqi2m has been exponentiated to the power of (26™ — 1), 1t
has norm 1 with respect to Fosm In other words, 12°"+! = 1 This implies that 27! =
.v26m, and so 1nversion can be performed on x for free As this property holds for any

subsequent exponentiation, an expensive inversion operation need only be performed once

when computing the final exponentiation The remaining exponentiation to the power of
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(257 + 1) /#P1c% (Fym) can be factored as

(26777 + 1)

= (2™ 2(m+1)/2+1 93m 2(3m+1]/2+1
#5:0(Fy) 2" ¥ )T )

The fact that the group order divides 267 + 1 will be used 1 the next chapter to obtain
an even mote efficient means of computing the Tate pairing In the meantime, the product

given above can be unrolled as
(24711 + 93m + 22m+1 o 1) T (2(m+1)/2(25m + 92m ) L 1))

Therefore, the entire final exponentiation to (212" — 1)/#P1c%(Fym) can be computed
with only 7 multiphications, 1 inversion, (m + 1)/2 squarings and some trivial Frobenius
actions in Fpizm  As this 15 a relatively small computational cost, the emphasis must now

be on improving the speed of Miller’s algonthm itself

4.4 Computing the Tate Pairing

In this section, 1t 1 detailed how to compute the Tate pairing efficiently using the supersin-
gular genus 2 curves that were selected earlier, as well as all of the optimisations that were

derived 1n the previous section

441 Usmng an octic basis

Recall that the group order for the supersingular genus 2 curves Cy y2 +y =2z + a3 4+ d
over Fam, where m 1s odd and d € {0, 1}, 1s given as

#PICOC(]FQm) — 22111 + 2(3m+1)/2 +9m 4 2(m+l)/2 +1

Therefore, using the group order in Miller’s algonthm to compute the Tate pairing im-
plies a loop size of 2m 1terations, assuming a standard double-and-add algorithm This

algorithm can be combined with the simplified explicit formulae for doubling elements of
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PIC%(IFQm) as given 1n Algorithm 7 The resulting algorithm yields an efhcient pairing
implementation on both degenerate and general divisors However, 1n the previous section
it was shown that these curves support an extremely efficient octupling operation Ex-
plicit formulae were then derived for the intermediate functions that are required in Miller’s
algorithm 1n the case of degenerate divisors Given a divisor D = (P) — (o00), where

P = (4p, yp), the function associated with [8]D 1s

b

y + va(r) ) 2y + vs(T)
uy(z) ug(z)

fep(a,y) = (

where

w(z) = o°+ (ap+ap)e” + (€p)z + yp,
v(z) = (zF + 17"+ (@F +af)e+ P + ¥ + 28 +1)

Note that the denomnator /j{z)?u}(x) 1s evaluated only at z, which 1s the z-coordinate of

the distorted image point The distortion map ¢ defined previously maps the z-coordinate
of the pount to the field Fysm Therefore, the denominator 1s also defined over Fosm and is
eliminated by the final exponentiation

The goal 1s to compute the Tate pairtng (P, 4%(Q)) on the degenerate divisors Dy =
(P)—(o0) and Dy = (Q)— (00) At each iteration of the algonthm, the point P 1s octupled
and the function given above 1s calculated As a result, one would expect Miller’s algorithm
to have 2m/3 iterations, as opposed to 2m iterations when doubling However, there are a
number of problems with thus approach when a pairing 1s computed on degenerate divisors
The group order #PIC%(FQm) has a Hamming weight of 5, meaning that four additions
must take place in Miller’s algonthm However, the final addition yields a vertical line
function and does not need to be computed as a result [23]

The first problem 1s that the number of doublings that must be performed between each
addition 1n the group order might not be a multiple of 3 If this 1s the case, then either

one or two extra doublings must be performed However, even a single doubling of a
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degenerate divisor D = (P) — (o0) results in the general dvisor [2]D = 2(P) — 2(o00)
The second problem relates to the additions that must be performed In the overwhelmingly
common case, any addition performed on a degenerate divisor will yield a general divisor
Therefore, the computational advantage of using a degenerate divisor as the first input to
Miller’s algorithm 1s quickly negated

Here we propose an alternative approach which overcomes these problems Let D =
(P) — (o0) be the first mput divisor to the Tate pairing It 1s required to construct a func-
tion f, such that (f) = [N|D = [N]((P) — (00)), where N 1s defined to be the group
order #P1c%(Fam) 1n this case Rather than construct f in stages as in Miller’s algorithm,
note that f 1s composed of several intermediate functions Let Dy. be the reduced divisor

cquivalent to {2°]((P) — (0)), and let fo. be the function such that

[2%)((P) = (00)) = Do + (/o)

Let D' be a reduced divisor equivalent to Doem £ Dogsmy1y/2, and let by be the function that

arises from this addition process such that

.D22m + D2(31u+1)/2 = DI + (hl)

Simularly, let k2 be the function that anises from the addition of D’ with Dam, and let h3 be
the function from the addition (subtraction) of the reduced divisor equivalent to D' + Dom
with Dy(m-1y,2 The final function that anises fiom the addition with D can be omutted as it

1s eliminated by the final exponentiatton The function f 1s then constructed as

= Jorm fo@smenysz fam foomry2h1hohg

Therefore, rather than compute f using a double-and-add algorithm, 1t 1s possible to
compute each fy. that 1s required separately No additions take place when computing any

of these values, which removes the need for conditional statements inside the loop The

93



additions that are required to compute the 5, functions are performed afterwards, and thus
the problems associated with using degenerate divisors are avoided 1f the f,. functions are
calculated separately, the number of iterations of Miller’s algorithm will far exceed 2:1./3,
thus defeating the purpose of this optimisation A better strategy 1s to have a single octu-
pling loop up to 2im/3 Then whenever the index reaches the required value, the function
at that point can be saved These function values can then be multiphed together after the
loop

As an octuphing 1s performed at each loop iteration, the function values must be saved
at the nearest index to = However, depending on the value of , one or two extra doublings
might have to take place to get the correct value for fo. Let D' = (P’) — (o0) be the
degenerate divisor that corresponds to the function that 1s saved 1n the loop It has been
shown previously that doubling a degenerate divisor does not contribute any line function
to the accumulating function Therefore, 1f an extra doubling must be performed, 1t 1s only
required to square the function to obtain the correct value for fo.

A further doubling yields the divisor [4] D' = 4(P’) — 4(oo) The explicit line function

for this divisor was given previously as
i + 'U4($) =Y -+ 2133 + (iv?m + iE‘}).r)fEQ + (CL‘A;)/)I + ’y;l)/

Therefore, when two additional doublings must be performed, 1t suffices to square the func-
tion twice, and then to multiply 1t by the function given above Rather than evaluate this
function at ¢(Q), where @ = (tq, yp), 1t 15 possible to build the distortion map ¢ 1nto the

function This s given here in the basis defined earlier for Fo12m The constant term 1s
{9 +25(L+aq+ 1+ 1b) +2birg +ybl,
and the remaining terms are
{18+ Th, 1 + 2h, 1,75 + 70,0,1,0 0,0,0,0}
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Finally, the functions /1, iy and hj that correspond to the additions 1n the group order
must be calculated Thus 1s easily done by adding the relevant divisors D, and extracting
the functions that are required from the addition process It is a relatively simple matter
to construct the divisors D,, Firstly, the convention that .2 = () 1s adopted for con-
venience Given a point P = (1p,yp), then [2%]P can be denved by generalising the
octuphing formula The 1-coordimate of [23| P 1s given as

J(Pfh) + 71(’):

where v1(7) 15 1 when 7 1s odd and 0 otherwise The y-coordinate of [2%] P 1s given as
yp” + @)l + (),

where y3(¢) = 1 when: = 1,2 mod 4, and 0 otherwise The exponents in brackets in

m
these formulae are reduced modulo m, as x2

= ¢ forx € F}. However, the 2 1n Dy,
may not be an exact multiple of 3 This 1s easily solved by performing at most an extra
two doublmgs using the approach described previously The divisors Ds. are then added

together using Cantor composition and reduction, and the relevant functions are extracted

and multiplied to obtain f

442 Precomputing the first point

At each iteration of the octupling algorithm to compute the f,. functions, it 1s necessary
to octuple the iterating point P, and to evaluate the explicit functions that were denved
previously at the image point 2(Q) It has been shown that the denominator of thus function
does not need to be computed, as 1t is eliminated by the final exponentiation Therefore, the
function that must be computed at each 1teration 1s the product o3, where & = (y +va(x))?
and 8 = (y+ vg(z)) These functions are evaluated at 1(Q), which 1s the point that results

from the application of the distortion map ¥ to the point Q € C(Fam) Let P = (zp yp)
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Then v4(+) and vg(a) are given as

va(a) = 2P (bt ab)a® o+ (b)e +ub,
v(a) = (zF+ 1)z’ +(eF +zp)e+ (yp + 2P + 28 + 1)

It 1s 1important to optimise the generation and evaluation of the af product, as 1t 1s
computed at each iteration of the loop The first optumisation 1s to build the distortion map
into the formulae for o and § This means that the second mput point to the Tate pairing
1snow Q = (zg,yg) € C(Fam), rather than ¢(Q) € C(Fy12») Recall that the distortion
map 1s ¥(z,y) = (z + w, y + s22% + 512 -+ sp), where 5% + 59 = w5 + w3, 51 = w? + wt

and sy = w? +1 Then

(y+w(x) = yo+szh+ 179 + 50+ (zg + w)® + (&% + zh) (g +w)* +

(2p) (2 g +w) + yp
Squaring this function gives

a = yé + séxé) + sf:cé + sg + :1:% + 7:221112 + xéw‘l + w4+

(zp +2p)(@g +w') + (zh)(zh + w?) + 1B

The basis for Fo12m was constructed to avoid the need for explicitly calculating elements

4

such as w* Therefore, the formula for & must be rewritten 1n terms of this basis Let

st =w, s =w'+w+ 1and s3 = so +w® + w? Then the constant component of «,

written 1n the basis for Fyiam, 18

{yp + 25 + 2+ 1+ (2 +ab)zd + 2hed + v},
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and the remaining components are
{28+ 28,05 +14+285,0 4P +.%,0,1,0,0,0,0,0}
Similarly, applying the distortion map to 8 = (y + vs( r)) gives

B = yo+ szré + 5120 + 50+ (# + (g +w)? + (8 + 71) (2 + w) +

(' + 2 + 25 +1)
Expressing /3 1n the basis derived for the field Fy12m has constant component
{vo + @F)2g + (¥ +aP)zq +yp + 2P (1 +<f) +1)
and the remaining components are
{13 + J,g;,,LQ —I-J,:}z +1, O,Ié +10,0 1,0,0,0,0,0}

It 1s possible to precompute any power of T that 1s required for both v and /3, as
these terms are constant throughout the algorithm However, as the point P 1s octupled
at each iteration, 1t 15 required to constantly update the values of zp and yp 1n o and 3
Note that the values required for rp and yp 1n « and § are generally of the form "r"};
for some 7 However, there are only m possible values for 7, as 5" = ©p Therefore,
rather than explicitly octuple P, 1t 1s better to precompute all of the possible powers of Tp
and yp These powers can be stored in an array and then accessed 1n the algorithm using
array indexing Firstly, two arrays of size mn are instantiated Each index : in the arrays
then consssts of the value »% and y% This precomputation requires 21 squarings in Fom,
which 1s a relatively small cost

The formulae given for «v and 8 must then be rewritten, so that the required powers

for 2 p and yp can be accessed from the precomputed arrays, rather than from the explicit
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octuphing of P This can be done by using the formulae given for computing [2%'] P Furstly,
« 1s examined Recall that v;(¢) 1s 1 when ¢ 1s odd and 0 otherwise, and y3(:) = 1 when

¢ = 1,2 mod 4, and 0 otherwise The constant term of « 1s then

( (61+4) (GH-J))

{6+ a8+ @Y+ 20 - G i ()l + g8+

6
1zt +3(2) + 1}
and the remaining components are
(o +ud,uh + 20 £ () + 1,05 12549 0,1,0,0,0,0, 0},

where z(*) = 2" as before Simularly, for 3 the constant term 1s

(61+ ) (

{yo +xp (zg +z5) + $S§1+4)(avgfl+5) +zg+7() +1)+ y;(oH )+ s0) +

n()wh + 1},

and the remaining components are
(@5 4 28 o+ 2 £ y1() 4+ 1,0,23 + 29,0 1,0,0,0,0,0}

Therefore, o and 3 are constructed at each iteration of the loop with only two multi-
phcations in Fam each, assuming that all of the powers of z¢ and yg that are required are
precomputed This s a large saving on having to explicitly calculate the required powers of
zp and yp at each tteration The remaining task 1s to show how to multiply & and 5 1n an
efficlent manner A general multiplication in For2m 1s an expensive operation as it costs 54
multiplications in Fom However, both o and 3 are of the form (a + bw + cw? + dw* + sp)
It 1s possible to derive a special multiplication routine that exploits the sparse structure of
both cvand 3 Thus routine 1s derived in Appendix A 3, and costs only 11 multiplications in

Far using some Karatsuba-like optimisations
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443 Absorbing powers of 8

As described 1n the previous subsection, the functions o and 3 are calculated at each 1t-
eration of the octupling algorithm These functions are first multiphed together using the
expiicit routine given 1n Appendix A 3, and then with the accumulating variable f How-
ever, 1t 15 necessary to first exponentiate the accumulating variable f € Fyiam to the power
of 8 This can be achieved with three squarings m Fyizm  As a squanng mn Fyi2m takes 12
squarings 1n Fom, the total cost per iteration of the algorithm 1s 36 squarings in Fom

However, 1t 1s possible to avoid these squarings by building the exponentiation into
the o and 3 terms inside the algorithm This technique 1s feasible for fimte fields of low
characteristic, and was introduced to pairing based cryptography by Duursma and Lee [23]
The first function that must be computed 15 fo(m11)/2 This can be obtained by (m — 1}/6
iterations of the octupling algorithm and a doubling Therefore, for the index : = 0 to
(m — 1)/6, « and 8 must be raised to the power of 2m~7-6/2 {5 avoid octupling the
accumulating variable f

The next function to be calculated 1s fam This can be obtained with (m.—1) /3 iterations
of the octupling algorithm and a further doubling So, for the index ¢« = (m - 1)/6 to
(m—1)/3, cand 8 must be exponentiated to 20m~4=3) However, further work 1s necessary
if the functions that were previously calculated are to be reused The exponentiation used
to calculate foimt1)/2 18 o(m=7-62)/2 Therefore, to reuse this functton 1t 1s necessary to
exponentiate 1t to the power of 20m=1/2, ag (2(m=7-61)/2)(9(m=1)/2) = g(m—4-3)

The function fo(am+1)/2 18 computed with (m—1)/2 iterations of the octupling algorithm
and two doubtings For the mmdex ¢+ = (:n —1)/3 to (m — 1) /2, this involves exponentiating
« and J to the power of 2(3m—9-61)/2 Ag before, some extra work must be done to reuse
the functions that have been previously calculated Finally, the function fo2m 1s computed
with (2m — 2)/3 iterations of the octupling algorithm and two doublings For the index
t=(m—1)/2to (2m — 2)/3, o and 8 must be exponentiated to the power of 2(2m—5-3),
again with some further work to reuse the functions

Therefore, the algonthm to compute each of the four f,. functions consists of four
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separate {oops of (1n — 1)/6 iterations each Each loop contains separate formulae, each
of which 1s obtained by exponentiating the formulae for o and 3 given previously to the
required power This requires the precomputation of .Lg and yg , forevery 0 < : < m,
and using array indexing in the formulae It costs two multiplications in Fom to construct
each term, which 1s exactly the same computational cost as that given previously for o and
B The actual process of exponentiating o and 8 will be examuned 1n more detail in the
following chapter

Each time a function 1s reused, 1t 1s necessary to perform (m — 1)/2 squarings, some
multiplications as well as some applications of the Frobenius endomorphism in Fyi2 Per-
forming these operations four times negates any of the advantages associated with elim-
mating the octupling of the accumulating variable However, 1t 1s better to group all of
the operations that require the exponentiation to 2™~ /2 together, so that this powering is
only computed once As any application of the Frobenius map can be trivially computed,
the additional cost of this optimisation 1s only (m — 1)/2 squarings and 7 multiplications
n Foizm

The total cost of this optimisation 1s as follows 2m additional squarings in Fom must
be performed in the precomputation stage Then, 6m — 6 squarings 1n Fom and 378 mul-
tiplications 1 Fom are computed after the loops The previous strategy of squaring the
accumulating variable three times per 1teration costs roughly 24m squarings in Fom 1n to-
tal, as the loop size 1s approximately 2m/3 Therefore, this optimisation saves roughly 18m
squarings, at the cost of 378 multiplications For values of m that are used in practice, this
optimisation 1s faster than that gtven 1n the previous subsection However, the complexity

of implementing this approach 1s considerable

4.5 Expermmental Results

In this section, experimental data 1s provided to validate our assertion that efficient pairing

calculation 1s possible on genus 2 curves over Fom The first task in implementing any of
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the techniques given 1n this chapter 1s to sclcct /n There are a number of conditions on
the selection of 1 that must be satisficd so that the implementation of the Tate pairing 15
invulnerable to attack, as discussed at the start of this chapter Firstly, 1 must be chosen so
that #Pic:(Fom ) has a large pnme factor Secondly, Picl:(Fam ) must be large enough to
resist any generic attack agamnst the DLP 1n this group Thirdly, as the embedding degree
of the genus 2 curves 1s k = 12, a further condition on m 1s that F7,,,, 1s large enough to
resist any sub-cxponential time attack on the DLP

Various examples of m that satisfy all of these conditions for the two curves Cy
Y +y=z"+r3%and C; 9% +y = 2°+ 23 + 1 were given earlier in Table 43 The
values that were chosen for m range from m = 79tom = 239 All of these values are large
enough to satisfy the security considerations detailed above Therefore, the smallest values
of m are chosen for each curve, as the larger m 1s, the more computationally expensive the
anthmetic in both Plc%(IFgm) and F5,,,, For the curve Cp the value for m1s m = 103,
and for the curve C) the value 1s m = 79 As will be detailed later, these parameters have
the advantage that an element of Fom can be represented inside a single hardware register
(assuming our computing platform)

Table 4 4 details the experimental results on the supersingular genus 2 curve Cy over
Fy7e Table 4 S details the expertmental results for the curve Cq over Fyios  The first three
cases In each table give timings for the implementation of the Tate pairing using the group
order for each curve All three cases in each table share the fast means of performing finite
field arithmetic as detailed previously, as well as the efficient method to compute the final
exponentiation The first case in both tables 1s an algorithm to compute the Tate pairing
where both input elements are general divisors A standard right-to-left doubling algorithm
1s used, where the 1terating divisor 1s doubled using the explicit formulae given previously
in Algorithm 7

The second case 1n both tables uses degenerate divisors and octupling to compute the
Tate patring  This algorithm precomputes the relevant powers of the first input point to avoid

exphicitly octupling at each iteration The third case 1in both tables also uses degenerate
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Table 4 4 Expenmental results for the curve C; over Fyro

Case | Description Running time (ms)
1 General divisors | 11 17

2 Degeneratc I 216

3 Degenerate II 189

4 Octupling 041

Table 4 5 Experimental results for the curve Cy over Fauos

Case | Description Running time (ms)
1 General divisors | 11 90

2 Degenerate [ 311

3 Degenerate I1 269

4 Octupling 0638

divisors and octuphng to compute the Tate pairing However, 1t precomputes powers of
the second mput point to avoid having to octuple the accumulating variable each iteration
Finally, the fourth case 1n both tables gives the timing for scalar multiplication using the
octuphng formulae given in Algorithm 8 The scalars in question are m bits long and have
a random Hammung weight This timing 1s included to compare the cost of computing the
Tate pairing with that of scalar multiplication on the curves Cy  All of the timings are given
in mithiseconds

The general conclusion that can be drawn from these tables 1s that the Tate pairmg can
be computed efficiently on (supersigular) genus 2 curves over o A striking conclusion
from the tables 1s that the degenerate divisor case yields a far more efficient implementation
than the general case This result shows that it 1s worth using cryptographic protocols
in the genus 2 setting that take advantage of pairing computation on degenerate divisors,
as detailed by Frey and Lange [29] It can be seen that the optimisation of avoiding the
octuphng of the accumulating variable by building the exponentiation into the intermediate
functions nside the algorithm gives a shght improvement over the simpler method Finafly,
it can be concluded that pairing calculation on genus 2 curves over Fom 15 not as efficient as

scalar multiplication, although the difference between them 1s narrower than was previously

102

_——



thought

All of the experiments were performed on our platform of a Pentium IV, which has
a clock speed of 2 8 GHz, and which runs version 2 6 15 of the Linux kemel The code
1s written 1n C/C++ and 1s compiled using version 4 03 of the GCC/G++ compiler suite
The efficient implementation of the finite field Fom 15 taken from MIRACL 5 01 Recall
that 7 was chosen so that an element of Fy= can be represented mside a single hardware
register, rather than using a multi-precision representation More precisely, arithmetic 1n
Fom 15 performed 1n the 128-bit registers available to the Pentium IV, which support the
SSE2 instruction set SSE2 1s a SIMD (Single Instruction, Multiple Data) nstruction set,
meaning that a single SSE2 instruction manipulates the entire 128-bit register This offers
improved performance over the use of four separate 32-bit registers In particular, this
nstruction set enables the multiplication of elements m Fom that 1s about twice as fast as a

standard multi-precision implementation

4.6 Conclusion

In this chapter, 1t was shown that paining calculation on supersingular genus 2 curves over
Fom 1s efficient, and 1s a valid candidate for the practical implementation of pairing based
protocols as a result Firstly, 1t was shown how to select curves with the maximum em-
bedding degree permtted for genus 2 curves It was shown how to select m such that the
relevant security parameters are satisfied, and formulae were given to double elements 1n
Pick(FFam ) that explont the special form of the curve equations that were chosen

It was detailed how to construct the extension fields that are required The use of degen-
erate divisors 1n pairing computation was then explored An octupling automorphism was
dertved, and explicit formulae were given for the intermediate functions that are required
i Miller’s algonthm It was shown how to compute the final exponentiation efficiently
Then the actual implementation of the Tate pairing on these curves was detailled It was

shown how to avoid the problems associated with using degenerate divisors, and how to use
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precomputation to speed up the algorithm

Finally, experimental results were given It was demonstrated that 1t is possible to com-
pute the Tate pairing using general divisors efficiently 1f degenerate divisors are used,
then the implementation 1s particularly efficient However, the results given 1n this chapter
should be viewed more as a proof of concept, rather than 1n a practical manner Ths 1s be-
cause the methods used to compute the genus 2 Tate patring 1n this chapter are superseded

by simpler and faster methods that will be described 1n the following chapter
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Chapter 5
The n1 Pairing

51 Introduction

In the previous chapter, an efficient implementation of the Tate pairing was described on
the supersingular genus 2 curves Cy 3% +y = 2% + 2% + d over Fym, where d € {0,1}
These curves have the maximum embedding degree for supersingular genus 2 curves of
k = 12 As the group order for these curves 1s approximately #Plcg (Fam) =~ 2%™ Miller’s
algorithm requires around 2m /3 iterations 1f the fast octuphng operation on Cj; 1s exploited
However, implementing this algonthm efficiently 1s difficult due to the additions that must
be performed

In this chapter, 1t 1s shown how 1t 1s possible to achieve an implementation of the Tate
painng on the same genus 2 curves by using the 7 pairing construct The 7 pairing requires
m tterations of Miller’s algorithm using the octupling operation in the genus 2 case, as
opposed to 2m /3 1terations using the straightforward method However, the arithmetic
associated with the 7 pairning 1s substantially less expensive to compute, and thus 1t yields
an efficient pairing implementation The resulting algornithm 1s approximately as efficient as
the method given 1n the previous chapter, but 1s much simpler to describe and to implement

It 15 then shown how for certain supersingular elliptic curves 1t 1s possible to avoid the

final exponentiation when computing the # pairing, as long as the vertical line functions are
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included n the pairing computation This ts the first time that a method has been given to
compute the Tate pairing for cryptlographic purposes that has no final exponentiation This
technique ts not useful 1n practice, as the evaluation of the vertical line functions in Miller’s
algonthm 1s costly However, 1t 1s hikely that future research will find an application for this
1dea

Tt 18 then shown how 1t 1s possible to achieve a more efficient pairing computation
on the genus 2 curves Cy by using the nr pairing This pairing has a more complicated
final exponentiation than the 5 pairing, and an extra addition must be performed after the
loop However, 1t has approximately half the number of loop iterations of the ) pairing
Various techniques are detailed to achieve the fastest implementation possible Finally, a
comprehensive series of tests 1s conducted on the various pairing implementations, and the
chapter 1s concluded

This chapter contains joint work with Paulo S L M Barreto, Steven D Galbraith and
Michael Scott, which has been accepted for publication i Designs, Codes and Cryptog-
raphy A preprint 1s available at the ePrint archive as Barreto et al {4] This chapter also
contains jomt work with Steven D Galbraith and Caroline Sheedy, which has been ac-
cepted for publication in the Journal of Mathematical Cryptology A preprint of this paper

15 available at the ePrint archive as Galbraith et al [33]

52 The Theory of the n; Pairing

Recall that Duursma and Lee [23] introduce several optimisations which lower the com-
putational cost of the Tate pairing These techniques apply to supersingular hyperelliptic
curves of the form C 42 = zP — 2 + d over Fpm, where d = £1, p = 3 mod 4 and
m and 2p are co-prime These curves have an embedding degree of &k = 2p Rather than
using the group order #PlCOC(]Fpm) to compute the Tate pairing, Duursma and Lee propose
using a multiple of the group order of the form N = p?™ 4+ 1 Thts order has Hamming

weight 2 1n base p, meaning that only a single addition must be performed 1n Miller’s al-
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gorithm However, Duursma and Lee show that as the addition takes place on the final
iteration of the algorithm, the line function that corresponds to the addition 1s a vertical line
function Therefore, the addition does not need to be computed, leading to the elimination
of conditional logic from the algorithm

As the order used to compute the Tate pairing 1s N = pP™ -+ 1, the final exponentiation

1s computed as

M= (¢" = 1)/N = (p"" — 1)/ (p"™ + 1) = p"™ — 1

which can be trivially computed with a multiplication and inversion 1n F2pm Duursma and
Lee also introduce the 1dea of pairng computation on degenerate divisors and hence points
on the curve, as covered n the previous chapter Instead of deriving the intermediate line
functions 1n Miller’s algorithm from the Cantor composition and reduction of the iterating
divisor, Duursma and Lee provide explicit formulae which depend only on the coordinates
of the original mput point It 1s also shown how to absorb the exponentiation to p in Miller’s
algorithm 1nto the explicit formulac

Therefore, the proposed pairing implementation has a trivial final exponentiation and
the anthmetic inside the loop can be computed efficiently However, these optimisations
come at the cost of a longer loop of pn: rterations Duursma and Lee’s most significant
contribution 18 to show how the number of 1terations of the loop can be shortened from pimn
to i This 1s done by absorbing the exponentiation to p inside the explicit formulae The
resulting algorithm enables an extremely efficient implementation of the Tate pairing

Unfortunately, there are very few specific hyperelliptic curves of the form given by
Duursma and Lee that have a suitable embedding degree over a finite field of low character-

istic In fact, only the elliptic curves y? = z°

— z + d over F3m with an embedding degree
of L = 6 are mteresting for pairing based cryptography Kwon [66] transfers the 1deas of
Duursma and Lee to the elliptic curves y° 4+ 3 = z3 + 2 + d over Fom, where d € {0,1}

and the embedding degree 1s & = 4 In joint work with Barreto, Galbraith and Scott [4],
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we show how to generalise and extend the Duursma and Lee loop shortening approach to
arbitrary supersingular curves by introducing the 1y painng construct

Let C be a supersingular (hyperelhptic) curve over Fy, where ¢ = p™, with an embed-
ding degree of £ > 1 Also, let ¢ be a distortion map on the curve C which enables the
denominator elimination technique Let N be the order that is used to compute the Tate
patring, which can either be the group order, a multiple of the group order, or a prime sub-
group order Let Dy, Dy € PIC%(FQ) have order dividing NV, and [N]D; = (fn), for some

function f Then the level N Tate pairing 1s computed as

(D1, 9(D2))n = fn(0(D2))

The iy pairing 1s not a new bilinear pairing but simply an alternative means of comput-
ing the Tate pairing on certain supersingular curves The main 1dca of the nr pairing 1s to

compute the Tate pairing using an order 7' € Z, such that

7r{D1,9(D2)} = fr(¢(Da))

Unlike the straightforward method to compute the Tate pairing, the condition that [T D; =
(0c0) can be dropped 1In order to get the loop reduction 1dea of Duursma and Lee, the goal
1s to select a value for T that 1s smaller than V' However, the vast majority of choices for
T will not yield a non-degenerate, bilinear pairing The following lemma gives a method
for selecting T" such that the 57 painng fulfils all of the properties of a bilinear pairing
However, this lemma merely shows what values of 7" yield a lilinear pairing, 1t does not
show how to select T" such that T" < N The key requirement 1s an automorphism on the

curve, such as the octuphng automorphism derived in the previous chapter

Lemmad Let (D y(D2))n be the Tate pairing as defined above Then if L,a and T are

co-prime to N the n; pairing 15 a non-degenerate bilinear pairing such that

(ns (D1, DY) = (D, (DY),
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where the following properties hold
! [T|D = (D) where v 1s an automor phism of C which s defined over T,
2y and 3 santisfy the condition yip9 = 1)
3 T*+1=LNforsomea € Nand L € Z
4 T =g+ cN forsomeccZ

For a proof of this lemma, see Barreto et al [4]

53 The Genus 2 5 Pairing

The aim of this section 15 to select a value for T' such that the iy pairing 1s bilinear and
non-degenerate for the supersingular genus 2 curves that were considered in the previous
chapter If T can be chosen to be approximately equivalent to 2%, then 1t may be possible
to derive a pairing implementation that 1s as efficient as the octupling algorithm given 1n the

previous chapter

531 Finding a smtable value for 7'

Consider the curves Cy 4% +y = 2° + 23 + d over Fym, where d = {0,1} As was
detailed 1n the previous chapter, these curves have the maximum embedding degree for a
supersingular genus 2 curve of k = 12 Recall that for an element D € Pic(Fgm), such
that D = (P) — (00), 1t 1s possible to octuple the divisor D as [8]D = (P') — (o0), where

P' = g¢6(P), ¢2 15 the 2nd power Frobentus map and the map o 1s given as

o(z,yy=(z+ Ly+a’+1),

where 02 = —1 A distortion map for Cy 15

¥(z,y) = (@ +w,y + soz” + 512 + s0),
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which supports the denomunator elimunation techmique, as the 4-coordinate 1s mapped to
the quadratic subfield of Fyizm

The first condition to be met in selecting 7" 1s to find an automorphism vy of Cy which
1s defined over F,, such that {T'|D = (D) The obvious candidate 1s the map [8]P =
[23]P = 0¢oe(P) However, using the value T = 23 does not yield a bilinear pairing
Instead, consider the map [23™|P = 0™¢gem(P) = ¢™(P) Then v = o™ 1s also an
automorphism on the curves Cj defined over F, Normally, ¢ = 2™ denotes the base-field
However, here the notation ¢ = 2°™ 1s used to take advantage of the fast octupling operation
in computing the 5y painng Therefore, T 1s defined as T = g = 2%™

The next step 1s to prove that the automorphism ~ and the distortion map v satisfy the
condition that y1)9 = % Let ¢ = 2°™ as above, where m 1s prime and v = ¢™ Recall
thatw® = w4+ 1,51 = w? + wh, 5o = wh + 1 and s + so = w® +w® Then s§ = sy,

8

5§ = sp+1and s§ = sp+w? Asm 1s prime, 1t must be congruent to either 1 or 3 modulo

4 Firstly, letm =1 mod 4 and thus 3m =3 mod 12 Then

yWiz,y) = o™ (z,y)
= ¥ (z p)
= olzt+w+1y+(so+ L)x? + 512+ 50+ w?)
= (r+w,y+ 521’ + 517+ 50)

= ¢(I,y)

Lethg=w+1,s§9=sl,sgg=32+1andsgg:so+w2+l Now letm =3 mod 4
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and thus 31 =9 mod 12 Then

19 (s,y) = 0™ (,y)
= ¥ (a,y)
= —o(x+w+1y+ (so+ D2 + 512+ so+w? + 1)
= (z+w,y+ sz’ + s17 + s0)

= w(xay)

Therefore, an automorphism ~ has been denved for the curves Cy such that v? = 1)
and [T D = (D), where T = q = 25™ It remains to satisfy the conditions that 7% + 1 =
LN fora e Nand L € Z,and T = g+ cNforc € Z AsT = g, 1t follows that ¢ = 0
In the previous chapter, the fact that the group order for the curves Cy divides 26™ 4 1 was
used to derive an efficient means of computing the final exponentiation Let N = 26™ 4+ 1,
in which case the equation T + 1 = LN 1s satisfied as (257)? + 1 = (1)(25™ + 1), and
hencea = 2and L = 1 The final exponentiation1s M = (212m—1)/(26m+1) = 26m — 1,
which can be computed with a conjugation with respect to Fosm, a multiplication and an
mnversion i Foiam

Thus all the conditions of the n p pairing have been met, and the resulting bilinear pair-

ing 1s computed as

(1 (D1, D2)M)* = ({D1, 9(Da)) )™

Computing the 7 panng i this way with T = ¢ = 23™ requires 3m 1terations of Miller’s
algorthm However, as an octupling operation 1s used to compute the intermediate func-
tions, only m tterations are required Computing the Tate pairing with N = 26 4 1 and
using the octupling operation requires 2m 1terations of Miller’s algonthm As detailed 1n
the previous chapter, the Tate pairing can be computed using the group order and octupling

in 2m/3 iterations However, this approach does not have the benefits of the nr pairng,
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such as a cheap final exponentiation and no conditional logic inside the loop

532 Optimsing the arithmetic

The 17 pairing when T = ¢ = 2% can be viewed as a generalisation of Duurmsa and Lee’s
idea to the genus 2 curves C; To distinguish this case from an even faster instantiation of
the 5y pairing later 1n this chapter, the subscript T' 1s dropped when T' = ¢ Hence, this
pairing 1s referred to as the » pairing  Given a divisor D = (P) — (o), where P =
(zp,yp), the function fg p associated with [8] D was derived 1n the previous chapter As

the denominator of this function can be discarded due to the form of the distortion map,

fs p 18 glven as

I8 P('La y) = (y + U4(-L))2(y + US(L))a

where

wa(r) = @+ (gh +ah)e + (rh)r +vh
v(z) = (aF + 1)+ («F +aP)z + (yP +zp + 25 +1)

The notation a3 15 used for this intermediate function evaluated at the distorted image point,
where o = (y + va(z))? and 8 = (y + vs(z))
An explicit formula to compute the 7 pairing on the genus 2 curves Cy using the mput

divisors Dy = (P) — (o0) and D = (Q) — (o0) 1s then given as

m—1
n(P,Q) = [[ fs89p (@)

1=0

As detailed 1n the previous chapter, a number of optimisations are available to expedite the
computation of a3 at each iteration of the loop Rather than compute the various powers of
zp and yp that are required at each iteration, 1t 1s possible to precompute all of the possible

values and to store them 1n an array This approach costs 2m squarings before the loop, but
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the cost of calculating the functions inside the loop reduces to only 4 multiplications per
tteration of the loop

In order to avoid octupling the accumulating variable at each 1iteration of the algorithm,
the exponentiation can be absorbed into the formulae inside the loop To do this, o must be

20717 and B wath 827 which involves precomputing pawers of ¢

replaced with «
and yo In Appendix A 1, 1t 1t shown how to derive explicit formulae for these terms This
optimisation replaces 3m squarings in Foi2m with 2m squanings in Fom, which 1s a large
improvement Finally, 1t 1s possible again to exploit the sparseness of the & and § terms, by
unrolling the multiplication using Karatsuba-like techniques, as detailed in Appendix A 3
The resulting algorithm to compute the 7 painng 1s given in Algornthm 9
We now examine the computational cost of the algorithm in terms of operations 1n Fam

The precomputation takes 4m squarings in Fom At each 1teration of the algorithm, the
calculation of the o and 3 functions takes only 4 multiplications in Fam The multiplication
of a and 3 using the Karatsuba approach takes 11 multiplications in Fo». Finally, this value
1s multiplied with the accumulating variable f, which takes an expensive 54 multiplications
m Fom Therefore, for a loop size m, the total computational cost 1s 4m squarings and 69m
multiplications 1n Fom  The final exponentiation 1s trrvially computed as a multiplication,

an 1nversion, a squaring and a few Frobenius actions in Fyi2.» Experimental results for the

genus 2 7 painng are given later 1n this chapter

54 Avoiding the Final Exponentiation

It 1s also shown 1n our paper [4] how to compute the 7 pairing using supersingular efliptic
curves over characteristic 2 and 3 In this section, we show how the final exponentiation
required to compute the 7 painng for the charactenstic 2 elliptic case can be omitted if the
vertical line functions are included 1n Miller’s algorithm This 1s the first time that it has
been demonstrated that the Tate patring can be computed without a final exponentiation for

a cryptographically useful exponent This observation also holds true for the genus 2 case,
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Algorithm 9 The genus 2 7 pairing
INPUT D; = (P) — (00), D2 = (Q) — (00) € Picl (Fom), P = (zp yp), @ = (10, YQ)
OuTPUT [ =17(P,Q) € Fyizm

I ©Imhalisation sety=11f m =1 mod 4, otherwise v = 0

2 © Precompute powers of P and Q

3 mf1] « 2%, y1fe]) — vE, z2[d] ng,yz[z] — yg,() <i1<m-—1

4 f~1

5
6 fortr=0tom — 1do

7 > All &, 1n the next 2 lines to be considered modulo m
8 k1= (Bm—3-3¢),ky— (k1 +1),hs — (k2 +1)
9 kg — (31), ks « (hg + 1), ke — (ks + 1)

11 > Calculate @ «— a + bw + cw? + dwt + ¢

12 d — z1 [k4] + a:l[ks]

13 a <« yalko] + (malka] + 1+ z2[ks]) m2(ke] +d z2fks] +y1[ha] +y
14 b — xo[ks] + tolka]

15 C— 7'2[]?3] + 7 [lﬂ;] +1

17 o Caleulate 8 — e + fow + gw? + hw® + 50

18 fo — z[ks] + x1]ke]

19  e—ylki]+ fo xa(ki] +yilks]) + zilke] (x1lks] + zalka]) + z1[ks] + v
20 g — $2[k1]+$1[k6]+1

2t h— xzolks] + malk1]

23 Unroll o8 multiplication using Karatsuba

24 dh—d hdg—d gch—c hcge—c gae—a ebfy—0b fo
25  tg e ae+ch+ dg+ dh

26 t1 — (a+b)(f2+€)+ae+bf+dh

27 to—(at+c)gte)+aeteg+bfas+ ch+tdg

28 tge—(b+)(g+ fo) Fbfot+eg+ch+dy+1

29 ta—(a+d)(h+e)+ae+dh+cy

30ty e (b+d)(h+ f2) +bf2+dh+ch+dg+1

31 uy < (to, t1,t2 ts, te,t5,a+e+ 1,6+ fo,c+g,0,d+ h,0)
32 f—f um

33 end for

34

35 b Perform the final exponentiation
36 f — f(gﬁm_l)(z)(23m)
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however we have been unable to prove this as yet Instead, we include the proof for the
supersingular elliptic case 1n characteristic 2

These curves are given by an equation of the form Ey ¢% +y = 4% + 4 + d over
Fom, where d € {0, 1}, and have an embedding degrec of & = 4 Kwon [66] shows how to
transfer the Duursma-Lec techmques to compute the Tate painng efficiently on these curves
In our paper [4] it 1s (independently) shown how to compute the 1 pairing efficiently using
these curves, which results in essentially the same algorithm as that given by Kwon A
distortion map 18 ¥(z,y) = (z + s,y + s7 + t), where s € Fo2 satisfies 52 + s+ 1 = 0,
and t € Fy satisfies t2 + 1 4+ s = 0 Note that the 2-coordinate 1s mapped to a subfield
of Fyam, and hence the denominator elimmnation techmque applies These curves support a

simple doubling formula, such that for a point P = (zp,yp) € E(Fon), then
2P = (23 + 07 + ud +7()),

where 7(2) = 11f2 = 2,3 mod 4 and zero otherwise The group order for the curves £
15 given as # Ey(Fam ) = 2+ 20+1)/2 | 1 Rather than use this order to compute the Tate
paining, the 5 pairing can be computed on these curves using a loop of m iterations with no
additions After this loop, an exponentiation to the power of 22" — 1 must be performed
to obtain a unique value suitable for cryptographic use This can be easily computed using
a conyugation with respect to Fyom, a multiplication and an mversion in Foam  After the
exponentiation has been applied, the resulting element of Fyam has order dividing 22™ 4 1
As 2?™ 1 1 1s the norm map with respect to Fyzm, the pairing value 1s said to be an element
of norm 1

There 1s no need to include the vertical line functtons when the distortion map 4 1s used,
as they are eliminated by the final exponentiation to 22™ — 1 However, here we show that
the final exponentiation can be omitted, as long as the vertical line functions are included 1n
Miller’s algorithm Firstly, 1t 1s shown how to construct the field Foem The extension field

Fy2m 15 defined by the irreducible polynomial s2 + s + 1 = 0, where s € Fyz  Simularly,
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the field Fyen 1s defined as a quadratic extension of Fo2m using the irreducible polynomial
t? 4+t + s = 0, where t € Fou The conjugate of an element 1 = (a -+ bt) € Foun (with
respect to Fozm ) 1s wnitten as T = (a -+ b) + bt Also, the norm of 4 (with respect to Fyzm)

1S written as
(o + bt)(a+ bt) = a® + ab + b?s

The conjugate of a function was defined previously i Chapter 3 Let A(Q) be a function
that 1s evaluated at a point @ € E(F x) Then the conjugate of A(Q), denoted h(Q) 1s equal
to h(~Q), where —@Q 1s the opposite of Q@ Let lp(7,y) = y — yp — A(r — Tp) be the
equation of the tangent to the curve at P, and let up(2) = . — 4 p be the vertical line

through P Then 1t 1s well known that

Tp($(Q)P(H(Q)) = vp(1(Q)) vz p(H(Q))

The 7 painng for the elliptic curves E; 1s written as the product

i l[2']P("/) Q)) :
o \verp(h(Q))

The aim s to show that z has norm 1 (with respect to Fy2m), and hence 2z = 1, where

m—1-—1

— 2m —
z =22 Using the equality given above, 2% 1s written as

ri—[ H2p (P(Q)) 2 p ($(Q)) gm-t- Ti-[ o (H(Q) Pt () gm=1-1
120 v+ p(H(Q))? v v+ p(Y(Q))?

This can be simplified by cancelling the vjy:+11p(¥(Q)) terms as

m—1

. T v p(W(Q))?
g Y p(B(@NFTT
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By setting ; = ¢ + 1, this can be written as

m~—1 m 771
= (T v twion?™™ , e\ _ op(B(Q)*"
Z2Z = (g [21}13(1/ (@) ) / H [2J]P(1/}(Q)) = U[?W]P@(Q)) 1,

I=1

sice

vp((Q)" = (2 + s +2p)° = 1o+ 55 +zp+ 1= vpmp($(Q))

Therefore, as the 5 pairing has norm 1 with respect to the quadratic subfield, assuming the
vertical hine functions are included, the final exponentiation can be omitted

It remains to determine how the value of the 1) pairing without any final exponentiation 1s
related to the value of the 1 pairing when the final exponentiation 1s included Let z € Foim
be the output of the » pairing when vertical lines are mcluded 1n Miller’s algonthm  As 1t
has been shown that z 1s an element of norm 1 with respect to Fo2m, then 27 =1 This

2 - 2m _ -
implies that 22" = 271, and 22" ~! = 272 Therefore

mel —1

22m_1 U
T (@) T @)
(21 _ (2
H) (U[W“]P(w(Q))) 1]'1) U[21+1]P(10(Q)))

However, as exponentiating to the power of 22" — 1 removes the need to compute the

vertical line functions, this can be rewritten as

Qm—l—z

m=1 s \T (M (@)
(Ha[quw«e») - (I (2

=0 =0

This equivalence shows how the two different methods to compute the % pairing are related

Therefore, 1t has been shown how to avotd computing the final exponentiation to 92m _
1, at the cost of losing the optimisation of denominator elimination The exponentiation
to 2™ — 1 can be computed essentially as a multiplication and an 1nversion in Fosm By

repeatedly taking the norm with respect to the quadratic subfields of Foam, 1t 18 possible to
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reduce the mnversion 1n Fqs efficiently to an inversion in Fom  In contrast, the algorithm
that includes the vertical line functions requires the computation of an inversion at each
iteration of Miller’s algorithm This can avoided by using the two-variable approach of
Galbraith et al [31] However, this technique involves extra arithmetic at each 1iteration of
the loop, as well as an inversion after the loop Therefore, 1t can be concluded that there 1s
no benefit to using the new pairing algorithm introduced 1n this scction, when compared to
the denominator elimination technique

However, 1f 1t can be shown that 1t 1s possible to avoid the final exponentiation m cu-
cumstances where 1t 1s expensive to compute, then this new technique may find a practical
use In our paper [33], 1t 1s shown by a similar proof that the final exponentiation can also be
avoided when computing the 7 pairing using the (Duurmsa-Lee) supersingular hyperelliptic
curves 42 = P — z -+ d over Fym,whered = 1 and p =3 mod 4 Ths technique also

applies to the genus 2 7 pairing

5.5 The Genus 2 n7 Pairing

It has been shown that the genus 2 7 pairing yields an efficient and simple pairing imple-
mentation, which 1s approximately as efficient as the implementation of the Tate pairing
given 1n the previous chapter The genus 2 ) pairing uses the value T = g = 23™ to com-
pute the pairing, which results 1n a loop of m 1iterations using the fast octuphng operation on
the curves Cy However, 1t remains to be seen whether the theory of the 1, pairing permits
the selection of a value for T that 1s smaller than ¢ = 23™ In this section, this open ques-
tion 1s addressed in the affirmative The convention to drop the subscript T when T' = ¢
was previously described In this section, the pairing implementation 1s simply referred to

as the np pawring, as the subscript T denotes “truncated”
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551 Finding a suitable value for 7'

Recall that four conditions must be satisfied to implement the n; pairing The first condition
is that [T')D = (D), where 15 an automorphism of the curve which 1s defined over F,
For the 7 pairing on the supersingular genus 2 curves Cy, this condition 1s satisfied by
setting T = g = 2% and v = o™, wherc o(z,y) = (z + 1,y + 22 + 1) It was shown
that the second condition of the n; pairing, that 47 = 4, holds for the 5 pairing on the
genus 2 curves Cy, where 1 1s a distortion map on the curve that supports the denominator
elimination technique It was then shown that instead of using a multiple of the group order
N =297 41, the value T = ¢ = 23™ can be used to compute the 5 pairing

The goal of this section 1s to find a value for T such that T 1s smaller than ¢ = 23™,
and that the 57 pairing using this value is bilinear and non-degenerate The first condition
that must be satisfied 1s that [T]D = (D) Recall that the group order for the curves Cy 1s

given as
H#P1c (Fom) = 227 4 g(Bm+1)/2 | gm 4 9(m+1)/2 4 4

Rather than use the multiple N = (26™ + 1) of #P1cd, (Fam ), as for the 7 pairing, consider

the multiple N such that
N = (27 5 2F1/2 L 1) (#P1cl (Fom)) = 2™ + 20m+1D/2
Let g = 2% as before Note that
g — N = 23m _ (29m £ 9(m+1)/2 4 1y _ poldm+)/2 _ 4
Define T = g ~ N = F23m+1/2 _ 1 Then

[T|D = [q - N]D = [q]D — [N]D = [q]D = ~v(D)
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Therefore, the condition that [T}D = +(D) 1s satisfied by using the automorphism
v =™ As this 1s the same value for -y that was used to compute the ;; pairing, the second
condition that y¢? = ¢ 1s already proven The condttion that 1" = g + ¢V, where ¢ € Z, 1s
easily seento satisfy ¢ = —1,as 7' = ¢ — N The remaining condition that must be satisfied

onT1sT*+1=LN,forsomea € Nand L €¢ Z Leta =2 Then
T? +1=2(2°" £ 2B8mH2 1) = 9N

Therefore, @ = L = 2 Thus, all the conditions of the nr painng have been satisfied, and a

bilinear pairing on Dy, D3 € Pic2(Fam ) 1s computed as

(nr(Dv, D2)M)" = (D, w(D2))Y,

where the final exponentiation 1s M = (212" — 1) /(23 4+ 2(8m+1)/2 1 1)

Rather than compute the 7 pairing using the divisor D; and the order 7 = —20@m+1)/2_
1, 1t 15 convenient to use the opposite of D; and the order =7 = 2Bm+1)/2 | 1 to avoid
performing an mversion Therefore, T 1s now defined as 7 = 23m+1)/2 1 1 Comput-
ng the nr pamng n this manner implies a loop size of (3m -+ 1)/2 iterations  However,
observe that 7" can be written as 7' = 23(m~1)/2+2 1 Therefore, the 7y pairing can be
computed as (m — 1)/2 octuplings, as well as two doublings and an addition This 1s clearly
far supenor to the m loop iterations of the » pairing, as well as the 2m /3 loop 1terations of

the method given 1n the previous chapter

552 Optimising the arithmetic

There are two obstacles to implementing the genus 2 7 pairing efficiently, namely the
complicated final exponentiation and the final doublings and addition Firstly, the final
exponentiation 1s examined In the 7 case, the final exponentiation can be computed essen-

tially as a multiplication and an mversion in Fy12» In the 7 case, the final exponentiation
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18 to the power of M T Recall that M 1s given as

21217: -1 B (26711 _ 1)(26m + l)
N T 23m 4 9(3m+1)/2 4 1

M=
This expression can be sumplified by using the fact that
9fm 4 1 = (9%m 4 9Gm+1/2 | [)(93m x gldm+1)/2 | 1)
Therefore, the exponentiation to M 1s computed as
M = (2™ — 1)(28" 5 2GmFD/2 4 )
The entire final exponentiation 1s then written as

MT = (26m _ 1)(23m T 9(3m+1)/2 + 1)(:F2(3m+1)/2 N 1)

(26m _ 1)(23711 T odmo(m+1)/2 _ 1)

The exponentiation to (2°™ — 1) can be achieved with a conjugation with respect to Foom,
as well as a multiphcation and an mversion in Fyi2n The remaining exponentiation can be
computed 1n (m + 1)/2 squarings, 2 multiplications and a few Frobemus actions i Fyi2m
Therefore, 1t has been shown how to compute the final exponentiation required for the np
method 1n a relatively inexpensive way

The second disadvantage of the genus 2 5 pairing, when compared to the 7 pairing,
1s that two doublings and an addition must be performed after the loop of (m — 1)/2 1ter-
ations However, various techmques can be used to reduce the penalty of performing these
operations Let Dy = (P)— (oo) be the degenerate divisor that 1s used as the input to the 1
paining The final addition that must be performed 1s an addition of divisors [2(3+1/2| D,
and {£1] Dy, where [+1]D; 1s a degenerate divisor of the form [+1]D; = ([£1]) — (00)

However, 1t will be shown that the final addition does not need to be performed in the case
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that D 1s a degenerate divisor, as 1t does not contribute to the pairing value

The order of the divisor Dy = (P) — (00) divides N = 23m 1 203m+1)/2 1 ] a5 N js2a
multiple of the group order Using the formula derived for the genus 2  pairing, [23™) Dy
1s a degenerate divisor of the form [23"] Dy = ¢™(P) — (c0) Therefore the final divisor is

given as
[26m*+D/2 £ 11Dy = [N]D) — (2°™] Dy = (F™(P)) — (00)
Therefore, the divisor 237 +1)/2| D) 1s given as

[2(3m+1)/2]D1 — [2(3m+1)/2 + 1]D1 . [il]Dl
= (Fo™(P)) — (00) = ([£1]P) — (o0)

= (Fo™(P)) + (FP} - 2(c0)

Therefore, when the final addition 15 performed in the degenerate case, the composition
operation 1n Cantor’s algorithm cancels out the (P) by using a vertical line function,
which can be omuttted from the algorithm

The final two doublings are now considered, again in the case for a degenerate divisor
D; = (P) — (co) The divisor after the octupling loop 1s D’ = [23(-D/2|p; = (P —
(00) Doubling this divisor using the Cantor composttion algorithm yeelds a divisor of the
form [2]D" = 2(P") — 2(o0) As this divisor 1s already reduced it does not contribute any
hne function to the accumulating function It 1s known from the explicit formulae derived in
the previous chapter that the line function that comes from the doubling of a special divisor

of the form 2(P’) — 2(c0) 1s
Ur,y) =y + 23+ (2% + 1)z + (b2 + ¢y

Therefore, to compute the operations that are required after the octupling loop, it suffices

to square the accumulating variable f twice, and then to multiply 1t by the function above
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In the previous chapter 1t was shown how to build the distortion map mnto this function, n
order to avoid manipulating points over the extension field Fyiom

Therefore, 1t has been shown how to compute both the final exponentiation and the final
addition/doublings efficiently An explicit formula to compute the ;7 painng on the curves

C, using the mput divisors D1 = (P) — (00) and Dy = (Q) — (o0) 18

(m=3)/2

nr(P,Q) = H Js 181 (¥(Q))
1=0

2(5m-—9—61)/2

(@(Q)),

where [ 1s the function defined above All of the optimisations used to compute the 7

pairng for the curves Cy can be used to compute the % painng To avoid octupling the

93(m—3-21)/2 93(m—3-21)/2

accumulating variable, « and § must be replaced with & and g8 Itis
shown how to dernive these formulae 1n Appendix A 2

Therefore, 1t has been shown how the octupling loop, the final operations and the final
exponentiation can be computed cfficiently The algorithm to compute the genus 2 np
pairing 1s given 1n Algorithm 10 1n the case that m == 103 For other values of m 1t suffices
only to change the formula for extracting the current point after the loop The cost of the
precomputation 1s 4m squarings in Fam , which 1s the same as for the 7 pairing The cost of
the arithmetic at each iteration of the loop 1s 69 multiphications m Fam, again the same as for
the 7y pairing However, the loop 1s only of length (m — 1)/2 instead of m for the 7 pairing
Note that computing the final doubling function takes only two multiplications 1n Fom, as

all of the required powers of (Lp, yp) and (1q, yg) are precomputed Experimental results

for the genus 2 7y pairing are given 1n the following section

56 Experimmental Results

In this section, experimental results are provided to verify our claim that it is possible to
compute the Tate paring efficiently using the genus 2 7 and np pairings The first task n

implementing either pairing 1s to select suitable values for 1n Recall that the prime 7 must
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Algonthm 10 The genus 2 n; painng when m = 103

INPUT D; = (P) = (00), Dz = (Q) — (o0) € P1cl (Fam), P = (zr,9p), @ = (¢, %)
OUuTPUT f = (P, Q) € Fpizm

> Imtiahisation sety =11f/n =1 mod 4, otherwise vy =0

> Precomputc powers of P and Q

s1li] = o, yili] — y3, ash) - o5, vl — 38,0 S 1 <m—1

fe1

for:=0to (m — 3)/2do
o All A, 1n the next 2 Iines to be considered modulo m
ki — (3m—=9—60)/2, kg — (k1 + 1), k3 — (k2 + 1)
kg (3m -3+ 62)/2, kg — (k4 + 1), hg — (k5 -+ 1)

T o0 N9 R W —

> Calculate o «— a + bw + cw? + dwt + s

12 d+— x1 [k4] + Il[ksl

13 o yolko] + (z1lka] + 1+ 2olks]) zalke] +d zolks] + y1[ke] +
14 b xalks] + zolko]

15 C— T2[k3]+7‘1[k4] +1

J—

17 > Calculate 8 « e+ fow + ng + hwt + s

18 fo — a1{ks] + r1[ke]

19 e yalki] + f2 @alki] +y1lks] + z1[he] (w1[Rs] + z2[ka]) + @1]ks] + v
20 g — xg[kl] + I [ka] +1

21 h .’Ez[kz] + zg[kl]

22

R B C)
24 end for

25

26 > “Extract” current poimnt (zp yp)
27 zpe—mm—-3]+1
28 yp — yi[m = 3] +z[m - 2

30 © Perform the final doublings/addition
31t (y2[0] + z2[1] (1 + z2[0] + z41[3] + z1(2]) + z1[2] z2[0] + 21(2])
32 f  f4 (1, 72(l] +71[2), 73] + 71[2] 1, m2[1] + 22[0],0,1,0,0,0,0,0)

34 © Perform the final exponentiation
35 f — f(z()m_1)(23m_24mz(m+1]/2_1)
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be chosen so that P1cl (Fam) has a large prime factor, and that PIC% (Fym) and Fy,,, are
large enough to resist any attack on the DLP 1n these groups In the previous chaptcr, the
value i = 79 was chosen for the curve C;  y? +y = 1° + 23 + 1, and ;2 = 103 was
chosen for the curve Cy  y® +y = 4° + > These parameters fulfi] the secunty conditions
detailed above, and have the advantage that an clement of Fom can be represented by a
single machine word, which greatly aids in the efficient implementation of the underlying
field arithmetic

The second task 1s to select other pairing implementations against which to compare
the efficiency of the algorithms given 1n this chapter In the previous chapter, it was shown
how to implement the Tate pairing efficiently using the group order of the curves Cy As
the same values for m are used 1n both chapters, 1t 15 possible to compare the experimental
results directly However, in order to gauge the true efficiency of pairing umplementation
using supersingular genus 2 curves over low characteristic, 1t 1s necessary to give experi-
mental results for an equivalent implementation on an elliptic curve To give an accurate
comparison with the genus 2 case, the elliptic curve in question should be supersingular and
defined over a finite field of characteristic 2

The natural candidates are the elliptic curves E;  3° +y = z3 + x + d over Fom,
where d € {0, 1}, that were used previously 1n this chapter In our paper [4], it ts shown
how to implement the n; pairing efficiently on these curves To compare against the genus
2 implementations, suitable prime values for m must be chosen so that Am 1s roughly the
same for both cases In this way, the output of the 5y pairing for both curves has the same
resistance against attacks on the DLP (as 1t 1s an element 1n Fm) Two secunty levels
are defined, following from the values for km 1n the genus 2 case Furstly, for the value
m = 79 1n the genus 2 case, a suitable value for m in the elliptic case 1s m = 239, as then
ki == 950 for both curves Secondly, to compare with the value m = 103 1n the genus 2
case, m = 313 1s chosen 1n the elliptic case, as km == 1230 for both curves Note that the
values chosen for m 1n the elliptic case are selected solely to compare the relative efficiency

of the two cases More specifically, m 1s not chosen so that # E(Fm ) has a large prime
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Table 5 | Expenmental results - 950-bit secunty level

Case | Description Running time (ms)
1 Genus 2 group order 189
2 Genus 2 j; degenerate 171
3 Genus 2 7 general 6 50
4 Genus 2 77; degenerate | 111
5 Genus 2 /7 general 360
6 Elliptic nt 1 80

Table 5 2 Experimental results - 1230-bit security level
Case | Description Running time (ms)
1 Genus 2 group order 269
Genus 2 1; degenerate 260
Genus 2 7 general 996
Genus 2 777 degenerate | 165
Genus 2 rr general 548
Elliptic n7 364

AN oW N

factor

Table 5 1 details the expenimental results for the 950-bit security level, and Table 5 2
details the experimental results for the 1230-bit secunty level The first case in each table
1s the time taken to compute the Tate pairing using the group order, as given 1n the previous
chapter The second case 1s the algonthm to compute the genus 2 7 pairing using degenerate
divisors, and the third case 1n each table 1s the algorithm to compute the genus 2 7 painng
using general divisors Similarly, the fourth case 1s an algorithm to compute the genus 2 np
painng using degenerate divisors, and the fifth case 1s an algorithm to compute the genus
2 np panng using gencral divisors  The sixth case 1n each table 1s the equivalent timing
using the elliptic curves £, All of the timings are given in milliseconds

The first conclusion to be drawn from the results 1s that the genus 2 7 painng yields
a running time approximately equivalent to that of using the group order to compute the
Tate pairing The genus 2 7 pairing has a longer loop size than when the Tate pairing
1s computed using the group order However, this result shows that this s compensated

for by the simpler arithmetic of the 77 pairing mside the loop, as well as the cheaper final
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exponentiation The second conclusion 1s that the genus 2 4 pairing 1s substantially more
efficient than the genus 2 1 pairing This 1s not a surprising result, as the 1y pairing has a
constderably shorter loop size than the /) pairing However, this 1s mitigated somewhat by
the more complicated final exponentiation 1n the /pr case

The third conclusion 1s that pairing implementation using degenerate divisors 1s consid-
erably more efficient than the general case, for both of the genus 2 7y and 5 pairings This
result confirms the findings of the previous chapter However, the most surprising conclu-
sion to be drawn from the experimental results 1s that the genus 2 np pairing on degenerate
divisors outperforms the elliptic ny pairing Thus 1s the first time that it has been shown that
a genus 2 pairing implementation can be faster than an equivalent elliptic curve implemen-
tation This result 1s largely due to the smaller field sizes used n the genus 2 case, as the
theoretical complexity of computing the genus 2 77 pairing 1s larger than that of the elliptic
77 pairing As far as we are aware, this timing for the genus 2 7); paining ts also the fastest
pairng implementation reported thus far in the hterature

All of the experiments were performed on our platform of a Pentium IV, which has
a clock speed of 2 8 GHz, and which runs version 2 6 15 of the Linux kernel The code
1s written 1n C/C++ and 1s compiled using version 4 03 of the GCC/G++ compiler suite
The efficient implementation of the finite field Faw 15 taken from MIRACL 5 01 Recall
that m was chosen 1n the genus 2 case so that arithmetic in Fom can be performed in the
128-bit registers available to the Pentium [V The SSE2 SIMD instruction set can then be
used to multiply elements efficiently in F%.  The elliptic curve implementation cannot use
this optimisation as the field size 1s larger than 128 bits We note that the timings provided
are slightly different from the published timings, due to the need to remain consistent with

experiments carried out in the previous chapter
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5.7 Conclusion

In this chapter, 1t was shown that 1t 15 possible to compute the Tate pairing extremely effi-
ciently by using supersingular genus 2 curves over Fom and the 5 pairing construct Firstly,
the ny patring was tntroduced as a gencralisation and extension of the optimisations given
by Duursma and Lee [23] It was then shown how to apply the 1, pairing to the genus 2
case by using an order of T = ¢q = 25" 1n Miller’s algonthm Ths results n a loop of
m tterations using the octupling formula given earlier The subscript 7° 1s dropped for this
case, and the pairing 1s known simply as the 1 pairing  Although the loop size 1s slightly
longer than the 2m /3 iterations of Miller’s algorithm that 1s required when the group order
1s used, the 7; pairing compensates for this by having simpler arithmetic inside the loop, as
well as a final exponentiation that 1s easily computed

It was then shown how 1t 1s possible to compute the ) pairing on supersingular elliptic
curves 1n charactenistic 2 without the final exponentiation to the power of 2°™ — 1, at the cost
of including the vertical line functions in Miller’s algonthm This technique does not offer
any improvement as the final exponentiation 1s computed essentially as a multiplication and
an mversion in Foam It was also shown how a more efficient pairing calculation 1s possible
in the genus 2 case by using a smaller value for T' when computing the nr pairing This
pairing implementation requires some extra arithmetic after the main loop, as well as a more
complicated final exponentiation when compared to the 7 pairing However, optimisations
have been introduced to reduce these costs

Experimental results were then detailled 1t was shown that the genus 2 77 pairing 1s
approximately as efficient as the implementation of the Tate pawring that was given n the
previous chapter It was demonstrated that degenerate divisors yield a speed up over the
more general case when computing both the 5 and nr painings The experimental results
also confirmed that the genus 2 7p pairing 1s more efficient than the genus 2 5 painng
However, the results showed the surprising fact that the genus 2 5 pairing 1s more efficient
than the 7y pairing on supersingular elliptic curves over Fam, using an equivalent level of

security This shows that not only are genus 2 curves competitive with elliptic curves n
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terms of painng implementation, but can 1n fact surpass them in certain circumstances

Kang and Park [57] show that some of the conditions given in this chapter on the for-
mulation of the yr pairing are unnecessary Rather than using an automorphism -, 1t 1s
possible to simply use the multiplication by ¢ This results 1n a far simpler proof of the ;p
pairing than that given 1n our paper [4] Furthermore, 1t is shown that the only condition
of the 17 painng 1s that a supersingular curve be used Kang and Park also show that the
final exponentiation to 7" that must be performed when computing the 7 pairing can be re-
placed with an application of the g-th power Frobenius endomorphusm However, this does
not result 1n any practical improvement, contrary to the authors’ claims, as the main cost of
the final exponentiation 1s the inversion that must be performed in the extension field

In a paper by Lee et al [72], our results on degenerate divisors are extended to general
divisors 1n Mumford representation More precisely, Lee et al show how to extend our
explicit formulae for computing the functions that are required in Miller’s algorithm from
the degenerate to the general case, and how to evaluate these functions at a general divisor
In a separate paper, Lee et al [71] show how to use the 7n; pairing construct to compute
the Tate pairing using a hyperelliptic curve of genus 3 These curves are of the form y? =
z’ — x+d over Fym, where d = 1, and have an embedding degree of k = 14 The curves
that are used are part of the family of curves originally selected by Duursma and Lee for
fast pairing computation  This 1s the first presentation of pairing computation n genus 3
However, the experimental results that are given are extremely inefficient compared to the
results presented here for genus 2 curves

In this chapter, experimental results for the genus 2 7 and 1; pairings were given using
a software implementation However, we have also developed efficient implementations of
these pairings in hardware In Ronan et al [95], we show how a dedicated parallel hardware
implementation of the genus 2 1 pairing yields an extremely efficient pairing computation
The fastest pairing implementation over Fyi03 takes place in 749 p-seconds This paper
was the first published paper on implementing genus 2 pairings 1n hardware, as well as

being the first paper to implement a pairing in hardware using a finite field of characteristic
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2 In a separate paper published as Ronan et al [94], we show how to implement the
genus 2 yp pairing 1n hardware This implementation returned a time of 137 y-seconds
to compute a pairing over Fyi03, which 1s extremely competitive with comparable elliptic

curve implementations
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Chapter 6

Pairings on Supersingular Genus 2

Curves over IFp

6.1 Introduction

Previous chapters described the implementation of the Tate pairing on a supersingular genus
2 curve over Fym  This 1s the most logical choice of field for pairing implementation, as
supersingular curves exist with an embedding degree of A = 12, which 1s the maximum
possible for genus 2 curves over finite fields of arbitrary charactenstic However, 1t 1s also
worthwhile to examine pairing implementation on genus 2 curves over a large prime field
F, Large prime fields are interesting as they are efficient to implement, and are resistant to
sub-exponential time attacks on the DLP in F;, Theoretically, supersingular genus 2 curves
exist over I, with an embedding degree of £ = 6 However, only supersingular genus 2
curves with an embedding degree of k¥ = 4 are known to the cryptographic community at
this point

In this chapter, 1t 1s shown how to efficiently implement the Tate pairing using a super-
singular genus 2 curve over I, Firstly, the curve 1s introduced, and formulae are given for
doubling a dvisor in P1c%(F,,) and extracting the functions that are required for Miller’s

algorithm These formulae are less expensive to compute than previous formulae given n
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the literature Tt 1s shown how to construct the field 4, and how to perform arithmetic
efficiently m this ficld It 1s shown how to exploit the distortion map to speed up the evalua-
tion of the 1image divisor at the line functions, and how to compute the final exponentiation
efhciently

A new variant of Miller’s algorithm ts then described for hyperelliptic curves with an
even embedding degree This improvement eliminates divisions from Miller’s algorithm
even when the denominator elimination technique does not apply This algorithm 1s useful
in certain circumstances for curves of genus g > 1 A theoretical analysis 1s performed
of the cost of computing the Tate pairing using the optimisations given 1n this chapter, and
compared against previous work Finally, experimental results are reported that establish
new benchmarks for pairing implementation on genus 2 curves over large prime fields, and
the chapter 1s concluded

This chapter contains joint work with Michael Scott, which has been accepted for pub-
lication 1 the proceedings of Selected Areas in Cryptography, 2006 A prepnnt 1s available
at the ePrint archive as O hEigeartaigh and Scott [47] Some of the work on elimiating
divisions 1n Miller’s algorithm previously appeared 1n a short paper at the ePrint archive as
O hEigeartaigh [46], and was presented at the rump session of the ECC 2005 conference
We note that this 1dea was derived independently by Kobayashi et al [62] for the case of

elliptic curves

6.2 The Curve

The first task 1s to select a supersingular genus 2 curve over [, with an embedding degree
that 1s suitable for pairing based cryptography Chote et al [16] examine genus 2 curves

given by an equation of the form

y2=x5+a,aE]F;
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Choe et al show that this curve 1s supers;ngular whenever p # 1 mod 5 To determine
the embedding degree of the curve for the other congruence conditions on p, 1t 1s required
to compute the group order #P1c3,(F,) Recall that the characteristic polynomial of the

Frobenius endomorphism 1s given 1n the genus 2 case as
xe(T) =T+ aiT® + a2T? + a1 pT + 4,

where a1 = #C(F,) -1 —pand ap = (#C(F,2) — 1 — p? + a?)/2 Once a; and a;
have been derived, the group order 1s computed as xc (1) = #Pich(F,) Choteetal show
that when p = 2,3 mod 5, then #C(F,) = p+ 1 and #C(F,2) = p* + 1, and hence
a3 = ay = 0 Therefore, the group order 1s given as xo(1) = p> +1 As (p* — 1) 1s
the smallest term into which (p? + 1) divides evenly, then the embedding degree of the
curve 1s k = 4 When p = 4 mod 5, Choe et al show that the group order 1s equal to
#P1ck(F,) = (p + 1)(p + 1), and that the embedding degree of the curve is bounded by
k = 2 as a result

Therefore, the curve that 1s used for pairing implementation in this chapter ts given as
C ¥*=r"+a,a €F,, p=2,3 mod5

Rather than select an arbitrary value 1n I}, for a, we take a = 1 for convemence This curve
was used by Choie and Lee [17]) to implement the Tate pairing They define the distortion

map ¢ that maps elements in C(F,) to C(Fpq) as

U(z,y) = ((52, ),

where G 15 a primitive 5% root of unity 1n F,« Note that (5 maps the z-coordinate to

Fp4, and hence the denominator elimination technique does not apply To see that 1 1s an
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endomorphism on C, observe that
P =G +a=Cl +a=1+a

1t remains to examine which order to use 1 Miller’s algorithm One option 1s to use the
group order #P1ck(F,,) = p? + 1 Thus has the advantage of having a trivial final exponen-
tiation of p? — 1, which can be computed essentially as a multiplication and an inverston 1n

F_« However, as p 1s a large prime number, then the number of loop iterations in Miller’s

2
algorithm, log, (p? + 1), will also be large The second option 1s to use a prime-order sub-
group The advantage of this approach 1s that the prime order n of the subgroup can be
chosen to have a low Hammng weight, which results i a smaller number of additions 1n
Miller’s algorithm If 1. 1s chosen to be considerably smaller than #Pic%(F,), then the
number of loop iterations will also be small Therefore, 1t 1s better to use a prime subgroup
order rather than the full group order in Miller’s algorithm

There are a number of criteria on the selection of the prime subgroup order n and the
large prime p Firstly, n must be large enough to resist any generic attacks on the DLP
in Picd(F,)[n] Secondly, [, must be large enough to resist any sub-exponential time
attacks on the DLP Choosing suitable values for n and p 1s a tricky problem, due to the
wide range of algorithms available for solving the DLP 1n Pic%(F,)[n] and IF;; We follow
the parameters defined by Lenstra and Verheul [74], which were used by Scott [105] to
implement the Weil pairing These parameters are defined as (160/1024), (192/2048) and
(224/4096), where the first number 1n each term 1s log,(r), and the second number 1s
log,(p*) For a thorough comparison of security levels, the reader can consult Galbraith et
al [35]

The secunty levels given above detail the number of bits that are required for both n
and p The first task 1s to choose concrete values for the prime subgroup order n Recall
that Barreto et al [S] explore the use of Solinas primes [109] when computing the Tate

paring Thesc are prime numbers of the form n = 2% + 2 + 1 When a Solinas prime
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Table 6 1 The prime subgroup order n for each security level

Case | logs(n) | n

1 160 n=29 4917 1]
2 192 n=2949241
3 224 n=2%3 1918 1

15 used 1in Miller’s algorithm only two additions are required Also, Duursma and Lee [23]
show that the final addition can be skipped when the denominator elimination 1dea applies,
as 1t corresponds to a vertical line function Therefore, a Solinas pnime n 1s used as the
subgroup order, where log,(n) ~ 160, 192 and 224, for each of the three security levels
defined above The values for n that are chosen are given in Table 6 1

The next step 15 to choose the large prime p As the embedding degree of the curve
18 k = 4, p must be chosen so that logy(p) = 256, 512 and 1024 However, a condition
on p 1s that the subgroup order n must divide the group order #Plc%(lﬁ‘,,) =p? 41 The
probability of a randomly chosen prime number p of the correct number of bits satisfying
this condition 1s neghgible Therefore, a method must be given to construct p Firstly, notc
that the condition on p can be rephrased as p° + 1 = 0 mod n, and hence p = /-1
mod n Itis a well known fact that —1 1s a quadratic residue modulo n 1if and only if n = 1
mod 4 All of the values selected for r 1n Table 6 1 satisfy this property

Therefore, the method to compute p 1s as follows Let n be the prime subgroup order,
such thatn = 1 mod 4, and let { = vV—1 mod n Choose a random value w, such that
p = wn + t has the desired number of bits Then continually add n to this value, until p 1s a
prime number with the required congruence conditions This method converges quickly on
a suitable prime number p The actual values obtamned for p for each of the three security
levels will be given later 1n this chapter Note that n? should not divide #P1cX(F,), for
reasons outiined 1n Chapter 2

As the subgroup order n has a very low Hamming weight, the number of additions to
be performed in Miller’s algorithm 1s neghgible However, a doubling of an element in

PICOC (Fp) must take place at each iteration of the loop Therefore, 1t 1s worth examuning

135



Table 6 2 Comparison of the cost of doubling m P1c{ (F,)

Ongin Doubling | 1(x)
Miyamoto et al [85] | I,23M,4S | 3M
Lange [70] I,22M, 5S | 3M
Chote and Lee [17] | I, 23M, 5S | no cost
Our work I,22M, 4S | no cost

how this operation can be optimised Lange [70] gives explicit formulae for doubling a
divtsor with a cost of 1 mversion, 22 multiplications and 5 squarings in F,, (in the over-
whelmingly common case) However, these formulae are designed to be used in the context
of scalar multiplication, and do not exphecitly calculate all of the functions that are required
in Miller’s algorithm The formulae can easily be modified to extract the functions that are
required, at the cost of 3 extra multiplications

Chote and Lee [17] modify Lange’s formulae for doubling a general divisor to reduce
the cost of calculating the functions that are required 1in Miller’s algorithm The formulae
they present cost 1 inversion, 23 multiphcations and 5 squanings in F,, thereby saving
2 multiplications over the previous approach However, 1t 1s possible to improve on these
formulae In Table 6 3, we give formulae to double a divisor {u), v1], in the overwhelmingly
common case that the degree of u; 15 2, and ged(u1,2v1) = 1 The cost of these formulae 1s
1 1nversion, 22 multiplications and 4 squarings (the multiplication 1s saved 1n step 8) Note
that as the charactenstic of [F,, 1s odd, the i(z) polynomial 1s assumed to be zero (where
h(z) 1s from the equation of the curve y® + h(z)y = f(z))

We believe that the formulae 1n Table 6 3 are optimal, as they have the same compu-
tational cost as simply doubling a divisor as given by Lange [70] (in fact a squaring 1s
saved over these formulae) In other words, calculating the functions that are required n
Miller’s algorithm does not cost anything extra over the cost of doubling a divisor Table 6 2

summarises the computational cost of doubling a general divisor
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Table 6 3 Formulae for doubling for the curve C 4% = &% + @

Input
Qutput

Dy = [uy,v1] where u; = 2% + w11z + g, vy = U117 + vy
D3 = [ug, vs], {(z) such that [2]D1 = Dj; + ((y — (z))/ws(x))

Step

Expression

Cost

Compute v7 = (207)( mod w1) = vija + vl
v11 = 2011, 01g = 219

Compute 1 = res{(uq, V1)

— .z — .2 _ _ ~
wy = vi, w1 = uy; wy = 4wy w3 = uy vy,
7 = ujoWz + vio(vio — w3)

2S +3M

Compute almost inverse of 1nv’ = r{2v;)~1( mod u;)
MYy = —V11,NV) = Vip — W3

Z
0 f-v . — !
Compute & = =1 ( mod u1) = kj2 + kg
ws = w1, ws = 2urp, Ky = 2w1 + w3 — wy
ko =u11{2wq — wy) —wyp

IM

Compute ' = k"/nv'( mod uy)

wop = kgrnug, wy = kjinu]

/ =~ / ~ ! /
8] = viok] — vi1k), $§ = wo — U101
If s} = 0 then goto step 6’

M

Compute s = 5,7 + sg angd 7 |

— 7y—1 — o — .2
U)l—(TSI) , W = §1W, W3 =T"w,
' 7
51 = 5 W2, 80 = SpyWsa

11, 1S, SM

Compute /(1) = suy + vy = sy o + 12 + 111 + 1o
lo = spu1) + 50,09 = sgti10 + V10
{1 = (81 + sp)(u11 + w10} — s1u11 — Souig + v1x

3M

— 7
Compute u’ = momc(f—ugl—) = 7% + ug1z + ugo
1

wzo = wa(viy + wa(2urr + 53)
i3] = 2§0 — w3

1S +2M

Compute v3 = —I( mod ug) = v3;7 + v3g

W1 = U3l U = W3Uzl W3 = o — wy, w3 = uzgwy
vy = (u31 -+ usp)(we + 81) — w3 — wy — by, v30 = w3 ~ Iy

3M

t, 48, 22M

Compute I(z) = spuq + v1
v =1/r, 99 = sginn, Iy = sgui1 + v11,lo = sotro + 110

11+ 3M

Compute ug = momc(%}z) =+ u3g
1

— 2
U3 = -*211,11 — .90

18

Compute v3 = —I( mod u3) = vy

v3p = uaof{ll — uz050) — lo

2M

11, 3S, 14M
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6.3 Curve Anthmetic

In this section, various techniques are described that enable the efficient implementation of

the Tate pairing on a supersingular genus 2 curve over [,

631 Finite field arithmetic

As the embedding degree of the curve C 1s & = 4, 1t must be shown how to construct the
finute field ;s For reasons outlined 1n Chapter 2, a polynomual basis representation 1s used
rather than a normal basis representation Rather than construct .« as a quartic extension of
[Fp, the field F 2 1s first constructed using an irreducible quadratic polynomual defined over
F, Then the field F 4 1s defined as a quadratic extension of Iz, by using an irreducible
quadratic polynonual defined over F,» The advantage of this approach s that 1t 1s easier to
optimise the anthmetic in ¥, than in a quartic extension of I, These techniques can then
be reused with minor modifications to optimuse the anthmetic in ¥4

The first task 1s to give ireducible polynomials that define the fields 2 and F s An
irreducible binomial 22 — 3 15 used to define the extension field F,2, where 3 1s a quadratic
non-residue in ¥, The quadratic extension of ¥,z can then be constructed by adjouning the
quartic-root of It might seem like a good 1dea to choose 3 = —1 It 1s well known that
—1 1s a quadratic non-residue with respect to p if and only if p = 3 mod 4 However,
a quartic root of —1 exists in F 2, and so 1t 1s not possible to build a quadratic extension
of F)2 using z? +1 A second choice for 31s § = —2 If the prime p 1s congruent to 5
mod 8, then —2 1s a quadratic non-residue with respect to p This value for 4 permits the
construction of F« as a quadratic extension of F,»  Another advantage of using a prime
p = 5 mod 8 1s that a simple formula exists to compute square roots modulo p, which 1s
required for generating random ponts on the curve

Elements of the field F,2 are then represented as (a + by/f), where a,b € F,, and
elements of the field F,4 are represented as (c + dv/J3), where ¢,d € F,2 Addition and

subtraction in ;2 and F 1 are relatively cheap to compute However, 1t 1s worth examuning
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how to optimise multiplication and squaring 1n these fields, as they are expensive opera-
tions to compute Let A and S be a multiplication and squaring respectively in ', The
schoolbook method to multiply two elements in IF,> costs 4A/  However, it 1s possible to

do better by using the Karatsuba technique 1n the following manner

(a2 — 2by + (ay + b.L)\/,E)

= (az-2by+{(a+b)(z+y) —az - by)\/ﬁ)

(a+bvB)(z + yv/B)

This costs only 3M  Simularly, a multiplication of two elements in F 4 costs 3 multiplica-
tions in F 2, and hence 9M 1n total The next task 1s to examine squaring in > and F.
It 1s commonly assumed that a squaring 1s computationally equivalent to a multiplication
when estimating the cost of pairing operations (e g see Koblitz and Menezes [65]) As
detailed in Chapter 2, this 1s a reasonably valid assumption in F, However, 1t 1s possible to
optimise squaring routines 1n extenston fields so that a squaring 1s considerably less expen-
sive to compute than a multiplication The schoolbook method to square an element in I 2

costs 25 + M However, 1t 1s better to exploit the Karatsuba technique again as

(a4 by/B)? = (a® —20° + 2ab+/)

= ((a+b)(a—2b) + ab+ 2ab\/P)

Thus costs 2M, which 1s M cheaper than the cost of a general multiplication in F2  Simu-
larly, squaring an element in F4 costs 2 multiplications in 2, and thus 6 1n total This
1s considerably cheaper than the 9M required for a general multiplication in Fps - As the
accumulating variable f € F, 1s squared at each iteration of Miller’s algorithm, using this
optimised squaring method 1s a substantial improvement over using a general multiplication

routine
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632 Evaluating the line functions

The use of degenerate divisors was previously discussed tn Chapter 4 for the charactenstic 2
case Recall that for a genus 2 curve, a degenerate divisor D = (P) — (c0) € Pick(F,) has
a single finite point P 1n the support This 1s 1n contrast to the more general reduced divisor
D = (P)+(Q)—2(c0), with two finite points in the support In Chapter 4, the first argument
to Miller’s algorithm was defined to be a degenerate divisor, as an automorphism on the
curve was used to keep the divisor in its special shape However, there ts no advantage to
be gamed from doing this for the genus 2 curve under consideration 1n this chapter, as the
first doubling will turn the degenerate divisor into a general divisor Therefore, a general
divisor 1s used as the first input to Miller’s algorithm for all of the pairing implementations
n this chapter

However, a distinct advantage still exists 1n using a degenerate divisor as the second
mnput to Miller’s algorithm Each time a doubling or addition 1s performed in Miller’s
algorithm, a function 1s evaluated at the image divisor If the image divisor 1s a general
divisor, then the evaluation takes place using either the two finite points in the support
of the divisor, or the Mumford representation of the divisor However, 1f a degenerate
divisor D = {(P) — (oo} 1s used as the 1mage divisor, 1t 1s possible to evaluate at the finite
pomnt P This approach yields a modest speedup over using general divisors Frey and
Lange [29] discuss 1n detail when 1t 1s permuissible to choose a degenerate divisor as the
second argument to Miller’s algorithm

Here it 1s assumed that the line functions m Miller’s algorithm are evaluated at a degen-
erate divisor Dy = (¢(Q)) — (00), where 1(Q) 1s the pont in Fj4 that results from the
application of the distortion map 1 to a point Q € C(IF,) At each iteration of the loop,
the iterating divisor D; 1s doubled using Cantor’s composition algorithm to get the divisor
[2]D; A reduced divisor D3 equivalent to [2] Dy 1s then obtained by using Cantor’s reduc-
tion algorithm, such that [2]D; = D3 + ((y — l(z))/us(z)), where the functions [(z) and
ug(z) are extracted from the composition and reduction process These functions are then

evaluated at 1(Q), an nversion 1s performed on v3(z), and both functions are multiphied
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by the accumulating variable

Firstly, the evaluation of ¢/(Q) = (4 y(q), ¥y(g)) at the function y — I(+) 15 examined
The function {(.c) that 1s extracted from the composition process s given as ({0 ) = (1351 +
2+ al + lo) Note that 51,12, 1; and [y are defined in I, as the iterating divisor 1s also
defined over I, The values .L?MQ) and pr(Q) can be precomputed, and so evaluating this
function at ¢(Q) has a cost of 12 multiplications in [F,, However, 1t 1s possible to save some
multiplications over this by manipulating the image point (@) Rather than explicitly
calculate the distortion map on @, 1t 1s possible to build the distortion map 1nto the function
evaluation Let Q = (zq,yq) € C(F,) Recall that %(Q) = ({s2¢, yg) € C(IF,4), where

(s 15 a primitive 5% root of unity 1n F,« Then —I(x) 1s written as

—1(2) = —((2q¢)*s1 + (29 l2 + (2g¢s)l1 + lo)

Two multiplications can be saved in this function evaluation by examining the relation
between certain powers of (5 If (,, 18 a primitive n™" root of unity 1n a field K, then its
conjugates over the prime subfield K of K are also primitive n'" roots of unity {92] Also,

a th
n 18 a primitive

root of unity 1f and only if ¢ and n arc co-prime Applying this to
(s means that the third power of 5 1s related to the second power by conjugation, 1n other
words Cg’ = g‘—g

Note that —I(+) as defined above can be written 1n the form a + b(s + (3 + d¢3, where
b= —ugl,c= —.EQQlQ and d = —.E?ésl Let Qg = (m + n/B) where m,n € F . Then
it 15 possible to compute the function a + b5 + (2 + d¢3 as a + bls + ((¢ + d)m + (¢ —
d)n/3) Computing c and d takes only 2 multiphcations in F,, (with a precomputation of 1
squaring and 1 multiplication) Computing (¢ + d)m and (¢ — d)n takes 4 multiplications,
with a precomputation of 6 multiplications Computing b(® takes 4 multiplications, with a
precomputation of 4 multiplications Therefore, the total multiplication count 1n evaluating

the function 1s 10 multiplications, a saving of two multiplications, with a precomputation

of 11 multiplications and 1 squaring
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Evaluating the 1mage point (@) at the function u3(1) = 12 + ugia + u3g costs 8
multiplications 1n F,, by precomputing (os) and (4g¢s)? This precomputation costs 6
multiplications, by reusing some of the precomputation needed to compute the line function
y — l(x) Therefore, the total cost of evaluating both functions at 1/(Q) 1s given as 18
multiplications in F, per iteration of the loop, with a precomputation of 1 squaring and 17

multiplications n I,

633 The final exponentiation

An exponentiation must be performed on the output of Miller’s algorithm to compute the
(reduced) Tate pairing  For a genus 2 curve with an embedding degree of b = 4, this
exponentiation 15 to the power of (p* —1)/n As the embedding degree of the curve 1s even,
it 15 possible to extract the factor (p? — 1) from the final exponentiation Exponentiating to
this power can be trivially computed with a conjugation with respect to .z, a multiphication
and an nversion in Fu  Using the basis described previously, a conjugation with respect
to F2 1s implemented as T = (a — by/B), for an element z = (a + b/f3) € Fu The
remaining exponentiation to (p2 + 1}/n 1s an expensive operation to compute as it cannot
be simplified further As detailed in Chapter 3, there are two techniques that are used to
compute this exponentiation efficiently

The first approach 1s to use Lucas exponentiation, as proposed by Scott and Barreto [106]
This method was detailed in Chapter 3 The alternative strategy 1s due to Hu et al [50} and
Granger et al [42] The remaining exponentiation 1s given as ¢ +1)/n for an element
z € F,u Firstly, note that (p? + 1)/n = a1p + ag, where a1 = (p* + 1)/(pn) and
ag = ((p* +1)/n) mod p The main idea 15 to exploit the fact that exponentiating an ele-
ment n F 4 to the power of p can be tnvially computed Therefore, the exponentiation can
be performed by precomputing a; and ag, and by evaluating (z?)** 2% Granger etal show
how the technique of multi-exponentiation can be exploited to compute this term  Essen-
tially, the 1dea behind multi-exponentiation 1s to use a single square-and-multiply algorithm

to compute both exponentiations simultaneously This dea 1s also known as Shamir’s trick
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Table 6 4 Experimental results for the final exponentiation

Security level | Multi-exponentiation (ms) | Lucas exponentiation (ms)
(160/1024) |26 13

(192/2048) 125 75

(224/4096) 725 48 5

Granger et al give theoretical results that show that 1t 1s faster to use the Lucas sequence
approach for curves with a low embedding degree Scott [105] provides experimental evi-
dence to verify this, by stating that Lucas exponentiation 1s better only when the embedding
degree of the curve 1s k < 4 In Table 6 4, timings are given on our platform of a Pentium
1V, 2 8 GHz, to 1illustrate the performance of the Lucas exponentiation approach versus
the multi-exponentiation approach to compute 2 (P*+1/7 for the three secunty levels of our

curve As can be seen, the Lucas sequence approach 1s superior for all three levels

6.4 Computing the Tate Pairing

In this section, a new variant of Miller’s algorithm to compute the Tate pairing 1s described,
and 1s compared aganst the denominator elumination technique for the genus 2 curve n
question A theoretical analysis 1s also performed on the cost of computing the Tate pairing

using our optimisations

641 Modifymg Miller’s algorithm

Recall that Miller’s algonithm as originally described involves performing an inversion
F .« at each iteration of the loop Field inversion 1s an expensive operation to compute,
particularly so 1n the extension field F»  Galbraith etal [31] introduce a vanant of Miller’s
algorithm, which removes the need to perform an inversion at each iteration of the loop The
basic rdea of Galbraith et al 1s to postpone performing the inversion unti after the loop
To achieve this, two vanables are used in the loop, which effectively replaces an 1nversion

with a squaring at each loop iteration The algorithm of Galbraith et al to compute the
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Tate painng (Dy, Do)n, where Dy € Pick(F,) and Dy ¢ Plc%(IFpk), 1s presented In

Algorithm 11

Algorithm 11 Miller’s algonthm to compute the Tate paining, as per Galbraith ct al [31]
InpUT Dy € Pick(F,), D2 € Pick(F ), where Dy has order n
OUTPUT ([h,[b)yk_”/”

1 fee=1, g — 1

2 T— Dy

3 for: — |logy(n)| — 1 downto 0 do

4 b ComputeT' = (2)T — (c/d)

s Te<(2T

6 fo 12 c(Da), fa fi d(D2)
7 1fn, =1 then

8 > Compute T' = T + Dy — (¢/d)
9 T T+ D

10 fe e fe c(D2), fa = fa d(D2)
11 endif

12 end for

13 f e fc/fd

14 f — f(Pk*l)/"

15 Return f

An important improvement on the approach of Galbraith et al 1s the denomator elimi-
nation techmque of Barreto etal [5] In Algorithm 11, the iterating divisor Dy 1s an element
of the group Pic2 (F,,), rather than Plc%(]Fpk) As aresult, all of the coefficients of the line
functions are also defined over IF,, as they are extracted from the addition process on D,
Rather than defining the rmage divisor D5 to be a general element of ch%(]Fpk), let the
x-coordnates of all of the fimte points in the support of D5 be defined over some subfield
of Fx In this case the denominator function, or the fy vanable m Algorithm 11, will also
be defined over a subfield of F . However, the exponentiation to (p*/? — 1) which takes
place as part of the final exponentiation eliminates any function value that 1s defined over
F /2 Therefore, there 1s no need to compute the f4 variable in Algorithm 11

Several techniques are used to implement the denommator elimination technique in
practice The first method uses a distortion map to map elements of Pic%, (F,,) to Plc%(ﬂ'“][,;c ),

where C 15 a supersingular curve Some distortion maps map the z-coordinates to a subfield
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of F,« by defimtion, and so denominator ¢limination applies when such a divisor 1s used
as the second argument to Miller’s algorithm The second method uses quadratic twists
of elliptic curves, as covered in Chapter 2 The third method defines the second argument
D3 to Miller’s algonithm to be a trace-zero divisor Let D' € Picd(F ) be a general
divisor Then a trace-zero divisor 1s computed as Dy = D' — D’pm, which supports the
denomuinator elimination technque

However, suppose that a degenerate divisor 1s used as the second argument to Miller’s
algorithm for a hyperelliptic curve of genus ¢ > 1 Then 1f thus technique 1s used n order to
implement denominator elimination, 1t will increase the weight of the image divisor Recall
that a degenerate divisor Dy 1n the genus 2 context has a single finite pont in the support
Applying the trace-zero map to Do results in a more general divisor with two finite points
i the support For elliptic curves the divisor class group 1s 1somorphic to the group of
points, and thus any non-trivial class has exactly one finite point in the support Therefore,
to use the denominator climination technique 1n the genus 2 case, the functions in Miller’s
algorithm must be evaluated at two points, rather than at a single point This reduces the
efficiency of denominator elimination

However, we present an alternative way to proceed, by introducing a new vartant of
Muller’s algorithm to compute the Tate pairing A prerequisite for this algorithm is that
the embedding degree of the curve must be even, a condition shared by the denominator
elimmation technique Firstly, 1s 1s assumed that the finite extension field ]Fpk 18 represented
as a quadratic extension of F x> It 1s well known that once an element z = (a+by/pB) €
F k)2

18 raised to the power of p®/< — 1, then 1t 1s possible to replace an inversion with a

pe

k k
conjugation, 1e (1)P"*~1 = (£)?*'*~1 To see why this 1s so note that
Jug 3 y

B (a -+ by/B)PH/*-1 "~ (a—by/D)

(1)pk/2"1 1 (a+by/3)
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Smmilarly

ke k/2 a
ka/2~1 —(a+ b\/ﬁ) ' = (a— b\/E)p 1o Ea—f—zﬁ%

This effectively replaces an expensive operation with one that is free to compute
This technique 1s exploited by Scott [105] to compute the Weil pairing  Scott proposes

/2 _ 1, which means that the inversion

exponentiating the pairing value to the power of p
in the Miller loop can be replaced with a conjugation However, no one has previously
observed that 1t 15 possible to use this 1dea to compute the Tate pairing, without requiring
any additional exponentiation The final exponentiation required to compute the reduced
Tate painng includes the factor (p*/2 — 1), as (p* ~ 1)/n = (p*/? — )"/ + 1)/n
Therefore, as the output of the loop 1s implicitly raised to the power of (p*/? — 1), there
1s no need for the strategy of Galbraith et al of using two variables to eliminate mverston,
as the inversion 1n the main loop can be replaced by a conjugation The new algorithm
1s described 1n Algorithm 12 for the hyperelliptic case As the vanable f,; 1s eliminated

from the pairing calculation, a squaring 1s saved in I« at each iteration of the loop, when

compared to Algorithm 11

Algonthm 12 An improved algorithm to compute the Tate Pairing
INPUT D1 € Pick(F,), D2 € Pic(F,), where Dy has order n
OUTPUT (D, Dz)gf’k_l)/”

1 fe1

2 T—Dy

3 for: — |logy(n)| — 1 downto O do

4 > Compute T’ = (2)T — (c/d)
S T« [2]T

6 e f2 ¢(Dy) d(Da)

7 if n, = 1 then

8 > Compute T = T + D1 — (¢/d)
9 T—T+D

0 fej dDy) d(Dy)

11 end 1if

12 end for

13 f — f@*-1/n

14 Return f
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Table 6 5 Complexity of function calculation per iteration 1n Miller’s Algorithm

Case | Description Complexity
\ Orniginal Approach I,2M, S

2 Two-variable Approach 2M, 28

3 Algorithm 12 2M, S

4 Denominator Elimination | M, S

Algorithm 12 1s still not as efficient as the denominator elimmation technique, which
saves a multiplication over this again at each iteration However, Algorithm 12 1s a slightly
more efficient technique to compute the Tate pairing on a hyperelliptic curve of genus g > 1,
when using a distortion map that does not admit denominator elimination directly The
reason for this 1s that the denomunator elimination algorithm consists of two evaluations at
the hne function at each 1teration (or one evaluation of a more complicated form 1f Mumford
representation 1s used) Algorithm 12 consists of one evaluation at the line function, and
one evaluation at the vertical line function, which requires less computation to evaluate than
the line function Algorithm 12 15 also less restrictive than using denominator elimination,
as 1t places no conditions on the form of the image divisor In fact, for an arbitrary image
divisor D2 which 1s fully defined over F, 1t 1s the most efficient algorithm to compute the
Tate pairing 1n the Iiterature Table 6 5 illustrates the complexity of the different algorithms

n more detail

642 Using denominator ehimination

Algorithm 12 1s more efficient than the denominator elimimation technique, assuming the
use of a distortion map that does not give denonunator elimmation directly, and that the
image divisor 1s a degenerate divisor However, 1t 1s possible to reduce the performance gap
by using customized multiplication routines, as detailed 1n this section Given a degenerate
divisor D = (Q) ~ (00), where %(Q) = (z,y) € C(Fu), the transformation R =
Y(Q) — gl;(Q)P2 yields an effective trace-zero divisor R that 1s suitable for use with the

denominator elimination techmque This transformation can be easily computed, by using
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the fact that exponentiating an element in F,4 to the power of p? 1s equivalent to a simple

conjugation with respect to the quadratic subfield, and so
2 — _
Q) =-,7) = (T, -y)

Therefore, rather than compute R using Cantor composition and reduction, note that R
can be constructed as R = (7, )+ (7, —y) —2(co) The fact that the two finite points n the
support of R are similar can be exploited in Miller’s algorithm Let @ = (v o) € C(F,)

Evaluating (@} at the line function y — /(1) gives

yg — (2¢s)°s1 + (2¢s) e + (xG)h — o)

Rather than evaluate the line function at —1/)(Q)p2 separately, 1t 1s possible to reuse the line
function given above, due to the similarity between the two points When the line function 1s
evaluated at ¢(Q) the output 1s an element of F,4 such that ((a + bv/8) + (¢ + dv/B) V/B)
The evaluation of the second pomnt (Z, —y) at the line function can be obtained with the
transformation ((a — 2y + by/B) — (c+dv/B)¥/B) Therefore, the calculation of the second
function 1s effectively for free, as it simply mvolves two subtractions and a conjugation
using the function generated by the first pomnt

Both functions must be multiplied by the accumulating variable f € Fs It 1s possible
to exploit the fact that the two functions are similar in form, by writing a special multi-
plication routine  As seen previously, a general multiplication in F 4 takes 9M using the
Karatsuba techmque, where M 1s a multiplication in F,, Let the first function f., be equal
to f.,, = (a + b¥/B) and the second function f., be equal to f., = (¢ — b¥/B), where

a,b,c € Fy2 Then, the multiplication of f., and f,, can be unrolled as
(a+b3/B)(c— bY/B) = ac = ¥*\/B + b(c — a) /B

Note that (c — a) € F), rather than F. The form of the ac multiplication can also be
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exploited by computing

ac=(e+ VB)(g+ VB =cy— 242+ fe+9)VB

The total cost to compute the multiplication of the line functions 1s 2M + S for the ac
multiphication, as well as 2M + 2M for the overall multiplication, which results in 6 M + S
nstead of the general cost of 90  When this technique 1s implemented, we find that al-
though the denominator elimination method 1s theoretically shightly faster, the performance
of denominator elimination and Algorithm 12 1s roughly the same, for the genus 2 case
under consideration However, we suggest that Algorithm 12 1s a more natural algorithm
to use 1n practice, as 1t 1s does not require the construction of customised multiplication

routines, such as those given 1in this section

643 Theoretical analysis

In this section, the theoretical cost of computing the Tate pairing using the genus 2 curve
C y? = 2% 4 11s analysed Furstly, the analysis of Choie and Lee [17] 1s reproduced
Let S, M, I be a squaring, multiplication and inversion respectively mn F,, Choie and Lee
estimate the cost of computing the Tate painng (without including the cost of the final

exponentiation) as
logo(n)(Tp + Tt + Ty + 2T + 2T i) + (1/2} logo(n)(Ta + Te + Ty + 2T i),

where

I Tp=1+23M + 55 - the cost of doubling a general divisor
2 Th=1+423M + 25 - the cost of adding two general divisors

3 T+ Ty = 22M + 55 - the cost of evaluating the line functions ¢ and d, with a

precomputation of 8 M + 35
4 Ty = 8M - the cost of squaring n F .« (where k = 4)
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5 T = 9M - the cost of multiphcation in F (where & = 4)

As Chote and Lee use a random subgroup order n to compute the Tate pairing, (1/2) logs(n)
additions must be performed 1n Miller’s algorithm Let log,(n) & 160 Then evaluating the
formula given above yields a total cost for computing the Tate pairing as 2407 + 17688 M +
21638

The theoretical cost of computing the Tate pairing 1s now examined using the optimi-
sations given 1n this chapter Algorithm 12 1s used n combination with a subgroup order
of very low Hamming weight The efficient formulae for doubling an ¢lement of PlCOC(IE‘,,)
as given in Table 6 3 are used, as well as the efficient means of constructing F«  Finally,
the second argument to Miller’s algorithm 1s defined to be a degenerate divisor, and the ef-
ficient formulae that have been denived to speed up the evaluation of this divisor at the line
functions are used Therefore, the theoretical cost for computing the Tate pairing 1s now

given as (again without including the cost of the final exponentiation)
1082(”)(TD + T(‘ + ,I‘d + Tsk -+ 2ka) + 2(TA + T(, + r—rd + 2ka')1

where
I Tp =T+ 22M + A4S - the cost of doubling a general divisor
2 Ty =1+23M + 285 - the cost of adding two general divisors

3 T, 4+ T4 = 18M - the cost of evaluating the line functions ¢ and d, with a precompu-

tation of 170 4 15
4 Ty = 6M - the cost of squanng 1n F x (where £ = 4)
5 Toma = 9M - the cost of multiplication in Fox (where & = 4)

Again, let logy(n) & 160 Then the theoretical cost of computing the Tate pairing
15 given as 1627 + 10375M + 645S This 1s a substantial improvement over the results

of Chole and Lee The largest single factor in this improvement 1s the use of a prime
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Table 6 6 Theoretical complexity of Miller’s algorithm

Case | Subgroup order Complexity

I Random [17] 2401, 17688M, 21638
2 Solinas prime (our work) | 1621, 10375M, 645S
3 NAF (our work) 2141, 13404M, 748S

subgroup order n with a very low Hamming weight It 1s appropriate to examine the cost
of the new formula for a random prime order n as well, to guard against a future attack
that mught exploit the Hamming weight of n 1n some manner A random subgroup order 7
has a Hamming weight of (1/2) log,(n) on average, meaning that (1/2) log,(n) additions
must take place in Miller’s algorithm Thus 1s the approach taken by Choie and Lee [17]
However, 1t 1s possible to improve on this

Computing the opposite of an element n Plc% (F,) 1s essentially for free, as detailed
in Chapter 2 Therefore, both the addition and subtraction of divisors in P1cOC(IF,,) have
the same computational cost Whenever a group has this property, 1t 1s possible to exploit
the Non-Adjacent Form (NAF) [91] of the subgroup order n Let ! = logy(n) Then the
(binary) NAF of n 1s an expansion n = Zf;(l) n,2', where n, € {0,%1},and n,n,4 1 =0
forall7 > 0 The number of non-zero terms in the Hamming weight of the NAF of n 1s
(on average) (1/3) logy(n), which implies a sixth less additions 1n Miller’s algorithm than
using the standard method Therefore, combining the NAF of n with all of the optumisations

mtroduced 1n this chapter gives a cost of 2147 + 13404 M + 7485 for computing the Tate

pairing The theoretical results are summarised in Table 6 6

6.5 Experimental Results

In this section, experimental results are given for computing the Tate pawring using the
techniques detailed n this chapter for the supersingular genus 2 curve defined over F,
Three levels of security were defined for implementation, namely (160/1024), (192 /2048)

and (224/4096) It has been shown how to select a prime subgroup order 1. of the required
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Table 6 7 Secunty Parameters

160/1024 security level

n=20%9 421" 11

p = 063324531451181148200275171731203125718355624493339065310878459
331886717065893

192/2048 security level

n=291 42241

p = 89284651228083788426899503684145515482879124715345625109737480
602016411174689533635990672440279080762322569446999588756146485641
92943960634648749730387013

224/4096 security level

n= 222428 41

p = 15572288413151584018732355885170470078314521100905501866179797
721305996406660922169152480135059877975286648042107836950744921979
175468464339740485127309529376149370584312783605245791516787233435
196077050664154130594222494359548777260251667610641320053258135302
4750990143717859982402535061826066311255496083453

—

number of bits, where 7 1 a Solinas prime with a Hamming weight of 3 A method was also
detailed to select a suitable large prime p such that p + 1 = 0 mod n The prime p must
be congruent to 5 mod 8 1 order to use the finite field constructions given for F,2 and
. detailed earlier Also, p must be congruent to 2,3 mod 5, as these are the conditions
associated with the curve itself Suitable values for p for the three secunty levels are given
in Table 6 7

Table 6 8 details the experimental results for the implementation of the Tate pairing us-
ing the (160/1024) security level Table 6 9 gives the experimental results for the (192/2048)
security level, and Table 6 10 details the timings for the {224/4096) secunty level All of
the timings are given in milliseconds There are four cases in each table, all of which have
a number of optumisations in common that have been derived 1n this chapter These include
the efficient fimte field construction for F,4 , the explicit formulae for doubling a divisor
as gaven 1nt Table 6 3, and the formula given for evaluating the line function at the image
divisor at each iteration of Miller’s algorithm

The first three cases 1n each table use the new variant of Miller’s algorithm that 1s given
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Table 6 8 Expermmental results - (160/1024) security level

Case

Description

Running time (ms)

1

2
3
4

Evaluating at degenerate divisor
Evaluating at general divisor
Evaluating using Mumford rep
Elliptic curve timing [105]

16
207
2045
89

Table 6 9 Experimental results - (192/2048) security level

Case

Description

Running time (ms)

1

2
3
4

Evaluating at degenerate divisor
Evaluating at general divisor
Evaluating using Mumford rep
Elliptic curve timing [ 105]

49
62
61
205

Table 6 10 Experimental results - (224 /4096) security level

Case | Description Running time (ms)
1 Evaluating at degenerate divisor | 183

2 Evaluating at general divisor 232

3 Evaluating using Mumford rep | 229

4 Elliptic curve timing [105] 85
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mn Algonthm [2 The first case 1n each table s the time taken to compute the Tate pairing
when a degenerate divisor 1s used as the second mnput to Miller’s algorithm The second
case (n each table gives the time for when a general divisor 1s used as the second input
to the aigonthm The two fimite points 1n the support of the divisor are extracted, and the
line function that 1s generated at cach 1teration of the algorithm 1s evaluated separately at
both points The third case also computes a general pairing, except that the second nput to
Miller’s algorithm 1s 1n Mumford representation Tlus case 1s always faster when the finite
points in the image divisor are defined over a larger field

The fourth case m each table are timings that are given by Scott [105] using elliptic
curves, and an equivalent level of secunty to the genus 2 timings presented here In Ta-
ble 6 8, the elliptic curve 1n question has an embedding degree of k = 2, and logy(p) =~
512 as a result In Table 6 9, the elliptic curve has an embedding degree of & = 4 and
log,(p) = 512 In Table 6 10, the elliptic curve has an embedding degree of £k = 8 and
logy(p) & 512 1t could be argued that comparing the (ordinary) elliptic curve case with
k = 8 to the genus 2 case 1s ‘unfair’, as the theory on constructing genus 2 curves with a
higher embedding degree over IF,, 1s as yet undeveloped

A number of conclusions can be drawn from these tables Firstly, previous experimen-
tal results are due to Choie and Lee [17], who give timings to compute the Tate painng on
this curve that range between 500 and 600 ms on a Pentium IV 2 GHz, for the (160/1024)
security level Our timings far outperform this, as demonstrated 1 Table 6 8 Secondly, the
results given 1n this section indicate that genus 2 pairings over large prime fields are valid
candidates for practical implementation However, the elliptic curve timings are approxi-
mately twice as fast as the genus 2 timings for all three security levels Thas 1s roughly what
one would expect, due to the more complicated group law 1n the genus 2 case

All of the experiments were performed on our platform of a Pentium 1V, which has a
clock speed of 2 8 GHz, and which runs version 2 6 12 of the Linux kernel The code 1s
written 1n C/C-++ and 1s compiled using version 4 01 of the GCC/G++ compiler suite The

efficient implementation of the fimte field I}, 1s taken from MIRACL 4 85 In particular,
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MIRACL supports special assembly language routines that can be used when working with

prime moduli of a fixed number of bits

6.6 Conclusion

In this chapter, 1t has been shown that pairing calculation on supersingular genus 2 curves
1s efhcient, and that these curves are a viable candidate for the practical implementation of
pairing based cryptosystems as a result Effictent formulae have been derived for doubling
a divisor and for extracting the functions that are required in Miller’s algorithm It has been
shown how to choose an optimal subgroup order with a low Hamming weight, and how to
implement the fimte field arithmetic efficiently It has also been shown how the distortion
map can be used to speed up the evaluation of the image divisor at the line function

A new variant of Miller’s algorithm has been introduced for hyperelliptic curves with
an even embedding degree This algorithm shows that 1t 1s never necessary to perform
inversion when calculating the line functions 1in Miller’s algorithm, even 1f the image divisor
1s not of a special form This algorithm 15 Interesting i two ways First of all, it provides
a nice historical bridge between the optimisations introduced by Galbraith et al [31], and
those introduced by Barreto et al [5], as summarised 1n Table 6 5 Secondly, although this
algorithm 1s not as fast as using denominator elimination in the general case, 1t can be faster
when working with hyperelliptic curves of genus ¢ > 1 and degenerate divisors

A theoretical analysis of the cost of computing the Tate pairing using our optimisations
has been performed, and compared to previous results 1n the literature Finally, experimen-
tal results have been provided on the implementation of the Tate pairing In particular, our
timings are the fastest reported 1n the literature to date by a considerable margin However,
the timings show that pairing implementation on genus 2 curves over I, 1s about twice as
slow as pairing implementation on elliptic curves over ), with an equivalent leve! of secu-
nty If this performance gap 1s to be bridged, it will be necessary to derive ordinary genus 2

curves over I, with a higher embedding degree than that offered by supersingular curves
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Chapter 7

Conclusion

7.1 Review

1t was shown that the Tate pairing can be computed n an efficient manner using super-
singular genus 2 curves over fimite fields of characteristic 2 The best choice of curve to
use was investigated, and an octupling automorphism was obtained on the selected curves
Rather than compute the functions that are required m Miller’s algorithm from the Cantor
composition and reduction of divisors, explicit formulae were provided that were denived
using the octupling automorphism The 1dea of using degenerate divisors was explored It
was shown how precomputation can be deployed to reduce the amount of computation to
be performed 1n the algorithm itself The Frobemus endomorphism was also exploited to
calculate some of the functions required n the algorithm

Furthermore, 1t was shown how 1t is possible to achieve a more efficient patring calcula-
tion by utihsing the 5 pairing construct In the genus 2 case, the 7 pawnng requires a longer
loop size in Miller’s algorithm than the standard Tate pairing However, the n pairing has
many advantages over the Tate pairing, such as the removal of additions from the loop and
a final exponentiation that can be easily computed The genus 2 7 pairing 1s also far sumpler
to implement than the verston of the algorithm that used the Frobenius endomorphism to

expedite the computation It was then shown how a specific instance of the # painng can
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be computed without the final exponentiation, assuming that the evaluation of the vertical
hne functions 1s included 1n the aigorithm  This was the first time that any method for
computing the Tate pairing was shown to have this property

The truncated version of the i pairing, the 7, pairing, was then investigated This ap-
proach halves the number of loop iterations required in Miller’s algorithm compared to the
7 pairing  The disadvantages of the rpp pairing are that an addition must be performed at
the end of the loop, and that 1t has a more expensive final exponentiation than the 7 pairing
However, techniques were described to reduce the computational impact of both of these
properties A comprehensive series of tests was then conducted, comparing the implemen-
tation of the genus 2 Tate, 1) and 1 pairings using different security levels These results
were compared to the efficiency of implementing the Tate pairing using supersingular el-
liptic curves of an equivalent level of secunty The conclusion was that the genus 2 7
pairing yields the fastest pairing implementation over finite fields of low characteristic that
has been reported 1n the literature to date

The implementation of the Tate pairing using a supersingular genus 2 curve over a large
prime field was then described A new variant of Miller’s algorithm was derived that 1s
more generic than the standard denominator elimination technique, and that can be useful
m certasn circumstances when using hyperelhptic curves of genus g > 1 Exusting formulae
for computing both the group law and the functions required for Miller’s algorithm were
modified and improved It was also shown how the form of the distortion map can be
exploited to evaluate the intermediate functions in Miller’s algorithm more efficiently A
theoretical analysis was performed against previous work, and a wide range of timings was
reported using various standard levels of security These results were compared to existing
results in the literature on pairing implementation ustng supersingular elliptic curves The
conclusion was that pairing implementation on genus 2 curves 1n this context 1s slower than
for elliptic curves, but still competitive

In summation, in this thesis 1t was demonstrated that pairing calculation using supersin-

gular genus 2 curves can be achieved efficiently Thus result implies that genus 2 curves are
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a vahd alternative to using elliptic curves for implementing cryptographic protocols based
on pairings This 1s a useful result, as it 1s good practice to have an alternative means to
achieve anything 1n cryptography In a more practical sense, this result allows protocol
designers to consider a wider range of curves for pairing implementation The actual se-
lection of curve parameters rests on a wide range of practical considerations, such as the
computing platform or the language being used It 1s to be expected that elliptic curves will
prove more useful for most circumstances This 1s due mainly to their simple description,
which aliows for an easier implementation by the non-specialist However, we believe it 18
likely that genus 2 painings will be deployed 1n certain niches, such as embedded hardware
or low-powered devices

It 1s not necessary in mathematics to have any end goal in sight when considering an
area n which to research Even if one does not accept the theoretical or practical rea-
sons given 1 the previous paragraph for considering genus 2 pairings, the study of genus
2 curves cannot help but improve our knowledge about pairing implementation on elliptic
curves An example from this thesis 1s that the inspiration for proving that there is no need
for a final exponentiation for the 7 paining on supersingular elliptic curves came from ex-
perimentation with the genus 2 5 painng Much work remains to be done on both the theory
and implementation of pairings on hyperelliptic curves before one can be truly confident of

the security of pamring based cryptography

72 Open Questions

There are a large number of open questions relating to (hyper)elliptic curve cryptography
and the implementation of bilinear pairings However, 1n thits section only questions that
arise from the work in this thesis are examined Rubin and Silverberg [96] give an upper
bound of k¥ = 6 on the embedding degree of supersingular genus 2 curves over a large prime
field F), Very recently, Galbrarth et al [36] derived a suitable supersingular genus 2 curve

with this maximum embedding degree However, the curve in question 1s a real quadratic
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genus 2 curve As pairing implementation has not as yet been attempted on such a curve, 1t
13 still an open question to derive a supersingular imaginary quadratic genus 2 curve with an
embedding degree of k = 6 that 1s suitable for pairing implementation A curve with this
maximum embedding degrec would give additional advantages to genus 2 painngs over F,

Another open question 1s to find an ordinary genus 2 curve with a low embedding de-
gree It 1s important to do this for a number of reasons Furstly, to parallel the current re-
search that 1s being carried out on elliptic curves The literature on ordinary elliptic curves
with a low embedding degree has expanded significantly 1n recent years This work has
yielded a wide range of suitable curves over IF,, However, there are as yet no known ordi-
nary elliptic curves over Fom with a low embedding degree (another open question in itself)
Secondly, cryptographers have long had misgivings about using supersingular curves, due
to a suspicion that the extra structure associated with such curves could be used in a de-
structive sense For example, supersingular curves are no longer used for cryptosystems
based on the DLP n PicX(F,), due to the MOV/FR attack Ordinary curves with a low
embedding degree are also vulnerable to these attacks However, 1t 1s possible that ordinary
curves might be resistant to future attacks on supersingular curves in the context of pairings

Thirdly, due to the work of Galbraith [32] and Rubin and Silverberg [96], 1t 1s known
that there 1s a bound on the embedding degree of all supersingular hyperelliptic curves that
are nteresting for cryptography This 1s particularly problematic over large prume fields,
as only small embedding degrees can be obtained In contrast, ordinary elliptic curves
are known to exist over IF, with a large range of embedding degrees that are useful for
mmplementation, such as £ = 12 and £ = 24 This 1s a significant advantage associated
with ordinary curves, and 1t would be extremely useful to replicate this work 1n the genus 2
context Another reason to consider ordinary curves 1s the paucity of suitable supersingular
curves for pairing based cryptography over a given finite field It 1s desirable to be able to
generate curves 1n a provably random fashion in order to generate confidence that the curve
equation 15 not weak 1n some way

Fourthly, the recent work of Hess et al [48] in deriving the Ate pairing shows that
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pairing 1mplementation on ordinary elliptic curves could be even more efficient than using
supersingular elliptic curves It 1s to be assumed that this result holds for ordinary genus
2 curves, however in the absence of any suitable curves it remains an open question The
recent theory of the Ate pairing 1s the most powerful and comprehensive theoretical exam-
mation of the computation of the Tate pairing 1n recent years However, there has been
little extension or examination of the Ate pairing in the literature, and 1t 1s another open
question as to whether the Ate pairmg can be developed further Pairing implementation
using both elliptic and genus 2 curves 1s fast approaching scalar multiplication 1n terms of
efficiency Itis possible that some modification of the Ate pairing might even enable pairing
umplementation to become faster than a general scalar multiplication

In chapter 5 of this thests, 1t was shown that the final exponentiation required to compute
the 1 pairing can be avorded for certain curves, as long as the vertical line functions are
included However, the mathematical proofs that are provided are unsatisfactory, as they
do not address the more general question as to why this property holds A proof that all 7
pairings are bilinear without the final exponentiation would be an interesting result A more
specific and pressing question 1s to prove the genus 2 7 case, as we have been unable to
achieve this as yet An even more interesting question 1s whether this 1dea can be applied
to the Ate pairing using ordinary elliptic curves over F,, As the final exponentiation 1s
generally expensive over I, eliminating 1t using our technique might be more efficient
than using denominator elimination

It may also be worth reconsidening the value of using hyperelliptic curves of higher
genera for pairings In particular, little work has been done on using hyperelliptic curves
of genus 3 Gaudry et al [40] recommend increasing the group size of hyperelliptic genus
3 curves by 12 5% to take their index-calculus attack into account However, this 1s not
necessarily an impediment to using these curves for pairing based cryptography, 1f it can be
shown that pairing calculation on hyperelliptic curves of genus 3 can be achieved in an effi-
cient manner In particular, the Ate pairing might yield an efficient pairing implementation

on genus 3 hyperelliptic curves
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Appendix A

Formulae

A.1 Absorbing powers of 8 for the genus 2 n pairing
In Chapter 5, the genus 2 7 pairing 1s given as

m-1-—1

m-—1
n(P,Q) = [ fs (@),
1=0

where fggp = af In Chapter 4, 1t was shown how 1t 1s possible to precompute all of
the powers of zp and yp that are required m Miller’s algonthm The goal of this section

18 to show how the exponentiation to 8™~1~* can be brought nto the formulae for o and
8 This optimisation avoids the need to explicitly octuple the accumulating variable f each
iteration of the loop Therefore, rather than compute « and 3 each iteration, formulae are
denved to compute o™ and g2V

Calculating this efficiently requires the precomputation of certain powers of z¢ and yg,
1n addition to the precomputation of the powers of  p and yp mentioned above Two arrays
of s1ze m are constructed, such that each index 1 1n the arrays consists of the value m?? and
y?‘; The first step 1in building the exponentiation into o and £ 1s to examine how w and sg
behave under powering by 23(™~1-%) Recall that w® = w + 1 Asm s defined to be odd,

23(m—1—1)

thenm — 1 —2 =1 mod 2, and thus w = w + 1(2), where 7, (2) 1s 1 when 2 18
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odd and 0 otherwise Also note that as s3 + so = w® + w?, then s8 = sg+w?, s8* = sg+1

and 5§’ = sp +w? + 1 This can be generalised, so that when m = 1 mod 4

S(m—1-1)
59 = 50+ 7(0)w? + 73},

and when» =3 mod 4

93(m—1-1)

50 = so +71()w’ +93() + 1,

where y3(z) = 1 when 1 = 1,2 mod 4, and 0 otherwise Let y4(m,2) denote the value
v3(2) whenm =1 mod 4, and v3(z) + 1 otherwise

As before, we write () = %', where 1 1s considered modulo m Using the basis given
g g

m Chapter 4 for elements of Fyi2m, the constant term of o2 ™" ™ 1

Im—2-31 m—2—31 3 13 1 m—1—31 1
ygm 2 3)+(:r8 2 3)) +(zg+1)+xg))mg 13)+71(&)x53+1)+

(57 # ) 1) a7 4 af s ate) 1

When m — 1 — 2 (and hence 2) 1s odd, another term must be added to this This term 1s

wntten as
711(2) (Lg’m_Q_Bl) +14+7(e)+ JJ(,?H'I)) + ya(m, 1)

This can be simplified by writing 1 (2)(1 + 71 (¢)) = 0, cancelling various terms and sim-

phfying the cubing of Lgmﬁzf&) The constant term of a2*™ ™™ 15 then
?/gim—Q—SL) + (T5'§1+1) + ’I‘(g’)) T((?m—-1~3l) 4 (7'(1)31) + 14 Tgm—l—&)) T((;’s7n—2—31) 4

Y& 4 s (m),
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where v5(rm) = 11f m =1 mod 4 and 0 otherwise The remaining terms are

(lgmfl~31) +x8m—2—31)) w+ (J,((;m—'l—'fﬂ) +Lsr.j1) + 1) w? +

(mglﬂ) + mgl)> w* + S0
The same process 1s now repeated for 8 The constant terms of 623(""1_’) 1s given as

ygm—3—3z) 4 (mglw) +71(z)) mgm—2—31) + (xgzw) +$$1331+1)> xgmfdﬂiz) +

1/5731+1)+T$§a+1) <1+71(?)+T([§z+2)) Fos() + 1,

with the addition of the term
11(2) (x(;flﬂ) + a:gm_Q_s') + () + 1) + va(m, 1)

Simphfymg this gives a constant term

ygm-3~31) n (x(P31+1) 4 TSm—?—En)) me'H) n (wgz+2) +$§l+1)) xgnkast) +

ygnﬂ) + xgz+1)+75(m)

The remaining terms are

($87n~2f31) + xgmAfi‘?ﬂ)) w4 + so

A.2 Absorbing powers of 8 for the genus 2 7 pairing

In Chapter 5, the octuplhing loop of the genus 2 77 pawing on the points P and Q 1s

(m—3)/2

H fa181p(¥(Q)

)2(3'n279761)/2

bl
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where fgzp = af The goal of this section 1s to modify the formulae for « and 8
given 1n Chapter 4 to avoid having to octuple the accumulating variable at each itcration of
Muller’s algorithm This 1s done by absorbing the exponentiation to 23(=3=20/2 into the
formulae for & and 8 As n the previous section, computing this efficiently requires the
precomputation of the values .Lg and yg forall 0 <. < — 1 Furstly, 1t 1s necessary to

examine how w and so behave under powering by 23(m=3-20/2 A5, 15 odd, and hence

93(m—3-21}/2

(m—=3-21)/2 =12 mod 2, then w = w + 1 (2) as before The values for

3(m—=3-21)/2 3(m—1-1)
s are also the same as the values gtven for s3 1n the previous section

As before, we write () = z%', where 2 1s considered modulo m Using the basis given

m—-3—-2:)/2
in Chapter 4 for elements of Fy12m, the constant term of Q2T g

£
Q
y837n—7—61)/2) + ($g3m—3+61)/2) +1 "*"'Yl(”) xg3m—7—61)/2) +y£:('37n—3+61)/2) +

3
( ((3711—7—61)/2)) + (Igg(?ym-—l-i—&)ﬂ)+ALSD(3m—3+61)/2)) zg3n1—61—5)/2) 4

@z () 41,
with the addition of the term
’)’1(L) (mgm—T—Gz)ﬂ) +1+ - (Z) + l(I:(.31n—1+61)/2)) + 74(’71" L)

Adding these two terms together and simplifying gives

yg.’.’vm—?—GL)/?) + (T%3171—1+6L)/2) + T(r£3111—3+61)/2)) Tg3m75761)/2) + 7/5')(37”—3+6')/2)

(x%3m——3+61,)/2) 414 xgsm—s—ﬁl)/‘z)) Ig:}m—'f—ﬁt)/?) + 75(1),

where y5(z) = 11f+ =1 mod 4 and 0 otherwise The remaining terms are

Q P
($g3n1—1+61)/2) +$(}53m—3+6l)/2)> w -

(mgsmAsfm)/z) + m((3m777—61)/2)) w + (x(cg;zm—s—ez)/z) 1 x((B'm—3+61)/2) n 1) w? -

50

177



3((m—3-21)/2
The exponentiation on 3 1s now examined The constant term of 32 (meam2/2) |

y(Q('31n—9—67,)/2) + ($g3m+]+6L)/2)+le(z)) mgiinl—?—ﬁz)/?)+y§3(3m—1+61)/2)+

(m%3r11+l+61)/2) +x(}£3m—1+61)/2)) xSSm—Q—&)/m i

IS}(SnL—1+61)/2) (xg311,+1+6,)/2) o (z) n 1) ) + 1,
with the addition of the term
() (mgsmAHGlW) + a8 () + 1) +va(m, 2)
Performing this addition and simplifying yields the constant term

y(Q(3m~9A61)/2) 4 (:L'S:(’3m+l+61)/2)+I%31n—1+67.)/2)) Ig3m—9—62)/2) +

yg)(Bm-l—i—Gz)/?)+$([§31n+1+61)/2) (:I;‘(,£37H—I+GL)/2)+$g3m—7—01)/2)) +
m(}£3m71+61)/2)+,75(1)

The remaining terms are

(x%37n+1+61)/2) + I%sm—lﬂsz)/z)) w+ ($g3m+1+61)/2) n xg?,m—&)—m)/e) I l) w? n

(Tg3m—7—6,)/2) + Tg:m-g—s;)/z)) wh S0

A3 Unroliing the .0 multiphcation

In this section 1t 1s shown how to multiply two special elements of Fyi2m 1n an efficient
manner, by exploiting the fact that both elements have a large number of zeros as coeffi-
clents Let o = a + bw 4 cw?® + dw? + sg and 8 = e + fw + gw? + hw? + so, where

a, 3 € Fai2m are written 1n the basis that was constructed 1n chapter 4 The multiplication
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of a and /3 can then be wnitten as

off = (a+bw+cw? +dw' + so)(c + fw+ gw? + hw' + s0)
= ae+afw+ agw® + ahw® + asy + bew + bfw? + bgw® +
bha® + bwsg + cew?® + cfw® + cqu® + ch(w® + w3 + w? +1) +
cw?sy + dew* + dfw® + dg(w® +wd + w? + 1) + dh(w + 1) +

dw'sg + esg + fwsg + gw?sg + hw'so + (s + v’ + w?)
Grouping all of the relevant terms together gives

aff = (ae+ch+dg—+dh) + (af +be+dh)w+ (ag+bf + ce + h + dg)w? +
(bg + cf + ch +dg + V)w? + (ah + cg + de)w? +
(bh+ch+df +dg+ 1w+ (a+e+ )sg+ (b+ flwso +

(c+g)w’so + (d -+ h)w'so

This costs 16 multiplications in Fom, which 1s a vast improvement on the 54 multiplica-
tions 1n Fym required for a general multiplication in Fy12..  However, 1t 1s possible to save
a further number of multiplications, by exploiting Karatsuba-like optimisations First of all
precompute the following values dh =d h,dg =d g,ch =¢ hcg=c g,ae =

a e, bf =b [ Then the multiplication 1s computed as

aB = (ae+ch+dg+dh)+ ((a+b)(f+e)+ae+bf +dh)w+
((a+¢)(g+e) + ae+ cg + bf + ch+ dg)w? +
((b+c)(g+ f) +bf +cg+ch+dg+ 1w+
(@ +d)(h+ e) + ae + dh + cg)w* +
((b+d)(h+ fY+bf +dh+ch+dg+ Dw? +

(a+e+1)so+ (b+ flwsg + (¢ + glw?so + (d + h)wso

179



Therefore, the total cost of the o3 multiplication 1s only 11 multiplications 1n Fgm

180



