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Abstract

Analysis of the Structural and Optoelectronic Properties Of 
Semiconductor Materials and Devices Using Photoacoustic 

Spectroscopy and Synchrotron X-ray Topography

D o n n a c h a  L ow ney , B .E ng., A M IE E , A M IE E E

This thesis deals with the characterisation o f semiconductor materials and devices 
through two complimentary experimental modalities. Synchrotron X-ray topogra­
phy and photoacoustic spectroscopy are rapid, non-destructive and non-invasive tech­
niques. The former may be used to elucidate the strain within a crystalline material 
due to localised structural defects causing deviations in the recorded X-ray intensity; 
whilst the latter can indirectly probe the non-radiative de-excitation processes within 
the bandstructure by measuring pressure variations within the gas in contact with the 
sample.

In the first half o f this work, a review o f the theoretical description o f the photoacoustic 
effect in condensed matter samples is presented. This classical review is extended to 
encompass the photoacoustic effect in semiconductor materials. Criteria governing the 
design o f a spectrometer are then extracted. A photoacoustic spectrometer based on the 
gas-microphone technique, with a wide spectral range (0.5 eV to 6.2 eV) was designed 
and constructed. The spectrometer was characterised across its spectral range using 
common semiconductor materials.

The latter half o f the thesis commences with a review o f the kinematical and dynami­
cal theories o f X-ray diffraction. The properties o f synchrotron radiation are discussed, 
with particular focus on their applicability to X-ray topography. The large area, section 
and grazing incidence topography techniques are presented. Several topographic stud­
ies o f semiconductor materials and devices were performed. These included an analy­
sis o f the evolution of strain in ultra-bright light emitting diodes under varying degrees 
of electrical stress, strain induced by the epitaxial lateral overgrowth of gallium nitride 
on sapphire, stress due to rapid thermal processing o f silicon wafers, characterisation 
of diamond crystals for use in a high energy monochromator, misfit dislocation gen­
eration at a Si/SiGe heterointerface and dynamical imaging o f microdefects in nearly 
perfect silicon.
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Chapter 1

Introduction and Overview

1.1 Introduction

Few could argue with the assertion that we live longer, healthier, more productive lives 

as a result o f the microelectronics revolution that has taken place in the past fifty years. 

Advances in the microelectronics industry have been underpinned by improvements 

in the quality o f the constituent device materials. Consider for example silicon: in 

the 1970s the dislocation density was o f the order o f 103 cm-2 , and today, defect free 

wafers with a diameter o f fifteen inches are being used in the production of micro­

processors [1], Characterisation and understanding o f defects within semiconductor 

materials is necessary if  device performance is to be enhanced. The structural and op­

toelectronic properties o f a material are interrelated and thus neither can be examined 

in isolation o f the other. O f particular importance is the influence o f structural defects 

on the optoelectronic properties o f  the material, as these are known to affect carrier 

diffusion lengths, radiative and non-radiative recombination processes.

In this thesis, two complementary non-destructive techniques will be used for the anal­

ysis o f the optoelectronic and structural properties o f common semiconductor materials
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and devices. Photoacoustic spectroscopy is a non-invasive photocalorimetric technique 

that can probe the non-radiative thermal de-excitation channels o f a sample and hence 

complements absorption and other spectroscopic methods [2]. Only light absorbed 

within the sample can generate a photoacoustic response and thus, this highly sensi­

tive technique is not influenced by elastic scattering or transmission o f light through 

the sample. Photoacoustic spectroscopy can be used to measure amongst others, the 

absorption spectrum, lifetime of photo-excited species and thermal properties o f a sam­

ple. Synchrotron X-ray topography is a unique tool for the investigation o f strain in 

semiconductor materials [3], It is non-destructive but penetrating, sensitive to small 

defects and lattice orientations, possesses high spatial resolution and relatively large 

samples can be studied within a reasonable time. X-ray topography is mainly used 

for the study of strain, dislocations, planar defects, stacking faults, domain walls in 

ferroelectric and magnetic materials, growth defects or large precipitates.

1.2 Historical Overview

The photoacoustic effect was first reported in 1880 by Alexander Graham Bell in a re­

port to the American Association for the Advancement of Science [4]. This report was 

primarily concerned with his work on the photo-phone; a device comprised o f a voice- 

activated mirror, a selenium cell and an electrical telephone receiver. Bell observed 

that the electrical resistance o f the selenium cell was dependent upon the intensity of 

the incident light. This work was further extended in 1881 when Bell detected an 

audible signal induced by intensity modulated light shone onto a diaphragm shaped

2
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solid connected to a hearing tube [4], Bell determined that the strength of the acoustic 

signal was dependent on the amount of light absorbed per unit time. These empirical 

results have been shown to be valid within the context o f contemporary photoacoustic 

theories, making them all the more remarkable considering that the detector was the 

experimenter’s ear.

After the work of Bell, the photoacoustic effect was largely ignored until this century 

because the technical equipment, such as phase sensitive amplifiers and microphones, 

necessary to obtain accurate results did not exist. The first theoretical description of  

the photoacoustic effect in non-gaseous samples was made by Parker [5] in 1973. This 

was quickly followed by the experimental and theoretical work of Rosencwaig and 

Gersho in 1976 [6]. Several classical extensions were made to this theory [7-9] before 

the first semi-classical description o f the photoacoustic effect in semiconductors was 

formulated by Bandeira, Closs and Ghizoni in 1982 [10]. Essentially these theories de­

scribe how light absorbed in a sample following non-radiative de-excitation processes 

gives rise to a heat source in the sample that may be distributed throughout the sam­

ple volume or confined to its surface. This heat source generates both temperature 

and pressure fluctuations within the sample, which in turn induce measurable pressure 

variations within the gas in contact with the sample.

Research into X-ray radiation and its applications commenced about the same time 

Bell was investigating the photoacoustic effect, with the discovery o f X-rays in 1895 

by Röntgen [11], Bells work was obviously familiar to Röntgen as he also performed 

experiments with spectrophones [4], A similar time lag was present between the dis­

3
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covery o f X-rays and their application to the study of materials by diffraction methods. 

Von Laue, Friedrich and Knipping initiated the first experiments in this field when 

they recorded diffraction patterns from rock salt [12]. The theory o f X-ray diffraction 

preceded that o f the photoacoustic effect by approximately fifty years. Bragg, Von 

Laue, Darwin [13,14] and Ewald [15] laid the theoretical foundations between 1911 

and 1917. Contemporary theories o f X-ray diffraction were developed by Lang, Au- 

thier [16], Takagi [17], Taupin and Kato [18]. A hierarchical summary of these may 

be found in [19].

Approximately twenty years after X-ray diffraction studies commenced the first X- 

ray diffraction topographs were recorded [20]. The original papers appear to have 

been published in 1931 when Berg [21] initiated studies on crystal perfection. With 

the advent o f Lang topography images o f  individual dislocations were observed [22], 

This method was complimented by the introduction of other topography techniques by 

Bonse and Klapper [23],

In 1974, Tuomi, Naukkarinen and Rabe [24] showed that synchrotron radiation could 

be applied to the study o f  materials using X-ray diffraction topography. Hart [25] sub­

sequently showed that this method could be used for high-resolution imaging. This led 

to a major revolution in the type o f  experiment that could be performed and the nature 

of the data gathered. For example, long exposure times associated with monochro­

matic rotating anode experiments were replaced with a white beam source that could 

expose samples in seconds with the added benefit o f multiple reflections.

4
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1.3 Motivation and Thesis Aims

The desire to produce faster, less power consuming microelectronic devices has been 

the impetus behind the ongoing decrease in critical dimensions and increasing integra­

tion levels in current CMOS technology. With the advent o f 0.18 ¿tm technology, cop­

per metallisation and 300 mm wafers, the semiconductor industry is continually seek­

ing semiconductor materials with minimal defect densities. The performance o f these 

materials vis-à-vis  their structural and optoelectronic properties is directly attributable 

to the concentration o f defects and their distribution. Hence the need for métrologie 

and diagnostic tools which are powerful and yet as comprehensive as possible, i.e. to 

characterise parameters critical to performance and yield, are non-destructive and can 

be applied readily to material qualification and process control.

The long-term goal, to which the work of this thesis ascribes to, is to determine the 

interrelationship between non-radiative de-excitation processes and structural defects 

in semiconductor materials. The principal tool used in the experimental investigations 

will be light: in the X-ray regime, the structural properties o f the material can be probed 

and in the ultraviolet to infrared spectrum, the electronic bandstructure can be studied. 

Among characterisation methods, optical and X-ray techniques are unique in that, in 

general, they are contactless and non-destructive. This is crucial to the long-term focus 

of this work, as we want to investigate the influence of strain on the non-radiative de­

excitation processes without altering the sample or its intrinsic stress.

Specifically, the focus o f this thesis is on the applicability o f the techniques photoa­

5
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coustic spectroscopy and X-ray topography to such a study. As such, this is a thesis o f  

two halves. In the first half, a photoacoustic spectrometer capable o f spatial mapping 

for use in the photonic interval 0.5 eV to 6.2 eV  is to be designed and constructed. This 

instrument will be utilised in the analysis o f non-radiative de-excitation processes in 

narrow and wide bandgap semiconductors. The latter half o f the thesis demonstrates 

the suitability o f X-ray topography to the visualisation o f stress in several contem­

porary semiconductor materials and devices. It is important to note that this thesis 

does not directly attempt to reveal any correlation between the structural defects and 

non-radiative recombination mechanisms, this is left for future investigations.

1.4 Thesis Organisation

The organisation of the thesis is as follows: Part I, consisting o f Chapters 2 to 4, 

pertains to photoacoustic spectroscopy and Part II, comprising Chapter 5 to 13, deals 

with synchrotron X-ray topography. Part III provides conclusions from Parts I and II 

along with suggestions for future work that will serve to unite these currently disjoint 

subjects.

Chapter 2 reviews the main theories o f the photoacoustic effect in condensed matter 

samples so the reader may understand the underlying physical mechanisms. Chap­

ter 3 harnesses the results of these theories to extract a set o f guidelines for the de­

sign o f  a photoacoustic spectrometer o f the gas-microphone type. The calibration and 

characterisation o f the spectrometer is the focus o f Chapter 4, wherein photoacoustic 

investigations o f silicon, gallium arsenide and gallium nitride are performed.

6
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Part II o f the thesis commences with a review o f the kinematical and dynamical the­

ories o f X-ray diffraction in crystalline media. General properties o f synchrotron ra­

diation and their applicability to the techniques o f X-ray diffraction topography are 

the focus o f Chapters 6 and 7. The failure o f light emitting diodes under increased 

levels o f electrical stress is the theme o f Chapter 8. Strain induced by the epitaxial 

lateral overgrowth o f gallium nitride on sapphire is examined in Chapter 9. In Chapter 

10 stress induced by rapid thermal processing o f silicon wafers is investigated using 

X-ray topography. A good correlation is found with data obtained using micro-Raman 

spectroscopy. Synthetic diamond crystals are characterised in Chapter 11 for use in 

a high energy synchrotron monochromator. Stress relief in a silicon-silicon germa­

nium heterostructure via misfit dislocation formation is examined using atomic force 

microscopy and grazing incidence diffraction topography in Chapter 12. The final to­

pography study presented in Chapter 13 focuses on the imaging of microdefects in 

nearly perfect silicon.

In conclusion, Chapter 14 in Part III summarises the subject matter o f the thesis and 

suggests future research directions.

7
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Chapter 2

Theory of the Photoacoustic Effect

2.1 Introduction

In the past thirty years, the photoacoustic effect has undergone something o f a renais­

sance since its original discovery by Bell in 1880. This is largely attributable to the fact 

that the necessary experimental apparatus did not become available until circa  1970. 

The current renewed interest in photoacoustic studies appears to have started with the 

work o f Kreuzer in 1971 [26], Subsequently, much experimental and theoretical work 

has been reported in the literature to demonstrate not only spectroscopic applications, 

but also many other photoacoustic applications in the fields o f physics, chemistry, ma­

terials science, biology, medicine and engineering. For a review of the applications o f  

the photoacoustic effect the reader is referred to the excellent article by Tam [2].

The basic mechanism behind the photoacoustic effect is as follows. Intensity modu­

lated monochromatic light is shone on a sample. Non-radiative de-excitation processes 

following light absorption consequently heat the sample. By convective processes, the 

sample in turn heats up the gas layer in the immediate vicinity o f the point o f light 

absorption. The modulated nature o f the light induces corresponding pressure fluctu­

9



Chapter 2 Theory o f  the Photoacoustic Effect

ations in the gas due to repetitive heating and cooling of the sample. These pressure 

fluctuations are detected in the case o f indirect photoacoustic spectroscopy by a mi­

crophone and are called a photoacoustic signal. A photoacoustic spectrum may be 

obtained by determining the photoacoustic signal o f the sample as a function of the 

wavelength and modulation frequency o f the incident light. In the information of the 

signal, the optical and thermal properties o f the sample play an important role.

In this chapter, the fundamental theories o f the photoacoustic effect in condensed mat­

ter samples will be reviewed. The review aims to elucidate the underlying physical 

principles upon which each theory is based and to reap from this information a set of 

design criteria applicable to the spectrometer constructed in Chapter 3. The discussion 

o f the theories is aspirational in some respects, as within the bounds of this thesis, it 

is not possible to investigate their every facet. To this end, we examine the original 

description as theorised by Rosencwaig and Gersho [6]. This theory is generally suffi­

cient for interpretation o f  the bulk o f experimental results. The failings o f this theory 

and their implications on the design of a photoacoustic cell are highlighted through the 

analysis o f the extended photoacoustic theories o f McDonald et. al [7] and Korpiun et. 

al [8]. The theory o f Bandeira, Closs and Ghizoni [10] accounts for the photoacoustic 

effect in semiconductor materials. Some theoretical and experimental procedures are 

interleaved to ascertain methods for the evaluation of the optical absorption coefficient 

and the bandgap energy o f a semiconductor sample. The chapter concludes with an 

outline o f  some theoretical issues that need to be incorporated in a theory that relates 

the photoacoustic effect to structurally strained crystalline materials.

10
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2.2 Theory of Rosencwaig and Gersho

The Rosencwaig Gersho theory is a relatively simple one-dimensional analysis o f the 

production o f a photoacoustic signal in a cylindrical cell. This theory, developed in the 

1970s, is the cornerstone against which all experimental data is first evaluated [6,27]. 

The theoiy will now be reformulated step by step for three reasons: (i) so that the reader 

may gain an insight into the essential physics surrounding the classical theory o f the 

photoacoustic effect in condensed matter samples; (ii) it will make the discussion of 

the classical and semi-classical extensions to the theory easier to understand; and (iii) 

many of the design criteria for a photoacoustic spectrometer are implicitly embedded 

in it.

Rosencwaig and Gersho [6] obtained an expression for the pressure variation in the gas 

column in contact with the sample by first modeling the heat flow within the sample, 

gas and baking materials due to incident monochromatic light. Applying the appropri­

ate boundary conditions, yielded the periodic temperature distribution within the cell. 

They found that a thermally excitable region o f the gas column in contact with the sam­

ple underwent periodic compression and expansion due to convective heating from the 

sample. This “acoustic piston” induces the periodic acoustic pressure variation within 

the gas column. Couched in the expression obtained for the pressure variation in the 

gas are details o f the thermal diffusion coefficients, specific heats and densities o f the 

sample, gas and backing materials. The expression is quite involved. However, with 

some physical insight into the sample, the expression may be simplified into six cate­

gories depending on the optical absorption coefficient and thermal diffusion length of
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the sample. We will now formally outline the theory o f Rosencwaig and Gersho.

2.2.1 Theoretical A ssum ptions

Consider the one-dimensional photoacoustic cell shown in Figure 2.1. A  one di­

mensional treatment is valid for situations where the cell’s extension in the y- and 

z-directions is much larger than in the x-direction. The following assumptions have 

been made with regard to the system:

1. The length o f the cell L  is far greater than the acoustic wavelength Ag in the gas.

2. The incident light is monochromatic and sinusoidally chopped.

3. The gas and backing material do not absorb light.

4. The backing material is a poor thermal conductor.

5. The system is adiabatic.

6. The window is assumed to be optically and thermally transparent.

The following parameters o f the system will be met frequently in the analysis: thermal 

conductivity k, density p, specific heat C , thermal difiusitivity a  =  k /p C ,  chopping 

frequency u>, thermal diffusion coefficient a — ( u / 2 a )0'5 and the thermal diffusion 

length ¡jl =  1 /a . Where necessary, the parameter for a given material will be identified 

by the subscript s , g o r b  for the sample, gas or backing material, respectively. As the 

thermal diffusion length has a w-0,5 dependence, by varying the modulation frequency

12
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Figure 2.1: Schematic o f  one-dimensional photoacoustic cell. Shown in the gas col­
um n is the “thermal piston” that is formed following light absorption in the solid.

one can probe information from  different therm al depths within the sample. Hence 

photoacoustic spectroscopy can be used for depth profiling studies.

2.2.2 H ea t D iffusion E quations

The intensity o f  monochrom atic light incident on the sample, m odulated at frequency 

uj, w ith wavelength A, and light flux Jo is

I  =  —  (1 +  co sw i)¿t
(2.1)

13
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Let /? denote the optical absorption coefficient o f the sample. Therefore, assuming 

purely classical analysis, i.e. in the case o f  semiconductor carrier diffusion and recom­

bination being neglected, the density o f  heat generation at any point x in the sample 

due to the light absorbed is given by

3 InePx
H (x, t )  = — —■— (l +  coswi) (2.2)

By incorporating the effect o f the distributed heat source due to the incident light inlo 

the one-dimensional heat equation the thermal diffusion in the sample can be described 

as follows:

+  _ , . < * < ( ,  (2.3)
ox2 ox

where <j>{x, t) is the spatially and temporally dependent temperature,

and 7/ is the efficency with which light absorbed, o f wavelength A, is converted to heat 

by non-radiative de-excitation processes. 77 — 1 is a good approximation for solids at 

room temperature.

Applying assumption (3) facilitates a description o f the thermal diffusion in the gas

14
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and backing materials:

Ox2 a 9 dx

d2(f>(x, I) 1 dcl){x, t)
dx2 at) Ox

—  ( l b  +  h )  ^  •1 '  5 ;  —

0 <  a: <  lb

(2.5)

(2 .6)

Solving the heat equations for the temperature distribution in the cell yields:

j-b (x + I  +  lb) W0 +  We°^x+l^ '

e, +  e2x  +  d e /x +  (U e +  Ve~a‘x -  EePx) e? “1

l- ^ 0 o  + tie-*»1# *la

( I* + l b )  <  X  <  — 1»

~ h  < X < 0

0 <  X  < lg

(2.7)

where <r, = (l+j)a,-, i G {s, b,g}, Wo € Die is the time independent component 

o f the temperature relative to the ambient temperature tp0 at x =  —ls, W  €  <£ is the 

periodic component o f the temperature at x =  —ls, Oq € 9tc is the time independent 

component o f the temperature relative to <po at x =  0, 0 €  (£ is the time dependent 

component o f the temperature at x — 0,

d =
23k,

and

E  =

15
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2.2.3 Tem perature a t Sample-Gas Interface

The real part o f the thermal diffusion in the sample defines the temperature in the cell 

relative to the ambient.

=>T(x,t)  =V\e{(l){x,t)} +  ipQ (2.8)

Wc now want to solve for the 0 term in Equation (2.7) since this is the time dependent 

temperature at the sample-gas interface. Applying the following temperature continu­

ity and flux boundary conditions to 0(x, t,):

<M 0,0  =  * .(0 , t) (2.9)

t / M d ) . .. * b M  (2.io)
ox ox

4>b(-l*,t) =  (2.11)

, d(/>b{-ls t t )  _  , d f c i - l ^ t )  /0
* 6  q -------------------  —  K s  O  \ L . \ L )

O X  O X

yields:

<t> = U + V - E  (2.13)

W0 =  ei -  l,e2 +  de~l‘x (2.14)

<f>o — £\ ~\~ d  (2.15)

W  = Ue~Ua‘ +  Vel’°• -  Ee~l‘ (2 .16)

16
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~hg@Q

kbW0 = (e2 +  Pde-W ) kt (2.18)

- k gog0 = kt (o„U -  a ,V  -  PE) (2.19)

kbobW  =  kt (osUerl‘a‘ -  o ,V e l‘a‘ -  ¡iEer1̂ )  (2.20)

Defining

/? L kboh _ kgOg
r = — , b = —— , g =(J9

and solving equations (2.13) to (2.20) for 0 yields:

a f e O P - o - j
(r — !)(& +  l ) e il'T'’ — (r +  !)(/> — l)e  i<<r* +  2(b — r)e &1‘

(g +  1)(6 -I- \)e}‘"3 — (g — 1)(6 — \)e~l’a*

(2.21)

One would naturally conceive that there is a phase relationship between the incident

exciting photons and the resulting temperature variation in the sample. It is therefore

no surprise that 0 is a complex valued function that may be expressed in terms o f its 

real and imaginary components as follows:

0 =  0 , +  j d  2 ( 2. 22)

The temperature at the solid-gas interface may now be written as

T (0, t) =  v?0 +  0o +  0i coswt -  02 sin u t  (2.23)

17
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2.2.4 The Acoustic Piston

Having derived an expression for the temperature at the solid-gas interface, Rosencwaig 

and Gersho proceeded to describe the production o f the acoustic signal. Investigation 

of the temperature distribution in the gas column in Equation (2.7), shows that it is 

composed of temporally dependent and independent components. The time varying 

component is responsible for the creation o f the pressure fluctuations in the gas and 

therefore, the time independent component may be neglected.

</>gac(x , t )  =  9 e - W e j“t (2.24)

The actual temperature variation in the cell is Tac(x, t) =  9iz{(pgac(x, i)} .

Tac(x, t) =  e~asX [0i cos (cot — agx) — 02 sin (cot — agx)\ (2.25)

Plotting Equation (2.25) for various different phases one can see that the time depen­

dent component is almost fully damped out at a distance x =  2/npg from the sample- 

gas interface as shown in Figure 2.2. Therefore, one can define a boundary length in 

the gas that is thermally excitable by the sample. It is this region of the gas, wherein 

periodic expansion and contraction takes place, termed the “acoustic piston”, that acts 

on the rest o f the gas column producing an acoustic wave that travels the entire length 

o f the gas column. The acoustic piston length as a function of frequency is shown 

in Figure 2.3. This has important ramifications for the design o f an acoustic cell. In

18
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Figure 2.2: Spatial distribution o f  the tim e-dependent temperature within the gas layer 
adjacent to  the solid surface for a 0.5 m m  thick silicon sample, backing material alu­
m inum  and gas air. The incident light, m odulated at 100 Hz, is provided by  a 300 W  
arc lamp.

particular, the  gas column length should be longer than the therm al diffusion length o f 

the gas [28],

2.2.5 Pressure Variation in Gas Column

The spatially averaged temperature o f the gas w ithin the acoustic length is found by 

obtaining the spatial m ean o f  Equation (2.24) as follows:

(2.26)

19



Chapter 2 Theory o f  the Photoacoustic Effect

Figure 2.3: Acoustic piston length as a function o f modulation frequency for an air gas 
column.

Using the approximation e~27' «  1 yields:

(2.27)
2v 27t

As the system is assumed to be adiabatic, the ideal gas law may be applied:

PV'1 =  constant (2.28)

where 7  is the ratio o f  the molar specific heats at constant pressure and volume. The 

incremental pressure due to the action of the acoustic piston may be found through the 

following:

In (PV"1) — In P  +  7  In V =  constant (2.29)
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Taking the total derivative o f the previous equation

=> d P ( t)  =  - Æ a v w  
VO

(2.30)

where Po and Vo are the ambient pressure and volumes, respectively. Note that an 

increase in pressure in the gas induces a concomitant reduction in volume and vice 

versa. This is the mechanism by which the gas undergoes rarefaction and compression, 

thus spawning the acoustic wave.

The volume o f gas displaced by the action o f (he gas piston can be found by appealing 

to the Maxwell relation

where /3j =  1 /T 0 is the thermal cubic expansion coefficient o f  the adiabatic gas.

(2.31)

(2.32)

As long as 27T//,, «  lg (assumption (1))

(2.33)

Q V (t) — Vb
lg To

(2.34)
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Inserting Equation (2.34) into (2.30) yields:

dP(t) = = Q e ^ - S )
l, To

(2.35)

By recalling Equation (2.21), (he parameter Q is defined to be:

Q = 2^/2kJsagT0 (/32 -  a.,)

(7* — !)(& +  — (r +  1)(6 — l ) e -ij<ri' -f 2(b — r)e~&1*
(g +  1 )(b + l)e l,a* — (fj — 1)(/j — I)e-fa

(2.36)

Q is a complex number that specifies the complex envelope o f the sinusoidal pressure 

variation and can be expressed in either o f  the following formats:

Q =
Q\ + jQ ?

qZ.il)

The actual pressure variation as sensed by the microphone is thus:

(2.37)

A P(t,) =  ÎKe{dPOO} =  q cos (2.38)

Figures 2.4 and 2.5 demonstrate the variations in photoacoustic amplitude and phase 

due to the photoacoustic effect in a 0.5 mm thick silicon sample at two different pho­

tonic energies as a function o f modulation frequency.
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Frequency (llz)

Figure 2.4: Amplitude o f  photoacoustic signal as function o f  chopping frequency for 
infrared and violet light incident on a silicon sample.

Figure 2.5: Phase o f  photoacoustic signal as function o f  chopping frequency for in­
frared and violet light incident on a silicon sample.
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2.2.6 Special cases o f the Rosencwaig G ersho Theory

From the previous section, it is obvious that an analytical solution for the pressure vari­

ation in the gas is quite cumbersome due to the complicated nature o f Q. To overcome 

this problem, Rosencwaig and Gersho used physical insight to simplify Q  for a num­

ber o f special cases. These cases are grouped according to the optical opaqueness of 

the solid in relation to its thermal thickness. The optical absorption length, defined as 

fip = 1 //3, determines the optical opaqueness. The samples may be classed as either 

optically opaque < <  1 or optically transparent ¡ip >  1. Each category o f optical 

transparency is further divided into three subcategories depending on the relative mag­

nitude o f the thermal diffusion length o f the sample fis compared to the length o f the 

sample ls and the optical absorption length fj,p. Defining

Y  =  _7^V o_
2 y /2 T 0lg

we will now investigate each o f these categories in turn.

2.2.6.1 O ptically T ran sp a ren t Solids

In optically transparent solids, the length over which the light is absorbed is longer 

than the length o f the sample. Consequently, light is absorbed throughout the entire 

volume o f  the sample.
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I. Thermally thin solids n s »  /¿,5 >  np\

In Equation (2.36), the terms e~^la ss 1 — fils, e±a'’l‘ «  1 and |r| >  1.

The acoustic signal is thus proportional to and since m l  a,, is proportional 

to w_ l , the acoustic signal has an dependence. For the thermally thin case 

of /¿„ > >  ls, the thermal properties o f  the backing material have to be taken 

into consideration. Therefore, in the design of a photoacoustic cell one should 

choose materials with low thermal conductivities.

2. Thermally thin solids /is >  /zs <  ///?:

In Equation (2.36), e~&ls «  3 — ftls, sa 1 ±  a j s and |r| <  1.

As Equation (2.40) is identical to Equation (2.39), the same physical comments 

apply.

3. Thermally thick solids /¿., <  ls, < <  fip:

Now f« 1 — /i/s, e±£rii* «  0 and |r| < <  1 in Equation (2.36).

In this case, the signal is now proportional to /3/i, rather than fils as in the previ-

(2.39)

(2.40)

(2.41)

25



Chapter 2 Theory o f  the Photoacoustic Effect

ous two cases. This implies, that only light absorbed within a thermal diffusion 

length contributes to the signal, in spite o f the fact that light is being absorbed 

throughout the entire sample. The signal no longer depends on the properties of  

the backing material.

2.2.6.2 O ptically O paque Solids

In an optically opaque solid, the length over which the incident light is absorbed is 

far less than the length o f  the sample. This essentially means no light is transmitted 

through the sample.

1. Thermally thin solids fis > >  ls, n s »  up:

In Equation (2.36) we set e~^ls 0, e±<Tsiil «  1 and |r| > >  1.

In this case, we have photoacoustic “opaqueness” as well as optical opaqueness, 

in the sense that our signal is independent o f ¡3. A  good example o f a mate­

rial that is both optically opaque and thermally thin is carbon black, universally 

used as a reference in photoacoustic measurements. One would anticipate a very 

strong signal from such a sample in comparison to the optically transparent and 

thermally thin samples as Q  is now a factor ¡31 s larger. The signal also depends 

on the properties o f the backing material and is inversely proportional to the 

chopping frequency u).

(2.42)
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2. Thermally thick solids fis <  Is, fis >  \ip\

In Equation (2.36) we set e~$ls tv 0, e±<Tsls fa 0 and |r| >  1.

(2.43)

Equation (2.43) is analogous to Equation (2.42) except now the thermal prop­

erties o f the backing material are replaced by those o f the sample. Again the

This is a rather interesting case. The sample is optically very opaque. However, 

as long as /3ps <  1, the solid is not photoacoustically opaque and therefore, light 

absorbed within the thermal diffusion length ¡is will generate a photoacoustic 

signal.

2.3 The Generalised Classical Theory of the Photoacoustic Effect

McDonald and Wetsel expanded the Rosencwaig Gersho theory, wherein only the tem­

perature in the sample was assumed to vary following absorption o f photons, to include

photoacoustic signal varies as w 1 and is independent o f the optical absorption

coefficient.

3. Thermally thick solids p,s «  ls, fis <  fJ-p:

In Equation (2.36) we set ~  0, e±asls fa 0 and |r| <  1.

(2.44)
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the effect o f a pressure variation in the sample as well [7], The Rosencwaig-Gersho 

theory assumed adiabatic conditions throughout the cell, so one might expect valid 

results when the length o f  the gas column is far greater than the acoustic wavelength. 

However, when this criterion is not satisfied, or when the cell is operating near acoustic 

resonance, a break-down in the theory is to be anticipated.

The essential features o f the generalised theory o f the photoacoustic effect as derived 

by McDonald and Wetsel now follows. Absorption o f amplitude modulated monochro­

matic light induces periodic heating within the sample. Respectively, the thermal wave 

is created in the sample and owing to thermoelasticity, pressure waves are formed 

and propagate in both directions inside the sample. Superposition o f these waves at 

the sample surface gives rise to a surface motion, which then serves as a boundary 

condition for the acoustic waves in the gas. Periodic heat flow to the gas simultane­

ously causes expansion and contraction within a thin boundary layer next to the sample 

which Rosencwaig and Gersho characterised as the “acoustic piston.” If the “acoustic 

piston” is now superimposed on the mechanical surface motion induced by the internal 

sample pressure variations, the resulting “composite piston” as defined by McDonald 

and Wetsel, produces the pressure variation in the gas detected by the microphone.

If one recalls the special case o f the Rosencwaig Gersho theory for a thermally thick 

optically transparent solid (2.2.6.1), only light absorbed within a thermal diffusion 

length o f the sample can contribute to the periodic heat flux at the sample-gas surface. 

However, in the generalised theory, the surface vibration in contrast, is proportional 

to the total energy absorbed in the sample. For experiments this has the following
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implication. In transparent thermally thick samples, the “composite piston” model 

shows that the photoacoustic signal will be enhanced by increasing the sample thick­

ness provided the factor /3ls remains sufficiently small to ensure optical transparency. 

In experimental regimes where the optical absorption coefficient may be small, the ef­

fect o f acoustic coupling would be to increase the signal to noise ratio. However, one 

must now ensure that comparative spectra are recorded from samples possessing the 

same thickness to avoid ambiguities in interpretation.

2.3.1 A ssum ptions

Consider once more the one-dimensional schematic of a photoacoustic cell shown in 

Figure 2.1 on page 13. McDonald and Wetsel assumed that the incident light gave 

rise to an instantaneous source o f thermal energy within the sample. Consequently, 

the equation for the density o f heat generation is identical to Equation (2.2). As with 

the Rosencwaig and Gersho theory, it is assumed that the backing and window mate­

rials do not contribute to the acoustical processes. However, thermal diffusion within 

these materials is now included. This point is particularly important for cells with 

gas columns comparable to the acoustic wavelength. The gas is also assumed to be 

in-viscous. No reflective scattering o f the incident light occurs.

2.3.2 T em peratu re  and P ressure  F luctuations in System

The time-dependent pressure and temperature in the ith medium in the system can be 

described by the following set o f coupled differential equations derived from elemen-

29



Chapter 2 Theory o f  the Photoacoustic Effect

tary fluid-mechanics:

(2.45)

(2.46)

where B  is the isothermal bulk modulus, and S, present only in the sample, represents 

the thermal energy source due to optical absorption. The remaining parameters have 

the same meaning as in the Rosencwaig Gersho theory.

Assuming the temperature and pressure waves have an eJut dependence, then the cou­

pled system of equations may be re-written in one-dimension as follows:

In Equation (2.48), A  =  0 in all regions except ls <  x  <  0, wherein it has the same 

definition as in Equation (2.4) on page 14.

It can be shown that the general spatial solutions to the previous equations are, in the 

case o f the sample:

(2.47)

d?Ti ju T i
+  A e0xejuJt =  jT °^r'U}Pi (2.48)

d x 2 cti

Ts{x) =  A se~jq’x +  B sejq°x +  Cse~a°x +  D sea‘x +  T^e0x (2.49)

P s (x) =  das [A se ~ ^ x +  B se ^ x] +  dts [Cae~^x +  D ae*‘x] +  dpT'Aepx (2.50)
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in the case o f the gas:

Tg(x) =  A ge - jq°x +  B gejqsX +  Cge~a»x +  D gea' x (2.51)

P 9{x) =  dag [Age - i* *  +  B ge ^ x] +  dtg [Cge ~ ^  +  D gea°x] (2.52)

and, in the case o f the window and backing materials:

Ti{x)  =  C ie~aiX +  D ieaiX ; i £  {w , b} (2.53)

In Equations (2.49) to (2.53), the letter has been used to denote the wavenumbers

of the acoustic waves propagating in the solid and gas, respectively. The standard

nomenclature k has been neglected to avoid confusion with the thermal conductivity 

terms.

2.3.3 Results of the  G eneralised  Photoacoustic Theory

Application o f the boundary conditions between the different media to Equations (2.49)- 

(2.53) i.e. velocity o f the acoustic waves, the continuity o f temperature, heat flux and 

pressure, facilitates derivation of a set o f twelve inhomogeneous linear equations in 

twelve unknown variables. These unknown variables are the coefficients A s, B s , • • •. 

Thus the temperature and pressure spatial distributions can be defined everywhere in 

the cell. Normally one does not solve for the coefficients analytically as numerical 

computation via matrix algebra lends itself to an equally valid interpretation.
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Figures 2.6 and 2.7 illustrate the respective photoacoustic amplitude as a function of  

high and low chopping frequencies for a dye-water solution. By varying the con­

centration o f the dye in the solution, the optical absorption coefficient can be tuned 

accordingly. At high levels o f optical absorption, the McDonald Wetsel theory agrees 

precisely with the Rosencwaig Gersho theory in the frequency range 0.1 Hz <  /  <  

103 Hz. Near cellular resonance or very low frequencies, the pressure variation in the 

sample contributes significantly to the photoacoustic signal and thus large deviations 

from the Rosencwaig Gersho theory occur. This is further compounded by samples 

possessing very small optical absorption coefficients.

Figure 2.6: Photoacoustic amplitude verses chopping frequency for a dye-water solu­
tion, under normal to high modulation frequency. The results o f the McDonald Wetsel 
theory are denoted by the solid curves and those o f  the Rosencwaig Gersho theory by 
the dashed lines. Reproduced from [7].
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FREQUENCY (H z)

Figure 2.7: Photoacoustic amplitude verses chopping frequency for a dye-water solu­
tion, under low frequency modulation. The results o f the McDonald Wetsel theory are 
denoted by the solid curves and those o f the Rosencwaig Gersho theory by the dashed 
lines. Reproduced from [7].

2.3.4 A nalytical C om parison w ith the  Rosencw aig G ersho Theory

To further delineate the difference between the Rosencwaig Gersho theory and their 

own theory, McDonald and Wetsel derived a simpler expression for the spatial varia­

tion in pressure within the gas Pg. The simplified model, which is accurate to within 

2% o f the generalised model, is valid under normal to high frequency photoacoustic 

conditions i.e. in the interval 10 Hz <  /  <  104 Hz. The simplified model assumes 

that the temperature distribution in the system is hardly affected by the term coupling 

it to the pressure distribution and the surface motion o f the sample is virtually indepen­

dent o f the periodic pressure variation in the gas. Under these conditions the pressure
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variation possesses the following form:

p  M  - j  7 P0 h  r ß ________
ui l,j 2psC s (JgTo (g +  1) (r +  1)

+  ß T ( l ~ e - ßh) x R g{x) (2.54)

where the term

(2.55)

is included to account for the spatial dependence o f  the photoacoustic signal. As the

chopping frequency increases, the pressure amplitude becomes dependent upon posi­

tion, since the acoustic wavelength is now comparable in size to the gas length lg. This 

has important ramifications for placement o f the microphone within the photoacoustic 

cell.

2.4 Further Extensions to the Classical Photoacoustic Theories

While a simple expression for the pressure variation in the gas column can be ob­

tained using the McDonald Wetsel theory, no such analytical solution exists for low 

frequencies, i.e. below a modulation frequency o f 10 Hz. Without any justification, 

and although their results agree with experimental measurements, the McDonald Wet­

sel theory inherently assumes that the pressure variation in the gas column at arbitrary 

low frequencies is adiabatic. Similar difficulties arise in the treatment o f thermally thin 

gases.

Korpiun and Buchner eloquently resolve both these issues in their construction [8,29] 

by taking into consideration the residual volume within the cell and that for small gas
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columns, where lg <  /xg, a thermal wave is reflected by the optical window. The resid­

ual volume is defined as the volume that exists when the gas column length tends to 

zero, e.g. the volume o f the antechamber in which the cell microphone is housed. The 

temperature variation due to the periodic heating o f the sample induces a change in 

the internal energy o f the illuminated gas volume, termed the active region, and also in 

the non-illuminated residual volume. Under such circumstances, Korpiun and Buchner 

experimentally determined that the system is better characterised by an isochoric pro­

cess than an isobaric-adiabatic process. The isochoric variation o f the internal energy 

leads to a pressure variation that is 7 1 times smaller than predicted by Rosencwaig 

and Gersho. Although the results o f McDonald and Wetsel agree with this observation 

(see Figure 2.7 on page 33), the author believes the theoretical description presented 

by Korpiun and Buchner has a physically sounder basis.

The resultant expression for the pressure variation in the gas is:

where the amplitude constant K  and phase angle <j) depend on the thermal properties 

o f the sample and the cell; Ai  is the area o f the sample illuminated, A t is the total cross 

sectional area o f the cell and VT is the residual volume o f the cell. An investigation 

o f this equation informs us that for sufficiently small gas columns or for photoacoustic 

systems operating at sufficiently low frequency, the pressure variation is independent of 

the gas used and the reflected thermal wave contributes to the signal. This is important

(2.56)
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for the design o f a photoacoustic cell. For example, if  the gas used is air, then at 

a modulation frequency o f 1 Hz, to avoid a reflected thermal wave from the optical 

window the length o f the gas column would have to be far greater than ¡ig =  4.5 mm.

In another study, Korpiun and Bucher [9] examined the effect o f the viscosity of the 

gas in the photoacoustic cell. Essentially, their results demonstrate that as the photoa­

coustic signal propagates away from the sample-gas interface it undergoes exponential 

damping o f  the form e~£vX due to the viscosity o f  the gas [30] where

In the previous formulae, dc is the closest dimension between cell boundaries, vg is the 

velocity o f the acoustic wave and r]e is the effective viscosity. The salient feature o f the 

investigation demonstrated that the viscosity is proportional to w1/2, and therefore, for 

a gas such as air its effects become prominent upwards o f 100 Hz.

2.5 The Bandeira, Closs and Ghizoni Theory of the Photoacoustic 
Effect in Semiconductors

In the aforementioned theories, an important feature which has so far been neglected, 

is that electron excitations, having a finite lifetime, are generated in the process of 

light absorption. The theories assumed that the evolution o f heat is instantaneous at 

the point in the sample where the light is absorbed, so that at some time say A t  later, 

the heat source is governed by the light source whose intensity decreases away from 

the surface in an e~0x fashion. In reality, the absorption o f light is accompanied by the

(2.57)
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generation of electron-hole pairs, which exist for a finite lifetime and move within the 

sample, before transferring their energy back to the sample in the form of heat.

When the optical absorption coefficients are high, heating is basically provided by sur­

face recombination o f excess carriers which are generated very close to the illuminated 

surface o f the sample. In such a case, the transport properties o f the carriers will not 

greatly affect the photoacoustic response and one would obtain an expression similar 

to Equation (2.44) on page 26. However, in a sample possessing a small optical ab­

sorption coefficient, the light penetrates deep into the bulk o f the material generating a 

substantia] fraction of photoexcited carriers, and consequently, carrier diffusion effects 

can play an important role in the production o f the photoacoustic signal.

The first theory o f the photoacoustic effect in semiconductors was developed in the 

1980s by Bandeira et. al [10]. Several groups tried to improve their theoiy, but all 

quintessentially possessed the same foundations [31—35],

In their study, Bandeira and co-workers were interested in enhancing the photoacoustic 

effect from samples with low optical absorption coefficients. To this end, they applied 

an electric field across the sample perpendicular to the direction the incident photons 

made with the sample. The subsequent Joule heating enhanced the contribution to the 

photoacoustic signal from photoexcited carriers in the bulk. In the following review of 

their work, the effect o f the electric field will be neglected.
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2.5.1 Tem perature F luctuation  in Sam ple

The thermal distribution in the sample and gas may be found by solving the charge and 

thermal diffusion equations:

=  _ G ( x  t )  ( 2  5 8 )

C/vC i ere

(2.59)
d x 2 a s dx  ks

where n ( x , t ) ,  D ,  and r  are the density, diffusion constant, and recombination times of 

the photoexcited carriers, respectively.

The intensity o f the source is the same as in the previous theories. The density of 

photoexcited carriers generated due to spatial dispersion of the incident light is given 

by:

<2-60)

The density o f heat generation P ( x , t ) is attributable to the following nonradiative 

physical phenomena:

•  Thermalisation o f  photoexcited carriers.

•  Bulk recombination.

•  Surface recombination.

It is important to note at this point that in the classical theories absorption of light 

caused heating o f the sample. In this semi-classical theory, a subtle difference exists.
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We now have two competing processes: incident absorbed light causes photoexcitation 

of carriers (not direct heating) and the subsequent interaction of these carriers with the 

sample causes heating.

2.5.1.1 N onradiative therm alisation  o f photoexcited carriers

When electrons with energy E  =  hu greater than the bandgap energy E g are excited 

from the valence band to the conduction band the heat generated is:

A Q t =  (hu -  Eg)ri i (x,  t) (2.61)

Since interband transition or relaxation times tjb are o f the order o f a picosecond, the 

heat density generated by this process is:

dQl R i A Q =  ( h v -  Eg) m ( x , t )
dt  A t  tib

Solving the carrier diffusion equation with the intrinsic carrier density rii(x, t) =  

ti b G ( x , t) reveals this process takes place within a D ebye length \J D tjb o f the sur­

face.

2.5.1.2 N onradiative bu lk  recom bination

For a steady-state population o f photoexcited carriers particles na(x, t ) ,  with energy

hu >  E g , band to band recombination can occur within a diffusion length y /D r BB- 

Defining rjB to be the fraction o f energy given up radiatively to the bulk in a recom­
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bination time t b b  gives us the nonradiative bulk recombination contribution to the 

density o f heat generation:

dQbr ^  AQ&j-   TlgEgTlci(x:t')
d t  A t  t B b

2.5.1.3 N onradiative surface recom bination

In a manner similar to recombination in the bulk, surface recombination can also hap­

pen within a diffusion length \ / D tb b o f  the surface. In this case, rjs is the fraction of 

energy given up nonradiatively to the process.

=> A Q sr =  r)SE gn d(x , t) (2.64)

The recombination interval A t is characterised by the surface recombination velocity 

U. Note, this is not an actual velocity, rather it characterises the rate at which carriers 

recombine as t b 1d did in the bulk.

A t =  [u\5{x)  +  u26 (x +  ¿s)]-1 (2.65)

where Ui and u? are the surface recombination velocities at the surface which the light 

impinges and the bottom surface o f  the sample, respectively. The contribution to the
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total density o f heat generation from this process is:

~~dt~' ~  =  ^sEgn^x, t) [>hö(x) +  u26(x +  ls)] (2.66)

Therefore, the density o f heat generation which is the sum of the contributions from 

Equations (2.62), (2.63) and (2.66) is:

2.5.2 Solutions o f the T herm al and C a rr ie r  Diffusion Equations

Now that all the terms necessary for a solution of Equations (2.58) and (2.59) have 

been ascertained, their solution can be found in a relatively straightforward manner. 

One must solve the charge diffusion equation first as a knowledge of the steady-state 

excess carrier concentration (both instrinsic and photoexcited) is required for solution 

of the thermal diffusion equation. Equation (2.58) is solved by applying the following 

boundary conditions to the surface recombination velocities at both surfaces:

p  _  (hv  -  E g )  rii(x, t) +  ir]BEgn d( x , t )

tib tbbt~bb
+  r)SEgnd(x , t ) [ii!<5(ic) +  u2S(x +  ls)]

(2.67)

(2 .68)

(2.69)
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The equation for the temperature distribution and subsequent pressure variation in the 

gas is solved in the much the same manner as in the Rosencwaig Gersho theory. How­

ever, one must now take into consideration the discontinuities in the heat flux at the 

gas-semiconductor and semiconductor-backing material interfaces due to the heat gen­

erated by surface recombination o f excess carriers. Thus, the boundary condition is:

x=0 or x=—la ^2  7 0 ^

p ( x ) C { x ) d -  r]SE gH n d( x , t ) [¿(a) +  5{x +  i,)L=oor*=-i.

where H  =  1 i f  the incident photon energy is greater than the bandgap energy or zero 

i f  this is not the case.

Finally an expression for the pressure fluctuation in the gas may be derived:

sp{t) = t P , W
2y/2T0kslgaghc R

' { h v - E g) H  S  r]BE 9H  f  S  _  V  \  vsE 9H tbb  '
1 +  juiTiB P2 — cr2 L 2 (m2 — ¡32) \  /32 — a 2 m 2 — a 2 J L 2 (m 2 — ft2)

(2.71)

S , V  and R  are defined in [10]. The normalised photoacoustic spectrum from a sil­

icon sample is illustrated in Figure 2.8. The most notable feature in the spectrum is 

the increase in photoacoustic intensity when the incident photonic energy is greater 

than the bandgap energy. In this part o f the spectrum thermalisation and non-radiative 

deexcitation processes occurs.

k(x)
d  <f)(x, t) 

d x 2
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Figure 2.8: Normalised photoacoustic spectrum from a silicon sample according to the 
theory o f Bandeira, Closs and Ghizoni. Eg =  1.18 eV.

2.6 Applications of the theory to experimental measurements

In the previous sections, the theory o f  the photoacoustic effect in condensed matter 

samples was reviewed. In this section, these theories will be utilised to create expres­

sions for the optical absorption coefficient and energy o f the bandgap in terms o f the 

normalised photoacoustic spectrum.

2.6.1 E valuation  o f the  optical absorp tion  coefficient ¡3

Many o f the semiconductor materials examined in this thesis may be considered opti­

cally opaque and thermally thick. This lets us reformulate the term for 0 in Equation
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(2.21) on page 17 as follows:

q —   Ü 1 (2 72)
2ks( 0 * - o * ) g  +  l

By further assuming that y  < <  1, the resulting photoacoustic signal as derived by 

Poulcl et. al  [36] may be written as:

(2.73)
U\J  (PlLs +  1)“ +  1

where

z  _  7*Woy/ftsfig
2lgT0kg

If one now solves Equation (2.73) for (3 in terms o f the normalised photoacouslic am­

plitude one would get [36,37]:

=  W + j j i p *  

Vs l -  r

where </ is the normalised photoacouslic signal given by

=  1P 9 ^  0 1  ( 2 . 7 5 )

( l=  Z

Therefore, through a knowledge o f  the nonnalised photoacoustic spectrum and the 

thermal diffusion length o f the sample, it is possible to determine the optical absorption 

coefficient o f  the sample. However, one must be careful in the application o f  such a
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formula. Ideally, it should be applied on the linear transition between the valence and 

conduction bands in the recorded spectrum. If it is applied in a region o f the spectrum 

where the signal has saturated i.e. the normalised intensity is unity, then the procedure 

does not work as it would give an infinite value for the optical absorption coefficient 

which is obviously nonsensical.

2.6.2 Determination of the bandgap

Between the edges o f the bandgap transition, the optical absorption coefficient in direct 

and indirect semiconductors is related to the energy o f the bandgap according to [38]:

where A d and A id are constants independent o f the photon energy. One can obtain the 

optical absorption coefficient based on the information presented in Section 2.6.1 and 

use this to generate, for example, a plot o f (hv/3ls)2 verses h v — Eg in the case o f a 

direct bandgap semiconductor. By extrapolating the data to /3 =  0 one can directly 

evaluate E g. The procedure is similar for a semiconductor with an indirect bandgap.

2.7 Photoacoustic Effect in Strained Semiconductors

To date, very little has been published in the literature regarding the effect o f structural 

strain on the photoacoustic spectrum. In a sufficiently strained crystalline material,

. . . direct ( 2 . 7 6 )

. . . indirect (2.77)
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stress is relieved through the formation o f dislocations. The effect o f these structural 

dislocations is to alter the bandstructure o f the material through the introduction o f op­

toelectronic defect levels. These defect levels will obviously influence the behaviour 

o f any photoexcited carriers within the sample by providing alternative paths for non- 

radiative de-excitation processes. This should manifest itself in the recorded photoa­

coustic spectrum. Photoacoustic spectroscopy has been used to analyse sub-bandgap 

defect levels [39-41], However, no attempt has been made to correlate these results 

with the macroscopic sample stress. This is somewhat surprising as, inherent in the 

information recorded in the photoacoustic spectrum, is a wealth o f information associ­

ated with the elastic and thermoelastic properties o f the material under investigation.

Most o f the papers in the literature are concerned with the effect o f electronic strain i.e. 

the effect o f photoexcited carriers on the photoacoustic response [42—44]. Perhaps for 

this discussion it is worth examining the effect o f electronic strain before we speculate 

on the effects o f structural strain. The photogenerated carriers can produce local strain 

that in turn generates an acoustic wave within the sample. The electronic strain ee 

changes linearly with excess carrier density A n(x, t) and is given by:

is the pressure dependence o f the bandgap at constant temperature. For many semicon­

ee(x, t) =  dAn(x, t) (2.78)

where

(2.79)

46



Chapter 2 Theory o f  the Photoacoustic Effect

ductor materials d is negative, and therefore, electronic strain will induce a contraction 

of the lattice. This process will have to compete with the expansion o f the lattice in­

duced by non-radiative heating mechanisms. It is important to note that these studies 

are concerned with the influence o f photoexcited carriers on the strain i.e. the A n(x, t) 

term o f Equation (2.78) and not how the strain within the sample i.e. the d term modi­

fies the signal.

Consider a perfect silicon crystal in an isolated ambient at 300 K. The bandgap o f the 

material Eg — 1.18 eV. Suppose we induce a compressive stress within the material 

of the order 300 MPa. Given that dsi =  —14.8 x 10-12 eV / Pa [45], this implies 

the bandgap will narrow by approximately 4.4 meV. The question now posed is, would 

photoacoustic spectroscopy be capable o f detecting such a shift? Given that the spectral 

resolution of a monochromator is governed by the product o f the slit width and the 

linear dispersion o f the diffraction grating, one would need a sufficiently small spectral 

bandwidth o f the order o f 1 meV to resolve the shift. For the monochromator used in 

this thesis, at A =  1050 nm, the linear dispersion is 3.125 nm/mm (see Chapter 3 for 

details o f the calculation). For a 0.5 mm slit, the bandpass o f the monochromator is 

AA/A =  A E / E  «  1.5 meV. Therefore, in principle, it should be possible to measure 

such a shift. However, the low intensity resulting from the use o f such a narrow slit 

would make the experiment difficult to implement. The obvious viable solution to this 

scenario would be to use a laser.

Potentially a much more productive investigation into the effect o f structural strain on 

the photoacoustic spectrum would be found with epitaxial systems. In the unstrained
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defect free substrate material, one should just observe an increase in the photoacoustic 

signal during the bandgap transition as described in the Bandeira, Closs and Ghizoni 

theory. As the epitaxial layer is grown on the substrate, induced strain will mod­

ify the bandstructure, possibly providing alternative non-radiative recombination paths 

for photoexcited carriers. The presence o f such levels would be seen as peaks in the 

spectrum below the bandgap energy. The energy levels o f these defects can be inferred 

directly from the spectrum. The strain within the material could be visualised using, 

for example, X-ray diffraction topography and a direct correlation between the strained 

structure and its sub bandgap defect levels performed.

The arguments o f the previous paragraphs has innocently presumed perfect samples 

exist. In reality, this will never be the case. However, the introduction of extra defect 

levels or the removal o f intrinsic levels in an imperfect sample follows essentially the 

same arguments.

2.8 Summary

In summary, the major theories o f the photoacoustic effect in condensed matter sam­

ples have been reviewed. The underlying assumptions and physical principles were de­

scribed at each stage. Failures and errors in the theories were highlighted. The theories 

were used to obtain methods for the extraction o f the optical absorption coefficient and 

bandgap energy from normalised photoacoustic data. At each stage, physical criteria 

embedded in the theories governing the design o f a photoacoustic cell were extracted. 

These will be formulated concisely in the next chapter as guidelines in the design of
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a photoacoustic spectrometer possessing a spectral bandwidth from the infrared to the 

ultraviolet.



Chapter 3

Design of a Wide Bandgap Photoacoustic 
Spectrometer

3.1 Introduction

The previous chapter dealt with the theory o f the photoacoustic effect in condensed 

matter samples. It is the purpose o f this chapter to utilise the guidelines provided by 

the various theories in the design and construction o f a photoacoustic spectrometer. 

This spectrometer, o f  the gas-microphone type, is to be used in the photonic energy 

range 0.5 eV to 6.2 eV for the observation and characterisation o f non-radiative sub 

bandgap defects in narrow and large bandgap materials such as silicon and gallium 

nitride.

Photoacoustic spectrometers for the analysis o f gaseous substances are commercially 

available. However, photoacoustic spectrometers for condensed matter analysis are 

difficult to obtain and are often unsuitable in their construction to the varied needs o f an 

academic experimentalist. This has been the impetus for the development o f in-house 

systems, which are quite often maximised for specific experimental conditions [46— 

49]. The construction o f  photoacoustic spectrometers for absolute measurements o f
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the photoacoustic effect is often quite arduous, expensive and very involved. However, 

one can develop a system at a reasonable cost with a lot less sophistication to acquire 

relative information by normalising the obtained spectra to that o f a known sample 

such as carbon black. This chapter describes the design o f a fully computerised high- 

resolution photoacoustic spectrometer similar to that developed by Zegadi et. al at the 

University o f Salford circa 1994 [46,47].

3.2 Photoacoustic Spectrometer Specifications

The system specifications are quite simple. Basically, the spectrometer should be ca­

pable o f analysing samples with bandgap energies in the photonic interval 0.5 eV to

6.2 eV. The system should be capable o f investigating samples o f a reasonable size

i.e. up to approximately 15 mm2. The system should also have the potential to record 

spectra from large areas o f a sample and also have the capability to perform photoa­

coustic m apping with a spatial resolution o f approximately 1 mm2. It is the purpose 

o f the remainder o f this chapter to design such a system. The system may be broken 

down into several independent sub-systems. These are the light source, the signal pro­

cessing system, the data acquisition and processing system, and most importantly, the 

photoacoustic cell wherein the photoacoustic effect takes place.

3.3 Operational Overview of the Photoacoustic Spectrometer

Before presenting the reader with a detailed description o f the sub-systems comprising 

the photoacoustic spectrometer, a general high-level description o f its operation will be
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provided. Consider the spectrometer illustrated in Figure 3.1 on page 54. A photograph 

o f the system is shown in Figure 3.2 on page 55.

The operation o f the system is quite simple. Polychromatic light from the 300 W 

Xenon arc lamp is modulated by the optical chopper as it is focused onto the entrance 

slit o f the monochromator. The amplitude modulated light that enters the monochro­

mator undergoes diffraction in accordance with the grating equation:

g \  = asm 6  (3.1)

where g is the order o f the reflection, A the monochromatic diffracted wavelength, a 

the line spacing o f the grating and 9 the diffraction angle. The order sorting filter 

wheel at the output o f  the monochromator ensures that only light with wavelength A 

is transmitted and the harmonic contribution from wavelengths X/g where g > 2 are 

rejected. At this stage the monochromatic light enters the focusing sub-system, two of 

which have been designed in this thesis. The first quite simply is designed to maximise 

photonic throughput and thereby the intensity o f light incident on the sample. This 

system is depicted in the photograph o f Figure 3.2. The second focusing assembly 

is designed for spatial mapping o f the photoacoustic signal within the sample. The 

light from each focusing sub-system is reflected into the photoacoustic cell using a 

plane m irror and the subsequent pressure variations in the gas are detected using an 

electret microphone. The resulting electrical signal is first pre-amplified in a low- 

noise pre-amplifier before detection o f the signal is performed with a lock-in amplifier.
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Pre-am plification and lock-in detection are used to circum vent the obvious problem  

associated w ith the low signal to noise ratio o f  the m icrophone signal. The reference 

frequency for the optical chopper is provided by an internal frequency generator in the 

lock-in am plifier -  the m otivation for this will be explained in Section 3.5.1.2. The 

entire system  is controlled by the personal com puter using LabView® softw are and 

the National Instrum ents IEEE 488.2 GPIB interfacing protocol.
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Figure 3.2: Photoacoustic spectrometer implemented in thesis. The spectrometer is 
configured in the m axim al throughput operational mode.

3.4 Photo acoustic Cell

The heart o f  any photoacoustic spectrometer is the photoacoustic cell. Its design of­

ten involves complex optimisation in order to  achieve the high signal-to-noise ratio 

required for the sample being examined. From  Chapter 2 it is known that the pho­

toacoustic signal reaching the microphone depends on the incident light intensity, on 

the therm al properties o f  the sample, gas and backing material, and on the details o f 

the therm al diffusion processes responsible for the heat flow to the gas. We will now 

examine general design specifications for a photoacoustic cell o f  the gas-microphone
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type before discussing the actual cell implemented in this work.

3.4.1 Perform ance Specifications

Rosencwaig identified several criteria governing the actual design o f the photoacoustic 

cell [28], These consisted of:

1. Acoustic isolation from the ambient.

2. Minimisation o f extraneous photoacoustic signals arising from the interaction of 

the light beam with the cell proper.

3. Maximisation o f the acoustic signal within the cell.

4. Optimal microphone configuration.

3.4.1.1 Acoustic Isolation from  the A m bient

Acoustic isolation from external interference is not a m ajor concern when lock-in de­

tection is being used. However, one should obviously use chopping frequencies differ­

ent from those present in the acoustic and vibrational spectrum of the environment. In 

this respect, the location o f the optical chopper is o f  considerable importance. In the 

literature, the chopper is generally placed before the monochromator rather than at its 

exit port. This is to prevent or at least minimise acoustic coupling o f the chopped air 

with the periodic pressure fluctuations in the cell gas column. The sample cell closure 

should provide an excellent acoustic seal. In practice, this is quite easy to obtain using 

high vacuum silicone grease and rubber O-rings. In conjunction, the cell walls should
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be o f sufficient thickness to form a good acoustic barrier [50], Where possible, cooling 

fans from power supplies and the lamp should be directed away from the experimen­

tal region as the noise from these sources will be superimposed on the photoacoustic 

signal.

3.4.1.2 M inim isation o f Scattered L ight

M cClelland and Kniseley investigated the effects o f scattered light in photoacoustic 

spectroscopy [51]. In regions o f low optical density and/or high reflectivity, where the 

photoacoustic signal is small due to the low absorption o f incident light by the sample, 

they observed that scattered light could contribute significantly to the photoacoustic 

signal. In these regions, a fraction o f light scattered from the surface or interior of 

the sample reaches the cell walls, where a portion may be absorbed. This scattered 

light contributes a spurious background component to the photoacoustic signal with 

a photon energy dependence on the optical properties o f both the sample and the cell 

walls.

To minimise specious signals from the interaction o f the light beam with the walls and 

windows o f the cell, one should employ windows as optically transparent as possible 

for the photonic energy range o f interest. The cell should also be constructed out of 

polished aluminum or stainless steel [28], Though aluminum and stainless steel cell 

walls absorb some o f the scattered light, the resulting photoacoustic signal will be quite 

weak as long as the thermal mass o f the walls is large. The inside surfaces o f the cell 

should be kept as clean as possible to minimise photoacoustic signals from surface
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contaminants. Scattered light effects may be minimised by constructing large cells in 

such a way that scattered light is reflected outside, thus minimising its effect. However, 

the pressure variation is inversely proportional to the cell gas volume; hence a trade off 

must be made between scattered light effects and maximisation o f the acoustic signal. 

The amount o f scattered light reaching the microphone must also be minimised as 

absorption couples efficiently to the microphone diaphragm [52],

3.4.1.3 M axim isation o f the  Acoustic Signal W ithin  the Cell

Since the signal in the photoacoustic cell used for solid samples varies inversely with 

the gas volume, one should attempt to minimise the gas volume. In accordance with 

the extended theories o f the photoacoustic effect o f Chapter 2, one should take care 

not to minimise the cell volume to the extent that the acoustic signal produced at the 

sample suffers appreciable dissipation to the cell window and walls before reaching 

the microphone. The distance between the sample and the cell window should always 

be greater than the thermal diffusion length o f the gas, as this boundary layer acts as an 

acoustic piston generating the signal in the cell. Based on the analysis o f the acoustic 

piston length in the previous chapter, the gas column length should be greater than 2 

mm (see Figure 2.2 on page 19 o f Chapter 2). Thermo-viscous damping also needs 

to be taken into consideration, the consequences o f which imply the closest dimension 

between cell boundaries in a passageway should be greater than 1 mm. In accordance 

with the generalised theory o f the photoacoustic effect developed by McDonald and 

Westsel one can avoid the effects o f thermally reflected waves and thermo-viscous
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damping by operating in the frequency range 10 Hz to 1000 Hz (see Figures 2.6 and 

2.7 on pages 32-33 in Chapter 2).

The previous comments have presumed that the gas in the cell is air. The Rosencwaig 

Gersho theory has shown that the photoacoustic signal is proportional to ^/kgPo/T0. 

Therefore, the acoustic signal m ay also be enhanced by using gases with high thermal 

conductivities, the use o f higher gas pressures and lower gas temperatures.

3.4.1.4 O ptim al M icrophone C onfiguration

Various microphones can be used; the principle types being condenser and electret 

microphones. A condenser microphone consists basically o f a thin metal diaphragm 

and a rigid back plate constituting the electrodes o f an air dielectric capacitor. A con­

stant charge is applied to the capacitor by a high DC voltage (the polarisation volt­

age). The variations in capacitance caused by the varying sound pressure on the thin 

diaphragm are transformed into voltage variations. Condenser microphones are gen­

erally accepted as being the best microphone type for sound measurements; however, 

owing to the large diameter o f the devices, their use in small volume photoacoustic 

cells can be somewhat complicated [53],

Similar to condenser microphones, electret microphones use a variable plate capacitor 

as an acoustic transducer, the front electrode being the microphone diaphragm. As the 

diaphragm moves, the capacitance changes and a voltage proportional to the acous­

tic signal is produced. The stationary back electrode used in electret microphones is 

manufactured from a special synthetic material known as “electret.” This material has
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a unique quality o f being able to store a permanent electric charge; the charge being 

“frozen” in the electret material. It therefore requires no high external polarising volt­

age and can be powered by low voltage batteries. The counter electrode is manufac­

tured from a thin gossamer foil, with a thin gold coating. Such an ultralight diaphragm 

provides good transient response, high responsivity at low sound pressure levels, and 

ensures highly accurate sound reproduction with minimal distortion. Cylindrical elec­

tret microphones are relatively cheap and possess a large surface area with respect to 

their small size, thereby increasing their sensitivity. However, they usually do not have 

a flat frequency response. This can be quite troublesome if  one intends to perform 

experiments at different chopping frequencies e.g. in depth profiling analysis. This 

apparent shortcoming can be turned to one’s advantage if one is only going to operate 

at one chopping frequency. One can set the chopping frequency to take advantage of 

the non-flat frequency response and operate at its peak sensitivity.

The photoacoustic signal to noise ratio and experimental sensitivity can be increased 

by simply adding the signals from several microphones in the sample cell [53]. In such 

a configuration the signal increases with the number o f microphones used, whereas the 

microphone random noise only increases with the square root o f their number. For this 

purpose electret microphones are particularly suited due to their small size.

Based on the details o f the Rosencwaig Gersho theory, in the frequency range o f inter­

est 10 Hz to 250 Hz, the microphone should be capable o f sensing pressure variations 

of the order 10 mPa to 100 mPa (see Figure 2.4 on page 23 in Chapter 2). The mi­

crophone should be placed in an antechamber to minimise the effects o f scattered light
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and for general photoacoustic investigations o f different samples, one should ensure 

that the cell is not operating near acoustic resonance.

3.4.2 Photoacoustic Cell Im plem entation

A three-dimensional illustration o f the photoacoustic cell constructed in this thesis is 

shown in Figure 3.3. The working drawings can be viewed in Appendix A. The design 

is based on the individual designs o f Zegadi et. al [46], Gray et. al [49] and Ferrell et. 

al [50]. It is the most common design adopted in the literature. Unlike Gray, the gas 

volume is fixed (typically 3.5 cm3). The internal diameter o f the active volume is 30 

mm and the gas column length is 5 mm.

Air at atmospheric temperature and pressure was used as the gas in the cell. To reduce 

complexity, no other gases were used. Consequently, to avoid effects o f thermally 

reflected waves and thermo-viscous damping, the usable chopping frequency range is 

10 Hz to 1 kHz.

The cell is made large not only to accommodate large samples, but also to minimise the 

effect o f reflected and scattered light from the sample on the cell walls. The cell was 

made from H-30 Aluminum supplied by Miko Metals, Cork, Ireland. When mechani­

cally polished, this metal becomes highly reflective. Spectrosil WF (quartz) windows, 

manufactured by Oxford Cryogenic systems, with a thickness o f 0.2 mm, have been 

used as they possess transmittance in excess o f 99% for all incident light in the photon 

range 0.42 eV to 6.2 eV. The rubber O-ring and neoprene cushion provided a good 

acoustic seal from the ambient.
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A single FG3329 electret microphone [54] manufactured by Knowles Electronics was 

used to detect the photoacoustic signal. This miniature cylindrical device, o f dimension 

2.59 mm in diameter and 3.22 mm in length, was housed in an antechamber under the 

sample stage. This ensured no scattered light induced noise from the microphone 

diaphragm. Only one microphone was used for experimental simplicity, but the cell 

can be easily modified in the future to accommodate a detector array. The microphone 

possessed a nominally high flat sensitivity o f 25 mV/Pa in the frequency range 100 Hz 

to 10 kHz making the microphone ideal for studies at different chopping frequencies. 

Therefore, based on the estimated pressure variation due to the photoacoustic effect 

(see Figure 2.4 on page 23 in Chapter 2) one could estimate signal levels o f the order 

o f 250 pV  to 2.5 mV to be produced.

o
Cell Cover

Rubber O-Ring

Neoprene
Cushi

Figure 3.3: Photoacoustic cell used in thesis.
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3.5 Optical Hardware

The primary purpose of the optical hardware in the photoacoustic spectrometer is to 

generate an intensity modulated monochromatic light source that will induce the pho­

toacoustic effect in the semiconductor sample under investigation. To this end, the use 

o f both pulsed and continuous wave lasers is very popular in the literature [55]. Al­

though tunable lasers may be used to perform studies over a narrow photonic range, the 

more conventional and economic alternative is to use a high power short arc lamp in 

conjunction with a high-resolution monochromator. The secondary function o f the op­

tical hardware is to alter the characteristics o f the incident beam. For example, through 

appropriate design, an optical system at the output o f the monochromator could be used 

to vary the spatial resolution of the system. All o f the optical hardware described below 

has been mounted o n a R P  Reliance vibrationally damped optical table manufactured 

by Newport.

3.5.1 L igh t Source

The intensity modulated light source simply consists o f a high power spectrally broad 

arc lamp that is focused onto the entrance slit o f  a monochromator. On its way to the 

monochromator, the light is intensity modulated using an optical chopper. The details 

o f these components are now presented.
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3.5.1.1 S hort A rc X enon L am p

A 300 W xenon short arc lamp manufactured by LOT Oriel, with an arc size o f 0.7 

mm x 2.4 mm, / / I  primary condensing optics, / / 4 .6  secondary coupling optics ( /  =  

150 mm) and high voltage power supply provide the radiation source. A parabolic 

reflector is situated behind the lamp to enhance device efficiency. As the arc lamp 

is at the focal point o f the primary condensing lens, this lens provides a collimated 

beam for the secondary lens, which in turn performs the /-num ber matching with 

the monochromator situated at its focal point, thus maximising throughput. The lamp 

provides reasonable constant irradiance from 250 nm to 2400 nm. The lamp is ozone- 

free and consequently suffers from strong attenuation below 250 nm (above 4.96 eV). 

In comparison to other non-ozone free lamps o f similar output, the constant irradiance 

above the oxygen cut-on wavelength makes the lamp quite suitable for photoacoustic 

spectroscopy [56]. The spectral irradiance o f the lamp may be examined in Figure 3.4 

on page 65.

3.5.1.2 O ptical C hopper

A variable frequency enclosed optical chopper manufactured by LOT Oriel is inserted 

in the path o f the collimated beam between the primary and secondary condensing 

lenses. Hence, the collimated light is intensity modulated before being focused on 

the entrance slit o f  the monochromator. An ancillary benefit o f the enclosure is the 

minimisation o f acoustic noise arising from the air being chopped. The enclosure 

surrounding the wheel also aids in safeguarding the user against hazardous scattered
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Wavelength ()>m)

Figure 3.4: Spectral irradiance o f 300 W  ozone-free xenon arc lamp. Reproduced 
from [56].

light from the arc lamp. The chopping frequency may be varied from sub-Hz to 3 kHz 

by selection o f  an appropriate chopping wheel. Currently, the system is configured to 

operate at a maximum modulation frequency o f 350 Hz. The device may operate in 

stand-alone mode or from a supplied external reference [56], In the current system 

configuration, the reference signal for the optical chopper is supplied by an internal 

signal generator in the lock-in amplifier. The reason for this is twofold: firstly, it 

ensures that the detection frequency and excitation frequency are identical with a zero 

phase difference between them, and secondly, as the frequency generated by the lock- 

in amplifier is fully programmable this enables control software to be written where the 

modulation frequency can be varied at the user’s discretion. To the best o f the author’s
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knowledge, the latter has not yet been implemented in photoacoustic measurements.

3.5.1.3 H igh Resolution M onochrom ator

The Cornerstone 260 monochromator manufactured by LOT Oriel and used in the pho­

toacoustic spectrometer is a true 1 /4  m monochromator. It has entrance and exit focal 

lengths o f 260 mm, a relative aperture o f / /3 .9  and a potential spectral operating range 

o f 180 nm to 20 /im depending on the diffraction gratings used. The limitations im­

posed by ozone attenuation below 250 nm may be overcome by purging the instrument 

with nitrogen. The device has a motorised triple grating turret, which facilitates rapid 

broad-spectrum scans at a maximum scan rate o f 175 nm/s.

If monochromatic light strikes a grating, then a fraction o f the light is diffracted into 

each order in accordance with the grating equation. The fraction diffracted into any 

order can be termed the efficiency o f the grating in that order. Gratings are not equally 

efficient at all wavelengths for numerous reasons as the efficiency can be tuned by 

changing the num ber o f grooves (or lines) in the grating, the groove facet angles and 

the shape or depth o f the grating lines. The optimisation o f efficiency by appropriate 

groove shaping is known as blazing. The blaze wavelength is the wavelength for which 

the grating is most efficient. Generally two types o f grating are used: holographic 

and ruled. Holographic gratings provide good spectral resolution at the expense of 

reduced intensity, whilst ruled gratings offer increased intensity over the spectral range 

o f interest at the expense o f spectral resolution. The resolution o f a grating increases 

and the throughput decreases with the number o f grating lines. With these technical
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points and knowledge o f the arc lamp spectrum in mind the following gratings were 

used in the monochromator.

Grating No. Type No. o f Grooves (1/mm) A range (nm) Blaze A (nmj
I Holographic 1200 1 8 0 -6 5 0 250
2 Ruled 1200 4 5 0 -1 4 0 0 750
3 Ruled 600 9 0 0 -2 8 0 0 1600

Table 3.1: Gratings used in monochromator.

The performance o f a monochromator may be evaluated in terms o f its resolution, 

accuracy, precision and dispersion. The bandpass is the spectral width o f radiation 

passed by a monochromator when illuminated by a light source with a continuous 

spectrum. By reducing the width o f the input and output slits o f the monochromator, 

the bandpass may also be reduced until a limiting bandpass is reached. The limiting 

bandpass is termed the resolution o f the device. In spectral analysis, the resolution is 

a measure o f the ability o f the instrument to separate two spectral lines that are close 

together. The resolution o f the Cornerstone 260 is 0.15 nm  for a 1200 1/mm grating 

when used with entrance and exit slits with dimension 10 pm  x  2 mm. By judicious 

variation o f  the input and output slit widths, a relatively constant bandpass can be 

obtained for the entire wavelength range o f a photoacoustic spectral scan. Attached to 

the monochromator input and output ports are continuously variable micrometer driven 

slits whose width may be varied from 4 /um to 3 mm and their height from 2 mm to 15 

mm.

The monochromator has an accuracy o f 0.35 nm and will reproduce wavelengths to 

a precision o f 0.08 nm. It has an efficiency above 80% for blaze wavelengths and
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exhibits high dispersion, typically 0.31 mm/nm and 0.16 mm/nm for the wavelength 

ranges 180 ran to 1400 nm and 900 to 2800 nm, respectively.

Coupled to the output slit o f the monochromator is a six-position filter wheel. For the 

spectral range o f  interest, three filters are necessary to remove the effect o f higher order 

harmonic contamination in the output spectrum. The filters and the associated grating 

wavelength ranges that they operate for are presented in Table 3.2. These order-sorting 

filters will also minimise the effect of stray re-entrant light in the monochromator. In 

a system with the potential to scan such a large range o f wavelengths, this component 

becomes an integral part o f the system. The filter change mechanism is controlled 

directly by the monochromator, which itself may be controlled using a dedicated hand 

controller, the IEEE 488.2 GPIB or the RS-232 communication protocols [56],

Filter No. Cut-on wavelength (nm) Grating No. A range (nm)
2 324 1 3 4 0 -6 5 0
4 830 2 8 5 0 -  1200
6 1600 3 1 750 -2400

Table 3.2: Filters used with monochromator.

3.5.1.4 Photonic Pow er Inciden t from  L igh t Source

The reader will now be presented with an order o f magnitude estimation o f the photonic 

power at the exit port o f  the light source. Suppose the monochromator is operating at 

450 nm and the slits have been opened to their maximum (3 mm in width by 15 mm 

in height) to facilitate maximum throughput. Taking into consideration the irradiance 

o f the lamp and geometrical factors such as the presence o f a parabolic reflector, the
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power provided by the arc lamp at 450 nm is 4.75 mW/nm. As the fused silica lens 

used in the primary and secondary condensers are approximately 90% transparent over 

the wavelength range o f interest, this implies that 3.85 mW /nm power is provided at 

the output o f the secondary condenser.

The magnification m  o f  the condenser-secondary lens assembly is given by the ratio of 

their /-num bers as follows:

m  =  ^ secondary =  —  =  4.6 (3.2)
/ /  7 / condenser 1

Therefore, the size o f the image o f the arc lamp source at the monochromator entrance 

slit will be 3.2 mm in width by 11.0 mm in height.

Assuming uniform image irradiance, the fraction o f the image that passes through the 

entrance slit o f  the m onochromator is given by the vignetting factor V. Since the image 

is wider but not taller than the entrance slit, the vignetting factor is found with respect 

to the horizontal beam size:

V = J 2 =  °-93 (3-3)

Therefore, the power entering the monochromator is given by the product o f the vi­

gnetting factor with the power at the output o f the secondary condenser. This is 3.58 

mW/nm. The bandwidth A A that a 3 mm slit will admit is given by the product o f the 

reciprocal linear dispersion and the slit width w:
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where L  is width of the spectral beam. Now the linear dispersion is given by the 

product of the focal length /  of the monochromator and the angular dispersion of the 

grating. By differentiating Equation 3.1 with respect to A one can obtain the angular 

dispersion.

7x = (3’5)dX a cos 6

dL dd fg
a A aX a cos 0

Therefore, the reciprocal linear dispersion is:

dX = acose  
dL fg

At A = 450 nm the reciprocal linear dispersion is 3.8 nm/mm. Therefore, the bandwidth

passed is:

AA =  w ^ -  = 11.4 nm (3.8)
aL

Consequently, the power admitted into the monochromator within this spectral band­

width is:

Pi =  3.58 mW/nm x 11.4 nm =  40.8 mW (3.9)

Assuming the grating has an efficiency of eg = 50% at 450 nm and taking into consid­

eration that the light undergoes reflection from four azimuthal aluminum mirrors with 

a reflectivity of R  = 88% implies the power at the output port of the monochromator

P0 = PiegR i =  12.95 mW (3.10)

70



Chapter 3 Design o f  a Wide Bandgap Photoacoustic Spectrometer

In the previous analysis, the intensity modulation of the light by the chopper has not 

been taken into consideration.

3.5.2 Focusing Optics

Spectral resolution has not been a major design constraint in this system. In the future, 

if it does become important, then the experimenter can replace the hand driven slits 

with computer controlled motor driven slits. By varying the slit width according to 

the spectral position, one can achieve a constant spectral bandpass over the energy 

range of interest. This thesis has centered on the design of focusing optics for intensity 

maximisation and spatially resolved photoacoustic studies. In this section the operation 

of the focusing optics will be explained. The only major design constraint was that the 

materials used in the lenses had to be as optically transparent as possible over the 

wavelength range of interest, i.e. 200 nm to 2.4 //m.

3.5.2.1 Configuration A. Intensity Maximisation

As the photoacoustic effect is directly proportional to the intensity of the incident light 

source I 0, this implies that as much of the power from the output port of the monochro­

mator should be focused into as small an area as possible. However, if this area is too 

small, insufficient heating of the gas volume in contact with the sample will occur, 

thus failing to generate an appreciable pressure variation that can be measured by the 

microphone. For this reason, it has been decided to focus the output beam by a mag­

nification factor of approximately m  =  0.3. Hence, the 3 mm by 12 mm output beam
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will be converted into a beam approximately 1 mm by 4 mm in size.

Starting with the basic lens equation [57]:

f  u  v

1 1 1
"7 — --- 1--- (3.11)

and reformulating the magnification of a single lens yields:

v f 5iV (3.12)m sl = ~
V> Usi fa i

where u is the object distance, v is the image distance and the subscript si denotes 

single lens. This equation implies that for a real image to be formed by a single lens, 

two constraints must be satisfied:

1. The focal length f sl > 0.

2. The object distance ust > f^ .

If either of these constraints is ignored a virtual image will be generated. The second 

constraint implies u.^ = a f si for some a > 1. Consequently, Equation (3.12) may be 

re-written as:

Figure 3.5 demonstrates that a single lens only provides realistic real image focusing 

in the magnification range 1 < m <  2. Outside this range the object distance becomes 

physically impractical with respect to the numerical aperture of the lens. Therefore, a

1 (3.13)
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two lens imaging system must be considered.

-1 +0C

Figure 3.5: Plot of fractional variation in object distance versus magnification for a 
single lens.

Consider, the general optical system composed of two lenses as shown in Figure 3.6. 

The object distances have been chosen to be greater than the focal lengths of the lenses 

to ensure real images are created.

Lens #1 Lens #2

Figure 3.6: Optical system consisting of two lenses separated by a distance d. Biconvex 
lenses have been drawn, however the mathematical derivation in the text applies to 
lenses with both positive and negative focal lengths once the sign convention is adhered
to.
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The magnification of the system is the combined magnification of the individual lenses 

[58]:

Vl V2 nmi 2 =  m im 2 = ------  (3.14)
Ui u2

Since

m \ =  — (3-15) 
ui -  / i

and u2 = d — V\

(3' ,6)

Using a biconcave lens with a focal length f i  =  —30 mm and biconvex lens with a 

focal length f 2 = 50 mm one obtains a combined magnification m u  =  —0.32 for an 

inter-lens separation distance of 50 mm. The minus sign in the magnification means the 

image of the source is inverted. This is inconsequential as we assumed equal irradiance

in all parts of the beam, i.e. the beam is the same above and below the principal axis.

3.5.2.2 Configuration B. Spatial Resolution

In this subsection, the output optical configuration for spatially resolved photoacoustic 

studies will be examined. The goal of this sub-system is to focus the 3 mm by 12 

mm rectangular beam at the output port of the monochromator into a circular shaped 

beam incident on the sample with a diameter variable between 1 mm and 12 mm. This 

design has been formulated in an iterative manner; we will therefore only examine the 

optimal solution.

Consider the completed lens and mirror assembly shown in Figure 3.7 on page 76. The
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combination o f the concave mirror and cylindrical lens (which focuses in one plane 

only) generate an image on the first plane mirror that is the same size in the horizontal 

and vertical directions. By varying the distance between the biconcave and biconvex 

lens one can vary the size o f the beam that strikes the second plane mirror. Therefore, 

one can vary the size o f the beam impinging on the sample. The photoacoustic cell 

is mounted on a computer controlled X-Y translational stage. Thus fully automated 

spatially resolved photoacoustic scans are possible. Using paraxial ray theory analysis, 

general component specifications will be derived. Ray tracing analysis will then be 

used to determine the size o f  the beam striking the mirror as a function o f the inter­

lens distance.
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Figure 3.7: Output optical configuration for spatially resolved photoacoustic studies.
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Paraxial Ray Theory Analysis

At a distance u from the output of the monochromator, the beam size has been experi­

mentally ascertained to be:

w =  0.15ii +  0.5 Horizontal size in mm (3-17)

h = 0.166m +  6.76 Vertical size in mm (3.18)

Now the magnification of the cylindrical lens may be written as:

w
m cyi = — (3.19)

Inserting Equations (3.17) and (3.18) into Equation (3.19) and solving for the system 

parameters results in ucyi = 67 mm, vcyi = 40 mm and m cyi — 0.6. Using Equation 

(3.12) we ascertain that the focal length of the cylindrical lens must be 25 mm. The 

beam size hitting the cylindrical lens prior to de-magnification in the vertical plane 

is 11 mm x 18 mm. A UV grade fused silica cylindrical lens with f cyi =  25.4 mm 

possessing dimensions of 19.0 mm by 50.8 mm satisfying these design requirements 

is used in the optical train.

The object distance for the concave mirror um = ucyi + vcyi =  107 mm. The image 

size on the concave mirror is approximately 17 mm2. Using the lens equation for this 

mirror results in vm =  438 mm and m m =4.1. Consequently, the image size on the 

first plane mirror is approximately 12 mm2.
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The combination of the biconcave and biconvex lenses focuses the image on the first 

plane mirror onto the second plane mirror. From Section 3 .5 .2 .1  it is known that a 

single lens is incapable of providing the magnification requirement 0.1 <  m  <  1.0. 

Therefore, two lenses are required. Re-consider Equation ( 3 .1 6 )  and its application to 

Figure 3 .6 .  In paraxial ray analysis it is not possible to estimate the magnification at a 

fixed distance from the source as the inter-lens distance is varied; one can only estimate 

the magnification at the point the light rays come to focus. The focusing optics consists 

of a biconcave lens with / i  =  —30 mm and a biconvex lens with / 2 =  50 mm. The 

following constraints ensure real images are formed. For the diverging lens a u i — f \  

where a  <  1 and for the converging lens (u 2 =  f 2 where £ > 1.

=> v2 = (3.20)

For simulation purposes Equation (3.16) reduces to:

mi,2 =  7~7~/ -i \ (3-21)[d (a -  1) -  afi] (C -  1)

Figure 3.8 shows the magnification of the system as a function of the object distance U\ 

and inter-lens distance d for a biconvex and biconcave lens system with focal lengths 

f i  = —30 mm and ,/2 =  50 mm, respectively. Figure 3.9 shows the total distance from 

the source to the point of focus as a function of the object and inter-lens distances. 

From both figures, one can see that the magnification requirement is satisfied. Also the 

total object to image distance is less than 30 cm making implementation on a standard
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optical table quite easy.

Figure 3.8: Magnification of two lens system as a function of object distance u\ =  a f i  
and inter-lens distance d. The biconcave lens has a focal length / i  =  — 30 mm and the 
biconvex lens has a focal length / 2 =  50 mm. A negative magnification indicates an 
inverted image.
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Figure 3.9: Total distance ( « 1  + d + v2) of two lens system from object to image as a 
function of object distance U\ and inter-lens distance d. The total distance demonstrates 
that all images are real.
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Ray Tracing Analysis

The proceeding analysis is only valid for paraxial rays. Unfortunately, the reflected 

beam from the first plane mirror will be divergent. For most applications it would be 

desirable to leave the sample cell and plane mirrors in the same position on the optical 

table and vary the spatial resolution via the inter-lens distance. All of these require­

ments preclude the use of ray tracing for the analysis of the system magnification.

As the beam has been conditioned by the combination of the cylindrical lens and con­

cave mirror to possess uniform divergence, the analysis will be confined to meridional 

rays and the effects of skew rays will be neglected. The beam reflected from the first 

plane mirror in Figure 3.7 diverges at an angle a^ and strikes the biconcave lens at a 

position yu as illustrated in Figure 3.10. In the following derivation, all heights above 

the optical axis are defined positive and those below, negative. Similarly, all anti­

clockwise angles above the optical axis are defined positive and all clockwise angles 

below the optical axis are defined negative.

Applying Snell’s Law at the entrance to the biconcave lens yields:

nn sin 9h =  ntl sin 9h (3.22)

where

(3.23)

0«! = oli -  atl

(3.24)
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nt2= ni3

 #-

Figure 3.10: Optical path of meridional ray through biconcave lens. The ray strikes the 
lens surface at position P\ making an angle 0fl with respect to the surface normal. The 
object distance is always greater than the focal length. The lens has centre thickness 
C TV = 1.5 mm, refractive index =  1.4649, diameter 0] — 22.4 mm and radius of 
curvature Ry = R 2 =  30.92 mm.

The height of the beam above the optical axis at the exit of the lens is:

Vu = Vû +  A Viy (3-25)

The derivation for A y^  where j  G {1,2,3,4} can be found in Appendix B,

Similarly at the exit of the lens Snell’s Law> yields:

r^2 sin =  n i2 sin 0ty (3.26)
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Oi2 — Ot 2 +  CXi2
(3.27)

— oi2 + a t.

(3.28)

Wta =  Vh +  A Vi2 (3.29)

The ray trajectories through the biconvex lens arc illustrated in Figure 3.11.

Figure 3.11: Optical path of meridional ray through biconvex lens. The ray strikes the 
lens surface at position P3 making an angle 0,3 with respect to the surface normal. The 
object distance is always greater than the focal length. The lens has a centre thickness 
CT2 =  19.73 mm, diameter </>2 =  50.8 mm, refractive index ni4 =  1.4649 and radius 
of curvature R 3 = R 4 =  42.73 mm.

Applying Snell’s Law with respect to the incident ray yields:

e,t4

V  «j

Sample

ni3 sin 0i3 =  nt3 sin ()t3 (3.30)
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$¿3 =  <*3 +  Oii3

Ot3 =  or3 -t- a t:i

a t3 =  sin -i n
—  sin (a3 +  a ia)
n t3

-  Q3

Vt3 =  V h  +  A y i3

(3.31)

(3.32)

(3.33)

Now

nu sin 0U =  nu sin 0U

4 '̂1 ¿̂3

0/..I =  «4 +  CXt 4

n
—  sin (or4 -  a u ) 
nu

-  a 4

(3.34)

(3.35)

(3.36)

As the ray governed by the angle c^., travels downwards w ith respect to the optical 

axis, it should be defined as negative in any simulation. Only the size o f  the angle is 

provided by Equation (3.36).

V* =  Vu + A Vu (3.37)

See Appendix B for y ,-4.

In Figure 3.10, the ray is indicated as hitting the sample. In the actual experim ental 

configuration, the ray will be reflected onto the sam ple by a plane mirror. As the 

sam ple to m irror d istance will be sm aller with respect to the m irror to biconvex lens
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distance, any convergence or divergence of the beam will be negligible. Consequently, 

the size of the beam impinging on the mirror may be considered to be the size of the 

beam impinging on the sample.

The magnification of the system according to the ray tracing analysis may be defined

m rt = — (3.38)
V s

where y0 and ys are the heights of the object and image above the principal optical axis 

respectively.

The previous analysis was simulated for an object with height 6 mm above the optical 

axis. The ray incident on the first lens was parallel to the principal axis so a quantitative 

comparison with the results of Figure 3.8 could be made. The total distance of the 

system was defined to be 250 mm. This is unlike the paraxial ray theoiy analysis where 

the final image distance v2 was taken to be the point where the rays came to focus. That 

is, in the paraxial ray theory analysis, the position of the sample was variable and in 

the ray tracing analysis, it is fixed. The results are shown in Figure 3.12.

An analysis of the results clearly demonstrates that the output optical system meets 

the system specifications i.e. it is capable of providing magnification over an order of 

magnitude from 0.1 to 1.
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Figure 3.12: Ray tracing results for object 6 mm above the principal axis. The total 
distance between the object and the image was 250 mm. A negative magnification 
implies an inverted image.

3.6 Electrical Hardware

Data from early spectrometers was recorded using X-Y plotters or very basic micro­

computers [59]. Real time spectra normalisation was only a dream with these systems. 

Modem photoacoustic spectrometers do not suffer from these drawbacks as personal 

computers are relatively cheap and can be used to acquire data from the lock-in ampli­

fiers whilst simultaneously controlling the monochromator.

3.6.1 Lock-in Amplifier

Periodic AC signals as low as a few nanovolts can be detected using lock-in amplifica­

tion. This is achieved by a technique known as phase sensitive detection, whereby it is 

possible to single out the component of a signal at a specific reference frequency and
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phase. An important part of this process is that noise signals at frequencies other than 

the reference frequency are rejected. Hence, they do not affect the measurement.

The following example will help to illustrate the process. In the following hypothet­

ical experiment, the reference signal to the lock-in amplifier is a square wave with 

frequency wref [60], Now suppose the output signal from the experiment is a sine wave 

of frequency wMg. Using a phase-locked-loop (PLL), the amplifier generates a refer­

ence signal with the same frequency as the sine wave but with a fixed phase shift 0ref. 

Since the PLL actively tracks the external reference, changes in the external reference 

frequency do not affect the measurement. The experimental signal is multiplied by the 

reference signal using a phase sensitive detector (PSD). The output of the PSD is the 

product of the two sine waves in this example:

p̂sd =  Kig Viock-in sin (wref£ 1" $sig) Sm (wiock-in̂  “I” M  (3.39)

This signal is amplified and low pass filtered. When wref =  W[0ck-m a DC component 

will remain. In this case the output of the PSD will be:

p̂sd — ^ ^1,0̂ 'iock m COS ($sig r̂ef) (3.40)

Therefore, using lock-in detection one can obtain a DC signal proportional to the ex­

perimental signal amplitude without any noise superimposed on it.

The overall performance of a lock-in amplifier is largely determined by the perfor-
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manee of its phase sensitive detectors. In virtually all respects, the digital PSD outper­

forms its analogue counterpart. Analogue PSD’s have many problems associated with 

them, namely harmonic rejection, output offsets, limited dynamic reserve and gain er­

ror [60]. The lock-in amplifier used in the photoacoustic spectrometer is the Stanford 

Research Systems SR830 digital signal processing amplifier. The amplifier converts 

the amplified experimental signal using a 16 bit ADC that has a sampling frequency of 

256 kHz. An anti-aliasing filter prevents higher frequency inputs from aliasing below 

102 kHz. Using the digital PSD’s linear multipliers, the digitised experimental signal 

is multiplied with the digitally computed reference signal. The reference sine wave 

may be considered “pure” as all harmonics are attenuated with a dynamic reserve of 

100 dB. The lock-in amplifier has time constants from 10 /is to 30 ks with 6 dB to 

24 dB per octave filter rolloff. The internally generated reference signal is accurate to 

within 25 ppm and phase measurements can be made with a resolution of 0.01°. The 

amplifier provides dual inputs and outputs in conjunction with an output reference port. 

Inputs can be supplied in differential or single ended mode. The two data displays can 

be used for the display of X  and Y  or R  and 9. The amplifier is fully programmable 

under the IEEE 488.2 GPIB protocol [60],

3.6.2 Low-noise Preamplifier

To further enhance the electrical signal generated by the microphone, the use of a Stan­

ford Research Systems SR552 low-noise bipolar input voltage preamplifier has been 

employed. The preamplifier is designed to supply gain to the experimental detector,
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before the signal to noise ratio is permanently degraded by cable capacitance and noise 

pick-up. The amplifier has an input impedance of 100 kO + 25 pF and a common mode 

rejection ratio of 110 dB at 100 Hz. Signals can be supplied in differential or single­

ended mode. It has a full-scale sensitivity from 10 nV to 200 mV. Thus the preamplifier 

minimises noise and reduces measurement time in noise limited experiments making 

it an ideal addendum to the photoacoustic spectrometer. The power and control sig­

nals for the device are supplied directly by the SR830 lock-in amplifier. When used in 

conjunction with the lock-in amplifier, the gain is set to 10. It is therefore necessary to 

divide all output measurements by 10 to obtain the true measurement value [61,62],

3.6.3 Electrical Connections

Due to the small size of the microphone and its positioning within the photoacous­

tic cell, attachment of coaxial cables to the signal lines was not possible. Therefore, 

small insulated wires from the microphone were connected inside a Gaussian shield 

to a twisted coaxial network that was fed to the input preamplifier in a differential 

mode configuration. The output from the preamplifier was also fed to the lock-in am­

plifier through twisted pair coaxial cables in a differential mode configuration. The 

microphone requires a supply voltage of 0.9 V to 1.6 V volts and this was supplied 

from a standard laboratory power supply. All of the electronic circuitry i.e. the mi­

crophone and its power supply, the lock-in amplifier, the optical chopper driver and 

the monochromator were all powered from a mains voltage supply independent to that 

supplying the arc lamp power supply. This ensured any potential voltage variations
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due to the operation of the lamp did not couple into the rest of the system.

3.7 Control Hardware

The full potential of the optical and electrical equipment previously described can only 

be harnessed by placing the entire system under the control of a personal computer. All 

the equipment in the system may be controlled directly or indirectly via the IEEE 488.2 

GPIB or RS-232 communication standards. Conventional GPIB provides a modular 

robust approach for interfacing up to fifteen devices on a single data bus. Unlike RS- 

232, where parameters such as baud rate, parity and the number of stop bits have to be 

known, any device adhering to the GPIB standard may be connected to the bus with 

little or no knowledge of its communication requirements. In conjunction, RS-232 

does not readily permit simultaneous communication with several devices without the 

use of sophisticated hardware or software routines.

GPIB devices communicate with each other by sending device-dependent messages 

and interface messages through the interface system. Device-dependent messages, 

commonly known as data messages, contain device specific information such as pro­

gramming instructions that control its operation. Interface messages are primarily con­

cerned with bus management. Interface messages perform functions such as initialising 

the bus and addressing devices. GPIB devices may be categorised as talkers, listeners 

and controllers. Listeners are devices that may receive data transmitted by a talker. 

For example, in the spectrometer, the lock-in amplifier acts as both a talker (trans­

mitting data to the computer) and a listener (acquiring data from the microphone via
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the preamplifier). The controller, a PCI card in this application, manages the flow of 

information on the bus by sending commands to all the devices.

Devices are usually connected via a shielded 24-conductor cable with both a plug and 

receptacle connector at each end. The bus uses negative logic with standard TTL levels. 

In order to achieve the high data transmission rates, nominally 1.5 Mbytes/s when 

using a PCI controller, the physical distance between devices is limited as follows. The 

maximum separation between any two devices should be less than 4 m and the average 

device separation must not be greater than 2 m over the entire bus. The total cable 

length must not exceed 20 m. This will clearly not be a problem for the photoacoustic 

spectrometer implemented in this thesis [63],

3.8 Software

The software developed for the photoacoustic spectrometer essentially falls into two 

functional categories, that of data acquisition and data processing. The data acquisi­

tion software is responsible for the communication and control of all the experimental 

apparatus. Due to the low signal to noise ratio inherent in photoacoustic spectroscopy, 

once spectra have been recorded they normally have to undergo processing of some 

sort before they can be interpreted correctly.

3.8.1 Data Acquisition Software

An ancillary benefit of the IEEE 488.2 GPIB standard is that several companies have 

developed sophisticated high-level application development tools to enable engineers
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to provide application specific user interfaces to their GPIB fostered systems. Lab View®, 

a product of National Instruments Inc., is a graphical program development environ­

ment. Lab View® programs are called virtual instruments, or Vis for short, because 

their appearance and operation mimic the actual operation of the device they commu­

nicate with. A VI consists of an interactive user interface, a data-flow diagram that 

serves as the source code and icon connections that allow the VI to be called from 

higher level Vis. When amalgamated with Lab View® GPIB compliant instrument 

drivers, sophisticated control systems may be developed with little time overhead [64],

Several Vis have been written to control both the monochromator and the lock-in am­

plifier. Tables 3.3 and 3.4 describe the main virtual instruments that have been im­

plemented to date. Each VI is referenced by a unique number and letter so that the 

inter-dependence of various Vis on one another can be illustrated.
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Ref. No. VI name Function Dependence
Ml
M2
M3
M4
M5
M6
M7
M8
M9

M10
M il

MonoSendMessage.vi
MonoReceiveMessage.vi
MonoGetLambda.vi
MonoGoLambda.vi
MonoGetGrating.vi
MonoGoGrating.vi
MonoFindGratingLambda.vi
MonoGetFilter.vi
MonoGoFilter.vi
MonoF indF ilterLambda. vi
MonoShutter.vi

Sends a command to the monochromator 
Receives a string from the monochromator 
Finds the current wavelength 
Changes to a specific wavelength 
Finds the current grating 
Changes to a specific grating 
Finds grating applicable to a given A 
Finds which filter is operating 
Changes to a given filter 
Finds'filter applicable to a given A 
Opens or closes the shutter

M l,M2
M1,M5,M7,M8 
M l, M2 
Ml

M l,M2 
Ml, M2

Ml

Table 3.3: Monochromator virtual instruments and their inter-dependence.
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Ref. No. VI name Function Dependence
LI LocklnSendMessage.vi Sends a command to the amplifier
L2 LocklnReceiveMessage.vi Receives a string from the amplifier
L3 LocklnAmplifierSetup.vi Configures the amplifier L1,L2
L4 LocklnReadDisplay.vi Reads a specified display LI. L2
L5 LockinReadAuxin.vi Reads a specified analogue auxiliary input LI. L2

Table 3.4: Lock-in .Amplifier virtual instruments and their inter-dependence.
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3.8.1.1 Photoacoustic Energy Scan

The impetus behind this part of the thesis was to design a photoacoustic spectrometer 

for the characterisation of sub-bandgap absorption defects. The most common VI used 

for such studies will be examined. The actual graphical interface as seen by the user 

is shown in Figure 3.13. Consider the flowchart for the photoacoustic energy scan VI 

illustrated in Figure 3.14. Prior to starting the VI, the user enters the start wavelength, 

end wavelength and wavelength increment for the scan. The user specifies the number 

of scans that are to be performed and also provides the details of where the data is to 

be stored. The VI is then started and proceeds according to the flowchart.

Photoacoustic Energy Scan

Sian WavuJoogin

ÎEL

PAMajpludo 

jo.000024200 [

Wavelength Inctamerrt

I5ZZJ
Sample
m m

Soai Number

(iffi I

Final Wavelength

D ataDiroctoiy 

(Prototypesearn

Nutrtx* of Scant to Pwrfarm

ÏW

Time Comtant («) 
3530 I 

PA Phase v « « »  Wavetanflth

300 400 4/f) 440

Wavelength (nm) W avetengih [nm]

Figure 3.13: Graphical user interface for photoacoustic energy scan.
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Figure 3.14: Flowchart depicting operation of photoacoustic energy scan VI.
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3.8.2 Data Processing Software

In a normal photoacoustic energy scan, the data is collected from a number of different 

spectra. Since the noise is assumed to be Gaussian in nature simple statistical averaging 

should improve the signal to noise ratio. The averaged spectrum is next normalised to 

an averaged spectrum of a known sample such as carbon black powder. As averaging 

cannot remove all of the spectral noise, some filtering is necessaiy at this stage. All of 

these processes will now be examined.

3.8.2.1 Spectral Averaging

During a photoacoustic energy scan, the signal magnitude and phase are read from the 

lock-in amplifier as the wavelength of the incident light is varied. These three elements 

are recorded in an ASCII text file. For a spectrum from a carbon black powder where 

the photoacoustic effect is quite strong, nominally five scans across the wavelength 

range of interest are recorded. For a semiconductor sample it is necessary to record 

twenty or more scans to minimise the effect of noise. Having recorded the spectra, 

they are statistically averaged. A C program has been written that reads the directory 

where the spectra are stored, loads them into memory and takes the simple average. 

The average is then stored in a separate file for normalisation.

3.8.2.2 Spectral Normalisation

When a photoacoustic spectrum is recorded, superimposed on the signal from the sam­

ple itself is a photoacoustic signal due to the spectral distribution of the optical system,
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the cell and the microphone. Normalisation is the process where these errors are cor­

rected. This is performed by normalising the photoacoustic response of the specimen 

with that of a fine powder of carbon black. The latter acts as a true light trap with a 

flat response at all wavelengths. During the normalisation procedure the user is asked 

to enter the name of the averaged spectrum to be normalised along with the name of 

the averaged carbon black spectrum used in the process. Each sample spectral point is 

divided by its corresponding carbon black point. The normalised data is then stored in 

a file for filtering.

3.8.2.3 Spectral Filtering

Due to the fact that the constructed spectrometer is a single beam type therefore, by 

the process of normalisation, fluctuations in the normalised photoacoustic spectrum are 

bound to happen. The previous averaging and normalisation processes in themselves 

could enter some element of noise which could alter the final result to some extent. It is 

therefore desirable to perform some form of spectral filtering or smoothing to remove 

any noise. Two filters have been developed for use with the data.

The first is a simple n-point smoothing window where each spectral point is replaced 

by a local average of the ul data points to the left and n R data points to right of it. 

The user specifies the number of points to be averaged. In general, it is not recom­

mended to average more than five points at a time or the spectrum may be corrupted.
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Mathematically the form of this filter may be expressed as follows:

nR

9i= (3-41)
n = —TlL

where g, is the filtered value for the spectral point /¿. The coefficient cn = 1 / ( til +  

t i r  + 1). This moving average filter works quite well for carbon black powders as their 

signal to noise ratio is quite high.

However, for spectra from semiconductor samples it is dangerous to use such a filter. 

Suppose the spectrum could be approximated by a function that is sufficiently differ­

entiable such that its second order derivative exists. In such cases, the moving average 

filter has the mathematical property of reducing the value of the function when a local 

maximum occurs. In a spectroscopy application, this implies a narrow spectral line 

will have its height reduced and its width increased. Since these parameters are them­

selves of physical interest, such filtering is obviously erroneous. Note however, that a 

moving average filter will preserve the area under the peak of interest i.e. the zeroth 

moment [65],

For spectroscopy applications a filter is required that preserves the zeroth and higher 

order moments. One such filter that has been implemented in this thesis is the Savitzky- 

Golay [65] filter. This type of filter has the advantage that it operates directly in the 

time-domain, and therefore, data does not have to be transferred back and forth be­

tween the Fourier domain. This avoids the risk of any loss of information, i.e. intro­

duction of noise, due to algorithms such as the fast Fourier transform that might be
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used for such a process. The basic idea behind the Savitzky-Golay filter is to find filter 

coefficients cn that preserve higher order moments. Equivalently, the idea is to approx­

imate the underlying function with a moving polynomial window. At each point /, a 

polynomial is least-squares fitted to all n  points in the moving window, and then gt is 

set to be the value of that polynomial at position i. The technical details of the filter 

implementation can be found in [65],

3.9 Summary

In this chapter, the design and construction of a photoacoustic spectrometer for use in 

the infrared to ultraviolet part of the electromagnetic spectrum was described. Starting 

with the basic design criteria, each of the constituent systems was examined in the 

context of the theories of Chapter 2 and practical realisation issues were also discussed 

when appropriate. Particular emphasis was placed on the design of the photoacoustic 

cell. Potential enhancements to the system were alluded to as we progressed through 

the chapter; these will be expanded upon further in the conclusions of Chapter 14. 

Now we will progress to Chapter 4, where initial results of the spectrometer will be 

presented for materials such as carbon black, silicon and gallium nitride.

100



Chapter 4

Characterisation of Photoacoustic 
Spectrometer

4.1 Introduction

In this chapter the photoacoustic spectrometer designed in Chapter 3 will be calibrated 

and its performance evaluated by obtaining photoacoustic spectra from several com­

mon semiconductor materials. Calibration of the spectrometer essentially entails ac­

counting for photoacoustic signals in the spectrum recorded from a sample that are 

attributable to the system itself. With a knowledge of these effects, an elementary 

verification of the theory of the photoacoustic effect in condensed matter samples is 

performed. Sub-bandgap absorption spectra are recorded for silicon (Eg =  1.12 eV), 

gallium arsenide (Eg =  1.44 eV) and gallium nitride (Eg =  3.4 eV). This data is then 

used to determine the energy of defect levels within the bandstructure and their influ­

ence on the optical absorption spectra. Finally, manipulation of the absorption spectra 

provides a measured value for the bandgap energy for each of the materials.
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4.2 Calibration of Spectrometer

From Chapter 2 it is known that in a gas-microphone photoacoustic spectrometer, the 

photoacoustic signal is dependent on system parameters such as the light source, gas, 

backing materials, microphone and the photoacoustic cell geometry. Since the basic 

aim of a photoacoustic spectroscopy experiment is to determine the properties of the 

sample under investigation, these cell-dependent features are obvious experimental 

impediments. We therefore need to calibrate the spectrometer to account for system- 

dependent effects recorded in the photoacoustic spectra.

Using a photothermophone, Murphy and Aamodt [66], performed absolute calibration 

of their photoacoustic cell. In their experiment, they mimicked the photoacoustic sig­

nal produced by a carbon film by periodically heating the sample with a square wave 

current source. The absolute energy absorbed by the sample due to the incident light 

was determined by varying the electrical power supplied to the sample. The energy 

required to induce the photoacoustic effect was evaluated when the same pressure fluc­

tuation was recorded in the gas from both the electrical and photoacoustic heating. The 

absolute calibration of a photoacoustic spectrometer is unnecessary for our purposes 

as we are only interested in obtaining relative information from a sample.

4.2.1 Light Source Power Spectrum

One of the most obvious and important predictions of the theories of the photoacoustic 

effect is that the photoacoustic signal is always linearly proportional to the intensity 

of the incident beam. It has been shown in Chapter 2 Section 2.2.6.2 that for an opti­
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cally opaque, thermally thin sample such as carbon black, the photoacoustic spectrum 

is simply the power spectrum of the light source. Figure 4.1 illustrates the normalised 

photoacoustic spectrum of a carbon black powder sample measured at a chopping fre­

quency of 100 Hz as a function of the photonic spectrum from 200 nm to 2400 nm 

(0.52 eV to 6.2 eV). One can see that most of the photonic power is concentrated in the 

spectral interval 300 nm to 2000 nm (0.62 eV to 4.1 eV). Below 300 nm the arc lamp 

suffers from ozone attenuation and in the deep infrared the efficiency of the respective 

monochromator grating is very poor.

Wavelength (nm)

Figure 4.1: Spectral dependence of the normalised photoacoustic (PA) signal mea­
sured at a modulation frequency of 100 Hz from a carbon black powder sample. The 
wavelength increment between points is 1 nm.

Figure 4.2 illustrates the normalised power spectrum of the light source recorded with 

a Photodyne 33XLA chopped light multimeter. The recorded spectrum is quite coarse 

as the wavelength increment between points is 10 nm. Microscopically both spectra
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demonstrate the same features as one would expect. However, closer comparison of 

the two spectra reveals subtle differences. Consider for example, the wavelength range 

500 nm to 800 nm. The photoacoustic spectrum displays more photonic power in this 

region compared to the data from the silicon photodiode. The differences arise from 

the fact that the power meter does not act like the perfect light trap with flat frequency 

response at all photon energies. Therefore, the results from carbon black which absorbs 

all incident light at all photonic energies could be potentially used for spectroscopic 

calibration from the X-ray to far infrared spectral regions.

Wavelength (nm)

Figure 4.2: Normalised power spectrum of the light source measured at a modulation 
frequency of 100 Hz using a photodiode.

The results from the carbon black powder, which possesses an optical absorption co­

efficient ¡3 m 106 cm-1, demonstrate that we are dealing with a situation where the 

optical absorption length pp ¡=s 1 ¡im is very small compared to the sample length I «1
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mm. At the same time the thermal diffusion length p s is far greater than the sample 

length for the modulation frequencies usable in the spectrometer i.e. 25 Hz to 350 Hz. 

For example, ps æ 1.6 mm at a modulation frequency of 100 Hz.

4.2.2 Frequency Dependence of Photoacoustic Effect

The simplest way of verifying the theory of the photoacoustic effect in condensed mat­

ter samples is to examine the effect of the modulation frequency on the photoacoustic 

signal. For an optically opaque and thermally thin sample such as carbon black, it 

is known that the photoacoustic signal should be independent of the optical absorp­

tion coefficient /3 and inversely proportional to the chopping frequency u  (see Section

2.2.6.2 in Chapter 2).

Consider the chopping frequency dependence of the photoacoustic signal amplitude 

from a carbon black powder sample shown in Figure 4.3. Please note that over the 

modulation frequency range of interest, silicon is also optically opaque and thermally 

thin. Since the photoacoustic response from a powdered sample is much stronger than 

a crystalline sample, carbon black has been used as the material for the experimental 

study. One can clearly see the w-1 dependence of the photoacoustic signal. This 

is in direct agreement with the theoretical predictions for a silicon sample shown in 

Figure 2.4 in Chapter 2. As the photoacoustic signal is supposed to be independent of 

the optical absorption coefficient for this class of materials, one would have imagined 

that the photoacoustic response at 700 nm should have been the same as at 1300 nm. 

One can clearly see that this is not the case. The long wavelength infrared radiation

105



Chapter 4 Characterisation o f  Photoacoustic Spectrometer

is producing a much stronger photoacoustic signal compared to that produced by the 

visible radiation. The origin of the difference lies in the intensity of the light source at 

the two energies. The intensity of the light source is one and a quarter times greater at 

1300 nm than at 700 nm (see Figure 4.1). Therefore, bearing this point in mind, one 

can see that the response of the photoacoustic signal is inversely proportional to u  and 

independent of ¡3 in accordance with the theoretical predictions.

Frequency (Hz)

Figure 4.3: Dependence of the photoacoustic signal amplitude on chopping frequency 
for a carbon black powder sample. The study was performed in the visible (700 nm) 
and infrared (1300 nm) parts of the electromagnetic spectrum.

4.3 Data Acquisition Process

In a typical photoacoustic experiment wherein the photoacoustic signal is recorded 

as a function of the energy of the incident radiation, one normally averages the data 

over several spectra prior to normalisation. Once the data is normalised it is often



Chapter 4 Characterisation o f  Photoacoustic Spectrometer

necessary to filter it to further suppress the effect of noise on the spectrum. Each of 

these processes will now be examined for a silicon sample so that the reader will have 

a greater understanding of the spectrometer’s operation.

4.3.1 Averaging

The sample used for this study was a 15 mm2 piece of silicon cut from a four inch 

p-type < 100> wafer. Boron dopant was used and the 0.5 mm thick wafer possessed a 

nominal resistivity of 9 cm to 12 cm. Photoacoustic energy scans were performed 

from 0.95 eV to 1.8 eV (690 nm to 1380 nm) in wavelength increments of 1 nm. The 

modulation frequency was 55 Hz yielding a thermal diffusion length ps = 708 pm, 

which is greater than the sample thickness. A typical scan from this optically opaque, 

thermally thin sample is shown in Figure 4.4. Superimposed on the photoacoustic 

response of the sample is the power spectrum of the light source and Gaussian noise. 

As the noise is statistically distributed, averaging over several spectra will reduce its 

influence on the results. The simple average of thirty scans is presented in Figure 4.5. 

One can clearly see that the noise is significantly reduced.
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Energy (eV)

Figure 4.4: Typical raw spectrum data recorded from a silicon sample.
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Figure 4.5: Increase in photoacoustic signal to noise ratio by averaging 30 spectral 
scans recorded from a silicon sample.
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4.3.2 Normalisation

To remove the photoacoustic signal due to the spectrometer itself the averaged sample 

spectrum is divided by an averaged carbon black spectrum recorded from the same 

photonic interval and modulation frequency as the sample itself. Figures 4.6 and 4.7 

show the carbon black spectrum used for the process and the resulting normalised 

photoacoustic spectrum for the silicon sample.

Energy (eV)

Figure 4.6: Carbon black spectrum used in the normalisation of an averaged silicon 
spectrum. The spectrum has been normalised to unity to aid clarity.

4.3.3 Filtering

In the normalised spectrum of Figure 4.7 one can see the presence of a defect level 

approximately 80 meV below the bandgap at 1.2 eV. This is highlighted by the ar­

row labeled D. However, a lot of noise is present in the spectrum and to elucidate the
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D

Energy (eV)

Figure 4.7: Normalised photoacoustic spectrum from p-type silicon sample. A non- 
radiative defect approximately 80 meV below the bandgap is indicated by the arrow 
labeled D.

photoacoustic data in a more understandable manner filtering has been applied. In or­

der to preserve as much of the spectroscopic information as possible a seventh order 

Savitzky-Golay filter, utilising 11 data points either side of the filtered point, was ap­

plied to the spectrum. The results are shown in Figure 4.8. Due to the low signal to 

noise ratio one can see that the photoacoustic spectrum is still quite coarse. This prob­

lem cannot be overcome by further filtering; rather one must increase the information 

by increasing the number of spectral scans recorded.
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D

Energy (eV)

Figure 4.8: Normalised photoacoustic spectrum from p-type silicon sample after fil­
tering with a 7 th order Savitzky-Golay filter. 11 data points either side of the filtered 
point were used to generate the polynomial coefficients. A non-radiative defect ap­
proximately 80 meV below the bandgap is indicated by the arrow labeled D.

4.4 Photoacoustic Spectroscopy of Common Semiconductors

In this section, the spectrometer will be characterised across its spectral range using 

the common semiconductor materials silicon, gallium arsenide and gallium nitride. 

For each material, the sub-bandgap absorption spectrum will be recorded, the bandgap 

energy and optical absorption coefficient determined. A good agreement between these 

results and those recorded in the literature has been obtained.

4.4.1 Silicon

The non-radiative sub-bandgap absorption spectrum for the silicon sample studied in 

this thesis has been presented in Figure 4.8. In line with the theory of Bandeira, Closs
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and Ghizoni [10], there is a significant increase in the amplitude of the photoacoustic 

signal for energies greater than the bandgap energy Eg. From Figure 4.8 one could es­

timate the bandgap energy to be approximately 1.2 eV. However, a much more precise 

value can be obtained through a knowledge of the optical absorption coefficient as a 

function of the incident photonic energy. The optical absorption coefficient near the 

band to band transition can be obtained using the normalised photoacoustic amplitude 

q as follows:

EZ (4.D
Us i -  q2

The near-edge optical absorption spectrum for silicon is shown in Figure 4.9. The 

values presented here agree quite well with those obtained in [67-69],

1097 1088 1078

Wavelength (nm)
1069 1060 1051 1042 1033

Figure 4.9: Near band edge optical absorption spectrum for silicon.
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Re-iterating Equation (2.77) for an indirect bandgap semiconductor:

P = AJ & (4.2) 
nu

enables one to obtain the bandgap energy by plotting \Jfihv against hv — Eg. The 

value for which ¡3 = 0 gives the corresponding energy of the bandgap. In Figure 

4.10 \Jj3lhv is plotted on the ordinate axis rather than \Jf3hv. The sample thickness I, 

which is constant, does not change the end result, it only makes the magnitude of the 

figures more manageable. The bandgap of silicon has been evaluated to be Eg =  1.187 

eV. This is approximately 63 meV greater than the theoretical value of 1.126 eV for a 

measurement at room temperature [45], To a large degree, the experimental error can 

be attributed to the large dispersion of the monochromator which results in a nominal 

bandpass of approximately 25 nm at 1.12 eV.

4.4.2 Gallium Arsenide

The optical properties of two different gallium arsenide samples grown by the Vertical 

Gradient Freeze (VGF) and Liquid Encapsulated Czochralski (LEC) techniques were 

examined through their non-radiative decay branches. The samples studied were taken 

from p-type four inch wafers oriented in the < 100> direction. The photoacoustic spec­

tra were recorded over the photonic energy range 1.1 eV to 2.0 eV. The wavelength 

increment between data points was 1 nm and the modulation frequency was 55 Hz. 

Figures 4.11 and 4.12 show the respective spectra from the LEC and VGF samples. In 

both spectra, the direct bandgap transition at E g «  1.4 eV can be seen. The spectrum
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Figure 4.10: Evaluation of the bandgap energy for silicon.

recorded from the VGF sample possesses significantly more noise than the LEC spec­

trum. This point is very important for comparison of the spectra. For example, there 

would appear to be two defect levels present in the VGF spectrum at Si =  1.17 eV and 

E 2  = 1.22 eV. These defect levels also appear to be present in the LEC spectrum but 

their contribution to the photoacoustic signal is somewhat smaller. Therefore, due to 

the statistical nature of the VGF data it is most probable that these defects are actually 

the same in both samples. The energies associated with the four defect levels present in 

the spectra are summarised in Table 4.1. Determination of the nature of these defects 

is beyond the scope of this thesis. However, several investigations into sub-bandgap 

defect levels in semi-insulating gallium arsenide have been performed using piezoelec­

tric photoacoustic spectroscopy by Fukuayama et. al [70,71] and Ikari et. al [41,72], 

Their studies were able to determine the nature, i.e. their activation energies and trap­
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ping cross-sections, of the electron non-radiative defect levels EL2, EL6 , and EL7. ll 

is envisaged that the spectrometer constructed in this thesis will be applied to similar 

studies in the near future.

Sample (eV) (eV) ¿-:,(eV) ¿ ’4  (eV)
LEC GaAs ' l.fT 1 . 2 0 1.33 1.42“
VGF GaAs 1.17 1 . 2 2 1.33 1.41

Table 4.1: Energy levels associated with the non-radiative de-excitation centres in 
GaAs samples.

Figure 4.11: Normalised photoacouslic spectrum recorded from LEC grown GaAs. 
The data has been averaged over 20 spectral scans and filtered using an 11 point 7lh 
order Savitzky-Golay filler. Four non-radiative defcct levels are indicated in the spec­
trum.
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Figure 4.12: Normalised photoacoustic spectrum recorded from VGF grown GaAs. 
The data has been averaged over 20 spectral scans and filtered using an 11 point 7th 
order Savitzky-Golay filter. Four non-radiative defect levels are indicated in the spec­
trum.

The near band edge optical absorption coefficient has been evaluated using Equation 

(2.76), re-iterated here:

P = A d
y / h u  -  Eg

hv
(4.3)

The results are presented for the LEC and VGF samples in Figure 4.13 and 4.14, re­

spectively. Both sets of data demonstrate reasonable agreement with each other and 

with previous optical absorption spectra recorded in the literature [73,74], The effect 

of the sub-bandgap defect level E 4  in the VGF sample induces an appreciable localised 

variation in the optical absorption coefficient as indicated in Figure 4.14. Therefore, 

the information contained within a photoacoustic spectrum could be utilised, for ex­

ample, in the design and construction of infrared transmitters and detectors.
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Wavelength (nm)
8 9 9  8 9 2  8 8 6  8 7 9  8 7 3  8 6 7  861 8 5 5  8 4 9

Energy (eV)

Figure 4.13: Near band edge optical absorption spectrum for LEC grown GaAs.

Wavelength (nin)
984  9 6 9  9 5 4  9 3 9  9 2 5  9 12  898 8S 6  873  861 849

Figure 4.14: Near band edge optical absorption spectrum for VGF grown GaAs.
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One can determine the bandgap energy by manipulation of Equation (4.3) and plotting 

(ftlhu) 2  verses hu — E,,. Extrapolating to ¡5 = 0 yields hi/ — Eg\ hence the bandgap 

energy can be determined. Both sets of data, plotted in Figures 4.15 and 4.16, yielded 

EtJ =  1.441 eV in precise agreement with the literature [45].

Figure 4 .15: Evaluation of the bandgap energy for LEC grown GaAs.
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Figure 4.16: Evaluation of the bandgap energy for VGF grown GaAs.

4.4.3 Gallium Nitride

Group III-nitrides have been considered a promising system for semiconductor de­

vice applications since the early 1970s, especially for the development of blue and 

ultraviolet lasers due to their large photonic bandgap [75], It has been a necessity for 

investigators in the III-nitride community to grow films of gallium nitride using hét­

éroépitaxial routes because of the dearth of bulk substrates of this material. This results 

in films containing dislocation densities of the order of 1 0 8 cm- 2  to 1 0 10 cm- 2  because 

of: (i) mismatches in the lattice parameters, and (ii) differences in the coefficients of 

thermal expansion between the film and the substrate. These high concentrations of 

dislocations limit the performance, efficiency and lifetime of optical devices via car­

rier recombination, increased leakage currents and decreased breakdown strength [76],
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To the author’s knowledge the first ever study of the non-radiative de-excitation pro­

cesses in gallium nitride using photoacoustic spectroscopy is presented in this thesis. 

Two samples were investigated. The first, henceforth referred to as the “reference” 

sample consisted of 1.2 /¿m thick GaN epilayer grown on a 50 nm GaN buffer layer 

that had been deposited on a 400 pm  thick (001) sapphire substrate. The second sam­

ple, henceforth called the “pendeo-epitaxy” sample consisted of a 400 pm thick sap­

phire substrate. On top of this a 50 nm GaN nucleation layer and a 1.2 /im thick GaN 

epilayer were grown using metal organic chemical vapor deposition (MOCVD). The 

combination of these two layers form the seed layer for the pendeo-epitaxy growth. 

Afterwards a 150 nm thick Si0 2  layer was deposited. Stripes were then defined using 

conventional photolithography and dry etching. Reactive ion etching (RIE) was used 

to create GaN stripes, measuring 2 pm wide with a period of 6  /im, by etching until 

the sapphire substrate was exposed. A new form of growth termed pendeo-epitaxy 

was used to grow 6  pm  of GaN over the silicon dioxide mask layer. Pendeo-epitaxy 

(from the Latin: pendeo -  to hang, or to be suspended) incorporates mechanisms of 

growth exploited by the conventional epitaxial lateral overgrowth technique [77] by 

using the Si0 2  mask to prevent vertical propagation of threading dislocations and ex­

tends this technique to employ the substrate itself as a pseudomask. This technique 

differs from conventional ELO growth in that the growth does not initiate through the 

window openings in the silicon dioxide mask but begins on the side-walls etched in 

the GaN seed layer. As the lateral growth from the sidewalls continues, vertical GaN 

growth begins from the newly formed (0 0 0 1 ) face of the continuously extending lat­
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eral growth front. Subsequently, once the vertical growth reaches the top of the seed 

mask, lateral growth over the mask itself begins through the conventional ELO tech­

nique. Allowing pendeo-epitaxial growth to continue will result in coalescence over 

and between each seed front, producing a continuous layer of GaN [78,79],

The dependence of the photoacoustic signal on the energy of the incident light was 

investigated in the photonic interval 2.8 eV to 4.1 eV at a modulation frequency of 

55 Hz. Consequently, the thermal diffusion length ps fh 500 pm implies data was 

recorded throughout the entire sample volume i.e. a signal contribution from the sap­

phire substrate, nucleation and buffer layers is to be expected. In its present form, the 

spectrometer is incapable of probing only the gallium nitride layers within the mate­

rial, as modulation frequencies of the order 130 kHz to 3.4 MHz are required to achieve 

thermal diffusion lengths as shallow as 2 //m to 10 pm. The respective sub-bandgap 

absorption spectra for the reference and pendo-epitaxy samples are shown in Figures 

4.17 and 4.18. The spectra are relatively free of noise due to the large information 

set that was recorded. However, it is difficult to discern the exact energy at which the 

direct bandgap transition occurs in the samples.

In the photoacoustic spectra of the silicon and gallium arsenide samples examined in 

the previous sections (see Figures 4,8 and 4.11), one could clearly see a large increase 

in the normalised photoacoustic signal during the transition from the valence band to 

the conduction band. This is directly attributable to the thermalisation of electrons 

from the valence band to the conduction band and their subsequent non-radiative re­

laxation mechanisms. Progressing this analysis one step further, one can also see that
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Figure 4.17: Normalised photoacoustic spectrum recorded from GaN reference sam­
ple. The data has been averaged over 100 spectral scans and filtered using an 11 point 
7th order Savitzky-Golay filter.

the difference in the photoacoustic signal strength between the valence and conduction 

bands is much larger for the gallium arsenide sample than for the silicon sample. This 

is a direct consequence of the thermal electrons requiring more energy to cross the 

bandgap in gallium arsenide than in silicon. All of this analysis seems to be incorrect 

when applied to gallium nitride. As the bandgap of gallium nitride is approximately 

three times larger than that of silicon, one would have envisaged a noticeable transition 

in the photoacoustic spectrum at an energy of approximately 3.4 eV.

Inherent in the discussion of the previous paragraph was an assumption that the mate­

rials under investigation are perfect. Although the photoacoustic spectra of silicon and 

gallium arsenide demonstrated the presence of some defect levels, their spectra and 

degree of crystallinity is sufficiently pure that to a first order the arguments presented
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Figure 4.18: Normalised photoacoustic spectrum recorded from GaN pendeo-epitaxy 
sample. The data has been averaged over 100 spectral scans and filtered using an 11 
point 7th order Savitzky-Golay filter.

are reasonably plausible. This is not the case for gallium nitride. The reference sample 

is heavily dislocated by virtue of the lattice mismatch inherent in the hétéroépitaxial 

growth. The pendeo-epitaxy sample will have a reduced number of dislocations com­

pared to the reference sample, but for the purposes of this discussion the number is 

still sufficiently large that both materials may be classed heavily dislocated. The dis­

locations induce modifications of the bandstructure such that alternative paths for non- 

radiative thermalisation and recombination of the electrons are introduced. Therefore, 

one could imagine that in their transition between the valence and conduction bands, 

the carriers undergo small transitions between the defect levels rather than large dis­

crete transitions between the bands. Consequently, the carriers generate small amounts 

of heat within the lattice and a small photoacoustic signal. To first order, this qualita­
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tive discussion explains the gradual transition from the valence band to the conduction 

band seen in the recorded spectra.

The most amazing feature of the UI-nitrides is that although they are heavily dislo­

cated, carriers in the materials and their constituent devices are capable of undergoing 

radiative recombination. To date a large amount of interest has been placed on the 

radiative recombination mechanisms in gallium nitride [80,81]. Sugahara et. al [82] 

have shown that the efficiency of light emission remains high as long the minority 

carrier diffusion length is shorter than the dislocation spacing. Only a small number 

of investigations have examined the non-radiative properties and in particular, the in­

fluence of dislocations on the non-radiative centres [83]. By correlating the location 

of the defects in a transmission electron micrograph with a spatially mapped photolu­

minescence scan, Miyajima et. al [84] have determined that screw, edge and mixed 

dislocations act as strong non-radiative recombination centres in gallium nitride. They 

also determined that device efficiency is improved when the dislocation density is re­

duced. However, the location of the non-radiative centers within the bandstructure has 

yet to be determined.

In the interval between 3.4 eV and 3.5 eV, i.e. where one would expect the bandgap 

transition to take place, the rate of change of the photoacoustic signal strength with 

respect to the change in energy is greater for the pendeo-epitaxy sample than for the 

reference material. In light of the discussion of the previous two paragraphs, this 

suggests fewer non-radiative recombination centres are present in the pendeo-epitaxy 

sample compared to the reference sample.

124



Chapter 4 Characterisation o f  Phôtoacoustic Spectrometer

The optical absorption coefficient of the materials in the energy range 2.9 eV to 3.5 eV 

was evaluated using the same procedure that was described for gallium arsenide. The 

results for both samples are shown in Figures 4.19 and 4.20. The optical absorption 

coefficient of the reference sample is iower than that of the pendeo-epitaxy sample 

over the spectral range examined. The higher dislocation density in the reference sam­

ple is responsible for the creation of a higher number of non-radiative recombination 

centres which serve to reduce the measured optical absorption coefficient. These re­

sults support the observations of Miyajima el. al [84] and the discussion thus far. The 

measured optical absorption spectrum for the pendeo-epitaxy sample agrees with the 

data of Ambacher et. al [85] and Muth et. al [8 6 ],

Wavelength (nm)
413  4 0 0  388 376  3 65  3 5 4  344

Energy (eV)

Figure 4.19: Near band edge optical absorption spectrum for the GaN reference sam­
ple.
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Wavelength (nm)
413 400 388 376 365 354

Figure 4.20: Near band edge optical absorption spectrum for ihe pendeo-epitaxy GaN 
sample.

By plotting (filhv ) 2  verses the photon energy the measured bandgap energy for both 

samples was found to be Eg — 3.35 eV which is in close agreement with the value of 

3.42 eV reported in the literature [87], The 70 meV difference may be accounted for 

through intrinsic stress in the samples due to their hétéroépitaxial nature and also by 

system effects such as dispersion in the monochromator. The data is shown in Figures 

4 .21 and 4.22.
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Figure 4.21 : Evaluation of the bandgap energy for GaN reference material.

Figure 4.22: Evaluation of the bandgap energy for pendeo-epitaxy GaN material.
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4.5 Conclusions

The results of this chapter have demonstrated clearly that the high resolution spectrally 

broad photoacoustic spectrometer, designed in Chapter 3 and based on the theories 

of Chapter 2, is capable of analysing narrow to wide bandgap semiconductor materi­

als. The power spectrum of the system was measured using carbon black powder, and 

the inherent advantage of the method’s flat frequency response, demonstrated its su­

periority to the conventional silicon photodiode. The Rosencwaig-Gersho theory was 

analysed in the frequency range 25 Hz to 350 Hz. No deviations from the theoretical 

predictions were found once system effects such as the spectral dependence of the light 

intensity had been taken into consideration. The spectrometer was used to measure the 

optical absorption spectra of silicon and gallium arsenide, from which it was possible 

to extrapolate their bandgap energies. All results were shown to be in agreement with 

those published in the literature.

The first investigation, using photoacoustic spectroscopy, into the non-radiative de­

excitation processes in the wide bandgap semiconductor gallium nitride, have been 

performed in this thesis. Although these studies are in their infancy, it was possible 

to qualitatively demonstrate that the pendeo-epitaxy material possessed fewer non- 

radiative recombination centres compared to a hétéroépitaxial reference sample. One 

may also infer from previous work that there are fewer dislocations in the pendeo- 

epitaxy material.

At present, there appear to be no publications in the literature correlating the nature of
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the non-radiative optoelectronic defects in gallium nitride with the structural defects 

from which they originate. The spatially resolved photoacoustic optics designed in 

Chapter 3 have not been used to date in spatially resolved studies. In the near future 

such studies will be undertaken and it is envisaged the location of the structural defects 

will be found using synchrotron X-ray topography, the focus of part two of this thesis, 

to which we now turn.
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Synchrotron X-ray Topography
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Chapter 5

Theory of X-ray Diffraction

5.1 Introduction

X-ray diffraction has been used extensively for studying crystalline materials possess­

ing varying degrees of lattice perfection. Developments in the theories of X-ray diffrac­

tion have been motivated by interest in the underlying physical phenomena and the 

need of the semiconductor industry to increase the quality of the materials used for 

electronic devices.

Two theories are generally used to describe the interaction of X-rays with crystalline 

materials for the purposes of understanding X-ray diffraction topographs. The con­

ceptually easier theory, the kinematical theory, treats the scattering from each unit cell 

in the lattice as being independent from every other unit cell. The resulting diffracted 

intensity is the sum of the scattered radiation from all unit cells in the sample with geo­

metrical phase differences taken into consideration. The second theory, the dynamical 

theory, takes into account all wave interactions within the crystal and must be used 

whenever diffraction from large perfect crystals is being considered.

Historically, several descriptions of the dynamical theory of X-ray diffraction exist.
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The Darwin theory [13,14] is based on the resolution of recurrence equations describ­

ing the partial reflection and transmission of waves at each lattice plane. Its formalism 

is not very convenient for the study of the propagation of X-rays and therefore for the 

study of defect images on X-ray topographs. Ewald’s theory [8 8 ] investigates the inter­

action of an electromagnetic wave with a discrete triply periodic set of electromagnetic 

dipoles. Von Laue’s theory [89] is based on the interaction of X-rays with a continuous 

medium characterised by a triply periodic dielectric susceptibility.

Today, Laue’s theory is used for the explanation of dynamical diffraction effects in 

perfect crystals. For deformed crystals several theories exist. An excellent review 

of these theories and their relationship to one another can be found in [19]. In this 

chapter, the kinematical and dynamical theories of X-ray diffraction will be reviewed 

in the case of perfect crystals. In the topographic investigations of later chapters these 

will be modified and extended where necessary to account for effects seen in imperfect 

crystals. In the review that follows much of the physics of diffraction has been derived 

from first principles. In the case of the kinematical theory the review loosely follows 

the work of Zachariasen [90] and Azaroff et. al [91]. Various aspects have been drawn 

from the works of Batterman and Cole [92], Authier [93-95] and Sutter [96] in the 

description of the dynamical theory of X-ray diffraction.

5.2 Kinematical Diffraction Theory

In the kinematical theory of X-ray diffraction a photon with wavelength A and fre­

quency u>o is represented by a plane wave that transverses the entire sample. Scattering

132



Chapter 5 Theory o f  X-ray Diffraction

occurs at points within the sample and the scattered radiation travels in straight lines 

without undergoing further scattering. In a crystal, a distinct phase relationship that 

is dependent on the geometrical path difference exists between the scattered radiation 

from each scattering centre. The radiation detected at some distant point is the sum 

of the scattered radiation from the entire sample, the phase differences due to the dif­

ferent path lengths being taken into consideration. The result is that the distribution 

of diffracted amplitudes in reciprocal space is the Fourier transform of the distribution 

of diffracting centres in physical space. The integrated reflected intensities calculated 

this way are proportional to the square of the structure factor and to the volume of the 

crystal bathed in the incident beam.

5.2.1 Theoretical Assumptions

For the description outlined above, a number of assumptions have been made:

• Plane wave approximation

The source of the radiation and the detector are far away from the sample, com­

pared to the distance between scattering centres in the sample. This allows the 

reader to assume that the incident radiation acts like a plane wave rather than a 

spherical wave. Therefore, waves scattered from different points in the sample 

travel toward the detector parallel to one another.

• Small scattering amplitude

The total radiation diffracted into any one direction is assumed to be a very small 

portion of the incident beam. The interaction between the scattered and incident
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radiation is ignored. It is also assumed that the intensity of the beams is dimin­

ished slowly as they pass through the sample by combined isotropic absorption 

and scattering processes. This point is violated in highly crystalline materials 

and under such circumstances the diffracted beam has an intensity comparable 

to the incident radiation. The assumed weakness of the scattered radiation im­

plies that multiple scattering is negligible.

• Coherent scattering

Changes in the wavelength of the radiation due to scattering are not considered. 

In an atom, the electrons are responsible for the scattering and consequently, the 

very small energy gains or losses due to interaction with the atomic nuclei are 

also ignored.

These assumptions are generally valid in very thin or highly disordered crys­

talline samples. The thickness of a perfect crystal must be less than the Pen- 

dellosung distance (see Section 5.3.4 on page 165) for the kinematical theory 

to be applicable, otherwise coupling of energy between the diffracted and for­

ward diffracted beams occurs. As many of the materials examined in this part 

of the thesis are highly strained, application of the kinematical approximation is 

generally valid. We will now review the theory.

5.2.2 X-ray Interactions with Matter

Consider an isolated electron with elemental charge e and mass m e, located at the ori­

gin interacting with an electromagnetic wave (photon) with frequency u>o and wavevec-
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tor \ko\ — 1/A. It is assumed that no forces act on the particle other than that arising

from the electric field and this force is sufficiently weak that the electron does not move

rclativistically. The oscillating clectric field may be written as:

E (f,  t) =  E„e}^ol- '^ kof) (5.1)

Therefore, the electron is subject to a force:

F(r,t)  = —eE(r,i)  (5.2)

From Newton’s laws of motion, the electron acquires an acceleration:

a(r,t) =  — Ê (f , t )  (5.3)
m e

and its displacement is given by:

(5.4)

The resulting dipole moment is:

- e 2

P .«

Such an oscillating dipole, according to classical electrodynamics, produces its own 

propagating electromagnetic wave i.e. the scattered wave. At large displacements R
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from the dipole, the electric field of the scattered radiation is given by [97]:

Ee(r,t) =  2*%.r) \ ( Hx  Mo)  x f i
4tt2 c\R\ LV '

(5.6)

where Zo =  \JHo/to  is the impedance of free space, fio is the permeability of free 

space, Co the permittivity of free space, c the speed of light, k the wavevector of the 

scattered wave and n  =  kX is a unit vector in the scattering direction.

We will now extend the scattering from a single electron to an atom with Z  electrons 

whose nucleus is assumed to be at the origin. As only the Z  electrons of the atom con­

tribute significantly to the X-ray scattering process, by ignoring the interaction between 

the electrons, one can determine the total scattered electric field by simply adding the 

scattered fields from each of the individual electrons:

Ê.,(r, t) = [ ( a ,  x Mi)
j= 1 13

x ri, (5.7)

where the index j  refers to a particular electron within the atom. The dipole moment 

from the j th electron, located at position r ?- is given by:

Mj = M 0 e~i2n̂ °'fj (5.8)

If the distance from the nucleus to the point of observation is much larger than that 

from the nucleus to any of the electrons, the distances \Rj\ can be replaced by an aver-

_ —f —*

age R, the wave vectors kj with an average kjj, and the unit vectors ftj with an average
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n. In the exponential, the phase relationship must be preserved as the displacements 

f j  between atoms are of the order of the wavelength of the incident radiation. Conse­

quently, Equation (5.7) reduces to:

Due to the Heisenberg uncertainty principle, it is not possible to know the exact posi­

tion of an electron at a specified time. Therefore we should represent the presence of 

each electron in the atom by its probability density pj so that p., dr represents the prob­

ability of finding the electron j  within the volume dr. The scattering of the incident 

electromagnetic radiation by all the electrons in the atom may be characterised by the 

atomic form factor:

It is known that X-rays have sufficient energy to excite inner shell electrons from one 

level to another. The effect of the electronic resonances and absorption can be included 

by modifying the atomic form factor to include the anomalous dispersion (Honl) cor­

rections f  and /" . Hence, for a given atom

z
(5.9)

(5.10)

such that

E at( r , t )  =  f 0E e (5.11)

f  =  fo +  f '  +  if " (5.12)
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The scattering from an atom will now be extended to a crystal i.e. a medium possessing 

a continuous distribution of electrons. If p(r) is the electron density distribution, the 

charge of a small volume element is ep(r)dr. Therefore using the arguments that were 

used in the derivation of Equation (5.5), this differential volume possesses an electric 

moment equal to:

d M ( f , t ) = —p{r) . 2 ^ 2  E (f , t )d r  (5.13)4iv2 u)Qme

The medium is thus polarised, and its polarisation P  is equal to the electric moment 

per unit volume:

p m  = dÆ A  = =  X e ( r (5.14)

where the dielectric susceptibility:

Since the dielectric susceptibility is proportional to the electron density, it is triply

periodic in the case of a perfect crystal and may be expanded as a Fourier series over

the reciprocal lattice:

=  (5.16)
H

where H  is a reciprocal lattice vector. The coefficients Xh are given by the inverse 

Fourier transform:

Xh  =  ÿ J  X e { f ) ^ 8 '?d V  (5.17)
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where V  is the volume of the unit cell.

For a perfect crystal, one may determine the ratio of the scattering amplitude of the 

unit cell to that of a single free electron i.e. the structure factor F. In general, most 

semiconductors of interest do not possess a monoatomic basis and therefore, the struc­

ture factor for a given unit cell must take into consideration the scattering from the 

different types of constituent atoms. Hence

where fk is the atomic form factor associated with the kih atom in the unit cell. Anoma-

the Debye-Waller factor and it accounts for the thermal motion of atoms in a crystal, 

and thus produces a lower intensity of coherently scattered radiation as the temperature 

increases.

Inserting Equation (5.15) into Equation (5.17) and comparing the result with Equation

(5.18) one can reveal the relationship between the charge distribution and macroscopic 

scattering processes when ko — kn = H:

(5.18)
k

lous dispersion has been implicitly taken into consideration in /*. The term e Mj is

Xd ttV
(5.19)

where the classical electron radius is given by:

4ire.omec2
(5.20)
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Now suppose the sample is a rectangular parallelepiped with dimensions iViai, Nicfc 

and N 3 as containing N 1 N 2 N 3  atoms, where d[, ¿ 2  and ¿ 3  are non co-planar unit vec­

tors in real space. Then the scattered radiation from the sample, is the sum of the 

radiation from all the individual unit cells in the crystal, with the phase contributions 

being taken into consideration:

N i - l  ^ ^ JV2 - I  _ ^ JV3 - I
Ecr(r,t) = E e( f , t )F  £  emi27r(fco—fe/i)'“! ^  '  ein2 2 Tr(ko-kHyd2 ^   ̂ em32?r(fco-£/f)-a3

f l l = 0  712 =  0  7 1 3 = 0

(5.21)

Since each summation term is a finite geometric series the previous equation may be 

re-written as:
^ ^ 3 i,iJV'i2jr(fco—*h)   1

E CT{r,t) =  E e{ r , t ) F ] \ - ^ - ^ —^ - y —  (5.22)

Only the scattered X-ray intensity, which is the average of the Poynting vector, can be 

measured. Therefore

1 JL  sin2 Niir (k 0 -  kH)
=  W 2  I I  — <5-23>

2 c ^ 0  Y  sin 7T yk0  — ku j

where E*r (f, t ) is the complex conjugate of the scattered electric field and Ie is the 

intensity of the scattered radiation from an electron.

—i  —t

One can see that the scattered intensity reaches a maximum when ko — kn  =  H. 

This is the Laue criterion for diffraction. Consider Figure 5.1 on page 142 where a 

beam with wavevector ko incident on a crystalline sample makes an angle fi to the 

normal of the (hkl) lattice plane i.e. the reciprocal lattice vector Hhki- The real space
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lattice spacing is d^i.  Assuming no energy loss upon scattering, the magnitudes of the 

diffracted wavevector k.u and incident wavevector k 0  are identical. According to the 

Ewald construction, this implies kn must fall on a sphere about the origin of radius 1/A 

and — ko must end on a sphere of the same radius about the Hmi terminal point. Thus 

the intersection of these two spheres defines the only allowable orientations of ko and 

ku for diffraction to occur at a given wavelength. From simple symmetry arguments, 

the angle the incident and diffracted beams make with the lattice planes is 0 , one-half 

of the total scattering angle 20. By simple geometry

sin 0 = (5.24)
2 \ka \

and by definition

\Hw\ =  « G Z  (5.25)
fthki

Combining Equations (5.24) and (5.25) yields the Bragg criterion for diffraction:

nX =  2r4fc* sin 0 (5.26)
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Figure 5.1: Ewald construction for diffraction from a crystal.
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5.2.3 Kinematical Theory Failings

Consideration of the rocking curve profile reveals flaws in the kinematical theory. Un­

der the exact Bragg condition

| i „ l  =  ^  (5.27)

where 2 is the scattering angle. Now let the incident wavcveclor ko remain un­

changed so we can investigate the scattering at a slightly different angle 20B + (. The

new diffraction vector is kn> =  k/r -t- S, and simple geometrical considerations of the 

wavevectors shows that

|5| =  ^ c o s0 fl (5.28)

The intensity of the scattering close to a maximum may be given the form:

<5-29){ S in  7TO • O i

The

sin2 irNjS • ai 

sin2 n 6 ■ oi

-  AT?»?
terms are now replaced by a function N~e ->»- as it possesses the same maximum 

value and area. In this manner, Equation (5.29) becomes

In  «  (5.30)
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where A d is the diagonal of the crystal parallelipied. We may now set 6  ■ A d — \5\D 

where D  is the average linear dimension of the crystal. Therefore,

Ih{c) ~  I e\FH\2 N 2 e~>?f^ e 2 D 2 cos2 8b (5.31)

Hence, the full-width at half-maximum may be approximated by

A (20B) =  2ei »  2
I n  2  A

(5.32)
7T D COsOb

The maximum intensity of the rocking curve peak is found from Equation (5.23) at the 

exact Bragg condition to be

where N  — N 1 N 2 N 3  is the total number of unit cells in the crystal.

As the size of the sample increases the rocking curve width decreases and the peak 

intensity increases. For sufficiently large N  the rocking curve will approximate a delta 

function which obviously does not make physical sense. Therefore, the kinematical 

theory is flawed.

The fundamental flaw in the kinematical theory is the assumption inherent in Equa­

tion (5.23) that the incident wave is the same for each unit cell of the crystal and only 

a phase difference exists between the scattered radiation. This assumption is clearly 

untenable. An X-ray beam traversing through a crystalline medium will undergo ab­

sorption due to photoelectric and scattering processes. The scattering processes con-

(5.33)
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sist of coherent scattering and incoherent (Compton) scattering. For situations where

coherent scattering results. For situations where the Laue or Bragg diffraction condi­

tions are not satisfied Compton scattering dominates. Therefore, kinematical theory is 

only valid for crystals where the scattering effects and absorption processes are negli­

gible i.e. for sufficiently thin or highly disordered crystals. For relatively thick highly 

crystalline samples, the dynamical theory of X-ray diffraction must be used.

5.2.4 Application to X-ray Topography

It is not the purpose of this section to describe kinematical imaging in X-ray diffraction 

topography as this will be treated in Chapter 7 with the techniques of X-ray topogra­

phy. Many of the semiconductor materials and devices examined in this thesis are 

sufficiently strained that application of the kinematical theory is justified. For Bragg 

geometries it is often useful to know the depth the X-ray penetrates into the material 

and therefore, the depth from which information is being recorded. The kinematical 

penetration depth tp, which is measured perpendicular to the surface as illustrated in 

Figure 5.2, at which the intensity of the outgoing reflected beam has dropped to 1/e 

times that of the incident beam due to absorption is given by geometrical analysis to

where jUo(A) is the linear absorption coefficient, a 0  and a #  are the incident and re­

flected angles measured with respect to the sample surface, respectively.

ko — kji ~  Hhki the energy of the incident wave is coupled into the diffracted wave and

be

(5.34)
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Figure 5.2: Penetration depth tP at which the intensity of the outgoing reflected beam 
has dropped to 1 /e  times that of the incident beam due to absorption.

5.3 Dynamical Diffraction Theory

In the dynamical theory of X-ray diffraction one describes the propagation of the X- 

ray field outside and inside the crystal using Maxwell’s equations. This is analogous 

to the band theory of solids where one solves the Schrödinger equation to ascertain the 

allowable energies of the electrons as a function of their wave number. In dynamical 

diffraction, one solves for the allowable wavevectors as a function of their position in 

reciprocal space. In electronic band theory concepts such as particle momentum in 

the valence and conduction bands are replaced in dynamical theory by the position of 

the tie-points on the dispersion surface. The tie-point characterises a given mode of 

propagation for an electric displacement field within the crystal and thus this geomet­

rical construct can elucidate information about the diffraction processes taking place. 

Maxwell’s equations will now be solved in a medium possessing a triply periodic di­

146



Chapter 5 Theory o f  X-ray Diffraction

electric susceptibility i.e. a crystal. The solution will be used to develop the concept 

of the dispersion surface which in turn will elucidate some of the rather interesting 

features of dynamical diffraction such as Pendellosung and anomalous transmission of 

X-rays through thick crystals.

5.3.1 Solutions to Maxwell’s Equations that Satisfy Bragg’s Law

Maxwell’s equations can be used to describe the macroscopic interaction between an 

electromagnetic wave with wavevector |/c| =  1/A and a crystal with triply periodic 

dielectric susceptibility Xfi- These equations are now presented in their general form:

V - D  = p, V ■ S  =  0  (5.35)
—* ■—̂O T~) O

V x l  =  V x £ mag= J + —  (5.36)

D  =  e0E  +  P  — e0 (1 +  Xe) E, B  = HoHmag +  M  (5.37)

where E  is the electric field strength, D  is the electric displacement, Hmag is the mag- 

netic field strength, B  is the magnetic flux density, p is the charge density, j  is the 

electrical current density and P  is the polarisation density of the medium.

As the crystal is electrically neutral, the local charge distribution and current density is 

zero. As the magnetic interaction is extremely weak it can be neglected. Therefore,

V x £  =  ^  (5.38)
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Now

- d
v x ( v x l ) = v ( v i ) -  V 2E  =  - ( V x f i )  (5.39)

Since

f) F
V x B  =  /ioeo—  (5.40)

=*v 2 g - W = 0  (5'4 ,)

The solution to the wave equation is a plane wave of the form:

Ê  =  (5.42)

Substituting

E & - ( 1 -  X c )  (5.43)
eo

into the wave equation and applying the following properly of (he curl operator

V 2D = V(V • D) -  V x (V x D) =  0 (5.44)

yields an equation that describes the propagation of an electromagnetic wave through

a medium with dielectric susceptibility Xe'-

V2 z3 +  xeV x ( v  x d )  + 4 7 t2 |A|2jD =  0 (5.45)

This is a linear homogeneous partial differential equation and any linear combination
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of special solutions

D = J 2 AjDj  (5.46)
3

is also a solution. As the medium we are dealing with is a crystal and therefore pos­

sesses a triply periodic dielectric susceptibility, according to Floquet’s theorem the 

simplest special solution of Equation (5.45) is a Bloch wave:

Dj = e~i2ŵ  "F J 2  + (5.47)
H H

This is the wavefield i.e. the electric displacement field which propagates through

the crystal and excites the scattering centres. This may be expressed as the sum of
■—# —̂ 

plane waves with amplitude \Dg \ and wave vector kg . . The concept of the wavefield

underlies the whole theory of dynamical diffraction. Wavefields have a physical reality

and all the propagation properties of X-rays in crystals may be interpreted in terms of

wavefields.

Under the Laue condition for diffraction:

kQj -  kHj =  Hj (5.48)

Therefore, all the wavevectors of a given wavefield can be deduced from one another by 

a translation in the reciprocal lattice. If we draw these wavevectors from the various 

reciprocal lattice points we find they intersect at a common extremity called the tie- 

point. The tie-point characterises the wavefield and its geometrical construction is
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illustrateci in Figure 5.3.

—<# —i

Figure 5.3: Wavevectors ko, ku and ka originating from three reciprocal lattice sites 
O, H  and G intersect at a common point P, the tie-point.

5.3.2 j?.-Beani Diffraction and the Dispersion Surface

Consider now a single wavefield Dj within the crystal. Since Dj — e0 (1 +  X e )  Ej, 

inserting Equation (5.19) into Equation (5.16) lets one express Equation (5.47) as:

-i27rfc 7 r
Dffse aJ = € 0

"i

-t2 irkfì.-r
'V (5.49)

Hi

where the index //'- has been used io distinguish it from H j .  Since each wavevector is 

displaced by a reciprocal lattice vector from its neighbour, one can say kg,, +  Hj =  

kg, = kj-I} _p.. After appropriate changes in the indices of summation the previous
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equation can be rewritten as:

/A L P i

— ¿2 irfcs - fe 3

(5.50)

Since this relationship must hold for all r  it must also hold for each Fourier component.

4

=  Xitj Bfij ~  X) -Pj ^
(5.51)

Inside the crystal i5# is predominantly equal to its vacuum value; however, it is 

slightly modified by small contributions from the other Fourier components of the 

electric field inside the crystal. By analysing the rotation of the Bloch function for 

the electric field using Maxwell’s equations, Batterman and Cole [92] ascertained the 

following condition:

kg  x ë g .  =  uoHoHj (5.52)

Taking the cross product of this equation with the diffracted wavevector kg  yields:

kfij x (kffj x Efjj ) = — w0//o Dg. = —u0/.ioeo — ~^ÿ Efu_p,Êp^

(5.53)

Using the vector identity for a triple cross product

kg, x {kg. x — {kg. • kg^j Eg. + {kg. ■ Eg. j  kg. (5.54)
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with Equation (5.53) and re-arranging yields

(1 +  Xo) ^ xpjEp, +  {kg. ■ Eg^j kg. — 0 (5.55)

where k is the magnitude of the wavevector of the incident radiation impinging upon 

the crystal. Equations (5.55) are the fundamental set of equations describing the j  

fields propagating inside the crystal. It is important to note, that physically all the 

waves exist within the crystal; however, only some of them have appreciable intensity. 

We will therefore look at two cases of interest to this thesis, that of a single beam 

propagating in the crystal (j € {0 } i.e. no diffraction taking place) and that of two 

beams propagating in the crystal (j G {0 , 1 } i.e. the diffracted and forward diffracted 

waves exist). To simplify the notation the forward diffracted beam will be defined

—9 —t —# —>

E 0  = E s  and the diffracted beam E H — E s  .^  tij= 0 "j' = 1

5.3.2.1 Single Beam Case j  6  {0}

In the single beam case Equation (5.55) reduces to:

\k0 \2  = k2 (l + X0) (5.56)

This equation simply describes the influence of the material’s index of refraction on the 

propagation of the beam. The equation suggests two possible values for the wavevector 

k() inside the crystal. The first is the refracted beam and the second is a reflected wave 

from the interface of the vacuum and the crystal exit surface. As the reflected wave
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will only have appreciable intensity for samples that are thinner than the material’s 

absorption length its effects can be neglected as such samples will not be studied in 

later chapters.

Consider the refraction of the X-ray beam in the crystal as shown in Figure 5.4. The 

wavevector of the beam inside the crystal only impinges on one reciprocal lattice site 

associated with the Ewald sphere and therefore diffraction does not occur. Applying 

Snell’s law yields:

In the X-ray regime the critical angle is far less than unity and we may expand cos ujc ~

9^e(n) sin = sin fa (5.57)

where the real component of the refractive index of the material is given by:

=  ( 5 ' 5 8 )

At the critical angle wc, the refracted angle '0O =  7r/ 2  and ipi = tt/2 — ojc.

COS U)c =  1 -f — (5.59)

(5.60)

For angles less than the critical angle total external reflection occurs giving rise to 

a specularly reflected Fresncl wave in conjunction to a evanescent wave within the
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crystal exit 
surface

Figure 5.4: Refraction of X-ray beam by crystal with refractive index n. Due to the 
effect of the refractive index the radius of the Ewald sphere is smaller inside the crystal 
compared to vacuum.

sample whose electric field is exponentially damped within the scattering depth defined 

by Dosch [98]:

A =
2 tt (li +  l0)

(5.61)

where

k,o — ^
(25 -  sin2 V'i.o) +  [(sin2 i/>ii0) 2 +  (2/?)2]

(5.62)

In equation (5.62) the subscripts i and o refer to the incident and forward diffracted 

beams respectively,

A/i0 (A)
4ît

The2 A2
2 m f fo (27rc)
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and pe is the mean electron density.

5.3.2.2 Two Beam Case j  € {0,1}

Under the two beam approximation two reciprocal lattice points lie on the Ewald 

sphere associated with the vector ko and diffraction occurs. Therefore, Equation (5.55) 

reduces to:

k 2  (1 +  x o ) ~  ( koko)]  \E0 \ +  k 2 CxTj\EH\ =  0 (5.63)

k 2 CXH\E0 \ + [k2  (1 +  Xo) ~  (k n k H)] \ÊH\ =  0 (5.64)

where the different polarisation states are taken into consideration through C =  1 for 

a  polarisation or C = cos 2 0  for i\ polarisation.

For the incident and diffracted field amplitudes to have nontrivial solutions, the deter­

minant of the previous set of equations must equal zero,

k2( 1 +  Xo) — ko ■ k0  k2C x s
k2CxH k2( 1 +  xo) — kH - k H

= 0 (5.65)

The resulting secular equation determines the permissable wavevectors inside the crys-

tal:

k2ü -  k 2  (1 +  xo) kH — k ( 1  +  xo) =  k C XhXh (5.66)

This equation can be interpreted as the equation of the locus of the tie-point P j which is 

determined by the wavevectors k, 0  and kn- This locus is a surface called the dispersion 

surface. Essentially Equation (5.66) describes two spheres of radii equal to \ko\ —
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\kH\ — /c ( 1  +  xo /2 ) centered around two reciprocal lattice sites displaced from each 

other by a reciprocal lattice vector. The dispersion surface is illustrated in Figure 5.5.

Figure 5,5: Three dimensional illustration of the dispersion surface. The wavevectors
■4 . . ,
ko and kH intercept at the tie-point Pj. Each Ewald sphere has a radius k (1 +  Xo/2).

Since each term in square brackets in Equation (5.66) is the difference of two squares, 

we may simplify the equation to:

4k2  [k0  -  k ( l  +  ^ ) ]  [kH -  k ( l  +  ^ ) ]  =  k ^ x a x w  (5-67)

Consider the term in the first square bracket of the previous equation. This describes 

the distance X 0  between the tie-point Pj and the Ewald sphere centered about the 

reciprocal lattice point O. Similarly, the term in the second set of square brackets
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describes the distance X H between the tie-point and the Ewald sphere centered on the 

reciprocal lattice point H. Equation (5.67) reduces to:

X 0 X n  =  j C 2XhXh  (5-68)

Far from the Laue diffraction condition either X o  or X H must be large, implying 

the other quantity is small and hence only one beam exists inside the crystal. Close 

to the Laue condition for diffraction X o  ~  X n and both the diffracted and forward 

diffracted beams have appreciably values. At the exact Bragg condition X 0  — X H and 

this implies

Xo = ±~y/X nX n  (5.69)

The significance of the two values for X 0  implies two branches exist on the dispersion 

surface; the outer and inner branches being called the ¡5 and a  branches, respectively. 

As the distances X o  and X H are approximately 10' 5 times smaller than the radii of 

the two Ewald spheres, examination of Figure 5.5 does not reveal the presence of the 

two branches. Rather we must zoom in around the point of intersection of the spheres, 

the Lorentz point L0 , as shown in Figure 5.6. The small size of X o  and X H compared 

to the radius of their respective Ewald sphere, facilitates approximation of the Ewald 

spheres in the vicinity of the Lorentz point by tangential planes To and 7#. The

tangential plane T through the Laue point L parallel to the a  branch of the dispersion

surface describes the locus of the incident vacuum wavevectors.
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Figure 5.6: Asymptotic approximation to the Ewald sphere’s about the Lorentz point 
Lo. Strictly speaking two asymptotes should be drawn for the polarisation states as­
sociated with the diffracted and forward diffracted beams; only one asymptote cor­
responding to the real part of the dispersion surface has been drawn for the sake of 
clarity. The drawing is not to scale.
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The angle between the asymptotes in Figure 5.6 is 29B- From Equation (5.68) it follows 

that the distance between the apexs of the hyperbola of each branch of the dispersion 

surface, the so called Bragg gap, is:

„  m j x m  r eA |c iv ? v %
Gb  ~  COs 0 „ -  k V cosOb  < 5 -7 0 )

The Bragg gap is proportional to the structure factor and therefore, the size of the X-ray 

interaction with the sample. The larger the structure factor, the greater the interaction 

and the larger the Bragg gap. In real space the reciprocal of the Bragg gap gives A0: 

the Pendellôsung distance and extinction distance in the transmission and reflection

geometries, respectively.

A, =  ^  =  ^ p i }  (5.71)
Gb  C y/XHXw

where 7 0  and 7 h are the cosines of the angles between the normal to the crystal surface 

and the incident and reflected directions, respectively.

5.3.3 Boundary Conditions

A particular solution of Equation (5.45) that describes the propagation of the electro­

magnetic wave through the crystal is represented geometrically by its corresponding 

tie-point on the dispersion surface. The wavefield will consist of contributions from

—> —t '

the diffracted wave ku  and the forward diffracted wave ko', the extent of these contri­

butions is dependent on the boundary conditions. The direction of energy flow within 

the crystal is governed by the Poynting vector St  for the total wavefield that is ex­
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cited. This in turn depends on the energy flow associated with tie-points on the a  and 

/3 branches of the dispersion surface, Sa and Sp, respectively. A particular and elegant 

property of the energy flow St  is that the direction of energy flow corresponding to a 

tie point on a particular tangential sheet of the dispersion surface, is that of the normal 

to the surface at that point.

The appropriate tie-points can be selected in accordance with the boundary conditions 

imposed upon Maxwell’s equations due to the vacuum-crystal interface:

-  ETcrya — 0 DNmc -  DNcrysl= 0 (5.72)

# 71,  -  #Tcrys, =  0 “  B Naya = 0 (5.73)

where the indices T and N  refer to the tangential and normal components at the inter­

face of the respective field. These boundary conditions can be summarised concisely 

by stating if n  is a unit vector normal to the crystal surface, whatever the values of the 

incident wavevector k or the resulting Bloch wave inside the crystal, then

k0 - k  = 5n; 6  e  N (5.74)

5.3.3.1 Laue Diffraction

The selection of tie-points for the Laue geometry is illustrated in Figure 5.7. In this 

case two tie-points are always excited, one on each branch of the dispersion surface. 

At each tie-point wavevectors directed toward the O and H  reciprocal lattice sites are
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generated. Four wavevectors are generated in the crystal for each polarisation state, 

eight in total. The energy flow in the crystal is in the direction of the Poynting vector, 

that is, normal to the dispersion surface at the tie-points, and only at the exit surface do 

the waves split up into the diffracted and forward diffracted beams.
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Figure 5.7: Selection of tie-points on dispersion surface for Laue geometry. Only the 
real parts of the wavevectors are considered in the analysis; the effects of absorption 
are neglected. Only one polarisation state is considered. A tie-point is selected on 
each branch of the dispersion surface. The Poynting vectors associated with the a  and 
¡3 branches are normal to the dispersion surface at the tie point.
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5.3.3.2 Bragg Diffraction

The tie-points associated with Bragg diffraction are shown in Figure 5.8. In strict 

Bragg diffraction the normal to the crystal surface intersects two points on one of the 

branches of the dispersion surface. The Poynting vectors associated with the two tie- 

points are different; the energy flow from one point is directed into the crystal, but that 

from the other is directed outwards. No wavefields are generated within crystal from 

the tie-point whose Poynting vector is directed outwards and thus its effects can be ig­

nored. Therefore a single wavefield is generated within the crystal for each polarisation 

state.

The penetration depth under the Bragg geometry for an imperfect crystalline sample 

was given by the kinematical theory in Section 5.2.4. For a perfect crystal extinction 

occurs and the resulting penetration depth is shallower than anticipated by purely pho­

toelectric absorption processes. Over an extinction distance all the energy is coupled 

from the forward diffracted beam to the diffracted beam and back again (see Pen- 

dellosung discussion in Section 5.3.4). Therefore, the maximum transfer of energy 

from the forward diffracted to diffracted beam takes place over half the extinction dis­

tance A0 described by Equation (5.71). This is therefore the penetration depth from 

which information is recorded in a Bragg reflection from a perfect crystal.

tp = Y  (5.75)
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Figure 5.8: Selection of tie-points on dispersion surface for Bragg geometry. Only the 
real parts of the wavevectors are considered in the analysis; the effects of absorption are 
neglected. Only one polarisation state is considered. Only one branch of the dispersion 
surface is excited. The Poynting vectors associated with the a  and ¿3 branches are 
normal to the dispersion surface at the tie point.

5.3.3.3 Total External Reflection

The mechanism of tie-point selection in the case of Bragg diffraction is only applicable 

to situations where the incident angle between the X-ray beam and the normal to the 

diffracting planes lies in the interval u>c < 0B < 7t / 2 . An interesting case occurs for 

Ob =  7t / 2 . In this situation multiple beam effects come into consideration with the 

excitation of other Bragg reflections apart from the backscattered one [99]. Further 

discussion of this situation is beyond the scope of this thesis. For angles below the
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critical angle no tie-points are selected as shown in Figure 5.9 and therefore, no wave- 

fields exist within the crystal. As seen in the one-beam analysis of Section 5.3.2.1 an 

evanescent wave is generated within the sample.

Figure 5.9: Dispersion surface under the condition of total external reflection. No tie- 
points are selected on the dispersion surface and therefore only an evanescent wave 
exists within the sample. In this geometry it is not accurate to approximate the a  and 
ft branches of the dispersion surface using the tangential planes Tq and 77/.

5.3.4 Energy Flow and Pendellosung Fringes

The energy flow in the crystal is described in terms of the Poynting vector for the total 

wavefield. The temporal average of the Poynting vector is given by:

<  §  > =  ( J  x  (5 .7 6 )
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where ag is the complex conjugate of the magnetic field strength. By spatially av­

eraging over the unit cell one can find a relationship describing the interchange of 

energy between the diffracted and forward diffracted beams in the crystal. Batterman 

and Cole [92] have shown the result of this calculation to be:

S T  -  y / %  «  S  »

= ( |E 0 o\2 S0  +  |E Ha\2 sH)

+  {\Eo,\2so +  \EHp\2 sH)

+  e - 2. [ 0 m ( f c 0 a ) + 3 m (£ 0 , ) ] - f l  ^E0a\\E0f)\s0 +  \EHa\\EHf}\sH X

X  COS 2 7T

=  S a  +  S ß  4 -  S a ß

‘ ( j R e  (k0a) - K t  (k o 0 ) ) - Ü

(5.77)

where R  is a vector within the unit cell and sQ and sh  are unit vectors in the directions

—̂ i

of ko and ku-

In general, the imaginary parts of the wavevectors i.e. the components of the wavevec- 

tors associated with absorption, do not play an important part in the directional prop­

erties of the Poynting vector S t - Consequently, S a  and S ß  are independent of depth 

below the surface of the crystal whilst Saß demonstrates a sinusoidal dependence. For 

the symmetric Laue case satisfying the exact Bragg condition, the sinusoidal period

is equal to the Pendellösung distance A0. Equation (5.77) shows how Saß periodi-

—# —>

cally shifts the energy around the average direction of the Poynting vector Sa +  Sß. 

Such coupling of the energy back and forth between the two branches of the dispersion
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surface is termed the Pendellosung effect.

Section transmission X-ray topographs from highly crystalline samples can demon­

strate an intensity variation due to this effect. Black white fringes, termed Pendellosung 

fringes, are recorded in the reflections. The topograph essentially records the intensity 

variation at the base of the Borrman fan, i.e. the exit surface of the crystal, due to 

the Pendellosung effect associated with the a  and ft branches of the respective (hkl) 

reflection. When Pendellosung fringes are seen, excellent crystalline quality can be 

automatically inferred.

5.3.5 Anomalous Transmission

In the two-beam approximation a solution to the propagation of the electromagnetic 

wave in the crystalline medium may be written using Equation (5.47) as:

D = e~i2̂ ° - r ( p 0  + D Hei2nS' ^  (5.78)

The intensity of the electromagnetic wave is equal to:

\ d \ 2 =  e4rt„T \Do \2  + \DH \2  + 2C\Do\\DH\cos2nH ■ r (5.79)

The previous equation demonstrates that interference between the diffracted and forward- 

diffracted waves occurs (the Pendellosung phenomena) resulting in a wavefield that 

produces a set of standing waves within the lattice. As the intensity of the diffracted

167



Chapter 5 Theory o f  X-ray Diffraction

beam is governed by the ratio:

n  -  D h -  k xn C  -  2 X 0  (5 °n'i
( 5 ' 8 0 )

one can see that the sign of \D0 \\Dfj\ in Equation (5.79) is the opposite of the sign 

of X 0 , since the coefficients of the dielectric susceptibility are negative. Therefore, 

X 0  is positive when the tie-point is on the a  branch of the dispersion surface and 

negative when its on the /? branch. Consequently the antinodes of the electric field 

lie on the lattice planes when the tie-point lies on the ¡3 branch and the nodes of the 

electric field lie on the lattice planes when the tie-point lies on the a  branch. Hence, 

wavefields belonging to the a  branch of the dispersion surface will experience weaker 

absorption compared to wavefields belonging to the /3 branch. In a thick perfect crystal 

where the product of the linear absorption coefficient and the thickness of the crystal 

¿¿o(A)i >  5 the wavefields associated with the ¡3 branch of the dispersion surface are 

completely absorbed in the crystal and only wavefields corresponding to the a  branch 

are transmitted. Due to the cosine term in Equation (5.79) the effect is strongest for 

the ¡3 brach when the exact Bragg condition is satisfied and decreases as the tie-point 

moves away from the middle of the reflection domain approaching the asymptotes of 

the dispersion surface. This is the effect of anomalous transmission.

The effective absorption coefficient for the a  and B branches of the dispersion surface 

has the following dependence on the real part of the deviation parameter r/T from the
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ideal Bragg condition:

fij = no(  A)
IC lS S ic o s ^ ,1 Jm(xo)

V 1  + v\
(5.81)

where tp is the phase difference between the real and imaginary parts of the dielectric 

susceptibility for the given reflection. The upper sign corresponds to the a  branch and 

the lower sign corresponds to the ¡3 branch.

5.4 Summary

In this chapter the salient features of the kinematical and dynamical theories of X-ray 

diffraction were presented to the reader. Many of the samples investigated in this thesis 

possess such large defect densities that application of the kinematical theory to obtain 

a qualitative understanding of the diffraction topograph is permissible. The assump­

tions underlying the kinematical theory are valid for most experimental configurations 

in synchrotron X-ray topography. This theory was formulated by considering the scat­

tering process of a photon incident on an isolated electron. Scattering from an atom 

occurs essentially from the electron cloud. The result is simply the sum of the scat­

tering contributions from the individual electrons. The next iteration is to consider 

scattering form a collection of atoms i.e. a crystal. The kinematical theory correctly 

predicts that diffraction occurs when either the Bragg or Laue criteria are satisfied but 

fails to determine the intensity of the diffracted beam or its spectral bandpass. These 

failings were surmounted using the dynamical theory of X-ray diffraction. Maxwell’s
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equations were solved in a medium possessing a triply periodic dielectric suscepti­

bility. In the one-beam approximation the effect o f  the material’s refractive index on 

the incident radiation was examined. In particular, the criteria governing the angle of 

incidence for total external reflection to occur were investigated. This analysis will 

be applicable to the study o f silicon germanium heteroepitaxy on silicon in Chapter 

12. In the two-beam approximation, the concept o f the dispersion surface was devel­

oped. The inherent beauty o f the dispersion surface is that it allows the propagation of 

a wavefield to be described by appropriate tie-points selected in accordance with the 

boundary conditions imposed on the electromagnetic fields at the vacuum-crystal in­

terface. This geometrical description o f the propagation of the wavefield will become 

particularly useful in Chapter 13 when the effect o f  microdefects on anomalously trans­

mitted wavefields in nearly perfect silicon is considered. Other dynamical effects such 

as Pendellôsung fringes in section transmission topographs and extinction in Bragg 

experimental geometries were also considered.
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Chapter 6

Synchrotron Radiation

6.1 Introduction

For research in the fields o f physics, chemistry, biology and materials science, photons 

ranging from radio frequencies to hard 7 -rays provide some o f  the most important 

tools for scientists. W ithin the bounds o f radio waves and gamma rays one covers the 

spectrum with visible light, ultraviolet light and X-rays. Since their discovery by W.C. 

Röntgen in 1895 [11], X-rays have become an invaluable tool to probe the structure 

o f matter. They have revolutionised our lives by helping scientists to unravel such 

mysteries as the structure o f DNA [100] and in more recent times, the structure o f 

proteins. The m ain reason for this unprecedented success is that the X-ray wavelength, 

which determines the smallest distance one can study with such a probe, is comparable 

to the inter-atomic dimension.

Flowever, developments in the fields of X-ray physics were limited by the source. Until 

circa 1970, this was simply the X-ray tube or a variant thereof. In the late 1960s new 

fields o f scientific endeavour were bom  driven by a new radiation source, namely syn­

chrotron radiation [101]. Synchrotron radiation owes its name to the energy emitted
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by relativistically accelerated particles as they are bent in a magnetic field. The early 

pioneers o f synchrotron radiation were thus considered “parasitic users” by their par­

ticle physics counterparts who had no use for this wasted energy. The interest in using 

synchrotron radiation as a tool for scientific investigation caught on almost immedi­

ately, with the first dedicated storage ring sources being commissioned in the early 

1970s. Today there are forty four dedicated synchrotrons in operation in the world, 

with new sources being planned on an on-going basis to satisfy the demands o f the 

user community.

Synchrotron radiation provides the user with a continuous spectrum o f radiation from 

the infrared to the hard X-ray region, with an intensity at least ten orders o f magni­

tude higher than can be achieved with a conventional laboratory based rotating anode 

generator. Other important properties that appeal to different experiments performed 

within the user community are its high degree o f polarisation, pulsed time structure 

and low divergence.

In this chapter, a basic investigation o f the properties o f  synchrotron radiation will 

be performed. The interested reader can find much more detailed information in 

[102-104] and the references provided therein. A good overview o f the properties 

o f synchrotron radiation and their applicability to X-ray diffraction topography can be 

found in [24], As much o f the topography experiments described in this thesis were 

undertaken at the DORIS storage ring at HASYLAB am DESY, Germany, particular 

attention will be paid to the parameters pertaining to this synchrotron. However, the 

analysis applies to the operation o f all synchrotrons. Having imparted some knowl­
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edge on the fundamental differences between synchrotron radiation and ordinary non-

relativistic radiation, the apparatus to generate such electromagnetic energy, i.e. the 

synchrotron, will be examined. The chapter concludes with some o f the shortcomings

X-ray free electron lasers that will surely be the focus o f scientific investigations in the 

very near future.

6.2 Properties o f Synchrotron Radiation

6.2.1 Instantaneous Power Radiated

Schwinger [105] determined the instantaneous radiation power emitted by a monoen- 

ergetic electron with energy E  travelling at relativistic speeds in a circular orbit per 

unit interval at wavelength A into the unit interval o f the angle ip between the emitted 

radiation and the orbit axis to be

where I  is the intensity o f the synchrotron radiation, p is the radius o f  curvature o f the 

circular orbit, K \/3 and - K 2/3  are modified Bessel functions o f the second kind, e  is 

the elementary charge, m  is the rest mass o f the electron, c  is the speed o f light, e0 the

of current synchrotron radiation sources and alludes to the potential o f the proposed

2
52I { \ ÿ , E) _  27 e 2 c  / A *

ÖXÖtp 128eo7T4 p3 \  A
(6 .1)
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permittivity o f free space and

21 3/2

(6.2)

47Tp 3

Ac “  3 { E
(6.3)

Ac is the so-called “critical wavelength” . This is the characteristic wavelength o f the 

observed radiation, i.e. above Ac, the brilliance o f the source falls off with an exponen­

tial type dependence as illustrated in Figure 6.3 on page 177.

6.2.2 Polarisation

The first and second terms in the square brackets in Equation (6.1) give the intensities 

o f the components o f light polarised parallel and perpendicular to the electron orbit. 

The radiation is predominantly polarised with the electric vector parallel to the acceler­

ation vector. In the electron’s direction o f motion the radiation is 100% polarised with 

the electric vector in the instantaneous orbital plane. Integration over all angles and all 

wavelengths yields about 75% polarisation in the orbital plane. However, when many 

electrons are present, the incoherent vertical and radial betatron oscillations result in 

a range o f angles for the electron beam at each point in the orbit. This angular diver­

gence reduces the polarisation. O ff the orbit plane the polarisation is elliptical. One 

o f the axes o f the polarisation ellipse is always in the orbital plane because the phase 

difference between the parallel and perpendicular polarisation components is always

90°.
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6.2.3 Beam Divergence

The divergence o f the beam can be investigated by plotting Equation (6.1) as a func­

tion of ip for various wavelengths. The simulated results for the DORIS storage ring, 

wherein E  =  4.45 GeV, p = 12.1849 m and Ac =  0.77 A are shown in Figure 6.1. 

Below the critical wavelength the energy is focused into a narrow cone with opening 

angle less than

For the DORIS storage ring 7  «  0.11 mrad. Therefore, below the critical wavelength 

one has a highly directed, highly collimated beam. The divergence o f the beam is 

o f particular importance for X-ray topography, the implications o f  which will be dis­

cussed in Chapter 7 Section 7.3.2.

The angular distribution of radiated power integrated over all wavelengths is simply 

the integral o f Equation (6.1) over A. If  one examines Figure 6.2 one can see that most 

of the radiation is contained within a cone with opening angle less than 7 .
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Figure 6.1: Angular distribution o f  instantaneous synchrotron radiation power at vari­
ous wavelengths for DORIS storage ring bending magnet. E  = 4.45 GeV, p — 12.1849 
m and Ac =  0.77 Â.

Figure 6.2: Angular distribution o f synchrotron radiation power over all wavelengths 
for DORIS storage ring bending magnet. E  =  4.45 GeV, p =  12.1849 m and Ac =  0.77
A.
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6.2.4 Spectral Distribution of Emitted Radiation

Integrating Equation (6.1) over ip one obtains the spectral distribution o f synchrotron 

radiation.

(6.6 )

The simulated spectral distribution o f  the DORIS storage ring is shown in Figure 6.3. 

One can clearly see that a broad spectral range is achievable with synchrotron radiation. 

No other source can produce such a spectrum at such high intensities. The spectrum 

has a maximum at 0.42 Ac and a full width at half-maximum of 0.84 Ac.

W avelength (A)

Figure 6.3: Spectral dependence o f normalised intensity for DORIS storage ring bend­
ing magnet. E  =  4.45 GeV, p — 12.1849 m and Ac =  0.77 A.
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6.2.5 Total Intensity of Synchrotron Radiation

The total intensity o f the synchrotron radiation may be obtained by integrating Equa­

tion (6.1) over both variables o f integration. The result is

Therefore, one can see that the intensity is proportional to the fourth power o f the 

electron energy, which implies a very intense source o f electromagnetic radiation at 

the expense o f high power losses. One can also see that for a given energy E, the 

synchrotron radiation intensity and corresponding power loss produced by an electron

term. This is the fundamental reason why particle physicists can accelerate protons up 

to energies o f the order 460 GeV [106] and electrons/positrons are rarely accelerated 

above 50 GeV.

6.2.6 Time Structure

Electrons/positrons in synchrotrons are grouped in bunches whose length is determined 

by the radio frequency system that replenishes the radiated energy. Thus, the radiation 

is pulsed with each pulse typically about 10% o f the RF period. To ensure destructive 

interference does not occur, the orbital period must be an integer multiple o f the RF 

period. This integer is called the harmonic number o f  the ring. Often this number is 

very large so that a large number o f discrete bunches (and corresponding high currents)

(6.7)

will be approximately 3 x 106 times greater than that caused by a proton due to the m 4
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can be used.

At DORIS, which is now approximately 25 years old, only five equidistant bunches 

are used providing a peak beam current o f 140 mA. The circumference o f the storage 

ring is 289.2 m, yielding a temporal bunch separation of 192 ns. Far more esoteric 

bunch modes are used at the current third generation synchrotron sources such as the 

European Synchrotron Radiation Facility (ESRF), the Advanced Photon Source (APS) 

and Spring8. For example, in one o f the hybrid modes at the ESRF, one 7 mA bunch 

can be injected such that it is diametrically opposed to a 193 mA multi-bunch beam that 

is spread over one third o f the storage ring circumference. Such a bunch pattern is often 

used in time-resolved pump probe measurements; the single bunch being employed as 

a timing fiducial.

For the main stay o f X-ray topographic investigations the time structure o f the beam 

is not important. The intensity, which is directly related to the beam current, is the 

crucial factor as it governs exposure times. However, stroboscopic X-ray topographic 

investigations [107] have been undertaken and these obviously appealed to the time 

structure o f the ring.

In every synchrotron in the world, with the exception o f the APS in Chicago USA, the 

beam current o f the ring falls off exponentially after injection o f the bunches because 

the RF system cannot provide sufficient energy to maintain their peak velocity. With 

the aim o f providing a more stable beam for their users, in September 1998, the APS 

began commissioning a new operating mode called “top-up” [108], In this mode, the 

beam current does not decay but is maintained at a high level using frequency injection,
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while the photon shutters are open and the photon beams are delivered to the users. The 

APS achieved their goal and now “top-up” is a standard operating mode with a nominal 

beam current o f 100 mA. This mode of operation would be beneficial to topographers 

as the constant intensity would facilitate greater control o f the exposure times.

6.2.7 Comparison with Laboratory Based Sources

In the previous subsections synchrotron radiation was demonstrated to be a source 

o f highly directional, focused, very intense, linearly polarised light, possessing a time 

structure in the picosecond regime. This is in stark contrast to laboratory based sources. 

The spectrum generated by a conventional rotating anode [109] or laser based plasma 

X-ray source [110, 111], consists o f a continuous spectrum known as Bremsstrahlung 

radiation with the spectrally sharper and more intense elemental fluorescent lines su­

perimposed on it. One generally uses the radiation associated with the fluorescent lines 

in the experiment and the Bremsstrahlung is normally filtered using a double crystal 

monochromator or some suitable alternative. The radiation from such sources is emit­

ted over a solid angle o f and consequently, inefficient use is made o f the unpolarised 

radiation that is produced. Rotating anodes generate radiation continously, whilst the 

laser driven sources have a pulsed time structure, as the high intensities necessary to 

induce plasma formation cannot be achieved by lasers operating in continous mode.
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6.3 Synchrotron Structure

6.3.1 Fundamental Operation

Typically, synchrotron radiation facilities operate as follows. The charged particles, be 

they positrons or electrons, are accelerated by a linear accelerator before they gain fur­

ther energy in a booster ring. The storage ring then accumulates the particles that have 

been pre-accelerated and transported from the injection system. The stored particles 

traverse the ultra-high vacuum storage ring in bunches, the size o f which is determined 

by the injection sequence and the radio frequency system of the ring. The system 

compensates for energy lost through radiation using the RF system.

6.3.2 Magnet System

In order to guide the beam in a curved trajectory around the ring, dipole or bending 

magnets, whose magnetic field is perpendicular to the direction o f motion and is uni­

form in the region occupied by the beam, steer the beam in accordance with the Lorentz 

force law. The radiation from such magnets has been described in Section 6.2.1. I f  the 

bending magnets were the only steering elements in the ring, particles with spatial co­

ordinates different from those o f the ideal orbit would move progressively away from 

this orbit. To improve the characteristics o f the beam, focusing elements are required; 

namely the quadrupole and sextupole magnets. In a quadrupole magnet, particles are 

focused in one plane and defocused in the other plane. Therefore a sequence o f focus­

ing and defocusing quadrupole magnets, appropriately designed, can focus the beam in
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both planes. Sextupole magnets are needed to control the electron beam ’s chromaticity, 

i.e. the variation in focusing with electron momentum.

At this stage the reader may be thinking that a lot o f the previous discussion about 

quadrupole and sextupole magnets sounds more like conventional optics than relativis- 

tic particle acceleration. In fact, this is the case. The system of magnetic “lenses” 

that guide and focus an electron beam is called the lattice. Fundamentally the lattice 

lets the accelerator physicist describe the machine section by section by an appropriate 

matrix element much in the same way a ray passing through a lens can. In much of 

the literature concerned with the design of modem day synchrotrons [112], one can 

find lattice names such as the double focusing achromat (DFA), the triple achromat 

and the FODO lattice. The choice o f lattice will depend on such factors as the cost and 

user requirements. For example, the FODO lattice is commonly used by high energy 

physicists and the DFA lattice has been used in the National Synchrotron Light Source 

and Advanced Light Source storage rings in the USA.

6.3.3 Radio Frequency System

Interspersed between the magnets are drift or acceleration cavities. The accelerating 

cavities or resonant cavities comprise the RF system. The cavity is energised from a 

power amplifier at an appropriate frequency so as to establish the necessary accelera­

tion voltage across the gap. The dynamic interaction o f the beam with the cavity is such 

that as long as the voltage is larger than the minimum necessary, a state o f “phase sta­

bility” exists and those electrons captured at injection automatically receive, on average
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over many orbits, the energy increment per turn which they require to counterbalance 

their energy loss. Current state o f the art superconducting RF cavities, constructed out 

o f niobium for the TESLA project [113, pp. 29-30], cooled to an operation tempera­

ture o f 2 K, can achieve nominal potential gradients o f 23.4 MV/m, with the best cell 

performance yielding gradients as high as 42 MV/m. The power required by the cavity 

consists o f two sources: the power required by the beam itself and sufficient power 

to compensate the resistive losses o f the cavity wall itself. W hen a “beam-dump” is 

performed, in general the safest way to do so, is by turning off the power supplied to 

the RE system.

6.3.4 Vacuum System

A storage ring is a high-vacuum device. In order for the stored beam decay to be of 

the order o f many hours, the average pressure in the ring must be o f the order 10-9 

Torr. Particles circulating in a storage ring suffer collisions due to residual gas within 

the ring. This induces betatron oscillations and if  the scattering angle is too large, the 

particle is lost by absorption in the vacuum pipe wall. In order to maintain such high 

vacuums, special delivery systems are required to transmit the radiated photons to the 

experimental hutch. In the X-ray region, beryllium windows which are transparent to 

X-rays and can withstand the high vacuum-atmospheric pressure gradient are used.
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6.3.5 Insertion Devices

It is known from Section 6.2 that a relativistic electron or positron travelling in a circu­

lar orbit emits a continuous spectrum of radiation with opening angle 7  in a direction 

perpendicular to the direction o f motion. As the users o f synchrotrons became more so­

phisticated, their demands for greater intensities and tailored radiation characteristics 

increased in parallel. This was the impetus for the development o f special magnetic 

structures known as wigglers and undulators. These two classes o f insertion devices 

are thus known because they are inserted in straight sections o f the storage ring. Both 

devices fundamentally consist o f a periodic alternating magnetic array that is perpen­

dicular to the direction o f motion o f the electrons. The electrons moving in such an 

array are forced to wiggle or undulate about their nominal central position thus causing 

them to radiate. The magnetic field strength can be adjusted through variation o f the 

separation gap z between both arrays and consequently, the desired radiation properties 

such as intensity and wavelength can be chosen at the user’s discretion.

The periodic magnetic field perpendicular to the direction o f motion o f the particles in 

an insertion device may be written as

where Xid is the period o f the magnetic array and B0 is the peak magnetic field given

(6.8)

2tt m cK
(6.9)

aXiti
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The parameter K  characterises the deflection o f the electron at each turning point in 

the device and fundamentally describes the difference in operation between wigglers 

and undulators.

6.3.5.1 Wigglers

The instantaneous angular distribution o f  radiated power as a function o f wavelength 

for a particle following a curved trajectory was described in Equation (6.1). In a wig- 

gler where the magnetic structure is designed such that a device with 2iV-poles causes 

the positron to undergo 2N  wiggles; the deflection angle ip =  K / 7  at each turning 

point is greater than the natural emission angle o f the synchrotron radiation (7 «  0.11 

mrad for the DORIS storage ring). Hence K  »  1. Thus the wiggler produces in­

coherent radiation that is 2N  times more intense than can be achieved with a normal 

bending magnet.

6.3.5.2 Undulators

Undulators cause small electron or positron deflections, comparable in magnitude to 

the natural emission angle o f the synchrotron radiation. The radiation emitted by an 

individual particle at the various poles in the magnetic array thus interferes coherently 

resulting in a very narrow beam o f radiation that is spectrally peaked at harmonics 

o f the fundamental wavelength o f the undulator. At a nonzero horizontal observation
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angle d, the fundamental wavelength o f the undulator radiation is given by

(6.10)

Assuming the angular divergence o f the electron beam is smaller than the natural emis­

sion angle o f the synchrotron radiation i.e. K  <  1, due to the partial constructive 

interference the radiation beams opening angle is decreased by \ fN  at a given wave­

length and thus the radiation intensity per solid angle increases as N 2. The angular 

distribution o f the nth harmonic radiation intensity is given by

62In _  1b_ Aw N 2K 2n2 
SOS# ~  127e u) (l + K 2/2Ÿ

 )  . 7  1  n K 2
-  \ 4 ( l  + IO /2 )J  > \ 4  (1 + 1 0 /2 ),

(6 .11)

where /#  is the beam current in Amperes, A w /w  is the relative bandwidth and the J ’s 

are modified Bessel functions o f the first kind. The normalised photon flux for the 

first, third and fifth harmonics o f 127 pole undulator at beamline BW-1, HASYLAB 

am DESY is shown in Figure 6.4. This was calculated in accordance with [114,115]. 

Due to the large beam size at beamline BW-1 (2.141 mm x 0.252 mm) each harmonic 

possesses very prominent side lobes.

6.4 Summary

In this chapter, the radiative properties o f a relativistic particle moving in a circular 

orbit due to the presence of a magnetic field were examined. Synchrotron radiation 

from a bending magnet was shown to be a spectrally broad, intense, polarised, highly
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Figure 6.4: Normalised photon flux for the undulator beamline BW-1 at HASYLAB 
am DESY. I  =  150 mA, B 0 = 0.46 T and K  =  1.34.

directional source o f electromagnetic radiation. The main elements o f the synchrotron 

comprising the magnet system, RF system and vacuum system were briefly examined. 

The chapter concluded with an examination o f the motion o f an electron/positron in 

a periodic magnetic array. Due to its large emission angle, the wiggler behaves as a 

dipole magnet albeit 2N  times more intense. Within an undulator, the angle o f spon­

taneously emitted radiation is smaller than the natural emission angle 7 , and conse­

quently, in an undulator interference occurs producing harmonically related radiation. 

It is important to note that there is no fixed phase relationship between the radiated 

photons. Therefore, the total radiation power is the sum o f the single-particle radiation 

power from all o f  the particles in the beam.

In a free electron laser (FEL), the aim is to introduce a fixed phase relationship between
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all the radiating photons in the undulator [116]. Such total coherence, implies the ra­

diation amplitudes rather than the radiative powers become additive and the radiation 

power becomes proportional to the square o f the number o f electrons until saturation 

occurs. To introduce such coherence in a SASE (Self Amplified Spontaneous Emis­

sion) based FEL [117,118], it is necessary to introduce a longitudinal density modu­

lation o f the electrons such that, whilst travelling along one period o f the undulator, 

the electrons slip by one radiation wavelength with respect to the faster electromag­

netic field. Depending on the relative phase between the radiation and electron oscilla­

tion, electrons experience either a deceleration or an acceleration. The resulting cigar 

shaped bunch has a micro-bunched structure superimposed on it; the distance between 

each micro-bunch being equal to the wavelength o f the emitted photons. These fourth 

generation radiation sources will offer extremely intense, polarised, short-pulse dura­

tion (~  100 fs), transversely coherent, tunable radiation from ca. 0.1 A to 5 Â. The 

peak brilliance o f these sources will be approximately 10 orders o f magnitude higher 

than current third generation synchrotron sources [119], It is expected, that owing to 

the special properties o f such radiation whole new avenues o f experimental investiga­

tion, currently unfeasible at third generation radiation sources, will become possible.
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7.1 Introduction

In Chapter 5 elementary kinematical and dynamical diffraction was reviewed before 

the properties o f synchrotron radiation were investigated in Chapter 6. These two 

fields now merge on the stage o f X-ray diffraction topography. From Section 5.2 it is 

known that when a crystalline material is immersed in a white X-ray beam, diffraction 

occurs in accordance with Bragg’s law for different sets o f diffracting lattice planes. 

Due to the parallel two-dimensional extrusion o f a synchrotron radiation beam, each o f 

the respective diffraction spots is actually an X-ray topograph which can be recorded 

on a fine grain emulsion film. Localised imperfections within the sample modify the 

diffraction condition and this manifests itself as an intensity variation within the topo­

graph. It is important to note that the defects themselves are not being imaged; rather 

it is the strains they induce that modify the Bragg condition with respect to the per­

fect sample regions. This is essential to an understanding o f the mechanism of defect 

imaging.

X-ray topography is a non-destructive, non-invasive technique. It is sensitive to strain

Chapter 7

X-ray Topography
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fields extending over more than several micrometres within the sample and therefore 

X-ray topography is used mainly to image the strain fields associated with dislocations, 

planar defects, stacking faults, domain walls in ferroelectric and magnetic materials, 

growth defects and large precipitates [3],

In this chapter the techniques o f white beam X-ray diffraction topography will be anal­

ysed. Extensive reference to and some expansion o f these techniques will be made 

in the remaining chapters o f this thesis. Experimental facets such as resolution and 

exposure time in conjunction with their relationship to synchrotron radiation will also 

be described. The chapter concludes with an introduction to the fundamental imaging 

mechanisms of X-ray topography.

7.2 Techniques of Synchrotron X-ray Topography

The original topographic investigations were performed using the Berg-Barett or Lang 

techniques. In the Berg-Barett technique [120,121] an extended X-ray source such a 

rotating anode generator was used as the radiation source. The sample had to be cut 

and oriented such that the incident X-ray beam that contained both the K a i and K a2 

fluorescent lines made a very small angle with the diffracting planes. The topograph 

was recorded on a photographic film placed within 1 mm o f the sample surface. One of 

the problems with this m ethod included double images o f  defects due to the presence o f 

both the K a i and K a 2 lines. Lang [22] overcame the problem of “double diffraction” 

by generating the X-ray beam from a fine focus source and collimating the beam to a 

height o f ca. 10 /xm. The ribbon of K a i radiation thus produced a section transmission

190



Chapter 7 X-ray Topography

image o f the crystal under investigation. Lang invented a goniometer that facilitated 

simultaneous traversal o f  the film and sample across the beam. Thus, a projection 

topograph could be produced. The major drawback with Lang’s technique is the long 

exposure time.

Synchrotron radiation produces a very intense, highly collimated beam o f X-ray radi­

ation. This radiation can be collimated to provide large area beams of approximately 

5 mm2 down to micro-focus beams o f approximately 10 hm2. By simple collimation 

o f the beam using a pair o f computer controlled slits, one can obtain Lang section 

and projection topographs without any need for special alignment or traversal o f the 

sample. Since its first demonstration in 1974 [24] the field of synchrotron X-ray topog­

raphy has blossomed into a mature area o f scientific investigation. Its growth is directly 

attributable to the ultra-low divergence and high intensities provided by a synchrotron 

light source. During its growth, experimental techniques such as back reflection and 

grazing incidence topography were developed and implemented. The reader will now 

be presented with a review o f the techniques o f X-ray topography applicable to this 

thesis.

All o f the topography experiments mentioned below were performed at the Hamburger 

Synchrotronstrahlungslabor at the Deutsches Elektronen-Synchrotron (HASYLAB am 

DESY), Hamburg, Germany, utilising the continuous spectrum o f synchrotron radia­

tion from the DORIS III positron storage ring bending magnet at beamline F -l. Cur­

rents o f  60 mA to 150 in A were used and the positron energy was 4.45 GeV.
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7.2.1 Large Area Transmission Topography

In large area transmission topography, the incident beam size is collimated anywhere 

from 0.5 mm x 0.5 mm to 4 mm x  8 mm in size. The whole volume o f the sam­

ple bathed in the beam contributes to (he topographs recorded on the film. The in­

formation in (he images originates from within the same sample volume, albeit from 

different diffracting planes. Therefore different information may be present in differ­

ent topographs. The sample may be tilted to obtain information from specific reflec­

tions [122]. This geometry is demonstrated in Figure 7.1.

Film

Figure 7.1: Large area transmission topography experimental configuration. Only one 
diffracted beam has been drawn for clarity.

An example o f a large area transmission topograph is shown in Figure 7.2. This topo­

graph was recorded from a 1.135 mm (hick < 1 1 1> oriented silicon substrate with a
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145 pm  thick epilayer grown on top. Stress at the interface between the substrate and 

epilayer is being relieved by the formation o f misfit dislocations. The misfit disloca­

tions in turn induce threading dislocations to propagate into the substrate.

Figure 7.2: 242 large area transmission topograph from a silicon sample, g is the 
diffraction vector.

7.2.2 Section Transmission Topography

Section transmission topography uses an arrangement similar to its large area coun­

terpart, only in this case the incoming beam is collimated into a narrow ribbon by a 

slit typically 10-15 /im in height. A set o f Laue case section topograph images of 

sample cross-section is produced and, provided the Bragg angle is not too small, the 

image gives detailed information about the energy flow within the crystal and direct 

depth information on the defects present within a particular crystal slice [77,123]. The 

height o f the slit in section topography should not be more than 20 pm, because im­

■4
1.5 mm
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ages o f the defects begin to overlap and the depth distribution o f the defects is lost. Slit 

heights less than 10 pm  are impractical, as longer exposure times are required. The 

experimental configuration is shown in Figure 7.3.

Film

Figure 7.3: Section transmission topography experimental configuration. Only one 
diffracted beam has been drawn for clarity.

For crystalline materials with very small defect densities, Pendellosung or Kato fringes 

may be recorded on the film as an interference pattern. The explanation o f the inter­

ference pattern was presented in Chapter 5 Section 5.3.4. Figure 7.4 is a 044 section 

transmission topograph from a silicon wafer wherein interference o f the wavefields 

from different branches o f the dispersion surface took place at the exit surface, result­

ing in Pendellosung fringes being recorded [124-126],
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1.5 mm

Figure 7.4: 044 section transmission topograph possessing Pendellosung fringes, g is 
the diffraction vector.

7.2.3 Large Area Back Reflection Topography

In large area back reflection topography, the incoming beam is collimated in size sim­

ilar to its large area transmission counterpart. The beam passes through a hole in the 

film cassette, and in general, impinges perpendicularly upon the sample. Diffraction 

occurs and the back reflected topographs are recorded on the film. As this is a reflec­

tion geometry, low energy photons satisfy the Bragg diffraction criterion. Therefore the 

penetration depths are often quite shallow, making this technique quite advantageous 

for the analysis o f epilayers and surface structures. When large area transmission to­

pography is not possible, for example in the case o f the microchip bonded to a ceramic 

package, back reflection topography proves quite useful. The imaging mechanism for 

one reflection is shown in Figure 7.5.

Figure 7.6 is an 822 back reflection topograph from a packaged erasable read-only 

memory (EPROM) silicon based integrated circuit. Here the X-rays yield stress infor­

mation from a penetration depth o f 62 /im, as calculated using Equation (5.34).
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Figure 7.5: Large area back reflection topography. Only one diffracted beam has been 
drawn for clarity.

2.4 mm

Figure 7.6: 822 large area back reflection topograph from a silicon based EPROM
integrated circuit, g is the diffraction vector.
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7.2.4 Back Reflection Section Topography

As with section transmission topography the incoming beam is collimated to 10-15 

pm  in height. A set o f Bragg case section topographs o f sample cross section are 

produced. The linear absorption coefficient o f most semiconductor materials is so 

large that the X-ray beam generally does not penetrate through the thickness o f the 

sample. Back reflection section topography therefore provides a sectional image from 

the upper regions o f a sample or a device [127], The experimental configuration is 

demonstrated in Figure 7.7.

Figure 7.7: Back reflection section topography experimental configuration. Only one 
diffracted beam has been drawn for clarity.

Figure 7.8 is a 511 back reflection section topograph recorded from a patterned boron 

doped < 1 0 0 >  oriented silicon wafer. The stress due to the patterning on the wafer 

surface is indicated in the figure by arrow P. In this case the X-rays have penetrated
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through the sample and hence the back side is discernible (arrow B).

P

B  ► <-------B
 ►

1.5 m m

Figure 7.8: 511 back reflection section topograph from a silicon wafer, g is the diffrac­
tion vector.

7.2.5 Grazing Incidence and Total External Reflection Topography

In the grazing incidence geometry shown in Figure 7.9 the incident X-ray beam im­

pinges on the sample at an angle greater than the critical angle uic for total external 

reflection [128], By varying the incidence angle, the penetration depth can be varied 

according to Equation (5.34). At angles close to the critical angle the penetration depth 

varies rapidly. When the incident angle is smaller than the critical angle total external 

reflection occurs and the scattering depth is given by Equation (5.61) [129].

Figure 7.10 shows a grazing incidence diffraction topograph from a 0.25 //m CMOS 

process wafer. The circuit topography is visible via imposed strain on the underlying 

silicon.
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Film

Figure 7.9: Grazing incidence topography experimental configuration. Only one 
diffracted beam has been drawn for clarity.

Figure 7.10: Grazing incidence diffraction topograph from a 0.25 ¡im  CMOS process
wafer, g is the diffraction vector.
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7.3 Synchrotron Radiation Applied to X-ray Topography

O f all the properties o f  synchrotron radiation investigated in Chapter 6 Section 6.2, 

the most important for X-ray topography are the intensity and divergence o f the beam. 

The intensity governs directly the exposure time and the resolution o f the technique is 

limited by the beam divergence.

7.3.1 Exposure

The exposure time is principally determined by a combination o f the photon flux pro­

vided by the source, be it a bending magnet or insertion device, the sample under 

investigation, the topographic technique used and the photographic film on which the 

topograph is recorded.

From Chapter 6 it is known that the intensity o f  the source is related to the beam cur­

rent. As the positrons or electrons lose momentum in the storage ring, the intensity 

falls off accordingly. For topographic studies o f  similar samples, the same integrated 

exposure is used. This implies the exposure time has to be increased as the beam cur­

rent falls off. For example, for a large area transmission topograph o f a 500 /im thick 

silicon sample, the nominal integrated exposure is 100 mAmin for a high resolution 

film. This yields exposure times o f 1 minute and 1 minutes 30 seconds when the beam 

current is 100 mA and 66 mA, respectively.

As dislocations o f the order o f a micrometre and greater are imaged at unity magni­

fication by X-ray topography and subsequently optically enlarged, the photographic
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film must have a comparable resolution. The high resolution films used in this thesis, 

Geola VRP-M holographic film and Kodak SO-343 photographic film, have emulsion 

grain sizes of 35 nm and 50 nm, respectively. The grain size o f the standard resolution 

film, Kodak Industrex industrial X-ray film, is 180 nm. The exposure speed for the 

high resolution films is ten times slower than that o f the standard resolution film.

The exposure time also depends on the technique. Prieur [130] developed an approx­

imate ratio between the exposure times for large area r La t  and section transmission 

topography t st  to be

[tan (29 =F <p) ±  ta n  <p] (7.1)
t l a t  h,

where t is the thickness o f the sample, h is the height o f the beam, 29 is the angle 

between the direct and diffracted beam, and, ip is the angle between the incident beam 

and the normal to the sample surface. The alternating ±  operators account for the 

position o f  the diffracted beam with respect to the sample normal. The sign in the first 

term is +  if  the image and the incident beam are below the surface normal.

Having exposed the film it is worth mentioning briefly the development procedure. 

For all the aforementioned films, the process is identical. The films are placed in an 

aqueous solution o f Kodak D-19 developer, the temperature o f the bath at the time of 

mixing being a constant 38 °C. After five minutes, the development process is stopped 

by dipping the films in a 3% acetic acid aqueous solution. Fixing is then performed 

using Kodak sodium fixer solution for ten minutes. The films are placed in a dryer for 

30 minutes.
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7.3.2 Resolution

The spatial resolution or minimum strain field size that can be observed using X-ray to­

pography depends on the angular divergence o f the incident beam A 0O and the sample 

to detector distance L, according to the simple formula:

r = LA90 (7.2)

At beamline F -l at HASYLAB am DESY, the horizontal divergence o f the beam is 0.4 

mrad and the vertical divergence is 0.0238 mrad [131]. As it is larger, the horizontal 

divergence places a lower limit on the minimum detectable strain field size. For a 

sample to detector distance o f 10 mm, r — 4 pm. Improved spatial resolution can be 

found at the undulator beamline BW-1 where the horizontal divergence o f the beam is 

0.317 mrad.

The geometrical resolution R  on a topographic image is governed by the source size 

S, the sample to detector distance L  and the sample to source distance D, according to 

the formula:

The sample to source distance at beamline F -l is D — 35 m. The source size in the 

horizontal and vertical extents measures S  =  1.224 mm x  0.510 mm. Once again the 

limiting resolution is imposed by the larger horizontal source size. Therefore, for a 

sample to film distance o f  10 mm, the lateral geometrical resolution is 0.3 pm. At the 

900 m long coherent X-ray optics beamline at Spring8, Japan, the spatial resolution
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is an amazing 14 nm [132], Note, however, that this is not generally achievable since 

the actual resolution will be limited by the spatial extent o f the strain fields and the 

thickness o f the film emulsions through which the diffracted photons pass.

7.4 Merits of White Beam X-ray Diffraction Topography

Possibly the greatest advantage o f  X-ray diffraction topography when used with a syn­

chrotron source is its experimental simplicity. The apparatus consists o f little more 

than a goniometer on which the sample is mounted and an X-ray transparent cassette 

to hold the film during exposure. Even the most esoteric crystalline samples or devices 

can be inserted into the beam and diffraction will occur. This avoids the relatively more 

complex alignment procedures that are often associated with monochromatic topogra­

phy.

Several reflections may be recorded simultaneously and in some favorable cases, an 

instantaneous Burgers vector b assignment may be possible [133], For example, sup­

pose the diffraction vector is known to be g =  [100] and a defect is observed in all

—i

images bar one. In the image from which the defect is absent, the condition g ■ b = 0

■ i
is satisfied and thus b m ay be evaluated.

One disadvantage o f X-ray diffraction topography is that the exposure is integrative in 

nature i.e. an image due to wavelength A may also have contributions from harmonics 

that are not structure factor forbidden. This implies small details may be averaged out 

or the image may appear blurred as occurred in [134]. This problem can be circum­

vented in monochromatic topography by detuning the monochromator slightly from
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the exact Bragg condition. As the width o f the rocking curve is much larger for the 

fundamental reflexion than for the higher order harmonics, only the fundamental will 

be passed with any appreciable intensity.

For white-beam topography one can calculate the relative intensities due to the various 

wavelengths that are recorded during exposure [24,25,128]. Phenomenologically, the 

number o f photons Arabs(A) recorded on the film associated with a given harmonic 

can be calculated through a knowledge o f the spectral photon brightness of the source 

AT0(A) and the scattering power o f the diffracting planes through a structure factor 

related term f \  (A). In the calculations, absorption by the various materials found in the 

beam path e.g. air, beryllium, aluminum foils and the cassette envelope, is accounted 

for through the tenn  / 2(A). Finally absorption in the film itself is accounted through 

the term / 3(A). The harmonic content o f each individual reflection is calculated and 

no comparison with other topographs is made. Therefore geometrical factors such as 

polarisation do not have to be considered. The total number o f photons associated with 

wavelength A absorbed in the film during an exposure can be estimated by

Nabs(X) =  N 0(X)f1(X)f2(X)f3(X) (7.4)

where

/ i ( A )  =  P ( X ) F hkiXs (7.5)

/ 2 W= n (7.6)
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/ 3(A) =  1 -  e - w  (7.7)

In equations (7.5)-(7.7), P(A) is the intensity o f the radiation at wavelength A with 

respect to the bending magnet spectrum as obtained from Figure 6.3 in Chapter 6, F ^i 

is the structure factor associated with the diffracting planes, ¡ii and Xi are the effective 

linear absorption coefficients and thicknesses o f the ith absorbing layer, and, p f  and x j  

are the effective linear absorption coefficients and thicknesses o f the film.

7.5 Contrast Formation

X-ray diffraction topographs are essentially maps o f the scattering power o f the sample 

under examination as a function o f position across the diffracted X-ray beam. The 

observed contrast is therefore related to the properties o f both the incident beam and 

its interaction with the sample. Contrast formation in a topograph may be broken down 

into three broad categories, each o f which will now be examined in turn.

7.5.1 Structure Factor C ontrast

Structure factor contrast arises from samples wherein different regions possess differ­

ent structure factors. In terms o f  the kinematical theory o f X-ray diffraction (see Sec­

tion 5.2), the diffracted intensity is proportional to the square o f the structure factor. 

Therefore, a change in the structure factor induces a change in intensity. It commonly 

arises in magnetic materials and twinned crystals [135], Figure 7.11 demonstrates 

structure factor contrast from the II-VI semiconductor compound CdTe. This very 

rare sample was grown from the melt by the Bridgman method during the space shut-
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tie flight STS-95 [136]. The topograph demonstrates two regions twinned about the 

{ 1 1 1 } boundary.

Figure 7.11: 0 2 2 back reflection topograph demonstrating structure factor contrast in 
cadmium telluride. g is the diffraction vector.

7.5.2 O rientation C ontrast

Orientation contrast occurs where part o f the crystal is misoriented such that, in the 

case o f monochromatic topography, diffraction cannot occur as Bragg’s law is not 

satisfied. Therefore, no photons will reach the film from the misoriented region and this 

corresponds to the zero intensity or white region in the topographic image. Diffraction 

from the perfect region o f  the sample will expose the film leaving the respective region

For white beam topography, the situation is somewhat more complicated. The perfect 

and imperfect regions o f the sample will satisfy Bragg’s law for different wavelengths. 

These wavelengths will then travel toward the film at different Bragg angles and there­

{111}tw in  
b o u n d a ry

►
3 m m

black.
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fore, there will be a loss or gain in recorded intensity in regions corresponding to the 

boundary o f a raisoriented region. Boundaries producing divergent beams lead to a 

loss o f intensity and thus stronger contrast than convergent boundaries. The width of 

the region o f intensity gain or loss is determined by the angle o f misorientation and 

the sample to film distance [137]. By taking topographs at two sample-to-film dis­

tances the misorientation component in the plane o f incidence can be measured. For 

both monochromatic and polychromatic topography the effective misorientation o f the 

region must be greater than the divergence o f the beam, otherwise, the sample region 

will appear perfect with respect to the incident beam and diffract accordingly [138].

An example o f orientation contrast is shown in Figure 7.12. The sample was a 2.20 

/im thick gallium nitride layer grown on sapphire. The GaN epilayer is observed as the 

wavy structure indicated by arrow O. The growth uniformity o f the epilayer was less 

than 5%. Consequently, the strain and misorientational contrast is also non-uniform 

across the sample.

2 mm

Figure 7.12: Orientation contrast example in gallium nitride grown on sapphire. The 
misoriented epilayer is indicated by arrow O.
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7.5.3 Extinction Contrast

The structure factor and orientational contrast mechanisms can be explained quite sim­

ply from the kinematical theory o f X-ray diffraction. The last contrast mechanism, 

called extinction or diffraction contrast, appeals to dynamical theory for its explana­

tion.

7.5.3.1 Direct Image

One of the fundamental problems discussed in Chapter 5 with the kinematical theory 

was that for a perfect crystal it predicted a delta function type rocking curve. In his 

early attempts to formulate a dynamical theory o f X-ray diffraction, Darwin assumed 

partial reflection and transmission o f the incident radiation by the lattice planes [13, 

14]. Therefore the incident radiation is being continuously Bragg scattered as one 

progresses down into the crystal. For this reason, the extinction depth to which the 

beam penetrates, is generally far less in a perfect crystal than the penetration depth in 

an imperfect crystal.

In a near perfect crystal, where the product o f the linear absorption coefficient and 

the sample thickness t is less than unity, the direct image is formed when the incident 

X-ray beam intercepts the defect within the crystal [139], Therefore the X-rays do not 

suffer extinction and for this reason their contrast is always higher than for a perfect 

crystal i.e. direct images are seen as black on a grey background. This is the most 

common type o f image observed in white beam topography.
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7.5.3.2 Dynamical Image

The dynamical image is formed when a wavefield propagating inside a crystal inter­

cepts the defect. It is most easily observed under conditions o f high absorption, where 

normal absorption destroys the direct image i.e. fi0t  > 1 [140], Now a resulting loss in 

intensity is recorded on the film as the wavefield cannot propagate to the exit surface 

o f the crystal. The dynamical image is often seen as a white shadow beside the direct 

black image.

7.5.3.3 Interm ediary Image

The third and final diffraction imaging mechanism is termed the intermediary im­

age [140]. This image arises from the interference at the exit surface o f the new wave- 

fields created at the defect site with the original wavefields propagating along other 

ray paths. Intermediary images are normally not easy to see in integrated wave topo­

graphic images and usually manifest themselves through bead like contrast along the 

direct image o f the defect. The intermediary image thus has an alternating black-white 

oscillatory contrast.

An example o f  all three types o f  extinction contrast mechanisms may be seen in Figure 

7.13.

7.6 Summary

X-ray diffraction topography and its application to the visualisation o f strain within 

semiconductor materials and devices was introduced. The fundamental experimental
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Figure 7.13: Extinction contrast imaging mechanism in silicon. 022 section transmis­
sion topograph, g is the diffraction vector, i\ the direct image, i2 the dynamical image 
and i3 the intermediary image.

methods, their usage and merits were discussed. At each stage indicative topographs 

were presented to help the reader understand and appreciate the beauty o f the tech­

nique. To date, no detailed, all encompassing review of the techniques o f X-ray topog­

raphy appears to exist in the literature. Factors governing the spatial and geometrical 

resolution were discussed. The same formulae apply to all X-ray radiation sources. 

Therefore, when one considers that fourth generation free electron X-ray lasers with 

their tiny source size, truly negligible divergence, magnificent intensities and femtosec­

ond time structure are on the horizon, whole new avenues o f experimental investigation 

may be opened up for X-ray topography.

As the number o f topics that have been studied to date with X-ray diffraction topogra­

phy is so diverse, only a very basic introduction to the principle imaging mechanisms 

was provided. This diversity will hopefully become clear in the chapters that fol­

low, wherein several independent topographic investigations o f crystalline materials 

and their constituent devices are preformed. W here necessary, the experimental and 

theoretical underpinnings considered thus far will be expanded.

210



Chapter 8

Electrical Stressing of Light Emitting Diodes

8.1 Introduction

In recent years the demand for high-power semiconductor light emitting diodes has 

increased significantly in tandem with their applicability in a myriad o f environments. 

For example, high-power light emitting diodes offer a much cheaper alternative to their 

incandescent electrical bulb counterparts. Device efficiency and operation are limited 

by dislocation and other defect formation due to inhomogeneous strain which can in­

duce subsequent device failure [141]. In addition to the laterally homogeneous biaxial 

strain built into the layered structure o f the devices, strain can also be introduced by the 

metallization and insulating layers, and by mounting and contact processes. Finally, 

these high power devices suffer from strain induced by thermal expansion during op­

eration. Consequently, an understanding o f the strain evolution and distribution within 

these devices is vital if  increased efficiency and performance are to be obtained. In this 

chapter, the change in strain within, and output optical emission spectra o f ultra bright 

light emitting diodes, under varying degrees o f electrical stress, will be examined using 

synchrotron X-ray topography and optical emission spectroscopy.
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8.2 Experimental

Three ultra-bright light emitting diode arrays were examined in the study: green (565 

nm), red (660 nm) and infrared (890 nm). Typical arrays consisted o f five diodes 

recessed in a dual inline package. The red and infrared LED active regions were con­

structed from proprietary epitaxial layers o f the III-V compound semiconductors GaAs 

and AlGaAs, grown on a (001) GaAs substrate. The active region o f the green LED 

was nitrogen-doped GaP. The substrate was attached to the IC package bulk using 

bonding epoxy. Connection o f the diodes to the legs o f the dual inline package was 

achieved using gold wire and ball-bonding techniques.

Back reflection topographs in large-area and section mode were produced as described 

in Chapter 7. For the large-area topographs, the incident beam was collimated to 0.75 

mm x 0.75 mm and for the section topographs, the height o f the beam was reduced 

to approximately 15 /um. The topographs were recorded on either Kodak SO-181 

professional X-ray or Geola VRP-M holographic high-resolution films. The sample to 

film distance in both geometries was 40 mm.

The optical output o f the diodes was monitored using a DIGITW IN optical emission 

spectrometer manufactured by SOFIE Instruments. The spectrometer had a spectral 

accuracy o f 0.1 nm in the wavelength range 200 nm to 900 nm. Prior to data acquisition 

the spectrometer was calibrated using a mercury lamp.

Using a conventional laboratory power supply, the power supplied to each device was 

increased until failure occurred. The failure point was defined as the point where a
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sudden and complete loss of light occurred. At each stage back reflection topographs 

and plots o f the relative output intensity versus wavelength were recorded using X-ray 

topography and optical emission spectroscopy, respectively.

8.3 Results

8.3.1 X-ray Topography

Figures 8.1-8.3 depict the devices under normal operation: green LED -  ca. 66 

mW/device; red LED -  ca. 57 mW/device; infrared -  ca. 70 mW/device. The ball 

bond and accompanying gold wire are observed via absorption (reduced intensity, i.e. 

white contrast) o f X-rays. The increase in intensity along the underside edges o f the 

LEDs is related to the increase in stress due to the adhesion o f the device substrate 

to the IC package bulk as indicated in the figures by the arrows labeled X. Strain due 

to the metallization layers is present, albeit difficult to observe. In the green LED it 

is indicated by the arrow Y; however, due to the limited number o f useful reflections 

that were imaged for the red and infrared diodes, it is indiscernible. In the topographs 

o f the red and infrared LEDs, it would appear that there are two gold wires attached 

to the devices. One is actually seeing a “shadow” o f the diffracted X-ray beam as it 

propagates from the device to the film and not a second wire.
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0.25 mm 1 Underside
Sidewall fTTrr.
of LED ofLED

Figure 8.1: 1 1 7  large area back reflection topograph from green LED under normal 
operation (66 mW/device).

Gold Ball 
Bond

Bonding 
Wire +
“ shadow”

Figure 8.2: 1 1 7 large area back reflection topograph from red LED under normal 
operation (57 mW/device).
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Gold Bond

Bonding 
Wire +
“ shadow’

A

0.25 mm

Figure 8.3: 6 0 2 large area back reflection topograph from infrared LED under normal 
operation (70 mW/device).

It was noticed that as the power supplied to the diodes was increased, the consequent 

temperature rise and increased lattice vibration caused a reduction in the X-ray topo­

graphic definition o f the strain induced by the metallization layers, up to the point of 

failure. The increased electrical stressing enhanced the stress generation around the 

ball bond regions o f the devices through a change in the topology of the ball bond 

region from circular to elliptical. These features are presented in Figures 8.4-8.6.
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Gold Bond

Figure 8.4: 1 1 7 large area back reflection topograph from green LED at elevated 
powers (602 mW/device).

Gold Bond

Figure 8.5: I 1 7 large area back reflection topograph from red LED at elevated powers 
(500 mW/device).

216



Chapter 8 Electrical Stressing o f  Light Emitting Diodes

Gold Bond

Figure 8.6: 6 0 2 large area back reflection topograph from infrared LED at elevated 
powers (745 mW/device).

Surprisingly, the ultra-bright LEDs continued to work at powers approximately 25 

times greater than their maximum rated working power. Once catastrophic failure oc­

curred, the topographic images o f the LEDs became severely warped and distorted 

around the gold bond regions as shown in Figures 8.7-8.9. The distortion is due to 

the build-up o f large stresses, which are presumably related to the thermally induced 

lattice deformation. The lattice distortion was greatest for the red LED; upon failure 

the topographic image appears to display three distinct and completely misoriented 

“sub-grains” denoted by the solid oval lines in Figure 8.8. One can observe a cellu­

lar dislocation structure within each sub-grain, which is indicative o f LEC substrate 

growth [142], The large void in the centre o f the image, denoted by the dotted oval 

lines in Figure 8.8 is presumably due to the gold bond. However, as with the ball bond 

regions for the green and infrared LEDs (Figures 8.7 and 8.9), it has now lost its dis-
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tinct spherical shape. This is most likely due to thermal relaxation/creep o f the gold 

bond on the surface o f the LED.

Gold B ond

■4-----------------------►
0.25 mm

Figure 8.7: 1 1 7  large area back reflection topograph from green LED upon failure.
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Gold Bond

Figure 8.8: 1 1 7 large area back reflection topograph from red LED upon failure.

Gold Bond

Figure 8.9: 6 0 2 large area back reflection topograph from infrared LED upon failure.
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Optical micrographs indicated that the structure o f the device remained spatially unal­

tered although the gold bond wire became detached upon failure. Consider for example 

the red diode, as shown in Figure 8.10.

Figure 8.10: Optical micrographs o f  induced failure in a red (660 nm) LED. (a) An 
optical micrograph before power up (magnification = lOOx), while (b) shows that 
the device remains spatially unaltered although the ball bond has been removed upon 
failure.

After failure, the devices were allowed to cool. Upon cooling, large residual strain 

fields due to the thermal stressing remain. The strain due to the device attachment to 

the IC package bulk, metallization layers and heteroepitaxial interfaces have increased 

dramatically as arrows X, Y andZ portray  in Figures 8.11-8.13. Post failure examina­

tion o f the red LED indicated that the cellular dislocation structure imaged in Figure 

8.8 manifests itself as a direct consequence o f the gold bond being completely removed 

with little or no residual gold remaining; consequently the X-rays were able to pene­

trate below the active region to the device substrate as indicated by arrow C in Figure

■4-------------Gold w ire

Bonding Glue
Bonding Glue

(a )

: j

0.25 mm
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8.12. Large localised leakage currents around the gold bond may have caused severe 

thermal lattice vibration and consequent surface damage as indicated by arrow D.

0.20 mm

0.20 mm

Ball Bond

Figure 8.11: Post failure 2 2 12 large area back reflection topograph from green LED.
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0.25

Y

Z mm

Figure 8.12: Post failure 1 1 5  large area back reflection topograph from  red LED.

0.3 mm

Figure 8.13: Post failure 1 13  large area back reflection topograph from infrared LED.
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In the post failure topograph o f the green LED (Figure 8.11) the gold bond is once 

more observed via absorption contrast due to the presence o f  residual gold from the 

gold bond. This was confirmed by back reflection section topography wherein the 

X-rays wre unable to penetrate below the active region o f the device, due to the X- 

ray absorption o f the residual gold in conjunction with the metallization layers, as 

indicated by arrow C in the 2 2 12 reflection shown in Figure 8.14. This mechanism is 

explained in Figure 8.15. For the red LED a smaller amount o f residual gold remained 

and consequently the X-rays were able to penetrate deeper into the device structure 

(Figure 8.16). In the case o f the infrared LED, presented in Figure 8.17, much of the 

gold remained and only the active region could be imaged in the back reflection section 

topograph.

Within the back reflection topographs, one can see large strain fields in the side walls 

o f the devices (arrow B in Figure 8.14) and at the heteroepitaxial layer interfaces (ar­

rows Y and Z in Figure 8.16). Interestingly the active region o f the devices possesses 

distinctly misorientated features, indicated by arrows A, that arise out o f a misorien- 

tational contrast mechanism. Using the effective misorientation 2A 6 o f an imperfect 

region, it is possible to estimate the maximum magnitude o f stress at the edges o f the 

gold bond. The effective misorientation o f an imperfect region is associated with the 

departure o f strained lattice planes from the exact Bragg angle. This effective misori­

entation [143,144] in real space can be defined as
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where 0 is the Bragg angle, a  is the component o f the rotation o f the lattice planes 

around the normal to the plane o f incidence i.e. tilt, ej_ is the component o f strain 

perpendicular to the diffracting planes, d is the distance between the diffracting planes 

and A d is the deflection o f the planes parallel to the diffraction vector g. Assuming a 

limiting misorientation based solely upon lattice dilatation, one can relate the misori- 

entation parameter to the stress o  through Young’s modulus Y.

A6 fa |e_L| ta n #  =  ta n #  (8.2)

Similarly, assuming the misorientation is based solely upon tilt o f the lattice planes

yields:

Ad  «  a  =  (8.3)

where crxy is the shear stress. The estimation o f the magnitude o f stress/strain at the 

edge o f the ball bond region for the diodes is summarised in Table 8.1 based upon the 

limiting misorientations.

Diode Stress (MPa) Strain e| (%)
Green (565 nm) 

Red (660 nm) 
Infrared (850 nm)

3 9 - 1 6 6
4 0 - 7 0  
83 - 2 3 6

0 .0 4 -0 .1 9  
0.05 -  0.08 
0.09 -  0.27

Table 8.1: Estimation o f  the magnitude o f stress/strain at edge o f the ball bond region.
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<4---------------------- ►-
0.25 mm

Figure 8.14: Post failure 2 2 12 back reflection section topograph from green LED.

Incident x-rays

Figure 8.15: M echanism of X-ray attenuation by gold bond and metallisation layers in 
back reflection section images. The X-rays experience increased absorption under the 
gold bond region in comparison to regions at the edge o f the device, due to greater cu­
mulative attenuation from the residual gold and semiconductor material. Consequently, 
the X-rays penetrate deeper into the device at edges that in the centre.
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0.25 mm

Figure 8.16: Post failure 4 4 10 back reflection section topograph from red LED.

Figure 8.17: Post failure 1 1 3  back reflection section topograph from infrared LED.
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8.3.2 Optical Emission Spectroscopy

Measured optical emission spectra o f the recombinative bandgaps using optical emis­

sion spectroscopy (OES) revealed a narrowing o f the bandgap for the green and red 

LEDs as the power to, and hence temperature of, each device is increased, whereas a 

broadening occurred for the infrared LED. Under normal operation the red LED ex­

hibited a distorted Gaussian spectrum centered at 649 nm. As the power was increased 

the peak wavelength changed to 741 nm with the introduction o f a sidelobe at 715 nm. 

Conversely, under normal operation, the green LED demonstrated a peak wavelength 

at 567 nm with a secondary peak at 561 nm. As the power was increased the presence 

o f the secondary peak receded, yielding a distorted Gaussian spectrum centered at 661 

nm prior to failure. Figures 8.18 and 8.19 display the change in output optical spectra 

as a function o f power supplied to the device for the green and red diodes respec­

tively. Please note, the spectra have not been normalised with respect to one another 

and therefore, only the position o f  the peak wavelength can be used for meaningful 

comparisons.

I
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W avelength (run)

Figure 8.18: Change in output optical emission spectrum as a function o f power sup­
plied for green LED.

The narrowing o f the bandgap, which is o f the order o f -240 meV for the green LED 

and -300 meV for the red LED, cannot be completely accounted for by the tempera­

ture dependence o f the bandgap as the optical properties o f  highly excited semicon­

ductors are strongly influenced by many-particle effects. The generation o f a dense 

electron-hole system, for example, caused by the application o f a high voltage, leads 

to significant modifications o f the band structure. Bandgap renormalisation [145,146] 

for single-particle energies occurs as a consequence o f this. The bandgap renormal­

isation to a first order m ay be explained as follows: through a collective screening 

mechanism each carrier in the system repels all others with the same charge. The re­

sulting localised decrease in charge density m ay be conceived o f in terms o f a virtual 

charge o f the opposite sign counterbalancing the build-up o f charge. Coupled with this 

mechanism is an exchange interaction which evolves from the Pauli exclusion princi-
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Wavelength (11m)

Figure 8.19: Change in output optical emission spectrum as a function o f power sup­
plied for red LED.

pie. The electrons in a high carrier-concentration semiconductor spread their momenta 

such that overlapping o f the individual electron wavefunctions is avoided, i.e. fermions 

with the same spin are prevented from occupying the same position. The spatial sepa­

ration is thus larger than expected from a purely classical analysis; hence the reduction 

in the strength o f  the Coulomb force. The result in the semi-classical approximation 

is a narrowing o f the band gap in the highly excited semiconductor with respect to the 

unexcited state.

The infrared LED displayed the most unusual spectrum o f all. Under normal operation 

(see Figure 8.20), a dominant peak at 841 nm in concurrence with a tertiary peak at
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810 nm was observed. At elevated powers (1.93 W per device) it was observed that the 

810 nm peak had moved to 806 nm and dominated the 841 nm peak which had shifted 

to 830 nm. This suggests that the high-power induced damage is introducing a defect 

level within the band structure that provides for alternative radiative recombination 

paths. The possibility o f  such a level is not inconceivable considering post failure 

analysis o f the device using back reflection section topography revealed large stresses 

(nominal |a | = 83-236  MPa) around the gold bond.

Wavelength (ran)

Figure 8.20: Change in output optical emission spectrum as a function o f power sup­
plied for infrared LED.
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8.4 Conclusions

Synchrotron X-ray topography has been applied to the study o f the failure o f ultra- 

bright LEDs under varying degrees o f electrical stress. It was observed that the in­

creased thermal load caused an increase in strain around the ball bond regions of the 

devices as they were stressed to the point o f near failure. When complete failure oc­

curred in the samples, it was observed that large lattice deformations o f the original 

device structure took place.

An attempt was made to evaluate the stress distribution within the active region o f the 

devices using micro-Raman spectroscopy. Unfortunately, this did not yield any data 

due to reflection o f the optical photons from the metallic layers in close proximity 

to the active region. This problem was circumvented through an order o f magnitude 

estimate o f the stress using the effective misorientation o f the lattice planes. In the 

analysis the limiting magnitude o f stress, based solely on dilatation and tilt o f the 

lattice, was evaluated. With the data obtained in this study, it is not possible to resolve 

the individual stress components arising from dilatation and tilt of the lattice. However, 

should the reader wish to ascertain a more accurate value o f the stress, then the four- 

azimuth topographic technique method suggested in [147] could be used to accurately 

resolve the stress components associated with lattice dilatation and tilt. Alternatively, 

conventional triple-axis diffractometry could be used.

Optical emission spectroscopy demonstrated a shift o f  the dominant peak towards long 

wavelengths for the green and red LEDs as applied power is increased. This has been
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explained by a bandgap renormalization mechanism accounting for a decrease in the 

electron-electron Coulombic particle interaction via the Pauli exclusion principle. The 

shift toward short wavelengths with increased applied power for the infrared LED is 

suggestive o f a defect level providing an alternative recombination path.
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Chapter 9

Strain Induced by Epitaxial Lateral 
Overgrowth of GaN on Sapphire

9.1 Introduction

Group III-nitrides are presently a promising system for semiconductor device applica­

tions, especially for the development o f blue- and UV-light emitting diodes. The III-V 

nitrides, gallium nitride, aluminium nitride and indium nitride are particularly interest­

ing for optoelectronic applications at such photon energies as they form a continous 

alloy system whose direct optical bandgaps range from 1.9 eV to 6.2 eV [75], These 

wide bandgap materials offer other advantages including high mechanical and thermal 

stability in conjunction with chemical inertness at high temperature. At present, re­

search is ongoing in the development o f these materials and the devices constructed 

out o f same.

One particular difficulty in the growth o f thin films o f these materials is the lack of 

sufficiently large substrates for homoépitaxial growth. Thus up to now, hétéroépitax­

ial growth is a practical necessity and the choice o f substrate is critical. At present, 

sapphire and silicon carbide are the most popular substrate materials. The lattice mis­
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match between hexagonal wurtzite a-phasc GaN and the underlying rhombohedral 

(hexagonal) «-sapphire can achieve values as high as 13.9%; consequently standard 

epitaxial deposition o f GaN on AI2O 3 can lead to very high threading dislocation den­

sities [75], Epitaxial lateral overgrowth (ELO) holds out the potential for significant 

reductions in threading dislocation densities for mismatched hexagonal-GaN on sap­

phire epitaxy [148-150]. Using openings in a relatively thick S i0 2 mask a new met- 

alorganic vapour phase epitaxy (MOVPE) GaN growth is carried out. After an initial 

phase o f vertical growth upward through the mask window, the growth then proceeds 

laterally over the mask itself. It is thought that a significant reduction in threading 

dislocation densities can be achieved via mask blocking o f vertically propagating dis­

locations and by means o f a redirection o f the propagation o f some dislocations at the 

growth front [151,152], Studies have shown that the ELO technique can result in dis­

location densities almost three orders o f magnitude lower than in the non-ELO case, 

wherein typical densities o f approximately 1 x  1010 cm -2  are often observed [150], 

GaN-based optoelectronic and electronic devices are expected to benefit from this re­

duction in dislocation density and this technique has recently been applied to GaN blue 

laser production [153,154]. However, an understanding o f the processes active during 

the ELO procedure, and their impact on strain and dislocation generation, is still far 

from complete. In this chapter, synchrotron X-ray topography in section transmission 

geometry has been applied to the evaluation o f ELO GaN on AI2O3 .
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9.2 Experimental

The growth o f the GaN films was carried out in a vertical rotating disk MOVPE reactor 

manufactured by Thomas Swan & Co. operated at a pressure of 100 Torr. Initially, a 

low temperature thin (50 nm) GaN buffer layer was grown on the 400 pm  thick c- 

plane sapphire substrate at 500 °C [155]. On top o f this, a 0.85 p m GaN epilayer was 

deposited. In both cases, trimethylgallium (TMG) and ammonia (NH3) were used as 

the gallium and nitrogen precursors. This constitutes the non-ELO sample as shown in 

Figure 9.1.

0.85-1.2 pm GaN Epilayer 

33-50 nm  GaN Buffer

440 |j,m (001) AI2O3

Figure 9.1: Schematic o f the non-ELO GaN sample (not drawn to scale).

Subsequently, 100 nm thick Si0 2  stripes were deposited using plasma enhanced chem­

ical vapour deposition (PECVD) followed by conventional photolithography and dry 

etching. The wafers were divided into four regions according to their respective fill 

factor

W
W + L  (9 1 )

where Si0 2  stripe widths (W )  o f  2 /¿m and 3 //m  were applied and the window open-
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ings (L) were varied between 3 jim  and 5 pm . In order to achieve large lateral growth 

rates the stripes were oriented in the < 110>  direction relative to the GaN epilayer. A 

summary o f  this information is presented in Table 9.1. A schematic outline o f the lo-

Sample region Window Opening W  (pm ) S i0 2 stripe width L (pm ) Fill factor /
A 5 3 0.625
B 4 3 0.571
C 4 2 0.667
D 3 3 0.500

Table 9.1: Sample region and fill factor data for ELO wafer, 

cation o f sample regions A -D , together with the stripe orientation, is shown in Figure

< 1 1 0  >

Stripe Orientation

Figure 9.2: Wafer regions differing according to fill factor.

Prior to the actual ELO growth the sample was dipped for 5 s in a 1:4 solution of 

HF:H20  to remove the surface oxide. Using H2 as the carrier gas and the aforemen­

tioned precursors, the ELO growth took place at 1080 °C. Typical flow rates for the 

TMG and NH3 were 23.7 /imol/'min and 5 1/min, respectively. The thickness o f the 

resulting ELO layer was 6 .8  pm. The ELO structure is shown in Figure 9.3.
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4 .8 -6.8  \uxi ELO GaN

100-150 tun S i0 2 Mask

0.85-1.2 |im GaN Epilayer 
33-50 nm  GaN Buffer

440 n-m (001) A120 3

W  L

Figure 9.3: Schematic o f the ELO GaN sample (not drawn to scale).

Section transmission X-ray topography was applied to the study o f the GaN samples. 

The (001) sample surface was set at a tilt angle o f 18° with respect to the vertical plane 

perpendicular to the incident beam. The Laue patterns o f topographs were recorded 

either on Kodak High-Resolution SO-343 X-ray film or Geola VRP-M holographic 

film. This method and the corresponding view on the X-ray film is depicted in Figure 

9.4. The sample to film distance D  was 50 mm.

X-ray diffraction (XRD) measurements were performed using a Bede Model 150 dou­

ble crystal diffractometer. (004) double crystal X-ray diffraction FW HM  reflection 

measurements were obtained for the non-ELO and ELO samples as a function o f fill 

factor / .  For the purpose o f this measurement the non-ELO sample was defined as 

having a fill factor /  =  1. Experimental data obtained using these techniques were
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Film

2A9aaD

(a) 0>)

Figure 9.4: (a) Section transmission topography experimental setup, (b) Laue picture 
recorded on film from section transmission topography experiment.

complimented with transmission electron micrographs.

9.3 Results

Figure 9.5 (a) illustrates the Laue pattern taken from a complete film of the non-ELO 

GaN on AI2O3 sample. This Laue arrangement is composed o f  two sets o f topographic 

images, the first from the sapphire substrate and the second from the GaN epilayer. 

An indexed schematic reconstruction o f  this film is shown in Figure 9.5 (b). In certain 

cases, a number o f substrate and epilayer topographs overlap e.g. the T I  0  AI2O3 and 

the 010 GaN reflections.

However, for other topographs the image o f the substrate and its corresponding epilay-
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(a)

Figure 9.5: (a) KODAK SO-343 film wherein a set o f  substrate and epilayer reflections 
were recorded in section transmission mode, (b) A n indexed schematic corresponding
to  (a).

ers are separated from one another, e.g. the 113 Al203 and the O il GaN reflections. 

Inherent in the growth o f  GaN on sapphire is a 30° rotation o f  the epilayer with re­

spect to  the substrate. Consequently, a small separation is expected between certain 

reflections. This is indicated by 2A (f) — 1.48° in Figure 9.6, a magnified image o f the 

reflections highlighted in Figure 9.5. The m easured angular separation indicated by 

2 A0act is much greater. It was found that this excess in m isoricntation for the non-ELO 

GaN sample was 2A0act =  1.68°. This observed separation or misorientation between 

the substrate and the epilayer is prim arily due to lattice mosaicity and tilt between the 

substrate and epilayer.

In  the case o f  strained layer GaN epitaxy, the lattice dilatation m ay be understood in
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r
B’

C'

113 A ljO j

2A0.D 2À8[xi- T) 100 |im

2(2Â .D
I 4

O il  GaN

Figure 9.6: Section transmission topograph from non-ELO sample.

terms o f a change in the perpendicular component o f the lattice parameter whilst the 

parallel component remains unchanged [156], This results in a tilt o f  the relative po­

sitions o f the lattice planes in the epilayer with respect to the substrate. Thus, along 

directions where the diffraction vector g and the vector h  running normal to the dis­

tortion vector are perpendicular, there will be an observed shift in the position o f the 

diffracted image o f the epilayer with respect to the substrate. This condition is satisfied 

when

g - h  =  0 (9.2)

The quality o f  the GaN epilayer is rather poor as one can see that the image o f the 

epilayer is severely broadened and appears to be almost as thick as the substrate it­

se lf Since the epilayer and substrate are approximately 6 .8  ¡im. and 400 /im thick,
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respectively, this cannot be the case. This effect is most likely due to the fact that 

the epilayer is far from perfect and this manifests itself via local deviations from lat­

tice coherence throughout the epilayer. Various regions in the epilayer, each slightly 

misoriented with respect to its neighbour, though macroscopically aligned, will each 

contribute to a topographic image in a manner similar to a mosaic structure with a high 

dislocation density. Each o f these regions will produce images at slightly different lo­

cations on the films. I f  it is assumed that these deviations are symmetrically distributed 

around the nominal crystallographic positions, the measured broadening o f the epilayer 

in the section topograph is given by 2 Aip. For the example presented in Figure 9.6, we 

find that these local lattice misorientational deviations give values o f 2Aip — ±0.177° 

across an 8.5 mm length o f epilayer. This is principally due to the apparent growth of 

highly misoriented features within the epilayer as indicated by arrows B and C. These 

features correspond directly to highly misorientated features on the substrate (arrows 

B ’ and C ’). Additionally, it has previously been observed in the case o f GaAs ELO on 

GaAs [157], that the ELO Si0 2  stripes can produce very high stresses in the underlying 

semiconductor. This can be observed as an array o f vertically orientated stripes o f the 

order o f hundreds o f microns long. This mechanism may also be contributing to the 

apparent broadening o f the image o f the ELO GaN, though resolving individual stripe 

effects is nearly impossible, given the 2 /¿m to 3 (im  stripe widths used in this study.

For the ELO GaN sample 2A<?act varied as a function o f the fill factor as shown in 

Figure 9.7. It was observed that the misorientation increased monotonically with the 

fill factor. The increase in misorientation is attributable to a possible combination o f
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lattice misfit at the interface plane (which is due to the difference in lattice constants: 

a0 =  3.189 A, Co =  5.185 A for GaN and a0 =  4.785 A, Co =  12.991 A for a-phase 

AI2 O 3) and the hexagonal deformation into the c-direction [001] resulting from the 

strain. Further experiments will be required to determine which, if  either, mechanism is 

dominant and if a limiting misorientation may be reached. Kobayashi and co-workers 

[158] studied the variation in basal plane rotation and tilt for MOVPE-ELO grown GaN 

films. They observed that the tilt and rotation angles for ELO grown films were always 

less than for the non-ELO reference sample and depended on the stripe direction o f the 

mask pattern. Their results demonstrated that the c-axis tilts mainly along the <  110> 

normal to the stripe pattern.

1.79 

1.78 

1.77 

1.76

2Aea ct' 75
1.74 

1.73 

1.72 

1.71
0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68

Fill F a cto r /

Figure 9.7: Plot o f misorientation 2A 9act versus fill factor /  for the non-ELO GaN 
sample.
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The variation in measured separation 2A0act as a function o f fill factor becomes espe­

cially apparent when one compares two regions on the ELO mask with greatly differing 

fill factors. An example o f  this is conveyed by Figure 9.8, which is a section transmis­

sion topograph o f the ELO GaN epilayer recorded from regions C and D simultane­

ously. There exists a 33% difference between the fill factors o f the two regions and 

this is directly correlated with the unambiguous shift in the separation of the two re­

gions o f the epilayer with respect to the substrate. Region D displays a slightly greater 

misorientation than region C. This difference is indicated on Figure 9.8 by the mea­

sured angle 2A u  — 0.04°. This argument is further substantiated when one examines 

the case where the difference in fill factor between the two regions is not significantly 

large; an example being regions A and B. The difference in fill factor is only 9.5% and 

a negligible misorientation with respect to the two regions could be measured, as one 

would expect having examined Figure 9.7.

^2AmD

T— '

Figure 9.8: O il transmission section topograph o f GaN epilayer simultaneously 
recorded from regions C and D. The substrate which appears above the epilayer has 
been omitted for clarity.

In region D large spikes are observed, indicated by the arrows A in Figure 9.8. These 

spikes are most probably due to the build-up o f strain/misorientation at the Si0 2  stripe 

edges, which was mentioned previously. Since the dimensions o f the stripes in this
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region are close to the vertical threshold o f resolution for SXRT (circa 4 pm  at the F-l 

beamline at HASYLAB), it is difficult to discern individual windows. However, this 

argument is supported by the fact that these features are not easily seen for region C, 

wherein the stripe widths are reduced by 33%. Similar features have been observed for 

the ELO growth o f GaAs [157].

The quality o f the ELO GaN sample is superior to the non-ELO sample. This is evident 

by comparing a section transmission topograph from region A of the ELO sample (Fig­

ure 9.9) with Figure 9.6. The substrate in this sample is far superior to the non-ELO 

analogue; no m ajor regions o f strain/misorientation present themselves. In conjunc­

tion, the local lattice misorientational deviations give values 2 A ip =  ±0.118° across 

an 8.5 mm length o f epilayer. This is much smaller than the value recorded for the 

non-ELO sample. The lattice misorientational deviation parameter 2Aip portrays the 

superior quality o f the ELO epilayer over its non-ELO counterpart. A comparison of 

the epilayer qualities based solely on the misorientation parameter 2 A 0act is not suffi­

cient, as notable differences in sample structure exist to make the comparison on this 

basis misleading. Rather the lattice misorientation parameter 2A ip when considered 

with 2 A 0act can aid in a more definitive evaluation.

Within the bounds o f one standard deviation o f measurement error ±0.003°, it was 

not possible to discern any difference in local lattice misorientation for each o f the 

different fill factor regions in the ELO sample. Therefore, epilayer quality superiority 

between the regions was evaluated in terms o f the misorientation parameter 2 A 0act as 

the strain due to lattice mosaicity and misorientation is infused in this parameter.
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113 A120 3

2A<f>.D 2A8na. D 100 |J.m

2(2Ay). D O il  GaN

Figure 9.9: Section transmission topograph from region A of the ELO sample.

The arguments presented in the preceding paragraphs were further substantiated by 

(004) double crystal X-ray diffraction FW HM reflection measurements. An improve­

ment o f the crystalline quality o f the ELO layer compared to the non-ELO sample 

became clear when plotting the rocking curve FWHM as a function o f fill factor as 

shown in Figure 9.10. The dependence upon the fill factor is not completly understood 

at present but the FW HM is always lower than in samples possessing a fill factor of

1. However, Ferrari et al. [159] have identified that the Bragg peak width in III-V 

semiconductor heterostructures increases due to a correlated effect between the strain 

and tilt (or mosaicity) o f lattice planes in the directions parallel to the hetero-interface. 

Clearly the epitaxial overgrowth possesses a smaller interface strain field than the non- 

ELO sample as conveyed by the topographic images; consequently our results are in 

agreement with [159]. It should be stressed that for the XRD measurements o f the 

ELO regions, the large area o f the impinging beam averages across material above and
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between the stripes, and given that FW HM  measurements are taken, the measured mis- 

orientations using XRD will be different than for SXRT. This is indeed the case albeit 

the trend is similar for both measurements. Similar trends were observed in [160] for 

both the local lattice misorientation parameter 2 A^> and the macroscopic misorienta- 

tion factor 2A0act.

Fill Factor

Figure 9.10: (004) double crystal X-ray diffraction FWHM reflection measurements 
for the ELO GaN on sapphire samples as a function o f fill factor (solid line). Also 
included is the non-ELO sample, designated as having a fill factor /  =  1.

Transmission electron microscopy measurements for the ELO sample showed a signif­

icant degradation in crystallinity for the non-ELO layer when compared with the ELO 

region as shown in Figure 9.11. Large threading dislocations can be seen propagating 

vertically in the non-ELO GaN region. However, for regions above the S i0 2 mask a 

significant reduction in their density is observed consistent with a redirection o f the 

propagation o f some dislocations at the growth front [151,152],
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CaN ELO layer 

Si02

First GaN epilayer 
non-ELO

1 iim
GaN /  -AljOj 

Interface ►

Figure 9.11: A transmission electron micrograph o f a representative ELO sample. 

9.4 Conclusions

W hite beam synchrotron X-ray topography in section transmission mode was used 

to monitor the improvement in quality o f ELO GaN on sapphire when compared to 

non-ELO material. Strain at the epilayer-substrate interface was observed via an ori­

entational contrast mechanism. Measurements o f the observed misorientation o f the 

GaN epilayer with respect to the substrate produce values which are larger in the ELO 

sample than for the non-ELO sample. However, this misorientation does not directly 

enable qualitative comparisons between the two samples as sufficient structural differ­

ences exist to make this information misleading. Rather local deviations from lattice 

coherence within the epilayers serve as better means o f comparision: the ELO re­
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gions displayed smaller deviations than the non-ELO sample (2 A ip =  ±0.118° versus 

2 =  ±0.177° across an 8.5 mm length o f epilayer). Topographic measurements 

also revealed variations in the ELO epilayer quality as the fill factor was varied. More­

over, they clearly displayed the enhanced quality o f the ELO sample with respect to 

the non-ELO material. Furthermore, the decreasing FWIIM o f (he rocking curves with 

decreasing fill factor and Ihe imaging o f dislocations by TEM near ELO and non-ELO 

interfaces demonstrate the better quality o f the ELO samples versus (he non-ELO sam­

ple. The results agree qualitatively with other studies performed on similar samples.
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Chapter 10

Rapid Thermal Processing of Silicon Wafers

10.1 Introduction

Rapid thermal processing (RTP) is an important technology for VLSI chip manufac­

turing, and is increasingly replacing conventional furnace processing. Tighter process 

reproducibility and stricter control during device fabrication, coupled with the contin­

ued downscaling o f VLSI device dimensions, has driven the demand for very short 

high-temperature processing steps. Low dopant distribution and accurate control of 

oxide growth cycles [161] are some o f  the major advantages offered by rapid thermal 

doping (RTD) and rapid thermal oxidation (RTO).

However, RTP is not without its disadvantages. Radiative cooling mechanisms in­

herent in the process, along with greater localised cooling at the wafer edge result 

in thermal gradients and therefore thermal stress within the sample. These thermal 

non-uniformities have made it difficult for RTP systems to meet both stress and film 

thickness uniformity requirements [162], Thermal stress within the sample can be re­

lieved by the formation o f slip lines [163], Stress-induced defects influence physical 

processes, such as diffusion o f dopant species and recombination times o f charge car­
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riers. Greater process yield and enhanced device operation can be achieved through an 

understanding o f the strain generation mechanisms within the constituent materials.

Several models have been proffered to explain the formation and relief o f thermal 

stress within silicon wafers which have undergone proximity RTP. Using a simple 

two-dimensional reactor scale model and assuming axisymmetric temperature profiles, 

Lord [164] modelled the wafer temperature and stress distribution for unpattemed sil­

icon wafers during RTP. Bentini et al. [165] evaluated the topographic distribution of 

slip lines in silicon wafers where plastic deformation had occurred. Deaton et al. [166] 

used this model coupled with [167], to estimate the oxide distribution in a silicon wafer 

after various RTO options. In this chapter, a quantitative and qualitative comparison is 

made with the theory developed by Bentini and co-workers, using micro-Raman spec­

troscopy and synchrotron X-ray topography experimental measurements o f the stress 

in silicon samples that have undergone various RTD and RTO processing options.

Raman scattering is a very sensitive technique to probe local atomic environments, be 

they crystalline or amorphous, through their vibrational modes [168], The surround­

ings o f  a particular atom have a strong influence on its dynamics; therefore, defects 

and/or structures inducing strain within the material will cause a change in the Raman 

spectra. This spectral shift with respect to the unstrained material can be related to 

the local stress through the appropriate Raman tensor. The quantitative information 

provided by Raman spectroscopy regarding the stress in the sample is limited by the 

penetration depth o f the excitation source. Conventional laboratory laser sources can 

achieve penetration depths between circa 6 nm  and 600 nm. As the active regions
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of most integrated circuits lie within 500 nm o f the substrate surface, Raman spec­

troscopy is therefore a suitable tool for analysis o f stress distributions in these devices. 

Micro-Raman spectroscopy has been applied to the study o f local mechanical stress 

in microelectronic devices and structures [169,170]. Recently, this technique has also 

been used to study the stress generated in silicon by proximity rapid thermal diffu­

sion [171],

With spatial resolutions better than 1 ¡jm, X-ray topography and micro-Raman spec­

troscopy can yield complimentary information about the location and nature o f stress 

within a sample. Thus their applicability to the focus o f this chapter, the investigation 

o f strain induced by rapid thermal processing o f silicon wafers, is ideal.

10.2 Theoretical Description of Stress in RTP Wafers

In their analysis o f  rapid isothermal annealing o f silicon wafers, Bentini et al. [165] 

modelled the topographic distribution o f slip lines in thermally stressed <  1 0 0 >  wafers. 

By assuming a free standing wafer o f radius o, uniformly irradiated on one side by a 

lamp, they evaluated the temperature distribution in the wafer assuming the principal 

mechanism o f heat loss from the sample to the ambient was attributable to radiation. 

Consequently, different regions o f the sample, radiating at different rates will give rise 

to thermal gradients. As silicon has a high thermal diffusivity (0.87 cm2s_1), heating 

through the thickness o f  the wafer may be assumed instantaneous on the time scale of 

the thermal processing and thermal gradients within the thickness o f  the sample h  can 

be neglected.
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Bentini and co-workers ascertained the radial temperature distribution to be

(10.1)

where T0 represents the steady-state temperature in the sample and K  (T ) is the thermal 

conductivity o f the sample at temperature T . I0 and I \  are modified Bessel functions 

o f the first kind o f order zero and one, respectively. H 0 governs the rate at which the 

surfaces radiate to the ambient in accordance with the Stefan-Boltzmann law. The 

parameter

describes the distance over which the cooler area extends from the wafer edge i.e. it 

governs the length o f the thermally stressed region and the length o f the stress relieving 

dislocations, o  is Stefan’s constant and e is the emissitivity o f the material. For a 150 

mm diameter, 500 p m  thick silicon wafer heated to 1050 °C, / = 4 .1  mm.

The radial ar and tangential oq components o f the thermally induced stresses were 

computed using [172] (see Figure 10.1).

( 10.2)

(10.3)

a Y H 0l2
(10.4)

{a/1) )

where Y  is Young’s modulus and a  is the thermal coefficient o f linear expansion. 

Inherent in the term describing Young’s modulus is a quasi-isotropic approximation
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wherein the average value o f Young’s modulus for the <  100>, <111 >  and < 110> 

directions is used.

Distance from centre (mm)

Figure 10.1: Radial oT and tangential o t stress components as a function o f distance 
from centre o f wafer; 150 mm diameter <001 >  n-type wafer, T0 =  1050 °C.

Equations (10.3) and (10.4) were converted to Cartesian coordinates to appeal to the 

crystallographic symmetry o f the silicon lattice in this coordinate system.

&r *F &0 (nf\\ i\crxx ~ ---  + ---- cos(20) (10.5)

Or +  Oo Ot - < 7 q . t i n  f \
° w  =  — 2----------~ 2 —   ̂  ̂ ( -6)

<?xy = ° T 2 °° sin(20) (10.7)

where 0 is the angle measured counterclockwise from the 110 axis as shown in Figure 

10 .2 .
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When the thermally induced stress is larger than the yield stress ol'silicon a y , then slip 

of the {111} planes in the < 1 10> direction ensues. Using the data o f Schroter in [173], 

the yield stress ol'silicon at 1050 °C was computed to be oy =  208 MPa. Bentini el 

al. [165] cited 12 positions on the wafer where the stress concentration is expected to 

exceed the elastic limit as illustrated in Figure 10.2. The maximum resolved stresses 

|St| may be computed using Equations (10.8 )-( 10.12)

l&l = yfl*wi C°'8)

!& | =  +  <7xy\ (10.9)

!53 | =  yf^Wzx -  <Txy\ ( l o . i o )

N  =  ] f l W y » + V * y \  (10.11)

\Ss\ = \J lW yy-0Xy\ (10.12)

When the thermally induced stress component S \  exceeds the elastic limit by 20%, 

conjugate glide on two glide systems results, causing steps on the wafer edge, with no 

visible effect on the wafer surface. The stress components S2 to 5-, give rise to slip 

lines, which should be visible on the polished surface o f the wafer.
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<1 1 0>

Figure 10.2: Locations o f the maxima o f the thermally induced stresses and the cor­
responding slip line directions on a < 0 0 1  >  n-type silicon wafer. 0 is measured coun­
terclockwise from the < 110>  axis. The stresses | ,5',-1 were calculated using Equations 
(10.8}-(10.12).

10.3 Experimental

10.3.1 Sam ple P rep ara tio n

Several different wafers were prepared for the proximity rapid thermal processing op­

tions: rapid thermal oxidation and rapid thermal doping of 150 mm diameter Czochral- 

ski grown n-type silicon wafers [171,174], The <001 >  oriented wafers used through­

out the study possessed a nominal resistivity o f 9 — 15 cm. The as-received wafers 

were cleaned using H2 SO4  : H 2 O2 followed by a dip in HF. This constituted the refer­

ence wafer.
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For the RTO process, the samples were fabricated by stacking a clean silicon reference 

wafer in close proximity to the silicon product wafer in the RTP furnace. The source 

wafer and product wafer were separated by 0.5 mm silicon spacers. In doing so, the 

product wafer experienced the same temperature profile as the RTD process, thereby 

minimising experimental variations between doped and oxidised wafers. Using the 

Deal-Grove [175, pp. 313-322] first order growth kinetic model o f oxidation, the 

thickness o f the silicon dioxide layer formed on the sample surface could be estimated 

(see Table 10.1).

For the RTD process, boron doped spin-on dopant B153 (SOD) manufactured by 

Filmtronics, USA, was spun onto the wafer at 6000 rpm for 15 s. The wafers were 

then baked at 200 °C to evaporate moisture and light organics from the SOD. Next, 

the SOD layer was cured at 900 °C for 45 s to convert it to a borosilicate glass dopant 

source. This dopant source was stacked in close proximity (0.5 mm) to an initially un­

doped silicon reference wafer in the RTP furnace. During RTD, boron trioxide (B 2Oz) 

evaporates from the dopant source at a temperature o f 1000 °C, across the separation 

gap, where it is adsorbed on the surface o f  the product wafer. Boron diffusion is then 

accomplished by means o f a surface oxidation-reduction reaction between the boron 

trioxide and the silicon wafer [176], as shown in Equation (10.13).

2B 20$  -I- 3S i  ■<-> AB  +  3 S i0 2 (10.13)

In this reaction, doped silicon dioxide is formed on the surface o f the product wafer and
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becomes a dopant source for elemental boron, which diffuses into the silicon substrate. 

Excessive amounts o f boron trioxide in the dopant source can lead to the formation of a 

boron skin composed of silicides and other boron compounds on the silicon surface. By 

performing the reaction in an oxidising ambient this can be avoided. At 1050 °C boron 

has a diffusivity D =  47 x 10^ 15 cm2s-1  in silicon [175, pp. 380-391]; consequently 

for the maximum processing times used in this study (166 s), the diffusion distance of 

the boron atoms is o f the order o f 0 .2  pm.

The RTP options were performed using a Sitesa rapid thermal processor with a maxi­

mum operating temperature o f 1200 °C. The RTP furnace consists o f a water-cooled, 

highly reflective stainless steel, double-sided casing. The product and dopant wafers 

were supported on three quartz pins inside a quartz chamber contained within the fur­

nace. A bank o f twenty four tungsten-halogen lamps mounted above and below the 

wafers constituted the heat source. The intensity o f the lamps was determined by two 

thermocouples. One thermocouple was used to monitor the temperature o f the pro­

cess wafer and the second thermocouple was used to monitor a control section o f the 

wafer. The control thermocouple provided feedback to maintain the temperature o f the 

lamps. To ensure repeatability, the wafers were always inserted into the chamber with 

the major flat parallel to the furnace door. At a given temperature, there existed a 90 °C 

temperature variation across the 150 mm diameter; the temperature at the furnace door 

being cooler than at the back o f the chamber. This anomalous temperature profile was 

found to be due to a variation in the power supply o f the halogen lamps. All the rapid 

thermal processing was performed in an oxidising ambient o f 25% O2: 75% N 2; with
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an RTP ramp-up rate o f 48 °C/s and a ramp-down rate o f 60 °C/s. For both processing 

options, the wafers were held at a peak temperature o f 1050 °C for periods o f 5 s, 16 

s and 166 s. A  summary o f the processing options is presented in Table 10.1 and the 

RTP tool configuration may be seen in Figure 10.3. In this chapter, only the silicon 

reference and product wafers were analysed for stress.

W afer R apid  T herm al Process T em peratu re  (°C) D uration  (s)
A Oxidation 1050 5
B Oxidation 1050 16
C Oxidation 1050 166
D Diffusion 1050 5
E Di Ifusion 1050 16
F Diffusion 1050 166

Table 10.1: Rapid thermally processed samples. The oxidation process resulted in 
S iO ‘2  layers 1.2 A, 4 A and 40 A thick for the respective oxidation times.
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Figure 10.3: RTP tool configuration for doping and oxidation, (a) Side-view o f RTP 
furnace (b) Plan-view o f  RTP furnace and (c) doping sample configuration. The dopant 
source is borosilicate glass on a silicon substrate. The heat is provided by twenty 
four tungsten-halogen lamps situated above and below the wafers. At 1000 °C, boron 
evaporates across the 0.5 mm gap and is adsorbed by the silicon product wafer. For the 
RTO process, the source wafer is replaced by a silicon reference wafer. Drawings not 
to scale.



C hapter 10 Rapid Thermal Processing o f  Silicon Wafers

10.3.2 M icro-R am an Spectroscopy

The micro-Raman measurements [171] were performed in backscattering mode on 

a Renishaw Raman microscope system 1000. The 514.5 nm line o f the A r ^  laser, 

yielding stress information from a penetration depth o f approximately 541 nm, at a 

power of 25 mW was used as the excitation source. The incident light was polarised 

parallel to the width of the line and the scattered light from the polariser was not 

analysed. Two objective lenses (40x , 4 x ) , located outside the microscope, were used 

in conjunction with a pinhole having a diameter o f 10 pm  to expand the laser spot 

size. The light was then focused onto the sample using a 50x objective lens mounted 

on an Olympus BH-2 optical microscope. The size o f the laser spot incident on the 

sample was approximately 1 pm . A  Peltier cooled CCD detector with 1 cm" 1 spectral 

resolution was used to analyse the spectrum.

The sample was placed underneath the objective lens on an X-Y translation stage. The 

sample was moved using the X-Y stage and at ten positions on the wafer a Raman 

spectrum was recorded. The positions are illustrated in Figure 10.4. The crystalline 

silicon Raman spectrum in a phonon region mainly consists o f a narrow peak at 520 

cm -1  with a full width o f about 4.18 cm-1 , arising out of scattering o f incident light 

by long wavelength transverse optical phonons [177], At each point on the sample, 

the phonon vibration peak was recorded along with the exciting line peak, in order to 

avoid inaccuracy in the peak position due to drift o f  the calibration frequency.

Background baseline removal, followed by a line fit using a Lorentzian function, allows

260



C hapter 10 R apid Thermal Processing o f  Silicon Wafers

<1 1 0>

Figure 10.4: In accordance with the theoretical review o f Section 10.2, Raman spectra 
were recorded at ten positions (a-j) on the RTP wafers.

three components o f the Raman spectrum to be determined i.e. intensity, full width 

and position. Variations in the aforementioned are related to the composition, defect 

density and magnitude o f stress in the sample under investigation. With a state-of-the- 

art spectrometer, it is possible to identify a shift in the Raman band o f the order 0.01 

cm -1 . By assuming a uniaxial stress along the [100] direction, DeW olf [169] obtained 

a relationship between the stress, a  (in Pa) and the Raman shift, A oj (in cm“ 1) for a 

strained silicon crystal.

(7 — B  (wstress ^ r e f )  (10.14)

where B  =  —500 x  106, wstress (in cm-1 ) is the peak frequency o f  the phonon band of
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silicon under stress and wrcr (in cm-1) is the peak frequency o f the phonon band of the 

stress-free silicon wafer. A positive or negative shift in the Raman peak position from 

the unstressed value corresponds to a compressive or tensile stress, respectively. Using 

the current experimental arrangement, the minimum detectable stress \(Jmin \ = 5 MPa.

10.3.3 Synchro tron  X -ray Topography

Two white beam X-ray topographic imaging modes were employed in this study: large- 

area back reflection topography and section transmission topography (see Chapter 7). 

For the large area back reflection experiments the beam impinging perpendicularly on 

the sample was collimated to 3 mm x  3 mm. For the section transmission topographs 

the incident beam was collimated into a narrow ribbon by a slit typically 1 0 -1 5  ¡im  in 

height by 3 mm in width. The sample was tilted at 18° to optimise the imaging o f the 

040 and 044 set o f reflections. The aforementioned topographic images were recorded 

on Kodak SO-181 high resolution professional X-ray film, having an emulsion grain 

size o f about 0.05 pm . The distance from the sample to film was 40 mm in both 

imaging geometries. Table 10.2 summarises the topographic measurements.

Wafer Regions Studied RTP Process @ 1050 "C
Reference — —

C h Oxidation 166 s
D h, c Diffusion 5 s
F h Diffusion 166 s

Table 10.2: Samples studied using X-ray topography. The sample regions are those of 
Figure 10.4.
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10.4 Results

The reference sample, possessing a Raman phonon peak at 520 cm -1  and a full width 

at half maximum T = 4.2 cm-1 , demonstrated excellent crystallinity. This was con­

firmed by the presence o f Pendellosung fringes in the section transmission topograph 

o f Figure 10.5. From Chapter 5 it is known that Pendellosung fringes occur due to the 

interference o f the X-ray wavefields propagating within the crystal [178]. The number 

o f fringes n  in a perfect crystal

n  =  (10.15)
Ao

where i 0 is the thickness of the crystal and A0 is the Pendellosung distance [126,179]. 

For the 044 reflection o f a 505 pm  thick silicon wafer n  =  16.62. For the topograph 

illustrated in Figure 10.5, sixteen fringes were counted using an optical microscope. 

Hence, the starting material for the RTP process is o f superior quality.

1.5 mm

Figure 10.5: 044 section transmission topograph o f reference sample. The interference 
pattern (Pendellosung Fringes) is indicative o f excellent sample crystallinity. g is the 
diffraction vector.

As indicated by Table 10.3, an increase in thermal stress was observed in the RTO 

wafers A-C with increased oxidation time. The only exceptions to this were positions 

/  and g, whereby stress reduction in these regions was attributed to the RTP tool con­
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figuration i.e. the 90 °C temperature variation across the 150 mm diameter. Positions 

e and i in Table 10.3 correspond to the position o f the stresses S\ and S2 in Figure

10.2 respectively. After 166 s o f oxidation, the measured stresses at these positions, 

ai — —320 MPa and o e =  —135 MPa, were found to be in excellent agreement with 

the theoretical values |5 i | =  360 MPa and |S2| =  185 MPa. The slight differences in 

these results may be accredited to the assumption in Equation (10.14) that the stresses 

measured using micro-Raman spectroscopy were uniaxial in nature.

Wafer position Wafer A Water B Wafer C
a 0.T2 0 .2 0 Û753
b 0.09 0 .2 0 0.29
c 0.09 0.35 0.63
d 0.01 0 .2 0 0.44
e 0.18 0.19 0.27
f 0.03 0 .2 0 0.07
g 0.06 0.15 0.04
h 0.04 0.06 0.38
i 0.23 0.24 0.64
j 0.03 0 .1 0 0.31

Table 10.3: Measured shift in Raman peak Aw (cm-1) in RTO wafers (A-C) with re­
spect to reference wafer.

Section transmission X-ray topographs taken from the wafer edge (region h) after 166 

s RTO, demonstrated a reduced number o f Pendellosung fringes with respect to the 

reference material. The reduction in fringe density and sharpness as shown in Figure 

1 0 .6 , is indicative o f a degradation in crystallinity due to the prolonged oxidation.

Micro-Raman measurements o f the RTD wafers demonstrated a commensurate in­

crease in strain with time, prior to plastic deformation o f the lattice. The results are 

summarised in Table 10.4. The stress in wafers D and E is greater than their oxidised 

counterparts for the same process interval. This is due to the presence of boron in the
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-•** 1»
1.5 m m

Figure 10.6: 044 section transmission topograph o f wafer C from region h. A reduc­
tion in the number o f Pendellosung fringes with respect to the reference material is 
indicative o f crystallinity degradation, g is the diffraction vector.

silicon lattice. After 5 s o f the RTD process, boron adsorbed on the wafer surface in 

accordance with Equation (10.13), induced large strain fields that penetrate approxi­

mately 120 /jm into the wafer bulk. It is important to note that one is only imaging the 

impact o f the strain due to the adsorbed boron in the section topograph o f  Figure 10.7

(a) and not the actual diffusion o f boron within the lattice. Evidence of oxygen related 

defects within the wafer can be seen in Figure 10.7 (b).

Distortion of the silicon lattice must occur to accommodate dopant impurity atoms. 

Silicon has a tetrahedral radius o f 1.18 A. Boron has a tetrahedral radius o f 0 .8 8  A, 

corresponding to a misfit e =  0.254. Since boron is smaller than silicon, the presence 

o f boron in the silicon wafer induces lattice contraction and enhances stress generation. 

Therefore, the induced stress in a doped wafer is expected to exceed the yield strength 

more quickly than in an undoped wafer. This was found to be the case through an 

investigation o f the Raman shift for the RTD wafer F, which underwent a long thermal 

anneal o f  166 s. A sm aller stress was found in this wafer compared to those that 

underwent shorter RTD processes, allowing one to conclude that the wafer had relaxed 

through plastic deformation.
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(a )

U mni

(b)

Figure 10.7: (a) 044 and (b) 004 section transmission topographs o f wafer D from 
region c. Adsorbed boron on the wafer surface induces strain fields propagating ap­
proximately 120 pm  into the wafer bulk as indicated by arrows A. Oxygen related 
defects are shown in the 004 reflection with arrows B. g is the diffraction vector.

A comparison o f the stress in wafers C and F confirmed this result. The stress in the 

oxidised wafer had not been relieved to any significant degree; consequently greater 

stress was demonstrated across wafer C. Wafer C demonstrated a compressive topology 

in comparison to the relaxed wafer F, which was found to be compressive at the edges 

and tensile in the centre. These results contradict those obtained by Deaton et al. 

[166]. Deaton observed that the temperature gradient induced a stress distribution 

that was compressive at the centre and tensile towards the edges o f the wafer. At
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Wafer position Water D Wafer E Wafer F
a 0.15 0X7 ' ' 0.32
b 0.16 0.29 0.17
c 0.14 0.53 -0.01
d 0.15 0.19 0.04
e 0.14 0.35 0.15
f 0.16 0.23 0.08
g 0.18 0.41 0.23
h 0.19 0.46 0.24
i 0.34 1.04 0.44
1 0.15 0.36 0.14

Table 10.4: Measured shift in Raman peak Aw (c m 1) in RTD wafers (D-F) with re­
spect to reference wafer.

present, this anomalous result is thought to be due to a variation in the temperature 

gradient within the RTP oven and/or some other specific effect of our RTP tool. Further 

investigations will be required to ascertain which mechanism, i f  either, is dominant. 

The self-consistent results presented within this chapter identify that to a first order, 

the model proposed by Bentini and co-workers [165] is accurate.

Slip lines due to stress palliation measuring 0.3 mm, 5 mm and 25 mm were observed 

in region a o f wafers C, E and F respectively. Wafer E is in closest agreement with the 

theoretical prediction o f the slip line length Z =  4.1 mm. Optical microscopy demon­

strated that the topological distribution o f the stress in the wafer agrees with [165]. An 

analysis o f  the Raman full widths provides an insight regarding the structural deforma­

tion o f the crystal from the RTP process. Using Table 10.5 to compare the full width 

at ha lf maximum for the RTO wafer C, which underwent oxidation for 166 s, with the 

reference wafer ( r  = 4 .1 8  cm '1), substantiates the previous results that the oxidation 

process induces only m inor lattice perturbations. Short RTD processes wherein boron 

adsorbed on the wafer surface induces strain fields within the sample, were observed
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to induce slight structural disorder within the lattice. Compare for example, the Raman 

full widths for wafer D with the section topographic image o f Figure 10.7 (a). The for­

mation o f slip dislocation lines increased with increased time at the peak temperature. 

Lord [164] predicts that the ramp rates are not the cause o f the most damaging stresses 

in the wafer; it is the temperature non-uniformity at the peak temperature that tends to 

stress the wafers beyond the yield stress. Due to the strong temperature dependence 

o f the silicon critical yield stress, the extent o f slip line formation depends on both the 

peak wafer temperature and the time spent at this temperature. For the case of wafer 

F there is a very noticeable increase in the Raman full width, which proves that a sig­

nificant structural disorder exists in this wafer. This is not surprising considering that

Wafer position Wafer C Wafer Û Wafer F
a ' 4T 9 ' 4.20 4.65
b 4.14 4.18 4.72
c 4.18 4.19 5.21
d 4.22 4.19 5.26
e 4.09 4.23 5.14
f 4.18 4.18 5.32
g 4.17 4.25 4.86
h 4.19 4.20 4.95
i 4.18 4.24 5.06
1 4.17 4.25 5.17

Table 10.5: Measured Raman full width at half maximum T (cm '1) for wafers C, D and 
F. Wafer C underwent RTO for 166 s; wafers D and F underwent RTD for 5 s and 166 
s respectively.

slip lines measuring 25 nun in length, far greater than those theoretically predicted, 

propagated at the wafer surface. The section topograph o f Figure 10.8 (a) illustrates 

the lattice disorder. In the right hand side o f the topograph, where the doping process 

was blocked due to the silicon spacer, slightly distorted Pendellosung fringes can be 

seen which are suggestive o f reasonable wafer quality. However, the boron doped re-
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gion (left hand side) possesses a dense dislocation array. These dislocations are also 

evident in Figure 10.8 (b) which is a back reflection topograph of the same sample.
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Top Surface
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y  ë  3.0 mm

(b)

Figure 10.8: (a) 004 section transmission and (b) 602 back reflection topographs from 
wafer F which underwent RTD for 166 s. A  dense dislocation network arising out o f 
stress relief m ay be seen on the left hand side o f the topographs (arrow M). The right 
hand side o f  the sample was covered by a silicon spacer during the doping process; 
consequently very few boron atoms induced strain in this region. The defect imaged 
at D has a partial dynamical contrast (see text). The information in (b) was recorded 
from a penetration depth tp =  27 pm . g is the diffraction vector.
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10.4.1 K inem atical, Dynam ical and In te rm ed ia te  Im aging  of Defects

The imaging mechanism of the dislocations in the section transmission topograph o f 

Figure 10.8 (a) is kinematical. Flowever, the undoped region o f the wafer (right hand 

side) revealed the presence o f a defect whose origin was partially dynamical (arrow 

D). Dynamical imaging can arise when the product //o(A)fo >  1. In the interval be­

tween kinematical and strict dynamical imaging, 1 <  /¿o(A)to <  6 , an intermediate 

image is formed and all three types o f images may be observed simultaneously [180]. 

For the (022) family of reflections /ioio =  1.17. W hen the incident X-ray beam im­

pinged on a strongly deformed region of the crystal associated with the defect, the 

kinematical image was formed as shown in the 0 2 2  section transmission topograph 

o f Figure 10.9 (a). In its stereographic partner, the 022 reflection o f Figure 10.9 (b), 

the dislocation did not intersect the direct beam and therefore no kinematical imaging 

occurred. An important feature of the kinematical or direct image is that it is localised 

with respect to the incident beam and consequently corresponds to the depth o f the 

defect within the crystal. However, when an X-ray strikes a crystal, energy flow in 

the crystal occurs within a triangular volume bounded by the diffracted and forward 

diffracted beams [181]. This is the Borrman fan. Independent o f the kinematical im­

age formation, wavefields propagating within the Borrman fan are deviated or stopped 

when they reach the defect. The resulting lack o f intensity creates the dynamical image 

i2. W hen interbranch scattering occurs between wavefields at the site o f a defect, new 

wavefields may be created and these may propagate through the crystal forming the 

intermediary image ¿3 . Due to the location o f the defect with respect to the Borrman
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triangle associated with the incident beam, the dynamical and intermediary images in 

the 022  reflection are less pronounced than in the 0 2 2  reflection.

(b)

Figure 10.9: Stereo pair o f  section transmission topographs from wafer F with diffrac­
tion vector g  (a) parallel to 022 and (b) parallel to 022. The imaging mechanisms are: 
i i  kinematical image; i2 dynamical image and i3 intermdediary image.

10.5 Summary

Thermal stress and boron induced strain generated during the RTO and RTD o f  silicon 

wafers has been investigated using micro-Raman spectroscopy and X-ray topography.
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Thermal stress increased with processing time until relaxation of the lattice occurred. 

For the RTO samples, close agreement was found with the theoretical predictions o f 

Bentini et al. [165]. The RTD samples did not agree with the theory as sizable lattice 

relaxation occurred via slip line and dislocation formation. The introduction o f boron 

within the lattice caused lattice contraction and reduced the time taken to exceed the 

yield stress. The results clearly demonstrated that slip line formation was dependent 

on the peak temperature o f the wafer and the time spent at same.
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Chapter 11

Characterisation of High Energy Diamond 
Monochromator Crystals

11.1 Introduction

The Deutsches Elektronen Synchrotron (DESY) facilitates scientific investigations in 

the fields o f  particle physics and synchrotron radiation. Nominal experiments per­

formed using the 920 GeV HERA particle accelarator include investigations of: the 

structure o f  the protron via colliding positron-proton beams, electron-proton interac­

tions, the quark-gluon structure o f matter and CP-violation [113]. Originally used as 

a Positron-Electron Tandem Ring Accelerator facility, the PETRA synchrotron is now 

used to preaccelerate particles for use in high energy experiments at HERA and as a 

positron synchrotron radiation source for HASYLAB test experiments.

The energy o f the PETRA storage ring can be ramped between 7 GeV and 12 GeV, 

facilitating the production o f photons using a 121 pole hybrid undulator within the 

spectral range o f 14 keV to 150 keV [182], A diamond crystal in the Laue geome­

try, situated approximately 106 m downstream o f the undulator, splits the undulator 

radiation into a “low-energy” branch and a “high-energy” branch as illustrated in Fig­

274



Chapter 11 Characterisation o f  High Energy D iam ond Monochromator Crystals

ure 11.1. The low energy photons diffracted from this pre-monochromator possess-

Figure 11.1: High heatload pre-m onochromator for PETRA -1 beamline.

ing photon energies from 14 keV to 55 keV are typically used at beamline PETRA-1 

for M ossbauer spectroscopy; whilst the high energy photons transmitted through the 

crystal are used at the PETRA-II beamline in diffraction and scattering experiments 

pertaining to structural studies o f  condensed matter.

Considering the nom inal power density radiated from the undulator is 512 kW /mrad2 

at a synchrotron energy o f 12 GeV, this implies that only diamond, possessing a large 

thermal conductivity (nominally 600 -  1000 W /m/K at room  temperature), high trans­

parency from UV to IR, radiation hardness and chemical inertness, is suitable for use 

in the pre-monochromator. It is the purpose o f this chapter to  assess the crystalline 

quality o f several synthetic diamonds, obtained from Drukker in Holland, for potential 

use in the pre-monochromator.

High heatload 
Diamond crystal

High energy photons to 
PETRA-II beamline

Beam from undulator 
14 keV to 150 keV

106 m to undulator
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11.2 Experimental

Type lb  diamonds, wherein the major impurity is nitrogen, possessing a nominal sam­

ple size o f 4 mm x 8 mm x 2 mm were grown under high pressure and high tempera­

ture [183].

X-ray diffraction rocking curve measurements and white beam X-ray topography tech­

niques were performed at beamlines PETRA-1 and HASYLAB F -l respectively. For 

the XRD measurements the undulator gap was adjusted to 14.8 mm, yielding a 14.45 

keV beam impinging upon the 111 diamond crystal o f the pre-monochromator. The 

beam was deflected into the experimental hutch o f beamline PETRA-1 using a 220 

Ge crystal. The width o f the Bragg reflectivity curve as a function o f energy at a 

fixed angle o f incidence is about 2 eV, whose wings show a (A E ) 2 type dependency. 

These wings can be supressed and the energy resolution o f the beam improved to ap­

proximately 150 meV using 14 bounces from the 333 reflexion o f a 111 Si channel 

cut monochromator [184], This is demonstrated in Figure 11.2. The channel cut was 

arranged in a (+n,+m) dispersive geometry relative to the Ge crystal. The resulting 

1 mm 2 highly monochromatised beam, at a wavelength o f 0.8581 A, impinged upon 

the diamond sample m ounted on a Fluber four circle diffractometer. The sample was 

oriented about the 220 reflection using the 6 and <fi circles. By varying the vertical 

and lateral displacements o f the diffractometer mounting table about a nominal sample 

centre, a raster scan o f  the rocking curve as a function o f sample position was obtained. 

The experimental configuration is shown in Figure 11.3.

276



C hapter 11 Characterisation o f  High Energy Diamond Monochromator Crystals

log R

AE (eV)

Figure 11.2: Increased energy resolution using channel cut to suppress wings o f rock­
ing curve. Decadic logarithm o f  the Bragg reflectivity o f Si (333) at Bragg angle 
9b  =  24°13' for 14.45 keV photon energy plotted as a function o f energy difference 
from 14.45 keV. Calculated according to [92],

W hite beam back reflection x-ray topography in large area and section modes (as de­

scribed in Chapter 7) was used to visualise the strain within the samples. The Bragg 

pattern o f topographs was recorded on Geola VRP-M Holographic X-ray film. The 

distance from the sample to the film was 40 mm in both geometries. The incident 

beam  was collimated to 3.5 mm 2 for large area, whilst the height o f the beam was 

reduced to 15 //m for the section studies.
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Figure 11.3: XRD m easurem ent configuration.

11.3 Results

Figure 11.4 shows the Full W idth at H alf M axim um  (FWHM) as a  function o f  po­

sition about the nom inal sample centre for a typical diamond sample. Regions that 

produced no reflections possess a zero FW HM . The heterogeneous strain w ithin the 

sample manifests itse lf v ia  a broadening o f  the rocking curve width. The source o f  this 

strain is possibly due to  a combination o f  curvature and m osaic spread o f  the lattice 

planes as a shift in the rocking curve peak towards larger values o f  6 is witnessed as 

one progresses from  the top toward the bottom  o f  the sample as conveyed in Figure

11.5.

To first order, the curvature R  m ay be evaluated through a knowledge o f  the beam  

diameter s and m easurem ent o f  the shift 56 in  the absolute position o f  the Bragg peak 

over a distance x  on the sample [185]. This measures the curvature about an axis 

perpendicular to the dispersion plane i.e. cylindrical curvature.
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Figure 11.4: FW HM  m easured in degrees as a function o f  position about a nominal 
sample centre.

The radius o f  curvature along the central vertex o f  the sample was found to be R  — 4.4 

m. The thickness and Young’s modulus o f the sample in conjunction with its radius of 

curvature facilitates an estimation o f  the m axim um  stress |<Tmax| =  208 MPa.

The large area back reflection topographs revealed the presence o f  void like defects 

and occlusions w ithin the upper regions o f  the sample, wherein nominal penetration 

depths tp =  1.18 m m  were obtained. These are indicated by arrow A  in Figure 11.6.

A  laminar strain gradient was observed w ithin the sample using back reflection section 

topography (arrow B in Figure 11.7). This is suggestive o f a tiered stacking fault in­

duced by  inhomogeneous growth o f the crystal lattice. The presence o f a dislocation 

propagating from the surface o f the sample toward the bottom (arrow C) appears to
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Figure 11.5: Variation in rocking curve peak as a function o f position about a nominal 
sample centre.

effect a dislocation jo g  at the region depicted by  arrow D. This possibly m ixed dislo­

cation could consist o f  a screw and edge dislocation. The large strain fields and defect 

structures w ithin the sample are not surprising w hen one considers the m ean FW HM  

over the entire sample is 4.45 arcseconds; this is far greater than the Darwin width 

w =  0.9 arcseconds (calculated using [184]).
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Figure 11.6 : 317 large area back reflection topograph.

Figure 11.7: 319 back reflection section topograph.
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11.4 Conclusions

The interest in diamond crystals for use in x-ray optics applications has increased dra­

matically in the past number o f years. For example, comparing theoretical data for 

diamond and single silicon crystals one finds that diamond ( 111 ) is competitive with 

silicon (220). The reflection properties o f diamond are slightly higher than silicon cou­

pled with the advantage that diamond will also absorb less heat [119, pp. 248-249]. 

However, their application is presently limited to situations where their mosaicity (of 

the order o f a couple o f arcseconds) is acceptable. The inhomogenous strain conveyed 

through the variation in FW HM and peak position in the rocking curve as a function of 

sample position, in conjunction with the presence o f defects in the x-ray topographs, 

demonstrate that the samples examined in this study are a long way from the perfection 

required for use at conventional third generation beamlines. In a recent and much more 

comprehensive study performed in a collaboration between the European Synchrotron 

Radiation Facility (ESRF), De Beers Industrial Diamonds Ltd. and the University o f 

Witwatersrand [183] similar results were obtained. In particular, the nitrogen impurity 

concentration distribution obtained by optical spectroscopy was superimposed on the 

defect structure determined by X-ray diffraction. A direct correlation between the ni­

trogen impurities and raw defect structure was obtained. The findings in this chapter 

are also supported by Kowalski et al. [186].

Due to the tremendous heat load associated with fourth generation X-ray Free Elec­

tron Lasers (XFELs) it is obvious that diamond will be the material o f choice for use
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in monochromators and X-ray photonic delay lines [119, pp. 266]. However, dra­

matic increases in crystalline quality are required before such implementations will be 

possible.

Chapter 11 Characterisation o f  High Energy Diamond Monochromator Crystals

283



Chapter 12

Misfit Dislocations in Si/SiGe Heterostructures

12.1 Introduction

There has been a growing interest over the past decade or so in the use of grazing 

incidence diffraction (GID) X-ray topographic techniques for the analysis o f thin sur­

face crystal layers [128,187-189]. For strained or dislocation single crystal materials 

Dudley, Wu and Yao [190] have shown that the kinematical theory determines the pen­

etration depth. For semiconductor materials, grazing incidence angles o f the order of 

0.1°—1° are typically used. These angles tend to be greater than the critical angle a c 

for Fresnel reflection and consequently information about strain, defect or dislocation 

distributions at penetration depths o f the order o f micrometres is obtained. However, 

in many modem epitaxial systems, very thin mismatched layers are grown close to the 

surface o f  the substrate, and the overall thickness o f such layers, which themselves 

may be heavily dislocated or strained, may be much smaller than the smallest achiev­

able penetration depth using conventional GID topography. One such system is that of 

the heteroepitaxy o f thin Sii_xGeæ layers on mismatched Si substrates.

In the past, a number o f  authors have used variants o f the GID topography scheme,
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wherein grazing incidence angles below the appropriate critical angles are used to im­

age structures at or near the surface o f the sample. For example, Afanasev et al. [191] 

used a non-synchrotron X-ray source to image etched topographical features in Si 

wafers. Images from the upper 140 nm o f the Si surface were presented, though a 

precise interpretation o f these was difficult. Kitano and co-workers [192] availed o f a 

synchrotron X-ray source in double crystal geometry to produce specular reflections 

at a fixed wavelength to image scratches, mechanochemical polishing damage and 

growth swirl patterns in Si surfaces. However, no estimation o f the depths o f the ob­

served features below the Si surface was provided. Using an X-ray tube as a radiation 

source, Imamov et al. [193] used extremely asymmetric Bragg diffraction with graz­

ing angles less than the critical angle for total external reflection to image surface layer 

amorphisation due to Pb ion implantation in Si.

In the total external reflection domain, as described in Chapter 5, the incident photons 

with incident angle a 0 less than the critical angle a c, give rise to a specularly reflected 

Fresnel wave in conjunction with an evanescent wave within the sample whose electric 

field is exponentially damped within the “scattering depth” [98]

27r (/„ +  //,)
( 12.1)

where

(25 -  sin2 a 0th) +  (sin2 a 0ih) 2 + (2 /3)2
( 12.2)

2
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In equation (12.2) the subscripts o and h refer to the incident and diffracted beams 

respectively, A is the wavelength o f the incident photons,

/Jo (A) is the linear absorption coefficient o f the material, fc  is the mean electron den­

sity, m e is the rest mass o f the electron, e is the elementary unit o f charge, e0 is the 

vacuum permittivity and c is the speed o f light.

A t this point, it is worth re-iterating the differences between the scattering depth A 

and the penetration depth tp. The scattering depth is the distance the evanescent wave 

propagates perpendicularly from the surface into the sample bulk. In this situation the 

incident beam is not transmitted into the material. The penetration depth is charac­

terised by the depth at which the intensity o f the outgoing reflected beam has dropped 

to -  times that o f the incident beam due to photoelectric absorption. Here the incident 

beam penetrates into the crystal. For a sufficiently strained material with an angle o f 

incidence greater than the critical angle, kinematical theory applies and the penetration 

depth [190] is given by

W ithin the volume governed by the scattering and penetration depths, diffraction may

2 m e C o (27t c ) 2

(12.3)
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occur. When a Q < a c radiation only penetrates a few nanometres into the sample. As 

the value o f a„ approaches a c the scattering depth increases rapidly due to construc­

tive interference between the phases o f the incident and specular electric fields [194]. 

However, depth control is quite difficult because the scattering depth varies over several 

orders of magnitude for a slight change in a Q. At values a 0 > a c control o f the penetra­

tion depth is quite easy as tp increases rather slowly with increasing a fJ [128]. There­

fore, the technique o f Total External Reflection X-ray Topography (TERXT) combined 

with conventional GID topography potentially provides an imaging mechanism sensi­

tive to strain features associated with, or in very close proximity to, the sample surface. 

It is the purpose o f this chapter to investigate the strain induced by the heteroepitaxial 

growth of thin Sii-aG e^ layers on mismatched Si substrate’s using TERXT.

12.2 Experimental

Three samples were created for the study. The first, referred to as SiGe 720, consists of 

a silicon substrate with a ~  1.7 //m buffer layer o f  S ii_x.Gex wherein the germanium 

concentration varies linearly from 13.5% to 42% over the thickness o f the layer. On top 

o f the buffer layer, a ~  0.3 jjm  thick Sio.6Geo.4 active layer was grown. The sample was 

grown at 800 °C by low pressure chemical vapour deposition (LPCVD). The second 

sample, referred to as SiGe 774, was formed by growing a ~  1.36 /¿m Sii_xGex buffer 

layer on top o f a silicon substrate. The germanium concentration varied from 12% to 

42%, in steps o f 6% throughout the layer. A ~  0.3 ¡im  thick Sio.65Geo.35 active layer 

was grown on the buffer layer. The last sample, SiGe 775, consisted o f a ~  1.36 /jm
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buffer layer o f S ii^ G e ^  wherein the germanium concentration varied linearly from 

12% to 42%. The structure was completed by adding a ~  0.3 /im thick Sio.6 5 Geo.35 

active layer to the structure. Samples SiGe 774 and SiGe 775 were grown at 750 °C. 

All samples were grown in the [001] direction. The total sample thickness in all three 

cases was ~  535 fim.

A combination of grazing incidence diffraction topography (see Chapter 7) and total 

external reflection topography was used to image the strain within the samples. From 

the analysis o f Chpater 5 it is known that for a given wavelength o f radiation A incident 

upon a sample, the critical angle can be calculated using

where re is the classical electron radius, F0 is the structure factor for the incident beam 

and V  is the volume of the unit cell. For 19 keV photons (A =  0.6526 A )  incident 

on a silicon sample this results in a c fa 0.12°. Accordingly, the angle o f incidence 

was varied from a 0 =  0.05° (total external reflection) to a 0 =  10° (deeper penetration 

depths) in the experiment. The stepping motors used to drive the goniometer on which 

the sample was mounted possessed step sizes o f 0.1 //m  for the x-, y- and z-axis m o­

tions. The goniometer was capable o f providing full revolutions o f the sample about 

the y-axis with a precision o f 0.01°. The Bragg pattern o f topographs were recorded 

on Kodak SO-343 and SO-181 high resolution professional X-ray films. The distance 

from the sample to film was 70 mm.

(12.4)

288



Chapter 12 M isfit Dislocations in Si/SiGe Heterostructures

Atomic force microscopy images were obtained for the three samples using a Top- 

Metrix TMX2000 Discoverer scanning probe microscope. Nominal scans speeds were 

50 /im/s for sample SiGe 720 and 100 /xm/s for samples SiGe 774 and SiGe 775. 

The images were used to evaluate the average roughness and root mean square o f the 

surface roughness. Back reflection section topography was used to obtain sectional 

information about the strain in the upper regions o f the system. The sample to film 

distance in this geometry was 40 mm.

12.3 Results

Previous studies o f these samples demonstrated that the S i^^G e^ virtual substrates had 

relaxed from misfit strain at the heterointerface. As a result, a well-defined cross-hatch 

pattern, with ridges running along two perpendicular < 0 1 1>  directions on the surface 

(001) plane was observed using Nomarski differential interference contrast microscopy 

and transmission electron microscopy [195],

Three sets o f figures were obtained using the grazing incidence diffraction and total 

external reflection topography techniques. Figures 12.1-12.3 were taken in the reflec­

tion domain at an incidence angle a„ — 0.05°. Figures 12.10-12.12 and 12.13-12.15 

were recorded in the grazing incidence geometry with incidence angles a D =  1 .0° and 

a 0 =  10°, respectively. A scale bar appropriate to each image is shown in Figure 12.1.

Figures 12.1-12.3 are 115 total external reflection topographs, wherein the incidence 

angle a 0 =  0.05° is smaller than the critical angle a,. =  0.12°. Accordingly equation

12.1 yielded a scattering depth A =  1.29 A. Surprisingly there are no clear images o f
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the misfit dislocations as one would have expected based on the previous results [195]. 

However, each image possesses a “bumpy” structure, which is presumably related to 

the underlying misfit dislocations. It has been observed that, for some strained epitaxial 

systems, the surface layer develops roughness or waviness, correlated spatially with 

the positions o f the underlying misfit dislocations, which partially relax the elastic 

mismatch strain [196-198]. For example, Fitzgerald et al. [198] noted the presence 

o f ridges on the surface o f a strained layer InGaAs/GaAs system, which correlated in 

position with misfit dislocations at the strained layer-substrate interface. In the total 

external reflection topographs depicted in Figures 12.1-12.3 it is most likely that the 

strain fields due to this type o f waviness are now being imaged.

is
^  ►3 m m

Figure 12.1: 115 total external reflection topograph for sample SiGe 720. Incidence 
angle a Q =  0.05°. Scattering depth A =  1.29 A.
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Figure 12.2: 115 total external reflection topograph for sample SiGe 774. Incidence 
angle a 0 =  0.05°. Scattering depth A =  1.29 A.

Figure 12.3: 115 total external reflection topograph for sample SiGe 775. Incidence 
angle a Q =  0.05°. Scattering depth A =  1.29 À
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Figures 12.4-12.6 display the corresponding three dimensional atomic force microscopy 

images for these samples. The strain induced surface waviness is easily observed in 

each image, with the surface bumps running along the direction o f the < 0 1 1>  family 

o f misfit dislocations. From the AFM  analysis, the following root mean square values 

o f surface roughness were obtained: (a) Sample SiGe 720 -  ca. 70 nm; (b) Sample 

SiGe 774 -  ca. 7 nm; (c) Sample SiGe 775 -  ca. 20 nm. These results are consistent 

with the fact that sample SiGe 720 was grown at the highest temperature and presents a 

high density o f misfit dislocation pile-ups extending well into the layer o f constant ger­

manium concentration at the top, thus creating higher strain fields at the surface. This 

also accounts for the lower observed roughness in samples SiGe 774 and SiGe 775 

since these were grown at lower temperatures. On the larger scale o f the total external 

reflection topography images, no apparent reduction in surface strain or bumpiness is 

observed. Since the lateral limit in geometrical resolution for the current experimen­

tal setup at beamline F -l at HASYLAB am DESY is approximately 4 ¿tm, the total 

external reflection topography technique is not capable o f resolving the small-scale 

structure necessary to observe this reduction in surface roughness.
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Figure 12.4: 3-D atomic force microscopy image o f  sample SiGc 720.

27.3 nm 
Onm 

ZA\hn

Figure 12.5: 3-D atomic force microscopy image of sample SiGe 774.
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Figure 12.6: 3-D atomic force microscopy image o f sample SiGe 775.
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The strain induced surface waviness was also imaged using back reflection section to­

pography. The topographs o f Figures 12.7-12.9 capture details o f the strain/defects 

from the top surface through to the backside, producing an image o f a slice right 

through the crystal. The severe strain inhomogeneity present near the surface mani­

fests itself through long range “looped” strain features (indicated by arrow Q in the 

images) that propagate to penetration depths o f the order o f 100  ¿/m into the substrate. 

In the centre o f all three topographs, there is a reduction in definition o f the strain (ar­

rows C). This would seem to suggest that the localised strain fields m ay be attributable 

to an inhomogenous lateral variation in the germanium concentration. However, fur­

ther experiments will be required to test this hypothesis.

C

1 mm

Figure 12.7: 103 back reflection section topograph for sample SiGe 720.
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i

Figure 12.8: 103 back reflection section topograph for sample SiGe 774.

C

1

Figure 12.9: 103 back reflection section topograph for sample SiGe 775.
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The fact that the images o f Figures 12.1-12.3 are indeed surface images (i.e. A <  10 

A) is confirmed by the fact that the images o f  these wavy structures disappear in the 

grazing incidence topographs where the penetration depths are much larger. One can 

observe this in the series o f topographs shown in Figures 12.10-12.12. Nominal pen­

etration depths tP =  0.27 /im were obtained for these 115 reflections with radiation 

incident at a  =  1.0°. The cross-hatched array o f  misfit dislocations is clearly seen, 

running parallel to the < 0 1 1>  directions, and the surface structure has almost com­

pletely disappeared.

3 mm

Figure 12.10: 115 grazing incidence diffraction topograph for sample SiGe 720. Inci­
dence angle a 0 =  1.0°. Penetration depth tp =  0.27 fim.
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Figure 12.11: 115 grazing incidence diffraction topograph for sample SiGe 774. Inci­
dence angle a 0 =  1.0°. Penetration depth tp =  0.27 /¿m.

Figure 12.12: 115 grazing incidence diffraction topograph for sample SiGe 775. Inci­
dence angle a 0 =  1.0°. Penetration depth tv =  0.27 /fin.
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The misfit dislocation arrays are even m ore prominent in Figures 12.13-12.15 (all 

117 reflections with a 0 =  10°), wherein tp — 21.6 /¿m. A t these penetration depths 

the recorded intensity from the wavy surface features, though still present, does not 

make up the largest contribution to the image, since a far greater underlying volume of 

sample is also diffracting.

3 mm

Figure 12.13: 117 grazing incidence diffraction topograph for sample SiGe 720. Inci­
dence angle a 0 — 10°. Penetration depth tp =  21.6 ¡im.
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Figure 12.14: 117 grazing incidence diffraction topograph for sample SiGe 11 A. Inci­
dence angle a 0 — 10°. Penetration depth tp =  21.6 /im.

Figure 12.15: 117 grazing incidence diffraction topograph for sample SiGe 775. Inci­
dence angle a 0 =  10°. Penetration depth tp — 21.6 ¡jlin.
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12.4 Conclusions

Synchrotron X-ray topography in total external reflection and grazing incidence diffrac­

tion modes has been used to observe strain induced surface waviness and bumps in 

a silicon-silicon germanium heterostructure, whose origin most likely is associated 

with the existence o f misfit dislocations at the heterointerface. For a number o f reflec­

tions, the impinging X-rays approached the sample at angles less than the critical angle 

yielding information on strain features no more than nominally 10 Â  from the sample 

surface. These features displayed a remarkable resemblance to the surface bumpiness 

observed by atomic force microscopy, albeit on a much larger lateral length scale. 

The strain induced surface waviness was also evident in the back reflection section 

topographs. Stress originating at the heterointerface was seen to induce large strain 

fields that propagated into the silicon substrate. The fact that total external reflection 

topographic mode images were taken was confirmed by the observation o f clear and 

conventional grazing incidence topographic images o f misfit dislocations in all sam­

ples when the incidence angle became greater than the critical angle.
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Microdefects in Nearly Perfect Silicon

13.1 Introduction

Extremely pure and perfect silicon single crystals are needed for an accurate determi­

nation o f the Avogadro constant and a redefinition o f the unit o f mass, the kilogramme. 

The lattice parameter, impurity content, isotropic composition and self-point defect 

concentration of silicon crystals grown by the float-zone technique are constant within 

a relative uncertainty o f a few parts in 10-7 . However, to replace the present kilo­

gramme artifact by the mass o f a certain number o f  silicon atoms requires, within a 

relative uncertainty o f  a few parts in 1 0 -8 , the knowledge o f the total number o f sili­

con atoms in a certain crystal volume [199],

To date, investigations have been ongoing in an attempt to reduce this relative uncer­

tainty level. Evidence suggestive o f absent material has been obtained by the use o f 

X-ray diffraction topography with synchrotron radiation [200,201]. In an experiment 

at the National Synchrotron Light Source (NSLS) in Brookhaven, the incident beam 

was monochromatized to 8 keV using a double crystal monochromator composed o f 

two asymmetrically cut silicon (111) crystals. The sample investigated was prepared
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at the National Institute o f Standards and Technology (NIST), USA from a silicon 

crystal grown at Shin-Etsu Handotai Co., Japan. This material was used for the Avo- 

gadro project at the National Research Laboratory o f Metrology (NRLM), Japan [202]. 

The topographs o f this (110) silicon crystal, having a density approximately 3 x 10-6  

smaller than other similar samples, showed clear round topographic images displaying 

a black-white contrast. It was assumed that the images o f these microdefects corre­

sponded to the location o f absent material.

In this chapter, the theory o f anomalous transmission o f X-rays in elastically deformed 

crystals, developed by Penning and Polder in 1961 [203], will be reformulated in a 

form that is more amenable to understanding the imaging mechanism of these mi­

crodefects in nearly perfect silicon crystals. This theory will then be applied to recent 

results that have been obtained from both float-zone and Czochralski grown silicon 

wafers.

13.2 Theory of tie point migration in strained crystals

The salient features o f the Penning-Polder theory are as follows. The coupling o f en­

ergy between the diffracted and forward diffracted beams is characterised through the 

ratio o f the amplitudes o f their respective electric fields. Microdefects within the lattice 

introduce short range strain fields which cause a migration o f the tie point characteris­

ing each wave at the site o f the defect. Consequently, the energy coupling is modified 

and this manifests itself as a variation in the recorded intensity on the topograph. The 

strain fields are assumed to be sufficiently small that an Eikonal approximation is still
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valid. An expression for the migration o f the tie point due to the defect is obtained, and 

this is used to explain the images o f precipitates and voids that will be presented in the 

results. An important point to note is the diffracted beam is anomalously transmitted 

through the crystal and therefore only branch one o f the dispersion surface is excited. 

No inter branch scattering is induced by the defect.

13.2.1 Characterisation of plane-waves propagating in a perfect crystal

From Chapter 5 we know that incident photons with wavelength A =  1/A: generate 

under the two-beam approximation, two wavefields within the crystal. The fields asso­

ciated with the diffracted kn  and forward-diffracted ko  beams may be described using 

Equations (5.63) and (5.64) re-iterated here:

k 2 (1 +  Xo) — (* < ,& )]  E 0 +  k 2C xj[E H  — 0 (13.1)

k2Cxf íEo  + k 2 (1 +  Xo) -  E h =  0 (13.2)

where x  is the dielectric susceptibility, E  the electric field amplitude and C  is the 

polarisation constant.

Defining £ as the ratio o f the diffracted and forward diffracted electric field amplitudes 

enables us to rearrange equations (13.1) and (13.2) to solve for k2.

k 2 =  \k0 \2 -  k 2x o  -  k2C x H (  (13.3)
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k2 = \kH\2 - k 2X o - ^ p -  (13.4)

Using equations (13.3) and (13.4) to solve for C one obtains

C2 - 1  1
C k2xn \ko\2 - \ k H'2 (13.5)

J3.2.2 Dispersion relations determining validity of Eikonal theory:

Case I. Perfect crystal

A beam, characterised by wave vector ko, arriving at a position 7Mn the crystal will 

propagate further over a distance dl in the direction o f the group velocity.

i f = <13'6) 

At the new location f +  df, the reciprocal lattice vector G will have changed by

dG =  {df-  V f) G

d S = \ ( V «»“  ■ V?)  15 (13'7) I ko '

For the Eikonal ray theory to be valid du =  0. This implies that there is no spreading 

—# —•

out o f the fc-values in A'-space and a given mode remains on the same branch o f the
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dispersion surface. This is valid if the following condition is satisfied:

dko ' ^ k o ^  ^ (5k* =  0 (13.8)

Substitution o f  equation (13.7) into (13.8) yields

dk0 =  —;j-y  * ^ d lV f  ( G  • V dw ) (13.9)

—>

Equation (13.9) describes the allowable change in ko  such that the Eikonal approxima­

tion remains valid. Similar analysis yields the following expression for the diffracted 

beam ku .

dkH =  - t= ^ — rdiVr- (<? • Vdw) (13.10)
I kjj I

13.2.3 Dispersion relations determining validity of Eikonal theory:

Case II. Strained crystal

 *In a perfect crystal with reciprocal lattice vector h  and real space vector R  Bragg’s 

Law implies

R - h  =  2rmr m  G Z

A lattice deformation can be introduced through a locally varying vector u. Conse­

quently a position r  in the strained crystal may be defined as

f = R  + u
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Bragg’s Law will now be satisfied for the case

—̂  —>

r - h  — u - h  — 2rrnr

Consequently, the reciprocal lattice vector describing this strained lattice may be writ­

ten as

G  =  h -  (13.11)

Assuming ui is constant with respect to f

= > h -V & )  =  0 (13.12)

Substituting equation (13.11) into equation (13.9) and using the result o f equation

(13.12) yields

dk0  =  j y T ^ V i,(Vc?w • V ’T) (« •  * ) ( |3 ’13)

Substitution o f equation (13.11) into equation (13.7) yields

and using the result o f  equation (13.12)

*  dG  = - ^ — d t v f (v - t0 u, - V f ) ( 3  h )  (13.14)
I ko '
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13.2.4 M igration of tie point due to strain

To see how the tie point moves under the influence o f strain, we differentiate equation 

(13.5) with respect to Q and apply the formulae derived in the previous subsection to 

ensure the Eikonal approximation remains valid.

1 d 

k'2Xfi dQ
\ko\2 — M 2] =

d C  - I  
dQ Q

(13.15)

We can differentiate the right hand side using the quotient rule

d C2 -  1 Ç2 +  1
dQ Q

(13.16)

For diffraction to occur

kn  — ko — G

die h = dko — dG

Solving the left hand side o f  equation (13.15)

d_
dQ

\ko\2 - \ k n f
„ r  dk0  £ dku

=  ~dÇ "dÇ*

r dk0 ( dka  d 6 \

dQ dQ dQ

— — ĵ 2 {ko  — kji ĵ dko  +  2/c//t/G'j

=  - L \2 G -  dk0  +  2k» ■ dG 
dQ L J
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1 d
\ko? -  \kH\

1 2
G • dkn  +  k u  ' dG

k2XH dQ L k2XH d(

Inserting the results o f equations (13.16) and (13.17) into equation (13.15) yields

(13.17)

k2XH  C2 +  1
G  • dhfi +  kj{ • dG (13.18)

To elucidate the effect o f strain on the migration of the tie points substitute equations 

(13.14) and (13.13) into equation (13.18)

,, 2 C dld( =
k2XH C2 +  l |V io w

G V f (Vgoj ■ V?) ( u-hj  -  kHVf  • Vrj (u ■ hj

(13.19)

Two particular cases o f stress within the sample are worth mentioning at this point. The 

first, the case o f no stress implies u =  0 and therefore d( =  0 as one would expect. 

The second case, where the strain is perpendicular to the diffracting planes u  • h  =  0, 

also does not alter the character o f the mode.

13.2.5 Image formation

Consider the presence o f a void introducing tensile stress within the lattice as indi­

cated in Figure 13.1. The crystal is sufficiently thick such that anomalous transmission 

occurs. Therefore, only wavefields associated with the first branch o f the dispersion 

surface close to the exact Bragg condition are present and the energy flow is parallel to 

the lattice planes. As the beam passes the void, d (  will change from positive to nega­

tive on one side, whilst the converse will take place on the opposite side o f the void i.e.
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the branch one wavefields follow the curvature o f the lattice. Thus tie point migration 

is in opposite sense on either side o f the void. Close to the exact Bragg condition the 

angular amplification A , defined as the ratio o f the angular divergence o f the wavefields 

inside the crystal to the angular divergence o f the incident wave-packet, is extremely 

large. Hence very small lattice distortions give rise to appreciable changes in the di­

rection o f energy flow. In the centre o f the reflection domain the angular amplification 

is at a maximum [204],

7rV
A max = -----------------; (13.20)

K u r . I C I ^ F f

where V  is the volume o f the unit cell, dhki is the interplanar spacing o f the unstrained 

diffracting planes, re is the classical electron radius, C  is the polarisation constant and 

F  is the structure factor. A max possesses values upwards o f 104 for most reflections in 

silicon. It is also known from Chapter 5 Equation (5.81) that the anomalous absorption 

coefficient in the case o f a symmetric reflection has the following dependence on the 

real part o f the deviation parameter tjr

ß j  I k)
1 T  l<?|3m(xff )/3 rrt(xo) cos i¡>

y/1 +  Vl
(13.21)

where /i0 is the linear absorption coefficient and ?/; is the phase difference between 

the real and imaginary parts o f the dielectric susceptibility for the given reflection. 

The upper sign corresponds to branch one and the lower sign to branch two o f the 

dispersion surface. Consequently, any deviation from the Bragg angle induced by a 

lattice distortion, will lead through the angular amplification, to a significant increase
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in the absoiption coefficient associated with the corresponding wavefield. Therefore 

the deflected rays are absorbed and there is a loss in intensity from both sides o f the 

defect. Hence the long-range image o f  a void within the crystal bulk appears as a white 

image in the transmission topograph.

T

\
V oid /

m

C rystal Exit Surface

Figure 13.1: Image formation due to void within crystal bulk in transmission geometry.

Conversely, a precipitate within the bulk of the crystal would also give rise to a similar
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white image. Therefore, when white defects manifest themselves in the topographs it 

is not possible to state categorically whether they are accreditable to the presence of 

voids or precipitates within the crystal bulk.

Consider now the case o f  a void located near the exit surface o f the crystal as illus­

trated in Figure 13.2. On the left-hand side o f the void, the tie point moves toward the 

void, producing greater diffracted intensity (d ( > 0 and £ —> oo) at the exit surface. 

However, on the right-hand side of the void, the tie point also moves towards the void, 

but in this case it produces a reduced diffracted intensity (d (  <  0 and £ —> 0 ) at the 

exit surface. The image o f the void in this situation will consist o f two contrasting 

components, one black on the negative o f the diffraction vector g, the other white on 

the positive side o f the same g vector. As the defect is close to the surface, the lat­

tice planes rotate rapidly and thus the Eikonal approximation breaks down as Equation 

(13.8) is no longer satisfied. Consequently, the X-rays exit the crystal without further 

diffraction.

It is worth mentioning that the black-white contrast reverses if  the lattice around the 

defect is compressed. Such images have been found and they have been interpreted as 

dynamical images o f precipitates near the exit surface o f a rare earth vanadate [205], 

It is also worth mentioning that the dynamical black-white image contrast o f nearly 

screw dislocations in potassium dihydrogen phosphate has been explained using ray 

theory [206].
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o o

B lack W h ite d

o o

Figure 13.2: Image formation due to void near exit surface o f crystal in transmission 
geometry.

13.3 Experimental

Two sets o f experiments pertaining to this work will be discussed in this chapter. The 

first, which gave a null result, was performed at the bending magnet beamline F -l at 

HASYLAB am DESY. In this experiment, the sample referred to in the introduction 

and henceforth known as sample FZ-NIST, was a 0.5 mm thick (110) silicon crystal 

grown by the float-zone technique. The sample was inserted into the beam in the large 

area transmission geometry as described in Chapter 7. The sample was tilted at 18°
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with respect to the incident beam that was collimated to 3 mm in the horizontal plane 

by 1 mm in the vertical plane. The sample to film distance was 50 mm.

In the second experiment, wherein images o f the microdefect voids and precipitates 

were recorded, the experiment was performed at the undulator beamline BW-1 at HA- 

SYLAB am DESY [207]. The undulator spectrum was optimised to the third harmonic 

at 10.5 keV by adjusting the undulator gap to 15 mm in accordance with Figure 6.4. 

The beam was further conditioned by reflecting the beam off two flat gold-coated mir­

rors in a grazing incidence geometry to produce energies smaller than 13 keV. Four 

samples were investigated: the first, sample FZ-NIST referred to in the last paragraph; 

the second, a ( 110) float-zone grown silicon sample produced from the same material 

as sample FZ-NIST by the Physikalisch-Technische Bundesanstalt, Germany, referred 

to as sample FZ-PTB; the third, a (100) Czochralski grown sample manufactured by 

Wacker-Siltronic will be referred to as CZ-Wacker; and the fourth, a (100) Czochral­

ski grown silicon sample manufactured by Okmetic, Finland, will henceforth be called 

CZ-Okmetic. All samples were approximately 0.5 mm thick. The samples were tilted 

at 18° to facilitate the recording o f the {1 1 0 } set o f reflections for the float-zone sam­

ples and the 400 reflection for the Czochralski samples. The sample to film distance 

was 25 mm. The Laue set o f section and large area transmission topographs were 

recorded on Geola VRP-M  high resolution holographic film.
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13.4 Results and Discussion

The 5 1 3  large area transmission topograph shown in Figure 13.3 recorded from the 

float-zone sample FZ-NIST at the bending magnet beamline did not demonstrate the 

presence o f any void or precipitate like images. Using the values o f linear absorption 

coefficient in [208], a value o f Hot = 0.36 was calculated. Therefore, the imaging mech­

anism may be considered kinematical. The reason for the null result is most likely that 

either the kinematical image contrast based on primary extinction or the orientational 

image contrast based on lattice plane curvature without angular amplification is not 

large enough to be resolved. The sharp black dots in the image are artefacts o f the 

X-ray film; they are not defects in the sample.

V

Figure 13.3: 5 1 3  large area white beam transmission topograph recorded from (110) 
float-zone silicon sample FZ-NIST.

Figure 13.4 (a) shows a I 1 1 large-area transmission topograph from sample FZ- 

NIST and Figure 13.4 (b) its 1 1 1  stereo pair topograph enlarged from the same X- 

ray film. These and the remaining images presented in the remainder o f the chapter
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were generated at the undulator beamline. Two rather large round images are the most 

striking features in the topographs. They have a black-white contrast and a diameter 

about 40 //m. Black corresponds to increased diffraction intensity. The black-white 

image contrast follows the diffraction vector g and is enhanced on the negative side of

Values of Hot =  1.9 were obtained for these topographs, justifying the application 

o f the dynamical theory o f X-ray diffraction. The X-rays are anomalously transmit­

ted through the crystal. The anomalous absorption coefficient for each branch o f the 

dispersion surface was calculated using equation (13.21). For branch one ofthe disper­

sion surface, H it =  0.58 and for the second branch Hat =  3.3. The weakly absorbed 

wavefield pertaining to branch one is transmitted through the crystal and the voids 

were imaged according to the Penning-Polder explanation o f Section 13.2.5. For these 

reflections the maximum angular amplification was calculated using Equation (13.20) 

to be 1.5 x 104.

The fact that anomalous transmission occurred and a justification o f the application o f 

the dynamical theory, was found simply and elegantly by obtaining a section transmis­

sion topograph from the 1 1 T reflection for the sample. No Pendellosung fringes can 

be seen in the topograph o f Figure 13.5. This is attributable to the propagation o f only 

one wavefield within the crystal. Therefore no interference (or coupling o f energy) is 

possible between the a  and ft branches o f the dispersion surface. This last point is very 

important as similar features attributable to the presence o f voids have been observed in 

previous work by Krylova and Shulpina [209,210]. In their experiment a molybdenum
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(a) (b)

Figure 13.4: Stereo pair o f synchrotron X-ray undulator topographs from nearly perfect
(110) silicon single crystal sample FZ-NIST with diffraction vector g (a) parallel to 1 
1 1 and (b) parallel to 1 1 1 .

Ko;i radiation source was used with a silicon 444 double crystal monochromator and 

topographs were recorded from the silicon samples at various points on the rocking 

curve. Their results demonstrated a change in the contrast from black-white to white- 

black as they moved across the rocking curve. This was attributable to the change in 

the absorption coefficient for the two branches o f the dispersion surface as the devi­

ation parameter r? was varied. The image formation in this case, which relies on two 

wavefields propagating within the crystal, is completely different from that described 

in Section 13.2.5.

Voids were also imaged in sample FZ-PTB. Figure 13.6 demonstrates the presence 

o f three large voids in the 2 2  0 reflection; the largest void possesses a diameter of 

approximately 60 ¡im. For this reflection fi0t, =  4.3. The “hairy” structure present in
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Figure 13.5: Section transmission topograph from 1 1 1  reflection o f sample FZ-NIST. 
No Pendellosung fringes are seen in the image as only the branch one wavefield prop­
agates within the crystal.

the image is attributable to the beam and not the sample itself.

Figure 13.6: 2 2 0 large area transmission topograph from sample FZ-PTB.

Recent work by Basile and co-workers [199] has revealed that the origin o f the voids 

in the float-zone samples is due to the presence o f hydrogen in the growth atmosphere. 

This was originally speculated by Deslattes et al. in their pioneering topographic work 

with these samples [200]. The samples were made from a polycrystalline silane (SiEL)
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source. During the growth, a significant percentage of the “intrinsic” hydrogen is set 

free from the source material and is responsible for the void formation in the lattice. 

These voids have reduced the density o f the samples by approximately 3 ppm in com­

parison to samples that were grown from a trichlorosilane (SiHCl3) source. Thus far, 

X-ray topography has been the only method capable o f imaging the voids. Other tech­

niques such as infrared tomography have failed as the voids are smaller than the lim­

iting resolution o f those techniques. Interestingly, Basile et al. venture to estimate the 

size o f the voids based upon the “missing” molar volume. Their calculations estimate 

the size o f the nano-holes to be approximately 3 nm3. If one considers the maximum 

angular amplification for the 2 2 0 reflection is Amax =  3.57 x 104, then one can esti­

mate a lower limit on the size o f the lattice distortion which is responsible for the void 

with a diameter o f  60 pm  in Figure 13.6 to be approximately 2.5 nm 3. This is in good 

agreement with the estimation o f Basile et. al.

A partial pressure o f 5 mbar hydrogen in the growth atmosphere is sufficient to induce 

void formation [199]. Prior to investigation one did not expect to image microdefects 

o f this nature in the Czochralski samples, as a relatively higher partial pressure o f 20 

mbar is required. However, in the CZ-Wacker sample, the presence o f both voids and 

precipitates were detected. Both the voids and the precipitate shown in Figure 13.7 

have a diameter o f approximately 10 pm. A mm =  8.54 x 104 for this 4 0 0 reflection 

and therefore, the distorted volume that gave rise to these defect images, would be 

potentially commensurably smaller than those imaged for the float zone samples in 

Figures 13.4 and 13.6.
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voids

Figure 13.7: 4 0 0 large area transmission topograph from Czochralski sample manu­
factured by Wacker-Siltronic.

The second Czochralski sample to be studied, that o f CZ-Okmetic, demonstrates po­

tentially the presence o f microdefects within the bulk o f the sample. These are high­

lighted in the 4 0 0 topograph o f Figure 13.8 by the dashed circular lines. These 

defects, with an average size o f 2 0  ¡im, should be treated with a certain amount o f cir­

cumspection as the “hairy” structure associated with the beam used to generate these 

topographs could be the cause. One should also remember from the discussion o f Sec­

tion 13.2.5 that as defects within the bulk only give rise to a white contrast, it is not 

possible to state whether the defect images have arisen from voids or precipitates.
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Figure 13.8: 4 0 0  large area transmission topograph from Czochralski sample manu­
factured by Okmetic.
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13.5 Conclusions

X-ray dynamical diffraction has proved to be a useful tool for the imaging o f microde­

fects in ultra-pure silicon crystals. Starting with the fundamental equations describing 

the wavefields within a crystal, the Penning-Polder theory was re-formulated, and ap­

plied qualitatively to describe the diffraction images formed by voids and precipitates 

in the bulk and the near surface regions o f a crystal. Both voids and precipitates have 

been observed in float-zone and Czochralski grown silicon samples. This chapter con­

tains some o f  the first images o f microdefects o f this nature imaged in Czochralski 

silicon. No other technique to date has successfully imaged these defects.

The interested reader may have pondered the following: why was the Penning-Polder 

description used in preference to the more popular Takagi theory [17,211]? The answer 

lies in the formulation o f both theories. In Takagi theory, the distortion is represented 

by a slowly varying dielectric susceptibility in the Bloch function representative o f the 

wavefield propagating in the crystal. By substitution o f the equation for the wavefield 

into the Schrödinger equation one may obtain, in the two-beam case, a set o f cou­

pled differential equations describing the evolution o f the Bloch waves in the crystal. 

The concept o f the dispersion surface is thus lost in Takagi theory and, in general, 

no analytical solution exists for all but the most banal situations o f lattice distortion. 

Therefore, with Takagi theory it is not possible to get an easy qualitative description 

for the diffracted image formation by simple investigation o f the differential equations.

The discussion o f the previous paragraph becomes important when one considers the
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current status o f the topographic investigation. The topography results demonstrated 

a clear correlation between the volume o f these defects, as anticipated by the crystal 

manufacturers, and that measured, when the angular amplification for the associated 

reflection was taken into consideration. However, two pervasive questions are in the 

minds o f the topographers and crystal growers associated with this work: what is the 

size o f the actual core volume that gives rise to the diffracted image and how many of 

these defects are there (to account for the density discrepancies)?

One may have thought the first question had already been answered. As the angular 

amplification is super sensitive to the deviation from the Bragg angle, even the slightest 

deviation from the diffraction condition will lead to an appreciable change in the size 

o f the void or precipitate imaged on the X-ray film. Therefore, the values for the core 

o f the defects presented in the results should only be treated as estimates. In regard 

to the second question, which is now compounded by the previous statement, let us 

presume the following situation: only voids exist within the crystal. Therefore, in 

principle one only needs to image a specific volume of the crystal and evaluate the 

number o f black-white and white images to ascertain the answer. I f  the voids are 

statistically distributed through the crystal, then one would envisage a certain number 

o f white and black-white images would be recorded on the X-ray film. In a recent, as 

yet unpublished study performed at beamline ID-19 at the ESRF, in which the quality 

o f the beam was superb, only black-white images were recorded. No while images 

attributable to defects within the crystal bulk were found. This result suggests the 

following: either no defects exist within the bulk or some alteration to the theoretical
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description is necessary.

The answer to these questions, the author believes, is couched in the Penning-Polder 

and Takagi theories. To accurately determine the size o f the defect and rule out the 

ambiguity associated with the angular amplification, a change in the u ■ h term of 

Equation (13.19) needs to be induced. Experimentally and theoretically, the easiest 

way o f achieving this would be to introduce a large thermal gradient across the sample. 

Thus by superimposing a new “controllable” strain u' on top o f u  one can investigate 

the tie point migration due to strain in a manner that is independent o f the angular 

amplification. The results o f such a study could then be fed into the lattice distortion 

parameters necessary for a numerical simulation o f the Takagi equations. The reward 

for such an endeavor would yield a virtual experiment that could be used by the crystal 

growers to further improve the quality o f these nearly perfect silicon crystals.
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Conclusions

In this thesis an exploration o f the optoelectronic and structural properties o f semi­

conductor materials and devices has been performed using different parts of the elec­

tromagnetic spectrum. In the optical regime, photoacoustic studies o f the non-radiative 

de-excitation processes in silicon, gallium arsenide and gallium nitride were performed. 

Utilising X-ray radiation with a wavelength comparable to the inter-atomic dimension, 

white beam diffraction topographs were recorded to elucidate the stress in common 

crystalline semiconductor materials such as silicon germanium and devices such as 

ultra-bright light emitting diodes.

The most prevalent theories o f  the photoacoustic effect in semiconductor materials 

were reviewed. Using an isobaric adiabatic approximation, one learned from the 

Rosencwaig Gersho theory that following light absorption heat is generated within 

the sample, which in turn generates heat in the photoacoustic cell gas column by con­

vective processes. The resulting “thermal piston” induces the acoustic wave within the 

gas column that can be detected with a microphone. The expression for the pressure 

variation is dependent upon the thermal diffusion mechanisms, specific heats and den­

sities o f  the gas, sample and cell backing materials. Using physical insight into the
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sample under examination one can simplify the expression for the pressure variation 

in the gas column. For example, in the case o f an optically opaque thermally thin sam­

ple such as carbon black or silicon, the pressure variation was shown to be inversely 

proportional to the chopping frequency and directly proportional to the intensity of the 

incident light. This was verified experimentally over the frequency range 25 Hz to 350

The generalised and extended classical theories o f the photoacoustic effect were found 

to contain particular guidelines for the design o f a photoacoustic cell. In particular, 

high frequency effects such as cellular resonance and thermo-viscous damping, in con­

junction with low frequency influences on the photoacoustic signal such as reflected 

thermal and acoustic waves from the optical window, have to be taken into consid­

eration. A  photoacoustic spectrometer was constructed according to these theoretical 

guidelines for the characterisation o f non-radiative de-excitation processes in narrow 

and wide bandgap semiconductors. In accordance with the predictions o f Bandeira, 

Closs and Ghizoni an increase in the photoacoustic signal amplitude was found due to 

thermalisation and non-radiative recombination o f electrons with sufficient energy to 

cross the electronic bandgap. The optical absorption spectrum near the intraband tran­

sition was evaluated using the normalised photoacoustic amplitude and thermal diffu­

sion length o f the sample. Through a knowledge o f the optical absorption spectrum 

in the Urbach region, the bandgap energy was evaluated for silicon, gallium arsenide 

and gallium nitride. An excellent agreement was found between the measured optical 

absorption spectrum and bandgap energies with the data in the literature. Thus, the

327



Chapter 14 Conclusions

motivating aims for Part I o f  the thesis have been fulfilled.

Theoretical modifications o f the photoacoustic effect due to structural strain were 

briefly discussed and the dearth o f theories for such mechanisms highlighted. This 

is an obvious area for exploration, both theoretically and experimentally, in the future. 

The effect o f dislocation density which is related to strain was seen experimentally in 

what is potentially the first study o f the non-radiative de-excitation processes in gal­

lium nitride using photoacoustic spectroscopy. A  gallium nitride sample grown by 

pendeo-epitaxy demonstrated a sharper bandgap transition and larger optical absorp­

tion coefficient compared to a standard hetero-epitaxial gallium nitride on sapphire 

sample. The higher dislocation density in the reference material provided a greater 

number o f non-radiative de-excitation centres. To date very little research has been 

undertaken in establishing relationships between non-radiative de-excitation processes 

and structural defect distributions. Thus far, the spectrometer constructed in this thesis 

has not been used for spatially resolved photoacoustic studies. In the future, such stud­

ies will be undertaken and correlated with defect distributions from X-ray topography 

measurements.

For the future several modifications should be made to the spectrometer to increase 

its efficiency and range o f applicability. At present the signal to noise ratio is so low 

that spectral averaging and filtering are required to obtain usable data. Therefore, any 

modifications to the spectrometer must increase the signal to noise ratio. From the 

theoretical discussions it is known that the photoacoustic effect is directly proportional 

to the intensity o f the incident light. Apparently the most obvious way of increasing the
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signal to noise ratio would be to increase the intensity o f the arc lamp. However, the 

intensity o f the light reaching the sample is fundamentally dependent on the irradiance 

of the lamp, which in turn depends on the size o f the arc and the power supplied to 

it. This spectrometer was designed to operate from the infrared to ultraviolet regions 

o f the spectrum and at present, it is quite difficult to acquire a lamp with significantly 

greater irradiance over this spectral range. Hence an increase in the intensity is not 

possible.

Returning to the theory o f the photoacoustic effect, it is also known that the photoa­

coustic signal is inversely proportional to the ambient temperature and directly propor­

tional to the thermal conductivity and pressure of the gas. Therefore, the best method 

of increasing the signal to noise ratio is to re-design the photoacoustic cell. Con­

struction o f a low-temperature photoacoustic cell o f  the gas-microphone type will be 

complicated by the operating temperature range o f the microphone. The microphone 

will have to be housed in an antechamber at room temperature and the photoacoustic 

signal transmitted through a capillary tube that isolates regions o f the cell operating at 

different temperatures. Using gases with higher thermal conductivities and pressures 

will entail nothing more than fitting the cell with entrance and exit gas ports. During 

the discussion on the design o f the photoacoustic cell it was also pointed out that by 

adding the photoacoustic signal from a number o f microphones one can also increase 

the signal to noise ratio. Given the minute size o f the electret microphones used in this 

thesis it would be quite easy to use an array o f twenty microphones thus increasing 

the signal to noise ratio by a factor o f approximately five. A  combination o f all these
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modifications to the photoacoustic cell will significantly enhance the operation o f the 

spectrometer.

Features o f the kinematical and dynamical theories o f X-ray diffraction applicable to 

this thesis were reviewed at the start o f  Part II, as this knowledge is fundamental to 

an understanding o f X-ray diffraction topography. Kinematical theory applies to suffi­

ciently thin samples, i.e. when the thickness o f the sample is less than the Pendellôsung 

distance, or to heavily dislocated samples where each scattering centre behaves inde­

pendently o f the rest. For all other situations, dynamical theory must be applied to 

account for the coupling o f energy between the diffracted and forward diffracted X- 

ray beams inside the crystal. By solving M axwell’s equations under the two beam 

approximation the concept o f the dispersion surface was introduced. The propagation 

o f the allowable wavefield(s) inside the crystal can be described by the appropriate tie- 

point(s) on the dispersion surface which in turn are selected according to the boundary 

conditions. Thus, three diffraction scenarios were considered: (i) Laue diffraction, (ii) 

Bragg diffraction and (iii) total external reflection. Other dynamical effects such as 

anomalous transmission were examined.

The properties o f relativistically charged particles moving in a curved trajectory were 

examined as a prologue to the techniques o f synchrotron X-ray topography. The low 

divergence, high intensity and small source size o f a synchrotron X-ray beam facilitate 

the production o f X-ray topographs with high spatial and geometrical resolution within 

very short exposure times. The principal transmission, reflection and grazing incidence 

topographic techniques were reviewed with a focus on their applicability to analysis of
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stress in semiconductor materials and devices.

Several detailed topographic investigations were performed. The main results now fol­

low. The failure o f ultra-bright light emitting diodes under varying degrees o f electrical 

stress was observed. The increased thermal load caused an increase in strain around 

the ball bond regions o f the devices, as the devices were stressed to the point o f near 

failure. Upon failure large lattice deformations o f  the original device structure took 

place. Back reflection section topographs facilitated an estimation o f the stress around 

the ball bond region via misorientational contrast.

Strain at the interface o f a gallium nitride epilayer and sapphire substrate was exam­

ined using section transmission topography. The quality o f epitaxial lateral overgrown 

(ELO) gallium nitride was shown to be superior to non-ELO material through mea­

surements o f local deviations from lattice coherence. Although it was an unrelated 

study, photoacoustic spectroscopy demonstrated that the pendeo-epitaxy gallium ni­

tride sample possessed fewer non-radiative de-excitation centres in comparison to the 

reference material. This has been attributed to the reduced dislocation density in the 

pendeo-epitaxy material. In the future a complete study o f the ELO and non-ELO 

materials will be performed using photoacoustic spectroscopy and the results will be 

correlated with the current topography data.

Thermal stress and boron induced strain generated during the rapid thermal oxida­

tion and doping o f silicon wafers was investigated using X-ray topography and micro- 

Raman spectroscopy. It was observed that thermal stress increased with processing 

time until relaxation o f the lattice occurred. The measured values o f stress were found
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to be in close agreement with the theoretical predictions for the oxidised wafers. The 

doped samples did not agree with the theory as sizable lattice relaxation occurred 

through slip line and dislocation formation.

The crystal quality o f synthetic type lb diamonds was evaluated using X-ray diffrac­

tion rocking curve measurements and back reflection topography. The poor quality of 

the samples was demonstrated through the rather large rocking curve full width half 

maximum which was nominally four to five times greater than the Darwin width o f the 

reflection being measured. These findings were supported by the presence of stacking 

faults and occlusions in the topographic images.

Using grazing incidence diffraction topography and total external reflection topogra­

phy, strain induced surface waviness in a silicon-silicon germanium heterostructure 

was observed. The origin o f the strain was attributed to the presence o f misfit disloca­

tions at the hetero-interface. The results o f the topographic investigation were found 

to be in agreement with data yielded by atomic force microscopy.

In the final study, microdefects in nearly perfect float-zone and Czochralski grown 

silicon samples were imaged using anomalous transmission o f X-rays. The imaging 

mechanism was explained qualitatively using the Penning Polder theory. Essentially, 

the microdefects cause migration o f the tie-point characterising the single anomalous 

wavefield propagating in the crystal. If  the defect is present in the crystal bulk, the sub­

sequent deviation from the ideal Bragg condition leads to an increase in the effective 

absorption coefficient and the wavefield is absorbed; this being recorded as a white 

image on the X-ray topograph. For voids located near the exit surface o f the crystal a
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black-white image, which is enhanced on the negative side o f the diffraction vector, is 

observed. This image arises from angular amplification o f the X-rays on either side of 

the defect. On one side o f the defect the tie-point migrates causing increased diffracted 

intensity and the opposite happens on the other side. The defect core size was esti­

mated based on the angular amplification and a close agreement was found with the 

values suggested by the crystal manufacturers on the basis o f missing sample matter. 

Future directions o f investigation were suggested. These consisted o f altering the strain 

field around the microdefects by application o f a thermal gradient and simulation of 

the observed features using the Takagi-Taupin formalism.

These studies have clearly demonstrated that synchrotron X-ray topography is capa­

ble o f imaging stress and defect distributions in semiconductor materials and devices. 

Thus the goals o f Part II o f  this thesis have been reached.

Looking at the long-term focus o f the research o f which this thesis is a part, i.e. to de­

termine the interrelationship between non-radiative de-excitation processes and struc­

tural defects in semiconductor materials, one can clearly see that the techniques of 

photoacoustic spectroscopy and X-ray topography are particularly suited to this task. 

It is envisaged that whilst data from these techniques will provide its own insight into 

the physical mechanisms, it will also support findings from more conventional exper­

imental methods such as deep level transient spectroscopy, photoluminescence, Ra­

man spectroscopy and transmission electron microscopy. The cumulative knowledge 

gained from these investigations will surely serve to enhance our understanding of the 

structural and optoelectronic properties o f  semiconductor materials and devices.
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Ray Tracing Parameters

Appendix B

Derivation of Ay

The biconcave lens may be considered to be constructed out o f two spheres C\ and 

C2, of radii R\ and R i  respectively. The point at which the ray from the object hits C\ 

and the angle at which it travels through the glass is known. Therefore, simple analytic 

geometry can be applied to solving the distance traveled by the ray through the lens.

Presume C\ is located at the origin.

C i :  x2 + y 2 =  R2 (B .l)

Now, in this reference frame C2 is located at (R\ -1- CT, +  R2, 0) =  (a, 0)

C2 : ( x - a ) 2 + y 2 =  R% (B.2)
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The point at which the ray hits C\ is

P i-  (.X'i,yi) =  (i?i co sa i,/? .j s in a i)  (B.3)

The slope o f the ray through the lens is

m  =  tan  a tl (B.4)

Therefore, the equation o f the ray through the lens is

L\ : y  =  ta n a ^ rc  -f R\ (s in a i — coscvi ta im j,)  (B.5)

Now

c =  Ri (sin an — cos orj tan  cvt, ) (B.6)

The intersection o f  L i with C2 may be described by the equation

L\ P )  C-i : (m 2 +  l)  x2 4- (2cm — 2a) x +  a2 +  c2 — i? | =  0 (B.7)

This quadratic equation in x can now be solved. The point o f intersection x2 should be 

chosen such that 0 <  x2 < a. Using Equation (B.5) y2 can be evaluated. The distance 

between the points P\ =  (x l t yi) and P2 =  (-̂ 2, V2) can be obtained and

A?/1 =  | Pi P-,| sin a tl (B.8)
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Derivation of A ŷ

Suppose the second surface of the biconcave lens C2 is located at the origin.

C2 : x'2 + y2 = R2

The ray exits the lens at the point

P-2 : (£2, y2) =  ( - ^ 2  cos «2, R-2 sin a 2)

with slope

rn =  tan a*a

Therefore the equation of the ray between the biconcave and biconvex lens is:

¿ 3  : y =  tan a t2x  +  R2 (sin a2 +  tan a t.2 cos cv2)

In this reference frame, the biconvex lens will be located at the point

( d  -  R 2 + R s - ^ ~  ^ , 0 )  =  (a, 0)

Qi : (® -  a)2 +  y2 =  R \

The intersection of Ls with C3 may be described by the equation

La p |  C-i : (m 2 +  l)  x 2  +  (2cm -  2a) x  +  dr +  e2  -  R \ =  0
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Appendix B Ray Tracing Parameters

This quadratic equation in x  can now be solved. The point of intersection .t3 should be 

chosen such that 0 < x 3 < a. Using Equation (B. 12) y3 can be evaluated. The distance 

between the points P2  =  (^2 , Ih) and P-j =  (.1.3 , y3) can be obtained and

Ayi = |P2/>3|shm£, (B.15)

Derivation of A

Suppose the first surface of the biconcave lens C3 is located at the origin.

C3 : x 2 + y2 = R j (B. 16)

The ray hits the surface at the point

P3  ■ (x3l 1/3 ) =  (— Rz cos c*3, Rz sin a 3) (B. 17)

and the slope of the ray through the lens is

m =  ta n a i3 (B.18)

Consequently, the equation of the ray through the lens is

¿ 4  : y = tan a h x  -f /¿a (sin a 3 +  tan a ,, cos cv3) (B. 19)

In this reference frame, the centre of the circle governing the second circle C4 is located
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at

(— (/?-, + R 3  — CT2 )) = (-a , 0 )

C4  : {x +  a ) 2  -j-y2  = R 2 (B.20)

The intersection of with C.\ may be described by the equation

L\ C\ : (in2 +  l) x2 +  (2cm +  2 0 ) x  +  a2 +  c2 — R% — 0 (B . 2 1)

This quadratic equation in x  can now be solved. The point of intersection x.\ should 

be chosen such that x\ > a. Using equation (B. 19) yA can be evaluated. The distance 

between the points P$ = (2 3 , 3/3 ) and P.\ — [x\,y,1) can be obtained and

Derivation of A y^

The lateral distance between the sample and the exit of the ray from the biconvex lens

&V3 =  I ¿V M  sin a l3 (B.22)

( ’ 7 ■i = ds ——— h Rj[ (1 — cos CI4) (B.23)

Ayu — I tan a t< (B.24)
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Appendix C

Material Parameters

Material P (kg/m3) k (W/(m K)) C (J/(kg K)) Data Source

Carbon 2267 160 709 [2 1 2 ]
Silicon 2328 141.2 700 [45]

Gallium Arsenide 5316 455 350 [45]
Gallium Nitride 6150 130 490 [213]
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