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Abstract
The synthesis of calixarene L1 is described. This molecular sensor incorporates a 
fluorescent naphthyl moiety, the necessary fluorophore for optical transduction, 
whose fluorescent intensity alters to differing degrees on binding of enantiomers. 
Means of distinguishing between enantiomers of a chiral molecule are of critical 
importance in many areas of analytical chemistry and biotechnology, particularly in 
drug design and synthesis. Fluorescent quenching studies of calixarene L1 in 
methanol demonstrated no enantiomeric selectivity in a short chain amino acid, 
phenylglycinol, while excellent selectivity was observed for a longer chain, 
phenylalaninol. Fluorescent lifetime studies of this calixarene with phenylalaninol 
guests confirmed that a static quenching mechanism is responsible for the decrease 
in fluorescence intensity of L1 in methanol upon addition of phenylalaninol. 
Calix[4]arenes are well-known to possess ion-binding properties. The formation of 
metal ion complexes of the p-allyl calix[4]arene propranolol amide derivative is shown 
to induce a more regular and rigid cone conformation in the calix[4]arene macrocycle, 
which generates a significant enhancement in the observed enantiomeric 
discrimination.

The effect of solvent on the fluorescent properties of this calixarene has been studied 
with regard to methanol, acetonitrile and chloroform. While enantiomeric selectivity is 
observed in methanol, no discrimination is achieved in acetonitrile, and although 
there appears to be a 1:1 association with the guest in the latter solvent, in the case 
of methanol the guest must be far in excess of the host to achieve enantiomeric 
discrimination. Upon addition of the R-enantiomer of the guest in chloroform a new 
band is formed, which would suggest a charge transfer complex between this guest 
and the calixarene, an effect, which is not observed with the S-enantiomer. 
Fluorescence lifetime studies in chloroform indicate a static quenching mechanism of 
L1 by both enantiomers of phenylalaninol, which would suggest that exciplex 
formation is not responsible for the new band at 440nm upon addition of R- 
phenylalaninol. This new band has been attributed to the presence of two different 
conformations of calixarene L1, which is reinforced by the 1H-NMR studies and 
molecular modelling studies in chapter 4.

After the successful performance of calixarene L1 with respect to enantiomeric 
discrimination (chapters 3, 4 and 5), an attempt was made to prepare a series of 
calixarene sensor molecules that possess similar properties to L1, but are prepared 
from inexpensive starting materials. Using DCC as a coupling agent to form amides 
directly from calixarene tetra-acids does not however, achieve tetra-substituted 
amides. An alternative route was taken to produce calixarene tetra-amides which 
involved two steps:

1 . formation of the amide moiety

2 . attachment of amide moieties to calixarene backbone

The first of these two steps was carried out successfully and led to the formation of 
three amide subunits however the second step suffered from partial substitution, and 
resulted in a series of mono-, di- and tri-substituted fluorescent calixarenes. A five­
fold excess of the amide moiety was used which is not sufficient to complete the 
tetra-substitution.



1 Calixarenes and Host-Guest Chemistry: Introduction and 

Literature

“Pleasantest o f all ties is the tie o f host and guest"

: Aeschylus, Athenian poet and dramatist (approx. 5BC)
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1.1 Calixarenes -  Introduction and Historical Aspects

As early as 1912, Raschig speculated that calixarenes might exist as constituents of 

the commercial plastic called Bakelite. This hard resinous solid, which resulted from 

the reaction of phenol and formaldehyde under fairly strenuous conditions, was 

named after Leo Bakeland who discovered and exploited this substance. Whether 

Bakelite actually included calixarene structures in its composition is not clear, but it is 

now certain that the condensation of certain p-substituted phenols with formaldehyde 

undoubtedly yields calixarene products.

OH

n = 3 -  20 are known

Figure 1-1 Formation of Calixarenes with phenol, formaldehyde and base

Calixarenes are macrocycles like cyclodextrins and crown ethers, whose 

conformational isomers offer a great number of unique cavities, with great variety in 

size and shape. These compounds favourably adopt a so-called cone-type 

conformation due to stabilisation of this conformation due to intramolecular hydrogen- 

bonding interactions among their phenoxy hydroxyl groups. They are very similar in 

structure to spherands, the difference being the length of the spacer connecting the 

phenyl units. This implies that calixarenes should be good hosts for complexing to 

guests with complementary functionalisation.

Upper (wide) rim 

Annulus 

Lower (narrow) rim

Figure 1-2: View of calixarene cavity; side-on view and through the annulus
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It was in the 1970’s with the increasing interest in “enzyme mimics” that David 

Gutsche was inspired to investigate calixarenes as potential candidates for molecular 

baskets. The idea of enzyme mimic building is to construct a receptor for a substrate 

molecule and equip the receptor with functional groups that are appropriate for 

interacting in some manner with the substrate molecule. Reasons why they are 

attractive as hosts include their ready availability, with multigram quantities 

producible on a laboratory scale in a relatively simple manner from cheap starting 

materials, with numerous options for their structural variation. This makes them 

different from many of the other synthetic macrocycles, and makes them particularly 

attractive as potential hosts.

It was during their investigations of the “curing” phase of the Bakelite process, that 

Zinke and Ziegler first demonstrated the formation of macrocycles [1]. The curing 

step heated the initially formed phenol-formaldehyde condensate, to produce the final 

resin. They treated p-tert-butylphenol with aqueous formaldehyde and sodium 

hydroxide at various temperatures, and eventually yielded an acetyl derivative with a 

molecular weight of 1725. No structure was suggested for this product, but in 

retrospect they seemed to have isolated the cyclic octamer.

Following work by Cornforth [2] and Gutsche [3, 4, 5, 6], it was confirmed that the 

Zinke reaction yielded a mixture of products and that the size of the macrocycle is 

dependant on the reaction conditions employed. The cyclic tetramer, which was one 

of the products from the aforementioned reaction, bore a remarkable resemblance in 

shape to a Greek vase called a Calix Crater. It was for this reason that Gutsche and 

Muthukrishnan assigned the name calixarene (arene, indicating the incorporation of 

aromatic rings in the macrocyclic array) to this class of compounds, with the size of 

macrocycle specified by a bracketed number inserted between calix and arene.

1.2 One-Pot Procedures  -  Base Catalysed Reactions

The Petrolite procedure, which was devised to simulate the factory production of 

phenol/formaldehyde resins, yields 60-70% crystalline p-terf-butylcalix[8]arene from 

p-te/?-butylphenol. While attempting to solve the mystery of the condensation of p- 

terf-butylphenol and formaldehyde, it was discovered that instead of the catalytic 

amount of base used in the original Petrolite procedure, a stoichiometric amount of
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base yielded the cyclic hexamer as the major product (70-75%). The cyclic tetramer 

however, is produced in irregular yields when employing the Zinke reaction, from 

almost nothing to anything up to 45%.

The optimal amount of base for the formation of the tetramer and octamer is about

0.03 mole of NaOH per mole of p-tert-butylphenol, with tetramer yields of 50% when 

higher temperatures are used (diphenyl ether, reflux ~220°C) than in the case of the 

octamer (63% yield-xylene, reflux ~145°C). Larger amounts of base are required for 

the formation of the hexamer, 0.4 moles KOH per mole p-tert-butylphenol. The odd- 

numbered calixarenes are more difficult to quantitatively obtain than their even- 

numbered counterparts, with reasons for the formation of particular calixarenes 

virtually unknown. Though calixarenes are now known with repeating units up to 

twenty in number, to date the majority with analytical interest have been tetramers, 

with hexamers to a less significant extent.

1.2.1 Reaction Pathway

Although little is known about the total mechanism of cyclic oligomer formation, the 

initial stages of the sequence appear reasonably unambiguous. It is relatively certain 

that the first step in the overall reaction involves the condensation of the phenolate 

anion with formaldehyde, to form a hydroxymethylphenol.

HO

CHoOH

Figure 1-3: Formation of hydroxymethylphenol from phenol

Subsequent condensation of the previous product with the starting phenol then 

ensues to form linear dimers, trimers, tetramers etc., with this process capable of 

taking place under relatively mild conditions. A Michael-like reaction was postulated, 

whereby phenolate anions and o-quinonemethide intermediates form by loss of water 

from the hydroxymethylphenols.
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HO

Figure 1-4: Formation of diphenylmethanes via o-quinonemethide intermediates

Dibenzyl ethers are concomitantly formed with the diphenylmethanes previously 

mentioned, as a consequence of intermolecular dehydration.

Figure 1-5: Formation of dibenzylethers from hydroxymethylphenols

1.2.2 Cyclisation Pathway

How this mixture of hydroxymethyl-diphenylmethanes and dibenzyl ethers are 

transformed to the macrocyclic calixarene is still unclear. Certain arguments 

however, seem to suggest that hydrogen bonding plays a vital role. Another 

argument states that since it is known that tetramers are formed as a result of 

heating octamers in the presence of base, that the octamer is the primary cyclisation 

product, with an increase in temperature producing the tetramer [7].
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J +  HCHO

II

a

2 x

calix[4]arene

Figure 1-6: Possible cyclisation pathway to calix[4]- and calix[8]arenes

In the case of calix[6]arene formation however, a template effect has been 

postulated, similar to that in crown ether chemistry, since higher yields of cyclic 

hexamers have been obtained with RbOH as base than with CsOH, KOH, or NaOH 

[6]. However the differences between these four bases is not spectacular, and it 

seems that the function of the base is other than merely acting as a template. From 

space filling molecular models it is suggested that it may be possible for the cyclic 

hexamer to achieve the “pleated loop” conformation of the octamer, with removal of 

hydrogen to form the monoanion of the calixarene, thereby strengthening the 

hydrogen bonding within the system. It is therefore proposed that the principal 

functions of the base include:

(a) creation of the monoanion of a linear hexamer, which becomes a “pleated 

loop” pseudocalix[6]arene as a preface to cyclisation, or

(b) the formation of the monoanion of a linear trimer, which could associate with 

a neutral trimer to form the hemicalix[6]arene anion to undergo cyclisation.

However if other p-alkyl or even p-arylphenols are used in the synthesis, a mixture 

that contains no discernable amount of tetramer is produced, with p-halophenols 

yielding products, which do not seem to be calixarenes. If the previously described 

pathways for cyclisation are correct, then the p-substituent should not exert a huge 

effect on the process, since they are quite far apart in the “pleated loop” 

conformation. Even presuming that the conversion from calix[8]arene to calix[4]arene 

probably involves close contact of such substituents, the fact that smaller
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substituents than f-butyl (methyl) as well as larger (phenyl, adamantly, cumyl), do not 

favour tetramer cyclisation, would appear to imply that steric differences are not 

particularly responsible for the outcome of the reaction [7].

Influences on the reaction of calixarene formation, include:

(a) solvent effect- formation is favoured by non-polar solvents (xylene, tetralin, 

diphenylether) and inhibited by polar solvents (quinoline)

(b) base concentration effect- the cyclic octamer and tetramer are favoured by a 

catalytic amount of base whereas a stoichiometric amount is favoured by the 

cyclic hexamer

(c) temperature effect- the cyclic octamer and hexamer are produced 

preferentially at lower temperatures (refluxing xylene ~145°C) than the cyclic 

tetramer (refluxing diphenyl ether ~220°C).

Gutsche presents an argument, which encompasses the aforementioned reaction 

pathways, and states that the calix[8]arene is produced through kinetic control, the 

calix[4]arene is a product of thermodynamic control, with the calix[6]arene formed in 

part by a template effect. However the exact proceedings that take place in the final 

phase of the sequence leading to the cyclisation products remains somewhat of a 

mystery. It is certain that the linear oligomers lose water and formaldehyde in the 

process of cyclisation, but the immediate precursors of the cyclic products are not 

known.

linear oligomers

[1] -------► [2] =  [3] =  [4] =  [n]

[2] [2] [3] [3]

hemicalix[n]arenes

©
template product thermodynamic product

Figure 1-7: Cyclisation pathway proposed by Gutsche, [n] = "repeat linear units;(n) 

= nrepeat cyclic units.
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1.3 One-Pot Procedures  -  Acid Catalysed Reactions

The synthesis of calixarenes via acid-catalysed phenol-formaldehyde condensation 

reactions has been achieved with such starting materials as 1,3,5-trimethyl benzene 

and 1 ,2 ,3,5-tetramethyl benzene [8], in the presence of formaldehyde and acetic 

acid, with the former reaction product also obtainable from 2-chloromethyl-1,3,5- 

trimethyl benzene with aluminium-chloride as catalyst [9].

1.4 Stepwise Synthesis

The stepwise synthesis described in 1956 by Hayes and Hunter [10] and optimised 

sometime later by Kâmmerer, Happel et al [11, 12, 13, 14], allowed for the synthesis 

of calixarenes from different alkylphenol units, therefore generating a range of 

functionalities on either the upper or lower rim. This synthesis starts from o-bromo-p- 

alkylphenol and employs a series of alternating hydroxyméthylation and 

condensation steps to assemble a linear oligomer with a hydroxymethyl group on one 

end. This can in turn undergo cyclisation after the o-position has been made 

available by de-halogenation.

Figure 1-8: Kammerer’s non-convergent stepwise synthesis
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This procedure however, is very time consuming and suffers from poor yields. Volker 

Bohmer’s convergent stepwise synthesis improved on Kâmmerer’s non-convergent 

one by delivering better yields of variably substituted calixarenes in a stepwise 

method. This involves condensations involving the “3+1” [15, 16, 17, 18,] and “2+2” 

principle [19].

OH OH OH OH

OH OH OH OH

Figure 1-9: Bohmer’s convergent stepwise synthesis 

1.5 The Conformations of Parent Calixarenes

The cyclic tetramer is actually amoeboid in character and can exist in several other 

shapes as well as the cone. The variety of conformations, which they can assume, is 

one of the most interesting features of the calixarenes, and is allowed by the rotation 

about the a-bonds of the Ar-CH2-Ar groups. This was first reported by Megson [20] 

and Ott and Zinke [21], but it was not until Cornforth et al [22] that these adumbrated
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versions were advanced upon. Cornforth demonstrated that four discrete forms of 

calixarene can exist, which are referred to as “cone”, “partial- cone”, “1 -2-alternate”, 

“1-3-alternate”.

Figure 1-10: The four principle conformations of calix[4]arenes

Kämmerer et al carried out dynamic 1H NMR studies of p-alkylcalix[4]arenes which 

demonstrated that the aforementioned conformations were readily inter-convertible 

[11, 12]. The cone conformation is adopted by calix[4]arenes with free OH-groups, 

since they are stabilised by intramolecular hydrogen bonds between the hydroxy 

groups. This is confirmed by crystal structures so far reported, including compounds 

containing different phenolic units [23, 24, 25]. Shaping the basket plays a vital role in 

the design of calixarene molecules as enzyme mimics, with host-guest interactions 

depending on complementarity of shape as well as functionality.

All calixarenes are conformationally mobile at room temperature, with degrees of 

mobility varying with degrees of substitution. However, solvent polarity has generally 

a greater influence on rate of conformational inversion of the tetramer than the effect 

of the para-substituent. In non-polar solvents such as chloroform, toluene, benzene, 

bromobenzene and carbon disulfide, the barriers of rotation are greater than in more 

polar solvents (e.g. acetone and acetonitrile). The difference is attributed to the 

differing abilities of calixarenes to form endo-complexes with the solvent [26], and is 

also a result of the disruption of the intramolecular hydrogen bonding, which 

contributes to maintaining the calixarene in the cone conformation.

The effect of hydrogen bonds is more apparent with structures of calix[4]arenes with 

less than 4 endo-hydroxy groups. While the aminophenol calixarene 1 (c) still exists 

in the cone conformation [27], the diphenol 1 (a) and the OH-free compound 1 (b) 

assume the 1,3-alternate conformation [28].

cone partial cone 1,2-alternate 1,3-alternate
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R1 R R
(a) OH OH H H
(b) H H H H
(c) OH H NH2 OH

Cram defined ‘cavitand’ as a synthetic compound containing an ‘enforced cavity’ 

(conformationally mobile baskets) large enough to engulf ions or molecules [29, 30]. 

Calixarene tetramers meet Cram’s criterion of synthetic accessibility, but are not 

quite permanent baskets; they must therefore be frozen into the cone conformation to 

make constant calix’s. The most obvious manner in which to curb mobility and curtail 

inversion through the annulus of the macrocyclic ring is to replace the phenoxy-OH 

moieties with larger or longer functionalities. Mobility or conformational change is 

also dependent to a certain extent on the size of the para-substituent, as rotation can 

also occur this way.

lower rim
inversion 
 ►

through the 
annulus

Figure 1-11 : Mobility through the annulus of the macrocyclic ring

Each of the four isomeric conformations of the calix[4]arenes has characteristic 

resonances in 1H NMR spectroscopy, which allows easy assignment of structure. 

Acétylation of (2) yields the tetra-acetate (4a), which is shown by 1H NMR to be in the

1,3-alternate conformation. However among derivatives of the 

tetrahydroxycalix[4]arenes, the 1,3-alternate conformation seems quite rare, with 

“partial-cone” and “cone” generally more favourably adopted. The tetra-acetate 

derivative of the p-f-butyl calix[4]arene (3) is fixed in the “partial-cone” conformation 

(5a), which has been verified by x-ray crystallography [31]. Méthylation and éthylation
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of (2) and (3), and allylation of (2) produce the corresponding ethers (4b, 4c, 4d, 5b 

and 5c) which exist in the “partial-cone” conformation.

(2): R = H

(3): R = t-butyl
(4): R = H

(5): R = t-butyl

a OCOCH3 

b OCH3 

c OC2H5 

d OCH2CH=CH2

The tetramethyl ethers are surprisingly almost as flexible as calixarenes with four free 

OH groups, with a mixture of conformations generally existing in solution due to the 

lack of intramolecular hydrogen bonding. While (2) is found in the “cone” 

conformation when transformed to the analogous tetrabenzyl ether or tetra tosylate, 

cone conformations are established for (3) when converted to its tetra-allyl ether, 

benzyl ether or trimethyl ether. Consequently, acetylation appears to favour “partial- 

cone” conformations, while benzylation and trimethylsilylation seem to prefer 

products in the “cone” conformation.

The above-mentioned reaction effects allow a contoured design (with relative 

confidence in the outcome) of the cavity prior to its synthesis. The calix[6]arenes and 

calix[8]arenes are however, conformationally more mobile than their tetrameric 

counterparts, even after certain derivatisation reactions.

Regardless of conformational freezing, derivatisation of calixarenes is desirable to 

facilitate the introduction of various types of functional groups, to increase their 

usefulness as potential enzyme mimics. Therefore chemical modification of 

calixarenes permits the synthesis of new host molecules in conjunction with control of 

their conformation and hindrance of conformational inversion.
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Modification of calixarenes derived from phenol can be achieved in two ways

1. Electrophilic substitution in the para position with respect to the phenolic hydroxy 

group (subsequent to de-alkylation of the tert-butyl groups).

2. Introduction of residues at the phenolic hydroxy groups

1.6 Upper Rim Functionalisation

The t-butyl groups can be easily removed by AlCh-catalysed transalkylation in the 

presence of toluene as acceptor [32]. Ipso substitution of t-butyl groups is a possible 

alternative route to upper-rim functionalised calix[4]arenes. Virtually all common 

substitution reactions, which are successfully carried out on phenols, may then be 

applied to calixarenes. The substituents can further undergo reaction, which when 

combined with suitable reactions at the phenolic OH-groups, yield numerous possible 

derivatives of calixarenes.

The transbutylation reaction is an important one considering the large variety of 

calixarenes obtainable by subsequent electrophilic substitution of the p-position. 

Halogénation [33, 34, 35], sulfonation [36, 37], sulfochlorination [38], formylation, 

acylation [39, 40], chlorométhylation [41], aminomethylation [42, 43], nitration [44], 

and coupling with diazonium salts [45, 46]. Further reactions of these residues make 

even more novel calixarenes possible, e.g. haloform reactions of acetyl groups, aryl- 

aryl coupling by the Suzuki reaction, reduction of nitro-, and azo-, or acyl groups, 

further substitution at chlorosulfone and chloromethyl groups, to name just a few.

Claisen rearrangements of allyl ethers and Fries rearrangements have also been 

carried out [32, 47], which can in turn lead to isomérisation and/or ozonolysis of the 

allyl groups [32]. Another alternative to electrophilic substitution by a direct route 

uses the nucleophilic character at the p-position of phenolates. A Mannich type 

reaction occurs when calix[4]arenes are reacted with formaldehyde and various 

amines. Further quaternization of the aminomethylcalix[4]arene followed by 

elimination of the amine moiety, produces a highly reactive p-quinomethide, which 

will react with whatever nucleophile that is added to the reaction mixture.
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Entry R 1 Y Z

A Alkyl Br Li, C 0 2H, CN, Ar

B H S 0 3H N 0 2

C H n o 2 n h 2

D Alkyl COR2 c o 2h

E H CH2NR2 CH2NR22Me+, CH2CN, CH2OMe

F H c h 2c h = c h 2
CH2CHO, CH2CH2Y, CH=CHMe, 

CHO

G H or Alkyl c h 2c i
Me, Et, CH2Ar, CH2PO(OR)2, 

CH2NR23+

H Alkyl CHO c h 2o h ,  c h 2x , c o 2h

I Alkyl I Ar, C^CR2, C 0 2R2, NH2

J H N=NAr n h 2

Figure 1-12: Functionalisation of calixarenes on the “upper rim”
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1.7 Lower Rim Functionalisation

Zinke and Ziegler first reported the synthesis of calixarene esters, with their acetate 

derivative [1]. Since then ester, amide and ketone derivatives have been readily 

obtained by reaction with such reagents as Br-CH2-COOR [48, 49], CI-CH2-CONR2 

[50, 51, 52, 53, 54], and CI-CH2-COR [48, 55] respectively, yielding tetra-alkylated 

calixarenes solely in the “cone” conformation which have been established as 

important ionophores. Using alkyl halides, NaH and DMF or THF/DMF as base and 

solvents respectively, yields alkylated calix[4]arenes invariably fixed in the “cone” 

conformation [56, 57].

Methyl, ethyl, ally and benzyl ethers have been prepared in high yields employing 

this method. The sodium cation appears to play a part as a template, with the 

proximal 1,2-dialkylated products considered as intermediates. Compounds in the

1 ,3-conformation are affected by the use of caesium carbonate in acetonitrile solution 

[58], whereas employing potassium t-butoxide in benzene generates partial cone 

products [56]. Generally the “cone” conformation is favoured over the others by 

factors, which increase the rate of alkylation (substrate, solvent, cation, alkyating 

agent) or decrease the rate of ring inversion (solvent, templating cation).

Direct and selective alkylation of calixarenes at the lower rim, takes advantage of the 

difference in acidity of each phenolic hydroxy group. It has been concluded that the 

first hydroxy group is considerably more acidic than the others, due to the 

stabilisation of its conjugate anion by two intramolecular hydrogen bonds, with the 

second reaction occurring at the opposite (distal) position. A good yield of 

monoalkoxy calixarenes has been obtained by using 1.2 equivalents of a weak base 

such as CsF in DMF, or K2C 03 in acetonitrile with an excess of alkylating agent [59].

Formation of 1,3-dialkylated calix[4]arenes has been achieved through excess of a 

weak base in acetonitrile, which paved the way for the synthesis of very selective 

receptors for alkali metal cations [60, 61, 62]. The direct proximal (1,2) dialkylation of 

calix[4]arenes has been accomplished using sodium hydride as base in DMF with 2.2 

equivalents of alkylating agent [63, 64]. Trialkoxy calix[4]arenes are obtained when 

alkyl halides are reacted with calix[4]arenes in the presence of BaO-Ba(OH)2 [65, 66]
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(a) (c) BaO, Ba(OH)2, DMF (d) NaH, DMF

(b) CsF, DMF (b) K2C03, MeCOMe or MeCN

Figure 1-13: Selective functionalisation of calixarenes on “lower rim”

Selective 1,3-dialkylation of calix[4]arenes in the presence of weak base can be 

explained by the fact that in these conditions only the monoanion of the 

calix[4]arenes and of their monoalkylethers can be formed (see Figure 1-14; a and 

b). When the base removes a proton from the calix[4]arene, the monoanion is 

stabilized as a result of strong intramolecular hydrogen bonds of the adjacent 

hydroxide groups, which are consecutively stabilised by hydrogen bonds with the 

remaining hydroxide moiety.
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The tetraphenolic species of p-t-butylcalix[4]arene in THF show a pKa = 4.11, which 

is similar to the monomethyl ether with a pKa = 3.98, but considerably lower than the 

corresponding di- and trimethyl derivatives (pKa > 12). Removal of a second proton 

by a weak base is generally found to produce a monoanion opposite to that of the 

monoalkylated site, which allows hydrogen bonds on either side of the anion to 

stabilise this intermediate. In the presence of a stronger base however (NaH in 

DMF), di-anions are formed which favour a second alkylation in the proximal position

(1,2) (see Figure 1-14; c and d). In these conditions however, the 1,3-dialkylated 

products appear to react faster than their 1 ,2-isomers, probably due to the lack of 

stabilising hydrogen bonds for the opposite di-anion intermediate (see Figure 1-14c) 

yielding fully alkylated products.

Ri

Figure 1-14: Selective functionalisation of calixarenes on “lower rim” via anion 

formation
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Indirect methods of selectively synthesising monoalkyl- and 1,2-dialkylcalix[4]arenes 

have been accomplished by treating 1,3-dialkyl- and tetraalkylcalix[4]arenes with one 

or two equivalents of iodotrimethylsilane in chloroform respectively. Good yields of 

monoalkylcalix[4]arenes were attained [67], with the proximal 1,2- 

dialkylcalix[4]arenes obtainable by the action of TiBr4 on tetraalkylderivatives [68]. 

Recently a study by Wall has described the synthesis of 1,3-dialkylcalix[4]arenes by 

treating calix[4]arenes with two equivalents of alkylating agent and one equivalent of 

base in acetonitrile. Good yields of these di-alkylated calix[4]arenes have been 

obtained by this method [69].

A Summary o f Substitution Reactions o f Calixarenes [70].

(a, h, i): formation of various ethers/ esters: OH -> OX

(b): transbutylation: t-butyl -> H

(c): oxidation to quinones

(d): hydrolysis of ester groups, reduction of ester/ amide/ nitrile groups: OX -> OY

(e): ipso-substitution (e.g. nitration): t-butyl R

(f): sulfonation

(g): electrophilic substitutions (halogénation, sulfonation, sulfochlorination, 

formylation, acylation, coupling with diazonium salts, chlorométhylation, and 

aminomethylation)

(k): Claisen/ Fries rearrangements

(I): reduction of nitro groups, aryl-aryl coupling, haloform oxidation, transformation of 

allyl groups: R S

(m): nucleophilic substitution of quaternary ammonium groups: R Q

O H >> hydroxy substituent

n >> calix macrocycle (annulus) with 
“n” repeating units

tertiary butyl group
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1.8 Introduction to Chirality

A molecule or an object is chiral if it cannot be superimposed on its mirror image. The 

term chiral was derived from cheir, the Greek for hand by Thompson in 1884. A 

molecule and its non-superimposable mirror image are known as enantiomers 

(enantio Greek for “opposite”), and such molecules are devoid of a centre of 

symmetry and a plane of symmetry. Enantiomers are related to each other as a right 

hand is related to a left hand and therefore chirality occurs as a result of dissymmetry 

or asymmetry. Apart from their reactions with chiral agents such as enzymes, 

enantiomeric molecules differ only in the way in which they interact with plane- 

polarised light and are said to be optically active. One enantiomer (in liquid form or 

solution) may rotate the plane of polarised right to the left (laevo or (-) or I), while the 

other may rotate the plane to the right (dextro or (+) or d). A racemic mixture consists 

of equal measures of each enantiomer and therefore shows no net rotation of 

polarised light.

If in a molecule a carbon atom is bonded to four different atoms or groups of atoms 

(R1t R2, R3, R4), the spatial orientation around the central carbon (or chiral carbon) 

can be arranged in two ways (see Figure 1-15). The two molecules shown have 

opposite configurations around the chiral carbon and are therefore non-identical 

mirror images, or enantiomers (also known as optical isomers).

carbon mirror

Figure 1-15: The chiral carbon and its two mirror-image forms.

A more general name for molecules that differ in their spatial orientation is 

stereoisomers. If a molecule possesses more than one chiral centre then the 

maximum number of stereoisomers, which are possible in a molecule containing n 

chiral carbon atoms, is 2n. These isomers may be enantiomers or stereoisomers that 

are not enantiomers, otherwise known as diastereoisomers. Diastereoisomers are 

thus defined as stereoisomers that do not relate to each other as mirror images and 

this includes isomerism owing to the presence of double bonds, e.g. c/'s- and trans-

20



isomers. As a result all enantiomers are stereoisomers, but not all stereoisomers are 

enantiomers.

OH OH OH

HOOC
COOH

HOOC
.COOH

HOOC
COOH

OH OH OH

S,R

(i)

R, S

(Ü)

Meso

(iii)

Figure 1-16: Stereoisomers of tartaric acid; (i) and (ii) are enantiomers, whereas (iii) 

is a meso compound (a diastereomer of (i) an (ii)).

1.8.1 Labelling of chiral molecules

Enantiomers may be labelled as (+)/(-), d/I, D/L or R/S. The first two terms refer to the 

direction to which the enantiomer rotates plane-polarised light, (+) or d signifies 

rotation to the right, with (-) or I denoting rotation to the left. The D/L and R/S labels 

refer to the absolute configuration around the chiral centre. The D/L notation provides 

a parallel between the configuration of the chiral molecule and the configuration of 

glyceraldehydes, and is mainly reserved for amino acids and carbohydrates. A 

monosaccharide, which has it’s highest numbered chiral carbon (penultimate carbon 

atom) with the same configuration as D-glyceraldehyde is assigned D, while one, 

which has the same configuration as L-glyceraldehyde is labelled L.

The R and S system, devised by Cahn, Ingold and Prelog, offers an unambiguous 

method of defining absolute configuration, using a set of rules, “sequence rules” 

which determine the order of priority of groups surrounding a chiral carbon. These 

rules include

1 . higher atomic number is given priority.

2 . higher atomic mass is given priority.

3. cis is prior to trans.

4. like pairs [(R, R) or (S, S)] are prior to unlike pairs [(R, S) or (S, R)].

5. lone pair electrons are regarded as an atom with atomic number zero.
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The groups around the chiral carbon are then ordered in a sequence 1 >2 >3 >4 

according to the list of rules above, and are then viewed in such a manner that the 

group designated 4 (that is of lowest priority) is pointing backwards, or away from the 

viewer. The remaining groups are then studied. When the group priorities follow a 

clockwise direction, the chiral centre is labelled R, and when the group priorities 

follow an anti-clockwise direction, the chiral centre is labelled S.

Figure 1-17: The R and S nomenclature system.

1.9 Chiral Calixarenes

1.9.1 Asymmetric Calix[4]arenes by O-Alkylation with Chiral Residues

The introduction of chiral substituents can convert calixarenes into chiral derivatives. 

This can be accomplished at either the phenolic hydroxy group or the para position, 

in calixarenes derived from phenols. Providing enantiomerically pure reagents are 

used and that derivatisation proceeds without racémisation, pure enantiomeric 

calixarene products can be obtained in good yield [71, 72]. The chirality of these 

compounds is however, due solely to the chirality of the individual substituents. The 

non-planar molecular structure of calixarenes can nonetheless be taken advantage 

of, resulting in inherently chiral calix[4]arenes, which are based on the absence of a 

plane of symmetry, or an inversion centre in the molecule and not merely a chiral 

subunit [73].

View View
configuration configuration
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1.9.2 Asymmetric Calixarenes - Inherent Chirality

Calix[4]arene derivatives with three [19] or four [16] (sequentially AABC {where 

R1=R2 or R3=R4} or ABCD respectively) different para-substituents were among the 

first inherently chiral calix[4]arenes synthesised. This was achieved by (3+1) or (2+2) 

condensation of appropriate trimers with bisbromomethylated phenols, or apposite 

dimers with bisbromomethylated dimers respectively (see below). Compounds with 

functional groups such as methyl, i-butyl, n-alkyl, cyclohexyl, phenyl, COOR, 

CH2COOR and Cl have been synthesised in this fashion, with the final cyclisation 

step yielding 25-35% of product [19,16, 74].

OH OH OH OH

Figure 1-18: “3+1” and “2+2” formation of inherently chiral calix[4]arenes

However in order to prevent racémisation (or ring inversion in the case of 

calixarenes), sufficiently large groups must be introduced at the phenol hydroxy sites. 

Suitable bridges between the para-positions may also suppress racémisation by ring 

inversion. This was illustrated by the bridged calixarene below (6), which due to the 

disparity of the residues in the para-positions (methyl, t-butyl) is asymmetric. In the 

presence of Pirkle’s reagent, the splitting of 1H-NMR signals establishes the 

existence of stable enantiomers; with single crystal x-ray analysis indicating each 

enantiomer exists in the cone conformation. Even with the likelihood of flexibility in 

solution, and therefore the possibility that the molecule could undergo changes in 

conformation from cone partial cone <-» 1 ,2-alternate, the fixed molecular skeleton 

prohibits conversion into the reverse cone-conformation [75].
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(6)

1.9.3 Asymmetric Calix[4]arenes with a Single mete-substituted Phenolic 

Unit

An idea first realized by Vicens et al. was that the introduction of a single meta- 

substituted phenolic unit would result in an asymmetric calix[4]arene (7) [76, 77]. 

These compounds have been prepared by “3+1” fragment condensation reactions.

R1 R2 R3 R4

a Me Me Me Me

b iPr iPr iPr ¡Pr

c iPr Phe iPr iPr

d tBu tBu tBu iPr

(7)

The tetrapropyl ether was prepared in the cone conformation from compound d, and 

resolved by chiral chromatographic stationary phases [78, 79]. The tetrapropyl ether 

chains appended at the lower rim were large enough to curtail inversion of the 

macrocycle through the annulus, which in turn prevented racemisation of the

compound, thus yielding the first distinct enantiomer of an inherently chiral

calixarene. Further results were achieved with a mete-hydroxyl group incorporated in 

the 2,6-position, i.e. with a single resorcinol unit [80]. Calix[4]arenes with meta- 

substituted phenolic units were synthesised by Gutsche from the corresponding 

monoquinone derivatives, e.g.:
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R = H, R1 = S-C6H4-CH3

R = Ac, R1 = O-Ac

Figure 1-19: Asymmetric caiixarenes with meta-substituted phenolic units

1.9.4 Asymmetric Calix[4]arenes by O-Alkylation with Achiral Residues

A similar asymmetric configuration, AABC or ABCD, can be acquired by adding three 

of four different substituents to the phenolic oxygens, via alkylation or acylation, 

which is advantageous from the point of view that chirality is achieved concurrently 

with a fixed conformation, rendering racémisation impossible [81, 82, 83].

O O
i i

Y Y

(8) (9) (10)

At least two different pendent groups are necessary for an all syn-arrangement of the 

O-alkyl groups (8), but this is not essentially the case if some of these groups are in 

the anti position. In the latter situation numerous possibilities exist, including 

compounds (9) and (10) with one kind of O-alkyl group, which are asymmetric and 

dissymmetric respectively ((10) having effectively C2 symmetry). Shinkai et at. [81, 

82] and Pappalardo et al. [84] have produced such examples of caiixarenes, with 

some resolved by chromatographic techniques [85, 86]. Since the hydroxy group in 

the above compounds can still pass through the annulus, an incompletely O- 

alkylated calix[4]arene can, in principle, assume different conformations. For example 

(8) can exist in cone and partial cone conformations, with partial cone and 1,2- 

alternate possibilities for (9), while (10) could exist in all conformations except cone.

X = S, CHR, SCH2
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Therefore it has been suggested that the terms cone, partial cone, 1,2-alternate and

1,3-alternate, should be reserved for descriptions of tetra-ether compounds only, and 

also for conformational assignments, while syn and anti or the superscripts a  and (3 

should denote the mutual arrangement of the O-alkyl groups [73].

Condensation of calix[4]arenes with two different p-substituted phenolic units (“2+2 “ 

for AABB, “3+1 “ for ABAB) generate products which, when in the cone conformation 

possess C s and C2v symmetry. 1,3-Diethers are readily prepared from calix[4]arenes 

[56], and can also be obtained in high yields from calixarenes of type AABB, 

illustrating another variety of chiral calixarenes [87]. The chirality of the molecule is 

due to its asymmetry, since the plane of the calix substructure is not coincidental with 

the plane of symmetry of the O-alkyl groups. The aforementioned chirality (i.e. 

symmetry issues) also holds true in the case of 1,2-diethers of calix[4]arenes of type 

ABAB. 1,3-di-O-alkylation is however, far more selective than 1,2- di-O-alkylation 

rendering the latter synthesis rather difficult. If even slight amounts of the two 

possible mono, 1,3-di or triether products were formed, it would make for quite a 

complex reaction mixture.

Mild oxidation (Me3PhN+Br37NaHC03 in CH2CI2) can convert t-butyl calix[4]arenes 

into spirodienones, which are yet again another example of inherently chiral 

calix[4]arenes [88, 89, 90]. The structure of the monospirodienone (11) was 

confirmed by x-ray crystal analysis, with the 1H-NMR spectrum showing two signals 

for the different OH groups and four different AX systems for the methylene bridges.

t-Bu

(11)

The chirality of this compound is due to the asymmetrically substituted spirocarbon 

atom, implying that this calix[4]arene is not inherently chiral. It is however similar to
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calix[4]arenes having three different phenolic units in the sequence AABC (two 

hydroxyl groups in proximal positions, one carbonyl group and an ether group).

1.10 Host-Guest Chemistry and Molecular Recognition

“Evolution has produced chemical compounds exquisitely designed to accomplish 

the most complicated and delicate of tasks. Many organic chemists viewing crystal 

structures of enzyme systems or nucleic acids and knowing the marvels of specificity 

of the immune systems must dream of designing and synthesising simpler organic 

compounds that imitate working features of these naturally occurring compounds.” -  

D.J. Cram, Nobel Lecture [91].

Supramolecular chemistry was defined by Lehn as “chemistry beyond the molecule” 

or “the designed chemistry of the intermolecular bond”. Central to the comprehension 

of supramolecular chemistry is the phenomenon of molecular recognition, or how 

certain molecules and ions select to associate with specific partners in particular 

ways. One of the most fundamental processes in biology, in addition to chemistry, is 

molecular recognition between molecules, and this makes the principle important. 

One of the fundamental components of systems that exhibit molecular recognition is 

non-covalent interactions [92]. Such interactions involve a subtle interplay of entropic 

and enthalpic effects that are difficult to separate.

Living processes depend essentially on non-covalent interactions, which are 

responsible for many of the structural features of biological molecules (for example 

their assembly into whole organisms) and for the chemical transformations that allow 

organisms to function and replicate. Extremely diverse ranges of systems whose 

actions depend on the recognition phenomenon include enzymes, receptors, 

antibodies, membranes, cells, carriers and channels [93]. Macrocyclic architectures 

that are purposefully synthesised can provide convergent, preorganised recognition 

sites, which can cooperatively act on an enclosed substrate, and can therefore, to a 

certain extent, mimic the natural recognition processes occurring at the binding sites 

of enzymes and biological receptors. The study of these recognition processes can 

help to gain an insight into, or improve in the understanding of the mechanisms of 

molecular recognition phenomena. Among these phenomena is chiral recognition,
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simple in concept but often difficult in practice, whereby a chiral host molecule 

selectively binds one enantiomer of a racemic mixture.

1.11 Historical Aspects of Host - Guest Chemistry and Molecular 

Recognition

The recognition and complexation of guest molecules by biotic receptors has been 

studied since about 1900. It began essentially in 1894 when E. H. Fischer postulated 

a stereospecific interaction between a sugar and a fermenting agent, thereby 

formulating the “lock and key” notion (see Figure 1-20) for the interaction of an 

enzyme and a substrate [94], (for which he received the Nobel Prize in 1902). This 

concept maintains that molecular recognition images the complementarity of a lock 

and key- the lock being the molecular receptor and the key being the substrate that is 

recognized to give a defined receptor-substrate complex.

Enzyme Substrate Enzyme- Substrate-Complex Enzyme Product 

Figure 1 -20: illustration of lock and key” theory of Emil Fischer.

The model of molecular interactions between an active drug and a protein receptor 

was developed by J.N. Langley in 1906 [95], while early experiments conducted in 

the 1930’s of associations in solution led to the use of the term “Ubermolekeln” 

(supermolecules). In essence however, the field only rapidly expanded around the 

1960’s, from studies of molecular recognition of alkali metal ions using natural 

antibiotics and synthetic macro(poly)cyclic polyethers. Roots however can be traced 

back to when Paul Ehrlich postulated cross-reactions between molecules competing 

for the same binding site at the same chemoreceptor, as a result of investigations 

based on immunized animals and stained living tissue [96]. In a paper in 1900, he 

reasoned that toxins possessed two different combining groups, a heptaophore that
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bound the toxin to the cell and a toxophore that was responsible for the toxic action 

[97].

A significant contribution was made in 1957 in Zurich by the group of Waser et al., in 

working out the mechanisms of the activity of T-curarin and related compounds at the 

neuronal fibre terminal of the muscle [98]. Buchi postulated a receptor model for the 

binding of local anaesthetics, and proposed complementary molecular structures of 

drugs fitting the receptors [99]. His model of the receptor geometry was confirmed by 

the pharmacological activity profile of compounds, and structure-activity relationships 

were explored by chemical tailoring of such compounds and studying the 

pharmacokinetic properties of various derivatives. These early investigations of 

molecular recognition led scientists to investigate the basic properties of the 

molecular processes involved in nature.

Although Cram’s pursuit of the imitation of natural systems ca. 1959 did not lead to 

the observation of intercalated structures [100, 101], they did recognise that central 

to simulation of enzymes by relatively simple organic compounds would be the 

investigations of highly structured complexes. Inclusion compounds and the whole 

area of “host-guest” chemistry was initiated in 1967, when Pedersen published 

papers which reported the formation of highly structured complexes when alkali metal 

ions bind crown ethers [102, 103]. At approximately the same time (1969), Lehn, 

Sauvage and Dietrich published papers on the design, synthesis and binding 

properties of the cryptands, representing further developments in complexation 

chemistry [104, 105]. In 1977 the terms host, guest, complex and their binding 

forces were defined by Cram [106]:

“Complexes are composed of two or more molecules or ions which are held together 

in unique structural relationships by electrostatic forces other than those of full 

covalent bonds.”

1.11.1 Definitions used in Host-Guest Chemistry

The host component is defined as an “organic molecule or ion where binding sites 

converge in the complex, whereas the guest component is one whose binding sites 

diverge in the complex”. Hosts are synthetic counterparts of the receptor sites of 

biological chemistry and guests the counterparts of substrates, inhibitors and
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cofactors. Simple guests are abundant, and small in comparison to hosts, but hosts 

are usually bigger and in order to complex existing guests, must often be designed 

and synthesised. Guests may be organic molecules or ions, metals or metal ions or 

metal-ligand assemblies. Hosts are open chain, cyclic, bicyclic or polycyclic 

compounds, and frequently contain repeating units.

A highly structured molecular complex is comprised of at least one host and one 

guest component. A host-guest association involves a complementary 

stereoelectronic arrangement of binding sites in both the host and guest. The 

interactions between molecules depend on forces that are much weaker than those 

which hold molecules together [107]. The covalent bonds broken and made during 

syntheses are typically of the order ca. 350 KJ mol'1 (for a C-C bond), which are in 

stark contrast to the forces employed in associations in supramolecular chemistry, 

which range from 50 KJ mol'1 downward. Multiple binding sites are therefore usually 

required to produce a highly structured complex, since the forces at any one binding 

site are (in comparison to covalent bonds) small.

It can often be useful to classify complexes in relation to the extent to which a host 

envelops a guest in a complex. In crystals, both the host and guest compounds are 

completely enveloped; therefore terms borrowed from crystallography would be 

inaccurate as descriptions. Cram et al have suggested the term “perching complex" 

to typify complexes in which well under half the guest surface contacts the host [108]. 

A structure in which over half of the guest surface contacts the host is termed a 

“nesting complex”, while the term “capsular complex" is applied to structures in which 

the guest surface is enclosed sufficiently by the host, to prevent solvent or external 

ligand molecules from contacting the quest.

Molecular complexes are usually held together by forces such as hydrogen bonding, 

ion pairing, n-n interactions, metal to ligand binding, van der Waals attractive forces, 

solvent reorganising, and by partially made and broken covalent bonds (transition 

states). The electron pair donor-acceptor interactions (see Figure 1-21) between 

basic ligands and metal ions are amongst the strongest of the aforementioned 

associations. For example, the Zn(porphyrin)-pyridine bond described by Walker and 

Benson, may be estimated at 42 KJ mol'1 [109].
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M L M = metal

L = ligand atom (O, N, S, P etc.)

Figure 1-21: electron pair donor-acceptor interactions of ligands and metals

Hydrogen bonds and electrostatic interactions (which are usually mediated through 

the former) are also relatively strong, up to 30 KJ mol'1 [107].

Figure 1-22: hydrogen-bonding interactions between donor and acceptor atoms.

These interactions, that of ligand-to-metal and hydrogen bonding, are of interest not 

only because of their strength, but also because their specificity and directionality 

allows for significant control over their exploitation. Charge-dipole, dipole-dipole, and 

dipole-induced dipole interactions may be weak individually, but they can yield strong 

and specific bonding when operating collectively between extended rigid units such 

as n-n interactions between aromatic systems [110 ].

1.12 Principle of Complementarity

For molecules to associate in a pre-programmed fashion, it is necessary to establish 

specific complementarity between the different components. Therefore 

conformational control is a central issue in the design of supramolecular systems. 

Using well-defined three-dimensional structures, with the recognition sites arranged 

can help to achieve this complementarity. Employment of such rigid architectures can 

also limit the possibilities of intramolecular quenching of binding sites, and can 

minimize the loss of entropy on complex formation.

In some cases it is desirable to retain a degree of flexibility, in order to obtain a 

perfect “fit” of components, by relaxation in each other’s presence. Since however 

flexibility is extremely difficult to avoid, it is rarely an obstacle in receptor design. 

Elemental compositions, component structures, solubilities and examination of 

Corey-Pauling-Koltun (CPK) molecular models of possible complexes, allowed

D- H D = H-bond donor atom

A = H-bond acceptor
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general structures of the first host-guest complexes to be estimated. Cram and co­

workers used CPK molecular models to investigate potential complexes [111] and 

subsequently synthesised hosts to establish if they possessed the desired guest- 

binding properties.

While using molecular models to anticipate host structures the “principle of 

complementarity” was kept in mind: “to complex, hosts must have binding sites which 

cooperatively contact and attract binding sites of guests without generating non­

bonded repulsions” [112]. By 1986 the crystal structures of over 50 complexes and 

another 25 hosts had been determined by Trueblood, et al [113]. These crystal 

structures were examined to compare the theoretical models with the host-guest 

structures observed experimentally, and good similarities were found. Studies of the 

crown-alkali metal salt complexes by Truter [114] and Dunitz [115], and work done by 

Weiss [116] on cryptand-alkali metal complexes also provided firm evidence of 

complex structures in crystalline state.

The design of macrocycles capable of molecular recognition is invariably influenced 

by the proposed choice of solvent. Synthetic receptors are generally intended to 

operate either in water (for genuinely bio mimetic recognition) or in non-polar organic 

media such as chloroform (which is held to mimic the conditions in biological 

membranes).

From spectral results on both the hosts and their metal-salt complexes by Dale [117] 

and Chan [118], structures in solution could subsequently be compared to those in 

solid state.

1.13 The Role of Solvent

While forces such as van der Waals interactions, hydrogen bonding and metal to 

ligand interactions are among the first to be considered in molecular recognition, the 

factor of solvent must also be taken into account. For simple processes the first of 

the two equations below is usually used (1 ), however the second is probably a more 

accurate description, with the explicit mention of solvent (see (2 )).
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A + B —» A B Equation 1-1

A • solvent + B • solvent -> A -B  + solvent • solvent Equation 1 -2

In the case of a non-polar organic solvent, generalised intermolecular attractions are 

unlikely to be effective in driving complex formation, because the energy gained on 

forming ‘A.B’ and ‘solvent.solvent’ is lost when A and B are desolvated. It is usually 

necessary in complex formation for A and B to contain particular features, which 

complement each other without greatly promoting the affinity of either for solvent 

molecules. In non-polar media ligand-metal and hydrogen bonding interactions are 

promoted, while n-n and cation-7i interactions can also be very effective. However 

engineering the poor solvation of A and B may also be taken advantage of, in 

particular if the solvent molecules are large or awkwardly shaped [119,120].

A supplementary force for complex formation is achieved when the solvent molecules 

have a high affinity for each other. When the self-association of solvent molecules is 

a more favourable interaction than the solvent with A and B, equation 1-2 will be 

driven to the right. In solvents capable of hydrogen bonding (among which the most 

important is water) such solvophobic effects are particularly important. In water, the 

dominant interaction for molecular association is often hydrophobic binding, while 

intermolecular hydrogen bonding is relatively ineffective due to the solvation of 

recognition sites.

1.14 The physical chemistry of molecular recognition

The laws that govern all physical chemical processes are also applicable to 

molecular recognition. AG represents the Gibbs free energy, a term which is 

equivalent to the binding energy and which is composed of two opposing terms, AH, 

which is the enthalpy component and AS the entropy component.

A G  =  A H  — T A S  Equation 1-3

(where T is the absolute temperature)
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When AG is negative, there exists a thermodynamically spontaneous process. This 

can happen if

1. AH and AS are both negative and the absolute magnitude of AH is greater 

than that of TAS, or

2. if AH is negative and AS is positive

The hydrophobic effect, which was mentioned earlier, derives from a favourable 

entropic effect when non-polar moieties are de-solvated [121]. The change in entropy 

which results on complex formation or molecular assembly is therefore another factor 

to be considered. Entropy will usually work against the formation of organized 

assemblies, as rotational and translational freedom is commonly lost when molecules 

associate. However ensuring that the loss in internal degrees of freedom is 

maintained as small as possible may minimize the damage. For this reason the use 

of rigid architectures, with the recognition moieties being held in correct positions for 

binding (preorganised) is gainful, with the intention of as little loss in freedom as 

possible when complexation takes place.

Strong or tight binding, which can be driven by a large decrease in enthalpy, 

generally equates with components that cannot move in relation to each other. This 

situation is of course less entropically favoured than a weak association where there 

is greater freedom within the complex, but it should be noted that entropic factors 

tend to moderate the effect of enthalpic forces [122]. The process of binding requires 

that the drug and receptor molecules have a complementarity of shape and charge, 

which leads to an overall negative interaction energy (AG<0). The relation between 

the free energy of dissociation (free energy at constant pressure of Gibbs free 

energy) to an equilibrium constant K, governs bimolecular complex formation.

AG =  - R T  In K  Equation 1-4

(Where R is the gas constant and T is the absolute temperature)

Apart from making a significant contribution to the binding energy, electrostatic 

effects are also involved in the orientation of molecules and the recognition
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processes that lead to binding. With reference to host-guest reactions, Spichiger- 

Keller examined the variations between thermodynamics, electrostatic interactions 

and solvent [123] and proposed that fast kinetics are required in order to apply host- 

guest chemistry to sensor technology.

The thermodynamic properties of a large variety of ionophores was studied and a 

positive AS at AH=0 was found, which implies an entropy stabilised association 

mechanism where the predominant conformer of the free ionophore in pure solvent is 

less stabilised than that of the complex, which means the association is entropically 

favoured [124], The polarity and hydrogen donicity of the solvent exert a strong 

influence on the preformation of the ionophore, and therefore the free energy of the 

interaction.
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1.15 Types of Hosts

Figure 1-23: from left to right, top to bottom: Crown, Cryptand, Spherand, Spherand, 

Hemispherand, Cryptaspherand, Cyclodextrin, Calixarene, Resorcarene, 3 

Cyclophanes, Fullerene-C6o, Circular DNA (A, C, T = Adenine, Cytosine and Thymine).
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Crown ethers and cryptands are hosts with polyethyleneoxy units, with the latter 

making a bridge between the nitrogen bridgeheads of bi- or polycyclic hosts. Modified 

crowns or cryptands are terms used when the crown or cryptand structure dominates 

with other units being substituted for the CH2CH2, CH2OH, N(CH3), or 

CH2OCH2CH2OCH2 groups. Spherands are defined as hosts conformationally 

organised prior to complexation, and therefore must contain more rigid components 

than those of crowns or cryptands. Lehn’s earliest spherand (pictured above) is 

aliphatic in nature, and differs dramatically from the spherand designed and prepared 

by Cram, who took a different approach to this type of encapsulating compound. 

Hemispherands are composed of mobile and rigid parts, with the latter part 

determining the conformation, while podand is the name given to the family of acyclic 

hosts. While all of the above-mentioned hosts are preorganised for binding, not all of 

them are conformationally organised (have the correct contour or shape) prior to 

complexation.

Other types of macrocycles that have been used as host molecules include those 

pictured previously. Cyclodextrins (CD’s), are macrocyclic oligosaccharides, 

produced by the enzymatic catabolism of starch consisting of 6(a), 7(/?) or 8{y) a-D- 

glucopyranose units connected by 1,4-glycosidic bonds. It is known from crystal 

structure and spectroscopic analyses that CD’s exist in an approximately round 

conical shape (see Figure 1-23), in solution as well as in the solid state [125]. They 

are inherently chiral and form inclusion complexes with a variety of organic 

compounds in aqueous solution, accommodating a guest molecule in their central 

cavity [126, 127, 128]. Calixarenes and resorcarenes are macrocycles like crown 

ethers and cyclodextrins, whose conformational isomers offer a great number of 

unique cavities, all of different size and shape. They are very similar in structure to 

the spherands, implying that these condensation products should be good hosts for 

complexation. Cyclophanes, or bridged aromatic compounds have also been 

employed as hosts, which form both stacked-type and inclusion complexes. In 

contrast to the previously mentioned hosts, the fullerene series could act only as 

capsular hosts. Though large in comparison to the rings so far referred to, the DNA 

macrocycle pictured in Figure 1-23, has been found to bind complementary linear 

strands by simultaneous Watson-Crick and Hoogsteen base pairing.

37



The discovery of recognition phenomena, which have involved most of the 

aforementioned host categories, has permitted an understanding of the properties of 

more complex natural products. This has involved investigation of the occurrence of 

these general properties amongst the natural ionophore macrocycles. Detailed 

analysis therefore of the orientation of substituents attached to the macrocycle and 

also control of this orientation has led to general concepts concerning the properties 

required for a biological channel. Among these general concepts is that of ion 

transport capability, lonophores can be characterised as receptors that form stable 

complexes with charged species (e.g. Na+, K+ and Ca2+), thereby allowing transport 

of these ions across lipophilic phases, in particular membranes. There are several 

classes of natural ionophores:

Cyclodepsipeptides formed from alternating a-amino acids and a-hydroxy

acids

• Cyclopeptides formed solely from a-amino acids

• Cyclodepsides which consist only of a-hydroxy acids

Cyclodepsipeptides are macrocycles characterised by having lipid side chains and 

polar groups in the chain (amide, ester, ether). This class of compounds are cyclic 

antibiotics including the archetypal natural ionophore Valinomycin and also 

Beauvericin, Enniatin A and Enniatin B. Cyclopeptides are another class of 

macrocyclic compounds, very commonly met in biological systems. In comparison to 

cyclodepsipeptides, relatively few natural cyclopeptides are complexing agents for 

alkali and alkaline earth metal cations. However, synthetic cyclopeptides have been 

prepared and have been found to complex a range of alkali, alkaline earth and even 

some transition metal ions. Another class of natural compounds, unlike those 

mentioned above, contain only ester type links (lactone) together with ether groups 

but no peptide bonds. The nactins are 32-membered cyclic tetralactones, which 

belong to this family of molecules, and have been found to complex metal ions and 

the ammonium cation. A series of macrotetrolides of structure related to that of the 

nactins has been synthesised. They exhibit ionophoric properties, and some of them 

do possess ion transport abilities, though less important than those for crown ethers.
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(a)

(b)

Figure 1-24: (a) Structure of natural hC ionophore Valinomycin, (b) energy minimised 

structure of valinomycin, using Chem3D Pro software -version 6.0, showing partial 

charge surface in grey squared area.

1.16 Host-Guest Complexes

One of the first complexes that proved of practical interest was a complex between 

[18]crown-6 and acetonitrile. When [18]crown-6, or partially purified [18]crown-6 is 

stirred with acetonitrile, it forms a colourless complex, which has been used for final 

purification of the crown [129]. The complex was first reported in 1974 but the crystal 

structure was not solved until 1988 (Figure 1-25) [130].
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Figure 1-25: Crystal structure of the [18]crown-6-acetonitrile complex.

Crystal structures of Pedersen’s [18]crown-6 (12a) and Lehn’s [2.2.2]cryptand (13a) 

show that they do not contain cavities or convergently arranged binding sites in their 

uncomplexed states. The free macrocycles fill their internal void by turning two of 

their methylene groups inward. However indications that the act of complexation 

must be accompanied by host reorganisation and desolvation are evident by 

comparing the energy minimised (Chem3D Pro -version 6.0) structures of the 

[18]crown-6 host (12b) with that of its K+complex (13b).

(12a) (13a)
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The complexes (13) and (16) are good examples of what are termed by Cram et al, 

as “nesting complexes” with the guest totally engulfed by the host cavity [108]. A 

different type of complex is called a “perching-complex”, thus designated since the 

guest component is too large to fit into the host and must perch on rather than be 

encapsulated by the host [108]. An example of this is the complex (14), in which the 

acidic hydrogen’s of the méthylammonium guest ion are hydrogen bonded to three 

alternate oxygen’s of the [18]crown-6 host in a tripod arrangement. The nitrogen 

atom and bonded methyl group project above the plane of the host, where it appears 

to “perch”.

(14)

Apart from complex formation involving metal ions, crown ethers have been shown to 

associate with a variety of other guests molecules, both charged and uncharged. 

Typical guests include ammonium salts, the guanidium ion, diazonium salts, water, 

alcohols, amines, molecular halogens, substituted hydrazines, p-toluene sulfonic 

acid, phenols, thiols and nitriles.

The aim of cryptand synthesis has generally been the elaboration of a ligand 

displaying good complexation properties towards a specific cation. The first cryptand

[2.2.2] (15) was designed to complex the potassium ion, which it did successfully, 

see energy minimised (Chem3D Pro -version 6.0) K+complex (16b) [131].

(15a) (16a)
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(15b) (16b)

The [1.1.1] cryptand (17) possesses excellent acid-base and proton transfer 

properties. This bicycle strongly binds one or two protons as shown by structures 

(18) -  (22). The presence of a cryptate (cryptand complex) type structure is indicated 

both by NMR spectral analysis and by the high resistance of the complex to 

deprotonation. If (18) is heated at 60°C in 5M KOH for 80 hours it only partially yields 

the monoprotonated form (19). Even the reaction of sodium in liquid ammonia on (18) 

was found to give rise to only a very small amount of (19) [132].

(18) (19)

(20) (21) (22)

Crystallographic studies of the compounds [1.1.1], [H \ 1.1.1] and [2H+, 1.1.1] have 

shown that the protons are located inside the cavity as in (18) and (19) [133]. Other 

cations, which the various cryptand type hosts bind, include, L i\ N a \ Ca2+, Mg2\  

Zn2+, A g \ T l\ R b\ C s\ heavy metals, lanthanides, actinides and the ammonium ion.

A more elaborate type of encapsulating structure is illustrated by the spherands, 

which defines ligands with an enforced spherical cavity. Spherand (23) was designed 

to be complementary to Li+ and Na+ ions. The syntheses of (23) - (25) and their
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crystal structures are reported [134]. (23) contains a cavity lined with 24 electrons, 

which are shielded from solvation by 6 methyl and 6 aryl groups. The crystal 

structures (26) and (27) are almost identical, and render compound (23) the first 

ligand system that was completely organised for complexation during synthesis, 

rather than during complexation.

(24) (23) (25)

ÇHj

(23)
M olecular m odel of host 

( s p h e ra n d )

L i Cl

(24)

M olecular model of com plex 
( lith io sp h e riu m  ch lo rid e )

L iC I

C ry s ta l stru cture  of host 

( sno w flake )

C r y s t a l structure of complex
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In general, free energies of lipophilic hosts (H) towards guest picrate salts can be 

estimated when guest salts (G picrate) are partitioned between CDCI3 and D20  at 

25°C in the absence and presence of host (H); thereby allowing Ka [mol'1] and -AG° 

values [kJ mol'1] to be calculated:

H  + G • picrate H • G • picrate

-AG ° = RT\nKa

Free energies of host (23) towards guest picrate salts of L i\ Na+, K \ R b\ Cs+, NH4\  

CH3NH3+, t-BuNH3+, were estimated when guest salts were partitioned between 

CDCI3 and D20  at 25°C in the absence and presence of host (23). While spherand 

(23) binds Li-picrate (>23 kcal mol'1) and Na-picrate (19.3 kcal mol'1), it totally rejects 

the other standard ions, as well as a variety of di- and trivalent ions [112 ].

Podand (28), the open-chain counterpart of spherand (23) binds Li-picrate and Na- 

picrate with -AG° <6 kcal mol'1 [135]. The only constitutional difference between (23) 

and (28), is the two hydrogen atoms at each end of the chain in (28) in place of one 

Ar-Ar bond in (23). The conformational disparity and state of solvation however is 

enormous. The ideally arranged single conformation of the spherand for binding Li 

and Na, contrasts greatly with the flexible chain of the podand, which can exist in 

principle in thousands of conformations.

c h 3 c h 3 c h 3 c h 3 c h 3 c h 3

(28)

The variation in binding powers of spherand (23) and podand (28) with L f  is 17 kcal 

mol'1, which corresponds to a differentiation of a factor of >1012 in Ka. Similar values
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concerning sodium binding yield a -AG° difference of >6 kcal mol'1, corresponding to 

a difference in Ka of a factor >1010. These dramatic variations in binding power led 

Cram and co-workers to conclude that “preorganisation is a central determinant in 

binding power”. The principle of preorganisation states that the more highly hosts and 

guests are organised for binding and low solvation prior to complexation, the more 

stable will be their complexes. This preorganisational feature is the reason why 

spherand (23) is a more powerful binder with 6 binding sites than cryptand (29) or 

hemispherand (30) with 7 binding sites, or even the augmented crown (31) with 8. 

The oxygens in spherand (23) have no choice but to be arranged around an enforced 

spherical cavity, which is complementary to Li+ and Na+ ions.

(29) (30) (31)

Cyclophanes or bridged aromatic compounds first commanded consideration in the 

1950’s with interest in small cyclophanes and their respective properties. In 1955 

Stetter and Roos reported a number of larger cyclophanes, which possessed the 

possibility of the formation of inclusion compounds with organic guests, based on 

their strong interactions with solvent molecules in the crystalline state [136].

(32) (33)

Host (32) is soluble in water in acidic solutions of pH<2, by multiple protonation. An 

examination of host guest interactions can therefore be carried out in aqueous media 

at this low pH. When the fluorescence spectrum of guest (34) is examined in the 

presence and absence of the host a marked difference can be seen. Not only is there 

an intensity increase in the spectrum of this guest; 8-anilino-1-naphthalenesulfonate,
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but there is also a blue shift. Since such a fluorescence shift of guest (34) is quite 

common when bound to a protein or biomembrane, the above mentioned effects 

would indicate that this guest is transferred into a nonpolar environment in the 

presence of (32), namely the cavity of the cyclophane.

h3c  c h 3

(34) (35) (36)

When guest (35), 2,7-dihydroxynaphthalene is observed by 1H-NMR spectroscopy in 

the absence and presence of host (32), marked upfield shifts of the guest signals 

were observed (D20-DCI solution, pD 1.2). Such large upfield shifts in 1H-NMR 

spectra can be ascribed to a strong anisotropic effect due to the ring currents of the 

aromatic rings of the host (32) (see Figure 1-26).

Figure 1-26: 1H-NMR spectrum of guest (35) (upper spectrum) and 1H-NMR 

spectrum of guest (35) in the presence of host (32).

In the presence of the acyclic reference host (33) under the same conditions, 

negligible changes were observed in the fluorescence and 1H-NMR spectra of the 

guests. This result strongly supports the inclusion of the guests in the hydrophobic 

cavity of host A.rthf in aqueous solutions. The crystal structure of host (32) with 

durene (36) was isolated, which shows clearly that the guest is indeed included in the 

cavity of this host cyclophane.
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Figure 1-27: Crystal structure of host (32) and guest (36) complex.

Families of hosts can be arranged according to their -AG° values with which they 

bind their most complementary guests:

spherands > cryptaspherands > cryptands > hemispherands > coronands > podands

Coronand is the name given to the family of modified crown-ethers. Although the 

character and numbers of binding sites influence the values of binding power, the 

degree of preorganisation appears to dominate the above sequence. Just as 

preorganisation is the central determinant of binding power; complementarity is the 

central determinant of structural recognition. In potential complexing partners both 

binding sites and steric barriers must be complementary to each other in terms of 

electronic character and geometry. Complementary positions of binding sites in 

complexing partners determine the number of contacts between host and guest. 

Since the binding energy at a single contact site (at most a few kcal mol*1) is small, 

compared to that of a covalent bond, several contacts between host and guest are 

required for structuring of complexes.

Spherand (23) binds sodium better over potassium by a factor as high as >1010, 

whereas cryptaspherand (37) follows the same pattern by a factor of 13000. The 

somewhat larger more flexible hosts however, cryptaspherand (38) and 

hemispherand (39), bind potassium better over sodium by factors of 11000 and 2000 

respectively. A similar but less strictly adhered to sequence than that of 

preorganisation, is observed for classes of hosts with decreasing order of ability to 

select between the alkali metal ion guest:

spherands > cryptaspherands ~ cryptands > hemispherands > corands > podands
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(37) (38) (39)

1.17 Substitution Effects in Macrocyclic Hosts

Substitution of sulphur atoms for oxygen in the simple crown ether leads to 

thiacrowns, with the presence of nitrogen atoms in the ring giving azacrowns (2 

nitrogen equals diazacrown etc.). The behaviour of [18]crown-6 is greatly altered by 

such substitutions. The introduction of sulphur slightly expands the size of the 

macroring, and its soft donor qualities enhances the rings affinity for transition 

metals, while reducing the attraction for alkali and alkaline earth metals.

Substitution of appropriate heterocycles for CH2OCH2 units in [18]crown-6 leads to 

hosts with powerful binding abilities. Take for example the following hosts (41) -  (44), 

which at least equal or better [18]crown-6 in K+ or RNH3+ binding. These units place 

heteroatoms with unshared electron pairs in positions to bind metal or 

alkylammonium ions.

Host Ka for NH4+, [m ol1]

(12) ([18]crown-6) 7.5x 105

(40) 1 .1x 106

(42) 1.4x 106
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The presence of pyridine (42) and (43) as a constituent renders the crown more rigid 

and basic. The fact that pyrido nitrogens are better hydrogen bonding sites than the 

ether oxygens was confirmed by comparisons of the free energies of association of a 

series of hosts with (CH3)3CNH3+SCN'[137].

Complexation strength is not notably altered with the introduction of a single furan 

ring into the macrocycle (44), even though in this case oxygen is part of an aromatic 

heterocycle. This is not surprising considering the oxygen is still effectively positioned 

for successful binding. Significantly different however is the position of oxygen in a 

phenol-substituted crown (45), with the binding power dependent upon pH, since 

ionisation of the phenolic hydroxyl may readily occur in a basic environment. 

Although the size of cavity formed by the oxygen array appears smaller than in the 

case of [18]crown-6, effective binding can still occur as phenol can tilt out of the 

plane. Apart from rigidifying the crown, binding is diminished nearly 60-fold when a 

benzo group is fused to [18]crown-6 (46). This is due in part to delocalisation of 

oxygen electrons into the benzo group and to the electron withdrawing nature of the 

benzo group relative to an alkyl group, which reduces the donicity of the attached 

oxygen atoms.

Each of the three subsequent hosts (48), (49) and (50), contains three heterocyclic 

subunits which will somewhat rigidify the typical crown arrangement. All three hosts 

display tripod type binding of Me3CNH3+. The trifurano host (48) binds this guest less 

strongly than the other hosts in this series. The partial positive charge on each of the 

three furano oxygens certainly weakens its binding potential. When however, the 

three furano units are reduced to tetrahydrofuran units as in (49), the binding energy 

more than doubles.
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Host -AG0 for (CHshCNhVSCN', [kcal mol'1]

(48) 4.1

(41) 9.0

(43) 8.8

An interesting study compared the following series with their interactions with the 

guest (CH3)3CNH3+SCN‘, by measuring the -AG° values [kJ mol'1] at ~25°C in CDCI3 

saturated with D20  [137]. Unlike metal salts, this guest interacts with the less 

lipophilic hosts such as [18]crown-6 to form complexes distributed mainly in the 

CDCI3 layer, allowing 1H-NMR determinations of complexes possible. The open-chain 

polyether (49) differs by only two hydrogen atoms and a single C-C bond in 

comparison to cyclic (50), but the difference in binding free energies amounts to 6 

kcal mol'1. This difference can be attributed to the organisation of binding sites in 

each host. While the binding sites in (49) are collected, they are both collected and 

partially organised for a tripod-type of binding in (50) (which the crown ethers seem 

to adopt when binding to (CH3)3CNH3+SCN‘; see (14)). The structural changes in (51) 

and (52), mainly the lack of one oxygen, reduce the binding energy by 18.84 kJ mol'1 

and 17.17 kcal mol'1 respectively, from that of (50). This considerable reduction in 

binding power can be explained if one takes into account the fact that the ammonium 

ion complex probably interacts with both sets of oxygen’s in (50). The ammonium ion 

is deprived of one oxygen binding site in the alternate arrangement in the cases of 

hosts (51) and (52).
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(50) (51)

-AG° for (CH3)3CNH3+SCN', [kcal mol'1]

2.9

8.9

4.4

4.8

Analogous arrays of adapted cryptands are known, with benzyl groups, chiral bi- 

naphthyl bridges, and pyridyl units, among others, incorporated as subunits of the 

macroring. Chromionophores (53) and (54) have been synthesised, and display high 

Li+ selectivity. In particular they give no measurable response to solutions containing 

molar concentrations of the biologically important ions, Na+, K \ Mg2+, or Ca2+. These 

cryptands are for this reason well adapted for use in biological sensing of Li+ [138].

w

(53) (54)

The solid state structures of the following aza-cryptands (55) - (57) when complexed 

to Li+ have been solved and reveal that the complexes are of the cryptate type with
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the cation located inside the central cavity and penta-coordinated with short Li-N 

distances [139].

Me Me Me

(55) (56) (57)

The complexation of Ag+ ions has been studied in order to investigate the effect of 

soft metal cations on several types of cryptand. This ion forms very stable complexes 

with many cryptand ligands. Of interest is how the change in number of nitrogen or 

oxygen atoms in the ligand alters the stability of the complex.

For example the following hosts (58) - (60) bind Ag+ ions with log Ks values of 8.52, 

6.0 and 7.69 respectively. The absence of one oxygen in cryptand (59) decreases 

the binding power significantly. The replacement also of two of the ether oxygens 

with two tertiary nitrogens (60) improves on the previously discussed host (59), but 

still does not quite match the binding of the first host in the row (58) [140].

The two types of cryptands pictured below (61) and (62) exhibit interesting features 

on binding to calcium and strontium ions. The 2-hydroxypropylene series (62) of 

cryptands form more stable complexes with the alkaline earth cations (with the 

exception of Ba2+) than do the propene (61) analogues. This can be attributed to the 

fact that the 2-hydroxy-series (62) have more binding sites than do the unsubstituted 

cryptand series (61), with the oxygen atoms of the hydroxy groups participating in 

binding. These additional binding sites are important with respect to the divalent 

cations, which have a high coordination number (hydration number of eight). It can 

be seen from the table below that the monovalent cations do not display a similar
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increase in stability, because they do not require as many binding sites due to their 

lower hydration number of 6.

M )

V J

(a) n=1 (a) n=1

(b) n=2 (b) n=2

(c) n=3 (c) n=3

(61) (62)

Ligand log Ks, Ca2+ log Ks, Na+ log Ks, Sr*+ log KS) K+ logKs, Ba2+

(61) a 5.20 6.13 5.81 5.11 5.05

(62) a 5.92 4.01 5.95 3.4 3.63

(61) b 3.75 4.36 4.81 5.47 7.53

(62) b 6.64 5.75 7.21 5.13 8.62

(61 )c 4.12 4.65 6.53 5.15 6.64

(62) c 8.73 5.15 8.94 5.63 8.43

In conclusion, it can be seen from these results that apparently small structural 

changes in the substitution of host molecules can lead to dramatic changes in guest 

selectivity or the magnitude of binding constants.

HO OH
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1.18 Literature Survey- Introduction

Calixarenes are very similar in structure to spherands, the difference being the length 

of the spacer connecting the phenyl units. This implies that calixarenes should be 

good hosts for complexation. Reasons why they are attractive as hosts include their 

ready availability, with multigram quantities producible on a laboratory scale in a 

relatively simple manner from cheap starting materials. This makes them different 

from many of the other synthetic macrocycles, and makes them particularly attractive 

as potential hosts. It was in the 1970’s with the increasing interest in “enzyme 

mimics” that David Gutsche was inspired to investigate calixarenes as potential 

candidates for molecular baskets.

The idea of enzyme mimic building is to construct a receptor for a substrate molecule 

and equip the receptor with functional groups that are appropriate for interacting in 

some manner with the substrate molecule. Gutsche introduced the name 

calixarenes, because of the beaker-like shape of the most stable conformation of the 

tetramer (calix means beaker in Greek and Latin). This bowl-like or cone 

conformation provides a cavity for possible guest inclusion in calixarene molecules. 

Gutsche regarded calixarenes as cavity-containing substances and therefore 

appropriate as enzyme mimics, more so than crown ethers because in their simplest 

form they are mere loops rather than cavities. Also in comparison to the 

cyclodextrins, calixarenes are synthetic products, and more easily prepared in the 

laboratory than the aforementioned natural products.

As mentioned previously one of the most interesting features of calixarenes is their 

ability to act as molecular baskets, that is their ability to interact with small molecules 

and ions reversibly. Fine-tuning of selectivities is possible by varying the nature, 

length and position of the alkoxy groups. Tetraesters in the cone conformation are 

selective for Na+, while other conformations, invariably the partial cone, favour K+ 

[141]. In contrast to ester and ketone derivatives, amides are stronger complexing 

agents for alkaline earth metal ions. While however, tertiary amides bind alkali metal 

ions considerably more strongly than esters, they do so at the cost of selectivity.
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1.19 Calixarenes as Hosts -  Binding Metal Ions

The following calix[4]arenes were synthesised and found to show remarkable 

selectivity among alkali and alkaline earth metal ions for Ca2+ and Sr2* which are 

quantitatively complexed at pH 6-7 [142]. The affinity of the ligands (63), (64) and 

(65) for Ca2+ and Sr2+ were evaluated from the percentages of free metal ion in 

solution as a function of pH and led to the following order:

(65) > (63) > (64) for Ca2+ and

(63) » (65) > (64) for Sr2"

(63) (64) (65)

The spectroscopic detection of metal ions is important in terms of analytical 

chemistry and in the molecular design of ion sensors and signal transduction. The 

metal-induced coloration process serves as a transducer of the chemical signal (i.e. 

metal concentrations) to the physical signal (i.e. spectral parameters), which has 

been well represented by the family of chromogenic crown ethers. Calixarenes are 

also capable of selective metal binding if the OH groups on the lower rim are 

appropriately modified.

1.19.1 Calixarenes as Chromionophores

Synthetic chromoionophores that give rise to specific colour changes on 

complexation with alkali and alkaline earth cations have been utilised as 

spectrophotometric reagents for the detection of cations. Calixarenes are useful 

building blocks in the design of artificial receptors [143, 144]. Kubo and co-workers 

[145] synthesised (66), with an absorbance maximum at 609nm. However the 

addition of Ca(SCN)2 4H20  to this compound in solution causes a large bathochromic 

shift with an increase in absorption intensity. A new absorption band in the NIR
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region at 719nm was observed at a ratio of [Ca2+] to [66] of 100: 1. The addition of 

NaSCN, KSCN or Mg(CI04)2 however, caused only minor changes in the absorption 

spectra, suggesting a significant selectivity of (66) for Ca2+. The authors also used IR 

spectroscopy to discern the co-ordination structure, with the frequency of both C=0 

(ester) and C=0 (quinone) absorption’s for the Ca2+-(66) complex lower than those of 

the free ligand by 34-35 cm'1. This suggests that (66) forms an encapsulated 

complex with Ca2+ on the lower rim of the calixarene backbone, and it is also shown 

to be more sensitive to Ca2+than to Na+, K+, Mg2+.

(66)

In an earlier publication Kubo [146] describes the synthesis of a chromoionophore 

having indoaniline and calix[4]arene segments (67), the ethylacetate derivative of 

which shows a high selectivity for Na+. The addition of NaSCN (30 equiv.) to this 

tetraester in 99% ethanol solution caused a bathochromic shift of 42nm with an 

increase in absorption intensity.

(67) (68)
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The authors also describe the synthesis of a similarly derived hexamer (68) (with one 

indoaniline unit bridging five phenol units). This calix[6]arene has a visible absorption 

band with A,max = 665nm (99% ethanol solution). The addition of base, 1,8- 

diazobicyclo[5.4.0]undec-7-ene (DBU) caused a hypsochromic shift of 37nm, which 

was attributed to the removal of intramolecular hydrogen bonding between the 

quinone carbonyl of indoaniline and the adjacent phenolic hydroxy groups. This 

calix[6]arene was then investigated as a chromionophore for the detection of the 

uranyl ion (U022+). The addition of U022+ to calixarene (68) in solution causes a large 

bathochromic shift with an increase in absorption intensity. At a ratio of host: guest, 

1:1000 a new band appeared at 687nm. The addition of other metal ions such as L i\ 

N a\ K+, Cs+, Sr2*, Ba2+ caused little or no change in the host’s absorption spectrum, 

indicating a significant selectivity for the uranyl ion by this calix[6]arene.

The bridged calixarene (69) has been examined as an ion carrier for electrochemical 

K+ sensors. Modification of this structure to give the ionisable chromoionophore (70) 

appeared as a promising K+ selective optical-fibre based sensor. The modified 

structures (70) a and b extracted K+ ions from aqueous solution into chloroform with a 

colour change associated with the formation of the corresponding salts. This data 

shows how (70) a and b are both highly selective chromoionophores for K+ in the 

presence of the other physiologically important ions, Na+, Mg2+, Ca2+.

Y=0CH2[CH20CH2]3CH20  Y=0CH2[CH20CH2]3CH20

(69) (70)

The following hosts (71) - (73) have U.V. maxima at 270nm (attributed to n - n* 

transitions occurring in the aromatic rings of the calixarenes) and little change is seen 

in their absorption spectra upon the addition of various metal ions (N a\ K+, R b\ 

C s\ Ag+) in methanol solution. The fluorescence spectra of (71) and (72) in 

methanol show a maximum at 310nm (Xeyc= 270nm). Even though the addition of 

metal ions caused only weak effects on the absorption spectra of these hosts, 

significant changes in the emission intensity and wavelength maxima of the
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fluorescence bands of (71) and (72) were observed after the addition of metal ions to 

these hosts in solution. The fluorescence intensity of the alkali metal ion complexes 

follow a similar trend for hosts (71) and (72), that is decreasing with increasing 

atomic number from Na+ to Cs+. Such changes have been attributed to cation - n 

interactions between the metal ion and two of the aromatic rings of the calixarene 

pointing towards it.

Calixarene (73) was used as a control to evaluate the effect on the photophysics due 

to the phenolic oxygens involved in metal ion binding, which in the cone conformation 

does not allow any possible cation - n interactions. Even in the presence of a large 

excess of cation, no significant changes were observed in the luminescence spectra 

of (73), therefore the involvement of the phenolic oxygens in binding does not alter 

the fluorescence properties, further proving the cation - n interaction theory of the 

authors [147].

Chawla and Srinivas [148] report how their success in calix[8]arene-cerium(IV) 

promoted biomimetic hydroxylation of simple phenols [149] prompted them to obtain 

other calix[8]arene derivatives with selectively functionalised hydroxyl groups and 

chromophores. They report the first examples of chromogenic calix[8]arenes in which 

the opposite phenyl rings are bridged by the biphenyl bisazo linkage. (74) shows a 

strong absorption band at 382nm, and when this solution is made alkaline (with 

NaOH), the solution changed from pale yellow to red with a bathochromic shift of 

98nm, with a new peak appearing at 433nm. (74)b, (74)c, and (74)d have strong UV 

absorption bands at 329nm, 342nm and 334nm respectively, however no such 

bathochromic shifts are observed in their UV spectra under alkaline conditions.

\_y
(71) (72) (73)
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a: R =  H , b :R  = CH3, 
c: R = COCH3, d : R = COPh

(74) (75)

Shinkai et al. describe how their synthesis of (75), which has a 4-(4-nitrophenol) 

azophenol unit [150, 151], and showed a new absorption maximum at ca. 600nm 

upon metal binding, with a high Li+ selectivity.

1.19.2 Fluorogenic Calixarenes

This work then inspired the authors to design a fluorogenic calixarene tetramer, 

whereby a trace amount of the metal ion under investigation could be more 

sensitively detected than by an absorption method of spectroscopy. The fluorogenic 

calixarene (76) prepared has a benzothiazole unit as the chosen fluorophore. This 

compound has an absorption maximum at 327nm in chloroform, which was 

unaffected by the addition of triethylamine (up to 1,000-fold excess), implying in 

chloroform the basicity of triethylamine is not strong enough to dissociate the OH 

groups of the calixarene. Alkali-metal perchlorates (Li+, Na+, K \ Rb+ and Cs+) were 

added as salts to solutions of calixarene (76) in chloroform, and in the absence of 

triethylamine, the metal ions were not extracted and the absorption spectra hardly 

affected. The presence of triethylamine however, allowed the extraction of Li+ which 

in turn changed the absorption maximum to 356nm. This effect was not duplicated by 

the other ions tested, presenting (76) as a Li+ -selective chromogenic calix[4]arene.
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(76) (77)

Such a Li+ induced spectral change was not observed by the authors for reference 

compound (77), indicating the importance of the ionophoric cavity constructed on the 

lower rim. In chloroform (76) gave a fluorescence maximum at 391 nm when excited 

at 332nm, and showed no change in spectrum upon addition of triethylamine. This 

band almost disappeared and a new one emerged at 422nm in the presence of 

UCIO4 and triethylamine, which was not induced by the other alkali perchlorates 

listed previously [152].

Calixarene derivatives including ionophoric functional groups linked by the phenolic 

oxygens express some excellent properties as receptors for metal ions, due to stable 

complex formation and size-related selectivity. These properties prompted Diamond 

et al. [153] to prepare fluorescent calixarenes, having an anthracene moiety with the 

specific ability to complex alkali metal ions. Anthracene was chosen as the 

fluorophore due to its fluorescence efficiency. (78) was synthesised as a tetraester, 

with four anthracene units appended to the lower rim, as shown below.

,t-Bu

(78)
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Monomer emission with a fluorescence maximum at 418nm is observed when the 

above molecule (78) is excited at 388nm. After the addition of Li+ or Na+ salts, the 

fluorescence intensity of the full spectrum decreases dramatically with increasing salt 

concentration. While the addition of K+ causes the maximum at 418nm to decrease 

with increasing salt concentration, an increase at 443nm is observed. The interesting 

optical responses according to the authors, to K+, Li+ and Na+ could form the basis of 

an optical sensor for the determination of these ions.

Dual emission, resulting from the excimer (480nm) and monomer (390nm) pyrene 

species is characteristic of the fluorescence spectrum of the free ligand (79) in 

MeOH-THF (15:1 v/v) solution. In the free ligand, excimer emission dominates with 

the intensity ratio of excimer to monomer emission about 4. The addition of NaSCN 

however, reverses this trend and in the concentration ranges studied, excimer 

emission intensity decreases 9-fold with monomer emission intensity increasing 3.7- 

fold. Other alkali metal ions were tested in the presence of Na+ (K \ Li+, R b\ Cs+) and 

gave rise to only slight changes (only 1% in the case of the latter three ions). These 

results indicate the suitability of (79) as a fluorescent sensor for selective Na+ 

detection in non-aqueous solution.

(79) (80)

Shinkai et al. [154] found the ratio of monomer vs. intramolecular excimer emission 

intensity of calixarene (80) is affected by solvent polarity and metal ion addition. 

Monomer emission (380nm) increases with increasing solvent polarity, with excimer 

emission (480nm) decreasing. In methanol monomer emission dominates, while the
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two emissive intensities are approximately equal in propan-2-ol, whereas in hexane 

excimer emission dominates. The authors also found that excimer emission 

decreases with the addition of metal ions, like in the previous example mentioned. 

This calixarene forms 1:1 complexes with Na+, K+ and Li+ (log Kass /dm3 mol'1; 5.34, 

4.06 and 4.73 respectively).

The proximity of the nitrophenol group in the free ligand of (81) causes intramolecular 

quenching between the excited pyrene fluorophore and the nitrobenzene quencher. 

The presence of the sodium ion interrupts this proximity and an increase in the signal 

is observed upon complexation [155]. In the free ligand the ester groups can freely 

rotate and probably allow interaction of the pyrene ring and nitrobenzene quencher. 

However after the addition of Na+ ions the carbonyl groups must turn inward to bind 

with the metal in the ionophoric cavity. The authors claim this metal-induced 

reorientation dramatically reduces the collisional probability between the pyrene 

fluorophore and nitrobenzene quencher, thus increasing the fluorescence intensity. 

The fact that the chemical shifts of the protons of the nitrobenzene in the free ligand 

are at 6.8ppm and 7.6ppm would suggest an effect of the ring current from the 

pyrene system. This is further demonstrated by the lower magnetic field shifts of 

these protons in the Na-complex, 7.6ppm and 8.3ppm respectively.

(81)

For calixarenes ion selectivity depends on ring size and conformation, whereas 

successful interaction with guest molecules is dependent on the length of the 

pendant chains. In the cone conformation of the tetramer, a cavity is present which 

can host neutral molecules of complementary size. For various water-soluble
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calixarenes unspecific complexation of aromatic hydrocarbons has been described, 

however some selectivity is achieved with varying ring size.

1.20 Calixarenes as Hosts -  Molecular Binding

Many calixarenes form complexes in the solid state, amongst them some of the 

simple phenol derivatives, e.g., p-tert-butyl-calix[4]arene form inclusion compounds 

with such solvent molecules as chloroform [141], acetone, acetonitrile, methanol 

water and arenes(benzene, anisole, pyridine, tetraline, toluene, xylene) [143]. Most of 

them have a well-defined host-guest stoichiometry (usually 1:1), and the 

complexation behaviour seems to be determined by the conformational mobility of 

the calix and by the nature of the R group present at the upper rim.

Host Recrystallisation solvent 

mixture (50:50 v/v)

Ratio of Included aromatic 

guest

(1a) R = Bul p-xylene : m-xylene 80 :20

p-xylene : o-xylene 100:0

p-xylene : toluene 90 : 10

p-xylene : anisole 75 : 25

Anisole : toluene 80 :20

Benzene : p-xylene 75 :25

Benzene : anisole 90 : 10

(1a) R = f-octyl Benzene : toluene 50 : 50

p-xylene : o-xylene 45: 55

p-xylene : m-xylene 55 :45

Table 1 Guest selectivity properties of p-t-butylcalix[4]arene ((1), R = Be/) and p- 

octylcalix[4]arene ((1), R = t-octyl) towards aromatic molecules in the crystalline 

state.

Table 1 reports the guest selectivity properties of these macrocycles towards 

aromatic molecules, established by competitive crystallisation experiments in the 

presence of equal volumes of two competing guests [156,157]. The results show high
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selectivity for host p-t-butylcalix[4]arene ((1), R = Bu*). Benzene is the preferred guest 

included in the cavity of this macrocycle, although it is remarkable how much shape- 

selective discrimination is observed between p-xylene and the ortho and meta 

isomers. For the xylene isomers a similar pattern is shown by p-/-propylcalix[4]arene 

((1), R = Pr1), however the p-octylcalix[4]arene ((1), R = f-octyl) shows very little 

selectivity and it is unable to distinguish between the various xylene isomers. It has 

been discovered if alkyl groups are removed from the upper rim of calix[4]arenes 

their ability to form intramolecular inclusion complexes with aromatic guest species 

drops dramatically and no such complexes have been observed so far with 

calix[4]arene, although it exists in the cone conformation [158].

Evidence reported in the mid-1990’s suggests that calixarenes [159, 160] and 

oxacalixarene derivatives complex tetraalkylammonium salts in organic media. N- 

methylpyridinium cation is bound to conformationally mobile calix[4]-, calix[6]- and 

calix[8]arene methoxy derivatives in a 10: 1 mixture of CDCI3:CD3CN, whereas 

alkyltrimethylammonium cations show a more marked preference for calix[6]arene 

derivatives.

Gutsche and co-workers report the complexation of aliphatic amines by 

alkylcalix[4]arenes in CD3CN, examples of the complexation of aromatic ammonium 

cations have appeared. However evidence for complexation of organic molecules in 

organic solvents is rare. Several reasons may be responsible for the fact that 

complexation of neutral organic molecules by calix[4]arenes in solution has not been 

very successful. The cavity is too small to engulf the guest and the stabilizing forces 

are not strong enough to compete effectively with the solvent. Moreover, the cavity of 

the parent calix[4]arene is not rigid and a continuous ring inversion process occurs in 

solution. This may be overcome by immobilisation of the calixarene in a cone 

conformation by the introduction of substituents at the lower rim. This approach is 

based on the use of calix[4]arenes as a lipophilic molecular platform for building 

molecular receptors for organic molecules, on which binding sites can be organised, 

introduced by selective functionalisation.

Calix[4]arenes containing two fluorescent pyrene moieties on the lower rim were 

synthesised: the recognition site was introduced by skilful arrangement of hydrogen 

bond acceptors. (82)a and (82)b have etherial and esterial oxygens as hydrogen-

64



bond acceptors, and two pyrenes as fluorescent reporters, which could deliver a 

fluorescence signal change upon binding, by means of hydrogen bonds, of guest 

molecules. Upon excitation, monomer pyrene emission is observed at 380nm and 

excimer pyrene at 480nm. Upon inclusion of TFA (trifluoroacetic acid) monomer 

emission increases while emission of the excimer decreases. The addition however, 

of ethyl-TFA shows no effect on the fluorescence of either calixarene displaying a 

very specific interaction for TFA, through hydrogen bonds, which will interfere with 

the interaction of the two pyrene moieties. This paper [161] describes how upon 

inclusion of a guest molecule, the ratio of monomer to excimer emission changed 

specifically and sensitively.

b: R = CH 2CH 2Me



Kubo and co-workers’ interest in synthetic chromogenic receptors, which deliver a 

specific colour change on selective complexation with guest species, led to the 

development and subsequent synthesis of a chromogenic bi-naphthyl-derived 

calix[4]crown derivative (see (83)), in which the steric or electrostatic effects of the 

1,1-binaphthyl unit could be useful for the molecular recognition of amines. Upon 

addition of ButNH2, the solution of this calixarene turns from red (absorbance 

maximum at 512.5nm) to blue with a bathochromic shift of 148nm. They carried out 

similar measurements for other butylamines and a marked difference between their 

respective association constants was observed, which the authors attributed to the 

shape of the butyl substituents. The tetramer (83) interacts with butylamines in the 

following order: -

Bu* »  Bus > Bu1 > Bun.

(84)

(84) has a hydrogen bonding receptor site next to its ionophoric site, with NMR data 

implying communication between two sites. This is supported by the fact that in (84) 

the 5Nh (-50°C) appears at 10.21 ppm whereas the 5NH for the monomeric species is 

found at 9.79ppm. This data suggests that the NH protons in (84) are subject to 

intramolecular hydrogen bonding, since this causes OH and NH protons to shift to 

lower magnetic field. New signals were observed after the addition of sodium 

perchlorate at -50°C for the (84).Na+ complex, resulting in an upfield shift suggesting 

a partial disruption in the intramolecular hydrogen bonding.

When a guest molecule is added (y-butyrolactam -  a specific guest for (84)), only the 

NH signal for (84).Na* moves to a lower magnetic field, indicating intermolecular
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hydrogen bonding with the guest amide. This suggests that complexation with 

sodium induces an ‘open’ receptor state, on what was in its free state a ‘closed’ form. 

It is known that in calix[4]aryl tetraesters and tetraamides, the four carbonyls are 

turned outward to reduce electrostatic repulsion among carbonyl oxygens, whereas 

Na+ complexation induces the carbonyls to point inward in order to bond the metal 

ion. In (84) movement of the carbonyls to bind Na+ disrupts the intramolecular 

hydrogen bonding and then facilitates binding of the guest molecule via 

intermolecular hydrogen bonds.

The calixarene (85) (with NH signals at 9.03ppm and 10.07ppm) can be mixed with 

guest (87) in solution, and no change in the 1H-NMR signals are observed. The 

lowfield signals of the NH protons in (85) are due to strong intramolecular hydrogen 

bonds, which are not affected by the presence of guest (87). When however, sodium 

ions are introduced to this solution, it complexes with (85) and a large highfield shift 

in the signal corresponding to the calixarene NH is observed, to 8.31 ppm and 

9.14ppm respectively. This is due to disruption of intramolecular H-bonds in the 

calixarene, to facilitate the metal ion co-ordination, which then allows intermolecular 

hydrogen bonding between the calixarene host and the guest (87) (dimethyl (a)/ 

dioctylbarbituric acid (b)). The binding sites in (86) are exposed after the addition of 

Na+ and create oligomeric clusters with guest (87a).

(85) (86)
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(87)

(a): R = H

(b): R = C7H15

In order to allow a deeper understanding of the basic forces involved in host-guest 

recognition processes in a solvent where most biological processes occur, water- 

soluble macrocycles, as hosts are important. Arena and Casnati [162] have shown 

that their water-soluble derivatives of calixarenes, which often after functionalisation 

are used for the recognition of neutral molecules, metal ions and anions, recognise 

the trimethyl-ammonium group or the benzene ring of aromatic cations. Two water- 

soluble calix[4]arenes (89) and (90) were studied at neutral pH by 1H-NMR 

spectroscopy in regard to their complexation of A/,A/,A/,-trimethylanilinium (TMA), 

benzyltrimethylammonium (BTMA) and p-nitro-benzyltrimethylammonium (BTMAN) 

cations.

c h 3 

h 3C \  /  

V ^ C H 3

A

c h 3
H3C .  /

p c h 3

c h 3
H3C\  /

/ N{  CH 3

i l
T

N 0 2

TMA BTMA BTMAN

(88) specifically binds the (TMA)-N+(CHg)g group, whereas (89) recognises only the 

aromatic ring of (TMA), both in contrast to the conformationally mobile (90) which 

binds both the phenyl and ammonium methyl moieties, but unselectively [163]. The 

introduction of a spacer between the charged polar group and the aromatic residue 

(BTMA) or an electron-withdrawing group on the aromatic moiety (BTMAN) does not 

alter the selectivity for (88), but in the case of (89), it selectively recognises the 

N+(CH3h group of (BTMAN), but complexes (BTMA) both by the N+(CH3)3 group and 

the aromatic moiety, thereby unselectively.
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The hosts (88), (89) and (90) also exhibited different behaviours upon inclusion of 

ethanol in aqueous solution [164]. Ethanol is included into the hydrophobic cavity of 

the water-soluble calixarenes (89) and (90), with the alkyl residue pointing in towards 

the cavity, leaving the hydroxyl group facing the bulk solvent. In contrast no inclusion 

is detected for (88), which the authors attribute to the sulfonate groups acting as 

anchoring points.

The summation of the aforementioned data, allowed the authors to establish the 

crucial role played by the sulfonate groups on the upper rim, in assisting the guest 

inclusion in the calixarene apolar cavity. This prompted them to extend their studies 

to the use of L-a-amino acids as guests. The complexation of the -a-amino acids 

transpires by insertion of the aromatic or aliphatic apolar (R) group into the calixarene 

cavity, which allows the charged group of the amino acids to be exposed to the polar 

medium. The amino acid guests examined included L-Ala, L-Val, L-Leu (R-aliphatic), 

L-Phe, L-Tyr, L-His, L-Trp (R-aromatic). Upon inclusion the aromatic protons of the 

guest experienced a large upfield shift in comparison with the free guest, with L-Ala 

not undergoing complexation with these hosts, which the authors assign to the small 

size of the R methyl group [165]. They also describe how no inclusion is observed for 

L-Tyr either, which is explained by the polarity of the R group. In fact no inclusion 

was observed with any of these guests and calixarene (88), while L-His is complexed 

only by (90). The authors describe how calixarenes (89) and (90) show comparable 

efficiency, with the cone calixarene (89) being slightly more efficient in the recognition 

of L-Leu.
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1.21 Chiral Calixarenes as Hosts

Calixarenes differ significantly from cyclodextrins by their lack of inherent chirality, 

but can be converted into inherently chiral compounds by dissimilar substitution at 

the lower rim. They can also be converted into chiral derivatives by the introduction of 

chiral substituents. This was first achieved by Muthukrishnan and Gutsche [166] who 

prepared the mono- and di-camphorsulfonyl esters (91 )a and (91 )b respectively, of p- 

tert-butyl-calix[8]arene.

Shinkai has described further examples of such chiral compounds [167]. They 

introduced chirality, by treating p-sulfonatocalix[4]arene with (S)-1-bromo-2- 

methylbutane to produce (92) which was subsequently used in complexation studies 

[168]. The authors chose aliphatic alcohols as guest molecules and observed no 

change in the CD-spectrum of the calixarene, after the addition of these guests. They 

did however observe that the 1H-NMR chemical shifts of these guests move to a 

higher magnetic field in the presence of (92) indicating that a host-guest complex is 

formed.

(a): n=1, m=7

( 9 1 )

COOEt

(92) (93)
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Upper rim functionalisation containing four chiral centres achieved by Gutsche is 

represented by (93) [169]. In the design of asymmetric reagents, the reaction centre 

is often surrounded by a chiral moiety and a recognition site, the latter controlling the 

substrate selectivity and the former, the stereoselectivity of the process. Binaphthyl 

derivatives offer a wide range of possibilities and are among the most popular chiral 

building blocks used. In the separation of amino acid esters Cram used binaphthyl- 

derived crown ethers [170], with binaphthyl-derived cyclophanes by Diederich 

complexing quinine derivatives [171] and pyranosides [172], whereas in binding 

tartaric acid derivatives Hamilton et al. [173] used binaphthyl-containing clefts. Since 

calixarenes are widely used for the selective recognition of ions and small molecules 

it seemed attractive to Casnati and Ungaro to link them with the binaphthyl moiety in 

the synthesis of new chiral ligands [174].

(94)

Complexation studies were carried out with a series of neutral guest molecules, 

ammonium salts and metal ions. Complexation with (94) was observed only in CCI4 

with guests having acidic C-H groups such as nitromethane and acetonitrile. The 

upfield shifts of the methyl groups of the binaphthyl unit suggest that these guests 

are accommodated in the apolar cavity of (94). Concerning metal ions, the silver 

cation is strongly and selectively complexed by this ligand, while no complexation 

occurs with alkali metal cations as in lower-rim bridged calixcrowns and 

calixspherands.

Kubo and co-workers [175] desire to achieve visual discrimination between 

enantiomers led them to design a molecular sensor which would translate an
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enantioselective molecular recognition event into a discernible colour change. They 

regarded calixarenes as particularly attractive frameworks for the construction of 

optical sensing systems, because chromophores can be appended to the calixarene 

platform, and that such systems could be useful in the construction of sensors that 

allow the visual detection of and enantiomeric discrimination of amines and amino 

acids. (83) and (95) were therefore synthesised, altering the length of the ether 

spacers in these calixarenes, allowing the binaphthyl unit of (95) to be closer to one 

of the indophenols than the other. This means having two distinct indophenol groups, 

which, they hoped, would translate into a powerful chromogenic response with 

binding of chiral substrates generating different signals.

(95)

(R)-phenylglycinol was added to a solution of (95), which resulted in an immediate 

colour change from red to blue-violet and a new absorption band at 650nm, which 

was previously at 515.5nm. However, when (S)-phenylglycinol was added, almost no 

detectable change in the spectrum was observed, which results in very successful 

distinction between enantiomers with the naked eye. (83) however, yielded 

association constants of a quarter the value for the unsymmetrical calixarene with the 

R-enantiomer, indicating that complexation takes part in the cavity with the etherial 

oxygens and phenolate oxygens of the indophenol unit. No selectivity was observed 

for (95) with the enantiomers of phenylethylamine, but good selectivity was achieved 

with this compound and the enantiomers of phenylalaninol and phenylglycine.
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The synthesis of a new type of chiral stationary phase was reported by Glennon et al. 

[176], where they describe the application of a silica-bonded derivative of (96), 

functionalised at the lower rim with L-(-)-ephedrine, and packed into an LC column for 

chiral separations.

The authors intended that these new types of stationary phases be employed in the 

separation of enantiomeric substances, by the formation of diastereomeric host-guest 

adsorbates. They injected racemic mixtures of (+) and (-)-l-cyclohexylethanol and of 

R(-) and S(+)-1-phenyl-2,2,2-trifluoroethanol onto a column with the derivatised 

calixarene as stationary phase and obtained successful resolution of both pairs of 

enantiomers. In a previous publication [177] the authors describe how a silica bonded 

calix[4]arene tetraester (97) has been utilised in the HPLC separation of alkali metal 

ions and a series of amino acid esters. Good separation was achieved when a test 

mixture of benzamide, benzophenone and biphenyl was injected onto a column 

packed with (97) as stationary phase. They were also successful in the separation of 

NaCI and KCI, along with ester derivatives of L-aspartyl-L-phenylalanine, (3-alanine 

and D-tryptophan.

The two isomers (+) and (-) of the following calix[3]arene were optically resolved by 

chiral HPLC, with the first fraction ((-)-anti-(98)) and second fraction ((+)-anti-(98)) 

giving symmetrical CD spectra, 0max = ±20200 deg cm2 dmol'1 at A,max 232nm. The 

association constants of these calixarenes were measured with various chiral 

amines. The association constants for the L-configured amines were greater with ((-)-

Et

(96) (97)
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anti-(98)) than for ((+)-anti-(98)), displaying good chiral selectivity (see Table below)

[178],

(98)

Picrate Sait

K ass

(-H98)

Kass

(+)-(98)

K a s s ( la r g e ) /

K a s s ( s m a l l )

L-alanine methyl ester picrate 4500 3200 1.4

L-phenylalanine methyl ester picrate 1200 180 6 .7

(R)-1-phenylethylamine picrate 2200 3000 1.4

(R)-l-naphthylethylamine picrate 2000 2400 1.2

Calixarene (99) exhibits much larger Stern-Volmer constant (KSv) differences with 

regard to the enantiomers of phenylethylamine than do calixarenes (100) and (101)

[179]. Calixarene (99) also possesses the ability to discriminate between the 

enantiomers of norephedrine, whereas (100) and (101) do not.
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(100) (101)

Subsequently Diamond et al. describe a system involving the (S)-di-naphthylprolinol 

calix[4]arene (99), as the stationary phase in capillary electrophoresis. They have 

achieved the chiral separation of the enantiomers of 2-phenylglycinol with this 

system, employing methanol as the mobile phase [180]. Recently Diamond and 

Jennings have reported the successful chiral discrimination of phenylglycinol by (99), 

whereas the similar phenylalaninol (differing only by one -C H 2- group) does not even 

quench the luminescence of the aforementioned calixarene. The authors ascribe this 

occurrence to the longer chain length of phenylalaninol, which prevents the intimate 

contact necessary with the excited naphthalene groups to allow interaction with the 

phenyl ring of the longer amino alcohol. The fact that the aromatic ring is necessary 

in this instance is proven by results in the paper describing how the aliphatic cyclic 

derivative of phenylethylamine (already discussed); cyclohexylethylamine does not 

quench the fluorescence of (101) [181].

In conclusion, fluorescent calixarenes have been reported as successful sensor 

molecules with regard to ion-recognition/ selectivity and molecular/ chiral recognition. 

This is due in part to their well-defined cavities and also the simultaneous polar 

(usually lower rim) and non-polar regions (usually at the upper rim). Because of these 

properties calixarenes can form inclusion compounds with a wide range of guests 

species. The results reviewed here inspired the synthesis of a fluorogenic 

calix[4]arene, which differed from (99) by a methylene spacer group, and with the aid 

of fluorescence spectroscopy to study whether this new ligand would successfully 

discriminate between the enantiomers of phenylalaninol. We also considered that the 

response of this new ligand with respect to phenylglycinol (which is shorter than 

phenylalaninol by one methylene spacer) would present an interesting comparison to 

the results of (99) mentioned previously.
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2 Synthesis of Fluorescent Calixarenes
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2.1 Introduction

In designing any molecular sensor, two main issues must be addressed

□ Recognition of the target species

□ Transduction of the binding event

In this case we are targeting the discrimination of enantiomers of a series of chiral 

amines (see Figure 2-1). Both pairs of enantiomers are similar in that they have 

phenyl rings substituted with alkyl amino and alcohol groups, which contain chiral 

centres. The two amino alcohols differ in that the spacer group from the chiral centre 

to the phenyl ring is longer by a -CH2- linker in the case of phenylalaninol than in 

phenylglycinol. In order to recognise our target amines a calixarene host should be 

functionalised with chiral moieties that define a 3-D distribution of binding sites, 

complementary to that of the guest. These binding types include hydrogen-bonding 

sites, which, are represented in our series of amines by the -NH2 and -OH 

functionalities.

,0H

■ .

,0H

A

"iilH

NHo

Phenylalaninol Phenylglycinol

Figure 2-1: Guest enantiomers of phenylalaninol and phenylglycinol (chiral centres 

are marked by the asterisk).

Ultimately, the objective is to define a chiral space into which one enantiomer of the 

guest molecule preferentially fits and binds. The interaction of host and guest may be 

attributed to hydrogen bonding between the two molecules, with one enantiomer 

having more hydrogen bonding possibilities than the other. In order to observe this 

preferential binding a means for signaling that binding with the guest molecule has 

occurred is necessary. Fluorescence is an attractive option in this regard, given its
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sensitivity and variety of measurement modes that can be employed (fluorescence 

emission, quenching, lifetime, phase angle) (see Chapter four).

For this reason our molecular sensor was designed to incorporate a fluorescent 

naphthyl moiety to provide a potential route to transduction of binding. Our 

calix[4]arene L1 was specifically designed to discriminate between enantiomers of a 

chiral drug and therefore consists of pendant groups with chiral centres. Also 

incorporated in the design of this novel receptor was the combination of subgroups 

with certain desirable characteristics, such as a backbone for anchoring active 

groups, which is represented by the tetra phenyl cyclic framework of the calixarene. 

In addition ligating groups with binding capabilities are present in the calixarene, such 

as the hydroxy groups and lone pairs of electrons (-N-, -OH, -C02), fluorophores/ 

chromophores to signal guest arrival and finally, reactive groups capable of 

covalently immobilising the ligand, represented by the unsaturated allyl groups at the 

upper rim of the calixarene. These allylic sites are capable of being covalently 

incorporated into silica-based polymers/beads, which could be used in packing of 

columns for HPLC, GC or capillary electrophoresis.

L1

After the successful synthesis and performance of calixarene L1 (see chapters 3, 4 

and 5), we decided to prepare a series of calixarene sensor molecules that possess 

similar properties to L1, but are prepared from inexpensive starting materials. For this 

reason amines such as 1-naphthylamine (102) and (S)-l-naphthylethylamine (103)
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were chosen, naphthylamine for fluorescent ion recognition and naphthylethylamine 

for chiral recognition using fluorescence as the mode of signal transduction. Methyl 

tryptophanoate (104) which is an essential amino acid derivative, was also chosen as 

a building block since it can be easily and relatively inexpensively purchased and has 

the necessary properties for chiral recognition and fluorescence emission.

H

(102) (103) (104)

Figure 2-2: Naphthylamine, S-naphthylethylamine and D-tryptophan methyl ester.

89



2.2 Results and Discussion

2.2.1 Synthesis of calix[4]arene amides from acids via acid chlorides

Since cyclic tetramer formation is most greatly favoured when f-butyl phenol is used, 

the most commonly commercially available calixarenes possess f-butyl groups on the 

upper rim (105). It is necessary therefore to remove these groups to introduce the 

desired allyl groups into the upper rim. This has been previously achieved by 

treatment with AlCb in the presence of phenol and toluene [1]. In general alkyl groups 

can be cleaved from aromatic rings by treatment with Lewis acids, with tertiary in­

groups (i.e. the /-butyl group) most easily removed. This reaction as described by 

Gutsche yielded a white crystalline solid having a melting point of 314-318°C. The 

1H-NMR spectrum of this product displayed no signals for the f-butyl groups in the 

alkyl region (1.0 - 1.5 ppm) and therefore it was concluded that the de-alkylation to 

(106) had proceeded successfully, mp lit. 315-318°C [1].

(108)
Et

Figure 2-3: Transalkylation of (105) followed by introduction of suitable functional 

groups on upper and lower rim.

The allyl groups were introduced into the upper rim via a two-step sequence, by 

introducing an allylic system onto the lower rim of the calixarene (107) followed by a
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Claisen rearrangement to afford (108). The first step involved refluxing (106) in DMF/ 

THF in the presence of NaH followed by the addition of allyl bromide. This afforded 

white needles mp 188°C. The IR spectrum of these needles did not display a stretch 

around 3157cm'1 corresponding to the phenolic hydroxy groups of the calixarene. 

The 1H-NMR spectrum of this solid displayed a characteristic multiplet representing 

four allylic protons at 6.27ppm, and a multiplet corresponding to eight methylene 

protons of the allyl system at 5.1 - 5.2ppm. A doublet was located at 4.4ppm which 

represents the eight methylene ether protons in addition to the doublets at 3.1 and 

4.3ppm for the methylene HA and HB protons between the aromatic rings. A multiplet 

at 6.5 - 6.6ppm represents the twelve aromatic protons. On the basis of this evidence 

this solid was identified as the tetra allyl ether (107) mp lit. 186-187°C [2].

Figure 2-4: Williamson ether synthesis of calix[4]arene.

Heating (107) to 200-250 °C then effects Claisen rearrangement, which generally 

leads to the o-allyl phenol. If however, both ortho positions are filled as in the case of 

a calixarene molecule, then migration of the allyl groups to the para position ensues 

(see Figure 2-5). Refluxing the previous product in N,N,-diethylaniline followed by 

acidification with HCI resulted in an off-white solid having a melting point of 248 - 

249°C. The IR spectrum of this solid displayed a stretch at 3157cm'1 corresponding 

to the phenolic hydroxy groups of the calixarene. The 1H-NMR spectrum of this solid 

displayed a doublet at 3.2ppm corresponding to the eight alkyl protons of the allylic 

system, a multiplet at 5.1 ppm which represents the eight =CH2 protons and a 

multiplet observed at 5.91 ppm representing four allylic protons (-CH=). A singlet was 

also observed at 6.88ppm representing eight aromatic protons and a singlet at 

10.18ppm represents the four hydroxy protons. On the basis of this evidence this 

solid was identified as the p-allyl calix[4]arene (108) mp lit. 250.5 - 252°C [3].
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HoC. H2C. 
OH

fast

tautom eri sm

CH2
R

fast

tautomeri sm

Figure 2-5: Claisen rearrangement mechanism of the tetra-aliyl ether calix[4]arene to 

the p-allyl calix[4]arene.

Following the introduction of the allyl group on the upper rim, the phenolic hydroxy 

group is once more available for functionalisation. Keeping in mind that the desired 

end-product/ ligand should display properties which include hydrogen bonding, it was 

decided that an amide functionality would serve best in this regard. The 

establishment of amide moieties can be achieved by hydrolysis of esters to their 

corresponding carboxylic acids followed by conversion of the acid to its acid chloride 

derivative, which readily reacts with amines to form amides. Ester formation of the p- 

allyl calix[4]arene follows a similar mechanism as outlined in Figure 2-4. The p-allyl- 

calix[4]arene was refluxed in acetone in the presence of K2CO3 and ethyl 

bromoacetate which produced an oily substance that solidified on standing to form 

colourless crystals mp 98°C. In addition to the resonances listed for the previous 

product, the 1H-NMR spectrum displayed a singlet at 4.65ppm corresponding to the 

two protons of the ether to carbonyl linkage and also a quartet at 4.1 ppm and a triplet 

at 1.2ppm corresponding to two and three protons each, of the ester groups. The IR 

spectrum of this solid displayed a peak at 1750cm'1 which represents the carbonyl 

stretch of the ester group. On the basis of this evidence this solid was identified as 

the tetra ethyl ester (109).

We were interested in converting the upper rim allyl groups to alcohols, which 

could then be used to incorporate the calixarene onto silica surfaces. Ozonolysis 

followed by hydride reduction was attempted on (109). This reaction afforded white
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micro crystals having a melting point of 68-70°C. The 1H-NMR spectrum lacked the 

multiplet at 5.9ppm, which is characteristic of the allyl system, and also showed two 

triplets at 2.54ppm and 3.56 representing the two sets of methylene protons of the 

ethyl alcohol. On this basis the product was identified as the tetra-ethyl alcohol 

calix[4]arene tetra-ethyl ester (110).

Hydrolysis of the ester groups in (110) to form the corresponding tetra-acid 

was then necessary in order to form the amide, via the acid chloride. Refluxing this 

product (111) in basic ethanolic solution followed by acidification with aqueous H2S04 

afforded an off-white solid, which did not melt above 400°C. The 1H-NMR spectrum 

of this solid was very difficult to interpret, and the solid was not very soluble in any of 

the usual organic solvents, therefore further use of this product was very limited. It 

was therefore decided that since the allyl groups are further capable of 

functionalisation, without the necessity of alcohol formation, these would be 

employed as the upper rim substituents and further work was carried out on the lower 

rim functionalisation instead.

(109) (110) (111)

Figure 2-6: Ozonolysis of (109), followed by reduction to the corresponding alcohol 

derivative (110), which was followed by hydrolysis of the ester groups to (111).

The tetra-acid (112) was prepared by refluxing (109) in basic ethanolic solution 

followed by acidification with aqueous H2S04 afforded a white solid which 

decomposed above 220°C. The 1H-NMR spectrum of this white solid did not display 

the quartet and triplet of the ethyl ester protons. The IR spectrum of this solid 

displayed a peak at 1680cm'1 which represents the carbonyl stretch of the hydrolysed 

ester group, that is of the acid functionality. Mass spectral data of this solid showed a 

molecular ion with a mass of 839, which represented the molecular mass of the p-
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allyl calix[4]arene tetra acid + sodium. On the basis of this evidence this solid was

identified as (112).

OR' v
R‘
X o

OH

+ +

OR’ HOR'

Figure 2-7: Mechanism of base-induced ester hydrolysis, to produce a carboxylic 

acid and an alcohol.

The conversion of acids to acid chlorides occurs by a nucleophilic substitution 

pathway, whereby the carboxylic acid is first converted into a reactive chlorosulfite 

intermediate, which is then attacked by the nucleophilic chloride ion. This was 

affected by refluxing the acid in thionyl chloride to afford an off-white solid (113) 

which was used immediately, and not fully characterised due to the ready reversibility 

of the reaction when the product is exposed to moisture from the air.

Acid chlorides react rapidly with amines to give amides in good yield. Both 

mono- and disubstituted amines can be used, with one equivalent of the amine 

reacting with the acid chloride and another equivalent reacting with the HCI by­

product to form the corresponding amine-chloride salt. The tetra acid chloride was 

dissolved in THF and to this a solution of S-propranolol (114) and triethylamine in 

THF was added. This afforded a pale yellow solid, which decomposed above 190°C. 

The 1H-NMR spectrum displayed double doublets at 1.13 and 1.37ppm, which 

represent the iso-propyl protons of the amide nitrogen, and two doublets at 6.62 and 

6.8ppm representing protons of the naphthalene ring. A multiplet at 7.35ppm and two 

doublets at 7.66 and 8.19ppm represent the remaining protons of the naphthyl ring. 

Because of overlapping peaks and the complexity of this spectrum further 

identification of peaks was difficult. The IR spectrum of this solid displayed a peak at 

1640cm‘1 which represents the carbonyl stretch of the amide group. Mass spectral 

data of this solid showed a molecular ion with a mass of 1805, which represented the 

molecular mass of the p-allyl calix[4]arene tetra amide + sodium. On the basis of this 

evidence this solid was identified as L1, (115).
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(109)
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X
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(112)
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(115- L1)

XC T ^ C I

(113)

Figure 2-8: Conversion of the calixarene tetra-acid into the amide, ligand L I.

2.2.2 S yn thes is  o f ca lix [4 ]arene  am ides d ire c tly  from  acids

An alternative strategy for the direct conversion of acids to amides involves using 

1,3-dicyclohexylcarbodiimide (DCC), as a coupling agent (116). This would mean the 

amide could be formed in a one pot reaction, avoiding the acid chloride intermediate, 

and reducing the number of steps involved in the synthesis. The mode of action of 

DCC is outlined in Figure 2-9.

A . N = C = N

(116)

H2NR1
u

X

Figure 2-9: Mode of action of coupling of amines with carboxylic acids using 1,3- 

dicyclohexylcarbodiimide.

Considering this as an alternate route, the synthesis of the opposite enantiomer of p- 

allyl calix[4]arene propranolol tetra amide was undertaken employing the R-
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propranolol isomer, the tetra acid (112) and 1,3-dicyclohexylcarbodiimide. This 

resulted in a pale yellow solid, the IR spectrum of which displayed carbonyl stretches 

at 1636 and 1654 cm'1 representing both the presence of amide and acid functions. 

Mass spectral data of this solid however showed that not all of the acid moieties had 

undergone reaction, resulting in a mixture of tri-acid/ mono-amide and di-acid/ di­

amide substituted calix[4]arene (117a, b).

Figure 2-10: Structures ofDCC reaction mixture (117).

The reasons for the partial substitution of the calixarene may include steric 

inaccessibility of DCC with the lower rim of the calix[4]arene. It is relatively easy to 

visualise how this may occur if one considers the bulky reaction intermediates 

involved in these coupling procedures. When it is considered that the four acid 

groups of the calix[4]arene are organised in a cyclic array, it is conceivable that steric 

hindrance may be one of the reasons responsible for the lack of full substitution of 

the calixarene acid functionalities. Further optimisation of this synthetic procedure 

was not undertaken due to the expense of the reactant, R-propranolol. This 

enantiomer is not as readily available as the S-isomer, and is four times more 

expensive than its S-form, thereby rendering it less attractive as a building block for a 

sensor molecule, which ideally should be relatively inexpensive and straightforward 

to synthesise.
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(112) was refluxed in thionyl chloride and following the removal by distillation of 

thionyl chloride, a solution of (102) and triethylamine in dry THF was added to 

calixarene (113). This was stirred at room temperature under N2 for 24 hrs, and 

following work-up yielded merely a mixture of starting products. The reaction was 

repeated in chloroform as solvent however, again only a mixture of starting materials 

was recovered after the reaction. A possible reason for the lack of success of the 

reaction may be due to steric reasons, since there is not as much flexibility in the 

naphthylamine molecule as the propranolol label previously used in the case of L1, 

which may hinder the progress of the reaction. In the case of the tetra acid (112), the 

lower rim of the calixarene is quite crowded making the substitution immediately 

adjacent onto a naphthalene ring difficult from a steric point of view. Also the fact that 

naphthylamine is less nucleophilic than aliphatic amines may have prevented the 

reaction from occurring.

2.2.3 Synthesis of novel calix[4]arene tetra-amides via acid chlorides

soci.

(112)

n h 2r

Et3N

Figure 2-11: General formation of calixarene tetra-amides, where NH2R is either 

(102) or (104).

(112) was refluxed in thionyl chloride for 2 hours. Following the removal by distillation 

of thionyl chloride, a solution of (104) and triethylamine in dry THF was added to this 

calixarene tetra acid chloride. This was stirred at room temperature under N2 for 24 

hrs, and following work-up yielded merely a mixture of unidentifiable products, which 

did not have peaks in the 1H-NMR that would represent amide formation with this 

amine. Mass spectral data of these solids showed molecular ions with masses, which 

were not consistent with full substitution of the acid groups or with any combination of 

partial substitution of the calixarene.
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After several attempts at these two reactions an alternative synthetic route was 

pursued which involves formation of amide moieties separately which are then 

appended to the calix[4]arene (108) frame, which will be discussed in section 2.2.4.

2.2.4 S yn thes is  o f ca lix [4 ]arene  am ides by append ing  pre-form ed 

am ides via  phenol hyd roxy  g roups

To endeavour to avoid such partial substitutions in derivatives of the p-allyl 

calix[4]arene an approach whereby the synthesis of single amide moieties, which can 

then be appended to the calix[4]arene via the hydroxy groups of the phenolic 

subunits was attempted. This can be achieved in two steps,

1. generation of the amide from a fluorescent amine with a molecule bearing 

both an acid group and a halogen component,

2. nucleophilic displacement of the halogen to form an ether connection 

between the calixarene annulus and the amide groups.

2.2.4.1 S yn thes is  o f am ides from  flu o resce n t am ines

Bromoacetic acid (118) was chosen as a suitable molecule, which incorporates both 

an acid group and the halogen necessary to facilitate attachment to the calixarene 

hydroxy group. As a test molecule, naphthylamine was chosen due to its ready 

availability and low cost. (118) was placed with (104) in dichloromethane solution 

under nitrogen, cooled to 0°C, followed by the addition of DCC. After thirty minutes at 

this temperature the reaction mixture was allowed to warm up to room temperature 

and proceed for 6 hours, which resulted in a pale purple solid with m.p. 148-150 °C. 

The IR spectrum of this solid displayed a peak at 1660cm'1 which represents the 

carbonyl stretch of the amide group. The 1H-NMR spectrum displayed a singlet at 

4.16ppm, which represents the two protons of the methylene group between the 

bromine and amide functions, in addition to the protons of the naphthalene. Mass 

spectral data of this solid showed two molecular ion peaks with a mass of 265 and 

266 which were equal in intensity to each other, due to the 1:1 isotopic abundance of 

bromine, which represented the molecular mass of the amide + hydrogen. On the 

basis of this evidence the solid was identified as 2-bromo-/V-1-naphthylacetamide

(119).
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(118) (102) (119)

Figure 2-12: Reaction between bromoacetic acid (118) and 1-naphthylamine (102) 

using activating agent 1,3-dicyciohexylcarbodiimide.

In order to develop a sensor molecule that could function as a chiral sensor we 

decided to introduce a chiral fluorescent amine as a building block, which is why S- 

naphthylethylamine (103) was chosen as the amine for an alternative coupling 

reaction. (118) was placed in dichloromethane solution with (103) under nitrogen, 

cooled to 0°C, followed by the addition of DCC. After thirty minutes at this 

temperature the reaction mixture was allowed to warm up to room temperature and 

proceed for 6 hours, which resulted in pale orange needles with m.p. 130-131 °C. The 

IR spectrum of this solid displayed a peak at 1650cm'1 which represents the carbonyl 

stretch of the amide group. The 1H-NMR spectrum displayed two doublets at 

3.82ppm and 3.87ppm (J=13.2Hz), which represent the two protons of the methylene 

group between the bromine and amide functions. On the basis of this evidence the 

solid was identified as 2-bromo-N-[1-(1-naphthyl)ethyl]-acetamide (120).

Tryptophan is an essential amino acid, which is both chiral in nature and has a 

delocalised rc-system, which undergoes fluorescence. The methyl-ester derivative of 

this amine (104) is inexpensive and can be easily purchased, and would provide an 

interesting comparison to the previous chiral amine described. (118) and (104) were 

placed in dichloromethane solution under nitrogen, cooled to 0°C, followed by the 

addition of DCC. After thirty minutes at this temperature the reaction mixture was 

allowed to warm up to room temperature and to proceed for 6 hours, which resulted 

in a light brown solid, m.p. 140-141 °C. The IR spectrum of this solid displayed peaks 

at 1672 and 1744 cm'1 which represents the carbonyl stretching of the amide and 

ester groups. The 1H-NMR spectrum displayed a singlet at 3.98ppm, which 

represents the two protons of the methylene group between the bromine and amide
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functions. The chiral hydrogen of the residue was shifted to 4.93ppm (from 3.87ppm 

in the starting material) and a single doublet at 3.8ppm represent the protons of the -  

CH2- between the chiral centre and indole group, which were represented in the 

starting material by two sets of double doublets. On the basis of this evidence the 

solid was identified as 2-bromo-/V-acetamide methyl tryptophanoate (121) m.p. lit. 

141-142°C. [4].

(120) (121)

Having successfully formed the desired fluorescent amide subgroups it was then 

necessary to append these to the p-allyl calix[4]arene. This was attempted by a 

series of reactions employing calix[4]arene (106) and p-allyl calix[4]arene (108).

2.2.4.2 S yn thes is  o f ca lixarene am ides

Calix[4]arene (106) was refluxed in acetone with (119) and potassium carbonate for 

five days. This yielded a white solid that was identified as a mixture of products by 

thin layer chromatography (TLC). Purification by column chromatography isolated 

two products as white crystalline solids. The first product isolated had a m.p. 270- 

272°C, and the IR spectrum of this solid had peaks at 3388, 3289 and 1677cm'1 

representing hydroxy, amine and carbonyl stretching correspondingly. The 1H-NMR 

spectrum of this solid had two sets of doublets at 3.38 and 3.55ppm and at 4.05 and 

4.29ppm representing the eight protons of the methylene bridges between the phenol 

units of the calixarene. A singlet was observed at 4.82ppm, which represents two 

protons of the ether to carbonyl methylene group. Mass spectral data of this solid 

showed a molecular ion with a mass of 630, which represented the molecular mass 

of the monoamide + sodium. On the basis of this evidence the solid was identified as 

mono-A/-1-acetamide calix[4]arene (122).

The second product isolated had a m.p. 294-296°C, and peaks at 1686 and 

3336cm'1 in its IR spectrum representing carbonyl and hydroxy stretching. The 1H- 

NMR spectrum of this solid had two sets of doublets at 3.38 and 3.55ppm and at 4.05 

and 4.29ppm representing the eight protons of the methylene bridges between the
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phenol units of the calixarene. A singlet was observed at 4.82ppm which represents 

two protons of the ether to carbonyl methylene group. Mass spectral data of this 

solid showed a molecular ion with a mass of 813, which represents the molecular 

mass of the di-amide + sodium. On the basis of this evidence the solid was identified 

as 26, 28-di-A/-1-acetamide calix[4]arene (123).

Tetra-p-allyl calix[4]arene (108) was refluxed in acetone with (119) and potassium 

carbonate for five days. This yielded a white solid, which was identified as a mixture 

of products by thin layer chromatography (TLC). Purification by column 

chromatography isolated two products. The first product had a m.p. 210-214°C, and 

carbonyl, amine and hydroxy stretching in its IR spectrum represented by peaks at 

1696, 3312 and 3364cm'1. The 1H-NMR spectrum of this solid had two sets of 

doublets at 2.98 and 3.27ppm representing the eight alkyl protons of the allyl 

systems. A singlet was observed at 4.44ppm, which represents four protons of two 

ether to carbonyl methylene groups. Two multiplets, which are characteristic of the 

allylic proton were observed at 5.66 and 5.92ppm. Mass spectral data of this solid 

showed a molecular ion with a mass of 973, which represented the molecular mass 

of the p-allyl di-amide + sodium. On the basis of this evidence the solid was identified 

as 5, 11, 17, 23-tetraallyl-25, 27-di-A/-1-acetamide calix[4]arene (124).

The second solid isolated from this reaction had a m.p. 130-134°C, and 

carbonyl and hydroxy stretching represented by peaks at 1677 and 3349cm'1 in its IR 

spectrum. The 1H-NMR spectrum of this solid had three sets of doublets at 2.75, 2.91 

and 3.24ppm, representing the eight alkyl protons of the allyl systems. Three 

multiplets, which are characteristic of the allylic proton, were observed at 5.50, 5.66 

and 5.87ppm. Mass spectral data of this solid showed a molecular ion with a mass of 

1156, which represented the molecular mass of the p-allyl tri-amide + sodium. On the
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basis of this evidence the solid was identified as 5, 11, 17, 23-tetraallyl-25, 26, 27-tri- 

A/-1-acetamide calix[4]arene (125).

(108) was refluxed in acetone with (120) and potassium carbonate for five days. This 

yielded a light brown solid, which was identified as a mixture of products by thin layer 

chromatography (TLC). After column chromatography an off-white solid was obtained 

with m.p. 120-124°C, the IR spectrum of which had carbonyl-amide, hydroxy and 

amine stretching represented by peaks at 1675, 3323 and 3403cm'1 respectively. 

The 1H-NMR spectrum of this solid had characteristic multiplets of the naphthalene 

rings between 7.12 and 7.48ppm, the two chiral hydrogens of the appended amides 

was represented by two multiplets at 6.02 and 5.64ppm, and the three methyl 

protons adjacent to the chiral centre were represented by two doublets at 1.89 and 

1.32ppm. Mass spectral data of this solid showed a molecular ion with a mass of 

1029, which represented the molecular mass of the p-allyl di-amide (126) + sodium. 

On the basis of this evidence the solid was identified as 5, 11, 17, 23-tetraallyl-25,

27-di-A/-[1-(1-naphthyl)ethyl]-acetamide calix[4]arene (126).

(108) was refluxed in acetone with (121) and potassium carbonate for five 

days. This yielded a yellow solid, which was identified as a mixture of products by 

thin layer chromatography (TLC). After column chromatography an off-white solid 

was obtained with m.p. 100-104°C, the IR spectrum of which had carbonyl-amide 

and -ester, hydroxy and amine stretching represented by peaks at 1676, 1744, 3309 

and 3504cm'1 respectively. The 1H-NMR spectrum of this solid had a multiplet 

between 7.09 and 7.28ppm, representing the protons of the indole system. The chiral 

hydrogen of the tryptophan subunit was represented by a multiplet at 5.34ppm, and
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the three methyl ester protons were represented by a singlet at 3.88ppm. Mass 

spectral data of this solid showed a molecular ion with a mass of 865, which 

represented the molecular mass of the p-allyl mono-amide (127) + sodium. On the 

basis of this evidence the solid was identified as 5, 11, 17, 23-tetraallyl-25-mono-/V- 

acetamide methyl tryptophanoate calix[4]arene (127).

In order to prove whether the di-amides produced were substituted at 

adjacent or opposite hydroxy groups on the calix[4]arenes, it was necessary to 

prepare one of these isomers to compare with the products previously obtained. The 

synthesis of 1,3-dialkylated calix[4]arenes has undergone extensive study in our 

research and literature preparation have been much improved on by Wall [5]. This 

provides a relatively simple manner in which calix[4]arenes are stirred at room 

temperature in acetonitrile for four days, with two equivalents of the desired alkyating 

group and one equivalent of base, which yields a di-alkylated calix[4]arene with 

substitution occurring at opposite phenoxy groups. Subsequent purification by 

column chromatography produces the 1,3-di-alkylated calixarene in approximately 

50% yield. The calix[4]arene (123) and p-allyl calix[4]arenes (124) and (126) were 

produced in this manner, and had spectroscopic data consistent with the products 

obtained by the reaction in refluxing acetone. This then proved what was already 

suggested by the corresponding 1H-NMR spectra, that the di-alkylated products 

obtained by reaction in acetone were 1,3 in nature.
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Since calix[4]arene esters and amides have such interesting and varying ion-binding 

and ion-selectivity properties, it was also considered how mixing these types of 

groups would change the host : guest characteristics of these molecules.

(106) was stirred in acetonitrile at room temperature followed by the addition of two 

equivalents of ethyl bromoacetate and one equivalent of potassium carbonate for 

four days under N2. This yielded a white solid m.p. 172-174°C, the IR spectrum of 

which displayed a carbonyl stretch at 1753cm'1 and a hydroxy stretch at 3425cm'1. 

The 1H-NMR spectrum displayed a singlet at 4.77ppm representing the two protons 

of the ether linkage to the carbonyl group and a quartet and triplet at 4.37 and 

1.39ppm representing two and three protons each of the ester group. Mass spectral 

data of this solid showed a molecular ion with a mass of 635, which represented the 

molecular mass of the di-alkylated calix[4]arene + potassium. On the basis of this 

evidence the solid was identified as 25, 27-diethylester calix[4]arene (128).

(108) was stirred in acetonitrile at room temperature followed by the addition 

of two equivalents of ethyl bromoacetate and one equivalent of base. This yielded a 

white solid m.p. 72°C, the IR spectrum of which displayed a carbonyl stretch at 

1754cm'1, a hydroxy stretch at 3422cm'1, and a hydroxy stretch at 3364cm*1. The 1H- 

NMR spectrum displayed a singlet at 4.76ppm representing the two protons of the 

ether linkage to the carbonyl group and a quartet at 4.35ppm and a triplet at 1.38ppm 

representing two and three protons of the ester group respectively. Mass spectral 

data of this solid showed a molecular ion with a mass of 779, which represented the 

molecular mass of the di-alkylated calix[4]arene + sodium. On the basis of this 

evidence the solid was identified as 5, 11, 17, 23-tetraallyl-25, 27-diethylester 

calix[4]arene (129).
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(128) was refluxed in acetone with (119) and potassium carbonate for five days. This 

yielded a white solid that was identified as a complex mixture of products by thin 

layer chromatography (TLC). However following several attempts at purification by 

liquid chromatography, only starting materials were isolated.

(129) was refluxed in acetone with (119) and potassium carbonate for five 

days. After purification by liquid chromatography an off-white solid was isolated with 

m.p. 86-88°C. The IR spectrum of this compound displayed a carbonyl stretch at 

1757cm'1, an amide stretch at 1637cm'1, an amine stretch at 3327cm'1, and a 

hydroxy stretch at 3344cm'1. The 1H-NMR spectrum of this solid was very 

complicated and requires further study for complete characterisation. Mass spectral 

data of this solid showed a molecular ion with a mass of 962, which represents the 

molecular mass of the p-allyl calix[4]arene di-ester mono-amide + sodium. On the 

basis of this evidence the solid was identified as 5, 11, 17, 23-tetraallyl-25, 27- 

diethylester-26-mono-/V-naphthylacetamide calix[4]arene (130).

These results indicate that a five-fold excess of alkylating agent in conjunction with 

potassium carbonate as base are not suitable conditions for the full alkylation of 

calix[4]arenes.
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2.3 Conclusion

The synthesis of L1 was successful via the acid chloride route (section 2.2.1). This 

synthesis however is quite long, and therefore an attempt was made to shorten the 

number of reaction steps. Using DCC as a coupling agent to form amides directly 

from calixarene tetra-acids does not achieve tetra-substituted amides. It was 

necessary therefore to find an alternative route to produce tetra-amide substituted 

calixarenes. The cost of the appended ligand S-propranolol in L1 was considered 

expensive as a building block for a sensor molecule. Bearing this mind 1- 

naphthylamine (102), S-naphthylethylamine (103) and tryptophan methyl ester (104) 

were chosen as appendages due to their low cost, ready availability and suitable 

fluorescent and hydrogen bonding properties.

The alternative route taken to produce calixarene tetra-amides involved two steps

1. formation of the amide moiety

2. attachment of amide moieties to calixarene backbone

The first of these two steps was carried out successfully and led to the formation of 

three amide units (119), (120) and (121). The second step however suffered from 

partial substitution, and resulted in a series of mono, di and tri substituted fluorescent 

calixarenes. A five-fold excess of the amide moiety was used which is not sufficient 

to complete the tetra-substitution. Potassium carbonate as base may not be strong 

enough to allow the reaction to go to completion. A stronger base with a greater 

excess of alkylating agent (amide) could possibly produce tetra-substituted amides.
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2.4 Experimental

2.4.1 P rocedure and E qu ipm ent

IR spectral analysis was carried out on a Nicolet Impact 410 FTIR. KBr was 

purchased from Sigma-Aldrich of puriss grade (99%).

1H-NMR spectra were obtained using a Bruker Avance (400MHz) instrument. 

Measurements were generally carried out in CDCI3 unless otherwise stated. 

Chemical shifts were recorded relative to TMS. The spectra were converted from 

their free induction decay (FID) profiles using XWIN-NMR software.

Mass spectral data was obtained using a Brucker/Hewlett-Packard Esquire 

LC-MS. Measurements were carried out using electrospray ionisation (ESI) after 

direct injection into the ESI source (positive mode) at a rate of 5|il min'1. The 

nebulisation gas and drying gas were set to 15 psi and 4 I min‘1 respectively and the 

source temperature maintained at 250 °C. The octupole voltage was 2.83 V, skimmer 

1 voltage was 50 ± 5 V and the trap drive voltage was 57 ± 2 V. All samples were 

dissolved in acetonitrile at a concentration of approximately 0.1 mg/ml.

TLC plates used were purchased from Fluka, and were silica gel TLC cards,

0.2mm layer thickness.
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2.4.2 Synthetic Procedures 

Calix[4]arene (106) [1]

A slurry of p-f-butyl calix[4]arene (105) (26.60g, 41.0mmol), phenol (18g, 190mmol) 

and aluminium chloride (28g, 210mmol) was stirred in dry Toluene (250cm3) under 

nitrogen at room temperature for one hour. 500cm3 of HCI (0.2M) was added to the 

reaction mixture in an ice bath. The two-phase system was separated and the 

organic layer was reduced in vacuo and treated with methanol which precipitated the 

pure white dealkylated tetramer in 74% yield, (12.80g).

m.p. 314-318°C. Lit.[1] 315-318°C.

I.R.umax (KBr) [cm-1]: 3157 (OH str.)

1H-NMR (400MHz) 6 (CDCI3) [ppm]: 3.55 (8H, d, broad, Ar-CHA-Ar), 4.25 (8H, d, 

broad, Ar-CHB-Ar), 6.73 - 7.08 (12H, m, ArH, 2, 3 and 4) 10.22 (4H, s, Ar-OH).

25,26,27,28-Tetra-o-allyl-calix[4]arene (107) [2]

Calix[4]arene (106) (9.81, 23.3mmol) was added to a solution of sodium hydride 

(4.44g, l86mmol) in dry THF/DMF (4:1, 100cm3) under N2 and the reaction was 

refluxed with stirring for 30 minutes. The reaction was cooled and allyl bromide 

(22.50g, 186mmol) was added and the reaction mixture was maintained at reflux for 

3 days. Excess sodium hydride was carefully destroyed by addition of water. The 

mixture was reduced in vacuo and the residue partitioned between dichloromethane 

and water. The organic layer was separated, dried over magnesium sulphate, the 

solvent was evaporated and the resulting residue was recrystallised from methanol/ 

dichloromethane to give white needles in 63% yield, (8.40g).

m.p. 188-188.5°C. Lit.[2] 186-187°C.

I.R.umax (KBr) [cm'1]: 2815, 2922 (CH-aliphatic str.), 3005, 3112 (CH-aromatic str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 3.07 (4H, d, J=13.6Hz, Ar-ChU-Ar), 4.34 (4H, d, 

J=13.6Hz, Ar-CHe-Ar), 4.39 (8H, d, J=6.4Hz, Ar-0-C]±r) 5.09-5.20 (8H, m, - 

CH=CH2(allyl)), 6.24-6.31 (4H, m, -CH=CH2(allyl)), 6.51 - 6.58 (12H, m, ArH, 2, 3 and 

4).
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5.11.17.23-Tetraallyl-calix[4]arene (108) [3]

Tetra-o-allyl-calix[4]arene (107), (6.30g, 10.8mmol) in N,N-diethylaniline (50cm3) was 

refluxed for two hours under N2. After acidification with conc. HCI and filtration, the 

crude product was recrystallised from isopropanol to give a cream coloured solid in 

80% yield, (5.10 g).

m.p. 248-249°C. Lit.[3] 250.5-252oC.

I.R.umax (KBr) [cm-1]: 3157 (OH str.)

1H-NMR (400MHz) 8 (CDCI3) [ppm]: 3.22 (8H, d, J=6.8Hz, -CH2CH=CH2) 3.48 (4H, d, 

J=13.6Hz, Ar-ChU-Ar), 4.24 (4H, d, J=13.6Hz, Ar-CHB-Ar), 5.05-5.10 (8H, m, - 

CH=CH2), 5.85-5.95 (4H, m, -CH=CH2), 6.88 (8H, s, ArH, 2 and 4) 10.18 (4H, s, - 

OH).

5.11.17.23-Tetraallyl-25,26,27,28-tetra(ethoxycarbonylmethyl)calix[4]arene (109)

Tetra-(p-allyl)-calix[4]arene (108), (5.1 Og, 8.8mmol) was refluxed in dry acetone (60 

cm3) with anhydrous K2C 03 (7.80g, 52.8mmol) and ethyl bromoacetate (18.8cm3, 

74.8mmol) under N2 for five days. The reaction mixture was filtered, concentrated 

and redissolved in CHCI3, which was then washed, dried, filtered and concentrated, 

and the residue recrystallised from dichloromethane/ methanol to give a white 

crystalline solid in 50% yield, (4.06 g).

m.p. 97.5-98.5°C.

I.R.Umax (KBr) [cm 1]: 1757 (C=0 str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 1.20 (12H, t, -0-CH2CH3) 2.98 (8H, d, J=6.8Hz, 

Ar-Chb-(allyl)) 3.08 (4H, d, J=13.6Hz, Ar-ChU-Ar), 4.09-4.17 (12H, Ar-CHB-Ar and -O- 

ChbCHs overlapping), 4.65 (8H, s, -O-Chh-CO-) 4.73-4.89 (8H, m, -CH=CH2(allyl)), 

5.67-5.71 (4H, m, -CH=CH2(allyl)), 6.42 (8H, s, ArH, 2 and 4).

5.11.17.23-Tetra(2-hydroxyethyl)-25,26,27,28-tetra(ethoxycarbonylmethyl)- 

calix[4]arene (110) [3]

Tetra-(p-allyl)-tetra-ethyl ester (109) (2.25g, 3.5mmol) in dichloromethane/methanol 

(3:1, 40cm3) was cooled in a dry ice/ acetone bath and treated with 0 3 until ozone 

was present in excess. Nitrogen was then bubbled through the solution and sodium 

borohydride (1.65g, 43.5mmol) was added. This reaction mixture was stirred at room
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temperature for 4 hours, poured onto an ice-cold dilute HCI solution and partitioned 

between dichloromethane and water to yield a crude sample as a white resin. 

Recrystallisation from 3:5 acetone: hexane produced white microcrystals in 50% 

yield, (1.65g).

m.p. 68-70°C.

I.R.umax (KBr) [cm'1]: 1758 (C=0 str.), 3414 (OH str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 1.15 (12H, t, -COO-CH2CH3) 2.57 (8H, t, Ar- 

CH2CH2OH) 3.09 (4H, d, J=13.6Hz, Ar-CHA-Ar), 3.57 (8H, t, Ar-CH2CH20H) 4.01 

(1H, s, broad, ArOH) 4.21 (8H, q, -COO-ChhCH^, 4.79 (8H, s, O-CHrCO-), 4.85 

(4H, d, J=13.6Hz, Ar-CHe-Ar), 6.62 (8H, s, ArH, 2 and 4).

5.11.17.23-Tetraallyl-25,26,27,28-tetra(carboxymethyl)calix[4]arene (112)

Tetra-(p-allyl)-tetra-ethyl ester (109) (2.03g, 2.2mmol) was hydrolysed to its 

carboxylic acid sodium salt by refluxing with NaOH (1.67g, 42.0mmol) in ethanol (50 

cm3), followed by acidification with 50% aqueous H2S04 and filtration to give 87% of 

the corresponding acid, (1.55 g).

m.p. decomposed above 220°C.

I.R.umax (KBr) [cm'1]: 1685 (C=0 str.), 3433 (OH str.)

1H-NMR (400MHz) 6 (CDCI3) [ppm]: 3.13 (8H, d, J=6.8Hz, Ar-ChMallyl)) 3.27 (4H, d, 

J=13.6Hz, Ar-CHA-Ar), 4.35 (12H, Ar-CHB-Ar and -O-Chb-CO- overlapping), 4.96- 

5.03 (8H, m, -CH=CH2(allyl)), 5.79-5.81 (4H, m, -CH=CH2(allyl)), 6.84 (8H, s, ArH, 2 

and 4).

ESIMS (acetonitrile) m/e (rel intensity): 839 (MNa+,100%).

5.11.17.23-Tetraallyl-25,26,27,28-tetra[(S-propranolol-amide)oxy]calix[4]arene 

(115) L1

Tetra-(p-allyl)-tetra-acid (112) (0.31g, 0.40mmol) was subsequently converted to the 

acid chloride by a 2 hour reflux in thionyl chloride (10cm3), followed by removal of 

volatiles, which was used immediately. To the acid chloride (113) (0.30g, 0.40mmol) 

in dry THF (5cm3), S-propranolol (0.44g, 1.6 mmol) and triethylamine (0.24cm3, 

1.6mmol) was added with stirring at room temperature for 24 hours. A pale yellow
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product was isolated, and purified by column chromatography (silica, ethyl acetate / 

methanol). This yielded a yellow solid in 40% yield, (0.27g) (115, L1).

m.p. decomposes above 190°C

I.R.i)max (KBr) [cm’1]: 1654 (C=0 str.(amide)), 3435 (OH str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 1.13 and 1.37 (12H each, N-CH-(CH3)2), 3.09- 

3.15 (12H, Ar-ChU-Ar and Ar-CHr(allyl) overlapping), 3.4-4.1 (20H, overlaping, N- 

Chb, N-CH, Ctb-O-Naphth), 4.2-4.7 (16H, overlapping, chiral CH, Ar-CHB-Ar, Ar-O- 

CH2), 4.94 and 4.96 (d, 4H each, CH-Chbiallyl)), 5.8 (m, 4H, CH2-CH=CH2), 6.62 (d, 

4H, naphthyl), 6.8 (8H, s, phenolic benzene), 7.19 (d, 4H, naphthyl), 7.35 (m, 12H 

naphthyl), 7.66 (d, 4H, naphthyl), 8.19 (d, 4H, naphthyl).

ESIMS (acetonitrile) m/e (rel intensity): 1805 (MNa\100%).

5.11.17.23-Tetraallyl-mono[(R-propranolol-amide)oxy]calix[4]arene (117a)

5.11.17.23-Tetraallyl-di[(R-propranolol-amide)oxy]calix[4]arene (117b)

Tetra-(p-allyl)-tetra-acid (113) (0.12g, 0.14mmol) was dissolved in anhydrous 

dichloromethane (30cm3) with R-propranolol (0.15g, 0.58mmol) and triethylamine 

(0.06g, 0.58mmol). The mixture was cooled to 0°C, and 1,3-dicyclohexylcarbodiimide 

(0.12g, 0.58mmol) added. After 30 minutes the solution was raised to room 

temperature and the reaction allowed to proceed for 24hr. The precipitated N,N- 

dicyclohexylurea was removed by filtration and the filtrate washed with dilute HCI 

solution and water and subsequently dried over magnesium sulphate. The solvent 

was evaporated in vacuo and the residue purified by column chromatography (silica, 

ethyl acetate / methanol). This yielded the title products, as a mixture of mono and di­

substituted calix[4]arene as a yellow solid (0.103g, 40%).

m.p. decomposes above 200°C.

I.R.Umax (KBr) [cm'1]: 1619-1654 (broad, C=0 str.(amide) and C=0 str.(amide) 

overlapping), 3448 (broad, OH str.)

ESIMS (acetonitrile) m/e (rel intensity): 1097(monoamide), 1336.6(diamide)

(MK+,100%).
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2-Bromo-A/-1 -naphthylacetamide (119)

Bromoacetic acid (118) (4.36g, 31.4mmol) was dissolved in anhydrous

dichloromethane (50cm3) with 1-naphthylamine (102) (4.50g, 31.4mmol). The mixture 

was cooled to 0°C, and 1,3-dicyclohexylcarbodiimide (6.48g, 31.4mmol) added. After 

30 minutes the solution was raised to room temperature and the reaction allowed to 

proceed for 6hr. The precipitated N,N-dicyclohexylurea was removed by filtration and 

the filtrate washed with water and dried over magnesium sulphate. The solvent was 

evaporated in vacuo and recrystallisation from acetonitrile yielded the title product as 

an off-white solid in 48% yield, (3.98g).

m.p. 148-150°C.

I.R.umax (KBr) [cm*1]: 1660 (C=0 str.(amide)), 3255 (NH str.)

1H-NMR (400MHz) 6 (CDCI3) [ppm]: 4.16 (2H, s, Br-CJi-CONH-), 7.46-7.57 (3H, m, 

naphthyl), 7.73 (1H, d, J=8Hz, naphthyl), 7.86-7.91 (3H, m, naphthyl), 8.72 (1H, s, 

broad, -NH-).

ESIMS (acetonitrile) m/e (rel intensity): 265, 266 (MH\100%).

2-Bromo-N-[1 -(1 -naphthyl)ethyl]acetamide (120)

Bromoacetic acid (118) (2.18g, 15.7mmol) was dissolved in anhydrous

dichloromethane (30cm3) with S-naphthylethylamine (103) (2.69g, 15.7mmol). The 

mixture was cooled to 0°C, and 1,3-dicyclohexylcarbodiimide (3.24g, 15.7mmol) 

added. After 30 minutes the solution was raised to room temperature and the 

reaction allowed to proceed for 6hr. The precipitated N,N-dicyclohexylurea was 

removed by filtration and the filtrate washed with water and dried over magnesium 

sulphate. The solvent was evaporated in vacuo and recrystallisation from acetonitrile 

yielded the title product as an off-white solid in 52% yield, (2.38g).

m.p. 130-131°C.

I.R.Umax (KBr) [cm*1]: 1650 (C=0 str.(amide)), 3269 (NH str.)

1H-NMR (400MHz) 6 (CDCI3) [ppm]: 1.69 (3H, d, J=6.8Hz, -CH-CH3), 3.82 (1H, d, 

J=13.2Hz, Br-Chb-CONH-), 3.87 (1H, d, J=13.2Hz, Br-Chb-CONH-), 5.90 (1H, m, - 

CH-CH3), 6.94 (1H, d, broad, NH), 7.46-7.59 (3H, m, naphthyl), 7.83 (1H, d, J=8Hz, 

naphthyl), 7.90 (1H, d, J=8Hz, naphthyl), 8.05 (1H, d, J=8Hz, naphthyl).
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2-bromo-/V-acetamide methyl tryptophanoate (121)

Bromoacetic acid (118) (2.18g, 15.7mmol) was dissolved in anhydrous

dichloromethane (30cm3) with tryptophan methyl ester (104) (3.40g, 15.7mmol). The 

mixture was cooled to 0°C, and 1,3-dicyclohexylcarbodiimide (3.24g, 15.7mmol) 

added. After 30 minutes the solution was raised to room temperature and the 

reaction allowed to proceed for 6hr. The precipitated N,N-dicyclohexylurea was 

removed by filtration and the filtrate washed with water and dried over magnesium 

sulphate. The solvent was evaporated in vacuo and yielded the title product as a light 

brown solid in 47% yield (2.15g).

m.p. 140-141°C. Lit.[4] 141-142°C.

I.R.umax (KBr) [cm'1]: 1672 (C=0 str.(amide)), 1744 (C=0 str.(ester)), 3400 (NH str.), 

3478 (NH str.).

1H-NMR (400MHz) 8 (CDCI3) [ppm]: 3.38 (2H, m, -CH2-CHNH2), 3.70 (3H, s, - 

COOCH3), 3.98 (2H, s, Br-Chh-CONH-), 4.94 (1H, m, -CH2-CHNH2), 6.99 (1H, s, 

broad -CONH-), 7.14-7.23 (3H, m, indole), 7.35 (1H, d, J=8Hz, indole), 7.56 (1H, d, 

J=8Hz, indole), 8.72 (1H, s, broad, -NH(indole)).

28-mono-carboxymethyl-calix[4]arene-1-naphthylamide (122)

26, 28-di-carboxymethyl-calix[4]arene di(l-naphthylamide) (123)

Calix[4]arene (106), (0.2g, 0.47mmol) was refluxed in 30cm3 of dry acetone with 

anhydrous K2C 03 (0.326g, 2.35mmol) and 2-bromo-N-1-naphthyl-acetamide (119) 

(0.62g, 2.35mmol) under N2 for five days. The reaction mixture was filtered, the 

solvent was evaporated in vacuo, and the residue purified by column 

chromatography (silica, ethyl acetate / hexane, 4:1). This yielded two white solids in 

30% yield (0.09g) (Rf: 0.16) (122) and 28% yield (0.11g) (Rf:0.13) (123).

Analysis for (122): m.p. 270-272°C.

I.R . iw  (KBr) [cm'1]: 1677 (C=0 str.(amide)), 3289 (NH str.), 3388 (OH str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 3.38 (2H, d, J=13.6Hz, Ar-CHA-Ar), 3.55 (2H, d, 

J=13.6Hz, Ar-CHA-Ar), 4.05 (2H, d, J=13.6Hz, Ar-CHe-Ar), 4.29 (2H, d, J=13.6Hz, 

Ar-CHe-Ar), 4.82 (4H, s, -O-Chb-CO-) 6.59-6.67 (3H, m, ArH, 2, 3 and 4), 6.84-6.91 

(3H, m, ArH, 2, 3 and 4), 6.97-7.05 (6H, m, ArH, 2, 3 and 4), 7.46-7.55 (3H, m, 

naphthyl), 7.76-7.85 (3H, m, naphthyl), 8.14 (1H, d, J=8Hz, naphthyl), 9.12 (2H, s, 

OH), 9.49 (1H, s, OH), 10.62 (1H, s, NH),.
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ESIMS (acetonitrile) m/e (rel intensity): 630 (MNa+,100%).

Analysis for (123): m.p. 294-296°C.

I.R.Omax (KBr) [cm 1]: 1686 (C=0 str.(amide)), 3336 (NH str.), 3400 (OH str.)

1H-NMR (400MHz) 8 (CDCI3) [ppm]: 3.48 (4H, d, J=13.6Hz, Ar-CHA-Ar), 4.21 (4H, d, 

J=13.6Hz, Ar-CHe-Ar), 4.45 (4H, s, -O-CH2-CO-) 6.54 (2H, t, ArH, 3), 6.72 (4H, d, 

J=7.6Hz, ArH, 2 and 4), 6.78 (2H, t, ArH, 3), 7.04 (2H, t, naphthyl), 7.12 (4H, d, 

J=7.6Hz, ArH, 2 and 4), 7.26-7.33 (6H, m, naphthyl), 7.43 (2H, d, J=8Hz, naphthyl),

7.67 (2H, d, J=8Hz, naphthyl), 8.00 (2H, d, J=8Hz, naphthyl), 9.62 (2H, s, -NH).

ESIMS (acetonitrile) m/e (rel intensity): 813 (MNa+,100%).

26, 28-di-carboxymethyl-calix[4]arene di(l-naphthylamide) (123) -[method by 

Wall-5]

Calix[4]arene (106), (2.5g, 5.88mmol) was stirred at room temperature in 30cm3 of 

dry acetonitrile with anhydrous K2CO3 (0.81 g, 5.88mmol) and 2-bromo-N-1 -naphthyl- 

acetamide (119) (3.1g, 11.78mmol) under N2 for four days. The reaction mixture was 

filtered, the solvent was evaporated in vacuo, and the residue purified by column 

chromatography (silica, ethyl acetate / hexane, 4:1). This yielded a white solid in 48% 

yield (2.23g).

m.p. 294-296°C.

I.R.Umax (KBr) [crn1]: 1686 (C=0 str.(amide)), 3336 (NH str.), 3400 (OH str.)

1H-NMR (400MHz) 8 (CDCI3) [ppm]: 3.48 (4H, d, J=13.6Hz, Ar-CHA-Ar), 4.21 (4H, d, 

J=13.6Hz, Ar-CHe-Ar), 4.45 (4H, s, -O-CH2-CO-) 6.54 (2H, t, ArH, 3), 6.72 (4H, d, 

J=7.6Hz, ArH, 2 and 4), 6.78 (2H, t, ArH, 3), 7.04 (2H, t, naphthyl), 7.12 (4H, d, 

J=7.6Hz, ArH, 2 and 4), 7.26-7.33 (6H, m, naphthyl), 7.43 (2H, d, J=8Hz, naphthyl),

7.67 (2H, d, J=8Hz, naphthyl), 8.00 (2H, d, J=8Hz, naphthyl), 9.62 (2H, s, -NH).

ESIMS (acetonitrile) m/e (rel intensity): 813 (MNa+,100%).
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5.11.17.23-Tetraallyl-26, 28-di(carboxymethyl) calix[4]arene di(l-naphthylamide) 

(124)

5.11.17.23-Tetraallyl-25,26,27-tri(carboxymethyl) calix[4]arene tri(1- 

naphthylamide) (125)

Tetra-p-allyl calix[4]arene (108), (0.2g, 0.34mmol) was refluxed in 30cm3 of dry 

acetone with anhydrous K2C 03 (0.237g, 1.7mmol) and 2-bromo-N-1-naphthyl- 

acetamide (119) (0.45g, 1.7mmol) under N2 for five days. The reaction mixture was 

filtered, the solvent was evaporated in vacuo, and the residue purified by column 

chromatography (silica, ethyl acetate / hexane, 4:1). This yielded two white solids in 

30% yield (0.10g) (Rf: 0.31) (124) and 33% yield (0.13g) (Rf: 0.17) (125).

Analysis for (124): m.p. 210-214°C.

I.R.umax (KBr) [cm 1]: 1696 (C=0 str.(amide)), 3312 (NH str.), 3364 (OH str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 2.95 (4H, d, J=6.4Hz, Ar-CtMallyl)), 3.26 (4H, 

d, J=6.4Hz, Ar-ChU-tallyl)), 3.42 (4H, d, J=13.6Hz, Ar-CHA-Ar), 4.17 (4H, d, 

J=13.6Hz, Ar-CHB-Ar), 4.43 (4H, s, -O-CJi-CO-) 4.72-5.00 (8H, m, -CH=Chb(allyl)),

5.61-5.68 (2H, m, -CH=CH2(allyl)), 5.88-5.94 (2H, m, -CH=CH2(allyl)), 6.65 (4H, s, 

ArH, 2 and 4), 6.91 (4H, s, ArH, 2 and 4), 7.01-7.06 (4H, m, naphthyl), 7.26-7.31 (4H, 

m, naphthyl), 7.40 (2H, d, J=8Hz, naphthyl), 7.64 (2H, d, J=8Hz, naphthyl), 8.01 (2H, 

d, J=8Hz, naphthyl) 9.71 (2H, s, -NH).

ESIMS (acetonitrile) m/e (rel intensity): 973 (MNa+,100%).

Analysis for (125): m.p. 130-134°C.

I.R.umax (KBr) [cm'1]: 1677 (C=0 str.(amide)), 3349 (NH str.), 3449 (OH str.)

1H-NMR (400MHz) 6 (CDCI3) [ppm]: 2.76 (2H, d, J=6.8Hz, Ar-CHHallyl)), 3.88-3.94 

(4H, overlaid, Ar-CHHallyl)), 3.08 (1H, d, J=13.6Hz, Ar-CHA-Ar), 3.25 (4H, overlaid, 

2H-Ar-CH2-(allyl) and 2H,-Ar-CHA-Ar), 3.67 (1H, d, J=13.6Hz, Ar-CHA-Ar), 3.87 (1H, 

d, J=13.6Hz, Ar-CHe-Ar), 3.98-4.07 (3H, m, 1H,-Ar-CHB-Ar and overlaid 2H.-0 -CH2- 

CO-), 4.4 (1H, d, J=13.6Hz, Ar-CHB-Ar) 4.5 (1H, d, J=13.6Hz, Ar-CHB-Ar) 4.65-5.00 

(8H, m, -CH=CH2(allyl) and overlaid 2H.-0 -CH2-C0 -), 5.48-5.50 (1H, m, - 

CH=CH2(allyl)), 5.65-5.67 (1H, m, -CH=CH2(allyl)), 5.85-5.92 (2H, m, -

CH=CH2(allyl)), 6.49-6.73 (6H, m, ArH), 6.89-6.95 (6H, m, ArH), 7.05-7.45 (9H, m, 

naphthyl), 7.50-7.78 (8H, m, naphthyl), 7.90-8.01 (3H, m, naphthyl), 8.33-8.39 (1H, d, 

J=8Hz, naphthyl).

ESIMS (acetonitrile) m/e (rel intensity): 1156.5 (MNa+,100%).
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5.11.17.23-Tetraallyl-26, 28-di(carboxymethyl) calix[4]arene di(l-naphthylamide) 

(124) [method by Wall-5]

Tetra-p-allyl calix[4]arene (108), (1.30g, 2.22mmol) was stirred at room temperature 

in 30 cm3 of dry acetonitrile with anhydrous K2C 03 (0.31 g, 2.22mmol) and 2-bromo-1- 

N-naphthyl-acetamide (119) (1.17g, 4.44mmol) under N2 for four days. The reaction 

mixture was filtered, the solvent was evaporated in vacuo, and the residue purified by 

column chromatography (silica, ethyl acetate / hexane, 4:1). This yielded a white 

solid in 50% yield (1.06g).

m.p. 210-214°C.

I.R.umax (KBr) [cm'1]: 1696 (C=0 str.(amide)), 3312 (NH str.), 3364 (OH str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 2.95 (4H, d, J=6.4Hz, Ar-CtMallyl)), 3.26 (4H, 

d, J=6.4Hz, Ar-ChMallyl)), 3.42 (4H, d, J=13.6Hz, Ar-ChU-Ar), 4.17 (4H, d, 

J=13.6Hz, Ar-CHe-Ar), 4.43 (4H, s, -O-CHrCO-) 4.72-5.00 (8H, m, -CH=Ctk(allyl)),

5.61-5.68 (2H, m, -CH=CH2(allyl)), 5.88-5.94 (2H, m, -CH=CH2(allyl)), 6.65 (4H, s, 

ArH, 2 and 4), 6.91 (4H, s, ArH, 2 and 4), 7.01-7.06 (4H, m, naphthyl), 7.26-7.31 (4H, 

m, naphthyl), 7.40 (2H, d, J=8Hz, naphthyl), 7.64 (2H, d, J=8Hz, naphthyl), 8.01 (2H, 

d, J=8Hz, naphthyl) 9.71 (2H, s, -NH).

ESIMS (acetonitrile) m/e (rel intensity): 973 (MNa\100%).

5.11.17.23-Tetraallyl-26, 28-di(carboxymethyl) calix[4]arene di(1- 

naphthylethylamide (126)

Tetra-p-allyl calix[4]arene (108), (0.20g, 0.34mmol) was refluxed in 30cm3 of dry 

acetone with anhydrous K2C 03 (0.24g, 1.7mmol) and (120) (0.50g, 1.7mmol) under 

N2 for five days. The reaction mixture was filtered, the solvent was evaporated in 

vacuo, and the residue purified by column chromatography (silica, ethyl acetate / 

hexane, 4:1). This yielded a white solid in 31% yield (0.11g).

m.p. 120-124°C.

I.R.Umax (KBr) [cm’1]: 1675 (C=0 str.(amide)), 3323 (OH str.), 3403 (NH str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 2.64 (1H, d, J=13.6Hz, Ar-ChU-Ar), 2.82 (2H, d, 

J=6.8Hz, Ar-CHr(allyl)), 2.86 (2H, d, J=6.8Hz, Ar-Chb-(allyl)), 2.95 (1H, d, J=13.6Hz, 

Ar-ChU-Ar), 3.14 (2H, d, J=6.8Hz, Ar-Chb-iallyl)), 3.22-3.27 (3H, 2d overlapping, Ar- 

CHHallyl) and Ar-ChU-Ar) 3.33 (1H, d, J=13.6Hz, Ar-ChU-Ar), 3.52-3.63 (3H, 3d 

overlapping, Ar-CHB-Ar), 4.06, (2H, d, J=15.2Hz, -O-Chh-CO-), 4.29 (2H, 2d,
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J=15.2Hz, -O-CH2-CO-), 4.72-5.01 (8H, m, -CH=CH2(allyl)), 5.52-5.63 (3H, m, - 

CH=CH2(allyl) and chiral H), 5.84-5.91 (2H, m, -CH=CH2(allyl)), 6.02-6.09 (1H, m, 

chiral H) 6.45-6.52 (4H, m, ArH), 6.55 (1H, s, ArH), 6.61 (2H, d, J=2.0Hz, ArH), 6.63 

(2H, d, J=2.0Hz, ArH), 6.84(1 H, s, ArH), 7.12-7.16 (2H, m, naphthyl), 7.19-7.40 (9H, 

m, naphthyl), 7.47(1 H, d, J=6.8Hz, naphthyl), 7.57 (1H, d, J=8Hz, naphthyl), 7.63 

(1H, d, J=8Hz, naphthyl), 8.89 (1H, d, J=7.6 Hz, NH ) 9.38 (1H, d, J=7.2Hz, NH)

ESIMS (acetonitrile) m/e (rel intensity): 1029.5 (MNa\100%).

5,11,17,23-Tetraallyl-26, 28-di(carboxymethyl) calix[4]arene di(1- 

naphthylethylamide (126) [method by Wall-5]

Tetra-p-allyl calix[4]arene (108), (0.20g, 0.34mmol) was stirred at room temperature 

in 30 cm3 of dry acetonitrile with anhydrous K2C 0 3 (0.05g, 0.34mmol) and (120) 

(0.20g, 0.68mmol) under N2 for four days. The reaction mixture was filtered, the 

solvent was evaporated in vacuo, and the residue purified by column 

chromatography (silica, ethyl acetate / hexane, 4:1). This yielded a white solid in 50% 

yield (0.17g).

m.p. 120-124°C.

I.R.umax (KBr) [cm'1]: 1675 (C=0 str.(amide)), 3323 (OH str.), 3403 (NH str.)

1H-NMR (400MHz) 8 (CDCI3) [ppm]: 2.64 (1H, d, J=13.6Hz, Ar-CHA-Ar), 2.82 (2H, d, 

J=6.8Hz, Ar-Chb-iallyl)), 2.86 (2H, d, J=6.8Hz, Ar-ChMallyl)), 2.95 (1H, d, J=13.6Hz, 

Ar-CHA-Ar), 3.14 (2H, d, J=6.8Hz, Ar-CHHallyl)), 3.22-3.27 (3H, 2d overlapping, Ar- 

Chb^allyl) and Ar-CHA-Ar) 3.33 (1H, d, J=13.6Hz, Ar-CHA-Ar), 3.52-3.63 (3H, 3d 

overlapping, Ar-CHB-Ar), 4.06, (2H, d, J=15.2Hz, -O-CJi-CO-), 4.29 (2H, 2d, 

J=15.2Hz, -O-CHz-CO-), 4.72-5.01 (8H, m, -CH=CH2(allyl)), 5.52-5.63 (3H, m, - 

CH=CH2(allyl) and chiral H), 5.84-5.91 (2H, m, -CH=CH2(allyl)), 6.02-6.09 (1H, m, 

chiral H) 6.45-6.52 (4H, m, ArH), 6.55 (1H, s, ArH), 6.61 (2H, d, J=2.0Hz, ArH), 6.63 

(2H, d, J=2.0Hz, ArH), 6.84(1 H, s, ArH), 7.12-7.16 (2H, m, naphthyl), 7.19-7.40 (9H, 

m, naphthyl), 7.47(1 H, d, J=6.8Hz, naphthyl), 7.57 (1H, d, J=8Hz, naphthyl), 7.63 

(1H, d, J=8Hz, naphthyl), 8.89 (1H, d, J=7.6 Hz, NH) 9.38 (1H, d, J=7.2Hz, NH)

ESIMS (acetonitrile) m/e (rel intensity): 1029.5 (MNa*,100%).
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5,11,17,23-Tetraallyl -28-mono-carboxymethyl- calix[4]arene A/-acetamide 

methyl tryptophanoate (127)

Tetra-p-allyl calix[4]arene (108), (0.2g, 0.34mmol) was refluxed in 30cm3 of dry 

acetone with anhydrous K2C 03 (0.237g, 1.7mmol) and (1 2 1 ) (0.46g, 1.7mmol) under 

N2 for five days. The reaction mixture was filtered, the solvent was evaporated in 

vacuo, and the residue purified by column chromatography (silica, ethyl acetate / 

hexane, 4:1). This yielded a white solid in 30% yield (0.09g).

m.p. 100-104°C.

I.R.Umax (KBr) [cm'1]: 1676 (C=0 str.(amide)), 1744 (C=0 str.(ester)), 3309 (OH str.), 

3504 (NH str.).

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 3.18-3.23 (5H, overlaid, Ar-C]±r(allyl) and Ar- 

CHA-Ar), 3.27-3.21 (4H, m, Ar-Chb-(allyl)), 3.41-3.60 (5H, overlaid, Ar-CHA-Ar, CH- 

CHi-indole), 3.99 (2H, d, J=13.6Hz, Ar-CHe-Ar), 4.10 (2H, d, J=13.6Hz, Ar-CHB-Ar) 

4.41 (1H, d, J=14.8Hz, -O-CH2-CO-), 4.67 (1H, d, J=14.8Hz, -O-Chb-CO-), 5.05-5.16 

(8H, m, -CH=CH2(allyl) 5.30-5.36 (1H, m, chiral H), 5.80-6.04 (4H, m, - 

CH=CH2(allyl)), 6.86-6.92 (8H, m, ArH), 7.09-7.28 (4H, m, indole), 6.67 (1H, d, 

J=7.6Hz indole), 8.01 (1H, s, broad, NH-indole), 8.90 (1H, s, OH), 9.34 (2H, m, 

overlapping OH and NH), 9.53 (1H, s, OH)

ESIMS (acetonitrile) m/e (rel intensity): 865 (MNa+,100%). 

25,27-di-ethoxycarbonylmethyl calix[4]arene (128)

Calix[4]arene (106), (2.0g, 4.70mmol) was stirred at room temperature in 30cm3 of 

dry acetonitrile with anhydrous K2CO3 (0.65g, 4.70mmol) and ethylbromoacetate 

((1.57g, 9.40mmol) under N2 for four days. The reaction mixture was filtered, the 

solvent was evaporated in vacuo, and the residue purified by column 

chromatography (silica, ethyl acetate / hexane, 4:1). This yielded a white solid in 55% 

yield, (1.54g).

m.p. 172-174°C.

I .R .U m a x  (KBr) [cm'1]: 1753 (C=0 str.(ester)), 3425 (OH str.)

1H-NMR (400MHz) 5 (CDCI3) [ppm]: 1.39 (12H, t, OCH2CH3), 3.44 (4H, d, J=13.2Hz, 

Ar-CHA-Ar), 4.37 (8H, q, OCHsCHs), 4.53 (4H, d, J=13.2Hz, Ar-CHB-Ar), 4.77 (4H, S, 

-O-Ctb-CO-) 6.70 (2H, t, J=7.2Hz, ArH, 3), 6.77 (2H, t, J=7.6Hz, ArH, 3), 6.94 (4H, d, 

J=7.6Hz, ArH, 2 and 4), 7.10 (4H, d, J=7.2Hz, ArH, 2 and 4), 7.68 (2H, s, -OH).
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ESIMS (acetonitrile) m/e (rel intensity): 635 (MK\100%).

5.11.17.23-Tetraallyl-25,27-di- ethoxycarbonylmethyl calix[4]arene (129)

Tetra-p-allyl-calix[4]arene (108), (2.0g, 3.40mmol) was stirred at room temperature in 

30 cm3 of dry acetonitrile with anhydrous K2C 03 (0.47g, 3.40mmol) and 

ethylbromoacetate (1.14g, 6.80mmol) under N2 for four days. The reaction mixture 

was filtered, the solvent was evaporated in vacuo, and the residue purified by column 

chromatography (silica, ethyl acetate / hexane, 4:1). This yielded a white solid in 58% 

yield, (1.49g).

m.p. 72°C.

I.R.umax (KBr) [cm'1]: 1754 (C=0 str.(ester)), 3422 (OH str.)

1H-NMR (400MHz) 8 (CDCI3) [ppm]: 1.39 (12H, t, OCH2CH3), 3.13 (4H, d, J=6.8Hz, 

Ar-CHHallyl)), 3.26 (4H, d, J=6.8Hz, Ar-CHriallyl)), 3.35 (4H, d, J=13.2Hz, Ar-CHA- 

Ar), 4.35(8H, q, OChbCH^, 4.48 (4H, d, J=13.2Hz, Ar-CHB-Ar), 4.76 (4H, s, -O-Chb- 

CO-) 4.93-5.08 (8H, m, -CH=CH2(allyl)), 5.79-5.86 (2H, m, -CH=CH2(allyl)), 5.92-5.99 

(2H, m, -CH=CH2(allyl)), 6.78 (4H, s, ArH, 2 and 4), 6.85 (4H, s, ArH, 2 and 4), 7.72 

(2H, s, -OH).

ESIMS (acetonitrile) m/e (rel intensity): 779 (MNa\100%).

5.11.17.23-Tetraallyl-25,27-di- ethoxycarbonylmethyl -26-mono-carboxymethyl- 

calix[4]arene 1-naphthylamide (130)

Tetra-p-allyl calix[4]arene 1,3-di ethyl ester (127) (0.2g, 0.26mmol) was refluxed in 

acetone with (119) (0.14g, 0.53mmol) and potassium carbonate (0.07g, 0.53mmol) 

for five days. This yielded a white solid which was identified as a complex mixture of 

products by thin layer chromatography (TLC). After liquid chromatography (Si02, 

hexane/ethyl acetate, 8:2 ) the title product was isolated as an off-white solid (0.06g, 

25%).

m.p. 86-88°C.

I.R.Umax (KBr) [cm'1]: 1757 (C=0 str.(ester)), 1685, 1636 (C=0 str.(amide)), 3327 (NH 

str.), 3434 (OH str.)

ESIMS (acetonitrile) m/e (rel intensity): 962 (MNa+,100%).
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3 Molecular Recognition and Enantiomeric Discrimination 

based on Fluorescence Quenching of Chiral Calixarene L1
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3.1 Fluorescence Introduction

Luminescence is generally defined as cold emitted light, and it was first in 1852 that 

Sir G. G. Stokes provided a scientific explanation for fluorescence. A substance must 

absorb light in order to fluoresce, and luminescence is described as the emission of 

light from any substance, which occurs from electronically excited states. Electronic 

transitions in molecular systems, especially in biological molecules, start from the 

singlet ground state in which the closed shell electrons are paired. In excited singlet 

states, the electron in the excited orbital is paired to the second electron in the 

ground-state orbital, whereby return to the ground state occurs rapidly (108 s'1) by the 

emission of a photon of light and is spin allowed.

Fluorescence typically occurs from aromatic molecules, particularly where there is 

extended conjugation, with the excitation wavelength generally increasing with the 

degree of conjugation, for examples see Figure 3-1. In contrast to aromatic organic 

molecules atoms are generally non-fluorescent in condensed phases, exceptions to 

this are the lanthanides. Fluorescence spectral data is generally presented as 

emission spectra, which consists of a plot of fluorescence intensity versus 

wavelength (nm) / wavenumbers (cm'1). Emission spectra are widely variable and 

depend on the chemical structure of the fluorophore and also the nature of solvent 

employed. The processes occurring, between the absorption and emission of light, 

are usually illustrated by a Jablonski diagram (see Figure 3-2).

S0 represents the ground singlet state and S1f S2, the first and second excited 

electronic states respectively. At each electronic level the fluorophore can exist in a 

number of vibrational levels, 0, 1 and 2 etc. Transitions typically occur in about 10’15 

seconds, which is too short to cause significant displacement of the nuclei (Franck 

Condon Principle). Absorption typically occurs from molecules with the lowest 

vibrational energy. The energy difference between S0 and S1f excited states is too 

large for thermal population (at R.T.) of S1f therefore light and not heat is used to 

induce fluorescence. Emission from fluorophores usually occurs at longer 

wavelengths than those at which absorption takes place. This loss of energy is due to 

a variety of dynamic processes which occur following light absorption.
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Naphthalene Anthracene

Fluorescein Rhodamine B

Quinine Dansyl chloride

Figure 3-1: Structures of typical fluorescent molecules
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A b s o r p t i o n

Figure 3-2: Jablonski diagram illustrating various molecular processes which can 

occur in excited states, u = wavelength, r =  emissive rate of fluorophore, knr = rate of 

non-radiative decay to S0, kq = bimolecular quenching constant, and 0  represents the 

quencher.

A fluorophore is usually excited to a higher vibrational level of either Si or S2 and in 

most cases molecules in the condensed phase relax rapidly to the lowest vibrational 

level of Si. This is called internal conversion and generally occurs in 10'12 s, and is 

followed by fluorescence emission from this thermally equilibrated excited state (1CT8 

s). The excess vibrational energy is rapidly lost to the solvent. Return to the ground 

state typically occurs to a higher excited vibrational ground-state level, which then 

quickly reaches thermal equilibrium. A consequence of emission to a higher 

vibrational ground states is that the emission spectrum is typically a mirror image of 

the absorption spectrum of the S0 -> Si transition. This similarity occurs because 

electronic excitation does not greatly alter the nuclear geometry, therefore the 

spacing of the vibrational energy levels of the excited states is similar to that of the 

ground state.

Solvent effects shift the emission to still lower energy due to stabilisation of the 

excited state by polar solvent molecules. The fluorophore has typically a larger dipole 

moment in the excited state ( h>e ) than in the ground state ( j ig )- Following excitation,
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the solvent dipoles can reorient or relax around |iE, which lowers the energy of the 

excited state. As the solvent polarity increases, this effect becomes larger, resulting 

in emission at lower energies or lower wavelengths. In general, only fluorophores 

which are themselves polar in nature will display a large sensitivity to solvent polarity, 

with non-polar molecules such as hydrocarbons, showing much less sensitivity to 

solvent polarity. Molecules in the Si state can undergo a spin conversion to the first 

triplet state, Emission from Ti is termed phosphorescence and is generally shifted 

to longer wavelengths relative to the fluorescence. Conversion of Si to Ti is called 

intersystem crossing.

Within its lifetime, the singlet excited state can interact with other entities present in 

solution. A molecule may be non-fluorescent as a result of a fast rate of internal 

conversion or a slow rate of emission. Fluorescence parameters sense the changes 

that occur in the fluorophores’ environment within the excited state, and the nett 

result of these interactions is typically a decrease in fluorescence emission intensity, 

called quenching, which can occur by several mechanisms.

• Collisional quenching occurs when the excited-state fluorophore is 

deactivated upon contact with some other molecule (called quencher) 

in solution. The molecules are not chemically altered in the process; 

the fluorophore is returned to the ground state during a diffusive 

encounter with the quencher.

• Static quenching is however, due to the formation of a non-fluorescent 

ground state complex between the fluorophore and quencher. This 

process occurs in the ground state and is not diffusion controlled.

Quenching can also occur by a variety of trivial (nonmolecular mechanisms), such as 

attenuation of the incident light by the fluorophore or other absorbing species. The 

efficiency of the quenching processes between the fluorophore (calixarene in this 

case), and the quenching species (guest enantiomer), follows the Stern-Volmer 

relationship provided that no self-quenching results i.e. both are present in the 

appropriate concentrations. The Stern-Volmer equation can be derived by 

consideration of the fluorescence intensities observed in the absence and presence

125



of quencher. The fluorescence intensity observed for a fluorophore id proportional to 

its concentration in the excited state [F*]. Under continuous illumination, a constant 

population of excited fluorophores is established, and therefore d[F*]/dt = 0. In the 

absence of quencher, the differential equation describing [F*] is

= m  -  r[F*]0 = 0 Equation 3-1
at

and in the presence of quencher

= m ~ ( r + K[Q\)[F*] = 0 Equation 3-2

where f(t) is the constant excitation function, and y = t 0‘1 is the decay rate of the 

fluorophore in the absence of quencher. In the absence of quenching, the excited- 

state population decays with a rate y = (r+ knr), where r is the radiative decay rate 

and knr is the non-radiative decay rate. In the presence of quencher there is an 

additional decay rate, kq[Q]. With continuous excitation, the excited-state population 

is constant, so the derivative can be eliminated from the equations above. Division of 

Eq.3.2 by Eq.3.1 yields

Fo_ = r  Equation 3-3
F y

which is the Stern-Volmer equation.

7-=i+Ks,[e]
' Equation 3-4:

where

l0 = Fluorescence of the fluorophore in the absence of quencher

I = Fluorescence of the fluorophore in the presence of quencher

[Q] = Concentration of the quenching species

KSv = Stern-Volmer constant

If the concentrations are in the correct range (i.e. no self-quenching occurs) and the 

system obeys the Stern-Volmer relationship, then a plot of lo/l versus [Q] will yield a 

straight line, the slope of which gives the Stern-Volmer constant (Ksv) and whose

126



intercept is 1. The greater the Ksv value the greater the quenching efficiency of the 

guest molecule. Therefore the guest with the greater Stern-Volmer constant has the 

greatest interaction with the host calix[4]arene.

3.2 Importance of chirality

Determination of enantiomeric purity has in recent years become more important 

than ever, due to increasing restrictions on the marketing of, and administering as 

mixtures, therapeutic agents which are chiral in nature (that is combinations of 

isomeric substances whose biological activity may well reside predominantly in one 

optical form). In drug disposition, enantiomeric discrimination depends on the 

mechanism of the process under consideration. Absorption, distribution and excretion 

are generally passive processes, which do not differentiate between enantiomers, but 

enzymic metabolism and protein binding, to plasma or tissue proteins, can show a 

high degree of stereoselectivity. Chiral discrimination occurs at both substrate and 

product levels in terms of metabolism, and as a result the metabolic and 

pharmacokinetic profiles of enantiomers after administration of racemic drugs can 

vary greatly; so much so that the exposure to the two enantiomers may be very 

different. The net result of the interaction of the two stereoselectivities of these 

various processes can obscure the fact that one (or more) shows a marked 

stereoselectivity. This is particularly the case for metabolism: while the ratios of the 

total plasma clearance of the enantiomers of a wide range of drugs never exceed 2 , 

individual metabolic pathways often show much greater stereoselectivity.

The interaction of the enantiomers of a chiral drug molecule with a chiral 

macromolecule, such as an enzyme, results in the formation of a pair of 

diastereoisomeric complexes, which differ energetically. In the absence of an 

external chiral influence, enantiomers have identical chemical properties except 

towards optically active reagents, and identical physical properties except for the 

direction of rotation of the plane of polarised light. It is from these numerous 

similarities that the difficulty in enantiomeric discrimination arises. The single 

difference between these isomers is the spatial orientation of their groups, making 

the task of separation an arduous one, It is however, desirable to separate 

enantiomers of a chiral drug, due to the different effects that they may exhibit, for 

example:
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1 . all of the particular pharmacological action may reside in just one of the 

isomers

2 . because of different binding at active receptor sites the enantiomers may 

have different pharmacological actions

3. enantiomers may have different rates of reaction within the body

4. the enantiomers may have different toxicities because of the difference in 

binding at asymmetric sites

5. one enantiomer may react at an active site to produce synergism or 

antagonism of the action of the other enantiomers

Examples of these include a drug used to treat morning sickness in pregnant women, 

which is associated with the Thalidomide babies of the 1960’s. R-Thalidomide acts 

as a sedative whereas the S-enantiomer is teratogenic and caused the phocomelia 

tragedy [1]. These two enantiomers also racemise after ingestion. Another example is 

the heart drug propranolol, the R-enantiomer of which was introduced in the 1960’s 

as a p-blocker in the treatment of heart disease with the S-form exhibiting 

contraceptive properties. A third example comes from the newly developed family of 

drugs called glitazones used in the treatment of Type II diabetes. Troglitazone 

(manufactured by Parke Davis) has 2 chiral centres, one (with a ready enolisable 

proton, prone to racemisation) at the C-5 position of the 1,3-thiazolidine-2-4-dione 

ring and an additional one at the 2-position of the chromane ring system, a tertiary 

centre which is essentially inert to racemisation. This drug causes potentially fatal 

liver damage in a small percentage of patients and it is not clear which of the four 

possible stereoisomers is responsible [1 ].

These striking differences in the behaviour of enantiomers of chiral drugs make it 

necessary for analysts in the pharmaceutical industry to assess the stereoisomeric 

composition of potential drugs. The characterisation of drugs for enantiomeric purity 

is required subsequent to their synthesis and also during in vivo and in vitro studies 

for determining the possible interactions of a chiral molecule and its metabolites 

within the body. Several methods commonly employed in the pharmaceutical industry 

to determine enantiomeric purity include specific rotation, circular dichroism, 

separation techniques such as liquid and gas chromatography, and capillary 

electrophoresis. In particular HPLC and GC have been used extensively to perform
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chiral separations. There are predominantly three methods for resolving enantiomers 

by HPLC, which include

1 . exploitation of conventional column technology by the formation of 

diasteromeric derivatives

2 . exploitation of conventional column technology by the use of chiral mobile 

phase additives

3. the use of chiral stationary phases

In the case of the third technique, chiral host molecules are covalently attached to a 

silica support, which generally form inclusion complexes with enantiomers. These 

chiral hosts complex enantiomers of the same molecule to differing degrees, thereby 

rendering enantiomeric separation possible. It is necessary to transmit information 

about these host-guest recognition events to the outside world, since they occur on a 

scale too small to be detected by the human eye. Fluorescence is an attractive option 

in this regard, given its sensitivity and variety of measurement modes that can be 

employed (fluorescence emission, quenching, lifetime, phase angle). When 

fluorophores are covalently attached to appropriate sites on calixarenes and 

cyclodextrins, changes can occur in fluorescence intensity when these hosts come 

into contact with certain guests. Guest enantiomers induce different fluorescence 

intensity changes in the hosts’ spectrum rendering discrimination of the enantiomers 

possible.

3.2.1 C hira l d isc rim ina tio n  in fluo rescen ce  qu ench ing

It can be difficult to theoretically predict the host-guest properties of receptors, as the 

overall selectivity observed might be the sum of many subtle interactions, which may 

be interdependent. Several publications dealing with steric influence upon 

fluorescence quenching rates have dealt with measuring the quenching rate as a 

function of substitution on the quenchers or the excited molecules [2, 3, 4, 5, 6]. 

However, with the introduction of substituents comes the implication of electronic as 

well as steric changes, which can affect the role of a charge-transfer interaction in the 

excited state [7]. Froehlich and Morrison [4] showed how variation in chain length of 

straight chain aromatic hydrocarbons affects their quenching by cis-piperylene.
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However in examining pure steric effects on quenching without the disturbances of 

electronic factors, Irie and co-workers [8] used chiral compounds as excited 

molecules and quenchers, since enantiomers have inherently the same electronic 

nature, i.e. oxidation-reduction potential. They demonstrated during early work, that 

specific geometry is required for the fluorescence quenching of 1,1 ’-binaphthyl by 

N,N-dimethyl-a-phenyl ethylamine. Photo excited 1,1-binaphthyl gives a 

fluorescence maximum around 360nm, the fluorescence of which can be quenched 

by adding N,N-dimethyl-a-phenyl ethylamine. No difference was discerned in the 

quenching rate of Stern-Volmer plots of a fluorescence quenching of racemic mixture 

of 1,1-binapthyl by enantiomers, (S)-(-)- and (R)-(+)-N,N-dimethyl-a- 

phenethylamines in n-hexane. However a significant difference in the rates was 

observed for the quenching of (R)-(-)-1,1’-binapthyl fluorescence by these 

enantiomers, the greatest interaction being observed for the (S)-(-)-enantiomer.

As an extension to the previous study, Irie and co-workers investigated the effect on 

the quenching rate and the ratio of the quenching rates of the two enantiomers kq (R- 

S)/kq (R-R) of quenchers bearing bulky substituents [9]. Significant differences were 

observed in the quenching rates of (S)-(-) and (R)-(+)- N,N-dimethyl-1 - 

phenylethylamines, N,N-dimethyl-a-phenyl-2-methylpropylamines and N,N-dimethyl- 

a-phenyl-2,2-dimethylpropylamines with respect to the fluorescence of (R)-(-)-1,1- 

binaphthyl, while no difference for the fluorescence quenching of a racemic mixture 

of 1,1-binaphthyl was discerned. The ratios of the quenching rates were found to 

increase as the bulkiness of the amine increased, and were found to be 1.9, 2.7 and 

4.0 respectively. Such a large difference in the quenching rates of each enantiomers 

reinforces the supposition that specific orientation is required in the quenching 

process between chiral 1 ,1 -binaphthyl and chiral amines.

James et al. demonstrated that chiral recognition of saccharides could be achieved 

and signalled by fluorescence, by employing a ligand incorporating a chiral tertiary 

amine (which provided the potential for chiral discrimination) and a binaphthyl group 

(to transduce the host-guest interaction into a fluorescent signal) [10]. In the absence 

of the guest, efficient photoelectron transfer (PET) from the amine to the binaphthyl 

moiety occurred, which served as an effective mechanism for fluorescence 

quenching, providing that the nitrogen atom was suitably oriented. To ensure the 

desired position of the nitrogen, boronic acid groups were sited near the chiral amine
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group, and upon binding with the target saccharides a strong Lewis acid interaction 

occurred between the boronic acid and the amine, which hampered the ability of the 

latter to quench the binaphthyl fluorescence.

Figure 3-3: Chiral diboronic acid

Concerning the (R)- form of this ligand (Figure 3-3) the 1:1 host-guest complex 

stabilities of D- fructose, glucose and mannose are greater than those of L- fructose, 

glucose and mannose. With regard to the (S)-ligand the reverse trend is expected 

and indeed observed, complexing L- fructose and glucose to a greater extent than D- 

fructose and glucose. The PET quenching efficiency on saccharide binding follows 

exactly the same trends with respect to the (R)- and (S)- ligands. This work elegantly 

established that chiral discrimination and signal transduction could be achieved, by 

placing groups with the required functionalities in a suitable conformation.

Recently Yan and Myrick [11] showed how the total complexation by a-acid 

glycoprotein (AGP) could discriminate between enantiomers of dansyl-D,L- 

phenylalanine. The centrality of chiral recognition in biology inspired the use of 

biomolecules, in this case bovine a-acid glycoprotein (AGP), as receptors for a 

fluorescence-based determination of enantiomeric purity.

Bearing in mind the importance of chirality and the difficulties in distinguishing 

between enantiomers of the same molecule, the aim of this project is to develop a 

molecular sensor, which has the ability to perform such a task. Development of 

successful materials for sensors is particularly challenging, as the host-guest 

properties of receptors are theoretically difficult to predict accurately, since the overall
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observed selectivity is the sum of many subtle interactions, which may or may not be 

interdependent.

In designing any molecular sensor, the main issues to be addressed are;

1. Recognition of the target species

2 . Transduction of the binding event

3. Immobilisation or controlled localisation

However broad predictions can be made about the type of features, which should be 

present if a ligand is to possess the ability of performing the required task. In order to 

achieve the goal of chiral recognition of molecular guests, the calixarene host must 

be functionalised with chiral moieties that define a 3-D chiral distribution of binding 

sites complementary to that of the guest. The structure of the host calix[4]arene (L1) 

is given below (for synthesis see Chapter 2). The molecular design components 

necessary can be summarized as follows;

• A calix[4]arene backbone (4-repeat units in the macrocycle) which acts as a 

scaffold to anchor ligating groups

• A 3-D distribution of hydrogen bonding sites defined by carbonyl oxygen, amide 

nitrogen and hydroxy groups at each pendent group

• A chiral centre (indicated by red star) located in the vicinity of the hydrogen 

bonding sites, which is complementary to the guest.

• Naphthyl groups sited at the bottom of the pendent groups to provide a 

fluorescence signaling capability.

• Allyl groups positioned at the opposite end of the calix[4]arene to the chiral 

binding sites (the upper rim) in order to facilitate immobilisation on a polymer 

substrate with minimal effect on the host-guest characteristics and fluorescence 

properties.
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Figure 3-4: Calixarene L1, with allyl groups on upper rim for immobilisation, 

calixarene backbone to anchor ligating groups, various groups capable of hydrogen 

bonding, chiral centre denoted by red star and naphthalene moieties for signal 

transduction.

With these guidelines in mind, a study was implemented to determine whether a 

calixarene macrocycle, which in principle satisfy the above criteria, could be used as 

sensor molecules in chiral recognition.
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3.3  Experimental Section

3.3.1 Equipment and Materials

All fluorescence emission and quenching experiments were performed using 

a Perkin-Elmer Luminescence Spectrometer LS 50B (Beaconsfield, 

Buckinghamshire, UK), interfaced with a Pentium PC which employs fluorescence 

data management software, FLWinlab. Post-run data processing was performed 

using Microsoft Excel ’97 and 2000 after importing the spectra as ascii files.

All fluorescence lifetime measurements were performed using an Edinburgh 

Analytical Instruments Single Photon Counter in a T-setting, which employs a 

nanosecond deuterium flash-lamp nF900, with photo-multiplier detector, model S300 

(-20°C to -30°C). Post-run data processing was performed using a Pentium PC, F900 

data correlation program, version 3.13 and Microsoft Excel 2000 after importing the 

spectra as ascii files.

All UV measurements were carried out using a Perkin-Elmer Lambda 900 

UVA/IS/NIR spectrometer. The instrument was controlled via UV WinLab software 

and post-run data processing was performed using Microsoft Excel ’97 and 2000 

after importing the spectra as ascii files.

Both enantiomers of phenylalaninol, (R)-(+)-phenylalaninol and (S)-(-)- 

phenylalaninol, both enantiomers of phenylglycinol, (R)-(-)-2-phenylglycinol and (S)- 

(+)-2-phenylglycinol and both enantiomers of phenylethylamine were of puriss grade 

(98% pure, the other 2% consisting of the other enantiomeric form), obtained from 

Fluka Biochemika (Gillingham, Dorset, UK). In addition as a control, the three 

aforementioned chiral amines were obtained of puriss grade from Sigma-Aldrich. The 

solvents used (methanol- HPLC grade) was obtained from Labscan (Stillorgan, Co. 

Dublin). The synthesis of calixarene L1 has been described in Chapter Three.

3.3.2 Procedure for Fluorescence Measurements

Solutions giving concentrations of the propranolol amide calix[4]arene L1 (0.7 |imol 

dm-3) and phenylalaninol in the range 1 -  25 mmol dm*3 in methanol were prepared 

as follows. A 0.1 mmol dm'3 stock solution of calixarene L1 was prepared by 

dissolving 8.9 mg in 50mL of methanol. A 0.25 mol dm*3 stock solution of 

phenylalaninol was prepared by dissolving the required combination of the two
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enantiomers, totalling 0.945 g, in 25 mL of methanol. Test solutions were prepared 

by taking 70 |aL of the calixarene stock solution in a 10 mL volumetric flask, adding

0.2, 0.4, 0.6, 0.8, and 1.0 mL of phenylalaninol stock solution, and making up to the 

volume with methanol. Measurements were repeated a minimum of three times for 

each addition. The fluorescence intensities of the solutions were measured at an 

excitation wavelength of 227nm. The fluorescent intensity readings were compared 

to that of a solution containing 0.7 jimol dm'3 calixarene L1 and no phenylalaninol.

Similar solutions to those described above were employed for the three- 

dimensional fluorescence experiments. These were scanned at excitation 

wavelength’s from 200-340nm in increments of 4nm, and each spectrum was 

observed at emission wavelengths from 300nm -  460nm.

Solutions giving concentrations of phenylglycinol in the range 1 - 1 5  mmol 

dm*3 in methanol were prepared in a similar manner as described for phenylalaninol 

above. For the preparation of solutions containing phenylethylamine in the 

concentration range 1 -  8 mmol dm-3 in methanol, the same general procedure was 

followed. Measurements were repeated in both cases a minimum of three times for 

each addition. The concentration of calixarene in all cases was 0.7 jimol dm-3.

3.3.3 Preparation of solutions for Fluorescence Lifetime Measurements

Solutions giving absorbance readings of 0.474 of the propranolol amide calix[4]arene 

L1 and therefore a concentration of 56.1 jimol dm'3 in methanol were prepared. 

Extinction coefficient (e^onm) of L1 is 8449 dm3 mol'1 cm'1. Each sample was spiked 

with the R-enantiomer of phenylalaninol and the consequent fluorescence lifeitme 

was observed. The concentration range of R-phenylalaninol examined after an 

addition of 10, 20, 30 and and 40jaL of the 1.0 mol dm'3 stock solution of R- 

phenylalaninol was 4-16 mmol dm"3. Solutions giving absorbance readings of 0.453 

of the propranolol amide calix[4]arene L1 and therefore a concentration of 53.6 fimol 

dm"3 in methanol were prepared, and were spiked with the S-enantiomer of 

phenylalaninol in the same general procedure as in the case of the R-enantiomer.
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3.3.4 P rocedure  fo r  F luorescence M easurem ents o f P rop rano lo l label

Solutions giving concentrations of the propranolol label (2.8 jimol dm*3) in methanol 

were prepared as follows. A 1.0 mmol dm'3 stock solution of the propranolol label was 

prepared by dissolving 12.9 mg in 50mL of methanol. A 0.1 mmol dm-3 stock solution 

of the propranolol label was prepared by making a one in ten dilution of the former 

stock solution. Test solutions were prepared by taking 70 and 280 of the 0.1 

mmol dm'3 stock solution in a 10 mL volumetric flask, and making up to the volume 

with methanol. The fluorescence intensities of the solutions were measured at an 

excitation wavelength of 227nm and an emission wavelength of 336nm. Data was 

collected at an interval of 0.02 minutes over a period of 10 minutes. After 

approximately 30 seconds each sample was spiked with the appropriate enantiomer 

of phenylalaninol and the decrease in fluorescence intensity was observed. The 

concentration range of phenylalaninol examined after an addition of 10, 20 and 30 ^L 

of the 0.25 mol dm'3 stock solution of phenylalaninol was 1-3 mmol dm-3. 

Measurements were repeated a minimum of three times for each addition. Solutions 

with calixarene L1 were prepared and spiking experiments were carried out in a 

similar manner as described above.

3.3.5 P rocedure  fo r  F luorescence M easurem ents o f d i-fu nc tio n a lise d  R- 

p rop rano lo l am ide ca lix [4 ]arene

Solutions giving concentrations of the R-propranolol diamide calix[4]arene L2 (0.7 

nmol dm-3) and phenylalaninol in the range 1 -  20 mmol dm-3 in methanol were 

prepared as follows. A 0.1 mmol dm'3 stock solution of calixarene L1 and 0.25 mol 

dm-3 stock solutions of enantiomers of phenylalaninol were prepared as previously 

described. Test solutions were prepared by taking 70 |iL of the calixarene stock 

solution in a 10 mL volumetric flask, adding 0.08 - 0.8 mL of phenylalaninol stock 

solution, and making up to the volume with methanol. Measurements were repeated 

a minimum of three times for each addition. The fluorescence intensities of the 

solutions were measured at an excitation wavelength of 227nm. The fluorescence 

intensity readings were compared to that of a solution containing 0.7 jimol dnrf3 

calixarene L1 and no phenylalaninol.
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3.4 Results and Discussion

3.4.1 Excitation and Em ission Spectra

The excitation and emission spectra of the p-allyl-S-propranolol tetra amide 

calix[4]arene (L1) at a concentration of 0.7 nmol dm-3 in methanol are shown in 

Figure 3-6. The maximum of the excitation spectrum is at 227 nm (Figure 3-6a), and 

the maximum of the emission spectrum obtained using an excitation wavelength of 

227 nm is at 338 nm (Figure 3-6b). Considering that the guest species (see Figure 

3-5) exhibit modest absorbance in these regions, 227nm is a suitable excitation 

wavelength for the following experiments.

OH

A

PA

NH-

OH

\  J

'2

A
r  ï i

PG PEA

Figure 3-5: Structures o f guest phenylamines; phenylalaninol (R-PA), phenylglycinol 

(R-PG) and phenylethylamine (R-PEA), (chiral centres denoted by stars).
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(b)

Figure 3-6: Excitation and emission spectra of p-allyl-S-propranolol tetra amide 

calix[4]arene at a concentration of 0 .7 /jmo! dm'3in methanol, (a) Excitation spectrum 

of the calixarene in the absence (i) and presence (ii) of 25 mmol dm'3 phenylalaninol 

at an emission wavelength of 340nm. (b) Emission spectra of the calixarene in the 

absence (i) and presence (ii) of 25 mmol dm'3 phenylalaninol at an excitation 

wavelength of 227nm.
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The linear response range of fluorescence intensity to concentration of calixarene L1 

in methanol was determined to be between 0.1 and 0.7|imol dm'3 as shown in Figure

3-7. It is important to use a concentration of the calixarene within the linear range in 

order to ensure that no self-quenching occurs and therefore that no alternative self- 

quenching mechanisms are present. A concentration of 0.7 ^imol dm'3 was chosen for 

subsequent experiments to examine the effects of phenylalaninol (PA), 

phenylglycinol (PG) and phenylethylamine (PEA) and hence any quenching observed 

can be related to the effect of the target species on the ligand.

3.4.2 Linear Response range

Figure 3-7: Linear fluorescence response of p-allyl-S-propranolol calixarene in 

methanol, measured using an excitation wavelength of 227nm and at an emission 

wavelength of 338nm, data points represent the mean of three replicate 

measurements (n=3), with error bars representing ±  standard deviation.

3.4.3 Linear range of Stern-Volmer plot.

The Stern-Volmer plot was found to be linear over a range of 0-25 mmol dm“3 of 

racemic phenylalaninol. The Stern-Volmer plot for the same calixarene in the 

presence of racemic phenylglycinol was found to be linear over the measured range 

of 0-15 mmol dm'3, and linear over the measured range of 0-8 mmol dm'3 of racemic 

phenyl ethylamine.
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Figure 3-8: Stern-Volmer plot of S-propranolol calixarene in methanol, measured 

using an excitation wavelength of 227nm and at an emission wavelength of 338nm, 

data points represent the mean of three replicate measurements (n=3), with error 

bars representing ±  standard deviation (error bars may be masked by symbols).
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Figure 3-9: Stern-Volmer plot of S-propranolol calixarene in methanol (experimental 

conditions described in the caption for Figure 3-8), mean of three replicate 

measurements (n=3), with error bars representing ±  standard deviation (error bars 

may be masked by symbols).
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Figure 3-10: Stern-Volmer plot o f S-propranolol calixarene in methanol (experimental 

conditions described in the caption for Figure 3-8) mean of three replicate 

measurements (n=3), with error bars representing ±  standard deviation (error bars 

may be masked by symbols).

3.4.4 Variation of Stern-Volmer plot with enantiomeric composition

The Stern-Volmer plot of L1 was found to be linear over the range 0-25 mmol dm'3 of 

racemic phenylalaninol. Figure 3-11 illustrates the Stern-Volmer plots for the 

quenching of the fluorescence of calixarene L1, upon addition of 0, 50 and 100% (S)- 

phenylalaninol respectively, at a concentration range of 0 -  25mmol dm*3. The Stern- 

Volmer constant Ksv, is a measure of the quenching efficiency and a large value for 

this parameter indicates a sensitive response. The values for the Stern-Volmer 

constants (Ksv) are 0.17, 0.12 and 0.09 after the addition of 0, 50 and 100% (S)- 

phenylalaninol respectively, and the (Ksv) ratio [100% (R)/100% (S)] is 1.9. Because 

the Stern-Volmer plots show such a large difference in the KSv values of each 

enantiomer, it can be concluded that the propranolol amide derivative of p-allyl- 

calix[4]arene exhibits significant ability to discriminate between the enantiomers of 

phenylalaninol.

Figure 3-12 illustrates the Stern-Volmer plots for the quenching of the fluorescence of 

calixarene L1, upon addition of 100% (S) (a) and 100% (R)-phenylglycinol (b) at a 

concentration range of 0 -  15mmol dm'3. The values for the Stern-Volmer constants
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(KSv) are 0.16 for both the addition of 0, and 100% (S)-phenylglycinol respectively, 

and the (Ksv) ratio [100% (R)/100% (S)] is ~1. It is evident from the Stern-Volmer plot 

of phenylglycinol, that virtually no difference is observed between the Ksv values for 

the R- and S-enantiomers. It can therefore be concluded that approximately equal 

interactions takes place between the propranolol amide derivative of p-allyl- 

calix[4]arene L1 and both enantiomers of phenylglycinol. Chiral discrimination of 

phenylglycinol is therefore not possible with this calix[4]arene.

Figure 3-13 illustrates the Stern-Volmer plots for the quenching of the fluorescence of 

calixarene L1, upon addition of 100% (R) and 100% (S)-phenyl ethylamine at a 

concentration range of 0 -  6.25 mmol dm-3. The values for the Stern-Volmer 

constants (KSv) are 0.38 and 0.36 after the addition of 100% (R), and 100% (S)- 

phenyl ethylamine respectively, and the (KSv) ratio [100% (R)/100% (S)] is -1. It is 

clear that virtually no difference is observed between the Ksv values for the R- and S- 

enantiomers of phenyl ethylamine with this calixarene, therefore it can be concluded, 

similar to the case for phenylglycinol, that more or less equal interactions take place 

between L1 and both enantiomers of phenyl ethylamine. Chiral discrimination of this 

chiral amine is consequently not possible with this calix[4]arene.

Although the observation of linear Stern-Volmer plots usually indicates that collisional 

(or dynamic) quenching has occurred, static quenching can also result in a linear 

Stern-Volmer plot. In general, static and dynamic quenching can be distinguished by 

their differing dependence on temperature and viscosity, or preferably by lifetime 

measurements. An additional method to distinguish static and dynamic quenching is 

by careful examination of the absorption spectra of the fluorophore. Collisional 

quenching only affects the fluorophores’ excited states and therefore no changes in 

their absorption spectra are predicted. Ground state complex formation (which results 

in static quenching) however, will frequently result in perturbation of the absorption 

spectra of fluorophores. Preliminary studies of the absorption spectra of ligand L1 

(see Figure 3-6 (a)) would seem to indicate a static quenching mechanism occurs 

between the calixarene host and phenylalaninol guest, due to the presence of 

changes in the absorption spectrum in the presence of a guest molecule. This would 

lead one to believe that quenching occurs as a result of the formation of a non- 

fluorescent complex between the fluorophore (calixarene host) and quencher 

(phenylalaninol guest).
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Figure 3-11: Stern-Volmer plots for the quenching of S-propranolol calixarene upon 

addition of 0 (a), 50 (b) and 100% (c) (S)-phenylalaninol in methanol. Standard 

deviations are shown as error bars (n=3), which may be masked by symbols.

Figure 3-12: Stern-Volmer plots for the quenching of S-propranolol calixarene upon 

addition of 100% (a) and 0% (b) (S)-phenylglycinol in methanol. Standard deviations 

are shown as error bars (n=3), which may be masked by symbols
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Figure 3-13: Stern-Volmer plots for the quenching o f S-propranolol calixarene upon 

addition of 100% (a) and 0% (b) (R)-phenyl ethylamine in methanol. Standard 

deviations are shown as error bars (n=3), which may be masked by symbols.

Guest Composition Ksv St. Dev.

PA 100%R, 0%S 0.17(0.9930) 0.08

0%R, 100%S 0.09 (0.9939) 0.04

PG 100%R, 0%S 0.16 (0.9845) 0.07

0%R, 100%S 0.16(0.9801) 0.04

PEA 100%R, 0%S 0.38 (0.9685) 0.14

0%R, 100%S 0.36 (0.9791) 0.25

Table 3-1: Stern-Volmer slopes, correlation coefficients and standard deviations for 

curves in Figure 3-11, Figure 3-12 and Figure 3-13 respectively.
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Figure 3-14: The variation of the Stern-Volmer constant for the quenching of the 

fluorescence of S-propranolol calixarene with enantiomeric composition of 

phenylalaninol, data points represent the mean of three replicate measurements 

(n=3), with error bars representing ±  standard deviation (error bars may be masked 

by symbols).

The data obtained from the Stern-Volmer plots for the quenching of the fluorescence 

of calixarene L1, upon addition of varying amounts of phenylalaninol show that the 

quenching efficiency varies linearly with increasing proportion of one enantiomer. 

That is, in a mixture of both enantiomers of phenylalaninol, each enantiomer will 

make a contribution to the over-all quenching efficiency proportional to its fraction of 

the total amount of amino alcohol present. This is a faster and less tedious method 

than determining the slope of individual Stern-Volmer plots, since it employs a single 

fluorescence measurement if the total PA concentration is known. This linear 

relationship between the efficiency of quenching measured and enantiomeric 

composition could be used as a method for the determination of the enantiomeric 

purity of a solution of phenylalaninol in methanol. For these measurements, a total 

concentration of 25 mmol dm'3 of phenylalaninol was chosen as this gives the 

maximum discrimination in the Stern-Volmer plots (see Figure 3-11). The 

measurement will be optimum for the highest concentration of PA which still obeys 

the Stern-Volmer plot since it will provide the greatest distribution in the fluorescence 

measurements.

145



Figure 3-14 shows the linear relationship between fluorescence intensity and 

enantiomeric composition at a total PA composition of 25 mmol dm-3. Previous work 

in this field has led to the enantiomeric discrimination of 1-phenylethylamine [12]. The 

authors report a Ksv ratio of 1.14, which they state is outside the range of 

measurement error, claiming that the gradients were significantly different when 

compared using a t-test. The ability of calixarene L1 to discriminate between the 

enantiomers of phenylalaninol is clearly evident, returning a KSv ratio 1 .7 times that 

reported by Parker and Townshend with regard to phenylethylamine. Since there is 

no overlap in the standard deviations with respect to the response from L1 to R- and 

S-phenylalninol, t-tests are not needed to prove the difference in quenching 

achieved.

3.4.5 Variation of two-dimensional em ission intensity contour plots with 

enantiomeric composition

Emission Wavelength /nm

Figure 3-15: Two-dimensional fluorescence spectrum of guest phenylalaninol in 

methanol, with the numbers on contour lines representing fluorescence emission 

intensity units.

Both enantiomers of phenylalaninol exhibit two-dimensional spectra with maxima at 

m = 230/31 Onm and 265/31 Onm (see Figure 3-15). When however the
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enantiomers of this amino-alcohol are present in solution with the S-propranolol-tetra- 

amide calix[4]arene interesting changes are observed in the two-dimensional spectra 

of the corresponding solutions. A notable difference in the contours of the spectra for 

the enantiomers alone and the enantiomer/calixarene complex is observed. In the 

case of the (R)-enantiomer of phenylalaninol/calixarene complex (Figure 3-16), it can 

be seen that new emission bands as far as wavelengths of 360nm are observed for 

excitation wavelengths between 220 and 240nm inclusively. There are also new 

emission bands present in the areas between A,ex/^em = 265/320nm and 300/370nm. 

If the corresponding two-dimensional spectrum for the (S)-phenylalaninol 

enantiomer/calixarene complex is examined, it is evident that the contours of these 

regions, Xex/Xerx] = 220/320nm - 240/380nm and A«A«m = 265/320nm - 300/370nm 

exhibit different levels of intensity (demonstrated by the proximity of the contour lines, 

see Figure 3-17). Due to the fact that the R-enantiomer quenches the fluorescence of 

the calixarene to the greatest extent the 2-D emission intensity plot for this 

enantiomer/calixarene pair in solution has somewhat fewer contour lines of 

consequently lower intensity (see Figure 3-16) than the S-enantiomer/calixarene pair, 

however it is not immediately obvious which guest enantiomer is in the presence of 

the calixarene by the contour variations alone.

Emission Wavelength Inm

Figure 3-16: Two-dimensional emission intensity contour plot of p-allyl-tetra-S- 

propranolol amide calix[4]arene in the presence of guest molecule, R-phenylalaninol 

in methanol.
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Emission Wavelength Inm

Figure 3-17: Two-dimensional emission intensity contour plot of p-allyl-tetra-S- 

propranolol amide calix[4]arene in the presence of guest S-phenylalaninol in 

methanol.

Upon observation of the contours produced by solutions of each 

enantiomer/calixarene pair it is evident that a wide range of emission data is 

obtainable from these associations. However, it is not immediately obvious from 

these plots which enantiomer is present in solution with the calixarene L1. Employing 

an excitation wavelength of 227nm appears to provide the most complete or 

extensive fluorescence emission information. It is therefore prudent to use such an 

excitation wavelength when examining the effects of the association of this 

calixarene with the enantiomers of phenylalaninol. In order to clearly differentiate 

between which enantiomer is present in solution, it is necessary to measure 

fluorescence intensities at the maximum emission wavelength, 336nm in this case.
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3.4.6 V aria tion  o f fluo rescence  life tim es w ith  e n an tiom e ric  com pos ition

Quenching that results from diffusive encounters between the fluorophore and 

quencher during the lifetime of the excited state, is a time dependent process and is 

termed “dynamic quenching”. Quenching can also occur as a result of the formation 

of a non-fluorescent complex between the fluorophore and the quencher (“static 

quenching”), which subsequent to the absorption of light, returns immediately to the 

ground state without the emission of a photon. The fluorescence intensity decrease is 

linearly dependent on the concentration of the quencher, a case that is identical for 

both static and dynamic quenching. Unless additional information is supplied, either a 

dynamic or a static process can explain quenching.

The measurement of fluorescence lifetimes is the most definitive method to 

distinguish between static and dynamic quenching. Static quenching removes a 

fraction of the fluorophores from observation. The complexed fluorophores are non- 

fluorescent, and the only observed fluorescence is from the uncomplexed 

fluorophores. The uncomplexed fraction is unperturbed by other molecules or 

diffusional processes in solution, and hence the lifetime is x0. Therefore for static 

quenching to/t = 1. During the process of dynamic quenching, the quencher must 

diffuse to the fluorophore during the lifetime of its excited state, thereby decreasing 

the lifetime of the excited state fluorophore. Therefore the higher the concentration of 

quencher present in solution, the lower the lifetime of the fluorescent excited state 

will be, so for dynamic quenching to/t = Fo/F, which is in contrast to static quenching.

The lifetime of the excited state is defined by the average time the molecule spends 

in the excited state prior to return to the ground state. The fluorescence lifetime is 

important in that it determines the time available for the fluorophore to interact with or 

diffuse in its environment, and hence the information available from its emission. 

Figure 3-18 shows the decay profile of calixarene L1 in methanol.
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(a)

(b)

Figure 3-18: Fluorescence lifetime decay spectrum of p-allyl-tetra-S-propranolol 

amide calix[4]arene in methanol, in comparison to the instrument response and the 

exponential model fit (a). Residual plot of exponential fit (b).

y„=4> + 4 e (,‘ J + A e
Equation 3-5: Exponential fit equation used to calculate the fluorescence lifetime

(Where Ao, ^  and A2 are constants, yn = intensity data, Xn = time (ns) and

ti and t2, are time constants of the 1st and 2nd exponential component respectively.)

The decay time of the fluorescence of organic molecules is generally of the order of 

several nanoseconds, and techniques for its measurement include the stroboscopic
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(pulsed-flash) technique and the phase-shift technique, the former of which uses a 

nanosecond spectral source containing either a nitrogen or a deuterium flash-lamp. 

When measuring the lifetime of any fluorescent species it is important that the 

response of the instrument used is quantitatively smaller than the signal produced by 

the fluorescing moiety, in order to allow distinction of the signal from the lamp and 

therefore accurate calculation of the lifetime. Using the above bi-exponential equation 

(Equation 3-5), the lifetime exponential decay can be modelled to yield the 

fluorescence lifetime of the excited state of calixarene L1. Using an excitation 

wavelength of 307nm and scanning at an emission wavelength of 340nm, two values 

of 9.4 and 4.6 ns were measured for the lifetime of L1 in methanol. This would 

suggest that two fluorescing species are present in solution. Since spectroscopic 

grade solvents were used and the calixarene was pure, the second value was not 

attributed to an impurity. This could instead be due to different conformations of the 

calixarene, as the array of naphthalene groups may be differently positioned in one 

conformer over the other, possibly altering the electronic state of the molecule. It is 

interesting to note that this and any following lifetime measurements were obtained in 

both degassed and non-degassed solutions, and no difference was discerned 

between the values acquired. This would seem to indicate that molecular oxygen has 

no effect on the fluorescence spectra of these solutions, failing to contribute to the 

quenching process in any way. It is also important that a x2 value close to 1 is 

obtained after fitting the data measured to Equation 3-5, since this means that the 

values of the lifetimes returned by this equation are within the 95% confidence 

interval.

Figure 3-19 shows how the solutions used for lifetime measurements relate to the 

emission and quenching studies previously carried out. A solution of L1 in methanol 

(Figure 3-19(i)) was spiked with aliquots of a 1.0M R-phenylalaninol in methanol 

(Figure 3-19(ii), (iii) and (iv)). The fluorescence emission spectra and lifetime decays 

were then measured and the results can be seen in Figure 3-19 and Table 3-2. It is 

evident from the data acquired that the lifetime measurements do not exhibit a 

concentration dependence on the quencher, unlike the emission spectra and also 

that to/t *  Fo/F . This infers that to/t -  1, and therefore the mechanism of quenching 

of L1 by R-phenylalaninol is confirmed to be static, in agreement with the absorbance 

spectral data discussed previously (section 3.4.4).
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Wavelength Inm

Figure 3-19: Fluorescence intensity spectrum of calixarene (56.1 ¿imol dm*3), in the 

absence (i) and presence of R-phenylalaninol, (4 m m o l d m ' (ii), 12 mmol dm*3 (iii), 

16 mmol dm*3 (iv)).

Solution z1 and t2 /  Nanoseconds /

Calixarene alone 9.44, 4.63 1.02

L1 + 4 mmol dm'3 9.48, 4.43 1.06

L1 + 8 mmol dm*3 9.39, 4.72 1.02

L1 + 12 mmol dm'3 9.43, 4.53 1.03

L1 + 16 mmol dm'3 9.37, 4.62 1.10

Table 3-2: Fluorescence lifetimes of calixarene in the absence and presence of R- 

phenylalaninol.

The lifetime of the excited state L1 was also measured in the presence of the S- 

enantiomer of phenylalaninol. The results can be seen in Table 3-3, which illustrate 

that the presence of this guest enantiomer in solution does not perturb the excited 

state lifetime of the calixarene, confirming that both enantiomers of phenylalaninol 

form ground state complexes with calixarene L1 in methanol solution, but as 

confirmed by the emission quenching data, by clearly different degrees.
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Solution tv and z2 /  Nanoseconds /

Calixarene alone 9.26, 4.43 0.98

L1 + 4 mmol dm*3 9.12, 4.69 0.98

L1 + 8 mmol dm'3 9.25, 4.45 0.91

L1 + 12 mmol drrf3 9.06, 4.56 0.96

L1 + 16 mmol dm"3 9.11,4.73 0.99

Table 3-3: Fluorescence lifetimes of calixarene in the absence and presence of R-

phenylalaninol.
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3.4.7 V aria tion  o f S te rn -V o lm er p lo t o f p ro p ra n o lo l label w ith  

enan tiom eric  com p os itio n

In order to ensure that enantiomeric discrimination is due to the calixarene and not 

simply caused by the presence of the propranolol label, fluorescence-quenching 

studies were carried out on the label alone in the presence of enantiomers of 

phenylalaninol. These studies were carried out over a period of minutes and as 

phenylalaninol enantiomers were spiked into the solution, the fluorescence intensity 

was monitored at an emission wavelength of 336nm. These spiked solutions were 

then scanned over a range of wavelengths to see the full effect on the label’s 

spectrum.

It is evident from Figure 3-20 that quenching of the label does occur after the 

addition of the amino alcohol enantiomers are added to solution. However selectivity 

in quenching is not achieved, that is both enantiomers quench the label’s 

fluorescence to the same degree, thereby proving that enantiomeric discrimination of 

phenylalaninol is not possible with this label alone. Figure 3-21 shows the full spectra 

of the label after addition of 1, 2, and 3-mmol dm'3 of both enantiomers of 

phenylalaninol. These spectra further prove that selective quenching of this label by 

one enantiomer does not occur.

Comparison studies were carried out on the calixarene with phenylalaninol 

enantiomers, both over time and across a full spectrum. Figure 3-22 shows how the 

addition of the (S)-enantiomer of phenylalaninol quenches the fluorescence of 

calixarene L1, but not to the same degree as the (R)-enantiomer (as already shown 

in the Stern-Volmer plots- see Figure 3-11). Further proof of enantiomeric 

discrimination by this calixarene ligand is obtained from the emission spectra after 

the spiked solutions were scanned from 310-400 nm (see Figure 3-23). These results 

suggest that the chiral recognition exhibited by L1 with phenylalaninol is not an 

inherent characteristic of the label itself, but rather an effect of the 3-d distribution of 

groups within the calixarene.
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Figure 3-20: Fluorescence intensity changes of S-propranolol label (2.8 /umol dm'3 in 

methanol) over time, after the addition of (S)-phenylalaninol (blue) and (R)- 

phenylalaninol (red) in aliquots of 1 (upper), 2 (middle) and 3 mmol dm'3 (lower), 

monitored at an emission wavelength of 338nm.

Figure 3-21: Fluorescence emission spectra of S-propranolol label (spectrum in 

black (2.8 /umol dm'3 in methanol)) after the addition of(S)- and (R)-phenylalaninol 

(blue and red spectra respectively), in aliquots of 1 (upper), 2 (middle) and 3 mmol 

dm'3 (lower), monitored after a time of 7 minutes.
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Figure 3-22: Fluorescence intensity changes of calixarene L1 (0.7 /umol dm'3 in 

methanol) over time, after the addition of (S)-phenylalaninol (blue) and (R)- 

phenylalaninol (red) in aliquots of 1 (upper), 2 (middle) and 3 mmol dm'3 (lower), 

monitored at an emission wavelength of 338nm.

Figure 3-23: Fluorescence emission spectra of calixarene L1 (0.7 ¿¿mol dm'3 in 

methanol) after the addition of 1 (upper), 2 (middle) and 3 mmol dm'3 (lower), (S)- 

and (R)-phenylalaninol (blue and red spectra respectively) after a time of 7 minutes 

(calixarene alone in black).
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3.4.8 Variation of Stern-Volmer plot of a partially functionalised 

calix[4]arene with enantiomeric composition

As another control study to ensure that enantiomeric discrimination is due to the 

three-dimensional cavity of the lower calixarene rim and not simply caused by the 

presence of the propranolol label, fluorescence-quenching studies were carried out 

on the p-allyl calix[4]arene-mono- and di-R-propranolol amide mixture (see Chapter 3 

(117)) in the presence of both enantiomers of phenylalaninol. These studies were 

carried out at an excitation wavelength of 227nm, as phenylalaninol enantiomers 

were spiked into the calixarene solution, while the fluorescence intensity was 

monitored at an emission wavelength of 336nm.

Figure 3-24: Stern-Volmer plots for the quenching of di-R-propranolol calixarene (0.7 

¡jxno! dm'3 in methanol) upon addition of 100% (red) and 0% (green) (R)-phenyl 

alaninol in methanol. Standard deviations are shown as error bars (n-3), which may 

be masked by symbols.

As can be seen from Figure 3-24 practically no difference is discerned in the slopes, 

and in some cases the error bars for each series overlap. Consequently there is no 

difference in the KSv constants of the plot of each enantiomer of phenylalaninol in the 

presence of the mono-/di-substituted calixarene. This therefore signifies that the 

partially substituted equivalents of the aforementioned propranolol calixarene L1 do 

not possess the ability to discriminate between the enantiomers of phenylalaninol,
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and as suggested previously that discrimination is achieved due to an effect of the 3- 

D distribution of groups within the calixarene.

Figure 3-25: Energy minimised structure of L1 (experimental details in Chapter 4, 

files were incorporated into CS Chem 3D Pro for viewing after calculations were 

carried out using Spartan).

The interpretation of these results is as follows: L1 possesses a relatively well- 

defined 3-D chiral space in the calixarene cavity (see Figure 3-25). It is almost 

certain that the guest amines approach from the more open end of the molecule (i.e. 

that defined by the fluorescent naphthyl groups), and hydrogen bond with appropriate 

groups within the cavity of the host molecules. Association between the aryl groups 

of the guest and the naphthyl groups on the host could be the source of the 

quenching effect, and this will be most efficient if;

1. Hydrogen bonding is favoured (depends on the host, guest and the solvent)

2. Distance from the hydrogen bonding sites to the aromatic groups corresponds 

(depends on presence or absence of appropriate spacer groups in the host 

and guest).

3. The orientation the guest during hydrogen bonding is such that the aryl group 

interacts with the naphthyl group of the host.

The absence of selective quenching of L1 by the enantiomers of phenylglycinol and 

phenylethylamine is most likely due to inadequate distances between the appropriate 

hydrogen bonding sites and the aromatic ring systems in the guest molecules. If the
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distances between the chiral centres (and adjacent amine groups) and the aryl rings 

of the host and guest molecules are compared, it is clear that in the case of the 

aforementioned guest molecules they are too short to effectively bind with the host 

calixarene and simultaneously align the aromatic groups with the naphthyl moieties 

to quench the calixarene fluorescence (see Figure 3-26). If the aromatic rings of the 

guest assemble alongside the naphthyl rings of the host a lack of favourable 

hydrogen bonding exists, which is necessary to form a non-fluorescent ground state 

complex.

5^ j 6 9

10 11

Ô Î
P A  P G

Figure 3-26: Distances from hydrogen bonding sites to aromatic groups within 

molecules (modelled and measured using CS Chem 3D Pro).

Distance /A Distance /A Distance /A

L 1 6 . 2 9  ( ( 1 - 4 )  C = 0 -  Cary,) 6 .0 1  ( ( 2 - 4 )  H N -  C aryi) 3 . 6 8  ( ( 3 - 4 )  H O - C aryt)

P A 4 . 3 6  ( ( 5 - 8 )  H O -  C aryl) 3 . 8 8  ( ( 6 - 8 )  H O - C -  C ary,) 2 . 9 2  ( ( 7 - 8 )  H N -  C aryt)

P G 3 . 7 5  ( ( 9 - 1 2 )  H O  -  C aryi) 2 . 5 0  ( ( 1 0 - 1 2 )  H O - C - C a r y , ) 2 . 4 8  ( ( 1 1 - 1 2 )  H N - C aryt)

Table 3-4: Intramolecular distances of the molecules in Figure 3-26.

The fact that the calixarene fluorescence is however quenched, could be due to 

dynamic or collisional quenching. With respect however, to the phenylalaninol guest 

molecules, both enantiomers have the correct spacing between the hydrogen 

bonding groups and the aryl group, facilitating both hydrogen-bonding opportunities 

and quenching incidences concurrently. The (R)-enantiomer of phenylalaninol is
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favoured over the (S)-isomer under the conditions cited in (1) (2) and (3), above, and 

(R)-phenylalaninol thereby selectively forms a ground state complex with the 

calixarene which is non-fluorescent. This results in a reduction of the excited state 

population of the calixarene, causing quenching of the signal, namely a decrease in 

the fluorescence intensity. The fact that a ground state non-fluorescent complex is 

formed by phenylalaninol guests in the presence of L1 is confirmed by excited state 

fluorescence lifetime measurements in the absence and presence of the guest. It is 

clear that no change in lifetime is observed when the calixarene is present in solution 

with the guest, establishing that the mechanism of quenching between this host : 

guest pair is static.

As the tetra-derivatised host molecule L1 is in itself chiral in nature, bearing an (S)- 

amide substituent, the (R)-enantiomers in each case should be better predisposed to 

interact than the (S)-enantiomers. This would lead to a more favourable interaction 

with the host and the guest and therefore a greater slope for the Stern-Volmer plot. 

This is observed experimentally in the case of phenylalaninol, where the (R)- 

enantiomer displays the larger quenching effect, with greater Ksv values than the 

corresponding (S)-enantiomer. The importance of the spacing between the hydrogen 

boding sites and the aromatic groups of the guest is also clearly demonstrated in this 

study. The fact that L1 cannot differentiate between the 'shorter1 guest enantiomers, 

e.g. phenylglycinol and phenyl ethylamine, demonstrates the important molecular 

recognition capabilities of this host. L1 is very specific in its interactions with guest 

molecules and as well as discriminating between mirror image forms, can 

successfully recognise such a small difference in guest molecules as a methylene 

spacer.

The energy minimized structure in Figure 3-27 shows a possible position of the guest 

molecule, phenylalaninol in the calixarene cavity, and gives an indication of the 

number of hydrogen bonding possibilities between the host and guest. There appear 

to be several possibilities for the -NH2 of the guest amino alcohol to interact with one 

of the carbonyl groups of the calixarene, and for the -OH of the guest to interact with 

the carbonyl of the same pendant leg [13]. Further examination of Figure 3-27 shows 

how the -OH of the guest seems to interact with the chiral hydroxy group of another 

pendant group of the calixarene, leaving the aryl ring of the guest sandwiched amid
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two of the calixarene pendant naphthyl rings, which may facilitate a rc-stacking 

interaction

Figure 3-27: Energy-minimized structure of the p-allyl (S-) propranolol tetra amide 

calix[4]arene with guest molecule phenylalaninol (PA) [13].

If one compares simple molecular models of the pendent legs of the calixarene, it 

can be seen how the interactions of one enantiomer may be favoured over the other. 

In the case of (R)-phenylalaninol (see Figure 3-28), the amino group would appear to 

be in a favourable position to hydrogen bond to the hydroxy group adjacent to the 

chiral centre, which may then allow further hydrogen bonding of the guest hydroxyl 

moiety to either the carbonyl oxygen or nitrogen of the calixarene amide functionality. 

In the case of the (S)-guest however (see Figure 3-29), the amino group being on the 

other side of the molecule does not appear to favour such hydrogen bonding.

In the case of the free label, it is quite certain that the (R)-enantiomer of 

phenylalaninol interacts a similar manner to the (S)-isomer both displaying equal 

abilities to deactivate the excited state of the free label. Whether or not the quenching 

mechanism is static or dynamic in nature is not of great importance in this study, due 

to the fact that no discrimination by the free label is achieved. Also the results of the
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mono-/di-amide-functionalised R-propranolol calixarene prove that the label alone is 

not responsible for enantiomeric discrimination, and that a 3-D distribution of binding 

sites is necessary for selective associations to occur. In the case of the tetra S- 

propranolol calixarene an additional chiral 3-D space seems to be created by the 

association of the propranolol pendent legs on the lower rim of the annulus, which 

favours the insertion of the (R)-enantiomer over the (S)-isomer.

Figure 3-28: possible orientations of host L1 with guest R-phenylalaninol.

Figure 3-29: possible orientations of host L1 with guest S-phenylalaninol.

Structures above were modelled using CS Chem 3D Pro version 6.0, MM2 force 

field. The models shown correspond to the conformer with the lowest energy.
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3.5 Conclusion

Ligand L1 was designed with a methylene spacer between the chiral centre and 

fluorescent naphthyl moiety. This ligand was found to successfully discriminate 

between the amino alcohol, phenylalaninol, with a methylene spacer between its 

aromatic moiety and chiral centre. However, discrimination between two pairs of 

shorter chain amino alcohol enantiomers (R- and S- phenylglycinol and phenyl

ethylamine) was not observed with this calixarene. The fact that L1 cannot

differentiate between the 'shorter' guest enantiomers, e.g. phenylglycinol and phenyl 

ethylamine, demonstrates the important molecular recognition capabilities of this 

host. L1 is very specific in its interactions with guest molecules and as well as 

discriminating between mirror image forms, can successfully recognise such a small 

difference in guest molecules as a methylene spacer.

In this study there are relatively well-defined, 3-D chiral spaces in the cavity of the

calixarene L1 through which the enantiomers must pass in order to facilitate 

quenching. This infers that since the host molecule is itself chiral in nature, bearing 

an (S)-amide substituent, that the (R)-enantiomer should be better predisposed to 

interact with the calixarene than the (S)-enantiomer. This would in turn lead to a more 

efficient energy transfer from the naphthalene of the (S)-propranolol group to the 

guest and therefore a greater slope for the Stern-Volmer plot. What is observed 

experimentally is that the R-enantiomer is in fact the preferred guest molecule with 

regard to Ligand L1, with greater interaction and selectivity being observed in its 

fluorescence plots than in the case of the S-enantiomer.

The fact that the excitation spectrum of calixarene L1 undergoes changes in the 

presence of a phenylalaninol guest molecule indicates that the process of quenching 

is probably static, that is, the guest molecule forms a non-fluorescent ground state 

complex with the calixarene host. With the aid of fluorescence lifetime studies further 

information on the mechanism of quenching was obtained, and it was established 

that since the lifetime of the excited state of L1 was independent of the concentration 

of the guest molecule, that static quenching was the cause of the decrease in 

fluorescence intensity of L1 in the presence of phenylalaninol.
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4 Host-Guest Behaviour of lon-Complexes of Calix[4]arene 

Host L1
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4.1 Introduction -Fluorescent cyclodextrins as host molecules

Cyclodextrins (CD’s), are macrocyclic oligosaccharides, produced by the enzymatic 

catabolism of starch consisting of 6(a), 7((3) or 8(y) a-D-glucopyranose units 

connected by 1,4-glycosidic bonds. It is known from crystal structure and 

spectroscopic analyses that CD’s exist in an approximately round conical shape (see 

below), in solution as well as in the solid state [1]. They are inherently chiral and form 

inclusion complexes with a variety of organic compounds in aqueous solution, 

accommodating a guest molecule in their central cavity [2, 3, 4]. Cyclodextrins, which 

are spectroscopically inert, can be converted into fluorescent CD’s by modification 

with one or more fluorophores (e.g. naphthalene, pyrene or dansyl moieties). Such 

labelled CD hosts may exhibit changes in fluorescence emission intensities upon 

addition of guest compounds.

A/p/?d-cyclodextrin

On this basis fluorescent CD’s were used as fluorescent chemosensors for molecular 

recognition. The driving force in the formation of CD inclusion complexes with organic 

guests is considered to be the hydrophobic interaction between the CD framework 

and the guest molecule. Dye-modified CD’s have been used as colour-change 

indicators for molecules [5, 6, 7, 8]. The finding that pyrene-modified y-CD forms an 

association dimer (see Figure 4-1) and exhibits excimer emission around 470nm, 

was the inspiration for using fluorophore-attached CD’s as sensors [9, 10]. The 

fluorescence change (decrease in excimer emission and increase in monomer 

emission at 397nm) induced by the association dimer to 1:1 host-guest complexes 

was confirmed on examination of the guest-induced circular dichroism spectra and 

absorption variations. Since guest-induced fluorescence variation is greatly affected 

by the size and shape of guest species, this proved possible as a sensory system for 

molecular recognition of organic compounds [1 1 ].
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Figure 4-1: ^CD's modified with mono-pyrene moieties need to form to dimers to 

facilitate a change in spectrum when the guest is complexed.

Figure 4-2: di-substituted ^C D ’s eliminate the need for dimer formation, since 

different positional isomers exhibit different fluorescence changes in the presence of 

a guest molecule.

This work further inspired synthesis of y-CD’s bearing two pyrene units, since they 

change their fluorescence spectra without the necessity of dimer formation. If a y-CD 

is prepared with two naphthalene moieties, then four isomers are possible, AB, AC, 

AD, AE, with A, B, C, D, E, etc. denoting the juxtaposed glucose units of the CD 

circle (see Figure 4-2). Different geometrical isomers of the CD’s bearing two pyrene 

moieties may have different guest-responsive properties. All isomers exhibit 

predominant excimer emission around 520nm and intensities increased upon 

addition of (-)-borneol (128), whereas in the case of two of the isomers the addition of
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lithocholic acid caused a decrease in intensity. Thereby confirming that spectral 

variation is dependent on the two species, both host and guest.

The same approach was used with two naphthalene-modified (R = 2-naphthyl- 

sulphnoyl) p- and y-CD’s for detecting molecules [12, 13, 14]. Three geometrical 

isomers are possible in the case of the p-CD’s bearing two substituents. It is noted 

that in the case of P-CD derivatives, the excimer formation is not possible without 

accommodation of guest species in the CD cavity, because one naphthyl group is 

included in the cavity, while another is located outside in the absence of a guest (see 

below). Remarkable differences have also been found between the two series of p- 

and y-CD derivatives [14].

Figure 4-3: in contrast to ^C D ’s, di-substituted p-CD’s only exhibit excimer emission 

in the presence of a guest molecule, since in its absence one of the naphthyl- 

sulphonyl (R) moieties is located inside the CD-cavity.

Large guest molecules such as urso- and cheno-deoxycholic acid (129 - isomers) 

exhibit high responsitivity for y-CD derivatives, whereas tricyclic and bicyclic ball-like 

guests such as adamantanol (130) and (-)-borneol (128) exhibit high sensitivities for 

P-CD derivatives and smaller guests such as cyclohexanoi display a negligible effect.

128 129 130

Both enantiomers of dansylglycine- and dansylleucine-modified CD’s (see below, a 

and b respectively) were prepared [15, 16, 17] since dansyl is known as a probe
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which exhibits a strong fluorescence in a hydrophobic environment, but a weak one 

in bulk water solution. p-CD derivatives of the aforementioned series form self­

inclusion complexes, in which, the appended dansyl chromophore is included in its 

own cavity and exhibits strong emission. Upon guest addition these p-CD derivatives 

decrease their fluorescence intensities around 535nm, by excluding the dansyl unit 

from the cavity into bulk water solution. After addition of larger guest species to 

solutions of similar y-CD derivatives a decrease in fluorescence intensity is observed, 

but the intensity increases upon addition of smaller species due to co-inclusion of the 

fluorophore and a guest molecule in the large y-CD cavity.

Figure 4-4: J3-CD’s modified with dansylglycine (a) and dansylleucine (b), since 

dansyl is known as a strong fluorescing agent in a hydrophobic environment

In the case of p-CD derivatives, dansyl-L-leucine-p-CD gives larger binding constants 

than its D-isomer, while both show improved binding abilities over dansylglycine- 

modified p-CD. Conversely, the binding constants for 1-adamantanol (130) and 

dansyl-L-leucine-y -CD, dansyl-D-leucine-y -CD and dansylglycine-y -CD are 116, 

370 M'1 and negligible respectively, reversing the chirality preference and exhibiting 

much smaller binding constants than those of p-CD derivatives [18].

Monensin is known as an antibacterial compound capable of binding Na+ ions and 

mediates transport of the ions through biomembranes. Consequently dansyl- 

monensin-P-CD was synthesised, in which monensin was covalently bound to the w- 

amino group of a lysine unit via an amide linkage [19]. When this compound was 

compared with the binding ability of dansylglycine-modified P-CD, it was 

demonstrated that the monensin system enhances binding abilities for various 

guests, with the presence of a Na+ ion further enhancing binding abilities [19]. These

a : R,= H b :
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results were found for the guest’s nerol and geraniol, as shown by 64- and 92-fold 

improved binding abilities respectively, which are further enhanced by the presence 

of a Na+ ion. The authors report that this enhancement may be due to the 

rearrangement of the monensin acyclic chain to form a macrocyclic one, in the centre 

of which is the bound sodium ion.

In conclusion fluorescent cyclodextrins (CD’s) can be used for detecting molecules in 

respect to molecular recognition. Improved sensing and binding abilities of these 

compounds can be achieved by the incorporation of other functional moieties such as 

an amino acid with a hydrophobic side chain or monensin and proteins. The results 

described indicate that induced-fit types of conformational change are essential for 

these sensors.

Since it is well known that calixarenes with ester, amide and acid functionalities form 

metal ion complexes [20], the effect of metal ion complexation on the S-propranolol 

tetra amide calix[4]arene L1 was investigated. When a calixarene complexes with 

metal ions there is frequently a change in the conformation of the complexed 

calixarene when compared to the free ligand. The cyclodextrin results which indicate 

that conformational change is necessary for such molecules to be considered 

suitable as sensors for guests, suggest it might be interesting to investigate whether 

these conformational changes which accompany metal ion complexation will have a 

significant effect on the fluorescence behaviour of L1 in the presence of guest 

molecules. In view of the fact that Ikeda and Ueno established improved guest 

binding abilities of a monensin appended cyclodextrin-sodium complex, the effect of 

metal ion complexes of our fluorescent calixarene L1 in the presence of guest 

molecule phenylalaninol was investigated.
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4.2 Experimental Section

4.2.1 Equipment and Materials

1H-NMR spectra were obtained using a Bruker Avance (400MHz) instrument. 

Measurements were carried out in CDCI3. Chemical shifts were recorded relative to 

TMS. The spectra were converted from their free induction decay profiles using 

XWIN-NMR software.

The modelling calculations were carried out using Spartan [21] SGI Version 

5.1.1. The simulations were run on a Silicon Graphics 02  workstation with a MIPS 

R10000 Rev. 2.7, 195 MHz CPU running an IRIX operating system, Release 6.3. 

Monte Carlo conformational searches were carried out on the sodium complex. Each 

conformer found was geometry optimised in vacuo with molecular mechanics using 

the Merck Molecular Force Field (MMFF) [22]. The models shown correspond to the 

conformer found with the lowest energy. The model shown for the free ligand and the 

potassium complex were obtained in an identical manner.

All fluorescence emission and quenching experiments were performed using 

a Perkin-Elmer Luminescence Spectrometer LS 50B (Beaconsfield, 

Buckinghamshire, UK), interfaced with a Pentium PC employing fluorescence data 

management software, FLWinlab. Post-run data processing was performed using 

Microsoft Excel ’97 and 2000 after importing the spectra as ascii files.

(R)-(+)-phenylalaninol and (S)-(-)-phenylalaninol, were of puriss grade (98% 

pure, the 2% represents the other enantiomer), sodium iodide, sodium perchlorate, 

potassium iodide and potassium perchlorate were of puriss grade (99% pure) and 

obtained from Fluka Biochemika (Gillingham, Dorset, UK). For comparison, 

phenylalaninol was also obtained of puriss grade from Sigma-Aldrich. The solvents 

used (methanol- HPLC grade) was obtained from Labscan (Stillorgan, Co. Dublin). 

The 1H-NMR solvents used (CDCI3 -0.03%TMS, >98.8 atom %D) was obtained from 

Apollo Scientific Ltd. (Whaley Bridge, Derbyshire, UK).

4.2.2 Procedure for Fluorescence Measurements

Test solutions for the sodium complexes of calixarene L1 and PA were prepared in a 

manner identical to that of L1 and PA in Chapter Three followed by an addition of 

sodium iodide and sodium perchlorate respectively, (10-fold excess was used to 

ensure complexation). Test solutions for the potassium complexes of L1 and PA 

were prepared in an identical manner to that of the sodium complexes.
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4.3 Effect of lon-Complexation on Chiral Discrimination by L1

It is known that calixarene tetra-esters and tetra-amides complex metal ions [20], and 

therefore the effect of metal ion complexation on ligand L1 was investigated. Since 

calix[4]arenes possess such well-known ion-binding properties, will ion-complexes 

have different host-guest behaviour compared to the free calix[4]arene host? In tetra- 

O-alkylated calix[4]arenes, the cone conformation may not necessarily be stabilized 

due to the absence of intramolecular hydrogen-bonding interactions [23, 24, 25, 26, 

27, 28, 29, 30, 31, 32, 33, 34, 35]. This can lead to different conformations of 

calixarenes in solution, in particular in the absence of bulky substituents to crowd the 

upper or lower rim, forcing it into a locked position. However a more rigid 

conformation may be achieved upon complexation with metal ions.

The series of peaks in the region 5.3 -  6.2ppm of the 1H-NMR’s in Figure 4-6(a) 

represent the allyl protons of the calixarene L1. The presence of two peaks in the 

free ligand would indicate that the calixarene does not exist in a symmetrical cone 

conformation but as a distorted cone in solution. After the addition of sodium iodide to 

the CDCI3 solution of this calixarene, the 1H-NMR spectrum (Figure 4-6(a)) of this 

solution showed a single multiplet for these allylic protons. This would suggest 

binding of the sodium ion by the calixarene, which forces the molecule into a more 

rigid form and the presence of one peak representing the four allylic protons would 

indicate a more symmetrical conformation. The same trend was also observed upon 

addition of potassium iodide to a solution of the calixarene in CDCI3 (Figure 4-6(a)), 

also indicating binding of the potassium ion.

The two sets of peaks at 1.25 and 1.46ppm represent the isopropyl protons of the 

calixarene L1. After the addition of sodium ions to the NMR solution the intensity of 

the peak at 1.25 decreases and the double doublet moves from 1.46 to 1.55ppm 

(Figure 4-6(b)). Upon addition of potassium ions to a CDCI3 solution of L1 (Figure

4-6(b)) a change in intensity of the peak at 1.25ppm is again observed and the 

double doublet is now positioned at 1.53ppm. The reduction in intensity of the peak 

located at 1.25ppm after addition of the metal ions, resulting in just two sets of 

doublets located at ~1 .5ppm (representing the isopropyl protons), suggests that the 

equilibrium of the conformation of the calixarene has changed and the molecules are 

forced into a more symmetrical cone conformation. The metal ions in solution 

complex with most of the calixarene molecules and the new peaks observed after the
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addition of metal ions are due to the newly enforced conformation. The induced 

symmetry of the molecule causes one set of 1H-NMR peaks to appear for each unit 

of the macrocycle. In calix[4]aryl tetra-esters and tetra-amides the four carbonyls are 

turned outwards to reduce electrostatic repulsion among carbonyl oxygens, whereas 

bound Na+ induces the carbonyls to point inward in order to bind the Na+ ion [36]. 

These changes in the positions of the isopropyl proton peaks would suggest that the 

carbonyl oxygens are indeed binding the Na+ ion.

Further studies involving molecular modelling confirm this theory that the free ligand 

does not exist as a perfect cone, but rather as a distorted cone with 2-fold symmetry. 

Figure 4-7 shows the results of molecular modelling studies with the free ligand (a), 

the Na+ complex (b) and the K+ complex (c), respectively. It is evident from the 

pictures and from the distances between opposite phenolic units (see Table 4-1) that 

the free ligand and the two complexes have different conformations, the two 

complexes existing in a square; symmetrical cone conformation. The angles between 

the opposing phenolic units also suggest that the two adjacent phenolic units be at 

approximately right angles to each other, which is consistent with the distorted cone 

image (see Figure 4-7). In contrast the two calixarene-metal complexes have very 

similar angles between opposing phenolic units, which implies a more symmetrical 

cone conformation.

6.2 6.0 5.8 5.6 5.4 5.2

chemical shift I ppm

Figure 4-5 (a): 1H-NMR spectra of L1 (black), L1-Na+ (green) and L1-K* (blue) 

complex in CDCI3. (a):allylic proton and (b): isopropyl proton signals.
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chemical shift I ppm

Figure 4-6 (b): 1H-NMR spectra ofL1 (black), L1-Na+ (green) and L1 -K  (blue) 

complex in CDCI3. (a):allylic proton and (b): isopropyl proton signals.

1 2 3

Figure 4-7: Energy optimised structures of (1) the free ligand L1, (2) the L1-Na+ 

complex (3), the L1-K* complex.
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Free Ligand Na+ Complex K+ Complex

Distance

between A -A 5.957 7.762 7.776
opposite 

phenyl rings /A
B-B ' 9.561 8.116 7.996

Distance

between A -A ' 5.341 4.625 4.759
opposite

phenolic
B-B ' 3.692 4.599 4.771

oxygens/ A

Angles made A -A 11.2 56.1 52.7

by planes /° B-B ' 87.4 49.9 49

Table 4-1: Summary data extracted from energy-minimised structures. A-A' and B-B' 

are shown in Figure 4-7. (See section 4.2.2 for modelling experimental details)

4.4 Results and Discussion

4.4.1 Linear Response range

It should be noted that the presence of a metal ion at a concentration ten times the 

concentration of the calixarene, causes no appreciable change in the fluorescence 

spectrum of the free ligand. The binding site of the metal ion is thought to be in the 

region of the phenyl ether oxygens and the carbonyl oxygens of the amide 

functionality. This area is clearly far removed form the source of fluorescence, that is 

the naphthalene moiety, and it is therefore only in the presence of guest molecules, 

that the effect of metal ion complexation with regards to fluorescence is observed. To 

further illustrate this point the linear ranges of the calixarene complexed with both 

sodium and potassium are shown in Figure 4-8 and Figure 4-9 respectively. The 

fluorescence intensities are comparable to that of the free calixarene in Chapter 3 

(Figure 3-22) and are not quenched by the presence of a ten-fold excess of either 

metal ion (Na+, K+) in solution. This again verifies that the metal ion is bound to the 

calixarene and not merely present in solution, in a case similar to that of the guest.
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(b)

Figure 4-8: Linearity of calixarene.Na+ complex in methanol, (a) iodide as anion and 

(b) perchlorate as anion, points represent the mean of three replicate measurements 

(n=3) with error bars representing ± standard deviation.
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(b)

Figure 4-9: Linearity of calixareneK complex in methanol, (a) iodide as anion and 

(b) perchlorate as anion, points represent the mean of three replicate measurements 

(n=3) with error bars representing ±  standard deviation.
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4.4.2 Variation of Stern-Volmer plot with enantiomeric composition

When the initial Stern-Volmer plots of fluorescence quenching of the sodium and 

potassium complexes of ligand L1 in the presence of phenylalaninol are examined 

(Figure 4-10 and Figure 4-11 respectively), it can be seen that in the case of the R- 

enantiomer of phenylalaninol, they seem to deviate from linearity towards the y-axis. 

In many instances a fluorophore can be quenched both by collisions and by complex 

formation by the same quencher, Q. The characteristic feature of the Stern-Volmer 

plots in such circumstances is an upward curvature, concave toward the y-axis. The 

fractional fluorescence then remaining is given by the product of the fraction not 

complexed (f) and the fraction not quenched by collisional encounters, therefore:

r
r

r + K [ Q \
Equation 4-1

(where F and F0 are the fluorescence intensities of the fluorophore in the presence 

and absence of quencher respectively

- y is the decay rate in the absence of quencher

-and y + kq[Q] is the total decay rate in the presence of quencher

-kq is the bimolecular quenching constant, [Q] is the concentration of quencher)

Z - r  +  k ' t o ] - U k , T j ß ]Considering however that p  ^  1 ^  * o IV  J Equation 4-2

(where x0 is the lifetime of the fluorophore in the absence of quencher)

And r ' = \  + K s \Q ]  Equation 4-3

And k qTo =  K d  Equation 4-4

(where Ks is the Stern-Volmer constant (association constant) for a static quenching 

process and KD is the Stern-Volmer constant when the process of quenching is 

dynamic)
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(b)

Figure 4-10: Initial Stern-Volmer plots for the quenching of the fluorescence of 

calixarene L1-Na* (0.7 fumol dm'3 in methanol) upon addition of 0 (i) and 100% (ii) S- 

Phenylalaninol. (a) Plot of sodium iodide complex, (b) Plot of sodium perchlorate 

complex, points represent the mean of three replicate measurements (n=3) with error 

bars representing ±  standard deviation (error bars may be masked by symbols).
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Figure 4-11: Initial Stern-Volmer plots for the quenching of the fluorescence of 

calixarene L1-K+ (0.7 jumol dm'3 in methanol) upon addition of 0 (i) and 100% (ii) S- 

Phenylalaninol. (a) Plot of potassium perchlorate complex, (b) Plot of potassium 

iodide complex, points represent the mean of three replicate measurements (n=3) 

with error bars representing ±  standard deviation (error bars may be masked by 

symbols).
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4.4.3 Variation of Kapp with R-phenylalaninol concentration

Theoretically this equation (equation 4-5) can be modified to allow graphical 

separation of Ks and KD, [37] e.g.

=> ~  =  0  +  K d [ f i M  +  K s [ 0 ] )  Equation 4-5

+  Equation 4 ^

= 1 + Kapp [Q] Equation 4-7

The apparent quenching constant can then be calculated at each quencher 

concentration, and a plot of Kapp versus [Q] should yield a straight line with an 

intercept of KD+ Ks and a slope of KD Ks. This would then allow solution of a 

quadratic equation and the dynamic and static components could thereby be 

calculated. When however Kapp for the calixarene-metal ion complexes is plotted 

against the varying quencher (phenylalaninol) concentration it is clearly evident that a

straight line is not the result (see Figure 4-12 and Figure 4-13 below).

Quencher 
concentration 
(mmol dm*3)

Kapp

Calix-Nal complex

Kapp

Calix-NaCI04
complex

Kapp

Callx-KI com plex

Kapp

Calix-KCI04
complex

5 0.39 0.47 0.33 0.39

10 0.43 0.84 0.59 0.55

15 0.67 1.35 0.71 1.28

20 3.76 1.16 2.84 5.12

25 5.92 5.39 5.69 -

Table 4-2: Comparison of Kapp for both L1-Na+ and L1 -K  (0.7 jumol dm 3 in 

methanol) at varying quencher concentrations (i.e. (R)-phenylalaninol). Kapp for 

potassium perchlorate complex of L1 at a quencher concentration of 25 mmol dm 3 

could not be measured due to total quenching of the emission signal.
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Figure 4-12: Plot of the apparent quenching constant, Kapp, at each quencher 

concentration ((R)-phenylalaninol as quencher), (a) Plot of sodium iodide complex, 

(b) Plot of sodium perchlorate complex, (0.7 ¡jmol dm'3 in methanol for (a) and (b)). 
Points represent the mean of three replicate measurements (n=3) with error bars 

representing ±  standard deviation (error bars may be masked by symbols).
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(a)

(b)

Figure 4-13: Plot of the apparent quenching constant Kapp, at each quencher 

concentration ((R)-phenylalaninol as quencher), (a) Plot of potassium iodide 

complex, (b) Plot of potassium perchlorate complex, (0.7 /umol dm'3 in methanol for 

(a) and (b)). Points represent the mean of three replicate measurements (n=3) with 

error bars representing ±  standard deviation (error bars may be masked by symbols).
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Figure 4-14: processes involving dynamic and static quenching of the same 

population of fluorophores (where F = Fluorophore and Q = Quencher, in the ground 

state and * indicates the excited state, Kq is the bimolecular quenching constant and 

Ks is the static quenching association constant for complex formation).

It is interesting to note how the effect of the anion is sensed only when the plots of 

Kapp versus [Q] are examined. By observing Stern-Volmer plots alone it was thought 

that the metal ion effects were independent of the anion used in solution, however 

when iodide is employed as counter-anion, the slopes of the second of the two 

distinct linear portions (after 15mmol dm'3 R-PA) of the Stern-Volmer plots are 

noticeably different from those in the case of the perchlorate counter-anion. In the 

case of both metal complexes and both counter ions examined, it is apparent from 

Figure 4-12 and Figure 4-13 that a dramatic change is observed in the slope of the 

plots of Kapp versus [Q] upon addition of R-phenylalaninol at concentrations greater 

than 15mmol dm'3. This could be due to the fact that a different (or additional) 

quenching mechanism is responsible for the decrease in fluorescence intensity, due 

to the non-linear nature of degree of quenching with increasing guest concentration.

If the linear portion of these graphs is consulted then the Stern-Volmer constants for 

the sodium and potassium complexes can be examined (Figure 4-15 and Figure 4-16 

respectively). It is then apparent that the complexes do discriminate between the 

enantiomers of phenylalaninol, while exhibiting a much greater selectivity for the R- 

enantiomer than the free calixarene ligand.
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Figure 4-15: Linear ranges of Stern-Volmer plots for the quenching of L1-Na+ (0.7 

fjmoI dm'3 in methanol) upon addition of 100% R- (green series) and 100% S- 

Phenylalaninol (black series) in methanol. Standard deviations are shown as error 

bars (n=3). (a) Plot of sodium iodide complex, (b) Plot of sodium perchlorate 

complex.
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(b)

Figure 4-16: Linear ranges of Stern-Volmer plots for the quenching of L1-tC (0.7 

fjmol dm'3 in methanol) upon addition of 100% R- (blue series) and 100% S- 

Phenylalaninol (black series) in methanol. Standard deviations are shown as error 

bars (n-3). (a) Plot of potassium iodide complex, (b) Plot of potassium perchlorate 

complex.
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Calixarene Composition o f  PA Ksv Ksv ratio

Nal-complex 100%R, 0%S 0.40 (0.9674) 4.6

0%R, 100%S 0.09 (0.9884)

NaCI04-complex 100%R, 0%S 0.42 (0.9723) 4.3

0%R, 100%S 0.10(0.9737)

Kl-complex 100%R, 0%S 0.56 (0.9887) 7.4

0%R, 100%S 0.08 (0.9853)

KCI04-complex 100%R, 0%S 0.56 (0.9974) 10.1

0%R, 100%S 0.06 (0.9743)

Table 4-3: Stern-Volmer slopes, correlation coefficients and KSv ratios for series in 

Figure 4-15 and Figure 4-16 respectively.

Figure 4-17 represents graphically the comparison in response of the free calixarene 

ligand and the potassium complex of L1 to both enantiomers of phenylalaninol. 

Comparing the difference between the response of the free ligand (Figure 4-17(ii)) 

and the potassium complex of L1 to the R-enantiomer of PA (Figure 4-17(i)), and 

then to the S-enantiomer (Figure 4-17(iii)), illustrates the magnitude in difference of 

slope and therefore response to R-PA, of the free ligand and the potassium complex 

of L1. It is clear from this comparison that the potassium complex of L1 has a much 

more sensitive response to R-phenylalaninol than the calixarene without a metal ion. 

In the case of free L1 25mmol dm'3 of R-phenylalaninol was required to achieve a 

notable difference in response to the S-enantiomer. In the case of the potassium 

complex of L1 however, there is no fluorescence emission at this concentration, 

signifying total quenching of the fluorescence signal at this large concentration of R- 

PA, and making detection of R-PA possible at much lower concentrations.
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Figure 4-17: Comparison of Stern-Volmer plots for the quenching of free calixarene- 

L1 upon addition of 100% R-PA (77), L1-K* upon addition of 100% R-PA (i) and free 

L1 and L1-hC upon addition of 100% S-Phenylalaninol (iii). (Concentrations of L1, 

L1-Na+ and L1 -K  used were 0.7 /jmol dm'3 in methanol)

The Ksv ratio of the free ligand is calculated to be 1.9, whereas the sodium iodide 

and perchlorate complexes of L1 return KSv ratios of 4.6 and 4.3 respectively. This 

indicates a huge increase in selectivity of the sodium complexes and also that the 

counter-anion has little effect on fluorescence quenching. When the equivalent plots 

are examined for the potassium complexes of L1 it can be seen that the Ksv ratios 

amount to 7.4 and a remarkable 10.1 for the potassium iodide and perchlorate 

complexes, respectively (see Table 4-3). We believe that the reason for this dramatic 

increase in enantiomeric selectivity lies in the well-known tendency of calix[4]arenes 

to adopt a more regular C4V symmetry, in which the pendent groups are held in a 

much more rigid conformation compared to the free ligand. In a calix[4]arene like L1, 

the metal ion will be positioned between the planes defined by the carbonyl and 

phenoxy oxygen atoms of the calixarene macrocycle. The main electrostatic 

interaction is with the carbonyl oxygen atoms, and the ion therefore tends to lie 

nearer these than the phenoxy oxygen atoms [38]. This enforced cone conformation, 

and very well defined cavity (see Figure 4-19 and Figure 4-20) seem to allow for far 

greater interaction with the R-enantiomer of phenylalaninol, than in the case of the
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(S)-enantiomer. In contrast, the free ligand L1 is dependent solely on hydrogen 

bonding to define the lower cavity, and this will therefore be less rigid, with a greater 

tendency to open and accommodate various guests but with corresponding loss of 

chiral and molecular selectivities (see Figure 4-18).

The complexation trend observed in the case of L1 is similar to that of the dansyl- 

monensin-p- cyclodextrin synthesised by Ikeda et al [19]. When this compound was 

compared with the binding ability of dansylglycine-modified p-CD, it was 

demonstrated that the monensin system enhances binding abilities for various guests 

with respect to the glycine system, with the presence of a sodium ion further 

enhancing binding abilities. These results were found for the guests nerol and 

geraniol, with binding abilities being further improved by the presence of a Na+ ion. 

The authors report that this enhancement may be due to the rearrangement of the 

monensin acyclic chain to form a macrocyclic one, in the centre of which is the bound 

sodium ion. In the case of calixarene L1 the change in conformation upon binding of 

sodium and potassium ions, generates a more rigid and square, symmetrical 

molecule which appears to greatly enhance the affinity of the ligand towards the R- 

enantiomer of the guest phenylalaninol.

Figure 4-18: Energy optimised structures of the free ligand, L1, (a) from the side and

(b) through the annulus.

(a) (b)
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(a) (b)

Figure 4-19: Energy optimised structures of the sodium complex of L1, (a) from the 

side and (b) through the annulus.

(a) (b)

Figure 4-20: Energy optimised structures of the potassium complex of L1, (a) from 

the side and (b) through the annulus.
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In an analytical sense these results suggest there is potential to achieve very rapid 

and precise enantiomeric discrimination. The fact that the KSv ratios are improved by 

up to 500% in the calixarene metal complexes compared to the free calixarene ligand 

renders the discrimination of the enantiomers of phenylalaninol enormously easy with 

this ligand, since there is such an obvious difference in the Stern-Volmer constants 

for the guest enantiomers. This is pictorially evident from Figure 4-21, and can also 

be determined without the necessity of statistical tests.

Ks v

0.6

0.5

0.4

0.3

0.2

0.1

0

R-isomer Ksv 

S-isomer Ksv

Free Nal NaCI04 Kl KCI04

Figure 4-21: Histogram comparing Stern-Volmer constants of phenylalaninol in

methanol with free calixarene L1 and the L1-Na+ and L1 -K  complexes (0.7 ¡jmo! dm'

3 in methanol) (in the case of the calixarene complexes only the linear portions of 

these plots were consulted, with the data used taken from the linear regions between 

0-15 mmol dm'3 of phenylalaninol).

191



The molecular modelling data in conjunction with the fluorescence quenching results 

would seem to suggest that greatly enhanced enantiomeric discrimination is 

achieved when the calixarene exists in a highly structured symmetrical cone 

conformation, which is in this case induced by metal-ion complexation. A five-fold 

increase in association constant was obtained for the potassium complex of L1 with 

respect to the free ligand regarding the association of the R-enantiomer of 

phenylalaninol.

Fluoresence lifetime measurements may be able to separate the static quenching 

component from the dynamic quenching processes in these metal-complex host- 

guest associations to give a clearer indication of the exact processes taking place in 

solution with the phenylalaninol guests and the metal ion complexes. However if this 

ligand L1 is to be employed as an analytical sensing agent, then it is clear that the 

metal ion complexes, in particular that of potassium perchlorate are the most 

advantageous sensor molecules when it comes to the enantiomeric discrimination of 

phenylalaninol, due to a greater sensitivity of the ligand to the guest and the huge 

selectivities obtained.

4.5 Conclusion
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5 Solvent effects on Enantiomeric Discrimination of Chiral 

Caiixarene L1
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5.1 Solvent effects on Electronic Spectra

Most electronic spectroscopy is practiced in fluid solutions involving solvents, many 

of which are highly polar or capable of hydrogen bonding with the absorbing or 

emitting molecules. The interactions of solute molecules with polar or hydrogen 

bonding solvents are capable of profoundly altering the electronic properties of the 

states from which absorption and emission occur, thereby leading to significant 

effects on the emission spectra of fluorophores. These effects are the origin of the 

Stokes’ shift, which is one of the earliest observations in fluorescence. Solvent 

interactions with solute molecules are predominantly electrostatic and may be of the 

induced dipole-induced dipole, dipole-induced dipole, dipole-dipole or hydrogen 

bonding types [1]. In addition, hydrogen bonding usually accompanies dipole-dipole 

interaction as a mode of solvation.

A solvent which has positively polarized hydrogen atoms which can engage in 

hydrogen bonding is said to be a hydrogen bond donor solvent. A solvent, which has 

atoms bearing lone, or non-bonding electron pairs is said to be a hydrogen bond 

acceptor solvent. Qualitatively, a hydrogen bond donor behaves as a very weak 

Bronsted acid, partially donating a proton to a basic site on the solute molecule. A 

hydrogen bond acceptor behaves as a very weak Bronsted base, partially accepting 

a proton from the solute molecule. Because of the involvement of nonbonding and 

lone pairs in n -> n* and intramolecular charge transfer transitions, hydrogen bonding 

solvents have the greatest effect on the positions of these types of spectra. Because 

of the large dipole moment changes accompanying electronic reorganisation in n -> 

7i*  and intramolecular charge transfer transitions; these types of spectra are most 

affected by solvent polarity.

In the ground state of a polar molecule capable of hydrogen bonding, in a solvent of 

high polarity (dielectric strength) and having both hydrogen bond donor and acceptor 

properties (e.g. water), the molecule will have a solvent cage in which the positive 

ends of the solvent dipoles will be oriented about the negative ends of the solute 

dipole and the negative ends of the solvent dipoles will be oriented about the positive 

ends of the solute dipole. Positively polarised hydrogen atoms of the solvent may be 

oriented toward lone pairs on the solute and acidic hydrogen atoms of the solute may 

be oriented toward lone pairs on the solvent. The solvent cage is in thermal
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equilibrium with the ground state electronic distribution of the solute. The light 

absorption process alters the electronic distribution of the solute so that the electronic 

dipole moment of the excited molecule is different from that of the ground state 

molecule. However the process of absorption is so rapid that it terminates with the 

excited molecule still in the ground state equilibrium solvent cage (i.e. in a Franck- 

Condon excited state). If the solute molecule becomes more polar in the excited 

state, there will be greater electrostatic stabilisation of the excited state, relative to 

the ground state, by interaction with the polar solvent. The greater the polarity of the 

solvent, the lower the energy of the Franck-Condon excited state (see Figure 5-1 (a)). 

This type of behaviour is characteristic of most n -> 71* and intramolecular charge- 

transfer transitions and is seen as a shift to longer wavelengths with increasing 

solvent polarity. When the electronic dipole moment is lower in the Franck-Condon 

excited state than in the ground state, increasing solvent polarity stabilises the 

ground state to a greater degree than the excited state and the absorption spectrum 

will shift to shorter wavelengths with increasing solvent polarity (see Figure 5-1 (b)).

s,N

p  N 
A F PA

s,p

S,N

O N

F NA

s,p

C P

( a ) (b)
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- FREQUENCY 
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WAVELENGTH *
«• FREQUENCY
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Figure 5-1 : The effect of going from a non-polar solvent (N) to a polar solvent (P), 

upon the energy (Ea) of and absorptive transition (a) when the excited singlet state to 

which absorption occurs (S^ is more polar than the ground state (S0), (b) when the 

excited singlet state to which absorption occurs is less polar than the ground state,

(c) and (d) represent the way the spectral bands corresponding to the transitions in

(a) and (b), respectively, might appear.
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In fluorescent molecules, subsequent to excitation to the Franck-Condon excited 

state, the ground state solvent cage reorients itself to conform to the new electronic 

distribution of the excited molecule. This solvent relaxation process involves 

reorientation of solute dipoles about new centres of positive and negative charge in 

the excited molecule, and possibly the strengthening, weakening, breaking and 

making of hydrogen bonds. Because nuclei motions are involved, solvent relaxation 

is contemporaneous with vibrational relaxation, taking about 10'14 -  10'12 seconds, 

and is rapid by comparison with the lifetime of the lowest excited singlet state (-10-8 

seconds). Consequently, fluorescence originates from the excited solute molecule in 

a thermally equilibrated solvent cage configuration which is lower in energy than the 

Franck-Condon excited state, and generally even somewhat lower than the 

vibrationally relaxed unsolvated or weakly solvated excited molecule.

When fluorescence occurs, it terminates in the ground electronic state of the solute 

molecule, but because of the rapidity of the electronic transition, the molecule is still 

in the excited state equilibrium solvent cage (which is higher in energy than the 

thermally relaxed ground state). Rapid solvent relaxation then occurs (10‘12 -  10'14 

seconds), and the solute molecule ultimately returns to the ground state equilibrium 

solvent cage. Because the solvent relaxed excited state is lower in energy than the 

Franck-Condon excited state, and the Franck-Condon ground state is higher in 

energy than the solvent relaxed ground state, fluorescence often occurs at 

considerably longer wavelengths than would be anticipated purely on the basis of 

vibrational relaxation. It is for this reason that the 0 - 0  bands of fluorescence and 

absorption often do not coincide.
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5.2 Experimental Section

5.2.1 Equipment and Materials

All fluorescence emission and quenching experiments were performed using 

a Perkin-Elmer Luminescence Spectrometer LS 50B (Beaconsfield, 

Buckinghamshire, UK), interfaced with a Pentium PC which employs fluorescence 

data management software, FLWinlab. Post-run data processing was performed 

using Microsoft Excel ’97 and 2000 after importing the spectra as ASCII files.

All fluorescence lifetime measurements were performed using an Edinburgh 

Analytical Instruments Single Photon Counter in a T-setting, which employs an 

nF900 nanosecond nitrogen flash lamp, with photo-multiplier detector, model S300 (- 

20°C to -30°C). Post-run data processing was performed using F900 data correlation 

software, version 3.13 and Microsoft Excel 2000 after importing the spectra as ASCII 

files.

All UV measurements were carried out using a Perkin-Elmer Lambda 900 

UVA/IS/NIR spectrometer. The instrument was controlled via UV WinLab software 

and post-run data processing was performed using Microsoft Excel ’97 and 2000 

after importing the spectra as ascii files.

Both enantiomers of phenylalaninol, (R)-(+)-phenylalaninol and (S)-(-)-phenylalaninol, 

both enantiomers of phenylglycinol, (R)-(-)-2-phenylglycinol and (S)-(+)-2- 

phenylglycinol and both enantiomers of phenylethylamine were of puriss grade (98% 

pure, the other 2% consisting of the other enantiomeric form), obtained from Fluka 

Biochemika (Gillingham, Dorset, UK). In addition as a control, the three 

aforementioned chiral amines were obtained of puriss grade from Sigma-Aldrich. The 

solvents used (acetonitrile and chloroform- HPLC grade (fluorescence emission) and 

Spectrometric grade (lifetime measurements)) were obtained from Labscan 

(Stillorgan, Co. Dublin).

5.2.2 Procedure for Fluorescence Measurements in Acetonitrile

Solutions giving concentrations of the propranolol amide calix[4]arene L1 (3.0 nmol 

dm-3) and phenylalaninol in the range 1 -  20 mmol dm-3 in acetonitrile were prepared 

as follows. A 0.1 mmol dm'3 stock solution of calixarene L1 was prepared by
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dissolving 8.9 mg in 50mL of methanol. A 0.25 mol dm-3 stock solution of 

phenylalaninol was prepared by dissolving the required combination of the two 

enantiomers, totalling 0.945 g, in 25 mL of methanol. Test solutions were then 

prepared by the general method followed in Chapters four and five, and making up to 

the volume with acetonitrile. Measurements were repeated a minimum of three times 

for each addition. The fluorescence intensities of the solutions were measured at an 

excitation wavelength of 285nm. The fluorescent intensity readings were compared 

to that of a solution containing 3.0 jamo! dm'3 calixarene L1 and no phenylalaninol in 

acetonitrile.

5.2.3 Procedure for Fluorescence Measurements in Chloroform

Solutions giving concentrations of the propranolol amide calix[4]arene L1 (5.0 jxmol 

dm-3) and phenylalaninol in the range 1 -  44 mmol dm-3 in chloroform were prepared 

as described for experiments in acetonitrile. The fluorescence intensities of the 

solutions were measured at an excitation wavelength of 285nm. The fluorescence 

intensity readings were compared to that of a solution containing 5.0 ^mol dm-3 

calixarene L1 and no phenylalaninol in chloroform.

5.2.4 Procedure for Fluorescence Lifetime Measurements in Chloroform

Solutions giving absorbance readings of 0.57 of L1 and therefore a concentration of 

44.9^mol dm*3 in chloroform were prepared. Each sample was spiked with the R- 

enantiomer of phenylalaninol and the consequent fluorescence lifetime was 

observed. The concentration range of phenylalaninol examined after an addition of 

100-500, and 1000 |nL of a 1.0mol dm'3 stock solution of R-phenylalaninol was 40- 

400mmol dnrf3. Solutions of L1 spiked with S-phenylalaninol were prepared in the 

same general manner as in the case of the R-enantiomer of PA.
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5.3 Fluorescence studies in Acetonitrile

5.3.1 Excitation and Emission Spectra

The excitation and emission spectra of the p-allyl-S-propranolol tetra amide 

calix[4]arene at a concentration of 3.0 junol dm-3 in acetonitrile are shown in Figure 

5-3. There are maxima in the excitation spectrum at 220nm, 235nm and 285nm 

(Figure 5-3a), and the maximum of the emission spectrum obtained using an 

excitation wavelength of 285nm is at 339 nm (Figure 5-3b). Considering that the 

guest species do not absorb in the region of the spectrum higher than 280nm (Figure 

5-2), 285nm is a suitable excitation wavelength for the following experiments.

Figure 5-2: Absorbance spectrum of phenylalaninol (PA) guest at a concentration of 

4mmol dm'3 in acetonitrile.
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(b)

Figure 5-3: Excitation and emission spectra of p-allyl-S-propranolol tetra amide 

calix[4]arene at a concentration of 3.0 fumoi dm'3 in acetonitrile. (a) Excitation 

spectrum of the calixarene in the absence and presence of phenylalaninol (PA) (20 

mmol dm'3) at an emission wavelength of 340nm. (b) Emission spectra of the 

calixarene in the absence and presence of phenylalaninol at an excitation 

wavelength of 285nm.
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The linear response range of fluorescence intensity to concentration of calixarene L1 

in acetonitrile was determined to be between 0.1 and 4.0|xmol dm'3 as shown in 

Figure 5-4. It is important to use a concentration of the calixarene within the linear 

range in order to ensure that no self-quenching occurs and therefore that no 

alternative self-quenching mechanisms are present. A concentration of 3.0 fimol dm*3 

was chosen for subsequent experiments to examine the effects of phenylalaninol 

(PA) and hence any quenching observed can be related to the effect of the target 

species on the ligand.

5.3.2 Linear Response range in Acetonitrile

Figure 5-4: Linear fluorescence response of p-allyl-S-propranolol calixarene in 

acetonitrile, measured using an excitation wavelength of 285nm and at an emission 

wavelength of 339nm, points represent the mean of three replicate measurements 

(n=3), with the error bars representing ± standard deviation (error bars may be 

masked by symbols).
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The Stern-Volmer plot was tested for linearity over a series of concentration ranges, 

which include;

□ 0 - 0 .5  mmol dm'3 of racemic phenylalaninol (Figure 5-5).

□ 0 -4  mmol dm'3 of racemic phenylalaninol (Figure 5-6).

□ 0 - 2 0  mmol dm'3 of racemic phenylalaninol (Figure 5-7).

Since quenching is described by the Stern-Volmer equation, quenching data is 

frequently presented as a plot of lo/l versus [Q], because lo/l is expected to be linearly 

dependent upon the concentration of the quencher. As can be seen from the 

following graphs, the Stern-Volmer plots are not linear over any of the concentration 

ranges tested and do not strictly obey the Stern-Volmer equation (that is the intercept 

of the linear region does not pass through one). There appears to be quite a sharp 

initial increase in the lo/l values for the calixarene, after the addition of racemic 

phenylalaninol in acetonitrile as solvent, which then tailors off to a steady linear plot.

5.3.3 Linear range of Stern-Volmer plot.

0  0 .1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6

Concentration of racemic phenylalaninol (mmol dm~3)

Figure 5-5: Stern-Volmer plot of S-propranolol calixarene (3.0 /umoI dm'3) over the 

range 0 - 0 . 5  mmol dm'3 of racemic phenylalaninol in acetonitrile, measured using an 

excitation wavelength of 285nm and at an emission wavelength of 339nm, points 

represent the mean of three replicate measurements (n=3), with the error bars 

representing ±  standard deviation (error bars may be masked by symbols).
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Figure 5-6: Stern-Volmer plot of S-propranolol calixarene (3.0 ¿imol dm'3) over the 

range 0 -4  mmol dm'3 of racemic phenylalaninol in acetonitrile.
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Figure 5-7: Stern-Volmer plot of S-propranolol calixarene (3.0 jumol dm'3) over the 

range 0 - 2 0  mmol dm'3 of racemic phenylalaninol in acetonitrile.

For Figure 5-6 and Figure 5-7 data was measured using an excitation wavelength of 

285nm and at an emission wavelength of 339nm, points represent the mean of three 

replicate measurements (n=3), with the error bars representing ±  standard deviation 

(error bars may be masked by symbols).
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Figure 5-8: Comparison of Stern-Volmer plots of S-propranolol calixarene in 

acetonitrile, combination of plots in Figure 5-5, Figure 5-6 and Figure 5-7.

Figure 5-8 compares the values for lo/l over the three concentration ranges of 

quencher tested, namely 0 - 0.5, 0 - 4  and 0 - 20 mmol dm-3. The concentration 

range used does not seem to greatly affect the trend of calixarene quenching, since 

there appears to be a significant initial quenching process with considerably less 

prominent effects following subsequent addition of the guest (see Figure 5-10). Since 

the there is a significant initial quenching which does not change substantially upon 

further addition of quencher this would seem to imply that a 1:1 association between 

the calixarene host and guest quencher occurs.

5.3.4 V aria tion  o f S tern-V o lm er p lo t w ith  enan tiom e ric  co m p os itio n

Even though the Stern-Volmer plot of L1 was not found to be linear over the range 0- 

20 mmol dm-3 of racemic phenylalaninol, the effects of both enantiomer of 

phenylalaninol on the fluorescence of L1 in acetonitrile were investigated. Figure 5-9 

illustrates the Stern-Volmer plots for the quenching of the fluorescence of calixarene 

L1, upon addition of 100% (R)- and 100% (S)-phenylalaninol respectively, at a 

concentration range of 0 -  40mmol dm*3. Because the Stern-Volmer plots show such 

similarities in the behaviour of each enantiomer, and the fact that the quenching data 

does not strictly follow the Stern-Volmer equation, it can be concluded that in
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acetonitrile, the propranolol amide derivative of p-allyl-calix[4]arene does not exhibit 

significant ability to discriminate between the enantiomers of phenylalaninol.

1 . 6  -I

1.4 

1.2 - . --------------------- • '  '  ‘

■

1 -

5» 0.8
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0.6
■ S-enantiomer

0.4 -
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Au J ■ H H j  1
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Figure 5-9: Stern-Volmer plots for the quenching of S-propranolol calixarene (3.0 

fMnol dm'3) measured using an excitation wavelength of 285nm and at an emission 

wavelength of 339nm, upon addition of 0 (red) and 100% (S)-phenylalaninol (green) 

in acetonitrile. Standard deviations are shown as error bars (n=3), which may be 

masked by symbols.

Figure 5-10: Fluorescence emission spectra of calixarene alone (3.0 /umol dm'3) in 

acetonitrile (black) and in the presence of varying amounts of R-phenylalaninol (PA) 

(0 -  20 mmol dm'3 - uppermost-lowest red spectra respectively).
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Figure 5-11: UV-spectra in acetonitrile of calixarene alone (3.0 nmol dm'3) (black), 

phenylalaninol guest alone (dotted red), and calixarene in the presence of 4 mmol 

dm'3 phenylalaninol guest (red).

Preliminary studies of the absorption spectra of ligand L1 in acetonitrile (Figure 5-11) 

make it difficult to ascertain whether changes occur in the calixarene spectrum after 

the addition of guest phenylalaninol. However the excitation spectrum (Figure 5-3 (a)) 

would seem to indicate a change in the absorption spectrum of the calixarene L1 in 

the presence of a guest molecule in acetonitrile. For this reason it is possible that a 

static quenching mechanism is responsible for the decrease in fluorescence emission 

intensity of L1. This would lead one to believe that quenching occurs as a result of 

the formation of a non-fluorescent complex between the fluorophore (calixarene host) 

and quencher (phenylalaninol guest). This theory is further supported by the initial 

large decrease in fluorescence intensity in the calixarene spectrum after the addition 

of the phenylalaninol guest, which is followed by only minor changes subsequent to 

further aliquots of the guest being added (see Figure 5-10). This would imply that an 

immediate association with the guest phenylalaninol is formed when the guest is 

introduced to the solution. Considering that even at the lowest concentration ranges 

of guest, this is still 1000 times in excess of the calixarene L1 concentration. If a 1:1 

complex is formed between the host and guest then it will do so immediately, on the 

first addition of guest since the guest concentration is far in excess of the host, 

making the effect of further guest addition negligible, which is what is seen 

experimentally.
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When this case is examined with regard to the host guest interactions in acetonitrile 

as solvent, it must be kept in mind that since acetonitrile is polar, non-protic in nature, 

it does not therefore engage in hydrogen bonding with solute molecules. This implies 

that the guest molecules do not need to disrupt any pre-existing hydrogen bonding 

between the calixarene host and the solvent. This suggests that the host is free to 

engage in direct bonding/association with the guest, and as soon as the first aliquot 

of guest is introduced to the host solution, a host: guest association immediately 

occurs. This is not extraordinary considering that the guest concentration is far in 

excess of that of the host, and unlike in the previously discussed case of methanol as 

solvent, the guest molecules are not required to be in excess, to force an association 

away from the solvent molecules and towards the guest species.
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5.4 Fluorescence studies in Chloroform.

5.4.1 Excitation and Emission Spectra

The excitation and emission spectra of the p-allyl-S-propranolol tetra-amide 

calix[4]arene at a concentration of 5.0 jxmol dm-3 in chloroform are shown in Figure 

5-13. The maxima of the excitation spectrum are at 285 and 338 nm (Figure 5-13a), 

and the maximum of the emission spectrum obtained using an excitation wavelength 

of 285 nm is at 338 nm (Figure 5-13b). Considering that the guest species do not 

absorb in this region, 285nm is a suitable excitation wavelength for the following 

experiments.
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Figure 5-12: Absorbtion spectrum of phenylalaninol (PA) guest at a concentration of 

4mmol dm'3 in chloroform.
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Figure 5-13: Excitation and emission spectra of p-allyl-S-propranolol tetra amide 

calix[4]arene at a concentration of 5.0 /umol dm'3 in chloroform, (a) Excitation 

spectrum of the calixarene in the absence and presence of phenylalaninol (PA) (20 

mmol dm'3) at an emission wavelength of 340nm. (b) Emission spectra of the 

calixarene in the absence and presence of phenylalaninol (20 mmol dm'3) at an 

excitation wavelength of 285nm.
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The linear response range of fluorescence intensity to concentration of calixarene L1 

in chloroform was determined to be between 0.1 and 6.0|xmol dm-3 as shown in 

Figure 5-4. It is important to use a concentration of the calixarene within the linear 

range in order to ensure that no self-quenching occurs and therefore that no 

alternative self-quenching mechanisms are present. A concentration of 5.0 nmol dm-3 

was chosen for subsequent experiments to examine the effects of phenylalaninol 

(PA) and hence any quenching observed can be related to the effect of the target 

species on the ligand.

5.4.2 Linear response range in Chloroform

Figure 5-14: Linear fluorescence response of p-allyl-S-propranolol calixarene in 

chloroform, points represent the mean of three replicate measurements (n=3), with 

the error bars representing ±  standard deviation (error bars may be masked by 

symbols).

5.4.3 Linear range of Stern-Volmer plot.

The Stern-Volmer plot when measured in chloroform was found to be linear over a 

range of 0-44 mmol d irf3 of racemic phenylalaninol.
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Figure 5-15: Stern-Volmer plot of S-propranolol calixarene (5.0 fumol dm'3) over the 

range 0 - 5 6  mmol dm'3 of racemic phenylalaninol in chloroform, points represent 

the mean of three replicate measurements (n=3), with the error bars representing ±  

standard deviation (error bars may be masked by symbols).

5.4.4 V aria tion  o f S tern-V o lm er p lo t w ith  enan tiom eric  co m p os itio n

The Stern-Volmer plot of L1 was found to be linear over the range 0 - 40 mmol dm“3 

of racemic phenylalaninol in chloroform. Figure 5-16 illustrates the Stern-Volmer plots 

for the quenching of the fluorescence of calixarene L1 at an emission wavelength of 

340nm, upon the addition of 100% R- (red data points) and 100% (S)-phenylalaninol 

(green data points), at a concentration range of 0 -  40 mmol dm’3. These Stern- 

Volmer plots yield Ksv values of 0.014 and 0.011 for the R- and S-enantiomers of 

phenylalaninol respectively. These Stern-Volmer constants return a Ksv ratio of 1.25, 

and although the slopes for each enantiomer in the presence of L1 are statistically 

different, these results taken at an emission wavelength of 340nm show great 

similarities in the behaviour of each enantiomer in the presence of L1, when 

compared to the metal-ion complexes previously discussed (Chapter 4). It can be 

concluded therefore that in chloroform when measuring at an emission wavelength of 

340nm, the propranolol amide derivative of p-allyl-calix[4]arene does not exhibit the 

considerable ability to discriminate between the enantiomers of phenylalaninol as the 

metal ion complexes previously discussed (Chapter 4).
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Figure 5-16: Stern-Volmer plots for the quenching of S-propranolol calixarene (5.0 

nmol dm'3) upon addition of 0% (red) and 100% (S)-phenylalaninol (green) in 

chloroform at an excitation wavelength of 285nm and an emission wavelength of 

340nm. Standard deviations are shown as error bars (n=3), which may be masked 

by symbols.

Preliminary studies of the absorption spectra of ligand L1 in chloroform (Figure 5-17) 

show that the addition of guest phenylalaninol produces a simple additive effect to 

the calixarene absorption spectrum. However when the excitation spectrum of L1 is 

examined in the absence and presence of phenylalaninol (Figure 5-13a), differences 

are noted. When the full emission spectrum of calixarene L1 in chloroform is 

examined in the presence of R- and S-phenylalaninol these differences can be 

clearly seen (see Figure 5-18a and b). In the presence of guest R-phenylalaninol the 

weak emission band of L1 at 430nm is greatly enhanced. This enhancement is not 

however observed for L1 in the presence of the S-enantiomer of phenylalaninol.
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Figure 5-17: UV-spectra in chloroform of calixarene alone (5.0 /jmoI dm'3) (black), 

phenylalaninol guest alone (4 mmol dm'3) (dotted red), and calixarene in the 

presence of phenylalaninol guest (5.0 /umol dm'3 and 4 mmol dm'3 respectively) (solid 

red).

Wavelength I nm

(a)

215



Figure 5-18: Fluorescence emission spectra ofcalixarene L1 (5.0 /jmol dm'3) in 

chloroform measured at an excitation wavelength of 285nm in the absence (black) 

and in the presence of varying amounts of S-phenylalaninol ((a) green spectra) and 

R-phenylalaninol ((b) red spectra). Phenylalaninol concentration in the range 4-40 

mmol dm'3, for both (a) and (b) concentration increases as fluorescence intensity 

decreases.

The graph below (Figure 5-19) shows that by monitoring the fluorescence intensity of 

L1 in the presence of each enantiomer of phenylalaninol at an emission wavelength 

of 430nm, a clear distinction between the effect of the R- and S-isomers of 

phenylalaninol can be observed from an increase in fluorescence, which is in 

contrast to the results previously obtained. When methanol is employed as solvent, 

the enantiomeric discrimination can be observed as a decrease in the fluorescence 

intensity with a corresponding increase in guest concentration. In the case of 

chloroform as solvent, if the fluorescence intensity is monitored at a wavelength of 

430nm the enantiomeric discrimination can be observed as an increase in the 

fluorescence intensity with a corresponding increase in guest concentration. By 

monitoring at this wavelength (430nm) it can be clearly discerned which enantiomer 

is in solution with calixarene L1.
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Figure 5-19: Fluorescence intensity of exciplex band at X-emission = 430nm with 

increasing phenylalaninol concentration, calixarene concentration 5.0 ¡jmoi dm'3 in 

the case of each enantiomer.

An explanation for this increase in intensity of the emission band at 430nm is 

attributed to the presence of two emitting species in solution, which we have 

assigned as two different conformations of the calixarene L1. If one consults the 

energy minimised molecular modelling pictures in Chapter 4 it can be seen quite 

clearly how flexible the appended chains of this ligand can be. This in conjunction 

with the 1H-NMR spectrum, which suggests that the calixarene does not exist as a 

symmetrical cone in CDCI3 solution, but rather a distorted cone, would strengthen the 

argument that two conformations of the calixarene are present in chloroform solution. 

Upon addition of the guest molecule R-phenylalaninol, the conformation of the 

calixarene changes to accommodate and associate with the guest, thereby changing 

the equilibrium of conformations present in solution, which seems to generate more 

of the conformer which emits at 430nm, and less of the form whose emission is 

observed at 340nm. This would explain the intensity enhancement of the band at 

430nm. The fact that the band at 340nm decreases in the presence of the S- 

enantiomer of phenylalaninol may be attributed to a weak complex formation 

between the S-enantiomer and L1.
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However the enhancement of this new band in the presence of R-PA, could also be 

due to the formation of an excited state complex between the calixarene host and the 

phenylalaninol guest, whereby the excited state fluorophore accepts an electron from 

the amine. In non-polar solvents, fluorescence from the excited state charge transfer 

complex (exciplex) is frequently observed. It is well known that the fluorescence 

emission of hydrocarbons is quenched by electron transfer from amines [2, 3]. In 

order to determine which of these two processes is actually occurring in solution 

(exciplex formation or a change in equilibrium of conformations) the fluorescence 

lifetime of the calixarene in the absence and presence of phenylalaninol was 

measured. If an exciplex is formed, then the lifetime of the calixarene should change 

in the presence of the guest PA.

5.4.5 Variation of fluorescence lifetimes with enantiomeric composition

(a)

I
T i m  e / n a n o s e c o n d s

(b)

Figure 5-20: Fluorescence lifetime decay spectrum of p-allyl-tetra-S-propranolol 

amide calix[4]arene in chloroform, in comparison to the instrument response and the 

exponential model fit (a). Residual data not fitted to exponential model (b).
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Figure 5-20 shows the decay profile of calixarene L1 in chloroform Using the bi- 

exponential equation (equation 3-2), the lifetime exponential decay can be modelled 

to yield the fluorescence lifetime of the excited state of calixarene L1 Using an 

excitation wavelength of 337nm and scanning at an emission wavelength of 520nm, 

two values of 6 6 and 1 6 ns were measured for the lifetime of L1 in chloroform This 

would suggest that two fluorescing species are present m solution Since 

spectroscopic grade solvents were used and the calixarene was pure, the second 

value was not attributed to an impurity This could instead be due to different 

conformations of the calixarene, as the array of naphthalene groups may be 

differently positioned in one conformer over the other, possibly altering the electronic 

state of the molecule

A solution of L1 in chloroform was spiked with aliquots of a 1 0M R-phenylalamnoi in 

chloroform The fluorescence emission lifetime decays were then measured and the 

results can be seen in Table 5-1 It is evident from the data acquired that the lifetime 

measurements do not exhibit a concentration dependence on the quencher, unlike 

the emission spectra and also that xq/x *  F o /F  This infers that xq/x ~ 1, and therefore 

the mechanism of quenching of L1 by R-phenylalanmol is determined to be static 

This implies that an excited state complex between the fluorophore and amine is not 

responsible for the increase in intensity of the emission band at 440nm

Solution x1 and t2 t  Nanoseconds (St D ev)

Calixarene alone 6 7,1 6 (±01) 1 11

L1 + 100 |iL , 1 0 M R-PA 7 0, 1 8 (±0 2) 1 05

L1 + 200 jaL, 1 0 M R-PA 6 6, 1 6(±0 1) 1 14

L1 + 300 (xL, 1 0 M R-PA 6 7, 1 6(±0 1) 1 15

L1 + 500 jlaL, 1 0 M R-PA 6 3, 1 2 (±0 1) 1 28

L1 + 1000 *iL, 1 0 M R-PA 6 2, 1 8 (±0 3) 1 13

L1 + 1500 jiL, 1 0 M R-PA 6 7, 1 4 (±0 2) 1 05

Table 5-1 Fluorescence lifetimes of calixarene in the absence and presence of R- 

phenylalanmol
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The lifetime of the excited state L1 was also measured in the presence of the S- 

enantiomer of phenylalanmol The results can be seen in Table 5-2, which illustrate 

that the presence of this guest enantiomer in solution does not perturb the excited 

state lifetime of the calixarene, confirming that both enantiomers of phenylalanmol 

form ground state complexes with calixarene L1 in chloroform solution

So/utron and z2 /  Nanoseconds (St Dev )

Calixarene alone 6 7, 1 6 (±01) 111

L1 + 100 |iL , 1 0 M S-PA 6 5, 1 7 (±0 2) 1 08

L1 + 200 nL, 1 0 M S-PA 6 6, 1 6 (±0 1) 1 14

L1 + 500 fiL, 1 0 M S-PA 6 4, 1 6 (±0 4) 1 14

L1 + 1000 nL, 1 0 M S-PA 6 6 ,1 6  (±0 1) 1 18

Table 5-2 Fluorescence lifetimes of calixarene in the absence and presence of S- 

phenylalanmol

The fluorescence lifetime data obtained in chloroform, confirms that the mechanism 

of quenching of the fluorescence of L1 by each enantiomer of phenylalanmol is static 

and therefore that an excited state complex is not accountable for the increase in 

intensity of the emission band at 440nm This reinforces the argument that there is a 

change in equilibrium of two calixarene conformations in the presence of R- 

phenylalanmol in chloroform solution At present we cannot distinguish which 

conformation or rotamer is responsible for the emission bands at 340nm and 440nm 

Fluorescence emission and lifetime measurements of metal complexes of L1 in 

chloroform may help to discern whether a more rigid cone conformation induced by 

metal ion complexation is responsible for one of the emission bands it is clear 

however, that enantiomeric discrimination is possible with calixarene L1 in chloroform 

solution if the emission intensity is monitored at 440nm Since the intensity of L1 in 

chloroform changes very little when in solution of S-PA (Figure 5-19), and undergoes 

a four-fold increase when in the presence of R-PA (highest concentration) it is 

immediately obvious which enantiomer one has in solution with this calixarene
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5.5 Conclusion

Chiral discrimination of phenylalanmol is not possible with L1 in acetomtrile There 

appears to be a 1 1 host guest association with L1 and PA in this solvent Since 

acetomtrile is a polar non-protic solvent this may be due to the lack of hydrogen 

bonding from the solvent to the calixarene This implies that the guest PA does not 

need to disrupt any host-solvent associations when spiked into the calixarene in 

solution and therefore immediately associates with the host

In chloroform as solvent a very different behaviour is seen Chiral discrimination is 

statistically possible with L1 and PA in chloroform, but while monitoring the emission 

at 340nm the extent of discrimination is not comparable to that of the metal-ion 

complexes discussed in the previous chapter When the emission intensity of this 

ligand is monitored at 440nm in the presence of PA, huge differences in the 

fluorescence intensities are seen with respect to the two enantiomers In the case of 

S-PA practically no change is observed at 440nm when this enantiomer is present in 

solution with L1 However a dramatic increase in fluorescence intensity is observed 

at 440nm when R-PA is added to a solution of L1 in chloroform

Fluorescence lifetime measurements verify that a static quenching mechanism is 

responsible for the changes in the emission intensities of L1 in the presence of both 

enantiomers of PA This rules out the possibility of exciplex formation between L1 

and R-PA Lifetime measurements also confirm that two fluorescing species exist in 

solution, which have been attributed to two different calixarene conformations in 

chloroform This theory is supported by the 1H-NMR spectra in chapter 4, and when 

one consults the energy minimised structures of L1 in chapter 4 it is clear that the 

free ligand is quite flexible and may exist as conformations other than a ngid cone, 

when in solution
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6 Conclusion and Future Work
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6 1 Conclusions

The synthesis of L1 was successful via the acid chloride route (section 2 2 1) 

Attempts at reducing the length of the synthesis with coupling agent DCC was not 

successful, since using DCC as a coupling agent to form amides directly from 

calixarene tetra-acids did not achieve tetra-substituted amides An alternative route 

to produce tetra-amide substituted calixarenes from less expensive building blocks, 

with however similar properties to L1 was attempted The alternative route taken 

involved two steps

1 formation of the amide moiety

2 attachment of amide moieties to calixarene backbone

The first of these two steps led to the formation of three amide units (119), (120) and 

(121) The second step however suffered from partial substitution, and resulted in a 

series of mono, di and tri substituted fluorescent calixarenes A five-fold excess of the 

amide moiety was used which is not sufficient to complete the tetra-substitution 

Potassium carbonate as base may not be strong enough to allow the reaction to go 

to completion A stronger base with a greater excess of alkylating agent (amide) 

could possibly produce tetra-substituted amides The partially substituted calixarenes 

could however prove useful in future studies as molecular receptors in chiral or anion 

recognition

Ligand L1 was designed with a methylene spacer between the chiral centre and 

fluorescent naphthyl moiety and was found to successfully discriminate between the 

amino alcohol, phenylalanmol, with a methylene spacer between its aromatic moiety 

and chiral centre However, discrimination between two pairs of shorter chain amino 

alcohol enantiomers (R- and S- phenylglycinol and phenylethylamine) was not 

observed with this calixarene L1 is therefore very specific in its interactions with 

guest molecules and as well as discriminating between mirror image forms, can 

successfully recognise such a small difference in guest molecules as a methylene 

spacer

In this study there are relatively well-defined, 3-D chiral spaces in the cavity of the 

calixarene L1 through which the enantiomers must pass in order to facilitate
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quenching. This infers that since the host molecule is itself chiral in nature, bearing 

an (S)-amide substituent, that the (R)-enantiomer should be better predisposed to 

interact with the calixarene than the (S)-enantiomer. The fact that the (R)-enantiomer 

is in fact the preferred guest molecule with greater interaction and selectivity 

observed for this enantiomer than in the case of the (S)-enantiomer was confirmed 

by fluorescence emission studies.

Preliminary studies on the absorption spectrum of calixarene L1 showed changes in 

the presence of a phenylalaninol guest molecule. This would indicate that the 

process of quenching is probably static, that is, the guest molecule forms a non- 

fluorescent ground state complex with the calixarene host. With the aid of 

fluorescence lifetime studies it was established that since the lifetime of the excited 

state of L1 was independent of the concentration of the guest molecule, that static 

quenching was the cause of the decrease in fluorescence intensity of L1 in the 

presence of phenylalaninol. The lifetime measurements revealed that there were two 

fluorescing species in solution, which could be due to two different conformations of 

L1 in solution.

The fluorescence behaviour of sodium and potassium complexes of L1 was 

examined, which resulted in a five-fold increase in association constant (with respect 

to the R-enantiomer of phenylalaninol) for the potassium complex of L1 with respect 

to the free ligand. The molecular modelling data in conjunction with the fluorescence 

quenching results would seem to suggest that greatly enhanced enantiomeric 

discrimination is achieved when the calixarene exists in a highly structured 

symmetrical cone conformation, which is in this case induced by metal-ion 

complexation. If ligand L1 is to be employed as an analytical sensing agent, then it is 

clear that the metal ion complexes, in particular that of potassium perchlorate are the 

most advantageous sensor molecules when it comes to the enantiomeric 

discrimination of phenylalaninol, due to a greater sensitivity of the ligand to the guest 

and the huge selectivities obtained.

Chiral discrimination of phenylalaninol is however not possible with L1 in acetonitrile. 

There appears to be a 1:1 host:guest association with L1 and PA in this solvent. 

Since acetonitrile is a polar non-protic solvent this may be due to the lack of 

hydrogen bonding from the solvent to the calixarene. This implies that the guest PA
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does not need to disrupt any host-solvent associations when spiked into the 

calixarene in solution and therefore immediately associates with the host

In chloroform as solvent a very different behaviour is seen Chiral discrimination is 

statistically possible with L1 and PA in chloroform, but while monitoring the emission 

at 340nm the extent of discrimination is not comparable to that of the metal-ion 

complexes discussed in the previous chapter When the emission intensity of this 

ligand is monitored at 440nm in the presence of PA, huge differences in the 

fluorescence intensities are seen with respect to the two enantiomers In the case of 

S-PA practically no change is observed at 440nm when this enantiomer is present in 

solution with L1 However a dramatic increase in fluorescence intensity is observed 

at 440nm when R-PA is added to a solution of L1 in chloroform

Fluorescence lifetime measurements verify that the quenching mechanism 

responsible for the changes in the emission intensities of L1 in the presence of both 

enantiomers of PA is static This rules out the possibility of exciplex formation 

between L1 and R-PA Lifetime measurements also confirm that two fluorescing 

species exist in solution, which have been attributed to two different calixarene 

conformations in chloroform This theory is supported by the 1H-NMR spectra in 

chapter 4, and when one consults the energy minimised structures of L1 in chapter 4 

it is clear that the free ligand is quite flexible and may exist as conformations other 

than a rigid cone, when in solution
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6 2 Future Work

The formation of a fully completed series of mono- di- and tri-substituted calixarenes 

from (119), (120) and (121) could be produced from a series of reactions by varying 

the stoichiometry of calixarene, alkylating agent and base This would result in an 

interesting series of calixarene molecular receptors which could possibly be 

employed as chiral or anion receptors, with the possibility of fluorescence detection 

provided by the appended fluorophores

A five-fold excess of the amide moiety was used which was not sufficient to complete 

the tetra-substitution A stronger base therefore, with a greater excess of alkylating 

agent (amide) could possibly produce tetra-substituted amides A study could also be 

carried out with respect to the effect of solvent on the reaction for tetramer formation 

Since the conformations of calixarenes vary greatly depending (in part) on the upper 

rim substituents, varying the p-substituent may help to provide an insight into the 

effect of conformation on the binding of target molecules

Further research into the ion-binding properties of L1 using ion selective electrodes is 

continuing, whereby the selectivity of this calixarene could be tested against a wide 

range of metal ions Metal ion complexation could also be verified by the 

conventional picrate extraction method

Fluorescence lifetime measurements of the calixarene-metal complexes may help to 

distinguish the two apparent quenching processes observed in the emission studies 

This data may provide a more exact insight into the processes occurring when a 

concentration of R-phenylalanmol higher than 15 mmol dm 3 is added to L1 in 

methanol The host-guest behaviour of L1 in acetomtrile with phenylalaninol at the 

same concentration should be investigated, to verify whether a 1 1 association is 

actually occurring This may be studied by 1H-NMR spectra of the host, guest and 

host guest association in a 1 1 ratio in a solution of deuterated acetomtrile, or by 

measuring the fluorescence emission spectra of these solutions
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T u n i n g  a n d  E n h a n c i n g  E n a n t i o s e l e c t i v e  Q u e n c h i n g  
o f  C a l i x a r e n e  H o s t s  b y  C h i r a l  G u e s t  A m i n e s

Carol LynamrT Karen JenningsrT Kieran Nolan,T Paddy Kane,* M. Anthony M cKervey,* and 
Derm ot Diam ond*'*

National Centre for Sensor Research (NCSR), School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and 
School of Chemistry, The Queen’s University, Belfast BT9 5AG, N. Ireland

The synthesis of a propranolol am ide derivative of 
p-allylcalix[4]arene is described, which has been designed 
to behave as a molecular sensor capable of distinguishing 
chiral am ines on the basis of their shape and chirality. 
This molecule can discriminate between the enantiom ers 
of phenylalaninol through the quenching of the fluores­
cence emission in methanol in contrast to an (5) dinaph 
thylprolinol calix[4]arene derivative, which can discrim i­
nate between the enantiom ers of phenylglycinol, but not 
phenylalaninol. The separation between the naphthyl 
fluorophores and the hydrogen-bonding sites within the 
chiral cavity can be tuned to recognize guest am ines with 
similar separation between aryl groups and hydrogen- 
bonding sites. The formation of metal ion complexes of 
the p-allylcalix[4]arene propranolol amide derivative is 
shown to induce a more regular and rigid cone conforma­
tion in the calix[4]arene macrocycle, which generates a 
significant enhancem ent in the observed enantiomeric 
discrimination.

Approximately 50% of synthetic drugs currently used thera­
peutically are chiral in nature1 with increasing numbers being 
supplied as a pure enantiomer, since the right-handed and left- 
handed forms can often have different pharmacological effects 
when administered to the body.2 In the absence of an external 
chiral influence, enantiomers have identical chemical properties 
except toward optically active reagents and identical physical 
properties except for the direction of rotation of the plane of 
polarized light. Because of these similarities, analytical discrimina­
tion of enantiomers is very challenging and is usually based on 
chromatographic separations using chiral stationary phases.3-6

Much of the analytical interest in calixarenes derives from their 
potential as selective and useful complexation agents, with the 
main area of interest to date being their use as molecular sensors.7 
This depends in part on the presence of appropriately sized
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dermot.dlamond@ dcu.ie.

' Dublin City University.
1 The Queen s University.
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L1 L2
Figure 1. Propranolol amide derivative of p-allylcalix[4]arene L1 
and (S)-2-dinaphthylproUnol calix[4]arene derivative L2 (chiral centers 
indicated by stars).

cavities; however, for the more sophisticated recognition mech­
anisms, it is also necessary that appropriate functional groups are 
present in a spatial arrangement that is complementary to binding 
sites in the guest molecule (i.e., shape based recognition rather 
than size-based).

In designing any molecular sensor, the main issues to be 
addressed are as follows: (1) recognition of the target species; 
(2) transduction of the binding event; (3) immobilization or 
controlled localization.

To achieve our goal of chiral recognition of molecular guests, 
the calixarene host must be functionalized with chiral moieties 
that define a 3-D chiral distribution of binding sites complementary 
to that of the guest. The structures of the host calix[4jarenes (LI, 
L2) are given in Figure 1. The molecular design components are 
broadly similar in that they both possess the following: (1) a calix- 
[4]arene backbone (4-repeat units in the macrocycle); (2) hydrogen- 
bonding sites defined by carbonyl oxygen, amide nitrogen, and 
hydroxy groups at roughly similar positions with respect to the 
phenoxy oxygen at each pendant group; (3) a chiral center 
(starred in Figure 1) located in the vicinity of the hydrogen- 
bonding sites; (4) naphthyl groups sited at the bottom of the 
pendant groups to provide a fluoresence signaling capability; (5)

10.1021/ac010153k CCC: $22.00 © 2002 American Chemical Society 
Published on Web 11/30/2001
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PA-R P A S

Phenylalaninol (PA)

PG-R PG-S

Ptienylglyclnol (PG)

Phenyletiiy lamine CydohexylethylamlneNorephldiine

Figure 2 Structures of phenylammes (/?) and (S) phenylalaninol (PA R and PA S respectively) (Rj and (S) phenylglycinol (PG R and 
PG S respectively) phenylethylamme norephidnne and cyclohexylamine (chiral centers indicated by astensks)

allyl groups positioned at the end of the cahx[4]arene opposite to 
the chiral binding sites (the upper rim) in order to facilitate 
immobilization on a polymer substrate with minimal effect on the 
host-guest characteristics and fluorescence properties (LI only) 

In previous w ork89 it has been shown that ligand 2 can 
discriminate between the enantiomers of phenylethylamme 
norephedrine and phenylglycinol (Figure 2) In these guest 
molecules the common feature is the positioning of hydrogen 
bonding sites and a chiral center immediately adjacent to an aryl 
nng The aryl ring is known to be a crucial feature as cyclohexyl 
ethylamine (Figure 2) the nonaromatic analogue of phenylethyl 
amine has no quenching effect at a ll10

Although the two calixarene hosts contain similar design 
features and their structures are broadly similar we are interested 
in the effect of subtle differences in these molecular receptors in 
particular the effect of the relative spacing between the naphthyl 
signaling groups and the 3 D chiral distribution of binding sites 
within the calixarene cavity L I has therefore been designed to 
have these binding sites and the chiral center separated from the 
naphthyl groups by an additional ether group compared to L2 
(Figure 1)

Key questions to be addressed are as follows Does the chiral 
discrimination depend on the separation of the aryl group and 
the chiral binding centers7 If so can this separation be tuned in 
hosts and guests to provide sensitive molecular recognition as 
well as chiral discrimination? As calix[4]arenes have well known 
ion binding properties will ion complexes have different host- 
guest behavior compared to the free calixl4]arene host?

(8) Crady T Joyce T Smith M R Harris S J Diamond D Anal Commun 
1 9 9 8  35 123-125

(9) Crady T Harris, S J Smyth M R Diamond D Anal Chem 1 9 9 6  68 
3775 -3782

(10)Jonnings K Diamond D Analyst 2 0 0 1  ¡26 1063-1067

To examine these questions the enantiomers of phenylglycinol 
and phenylalaninol were used as target guests Phenylalaninol 
differs from the other amines in that it has the chiral binding sites 
separated from the aryl group by a methylene spacer (Figure 2)

EQUIPM ENT AND MATERIALS
All experiments were performed using a Perkin Elmer lumi 

nescence spectrometer LS 50B (Beaconsfield Buckinghamshire 
U K ) Postrun data processing was performed using Microsoft 
Excel 97 Both enantiomers of phenylalaninol (/^ (+) phenyl 
alaninol and (5) ( - )  phenylalaninol and both enantiomers of 
phenylglycinol (R) ( - )  2 phenylglycinol and (5) (+) 2 phenylgly 
cmol were obtained in 99% purity (ee >99 1 HPLC) from Fluka 
Biochemika (Gillingham Dorset U K ) The methanol (HPLC 
grade solvent) was obtained from Labscan (Stillorgan Co Dublin 
Ireland)

Synthesis of the Propranolol Amide Calix[4]arene Deriva
Uve The dealkylated tetramer I was prepared as described 
previously (See Figure 3 ) 11 From this calix|4)arene II was 
subsequently reacted with allyl bromide in a Williamson ether 
synthesis as previously described 12 This delivered the tetrakis 
(allyloxy)calixl41arene III a solution of which (3 15 g 5 4 mmol) 
in 25 mL of yV/V-diethylaniline was refluxed for 2 h under N2 After 
acidification with concentrated HC1 and filtration the crude 
product was recrystallized from 2 propanol to give colorless 
needles in 80% yield (2 55 g ) 13 The Clalsen rearrangement product 
IV 12 the p-allylcalix[4]arene (2 55 g 4 4 mmol) was subsequently 
refluxed in 30 mL of dry acetone with anhydrous K2CO3 (3 65 g

(11) Gutsche C D Levine J A J  Am Chem Soc 1982 104 2G52-Z653
(12) Gutshcc C D Dhawan D Levine J A Hyun No K Bauer L J 

Tctiahcdron 1983 39 409-426
(13) Cutscho C D Levine J A Sujceth P K J Org Chem 19 8 5  SO 5802- 

5806
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Figure 3 Reaction scheme outlining the synthesis of L1 the propranolol amide derivative of p-allylcalix[4]arene

<VJ«>

26 4 mmol) and ethyl bromoacetate (9 4 mL 37 4 mmol) under 
N2 for 5 days The reaction mixture was filtered concentrated 
and redissolved in CHQ3 which was then washed dried filtered 
and concentrated and the residue reciystallized from dlchlo 
romethane/methanol to give a white crystalline solid V in 50% 
yield (2 03 g) The />allyl tetraethylester V (2 03 g 2 2 mmol) was 
then hydrolyzed to its carboxylic acid sodium salt by refluxing 
with NaOH (1 67 g 0042 mol) in 50 mL of ethanol followed by 
acidification with 50% aqueous H2SO4 and filtration to give 87% of 
the corresponding acid VII (1 55 g) A 310 mg sample of this acid 
was subsequently converted to the acid chloride by a 2 h reflux 
in 10 mL of thionyl chloride followed by removal of volatiles to 
give VIII in quantitative yield which was used Immediately To 
300 mg (0 4 mmol) of the acid chloride VIII in 5 mL of dry THF 
was added 0 435 g (16 mmot) of (S) propranolol and 0 24 mL (1 6 
mmol) Df triethylamine with stirring at room temperature for 24 
h A pale yellow product was isolated by filtration and purified by

column chromatography (silica EtOAc/MeOH) This yielded a 
yellow solid in 40% yield (LI Figure I) mp decomposes above 
190 °C IR Aniax (cm-1) 1654 (C =0 str (amide)) 3435 (OH str) 
>H NMR 400 MHz (CDCI3) (ppm) <5 1 13 and 1 37 (12H each 
NCH(CM)z) 3 15 (d 8H ailyl) 3 3 (m 8H NCHz) 3 4 (m 4H 
NCH) 4 09 (d 4H Ar-CtfAAr) 4 2 (4H chiral CH) 4 4 (8HCMO 
naphth) 4 69(d 4H At-CHq Ar) 4 94 (8H Ar OCHz) 4 96 and 4 98 
(4H each CHC//2(allyl)) 5 8 (m 4H CHzC/^CHz) 6 62 (d 4H 
naphthyl) 6 8 (d 4H naphthyl) 7 19 (d 8H phenolic benzene) 
7 35 (m 12H naphthyl) 7 66 (d 4H naphthyl) 819 (d 4H 
naphthyl) ESIMS (in acetonitrile) m/e (rel intensity) 1805 (MNa+ 
100)

P rocedure for Fluorescence M easurem ents Solutions 
giving concentrations of the propranolol amide calix|4]arene (LI) 
of 0 7 /¿mol dm-3 and phenylalaninol in the range 0-25 mmol 
dm"3 in methanol were prepared as follows A 0 1 mmol dm“3 

stock solution of L I was prepared by dissolving 8 9 mg in 50 mL
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of methanol A 0 25 mol d m '3 stock solution of phenylalanmol 
was prepared by dissolving the required combination of the two 
enantiomers totaling 0 945 g in 25 mL of methanol Test solutions 
were prepared by taking 70 //L of the calixarene stock solution in 
a 10mL volumetric flask adding 02 04 06 08  and 1 0 mL of 
phenylalanmol stock solution and making up to volume with 
methanol Measurements were repeated a minimum of three times 
for each addition The fluorescence intensities of the solutions 
were measured at an excitation wavelength of 227 nm (see Results 
and Discussion) The fluorescent intensity readings were com 
pared to that of a solution containing 0 7 /¿mol dm-3 LI and no 
phenylalanmol

Solutions giving concentrations of phenylglycinol in the range 
0 -15 mmol dm-3 in methanol were prepared in a manner similar 
to that described above

Solutions of L2 and phenylglycinol in methanol were prepared 
by transferring 0 5 10 and 1 5 mL of 0 025 mol dm-3 stock 
solutions of 100% R 100% S and a racemic mixture of phenyl 
glycinol to 10-mL volumetric flasks To each of these 100 fiL of 
a 50/<mol dm-3 of L2 methanol solution was added and made up 
to the mark using methanol This gave final concentrations of 
0 -3  75 mmol dm“3 phenylglycinol and 0 5 /<mol dm“3 L2 Each 
experiment was repeated a minimum of three tunes Emission 
spectra were measured at an excitation wavelength of 274 nm 
The fluorescence intensity readings were compared to that of a 
reference solution containing 0 5 jwmol dm-3 LI and no phenyl 
glycinol

Solutions of L2 and phenylalanmol were prepared in a manner 
identical to that for phenylglycinol and L2

Solutions of the sodium complexes of L I and phenylalanmol 
were prepared by dissolving 8 9 mg of LI In 50 mL of methanol 
and adding a 10-fold excess of sodium iodide and sodium 
perchlorate respectively to ensure complexation The various test 
solutions were then prepared in a manner identical to that of free 
LI and phenylalanmol described above Solutions containing 
phenylglycinol and the sodium complex of LI were prepared in 
a manner similar to that described above Test solutions for the 
potassium complexes of LI and phenylalanmol and phenylglycinol 
were prepared in a manner identical to that for the sodium 
complexes

Procedure for Molecular Modeling Studies The modeling 
calculations were carried out using SpartanH SGI version 511  
The simulations were run on a Silicon Graphics 02 workstation 
with a MIPS R10000 rev 2 7 195 MHz CPU running an IRIX 
operating system release 6 3 with 128 MB RAM

Monte Carlo conformational searches were carried out on the 
sodium complex Each conformer found was geometry optimized 
in vacuo with molecular mechanics using the Merck molecular 
force field (MMFF) 15 The models shown correspond to the 
conformer found with the lowest energy

The model shown for the free ligand and the potassium 
complex were obtained by in vacuo geometry optimizations with 
molecular mechanics using MMFF

(14) Spartan Wavcfunctlon Inc 18401 Von Karman Avc Suite 370 Irvine CA 
92612 http //w w w  wavefun com/

(15) Halgrcn T J Am Chcm Soc 1 9 9 2  114 7827 -7843

62 Analytical Chemistry VoI 74 No 1 January 1 2002

Wavelength /nm
Figure 4 Excitation (a) and emission (b) spectra of L1 in methanol

C«llxar«n* Concentration (pM)

Figure S Linear concentration range of L1 in methanol at 227 nm

RESULTS AND DISCUSSION
The excitation and emission spectra of the propranolol amide 

LI at a concentration of 0 7 //mol dm-3 are shown In Figure 4 
The maximum of the excitation spectrum Is at 227 nm and the 
maximum of the emission spectrum obtained using an excitation 
wavelength of 227 nm is at 338 nm Due to the fact that the guest 
species absorb in the region 235-275 nm 227 nm is a suitable 
excitation wavelength

The linear response range of fluorescence intensity to con 
centration of L I in methanol was determined to be between 0 1 
and 0 7//mol dm“3 as shown in Figure 5 It is important to use a 
concentration of the calixarene within the linear range in order 
to ensure that no self quenching occurs and therefore that no 
alternative quenching mechanisms are present A concentration 
of 0 7 //mol dm-3 was chosen for subsequent experiments to 
examine the effects of phenylalaninol and phenylglycinol and 
hence any quenching observed can be related to the effect of 
the amine on the ligand

The efficiency of the quenching processes between the 
fluorophore (calixarene) and the quenching species (guest enan 
ttomer) follows the Stern-Volmer relationship provided both are 
present in the appropriate concentrations

/0/ /=  1 + AsviQ] (1)

where I0 is the Fluorescence of the fluorophore in the absence of 
quencher /  is the Fluorescence of the fluorophore in the presence 
of quencher [Q] is the concentration of the quenching species 
and Ksv is the Stern-Volmer constant A plot of Iq/ I  versus (Q1 
yields a straight line the slope of which gives the Stem-Volmer
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Figure 6. (a) Stem-Volmer plots for the quenching of L1 upon 
addition of 0,50, and 100% (S)-phenylalaninol in methanol; (b) Stem- 
Volmer plots for the quenching of L1 upon addition of 100 and 0% 
(S)-phenylglycinol. Standard deviations are shown as error bars (n 
=  3), which may be masked by symbols.

constant (Asv) and whose intercept is 1. The greater the Asv value, 
the greater the quenching efficiency of the guest enantiomer.

The Stem-Volmer plot of L I was found to be linear over the 
range 0-25 mmol dm-3 racemic phenylalaninol. Figure 6 il­
lustrates the Stern-Volmer plots for the quenching of the 
fluorescence of LI upon addition of 0. 50, and 100% (5)- 
phenylalaninol, respectively, at a concentration range of 0-25 
mmol dm-3. The values for the Stern-Volmer constants (Asv) are 
0.172, 0.124, and 0.0888 after the addition of 0, 50, and 100% (5)- 
phenylalaninol, respectively, and the (Asv) ratio (100% /?/100% 5) 
is 1.937. Because the Stern-Volmer plots show such a large 
difference in the Asv values of each enantiomer, it can be 
concluded that LI exhibits significant ability to discriminate 
between the enantiomers of phenylalaninol. Although the observa­
tion of linear Stem-'Volmer plots usually indicates that collisional 
(or dynamic) quenching has occurred, static quenching can also 
result in a linear Stem-Volmer plot. In general, static and dynamic 
quenching can be distinguished by their differing dependence on 
temperature and viscosity, or preferably by lifetime measurements. 
An additional method to distinguish static and dynamic quenching 
is by careful examination of the absorption spectra of the 
fluorophore. Collisional quenching only affects the fluorophores 
excited states and therefore no changes in their absorption spectra 
are predicted. Preliminary studies of the absorption spectra of 
ligand LI would seem to indicate a collisional quenching mech­
anism, due to the absence of changes in the spectrum in the 
presence of a guest molecule.

Figure 6 illustrates the Stern-Volmer plots for the quenching 
of the fluorescence of LI upon addition of 0 and 100% (S)- 
phenylglycinol at a concentration range of 0-15 mmol d m '3. The 
values for the Stem-Volmer constants (Asv) are 0.1615 and 0.1683 
after the addition of 0, and 100% phenylglycinol respectively, and 
the (Asv) ratio (100% /?/100% 5) Is 0.959. Clearly, there is virtually

0 1 2  3 4
Phenylglycinol Concentration (mM)

lo/l 0%S

1100%S

0 1.25 2.5 3.75
Phenylalaninol concentration (mM)

Figure 7. (a) Stem Volmer plot for the quenching of the fluores­
cence emission of L2 upon addition of 0, 50, and 100% (S)- 
phenylglycinol; (b) Stem-Volmer plot for the quenching of the 
fluorescence of L2 upon addition of 0, 50, and 100% (S)-phenyl- 
alaninol. Standard deviations are shown as error bars (n =  3), which 
may be masked by symbols.

no difference between the ASv values for the R and 5  enantiomers. 
It can therefore be concluded that approximately equal interactions 
takes place between LI and both enantiomers of phenylglycinol. 
Enantiomeric discrimination of phenylglycinol is therefore not 
possible with this calix(4]arene. However, the ASv values are 
virtually the same as the (R)-phenylalaninol enantiomer, implying 
that both phenylglycinol enantiomers quench LI to the same 
degree as (R)-phenylalaninol.

The synthesis of L2 was previously described, and the linear 
range of this ligand in methanol is known to be 0.1-0.5 //mol 
dm-3 at an excitation wavelength of 274 nm and emission 
wavelength of 340 nm.9 Therefore, a concentration of 0.5 //mol 
dm-3 was chosen to examine the quenching effects of phenyl­
glycinol and phenylalaninol. Over the range of 0-3.75 mmol dm-3 
racemic phenylglycinol, a linear Stern-Volmer plot was observed 
(not shown). The Stem-Volmer plots for the quenching of L2 
after addition of 0, 50, and 100% (5)-phenylglycinol at a concentra­
tion range of 0-3.75 mmol dm-3 are illustrated in Figure 7a. The 
values for the Stem-Volmer constants are 0.4338, 0.2854, and 
0.1501 for the addition of 0, 50, and 100% (5)-phenylglycinol, 
respectively. The Asv ratio is 2.89, and from this it can be 
concluded that the (5)-dinaphthylprolinol calix[4]arene (L2) 
exhibits excellent ability to discriminate between the enantiomers 
of phenylglycinol.

The quenching effect of phenylalaninol on L2 over the same 
concentration range is shown in Figure 7b. The Stem-Volmer 
constants were calculated to be 0.025, 0.0246, and 0.0195 after 
the addition of 0, 50, and 100% (5)-phenylalaninol. From these 
results, it can be concluded that neither of the enantiomers of 
phenylalaninol exhibits a significant quenching effect on L2, 
compared to that of (R)-phenylglycinol in particular, which is ~20 
times more effective.

From these results, we can conclude that L 2  can successfully 
discriminate between enantiomers of phenylglycinol, whose chiral
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center is immediately adjacent to its aromatic ring. However, when 
a methylene spacer is present between the chiral center and 
aromatic ring of the guest amino alcohol, as in phenylalaninol, 
no discrimination is observed.

In contrast to L2, LI was designed to have a spacer group 
between the chiral center and the fluorescent naphthyl moiety. 
This ligand was found to successfully discriminate between the 
enantiomers of phenylalaninol, which possesses a methylene 
spacer between its aromatic moiety and chiral center. However, 
discrimination between the enantiomers of phenylglycinol was not 
observed with this calixarene.

Our interpretation of these results is as follows. LI and L2 
both possess relatively well-defined 3-D chiral spaces in the 
calixarene cavity. It is almost certain that the guest amines 
approach from the more open end of the molecule (i.e., that 
defined by the fluorescent naphthyl groups) and hydrogen bond 
with the appropriate groups within the cavity of the host 
molecules. Association between the aryl groups of the guest and 
the naphthyl groups on the host is the source of the quenching 
effect, and this will be most efficient if (1) hydrogen bonding is 
favored (depends on the host and the guest), (2) distance to the 
aromatic groups corresponds (depends on presence or absence 
of appropriate spacer groups in the host and guest), and (3) 
orientation of the guest during hydrogen bonding is such that 
the aryl group interacts with the naphthyl group of the host.

The almost total absence of quenching of L2 by either 
enantiomer of phenylalaninol is probably due to a combination of
(2) and (3) above, as, if hydrogen bonding occurs, the methylene 
spacer leaves the aryl group sitting below the naphthyl groups, 
unable to effectively quench the emission. However, with phe­
nylglycinol, both enantiomers have the correct spacing between 
the hydrogen-bonding groups and the aryl group (quenching is 
much more apparent than for the phenylalaninol enantiomers), 
and the R enantiomer of phenylglycinol is favored under (1) and
(3), above.

As the host molecules are themselves chiral in nature, each 
bearing (5)-amide substituents, the R enantiomers in each case 
should be better predisposed to interact than the 5  enantiomers. 
This would lead to a more efficient energy transfer from the host 
naphthyl groups and therefore a greater slope for the Stern- 
Volmer plot. This is observed experimentally, as the R enanti­
omers have the larger quenching effect, with greater Ks\ values 
than the corresponding 5 enantiomers. The importance of the 
spacing between the hydrogen-bonding sites and the aromatic 
groups is also clearly demonstrated in this study. The fact that 
the “shorter” L2 cannot discriminate between the “longer" guest 
enantiomers, and the “longer" LI cannot differentiate between 
the "shorter" guest enantiomers, demonstrates the important 
molecular recognition capabilities of these hosts. They are very 
selective in their interactions with guest molecules and can 
successfully recognize a difference as small as a methylene spacer.

Effect of Ion Complexation on Enantiomeric D iscrimina­
tion by L I. The histogram in Figure 8 shows a dramatic 
improvement in enantiomeric discrimination of phenylalaninol 
when the Na+- L l  and K+-L 1  complexes are substituted for the 
free ligand. It should be noted that the presence of a metal ion 
causes no change in the fluorescence spectrum of the free ligand. 
It is only in the presence of guest molecules that the effect of
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Figure 8. Histogram comparing Stem-Volmer constants of phe­
nylalaninol in methanol with free L1 and the N a+-L1 and K +-L 1 
complexes.

metal ion complexation is observed. The chiral selectivity of the 
free ligand, expressed as Ks\ ratio (100% 7?/100% 5) is calculated 
to be 1.9, whereas the sodium iodide and perchlorate complexes 
of LI return Asv ratios of 4.8 and 3.8, respectively. This indicates 
a huge increase in chiral selectivity of the Na+- L l  complexes 
which is independent of the anion. When the equivalent plots are 
examined for the K+-L 1  complexes, it can be seen that the Ksv 
ratios amount to 7.1 and 9.5 for the iodide and perchlorate 
complexes, respectively.

We believe that the reason for this dramatic increase in 
enantiomeric selectivity lies in the well-known tendency of calix- 
[4]arenes to adopt a more regular CW symmetry, in which the 
pendent groups are held in a much more rigid conformation 
compared to the free ligand. In a calix[4]arene like LI, the metal 
ion will be positioned between the planes defined by the carbonyl 
and phenoxy oxygen atoms of the calixarene macrocycle. The 
main electrostatic interaction is with the carbonyl oxygen atoms, 
and the ion therefore tends to lie nearer these than the phenoxy 
oxygen atoms.16 In contrast, the free ligand LI is dependent solely 
on hydrogen bonding to define the lower cavity, and this will 
therefore be less rigid, with a greater tendency to open and 
accommodate various guests but with corresponding loss of 
enantiomeric and molecular selectivities.

Important experimental evidence in favor of this hypothesis 
is presented in the ‘H NMR spectra of the free ligand LI (top), 
the Naf- L l  complex (middle), and the K+-L 1  complex (bottom) 
shown in Figure 9. Three significant differences between the 
spectra of the complexes and the free ligand are highlighted: (1) 
The allyl proton resonances are split into two main resonances at 
5.1 and 6.0 ppm in the free ligand. This merges into a single 
multiplet at ~5.85 ppm in both complexes. (2) The HA and Hb 
protons of the /^allyl system (CH2—CH—C//^) and the two 
methylene protons of the allyl group (C ///-C H —CH2), which 
typically occur around 4.69 and 4.09 ppm, are poorly resolved 
complex multiplets in the free ligand spectrum compared to the 
complexes. (3) The isopropyl protons resonances 1.25 and 1.46 
ppm merge and shift to ~  1.55 ppm as a result of electron density 
changes arising from coordination to an electropositive metal. The 
apparent triplet is actually two doublets, which is to be expected 
since each diastereotopic methyl group is split by one proton on 
the adjacent carbon. The coupling constants of the apparent 
triplets are not equal in value, further proving that these peaks 
are in fact doublets.

(1G) Kano. P.: Fayne. D.: Diamond. D.: McKorvpy. A. M. J. Mol. Mod. 2000. ft 
272-281.
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Figure 9 . 1H NMR spectra of (1) L1 in CDCI3, (2) L1-N a+ complex in CDCI3, and (3) L 1 - K + complex in CDCI3.

B B’
Figure 10. Energy optimized structures of (A) the free ligand L1, (B) the L1-N a* complex, and (C) the L 1 - K + complex.

These spectra prove that the metal ion complexes do form and 
that the calix[4]arene adopts a more symmetrical cone conforma­
tion in the process, since simplification in NMR spectra is 
associated with an increase in symmetry in the molecule.1718 It is 
known that in calix[4]aryl tetraesters and tetraamides the four 
carbonyls are turned outward to reduce electrostatic repulsion 
among carbonyl oxygens, whereas bound Na+ induces the 
carbonyls to point inward in order to bind the Na+ ion.19 The 
merging and upfield shift of the isopropyl proton peaks show that 
this rearrangement is indeed occurring and that the carbonyl 
oxygen atoms are strongly interacting with the Na+ ion.

(17) Jin, T.; Ichikawa. K.: Koyama. T. J. Chem. Soc. Chcm. Commun. 1992. 499- 
501.

(18) Aoki. L: Sakaki. T.: Shinkai. S. /  Chcm. Soc.. Chem. Commun. 1992. 730-
732.

Figure 10 shows views through the macrocycle cavity of LI 
and the Na+- L l  and the K+-L 1  complexes generated by 
molecular modeling calculations. The free ligand (left) clearly has 
a more rectangular Civ symmetry compared to the square CW 
symmetry of the complexes.

Table 1 summarizes important data from the molecular 
modeling calculations that support the evidence of the adoption 
of a highly symmetrical cone conformation induced by metal ion 
complexation provided by the H1 NMR spectra. In the free ligand, 
opposing phenoxy groups of the L I macrocycle are almost 
parallel, and at right angles, respectively (11.2° and 87.4°), whereas 
in the Na+- L l  complex, they are approximately symmetrical at 
56.1° and 49.9° to each other. Interestingly, with the K+-L 1

(19) Ikcda. A.: Shinkai, S. Chem. Rev. 1997. 97. 1713-1734.
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Table 1 Summary Data Extracted from Energy 
Minimized Structures”

phenyl rings /A

distance between oppos 
phenolic oxygens/A

angles made by 
planes/deg

A -A  and B -B  are shown in Figure 10

free
ligand

Na+
complex

K+
complex

A -A 5 957 7 762 7 776

B -B
A -A

9 561 
5 341

8116 
4 625

7 996 
4 759

B -B '
A -A

3 692 
11 2

4 599 
56 1

4 771
52 7

B -B 87 4 49 9 49

complex this induced symmetry is even more developed (52 7° 
and 49 0°) which is in agreement with the results in Figure 8 
which show that the K+-L 1  complex has a greater effect than 
the Na+- L l  complex Other data in Table 1 support the conclu 
sion that the K+ has a greater effect on the symmetiy of the ligand 
than Na+

tween the shorter chain enantiomers of phenylglycinol as no 
quenching is observed On the other hand L2 can very success­
fully discriminate between enantiomers of phenylglycinol but 
cannot discriminate the enantiomers of phenylalaninol due to 
equal fluorescence quenching by each enantiomer A dramatic 
enhancement of chiral selectivity of the enantiomers of phenyl 
alamnol observed with the K+-L 1  and Na+- L l  complexes 
compared to the free ligand is attributed to the adoption of a more 
rigid and more symmetrical cavity into which the R enantiomer 
preferably fits Previously we have shown that these receptors 
can be used to estimate enanUomenc composition with better than 
5% accuracy on the basis of a single fluorescence measurement 
These results suggest that an array of such receptors could 
provide simultaneous chiral and molecular recognition of a range 
of guest amines
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CONCLUSION
It has been proven experimentally that LI can successfully 

discriminate between the enantiomers of phenylalaninol with 
fluorescence-quenching techniques but fails to discriminate be
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