
Pairing Computation on Hyperelliptic Curves of Genus 2

Colm Ó hÉigeartaigh
Bachelor o f Science in Computer Applications

A Dissertation submitted in fulfilment o f the
requirements for the award of
Doctor o f Philosophy (Ph.D.)

Dublin City University

Faculty o f Engineering and Computing, School o f Computing

to the

DCL)

Supervisor: Dr. Michael Scott

October, 2006

Declaration
I hereby certify that this material, which I now submit for assessment on the programme of
study leading to the award of Doctor o f Philosophy is entirely my own work and has not
been taken from the work o f others save and to the extent that such work has been cited and
acknowledged within the text o f my work

(s - ^ 0 lSigned
Student ID 99387212
Date October 2006

l

i

Contents

A bstract vi

Acknowledgements vii

List of Algorithm s vm

List of Tables ix

1 In troduction 1
1 1 Public Key Cryptography 1
1 2 Bilinear Pairings 5
1 3 Cryptographic Applications of Bilinear Pairings 7

13 1 A one-round, three-person key agreement protocol 7
1 3 2 Identity based encryption 8

1 4 Motivation for this Work 9

2 M athem atical Background 13
2 1 Introduction 13
2 2 Finite Fields 14
2 3 Hyperelliptic Curves 18
2 4 Implementing Hyperelliptic Curve Cryptography 27

2 4 1 Elliptic curves 28
2 4 2 Genus 2 curves 31

it

2 5 The Tate Pairing 34
2 6 Conclusion 42

3 O ptim isations to M iller’s Algorithm 43
3 1 Introduction 43
3 2 Early Optimisations 44
3 3 Squared Pairings 51
3 4 Pairings on Hyperelliptic Curves 52
3 5 Compressed Pairings 57
3 6 The Weil Pairing 62
3 7 More Recent Optimisations 68

3 8 Conclusion 69

4 Pairings on Supersingular G enus 2 C urves over F 2m 71
4 1 Introduction 71
4 2 The Curve 72
4 3 Curve Arithmetic 77

4 3 1 Finite field arithmetic 77
4 3 2 Octupling 81
4 3 3 Using degenerate divisors 83
4 3 4 Octupling functions for the Tate pairing 88

4 3 5 The final exponentiation 90
4 4 Computing the Tate Pairing 91

4 4 1 Using an octic basis 91
4 4 2 Precomputing the first point 95
4 4 3 Absorbing powers of 8 99

4 5 Experimental Results 100
4 6 Conclusion 103

111

5 The ffr Pairing 105
5 1 Introduction 105
5 2 The Theory o f the i/t Pairing 106
5 3 The Genus 2 rj Pairing 109

5 3 1 Finding a suitable value for T 109
5 3 2 Optimising the arithmetic 112

5 4 Avoiding the Final Exponentiation 113
5 5 The Genus 2 t]t Pairing 118

5 5 1 Finding a suitable value for T 119
5 5 2 Optimising the arithmetic 120

5 6 Experimental Results 123
5 7 Conclusion 128

6 Pairings on Supersingular G enus 2 Curves over Fp 131
6 1 Introduction 131
6 2 The Curve 132
6 3 Curve Arithmetic 138

6 3 1 Finite field arithmetic 138
6 3 2 Evaluating the line functions 140
6 3 3 The final exponentiation 142

6 4 Computing the Tate Pairing 143
6 4 1 Modifying M iller’s algorithm 143
6 4 2 Using denominator elimination 147
6 4 3 Theoretical analysis 149

6 5 Experimental Results 151
6 6 Conclusion 155

7 Conclusion 156
7 1 Review 156

IV

7 2 Open Questions 158

B ibliography 161

A Form ulae 174
A 1 Absorbing powers of 8 for the genus 2 rj pairing 174
A 2 Absorbing powers o f 8 for the genus 2 rjr pairing 176
A 3 Unrolling the a ¡3 multiplication 178

v

Abstract
Bilinear pairings have been recently used to construct cryptographic schemes with new and
novel properties, the most celebrated example being the Identity Based Encryption scheme
of Boneh and Franklin As pairing computation is generally the most computationally in
tensive part o f any painng-based cryptosystem, it is essential to investigate new ways in
which to compute pairings efficiently

The vast majority o f the literature on pairing computation focuscs solely on using ellip
tic curves In this thesis we investigate pairing computation on supersingular hyperelliptic
curves of genus 2 Our aim is to provide a practical alternative to using elliptic curves for
pairing based cryptography Specifically, we illustrate how to implement pairings efficiently
using genus 2 curves, and how to attain performance comparable to using elliptic curves

We show that pairing computation on genus 2 curves over F 2m can outperform elliptic
curves by using a new variant of the Tate pairing, called the r¡j pairing, to compute the
fastest pairing implementation in the literature to date We also show for the first time how
the final exponentiation required to compute the Tate pairing can be avoided for certain
hyperelliptic curves

We investigate pairing computation using genus 2 curves over large prime fields, and
detail various techniques that lead to an efficient implementation, thus showing that these
curves are a viable candidate for practical use

vi

Acknowledgements
Firstly, I ’d like to thank Mike Scott for being a great supervisor I hope I repaid the faith
you showed in me by taking me on as a student 3 years ago

Thanks also to Steven Galbraith for being in effect my co-supervisor How you had
the patience to answer literally hundreds of emails, often consisting of stupid questions, I ’ll
never know1 This thesis would not have happened were it not for your help and encourage-L
ment

I ’d also like to thank all o f the people that I wrote papers with Your professionalism
and enthusiasm was always inspiring

Thanks to all o f the postgrads in CA, who made the last 3 years a rewarding experience
Rather than list names and risk leaving someone out, I ’ll just say thanks to everyone who
helped me when I needed it

I ’d like to thank everyone m my family for their support, advice and encouragement
Thanks to Aine and Micheál for supporting me in every possible way and for being brilliant
role-models In particular, thanks to Aoileann and Eug for putting up with me for the last 3
years It would have been a lot harder if it weren’t for you

Finally, to Gemma, whose love and kindness made writing up a lot easier than it would
have otherwise been

Vll

List of Algorithms
1 Divisor Composition 22
2 Divisor Reduction 22
3 Miller’s algorithm to compute the Tate pairing 41
4 The Duursma-Lee algorithm for the curve E y 2 = x 3 — x + d over F3m,

d = ±1 55
5 Kwon’s algorithm for the curves E y2 + y = x^+ x~\-d over FV*, d = { 0 ,1} 56
6 Computing Lucas sequence elements 58
7 Doubling of a divisor [w v\ on the curves Cd 78
8 Octupling of a divisor [u v] on the curves Cd 83
9 The genus 2 rj pairing 114
10 The genus 2 rjr pairing when m = 103 124
11 M iller’s algorithm to compute the Tate pairing, as per Galbraith et al [31] 144
12 An improved algorithm to compute the Tate Pairing 146

Vili

List of Tables
2 1 The ratios S /M and J /M in MIRACL 17
2 2 The maximum embedding degrees of supersingular hyperelhptic curves

over Fq [96] 27
2 3 Cost o f group arithmetic for elliptic curves in F p 29
2 4 Cost o f group arithmetic for elliptic curves in F 2™ 29
2 5 Cost o f group arithmetic for genus 2 curvcs in F p 32
2 6 Cost o f group arithmetic for genus 2 curves in ¥ 2™ 33

3 1 Some supersingular elliptic curves with low k 47
3 2 Distortion maps for (most of) the curves given in Table 3 1 48
3 3 Minimum bitlengths of n and qk 64
3 4 Operation counts for each bit o f n 64

4 1 Supersingular genus 2 curves over F 2 74
4 2 Supersingular genus 2 curves over F 2 with k = 12 74
4 3 F 2"s where # P ic ^ (F 2m) is equal to a small cofactor times a prime 77
4 4 Experimental results for the curve C \ over F 279 1 02
4 5 Experimental results for the curve Cq over F2io3 102

5 1 Experimental results - 950-bit security level 126
5 2 Experimental results - 1230-bit security level 126

6 1 The prime subgroup order n for each security level 135

IX

6 2 Comparison of the cost o f doubling in P ic ^ (F p) 136
6 3 Formulae for doubling for the curve C y 2 = x 5 -f a 137
6 4 Experimental results for the final exponentiation 143
6 5 Complexity of function calculation per iteration in M iller’s Algorithm 147
6 6 Theoretical complexity o f M iller’s algorithm 151
6 7 Security Parameters 152
6 8 Experimental results - (160/1024) security level 153
6 9 Experimental results - (192/2048) security level 153
6 10 Expenmental results - (224/4096) security level 153

x

Chapter 1

Introduction
1.1 Public Key Cryptography
In 1976, a seminal paper by Diffie and Heilman [22] gave a solution to the key agreement
problem, and introduced the revolutionary concept o f public key cryptography Symmetric
key cryptography uses a single secret key for both encryption and decryption purposes In
this context, the key agreement problem is to devise an efficient protocol to allow multiple
parties to agree upon a secret key over an insecure channel, even if the participants in the
protocol have not met before The security of Diffie and Heilman’s elegant solution to this
problem is based on the intractability of the so-called Diffie-Hellman Problem in a cyclic
Abelian group However, Diffie and Heilman restrict this definition to the multiplicative
group of a finite field, denoted F*, in their paper

Aside from the problem of key agreement, symmetric key cryptography has inherent
problems in distributing keys in a practical and secure manner, thus hampering its deploy
ment in commercial or digital environments Public key cryptography consists o f two keys,
one which is kept public and distributed freely, and the other which is private The two
keys are linked by a one-way function, such that knowledge of the public key reveals no
information about the private key However, a party that knows the private key can decrypt
information that is encrypted with the public key The security o f a public key scheme re-

1

lies on a problem that is believed to be intractable if an adversary lacks certain information,
such as the Discrete Logarithm Problem or the Diffie-Hellman Problem mentioned above

In this section, let G \ be an additively written cyclic group of pnme-order n with gen
erator P , such that G[= (P)n

Definition 1 The Discrete Logarithm Problem (DLP) in G \ is the following given (P, [x}P)
€ G \ find the integer x e [0, n — I], wheie [x\P denotes P -f P + Pv 1 ^

t tu n e s

Pohlig and Heilman [89] showed that an instance of the DLP in an arbitrary cyclic group
can be reduced to an instance of the DLP in a prime-order subgroup Therefore, the order n
o f G \ should be a large prime number, or at least divisible by a large prime that is approxi
mately the size of n The Pollard-rho algorithm [90] is the best algorithm that is known for
solving the DLP in a generic group (see also Pollard’s Kangaroo method [90]), and it has
a fully exponential running time of group operations However, Nechaev [87] and
Shoup [108] showed that the best possible algorithm to solve the DLP in a generic group
runs in time £l(y/n) This shows that Pollard-rho is essentially the best possible generic
algorithm to attack the DLP As Pollard-rho has a fully exponential running time, the DLP
is an intractable problem in the abstract setting

However, every cyclic group of order n is isomorphic to the additive group o f integers
(modulo n) with generator 1, and the DLP is trivial to solve in this group This implies that
the difficulty of the DLP in a particular group depends on the representation of the group
elements In other words, although the best possible generic algorithm to attack the DLP has
an exponential running time, there may be efficient algorithms to attack the DLP m specific
groups, that exploit the way that group elements are represented Therefore, it is crucial
to consider attacks on specific groups when choosing a group to implement cryptographic
schemes based upon the intractability o f the DLP

The Diffie-Hellman Problem is closely related to the DLP

Definition 2 The (computational) Diffie-Hellman Problem (DHP) in G \ is the following
given (P, [a]P, [b]P) € G f find the element [ab]P 6 Gi

2

The DHP reduces to the DLP in polynomial time, meaning that if the DLP is tractable
in a given group, then the DHP is also tractable To see why this is so, let (P [a]P [&]P) be
an instance of the DHP in G\ Then an adversary can compute the DHP by first finding the
integer a by computing the DLP instance (P, [a]P), and then computing [a] ([t>] P) = [ab\P
There is some evidence that the DLP also reduces to the DHP in polynomial time e g , see
den Boer [10], Maurer [76], and Maurer and Wolf [77] However, this remains unprovcn
for the general case

To motivate the discussion on the DLP and DHP, we briefly describe the key agreement
protocol due to Dtffie and Heilman in the case o f three parties, which requires two rounds of
communication The order n and the generator P o f the group are public parameters Each
party ? 6 [0,1, 2] generates a secret integer x t 6 [0, n — 1), and computes the element [xl]P
In the first round of communication, each participant sends their \x l]P value to one o f the
other participants, such that each party receives a value Each participant then computes
the multiple of this element by their secret integer x u and sends this value again to another
participant Each party then has the shared value K = [2:0X1 x^]P Any eavesdropper is left
with the task o f computing K given (P, [xo]P, [x\]P, [x2]P, [xqx\]P, [z i t 2]P, [xqT2]P)
which implies solving the DHP When all o f the participants have a shared secret, some
publicly agreed method is used to extract a key from it, which can then be used in a sym
metric key cryptosystem

The first practical public key encryption and signature scheme was devised by Rivest,
Shamir and Adleman (RSA) [93] in 1978 The security o f RSA is based on the so-called
RSA assumption, a problem believed to be equivalent to the integer factorisation problem
In 1985, the ElGamal [26] cryptosystem was published, which was the first complete cryp
tographic scheme for encryption/decryption that was based on the intractability of the DLP
At this point, cryptographic schemes that used the DLP as a cryptographic primitive typi
cally followed the original Diffie and Heilman paper, by using the multiplicative group of a
suitable finite field ¥ q o f charactenstic p Although the multiplicative group of a finite field
is easy to describe and to implement, the DLP in this setting is vulnerable to sub-exponential

3

time index calculus attacks This means that large cryptographic key sizes must be used in
practice to maintain security levels

As the DLP is described in a generic setting, it is natural to examine groups other than
F* The ideal candidate group would be impervious to all attacks that are faster than the
generic Pollard-rho algorithm The other requirements are that the group elements can be
represented in a compact manner, that the group operation can be computed efficiently and
that the group order can be computed in polynomial time Schnorr [100] proposed using
a subgroup o f prime order n o f F*, where n can be substantially smaller than q In 1985,
Miller [83] and Koblitz [63] independently suggested using the group of rational points on
an elliptic curve over a finite field F ? No sub-exponential attacks are known to exist for this
particular group, and thus key sizes can remain small The group elements are simply points
on the curve, and the group operation corresponds to the inexpensive geometric chord-and-
tangent operation The group order can also be computed efficiently and thus elliptic curves
fulfil all o f the requirements for use in DLP based cryptosystems

In 1989, Koblitz [64] suggested using a more general class o f curves over ¥ qi namely
hyperelhptic curves o f arbitrary genus We note that it is not theoretically exact to equate
elliptic curves with hyperelhptic curves of genus 1 However, for cryptographic purposes
this equivalence holds true, as we concentrate on the arithmetical properties which are the
same in both cases, and thus elliptic curves are also automatically considered

The set o f rational points on a hyperelhptic curve of genus g > 1 over F g, denoted
C (¥ q), does not form a group Instead the divisor class group of degree zero is used,
denoted P ic ^ (F 9) The group elements can be represented m a compact manner, and an
efficient algorithm due to Cantor [14] exists to perform the group arithmetic It remains
to examine the security o f P ic ^ (F g) The running time for the Pollard-rho algorithm in
P ic ^ F q) is 0 (q 9/ 2) The best index calculus attack on the DLP in Pic£.(Fg) is due to
Gaudry et al [40] The complexity of this attack is 0 (q 2~2^9), and is therefore faster than
Pollard-rho for genus g > 3, as long as q is sufficiently large However, hyperelhptic
curves of genus 2 are invulnerable to these attacks, and along with elliptic curves are a

4

good candidate for implementing DLP based cryptosystems

1.2 Bilinear Pairings
Bilinear pairings were first introduced to cryptology by Menezes et al [80] and Frey and
Ruck [30], to attack instances o f the DLP on elliptic curves and hyperelhptic curves How
ever, in 2000 Joux [52] and Sakai et al [99] showed how bilinear pairings could be used
constructively, to build cryptographic protocols with unique properties The literature now
contains a vast amount o f pairing based protocols, many of which provide long-desired
solutions to outstanding protocol questions In this section, bilinear pairings and their asso
ciated hard problems are defined For a more detailed discussion on this topic, the reader is
referred to Menezes [79], or Galbraith and Menezes [34]

Let G i = (P)n be an additively written Abelian group of prime order n and identity
element oo, and let G2 be a multiplicatively wntten Abelian group of prime order n with
identity element 1 A restricted definition of a bilinear pairing is now provided that is
suitable for most cryptographic applications This definition, which is commonly deployed
both in theory and m practice, restricts both input elements to the pairing as belonging to
the same additive group

Definition 3 A bilinear pairing on (G i, G2) is a map

e G 1 x Gi —> G 2

that satisfies the following requirements

1 (Bilinearity) For all R , S ,T e G \, e (R + S ,T) = e (R ,T) e (S ,T) an de(R , S + T) =
e{R , S)e{R , T)

2 (Non-degeneracy) e(P , P) ^ 1, where P =£ 00

3 (Computability) e can be efficiently computed 1 e in polynomial time

5

For all b , T & G j , a bilinear pairing has the properties

1 e(S, oc) = e(oo, 5) = 1

2 (Bilineanty) e([a]S\ [6]T) = e(5, T) ab for all a, b € Z

3 (Symmetry) e(S^T) = e(T 6)

It is the bilinearity property that allows the development o f new and exciting cryptographic
protocols, as detailed later on in this chapter A large number of pairing based cryptosys
tems rely on the property of symmetry associated with the restriction of both input elements
to the same additive group The non-degeneracy requirement ensures that cryptographic
applications are not trivial Finally, the stipulation that the pairing e can be efficiently com
puted is fulfilled by computing either the Weil or Tate pairings using the degree zero divisor
class group o f a hyperelliptic curve, as will be detailed in the following chapter

The bilinearity property implies that the DLP in G \ can be reduced efficiently to the
DLP in G 2 Let (P, [x]P) be an instance of the DLP in G \ Then the bilinearity property
gives the equality e(P , [t]P) = e(P , P) r 6 G 2 Therefore, solving the DLP instance
(P, [r]P) £ G \ is equivalent to solving the DLP instance [e(P P) , p(P, [rr]P)) 6 G \

Definition 4 Let e b e a bilinear pairing on (G i , G 2) The (computational) Bilinear Diffie-
Hellman Problem (BDHP) is the following given (P, [a]P [b]P, [c]P) € G \ compute
e(P, P) abc £ G 2

The BDHP is assumed to be just as hard as the DHP in G \ and G 2 It is known that
if the DHP is tractable m either G \ or G2, then the BDHP is also tractable However, it
is not known if the converse is true If the DHP in G \ is tractable, then the BDHP can be
computed as [ab]P and then e(\ab\P , [c)P) = e (P P)abc Alternatively, if the DHP in G 2

is tractable, then the BDHP can be computed by letting q = e(P, P), and then computing
(jab = e([a]P, \b]P), gc = e(P , [c]P) and gabc Therefore, the DHP (and hence the DLP)
in both G 1 and G 2 needs to be intractable to guarantee the (assumed) security of a pairing
based cryptosystem that uses the BDHP as a cryptographic primitive

6

Interestingly, Joux and Nguyen [53] show that that the Decisional Diffie-Hellman Prob
lem is efficiently computable in G 1 using bilinear pairings, even if the DHP is intractable

Definition 5 The Decisional Diffie-Hellman Problem (DDHP) is the following given
(P , [a]P [b\P, \c}P) e C \ decide whether [c]P = [a6]P

The DDHP in G \ can be computed as follows Let 71 = e(P, \c]P) = e(P, P)c and
72 = e([or]/-’, [b]P) = e (P P)ah Then [c]P = [ab]P if and only if 71 = 72

1.3 Cryptographic Applications of Bilinear Pairings
As mentioned in the previous section, following the introduction of painngs in a construc
tive manner, a large amount of attention has been devoted to using bilinear pairings to build
cryptosystems with new and novel properties As motivation for the work in this thesis, brief
descriptions o f two important pairing based protocols are given, namely the key agreement
protocol o f Joux and the identity based encryption schcme of Boneh and Franklin

13 1 A one-round, three-person key agreement protocol
As noted previously, the Diffie-Hellman key agreement protocol can be used to agree keys
between three participants in only two rounds However, in 2000 Joux [52] showed the
surprising result that it is possible to achieve this in only one round using bilinear pairings,
thus solvmg a long outstanding question as to whether this was possible at all Here this
protocol is described as modified by Verheul [113] to reduce the bandwidth requirements
Again, each party i € [0,1,2] generates a secret integer e [0, 7i - 1], but this time
broadcasts the element [x J P to both o f the other parties, and receives the elements [xz_i]P
and [a^+iJP (where the subscript o f x is considered modulo 3) Note that the three messages
are independent o f each other, and thus all communication between the participants can
be said to occur in a single round Each party can then establish a shared secret key as
K = e([3:l_ i]P) [xi+ i]P)x‘ = e(P , p ^ i - i ^ t + i a (passive) eavesdropper must solve an
instance o f the BDHP to determine the shared key

Joux’s one-round key agreement protocol can be extended to n participants, by using an
efficiently computable multilinear map G " -1 —> G 2 , for which a suitable extension of the
BDHP is intractable However, the construction of multilinear maps that can be efficiently
computed is an open problem In fact, Boneh and Silverberg [13] present evidence that
it may not be possible to construct such multilinear maps using techniques from algebraic
geometry In any case, Joux’s protocol is not feasible from a practical point o f view, as
it only resists passive attacks, and must have an extra round of communication to resist a
man-in-the-middle attack by an active adversary However, it is useful as an example of
how bilinear pairings can be used to provide an elegant solution to cryptographic protocols
previously thought impossible

13 2 Identity based encryption
In 1984, Shamir [107] called for a public key, identity based encryption scheme in which
the public key can be an arbitrary string Shamir’s original motivation for this scheme
was to simplify the management o f certificates in email systems For example, if Alice
wants to send an encrypted email to Bob, she encrypts the message using Bob’s public
key string, which simply corresponds to his email address This differs considerably from
traditional certificate-based schemes, where Alice needs to obtain the certificate containing
Bob’s public key from some trusted source When Bob receives the encrypted message
he contacts a third party, known as the Pnvate Key Generator (PKG) Bob authenticates
himself to the PKG and obtains his private key O f course, this means that kcy-escrow
is inherent in Identity Based Encryption (IBE), as the PKG knows Bob’s private key By
appending a future date to Bob’s public key string, Alice can also ensure that a fresh key is
used if she thinks that Bob’s pnvate key has been compromised

In 2000, Sakai et al [99] suggested that bilinear pairings could be used to achieve
identity based cryptography In 2001, Boneh and Franklin [11] realised the first concrete
implementation of IBE, which is based on bilinear pairings (and hence on the intractability
o f the BDHP) Here, the basic idea o f Boneh and Franklin’s IBE scheme is presented

Let e G \ x G \ —> G 2 be a bilinear pairing for which the BDHP is intractable, and let
Hi {0,1}* —> O i\{oo } and TT2 G 2 —> {0, l} i be cryptographic hash functions, where
I is the bit length of the plaintext m to be encrypted The PKG selects a private key ¿> at
random from [1, a - 1], and computes its public key as Q = [s]P It is assumed that all
entities have an authentic copy of Q

Bob’s private key is d s = where Q b = H i (ID b), and I D b is the public
key string associated with Bob’s identity Note that computing db from (P, Q ,Q b) is an
instance of the DHP in G[, which only the PKG can compute as it has access to the secret
value s Alice encrypts a message m € {0,1}*, by first randomly selecting an integer
r 6 [1 , n — 1] and then computing the following values

Q b = H i(ID b): Ci = [i]P C2 = m © H 2 {e(Q si Q Y)

The ciphertext that Alice sends to Bob is then (C i, C2) Bob can recover the original
message m from the ciphertext (C i, C2) by using his private key d s to compute

m = C 2 © I l 2 { r (d s , C \))

To see how the bilinearity property of the pairing enables the decryption of the ciphertext,
observe that

e(dB , C{) = e{\s\Q B , [r]P) = e(Q B , (s]P)r = e(Q B , Q f

An adversary who attempts to recover m from the ciphertext (C i,C 2) has to compute
c(Q b > Q Y from (P, Q b , Q, C i), which is an instance of the BDHP

1.4 Motivation for this Work
Bilinear pairings have been described thus far in a generic sense To implement pairing
based cryptographic protocols, such as the two protocols described in the previous section,

9

it must be shown how to construct pairings m a more concrete manner There are only two
bilinear pairings that are of interest for cryptographic purposes, namely the Tate pairing
and the Weil pairing In these eases, the group G\ is (loosely) the subgroup of order a o f
the degree zero divisor class group of a hyperelliptic curve defined over a finite field F qk,
where k is known as the embedding degree of the curve, and the group G 2 is the group
of the 71th roots o f unity in ¥ gk Ideally, the embedding degree should be large enough
to protect against index calculus attacks in G 2, yet small enough to allow for the efficient
implementation of ¥ qk In an unpublished manuscript in 1986 (later published in 2004),
Miller [82, 84] described how to implement the Weil pairing efficiently using a double-and-
add algorithm This algorithm, now known as M iller’s algorithm, can be easily adapted to
compute the Tate pairing

Computing either the Weil or the Tate pairing in an efficient manner is essential, as
pairing computation is generally the most intensive task in any painng based cryptosystem
Therefore, it is important to investigate ways in which to speed up pairing computation, if
cryptographic protocols that are based on pairings are to be adopted in practice In recent
years, a large body of work has appeared in the literature to address this issue, and much
progress has been made in implementing bilinear pairings in an efficient manner as a re
sult Indeed, over the course of twenty years, the time to compute ciyptographically secure
bilinear pairings has decreased dramatically, from several minutes to only a few millisec
onds [5, 103] Although the performance o f pairing-based cryptosystems is approaching
that o f cryptographic schemes such as RSA, there is still considerable motivation to im
prove pairing computation, as it is an open question as to whether pairing based schemes
might offer improved performance over traditional public key protocols

The vast majority o f the literature on painng computation focuses solely on using ellip
tic curves The reasons for using elliptic curves to compute pairings are largely the same
reasons as to why elliptic curves are preferred for discrete-log based cryptosystems Firstly,
the description o f the group elements as rational points on the curve is far simpler than the
complicated divisor theory involved in using hyperelliptic curves of genus greater than one

10

Secondly, the representation o f group elements in the elliptic curve case requires only 2 field
elements, as opposed to 4 in the genus 2 case, 6 in the genus 3 case, etc Thirdly, the group
law is vastly simplified m the elliptic case as it corresponds to the simple manipulation of
geometric lines, as opposed to using Cantor’s algorithm for composition and reduction of
divisors The group operation for elliptic curves costs less in general than the group law for
hypcrelhptic curves of higher genus

However, despite the numerous apparent advantages of using elliptic curves, there are
compelling reasons to investigate pairing computation on other hyperelhptic curves Firstly,
no efficient pairing implementations on curves of genus g > 1 exist, meaning that protocol
designers can only consider using elliptic curves It is o f considerable theoretical and prac
tical importance to provide an alternative to using elliptic curves for pairing computation
However, we focus solely on using hypcrelhptic curves of genus 2 The added complexity
of the group law for hyperelhptic curves of genus g > 2 makes the group arithmetic dif
ficult to implement in an efficient manner, and there are very few examples o f such curves
that are useful for pairing based cryptography

Secondly, considerable effort has gone into deriving explicit formulae for the group
law for genus 2 curves e g , see Lange [70], which improve substantially on the generic
algorithm due to Cantor [14] Avanzi [1] uses these formulae to show that a careful imple
mentation of scalar multiplication on genus 2 curves over large prime fields is extremely
competitive with elliptic curves It is natural to wonder then whether pairing computation
on genus 2 curves is competitive also with the equivalent elliptic curve implementations
Thirdly, curves o f genus 2 have a richer algebraic structure than those of genus 1 It is possi
ble that this additional structure can be exploited in some way to speed up the computation

Rubin and Silverberg [96] show that the maximum embedding degree L o f supersingular
genus 2 curves is 12 over and 6 over ¥ p The interesting value for security purposes
is k /g , where g is the genus o f the curve The maximum security parameter for genus 2
curves is attained in characteristic 2 (k /g = 6), as opposed to characteristic 3 for elliptic
curves (k /g = 6) This is another reason to consider using genus 2 curves, as working in

11

characteristic 2 is preferable to using fields of characteristic 3 Supersingular genus 2 curves
over F2171 with a maximum embedding degree o f k — 12 are known to exist However, there
are no known curves over Fp with an embedding degree of k = 6 Instead, a supersingular
genus 2 curve defined over Fp with an embedding degree of k = 4 is known to exist
The vast majority of efficient implementations of finite field arithmetic use cither binary
extension fields or large prime fields F p Coincidentally, supersingular genus 2 curves
only have interesting embedding degrees over these fields

In this thesis, pairing computation on supersingular hyperelliptic curves of genus 2 over
both F2m and F p is investigated, using curves with the maximum embedding degree that
is known in each case Specifically, it is illustrated how to implement pairings efficiently
using these curves, and how to attain performance comparable to using elliptic curves The
handful o f papers that exist on this topic in the literature yield inefficient implementations
relative to elliptic curves In this thesis, the open question as to whether genus 2 curves
provide a viable alternative to using elliptic curves for pairing computation is answered in
the affirmative This thesis deals solely with improvements to the actual computation o f
pairings, and does not focus at all on cryptographic protocols that are based on bilinear
pairings

The structure o f this thesis is as follows Chapter 2 provides an overview of elliptic
and hyperelliptic curve cryptography, the Weil and Tate pairings, and M iller’s algorithm
Chapter 3 is a literature review of papers dealing with advances in the computation o f
pairings The research contribution of this thesis is split into three chapters Chapter 4
explores the computation o f the Tate pairing on a supersingular genus 2 curve over ¥ 2^
Chapter 5 uses a new variant o f the Tate pairing, called the 777 pairing, to compute the fastest
pairing implementation in the literature Is is also shown for the first time how the final
exponentiation required to compute the Tate pairing can avoided for certain supersingular
curves Chapter 6 details the computation of pairings on a supersingular genus 2 curve
over Fp, vastly improving on results available in the literature A new variant o f M iller’s
algorithm is also described Finally, the thesis is concluded in chapter 7

12

Chapter 2

Mathematical Background
2.1 Introduction
Cryptography that is based on the properties of algebraic curves is not an easy discipline as
it involves deep mathematical concepts In this chapter, an overview of the mathematical
techniques that are fundamental to the work in this thesis is provided This chapter states
some of the results given in the previous chapter in a more concrete manner It is not our
intention to be comprehensive, instead the interested reader can pursue any o f the numerous
references that are cited throughout the chapter

Firstly, finite fields are examined Finite fields play an important role in modem cryp
tography, and it is essential to represent finite field elements in such a way that allows for
an efficient implementation Various bases for representing finite fields, as well as details
about how to implement arithmetic, are investigated The relative cost o f various funda
mental finite field operations is also explored See Lidl and Niederreiter [75] for a more
comprehensive treatment on this topic

Secondly, hyperelliptic curves and their applications in cryptography are examined
Some divisor theory is given, and a group is constructed with a compact representation
o f the group elements An algonthm is given to perform the group operation It is then
detailed how this group is suitable for cryptography, and the DLP is defined in this context

13

Menezcs et al [81] provide a good “elementary” overview of using hyperelliptic curves
in cryptography Another thorough review is found in Jacobson ct al [56], Galbraith and
Menezcs [34], and in various chapters of Cohen ct al [19] A compact treatment of this
topic is given in Hietalahti [49]

Thirdly, two concrete implementations of hyperelliptic curves are examined, namely
hyperelliptic curves of genus 1 (elliptic curves), and hyperelliptic curves of genus 2 The
vast majority o f implementations in the literature use one o f these types o f curves Fourthly,
we make concrete the abstract notion of a bilinear pairing, by introducing the Tate pairing
and the Weil pairing These pairings are given in the more general setting of hyperelliptic
curves, rather than using elliptic curves, as is common in the literature An algorithm is
given to compute pairings, and finally the chapter is concluded Good references on this
topic are chapter 9 of Blake et al [9], as well as chapters 6 and 16 of Cohen et al [19]

2.2 Finite Fields
A field is a commutative ring for which every non-zero element has a multiplicative inverse
Let A and L be fields such that A C L An element a 6 L is said to be algebraic over A if
there is a polynomial j (x) in one variable with coefficients m K , such that f (a) = 0 The
field L is an algebraic extension of A if every element of L is algebraic over K

Definition 6 An algebraic closure oj a fie ld K , is a fie ld K containing K , such that K is
algebraic over K and every nonconstant polynomial with coefficients in K has a root m
K i e K is algebraically closed

The field K has prime characteristic p , if there is a prime p such that 1 H-1 -f- + 1 = 0
(p times), where 1 is the multiplicative identity, and 0 is the additive identity o f the field
Otherwise, K is said to have characteristic 0 If a field K has prime characteristic, then K
contains the finite field of integers modulo p, l e { 0 ,1 , ,p - 1}, denoted F p For any
prime p, and any positive integer m , there exists a finite field with q = pm elements This
field is unique up to isomorphism and is denoted ¥ q The algebraic closure o f is defined

14

as

oo
z=1

The multiplicative group o f nonzero elements of F (/, denoted F*, forms a cyclic Abelian
group of order q - 1 For any element o- e F*, then <V/_1 = 1 due to the theorem of La
grange, and therefore a (} = a This map can be generalised, as in the following definition

Definition 7 The q-th power Frobemus automorphism <j>(} o f ¥ q is defined as

fo r all x £ Fq We will sometimes refer to the p-th power Frobemus automorphism (pp o f a
finite fie ld F 9 o f characteristic p which is defined as

fo r all x e ¥ q

Let ¥ q and ¥ qk be finite fields, such that F qfe is a finite extension of ¥ q Then Fg*
can be regarded as a vector space of dimension k over ¥ q This means that there is a
basis (A)>/?ij 1)» where {3t e ¥ qk9 such that every element a 6 F g* has a unique
representation of the form

k—1
« = 5 2 «.a ,

1=0

where al e ¥ q The element a e ¥ qk is denoted by the F q-vector (ao, a i , , a^_ 1) The
addition of two finite field elements is performed on the ax components of the two elements
However, the multiplication of two elements requires knowledge about the dependencies
between the elements of the basis There are many different bases o f F ^ over F 9, however

15

two bases are mainly used in practicc
The most commonly implemented basis is the polynomial basis Let F g[x] be the ring

of polynomials in x A polynomial / € ¥ q[x] is said to be irreducible if j has positive
degree, and the equation j = be implies that either b 6 F 9[j,] or c G F 9[a] is a constant
polynomial If j € F jx] is an irreducible polynomial over ¥ q o f degree k, then a finite
field with qk elements is constructed by adjoining a root of j to F^ For every finite field
Fq, and every positive integer k , there exists an irreducible polynomial m F^fjc] o f degree
k I f f3 e Wqk is a root o f } , then (1 ,P k~l) is called the polynomial basis o f
F ^ over F g Addition, subtraction and multiplication are performed modulo / Inversion
can be computed using the extended Euclidean algorithm in ¥ q[x] Irreducible binomials,
trinomials and pentanomials are commonly used to define extensions of a finite field, as
they allow for a fast reduction

A less commonly used basis is known as the normal basis The element ¡3 e ¥ gk is
said to be normal over F^ if the elements (/?, ¡3g (3q2, j/?9* 1) are linearly independent
over Fq Then the basis (/? Pqi f iq21 ^¡3qk *) is called a normal basis o f F ^ over ¥ q
For every finite field ¥ q and positive integer k, there exists a normal basis of F ^ over ¥ q
Using a normal basis, exponentiating an element a 6 ¥ qk to the power of q can be achieved
with a simple shift of the vector representation This is particularly useful for finite fields
o f characteristic two, as squarings become trivial as a result However, squaring can also
be speedily implemented in characteristic 2 using a polynomial basis, by inserting the 0

bit between every other bit o f the binary representation of the element, and then reducing
modulo the irreducible polynomial A further advantage o f using a polynomial basis is
that the multiplication of two elements in the normal basis is complicated and requires the
precomputation of a table Therefore, in this thesis only polynomial bases are considered

Two particular types of finite fields are commonly used in cryptography, namely binary
fields F 2m, where rn is prime to avoid Weil descent attacks (see Gaudry et al [39]), and
large prime fields Fp Addition in F 2m reduces to a bitwise XOR operation, and hence this
field is commonly deployed in hardware implementations F 2™ also has the advantage that

16

Tabic 2 1 The ratios S /M and I / M in MIRACL
Finite Field S /M I / M
FJTp
F 2™

0 8 —> 1 0
0 1 0 25

10 -> 40
9 - » 13

squaring in this field is substantially faster than multiplication Note that no irreducible
binomials exist over F2, and therefore either a trinomial or pentanomial should be used
as the irreducible polynomial Large prime fields F p have the advantage o f being simple
to implement, as no field extensions are involved However, the ratio between squarings
and multiplications is far larger than for F2™ Optimal extension fields Fpd, where the
irreducible polynomial defining the extension allows for a fast reduction, are sometimes also
used (particularly in embedded applications) These fields are deployed if it is necessary to
avoid the specific disadvantages o fF 2̂ o rF p

Computing the ratios S /M and I ¡ M in F p and F 2™ is o f considerable interest when
implementing finite field arithmetic, where 5, M , I denote a squaring, multiplication and
inversion respectively However, the ratios depend on a wide range of parameters, such as
the representation used, whether the implementation is m software or hardware, how much
optimisation is used, etc This implies that different implementations yield widely differing
estimates Nonetheless, it is useful to provide these ratios to assess the cost o f inversion
in particular The MIRACL [102] library provides a suite of test programs for calculating
the ratios S /M and I / M m both F 2™ and F p The implementation o f both F 2m and Fp
includes numerous platform-specific enhancements and is highly optimised The testing
includes different parameters for m and p, that range from 103 to 2048 bits The results are
included in Table 2 1, on our platform o f a Pentium IV, 2 8 GHz Note that the ratio I / M
can be far more expensive for F p than it is for F 2m We emphasise that I / M is expensive
in F p due mainly to the highly efficient way multiplication is implemented in MIRACL

If f £ F9[x] is an irreducible polynomial o f degree k , then j has a root a in F qk All
o f the roots of / are given by the k distinct elements (a , a q, , a qk~l) £ F qk, which are
called the conjugates of a with respect to ¥ q

17

t = l

and the norm o f a is given by

k
NF4t/F ,(«)= n ® ’

1=1

2.3 Hyperelliptic Curves
Definition 9 An (imaginary quadratic) hyperelliptic curve C o f genus g > 1 over the fie ld
K is defined by an equation o f the form

C y 1 + h (x)y = f (x) ,

where h(x) 6 K [x\ is o f degree at most g and j (x) € K[x] is momc o f degree 2 g + 1

C must be non-singular, meaning that there are no pairs (x y) G K x K which satisfy
both the equation of the curve C, and the partial denvative equations

2y + h (x) = 0, h f(x)y - f (x) = 0

When the characteristic of K is not equal to 2, then the equation C can be transformed into
y 2 — f (x) , where j (a:) has degree 2g + 1, by the change of variables

x ^ x y (y ~ h (x) / 2)

In this case, the condition on the partial derivatives is met if and only if f (x) has no repeated
roots in K

Definition 10 Let L be a fie ld containing K Then the set o f L-rational points on the curve
C, denoted L (C) is defined to be the set offin ite points { (x ,y) e L x L } that satisfy the

Definition 8 Let a £ F qk Then the trace o f a is given by

18

equation o f the curve C along with the point at infinity oo The set o f K-rational points
C (K) is denoted C fo r short

The opposite o f a point P = (x ,ij) £ C , denoted —P , is the unique other point on the
curve with the same a>coordinate, and is computed as - P = (x, —y — h (x)) If P = oo,
then - P = oo If a finite point is equal to its opposite it is called special, otherwise it is
said to be ordinary

Definition 11 A divisor D is a finite form al sum ofpoints on C such that

D = 5 2 m t (P t)

where m l E Z, and m v = 0 fo r all but finitely many Px 6 C

The degree o f a divisor is the integer Y l rni The support of a divisor is the finite set
{P% E C | 7?7t ^ 0} The set o f divisors forms a free Abelian group, denoted D ive, under
the addition law

52 n^ p ') + 5 2 = 52 + rn>)(p.)

The (sub)group of divisors o f degree 0 is denoted D iv£ The greatest common divisor of
two divisors D i = £ n t(P t) e D iv^ and D 2 = ^ m ^ P ,) € D iv^ is also an element of
D iv^, and is computed as

gcd(£>i,£>2) = m in im *,n t)(P t) - (^ m i n (m 1, n l))(oo)

Given a point P e C , and a function / considered on C, if / (P) = 0 then / is said to
have a zero at P If / is not defined at P , then / is said to have a pole at P , in which case
/ (P) = oo The order of a function at a point, or the number of zeros or poles at a point,
can be computed in the following way

Definition 12 L e tG (x y y) be a polynomial with coefficients in K considered as a function

19

on C As y 2 can be repeatedly replaced with f (x) — h(x)y , an equivalent polynomial
C7(x, y) can be obtained such that G (x^y) = a(x) - b (x)y Then the order o f G (x , y) at a
point P 6 C denoted o rdp G is computed as follows

1 P = (x p :y p) is a finite point Let G be m the form (t, — ¿ p) 7(ao(x) — bf^(x)y),
where (x — x p) does not divide both ao(a:) and bo(x) I f ao (xp) — bo(xp)yp ^ 0
then let s — 0 otherwise let $ be the exponent o f the highest power o f(x — j. p) which
divides «o(x) + h(x)ao(x)bQ(x) — f(x)bQ (x) I f P is an ordinaly point then define
o idp G ~ ! + 6 otherwise define o rdp G = 2 r + 6

2 P = oo Then ordooG = — m ax(2 deg(o), 2r; + 1 + 2deg(b))

To any G (x ,y) such that G ^ 0, the divisor (G) = ^ (o rd p , G)(P t) is associated A
rational function R on C is defined as a ratio R = G (x , y) /H (x , y), with H ^ 0 To such
a rational function the divisor (G / H) = (G) - (H) € D iv^ is associated The order o f R
at a point P € C is defined to be o id p R = o idp G — o id p H , if H (P) ^ 0 Note that
ordp R does not depend on the choice of G and H Evaluating a divisor D = m , (Pt) at
a rational function R is computed as

assuming that (R) and D have disjoint support If R and D are both defined over K , then
R (D) € K The divisor of a rational function is called a principal divisor, and such divisors
form a subgroup of D iv^ A principal divisor also has the property that £ rnxPl = oo

Definition 13 The (degree zero) divisor class group P ic%{K) o f C over K is the quotient
group o f the degree zero divisors defined over K modulo the principal divisors defined over
K It is also known as the Picard group o f C

Two divisors D \ and D 2 are equivalent (when considered as elements o f P icq {K)),
denoted D \ ~ D 2, if their difference D \ - D 2 is a pnncipal divisor, i e D \ = D 2 -+ (R),
for some rational function R

20

Definition 14 A semi-reduced divisor D is o f the form D = nh{Pi) ~ (53 Wt)(oo) such
that

1 All m l > 0 and the P t are finite points

2 I f P% ^ — P% then only one o f them occurs in the sum with m t ^ 0

3 I f p l — —pl then m t < 1

Any D G D iv^ can be modified by a pnncipal divisor to obtain an equivalent D \ ~ D
such that D \ is a semi-reduced divisor This implies that every coset o f P icq (K) can be
represented by a semi-reduced divisor

The field K is defined from now on to be F f/, the finite field of q elements A divisor D
is said to be defined over if D a = m t (P f) = D , for all automorphisms o o f F (/ over
F (/, where P a = (cr(x), cr(y)) if P = (x, y) and oo^ = oo The theorem of Riemann-Roch
implies that every element o f P ic ^ (F f/) can be represented uniquely by a semi-reduced
divisor D = m , (Pi) — m i)(°°X wlt^ additional property that m , < g, where
q is the genus of the curve Semi-reduced divisors with this property are known as reduced
divisors

The degree zero divisor class group P icq(K) is isomorphic to the Jacobian o f the curve
C defined over K , denoted Jc{K) The Jacobian is an Abelian variety of dimension q
P ic ^ (X) is also isomorphic to the ideal class group of the function field K (C), which is
the field of rational functions on C Mumford [86] introduced a way of representing a semi
reduced divisor as the greatest common divisor o f two prmcipal divisors o f functions of the
form u(x) and t;(x) - y This uses the ideal class group representation, and is extremely
useful for implementation

Definition 15 A (non-tnvial) semi-reduced divisor D ~ — (^ m i)(oo) €
D iv q (K) can be represented by two polynomials [u,v] with coefficients in F g such that
u (x) = ~ x t)mt and v (x l) — y % with the following properties

1 u is momc

21

2 deg v < deg u < g

3 it | v 2 + vh — f

The identity element o f P ic^(iT) is represented in Mumford notation as [1, 0] A divisor
in Mumford representation [w, v] is reduced if and only if deg(w) < g I f D is defined over
F^, then u and v are also defined over ¥ q However, this does not necessarily mean that the
points in the support of the divisor are defined over ¥ q

Cantor [14] showed how to perform group arithmetic in P ic ^ (/f) using Mumford rep
resentation, assuming that h(x) = 0 and p ^ 2 This algorithm was later generalised by
Koblitz [64] to remove these conditions The group operation is split into two steps The
first step, called composition, takes as input two semi-reduced divisors D \ and D 2, and
outputs a semi-reduced divisor D f ~ D \ + D 2 This is given in Algorithm 1 The second
step o f the group operation is called reduction, and reduces the semi-reduced divisor D ' to
an equivalent reduced divisor This is given in Algorithm 2

Algorithm 1 Divisor Composition
I n p u t = [uh v1]iD2 = [u2,v2]
O u tp u t D f ~ D \ + D% D f = [u -u]

1 Compute d\ = gcd (u i, ¿¿2) = e \u \ + e2u2
2 Compute d = gcd(di V1 + V2 + h) = c \d i 4- c2 (v\ + v 2 + h)
3 s i < - c ie i, 52 c \e2, 63 c2
4 u (u iu 2) /{ d 2)
5 v (si«iV 2 4- 52̂ 2̂ 1 + 53(̂ 1 v2 + f)) / d m od u6 Return [u v]

A lgorithm 2 Divisor Reduction
Input D = [u, u] semi-rcduced
O u tp u t D* = \v\ v!] reduced with D f ~ D

1 v! (/ — vh — v2)/u, vr <— (—h — v) mod v f
2 if deg uf > g then
3 u <— uf, v vf
4 > Go to step 1
5 end if
6 > Make uf momc
7 R etu rn [u\ vf]

22

Pic® (Fg) is a finite Abelian group which fulfills all the criteria given in Chapter 1 for
implementing a DLP-based cryptosystem The group elements can be represented in a
compact and simple manner due to the representation of Mumford The group operation
can be performed efficiently due to the algorithm of Cantor The DLP is defined in the
hyperelliptic context as follows

Definition 16 The Hyperelliptic Discrete Logarithm Problem (HCDLP) in P ic ^ F ^) is the
follow ing given (£>, \x]D) G FiCQ(¥q)2, find an integer x 6 [0, # P ic ^ (F v) — 1] where
\x]D denotes D -f D + D 1 J ' v "i times

Computing [x\D efficiently is essential for cryptosystems based on the intractability of
the DLP It is inefficient to repeatedly add D to itself when x is a large integer Instead, it is
far more efficient to use the double-and-add algorithm (also known as square-and-multiply
when using multiplicative notation) The double-and-add algorithm takes 2[log2(^)J oper
ations in the worst case, and 3[log2(x)J /2 operations on average, assuming that a doubling
is computationally equivalent to an addition On average, x will have a Hamming weight
of log2(x)/2 , which necessitates log2(t-)/2 additions It is possible to improve the per
formance of the double-and-add algorithm by using a windowing algorithm to reduce the
number of additions If x is written in non-adjacent form (NAF), it is possible to reduce
the number of additions to log2(z) /3 This method is effective if x does not have a low
Hamming weight

The best attack on the HCDLP is due to Gaudry et al [40], which has complexity
0 (q 2~2tQ) This is faster than the generic Pollard-rho attack for genus g > 3 There
fore, hyperelliptic curves o f genus 1 or 2 are typically used when implementing DLP-based
cryptography It remains to examine how to determme the cardinality o f the group

Definition 17 The Hasse-Weil bound gives a bound on the group order that depends only
on the underlying finite fie ld ¥ q and the genus q o f the curve,

(Vq — l)2s - #PiCc(F«j) < (\/9 + l)2s

23

Therefore, the group order for an arbitrary hyperelliptic curve of genus g over F g is
roughly given as # P iC q (F q) « q9

Definition 18 The q-th power Frobemus endomorphism <j>q on a hyperelliptic curve C
defined over F (/ is given by

where P ^ q = (r q, y <!) and

P < (F ,) Pic“ (F,)

OO q = CO

When a divisor is written in Mumford representation [1/ v], then the ç-th power Frobe-
nius endomorphism of Pic® (Fg) operates on the coefficients o f u and v as the q-th power
field automorphism Therefore, applying the ç-th power Frobemus endomorphism to a di
visor in Mumford representation requires at most 2g operations in F (/ For a hyperelliptic
curve C o f genus g defined over F,,, the Frobemus endomorphism <j>q satisfies a character
istic polynomial o f degree 2 g o f the form

XC(T) = T 2" + a jT 2''- 1 + + a gT>+ + a lq“- iT + q\

where a t 6 Z The characteristic polynomial o f the Frobemus endomorphism factors as
\ c (T) = where the are complex numbers of absolute value x[q Once the
values are known, then both the number of the points on the curve C and the cardinality
o fP icg .(F ,r), for some integer r > 1 , can be computed efficiently

Lem m a 1 Let C be a hyperelliptic curve o f genus g over F 9 and let \ c (T) = ü f = i (T —
a t) be the characteristic polynomial o f the Frobemus endomorphism Then fo r any integer
r > 1

#C (F,r) = 5r + l - £ a : ,
Ï=1

24

and

2 9
= n a - o

1 = 1

Therefore, it is possible to compute #Pic® (Fyr) by first deriving the aL coefficients of
X c{T), and then factoring x c { T) to obtain the a t Each at coefficient can be obtained by
computing # C (F qi) For a curve of genus g , this involves computing the number of points
on the curve C (¥ qi) for 1 < i < g This technique is useful for Koblitz curves, which
are curves defined over a small field, and then considered over a large extension field For
example, all o f the genus 2 curves in characteristic 2 that are examined in this thesis are
defined over F 2, but considered over ¥ 2^ However, this method is not generally useful for
determining the cardinality of P ic ^ (F p) for large p, as computing # C (F pt) is a non-tnvial
task In this case, an algorithm can be used to compute ~xc directly (1 e without computing
the number of points on the curve) Once \ c is known, the group order can be computed
as # P ic ^ (F p) = x c (l) Chapter 17 of Cohen et al [19] provides an overview of such
algorithms

Menezes et al [80] show how to reduce the (HC)DLP in Pic£.(Fg) to the DLP in F** in
probabilistic polynomial time using the Weil pairing (actually their paper gives this result
for elliptic curves) Frey and Ruck [30] use the Tate pairing to achieve the same effect for
curves of arbitrary genus, and hence the attack is frequently referred to by the initials of
the authors as MOV/FR As index calculus attacks exist with sub-exponential complexity
in F*fc, then the reduction implies that the DLP in P ic ^ (F g) can be compromised if k is
small k is a positive integer that is defined in the following way

Definition 19 Let C be a hyperelhptic curve o f genus g over F«j and let D E P ic^(Fg) be
a divisor o f pnme-order n, which is co-prime to q Then the embedding degree k o f (D)n
is the smallest positive integer such that n \ qk — 1 In other words F g/t is the smallest fie ld
that contains the group o f the nth roots o f unity

When selecting a curve to implement a DLP-based cryptosystem, it is desirable to have

25

an embedding degree k that is as large as possible to avoid the attack of MOV/FR For the
majority o f hyperelliptic curves this is automatically satisfied, and when considering the
same curve over different fields, k varies over the whole range 1 , q9 However, for a
certain class of curves that are called supersingular, the embedding degree k is relatively
small, which makes supersingular curves unsuited to implementing DLP-based cryptogra
phy Yet it is precisely this property that makes supersingular curves excellent candidates
for pairing based cryptography An Abelian variety over ¥ q is supersingular if it is lsoge-
nous (over F g) to a product o f supersingular elliptic curves A hyperelliptic curve C over
Wq is called supersingular if the Jacobian, J c (F g), is supersingular

As hyperelliptic curves o f genus g over ¥ q have a group size o f approximately q9 ele
ments, they can be defined over the field ¥ qt, where qf ~ to attain the same group size
as an elliptic curve defined over F g However, this also implies that the genus of a curve
should be taken into account when assessmg the security afforded by an embedding degree
k This is due to the MOV/FR attack, which uses the Tate pairing or the Weil pairing to
transfer the DLP to the group F*k/g The so-called security parameter is then defined as the
embedding degree divided by the genus o f the curve

Galbraith [32] gives a bound k(g) on the embedding degree of supersingular Abelian
varieties of dimension g over ¥ q This bound depends solely on the genus, and not on
the Abelian variety itself For example, for supersingular Abelian varieties o f dimension
2 the bound is A, (2) = 12, and for supersingular Abelian varieties o f dimension 3, the
bound is k(3) = 30 As the embedding degree must be divided by the genus to give a more
accurate estimation o f the security, low genus supersingular hyperelliptic curves cannot give
much more security from the MOV/FR attack than supersingular elliptic curves However,
Rubm and Silverberg [96] show that Galbraith’s bounds are not achieved by simple Abelian
varieties o f dimension g > 3 An Abelian variety is simple if it does not decompose as a
product o f lower dimension Abelian varieties As it is essential to work in large primc-order
subgroups in cryptography, splitting Abelian varieties are not interesting For the dimension
3 example, the actual bound that can be attained is k (3) = 18 (i e again k /g = 6)

26

Table 2 2 The maximum embedding degrees of supersingular hypcrelhptic curves over
F , [96] __

genus(g) 1 2 3
q arbitrary (Galbraith’s bounds) 6 12 30
q square 3 6 9
q nonsquare, p — 2 4 12 *
q nonsquare, p — 3 6 4 18
q nonsquare, p > 3 2 6 14

It is important to note that supersingular hypcrelhptic curves of genus g may not be
known with the maximum embedding degree as given by Rubin and Silverberg For exam
ple, there is no known example o f a supersingular hyperelliptic curve of genus 2 over Fp
with an embedding degree o f k = 6, only an embedding degree of k = 4 The maximum
embedding degrees for supersingular hyperelliptic curves of small genus are summarised
m Table 2 2 Supersingular hyperelliptic curves of genus 3 with embedding degree 14 only
exist in characteristic p — 7, not for large p, and so this case is not interesting for cryp
tography As can be seen in Table 2 2, supersingular hyperelliptic curves only attain large
embedding degrees in small characteristic However, due to Coppersmith [21] a subexpo-
nential attack exists on the DLP in the finite field F*mfc which is faster than in F*fc This is
an argument against using supersingular curves for pairing based cryptography, as opposed
to ordinary curves over Fp, as larger finite field parameters must be used

2.4 Implementing Hyperelliptic Curve Cryptography
As explained in the previous chapter, only hyperelliptic curves o f genus 1 (elliptic curves)
and hyperelliptic curves of genus 2 are interesting for implementing cryptosystems that are
based on the intractability o f the DLP In this section, more details are given on how these
curves are used in cryptography

27

A non-singular elliptic curve E defined over a field K is given by an equation of the form

E y 2 -f a \xy -\- a$y = x 3 + ci2X2 + a^x + ag,

where a \ , a2, a-$, 0,4, clq € A As detailed in the previous section, the elements of the group
P ic ^ (F 9) of a hyperelliptic curve C o f genus g can be represented by a semi-reduced divisor
D = rnt (Px) - (J2 m t)(oo), with the property that 52 < 5 F°r an elliptic curve, this
means that D has only a single finite point Pq € E (¥ q) in its support with ??io = 1, such
that D is of the form D = (Pq) — (oo) Therefore, there is a one-to-one correspondence
between elements o f P ic ^ F ^) and the points in E (¥ q), where [1 , 0] is equivalent to the
point at infinity oo In other words, £ (F g) is isomorphic to P ic ^ (F 9) Therefore, it is
possible to work solely with E (¥ g), the F g-rational points on the curvc, rather than use
Mumford representation as for elements o f P ic^(Fg) Note that for a hyperelliptic curve o f
genus g > 1, the points on the curve do not form a group

The point at infinity oo can be thought of as a point on the y-axis, which lies so far away
from the rc-axis, that any vertical line (i e x = c, where c is a constant) passes through it
Cantor’s algorithm for performing group arithmetic in P ic ^ (F q) corresponds exactly to the
geometric chord and tangent operation on E (¥ q)y which is desenbed as follows

Definition 20 Let P>Q 6 E (F q), 1 be the line connecting P and Q (or tangent line to E
i f P = Q) and i? be the third point o f intersection o f] with E Let v be the vertical line
connecting R and oo Then P + Q is the point such that v intersects E at R, oo and P + Q

This definition easily yields explicit formulae for the group law that depend on the
coordinates o f the input points These formulae are far simpler and faster to implement than
the generic algorithm due to Cantor for arithmetic in Pic® (¥ q) Many different coordinate
systems are available with which to perform group arithmetic The advantage o f using
alternatives to the standard affine coordinates is to eliminate expensive field inversions,
or to reduce the cost o f doubling a point, which is the most prevalent operation in scalar

2 4 1 Elliptic curves

28

Table 2 3 Cost o f group arithmetic for elliptic curves in ¥ p
Coordinate System Addition Doubling
Affine Coordinates
Projective Coordinates
Jacobian Coordinates
Chudnovsky Jacobian Coordinates
Modified Jacobian Coordinates
Montgomery Scalar Multiplication

/ , 2M, 5
12M, 25
12 M , 4 5
11M, 35
13M, 65
9M , 25

/ , 2M 25
7 M , 55
4M 65
5M, 65
4M , 45
6M , 3 5

Table 2 4 Cost of group arithmetic for elliptic curves in ¥ 2™
Coordinate System Addition Doubling
Affine Coordinates
Projective Coordinates
Jacobian Coordmates
Lopez-Dahab Coordinates
Montgomery Scalar Multiplication

/ , 2M , 5
16M, 25
16M, 35
13M, 4 5
4M , 15

I , 2M , 5
8 M , 4 5
5M , 55
5M , 45
2M , 35

multiplication The cost o f the group operation using different coordinates in ¥ p is given in
Table 2 3, and in F2™ in Table 2 4 Note that 7, M , 5 denote a field inversion, multiplication
and squaring, respectively A clear conclusion to be drawn from Table 2 3 is that affine
coordinates in F p should be avoided, as the ratio J /M is large The situation is not so clear
in F 2"i as field inversion is not as expensive as in ¥ p

The set o f points on an elliptic curve forms a finite Abelian group which meets all of
the requirements for implementing a DLP-based cryptosystem It has the added advantage
o f having an extremely simple representation and algorithm to compute the group law The
group E (¥ q) has thus far resisted any successful attempt to apply the mdex-calculus As a
result, it is possible to use smaller field sizes for elliptic curve cryptography than for finite
field cryptography It remains to determine the cardinality o f the group The Hasse-Weil
bound on the cardinality o f P ic ^ (F g) for a general hypcrelliptic curve C over ¥ q is

(v/9 - l) 2s< # P i4 (F ,) < (v^ + l) 2i'

29

Tn the elliptic curve case this simplifies to

(<? ~ 2\/<? + 1) < #E (¥q) < {q + 2 \ / i + 1),

from which the identity # j£ (F 9) = <7 + 1 — / is obtained, where |/| < 2^/q The value
t is called the trace of the Frobenius endomorphism The characteristic polynomial of the
Frobenius endomorphism for an elliptic curve E over ¥ (] is x e { T) = T 2 + a jT + q The
cardinality of E (¥ (]) can be evaluated with y c (1) — 1 + oi + where ai = —t Once
E (F (J) is known, it is trivial to find # E (¥ (Jr) for some integer r > 1 Let x e (T) =
(T - ao){T - oei), then

E (¥ qr) = qT + 1 - a rQ ~ o^,

where ao and a \ are conjugates Several algorithms exist to compute the group order o f an
elliptic curve E defined over a large prime field F ;J in polynomial time, the first o f which
was given by Schoof [101]

In the previous section, an Abelian variety was defined as supersingular if it is isogenous
to a product o f supersingular elliptic curves (over F 7) Clearly, this definition is incomplete
without defining supersmgulanty in the context o f elliptic curves

Definition 21 An elliptic curve E over Fg = F pm is supersingular i f and only i f t = 0
m od p where t is the trace o f the Frobenius Otherwise the curve is ordinary

In other words, for a curve to be supersingular the characteristic p must divide the trace
of the Frobenius t This can only happen if # E (¥ q) = 1 m od p I f p > 5, then E
is supersingular over F p only if the trace o f the Frobenius t equals zero, in which case
E (¥ P) = p + 1 This yields an extremely fast method to evaluate a scalar multiple of
a point P = (x y) As the trace is zero, the characteristic polynomial o f the Frobenius is
Xb(<t>p) = </>p+P = 0 Therefore \p]{x,y) = -<fi2 (x ,y) = (xp2, - y p2), which is extremely
efficient to compute, as raising an element in Fp to the power of p 2 is a linear operation

30

This technique can be used in scalar multiplication by writing the scalar to the base p and
using multi-exponentiation

The set o f torsion points are the points whose order is finite, which is the case for all
points on E over ¥ q The set o f /i-torsion points is defined as follows

E[n} = { P \ P e E (W q),{n}P = (^) }

There are exactly r?2 ^-torsion points When p is the characteristic of then a curve is
ordinary if E\p] ~ Z y„ and supersingular if E\p] ~ 0 In other words, supersingular curves
have no finite points o f order p with coordinates in ¥ q

2 4 2 Genus 2 curves
A non-singular (imaginary quadratic) hyperelliptic curve C o f genus 2 over a field I< is
given by the equation

C y 2 + h (x)y = f (r) ,

where h(x) is a polynomial in K o f degree at most 2, and f (x) is a momc polynomial
in K o f degree 5 All genus 2 curves are hyperelliptic, which is not the case for curves
of genus ry > 2 There is no isomorphism between P ic ^ (F r/) and C (¥ q), unlike in the
elliptic case, and therefore C (F f/) does not form a group The elements of P ic^ (F r/) arc
represented by a reduced divisor D = 5 2 m ,(P j) ~ CH'm i)(00)> where 52 m , < 2 It is
possible to enumerate all the different types o f reduced divisors that arise for genus 2 curves,
D — (0), D = (Po) - (oo), D = 2(Pq) - 2(oo) and D — (Pq) + (P i) - 2(oo) Divisors
with a single finite point in the support are called degenerate divisors, and will prove to be
extremely useful in pairing computation later in this thesis Elements o f P ic ^ (F g) for genus
2 curves are represented as [x2 + u \x + uq, v \ x + i>o], using the notation of Mumford

It is relatively inefficient to use Cantor’s algorithm to compute the group law lor genus
2 curves, as it is a genenc algorithm designed to cater for all possible curvc equations and

31

Table 2 5 Cost o f group arithmetic for genus 2 curves in F p
Coordinate System Addition Doubling
Affine Coordinates
Projective Coordinates
New Coordinates

/ , 22 M , 35
47 M , 4 5
47M , 75

I 22Af, 55
38M , 65
34M , 75

genera A large amount o f work has been done on deriving explicit formulae from Cantor’s
algorithm for genus 2 curves It is only necessary to derive formulae for the most common
case, which is when the divisors have maximal degree 2 and the finite points in the support
all have different x-coordinates Cantor’s algorithm can then be used to handle the other
rarely-occurring cases This work culminated in Lange’s formulae [70] for the affine case
Miyamoto et al [85] introduced projective coordinates, which Lange [68] improved and
extended to even characteristic Lange [69] also introduced “new” coordinates as a general-
isation of elliptic Jacobian, Chudnovsky Jacobian and modified Jacobian coordinates from
elliptic curves to hyperelliptic curves of genus 2

The cost o f doubling and addition using the explicit formulae and various coordinate
systems is given in Table 2 5 m Fp and Table 2 6 in Genus 2 curves over F 2̂ can be
classified depending on the h(x) polynomial The cost in Table 2 6 assumes that k (x) —
I12X2 4- h ix 4- Hq, where the leading coefficient h2 ^ 0 Large speedups can be obtained
when some of the coefficients o f h (x) are equal to 0 For example, curves of genus 2 where
h(x) is constant are supersingular, and extremely efficient explicit formulae can be derived
for the group operation Examining the tables, it is clear that inversion must be costly to
justify using the alternative coordinate systems over affine coordinates Using the ratios of
I / M and S /M over Fp and F2™ m Table 2 1, affine coordinates are more efficient for F 2m
as well as in all but the most inefficient parameters for Fp Recently, Gaudry [38] and others
have extended Montgomery scalar multiplication to the genus 2 case, which promises to be
much more efficient than the coordinate systems given in Tables 2 5 and 2 6

Therefore, genus 2 curves are a good alternative to using elliptic curves for DLP-based
cryptography Group elements can be represented in a reasonably compact manner as 4

32

Tab e 2 6 Cost o f group arithmetic for genus 2 curves in F 2
Coordinate System Addition Doubling
Affine Coordinates
Projective Coordinates
New Coordinates

7 ,22A/, 3S
49 M , 4 5
4 8M , 4 5

7 20M , 65
38A7,75
39M , 65

elements o f F 9, and the explicit formulae for performing the group law are far more ef
ficient than using Cantor’s algorithm As with elliptic curvts, no algorithm exists to date
for attacking the DLP in P ic ^ (F g) with complexity lower than the generic Pollard-rho al
gorithm The Hasse-Weil bound on the order o f Pic® (Fg) for genus 2 curves implies that
P ic ^ (F q) « q2 However, the size of the group for elliptic curves over ¥ q is only around
q This means that a genus 2 curve can be defined over a finite field of y/q elements to
maintain the same security as an elliptic curve defined over a finite field o f q elements
Smaller field sizes lead to more efficient implementations, particularly if a field element
can fit inside a hardware register However, this must be balanced against the more difficult
arithmetic required in the genus 2 case

As with elliptic curves, the Frobenius endomorphism can be used to speed up scalar
multiplication for genus 2 Koblitz curves over F2m, e g see Gunther et al [44] The
characteristic polynomial o f the Frobenius endomorphism for a genus 2 curve C over ¥ q is
given as

4

X c (T) = T 4 + a iT 3 + a2T 2 + a ig T + q2 = J] (r “ « .)
1 = 1

where a i a2 6 Z, and the are complex numbers o f absolute value y/q The group order
over ¥ qr, for some integer r > 1, can be computed as

4

p .c^) = r i (w)t—1

The group order over F g can be computed by determining the coefficients a\ and <72 of
X c (T) , and then evaluating x c (l) These coefficients are given as a\ = # C (¥ q) - q - 1

33

and a2 = (# C (F ff2) - q2 - 1 -F a2) / 2 Using this method to compute the group order
over an extension of ¥ q involves determining the tv, by factoring x c {T) However, this
technique is only practical for curves defined over small fields Numerous algorithms exist
to compute # P ic ^ (F 9) for genus 2 curves in a more general way, see chapter 17 of Cohen
et al [19] for more details

The set o f /¿-torsion divisors, P ic^[/t], is given as

P k & M = { D \ D e P i c ^ , [a]D = (0)}

Pic^[n] has group structure (Z /r?Z)4 in the genus 2 case As with elliptic curves, supersin-
gular genus 2 curves have no divisor D o f order p in ¥ q See Galbraith [32] for more details
on supersingular (genus 2) curves in cryptography

2.5 The Tate Pairing
The Tate pairing (also called the Tate-Lichtenbaum pairing) was introduced to cryptogra
phy by Frey and Ruck [30], as an alternative bilinear pairing to the Weil pairing In the
context o f pairing based cryptography, the Tate pairing is a pairing of Jacobian varieties
defined over a finite field Let C be a hyperelliptic curve defined over a finite field ¥ q,
and let ri be a (large) prime such that n |#P ic<?(F9) n is also required to be co-prime
to q to avoid the attack o f Ruck [98] Let k be the embedding degree as defined previ
ously, and let D \ € P ic ^ (F 9*)[u], such that [n\Di = (/) , for some function / Let
D2 6 P ic ^ (F gfc)/aP ic^(F gjt) To ensure a non-tnvial pairing value, D \ and D 2 must have
disjoint support

Definition 22 The Tate pairing o f level n is a map

{,)„ Pk&(F,*)M X P i c ^ V n P i c ^ F ,*) -> F;t /(F(>)"

34

and is defined as

(D u D 2)n = } (D 2)

The Tate pairing satisfies the follow ing properties

1 (Bilinearity) ([a]D\ , [b]D2)n = { ^ 1, D 2) ^ f o f all a ,b G Z (modulo nth powers)

2 (Non-degeneracy) For each divisor D \ G P i c ^ F ^ f n] D \ ^ (0) thete is some
divisor D 2 G PiCQ(Ff/fc)/nPic® (F(/t) such that (D i ,D 2) ^ (F*k)n

3 (Computability) {D \ , £>2)n be efficiently computed

The subscript n in (,)n can be dropped if it is obvious from the context The first input
to the Tate pairing is an element of P i c ^ F ^ ^ n] , the group of n-torsion divisors in F (/fc
However, the second input is an element of P i c ^ F ^ / n P i c ^ F ^) , where n P ic ^ F *) =
{[n\D \ D € P ic ^ (F 7a:)} is a subgroup of P i c ^ F ^) The quotient group Pic® (F ^) /
7 iP ic^(Ff/A:) is the set o f equivalence classes of elements in P ic ^ (F f/fc) under the equiva
lence relation D \ ~ D 2 such that (D \ - D 2) G t i P i c ^ F ^)

Let r? be a pnm e as defined, and let P ic ^ (F y) have no elements o f order 772 In other
words, n 2 should not divide # P ic ^ (F f/) Then the group P\Cc(Fqk)/nP iC c(F qk) is iso
morphic to P ic ^ (F f/fc)[7?] Therefore, the second input to the Tate pairing can be taken to
be an element of the n -torsion group However, it is unnecessary to restrict D 2 to this
group, as the output o f the Tate pairing is not affected by the choice o f D 2 E P ic ^ (F f/fc) as
representative of the class Therefore, the Tate pairing is defined as the simplified map

Pic£(F,t)[n] x P.c^F,,*) - F^/(FJ*)"

The output o f the Tate pairing is an element o f the quotient group F*fc /(F * fc)n Let p n =
{w G F*k | u n = 1} be the group of the nth roots of unity, and define (F*fc)n = {u n \ u G
F*fc}, which is a subgroup of F*fc The quotient group FJfc/(F * fc)n is isomorphic to p n
Two elements a,b e F*^ are equivalent (when considered as elements o f F*k/ (F*k)n)

35

if a /b € (F*fc)" In other words, a = be" for some c (E F**. As the output of the
Tate pairing is defined up to a multiple by the 71th power of c e F*^, it is necessary to
modify the output to obtain a unique value suitable for cryptography An obvious way to
remove the nth powers is to exponentiate the pairing value to the power of (qk - 1) /n , as
(cn)(<^-i)/n _ c{qk- i) — j hls exponentiation is known as the “final exponentiation”,
and the resulting pairing is known as the reduced Tate pairing

Definition 23 The reduced Tate pan ing is defined as

The non-degeneracy property of the (reduced) Tate pairing states that for a given divi
sor D \ e Pic® (Fqk)[n], apart from D \ — (0), there is a divisor D 2 e Pic® (¥qk) such
that (D \ ,D 2) ^ 1 However, a method is needed to construct D 2 such that the pair
ing is non-degenerate As will be detailed in the following chapter, instead of defining
D \ € P ic£ (F *)M , it is common in practice to define D \ over F g, l e D \ 6 Pic® (Fg^n]
If D 2 is also defined over F g and k > 1 then the pairing value is degenerate, as it will be
eliminated by the final exponentiation Two techniques are known to construct D 2 to guar
antee non-degeneracy in the case that D \ G Pic® (Fg) The first technique uses distortion
maps on supersingular curves, and the second uses trace maps on ordinary curves

Verheul [113] introduces distortion maps and shows how to apply them to pairing com
putation Let D e P ic ^ F y) be a non-tnvial divisor with prime order n, such that n 2 does
not divide # P ic ^ (F (/), and let the embedding degree k > 1 A distortion map ip is then
a non-rational endomorphism which maps D € P ic ^ (F r/) to D' E P ic ^ (F <./fc)\P ic^(F i/)
Distortion maps are used to guarantee non-degeneracy, as the so-called modified pairing of
random elements D ' in a specific subgroup o f order n in Pic® (F^t)

Definition 24 Let D \ ,D 2 e P ic ^ (F g)[n] Then the modified pairing is defined as

I

36

1 he modified pairing is guaranteed to be non-degenerate as the distorted divisor D f2 =
0 (D 2) is linearly independent from D i Another advantage to using distortion maps is that
they facilitate the generation of random elements D' € P ic ^ (F gfc), which can be done by
simply generating a random D £ P ic ^ F ^) and then using ip to map D into the larger
field As distortion maps always exist for supersmgular curves, the modified Tate pairing is
commonly used in practice

Distortion maps do not exist on ordinary curves, and hence a different technique must
be used in this case to guarantee non-degeneracy Let D \ € P ic^ (Fqk) The trace map on
D \ is defined as

k
t> (A) = £ M ° i) € P icc (f ,).

where (j)qx is the qlth power Frobemus endomorphism The trace map can be used to
guarantee a non-degenerate pairing m the following way Let D \ ,D 2 £ P i c ^ F ^) ^] ,
D u D 2 t P i 4 (F ,) and T r (A) + (0) Then

(Tr(Di),D2)^k- ^ n ^ 1

Another bilinear pairing is the Weil pairing An additional constraint on the prime
subgroup order n |#Pic® (F^), n co-prime to q, is that n must also be co-pnme to q —
1 This condition ensures that the Weil pairing is efficiently computable Let D \ ,D 2 E
Pic^OfyOfa], where D \ and D 2 are in distinct cyclic subgroups of order n Let / be a
function such that (/) = [n]£>i, and g be a function such that (g) = [n]£>2 Again, to
ensure a non-tnvial pairing value, D \ and D 2 must have disjoint support

Definition 25 The Weil pairing is a map

e „ (,) P ic ^ (F 9t)[/i] x Picg;(F,k)[n] — ftn ,

37

(r\ n \ f (Dz)
en {D u D 2) = ^ m

The Wed pait ing has the following properties

1 (Bilinearity) en ([a \D i, [b]D2) = en (D \: D 2)ab fo t all a, b € Z

2 (Non-degeneracy) Foi each divisor D\ E P ic ^ (F gfc)[n] D i ^ (0) there is some
divisor D 2 E P ic ^ (F qk)[n] such that en (D i ,D 2) ^ 1

3 (Computability) er, (D i , £>2) can be efficiently computed

4 (Alternating) For all D \ D 2 € P i c ^ F ^ n] then en (D i ,D 2) = en (D 2, Z)i)_1

5 (Compatibility) I fD 1 € Pic® (F9t)[nm) and D 2 6 P ic£ (F 9fc)[n] then enm(D i, D 2) =
en ([m \D u D 2)

6 lf(j) E —> E f is an isogeny with dual 4> then en((p(P), Q) = cn(P : 4>(Q))

The Weil pairing can be computed using two applications of the Tate pairing such that

{D \, D 2)n

and is defined as

en(Di, D2) = CP2.A)«’

where the equivalence is up to nth powers Note that this implies that en (D \, D \) = 1,
which is not necessarily the case for the Tate pairing When assessing which is the more
efficient pairing, the comparison is between the final exponentiation to (qk — 1) j n required
for the (reduced) Tate pairing, and the computation of (D 2 ,D \) n required for the Weil
painng This question will be explored further in the following chapter, however it suffices
to say for the moment that the Tate pairing can be computed more efficiently Therefore,
the Tate pairing is the most interesting pairing for cryptographic applications

A bilinear pairing is said to be symmetric if swapping the arguments yields the same
pairing output As the Weil pairing can be calculated with two applications of the Tate

38

pairing, it follows that the Tate pairing is not symmetric, as this would violate the non
degeneracy property of the Weil pairing However, both the reduced Tate pairing and the
Weil pairing are symmetric when a distortion map is applied to the second argument, or the
trace map is applied to the first argument, as both are then restricted to a cyclic subgroup
For example, let D2 = [tu\Di and let ip be a distortion map Then

cn {Du ip(D2)) = cn (D i, [m]ip{Di)) = cn ([m]Du 0(£>i)) = cn (D2, 0(£>i))

Therefore, as supersmgular hyperelliptic curves of genus 2 are considered in this thesis,
the property of symmetry, as required in the definition of a bilinear pairing in Chapter 1, is
provided by restricting both input elements to the pairing to the same group P ic ^ (F Q)[/t]
and using a distortion map

The computability property of the Tate pairing simply states that the Tate pairing can
be computed efficiently The mam task involved in computing the Tate pairing (D\ D 2)n,
is to construct the function j such that (/) = [ri]Di In an unpublished manuscript in 1986
by Miller [82] (and later published in 2004 as Miller [84]), it was shown how to efficiently
construct this function in stages by using a double-and-add algorithm This algorithm,
known universally as M iller’s algorithm, was originally used to compute the Weil pairing
in polynomial time However, it can be easily adapted to compute the Tate pairing

Let D 2 e P ic ^ (F gfc), and let D 3 £ P ic ^ (F Qfe) be the divisor that is formed from
the Cantor composition and reduction of D\ and D 2 Then

D 1 + D 2 - D i = (J) = {c/d)J

where f = c /d is a function on C which is independent o f the choice o f the representatives
for D\, D 2 and D 3 The goal is to construct a function /„ , such that (/„) — [n\D\ Let
f i = 1, and let J l be the function appearing in

(l) = (i)D - [i]D,

39

where (i)D stands for the (symbolic) addition of the divisor ¿ times to itself, while [¿]£>
stands for the reduced result Then j l+J is defined as

U 1+3) - 0 + j) D ~ [* + j] D

= (%)D - [i]D + (j) D - \ j] D - [i + j] D 4- [i]D + \ j \D

If i = j , then the addition is replaced by a doubling, and appears in the function There
fore, the function f n can be constructed in stages by using a double-and-add algorithm
The actual value for the function j n is not o f interest, rather it is the value of j n at a divi
sor D that is required Each iteration of the algorithm, the rational functions c and d are
evaluated at the image divisor D 2 € P ic^F^fc) This is possible due to the fact that only
multiplication, and not addition, is required to compute / l+J This result is then multiplied
with an accumulating variable f e ¥ qk, which must also be squared each time the iterating
divisor is doubled The resulting algorithm is known as Miller’s algorithm, and is given in
Algorithm 3

If any of the intermediate functions in Miller’s algorithm has a zero at the evaluating
divisor D 2, the algorithm will fail There are a number of techniques to ensure that this
does not happen One strategy is to evaluate at the divisor D 2 = (D2 -f D') - (/) ') , rather
than evaluate at D2, where D* is a randomly chosen element of P i c ^ F ^) This technique
involves evaluating the rational functions c and d at the divisors (£>2 + D f) and D* at each
iteration, and multiplying the the accumulating function by the result However, this is quite
inefficient and techniques will be described in the following chapter to avoid this penalty

It remains to examine how to derive the necessary intermediate functions c and d for the
two cases of interest for cryptography, namely elliptic and genus 2 curves The intermediate
functions are calculated implicitly as part o f the composition and reduction process on the
iterating divisor In the case of elliptic curves, the functions are simply the straight lines
used in the addition process So when adding two points P , Q € E (¥ qk), the function c is

40

Algorithm 3 Miller’s algorithm to compute the Tate pairing
IN PU T Di e P i c ^ (F 7fc) [? i] , D 2 6 Pic® (F^fc)
O u t p u t {Di , D 2)7I

1 i < - l2 T ^ D
3 D '2 <- (D2 + Df) - (D’)
4 for % [log2(n)J - 1 downto 0 do
5 > Compute T ' , c }d such that T ’ — (2) T — (c/d)f r r 2 ci^2)
I T + -T '
8 if n % = 1 then
9 o Compute T \ c , d such that T f = T -f D - (c/d)

in f <— f c^ 2)

II T < - T
12 end if
13 end for
14 R eturn /

the straight line through P and Q, and the function d is the vertical line through the point
P + Q In this thesis, we follow the convention of calling the function c the “line function”,
and d the “vertical line function” However, it must be emphasised that this is not strictly
accurate for higher genus curves

For genus 2 curves it is not quite so straightforward Let D \ , D 2 € P ic ^ (F i;k) be
the two divisors that are being added, given in Mumford representation as D\ = [“// i , ?̂ i]
and D 2 = [a2, u2\ In the composition stage of Cantor’s algorithm, the polynomial 6 =
gcd(fii U2, ui + v2 + h) is computed Now let D 3 = [¿¿3, y3] be the output of the Cantor
composition algorithm on D\ and D2, and let D '3 = [u '3, u's] be the reduced divisor equiv
alent to D% If the divisor D$ is already reduced following the composition stage, then
the function / (x , y) = c(x, y) /d (x , y) = ¿(x) If this is not the case, then the function
j (x , y) ~ t (x , y) /d (x , y) — 6 (x) (y - v s (x)) / u fs (x) In the overwhelmingly common case
<5 = 1 and thus c(x, y) = y - U3(x) and d(x, y) = af3 (x)

As M iller’s algorithm has [log2 iterations, there will be [log2(n)J doublings Also
if n has a random Hamming weight, there will be [log2(n)/2 J additions to be performed in
the loop In Algorithm 3 the iterating divisor T is an F^-rational divisor Therefore, per-

41

forming doubling or addition on this divisor is computationally expensive, even assuming
the use of explicit formulae The rational functions that are extracted from the addition pro
cess for both doubling and addition are then evaluated at the image divisor D 2 € P i c ^ F ^)
After this, the accumulating variable / e F qk (also known as the Miller variable) must be
updated by the result o f evaluating c and d at D 2 However, this operation is extremely
expensive, as with a naive implementation an inversion is required over F qk Finally, the
accumulating vanable is squared whenever a doubling takes places, which again is not a
cheap operation

2.6 Conclusion
In this chapter, it has been described how finite field arithmetic can be implemented in an
efficient manner using a polynomial basis Hyperelhptic curves have been introduced, and
their application to cryptography has been detailed In particular, hyperelhptic curves o f
genus 1 and 2 have been shown to be suitable for implementation due to their compact
representation, efficient explicit formulae for the group law, and lack of effective index
calculus attacks

The Tate pairing and Weil pairing have been defined in the context o f hyperelhptic
curves It has been shown how to construct pairings to avoid trivial values, and an efficient
algorithm due to Miller to compute pairings has been described Both the Weil pairing and
the Tate pairing are suited to implementing cryptographic protocols that are based on the
intractability o f the BDHP m PicJl(Fgfc)

42

Chapter 3

Optimisations to Miller’s Algorithm
3.1 Introduction
In 1993, Menezes [78] reported an implementation o f the Weil pairing that ran in “just a few
minutes” on a SUN-2 SPARC-station using an elliptic curve over F 2™, where m « 200
This was when pairings were used to reduce the HCDLP on supersingular curves to the DLP
in ¥*k, and hence the speed of pairing computation was not particularly important How
ever, with the emergence of cryptographic protocols that are based on computing either the
Weil or Tate pairings, it quickly became obvious that it was of paramount importance to im
prove the relatively slow computational speed o f M iller’s algorithm as originally described

In this chapter, an overview o f various methods to improve the performance of M iller’s
algorithm is provided To the best o f our knowledge, this is the first comprehensive review
on this matter in the literature The emphasis is mainly on elliptic curves, as nearly all
o f the improvements were denved in this context However, a substantial number of the
techniques can be generalised to the hyperelhptic case Firstly, the early optimisations to
M iller’s algorithm are examined These include defining the iterating point over a subfield,
as well as modifying the image point in such a way that the calculation of vertical line
functions can be omitted from the algorithm entirely

Secondly, the concept o f squared pairmgs is examined Initially it appeared that these

43

pairings could be computed more efficiently than plain pairings However, it was later
shown that plain pairings always yield a more efficient implementation Thirdly, the gener
alisation of pairing calculation to hyperelhptic curves of genus greater than one is detailed
Certain curvcs are shown to be extremely suited to pairing implementation, as the Tate pair
ing can be computed with a shortened loop size and a trivial final exponentiation These
curves also support a simple choice of function in the loop which eliminates the need for
explicitly computing multiples o f the iterating point

Fourthly, the concept o f pairing compression is detailed Pairing compression involves
modifying the output o f M iller’s algorithm to take up less bandwidth Both the tracc-based
approach as well as the alternative method of using algebraic ton are examined It is then
shown how to compute the Weil pairing efficiently, using many o f the optimisations defined
earlier in the chapter A metric for implementing finite field arithmetic in an efficient man
ner is also exammed This metric can be used to analyse the cost of pairing computation in
a theoretical manner Finally, a small number of recent optimisations are examined and the
chapter is concluded

3.2 Early Optimisations
Here the Tate pairing is considered in the elliptic case E , rather than in the more general
hyperelhptic setting Let D\ ~ (P) - (oo) 6 P i c ^ F ^ n] , such that [n]Di = n (P) -
71(0 0) = (/) , and let D 2 = (Q) - (o o) 6 P i c ^ F ^) Rather than compute the Tate pairing
using D\ and D 2, it is more convenient to exploit the isomorphism between P ic ^ (F 9*) and
E (¥ qk), and compute the pairing on P and Q To ensure that none of the intermediate
functions in M iller’s algorithm have a zero at Q, the second argument to the Tate pairing is
defined as Q' = (Q 4- R) - (7?), where R e E (¥ qk) is a random point on the curve such
that R ^ {oo, - P } Therefore, the Tate pairing is computed as

{P,Q')(/~l)/n = f(Q'){qk~l)/n

44

Galbraith et al [31] introduce three improvements to M iller’s algorithm for computing
the Tate pairing Ihe mam observation is that the first input point P in {P , Q f)n should
be defined over F 9 rather than over ¥ qk This observation was previously made by Boneh
and Franklin [11] in the case of the Weil pairing Galbraith et al suggest representing the
field F qfc as a degree k extension of the base field F g = F pm, rather than working with
extensions of F pt o f degree m, as suggested by Boneh et al [12] However, arithmetic in
F ?fc is still far more expensive than in F^ If P is defined over ¥ q} then the coefficients of
the straight lines used m the addition process will also be defined over F g This leaves only
the evaluation of the line functions, and the subsequent multiplication by the accumulating
Miller variable (which is also squared), to be performed in F qk This idea substantially
reduces the computational cost o f M iller’s algorithm Galbraith et al also show that the
random point R in M iller’s algorithm can be defined overF^ instead o fF g*

The second observation of Galbraith et al relates to removing inversions from the al
gorithm The line functions must be divided by the vertical line functions at each iteration
of the loop However, inversion in the field F ^ is extremely expensive The idea o f Gal
braith ct al is to use two accumulating variables m M iller’s algorithm, and to perform a
single inversion after the loop One variable keeps track o f the numerator, or line functions,
and the other keeps track of the denominator, or vertical line functions Each variable must
be squared whenever a point doubling is performed This technique effectively trades an
inversion for a squaring at each iteration of M iller’s algorithm, which results in a dramatic
improvement, as squaring is a relatively cheap operation in ¥ qk compared to inversion

The third observation is that windowing methods can be used to compute M iller’s al
gorithm This observation was also made by Boneh et al [12] Windowing methods are
routinely used for scalar multiplication on elliptic curves Given a point P e E (¥ q), the
basic idea is to precompute the values [z]P for all values % in a window of size 3 or 4 bits
Windowing methods reduce the number of additions that must be performed, but do not
affect the number of doubling operations However, in chapter 9 o f Blake et al [9], Gal
braith shows that using windowing methods to compute the Tate pairing is not efficient, as

45

there is an increase in the number of field multiplications in the addition stage oi M iller’s
algorithm

Galbraith et al also discuss how to select the order n used to compute the Tate pairing
Let H(n) be the Hamming weight o f n Then the number of additions to be performed in
Miller’s algorithm corresponds to H (a) - 1 Galbraith et al discuss how a can be chosen
so that it has as low a Hamming weight as possible It is also shown how the actual group
order can be used, rather than a subgroup order This is useful for certain supersingular
curves in small characteristic, which have a group order o f low Hamming weight, but do
not have a large prime factor o f low Hamming weight In this case, the Tate pairing can
be computed using the group order TV, and the final exponentiation becomes (qk — 1)//V,
which also has a low Hamming weight Note that while the result is still a unique nth root
o f unity, it may not be the same value as when the Tate pairing is computed with respect to
the large prime n

Some supersingular curves in low characteristic p have extremely efficient formulae to
compute [p*]P, where i > 0 is an integer and P is a point on the curve Galbraith et al
show how this property can be exploited in painng computation An example is given of two
supersingular curves in characteristic 3 with an embedding degree of k = 6 These curves
have a formula for computing [3\P which does not involve inversion As this formula is
very efficient, it is natural to consider using it to compute the Tate painng for these curves
This can be done by using a ternary basis in M iller’s algorithm, instead of a binary basis
as is standard The accumulating vanable must then be cubed each time a point tnpling is
performed, which can be computed efficiently in characteristic 3

Barreto et al [5] also present an improved variant o f M iller’s algonthm to compute
the Tate pairing The most important contribution o f this paper is a deterministic variant
o f Miller’s algorithm to compute the Tate pairing, which is far less expensive to compute
that the conventional algonthm This algorithm depends on the first point P in (P: Q')n
being defined over ¥ q rather than over the larger field F qk As discussed, Galbraith et
al [31] independently discovered the benefits o f defining P over ¥ q However, Barreto et

46

Tabic 3 1 Some supersingular elliptic curves with low k
Curve equation Finite field Curve order k

y 2 ~ x à -f x — dx + d, d 6 {0 1} F p, p > 3 p + 1 2
#2 d y 2 + y = r 3 + x + rf, d 6 {0, 1} F 2 m 2m ± 2(m+1)/2 + 1 4

y 2 = x ò — x + dj d € { — 1 , 1} Fgra 3m g (m + l)/2 j 6

al achieve further computational savings by introducing two new optimisations Barreto
et al first of all show that (q — 1) is a factor o f (qk - 1) / n for the curves in Tabic 3 1, all
o f which have an even embedding degree k If the random point R is also defined over
rather than F ^ , then by Fermat’s little theorem / (P)9_1 = 1, and hence f (R) ^ qk~l^ n = 1
Therefore, the evaluation at R can be omitted altogether from Miller’s algorithm, resulting
in a deterministic algorithm that is computed as (P, Q)n ~l ^ n =

Barreto et a l ’s second contribution is the idea o f ‘denominator elimination1 Recall that
two functions are extracted from the addition process in Miller’s algorithm In the elliptic
case, the line function corresponds to the tangent at the iterating point (if doubling), or
the line between two points (if adding) The vertical line function consists o f the equation
of the vertical line through the resulting point The line function must be divided by the
vertical line function each time a doubling or addition takes place Galbraith et al [31]
avoid this by using two accumulating variables and performing a single inversion after the
loop However, Barreto et al show how to completely avoid computing the vertical line
functions, which improves the speed of Galbraith et a l ’s algonthm by nearly 50%

As detailed m Chapter 2, the modified Tate pairing is typically used when implementing
pairings using supersingular curves In the elliptic case, this involves generating a point
Q e E(¥q) and using a distortion map to obtain a point i)(Q) € E (¥ qk), which can
then be used as the image point in M iller’s algorithm Table 3 2 gives a suitable distortion
map for some of the curves defined previously in Table 3 1 Barreto et al show that the
vertical line functions can be discarded when computing the modified Tate pairing using
any of these distortion maps The key reason for this is that the distortion maps given in
Table 3 2 map the ^-coordinate of the point Q to a subfield o fF gfc, whereas the ¿/-coordinate

47

Table 3 2 Distortion maps for (most of) the curves given in Table 3 1
Curve Finite field Distortion map Conditions
Ei o ”01 {x ,y) = { - x }iy) p = 3 mod 4,

i € F p2,
z2 = - 1

#2,0, E 2 1 ¥ 2m y) = {x + s2, y + sx + t) S, t E F 2^rn 5
s4 + s = 0,
t 2 + t + s 6 + s 2 = 0

£3 — 1, E 3 1 F 3™ ^ 3(2 y) = (- z + f d w) Td € F33m j I E F 32m ,
»¡I - U - <> - 0,

z2 = - l

is mapped to the full field F gk

The vertical line functions are defined by an equation x — x ^ p = 0, where x ^ P is the
x-coordinate of some multiple % of P , and x is a variable which will be later evaluated at
X^(Q) (the value of which remains constant throughout the algorithm) As P is defined over
the base field F g, the ^-coordinate o f a multiple o f P, will also be defined over ¥ q
In addition, the distortion map tp leaves the ^-coordinate of ip{Q) defined over a subfield
of F qk Therefore, the vertical line functions in M iller’s algorithm will not be defined over
¥ qk , but over some subfield It can be shown that when i divides the embedding degree k ,
then (ql - 1) divides (qL — 1) This exponentiation eliminates all terms defined over ¥ qi,
and thus there is no need to include the vertical line functions in M iller’s algorithm

The denominator elimination technique o f Barreto et al is approximately 50% faster
than the algorithm o f Galbraith et al This is because the denominator elimination technique
removes the need for the second variable, and hence saves a squaring and a multiplication
in ¥ qk each time a doubling is performed in the loop Barreto et al also examine the use of
prime order subgroups o f low Hamming weight They propose using a Solinas [109] prime
as the subgroup order, which is a pnm e number of the form p = 2a ± 2^ ± 1 As a result,
only two additions must be performed in M iller’s algorithm, which can then be unrolled to
remove conditional logic

Barreto et al give a technique to speed up the final exponentiation required for the

48

Tate pairing One way to evaluate this function is to precompute (qk - 1) / n and to use a
square-and-multiply algorithm with windowing techniques to compute the exponentiation
However, Barreto et al observe that for an even embedding degree k, the factor (qk/2 — 1)
can be extracted from the final exponentiation This exponentiation can be evaluated with
a single field inversion and multiplication in F qk, as raising to the power of qk^2 is trivially
computed as a conjugation with respect to ¥ ^ / 2 The remaining exponentiation to (qk¡ 2 +
1)/ n can sometimes be factored further, but remains an expensive operation to compute

Izu and Takagi [51] investigate the computation of the Tate pairing using elliptic curves
over large prime fields Their mam contribution is to evaluate the use of alternative co
ordinate systems in M iller’s algorithm As with scalar multiplication, the best coordinate
system to use depends on the finite field They also show how to optimise the generation
of the coefficients o f the line functions when random points are included in the algorithm
However, this optimisation is not useful in practice due to the deterministic algorithm to
compute the Tate pairing given by Barreto et al [5] Izu and Takagi also investigate using
an explicit formula to compute [2l]P, instead of using the double-and-add approach

Chatterjee et al [15] also examine the implementation of the Tate pairing using elliptic
curves over large prime fields The main contribution of this paper is a method to encapsu
late the computation o f the line function with the doubling process on the iterating point P
Jacobian coordinates are used to represent P , and it is shown how some of the operations
in the encapsulated method do not need to be calculated, as they are eliminated by the final
exponentiation This technique is also shown to apply in the addition stage of Miller’s al
gorithm when mixed addition is used Chatterjee et al examine the memory requirements
of M iller’s algorithm, as well as showing how certain operations can be parallelised for
implementation in hardware It is also shown how to exploit the NAF to compute the Tate
pairing

The denominator elimination technique was previously defined for certain supersingular
curves with distortion maps of a special form Barreto et al [6, 7] generalise this technique
to ordinary elliptic curves, by removing the need for a distortion map It is shown that when

49

k is even and d\k, then qd — 1 is a factor of qk - 1 This implies that the accumulating
function can be multiplied by any nonzero element i e F gd without changing the pairing
output Therefore, the denominator elimination technique can be generalised for the case
that the x-coordinate o f the image point Q is defined over some subfield ¥ qd o f ¥ qk, where
d\k Note that the ^/-coordinate o f Q must be defined over ¥ qk or else the entire pairing
value will be defined over F^d and will be eliminated by the final exponentiation

Barreto et al then give two techniques to show how denominator elimination can work
in the absence of supersmgular curves and suitable distortion maps Let d = k / 2 (and hence
the embedding degree k is even) The first technique uses twists Let E y 2 = x 3 + ax -I- b
be an elliptic curve over the finite field ¥ q> o f characteristic p > 3 Then the quadratic twist
of E over F qd is E' y 2 = x 3 + v2ax + v 3b, for some quadratic non-residue v 6 ¥ qd
Let v be a quadratic residue in F ^ , then the map ^ (x ^ y) i—> (u- 1x, (v s / v)~ l y) is an
isomorphism that maps the group of points o f ^ '(F ^) to a subgroup o f E (¥ qk)

Now let Q' be a point on the twisted curve E '(¥ qd) The mapping given above can
be used to map Qf to the pomt Q on the curve E defined over F ^ , and Q can then be
used as the image pomt m M iller’s algorithm Note that the ^-coordinate o f Q is defined
over F^d, and thus the denominator elimination technique applies Barreto et al [6, 7] also
note that cryptographic operations which do not involve pairing computation, such as scalar
multiplication, can be performed solely using arithmetic in F gd The points o f ^ '(F ^) can
then be mapped back to E (¥ qk) when needed for pairing computation Scott [103] uses the
twist idea to implement the Tate pairing efficiently using ordinary elliptic curves over F p
with embedding degree k = 2

The second technique given by Barreto et al exploits the fact that the group ip(E/ (¥qd))
is a subgroup o f the trace zero subgroup of ^(F^fc) Therefore, an alternative to using
twists is to simply choose a random R € E (¥ qk), and then set Q — R - R qd Q is then a
trace-zero point with the property that its rc-coordinate is defined over F^d This method is
especially useful for hyperelhptic curves of genus g > 1 However, the disadvantages are
that generating random points over F ^ is slower than doing so over F gd, and the ability to

50

speed up non-pairing based operations does not apply

3.3 Squared Pairings
Eisenträger et at [25] present algorithms to compute the squared Weil and Tate pairings
on elliptic curves, and the squared Tate pairing on hyperelliptic curves The squared Weil
and Tate pairings are deterministic, unlike the plain Weil and Tate pairings (as originally
defined) Furthermore, the authors claim a speedup of approximately 20% by computing
the squared Tate pairing using their method over the plain Tate pairing, and by extension,
the same speedup for computing the squared Weil pairing over the plain Weil pairing The
authors also present a method to compute the squared Tate pairing on hyperelliptic curves,
and claim a speedup of approximately 30% on the standard algorithm This algorithm is
notable for being the first detailed implementation of a bilinear pairing on a hyperelliptic
curve o f genus 2

However, there is no real advantage to computing the squared Weil or Tate pairings
using the methods given by Eisenträger et a l , as they have been surpassed by superior
methods to compute the plain Weil or Tate pairings, as detailed in the previous section
Barreto et al show that there is no need to include random points in Miller’s algorithm,
as they can be defined over a subfield and are eliminated by the final exponentiation as
a result Therefore, there is no real advantage to the deterministic algorithms to compute
the squared Weil and Tate pairings The authors use Cantor’s algorithm in the genus 2
case to double and add divisors and to extract the necessary functions required by Miller’s
algorithm However, in practice Lange’s explicit formulae (e g see [70]) for the group law
would be used

The relationship between the squared Weil/Tate pairings and the plain Weil/Tate pair
ings is investigated further by Kang and Park [58] The authors show that a squared pairing
can be transformed into a plain pairing when the image point is a trace zero point As
seen previously, for a random point R e E (F qk), a trace zero point Q can be generated

51

kj 2as Q = R — R q Let en be either the reduced Tate pairing or the Weil pairing, and let
P £ E (¥ q) Then Kang and Park show that

en (P, R) 1- " ^ 2 = en (P, R) 2 = en (P , Q),

as 1 - q^ / 2 = 2 m od n This result shows that evaluating at a random point R £ E (F qk)
when computing a squared pairing is equivalent to evaluating at the trace zero point Q =

k/ 2R - R q when computing the corresponding plain pairing As the ^-coordinate of a
trace zero point is defined over a subfield, the denominator elimination technique applies
Therefore, it may be concluded that there is no real advantage in computing squared pairings
using the methods o f Eisentrager et al [25], as it will always be more efficient to use a plain
pairing with a trace zero point

In a separate paper, Eisentrager et al [24] present formulae which eliminate a field
multiplication from the standard way of computing [2}P + Q , where P and Q are points on
an elliptic curve This idea can be used to speed up both scalar multiplication and pairing
computation Instead o f constructing a function /12&+C by first computing h2b and then /126+c
in an independent manner, the idea is to compute &26+c directly using the faster formulae
However, this idea is not useful when the order has a low Hamming weight, as is normally
the case It also does not take the standard denominator elimination idea into account
Freeman [28] adapts this method to hyperelhptic curves of genus 2

3.4 Pairings on Hyperelhptic Curves
Duursma and Lee [23] were the first to examine pairing implementation on hyperelhptic
curves in a constructive manner In particular, they mtroduce several optimisations to the
computation of the Tate pairing on hyperelhptic curves of the form C y 2 — r v — x + d over
Fpm, where d = ±1 , p = 3 m od 4 and gcd(m , 2p) = 1 These curves have embedding
degree k — 2p Firstly, Duursma and Lee propose using a multiple of the group order o f the
form ppm + 1 which has Hamming weight 2 in base p It is shown how the final addition

52

does not need to be evaluated, as the line function that is calculated is a vertical line function
and is eliminated by the final exponentiation Therefore, using the order + 1 results in
a loop of p m iterations (to the base p) with no logical decisions, which helps to simplify the
implementation An additional advantage is that the final exponentiation can be computed
as

(p2pm _ + j) = (ppm _ 1}

As described previously, an exponentiation of this form can be trivially computed with a
multiplication, inversion and some Frobenius actions in Fp2Pm

Duursma and Lee also propose computing pairings on hyperelliptic curves using points
in the support as image elements rather than divisors A reduced divisor on a genus g curve
typically has g finite points in the support, 1 e D = (P\) + + (Pg) ~ g(oo) However,
Duursma and Lee propose using degenerate divisors instead, which are divisors with sup
port consisting o f a single affine point, 1 e D = (P) - (oo) Rather than represent these
divisors using Mumford notation, it is easier to simply work with the point P Duursma and
Lee also give an explicit formula to compute the line functions that are required in Miller’s
algorithm, rather than extract them from the addition process

Lem m a 2 Let C y 2 = x p ~ x + d be a hyperelliptic curve over F pm d = ± 1 and p = 3
mod 4 and let P = (xp , yp) G C (F pm) Then the function

hp = y vPy ~ (xpp - x 4- d)(p+1)/2

has divisor (lip) — p(P) + (—[p](P — oo)) — p (oo) where

~ [p](P - o o) = (x7p + dP + d , y fp) - (o o)

Combining this function with a loop size of pm iterations results in the following closed

53

formula to compute the Tate painng

p m
(P, i/>(Q)) =)p(<b{Q)) = A[p.- i]p(0W))p,’m '

i=i
Using the double-and-add approach of M iller’s algorithm, the accumulating variable j e
¥ p2mp is exponentiated to p each iteration of the loop Although this exponentiation is effi
cient, it must be performed pm times in total, meaning that it has a non-tnvial cumulative
cost However, Duursma and Lee show how it is possible to absorb the pvm~ ‘ exponen
tiation into the formulae, thus eliminating the exponentiation to p from M iller’s algorithm
altogether In addition, Duursma and Lee show how the loop size of p m iterations can be
replaced with a loop of rn iterations Rather than loop to p m , the key idea is to loop to m
and to absorb the power to p inside the explicit formulae

Among the relevant hyperelhptic curves are two curves extremely suited to painng im
plementation These are the elliptic curves E y 2 = x 3 - x 4- d over ¥ 3™, where d ~ ±1,
as defined previously in Table 3 1 Note that the group order for these curves divides

+ X = 33m + 1 These curves have embedding degree k — 6, which is the maximum
embedding degree for supersingular elliptic curves Let p € F33 be a root of p3 - p - d = 0,
and let a € F 32 be a root of a 2 -f X = 0 Then the distortion map 0 (x , y) = (p - x, cry)
supports the denominator elimination technique of Barreto et al [5] Scalar multiplication
by 3 is extremely efficient on these curves, as exploited by Galbraith et al [31] Therefore,
it is convenient to use a ternary basis in M iller’s algonthm The Duursma-Lee algorithm
for computing the Tate pairing on these curves is given in Algonthm 4

Kwon [66] adapts the techniques o f Duursma and Lee to elliptic curves in characteris
tic 2 There are exactly three isomorphism classes of supersingular elliptic curves over F 2m,
where rn is odd, and Kwon’s method applies to all such curves Two curves in particular
are suitable for pairing based cryptography, as they have the maximum embedding degree
of k = 4 for supersingular elliptic curves in characteristic 2 These curves are defined as
Ed y 2 + y = z 3 + x + d, where d e {0,1}, as given previously in Table 3 1 These curves

54

Algorithm 4 The Duursma-Lee algorithm for the curve E y 2 = r 3 - x 4- d over F 3m,
d = =bl__
I n p u t P = (x P , y P) ,Q = (z Q, y Q) € E { F 3m)
O u t p u t (P ,^ (Q))

1 / - I
2 for ? <— 1 to m do
3 ?p x3p , yp <— yp
4 f <- f (-vypyQ - {xp + xq - p + d)2)

1/3 1/3
5 x q f - yQ < - (Jq
6 end for
7 R e tu r n /

support a doubling formula, such that for the point P £ E (F2™), where P = (x ,y), [2]P
is given as

[2]P = (x4 + 1 , t 4 +2/4)

A distortion map for these curves is given in Table 3 2 Instead of using the group order to
compute the Tate pairing, it is possible to use the multiple 22m + 1 instead, as

22m h- 1 = (2m + 2(m+1)/2 + l) (2m - 2(m+1)/2 4- 1)

As the final addition can be omitted, this results in a closed formula to compute the Tate
pairing on these curves, with a loop size o f 2m iterations Following Duursma and Lee,
Kwon shows how the loop to 2m can be reduced to m iterations, by absorbing the exponen
tiation to 2 into the formulae Kwon shows that 7 multiplications in F 2™ are required per
iteration of the loop This compares favourably with the characteristic 3 case as modified
by Granger et al [43], which costs 14 multiplications in F 3m per iteration Kwon’s algo
rithm is given in Algonthm 5 Note that the extension field F 24m is represented using the
polynomial basis {1 , x, x 2, a:3}, where x 4 + x 4* 1 = 0

Kwon also gives a variant o f the algonthm which requires no square rooting Kwon’s
stated motivation is that square rooting in a finite field is an expensive operation, roughly
equivalent to that of a multiplication with a precomputation However, square rooting can

55

Algorithm 5 Kwon’s algorithm for the curves E y2+ y = a;3+ x + (/o v e rF 2m, d — {0,1}
In p u t P = (x P , y p), Q = [xQ, y Q) £ E (F 2m)
O u tpu t < P ,^ (Q))

1 / - I
2 for } <— 1 to m do
3 xp <- x 2P , y P <-
4 2 £p + <- z + x p X Q 4- yp + yQ -f d
5 / <- 1 {w + z x + (z -f- 1) j 2)

1/2 1/26 <- x j yQ t/q
7 end for
8 R etu rn }

be as fast as squanng in characteristic 2 [27] In characteristic 3, cube-rooting can also be
performed efficiently (e g see Barreto [3]), although it is not as efficient as cubing In this
case, it is better to precompute all o f the m cubes of a value x q £ in a table, and to
access the table in reverse order in the algorithm to obtain the cube-roots

Choie and Lee [17] detail the efficient computation of the Tate pairing on hyperelhptic
curves o f genus 2 in a more general way than that o f Duursma and Lee Instead o f using
Cantor’s algorithm to derive the functions that are required in M iller’s algorithm, Choie
and Lee use Lange’s explicit formulae [70] for the group law on genus 2 curves These
formulae are modified slightly to obtain the required functions, as the formulae are designed
for scalar multiplication and hence do not calculate the line function that is required in an
explicit manner The formulae given by Choie and Lee are actually identical to formulae
given in an earlier (Japanese only) paper by Takahashi [111] Choie and Lee then present
the first computational results for the Tate painng on a hyperelhptic curve o f genus g > 1

The maximum embedding degree of a supersingular genus 2 curve over a large prime
field F p is k = 6 However, no example of such curves is known Instead, Choie and Lee
implement the Tate pairing on the curve y 2 = x 5 + a, a £ F*, where p = 2 ,3 m od 5 This
is a supersmgular genus 2 curve with embedding degree k = 4 This curve has a distortion
map ip(x, y) (Csx, y) where (5 is a primitive 5-th root o f unity in Fp4 Note that this
distortion map does not support the denominator elimination technique The group order
of this curve is # P ic ^ (F p) = p2 + 1 Choie and Lee choose log2(p) « 256 and choose

56

a prime factor n o f # P ic ^ (F p) such that log2(/i) ~ 160 On a 2 GHz Pentium IV their
timings to compute the Tate pairing vary between 515 and 594 ms, depending on the form
of the divisors and whether precomputation is used or not

Harasawa et al [45] construct a distortion map for the genus 2 curvc C y 2 — x 5 - cvx
over Fgm, where a = ± 2 Secondly, they show how to compute the modified Tate pairing
on this curve The authors take advantage o f a simple quintuple operation for computing
[5\P for a point P e C(Fsm), by rewriting Miller’s algorithm to the base 5 The authors
compare the efficiency of their algorithm to that o f the prime field curve utilised by Choie
and Lee [17], as both curves have embedding degree k = 4 Harasawa et al give a
theoretical metric to show that their method is about twice as efficient as the metric given
by Choie and Lee However, this claim docs not take into account the fact that it is easier to
optimise arithmetic in F p than in F 5m

3.5 Compressed Pairings
Scott and Barreto [106] show how to compress pairing values and how to speed up the
subsequent exponentiation of these elements The first contribution of this paper uses Lucas
sequences to speed up the final exponentiation required to compute the Tate pairing Lucas
sequences provide an efficient means ol implementing exponentiation in a subgroup of
¥*k whose order divides qL¡ 2 -H i An efficient laddering algorithm has been developed
(e g see Joye and Quisquater [54]) to compute Lucas sequences The laddering algorithm
requires very little memory, facilitates parallel computing, and has a natural resistance to
side-channel attacks [55]

Lucas sequences consist o f a pair o f functions Un (a,b) and Vn (a,b), evaluating as
elements o f ¥ k/2 Let b = 1, in which case the arguments to Un and Vn can be omitted
The sequences are given as

Uq = 0, Ui = 1 Un+1 = aUn - Un~ i,

Vo = 2, V\ = a , Vn+i = aVn - Vn- i

57

The laddering algorithm to compute Vn is given in Algorithm 6 It is only necessary to
compute Vn> as Un can be computed from Vn with the formula

r _ aVn - 2 V 1l- 1
a2 - 4

Algorithm 6 Computing Lucas sequence elements
I n p u t a, nt = (nt- i 1 1 0)2 , with nt-i = 1
O u t p u t Vn = K (a , l)

1 v0 ^ 2
2 v\ <— a
3 for 1 t - 2 downto 0 do
4 if n, = 1 then
5 vo <-- vqv\ — a
6 vi <-- v \ — 2
7 else
8 <-- vqV\ — a
9 VQ 2

10 end if
11 end for
12 Return vq

The final exponentiation required to compute the Tate pairing is (qk - l) / n Assum
ing that the embedding degree k is even, an element r e F * can be represented using
a polynomial basis as x = (a + hy/P), where a, b G ¥ qk/2 and r 2 — ¡3 — 0 is an irre
ducible polynomial over ¥ qk/2 The conjugate of r with respect to Wqk/2 can be computed
as r = (a - byffi) As the embedding degree k is even, (qk ¡ 2 — 1) can be factored out of
the final exponentiation, and can be trivially evaluated Sometimes, other easily computed
factors may also be extracted, but an expensive exponentiation to <pk {(]) I n remains, where
(j>k is the k -th cyclotomic polynomial

After exponentiating to (qk/2 - 1), the element r e F̂ fc will have norm 1 In other
words, the product o f x by its conjugate with respect to ¥ qk/2 will be equal to 1,1 e

r r = (0 + byfp) (a - byffi) = a2 - b2(3 = 1

58

Note that an element o f norm 1 can be determined up to the sign o f b from a alone There
fore, the output of the Tate pairing can be represented as one element in ¥ k/2 and a single
bit to determine the sign of b, rather than the full value in Fqk, thus giving a compression
factor of (almost) 2 An element of norm 1 also has the property that an otherwise expensive
field inversion can be computed with a simple conjugation This follows from x x = 1 and
therefore 1 / x = x

Scott and Barreto show how to efficiently raise an element x € F qk of norm 1 to the
power m by means of Lucas sequences with the formula

x "1 = (a + b y / p) m = ^ 2 ^ + Um (2a)bs /p

As stated previously, only Vm (2a) /2 needs to be explicitly calculated Scott and Barreto
propose using this formula to compute the expensive exponentiation to rn = 4h(<l)/n re
quired for the Tate pairing, where k is even The cost to compute x 1,1 using the laddering
algorithm given in Algorithm 6 is M + 5 per iteration, where M and 6 are a multiplica
tion and a squaring respectively in F k/2 The conventional binary algorithm takes around
5 + M / 2 per iteration assuming a random exponent, where 5 and M are a squaring and a
multiplication respectively in F^jt This is roughly equivalent to 3S -t- 3 M /2 , assuming the
ratios 3M ~ M and 3 5 ~ 5 Therefore, the Lucas sequence approach gives a speedup of
about 60% over the basic binary square-and-multiply algorithm

The second contribution o f Scott and Barreto is to show how to compress pairing values
to half length assuming an even embedding degree For an element x € ¥ qk, the trace with
respect to Fqk/ 2 is equal to T rF^ / F fc/2 (x) = x + x qk/2 Let x = (a + by/fi) e ¥ qk be the
output o f the Tate pairing after the final exponentiation Then

(• ' -) - x + j ' q k / 2 = (“ + b V P) + (“ - w n = 2 a

As the second component of x has been discarded, the pairing has been compressed to
half length This idea can be effectively combined with that of using Lucas sequences to

59

compute the final exponentiation Scott and Barreto also show how to comprtss pairings to
a third o f their length when the curve has an embedding degree that is a multiple of 6 This
involves using the trace with respect to F n/j Note that any subsequent exponentiation of
compressed pairing values must take into account the fact that they are traces of full pairings
values, they cannot be handled as general finite field elements

Granger et al [43] adopt techniques from torus-based cryptography to achieve pairing
compression First of all, Granger et al give an alternative to computing the final expo
nentiation required to compute the reduced Tate pairing for the supersingular elliptic curves
in characteristic 3 as studied by Duursma and Lee [23] These curves have an embedding
degree of k = 6 Duursma and Lee propose computing the Tate pairing on these curves
using the order qz + 1 = 33m + 1 The output o f M iller’s algorithm prior to the final
exponentiation is then an element of the quotient group

g = f *6/ (f ;6)«j+1

Exponentiating an element in ¥ qG to q3 + 1 gives an element in F*3, as this exponentiation
is the norm map with respect to ¥ qj Therefore G simplifies to F*6/ F *3 Two elements
a, b 6 F *6 are equivalent (when considered as elements o f G) if a = be, where c € FJ3

Let a E F*6/ F *3 be the output o f the Tate pairing prior to the final exponentiation Then
exponentiating to the power o f (q3 — 1) yields a unique value suitable for cryptographic
purposes, as a ^ 3_1) = (òc)^3_1) =

Let elements o f the field ¥ qe be represented using a polynomial basis as a — (ao +
O’lV P) £ Fge, where a o ,a i € F g3, and ¡3 is a suitable quadratic non-residue Then the
output o f Miller’s algorithm a £ F*6/ F *3 is written as

a — be = (eòo + ibi y fp)

Note that dividing by eòi gives the value a! = ò' = bo/bi + yffi As the value c has been
eliminated, a! can be used as a unique representative of the coset o f G to which a belongs

60

Therefore, the final exponentiation is just a multiplication and inversion in ¥ qs This is in
contrast to the standard exponentiation to q6 — 1, which requires a multiplication and an
inversion in ¥ q b However, the alternative means of securing a unique value is essentially
no more efficient than the standard approach, as both inversion and multiplication in F go
can be efficiently reduced to their counterparts in ¥ qs

The approach o f Granger et al has two interesting implications The first is that it
results in a two-fold compression of the pairing value The output of the pairing a' =
a o /a i 4- can be represented by the element ao/fli € ¥ qs, which results in a two
fold compression It is important to note that this value cannot be treated simply as a
general element of F gj The second advantage is that any subsequent exponentiation of
the pairing value is faster than a general exponentiation in ¥ q b Each time a multiplication
must be performed in the square-and-multiply algorithm to compute the exponentiation, the
accumulating value is multiplied by the value (ao /a i 4- y/ft) Writing x = a o /a i, observe
that

(x + \fp)(bo + bj yfp) = (xbo - bi) + (xbi + b0) \ f j i

The multiplication of two generic elements in F^e costs 3 multiplications in ¥ q3 using the
Karatsuba approach However, this method costs only 2 multiplications in ¥ qi

Granger et al then remark that the output o f the Tate pairing on an elliptic curve over ¥ q
may be viewed as an element of an algebraic torus Rubin and Silverberg [97] introduce the
concept o f torus-based cryptography as an alternative to using traces to obtain compression
Granger et al give an alternative representation for the quotient group G as G ~ T2(Fgj)
This enables compression by a factor o f 2 Additionally, Granger et al show how the torus
Te(Fg) gives a compression ratio o f 3 for these curves

Granger et al also show how to use loop-unrolling to speed up the algorithm given
by Duursma and Lee [23] to compute the Tate pairing for certain supersingular elliptic
curves of characteristic 3 Some o f the terms in the representation of the line function

61

that is calculated at each iteration of the loop are equal to zero This can be exploited by
unrolling the loop times two, and by writing a special multiplication routine to multiply the
two sparse functions together, before multiplying the result with the accumulating variable
This approach costs only 14 multiplications in Fyn per iteration of the loop This compares
favourably the original Duursma-Lee algorithm (20 multiplications) and the trace-based
variant by Scott and Barreto [106] (17 multiplications)

3.6 The Weil Pairing
Koblitz and Menezes [65] examine the task of computing the Weil pairing on elliptic curves
in detail In order to compare the performance o f the Tate pairing and the Weil pairing in a
fair manner, Koblitz and Menezes give a metric for estimating the running time o f pairings
Firstly, the cost o f arithmetic in the finite field F qk is analysed, by introducing so-called
pairing-friendly fields For the rest of this section, let k > 2 be even and q = p Let s and m
be a squaring and a multiplication respectively in F̂ Similarly, let S and M be a squaring
and a multiplication respectively in F^, and S and M be a squaring and multiplication in
F fe/2 Assume that S « M, s as m and S & M Also note that multiplying an element in
F qk by an element in Fq takes time k m

Let k = 2l3:/ and q ~ 1 m od 12, and let ¡3 € Fq be neither a square nor a cube
in Fq Then the binomial x k - ¡3 is irreducible over Fq and hence defines the extension
field Fqk Therefore, F ^ can be constructed from F^ as a tower of quadratic and cubic
extensions, by adjoining the squareroot or cuberoot of ¡3, then the squareroot or cuberoot
o f that, etc Using the Karatsuba [59] technique, a multiplication in a quadratic extension
takes 3 multiplications in the subfield This technique will be detailed later in this thesis
Similarly a multiplication in a cubic extension takes 5 multiplications in the subfield, using
the Toom-Cook [112, 20] method However, this analysis omits the large amount of addi
tions and divisions by constants that must be performed with this method Using these two
multiplication methods, Koblitz and Menezes estimate the cost o f a multiplication in F qk as

62

M « 375 'm
As discussed before, it is common that the subgroup order n is defined to have a low

Hamming weight In this case, the number of additions in Miller’s algorithm is negligible
compared to the number of doublings Therefore, Kobhtz and Menezes analyse the cost of
computing a pairing by focusing solely on the computation that takes place when a point
doubling is performed To compute the Weil pairing en (P,Q) , the functions l \ /u \ and
I2 /V2 are extracted from the addition process for each bit o f n These functions can be
accumulated by using the two variable algorithm of Galbraith et al [31] in the following
way

h t i i * (Q) h (Q)
h t i H Q W , Q)

This function, along with the associated point doubling, is termed a Miller operation
Koblitz and Menezes point out that the denominator elimination technique also applies
to the Weil pairing assuming that the output o f the pairing is exponentiated to (qk/2 - 1)
(alternatively to (1 — g*/2)), which can be trivially realised as a conjugation with respect
to F jt/2, and a multiplication and an inversion in F t In this case, the function evaluation
simplifies to

h f f h i Q)
h i i h(Q)

Note that for the Tate pairing this simplifies to /] = f 2/] (Q)
As the Weil pairing consists o f two loops, the first is termed Miller hte (due to Soli-

nas [110]), as the iterating point is defined over ¥ (/ The second loop is called the full Miller
loop, as the iterating point is defined over ¥ (fk The full Miller loop is much more compu
tationally expensive than the Miller hte loop, as the arithmetic is in ¥ qk However, Koblitz
and Menezes follow the idea of Barreto et al [6, 7], in defining the image point Q as a point
on a quadratic twist o f the curve defined over the quadratic subfield ¥ qk/2 This leads to a
gam both in evaluating at Q in the Miller hte loop, and in performing arithmetic on Q in

63

Tabic 3 3 Minimum bitlengths of n and qk
Security level (in bits) 80 128 192 256

bqk
7 = bqk / bn

160
1024
6 4

256
3072
12

384
8192
21 33

512
15360
30

Table 3 4 Operation counts for each 13it o f a
k Final exponentiation Miller lite Full Miller
* = 2
k > 4

(7/2 - l) (s + m)
(U7 - 1)(s + M)

4s 4- 8 m 4- 5 4- M
4s + (k 4- 7)m + 5 + M

4s 4- 8m 4* 5 4- M
k m 4“ 45 4~ 6A/ 4~ 5 4~ M

the full Miller loop To compare the Tate pairing with the Weil pairing, the cost of the full
Miller loop must be compared with the final exponentiation to (qk / 2 4-1) / n required by the
Tate pairing (as both pairings have the (qk/2 — 1) exponentiation in common)

Kobhtz and Menezes estimate the cost o f the Miller operation for the Miller lite loop as
4s 4- 8m 4 - S + M for k = 2, and 4s + (k 4- 7)m + 5 4- M for k > 4 assuming the use of
Jacobian coordinates The cost o f the full Miller loop is the same as Miller lite for k = 2,
and is given as k m + 4 5 4- 6M + 5 4- M for k > 4 Kobhtz and Menezes use the security
parameters defined by Lenstra [73], that are reproduced in Table 3 3 Let bn be the number
of bits of the prime subgroup order n , bqk be the number of bits o f qk and let 7 = bqk/bn
Let Tk = 1/2 if k = 2 \ i > 1, else let t* = 1/3 (if k = 2 > 1) Then, using
the Lucas sequence approach of Scott and Barreto [106], Kobhtz and Menezes estimate the
cost o f the exponentiation to (qh! 2 4-1) / n as (7^7 - 1)(5 4- M) for each bit o f n These
results are summarised in Table 3 4

For the embedding degree k = 2, Kobhtz and Menezes estimate that the Tate pairing
will be faster when 7 < 20 However, they estimate that the Wei I pairing will become more
efficient to compute for higher values of 7 , starting at the 192-bit security level When
k > 4, the Weil pairing becomes more efficient to compute when 7 = 28 8 for k ~ 6,
7 = 28 2 for k = 12 and 7 = 27 8 for k — 24 Therefore, when k > 4 the Weil pairing
becomes more efficient than the Tate pairing at the 256-bit security level

64

Granger et al [42] examine pairing implementation using ordinary elliptic curves and
vanous practical levels of security Firstly, they analyse the cost o f computing the final
exponentiation required for the Tate pairing Recall, that for an even embedding degree, the
factor (r/̂ /2 — 1) can be extracted from the final exponentiation and easily evaluated The
remaining exponentiation that must be performed can sometimes be simplified further as
(qkf 2 + l)/0 jt(i/) and <j)k{(i)/n However, the exponentiation to <j>i(q)fn is an expensive
operation Rather than use the Lucas sequence approach of Scott and Barreto, Hu et al [50]
introduce the idea o f exploiting the q-th power Frobemus endomorphism to compute this
exponentiation This can be done by simply writing (¡>i{q)/n to the base q Granger et
al suggest using multi-exponentiation (e g see Avanzi [2]) to compute all o f the resulting
exponentiations using a smgle square-and-multiply algorithm

Granger et al examine the theoretical costs of using this method to compute the final
exponentiation They conclude that the Lucas sequence approach is more efficient for em
bedding degree k < 6 However, for k > 6 the multi-exponentiation idea is more efficient
As discussed previously, Koblitz and Menezes conclude that the Weil pairing is more effi
cient than the Tate pairing at high levels of security However, this analysis does not take
into account the technique of multi-exponentiation Granger et al conclude that the Tate
painng is always faster than the Weil pairing for all o f the interesting security sizes used in
practice

Scott [105] also examines the relative efficiency of the Tate pairing and the Weil painng
In public key schemes that are based on the DLP in ¥*k, security is traditionally increased
by increasing the size of q, for example from 1024 bits to 2048 bits However, this leads
to a substantial increase in the cost of arithmetic in F*fe, which can be problematic in con
strained environments Scott points out that pairing based cryptography has another option,
to keep the size of the underlying field constant and to double the embedding degree k This
has the added advantage of requiring only minimal changes to the underlying software or
hardware implementation Scott advocates fixing the base field size at 512 bits, and using
elliptic curves with embedding degrees 2,4 and 8, depending on the level o f security that is

65

required
Scott also addresses the practical considerations of computing the expensive

exponentiation required for the Tate pairing Using the techniques of Granger et al [42],
Scott points out that it is easiest to precompute (</)/// and store it as a number to the
base q, and then to exploit the q-th power Frobenius action to allow a multi-exponentiation
Scott also shows how the entire final exponentiation to (qk — 1) / n can be included in the
multi-exponentiation This approach does not require an inversion, which may be useful
in restricted environments where inversion is particularly expensive Scott provides ex
perimental evidence that the exponentiation to <^(<j)/n is faster using the Lucas sequence
approach when k < 4

Scott then gives an algorithm to compute the Weil pairing for an even embedding de
gree, which is more efficient than that given by Koblitz and Menezes The algorithm given
by Koblitz and Menezes includes an exponentiation to (qk — 1) after the loop, to avoid
computing the vertical line functions However, raising the output o f M iller’s algorithm
to this power also means that inversion can be replaced inside the loop with a simple con
jugation with respect to F qk/2 Thus Scott shows that only one accumulating variable is
needed to compute the Weil pairing, rather than the two variable approach previously used
in analysing the cost of computing the Weil pairing

It is possible to precompute the required multiples o f the first input point to the Tate
pairing and to store them for use in M iller’s algorithm This technique is useful if a pairing is
computed multiple times using the same iterating point, and if storage space is not an issue
Scott shows that this technique is applicable to the second input point when computing the
Weil pairing This greatly reduces the computational complexity of the Weil pairing, as it
is no longer required to double and add the point defined over the extension field inside the
algorithm Scott concludes by giving experimental results that validate the assertion that the
Tate pairing is faster than the Weil pairing for all interesting security levels, except when it
is possible to precompute points

The results mentioned in this section so far are applicable to all curves, as no special

66

properties are exploited However, Park et al [88] describe a technique to implement the
Weil pairing efficiently on supersmgular curves, when the modified pairing is used In
particular, they show how the full Miller loop can be effectively replaced with a Miller lite
loop First o f all, the distortion map that is used must be separable

Definition 26 An endomorphism (j> is inseparable i f and only i f

<t>(x,y) = (h(t !‘, yp), v (x1>, y1'))

f o r some rational functions u, v where p is the chat actenstic o f ¥ q

Most distortion maps used in practice are of degree one and are therefore separable
Park et al then show how the Weil pairing can be computed as

. ip M)) = M m + R) h i - ^ j R))
n{ , m)) f p (R) J q W - H P - B))

In fact, the random point R can be omitted as explained earlier Clearly, this definition
replaces the full Miller loop on the point ip(Q) with a Miller lite loop on Q Also, the
function evaluation is at i/>-1 (P) rather than at P, where is the inverse of the distortion
map Park et al then show that a self-pairing can be computed as

e (P tb(P)) — cn̂ fp ty-HP)) '

where c j is a constant that depends on the distortion map Self-pairings are required for a
certain number of cryptographic applications Park et a l ’s self-pairing formula can be com
puted with a single Miller loop, and it has no final exponentiation However, the complexity
o f the algorithm is not the same as that o f the Tate pairing without the final powering, con
trary to the claim o f Park et al This is due to the fact that it is necessary to evaluate the line
functions at tp(P) and ij)~l (P) each iteration of the loop, whereas only one evaluation is
required using the standard denominator elimination technique with the Tate pairing

67

J

3.7 More Recent Optimisations
Hu ct al [50] implement the Tate pairing using a supersingular elliptic curve over Fp2 with
an embedding degree of k — 3 This is the first i eported implementation in the literature of a
pairing on a curve with an odd embedding degree As detailed earlier, this paper also shows
how the Frobemus endomorphism can be exploited to speed up the final exponentiation
required for the Tate pairing The disadvantage to using an odd embedding degree is that
the denominator elimination technique of Barreto et al [5] does not apply Therefore, Hu
ct al [50] use the algorithm of Galbraith et al [31] Another argument against using this
curve is that the iterating point is defined over Fp2, instead of F p as is more common

Blake et al [8] give some refinements to M iller’s algorithm for general elliptic curves
Their improvements reduce the total number of line functions in M iller’s algorithm How
ever, as these techniques do not incorporate denominator elimination, they are not partic
ularly useful in practice Let h(Q) be a linear function in two variables that is evaluated
at the point Q = (x , y) Then the conjugate o f h (Q), which is denoted h(Q), is equal to
h (- Q) , where - Q is the opposite o f Q Let lp(Q) be the evaluation of the point Q at the
line function when doubling P , and let V[2]p(Q) be the vertical line through [2]P Then

~ l p { Q) l p { - Q) - ~ lp{Q)lp{Q) ~ y 2p(Q)v[2\p(Q)

The minus sign can be omitted in Miller’s algorithm, as the pairing value is not affected
by non-zero constants This technique is used later in this thesis to prove a result about the
Tate pairing

Scott [104] shows how to efficiently implement the Tate pairing on certain ordinary
elliptic curves These curves arc closely related to the supersmgular elliptic curves used by
Boneh and Franklin [11] However, Scott shows that a speedup o f up to 20% is possible
when computing the Tate pairing in the ordinary elliptic curve case Alternatively, only half
the amount o f storage is required if it is possible to precompute the lines that are required
in M iller’s algorithm The ordinary curves in question have the same equations as the two

68

Boneh and Franklin supersingular elliptic curves, but with different congruence conditions
attaching to the large pnme p So the curves are no longer supersingular and have no
distortion maps as a result

However, the same maps are still endomorphisms of the curve and are useful in the
context of scalar multiplication, as examined by Gallant e ta l [37] Gallant eta l give endo
morphisms for these curves such that given a point P , a fixed multiple of the point can be
determined with a single field multiplication Scott transfers this idea to the area of pairing
computation, by observing that the line functions in the first half of M iller’s algorithm are
related by the endomorphism to the line functions in the second half Therefore, the line
functions from the first half o f the algorithm can be stored, before they are multiplied by the
accumulating variable In the second half o f the loop, the group arithmetic can be avoided
by reusing the stored functions

3.8 Conclusion
Various methods in the literature to compute pairings efficiently have been described in this
chapter A number of conclusions arise naturally from the optimisations that have been
detailed Firstly, a number of generic techniques exist that improve the running time o f
M iller’s algorithm as originally defined The first input divisor should be defined over the
field Fq, rather than In this way, the group arithmetic takes place over the smaller
field, which is a large saving An even embedding degree should be used with a distortion
map for supersingular curves, in order to use the denominator elimination technique Any
random divisor used to guarantee the non-degeneracy of the Tate pairing can be omitted as
it can be defined over a subfield, and hence eliminated by the final exponentiation

Secondly, the Tate pairing should be used, rather than the Weil painng, as it is always
more efficient to compute The final exponentiation can be evaluated reasonably efficiently
using either Lucas sequences or multi-exponentiation, depending on the embedding degree
o f the curve in question Thirdly, numerous optimisations exist when computing the Tate

69

pairing using certain supersingular curves over low characteristic These optimisations in
clude a shortened loop size, a trivial final exponentiation, and no conditional statements in
the loop

There is no inherent obstacle to using any of these optimisations to compute pairings
efficiently on genus 2 curves However, the papers that have been described in this chapter
are largely unclear on this issue Duursma and Lee [23] provide a family of hyperelliptic
curves suitable for fast pairing implementation However, this family of curves contains
no hypcrelhptic curves of genus 2 over finite fields o f a suitable characteristic Any im
plementation of genus 2 pairings that exists in the literature lies far behind the equivalent
implementation on elliptic curves This deficit is addressed in the remainder of this thesis

70

Chapter 4

Pairings on Supersingular Genus 2
Curves over F2 m
4 1 Introduction
In this chapter, the first efficient implementation o f the Tate pairing on a supersingular genus
2 curve over F 2m is described Firstly, various supersingular curvcs over F 2m arc examined,
and two curves arc selected that have the maximum embedding degree o f k = 12 for genus
2 curves in characteristic 2 It is shown how to compute the group order for these curves,
and how to select the field F 2m such that the group order has a large prime factor Explicit
formulae are given for doubling divisors m P ic ^ (F 2̂) for the curves in question

Various aspects of the arithmetic of the selected curves are then explored It is shown
how to construct the extension fields that are required, and how to perform arithmetic in
these fields in an efficient manner An octuphng automorphism is given on the curves,
which can be exploited in M iller’s algorithm by using an octic basis Degenerate divisors
and their application to pairing computation are exammed Explicit formulae are derived
for the intermediate functions that are required in M iller’s algorithm, and it is shown how
the final exponentiation can be computed efficiently

The implementation of the Tate pairing is then considered in detail using an octic ba

71

sis and explicit formulae As degenerate divisors are used, the input elements to M iller’s
algorithm are points on the curve However, using a standard “double-and-add” algorithm
destroys the special form of the iterating divisor, due to the additions in the group order It
is shown how this can be avoided by splitting the function that is required into several other
functions which are computed separately It is also shown how a large amount o f computa
tion in Miller’s algorithm can be avoided by precomputing certain powers o f the first input
point

Whenever a doubling is performed in M iller’s algorithm, the accumulating variable
must be squared As an octic basts is used in this chapter, this operation must be performed 3
times per iteration o f the loop However, it is shown how this can be avoided by building the
exponentiation into the explicit formulae inside the loop, at the cost o f some extra operations
in the extension field This optimisation requires the precomputation of certain powers of
the second input point Finally, some experimental results are given and the chapter is
concluded

This chapter contains joint work with Paulo S L M Barreto, Steven D Galbraith and
Michael Scott, which has been accepted for publication in Designs, Codes and Cryptogra
phy A preprint is available at the ePnnt archive as Barreto et al [4]

4.2 The Curve
The first task is to select a suitable genus 2 curve over F ^ with a low embedding degree
As no ordinary genus 2 curves are known that have a low embedding degree, the search
must be restricted to supersingular curves In the context o f finite fields of characteristic
2, Koblitz curves are curves that are defined over the binary field F 2, and the degree zero
divisor class group of the curve is considered over F?™, for some pnm e m As detailed in
Chapter 2, it is a simple matter to compute the group order #Pic2>(F2m) for Koblitz curves
Also, as the coefficients of the equation of the curve are either 0 or 1, it is possible to reduce
the computational complexity of the group law Therefore, Koblitz curves are attractive for

72

pairing implementation For information on how to speed up scalar multiplication on genus
2 Koblitz curves see Gunther et al [44] and Lange [67]

Recall that a genus 2 curve is given by the equation C y 2 + h(x)y = } (x), where j (j)
is momc of degree 5, and h(x) is o f degree < 2 Choie and Yun [18] classify genus 2 curves
over F2™ into three types, which depend on the degree and form of the h(x) polynomial
Curves with a constant h(x) are defined as Type-TTI curves The following lemma due to
Galbraith [32] shows that all Type-Ill curves are supersingular Note that no genus 2 curve
defined over F 2 with a non-constant h(x) polynomial is supersmgular

Lem m a 3 Let C be a genus 2 curve over F 2m o f the form y 2 + cy — f (x) where / (r) is
momc o f degree 5 and c € F 2m Then C is supersingular

When considering the equation of Type-III curves over the field F 2, the left-hand side
of the equation is fixed as y 2 -1- y The right-hand side o f the equation is / (x) = x 5 4- / 4X4 4-
h x * + h ? 2 + J + /o, where all € {0,1} This implies that there are a maximum of
25 different curve equations for Type-III curves over F 2 However, by a linear change of
variables, Choic and Yun show that all Type-III curves arc of the form

c y 1 + y = x 6 + f 3X3 + h x + f 0

This equation implies a maximum of 23 possible curve equations In fact, there are 6 differ
ent curves up to isomorphism, as the curve y 2 4 - y — x 5 + 1 is isomorphic to ij2 4 - y = x 5 ,

and the curve y 2 -{- y = x 5 4- x 3 + x + 1 is isomorphic to the curve y 2 + y = x 5 + x 3 4- x
Therefore, there arc essentially 6 different supersingular Koblitz curves of genus 2 over
that must be investigated for pairing computation

Table 4 1 gives a representative o f each of the 6 different isomorphism classes of Type-
/III curves defined over F2, along with the embedding degree of each curve For all o f these

curves, Koblitz [64] gives an automorphism to compute a fixed scalar multiple [2l\P o f a
point P e C (F 2m), by applying the 2nd power Frobemus endomorphism to the coordinates
o f P The Frobemus endomorphism <p2 is trivially computed in characteristic 2 as it equates

73

Table 4 1 Supersingular genus 2 curves over F 2
Curve Automorphism Embedding degree
y 1 + y = x b + x* ■+- x [8]P = 026(P) 3
ij2 + y = re5 [4] P = - M P) 4
y 2 + y = + x [16]P = 02s(P) 4
y 2 -\- y — X + 1 [1 G]P = f o (P) 4
y 2 Jr y — x5 + x s [64] P = - 0 2i2 (P) 12
y 2 + y — æ5 + x 3 + 1 [6 4] P = - f c i 2(P) 12

Table 4 2 Supersingular genus 2 curves over F 2 with k = 12
Isomorphism class 1 Isomorphism class 2
y 2 + y = x b + x d
y 2 -f y = x 5 -f x 3 + x 2 -h x
y 2 -f- y = C3 -f- x 4 + x 3 + l
y 2 -f y = x 5 + x A -f a:3 + x 2

y 2 + y = x b + x 3 + 1
y 2 -f y — x 5 + x 3 4- x 2 + x + 1
y 2 + y — x° H~ x 4 4- x 3 + x -f- 1
y 2 + y = a;5 + x 4 + x 3 + x 2 + 1

to a squaring As a result, the automorphisms that are given enable an extremely efficient
method to perform the group operation This is not useful for systems based on the DLP,
as these curves are all supersingular and hence are vulnerable to the attack of MOV/FR
However, this property is exploited later in this chapter to compute the Tate pairing

As can be seen in Table 4 1, two curves have the maximum embedding degree of k = 12
given by Rubm and Silverberg for genus 2 curves over F 2™ These curves are

Cd y 2 + y = x b + x 3 + d, d e {0 ,1 }

Table 4 2 gives the other curve equations over F 2 that are isomorphic to the curves Cd
However, as the curve equations Cd have the smallest number of coefficients o f all o f these
curves, the other curves are not considered for pairing implementation in this chapter

The next step is to determine the group order # P ic ^ (F2m) for the curves Cd Again, we
largely follow Koblitz [64] in this treatment The characteristic polynomial o f the Frobenius

74

XC(T) = T 4 + 0l T 3 + a2T 2 + 2a , T + 4 = J] (T - a ,) ,
? = 1

where a 1 , 0 2 € Z, and the a, are complex numbers of absolute value \/2 As detailed
in Chapter 2, once the coefficients a\ and ¿¿2 are known, the group order over F2 can be
evaluated as x c (1) = # P ic ^ (F 2) lo determine the group order over some extension field
F 2m, it is necessary to find the factors ctt o f Xc{T) , and then to compute

4

P l C ° (F j m) = J J (1 -
1= 1

To determine a\ and a 2 for the curves Cd, it is necessary to first count the points on the
curves over F 2 and F 22 The results are # C o (F 2) = 5 and # C 0(F22) = 5, and # C \ (F2) =
1 and # C i (F 22) = 5 The coefficients a\ and a2 o f \ c (T) are then computed as a\ =
C (F 2) - 3 and a2 = (# C (F 22) - 5 + a2) ¡2 For Co these values are a\ = a2 = 2, and
for C\ these values are a\ = - 2 , n2 = 2 The characteristic polynomial o f the Frobenius
endomorphism for these curves is then

XCd(T) = T 4 + (~ l) d2T 3 4- 2T 2 + (- 1)d4 T + 4

It is now necessary to derive the a x First o f all, the quadratic equation x 2 + a i x + (a 2 - 4) =
0 must be solved to obtain the two roots 71 and 72 For Co these roots are — 1 ± y/3 and for
Ci the roots are 1 ± \/3 The a , are then found by solving the quadratic equation x 2 - 7, +
2 = 0, and the group order over F 2™ is computed as #Pi c% (¥ 2m) = n £ = i(l “ a D ^ s
m must be prime to avoid the Weil descent attack, the group order over F 2m can be written
for Co as

#P iC c0(F2m) = 22"' + (- I) [(m+ 1)/4l2(3m+1)/2 + 2m + (- l) [(”,+1)/4l2('"+1)/2 + 1,

endomorphism for a genus 2 curve C over F 2 is given as

4

75

and for C\ as

P lC ^ (F 2m) = 22m - (_ l)[(^ + l) /4]2(3m+l)/2 _|_ 2m - (_ l)[(^ + l)/4]2(^+ l)/2 + 1

where [] denotes the greatest integer function When describing details o f the pairing im
plementation later m this chapter, the group order for both curves is written for convenience
as

P ic £ (F 2m) = 22m ± 2(3to+1>/2 + 2m ± 2(”,+1)/2 + 1

There are two criteria on the selection of the prime m First of all, it should be large
enough so that the group Pic° (F2™) is invulnerable to the Pollard-rho attack, and ¥^ km is
resistant to index calculus attacks Secondly, the group order # P ic ^ (F2™) must be divisible
by a large prime number to avoid the attack of Pohlig and Heilman In other words, only a
small co-factor should divide the group order As m is prime, only the group order over the
base field, # P iC c (F 2), divides the group order over the full field, # P iC £ (F 2m) Therefore,
to give the maximum resistance to the attack of Pohlig and Heilman, # P ic ^ (F 2m) should
be divisible by as small a multiple of # P ic ° (F 2) as possible

Computing the group order over F 2 for both curves can be done by simply evalu
ating the characteristic polynomial o f the Frobenius endomorphism at 1, which yields
XCoW = # P lcc 0(F2) = 13 and x c i (l) = # P iC c 1(F2) = 1 Therefore, for the curve
Co it is desirable to find a prime m , such that as small a multiple o f 13 as possible divides
P ic ^ 0(F2m), leaving a prime number In fact, an exhaustive search yields some examples
where the co-factor is the lowest possible value of 13 For Cj, as # P ic ^ i (F2) = 1, it is
theoretically possible to find instances of m where the group order itself is prime How
ever, in the range o f m which is large enough for security, yet small enough for practical
implementation, only one such example was found Table 4 3 gives a number of examples
for both curves

Lange [70] gives explicit formulae for performing the group arithmetic on genus 2

76

Table 4 3 F 2„., where # P ic ^ (F 2) is equal to a small cofactor times a prime
Finite Field Curve Co-factor
F 2 103 y 2 -1- y = x b + x 6 13 1237
F 2 181 y 2 + y — x 5 + x^ 13
F2211 y 2 + y = 3 5 + x s 13
F 2 79 y 2 + y — + x 6 + 1 151681
F 2 127 y 2 + y = + x 3 + 1 198168459411337
F 2 199 y 2 + y = x 5 + x 3 + 1 2389 121789
F 2 239 y 2 + y = x 5 -I- x 3 + 1 1

curves over finite fields o f arbitrary characteristic These formulae are more efficient than
the generic algorithm due to Cantor As mentioned earlier, the group arithmetic for curves
defined over F2 can be more efficient than for curves defined over F 2™, especially if the
equation of the curve is sparse In Algorithm 7, explicit formulae are given for doubling a
divisor on the curves Cd As this is the most common operation in scalar multiplication, the
other cases can be handled by Cantor’s algorithm We note that formulae by Stevens given
later in chapter 14 of Cohen et al [19] slightly improve on the efficiency of some of these
formulae

4.3 Curve Arithmetic
In this section, all of the background information that is needed to implement painngs on
the selected curves is described

4 3 1 Finite field arithmetic
As the embedding degree o f the curves Cd is k = 12, it is necessaiy to show how to
construct the extension field F 2i2m A polynomial basis representation will be used rather
than a normal basis representation, for reasons outlined m chapter 2 There are a number
of different ways to construct the field F 2i2m As the curve is initially considered over the
field F 2m, it makes sense to choose this field as the base field Rather than construct F 2i2m
as a degree 12 extension o f F 2m, it is more convenient to first construct the field F 26m, using

77

Algorithm 7 Doubling of a divisor [u, u] on the curves C¿
I n p u t [v , v]
O u t p u t [u \ v '\ = 2[u, v\

1 if deg(w) = 0 then
2 \u f Vf] 4 - [1 0]
3 else if deg(u) = 1 then
4 Uq < - U q , v[Uq2 + Uq, Vq <- u l + d
5 [u\ v'] <— [x2 + Uq, v[x + tig] > (3S)
6 else
7 if t£]_ = 0 then
8 Sq <- v\, l;0 <-
9 u '0 « - s'o2

10 W \ < Sg 4" 1, Wq <— Wl H- Uq + Uo, W i UqU>i - f ¿Q,
11 7̂ W0 + Vl, 0̂ <— Wl +^0 + 1
12 [v!, v f] <— [x2 + x + íí¿, i>J:r -I- Vg] > (2S, 2M)
13 else if ui = 1 then
14 Aq u \ , Uq <— 6^2
15 Vq <— SÓ(U¡) 4“ Uq + Uq) + u!qVi + ^0 + 1
16 \u', v r] <— \x + Uq, v¿] > (3S, 2M)
17 else
18 s': 1 + u \ , ¡2 <— v j
19 Zj < U q , I q <— V q d

20 101 <— l / s j , U »0 ¿2 ^ 1 + u i
21 Uq <— W q , u [<— w f
22 W2 <— W \ + 1'2 , U)3 <— U q W 2
23 v[<r- (u i + Uq)(2̂ + s i) 4- m + W i + I'l
24 IÍQ <--- W3 4- /q + 1
25 [ií; , t /] <— [a;2 -h u [x - t Uq, v [x -i- Vq] > (I, 6S, 3M)
26 end if
27 end if

78

an irreducible trinomial or pentanomial o f degree 6 defined over F 2™ Then the field F 2i2m
can be constructed by using an irreducible trinomial of degree 2 defined over F 26m

The curves Cd have been studied m coding theory (e g see [41]), and a distortion map
such that C (F 2™) i-> C (F 2i2m) is known Normally, the random irreducible polynomials
that define the fields F 2&m and F 2i2m are chosen so that they are defined over the subfield
F 2 However, it is better to carefully choose the irreducible polynomials so that applying
the distortion map to a point P e C (F 2™) simply involves manipulating the basis repre
sentation The base field F 2m is constructed in the standard manner by using an irreducible
polynomial o f degree m over F 2 F 2fom is constructed by using an irreducible pentanomial
of degree 6 that is defined over F 2, given as

x ̂+ xd -f- x3 -f- x2 + 1 = 0

Let w £ F 2b be a root o f this polynomial Then a polynomial basis for the finite field F 26m
is

{1 , w) w 2, 7/j3, w 4, w 5}

Note that w 7 = tu5 + w 4 + w 1 + w + 1 and w8 = w + 1 To define the quadratic extension
of F 26m, the irreducible trinomial o f degree 2 over F 2Gm that is used is

x 2 + x + (w5 + w 3) = 0

Let so 6 F 2i2 be a root of this polynomial Then a polynomial basis for the finite field
F 2i2m is given by adjoining so to the field F 26m, to yield the 12-tuple

{1 , w, w 2, w 3, w 4, w 5, s0, tuso, w 2s0: v)3sq: w 4s q, w 5so}

Now define s \ — w 2 + w 4 and s 2 — w 4 + 1 The distortion map which maps elements

79

of C (F 2m) to C (F 2i2m) is given as

ip{z, y) = (x + w y-\- S 2 Z 2 + + s q)

To see why the basis for F2i2™ was chosen, note that applying the distortion map to a point
p = (r , y) e C(Fam) can be computed using a single squaring in F 2m as

Note that the distortion map maps the x-coordinate of P to F 2&m, and the y-coordinate of
P to F 2i2m Therefore, this distortion map supports the denominator elimination technique
of Barreto et al [5]

It remains to consider the cost o f arithmetic in F 26m and F 2i2m As addition is extremely
cheap in characteristic 2, this operation is ignored in the analysis A squanng in F 26m can
be achieved extremely efficiently as

This takes only 6 squarings in F 2™ Multiplication is far more costly, and takes 18 mul
tiplications in F 2™ using the Karatsuba technique A multiplication in F 2i2m is computed
as

(a -f bs o)(c + dbo) = (ac + bd(w5 + ws) + so((a + b)(c + d) -f at))

{a;, 1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{y -j-x 2, 0, x ,0 x + x 2, 0, 1 , 0, 0, 0, 0, 0}

This costs 3 multiplications in F 26m, as the multiplication by (w 5 + w 3) can be handled by
a series of additions A squarmg in F 2i2m is computed as

(a -f 6s0)2 = {a2 + b2 {w5 + ™3) + s0(62))

80

This costs only 2 squarings in F 2bm Therefore, a squaring in F 2i2m takes 12 squarings m
F2m, and a multiplication in F 2i2m takes 54 multiplications in F 2™ As multiplication in the
extension fields is costly, it is imperative to try to avoid it whenever possible

4 3 2 Octupling
Recall that Koblitz [64] gives a map for the curves Cd, such that for an element P e
C (F 2m), an explicit formula to compute a fixed scalar multiple of P is [64]P = — 0212 (p)
Let D e P ic ^ (F 2m) be a divisor with a single point P = (x i , y i) in the support, 1 e
in Mumford representation D = \x + x \ , y i) Then [64]D can be computed simply as
[64] D = [x + x f 2 , ^ 12 + 1] This explicit formula provides an extremely cheap means
of performing scalar multiplication on D, as it requires only 24 field squarings in F 2m It
would seem a good idea to use this explicit formula to compute the Tate pairing using the
curves Cd, rather than use the formulae given in Algorithm 7 to repeatedly double D

However, the curves Cd also have an octupling formula to compute [8]£), for any D e
P ic ^ (F 2m) If D = (P) - (00), this formula has the property that [8\D = (P') - (00)
P f can be computed as P' — cr^2&(P), where (¡>2 is the 2nd power Frobemus map, and a is
given as

° { x i , y \) = (x i + 1 , 2/1 + x \ + 1)

Note that applying the o map twice in succession yields a 2 = (x \ , y\ + 1) As (¿ i , y\ -I-1)
is equal to the formula for —P , the opposite of P , then a 2 = — 1 Although not strictly
accurate, the result o f the octupling map on P is denoted as P f = [8]P = (P) , and
thus [8]D = ([8]P) - (00) Therefore, for a divisor D = [x + x i , yi], [8\D can be computed
as

[8]Z) = [x + (xi + l) 64, (7/1 + x 2 + l) 64],

which takes 12 squarings in F 2m It is worth examining how the octupling map [8]P relates

81

to the map [64] P = given by Koblitz As a 2 = — 1, then using the octupling
map twice in succession gives [8]([8]P) = o 2<j)2i2 (p) = - h 12 (P), which is exactly the
map given by Koblitz

The octupling formula as defined applies only to a divisor with a single finite point
in the support However, it can be easily extended to general divisors Let D = (P i) +
(P 2) — 2(oo) be a general divisor, where Pi = (2,1, y\) and P2 = (x2, t/2) Using Mumford
representation, D is represented as two polynomials u(x) = x 2 + u i x + uq and u(x) =
v \ x -f vo, such that

U = X2 + (x i + X2) l + (X1X2)

V = (y2 + y i) l (x2 + Xi)x + (y ix2 + x i y 2) / (x 2 + xi))

The goal is to compute [8]Z> in such a way as to use the octupling formula that is given on
each of the points P i and P2 By linearity

D' = [8}D = [8]((P i) - ((X))) + [8]((P2) - (00)) = (P i) + (J $ - 2(oo),

where

P[= (xf4 + 1 ,1/f4 + x j28 + 1), P2 = (x24 + 1, J/f4 + x228 + 1)

The Mumford representation for D ' = [v! ,v'\ is given as n '(x) = x 2 + + tig and
i/(a;) = 'uja: + v'Q u f (x) is computed as

u\ = x[+ x 2 = (xi + x 2)64

- 7/64
Uq = x ix 2 = (ref4 + l) (x |4 + 1) = (x ix 2)64 + (xi + x 2)64 + 1

= (uo + Ui + 1)64,

82

and t/(x) is computed as

ui - (^i + ^2)/(^i + ^2) — (^i4 + xi28 + i/24 + -̂ 228)/(xi4 + ^24)
= ((y i + V2)/{xi + x2))64 + {xi + x2)64
— (1̂ + ̂ i)64,

vo = i v i x 2 + y*2x + 4)

= ((2/f4 + xi™ + 1)(44 + 1) + (?/264 + x̂ 28 + l X x f 4 + l))/(x?4 + x264)
= ((yiX2 + P2Xi)/ (x1 +x2))64 + ({y\ + y 2)/{xi + x2))64 + (xix2)64 +

(xi + x2)C4 -f 1
= (v 0 + V I + U q + U i + l)64

Algorithm 8 summarises this information, by giving complete formulae for octupling a
divisor of any form in Mumford representation This algorithm can be used for straightfor
ward scalar multiplication o f divisors on the curves Cj, as it is extremely efficient, taking
at worst 24 field squarings to compute [8]D

A lgorithm 8 Octupling of a divisor [u, w] on the curves Cd
In p u t divisor [u, t?]
O u t p u t = 8[u , u]1 if deg('u) = 2 then
2 [1/ , v] <— [x2 + 4- (uj + wo + I)64 (vi 4- 'Ui)64x 4- (« 1 + Uq + v\ 4- vo 4 -1)64]
3 else if d eg (u) = 1 then
4 [?/, i /] [x 4- (uo + I) 64, (vo + Uq 4- l) 64]
5 else
6 [u', t/'j <- [1,0]
7 end if

4 3 3 Using degenerate divisors
For genus 2 curves, a general (reduced) divisor D € P ic ^ (F q) is o f the form D = (Pi) +
(P2) - 2(oo), where Pi, P2 are elements o f C (F 9) or C(Wq2) However, certain divisors
D' € P ic ^ F ^) have only a single finite point in the support, 1 e D' ~ (P) - (00)
These divisors are called degenerate divisors In general, multiplying a degenerate divisor

83

D = (P) - (oo) by a scalar n does not result in a divisor [ri]D = (Q) - (oo), but instead
in a general divisor In fact, simply doubling D = (P) - (oo) gives the divisor [2\D =
(P) + (P) — 2(oo) which is a general divisor However, as shown in the previous section,
multiplying a degenerate divisor on the curves C¿ by 8 gives a degenerate divisor again

The group arithmetic on degenerate divisors is much more efficient than for general
divisors For example, adding two general divisors takes I 3 5 ,22 M m F 2™, using the
formulae of Lange [70] for the genus 2 group law in characteristic 2 However, adding a
degenerate divisor to a general divisor takes only /, 5 ,1 0 M in F 2m Katagi et al [60, 61]
exploit degenerate divisors in the context o f scalar multiplication, by using a degenerate
divisor as the “base-divisor” This does not reduce the computational cost o f the doubling
operations in the double-and-add algorithm to compute the scalar multiple However, each
time an addition is performed, a general divisor is added to the initial degenerate divisor,
which is cheaper than a general addition, as detailed above Katagi et al [61] also show that
solving the DLP using a degenerate divisor as the base-divisor is as intractable as using a
general divisor

Duursma and Lee [23] use degenerate divisors in the context of pairings on hyperelliptic
curves In this way, rather than use a divisor D = (P) - (00) as one of the inputs to
M iller’s algorithm, it is possible to simply use the finite point P , in a similar manner to
pairing computation on elliptic curves Pairing computation using degenerate divisors can
be more efficient than using general divisors In particular, if a degenerate divisor is used
as the second argument to the Tate pairing, then it is possible to evaluate the functions in
Miller’s algorithm at a single point, rather than at two points in the general case, which can
be a significant saving

In general, there is little advantage in defining the first argument to be a point as well, as
a general divisor will be obtained with the first doubling in M iller’s algorithm The benefit
o f having a reduced cost for addition also tends to be negligible compared to the cost of
arithmetic in the extension field However, it has been shown that an octupling operation
exists on the curves C¿ such that for a divisor D = (P) - (00), then [8\D — (P ') - (00),

84

where P ' = o4>2s(P) As this octupling operation is extremely efficient, it makes sense to
consider pairings on degenerate divisors Therefore, in this chapter the pairing of degenerate
divisors D\ = (P) - (oo) and D 2 = (Q) — (oo) is examined Computing a pairing using
points, rather than divisors in Mumford representation, also allows for a simpler description
which is used to optimise the pairing computation later

Pairing based protocols that use degenerate divisors to speed up pairing computation
typically require computing a pairing of general divisors as well There are a number of
different ways to compute pairings on two general divisors D\ — (P i) + (P2) ~ 2 (oo) and
D 2 = (Q i) + (Q2) - 2(oo) First o f all, a pairing can be computed on D\ and D 2 using
their Mumford representation However, as explicit and fast algorithms will be derived later
in this chapter for pairings using degenerate divisors, it is more convenient to exploit the
bilinearity property of the Tate pairing by computing

(D i , D 2)n — (Pi Ql)n(Pl>Q2)n(P2 i Q l)n (P 2 Q 2)n

Therefore, computing a general divisor using this method is at worst 4 times the cost of
computing a pairing using degenerate divisors However, a number of techniques are avail
able to improve this bound, that are largely the same as the techniques that are known to
optimise the computation o f multiple pairing values in the case of elliptic curves A sin
gle accumulating variable can be shared for all the pairings, rather than have four separate
variables, and thus only a single squaring over F 2i2m must be computed at each iteration
Any precomputation that is done need only take place once The final exponentiation can
also be shared, rather than computed after each separate pairing However despite these
optimisations, this approach is still substantially slower than the degenerate pairing

The previous paragraphs detail how degenerate divisors can be used in pairing compu
tation However, there has been no discussion of when it is permissible to use degenerate
divisors Frey and Lange [29] examine these issues in detail In particular, they state that
if the group order of a supersingular curve has a sufficiently large co-factor, then it is not

85

possible to find a divisor D £ P ic ^ (F g) of prime order, such that D is degenerate How
ever, Table 4 3 gives several examples where the group order # P ic ^ (F 2̂) for the curves
Cd has a small co-factor Frey and Lange motivate the discussion on degenerate divisors
by showing how they can be used m both Identity Based Encryption and Short Signature
schemes

It is essential to test any implementation of the Tate pairing thoroughly, to ensure that
it meets the required properties o f a bilinear pairing The computability property is ad
dressed by simply implementing the algorithm efficiently, and the non-degeneracy property
is met in this case by using a modified pairing The implementation can be tested for the
remaining property, that o f bilinearity, by comparing the output o f certain pairing computa
tions, as will be explained later We emphasise that this is only necessary to ensure that the
implementation is correct - mathematics guarantees the bilinearity of the Tate pairing

To generate random divisors in P ic ^ (F 9), it is first necessary to generate random points
on the curve C, over F 2m or F 22m The following solution is due to Koblitz [64] Let
q = 2m or q ~ 22m To generate a random point P = {x ,y) E C'(Fg), first generate a
random x e ¥ q Then the equation o f the curve Cd y 1 ~h y = x 5 -j- x 3 + d has a solution
y e ¥ q if and only if the trace of the right-hand side of the equation is equal to zero, 1 e

+ t 3 + d) = 0

If the trace is not equal to 0, random values for x should be repeatedly generated until
this condition is met As rn is defined to be a prime (and hence odd), the y coordinate is
computed using the half-trace as follows

(m—1)/2
y = ^ 2 (x5 + + d)22j

3 =0

Once a solution y has been found, then the other root is given by y + 1
As degenerate divisors are associated with points on the curve, it suffices to generate

random points to construct a range o f degenerate divisors for testing purposes Two random

86

points Pi = (¿ 1, 1/1) and P 2 = (x2, ^2) are used to construct a general divisor D as D =
(Pi) + (P2) — 2(oo) However, it is often useful to use Mumford’s representation, rather
than keep the finite points P i and P 2 in the support of D separate This can be done by
representing D as D = [u, u] such that

u, = x 2 + (x 1 -f- x 2) x + (¿ i x 2)

v = (y2 + Vl)/{X2 + Xi)x + (2/1 + Xi(y2 + V l)/(x 2 + Xi))

This conversion requires just 3 multiplications and 1 inversion
To test that an implementation o f the Tate pairing is bilinear, two random divisors

D \ , D 2 e P ic ^ (F 2m) are generated The divisor D '2 6 P ic ^ (F 2 12m) is then obtained
by applying the distortion map to D 2 Let M be the final exponentiation required to com
pute the Tate pairing Then the Tate pairing is computed using D i and D '2 as {D\, D ’2)M
Scalar multiplication is then performed on D \ using a random scalar Z, to obtain the divisor
[l]Di The Tate pairing is computed again as D 2)M The output o f the first pairing
is then exponentiated to the power of Z, and compared to the output of the second pairing
If the two values are equal this implies that the pairing is bilinear, as

{Dh D’2)m = ([l}Du D,2)M

For a more “thorough” test o f the bilinearity property, it is also possible to perform scalar
multiplication on the second divisor D f2 using a random value r, and then to compute the
second pairing as {[¿]£>i, H ^ 2)Ai ^ i s can be equated with the first pairing value, raised
to the power of lr

If degenerate divisors are used, then D \ and D 2 are associated with the finite points
P i and P 2, which are used as the input to M iller’s algorithm The bilinearity test involves
multiplying the divisor D \ by the scalar Z However, assuming I is a random scalar, this
approach will normally yield a general divisor, rather than another degenerate divisor In
this case, the pairing can be computed using Mumford representation, or by splitting the

87

divisor to obtain the two finite points in the support This can be done using the following
method Let [l]D\ = [«, a], where a — x 2 + u,\x -f and o = v\jl -f uq Once the j -
coordinates x \ and x 2 have been found, then g\ and y 2 are trivially recovered by substituting
x \ and x 2 into the equation of u Finding x \ and x 2 requires solving the quadratic equation
a (as u = (i + x i) (x + x 2)) This can be done by first rewriting a in the form

Z2 + Z = (u o) / (u i) 2 ,

where 2 = r / v i This equation can be solved by using the method given previously for
generating random points on the curve Once this is done, x \ and x 2 can be recovered by
multiplying the two roots by ¿¿2

4 3 4 Octupling functions for the Tate pairing
As an efficient octupling operation has been derived ior the curves Cj, it makes sense to
use this operation to compute the Tate pairing As degenerate divisors are being used,
rather than general divisors, it must be shown how to derive the necessary functions that
are required in M iller’s algorithm from the octupling operation Let D\ = (P) - (oo)
be the initial divisor, where P = (xp , yp) To obtain the divisor D $, D \ must be doubled
continually to get D2, £4 and then £>§ For each D n ~ n (P) — rc(oo), an equivalent divisor
D'ri is considered, such that D n = D ’n + (Jn) The function fa is the required function that
has divisor

(h) = 8(P) - ([8]P) - 7(oo)

The function /g is built up m stages, by extracting a function f n at each iteration such that
f n = (y + v (x)) / u ;(x), where v(x) is from the Cantor composition step, and u ' (x) is from
the Cantor reduction step

88

The initial divisor Di = (P) — (oo) is represented in Mumford notation as

[ui u i] = [x + x p yp\

The function fi can be taken to be 1 D\ is then doubled to obtain D 2 = 2(P) - 2(oo)
This is done by using Cantor composition on [v\, ?;i], which yields

[u2, v2] = [x 2 + x 2P (x4p + r 2p)x + y 2p]

As this divisor is already reduced, then ~ ^>2 and f 2 = l D 2 is then doubled to obtain
D 4 = 4 (P) - 4(oo) Again, doubling [u2, ^2] using Cantor composition gives

[u4, V4} = [x 4 + x 4p x 3 + (xP + x 4P) x 2 4- (xp)x 4- Vp]

This divisor is clearly not reduced, as has degree 2g Therefore, Cantor reduction must
be applied to [u4, V 4], which yields the divisor D '4 = [ulA, v4] such that

[u4, v^] = [t 2 + x 4- (xp* + Xp), (&p* 4- l)x + (?/p + Xp + x 2p + 1)]

Therefore, D 4 = D '4 4- (/ 4X where / 4 = (y 4- v ^ c)) / u'A(x) Finally, Dg is obtained by
doubling D f4, using Cantor composition on [u 4 , v'4\ to give

[u8 ug] = [t/4(x)25 (x p -1- l) x 2 4- (xf? 4- xp)x + {ylp 4- Xp6 + rep 4-1)]

Again, this divisor is not reduced Reducing [us, us] gives a divisor D f8 = [ug, Ug] such that

[u8î üs] = + (x6p + 1)> yQp + ¿ p 8 + 1]

Note that Dg — (P ') — (00), where P f = a<fr2b(P), which confirms the octupling formula
that was given previously /g is given as /g = (y 4- ug(x))/i/8(x), and therefore Dg —

89

D'& + (h)’where

h = f t f i î i f k =■23 r 2 2 1 2 r t

4 3 5 The final exponentiation

The group order for the curves Cd is # P iC c (F 2™) = 22™ ± 2 3̂m+1̂ 2 + 2m ±2^m+1̂ 2-f-l
It is more convenient to use this group order, rather than a subgroup order, to compute the
Tate pairing This is because # P ic ^ (F 2̂) has a Hamming weight of 5, which means that
only 4 additions must be performed in M iller’s algorithm All cryptographic applications
require a unique value, and so it is required to add the final exponentiation at some point m
the protocol Using the group order, the final exponentiation M for the curves Cd is

Evaluating the exponentiation to M using standard exponentiation techniques in F 2i2m
is computationally expensive However, the cost can be greatly reduced by using the idea
of Barreto et al [5] The exponentiation to (212r" - 1) can be factored as (212r" — 1) =
(26'" - 1)(26™ + 1) As detailed in chapter 3, an element x e F,;fc can be exponentiated to
the power o f qk / 2 using a trivial operation In this case, an element x = (u + bso) G F 2i2m
can be exponentiated to the power of 26”' as x 2&ni = ((a + b) + tao) Therefore, the
exponentiation to the power o f 26m - 1 can be computed with a single multiplication and
inversion in F 2i2 771

Once an element x e F 2i2m has been exponentiated to the power of (26m — 1), it
has norm 1 with respect to F 2em In other words, x 26m+1 = 1 This implies that x -1 =
x 26m, and so inversion can be performed on x for free As this property holds for any
subsequent exponentiation, an expensive inversion operation need only be performed once
when computing the final exponentiation The remaining exponentiation to the power of

2 1 2 m - 1 2 1 2 m - 1
#PicQc {¥2m) 22™ ± 2(3m+1)/2 + 2m ± 2(™+1)/2 + 1

90

(26w + l) / # P i c ^ (F 2m) can be factored as

f t ^ — (2 m X o (™ + l)/2 4 . 1 \ f 9 3m x o t37̂ 1)/2 _L -n
P lc° (F2.) - (2 T 2 +1)(2 T 2 + 1)

The fact that the group order divides 26m + 1 will be used in the next chapter to obtain
an even moie efficient means of computing the Tate pairing In the meantime, the product
given above can be unrolled as

(24m + 23m + 22m+l + 2™ + l) ip (2(m+1)/2(2Jm + 22m + 2m + 1))

Therefore, the entire final exponentiation to (212m - 1) /# P ic ^ (F 2”*) can be computed
with only 7 multiplications, 1 inversion, (m + l) /2 squarings and some trivial Frobenius
actions in F 2i2m As this is a relatively small computational cost, the emphasis must now
be on improving the speed o f M iller’s algorithm itself

4.4 Computing the Tate Pairing
In this section, it is detailed how to compute the Tate pairing efficiently using the supersin-
gular genus 2 curves that were selected earlier, as well as all o f the optimisations that were
derived in the previous section

4 4 1 Using an octic basis
Recall that the group order for the supersmgular genus 2 curves Cd y 2 + y = x 5 + x3 + d
over F 2m, where m is odd and d 6 {0, 1}, is given as

P ic £ (F 2-) = 22r" ± 2(3™+1)/2 + 2 m ± 2(w+1)/2 + 1

Therefore, using the group order in M iller’s algorithm to compute the Tate pairing im
plies a loop size of 2m iterations, assuming a standard double-and-add algorithm This
algorithm can be combined with the simplified explicit formulae for doubling elements of

91

Picg?(F2m) as given in Algorithm 7 The resulting algorithm yields an efficient pairing
implementation on both degenerate and general divisors However, in the previous section
it was shown that these curves support an extremely efficient octupling operation Ex
plicit formulae were then denved for the intermediate functions that are required in M iller’s
algorithm m the case of degenerate divisors Given a divisor D = (P) - (oo), where
P = (xp , yp) , the function associated with [8\D is

, , V (V + V4 { r) \ 2 y + Vg(r)

where

v±(x) = x3 + (x% + x p) x 2 + (x p) x + yP)

v8(x) — (x'p + l) x 2 + (x3p + x p jx 4- (yp6 4- x lp + Xp 4-1)

Note that the denominator v!A(x)2v!%{x) is evaluated only at x, which is the x-coordinate of
the distorted image point The distortion map ip defined previously maps the x-coordinate
o f the point to the field F 26m Therefore, the denominator is also defined over F 26m and is
eliminated by the final exponentiation

The goal is to compute the Tate pairing {P,?p{Q)) on the degenerate divisors D\ =
(P) — (oo) and D 2 ~ (Q) — (oo) At each iteration of the algorithm, the point P is octupled
and the function given above is calculated As a result, one would expect Miller’s algorithm
to have 2 m / 3 iterations, as opposed to 2 m iterations when doubling However, there are a
number of problems with this approach when a pairing is computed on degenerate divisors
The group order # P ic ^ (F 2m) has a Hamming weight o f 5, meaning that four additions
must take place in M iller’s algorithm However, the final addition yields a vertical line
function and does not need to be computed as a result [23]

The first problem is that the number of doublings that must be performed between each
addition in the group order might not be a multiple o f 3 If this is the case, then either
one or two extra doublings must be performed However, even a single doubling of a

92

degenerate divisor D = (P) - (oo) results in the general divisor [2}D = 2(P) - 2(oo)
The second problem relates to the additions that must be performed In the overwhelmingly
common case, any addition performed on a degenerate divisor will yield a general divisor
Therefore, the computational advantage of using a degenerate divisor as the first input to
Miller’s algorithm is quickly negated

Here we propose an alternative approach which overcomes these problems Let D =
(P) — (oo) be the first input divisor to the Tate pairing It is required to construct a func
tion f , such that (/) = [N]D = [N]((P) — (oo)), where N is defined to be the group
order # P ic ^ (F 2m) in this case Rather than construct / in stages as in Miller’s algorithm,
note that j is composed of several intermediate functions Let D 2t be the reduced divisor
equivalent to [2*]((P) — (oo)), and let f 2i be the function such that

[2‘] ((P) - M) = D2, + (/2.)

Let D' be a reduced divisor equivalent to D 22m ± D 2{3m+i)/2 , and let }i\ be the function that
arises from this addition process such that

D 22m i t Z^2(3m-fl)/2 = D (^ l)

Similarly, let h2 be the function that arises from the addition of D ' with D 2™, and let be
the function from the addition (subtraction) o f the reduced divisor equivalent to D' + D 2m
with D 2(m+1)/2 The final function that arises fiom the addition with D can be omitted as it
is eliminated by the final exponentiation The function j is then constructed as

/ = /22m /2(Jm+1)/2 /2m f 2(m+l)/2 hi h2h3

Therefore, rather than compute / using a double-and-add algorithm, it is possible to
compute each f 2i that is required separately No additions take place when computing any
o f these values, which removes the need for conditional statements inside the loop The

93

additions that are required to compute the h l functions are performed afterwards, and thus
the problems associated with using degenerate divisors are avoided If the / 2* functions are
calculated separately, the number of iterations of M iller’s algorithm will far exceed 2m /3,
thus defeating the purpose of this optimisation A better strategy is to have a single octu-
pling loop up to 2A/i/3 Then whenever the index reaches the required value, the function
at that point can be saved These function values can then be multiplied together after the
loop

As an octupling is performed at each loop iteration, the function values must be saved
at the nearest index to i However, depending on the value of z, one or two extra doublings
might have to take place to get the correct value for / 2, Let D' — (P ') — (oo) be the
degenerate divisor that corresponds to the function that is saved in the loop It has been
shown previously that doubling a degenerate divisor does not contribute any line function
to the accumulating function Therefore, if an extra doubling must be performed, it is only
required to square the function to obtain the correct value for j 2t

A further doubling yields the divisor [4]Df = 4 (P ') — 4(oo) The explicit line function
for this divisor was given previously as

y + v4 (x) = y + x 3 + (x8P, + x p ,) x 2 + {x%,)x + y P,

Therefore, when two additional doublings must be performed, it suffices to square the func
tion twice, and then to multiply it by the function given above Rather than evaluate this
function at 0 (Q), where Q = (iQ .gg) , it is possible to build the distortion map ip into the
function This is given here in the basis defined earlier for F 2i2m The constant term is

{yQ + x q { 1 + XQ + ¿ p ' + ¿ p ') + zp,XQ + yp,},

and the remaining terms are

{tq + rp,,Tp, -i- xp,, 1 ,xq + £q50, 1,0 0,0,0,0}

94

Finally, the functions hi, h<i and hs that correspond to the additions in the group order
must be calculated This is easily done by adding the relevant divisors D2, and extracting
the functions that are required from the addition process It is a relatively simple matter
to construct the divisors D 2l Firstly, the convention that j? 1 = is adopted for con
venience Given a point P = (x p ,i/p), then [23i]P can be derived by generalising the
octupling formula The ¿-coordinate of [23l]P is given as

C6*) . / \Jp + 7i (0 3

where 71(7) is 1 when 1 is odd and 0 otherwise The ^-coordinate o f [23']P is given as

l/p6 ,) + 7 i (i) » p ' + 1) + 7 s (?) >

where 73 (i) = 1 when ¿ = 1,2 m od 4, and 0 otherwise The exponents in brackets in
these formulae are reduced modulo m, as x 2™ — x for x € F|m However, the 1 in D 2i
may not be an exact multiple o f 3 This is easily solved by performing at most an extra
two doublmgs using the approach described previously The divisors D 2i are then added
together using Cantor composition and reduction, and the relevant functions are extracted
and multiplied to obtain /

4 4 2 Precomputing the first point
At each iteration o f the octupling algorithm to compute the f 2i functions, it is necessary
to octuple the iterating point P, and to evaluate the explicit functions that were derived
previously at the image point ip(Q) It has been shown that the denominator o f this function
does not need to be computed, as it is eliminated by the final exponentiation Therefore, the
function that must be computed at each iteration is the product a/3, where a = (y-\-va(x)) 2

and ¡3 = (y + Dg(a:)) These functions are evaluated at ip{Q), which is the point that results
from the application of the distortion map ip to the point Q e C (¥ 2 rti) Let P = (xp yp)

95

Then ua(x) and yg(x) are given as

04^x) — X3 ~t~ (¿p "f~ X p)^2 + (i-p)j/ + i/p,

Vg(^) = (xp + l)^2 + (^p2 + x lp) x + (l/p + Zp + JTp8 + 1)

It is important to optimise the generation and evaluation of the a/3 product, as it is
computed at each iteration of the loop The first optimisation is to build the distortion map
into the formulae for a and ¡3 This means that the second input point to the Tate pairing
is now Q = [xQ.yq) 6 CQFVO, rather than ip{Q) € C (F 2i2m) Recall that the distortion
map is ip(x, y) = (x w , y -\- $2%2 + s \ x + so), where Sq + sq = w b + w 3, si — w 2 w 4

and 52 = tv4 + 1 Then

(y + ^ (x)) = vq + s2Xq + si x Q + 50 + {xq + iu)3 -f (x% + x 4p) (x q + w) 2 +

(x p) (a Q + w) + yp

Squaring this function gives

a — Vq “I“ S2XQ + sixQ + so + XQ + xQw2 + xqw4 + w6 +
(x)p + Xp)(Xg Hr W4) -{- (x p)(x g -f li/2) + y%

The basis fo rF 2i2m was constructed to avoid the need for explicitly calculating elements
such as w 4 Therefore, the formula for a must be rewritten in terms of this basis Let
s2 = w, s 2 — w 4 -f w -f 1 and Sq = sq + w 5 + w s Then the constant component of a ,
written in the basis for F 2i2)n, is

{Vq + x q + x q + 1 + (x p + x p)x q + x %x q + yp}>

96

and the remaining components are

{■Iq H- ¿Qi xq 1 ¿p, 0 x]d + xp, 0,1, 0,0j 0, 0, 0}

Similarly, applying the distortion map to ¡3 = (y + os(r)) gives

P = ?/Q + 5 2 X q + S lX Q + 5 o + (a^p2 + 1) (x q + l i ;) 2 + (x p + T p) (c c q + l i j) +

(y-p + Xp + x f + 1)

Expressing ¡3 in the basis derived for the field F 2i2m has constant component

{VQ + (x f i) xQ + { x f + x f t) x Q + y f + X p^l + x 3p) + 1}

and the remaining components are

{z3p + Jl)d , ¿Q + Jb3p + 1, 0, Xq + JvQ, 0 1,0, 0,0,0,0}

It is possible to precompute any power of tq that is required for both o- and ¡3, as
these terms are constant throughout the algorithm However, as the point P is octupled
at each iteration, it is required to constantly update the values o f x p and ijp in a and (3
Note that the values required for r p and yp m a and ¡3 are generally of the form r 2p
for some ? However, there are only rn possible values for ?, as r 2p — x p Therefore,
rather than explicitly octuple P , it is better to precompute all o f the possible powers of r p
and yp These powers can be stored in an array and then accessed in the algorithm using
array indexing Firstly, two arrays of size m are instantiated Each index ¿ in the arrays
then consists o f the value x p and yp This precomputation requires 2?n squanngs in F 2m,
which is a relatively small cost

The formulae given for a and ¡3 must then be rewritten, so that the required powers
for x p and yp can be accessed from the precomputed arrays, rather than from the explicit

97

octuplmg of P This can be done by using the formulae given for computing [23,]P Firstly,
a is examined Recall that 71 (¿) is 1 when 1 is odd and 0 otherwise, and 73(f) = 1 when
¿ = 1,2 m od 4, and 0 otherwise The constant term of a is then

f 2 1 6 1 / (6i+4) (6i+3)\ 4 I ((6H-3) . -i . / \ \ 2 . (6^+3) ,{yQ + xQ + {x P + X P) XQ + U p + 1 + 7 i (0 M q + i /p +

7 lW z p ,+4) + 73«) + 1}

and the remaining components are

{ x q + X g , X q + + 7 1 (1) + 1 , 0 , X p l + ̂ + x ^ + 3) , 0 , 1 , 0 , 0 , 0 , 0 , 0 },

where x ^ ~ x T as before Similarly, for (3 the constant term is

{VQ + x p̂ +5\ x Q + x q) + % pt+4\x ^ p +5 ̂ + x q + 7 i(z) + 1) + V p l+ 4 ̂ + 73 M +

7 i (0 z q + 1},

and the remaining components are

+ x ^ 1+4\ xq + x {p l+5) + 7 i (i) + 1 , 0 , Xq + a : g , 0 1 , 0 , 0 , 0 , 0 , 0 }

Therefore, a and f3 are constructed at each iteration of the loop with only two multi
plications in F 2m each, assuming that all o f the powers of x q and t/q that are required are
precomputed This is a large saving on having to explicitly calculate the required powers o f
x p and yp at each iteration The remaining task is to show how to multiply a and (3 in an
efficient manner A general multiplication in F2i2m is an expensive operation as it costs 54
multiplications in F 2™ However, both a and (3 are o f the form (a + bw + cw2 + dw4 + so)
It is possible to derive a special multiplication routine that exploits the sparse structure of
both a and ¡3 This routine is derived in Appendix A 3, and costs only 11 multiplications in
F2m using some Karatsuba-like optimisations

98

4 4 3 Absorbing powers of 8
As described in the previous subsection, the functions a and ¡3 are calculated at each it
eration of the octupling algorithm These functions are first multiplied together using the
explicit routine given in Appendix A 3, and then with the accumulating variable / How-
ever, it is necessary to first exponentiate the accumulating variable / € F 2i2m to the power
o f 8 This can be achieved with three squarings in F 2i2m As a squaring in F2i2m takes 12
squarings in F 2™, the total cost per iteration of the algorithm is 36 squarings in F 2m

However, it is possible to avoid these squarings by building the exponentiation into
the a and (3 terms inside the algorithm This technique is feasible for finite fields of low
characteristic, and was introduced to pairing based ciyptography by Duursma and Lee [23]
The first function that must be computed is j 2(m+i)/2 This can be obtained by (m — l)/6

iterations of the octupling algorithm and a doublmg Therefore, for the index 1 = 0 to
(m - l) / 6, a and ¡3 must be raised to the power of 2(m~7“ 01)/2, to avoid octupling the
accumulating variable j

The next function to be calculated is f 2m This can be obtained with (m —1) /3 iterations
of the octupling algorithm and a further doubling So, for the index t = (m - l)/6 to
(m —1)/3, a and ¡3 must be exponentiated to 2(m -4-3î) However, further work is necessary
if the functions that were previously calculated are to be reused The exponentiation used
to calculate / 2(m+i)/2 is 2(m-7-6*)/2 Therefore, to reuse this function it is necessary to
exponentiate it to the power o f 2Îm_1^ 2, as (2(m -7- 6l^ 2)(2(m -1^ 2) = 2(m~4_3î)

The function / 2(3m+1)/2 is computed with (m - l) / 2 iterations of the octupling algorithm
and two doublings For the index t = (rn —1)/3 to (m — 1)/2 , this involves exponentiating
a and ¡3 to the power o f 2(3m -9- 6lV2 As before, some extra work must be done to reuse
the functions that have been previously calculated Finally, the function / 22m is computed
with (2m — 2) /3 iterations of the octupling algorithm and two doublings For the index
t = (m — l) / 2 to (2 m - 2)/3 , a and (3 must be exponentiated to the power of 2(2m_5_3î),
again with some further work to reuse the functions

Therefore, the algorithm to compute each of the four / 2* functions consists o f four

99

separate loops o f (iri - l)/6 iterations each Each loop contains separate formulae, each
of which is obtained by exponentiatmg the formulae for a and ¡3 given previously to the
required power This requires the precomputation of Xq and ¿/q, for every 0 < i < m,
and using array indexing in the formulae It costs two multiplications in F 2̂ to construct
each term, which is exactly the same computational cost as that given previously for a and
¡3 The actual process of exponentiatmg a and ¡3 will be examined in more detail in the
following chapter

Each time a function is reused, it is necessary to perform (m ~ l) /2 squarings, some
multiplications as well as some applications of the Frobemus endomorphism in F 2i2m Per
forming these operations four times negates any o f the advantages associated with elim
inating the octupling of the accumulating variable However, it is better to group all of
the operations that require the exponentiation to together, so that this powering is
only computed once As any application of the Frobemus map can be trivially computed,
the additional cost o f this optimisation is only (m - l) / 2 squarings and 7 multiplications
in F2 12m

The total cost o f this optimisation is as follows 2m additional squarings in F2™ must
be performed in the precomputation stage Then, 6??̂ — 6 squarings in F 2”* and 378 mul
tiplications in F 2m are computed after the loops The previous strategy of squaring the
accumulating variable three times per iteration costs roughly 24m squarings m F 2™ in to
tal, as the loop size is approximately 2m /3 Therefore, this optimisation saves roughly 18m
squarings, at the cost o f 378 multiplications For values o f m that are used in practice, this
optimisation is faster than that given in the previous subsection However, the complexity
of implementing this approach is considerable

4.5 Experimental Results
In this section, experimental data is provided to validate our assertion that efficient pairing
calculation is possible on genus 2 curves over F2™ The first task in implementing any o f

100

the techniques given in this chapter is to selcct m There are a number of conditions on
the selection of m that must be satisfied so that the implementation of the Tate pairing is
invulnerable to attack, as discussed at the start o f this chapter Firstly, tti must be chosen so
that # P ic ^ (F 2-) has a large prime factor Secondly, P i c ^ ^ m) must be large enough to
resist any generic attack against the DLP in this group Thirdly, as the embedding degree
of the genus 2 curves is k = 12, a further condition on m is that F*12m is large enough to
resist any sub-exponential time attack on the DLP

Various examples of m that satisfy all o f these conditions for the two curves Co
y 2 + y = x 5 + and C\ y 2 + y = t 5 + x 3 + 1 were given earlier in Table 4 3 The
values that were chosen for m range from m ~ 79 to m = 239 All o f these values are large
enough to satisfy the security considerations detailed above Therefore, the smallest values
of m are chosen for each curve, as the larger m is, the more computationally expensive the
arithmetic in both P ic j l ^ m) and F*12m For the curve Co the value for m i s m = 103,
and for the curve C\ the value is m = 79 As will be detailed later, these parameters have
the advantage that an element o f F 2™ can be represented inside a single hardware register
(assuming our computing platform)

Table 4 4 details the experimental results on the supersingular genus 2 curve C\ over
F279 Table 4 5 details the experimental results for the curve Co over F2io3 The first three
cases in each table give timings for the implementation of the Tate pairing using the group
order for each curve All three cases in each table share the fast means of performing finite
field arithmetic as detailed previously, as well as the efficient method to compute the final
exponentiation The first case m both tables is an algorithm to compute the Tate pairing
where both input elements are general divisors A standard right-to-left doubling algorithm
is used, where the iterating divisor is doubled using the explicit formulae given previously
in Algorithm 7

The second case in both tables uses degenerate divisors and octupling to compute the
Tate pairing This algorithm precomputes the relevant powers o f the first input point to avoid
explicitly octupling at each iteration The third case in both tables also uses degenerate

101

divisors and octuphng to compute the Tate pairing However, it precomputes powers o f
the second input point to avoid having to octuple the accumulating variable each iteration
Finally, the fourth case in both tables gives the timing for scalar multiplication using the
octuphng formulae given in Algorithm 8 The scalars in question are m bits long and have
a random Hamming weight This timing is included to compare the cost o f computing the
Tate pairing with that o f scalar multiplication on the curves Cd All o f the timings are given
in milliseconds

The general conclusion that can be drawn from these tables is that the Tate pairmg can
be computed efficiently on (supersmgular) genus 2 curves over ¥ 2^ A striking conclusion
from the tables is that the degenerate divisor case yields a far more efficient implementation
than the general case This result shows that it is worth using cryptographic protocols
in the genus 2 setting that take advantage of pairing computation on degenerate divisors,
as detailed by Frey and Lange [29] It can be seen that the optimisation of avoiding the
octuphng o f the accumulating variable by building the exponentiation into the intermediate
functions mside the algorithm gives a slight improvement over the simpler method Finally,
it can be concluded that pairmg calculation on genus 2 curves over F 2m is not as efficient as
scalar multiplication, although the difference between them is narrower than was previously

102

thought
All o f the experiments were performed on our platform of a Pentium IV, which has

a clock speed of 2 8 GHz, and which runs version 2 6 15 of the Linux kernel The code
is written in C/C++ and is compiled using version 4 03 of the GCC/G++ compiler suite
The efficient implementation of the finite field F 2™ is taken from MIRACL 5 01 Recall
that ni was chosen so that an element o f F2™ can be represented inside a single hardware
register, rather than using a multi-precision representation More precisely, arithmetic in
F 2™ is performed in the 128-bit registers available to the Pentium IV, which support the
SSE2 instruction set SSE2 is a SIMD (Single Instruction, Multiple Data) instruction set,
meaning that a single SSE2 instruction manipulates the entire 128-bit register This offers
improved performance over the use o f four separate 32-bit registers In particular, this
instruction set enables the multiplication of elements in F 2™ that is about twice as fast as a
standard multi-precision implementation

4.6 Conclusion
In this chapter, it was shown that pairing calculation on supersingular genus 2 curves over
F 2m is efficient, and is a valid candidate for the practical implementation of pairing based
protocols as a result Firstly, it was shown how to select curves with the maximum em
bedding degree permitted for genus 2 curves It was shown how to select m such that the
relevant security parameters are satisfied, and formulae were given to double elements in
P ic ^ (F 2™) that exploit the special form of the curve equations that were chosen

It was detailed how to construct the extension fields that are required The use of degen
erate divisors in pairing computation was then explored An octupling automorphism was
derived, and explicit formulae were given for the intermediate functions that are required
m M iller’s algorithm It was shown how to compute the final exponentiation efficiently
Then the actual implementation of the Tate pairing on these curves was detailed It was
shown how to avoid the problems associated with using degenerate divisors, and how to use

103

precomputation to speed up the algorithm
Finally, experimental results were given It was demonstrated that it is possible to com

pute the Tate pairing using general divisors efficiently If degenerate divisors are used,
then the implementation is particularly efficient However, the results given in this chapter
should be viewed more as a proof of concept, rather than in a practical manner This is be
cause the methods used to compute the genus 2 Tate pairing in this chapter are superseded
by simpler and faster methods that will be described in the following chapter

104

Chapter 5

The r jx Pairing
51 Introduction
In the previous chapter, an efficient implementation of the Tate pairing was described on
the supersingular genus 2 curves Cd y 2 + y = x b + x 3 -f d over where d e {0, 1}
These curves have the maximum embedding degree for supersingular genus 2 curves of
k = 12 As the group order for these curves is approximately # P ic £ (F2m) « 22m, M iller’s
algorithm requires around 2 m / 3 iterations if the fast octuphng operation on Cd is exploited
However, implementing this algorithm efficiently is difficult due to the additions that must
be performed

In this chapter, it is shown how it is possible to achieve an implementation of the Tate
pairing on the same genus 2 curves by using the rj pairing construct The rj pairing requires
rn iterations o f M iller’s algorithm using the octupling operation m the genus 2 case, as
opposed to 2ra /3 iterations using the straightforward method However, the arithmetic
associated with the 77 painng is substantially less expensive to compute, and thus it yields
an efficient painng implementation The resulting algorithm is approximately as efficient as
the method given in the previous chapter, but is much simpler to describe and to implement

It is then shown how for certain supersingular elliptic curves it is possible to avoid the
final exponentiation when computing the 77 pairing, as long as the vertical line functions are

105

included in the pairing computation This is the first time that a method has been given to
compute the Tate pairing for cryptographic purposes that has no final exponentiation This
technique is not useful in practice, as the evaluation of the vertical line functions in Miller’s
algorithm is costly However, it is likely that future research will find an application for this
idea

It is then shown how it is possible to achieve a more efficient pairing computation
on the genus 2 curves by using the ijr pairing This pairing has a more complicated
final exponentiation than the r] pairing, and an extra addition must be performed after the
loop However, it has approximately half the number of loop iterations of the ?? pairing
Various techniques are detailed to achieve the fastest implementation possible Finally, a
comprehensive series o f tests is conducted on the various painng implementations, and the
chapter is concluded

This chapter contains joint work with Paulo S L M Barreto, Steven D Galbraith and
Michael Scott, which has been accepted for publication in Designs, Codes and Cryptog
raphy A preprint is available at the ePrint archive as Barreto et al [4] This chapter also
contains joint work with Steven D Galbraith and Caroline Sheedy, which has been ac
cepted for publication in the Journal o f Mathematical Cryptology A preprint o f this paper
is available at the ePrint archive as Galbraith et al [33]

5 2 The Theory of the t]t Pairing
Recall that Duursma and Lee [23] introduce several optimisations which lower the com
putational cost o f the Tate pairing These techniques apply to supersingular hyperelliptic
curves of the form C y 2 = x p — x + d over Fpm, where d = ± 1, p = 3 m od 4 and
m and 2p are co-prime These curves have an embedding degree of k = 2p Rather than
using the group order # P ic ^ (F pm) to compute the Tate pairing, Duursma and Lee propose
using a multiple of the group order o f the form N — ppm + 1 This order has Hamming
weight 2 m base p, meaning that only a single addition must be performed in M iller’s al-

106

gonthm However, Duursma and Lee show that as the addition takes place on the final
iteration of the algorithm, the line function that corresponds to the addition is a vertical line
function Therefore, the addition does not need to be computed, leading to the elimination
o f conditional logic from the algonthm

As the order used to compute the Tate pairing is N = pPm + 1, the final exponentiation
is computed as

M = (qk - 1) / N = (p 2pm - l) / (j / ’m + 1) = j T 1 - 1

which can be trivially computed with a multiplication and inversion in Fp2rm Duursma and
Lee also introduce the idea o f pairing computation on degenerate divisors and hence points
on the curve, as covered in the previous chapter Instead of deriving the intermediate line
functions in M iller’s algorithm from the Cantor composition and reduction of the iterating
divisor, Duursma and Lee provide explicit formulae which depend only on the coordinates
of the original input point It is also shown how to absorb the exponentiation to p in Miller’s
algorithm into the explicit formulae

Therefore, the proposed pairing implementation has a trivial final exponentiation and
the arithmetic inside the loop can be computed efficiently However, these optimisations
come at the cost of a longer loop of pin iterations Duursma and Lee’s most significant
contribution is to show how the number of iterations o f the loop can be shortened from pm
to in This is done by absorbing the exponentiation to p inside the explicit formulae The
resulting algorithm enables an extremely efficient implementation of the Tate pairing

Unfortunately, there are very few specific hyperelliptic curves of the form given by
Duursma and Lee that have a suitable embedding degree over a finite field of low character
istic In fact, only the elliptic curves y 2 — x 3 - x + d over ¥ 3™ with an embedding degree
o f ^ = 6 are interesting for pairing based cryptography Kwon [66] transfers the ideas of
Duursma and Lee to the elliptic curves y2 + y = x 3 + x + d over ¥ 2**, where d 6 {0,1}
and the embedding degree is k = 4 In joint work with Barreto, Galbraith and Scott [4],

107

we show how to generalise and extend the Duursma and Lee loop shortening approach to
arbitrary supersmgular curves by introducing the i)t pairing construct

Let C be a supersmgular (hyperelhptic) curve over ¥ q, where q = pm, with an embed
ding degree of k > 1 Also, let 0 be a distortion map on the curve C which enables the
denominator elimination technique Let N be the order that is used to compute the Tate
pairing, which can either be the group order, a multiple o f the group order, or a prime sub
group order Let D \ ,D 2 € P ic£ (F 9) have order dividing N , and = (/n) , for some
function / Then the level N Tate pairing is computed as

(Di, <P(D2))n = /A r (0 (D 2))

The rjx pairing is not a new bilinear pairing but simply an alternative means of comput
ing the Tate pairing on certain supersmgular curves The mam idea of the tfr pairing is to
compute the Tate pairing using an order T e Z, such that

rrr(D u il>(D2)) = fT (1>(Ih))

Unlike the straightforward method to compute the Tate pairing, the condition that [T]D\ =
(oo) can be dropped In order to get the loop reduction idea of Duursma and Lee, the goal
is to select a value for T that is smaller than N However, the vast majority of choices for
T will not yield a non-degenerate, bilinear pairing The following lemma gives a method
for selecting T such that the tjt painng fulfils all o f the properties of a bilinear pairing
However, this lemma merely shows what values of T yield a bilinear pairing, it does not
show how to select T such that T < N The key requirement is an automorphism on the
curve, such as the octuphng automorphism derived in the previous chapter

Lemma 4 Let (D \ ip(D2)) n be the Tate pairing as defined above Then i f L , a and T are
co-prime to N the 7]j pairing is a non-degenerate bilinear pairing such that

(m (Du D2)M)aTa~l = ({DMD2))$!)L,

108

where the following properties hold

1 [T]D = ^f(D) where 7 is an automof phism o f C which is defined over

2 7 and ip satisfy the condition 7 ipq — ip

3 T a + 1 = L N fo r some a 6 N and L 6 %

4 T = q + cN fo r some c G Z

For a proof o f this lemma, see Barreto et al [4]

5 3 The Genus 2 r] Pairing
The aim of this section is to select a value for X such that the tjt pairing is bilinear and
non-degenerate for the supersingular genus 2 curves that were considered in the previous
chapter If T can be chosen to be approximately equivalent to 22m, then it may be possible
to derive a pairing implementation that is as efficient as the octupling algorithm given in the
previous chapter

5 3 1 Finding a suitable value for T
Consider the curves Cd y1 + y = x5 + x3 + d over F2™, where d = {0,1} As was
detailed in the previous chapter, these curves have the maximum embedding degree for a
supersingular genus 2 curve of k = 12 Recall that for an element D £ P ic ^ (F 2̂) , such
that D = (P) — (00), it is possible to octuple the divisor D as [S]D = (P ') — (00), where
P f = a<p2e (P), <t>2 is the 2nd power Frobentus map and the map a is given as

o (x ,y) = (x + 1 , 7/ + x 2 + 1),

where a 2 = — 1 A distortion map for Cd is

ip{x, y) = (x - \ - w ,y + s2x 2 + s ix 4- s0),

109

which supports the denominator elimination technique, as the x -coordinate is mapped to
the quadratic subfield of F 2i2m

The first condition to be met in selecting T is to find an automorphism 7 o f Cd which
is defined over F^, such that [T\D = 7 (D) The obvious candidate is the map [8]P =
[23]P = (j(j)2b(P) However, using the value T = 2 3 does not yield a bilinear pairing
Instead, consider the map [23m]P = crm0 26m(P) = crm (P) Then 7 = a m is also an
automorphism on the curves Cd defined over ¥ q Normally, q = 2m denotes the base-field
However, here the notation q = 23m is used to take advantage o f the fast octupling operation
in computing the ?] t pairing Therefore, T is defined as T = q = 23m

The next step is to prove that the automorphism 7 and the distortion map ip satisfy the
condition that 7^ = Let q = 23m as above, where m is prime and 7 = a m Recall
that w 8 = w + 1, s i = w 2 + w 4, s2 = w 4 + 1 and Sq + so — + w 'd Then sf = s i ,
s2 = 62 + 1 and = so 4- w 2 As m is prime, it must be congruent to either 1 or 3 modulo
4 Firstly, let m = 1 m od 4 and thus 3m = 3 m od 12 Then

7 ̂ q(x ,y) =

= crip23(x y)

= a(x + w + 1 y + (5 2 + l) x 2 + s \ x -f so + w 2)
= (rr + w, y + s2r 2 + sir + s0)
= i>(x,v)

Let w 2° = w + 1, sf'3 = s i , s f = s2 + 1 and s{f = s q + w 2 + 1 Now let m = 3 m od 4

110

and thus 3m = 9 m od 12 Then

7 <l>v(j-,y) = o'm|/,23mU Iy)
= a 3ip2\ x , y)

= - c r (a ; + u> + 1 , y + (s 2 + l) r r 2 + s i x + so + + 1)

= (x + w, y -f 52^2 + s i x + so)

= ^ 0 ,y)

Therefore, an automorphism 7 has been denved for the curves such that 7 ipq = ip
and [T\D = 7 (D), where T = q = 23m It remains to satisfy the conditions that T a + 1 =
L N for a € N and L E Z, and T = q + cN for c 6 Z As T = q, it follows that c = 0
In the previous chapter, the fact that the group order for the curves C^ divides 26m + 1 was
used to derive an efficient means of computing the final exponentiation Let N = 26m + 1,
in which case the equation T a + 1 = L N is satisfied as (23m)2 + 1 = (l) (2 6m + 1), and
hence a — 2 and L = 1 The final exponentiation is M — (212m — l) / (2 6m + 1) = 26m — 1,
which can be computed with a conjugation with respect to F26m, a multiplication and an
inversion in F2i2m

Thus all the conditions of the r) p pairing have been met, and the resulting bilinear pair
ing is computed as

(ri l (D u D 2)M)2“ = ({D 1 , i , (D 2))N)M

Computing the ryr pairing in this way with T = q = 23m requires 3m iterations of M iller’s
algorithm However, as an octupling operation is used to compute the intermediate func
tions, only m iterations are required Computing the Tate pairing with N — 26m + 1 and
using the octupling operation requires 2m iterations of M iller’s algorithm As detailed in
the previous chapter, the Tate pairing can be computed using the group order and octupling
in 2m /3 iterations However, this approach does not have the benefits o f the ?]t pairing,

111

such as a cheap final exponentiation and no conditional logic mside the loop

5 3 2 Optimising the arithmetic
The i)t pairing when T = q = 23m can be viewed as a generalisation of Duurmsa and Lee’s
idea to the genus 2 curves C& To distinguish this case from an even faster instantiation of
the Tfr pairing later in this chapter, the subscript T is dropped when T = q Hence, this
pairing is referred to as the 77 pairing Given a divisor D == (P) - (00), where P =
(x p ^y p) , the function / 8#p associated with [8]D was derived m the previous chapter As
the denominator o f this function can be discarded due to the form o f the distortion map,
f s p is given as

h p(j- , y) = (y + «4 (j-))2(y + «sW),

where

V4 (x) = X 3 + (T p + x ‘p) x 2 + (x 4p) x + I j p

V s (x) = [x 3p + l) x 2 + (ip + Z f ?) x + (' t / p + X p + X p + 1)

The notation a(3 is used for this intermediate function evaluated at the distorted image point,
where a = (y + t>4(^))2 and p = (y + vg(x))

An explicit formula to compute the pairing on the genus 2 curves using the input
divisors D i = (P) — (0 0) and D 2 = {Q) - (00) is then given as

m —1
v (p ,Q) = I I

As detailed in the previous chapter, a number of optimisations are available to expedite the
computation of aj3 at each iteration of the loop Rather than compute the various powers of
x p and yp that are required at each iteration, it is possible to precompute all o f the possible
values and to store them in an array This approach costs 2 m squarings before the loop, but

112

the cost o f calculating the functions inside the loop reduces to only 4 multiplications per
iteration o f the loop

In order to avoid octupling the accumulating variable at each iteration of the algorithm,
the exponentiation can be absorbed into the formulae inside the loop To do this, a must be
replaced with a 2'**'™ 1 and ¡3 with /?23(m 1 l\ which involves precomputing powers o f lq
and yQ In Appendix A 1, it it shown how to derive explicit formulae for these terms This
optimisation replaces 3m squarings m F 2i2m with 2m squarings in F 2™, which is a large
improvement Finally, it is possible again to exploit the sparseness o f the a and ¡3 terms, by
unrolling the multiplication using Karatsuba-like techniques, as detailed in Appendix A 3
The resulting algorithm to compute the 77 pairing is given in Algorithm 9

We now examine the computational cost of the algorithm in terms of operations in F 2m
The precomputation takes 4m squarings in F 2™ At each iteration of the algorithm, the
calculation of the a and /? functions takes only 4 multiplications in F 2m The multiplication
of a and ¡3 using the Karatsuba approach takes 11 multiplications in F 2m Finally, this value
is multiplied with the accumulating variable / , which takes an expensive 54 multiplications
m F 27™ Therefore, for a loop size m , the total computational cost is 4m squarings and 69m
multiplications in F?™ The final exponentiation is trivially computed as a multiplication,
an inversion, a squaring and a few Frobenius actions in F 2i2m Experimental results for the
genus 2 77 pairing are given later in this chapter

5 4 Avoiding the Final Exponentiation
It is also shown in our paper [4] how to compute the 77 pairing using supersingular elliptic
curves over characteristic 2 and 3 In this section, we show how the final exponentiation
required to compute the i] pairing for the charactenstic 2 elliptic case can be omitted if the
vertical line functions are included in M iller’s algorithm This is the first time that it has
been demonstrated that the Tate pairing can be computed without a final exponentiation for
a cryptographically useful exponent This observation also holds true for the genus 2 case,

113

Algorithm 9 The genus 2 77 painng
In p u t D \ = (P) - (oo) ,D 2 = (Q) - (oo) e P ic£ (F 2»>), P = (x P yP) ,Q = (r Q,y Q)
O u tp u t / = 77(P, Q) e F 2i2m

1 > Initialisation set 7 = 1 if m = 1 mod 4, otherwise 7 = 0
2 > Precompute powers of P and Q
3 x\[i\ <- x%, yi[i\ <- y£, x2[z] <- zg, y2[i] <- yg, 0 < 2 < m - 1
4 / ^ 1
5
6 for ? = 0 to rn - 1 do
7 > All fc* in the next 2 lines to be considered modulo m
8 k i <— (3rn - 3 - 3a), k2 (&i + 1)» 3̂ <— (&2 + 1)
9 &4 (3?), 5̂ (A4 + 1), fcg <— (/cs + 1)

10
11 > Calculate a <— a + fru; + civ2 + dwA + so
12 d <- xi[/c4] + x\[kz\
13 a ^ y2 [fo] + (x i [/r4] + 1 + x2 [A*]) ^2 [k2\ + d x2 [A;3] + Vi [̂ 4] + 7
14 6 <- X2[h) + t2[A;2]
15 r <— r 2 [*3] + T i f k a] + 1
16
17 > Calculate ¡3 ^ e + f 2w + Qw2 + hw4 + so
18 f 2 *■ xi [A.s] + x i[fc 6]
19 e <— 2/2[fei] + Ì2 x2[k1] + yi[ks\ +xi[ke] (xi[/c5] + £2 2̂]) + xi[k5\ + 7
20 y <— x2[&i] + xi [/eg] + 1
21 h ^ X2[k2] + x2[k\]
22
23 > Unroll a/3 multiplication using Karatsuba
24 dh <— d h,dg <— d g, c/i <— c h,cg <— c g,ae a e, b j2 <— 6 f 2
25 to ae + c/i + t/y + dìi
26 ii (a + ò)(/2 + e) + ae + ò/2 + dh
27 f2 <— + c) (y + e) + ae + cy + bf2 + ch + dg
28 Ì3 «— (Ò + c)(g + /2) + fr/2 + cy + e/i + dy + 1
29 ¿ 4 <— (a + rf) (/i + e) + ae + t//i + cy
30 ¿5 *- (6 + d)(/i + /2) + bj2 + dh + ch + dy + 1
31 tii *- (¿o,ii,Ì2 ¿3 4̂,Ì5,a + e + 1,6 + ̂ jC + yjÔ -h/i,0)
32 / f 77!
33 end for
34
35 D> Perform the final exponentiation
36 / < - / (26m-l)(2){23-)

114

however we have been unable to prove this as yet Instead, we include the proof for the
supersingular elliptic case in characteristic 2

These curves are given by an equation of the form Ed y 2 + y = x 3 + x + d over
F 2- , where d € {0,1}, and have an embedding degree of k = 4 Kwon [66] shows how to
transfer the Duursma-Lee techniques to compute the Tate pairing efficiently on these curves
In our paper [4] it is (independently) shown how to compute the ij pairing efficiently using
these curves, which results in essentially the same algorithm as that given by Kwon A
distortion map is ip(x, y) = (rz; + s 2, y + sx + ¿), where s £ F22 satisfies s2 -f 5 + 1 = 0,
and t € F 24 satisfies t2 + t + s = 0 Note that the x-coordinate is mapped to a subfield
of F 24m, and hence the denominator elimination technique applies These curves support a
simple doubling formula, such that for a point P = (xp , yp) € E (F 2™), then

\2l]P = (j 2j + i , i / 2> + + r (i)) ,

where r(z) = 1 if z = 2 ,3 m od 4 and zero otherwise The group order for the curves Ed
is given as # J 5j (F 2m) = 2m ± 2(m+1)/2 + 1 Rather than use this order to compute the Tate
pairing, the // pairing can be computed on these curves using a loop o f m iterations with no
additions After this loop, an exponentiation to the power o f 22m - 1 must be performed
to obtain a unique value suitable for cryptographic use This can be easily computed using
a conjugation with respect to F 22m, a multiplication and an inversion in F 24m After the
exponentiation has been applied, the resulting element o f F 24m has order dividing 22m + 1
As 22m + 1 is the norm map with respect to F22m, the pairing value is said to be an element
o f norm 1

There is no need to include the vertical line functions when the distortion map ip is used,
as they are eliminated by the final exponentiation to 22m - 1 However, here we show that
the final exponentiation can be omitted, as long as the vertical line functions are included in
M iller’s algorithm Firstly, it is shown how to construct the field F 24m The extension field
F 22m is defined by the irreducible polynomial s 2 + 6 + 1 = 0, where s £ F22 Similarly,

115

the field F24m is defined as a quadratic extension oi F22m using the irreducible polynomial
i2 + £ -|-a = 0, where t e F24 The conjugate of an element a = (a 4- bt) G F24m (with
respect to F22m) is written as J = (a 4- b) 4- bt Also, the norm of j (with respect to F22m)
is written as

The conjugate of a function was defined previously m Chapter 3 Let h(Q) be a function
that is evaluated at a point Q 6 E (¥ k) Then the conjugate o f h(Q), denoted h(Q) is equal
to h (—Q) , where - Q is the opposite of Q Let l p (r }y) = y — yp - A (r — r p) be the
equation of the tangent to the curve at P , and let up (a) = jl - j p be the vertical line
through P Then it is well known that

The aim is to show that 2 has norm 1 (with respect to F 22m), and hence zz = 1 , where

(a -f bt)(a 4- bt) = a2 -I- ab-\- b2b

Ip W Q W p W Q)) = v p W Q)) 2^ p W Q))

The y pamng for the elliptic curves E (/ is written as the product

z = z22m Using the equality given above, zz is written as

This can be simplified by cancelling the t>[2*+i]p{fp(Q)) terms as

_ - 1

z z f i v ^ p W Q)) 2"1- 1

116

By setting j = i + 1, this can be written as

since

Up (tP { Q)) 2 — { X Q + "1“ X p Ÿ — X Q + S2 + X p -h 1 — U[2m]p(0(Q))

Therefore, as the q painng has norm 1 with respect to the quadratic subfieîd, assuming the
vertical line functions are included, the final exponentiation can be omitted

It remains to determine how the value of the // pairing without any final exponentiation is
related to the value of the // pairing when the final exponentiation is included Let 2 e F 24m
be the output o f the // painng when vertical lines are included in M iller’s algorithm As it
has been shown that z is an element o f norm 1 with respect to F 22m, then z22m+1 = 1 This
implies that z22m = z " 1, and z22m_1 = z ~ 2 Therefore

m-1 2 m ~ î \ 2 2 m — 1 / 1 / \ ~ 2
t j / J[2»]pMQ)) \ \ _ f ' y r (¿[2»]pMQ)) \
f=o x ^ + ^ p i ^ i Q))) J \ v [2' +i]p (/* P (Q)))

However, as exponentiating to the power of 22rn - 1 removes the need to compute the
vertical line functions, this can be rewritten as

i 1 \ 22m — 1 / 1 / v nm — 1 — i \ — 2(n - (n (« y
This equivalence shows how the two different methods to compute the 77 painng are related

Therefore, it has been shown how to avoid computing the final exponentiation to 22m -
1, at the cost o f losing the optimisation o f denominator elimination The exponentiation
to 22m - 1 can be computed essentially as a multiplication and an inversion in F 24m By
repeatedly taking the norm with respect to the quadratic subfields of F 24m, it is possible to

117

reduce the inversion in F 24m efficiently to an inversion in F 2m In contrast, the algorithm
that includes the vertical line functions requires the computation of an inversion at each
iteration of M iller’s algorithm This can avoided by using the two-variable approach of
Galbraith et al [31] However, this technique involves extra arithmetic at each iteration of
the loop, as well as an mversion after the loop Therefore, it can be concluded that there is
no benefit to using the new pairing algorithm introduced in this scction, when compared to
the denominator elimination technique

However, if it can be shown that it is possible to avoid the final exponentiation in cir
cumstances where it is expensive to compute, then this new technique may find a practical
use In our paper [33], it is shown by a similar proof that the final exponentiation can also be
avoided when computing the 77 pairing using the (Duurmsa-Lee) supersingular hyperelliptic
curves y 2 = x p — x + d over F pm, where d = ±1 and p = 3 mod 4 This technique also
applies to the genus 2 7/ pairing

5.5 The Genus 2 r/T Pairing
It has been shown that the genus 2 7/ pairing yields an efficient and simple pairing imple
mentation, which is approximately as efficient as the implementation of the Tate pairing
given in the previous chapter The genus 2 7/ pairing uses the value T = q — 23m to com
pute the pairing, which results in a loop of m iterations using the fast octuphng operation on
the curves Cd However, it remains to be seen whether the theory of the y / pairing permits
the selection o f a value for T that is smaller than q = 23rn In this section, this open ques
tion is addressed in the affirmative The convention to drop the subscript T when T = q
was previously described In this section, the pairing implementation is simply referred to
as the rjp pairing, as the subscript T denotes “truncated”

118

5 5 1 Finding a suitable value for T
Recall that four conditions must be satisfied to implement the pairing The first condition
is that [T\D = 7 (D), where 7 is an automorphism of the curve which is defined over ¥ q
For the 7] pairing on the supersingular genus 2 curves Cd, this condition is satisfied by
setting T = q = 2Sm and 7 = <jm, where a (x , y) = (a; + 1, y + x 2 -f 1) It was shown
that the second condition o f the rjj pairing, that 7%pq = ip, holds for the q pairing on the
genus 2 curves Cd, where ip is a distortion map on the curve that supports the denominator
elimination technique It was then shown that instead o f using a multiple of the group order
N = 26m -J- 1, the value T = q — 23m can be used to compute the rj pairing

The goal of this section is to find a value for T such that T is smaller than q = 2 dm,
and that the t j t pairing using this value is bilinear and non-degenerate The first condition
that must be satisfied is that [T]D = 7 (D) Recall that the group order for the curves Q is
given as

#Pic£(F2m) = 22m ± 2<3m+1)/2 + 2m ± 2(m+1)/a + 1

Rather than use the multiple N = (26m + 1) of # P ic^ (F 2m), as for the i) pairing, consider
the multiple N such that

N = (2m ^ 2(m+1>/2 + l) (# P ic £ (F 2m)) = 23m ± 213"^ 1)/2 + l

Let q = 23m as before Note that

q - N = 23m - (23m ± 2(3m+1)/2 -f 1) = zp2(3m+ x)/2 _ 1

Define T = q - N = ^ 2 (3r"+1)/2 - 1 Then

\T\D = [q - N]D = [q]D - [W]D = \q\D = 7 (D)

119

Therefore, the condition that [T}D = 7 (D) is satisfied by using the automoiphism
7 = a m As this is the same value for 7 that was used to compute the q pairing, the second
condition that 7 ^ = ip is already proven The condition that T = q + tN , where c € Z, is
easily seen to satisfy c = — 1, as T = q ~ N The remaining condition that must be satisfied
on T is T a + 1 = L N , for some a e N and L e Z Let a = 2 Then

T 2 + 1 = 2(23m ± 2̂ 3rn+1̂ 2 + 1) = 2 N

Therefore, a = L = 2 Thus, all the conditions of the r}T pairing have been satisfied, and a
bilinear pairing on £ 1, £>2 £ P ic^ (F 2̂) is computed as

MDi,D2)")r = {Duil>{D2))%,

where the final exponentiation is M = (212m — l) / (2 3m d= 2 3̂m+1̂ 2 + 1)
Rather than compute the rjr pairing using the divisor D j and the order T = —2(3m+1)/2—

1, it is convenient to use the opposite o f D \ and the order - T = 2(3m+1)/2 + 1 to avoid
performing an inversion Therefore, T is now defined as T ~ 2 3̂m+1^2 ± 1 Comput
ing the t]t pairing in this manner implies a loop size of (3m + l) /2 iterations However,
observe that T can be written as T = 23(m-1)/2+2 ± 1 Therefore, the rjr pairing can be
computed as (m —1)/2 octuplings, as well as two doublings and an addition This is clearly
far supenor to the m loop iterations of the 77 pairing, as well as the 2m /3 loop iterations of
the method given in the previous chapter

5 5 2 Optimising the arithmetic

There are two obstacles to implementing the genus 2 r\x pairing efficiently, namely the
complicated final exponentiation and the final doublings and addition Firstly, the final
exponentiation is examined In the 77 case, the final exponentiation can be computed essen
tially as a multiplication and an inversion in ¥ 01^ In the t) t case, the final exponentiation

120

is to the power of M T Recall that M is given as

2 l2m _ 1 (26™ - 1)(26"' + 1)
M ~ N ~ 2 sm ± 2(3m+1)/2 + 1

This expression can be simplified by using the fact that

P
26m + 1 = (23m ± 2̂ 3m+1^2 + i)(23m =f 2̂ 3m+1^2 -f 1)

Therefore, the exponentiation to M is computed as

M = (2bm - l) (2 3nt 2(3m+1)/2 + 1)

The entire final exponentiation is then written as

M T = (26m - l) (2 3m 2 tim+1)/2 + l) (^ 2 3̂m+1)/2 - 1)
= 2̂®m _ l) (23m + 24m2̂ Tn+1̂ 2 — 1)

The exponentiation to (26r" - 1) can be achieved with a conjugation with respect to F 26m,
as well as a multiplication and an inversion in F2i2m The remaining exponentiation can be
computed in (m + l) / 2 squarings, 2 multiplications and a few Frobemus actions in F 2i2m
Therefore, it has been shown how to compute the final exponentiation required for the t]t
method in a relatively inexpensive way

The second disadvantage of the genus 2 qr pairing, when compared to the q pairing,
is that two doublings and an addition must be performed after the loop of (m - l)/2 iter
ations However, vanous techniques can be used to reduce the penalty of performing these
operations Let D i = (P) — (o o) be the degenerate divisor that is used as the input to the // t
pairing The final addition that must be performed is an addition of divisors [2i3"'+1^ 2]JDi
and [± l]D i, where [± l]D i is a degenerate divisor o f the form [± l]D i = ([± 1]P) - (o o)

However, it will be shown that the final addition does not need to be performed in the case

121

that D \ is a degenerate divisor, as it does not contribute to the pairing value
The order o f the divisor D \ — (P) — (oo) divides N = 23m ± 2(3m+1)/2 -f-1, as TV js a

multiple o f the group order Using the formula derived for the genus 2 q pairing, [23m] D\
is a degenerate divisor of the form [23m]D i = a m(P) - (oo) Therefore the final divisor is
given as

[2(3m+l)/2 ± j p i = [Afj£ ,i _ p * ’1]!)! = (Tcrm(P)) - (oo)

Therefore, the divisor [2(3’" 1 l)/2jD i is given as

[2 (3 m + l) / 2 p i = p ^ 1) / 2 ± l] D i - [± l] D i

= (T*m(P)) - (oo) - ([±1]P) - (oo)
= (T<Tm(P)) + (=FP) ~ 2(oo)

Therefore, when the final addition is performed in the degenerate case, the composition
operation in Cantor’s algorithm cancels out the (+ P) by using a vertical line function,
which can be omitted from the algorithm

The final two doublings are now considered, again in the case for a degenerate divisor
D i = (P) - (00) The divisor after the octupling loop is D ' = = (P f) -
(00) Doubling this divisor using the Cantor composition algorithm yields a divisor o f the
form [2]D (= 2(P ') - 2(co) As this divisor is already reduced it does not contribute any
line function to the accumulating function It is known from the explicit formulae derived in
the previous chapter that the line function that comes from the doubling o f a special divisor
o f the form 2 (P ') - 2(oo) is

Z(r, y) = y -f- t 3 -f- (x%, + x p ,)x 2 + (xp,)a + y%.

Therefore, to compute the operations that are required after the octupling loop, it suffices
to square the accumulating variable / twice, and then to multiply it by the function above

122

/

In the previous chapter it was shown how to build the distortion map into this function, in
order to avoid manipulating points over the extension field F 2i2m

Therefore, it has been shown how to compute both the final exponentiation and the final
addition/doublings efficiently An explicit formula to compute the t]x pairing on the curves
Cd using the input divisors D \ = (P) - (oo) and D 2 = (Q) - (00) is

where I is the function defined above All of the optimisations used to compute the rj
pairing for the curves Cd can be used to compute the t)t pairing To avoid octupling the

shown how to derive these formulae in Appendix A 2
Therefore, it has been shown how the octuplmg loop, the final operations and the final

exponentiation can be computed efficiently The algorithm to compute the genus 2
pairing is given in Algorithm 10 in the case that m — 103 For other values of m it suffices
only to change the formula for extracting the current point after the loop The cost o f the
precomputation is 4m squarings in F 2 m, which is the same as for the 77 pairing The cost of
the arithmetic at each iteration of the loop is 69 multiplications in F2m, again the same as for
the T) pairing However, the loop is only of length (m — l) /2 instead o f rn for the 77 pairing
Note that computing the final doubling function takes only two multiplications in F 2m, as
all o f the required powers o f (xp , yp) and (xq, yq) are precomputed Experimental results
for the genus 2 rfr painng are given in the following section

5 6 Experimental Results
In this section, experimental results are provided to verify our claim that it is possible to
compute the Tate pairing efficiently using the genus 2 77 and rjr pairings The first task in
implementing either pairing is to select suitable values for m Recall that the prime rn must

accumulating variable, a and ¡3 must be replaced with a

123

Algorithm 10 The genus 2 rfj pairing when m = 103
I n p u t D i = (P) - (oc) ,D 2 = (Q) - (oo) e P ic ^ (F 2>n),P = (x p ,y p) ,Q = (X Q ,yQ)
O u tp u t / = % (P, Q) e F 2izm

1 > Initialisation set 7 = 1 if m = 1 mod 4, otherwise 7 = 0
2 > Precompute powers of P and Q
3 xi[z] x £ , yi[z] <- x 2[z] x 2q , y2 \i\ <- 2/q, 0 < z < m - 1
4 / <— 1
5
6 for z = 0 to (m — 3) /2 do
7 > All k* in the next 2 lines to be considered modulo m
8 k\ (3m — 9 - 6 i)/2 , k2 {k\ + 1), £13 (̂ 2 + 1)
9 &4 (3m - 3 + 6z)/2, <— (k4 + 1), Â,6 <— (k5 + 1)

10
11 > Calculate a <— a + bw + cu>2 + cfau4 + so
12 (I <— X i[k4] ~\r Xi[k$]

13 a <- Î/2IN + {xi[k4} + 1 + x 2[h]) x2[k2] + d x 2 [h] + yi[k4] + 7
14 6 <— X2[&3] + x 2 \k2\
15 r <— T2 [h \ + ri[/r4] + 1
16
17 > Calculate ¡3 e + j 2w + gw2 + to4 + 50
18 f 2 <— xif&s] + x i [¿e]
19 e <— y2[fci] + J2 X2 [ki\ + yi[k5] + x i[k G] (xî s] +x2[fc2]) +^1 (̂ 5] + 7
20 g <- x 2[&i] +Xi[fc6] + 1
21 h <— X2 [k2] + x 2 [ki\
22

23 } <- j (a ¡3)
24 end for
25
26 > “Extract” current point (x P yP)
27 x P *— Xi[m — 3] -j- 1
28 yP <— y \[m - 3] + x i[m - 2]
29
30 o Perform the final doublings/addition
31 t <- (y2 \0\ + x 2[l] (1 + x 2 [0] 4- X![3] + x \ [2]) + x \ [2] x2[0] + yi[2\)
32 f ^ f 4 (/ , r 2[l] + r 1[2],r1[3] + r 1[2] 1, x2[l] + x2[0], 0,1 , 0,0 , 0,0 , 0)
33
34 > Perform the final exponentiation
3 5 f y(2 6m -l)(2 3m - 2 4m 2(m+ 1)/2 -l)

124

be chosen so that P ic ^ ^ ™) has a large prime factor, and that P ic ^ ^ ™) and F*fcm are
large enough to resist any attack on the DLP in these groups In the previous chaptcr, the
value m = 79 was chosen for the curve C \ y 2 + y = x 5 + x3 + 1, and m = 103 was
chosen for the curve Cq y 2 + y = + x 3 These parameters fulfil the security conditions
detailed above, and have the advantage that an element o f F 2m can be represented by a
single machinc word, which greatly aids in the efficient implementation of the underlying
field arithmetic

The second task is to select other pairing implementations against which to compare
the efficiency of the algorithms given in this chapter In the previous chapter, it was shown
how to implement the Tate pairing efficiently using the group order o f the curves Cd As
the same values for m are used in both chapters, it is possible to compare the experimental
results directly However, in order to gauge the true efficiency o f pairing implementation
using supersingular genus 2 curves over low characteristic, it is necessary to give expen-
mental results for an equivalent implementation on an elliptic curve To give an accurate
comparison with the genus 2 case, the elliptic curve in question should be supersingular and
defined over a finite field of characteristic 2

The natural candidates are the elliptic curves E 4 y 2 + y = x 3 + x + d over F 2m,
where d 6 {0,1}, that were used previously in this chapter In our paper [4], it is shown
how to implement the i]i pairing efficiently on these curves To compare against the genus
2 implementations, suitable prime values for m must be chosen so that km is roughly the
same for both cases In this way, the output o f the 7]t pairing for both curves has the same
resistance against attacks on the DLP (as it is an element in F*fcm) Two security levels
are defined, following from the values for k m in the genus 2 case Firstly, for the value
m = 79 in the genus 2 case, a suitable value for m in the elliptic case is m = 239, as then
k m £3 950 for both curves Secondly, to compare with the value m — 103 in the genus 2

case, m ~ 313 is chosen in the elliptic case, as k m « 1230 for both curves Note that the
values chosen for m in the elliptic case are selected solely to compare the relative efficiency
of the two cases More specifically, m is not chosen so that # E (F 2m) has a large prime

125

Table 5 I Expenmental results - 950-bit security level
Case Description Running time (ms)
1 Genus 2 group order 1 89
2 Genus 2 q degenerate 1 71
3 Genus 2 77 general 6 50
4 Genus 2 7] i degenerate 1 11
5 Genus 2 /¡t general 3 60
6 Elliptic t]t 1 80

Tabic 5 2 Experimental results - 1230-bit security leve
Case Description Running time (ms)
1 Genus 2 group order 2 69
2 Genus 2 // degenerate 2 60
3 Genus 2 rj general 9 96
4 Genus 2 rjj degenerate 1 65
5 Genus 2 tjr general 5 48
6 Elliptic t]t 3 64

factor
TabJe 5 1 details the experimental results for the 950-bit security level, and Table 5 2

details the experimental results for the 1230-bit secunty level The first case in each table
is the time taken to compute the Tate pairing using the group order, as given in the previous
chapter The second case is the algorithm to compute the genus 2 77 pairing using degenerate
divisors, and the third case in each table is the algorithm to compute the genus 2 77 pairing
using general divisors Similarly, the fourth case is an algorithm to compute the genus 2 i]t
painng using degenerate divisors, and the fifth case is an algorithm to compute the genus
2 Tjr pairing using general divisors The sixth case in each table is the equivalent timing
using the elliptic curves E (j All of the timings are given in milliseconds

The first conclusion to be drawn from the results is that the genus 2 77 painng yields
a running time approximately equivalent to that o f using the group order to compute the
Tate painng The genus 2 77 painng has a longer loop size than when the Tate pairing
is computed using the group order However, this result shows that this is compensated
for by the simpler arithmetic o f the 77 painng inside the loop, as well as the cheaper final

126

exponentiation The second conclusion is that the genus 2 ¡¡t pairing is substantially more
efficient than the genus 2 // pairing This is not a surprising result, as the rjx pairing has a
considerably shorter loop size than the q pairing However, this is mitigated somewhat by
the more complicated final exponentiation in the ijr case

The third conclusion is that pairing implementation using degenerate divisors is consid
erably more efficient than the general case, for both of the genus 2 7/ and pairings This
result confirms the findings of the previous chapter However, the most surprising conclu
sion to be drawn from the experimental results is that the genus 2 rfr pairing on degenerate
divisors outperforms the elliptic r]x pairing This is the first time that it has been shown that
a genus 2 pairing implementation can be faster than an equivalent elliptic curve implemen
tation This result is largely due to the smaller field sizes used 111 the genus 2 case, as the
theoretical complexity of computing the genus 2 777 pairing is larger than that o f the elliptic
t/7 pairing As far as we are aware, this timing for the genus 2 77 / pairing is also the fastest
pairing implementation reported thus far in the literature

All o f the experiments were performed on our platform of a Pentium IV, which has
a clock speed o f 2 8 GHz, and which runs version 2 6 15 of the Linux kernel The code
is written in C/C++ and is compiled using version 4 03 o f the GCC/G++ compiler suite
The efficient implementation of the finite field F 2̂ is taken from MIRACL 5 01 Recall
that m was chosen in the genus 2 case so that arithmetic in F 2™ can be performed in the
128-bit registers available to the Pentium IV The SSE2 SIMD instruction set can then be
used to multiply elements efficiently in F 2m The elliptic curve implementation cannot use
this optimisation as the field size is larger than 128 bits We note that the timings provided
are slightly different from the published timings, due to the need to remain consistent with
experiments carried out in the previous chapter

127

5.7 Conclusion
In this chapter, it was shown that it is possible to compute the Tate pairing extremely effi
ciently by using supersingular genus 2 curves over F 2™ and the t]t pairing construct Firstly,
the tjj pairing was introduced as a generalisation and extension of the optimisations given
by Duursma and Lee [23] It was then shown how to apply the pairing to the genus 2
case by using an order of T = q = 23m in M iller’s algorithm This results m a loop of
m iterations using the octuphng formula given earlier The subscript T is dropped for this
case, and the pairing is known simply as the 77 pairing Although the loop size is slightly
longer than the 2 m /3 iterations of M iller’s algorithm that is required when the group order
is used, the 77 pairing compensates for this by having simpler arithmetic inside the loop, as
well as a final exponentiation that is easily computed

It was then shown how it is possible to compute the 77 pairing on supersingular elliptic
curves in characteristic 2 without the final exponentiation to the power of 22m — 1, at the cost
of including the vertical line functions in M iller’s algorithm This technique does not offer
any improvement as the final exponentiation is computed essentially as a multiplication and
an inversion in F24m It was also shown how a more efficient pairing calculation is possible
in the genus 2 case by using a smaller value for T when computing the t]t pairing This
pairing implementation requires some extra arithmetic after the main loop, as well as a more
complicated final exponentiation when compared to the 77 pairing However, optimisations
have been introduced to reduce these costs

Experimental results were then detailed It was shown that the genus 2 77 pairing is
approximately as efficient as the implementation of the Tate pairing that was given in the
previous chapter It was demonstrated that degenerate divisors yield a speed up over the
more general case when computing both the 77 and t) t pairings The experimental results
also confirmed that the genus 2 tjt pairing is more efficient than the genus 2 77 pairing
However, the results showed the surprising fact that the genus 2 t j t pairing is more efficient
than the t j t pairing on supersingular elliptic curves over F2™, using an equivalent level of
security This shows that not only are genus 2 curves competitive with elliptic curves in

128

terms of pairing implementation, but can in fact surpass them in certain circumstances
Kang and Park [57] show that some of the conditions given in this chapter on the for-

mulation of the ijr pairing are unnecessary Rather than using an automorphism 7 , it is
possible to simply use the multiplication by q This results in a far simpler proof of the fit
pairing than that given in our paper [4] Furthermore, it is shown that the only condition
of the ¡¡t pairing is that a supersmgular curve be used Kang and Park also show that the
final exponentiation to T that must be performed when computing the r)r pairing can be re
placed with an application of the g-th power Frobenius endomorphism However, this does
not result in any practical improvement, contrary to the authors’ claims, as the main cost o f
the final exponentiation is the inversion that must be performed in the extension field

In a paper by Lee et al [72], our results on degenerate divisors are extended to general
divisors in Mumford representation More precisely, Lee et al show how to extend our
explicit formulae for computing the functions that are required in M iller’s algorithm from
the degenerate to the general case, and how to evaluate these functions at a general divisor
In a separate paper, Lee et al [71] show how to use the 77/ painng construct to compute
the Tate pairing using a hyperelliptic curve of genus 3 These curves are o f the form y 2 =
x 7 - x -f- d over ¥ 7™., where d = ± 1, and have an embedding degree o f k = 14 The curves
that are used are part o f the family of curves originally selected by Duursma and Lee for
fast pairing computation This is the first presentation of pairing computation in genus 3
However, the experimental results that are given are extremely inefficient compared to the
results presented here for genus 2 curves

In this chapter, experimental results for the genus 2 77 and t]j pairings were given using
a software implementation However, we have also developed efficient implementations of
these pairings m hardware In Ronan et al [95], we show how a dedicated parallel hardware
implementation o f the genus 2 r) painng yields an extremely efficient pairing computation
The fastest pairing implementation over F2io3 takes place in 749 /¿-seconds This paper
was the first published paper on implementing genus 2 pairings in hardware, as well as
being the first paper to implement a pairing in hardware using a finite field of characteristic

129

2 In a separate paper published as Ronan et al [94], we show how to implement the
genus 2 r¡r pairing in hardware This implementation returned a time o f 137 /¿-seconds
to compute a pairing over F 2io3, which is extremely competitive with comparable elliptic
curve implementations

130

Chapter 6

Pairings on Supersingular Genus 2
Curves over ¥ p

6.1 Introduction
Previous chapters described the implementation of the Tate pairing on a supersingular genus
2 curve over F 2™ This is the most logical choice of field for pairing implementation, as
supersingular curves exist with an embedding degree of k = 12, which is the maximum
possible for genus 2 curves over finite fields of arbitrary characteristic However, it is also
worthwhile to examine pairing implementation on genus 2 curves over a large prime field
F p Large prime fields are interesting as they are efficient to implement, and are resistant to
sub-exponential time attacks on the DLP in F* Theoretically, supersingular genus 2 curves
exist over F p with an embedding degree of k = 6 However, only supersingular genus 2
curves with an embedding degree of k = 4 are known to the cryptographic community at
this point

In this chapter, it is shown how to efficiently implement the Tate pairing using a super-
singular genus 2 curve over F p Firstly, the curve is introduced, and formulae are given for
doubling a divisor m P ic^ (F p) and extracting the functions that are required for M iller’s
algorithm These formulae are less expensive to compute than previous formulae given in

131

the literature It is shown how to construct the field F p4, and how to perform arithmetic
efficiently m this held It is shown how to exploit the distortion map to speed up the evalua
tion of the image divisor at the line functions, and how to compute the final exponentiation
efficiently

A new variant o f M iller’s algorithm is then described for hyperelliptic curves with an
even embedding degree This improvement eliminates divisions from M iller’s algorithm
even when the denominator elimination technique does not apply This algorithm is useful
in certain circumstances for curves o f genus g > 1 A theoretical analysis is performed
of the cost o f computing the Tate pairing using the optimisations given in this chapter, and
compared against previous work Finally, experimental results are reported that establish
new benchmarks for pairing implementation on genus 2 curves over large prime fields, and
the chapter is concluded

This chapter contains joint work with Michael Scott, which has been accepted for pub
lication in the proceedings of Selected Areas in Cryptography, 2006 A prepnnt is available
at the ePnnt archive as O hEigeartaigh and Scott [47] Some of the work on eliminating
divisions in M iller’s algorithm previously appeared in a short paper at the ePnnt archive as
O hEigeartaigh [46], and was presented at the rump session of the ECC 2005 conference
We note that this idea was denved independently by Kobayashi et al [62] for the case of
elliptic curves

6.2 The Curve
The first task is to select a supersingular genus 2 curve over F p with an embedding degree
that is suitable for pairing based cryptography Choie et al [16] examine genus 2 curves
given by an equation of the form

y 2 = x 5 + a, a € F*

132

< t

5Choie et al show that this curve is supersingular whenever p ^ 1 m od 5 To determine
the embedding degree o f the curve for the other congruence conditions on p , it is required
to compute the group order # P ic ^ (F p) Recall that the characteristic polynomial o f the
Frobenius endomorphism is given m the genus 2 case as

X c (T) — T 4 4- a \T 3 + a ^T 2 + a \p T + p2,

where o\ = #C (]Fp) - 1 — p and 02 = (# C (¥ p2) - 1 - p 2 4- a2) / 2 Once o\ and <72

have been derived, the group order is computed as x c (l) = # P lccQ^V) Choie et al show
that when p = 2 ,3 m od 5, then # C (F p) = p 4- 1 and # C (F p2) = p2 + 1, and hence
ai — a2 — 0 Therefore, the group order is given as x c (l) = P2 + 1 As (p4 - 1) is
the smallest term into which (p2 4-1) divides evenly, then the embedding degree of the
curve is k = 4 When p ~ 4 m od 5, Choie et al show that the group order is equal to
P ic ^ (F p) = (p 4 l) (p 4 1), and that the embedding degree o f the curve is bounded by
k = 2 as a result

Therefore, the curve that is used for pairing implementation in this chapter is given as

C y 2 = t 5 + a, a e F*, p = 2 ,3 m od 5

Rather than select an arbitrary value in F* for a, we take a = 1 for convenience This curve
was used by Choie and Lee [17] to implement the Tate pairing They define the distortion
map ij) that maps elements in C (F p) to Cf(Fp4) as

$(x , v) = (Cs x,y) ,

where (5 is a primitive 5th root o f unity in F p.t Note that (5 maps the ^-coordinate to
Fp4, and hence the denominator elimination technique does not apply To see that ip is an

133

endomorphism on C, observe that

y 2 — -\- a — -f- ci — jJ* cl

It remains to examine which order to use in M iller’s algorithm One option is to use the
group order # P ic ^ (F p) = p 2 + 1 This has the advantage of having a trivial final exponen
tiation of p 2 — 1, which can be computed essentially as a multiplication and an inversion in
Fp4 However, as p is a large prime number, then the number of loop iterations in M iller’s
algorithm, log2(p2 + 1), will also be large The second option is to use a prime-order sub
group The advantage of this approach is that the prime order n o f the subgroup can be
chosen to have a low Hamming weight, which results in a smaller number of additions in
Miller’s algorithm If n is chosen to be considerably smaller than # P ic ^ (F p), then the
number of loop iterations will also be small Therefore, it is better to use a prime subgroup
order rather than the full group order in M iller’s algorithm

There are a number of criteria on the selection of the prime subgroup order rx and the
large prime p Firstly, n must be large enough to resist any generic attacks on the DLP
in P ic^ (F p)[/t] Secondly, F *4 must be large enough to resist any sub-exponential time
attacks on the DLP Choosing suitable values for n and p is a tricky problem, due to the
wide range of algorithms available for solving the DLP in P ic ^ (F p) [n] and F *4 We follow
the parameters defined by Lenstra and Verheul [74], which were used by Scott [105] to
implement the Weil pairing These parameters are defined as (160/1024), (192/2048) and
(224/4096), where the first number in each term is log2(ri), and the second number is
log2 (pk) For a thorough comparison of security levels, the reader can consult Galbraith et
al [35]

The security levels given above detail the number of bits that are required for both n
and p The first task is to choose concrete values for the prime subgroup order n Recall
that Barreto et al [5] explore the use o f Solinas primes [109] when computing the Tate
pairing These are prime numbers of the form n = 2Q ± 2^ ± 1 When a Solinas prime

134

Table 6 1 The prime subgroup order n for each security level

Case log2(n) n
1 160 n = 2159 + 217 + 1
2 192 n = 2191 + 22 + 1
3 224 n = 2223 + 213 + 1

is used in M iller’s algorithm only two additions are required Also, Duursma and Lee [23]
show that the final addition can be skipped when the denominator elimination idea applies,
as it corresponds to a vertical line function Therefore, a Solinas pnme n is used as the
subgroup order, where log2(n) « 160, 192 and 224, for each of the three security levels
defined above The values for n that are chosen are given in Table 6 t

The next step is to choose the large prime p As the embedding degree of the curve
is k = 4, p must be chosen so that log2(p) % 256, 512 and 1024 However, a condition
on p is that the subgroup order n must divide the group order # P ic ^ (F p) = p2 + 1 The
probability o f a randomly chosen prime number p o f the correct number of bits satisfying
this condition is negligible Therefore, a method must be given to construct p Firstly, note
that the condition on p can be rephrased as p2 + 1 = 0 m od r?, and hence p = v ^ - l
mod 7i It is a well known fact that —1 is a quadratic residue modulo r) if and only if n = 1

m od 4 All o f the values selected for n in Table 6 1 satisfy this property
Therefore, the method to compute p is as follows Let n be the pnme subgroup order,

such that n = 1 m od 4, and let t = y /^ 1 m od ti Choose a random value ui, such that
p — vm + 1 has the desired number of bits Then continually add n to this value, until p is a
prime number with the required congruence conditions This method converges quickly on
a suitable pnm e number p The actual values obtained for p for each of the three security
levels will be given later in this chapter Note that n 2 should not divide # P ic ^ (F p), for
reasons outlined in Chapter 2

As the subgroup order t i has a very low Hamming weight, the number of additions to
be performed in M iller’s algorithm is negligible However, a doubling of an element m
P ic^(Fp) must take place at each iteration of the loop Therefore, it is worth examining

135

1

Table 6 2 Comparison of the cost o f doubling m Pic£ (Fp)

Origin Doubling l(x)
Miyamoto et al [85]
Lange [70]
Choie and Lee [17]
Our work

I, 23M, 4S
I, 22M, 5S
I, 23M, 5S
I, 22M, 4S

3M
3M
no cost
no cost

how this operation can be optimised Lange [70] gives explicit formulae for doubling a
divisor with a cost o f 1 inversion, 22 multiplications and 5 squarings in Fp (in the over
whelmingly common case) However, these formulae are designed to be used in the context
of scalar multiplication, and do not explicitly calculate all o f the functions that are required
in M iller’s algorithm The formulae can easily be modified to extract the functions that are
required, at the cost o f 3 extra multiplications

Choie and Lee [17] modify Lange’s formulae for doubling a general divisor to reduce
the cost o f calculating the functions that are required in M iller’s algorithm The formulae
they present cost 1 inversion, 23 multiplications and 5 squarings in F p> thereby saving
2 multiplications over the previous approach However, it is possible to improve on these
formulae In Table 6 3, we give formulae to double a divisor , v\\, in the overwhelmingly
common case that the degree of u \ is 2, and g cd (iii, 2v{) = 1 The cost of these formulae is
1 inversion, 22 multiplications and 4 squarings (the multiplication is saved in step 8) Note
that as the characteristic o f Fp is odd, the h(x) polynomial is assumed to be zero (where
h(x) is from the equation of the curve y 2 -f h (x)y — j (x))

We believe that the formulae in Table 6 3 are optimal, as they have the same compu
tational cost as simply doubling a divisor as given by Lange [70] (in fact a squaring is
saved over these formulae) In other words, calculating the functions that are required in
M iller’s algorithm does not cost anything extra over the cost o f doubling a divisor Table 6 2
summarises the computational cost o f doubling a general divisor

136

Table 6 3 Formulae for doubling for the curve C y2 = x 5 4- a
Input
O utput

Di — [u\j Hi] w here u \ = x z + u u x 4- u io , «1 = « n x 4-
D3 - [u3, «3], ¿(x) such that [2]Z?i = + ((?/ -

Step E xpression C ost
1 C om pute v\ = (2 « i)(m o d u i) = Onx + zjIo

«11 = 2 u n , uio = 2uio
2 C om pute / = r e s (« i , <;~i) 2S + 3M

W0 = V%l3Wi = v \ x W2 = 4wq W3 - U u V n ,
r = u io ^2 4- « 10(^10 - ^ 3)

3 C om pute a lm ost inverse o f tnv* ~ r(2vi)~1(m o d «1)
inv'y — —v u , tnv'0 = vlo — w 3

4
r ’Z

C om pute k! = m o d u i) — fcjx 4- krQ 1M
IU3 = UIi, IU4 = 2liio , Jfei = 2lUi + U?3 - W4
k0 = w h (2 i/;4 - u/3) - u;0

5 C om pute s ' = A '/m ;'(m o d 771) 5M
wo = fcpznuj, u^i =
s i = vIoM ~ 'I’ll&Cb so = - U10W1
I f s[= 0 then goto step 6 '

6 C om pute s = s \x 4- sq and s±L 11, IS , 5M
w i = 0" s i) ~ \ i U 2 = s[wu ws = r2wx,
hi = ¿1^2,50 - SqW2

7 C om pute / (t) = suj 4- ui = sj 4- /2 12 4- h 1 4- Iq 3M
h = ‘»l^n 4- s0 , Iq = s0i/io 4- «10
¿1 = (<5l + S q) (u h + U10) — Si Mu - So«io +

8 C om pute it ' = m o n i c (^ r -) — t 2 4- u s \x 4- tMo IS + 2M
<¿30 = w3(i;n 4- wj3(2 ttn + sg)
W31 = 2 s0 - u;3

9 C om pute Vi ~ —l(m o d U3) = U31X + ti30 3M
= U31 ll,n = W3U31 Ws = l2 ~ Wi ,W3 = U30w 2

«31 = («31 4- U3o)(^ 2 + Si) “ ™3 - m - l l , «30 = ™3 ~ ¿0
11, 4S, 22M

6’ C om pute l(x) = so ^ i 4- Vi
i riv = l / r , % = So?r?7;, / i = so«n 4- u u , = so ^ io 4- vm

1I + 3M

T C om pute U3 = m o m c (^ -) = x + ¿a30 IS
Uso = - 2 u n - si

8’ C om pute vs = —/(m o d it3) = 3̂0 2M
«30 = u jo (^ i — ^30<sq) — Iq

11,3s, 14M

137

6.3 Curve Arithmetic
In this section, various techniques are described that enable the efficient implementation of
the Tate pairing on a supersingular genus 2 curve over F p

6 3 1 Finite field arithmetic

As the embedding degree of the curve C is k = 4, it must be shown how to construct the
finite field F p4 For reasons outlined in Chapter 2, a polynomial basis representation is used
rather than a normal basis representation Rather than construct F p4 as a quartic extension of
F p, the field ¥ p2 is first constructed using an irreducible quadratic polynomial defined over
F p Then the field F p4 is defined as a quadratic extension of Fp2, by using an irreducible
quadratic polynomial defined over Fr,2 The advantage of this approach is that it is easier to
optimise the arithmetic in F p2 than in a quartic extension of Fp These techniques can then
be reused with minor modifications to optimise the arithmetic in F p4

The first task is to give irreducible polynomials that define the fields F p2 and Fp4 An
irreducible binomial x 2 — ¡3 is used to define the extension field F p2, where (3 is a quadratic
non-residue in ¥ p The quadratic extension o f Fp2 can then be constructed by adjoining the
quartic-root of (3 It might seem like a good idea to choose ¡3 — - 1 It is well known that
— 1 is a quadratic non-residue with respect to p if and only if p = 3 m od 4 However,
a quartic root o f — 1 exists in F p2, and so it is not possible to build a quadratic extension
of Fp2 using a;4 + 1 A second choice for ¡3 is ¡3 = — 2 If the prime p is congruent to 5
m od 8, then - 2 is a quadratic non-residue with respect to p This value for (3 permits the
construction of Fp4 as a quadratic extension o f F p2 Another advantage of using a prime
p = 5 m od 8 is that a simple formula exists to compute square roots modulo p , which is
required for generating random points on the curve

Elements o f the field Fp2 are then represented as (a + b \/p), where a, ò E F p, and
elements of the field Fp4 are represented as (c + where c ,d € F p2 Addition and
subtraction in Fp2 and Fp4 are relatively cheap to compute However, it is worth examining

138

how to optimise multiplication and squaring in these fields, as they are expensive opera
tions to compute Let M and S be a multiplication and squaring respectively in Fp The
schoolbook method to multiply two elements in F p2 costs 4M However, it is possible to
do better by using the Karatsuba technique in the following manner

(a + b \/i3)(x + y / p) = (ax — 2 by + (ay + b x)y /p)

= (ax - 2 by + ((a -f b)(x + y) - ax - by)y/j3)

This costs only 3M Similarly, a multiplication of two elements in Fp4 costs 3 multiplica
tions in Fp2, and hence 9M in total The next task is to examine squaring in F p2 and Fp4

It is commonly assumed that a squaring is computationally equivalent to a multiplication
when estimating the cost o f pairing operations (e g see Koblitz and Menezes [65]) As
detailed in Chapter 2, this is a reasonably valid assumption in F p However, it is possible to
optimise squaring routines in extension fields so that a squaring is considerably less expen
sive to compute than a multiplication The schoolbook method to square an element in F p2

costs 2S + M However, it is better to exploit the Karatsuba technique again as

(a + b y /p) 2 = (a2 - 2 b2 + 2ab y/p)

= ((a + b)(a — 26) + ab + 2 a b \fp)

This costs 2M, which is M cheaper than the cost o f a general multiplication in Fp2 Simi
larly, squaring an element in Fp4 costs 2 multiplications in F p2, and thus 6M m total This
is considerably cheaper than the 9M required for a general multiplication in F p4 As the
accumulating variable / 6 Fp4 is squared at each iteration of M iller’s algorithm, using this
optimised squaring method is a substantial improvement over using a general multiplication
routine

139

6 3 2 Evaluating the line functions
The use of degenerate divisors was previously discussed m Chapter 4 for the characteristic 2
case Recall that for a genus 2 curve, a degenerate divisor D = (P) - (oo) € P ic^IFp) has
a single finite point P in the support This is in contrast to the more general reduced divisor
D = (P) + (Q) —2(oo), with two finite points in the support In Chapter 4, the first argument
to M iller’s algorithm was defined to be a degenerate divisor, as an automorphism on the
curve was used to keep the divisor m its special shape However, there is no advantage to
be gamed from doing this for the genus 2 curve under consideration in this chapter, as the
first doubling will turn the degenerate divisor into a general divisor Therefore, a general
divisor is used as the first input to M iller’s algorithm for all o f the pairing implementations
in this chapter

However, a distinct advantage still exists in using a degenerate divisor as the second
input to M iller’s algorithm Each time a doubling or addition is performed in Miller’s
algorithm, a function is evaluated at the image divisor If the image divisor is a general
divisor, then the evaluation takes place using either the two finite points in the support
of the divisor, or the Mumford representation of the divisor However, if a degenerate
divisor D = (P) - (oo) is used as the image divisor, it is possible to evaluate at the finite
point P This approach yields a modest speedup over using general divisors Frey and
Lange [29] discuss in detail when it is permissible to choose a degenerate divisor as the
second argument to M iller’s algorithm

Here it is assumed that the lme functions m M iller’s algorithm are evaluated at a degen
erate divisor D 2 = (V'(Q)) — (°°)> where ip(Q) is the point in Fp4 that results from the
application of the distortion map ^ to a point Q 6 C (F p) At each iteration o f the loop,
the iterating divisor D \ is doubled using Cantor’s composition algorithm to get the divisor
[2]Di A reduced divisor D 3 equivalent to [2]D\ is then obtained by using Cantor’s reduc
tion algorithm, such that \2}D\ = D 3 + ((y — l (x)) /a 3(0:)), where the functions l(x) and
113(3;) are extracted from the composition and reduction process These functions are then
evaluated at ip(Q), an inversion is performed on 7/3(35), and both functions are multiplied

140

by the accumulating variable
Firstly, the evaluation of 0(Q) = (j^ (q), Drp(Q)) at the function y - l(x) is examined

The function l(x) that is extracted from the composition process is given as l(x) = (x3^ -f-
x 2l2 + x l\ + lo) Note that &i,Z2, h and 1$ are defined in F p, as the iteratmg divisor is also
defined over F p The values and can be precomputed, and so evaluating this
function at tp{Q) has a cost o f 12 multiplications m Fp However, it is possible to save some
multiplications over this by manipulating the image point ^ (Q) Rather than explicitly
calculate the distortion map on Q, it is possible to build the distortion map into the function
evaluation Let Q = (x q ,t /q) e C (F P) Recall that ^{Q) = (Cs^q, V q) £ C'(Fp4), where
(5 is a primitive bth root o f unity in F p4 Then - i (x) is written as

-1(a) = -((¿qCs)3-̂ + (x qC5)212 + (x q (s)Ii + lo)

Two multiplications can be saved in this function evaluation by examining the relation
between certain powers of £5 If is a primitive n th root o f unity in a field K , then its
conjugates over the prime subfield Ko o f K are also primitive rith roots o f unity [92] Also,
Q is a primitive nth root o f unity if and only if a and ri are co-prime Applying this to
(5 means that the third power of £5 is related to the second power by conjugation, in other
words (I = C5

Note that ~ l(x) as defined above can be written in the form a + b(5 + where
b — —x q I i , c = - X q 12 and d = — XqS\ Let (g = (rn + n t ff i) where m, n G F p2 Then
it is possible to compute the function a + 5 + cCf + d (f as a + b(5 + ((c + d)m + (c -
d)n \ fp) Computing c and d takes only 2 multiplications in F p (with a precomputation of 1
squanng and 1 multiplication) Computing (c + d)m and (c — d)n takes 4 multiplications,
with a precomputation of 6 multiplications Computing b(5 takes 4 multiplications, with a
precomputation o f 4 multiplications Therefore, the total multiplication count in evaluating
the function is 10 multiplications, a saving of two multiplications, with a precomputation
of 11 multiplications and 1 squarmg

141

Evaluating the image point ifr(Q) at the function ¿¿¿(x) = x 2 + u$iz + 1/30 costs 8
multiplications in F p, by precomputing (xqCs) and (xqCs)2 This precomputation costs 6

multiplications, by reusing some of the precomputation needed to compute the line function
y - l(x) Therefore, the total cost of evaluating both functions at ip(Q) is given as 18
multiplications in F p per iteration of the loop, with a precomputation of 1 squaring and 17
multiplications in F p

6 3 3 The final exponentiation

An exponentiation must be performed on the output of Miller’s algorithm to compute the
(reduced) Tate pairing For a genus 2 curve with an embedding degree of k = 4, this
exponentiation is to the power of (p4 — l) / n As the embedding degree of the curve is even,
it is possible to extract the factor (p2 — 1) from the final exponentiation Exponentiating to
this power can be trivially computed with a conjugation with respect to Fp2, a multiplication
and an inversion in F p4 Using the basis described previously, a conjugation with respect
to F p2 is implemented as x ~ (a - for an element x = (a 4- b\fj3) e F p4 The
remaining exponentiation to (;p2 -f- l) / n is an expensive operation to compute as it cannot
be simplified further As detailed in Chapter 3, there are two techniques that are used to
compute this exponentiation efficiently

The first approach is to use Lucas exponentiation, as proposed by Scott and Barreto [106]
This method was detailed in Chapter 3 The alternative strategy is due to Hu et al [50] and
Granger et al [42] The remaining exponentiation is given as x^p2+1^ n for an element
x 6 Fp4 Firstly, note that (p2 + l) / n = a \p + <20, where a \ = {p2 + l) /(p n) and
a o = ((p2 + 1)/™) m °d p The mam idea is to exploit the fact that exponentiating an ele
ment m F p4 to the power of p can be trivially computed Therefore, the exponentiation can
be performed by precomputing ai and ao, and by evaluating (x v)ai x a° Granger et al show
how the technique of multi-exponentiation can be exploited to compute this term Essen
tially, the idea behind multi-exponentiation is to use a single square-and-multiply algorithm
to compute both exponentiations simultaneously This idea is also known as Shamir’s trick

142

Table 6 4 Experimental results for the final exponentiation

Security level Multi-exponentiation (ms) Lucas exponentiation (ms)
(160/1024) 2 6 1 3
(192/2048) 12 5 7 5
(224/4096) 72 5 48 5

Granger et al give theoretical results that show that it is faster to use the Lucas sequence
approach for curves with a low embedding degree Scott [105] provides experimental evi
dence to verify this, by stating that Lucas exponentiation is better only when the embedding
degree of the curve is k < 4 In Table 6 4, timings are given on our platform of a Pentium
IV, 2 8 GHz, to illustrate the performance of the Lucas exponentiation approach versus
the multi-exponentiation approach to compute x^p2+1^ n for the three security levels of our
curve As can be seen, the Lucas sequence approach is superior for all three levels

6.4 Computing the Tate Pairing
In this section, a new variant o f M iller’s algorithm to compute the Tate pairing is described,
and is compared against the denominator elimination technique for the genus 2 curve in
question A theoretical analysis is also performed on the cost o f computing the Tate pairing
using our optimisations

6 4 1 Modifying Miller’s algorithm
Recall that M iller’s algorithm as originally described involves performing an inversion in
¥ pk at each iteration of the loop Field inversion is an expensive operation to compute,
particularly so m the extension field F pk Galbraith et al [31] introduce a variant of M iller’s
algorithm, which removes the need to perform an inversion at each iteration of the loop The
basic idea of Galbraith et al is to postpone performing the inversion until after the loop
To achieve this, two variables are used in the loop, which effectively replaces an inversion
with a squaring at each loop iteration The algonthm of Galbraith et al to compute the

143

Tate pairing (D i ,D 2)ni where D \ € P ic ^ (F p) and D 2 € PiCc(Fpfc), is presented in
Algorithm 11

Algorithm 11 M iller’s algorithm to compute the Tate pairing, as per Galbraith et al [31]
I nput D \ e P ic^ (F p), D 2 € P ic ^ (F pfc), where D \ has order w
O u tp u t (D 1, D 2) n k~ 1^ n

]
2 T ^ D 1
3 for i |_l°g2(n)J ” 1 downto 0 do
4 > Compute T ' = (2)T — (c/d)
5 T <- [2\T
6) c ^ j 2c c(£>2), fd *— fd d m
7 if n t = 1 then
8 t> Compute T f — T + D \ — (c/d)
9 T T + D i

10 / c < - / c c(D 2), f d «— fd d (D 2)
11 end if
12 end for
13 / - I d fd
14 f y(pfc- l) /n
15 Return f

An important improvement on the approach of Galbraith et al is the denominator elimi-
nation technique of Barreto et al [5] In Algorithm 11, the iterating divisor D \ is an element
o f the group P ic^ (F p), rather than P ic^ (F pfc) As a result, all o f the coefficients of the line
functions are also defined over F p, as they are extracted from the addition process on D \
Rather than defining the image divisor D 2 to be a general element of P ic ^ (F pfc), let the
^-coordinates o f all o f the finite points in the support o f D 2 be defined over some subfield
of F pfc In this case the denominator function, or the fd variable in Algorithm 11, will also
be defined over a subfield of ¥ pk However, the exponentiation to (pk^ — 1) which takes
place as part o f the final exponentiation eliminates any function value that is defined over
¥ pk/2 Therefore, there is no need to compute the fd variable in Algorithm 11

Several techniques are used to implement the denommator elimination technique in
practice The first method uses a distortion map to map elements of P ic^ (F p) to P iC c(Fpfc),
where C is a supersingular curve Some distortion maps map the x-cooidinates to a subfield

144

o f F pfc by definition, and so denominator elimination applies when such a divisor is used
as the second argument to M iller’s algorithm The second method uses quadratic twists
o f elliptic curves, as covered in Chapter 2 The third method defines the second argument

denominator elimination technique
However, suppose that a degenerate divisor is used as the second argument to Miller’s

algorithm for a hyperelliptic curve of genus g > 1 Then if this technique is used in order to
implement denominator elimination, it will increase the weight of the image divisor Recall
that a degenerate divisor D 2 in the genus 2 context has a single finite point in the support
Applying the trace-zero map to £>2 results in a more general divisor with two finite points
in the support For elliptic curves the divisor class group is isomorphic to the group of
points, and thus any non-trivial class has exactly one finite point m the support Therefore,
to use the denominator elimination technique in the genus 2 case, the functions in Miller’s
algorithm must be evaluated at two points, rather than at a single point This reduces the
efficiency o f denominator elimination

However, we present an alternative way to proceed, by introducing a new variant of
Miller’s algonthm to compute the Tate pairing A prerequisite for this algorithm is that
the embedding degree of the curve must be even, a condition shared by the denominator
elimination technique Firstly, is is assumed that the finite extension field F pAr is represented
as a quadratic extension of Fpfc/2 It is well known that once an element x = (a + b\J]3) €
F pfc is raised to the power of pk/2 — 1 , then it is possible to replace an inversion with a
conjugation, 1 e (l)P fc/2_1 = (x) ^ 2“ 1 To see why this is so note that

D 2 to M iller’s algonthm to be a trace-zero divisor Let D f e P ic^ (F p*.) be a general
divisor Then a trace-zero divisor is computed as D 2 = D ' — D fpk/2, which supports the

1 (a + byj]3)
(a + 6̂) P fc/2- ! = (a ~ ~ b y ^)

145

Similarly

= ^ T Ï T p f 2' 1 = (a - b j p f /2- ' = {̂ §(a - byj f 3)

This effectively replaces an expensive operation with one that is free to compute
This technique is exploited by Scott [105] to compute the Weil pairing Scott proposes

exponentiating the pairing value to the power of p k ^2 — 1 , which means that the inversion
in the Miller loop can be replaced with a conjugation However, no one has previously
observed that it is possible to use this idea to compute the Tate pairing, without requiring
any additional exponentiation The final exponentiation required to compute the reduced
Tate pairing includes the factor (pkl 2 — 1), as (pk - l) / n = (pk/2 - 1)(pA/2 + 1) /n
Therefore, as the output o f the loop is implicitly raised to the power of (///2 - 1), there
is no need for the strategy of Galbraith et al o f using two variables to eliminate inversion,
as the inversion in the main loop can be replaced by a conjugation The new algorithm
is desenbed in Algorithm 12 for the hyperelliptic case As the variable is eliminated
from the pairing calculation, a squaring is saved in F pfc at each iteration o f the loop, when
compared to Algorithm 11

Algorithm 12 An improved algorithm to compute the Tate Pairing
In p u t D\ e P ic^ (F p), D<i e P ic ^ (F pfe)? where D \ has order n
O u tp u t (j D i , D z) ^ - 1 ^ 71

i / - I
2 X <—
3 for i <— Ll°g2(n)J '- 1 downto 0 do
4 t> Compute T f = (2) T - (c/d)
5 T [2}T
6 f f 2 c (D 2) d(D 2)
7 if n, = 1 then
8 > Compute T ' = T + D \ ~ (c/d.)
9 T <— T +

10 / - / c (C 2) d (D 2)
11 end if
12 end for
13 f <_ y(pfc-i)/™
14 Return /

146

Table 6 5 Complexity of function calculation per iteration in M iller’s Algorithm

Case Description Complexity
1 Original Approach I, 2M, S
2 Two-variable Approach 2M, 2S
3 Algorithm 12 2M ,S
4 Denominator Elimination M ,S

Algorithm 12 is still not as efficient as the denominator elimination technique, which
saves a multiplication over this again at each iteration However, Algorithm 12 is a slightly
more efficient technique to compute the Tate pairing on a hyperelhptic curve of genus g > 1,
when using a distortion map that does not admit denominator elimination directly The
reason for this is that the denominator elimination algorithm consists o f two evaluations at
the lme function at each iteration (or one evaluation of a more complicated form if Mumford
representation is used) Algorithm 12 consists o f one evaluation at the line function, and
one evaluation at the vertical line function, which requires less computation to evaluate than
the line function Algorithm 12 is also less restrictive than using denominator elimination,
as it places no conditions on the form of the image divisor In fact, for an arbitrary image
divisor D 2 which is fully defined over it is the most efficient algorithm to compute the
Tate pairing in the literature Table 6 5 illustrates the complexity o f the different algorithms
in more detail

6 4 2 Using denominator elimination
Algorithm 12 is more efficient than the denominator elimination technique, assuming the
use of a distortion map that does not give denominator elimination directly, and that the
image divisor is a degenerate divisor However, it is possible to reduce the performance gap
by using customized multiplication routines, as detailed in this section Given a degenerate
divisor D = ip(Q) ~ (00), where ip(Q) = (x :y) £ C(¥pi) , the transformation R —
^ (Q) — 'tp(Q)p yields an effective trace-zero divisor R that is suitable for use with the
denominator elimination technique This transformation can be easily computed, by using

147

the fact that exponentiating an element in F p4 to the power of p2 is equivalent to a simple
conjugation with respect to the quadratic subfield, and so

Therefore, rather than compute R using Cantor composition and reduction, note that R
can be constructed as R = (r , y) + (r , —y) — 2 (o o) The fact that the two finite points in the
support of R are similar can be exploited in M iller’s algorithm Let Q = (tq yq) € C(FP)
Evaluating at the line function y — / (r) gives

VQ ~ ((^ q C b) 3s i + (x q C s f h + (%Q&)h ~ k)

Rather than evaluate the line function at —V>(Q)P separately, it is possible to reuse the line
function given above, due to the similarity between the two points When the line function is
evaluated at ip{Q) the output is an element of Fp4 such that ((a + by/p) -f (c + dy/P) \fj3)
The evaluation o f the second point (x, —y) at the line function can be obtained with the
transformation ((a — 2y + by/p) - (c + dy/p) yfp) Therefore, the calculation of the second
function is effectively for free, as it simply involves two subtractions and a conjugation
using the function generated by the first point

Both functions must be multiplied by the accumulating variable / 6 Fp4 It is possible
to exploit the fact that the two functions are similar in form, by writing a special multi
plication routine As seen previously, a general multiplication in F p4 takes 9M using the
Karatsuba technique, where M is a multiplication in Fv Let the first function j ci be equal
t° / c i — (o + b^/p) and the second function / « be equal to f r2 = (c - by/p), where
a, b, c e F ^ Then, the multiplication of f cl and fc2 can be unrolled as

(a + b t / p) (c - b ^ / f i) = ac - b2 s f p + b(c - a) { /])

Note that (c — a) 6 F /;, rather than F p2 The form of the ac multiplication can also be

148

exploited by computing

at — (e + f yf@){g + / y/P) — c9 ~ 2/2 + j (e + g)yfp

The total cost to compute the multiplication of the line functions is 2M + S for the ac
multiplication, as well as 2M + 2 M for the overall multiplication, which results in 6M + S
instead of the general cost o f 9M When this technique is implemented, we find that al
though the denominator elimination method is theoretically slightly faster, the performance
of denominator elimination and Algorithm 12 is roughly the same, for the genus 2 case
under consideration However, we suggest that Algorithm 12 is a more natural algorithm
to use in practice, as it is does not require the construction of customised multiplication
routines, such as those given in this section

6 4 3 Theoretical analysis
In this section, the theoretical cost of computing the Tate pairing using the genus 2 curve
C y 2 = x b + 1 is analysed Firstly, the analysis o f Choie and Lee [17] is reproduced
Let S', M, / be a squaring, multiplication and inversion respectively in ¥ p Choie and Lee
estimate the cost o f computing the Tate pairing (without including the cost of the final
exponentiation) as

log2(n)(T f£> + T c + Td + 2Tsk + 2Tmk) + (1/2) log2(n)(Ty\ -f Tc 4- + 2Tmk):

where

1 T o = I + 23M + 5 S - the cost o f doubling a general divisor

2 T a = / + 23M + 2S' - the cost o f adding two general divisors

3 Tc + Td — 22M + 55 - the cost o f evaluating the line functions c and d , with a
precomputation of 8 M + 3 S

4 Tsk = 8M - the cost o f squaring in F pk (where k = 4)

149

5 Tmi = 9 M - the cost o f multiplication in ¥ pk (where k = 4)

As Choie and Lee use a random subgroup order n to compute the Tate pairing, (1 /2) log2(n)
additions must be performed in M iller’s algorithm Let log2(^) ~ 160 Then evaluating the
formula given above yields a total cost for computing the Tate pairing as 240/ -j- 17688A'/ -f
21635

The theoretical cost of computing the Tate pairing is now examined using the optimi
sations given in this chapter Algorithm 12 is used in combination with a subgroup order
o f very low Hamming weight The efficient formulae for doubling an element of P ic^ (F p)
as given m Table 6 3 are used, as well as the efficient means of constructing F p4 Finally,
the second argument to M iller’s algonthm is defined to be a degenerate divisor, and the ef
ficient formulae that have been derived to speed up the evaluation of this divisor at the line
functions are used Therefore, the theoretical cost for computing the Tate pairing is now
given as (again without including the cost of the final exponentiation)

lo&2 (n)(^D + T c + T(i + + 2 Tm^) + 2(Tj\ + T c + T (\ + 2 Trnk):

where

1 T o = I + 22M + 45 - the cost o f doubling a general divisor

2 T a = I + 23M + 25 - the cost o f adding two general divisors

3 Tf -f T j = 18M - the cost o f evaluating the line functions c and d , with a precompu
tation o f 17M -1-1*9

4 Tsk = 6M - the cost o f squaring in F p* (where k = 4)

5 Tmi = 9M - the cost o f multiplication in Fpk (where k — 4)

Again, let log2(n) ss 160 Then the theoretical cost o f computing the Tate pairing
is given as 1621 + 10375M + 6455 This is a substantial improvement over the results
o f Choie and Lee The largest smgle factor in this improvement is the use of a prime

150

Table 6 6 Theoretical complexity of M iller’s algorithm

Case Subgroup order Complexity
I Random [17] 2401, 17688M, 2163S
2 Solinas prime (our work) 1621, 10375M, 645S
3 NAF (our work) 2141, 13404M, 748S

subgroup order n with a very low Hamming weight It is appropriate to examine the cost
o f the new formula for a random prime order n as well, to guard against a future attack
that might exploit the Hamming weight of n in some manner A random subgroup order n
has a Hamming weight o f (1 /2) log2(72) on average, meaning that (1/2) log2(n) additions
must take place in M iller’s algorithm This is the approach taken by Choie and Lee [17]
However, it is possible to improve on this

Computing the opposite o f an element in P ic^ (F p) is essentially for free, as detailed
in Chapter 2 Therefore, both the addition and subtraction of divisors in P ic^ (F ;j) have
the same computational cost Whenever a group has this property, it is possible to exploit
the Non-Adjacent Form (NAF) [91] of the subgroup order n Let I = log2(n) Then the
(binary) NAF of n is an expansion r\ — where e (0, ±1}, and n lv 1+\ = 0
for all ? > 0 The number of non-zero terms in the Hamming weight of the NAF of n is
(on average) (1/3) log2(n), which implies a sixth less additions in Miller’s algorithm than
using the standard method Therefore, combining the NAF of n with all o f the optimisations
introduced in this chapter gives a cost o f 2141 + 13404M + 7485 for computing the Tate
pairing The theoretical results are summarised in Table 6 6

6.5 Experimental Results
In this section, experimental results are given for computing the Tate pairing using the
techniques detailed in this chapter for the supersmgular genus 2 curve defined over F p
Three levels o f security were defined for implementation, namely (160/1024), (192/2048)
and (224/4096) It has been shown how to select a prime subgroup order n o f the required

151

Table 6 7 Security Parameters

160/1024 security level
n = 2i5y + 217 + 1
p = 63324531451181148200275171731203125718855624493339065310878459
331886717065893___
192/2048 secunty level
n = 2191 + 2'J + 1
p = 89284651228083788426899503684145515482879124715345625109737480
602016411174689533635990672440279080762322569446999588756146485641
92943960634648749730387013___
224/4096 security level
n = 2'22S + 213 + 1
p = 15572288413151584018732355885170470078314521100905501866179797
721305996406660922169152480135059877975286648042107836950744921979
175468464339740485127309529376149370584312783605245791516787233435
196077050664154130594222494359548777260251667610641320053258135302
4750990143717859982402535061826066311255496083453

number of bits, where n is a Solinas prime with a Hamming weight o f 3 A method was also
detailed to select a suitable large prime p such that p 2 + 1 = 0 m od n The prime p must
be congruent to 5 m od 8 in order to use the finite field constructions given for F p2 and
Fp4 detailed earlier Also, p must be congruent to 2 ,3 m od 5, as these are the conditions
associated with the curve itself Suitable values for p for the three secunty levels are given
in Table 6 7

Table 6 8 details the experimental results for the implementation o f the Tate pairing us
ing the (160/1024) security level Table 6 9 gives the expenmental results for the (192/2048)
security level, and Table 6 10 details the timings for the (224/4096) security level All of
the timings are given m milliseconds There are four cases in each table, all o f which have
a number of optimisations in common that have been derived in this chapter These include
the efficient finite field construction for Wp4 , the explicit formulae for doubling a divisor
as given in Table 6 3, and the formula given for evaluating the line function at the image
divisor at each iteration o f M iller’s algorithm

The first three cases in each table use the new variant o f M iller’s algorithm that is given

152

Tabic 6 8 Expérimenta] results - (160/1024) security level

Case Description Running time (ms)
1 Evaluating at degenerate divisor 16
2 Evaluating at general divisor 20 7
3 Evaluating using Mumford rep 20 45
4 Elliptic curve timing [105] 8 9

Table 6 9 Experimental results - (192/2048) security level

Case Description Running time (ms)
1 Evaluating at degenerate divisor 49
2 Evaluating at general divisor 62
3 Evaluating using Mumford rep 61
4 Elliptic curve timing [105] 20 5

Table 6 10 Experimental results - (224/4096) security level

Case Description Running time (ms)
1 Evaluating at degenerate divisor 183
2 Evaluating at general divisor 232
3 Evaluating using Mumford rep 229
4 Elliptic curve timing [105] 85

153

in Algorithm 12 The first case in each table is the time taken to compute the Tate pairing
when a degenerate divisor is used as the second input to M iller’s algorithm The second
case in each table gives the time for when a general divisor is used as the second input
to the algorithm The two finite points in the support o f the divisor are extracted, and the
line function that is generated at each iteration of the algorithm is evaluated separately at
both points The third case also computes a general pairing, except that the second input to
M iller’s algorithm is in Mumford representation This case is always faster when the finite
points in the image divisor are defined over a larger field

The fourth case in each table are timings that are given by Scott [105] using elliptic
curves, and an equivalent level of security to the genus 2 timings presented here In Ta
ble 6 8, the elliptic curve in question has an embedding degree of k = 2, and log2(p) «
512 as a result In Table 6 9, the elliptic curve has an embedding degree of k = 4 and
log2(p) ~ 512 In Table 6 10, the elliptic curve has an embedding degree of k = 8 and
log2(p) ~ 512 It could be argued that comparing the (ordinary) elliptic curve case with
k = 8 to the genus 2 case is ‘unfair’, as the theory on constructing genus 2 curves with a
higher embedding degree over ¥ p is as yet undeveloped

A number of conclusions can be drawn from these tables Firstly, previous experimen
tal results are due to Choie and Lee [17], who give timings to compute the Tate painng on
this curve that range between 500 and 600 ms on a Pentium IV 2 GHz, for the (160/1024)
security level Our timings far outperform this, as demonstrated in Table 6 8 Secondly, the
results given in this section indicate that genus 2 pairings over large prime fields are valid
candidates for practical implementation However, the elliptic curve timings are approxi
mately twice as fast as the genus 2 timings for all three security levels This is roughly what
one would expect, due to the more complicated group law in the genus 2 case

All o f the experiments were performed on our platform of a Pentium IV, which has a
clock speed of 2 8 GHz, and which runs version 2 6 12 of the Linux kernel The code is
written in C/C++ and is compiled using version 4 01 of the GCC/G++ compiler suite The
efficient implementation of the finite field F p is taken from MIRACL 4 85 In particular,

154

MIRACL supports special assembly language routines that can be used when working with
prime moduli o f a fixed number of bits

6.6 Conclusion
In this chapter, it has been shown that pairing calculation on supersingular genus 2 curves
is efficient, and that these curves are a viable candidate for the practical implementation of
pairing based cryptosystems as a result Efficient formulae have been derived for doubling
a divisor and for extracting the functions that are required in M iller’s algorithm It has been
shown how to choose an optimal subgroup order with a low Hamming weight, and how to
implement the finite field arithmetic efficiently It has also been shown how the distortion
map can be used to speed up the evaluation of the image divisor at the line function

A new variant o f Miller’s algorithm has been introduced for hyperelliptic curves with
an even embedding degree This algorithm shows that it is never necessary to perform
inversion when calculating the line functions in M iller’s algorithm, even if the image divisor
is not o f a special form This algorithm is interesting in two ways First of all, it provides
a nice historical bridge between the optimisations introduced by Galbraith et al [31], and
those introduced by Barreto et al [5], as summarised in Table 6 5 Secondly, although this
algorithm is not as fast as using denominator elimination in the general case, it can be faster
when working with hyperelliptic curves of genus g > 1 and degenerate divisors

A theoretical analysis o f the cost o f computing the Tate pairing using our optimisations
has been performed, and compared to previous results in the literature Finally, experimen
tal results have been provided on the implementation of the Tate pairing In particular, our
timings are the fastest reported in the literature to date by a considerable margin However,
the timings show that pairing implementation on genus 2 curves over ¥ p is about twice as
slow as pairing implementation on elliptic curves over ¥ p with an equivalent level o f secu
rity If this performance gap is to be bridged, it will be necessary to derive ordinary genus 2
curves over ¥ p with a higher embedding degree than that offered by supersingular curves

155

Chapter 7

(

Conclusion
7.1 Review
It was shown that the Tate pairing can be computed m an efficient manner using super-
singular genus 2 curves over finite fields o f characteristic 2 The best choice of curve to
use was investigated, and an octupling automorphism was obtained on the selected curves
Rather than compute the functions that are required m Miller's algorithm from the Cantor
composition and reduction of divisors, explicit formulae were provided that were derived
using the octupling automorphism The idea of using degenerate divisors was explored It
was shown how precomputation can be deployed to reduce the amount o f computation to
be performed in the algorithm itself The Frobemus endomorphism was also exploited to
calculate some of the functions required m the algorithm

Furthermore, it was shown how it is possible to achieve a more efficient pairing calcula
tion by utilising the 77 pairing construct In the genus 2 case, the 77 pairing requires a longer
loop size in M iller’s algorithm than the standard Tate pairing However, the rj pairing has
many advantages over the Tate pairing, such as the removal of additions from the loop and
a final exponentiation that can be easily computed The genus 2 rj painng is also far simpler
to implement than the version of the algorithm that used the Frobemus endomorphism to
expedite the computation It was then shown how a specific instance of the 77 painng can

156

be computed without the final exponentiation, assuming that the evaluation of the vertical
line functions is included in the algorithm This was the first time that any method for
computing the Tate pairing was shown to have this property

The truncated version of the // pairing, the q r pairing, was then investigated This ap
proach halves the number of loop iterations required in M iller’s algorithm compared to the
7] pairing The disadvantages of the jj t pairing are that an addition must be performed at
the end of the loop, and that it has a more expensive final exponentiation than the rj pairing
However, techniques were described to reduce the computational impact of both of these
properties A comprehensive series of tests was then conducted, comparing the implemen
tation of the genus 2 Tate, T] and rjr pairings using different security levels These results
were compared to the efficiency of implementing the Tate pairing using supersingular el
liptic curves of an equivalent level o f security The conclusion was that the genus 2 qp
pairing yields the fastest pairing implementation over finite fields o f low characteristic that
has been reported in the literature to date

The implementation of the Tate pairing using a supersingular genus 2 curve over a large
prime field was then described A new variant o f M iller’s algorithm was derived that is
more generic than the standard denominator elimination technique, and that can be useful
m certain circumstances when using hyperelhptic curves of genus g > 1 Existing formulae
for computing both the group law and the functions required for Miller’s algorithm were
modified and improved It was also shown how the form o f the distortion map can be
exploited to evaluate the intermediate functions in M iller’s algorithm more efficiently A
theoretical analysis was performed against previous work, and a wide range of timings was
reported using various standard levels of security These results were compared to existing
results in the literature on pairing implementation using supersingular elliptic curves The
conclusion was that pairing implementation on genus 2 curves m this context is slower than
for elliptic curves, but still competitive

In summation, in this thesis it was demonstrated that pairing calculation using supersin
gular genus 2 curves can be achieved efficiently This result implies that genus 2 curves are

157

a valid alternative to using elliptic curves for implementing cryptographic protocols based
on pairings This is a useful result, as it is good practice to have an alternative means to
achieve anything m cryptography In a more practical sense, this result allows protocol
designers to consider a wider range of curves for pairing implementation The actual se
lection of curve parameters rests on a wide range of practical considerations, such as the
computing platform or the language being used It is to be expected that elliptic curves will
prove more useful for most circumstances This is due mainly to their simple description,
which allows for an easier implementation by the non-speciahst However, we believe it is
likely that genus 2 painngs will be deployed in certain niches, such as embedded hardware
or low-powered devices

It is not necessary in mathematics to have any end goal in sight when considering an
area in which to research Even if one does not accept the theoretical or practical rea
sons given in the previous paragraph for considering genus 2 pairings, the study of genus
2 curves cannot help but improve our knowledge about pairing implementation on elliptic
curves An example from this thesis is that the inspiration for proving that there is no need
for a final exponentiation for the r) pairing on supersingular elliptic curves came from ex
perimentation with the genus 2 r] pairing Much work remains to be done on both the theory
and implementation of pairings on hyperelhptic curves before one can be truly confident of
the security o f pairing based cryptography

7 2 Open Questions
There are a large number of open questions relating to (hyper)elliptic curve cryptography
and the implementation of bilinear pairings However, in this section only questions that
arise from the work in this thesis are examined Rubin and Silverberg [96] give an upper
bound of k = 6 on the embedding degree of supersingular genus 2 curves over a large prime
field F p Very recently, Galbraith et al [36] derived a suitable supersmgular genus 2 curve
with this maximum embedding degree However, the curve in question is a real quadratic

158

genus 2 curvc As pairing implementation has not as yet been attempted on such a curve, it
is still an open question to derive a supersingular imaginary quadratic genus 2 curve with an
embedding degree of k = 6 that is suitable for pairing implementation A curve with this
maximum embedding degree would give additional advantages to genus 2 pairings over ¥ p

Another open question is to find an ordinary genus 2 curve with a low embedding de
gree It is important to do this for a number of reasons Firstly, to parallel the current re
search that is being carried out on elliptic curves The literature on ordinary elliptic curves
with a low embedding degree has expanded significantly in recent years This work has
yielded a wide range of suitable curves over ¥ p However, there are as yet no known ordi
nary elliptic curves over F 2™ with a low embedding degree (another open question in itself)
Secondly, cryptographers have long had misgivings about using supersingular curves, due
to a suspicion that the extra structure associated with such curves could be used in a de
structive sense For example, supersingular curves are no longer used for cryptosystems
based on the DLP in P ic ^ (F 5), due to the MOV/FR attack Ordinary curves with a low
embedding degree are also vulnerable to these attacks However, it is possible that ordinary
curves might be resistant to future attacks on supersingular curves in the context of pairings

Thirdly, due to the work of Galbraith [32] and Rubin and Silverberg [96], it is known
that there is a bound on the embedding degree o f all supersingular hyperelliptic curves that
are interesting for cryptography This is particularly problematic over large prime fields,
as only small embedding degrees can be obtained In contrast, ordinary elliptic curves
are known to exist over F p with a large range of embedding degrees that are useful for
implementation, such as k = 12 and k = 24 This is a significant advantage associated
with ordinary curves, and it would be extremely useful to replicate this work in the genus 2

context Another reason to consider ordinary curves is the paucity of suitable supersingular
curves for pairing based cryptography over a given finite field It is desirable to be able to
generate curves in a provably random fashion in order to generate confidence that the curve
equation is not weak in some way

Fourthly, the recent work of Hess et al [48] in deriving the Ate pairing shows that

159

pairing implementation on ordinary elliptic curves could be even more efficient than using
supersmgular elliptic curves It is to be assumed that this result holds for ordinary genus
2 curves, however in the absence of any suitable curves it remains an open question The
recent theory of the Ate pairing is the most powerful and comprehensive theoretical exam
ination of the computation of the Tate pairing in rccent years However, there has been
little extension or examination of the Ate pairing in the literature, and it is another open
question as to whether the Ate pairing can be developed further Pairing implementation
using both elliptic and genus 2 curves is fast approaching scalar multiplication in terms of
efficiency It is possible that some modification of the Ate pairing might even enable pairing
implementation to become faster than a general scalar multiplication

In chapter 5 o f this thesis, it was shown that the final exponentiation required to compute
the 7] pairing can be avoided for certain curves, as long as the vertical line functions are
included However, the mathematical proofs that are provided are unsatisfactory, as they
do not address the more general question as to why this property holds A proof that all 77
pairings are bilinear without the final exponentiation would be an interesting result A more
specific and pressing question is to prove the genus 2 ?; case, as we have been unable to
achieve this as yet An even more interesting question is whether this idea can be applied
to the Ate pairing using ordinary elliptic curves over F p As the final exponentiation is
generally expensive over F p, eliminating it using our technique might be more efficient
than using denominator elimination

It may also be worth reconsidenng the value o f using hyperelliptic curves of higher
genera for pairings In particular, little work has been done on using hyperelliptic curves
o f genus 3 Gaudry et al [40] recommend increasing the group size of hyperelliptic genus
3 curves by 12 5% to take their index-calculus attack into account However, this is not
necessarily an impediment to using these curves for pairing based cryptography, if it can be
shown that pairing calculation on hyperelliptic curves o f genus 3 can be achieved in an effi
cient manner In particular, the Ate pairing might yield an efficient pairing implementation
on genus 3 hyperelliptic curves

160

Bibliography
[1] R M Avanzi Aspects of Hyperelliptic Curves over Large Pnme Fields in Soft

ware Implementations In Cryptographic Hardware and Embedded Systems - CHES
2004, volume 3156 o f Lecture Notes in Computer Science, pages 148-162 Springer-
Verlag, 2004

[2] R M Avanzi The Complexity of Certain Multi-Exponentiation Techniques in Cryp
tography Journal o f Cryptology, 18(4) 357-373, 2005

[3] P S L M Barreto A Note on Efficient Computation of Cube Roots tn Characteristic
3 Cryptology ePnnt Archive, Report 2004/305, 2004 Available from h t t p / /
e p n n t ìacr org/2004/305

[4] P S L M Barreto, S D Galbraith, C O hEigeartaigh, and M Scott Efficient
Pairing Computation on Supersingular Abelian Varieties Cryptology ePrint Archive,
Report 2004/375, 2004 Available from http / / e p n n t ìacr org/2004/

375

[5] P S L M Barreto, H Y Kim, B Lynn, and M Scott Efficient Algorithms for
Pairing-Based Cryptosystems In Advances in Cryptology - CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 354-368 Springer-Verlag, 2002

[6] P S L M Barreto, B Lynn, and M Scott On the Selection of Pairing-Friendly
Groups In Selected Areas in Cryptography - SAC 2003, volume 3006 o f Lecture
Notes in Computer Science, pages 17-25 Springer-Verlag, 2003

161

[7] P S L M Barreto, B Lynn, and M Scott Efficient Implementation of Painng-
Based Cryptosystems Journal o f Cryptology, 17(4) 321-334, 2004

[8] 1 F Blake, V K Murty, andG Xu Refinement o f M iller’s algorithm for Computing
the Weil/Tate Pairing Journal o f Algorithms, 58(2) 134—149, 2006

[9] I F Blake, G Seroussi, and N P Smart Advances in Elliptic Curve Cryptography
Cambridge University Press, 2005

[10] B den Boer Diffie-Hellman is as Strong as Discrete Log for Certain Primes In
Advances in Cryptology - CRYPTO 1988, volume 403 o f Lecture Notes in Computer
Science, pages 530-539 Springer-Verlag, 1990

[11] D Boneh and M Franklin Identity-Based Encryption from the Weil Pairing SIAM
Journal o f Computing, 32(3) 586-615, 2003

[12] D Boneh, B Lynn, and H Shacham Short Signatures from the Weil Pairing In
Advances in Cryptology -A SIA C R Y P T 2001, volume 2248 of Lecture Notes in Com
puter Science, pages 514-532 Springer-Verlag, 2001

[13] D Boneh and A Silverberg Applications of Multilinear forms to Cryptography
Contemporary Mathematics, 324 71-90, 2003

[14] D G Cantor Computing m the Jacobian of a Hyperelliptic Curve Mathematics o f
Computation, 48(177) 95-101, 1987

[15] S Chatterjee, P Sarkar, and R Barua Efficient Computation of Tate Pairing in
Projective Coordinate over General Characteristic Fields In Information Security
and Cryptology - ICISC 2004, volume 3506 o f Lecture Notes in Computer Science,
pages 168-181 Springer-Verlag, 2005

[16] Y Choie, E Jeong, and E Lee Supersingular Hyperelliptic Curves o f Genus 2 over
Finite Fields Journal o f Applied Mathematics and Computation, 163(2) 565-576,
2005

162

[17] Y Choie and E Lee Implementation of Tate Pairing on Hyperelliptic Curves of
Genus 2 In Information Security and Cryptology - ICISC 2003, volume 2971 of
Lecture Notes in Computer Science, pages 9 7 -1 11 Springer-Verlag, 2004

[18] Y Choie and D Yun Isomorphism Classes of Hyperelliptic Curves of Genus 2
over Fg In Australasian Conference on Information Security and Privacy -A C IS P
2002, volume 2384 o f Lecture Notes in Computer Science, pages 190-202 Springer-
Verlag, 2002

[19] H Cohen and G Frey, editors Handbook o f Elliptic and Hyperelliptic Curve Cryp
tography Chapman & Hall/CRC, 2006

[20] S A Cook On the Minimum Computation Time o f Functions P hD Thesis, Har
vard University Department o f Mathematics, 1966

[21] D Coppersmith Fast Evaluation of Logarithms in Fields of Characteristic Two
IEEE Transactions on Information Theory, 30(4) 587-594, 1984

[22] W Diffie and M Heilman New Directions in Cryptography IEEE Transactions on
Information Theory, 22 644-654, 1976

[23] I Duursma and H -S Lee Tate Pairing Implementation for Hyperelliptic Curves
y 2 = x p — x -f- d In Advances in Cryptology - ASIACRYPT 2003, volume 2894 o f
Lecture Notes in Computer Science, pages 111-123 Springer-Ver lag, 2003

[24] K Eisenträger, K Lauter, and P L Montgomery Fast Elliptic Curve Arithmetic and
Improved Weil Pairing Evaluation In Topics in Cryptology - CT-RSA 2003, volume
2612 of Lecture Notes in Computer Science, pages 343-354 Springer- Verlag, 2003

[25] K Eisenträger, K Lauter, and P L Montgomery Improved Weil and Tate Pairings
for Elliptic and Hyperelliptic Curves In Algorithmic Number Theory Symposium
- ANTS VI, volume 3076 of Lecture Notes in Computer Science, pages 169-183
Springer-Verlag, 2004

163

[26] T ElGamal A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms IEEE Transactions on Information Theory, 31(4) 469-472, 1985

[27] K Fong, D Hankerson, J Lopez, and A Menezes Field Inversion and Point Halving
Revisited IEEE Transactions on Computers, 53(8) 1047-1059, 2004

[28] D Freeman Fast Arithmetic and Pairing Evaluation on Genus 2 Curves
Preprmt, 2005 Available from h t t p / / m a t h b e r k e l e y e d u /~ d f r e e m a n /
p a p e r s / g e n u s 2 p d f

[29] G Frey and T Lange Fast Bilinear Maps from the Tate-Lichtenbaum Pairing on Hy-
perelliptic Curves In Algorithmic Number Theory Symposium - ANTS VII, volume
4076 of Lecture Notes in Computer Science, pages 466-479 Springer-Verlag, 2006

[30] G Frey and H -G Ruck A Remark Concerning m-Divisibility and the Discrete Log
arithm Problem in the Divisor Class Group of Curves Mathematics o f Computation,
62(206) 865-874, 1994

[31] S Galbraith, K Harrison, and D Soldera Implementing the Tate Pairing In Al
gorithmic Number Theory Symposium - ANTS V, volume 2369 of Lecture Notes in
Computer Science, pages 324—337 Springer-Verlag, 2002

[32] S D Galbraith Supersingular Curves in Cryptography In Advances in Cryptology -
ASIACRYPT 2001, volume 2248 of Lecture Notes m Computer Science, pages 495-
513 Springer-Verlag, 2001

[33] S D Galbraith, C O hEigeartaigh, and C Sheedy Simplified Painng Computa
tion and Security Implications Cryptology ePrint Archive, Report 2006/169, 2006
h t t p / / e p r i n t lacr org/2006/169

[34] S D Galbraith and A Menezes Algebraic Curves and Cryptography Finite Fields
and applications, 11(3) 544-577, 2005

164

[35] S D Galbraith, K G Paterson, and N P Smart Pairings for Cryptographers Cryp
tology ePrmt Archive, Report 2006/165, 2006 h t t p / / e p r i n t l a c r o r g /
2006/165

[36] S D Galbraith, J Pujolas, C Ritzenthaler, and B Smith Distortion Maps for
Genus Two Curves Cryptology ePrint Archive, Report 2006/375, 2006 http

//eprint lacr org/2006/375

[37] R P Gallant, R J Lambert, and S A Vanstone Faster Point Multiplication on El
liptic Curves with Efficient Endomorphisms In Advances in Cryptology - CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 190-200 Springer-
Verlag, 2001

[38] P Gaudry Fast Genus 2 Arithmetic Based on Theta Functions Cryptology ePrint
Archive, Report 2005/314, 2005 h t t p / / e p r i n t l a c r o r g / 2 005/314

[39] P Gaudry, F Hess, and N P Smart Constructive and Destructive Facets o f Weil
Descent on Elliptic Curves Journal o f Cryptology, 15(1) 19^16, 2002

[40] P Gaudry, E Thome, N Theriault, and C Diem A Double Large Prime Varia
tion for Small Genus Hyperelhptic Index Calculus Mathematics o f Computation,
76(257) 475-492, 2007

[41] G van der Geer and M vanderV lugt Reed-Muller Codes and Supersingular Curves
I Compositio Mathematica, 84(3) 333-367, 1992

[42] R Granger, D Page, and N P Smart High Security Pairing-Based Cryptography
Revisited In Algorithmic Number Theory Symposium - ANTS VII, volume 4076 o f
Lecture Notes in Computer Science, pages 480-494 Sponger-Verlag, 2006

[43] R Granger, D Page, and M Siam On Small Characteristic Algebraic Ton in
Pairing-Based Cryptography LM S Journal o f Computation and Mathematics, 9 64—
85,2006

165

[44] C Gunther, T Lange, and A Stein Speeding up the Arithmetic on Koblitz Curves of
Genus Two In Selected Areas w Cryptography - SAC 2000, volume 2012 of Lecture
Notes in Computer Science, pages 106-117 Spnnger-Verlag, 2001

[45] R Harasawa, Y Sueyoshi, and A Kudo Tate Pairing for y 2 = t 5 — a x in Charac
teristic Five In Symposium on Cryptography and Information Security - SCIS 2005,
pages 931-935, 2005

[46] C O hEigeartaigh Speeding up Pairing Computation Cryptology ePrint Archive,
Report 2005/293,2005 h t t p / / e p n n t l a c r o r g / 2 0 0 5 / 2 9 3

[47] C O hEigeartaigh and M Scott Pairing Calculation on Supersingular Genus 2
Curves Cryptology ePrint Archive, Report 2006/005, 2006 h t t p / / e p r i n t
l a c r o r g / 2 0 0 6 / 0 0 5

[48] F Hess, N P Smart, and F Vercauteren The Eta Pairing Revisited IEEE Transac
tions on Information Theory, 52(10) 4595-4602, 2006

[49] M Hietalahti Hyperelliptic Curves and their Use in Cryptosystems, a Literature Sur
vey, 2001 Available from h t t p //w w w t c s h u t f i / ~ m h i e t a l a / h y p e
p s

[50] L Hu, J-W Dong, and D-Y Pei Implementation of Cryptosystems based on Tate
Pairmg Journal o f Computer Science and Technology, 20(2) 264-269, 2005

[51] T Izu and T Takagi Efficient Computations of the Tate Pairmg for the Large MOV
Degrees In Information Security and Cryptology - ICISC 2002, volume 2587 of
Lecture Notes in Computer Science, pages 283-297 Spnnger-Verlag, 2003

[52] A Joux A One-Round Protocol for Tripartite Diffie-Hellman In Algorithmic Num
ber Theory Symposium ~ ANTS IV, volume 1838 of Lecture Notes in Computer Sci
ence, pages 385-394 Spnnger-Verlag, 2000

166

[53] A Joux and K Nguyen Seperating Decision Diffie-Hellman from Computational
Diffie-Hellman in Cryptographic Groups Journal o f Cryptology, 16(4) 239-247,
2003

[54] M Joye and J J Quisquater Efficient Computation o f Full Lucas Sequences Elec
tronics Letters, 32(6)537-538,1996

[55] M JoyeandS Yen The Montgomery Powering Ladder In Cryptographic Hardware
and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer
Science, pages 291-302 Spnnger-Verlag, 2003

[56] M Jacobson J r , A Menezes, and A Stem Hyperelliptic Curves and Cryptography
In Fields Institute Communications Series, volume 41, pages 255-282, 2004

[57] B G Kang and J H Park Powered Tate Painng Computation Cryptology ePrint
Archive, Report 2005/260, 2005 h t t p / / e p n n t í a c r o r g / 2 0 0 5 / 2 60

[58] B G Kang and J H Park On the Relationship between Squared Pairings and Plain
Pairings Information Processing Letters, 97(6) 219-224, 2006

[59] A A Karatsuba and Y Ofman Multiplication of Multidigit Numbers on Automata
Soviet Physics Doklady, 7 595-596, 1963

[60] M Katagi, T Akishita, I Kitamura, and T Takagi Some Improved Algorithms
for Hyperelliptic Curve Cryptosystems using Degenerate Divisors In Information
Security and Cryptology ~ ICISC 2004, volume 3506 o f Lecture Notes in Computer
Science, pages 296-312 Springer- Verlag, 2005

[61] M Katagi, I Kitamura, T Akishita, and T Takagi Novel Efficient Implementations
o f Hyperelliptic Curve Cryptosystems using Degenerate Divisors In Information
Security Applications - WISA 2004, volume 3325 of Lecture Notes in Computer
Science, pages 345-359 Sponger-Verlag, 2004

167

[62] T Kobayashi, K Aoki, and H Imai Efficient Algorithms for la te Pairing IEICE
Transactions Fundamentals, E89-A (l) 134-143, January 2006

[63] N Koblitz Elliptic Curve Cryptosystems Mathematics oj Computation, 48 203-
209,1987

[64] N Koblitz Hyperelhptic Cryptosystems Journal o f Cryptology, 1(3) 139-150,
1989

[65] N Koblitz and A Menezes Pairing-Based Cryptography at High Sccunty Levels In
Cryptography and Coding - IMA 2005, volume 3796 o f Lecture Notes in Computer
Science, pages 13-36 Springer-Verlag, 2005

[66] S Kwon Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields
In Australasian Conference on Information Security and Privacy - A CISP 2005, vol
ume 3574 of Lecture Notes in Computer Science, pages 134—145 Spnnger-Verlag,
2005

[67] T Lange Fast Anthmetic on Hyperelhptic Curves Ph D Thesis, Universitat-
Gesamthochschule Essen, 2002

[68] T Lange Inversion-Free Arithmetic on Genus 2 Hyperelhptic Curves Cryptology
ePnnt Archive, Report 2002/147, 2002 h t t p / / e p r m t l a c r o r g / 2002/
14 7

[69] T Lange Weighted Coordinates on Genus 2 Hyperelhptic Curves Cryptology ePnnt
Archive, Report 2002/153, 2002 h t t p / / e p r m t l a c r o r g / 2 0 0 2 / 1 5 3

[70] T Lange Formulae for Arithmetic on Genus 2 Hyperelhptic Curves Applicable
Algebra in Engineering Communication and Computing, 15(5) 295-328, 2005

[71] E Lee, H-S Lee, and Y Lee Fast Computation of Tate Pairing on General Divisors
o f Genus 3 Hyperelhptic Curves Cryptology ePnnt Archive, Report 2006/125,2006
h t t p / / e p r m t l a c r o r g / 2 0 0 6 / 1 2 5

168

[72] E Lee and Y Lee Tate Pairing Computation on the Divisors o f Hyperelhptic Curves
for Cryptosystems Cryptology ePrint Archive, Report 2005/166, 2005 http

/ / e p n n t l a c r o r g / 2 0 0 5 / 1 6 6

[73] A K Lenstra Unbelievable Security Matching AES Security using Public Key
Systems In Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture
Notes in Computer Science, pages 67-86 Springer-Verlag, 2001

[74] A K Lenstra and E R Verheul Selecting Cryptographic Key Sizes Journal o f
Cryptology, 14(4) 255-293, 2001

[75] R L id landH Niederreiter Finite Fields Number 20 in Encyclopedia of Mathemat
ics and its Applications Cambridge University Press, 2nd edition, 1997

[76] U M Maurer Towards the Equivalence of Breaking the Diffie-Hellman Protocol
and Computing Discrete Logarithms In Advances in Cryptology — CRYPTO 1994,
volume 839 of Lecture Notes in Computer Science, pages 271-281 Spnnger-Verlag,
1994

[77] U M Maurer and S Wolf The Relationship Between Breaking the Diffie-
Hellman Protocol and Computing Discrete Logarithms SIAM Journal on Comput
ing,,28(5) 1689-1721, 1999

[78] A Menezes Elliptic Curve Public Key Cryptosystems Kluwer Academic Publishers,
1993

[79] A Menezes An Introduction to Pairing-Based Cryptography Unpub
lished manuscript, 2005 h t t p / /www m a th u w a t e r l o o c a / ~ a j m e n e z e /
p u b l i c a t i o n s / p a i r i n g s p d f

[80] A Menezes, T Okamoto, and S A Vanstone Reducing Elliptic Curve Logarithms
to a Finite Field IEEE Transactions on Information Theory, 39(5) 1639-1646,1993

169

[81] A Menezes, Y Wu, and R Zuccherato An Elementary Introduction to Hyperelhptic
Curves Appendix in Algebraic Aspects o f Cryptography by Neal Kobhtz, pages 155-
178, 1998

[82] V S Miller Short Programs for Functions on Curves Unpublished manuscript,
1986 h t t p / / c r y p t o S t a n f o r d e d u / m i l l e r / m i l l e r p d f

[83] V S Miller Use of Elliptic Curves in Cryptography In Advances in Cryptology -
CRYPTO 1985, volume 218 of Lecture Notes in Computer Science, pages 417-426
Springer-Verlag, 1986

[84] V S Miller The Weil Pairing and its Efficient Calculation Journal o f Cryptology,
17(4) 235-261,2004

[85] Y Miyamoto, H Doi, K Matsuo, J Chao, and S Tsuji A Fast Addition Algorithm
of Genus Two Hyperelhptic Curve In Symposium on Cryptography and Information
Security - SCIS 2002, pages 497-502,2002 (in Japanese)

[86] D Mumford Tata lectures on Theta II Birkhauser, 1984

[87] V Nechaev Complexity o f a Determinate Algorithm for the Discrete Logarithm
Mathematical Notes, 55(2) 165-172, 1994

[88] C M Park, M H Kim, and M Yung A Remark on Implementing the Weil Pairing
In CISC 2005, volume 3822 of Lecture Notes in Computer Science, pages 313-323
Springer-Verlag, 2005

[89] S Pohlig and M Heilman An Improved Algonthm for Computing Logarithms
over GF(p) and its Cryptographic Significance IEEE Transactions on Information
Theory, 24(1) 106-110, 1978

[90] J Pollard Monte Carlo Methods for Index Computation mod p Mathematics o f
Computation, 32 918-924, 1978

170

[91] G W Reitwiesner Binary Arithmetic Advances in Computers, 1 231-308, 1960

[92] P Ribenboim Classical Theory o f Algebt aic Numbers Springer-Verlag, 2001

[93] R Rivest, A Shamir, and L Adleman A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems Communications o f the ACM, 21(2) 120-126, 1978

[94] R Ronan, C O hEigeartaigh, C Murphy, M Scott, and T Kenns A Hardware
Accelerator for a Pairing-Based Cryptosystem To appear in a special issue of the
Journal o f Systems Architecture

[95] R Ronan, C O hEigeartaigh, C Murphy, M Scott, T Kerins, and W P Mamane An
Embedded Processor for a Pairing-Based Cryptosystem In Information Technology
New Generations - ITNG 2006, pages 192-197 IEEE Computer Society, 2006

[96] K Rubin and A Silverberg Supersingular Abelian Varieties in Cryptology In Ad
vances in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 336-353 Springer-Verlag, 2002

[97] K Rubin and A Silverberg Torus-Based Cryptography In Advances in Cryptology
- CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 349-
365 Springer-Verlag, 2003

[98] H -G Ruck On the Discrete Logarithm in the Divisor Class Group of Curves Math
ematics o f Computation, 68(226) 805-806, 1999

[99] R Sakai, K Ohgishi, and M Kasahara Cryptosystems based on Pairings In Pro
ceedings o f the 2000 Symposium on Cryptography and Information Security Oki
nawa Japan, pages 26-28, 2000

[100] C Schnorr Efficient Signature Generation by Smart Cards Journal o f Cryptology,
4(3) 161-174, 1991

[101] R Schoof Elliptic Curves over Finite Fields and the Computation o f Square Roots
mod p Mathematics o f Computation, 44 483^1-94, 1985

[102] M Scott MIRACL (Multiprecision Integer and Rational Arithmetic C/C-h * Library)
Available from h t t p / / i n d i g o i e / ~ m s c o t t /

[103] M Scott Computing the Tate Painng In Topics in Cryptology - CTRSA 2005, vol
ume 3376 of Lecture Notes in Computer Science, pages 293-304 Springer-Verlag,
2005

[104] M Scott Faster pairings using an Elliptic Curve with an Efficient Endomorphism
In Progress in Cryptology - INDOCRYPT 2005 , volume 3797 of Lecture Notes in
Computer Science, pages 258-269 Springer-Verlag, 2005

[105] M Scott Scaling Security in Pairing-Based Protocols Cryptology ePrint Archive,
Report 2005/139,2005 http / / e p n n t ìacr org/2005/13 9

[106] M Scott and P Barreto Compressed Painngs In Advances in Cryptology-CRYPTO
2004, volume 3152 o f Lecture Notes in Computer Science, pages 140-156 Springer-
Verlag, 2004

[107] A Shamir Identity-Based Cryptosystems and Signature Schemes In Advances in
Cryptology - CRYPTO 1984, volume 196 of Lecture Notes in Computer Science,
pages 47-53 Springer-Verlag, 1985

[108] V Shoup Lower Bounds for Discrete Logarithms and Related Problems In Ad-
vances in Cryptology - EURO CRYPT1997, volume 1233 o f Lecture Notes in Com
puter Science, pages 256-266 Springer-Verlag, 1997

[109] J Solmas Generalized Mersenne Numbers Technical Report CORR 99-39,
University o f Waterloo, 1999 Available from http //w w w cacr math

uwaterloo ca/techreports/1999/corr99-39 pdf

[110] J Solmas ID-based Digital Signature Algorithms, 2003 Available from
http //www cacr math uwaterloo ca/conferences/2003/

ecc2003/solinas pdf

172

[111]

[112]

[113]

M Takahashi Improving Harley Algorithms for Jacobians of Genus 2 Hyperelhptic
Curves In Symposium on Cryptography and Information Security - SCIS 2002,
2002 (in Japanese)

A L Toom The Complexity of a Scheme of Functional Elements realizing the
Multiplication of Integers Soviet Mathematics, 4(3) 714-716,1963

E Verheul Evidence that XTR is More Secure than Supersingular Elliptic Curve
Cryptosystems In Advances in Cryptology - EUROCRYPT 2001, volume 2045 of
Lecture Notes in Computer Science, pages 195-210 Springer-Verlag, 2001

173

Appendix A

Formulae
A.1 Absorbing powers of 8 for the genus 2 77 pairing
In Chapter 5, the genus 2 77 pairing is given as

m—1

v(P,Q)= n W W Q)) 8'"“ ",i=Q

where /8 jgljp = a/3 In Chapter 4, it was shown how it is possible to precompute all o f
the powers of x p and yp that are required m M iller’s algorithm The goal o f this section
is to show how the exponentiation to 8m_1_î can be brought into the formulae for a and
P This optimisation avoids the need to explicitly octuple the accumulating variable / each
iteration of the loop Therefore, rather than compute a and ¡3 each iteration, formulae are
denved to compute a 23(m 1 and 1 l)

Calculating this efficiently requires the precomputation of certain powers of x q and y Q ,
in addition to the precomputation of the powers of x p and yp mentioned above Two arrays
o f size m are constructed, such that each index i in the arrays consists o f the value Xq and
y*Q The first step in building the exponentiation into a and (3 is to examine how w and so
behave under powering by Recall that w 8 — w + 1 As m is defined to be odd,
then m — 1 — % = i m od 2, and thus w 23(m 1 l) = w -f 71(2), where 71(2) is 1 when 1 is

174

odd and 0 otherwise Also note that as Sq + bo = w 5 ws , then s$ — so + w 2, s[f = + 1
and 5gJ = so + w 2 + I This can be generalised, so that when m = 1 m od 4

50 = 6 0 + 7 1 (0 ^ + 7 3 (0 ,

and when rrt = 3 m od 4

g2J(OT l '> _ S() + 7l (t }w 2 + + ^

where 73(1) = 1 when 2 = 1,2 m od 4, and 0 otherwise Let 74(771, 2) denote the value
73(2) when m = 1 m od 4, and 73(2) + 1 otherwise

As before, we write = x 2\ where % is considered modulo m Using the basis given
m Chapter 4 for elements o f F 2i2ms the constant term of a 2d(m 1 %) is

y < 3 m - 2 - 3 .) + (^ - 2 - 3 0 ^ + (x (3 ,+ l) + * (*)) ^ S m - 1 - 3 .) + +

+71 w + 1) + y p t] + + 1

When m — 1 — 1 (and hence 1) is odd, another term must be added to this This term is
written as

71 (0 (■'•Qm ” 2_3l) + l + 7 l (i) + -<-p!+ 1)) + 7 4 (" 1 , 0

This can be simplified by writing 71 (0 (1 + 7 i (0) — 0’ cancelling various terms and sim
plifying the cubing of The constant term of a 1S then

where 75(rn) = 1 if rn = 1 m od 4 and 0 otherwise The remaining terms are

(a^3" '- 1- 30 + z<®'"-2- 8‘)) w + + X(3,) + l) w 2 +

w4 4- so

The same process is now repeated for ¡3 The constant term of /323(m 1 '' is given as

^ - 3 - 3 .) + ^ (* + 2) + ^ ^ - 2 - 3 .) + ^ (3 !+ 2) + ^ + 1) J ^ m - J - 3 .) +

?y|,3!+1) + T ^ +1) (l + 7 1 « + r (r3 l+ 2)) + 7 3 (0 + 1,

with the addition o f the term

71 (0 (xp‘+1) + X q ' " ~ 2 ~ 3 ^ + 7i(i) + l) + 7 4(m,t)

Simplifying this gives a constant term

(3 m - 3 - 3 ») , / (3H -1) (3 m —2 —3 t) \ (3 i + 2) / (3 i + 2) (3 » + l) \ (J m - 3 - 3 .)
U q ^ [X p ~ ^ X Q J X P y X P - T X p J Q -T-

Vp'+1) + x ^ ‘+1) + 7 5 (m)

The remaining terms are

(rg '+2> + r<3*+1>) w + (t ^ " - 3- 3‘) + r<p3'+2> + l) ,W2 +

^ g m - 2-3z) + ^ m - 3 - 3 .) ^ ^4 + Sq

A.2 Absorbing powers of 8 for the genus 2 r jT pairing
In Chapter 5, the octupling loop o f the genus 2 7̂ pairing on the points P and Q is

(m - 3) / 2

where /8 [8,j P = a/3 The goal of this section is to modify the formulae for a and ¡3
given in Chapter 4 to avoid having to octuple the accumulating variable at each iteration of
M iller’s algorithm This is done by absorbing the exponentiation to 2^m_3_2î)/2 into the
formulae for a and ¡3 As in the previous section, computing this efficiently requires the
precomputation o f the values j,q and ¡Jq for all 0 < i — 1 Firstly, it is necessary to
examine how tu and î>q behave under powering by 23(m_3~2î)/2 As m is odd, and hence
(m - 3 — 2z)/2 = i m od 2, then w 23{m 3 2%)!2 = w + 71(2) as before The values for

o 3 (m — 3 — 2 i) / 2 - , , , „ n 3 (m —I —i) ,Sq are also the same as the values given for Sq in the previous section
As before, we write xW = x 2' , where i is considered modulo m Using the basis given

in Chapter 4 for elements o f F2i2m, the constant term of a 2’1’" J 2’l/2 is

(x ^ 3m - 7_6’) /2)) 3 + ^ x ((3m - 1+ 61) / 2) _|_ J_ « 3 m -3 + 6 i) /2)^ x j (3 m - 6 i - 5) / 2) +

y ((3m - 7 - 6!)/2) + ^ « 3 m - S + 8 ,) /2) + j + ^ x « 3 m - 7 - 6 t)/2) + ÿ « 3 m -3 + « ,) /2) +

73(0 + 1,

with the addition o f the term

7.(0 + 1 + 7l(0 + x«3m' 1+6,)/2)) + 74(m, 0

Adding these two terms together and simplifying gives

((3 m -7—60/2) / ((3,11-1+60/2) ((3 » ,-3 + &)/2)\ ((3m -5-6*)/2) ((3™ -3+6,)/2)
V q -h \ r p + T p j r Q y p

(x « 3m “ 3+6>)/2) + j + æ « 5m- , - 6 .) / 2) ^ ^ - 7 - ^ , 2) + ^

where 75(2) = 1 if t = 1 m od 4 and 0 otherwise The remaining terms are

^ .((3 m - 5 - 6 ,) /2) + ^ - 7 - 6 0 / 2) ^ ^ + + ¿ (Z m - 3 + 6 0 /2) + ^ 2 +

(* « 3m- 1+6’)/2> + *«3m -3+ 6,)/2)j w 4 + SQ

177

The exponentiation on ¡3 is now examined The constant term of J 2ï)/2) is

y { p m - 9 - 6 i) / 2) + ^ ((3 m + l + 6 0 / 2) ^ « 3 m - 7 - 6 z) / 2) + ÿ « 3 m - l + 6 i) / 2) +

^ x ((3 m + 1+ 6 i) / 2) ^ ((3 m - l + 6 i) / 2) j ^ ((3 m - 9 - 6 i) / 2)

x « 3 m- l+ 6 ,) /2) ^ « 3 , , ,+ l+6,)/2) + 7 j (î) + ^ + 7 s (i) + ^

with the addition of the term

71 (t) (x « 3- 1+6'>/2) + *«3m- 7- 6l)' 2> + 71« + l) + 74(m ,.)

Performing this addition and simplifying yields the constant term

f (3 m - 9 - 6 i) / 2) , / ((3 r n + l + 6 i) / 2) ((3 m - l + 6 i) / 2) \ ((3 m - 9 - 6 i) / 2)
V q “f" y x p ~ r % p J x q - r

((3n , —1 + 6 0 / 2) ((3 m + l + 6 T) / 2) / ((3 m - l + 6 0 / 2) . ((3 m - 7 - C i) / 2) \
y p x p y x p ^ ~ x q j ^

X « 3m- l +6*)/2)+ 7 5 W

The remaining terms are

(z « 3m +1+6i) /2) + * « * » - 1 + 0 0 /*)) + ^« S n H -l-W O /2) + a.«Sm -9 -6 .) /2) + ^ 2 +

^ « 3 „ 1- 7 - 6 0 /2) + ^ „ - 9 - 8 0 / 2) j |(>4 + , 0

A 3 Unrolling the a/3 multiplication
In this section it is shown how to multiply two special elements of F 2i2m in an efficient
manner, by exploiting the fact that both elements have a large number of zeros as coeffi
cients Let a: = a + bw + cw2 + d.iu4 + so and (3 — e Jw -f- gw 2 + hw A + so, where
a, ¡3 G F 2i2m are written in the basis that was constructed in chapter 4 The multiplication

178

of a and ¡3 can then be wntten as

<yp — (a + bw + cw 2 + dtu4 + 6n)(c- + f w + gw 2 + hw 4 + so)

= ae + a fw + a^iu2 + ahw 4 a so + be«; -b b fw 2 + +

bhwb + friuso + ceit;2 + c /u >3 + q /u >4 + ch(w 5 -f iu3 + i/;2 + 1) +

cw2so + dew4 + d /iy5 + dg(w5 + u >3 + w2 + 1) + d/i(iu + 1) +

c/iu4so + eso + fwsQ + gw 2s o + hw 4so + (so + iu5 + w s)

Grouping all o f the relevant terms together gives

a/3 = (ae + ch + dg + dh) + (a j + be + ¿//¿)u; + (a</ + 6/ + ce + ch + dg)w 2 +

(bg + c f + ch dg + l)xy3 + (ah + eg + c/e)ui4 +

(b/i + ch + dj + dg + l)w 5 + (a + e + l)so + (6 + J) wsq -F

(c + g)w 2s Q + (rf + ft)iu4so

This costs 16 multiplications in F 2m, which is a vast improvement on the 54 multiplica
tions in F 2™ required for a general multiplication in F2i2m However, it is possible to save
a further number of multiplications, by exploiting Karatsuba-likc optimisations First of all
precompute the following values dh = d h ,dg = d g ,ch = c h eg = c g ,a e =
a e, 6/ = 6 / Then the multiplication is computed as

aj3 = (ae + ch + d# + d/i) + ((a + b)(f + e) + ae + b f + dh)w +

((a + c)(g + e) + ae + eg + bf + ch + dg)w2 +

((b + c)(g + /) + b f + eg -f ch + dg + l)u ;3 +

((a + d)(h + e) + ae + d/i + cg)w 4 +

((6 + d)(h + /) + bf + dh + ch -f ¿9 + l)w 5 +

(a + e + l)so + (b + /)w so + (c + g)w 2so + (d + /i)iu4so

179

Therefore, the total cost o f the af3 multiplication is only 11 multiplications in F 2™

180

