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Abstract

"Laser Trapping Microchip for Biotechnological Applications -  Design and Development" 

by

Boleslaw Andrzej Kolodziejczyk

This work presents a novel approach towards integrated dual-beam optical trapping 

achieved using planar lightwave circuit (PLC) technology Three fabrication 

technologies sol-gel, photolithography and reactive ion etching were combined to 

fabricate a Laser Trapping Microchip (LTM) allowing one-dimensional manipulation of 

transparent micrometer-size spherical objects

Detailed steps of the LTM development are described, beginning with a theoretical 

approach and numerical simulations through the design and synthesis of a suitable 

photopatternable sol-gel material, culminating in the fabrication process and 

experimental confirmation of the trapping properties of the device

The proof of concept of this unique device was achieved by demonstrating its optical 

trapping abilities using micrometer size polystyrene beads with diameters in the range 

between 4 pm and 10 pm and the refractive index of 1 59

The LTM device possesses many advantages over currently existing dual-beam laser 

trapping systems such as small overall dimensions (~15 x 30 x 0 5 mm), low power 

optical power consumption (<15mW), improved stability of the optical trap due to 

precise alignment of the optical paths and a relatively easy fabrication process For 

these reasons there are many potential applications of the LTM device in 

biotechnology, microfluidics and other sciences making it an attractive device for 

commercial use
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1. Introduction

The overall objective of the project was to build a new generation of dual-beam optical 

trapping microchip system for biotechnological and medical applications. Specific 

applications include: intercellular microsurgery, micro-organism and biopolymer 

manipulation, observation of mobility patterns of human spermatozoa, and the control 

of other objects etc [1-12]. The major contribution of this work towards miniaturisation 

of the laser trapping device is based on a unique concept that incorporates dual-beam 

optical trapping, sol-gel, UV-photopatterning and plasma technologies into a small 

microchip that is capable of trapping micrometer size objects such as polystyrene 

beads.

Parallel research on the development of sol-gel materials and sol-gel plasma etching 

created an opportunity to build a laser-trapping system, which possess several 

advantages over previously available optical tweezers and dual-beam trap solutions 

[13-16]. In comparison to optical tweezers, the proposed device does not require high 

numerical aperture objective lenses and it produces a stable optical trap with low 

power laser diodes. This allows direct well-focused observation of objects through an 

external microscope. Another feature is the exceptionally small size of the device so 

that it can fit as a bench top unit in a standard biotechnology laboratory. The early 

versions of dual-beam traps overcame the weaknesses of optical tweezers, but 

demanded complex positioning elements or devices allowing counter propagating light 

beams to propagate exactly along the same optical axis [3,17,18]. Since this is crucial 

for producing an efficient trapping equilibrium the dual-beam optical trap was 

considered as a suitable system to be simplified and miniaturised using planar 

lightwave circuits (PLC).

After examining several possibilities the most suitable techniques selected for accurate 

placing of optical elements on PLC devices are either laser writing or photolithography 

combined with plasma etching, both utilising sol-gel technology. The technologies 

mentioned above present comparable capabilities in terms of accuracy and 

repeatability of the optical structures. Photolithography is more suitable for mass 

production and has the potential for future commercial applications. On the other 

hand, laser writing is more flexible and requires fewer resources to produce single
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units of the microchip. Nevertheless considering the industrial orientation of the 

microchip, its further development and possible future increased complexity, 

photolithography was chosen as the technology that best met the requirements of the 

proposed system. A PLC-based system also has disadvantages; for example when the 

system configuration changes or different trapping object sizes are used completely 

new and relatively expensive photo masks must be produced. This increases costs and 

manufacturing time. However, once a well-designed and properly set up system is 

introduced, millions of similar good quality devices can be produced within a short 

period of time. Effortless access using surgical scalpels and micro devices for 

manipulation of trapped objects was also considered while deciding on the method to 

be applied.

In summary, the primary objective of the work reported here was to combine two 

highly advanced technologies, photolithography and plasma etching, in order to create 

a unique device (Figure 1-1) capable of trapping micrometer size objects with a low 

laser power.

Other objectives included development of a suitable photopattemable sol-gel material 

and optimisation of technologies used for the device fabrication. It was also proposed 

to characterise this device and evaluate it against the performance criteria of existing 

devices. The upcoming chapters present a physical description of the optical trapping 

phenomena, numerical simulations, design and synthesis of a suitable 

photopattemable sol-gel material, culminating in the fabrication process and 

experimental confirmation of the trapping properties of the device.
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2. Physical Principles of Optical Trapping

2.1. Introduction

The theoretical study of laser trapping has been conducted extensively for over twenty 

years and plays an important role in the numerical estimation of optical forces acting 

on a trapped object It also aids in understanding different types of laser trapping 

alignment configurations

In 1970, Ashkm and Dziedzic demonstrated for the first time that a spherical particle 

can be held in stable equilibrium by strongly focused laser beams [14] The combined 

force of photons reflecting and refracting from the boundary of a microsphere 

surrounded by a transparent medium was able to compensate for the influence of 

gravitational forces, dragging forces, and Brownian motion, and to provide full control 

over the trapped object Since then, scientific interest in the technique has grown, 

resulting in numerous publications developing both theoretical approximations and 

instruments for practical applications

The first report on a dual-beam trap was presented in 1985, opening a new field of 

investigation and extending the variety of potential applications and system 

configurations [14-21] Three different trapping configurations have been recognised 

with respect to their application and configuration These have been categorised by the 

particular types of forces acting on the trapped object

The first and the most basic type of laser-trapping systems is called the levitation 

trap [2] Optical lenses are placed under the bottom of a transparent sample and 

propagating light exerts a substantial scattering force acting against gravity on the 

object, which causes its displacement in the direction of light propagation

Optical tweezers are the most common optical traps encountered in the literature 

and are widely used for demonstrating laser-trapping phenomena [22-29] Objective 

lenses with high numerical aperture are placed over or under the sample focusing the 

light into a small spot (Figure 2-1 a, b) A microsphere positioned in the vicinity of the 

spot is subjected to the forces raising the microsphere from the bottom of the particle's
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housing The optical force distribution enables three dimensional object manipulations, 

which gives a high degree of flexibility to the system Scattering forces are negligibly 

small thus gradient forces play the most important role in providing a stable 

equilibrium point

In contrast with single-beam optical traps, dual-beam optical traps are created by 

two laser beams emerging from two coaxially aligned optical paths (Figure 2-1 c) 

[13-16,19,20,30] They induce forces similar to those produced by levitation traps but 

in this case both gradient and scattering forces are doubled and both of them can be 

used simultaneously to manipulate the trapped object

Dual-beam optical traps offer more advantages than the two trapping techniques 

previously described One of them is the ability to move an object by changing the 

optical power of one of the beams The difference in power supplied, influences the 

force balance and causes the particle to move towards one of the beams until the 

equilibrium point is reached This process removes the need for additional mechanical 

elements in the system, thus making it less complicated

Figure 2-1 Laser trapping systems configurations

Moreover, relatively lower laser intensity can be used for holding an object in a stable 

position avoiding damaging effects on a living object and therefore allowing it to be 

held for longer in the trap

a Levitation trap b Optical-tweezers c Dual(n-beam) trap
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Another advantage of dual-beam traps is that the operational design enables relatively 

easy access for object observation and external manipulation, which gives more 

flexibility for a series of biotechnological applications

With respect to potential future applications the dual-beam trap is the most suitable for 

biotechnological applications and therefore it was selected for the system to be 

developed here

Two theoretical approaches may be used to describe laser-trapping phenomena The 

first uses the Rayleigh theory model, which applies to particles satisfying the condition

27tr0 / A0 1 Equation 2-1

where

r0 - radius of the microsphere,

A0 - laser light wavelength,

This theory has been compared to experimental data in K F Ren [31] and Y Harada 

[32] The second theoretical approach applies ray optics for particles confined in the 

Mie regime M 1) or at least the intermediate regime ( 2 r0 | A0) Although

the ray optics model has some disadvantages, such as reduced accuracy, it is relatively 

easier to calculate and can be used for systems designed for trapping objects much 

bigger than the wavelength of light used [1,33-38]

2.2. Dual-Beam Trapping Model Presentation

In the laser trapping microchip device the chosen trapped objects were intended to be 

confined in the Mie regime So, when describing the phenomena, the ray optics 

approximation was chosen In this case, when a small ray of light acts on a dielectric 

(transparent) surface it becomes partially reflected and refracted according to Snell's 

law causing a change in momentum of the photons, which is transferred to the 

microsphere The change in momentum is then responsible for the forces acting on the 

microsphere in certain directions These forces can be decomposed into two 

perpendicular components called scattering (which arises by reflection on particles and
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is proportional to the optical intensity) and the gradient force component (which arises 

by refraction on the particle due to the optical intensity gradient) (Figure 2-2)

Following Sidick and Collins [1] the forces can be described by two separate vector 

equations

dFs s % sdP Equation 2-2

dF g — q dP Equation 2-3
g c s

where

s , g  unit vectors in directions of Fs and Fg respectively ( Fs is parallel to

the direction of the incident ray and Fg is perpendicular to Fs)

n, refractive index of the medium surrounding the microsphere

c free-space light speed

dP differential power of the ray

qg and qs represent a fraction of momentum transferred to the microsphere in 

respective directions They are given by the formulae [1,14,15,19,32]

, n ~ ^ 2  cos(2a , 2 a )  R cos l a  Equation 2-4q, 1 Rcos la , T l — -— — —-------------L ^
1 R 2 2R cos 2a,

~,?sm(2a, 2 a r) R s m l a ,  _
q„ R sin 2a, T --------- ——  -------------- - Equation 2-5

* 1 R 2 27? cos 2a.
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a angle of incidence on the surface 

a, angle of refraction on the surface

where

T and R represent reflectance and transmittance of light on the boundaries between 

two media with different refractive indices given by Equations 2-8 to 2-11, which also 

take into account the polarisation properties of the laser light [13,39]:

TE

nxCos(at) n2Cos(at )
n,Cos(a,) n2Cos(ar )

Equation 2-6

RTE

TM

n£os(a t) n2Cos(ar)
nxCos{ai) n2Cos(ar)

n2Cos(at) nxCos(ar)
n2Cos{OLi) nxCos(ar)

Equation 2-7 

Equation 2-8

RTM

n2Cos(at) /2,Co5 (ar)

n2 Cos (a,) nt Cos (ar)
Equation 2-9

in which n2 represents the refractive index of the refractive medium (in our case the 

microsphere).

Numerical calculations of R and T for TE and TM polarisation of the dual-beam 

optical trap forces obtained so far [1,15] reveal that linearly and circularly polarised 

beams produce the same amount of transverse and axial force when the microsphere 

is in the close vicinity of equilibrium. However, when we move the microsphere from 

the point of stability by a distance perpendicular to the optical axis, the transverse and 

axial components are not identical anymore for different states of light polarisation. It 

was calculated that the light polarised in the direction of the displacement brings a 

marginal (7%) rise in the value of the transverse forces.

From a technical point of view it is possible to incorporate extra passive optical 

elements into the system to at least theoretically obtain better microsphere 

confinement in the transverse force direction. However beam polarisation always
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involves power losses, which, assuming equal values of polarisation components, 

would be about 50% Obviously this loss of power could not be compensated by the 

polarisation effect and, in fact, forces acting directly on the microsphere would be 

lower than that in the original configuration On the other hand, the primary goal here 

was to build a system containing a minimum number of separate elements The 

addition of polarizers would require additional effort and would make the system more 

complicated, which is highly undesirable in any innovative design Despite these 

drawbacks, polarisation effects on laser trapping forces present some opportunities for 

LTM systems and these may be utilised in future LTM developments One of these 

opportunities could be, for example, the incorporation of polarisation elements directly 

into the microchip structure in order to establish control over the rotational movement 

of trapped birefrmgent objects

Once it had been decided to use a circularly polarized laser beam, R and T  are given 

by the arithmetic average of TM and TE components

n  r te r tm Equation 2-10
K

2

T T
TE TM

Equation 2-11

Since gradient forces are strictly dependent on intensity gradient changes then the use 

of multimode light causes the occurrence of more than one stable equilibrium point 

and hence does not match the system specification Similarly, different mode profiles 

other than the Gaussian profile of a single mode beam were not considered to avoid 

adding complexity to the system design

Therefore, for all further investigation of laser trapping calculations, it is assumed that 

the laser beam acting on a microsphere surface is of Gaussian shape, which means 

that the differential power incident on the small region of the microsphere, is given by 

[1]

dP  I  cosOdS - ^ - e x p ( 2 r 2 / w 2)cosOdS Equation 2-12
Jtw0

where
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P0 -  total power of the laser beam

w0 -  laser beam waist (Figure 2-3)

r -  distance from the beam axis to element dS of the surface

w -  beam radius at the point for which a Gaussian laser beam is defined as [39]

*  *  z  A •  •
w -  Equation 2-13]|J

0 angle between the normal of the differential area dS and beam axis 

(Figure 2-4) 

dS differential element of irradiated surface

z = (t>

z = 0 r  planar wavefront
2 v 2 w 0

planar wavefront
Gaussian 

profile r
2w0 ! Gaussian

Z =  Zr

maximum curvature 

Figure 2-3 Laser beam with Gaussian intensity profile

intensity

When examining the forces generated by the laser beam striking the microsphere in 

the vicinity of stable equilibrium, the microsphere and laser beam must be displaced 

with respect to each other in order to observe the change in the forces

The most useful method for future calculations is to create a rectangular coordinate 

system and place its origin (axis x, y, z) in the plane of the beam waist with axis z 

passing through the centre of the microsphere, assuming a displacement of the laser

beam axis, CA, from the z-axis by a distance d (Figure 2-4)
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c

Figure 2-4. Ray optics coordination system

The laser beam is meant to have a positive propagation direction which means that it 

propagates from left to right towards the microsphere. Then, the curvature Rc of a

single ray CP, which appears to come from the point C  behind the plane of the beam 

waist, is given by [39]:

where

zp 2 coordinate of point P

w0 laser beam waist

It seems from Equation 2-14 that the value of Rt can be either positive or negative 

depending on the value of z p corresponding to a situation when the microsphere is 

centred to the right ( Rc ! 0 ) or to the left ( Rt 0 ) of the beam waist.

In the proposed system, the laser light is confined by the waveguides so beam waists 

are placed at the waveguides endfaces. Therefore the microsphere cannot be 

physically moved behind the beam waists and the case Rc 0 is irrelevant for further

theoretical investigation. The coordinate z p of the point P on the boundary can be

defined in spherical coordinates with respect to the centre of the microsphere by

Equation 2-14
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where

z 0 z  coordinate of microsphere centre

Following the geometry presented in Figure 2-4 and Figure 2-5 the unit vectors S and 

g can be described as [1]

ZP zo roCosO Equation 2-15

s ¿(r0 sin 6>cosy d) y{rn sm 6sm<p) iR z Equation 2-16

\R c\

n  j  d R c •  n  .x |r 0 sint/sin(p a --------- t  >>(r0 sm 0 sm <p)
- cos y * _____________  Equation 2-17

Rc tan 7

r0 cos0 ) • 

y a cos 7  ^

/?c t a n /

Figure 2-5 Geometrical relationships between various variables

R
Rr

: a

P
/  /^ /
/  rn sm 0

y>

The geometry in the plane of incident light is presented in Figure 2-5 with the 

projection of vector CP on z-axis Rz given by the equation of the right-angled triangle

Equation 2-18
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Other parameters used in all of the above equations are defined as follows [1]

□ Angle of incidence

, ^  r d 2 (R z  r . C o s B f  r0 R c\
a, A r c C o s  [-------- ------- 0  2----- '—] Equation 2 -1 9

2 r0R c

and according to Snells law, which describes the relationship between the angles of 

incidence and refraction and the indices of refraction of the two medium a r is given 

for small angles by

a  HLa  Equation 2-20
n 2

□ Half-apex angle j  presented in Figure 2-6 and used in the equation can be defined 

as [1]

y  A rc C o s  fl2 r°2 '  EctU atlon 2 ' 21
$  2 a R c i

Figure 2-6 Half-apex angle geometry

Geometrical relations and the symmetry of the problem (causing cancellation of d F y

force components) leads to the equation for the total force produced by the laser 

beam
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F r̂ L >/ <p > dO  sm  0 \ ) c o s  o ( s q s g q g ^ cx p (  ^  ¡ w  ) Equation 2-22
c 7U -  0 w

The symmetry for both of the force components in plane xy y ) allows the second 

integral to be carried out from 0 to n  instead of from 0 to 2 n  with respect to angle <p 

(Figure 2-4) This however implies that both F 2and i^must be multiplied by a factor 

of 2

The upper limit of the first integral 0 ^  is found for each value of <p by finding the root 

of the Equation 2-23 with respect to 0 substituting 6 0^  [1]

d 2 (Rz r0 cos O f r02 Rc2 0 Equation 2-23

By putting Equations 2-16 and 2-17 into Equation 2-22 and decomposing it into Fx 

and Fy scalar components, we can then write a more simplified form

n A q  Equation 2-24

Fx Equation 2-25

where Qz and Qx are called the trapping efficiencies defined respectively as follows 

[1]

a  Eqmtvn 2-26
n  ~  ~  w 2R c

I  tan y X- a  cosy j
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2r 2 0max exp( 2r 2 / w 2) n  0 „
—2 ->/<p > ¿/0 sin 20 FV -------- Lx> Equation 2-27

K  7  7  w  R c

^  / \ q e *  *  R
(r0 sm0 cos<p d)  —— t> <4 sin 0 cos <p c/|l ---- £— —

1 tan7 ¥ «COS/^^J

In the case of a dual beam trap the total forces acting on the microsphere are the 

superposition of the forces exerting on a microsphere by a single laser light source 

The configuration of the dual beam trap is presented in Figure 2-7, where s is the 

distance between the waists of the counter propagating beams and z0 represents a

distance between the centre of the X , Y , Z coordination system and the center of 

the microsphere

Figure 2-7 Dual beam trapping configuration

Since the two counter propagating beams induce axial (scattering) forces in opposite 

directions the total force produced can be represented by

Fzi Fzl — {PtQzl P2Qz2) Equation 2-28
c

From the other side, the gradient forces acting on the microsphere depend on the

intensity distribution and, since both beams have a positive contribution to the

intensity gradient, the total force is a sum of the forces produced by each of the beams 

separately and it is given by

F* Fx, Fxl ^ { P & t P2Qx2) Equation 2-29
c
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Since the coordinate system of both beams was measured from the beam waist of the 

first beam then the second beam coordinate z0must be replaced by 5 z 0 as shown in

Figure 2-6 Thus an increase in the value of z0 of the first beam results in a decrease

of the second beam z 0 and causes a change in the forces balance

2.3. Conclusion

The presented theoretical background of optical trapping based on ray optics theory is 

a sufficient approximation for trapping objects of a few micrometers in diameter The 

set of derived equations also explicitly assumes a spherical shape of the object In 

practical applications of the optical trapping system this will not always be the case as 

the living matter can posses various different shapes In these cases the calculations of 

the trapping forces could present a much bigger challenge both from a geometrical 

and an analytical point of view especially in terms of solving the integrals of the 

equations [40,41]

There is also an interesting phenomenon that is not immediately visible from these 

geometrical relations and which is often used in practical applications Based on the 

intuitive approach one can conclude that the trapped object is squeezed by the optical 

forces acting in opposite directions However, more careful study of the geometrical 

relations reveals that in fact the trapped object is subjected to stretching forces and if 

the object is a living cell this could cause its extrusion or even permanent damage 

[17,18,42] This fact can be very useful for measuring the flexibility of the object and 

its physical endurance, and is an example of another laser trapping microchip 

application

In summary the physical approximations described in this chapter form a solid base for 

the numerical calculation of the forces ultimately expected in the LTM device
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3. Numerical Calculations and Simulations

3.1. In troduction

The theoretical model presented in Chapter 2 forms a solid background for the 

numerical evaluation and optimisation of laser trapping forces required to build a 

workable device.

The first step towards the calculation of optical forces was to find the trapping 

efficiencies for the specific trapping conditions. These conditions involve combinations 

of multiple variables, which are the components of Equation 2-25 and Equation 2-26 

( w0 , A*,, r0 , d , z0 )• Optimisation consisted of the selection of the combination of

variables, which provided the highest transfer of the photon momentum to the 

trapping forces.

The large number of parameters involved in laser trapping efficiency calculations would 

imply a huge number of calculations to be conducted. In order to limit the number of 

iterations to an acceptable level, only a few parameters were varied while others were 

kept constant as their values were based upon the practical application of the device.

Based upon the anticipated applications of the Laser Trapping Microchip, the trapping 

parameters that were set as constants were done so for the following reasons:

□ Refractive index of surrounding medium (w,)

In many biological, biotechnological and laser trapping applications [5,6,7,43], 

living objects are immersed in solutions mainly consisting of water, which creates a 

natural environment for living organisms. In our experiment a surfactant, Triton X- 

100 [19], was used to avoid the sticking of particles to the boundaries of the 

chamber. The surfactant Triton X-100 was mixed with the particles immersed in 

water in the ratio 50:1 to produce a final particle solution. Since the refractive 

index of Triton X-100 is close in value to the refractive index of water [44] and its 

concentration in solution was small it was considered to have marginal influence on 

the refractive index of the solution and thus final results obtained from calculations.
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For these reasons, the value of «, in all the numerical calculations was taken to be 

that of the refractive index of water, 1 333

□ Refractive index of the trapped object ( n2)

As seen from Snells equation (Equation 2-20) the n2 value works in the opposite 

direction to nx which means the higher n2 the higher the force generated by the 

trap

In order to provide the best comparison to the previously reported experiments on 

optical trapping [1,13,26,30,45-48], polystyrene microspheres were used as typical 

testing objects for the optical trapping devices Available polystyrene microspheres 

produced by Microsphere Polysciences Inc were characterised with a refractive 

index of n2 =1 59 and this value was used in further numerical calculations as a 

constant

In real applications one should be aware of the fact that the refractive index of the 

object could be lower than the refractive mdex of polystyrene Typical living objects 

contain a high amount of water causing their refractive index value to differ only 

slightly from the refractive index of pure water (a typical surrounding medium), in 

which case the trapping forces are greatly reduced [7,43]

□ Laser light wavelength (X0)

The operational laser light wavelength used during all experiments was 662 nm in 

the visible range and this value was used in all numerical calculations

The primary consideration in the selection of the laser light wavelength was its 

visibility This was due to the fact that only light from the visible spectrum range 

could provide a way to achieve good coupling by the accurate visual alignment 

between the pigtailed fibre and the waveguide Once the device is pigtailed and the 

coupling of the light is no longer a problem, then the laser light wavelength can be 

tailored to the particular application
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Another factor, which had an influence on choosing this wavelength, was its 

interaction properties with bioorganisms. Since experiments started with 

bioorganisms using the laser trapping method, scientists have been looking for a 

way to reduce the damaging effect of laser light on the molecular structures of 

those organisms [49-54]. Svoboda and Block [49] recommend that a laser 

wavelength in the near infrared region was suitable as it has a reduced influence 

on the trapped objects molecular structures (Figure 3-1).

io4

io3

Î  1°2 
i  1 0 1

I  10°

10 1 
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10'3
250 500 750 1000 1250 1500 4000 8000 12000

W avelength (nm)

Figure 3-1. Absorption spectra of biological material in the near infrared region, 

showing absorption of water, deoxyhemoglobin (Hb) and oxyhemoglobin (Hb0 2 )
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At the beginning of the calculations it was assumed that we should manipulate only 

with the values of those variables, which are relatively easy to adjust and control. 

It means that the beam waist diameter, polystyrene bead sizes, and the endfaces 

separation distance were our primary choices.

Parameters which were changed and their influence was a subject of this analysis 

were:

□ Beam waist radius ( w0)

In the presented theoretical model the waveguide size corresponds to twice the 

beam waist radius. The beam waist variations covered the range between 2 pm to 

10 pm. The minimum range was set by fabrication process limitations, which
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affected the quality of the waveguides In our process the ridge waveguide shapes 

deteriorated rapidly below the width of 4 pm The upper limit was based on the 

ability to produce a large waveguide having a single mode guiding profile Bigger 

waveguides would require a smaller difference in refractive index between core and 

the cladding of the waveguide

□ Particles (trapped objects) radius (r0)

In order to be useful for most of the biological applications the device should work 

with various sizes of living objects The radius of these falls in the range between 2 

pm and 5 pm Taking this into account a model was set up to find stable conditions 

common for different particle sizes Specific calculations were done for available 

polystyrene beads, which were of three different radii 14185 pm, 2 916 pm, and

4 57 pm

For the purpose of homogenous presentation, most of the computational parameters 

(Figure 3-2) were normalised according to the beam waist sizew0 These parameters 

include

□ Normalised beam waist separation

5  s / w 0

□ Transverse offset

D  d !  w 0

□ Normalised beam waist distance from shifted axial offset

Z 0y Z 0 S / 2  z 0 / w Q S / 2

Figure 3-2 Computational parameters of dual-beam trap

Equation 3-1 

Equation 3-2

Equation 3-3
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This section also contains the calculation of the refractive index difference that should 

exist between core and the cladding of the waveguides inside the chip to provide 

single mode guiding This is crucial for a single trapping equilibrium to exist

Finally the impact of the quality of the waveguide endfaces was evaluated by 

estimating the displacement of the beam centre when the waveguide endface is not 

perpendicular to the waveguide optical axis The results provided further guidance 

towards the selection of the fabrication method for the particle chamber
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3.2. Numerical Calculations of Trapping Efficiency

For optimisation and numerical evaluation of the trapping efficiency values presented 

in Chapter 2 (Equation 2-26 and 2-27), the Wolfram Mathematica 4.1. software 

package was used. Results were achieved separately for both transverse trapping 

efficiency ( Qxl) and axial trapping efficiency ( Qa ), which are the components of

scattering and gradient trapping forces respectively. Two examples, for beam waist 

size 2 pm and particle radius 2.916 pm are presented below (Figure 3-3).

Variation of Transverse Trapping Efficiency Q* 
<v*o=2 lO '6 m; r0=2.916 1<T* m)

Q x t

S«S s . 10 S = 30 S . 40 s . 60 S«120

Figure 3-3. Variation of transverse and axial trapping efficiencies vs. microsphere 

displacement for different separation distance of waveguide endfaces
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All the graphs are plotted versus normalised dimensions with respect to the beam 

waist diameter The transverse efficiency reaches a maximum of 0 75 for the biggest 

particles in question (4 75 pm) and beam waist size 1 pm The maximum efficiency in 

axial direction for all considered cases can be observed for 1 pm beam waists 

separated by 60 pm and a microsphere radius 14185 pm From the graphs 

(Figure 3-5) one can see that the transverse trapping efficiency Qxt decreases with the 

distance between beam waists and the bigger the diameter of microsphere the higher 

the maximum value of Qxt

Variation of Transverse Trapping Efficiency Qxt 
(w0=2 10-6 m, r0=2 916 1(T6 m)

Qxt

S = 5  S = 1 0  S = 3 0  S = 40 S = 6 0  S= 1 2 0

- 4 -  * m

Figure 3-4 Variation of transverse and axial trapping efficiencies for different sizes of 

the microspheres
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In the case of Qa however the trapping efficiency behaves in the opposite way and 

decreases with S . As S reaches certain limits and the Q:l slope becomes positive the 

trapping equilibrium point becomes unstable. This leads to the particle being trapped 

against the endface of one of the waveguides [1]. From the scale of figures for Qtl

and Qa it is seen that values of Qa are at least ten times lower than in case of Qu .

Thus the optimisation should be more focused on the axial trapping rather than 

transverse trapping forces.

Another important factor that was considered in the microchip design was the linearity 

and the working distance of the axial forces. Small waveguide sizes make the 

confinement range along the z -axis very short as well as causing fast degradation of 

the linearity of trapping efficiency. This in combination with the reposition of the object 

by external factors along the z-axis might induce loss of trapping confinement of the 

object. It is apparent that axial forces do not vary significantly with particle size 

changes but they experience a major influence due to beam separation variations, 

which should be precisely adjusted (Figure 3-2). In some cases shape deviations 

appear (Figure 3-5). This is a result of model limitations and approximations used 

when creating the theoretical model such as Snell's law approximation etc. However as 

it was stated previously, these inaccuracies can be neglected for our application.

Variation of Transverse Trapping Efficiency Q«t 
<v*=l 10-* m; r0=2.916 10“6 m>

Qxt

S* 1« S*30 5=40 S*60 S*120

Figure 3-5. Variation of transverse trapping efficiency vs. microsphere displacement for 

different separation distances of the waveguide endfaces.
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In order to meet two major objectives i e high transverse force efficiency and highly 

negative and linear axial efficiency slope, the following waveguide sizes (ws=2w0) for 

the prototype device were selected

□ for particle radius r0= l 4185 106 m (Figure 3-6)

ws=2xl0"6 m with s=20xl06 m, and ws=4xl0'6 m with s=40xl06 m

Variation of Transverse Trapping Efficiency Q* 
(w0= 1 lO-6 m, r0=l 4185 10-6 m)

Qxt

S 5 S 10 S 30 S 40 S 60 S 120

Variation of Axial Trapping Efficiency Q*
(w0=l 10 ̂  m, r0=l 4185 10-6 m)

S -1 0  S 20 S -3 0  S 40

Variation of Axial Trapping Effiaency Q*
(w0=2 1 0 m, r0=l 4185 10~6 m)

Qrt

Figure 3-6 Optical efficiency graphs for particle radius r0= l 4185 106 m
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□ for particle radius r0=2 916 106 m (Figure 3-7)

ws=4xl0 6 m with s=80 106 m, and ws=6 10 6 m with s=90xl06 m

Figure 3-7 Optical efficiency graphs for particle radius r0=2 916 106 m
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for particle radius r0=4 57 106 m (Figure 3-8)

ws=8xl06 m with 160x106 m, and ws=10xl06 m with s=200 106 m

Variation of Transverse Trapping Efficiency Q* 
(w0=4 10"6 m r0=4 57 10 6 m)

Qxt

S -1 0  S 30 S 40 S 60 S 120

Variation of Axial Trapping Efficiency Qa 
(w0=4 10** m r0=4 57 10'6 m)

Qzt

*  ■ i 1 ■
2 5 . 7,5 13 12 -8 2D

S 10 S 20 S 30 S 40

Variation of Transverse Trapping Efficiency Q*t 
(wt,=510^m r0=4 57 10"6 m)

Qxt

S 10 S 30 S 40 S 60 S 120 

* « -*■- ♦

Vanabon of Axial Trapping Efficiency Qa 
(Wb=5 10** itt; r0=4 57 10"6 m)

Qzt

1
2 M - 4 .5  1 

■m
j n .5 2 )

’

S 10 S 20 S 30 S 40

* •

Figure 3-8 Optical efficiency graphs for particle radius r0= 2  916 106 m

The specification however may vary depending on the application and for that reason 

the photolithography mask incorporated a structure (see Chapter 6 Mask Design) that 

was designed for testing all cases considered in the calculations
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3.3. Refractive Index Step Calculation fo r Single Mode Waveguides

Calculations of trapping efficiency explicitly assumed that the beam propagates on a 

single mode basis. The excitation of other modes could have resulted in unnecessary 

loss of optical power along the waveguide [55,56] and even more importantly they 

might have caused the appearance of other equilibrium points. This would decrease 

the trapping efficiency and would be inconsistent with the presented LTM concept.

Protective Layer 
(5 pm, n= 1.4962)

Protective Layer 
(5 pm, n=1.4962)

\ Buffer Layer (5 
urn, n=1.4962)

Silicon Substrate 
(n=3.5)

Waveguide 
(5 um height, varying 
n=1.4962+An)

Figure 3-9. Optical modes propagation model

In order to make a single step refractive index waveguide capable of guiding only the 

TEoo mode of light, both the size of the waveguide and its refractive index difference 

between core and cladding must be established. Calculations of trapping efficiency 

revealed that a beam waist of between 1 pm and 5 pm results in optimal trapping 

conditions. This covers a wide range of particle diameters from 2.8 pm to 9.16 pm.

Taking this into account, simulations were performed using C2V Selene Software in 

order to find the modal excitation distribution and the refractive index difference that 

would allow single mode light guiding for almost all considered waveguides diameters 

(Figure 3-9).

The model of a rectangular waveguide on a 5 pm buffer layer and covered with two 

protective layers, all on a thick silicon substrate, was created. During calculations the 

height of the waveguides was kept constant while their width was changed in the
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range between 2 pm and 10 pm. The constant height was selected in order to simplify 

the fabrication process and make it less time consuming in the primary stage of 

prototype testing. Since all waveguide sizes were fabricated from the same mask, 

preparation of specific devices serving particular microparticle diameters with 

distinctive guiding layer height would require additional process adjustments.

Since the LTM research was focused primarily on demonstrating the functionality of the 

device therefore precise adjustment of the guiding layer was not in the scope of this 

work. For that reason the fabrication process was adjusted to deliver 5 pm high 

waveguides on the single 4-inch wafer, which is in the middle range of all considered 

cases.

Figure 3-10 and 3-11 shows the effective refractive indices (related to each existing 

propagating TE mode) plotted versus refractive index difference of the waveguide for 

each waveguide width.

TE M o d e s  G u id n g  P a t t e r n  f o r  W G ( W 4 ,H 5 )

0,003 0,004 0,005 0,006 0,007 0,008 0,009 0,01 0,011

An

— .—  TE0 — ■—  T E 0 1 — •— TE10 *—  n G L Neff Cut-off(25 % )
V_______________________________________________________________________ J

Figure 3-10. Optical modes calculated for waveguides width 4 pm and height 5 pm for 

the optical wavelength of 662 nm
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TE M odes GukJiig P a tte rn  fo r W G(W 5,H5)

1,494 I-------------r "i" I

0,003 0,004 0,005 0,006 0,007 0,008 0,009 0,010 0,011

An

TEO TE01 TE10 nGL - - * - Neff Cut-off(25 %)

Figure 3-11. Optical modes calculated for waveguides width 5 pm and height 5 pm for 

the optical wavelength of 662 nm

As a base, the cladding (buffer and protective layer) refractive index of 1.4962 was 

selected. The straight cross-marked lines on Figure 3-10 and 3-11 denote the 

refractive index of the core for the value 1.4962+An with An varying from 0.003 to 

0.01.

Wocje »1 r&a Mode«F«fc1

Figure 3-12. Sample of the optical modes from the simulation.

From wave-guiding theory [57], it is known that every mode can be characterised by 

its distinctive effective refractive index (N*r). The closer the value of the effective 

refractive indices of the modes to the refractive index of the guiding layer the more 

confined they are and more initial power is transferred to these modes. This implies
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that higher order modes tend to appear as the sn increases The importance of 

selecting the biggest possible sn whilst maintaining the single mode operation is that 

with a very small 3 n the fundamental mode experiences heavy losses due to extension 

of its evanescent field in the cladding [58] A tradeoff had to be achieved between 

these two situations so Nef f = nbUff + 25%3 n was arbitrary chosen as a cut-off 

boundary (dashed lines in Figure 3-10 and Figure 3-11)

From the plots it can be observed that when waveguide widths grow relative to their 

heights, of mode TEi0 becomes larger that that of mode TE0i Additionally, 

increases in waveguide width make it difficult to keep their single mode properties and 

for widths over 6 pm even a refractive index difference of 0 003 and the 25% cut-off 

assumption is not sufficient to only carry the fundamental mode of the beam

It is expected that in the event of a second mode propagating in the waveguide the 

optical scattering losses of this mode will be significant Thus the unwanted mode will 

be attenuated and the majority of power transmitted will be in the desired TMoo mode 

Therefore a 3 n of 0 003 was selected, which should support a single mode operation 

of the LTM device
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3.4. Light Propagation Simulation

The last stage of the LTM theoretical model investigation was a simulation of the laser 

beam shape exiting the waveguide endface inside the microchip housing. The primary 

aim of the simulation was to obtain an understanding of the light field distribution at a 

certain distance from the endface of the waveguide (especially in the vicinity of the 

point where laser trapping occurs) and to compare the entrance and end field intensity 

distributions. The secondary purpose of the simulation was to evaluate the influence of 

a situation when the waveguides endface is tilted by an angle in the plane 

perpendicular to the optical axis.

............

Protective Layer 
(5 pm, n= 1.4962)

Water solution 
(n=1.33)

Waveguide (varying 
height, n= 1.4991)

Buffer Layer 
(5 pm, n= 1.4962)

Silicon Substrate 
(n=3.5)

Figure 3-13. Light propagation simulation model
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The simulation was performed using C2V Prometheus Software and was carried out for 

the optimised parameters, which were the results of the optical trapping efficiency 

calculations. Following these calculations the simulation was carried out for a range of 

waveguide heights between 2 and 10 pm.

The actual refractive index values of the optical materials used for fabricating each 

layer of the microchip were obtained using the prism coupling technique (see Chapter 

4) on a Metricon Corporation system. Those values were introduced to the program 

and the resulting refractive index of the model can be seen in Figure 3-13 and Figure 

3-14

index

3 MO

3 000 2 
2500 $- 
2000 x  
1 500 H  
1000

Figure 3-14. Refractive index step for the LTM light propagation simulation.

The tilt of the waveguide endface was varied in the simulation between 0° and 45°. 

The entrance field was assumed to be single mode with a Gaussian intensity 

distribution with a FWHM (Full-Width Half-Maximum) of 4 pm and a wavelength of 662 

nm (Figure 3-10)

The simulations revealed no distortions in the field shape propagating to the centre 

point between both waveguides for perpendicular waveguide endfaces. However, 

irregularities like tilted or angled faces have an influence on the beam shape and its 

relative position to the initial propagation axis of the beam (Figure 3-10).

Propagation axis (Z) (pmj
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It is shown in Figure 3-10 (for the waveguide height of 5 pm) that at a distance of 40 

pm from the point where the beam enters the water solution a 10 degree angled 

endface (which is very unlikely for the production technology used) causes about 0.5 

pm optical field displacement from the centre of the optical axis. Since the 

misalignment of the counter-propagating beam for this angle is very small and occurs 

in the same direction for both beams (as the chamber is made in the same process for 

both) it should have a marginal influence on the trapping properties. Additionally for 5 

pm waveguides and an end field distance of 40 pm, even when the distortion occurs 

there are no significant changes in the Gaussian field distribution, which is the key for 

the efficient optical trapping.

Figure 3-15. Start and end optical intensity fields at a distance of 40 pm for a 

waveguide of 5 pm height

In the case of the far field distance from the waveguide endface (100 pm) and high 

angled waveguide, the Gaussian beam shape becomes more irregular and the situation 

become even worse for bigger waveguide sizes (Figure 3-16 and Figure 3-17). In the 

prototype device the guiding layer has a thickness of 5 pm, therefore most cases are 

covered by the optical fields presented in Figure 3-10.
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Figure 3-16. Start and end optical intensity fields at a distance of 100 pm for a 

waveguide of 5 pm height

Figure 3-17. Start and end optical intensity fields at a distance of 100 pm for a 

waveguide of 10 pm height

Most of the considered separation distances are very small with very few reaching 200 

pm. Thus they should not be affected by the quality of the process used in trap 

housing fabrication. These few however should provide an opportunity to measure and 

observe the influence of the beam distortion on a trapped object.
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The selected fabrication process, reactive ion etching, typically does not create 

structures with features angled more than a few degrees and thus the beam shape 

should be close to that depicted in Figure 3-18.

3.5. Conclusion

The main objective of the presented calculations was successfully achieved. Numerical 

estimations required for the final optical trapping force calculations enabled 

optimisation of the optical trapping parameters with respect to LTM waveguide sizes, 

beam waist separations and object size.

It was shown that for the LTM device, the larger the radius of the object, the larger 

the waveguide size and the beam separation is required in order to provide stable and 

efficient trapping. Specifically, for the intermediate particle size (r0=2.916xlO6 m), the 

optimum trapping efficiency is obtained for a 4 pm waveguide width and the beam 

waists separation of 80 pm.

The optical profile was another crucial factor, which was investigated. As presented in 

the theoretical model, a Gaussian intensity profile of the counter-propagating laser 

beams is required in order to produce a single trapping equilibrium. It was shown that 

obtaining such Gaussian profiles for the waveguide considered meant that the 

refractive index difference should not exceed a value of 0.003. Therefore this value 

was used during material design. It was also argued that the guiding layer thickness of 

5 pm would provide a stable trapping point for all the considered cases and simplify 

the prototype fabrication process.
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Finally, a simulation was performed to evaluate the impact of the waveguide endface 

perpendicularity on the propagation and shape of the beam intensity profile resulting 

from the quality of the fabrication process The major conclusion from these 

simulations was that there is a high tolerance available for the fabrication process as 

the change in the directionality of the beam is negligible even with the endface angled 

by as much as 10a However this impact becomes higher as larger waveguides are 

considered

The numerical calculations and simulations also helped in minimising time, cost and 

risk involved in the fabrication of the LTM prototype as the selection of the fabrication 

technologies was now based on strict requirements with regard to shape, quality and 

the geometrical parameters of the device
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4. Properties of the Materials Used

4.1. Introduction

To implement the LTM concept one of the major objectives of this work was the 

selection and development of a material that could be easily tranformable into light 

guiding embedded ridge structures and would be able take advantage of the 

photopatterning technology This implied that not only its refractive index should be 

easily adjustable, but its molecular structure should allow rapid polymerisation of the 

material in the presence of the ulraviolet light (photopolymerisabon) Based on this 

objective the initial intention was to synthesize a photopatternable material using a sol- 

gel technology by taking advantage of its variuos positive physical, chemical and 

optical properties To achieve this it was necessary to develop multiple material 

fabrication methodologies which included the following requirements

□ Optimal properties for thin film deposition using the spincoating technique involving 

minimal thickness variations (striation free film) after coating and a reduced edge 

effect

Spincoating is often a technique of choice for coating large substrates such as 4- 

mch silicon wafers and produces highly uniform films for optimised materials and 

coating conditions [59-61] The uniformity of coating thickness is an important 

quality for producing repeatable micron sized optical paths Thus it directly 

influences the intensity losses and the quality of the modal distribution of the 

electromagnetic field travelling through the optical path During the fabrication of 

the optical trap housing, any change in the coating thickness contributes to 

uncertainty in the process time employed to produce a certain chamber depth

The edge effect, which appears during spincoating film deposition, is a 

consequence of surface tension effects This makes it difficult for the solution, that 

is flowing radially outward, to detach from the wafer This results in an increased 

thickness of the spincoated material around the entire perimeter of the substrate 

If better uniformity can be maintained out to the edges then more area can be
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used for device fabrication and enhancing photolithography mask contact 

properties

□ Precise control of the refractive index in order to obtain 3 n= 0  003 between the 

waveguide and cladding (buffer and protective) layers

□ Greater stability and durability allowing for extended storage time between material 

synthesis and deposition

Changes in the properties of the material such as viscosity or speed of 

photopolymerisation have a serious impact on the properties of the final device 

Specific concerns about viscosity changes over time were experimentally addressed 

to reduce the thickness variation and the device surface uniformity

□ Low optical propagation losses

Optical propagation losses are related to the physical and chemical properties of 

the material They are related to the transparency of the material to the 

propagating light and involve physical phenomena such as light scattering and 

absorption with the former mostly related to the uniformity and the roughness of 

the guiding structure [62] The material is expected to generate the lowest possible 

attenuation of the electromagnetic field in order to produce the optical trap of the 

highest possible trapping forces

□ High photolithographic contrast or low Critical Modulation Function allowing for 

4 pm size feature to be resolved separated by a distance of no less than 6 pm

The contrast is an important feature of every material used in the photolithography 

process [63], it determines the spatial resolution achievable for the patterned 

features It is defined as

1
y £  Equation 4-1
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Df  and D0 are exposure doses where the material becomes entirely polymerised or 

not polymerised at all (Figure 4-1)

1 2
CTi
C
Ç 1 - 
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0
1 10 100 1000 

Exposure Dose
10000

Figure 4-1 Material contrast function

The photopatternable qualities of the material can also be represented by a Critical 

Modulation Function (CMTF), which is defined as

Lower CMTF values give better resolution and feature quality from the 

photolithography process

The combined material features were used to set the criteria for selection and 

synthesis of the material used in LTM fabrication The material chosen to fulfil all the 

above requirements was a photopatternable composite produced using sol-gel 

technology

CMTF D f  Dp  1 0 l/y 1

Df  £>0 101/>' 1
Equation 4-2
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4.2. Sol-gel Materials

During the second half of the 20th century sol-gel technology has gained increasing 

attention from the scientific community as a source of inorganic and composite 

organic-inorganic materials A relatively simple low-temperature production process 

combined with easy control of the physical and chemical properties of sol-gel materials 

has generated much interest within the optics and optoelectronics industries [62,64- 

72]

The fundamental sol-gel chemical process is relatively easy to understand involving the 

evolution of solid-state materials from a molecular liquid phase The most common 

way of processing sol-gel involves the use of metal alkoxides through hydrolysis and 

condensation reactions of the precursors [73-78]

a

Hydrolysis
 Si OR +  HOH ^ »   Si------- OH +  ROH

Reestrification

Water Condensation
Si OH +   Si----- OH ^  »  Si----- 0 ------Si------  +  HOH

Hydrolysis

■Si- OH
Alcohol Condensation

■Si OR
Hydrolysis

Si- -Si' +  ROH

Figure 4-2 Basic reactions involved in the organosilicon material synthesis (a 

hydrolysis, b water condensation, c alcohol condensation)

In reaction a (Figure 4-2) alkoxide groups (OR) are replaced with hydroxyl groups 

(OH), which produce a silanol species (Si-OH) and alcohol ROH Two further reactions, 

water condensation and alcohol condensation occur In reaction b (Figure 4-2) two 

silanol species react producing siloxane bonds (Si-O-Si) and water as a by-product
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Alcohol condensation (reaction c Figure 4-2) involves silanol and alkoxide species 

reacting, resulting in the creation of siloxane bonds and alcohol as a by-product

Under most conditions, condensation takes place before hydrolysis is completed Since 

water and aloxides are immiscible (i e they are incapable of mixing) an alcohol solvent 

(e g ethanol) is typically utilised to improve the quality and homogeneity of the 

reaction Further condensation proceeds while water and alcohol evaporate and are 

driven off from the system Although it is possible for hydrolysis to occur without the 

addition of an external catalyst it is preferable to add one in order to make the whole 

reaction more rapid and complete For that purpose mineral acids (e g HCI), ammonia, 

acetic acid, KOH, amines, KF, and HF are commonly used

For the purpose of the LTM fabrication, a photopatternable optical quality material was 

developed and prepared via a classical hydrolytic sol-gel route [79,80,81,82] The 

material was based on a typical photopatternable sol-gel composition, which contains 

two parts the organic component (responsible for UV cross linking properties) and the 

inorganic one (composed of Si02 chains) (Figure 4-3)

Organic component responsible Inorganic component responsible
for UV-photopolymerisation for hydrolysis and condensation

Figure 4-3 General composition of a typical photopatternable sol-gel material

The utilisation of the material organic part for photopattermng required the material to 

be combined with the suitable cross linking agent (photoinitiator) The cross linking 

molecule is responsible for the material polymerisation when exposed to the correct 

wavelength of light For this reason the photoinitiator type and quantity directly 

influences the photopattermng quality of the material
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A photoinitiator Irgacure 819 was chosen for its excellent light absorption properties 

near the wavelength of 365 nm, which is the operational wavelength of the ÜV- 

exposure system used for the LTM fabrication (Figure 4-4)

A b so rp tio n  S p e c tru m
(% in Acetonitrile)

Extinction

Wnetergh{ivTf

Fjgure 4-4 Irgacure 819 absorption spectrum (source Ciba Speciality Chemicals 

photoinitiator specification)

The content of the photoinitiator was modified experimentally to the value of 1 8 % in 

order to match the sensitivity (S - Figure 4-1) to the output power of the mask aligner

Another crucial task during the sol-gel material development was a modification of its 

refractive index in order to match the LTM specification The refractive index difference 

(3 n) between the buffer layer, protective layer and the guiding layer was obtained by 

doping the material with Zirconium [83-86] A desired value of an=0 003 was achieved 

by adding in molar quantities 4% of Zirconium to the guiding layer and 2% of 

Zirconium to both buffer and protective layer

The refractive indices of the materials were measured using a Metricon 2010 Prism 

Coupler, which utilises optical waveguiding techniques to rapidly and accurately 

measure both the thickness and the refractive index of dielectric and polymer films In 

an automated measurement, the tool offers a refractive index accuracy of ± 001  and 

resolution of 0 0005
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Refractive index vs Zirconium  Content in Sol-gel

1.5050
1.5040
1.5030

c 1.5020

x 1.5010
a>•o 1.5000
c 1.4990
Ï 1.4980
t5
fT3 1.4970V-
* 1.4960
a: 1.4950

1.4940
1.4930
1.4920
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Zr(OPrM%)

♦ 0% Irgacure 819 • 1% Irgacure 819 a 1.8% Irgacure 819

Figure 4-5. Refractive indices of the sol-gel obtained using the Metricon prism coupling 

technique for a single wavelength (632 nm)

Experiments conducted revealed that for every 1% of added Zirconium tetrapropoxide 

a change in the absolute refractive index of 0.015 occurred as shown in Figure 4-5. 

Addition of photoinitiator (Irgacure 819) also accounted for a change in the absolute 

refractive index of each layer and although its influence is minor, the photoinitiator was 

added to all layers to entirely reduce its effect on the An value.

The final material synthesis involved MAPTMS (methacryloxypropyltrimethoxysilane) 

and a complex issue from the chelation of the zirconium n-propoxide (Zr(OPr)4, Aldrich, 

70 % in 1-propanol) and methacrylic acid (MAA, Aldrich, 99%), as depicted in 

Figure 4-6.
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Figure 4-6 LTM Material Synthesis Process

The photosensitive property was produced by MAPTMS, which possess a methacrylate 

group that permits polymerisation upon irradiation with UV-light MAPTMS was 

hydrolysed with an aqueous solution (HCI 0 01N) employing 2 1 water to alkoxide 

ratio The solution was then stirred for 60 minutes at 80 °C to produce a homogeneous 

sol Independently, MAA was added to Zr(OPr)4 with a 4 1 acid to zirconate molar 

ratio, and stirred for 45 minutes at ambient temperature This formed a complex,which 

reduced the high hydrophilicity of the zirconium nuclei The MAPTMS was then added 

dropwise to the zirconate Following another 45 minutes, a further hydrolysis was 

performed, employing a pH 7 water leading to a final ratio MAPTMS Zr(OPr)4 

MAA H2O of 50 1 4 5 Finally the 1 8 % photoinitiator Irgacure 819 (Ciba Specialty 

Chemicals) was addded giving the material its UV-photopolymerisation property

In the course of the research the thin film (and the overall device) thickness variations 

were taken into consideration Since the film thickness produced by the spincoating 

technique is directly dependent on the viscosity of the material [87], any time related 

rise in the material viscosity automatically increases the thickness variations between 

fabricated wafers or even between each layer of the same wafer

In the case of sol-gel materials, the viscosity stability over time is of particular concern 

due to its relatively fast rate of change The main factors responsible for this
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phenomenon are the solvent evaporation from the material and continuously ongoing 

chemical reactions inside the sol-gel. The longer the aging time the higher the viscosity 

[76] of the sol-gel material.

The viscosity changes were measured using a Brookfiled DV-II+ viscometer with 

nominal accuracy of ±1% and repeatability of ±0.2% for different water/sol ratios. An 

averaged value was derived for each point in time from the moment the sol-gel 

achieved full synthesis (Figure 4-7).

Figure 4-7. LTM sol-gel viscosity versus aging time

The results show that the initial absolute viscosity of 8.15 Cp increased to 8.65 Cp after 

storing the sol-gel at ambient temperature for 120 hr. Based on the direct relation 

between viscosity and the spincoated film thickness this change would account for a 

10% change in each layer thickness. In order to minimise these differences prepared 

materials were used within 48 hr from the preparation and were stored at low 

temperature in order to slow down the chemical reaction within the material. This 

allowed good repeatability of the overall thickness of the device.

In order to obtain striation free films and reduce edge effects the spincoating process 

was optimised and samples were coated in a saturated Isopropanol atmosphere. The 

occurrence of striations is thought to arise due to evaporation driven surface tension 

effects. The early evaporation of a light solvent can cause an enrichment of water

50



and/or other less volatile species in the surface layer If the surface tension of this 

layer is larger than the starting solution (which still exists at deeper levels), then 

instability exists The higher surface tension draws material in at regular intervals 

creating spaces where the solvent can evaporate The surface relief that develops, 

results in film thickness variations Using a saturated solvent atmosphere during 

spincoating helped to reduce the solvent evaporation and produced silica films on 

silicon of better quality [59]

4.3. Conclusion

For the purpose of the LTM development an organic-inorganic composite material was 

synthesised, which possesses all the qualities required for the successful fabrication of 

the device The inexpensive and easy to synthesize material proved to be highly stable 

over time and it was optimised to provide the desired refractive index difference 

between buffer, protective and guiding layer The photopatternable properties of the 

material were developed and in combination with the photolithography process allowed 

waveguides of desirable dimensions and optical properties to be fabricated (see 

Chapter 7)

51



5. Fabrication Process

5.1. Introduction

The device fabrication process was designed to fulfil the requirements presented in the 

previous sections to match the properties of the chosen material. These include:

□ Fully automated large volume fabrication combined with small device size

Large production volumes and relatively low cost technologies should be employed 

to reduce the device fabrication costs. This should in turn allow the LTM to be 

affordable for the target market consisting mostly of biotechnological laboratories. 

A highly efficient fabrication methodology is required as the device is designed as a 

semi-disposable component i.e. the device can be either used once and disposed or 

it can be used multiple times for less sterile or demanding tasks.

In addition the device should be able to easily fit under a microscope objective, 

thus allowing trapping observation. PLC technology was used to enable this facility.

□ Waveguide size

The selected technologies should allow waveguide fabrication with dimensions as 

low as 4 pm. In addition the waveguide dimensions (width and height) should be 

repeatable with a high degree of precision.

□ Quality and separation of the waveguide endfaces

The quality of the waveguide endfaces for the optical trapping can be evaluated 

mostly in terms of their perpendicularity to the waveguide optical axis and the 

accuracy of the vertical and horizontal position in front of the counter guiding 

waveguide.

The influence of the perpendicularity was presented in the optical simulation 

section. This quality measure was especially important for bigger waveguides, and 

for most conditions restricted the degree of skewness to 106 (Figure 5-1).
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Good accuracy o f the vertical and horizontal positioning for the fabrication process 

was considered to be one of the major advantages o f this device compared to 

other counter-propagating optical traps This was one of the primary conditions 

that had to be met by the technologies considered

Waveguide Optical Axis 

Trap housing

Low Quality Waveguid 
(Angled Endface)

Good Waveguide

Figure 5-1 Imperfection in the quality o f waveguides

□ Distance between the bottom surface o f the device chamber and the centre of the 

waveguide

Ideally the particle chamber should be deep enough to protect the laser beam from 

being distorted by the bottom of the trapping chamber Since the laser beam radius 

rbeam ,s expanding while light progresses towards the centre o f the trap, the

distance from the centre of the beam to the bottom of the chamber should be 

greater than the radius of the beam in the place where trapping occurs I f  however 

the beam waist radius is smaller than the object radius then the distance between 

chamber bottom and the waveguides optica! axis should be bigger than the particle 

radius hc ' max(r0,r teoM)

The optical simulation (

Figure 3-15) enabled prediction and visualisation o f the beam radius at the equilibrium 

point The radius was calculated to have a value o f approximately 6 pm for a 

waveguide o f 5 pm height, at a distance from the waveguide endface o f 40 pm Taking
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this into consideration a value of hc = 7 5 pm was selected, which implied the use of a 

buffer layer thickness o f 5 pm (Figure 5-1)

These presented requirements became the platform specifications upon which the 

selection o f the process technologies and the final prototype design of the LTM were 

made

The selection o f the waveguide fabrication method was in fact a choice between laser-* 

writing and photolithography The laser writing technique uses a tightly focused laser 

beam to interact with the material causing photo-polymerisation The major advantage 

of this technique is its ability to create complicated shapes and for this reason it is 

often used in fabrication o f PLC devices [64,68] This technology is unsuitable if large- 

scale fabrication is considered This problem can be overcome by using 

photolithography, which although less flexible in terms of changes in the design, allows 

high reproducibility of the results and is more suitable for commercial applications

The fabrication requirement for the trap housing was mostly related to the quality of 

the endfaces and the technological ability to accurately reproduce the device 

dimensions For this reason dry reactive ion etching (RIE) was the technology o f choice 

(see Chapter 8)

Once it was decided to use photolithography, plasma-etching and sol-gel technology 

the microchip fabrication process was designed to comply with the overall system 

requirements
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5.2. Process Steps

The base for the microchip is constituted from standard 4-inch (100mm) silicon wafers 

with a thickness o f approximately 450 pm. The wafer was cleaned with IPA solution 

and kept at 90 CC for 100 min in order to promote adhesion to the surface.

Silicon Wafer

Figure 5-2. Introduction o f silicon wafer

A sol-gel layer was spincoated (Laurell Technologies WS-400B-6NPP-LITE Spin 

Processor) on top, creating a buffer layer (BL) with refractive index value of 1.4962 

and nominal thickness 5 ^im, followed by thermal hardening on a hot plate at 120 °C 

for 2 hours (Figure 5-3).

Buffer Layer (BL) 

Silicon Wafer

Figure 5-3. Spincoating of buffer layer (BL)

The role o f the buffer layer was to insulate the waveguide from the refractive index 

step between it and the silicon wafer. Given that the refractive index o f silicon is 

approximately 3.5, leaving the device without the buffer layer would prevent the light 

from being confined in the waveguide.
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The Guiding Layer (GL) o f the microchip was composed from same type o f sol-gel as in 

the Buffer Layer. However it was modified by the addition o f a higher amount of 

zirconium. Its function was to increase the sol-gel refractive index to 1.4991.

Guiding Layer

Buffer Laver 

Silicon Wafer

Figure 5-4. Spincoating of the Guiding Layer (GL)

The Guiding Layer (GL) coated wafer was then prebaked and placed in a mask aligner. 

The prebaking temperature was set to 120 C to shorten the fabrication process, reduce 

edge effects and allow crack free film formation. Then the sol-gel was exposed to UV 

light through a specially designed chromium-coated mask causing photo­

polymerisation (Figure 5-5, for more details see Chapter 6).

_______ UV Light

Chromium Mask 1 

Guiding Layer 

Buffer Layer

Silicon Wafer

Exposed Part of 
Guiding Layer

Figure 5-5. UV exposure o f guiding sol-gel layer

Given that the Guiding Layer is a negatively patternable material, the unexposed part 

(not photocured) could be easily rinsed away with isopropanol as an etchant 

(Figure 5-6). The etched guiding layer creates patterns o f ridges on the wafer, which 

form the optical waveguides.

y
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Isopropanol (IPA)

Waveguide 

Buffer Layer 

Silicon Wafer

Figure 5-6. Post-exposure waveguide development

Once the waveguiding ridges were obtained, the First Protective Layer (PL1, chemically 

and optically identical to the buffer layer) was spincoated on (Figure 5-7). Its function 

was to fill the gaps between ridges (planarise the structure) and provide an identical 

refractive index material on all sides of the waveguides.

Waveguide 

Protective Layer (PL1)

Buffer Layer (BL) 

Silicon Wafer

Figure 5-7. Spincoating first protective layer (PL1)

The next step in the microchip fabrication process was to spincoat the second layer of 

protective (PL2) sol-gel, which had a refractive index and chemical composition that 

were identical to the Buffer Layer, and the First Protective Layer (Figure 5-8). The role 

of this protective layer was to ensure that the waveguide had an identical cladding 

refractive index on all sides, to minimise optical losses and to maintain the quality of 

the Gaussian beam propagating through the waveguide. I t  was also used to protect 

the entire structure from the external environment and to provide additional height to 

give sufficient chamber volume for the particles if a microscope cover slip is placed on 

the top o f the device.
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Waveguide

Protective Layer (PL2)

Protective Layer (PL1)

Buffer Layer (BL)

Silicon Wafer

Figure 5-8. Spincoating second protective layer (PL2)

The final stages in the fabrication process were to create a trap housing using plasma- 

etching techniques. The processes described in the subsequent chapters were 

designed and optimised for etching sol-gel components in order to create a housing for 

the particles to be trapped in.

After spincoating the Second Protective Layer was covered with a positive photoresist 

material (Figure 5-9), UV exposed (Figure 5-10) and rinsed with solvent (Figure 5-11) 

to create a pattern for the trap housing, which later on would be exposed to the 

plasma etching process. The SPR-220 7.0 photoresist was selected due to its suitability 

for thick film deposition and exposure, easy removal with the photoresist stripper and 

its general availability on the market.

 Waveguide

Photo Resist Layer

S
Protective Layer (PL2) 
Protective Layer (PL1)

|^ \  Buffer Layer (BL)

Silicon Wafer
Figure 5-9. Spincoating o f photoresist layer (PRL)

Then photoresist was UV exposed through the mask with the desired pattern for the 

sample chamber. The mask is positioned accurately over the sol-gel waveguides using 

alignment cross marks, which were produced together with the ridge waveguides in 

the waveguiding layer (see Chapter 6 - Mask Design).
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UV Light

Silicon Wafer

Waveguide

Photo Resist Layer

Protective Layer (PL2)

Layer(PL1) 

Buffer Layer (BL)

Figure 5-10. Photoresist UV-exposure

In the photoresist development stage the processed wafer was cured with a developer. 

Since the photoresist was positive, the UV exposed part was washed away and 

chamber pattern appears.

Photo Resist Developer 

Photo Resist Layer 

2nd Protective Layer

I s Protective Layer 

Buffer Layer (BL)

Silicon Wafer

 Waveguide

Figure 5-11. Photoresist developing

The prepared wafer was then placed into the plasma-etching chamber and exposed to 

plasma as described in the following chapters. Sol-gel layers, which were not protected 

by photoresist, were etched down until the wafer surface was reached.
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Plasma

Photo Resist Layer

2nd Protective Layer

1* Protective Layer 

Buffer Layer (BL)

Silicon Wafer 

Waveguide

Figure 5-12. Plasma etching

After etching, the photoresist was then stripped o ff using photoresist stripper, which 

completed the wafer processing (Figure 5-13).

Waveguide

Figure 5-13. Stripping o ff photoresist

Photo Resist Stripper 

/  Photo Resist Layer

Protective Layer (PL2)

Protective Layer (PL1) 

Buffer Layer (BL)

Silicon Wafer

Waveguide

Protective Layer (PL2)

^Protective Layer (PL1) 

I \  Buffer Laver (BL)

Silicon WaferFigure 5-14. Final device
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Finally the device was extracted from the silicon wafer by cleaving the wafer along the 

crystallographic planes allowing smooth coupling regions to be obtained. The AutoCAD 

final LTM model is presented in Figure 5-15.

Figure 5-15. The final 3D model o f the LTM device

5.3. Conclusion

The chapter summarises the requirements, which underpin the system fabrication 

steps and system design. The presented process does not cover exact details and 

timings o f each single fabrication step, however these can be found in Appendix.

The final remark on the LTM fabrication process from the commercialisation point o f 

view would be that optical fibre pigtailing and packaging should be considered in order 

to provide a complete device to the final customer. The cleaving technique should be 

replaced by a more accurate technique for the separation o f the devices, such as dicing 

and polishing (Figure 5-15).

However given that the major objective of this work was a proof o f the LTM concept, 

the presented fabrication was confirmed to be an appropriate choice for the prototype 

device.
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6. Mask Design

6.1. Introduction

For the purpose o f the manufacturing process two photolithography masks were 

designed. The designs were drawn using C2V Prometheus software conforming to all 

current mask design conventions [88] and prepared to cover a 4-inch wafer with the 

patterns shown in Figure 6-1 and Figure 6-2.
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6.2. Mask Details

As indicated in Figure 6-1 and 6-2, alignment marks were incorporated in order to 

allow the exact superimposition o f pattern elements during processing Final chromium 

masks were produced (Compugraphics Ltd ) using state-of-the art technology, allowing 

high grid positioning accuracy In addition, ail crucial LTM elements were placed in the 

centre o f the wafer in order to avoid thickness fluctuations that tend to be higher near 

the edge of the wafer when the spmcoating process is used Three different elements 

were processed using the two masks to produce fully functional testing prototypes of 

the laser trapping device

A series o f straight openings o f varying width (2x100 pm, 2x50 pm, 2x7 pm, 2x6 pm, 

2x5 pm, 2x4 pm, 2x3 pm) was placed horizontally and vertically on the border of the 

mask (Figure 6-1) Through the photolithography process these openings form test 

ridge waveguides in the sol-gel Guiding Layer These features permit the testing of 

waveguide quality and optical losses by comparing the light intensities emitted from 

longer and shorter cut samples (see Chapter 9)

A further feature on the masks is the LTM testing pad I t  consists of straight openings 

placed on mask A, forming groups o f different widths (2x6 pm, 2x5 pm, 2x4 pm, 2x3 

pm, 2x2 pm) (Figure 6-3a) This pattern is transformed to the Guiding Layer to create 

ridge waveguides A second feature of the LTM testing pad is located on mask B and 

consists o f a tapered rectangular opening with height ranging between 260 pm and 20 

pm (Figure 6-3b) This shape is then transferred first to the photoresist and then to all 

sol-gel layers with the reactive ion etching exactly above the groups of straight 

waveguides On the wafer these two patterns overlap forming the LTM device for 

testing various combinations of two basic LTM parameters such as waveguide endface 

separation and waveguide size (Figure 6-4)

Figure 6-3 LTM testing pad components a) Waveguides pattern on Mask A b) Trap 

housing on Mask B
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Figure 6-4 Final LTM testing pad

The final LTM device also comprises o f two patterns placed on masks A and B, the 

dimensions o f which are selected following the recommendations presented in Chapter 

3 for each particle size separately The groups of separated openings of identical 

widths on mask A form, through the photolithography process, ridge waveguide 

structures in the Guiding Layer (Figure 6-5a) These groups are subsequently etched 

through the middle as indicated by the pattern on mask B (Figure 6-5b) The LTM 

devices formed in this way form three separate groups for each particle size, with each 

group containing the three optimal combinations of the LTM dimensions (see Chapter 3 

and Figure 6-6)

a

b

Figure 6-5 LTM device components for certain object sizes a) Waveguides pattern on 

Mask A b) Trap housing on Mask B
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Figure 6-6 LTM prototype devices each containing multiple identical waveguides

6.3. Conclusion

In conclusion, two photolithography masks were designed to match the device 

specification, and to permit exact positioning o f the mask features contained in the 

LTM
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7. Photolithography Process Optimisation

7.1. Introduction

Optical lithography (photolithography) is the process used to transfer patterns from the 

mask to a layer o f photosensitive film  deposited on the surface o f the wafer and it is 

currently one o f the most important technologies used in sol-gel integrated device 

manufacturing [89,90] The basic system includes a light source, which illuminates the 

sample through the openings in the mask (with an imprinted negative pattern o f the 

final features) The light, which passes through the mask, interacts with the 

photosensitive material causing its polymerisation For the photopatternable sol-gels 

after chemical treatment the exposed part o f the desired pattern remains on the 

substrate [91]

At present, the majority o f market available photolithographic systems are designed in 

three different configurations presented below

r ......... ■ ■ 3 )...... —..............  -i
Figure 7-1 Photolithographic systems configurations (from the left contact, proximity, 

projection)

In contact mode the mask is placed in direct contact with the exposed film This 

relatively inexpensive method provides relatively high resolution (R) derived from 

Fresnel (near field) diffraction theory and ts given by the formula [92]

R | k[X(s 0 5*/)] i/2 Equation 7-1

where

X - exposure system light wavelength 

s - separation gap between mask and film
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d  - film thickness

k - constant that depends on the photoresist and the development procedures 

(typically k=3)

Using the above equation, contact mode systems of this kind achieve resolution of 

around 1.6 pm, which is similar to the resolution provided in the specification o f SUSS 

MA56 ( R | 1 2 pm for PMMA material) used for the LTM fabrication.

In reality, the Modulation Transfer Function (MTF) is a better approximation o f the 

photolithographic system capability because it not only provides information about the 

resolution but also about the sharpness o f the optical exposure [91]. MTF, also known 

as optical contrast is given by the formula:

MTF /m^  ■ Equation 7-2
/  /max mm

where and / nim are the local maximum and minimum intensities emerging from the 

mask.

The reason for using MTF is that it is possible to achieve high resolution but a poor 

contrast, and vice versa. An ideal situation is when resolution and contrast go hand-in- 

hand. For practical reasons (since the MTF is an experimental measure), it was decided 

that information provided by the theoretical resolution is sufficient for the LTM optical 

path fabrication.

Contact mode has advantages o f simplicity and good resolution, but it has also some 

disadvantages, the most important being fast degradation o f the mask (pinholes, 

scratches etc.), as well as the imaging o f all particles and d irt directly onto the wafer 

and the mask.

The second type o f system operates in proximity mode, which, in principle, is similar to 

contact mode, but in this case the mask and the film are separated from each other by 

a certain distance ( s ! 0 )  called the "separation distance". As it might be expected in 

this configuration mask damage is reduced. As stated by Equation 7-1, resolution drops 

significantly compared to  contact mode to over 2 pm.
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Finally, in projection mode the mask pattern is projected onto the film through a 

system of lenses, creating a smaller version o f the image The resolution o f these 

systems is very high, varying around 0 07 pm The lack o f contact between the mask 

and the wafer results in almost no mask wear (high production compatible) and mask 

defects or contamination on the mask are reduced in size on the wafer The major 

disadvantages o f these types o f systems however are their high cost and additional 

problems with Fraunhofer diffraction resulting in accuracy variations in the final 

pattern

All three options bring certain benefits but there is little doubt that projection systems 

provide superior resolution and quality o f all the systems presented Considering 

however the available equipment, switching cost, and resolution required, the contact 

mode method seemed to be the best choice for the LTM waveguides fabrication The 

instrumentation available for this work is a SUSS MA56 Mask Aligner that can operate 

both in contact and proximity mode In order to utilise the full capabilities o f this 

system it was operated in contact mode configuration This enabled high quality 

fabrication of 4 pm features and assured good repeatability across 4-inch wafers The 

following factors were identified as important to the photolithography process

□ Equipment and the lithography system setup including illumination optics and 

system configuration, wavelength o f the light used in the process and its intensity 

distribution pattern, uniformity o f the light power used for exposure, separation 

distance between the mask and material

□ The parameters o f the process baking time of the sample between spincoating 

and exposure (defined as prebaking time), material layer thickness and uniformity

□ Material properties photoinitiator concentration and compatibility o f the 

photoinitiator with the exposure system

Optimisation focused mainly on parameters that were relatively easy to control during 

the fabrication process For that reason parameters related to the equipment setup and 

process were chosen Development of the material properties was beyond the scope of
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this work, as it required greater expertise in chemical science and significant 

development time.

7.2. Light intensity Distribution

As can be seen from Equation 7-1, diffraction theory predicts the limits o f the 

resolution o f the lithographic system to the wavelength of light used for illumination. 

The lower the wavelength the lower the influence o f the exposure gap and the better 

overall resolution.

The initial intensity spectrum o f the mask aligner (SUSS MA56) is presented in Figure 

7-2. The pattern is spread over wide range of wavelengths including the region of 

interest o f 350 -  500 nm. In order to improve the resolution, an optical filter was 

installed between the halogen lamp and the exposure system cutting o ff all 

wavelengths in the region o f interest except 365 nm. The wavelength spectrum 

obtained after the procedure (Figure 7-2) revealed the presence of a single intensity 

peak around 365 nm, which had a positive influence on the system resolution 

capabilities.

Intensity Distribution o f MA56
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Figure 7-2. Intensity distribution versus wavelength



7.3. Exposure Dose Uniformity

The intensity spatial uniformity o f the exposure system is an important factor, which 

guarantees repeatability o f quality across the substrate The spatial intensity variation 

parameter is defined as

Y ^ 100 Equatlon 7.3
1  max mm

where and 7mm are the maximum and minimum intensities measured across the 4- 

inch wafer being exposed

Using this formula the uniformity was calculated to be 1 9% with an i-line filter as 

compared to 3 5% with no filter installed Since the quality of the final features is 

directly related to  the exposure dose o f the light given by

D I v t  Equation 7-4

where

I  - intensity o f the light coming from the illumination system 

t - exposure time

Therefore, the decrease in the intensity variation parameter directly improves quality of 

the features across the 4-inch wafer

7.4. Illumination Optics

The illumination optics design also influences the overall resolution of the contact and 

proximity mode systems Since we had little control over the optical configuration no 

changes were made to this part o f the system However it is worth noting tha t the 

SUSS MA56 was equipped with a diffraction reduction system that slightly improved its 

resolution capabilities (Figure 7-3)
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Figure 7-3 Optimised optical exposure system o f SUSS M56 mask aligner

7.5. Separation Distance Between the Mask and Material

Another parameter that affects lithographic resolution is the distance between the 

mask and exposed film

The proximity system's Fresnel (near field) diffraction effect is proportional to the 

square root of the wavelength and exposure gap between the mask and film The ideal 

situation occurs when the mask is in close contact with the film

In real systems various types o f nonuniformities of film thickness across wafers 

(especially at the edges) prevent this separation distance from being equal to zero 

Due to the physical contact the mask can be easily damaged and accumulates various 

kinds o f defects In our system, in order to obtain the best possible resolution, contact 

mode was utilised and particular attention was paid to the reduction of edge effects 

arising from the spincoating process (as presented in Chapter 4)

7.6. Sample Baking Time and Temperature Before Exposure

As presented in Chapter 5, the prebaking fabrication step occurs right after spinning 

the film to the substrate This involves placing the substrate with the deposited film on 

the hot-plate for a specific time and temperature to obtain a film with the desired 

properties before the UV-exposure takes place This part o f the process is o f particular 

importance to ensure the quality o f the optical waveguides that can be produced using 

sol-gel and contact photolithography technologies The main factors influenced by the 

time and the temperature of the prebaking process include

□ Material resistance to mechanical contact with the mask

□ Variation o f the material refractive index



□ Changes in the molar absorptivity o f the material

The material resistance to  mechanical contact is directly related to the situation where 

the mask touches the material surface before exposure I f  the material were in a liquid 

or semi-liquid state then the physical contact with the mask could influence the 

uniformity o f the coating and thus as described previously the quality of the final LTM 

feature The reduction o f the damage imposed on the mask by the material was also 

considered This implied that the prebaking time and temperature had to be adjusted 

to provide enough mechanical resistance to the layer, but still leaving the 

photopolymerisation properties of the material intact

The small refractive index difference between buffer, protective layers and guiding 

layer and thus the refractive index reproducibility was another factor that influenced 

the selection o f the optimised prebaking conditions Based on the findings presented 

by Coudray et al [89], a baking temperature o f 1206C was selected to minimise the 

refractive index variation to the lowest possible level

The absorption in the photopatternable sol-gel material is a measure o f its sensitivity to 

the UV exposure This sensitivity can be modified both by changing the concentration 

of the photoititiator as well as the prebaking time In order to reduce the influence of 

the process conditions (variations in prebaking time, environmental temperature and 

time between pre baking and exposure) on the sensitivity o f the matenal, the 

prebaking time was selected based on the absorptivity curve, which was obtained 

experimentally (Figure 7-4)

The measured samples included glass slides coated with the LTM sol-gel matenal The 

absorption spectrum was measured using a UV-vis spectrometer (type) The data 

revealed that the absorption o f the material decreases as prebaking time increases and 

reaches a saturation level after 35 min For descriptive purposes the absorptivity curve 

was subdivided into three distinctive phases as the material changed photopatterning 

properties
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Figure 7-4 Molar absorptivity curve o f the sol-gel (experimental result)

The first phase is the solvent evaporation and material densification where a significant 

drop in absorptivity (and thus energy level required to trigger polymerimerisation) 

occurred After 10 min the absorptivity level tends to stabilise As baking time passes 

20 min the etching properties decrease and the material transforms thereby making 

fine etching of the waveguides difficult Furthermore, baking over 40 min gave 

waveguides where etching was impossible with standard solvent (isopropanol)

The adjustment o f the prebaking time was optimised by identifying the region o f the 

absorption curve (Figure 7-4), which showed a relatively low gradient o f the absorption 

with time This region, which does not compromise the photopatternable properties of 

the material led to the selection o f a prebaking condition o f 15 mm at 1200C for the 

final device fabrication
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7.7. Conclusion

For the purpose o f LTM optical waveguide fabrication the photolithography technology 

in contact mode was optimised and used for the LTM fabrication.

Together with adjusted material properties and the fabrication process it allowed 

fabrication of fine quality ridge waveguides (Figure 7-5) sufficient to meet the LTM 

design requirements.

Figure 7-5. Ridge waveguides fabricated using sol-gel and photolithography technology

Although contact mode photolithography utilises a high modulation transfer function, 

rapid wear on the mask reduces its application to laboratories and small-scale 

production lines. Thus for the full commercial application o f the LTM device it would be 

recommended to use projection photolithography which allows to achieve resolution of 

the contact mode which at the same time reducing the damaging effect o f the mask on 

the wafer and wear on mask itself.
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8. Trap Housing Fabrication (Reactive Ion Etching)

8.1. Introduction

Reactive Ion Etching used in the fabrication o f the LTM trap housing is a relatively new 

technology This technology dates back to the seventies when the first experiments on 

etching were reported, and has been developed over the years to become the most 

popular and widespread technology for integrated circuit fabrication I t  emerged from 

mainstream etching methods and was qualified as a dry method due to its principles of 

operation (Figure 8-1) [93,94]
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Figure 8-1 Typical material etching techniques

In general, dry etching is a process that utilises gases and high voltage energy to 

create a partially ionised gas called a plasma, which is able to chemically react with 

certain materials The plasma is composed of free electrons, which are generated 

through high kinetic energy collisions between neutral atoms With sufficient voltage, 

which increases the kinetic energy of the electrons, the gas becomes filled with 

positive and negative particles throughout its volume i e it becomes ionised The 

applied electric field can be either constant (DC Glow Discharge) or can vary in time
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(RF Glow Discharge) The major disadvantage o f DC Glow Discharge systems is that 

they are restricted to etching only conductive materials due to the accumulation of 

positive charge on a dielectric, which prevents the gas from sustaining the plasma 

state

Since all materials used in the LTM system are dielectrics, this type o f system could not 

be successfully applied In the AC Discharge configuration the positive ion 

bombardment effect during the first half o f the AC cycle is entirely neutralised by 

electron bombardment during the next half of the cycle In order to prevent dielectric 

surface ionisation, the AC frequency has to be high enough so that the half period is 

shorter than the charge-up period o f the dielectric This requires a frequency o f over 

100 kHz (RF frequencies), typically 13 56 MHz At these frequencies the free electrons 

are able to follow the variations o f the applied electric field and, unless they suffer a 

collision, they can gain energy o f the order o f a hundred of eVs On the other hand, 

the energy of positive ions (much heavier than electrons) is almost not influenced and 

their small energy (~0 01 eV) comes mainly from the thermal energy of the 

environment

A typical capacitively-coupled RF plasma etcher used in RIE mode consists o f a 

chamber, vacuum system, gas supply and a RF frequency power generator as shown 

in Figure 8-2

Gas inlet

Plasma

Wafer

Figure 8-2 Typical plasma reactor in Reactive Ion Etching mode
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The process starts w ith placing the wafer covered with a substrate on the lower 

electrode and establishing a vacuum. The proper mixture o f gases is released into the 

chamber and power applied to the lower and upper electrodes creating a radio 

frequency (RF) electric field between electrodes, which energises the gas mixture to 

the plasma state. During the first few cycles o f the applied voltage, electrons 

generated in the plasma escape to  the electrode and charge the capacitor negatively, 

separating the power source from the lower electrode. In this way the negative DC 

bias voltage is formed on the electrode and the AC voltage becomes superposed on 

this negative DC voltage as shown in Figure 8-3

Figure 8-3. Plasma and RF potential fluctuations

In the pressure range o f a few mTorr to a few hundreds o f mTorr, the electrons travel 

much longer distances than the ions. The result is a higher rate o f collision o f electrons 

with the reactor walls than in the case o f positive ions, which leads to a high 

discrepancy between number of electrons and the number o f ions observed near the 

walls (Figure 8-4).

The difference in concentration of counter charged particles has a significant impact on 

potential profile, which is positive within the plasma ( p  e{nt w .)> 0, ~10 V) but

falls sharply to 0 near the walls. The electrostatic field between the plasma and the 

wall induced by the potential acts as a confining potential ("valley" for electrons and 

"h ill" for ions). This implies that the force acting on the electrons is directed into the 

plasma slowing down their movement and alternatively accelerating ions towards the 

wall. Potential wells in the vicinity o f the walls are called dark-sheets and reduce the 

electrons capability to escape from the plasma cloud, therefore helping the plasma to 

keep its quasineutral state.
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Dark-sheaths

> i

Figure 8-4 Formation o f dark sheaths

The effect of dark-sheet formation can be observed in front of both electrodes In this 

case, however, the presence o f the capacitor between the RF power generator and the 

cathode (lower electrode in RIE mode) makes the voltage distribution asymmetric, 

increasing the potential difference between the plasma and cathode by the average of 

the applied RF electric field (Figure 8-5)

Dark-sheaths

Cathode

Plasma
n,| ne

Anode

Figure 8-5 Dark sheaths in the vicinity o f the electrodes

The increased electric field results in additional energetic (physical) ion bombardment 

o f the surface, which improves the chemical reaction between the material and the
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reactive plasma species. This particular combination o f chemical and physical dry 

plasma etching is known as Reactive Ion Etching.

Once established, the plasma becomes on extremely volatile environment involving 

various kinds o f physical and chemical processes. Its  characteristic depends on many 

parameters such as reactive gas type and mixture with other gases, chamber pressure, 

applied power, reactor design etc. The most typical internal plasma reactions include: 

dissociation, ionisation, dissociative ionisation, excitation and recombination (Table 8-1 

presents examples o f these reactions for CF4 based plasmas). As a result o f these 

reactions multiple new species are produced o f which only a few are responsible for 

the etching properties o f plasmas [93,95].

Basic reactions in CF4 plasma

Dissociation, Radical Formation CF4 + e o CF3 + F + e

Ionisation CF3 + e 0 CF3+ + 2e

Dissociative ionization CF4 + e' 0 CF3+ +  F + 2e'

Excitation CF4 +  e 0 CF4* + e

Recombination CF3+ +  F +  e o  CF4; F + F 0 2F

Table 8-1. Typical reactions in plasma reactor for CF4 based plasma

Depending on the character o f these species and the extent o f their contribution the 

dry etching mechanisms fall into one o f four basic categories:

□ Sputtering

In this type of reaction, particles (usually positive ions created through ionisation 

and dissociative ionisation) impact the etched surface. I f  their energy is high 

enough atoms, molecules or ions are ejected from the surface. Since sputtering is a 

purely physical mechanism, it requires a large amount o f energy and produces 

etching profiles that are highly vertical. I t  is also much less selective than other 

types o f reactions and all materials can be sputtered at about the same rate. 

Physical sputtering can also causc damage to the surface where the extent and 

amount o f damage is a direct function of the ion energy delivered.
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□ Chemical Etching

For chemical etching a suitable gas mixture is introduced to the chamber to 

produce reactive species by molecular dissociation into radicals and excitation of 

neutrals During chemical etching the following steps can be identified (Figure 8-6)

■ formation o f the reactive particle

■ diffusion o f the reactive particle to the surface to be etched

■ adsorption o f the reactive particle at the surface to be etched

■ chemisorption o f the reactive particle at the surface, i e a chemical bond is 

formed

■ desorption of the product molecule

■ diffusion of the product molecule into bulk gas

Formation of the O ® n  C \  ? )
reactive particle ^  nO

f  Diffusion into 
bulk gas

Diffusion to the 
surface

Adsorption

o <0

Desorption

Figure 8-6 Reactions observed during the chemical etching of a material

By its nature chemical etching is very selective and very isotropic and can cause 

serious problems such as edge undercutting The best results for this type of 

processing can be achieved when the proper gas mixture is chosen, i e reactive 

species are able to remove molecules from the surface o f the film

□ Ion-enhanced etching

This process is the result o f the combined effect of chemical etching and 

sputtering Synergy o f both mechanisms working together results in an increased 

etch rate of the films because impacting ions damage the surface o f the film and
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this leaves it vulnerable to reactive species as they can penetrate the etched 

material deeper and more efficiently Reactive Ion Etching is an example of this 

type of etching

□ Inhibitor ion-enhanced etching

In this type o f mechanism the discharge supplies etchants, energetic ions and 

inhibitor precursor molecules that adsorb or deposit on the substrate to form a 

protective layer or polymer film, i e it involves the use o f an inhibitor species In 

the absence of either ion bombardment or the inhibitor, the etchant produces a 

high chemical etch rate o f the substrate I f  properly controlled, the process can 

provide anisotropic features over very large etch depth

Figure 8-7 depicts all o f the above etching processes and their contribution to the final 

shape of the etched features I t  also shows that the ideal dry etching process is 

difficult to develop and several factors like mask erosion, anisotropy (undercutting), 

trenching etc have to be considered while selecting the dry etching mechanism in 

order to meet the final design requirements [96]

Ionic species 0 -a

1 ©  ©
o Mask Erosion

Ion Enhanced Etching and Inhibitor Ion Enhanced Etching
- Presence of ions and reactive neutrals
- The effect of enhanced etch reaction or removal of etch 

by-product or inhibitor

Figure 8-7 Typical reactions between the plasma and the material
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Dry etching was a natural choice for LTM manufacturing since it possesses many

advantages compared to wet etching, which make it a much better choice for

fabrication o f small high quality features These are
*

□ No requirement for rinse and dry steps as in the case o f wet etching

□ No need for toxic and hazardous chemicals

□ Failure in adhesion between resist and wafer does not cause serious edge 

undercutting

□ Dry etching is less anisotropic and is capable o f etching small structures < 3 pm i e

compared to wet etching dry etching leaves vertical sidewalls o f the etched layers,

while avoiding undercutting o f the material under the photoresist (Figure 8-8)

Anisotropic Isotropic
Photo Resist

Film
Wafer

Figure 8-8 Isotropic and anisotropic etch

For the LTM application Reactive Ion Etching has outstanding characteristics, superior 

to other dry etching methods Ion Milling, despite very good anisotropic properties has 

poor selectivity and samples are exposed to high radiation created by ionisation 

mechanisms, which could have influenced the initial refractive index o f the 

waveguides For chemical etching even though the selectivity is substantially improved, 

due to the chemical nature o f the process [97,98], the etching rate of the sol-gels was 

expected to be poor, which was our main concern as the thickness o f the etched film 

was 15 pm

These arguments and the available equipment supported the selection of RIE mode for 

LTM trap housing fabrication and thus optimisation of the plasma conditions took place 

in the parameter range suitable for this type o f etching
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8.2. Reactive Ion Etching Process Optimisation

Experiments with RIE were carried ou t to investigate the influence o f the plasma 

etching process parameters and to evaluate whether an optimised combination of 

these parameters will allow the LTM trapping chamber to meet the design 

specifications.

Following the initial design assumptions, the RIE process had to be optimised to 

accurately etch features o f a minimum width o f 20 pm with a depth of 15 pm. A 

verticality o f the etch sidewalls below 100 and overall process repeatability also had to 

be assured.

An Oxford Instruments Plasmalab 80Plus capacitively coupled reactive ion etcher was 

used during the entire testing and manufacturing process. The etching procedure was 

optimised for this particular machine. The results may vary for other types o f plasma 

etchers, materials used, and types o f wafer as well as wafer coating procedures.

The existence o f the Si02 sol-gel component influenced the selection of a fluorine- 

based plasma as the primary chemistry for the etching due to the previously reported 

excellent properties o f SF6 plasmas on the quality and efficiency o f etching [99-101]. 

Most of these studies were focused on optimising gas mixtures for etching Si02 or pure 

silicon rather than deep etching o f organic-inorganic composites. I t  can be argued that 

the widely known BOSH process [102-104] could be more efficient than the typical 

reactive ion etching. However, currently more laboratories are equipped with less 

expensive RIE tools, which makes the presented process interesting.

8.2.1. Samples Preparation

In order to ensure repeatability o f the results, each sample was processed in an 

identical manner and under identical conditions. Standard 4-inch (100mm) silicon 

wafers with a thickness o f approximately 450 pm formed the substrate for the sample. 

The sol-gel layer was spincoated on top, creating a layer with a refractive index value 

o f 1.4963 and nominal thickness o f 5 pm, followed by prebaking at 120 6C. The sample 

was then exposed in contact mode for 210 s to UV light and further baked at 120 GC

83



for 1 hour For UV exposure a SUSS MA56 mask aligner was used, which delivered 

10W/cm2 of optical power at a wavelength o f 365 nm The procedure was repeated 3 

times in order to obtain a 15 pm thick film The sample was then covered with a 12 pm 

film of SPR-220 7 0 positive photoresist [105] (the same that is used in the LTM 

fabrication), UV-exposed and rinsed with solvent to create openings through which the 

plasma could interact with the sol-gel surface (Figure 8-9) Finally, the photoresist was 

additionally hardened by baking m an oven for 30 min at 90 0C

Positive photoresist

PhotODatternable sol-ael

? Silicon wafer ^ ---------------------------------

\\\\\\\\\\\\\\\\\\\\^ ^ ^ ^

Figure 8-9 RIE experimental sample

8 2 2 Sample Characterisation

There are several parameters used to investigate quality and efficiency o f the etching 

process This number was however reduced to the parameters, which would have the 

most significant impact on quality and efficiency o f the LTM performance These major 

parameters are photopatternable sol-gel etch rate, selectivity, etch anisotropy and etch 

bias These are defined as follows

□ Etch rate o f the film

Etch rate ( ER ) is a measure o f how fast the material is etched and it provides 

information about the efficiency o f the plasma process I t  is typically expressed in 

nm/min
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□ Selectivity

Selectivity is the ratio o f etch rates between two films (in our case between resist 

and sol-gel), a parameter developed for the optimisation of the thickness of the 

photo resist films

The selectivity value ultimately limits the depth o f the material that can be etched 

for the specific process and the masking material used For LTM fabrication and 

with the maximum achievable thickness of 12 pm for the SPR-220 photoresist 

achieved by single coating, a selectivity greater than 1 25 is sufficient to etch 

through all the hybrid sol-gel layers

In addition the selectivity is high, the thickness o f the masking material can be 

reduced and thus better quality features can be produced

Etch bias ( Eb) is designed to measure the change in linewidth due to anisotropic 

properties of the thin films I t  is defined as a difference between original linewidth 

( Wb) and final linewidth after photoresist removal ( K )  (Equation 8-2, Figure 

8- 10)

Equation 8-1

□ Etch bias

Eh W Wb Equation 8-2

Figure 8-10 Definition of etch bias
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Since accurate dimensions o f the trapping chamber are of particular importance the 

etch bias provides information about the difference between the final feature size 

compared to the dimensions o f this feature on the masking material 

□ Etch anisotropy

Etch anisotropy is defined as

rhor Equation 8-3
A f  1

where rhor and rver are layer horizontal and vertical etch respectively as shown in 

Figure 8-11

h o r

r r

Figure 8-11 Etch anisotropy

When Af  =1 the etching is considered as anisotropic and, as discussed before, it

results in smaller divergence o f the beam from the waveguide optical propagation axis, 

resulting in an improvement in the efficiency of the optical trapping

A typical investigation of etching quality involves the use of Scanning Electron 

Microscopy In this case however the dielectric properties o f the sol-gel caused the 

application of this method to be limited For this reason, all the results were obtained 

using a Veeco NT1100 White Light Optical Profiling System The vertical measurement 

range of the instrument in the VSI (Vertical Scanning Interferometry) mode is up to 2 

mm and the vertical resolution is 3 nm The system allowed highly accurate 

measurements o f the etch rate as well as evaluation o f the quality of etching both in 

terms of the etch bottom roughness and the verticality o f the etch

The measurement procedure involved the sample being scratched using a sharp blade 

down to the top surface of the silicon wafer This allowed the creation o f a stable
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reference for sol-gel and photoresist thickness measurement. The sample was then 

scanned and the data saved. After the sample was etched another scratch was made 

down to the unetched top surface o f the silicon wafer and again measurements were 

taken to provide both etch rate and selectivity o f the process.

The selection o f the etching conditions based on etch rate and selectivity as the 

parameters o f critical importance was followed by the measurement of the bottom etch 

roughness and etch anisotropy.

Optical emission spectroscopy (OES) spectra were taken for each experiment. An 

Ocean Optics USB2000 Spectrometer was used to determine the plasma characteristics 

for different powers, pressures and flow rates o f gases. The OES spectra wavelength 

range was between 180-880 nm. For each experiment the data for 10 spectra were 

averaged.

Based on the previous experience with plasma etching technology and preliminary 

tests with wafers covered with sol-gel, the following conditions were set as a start 

point for all investigated etching conditions: RF power = 300 W; SF6 flow = 80 seem; 

0 2 flow = 20 seem; argon flow = 70 seem, plasma pressure = 60 mTorr; bottom 

electrode temperature = 15 °C. Only one parameter was varied at a time for each set 

o f experiments.

8.2.3. Influence of 0 2 flow on etching properties

In typical fluorine based plasma for S i02 etching, the addition o f oxygen increases the 

amount o f fluorine available in the plasma by preventing the recombination o f fluorine 

with sulfur. I t  is explained by the fact that certain amounts of 0 2 react with fluorine 

species (SFX) and slow down the SFX+F recombination process (Equation 8-4).

O SFX o SOFi
p . Equation 8-4

Hence more reactive species are available and the chemical etching is improved and 

the etching rate increased. The oxygen also provides additional activation energy to 

the surface, thinning the S*F* layer and allowing higher etching rates [106].
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The major drawback o f the oxygen addition is a reduction in the etch selectivity 

between the organic photoresist and the silicon based materials when the oxygen 

reacts with the carbon component o f the photoresist organic structure (Equation 8-5).

C x H O : + 0 : -> C O ,+ //<?,

The influence o f oxygen flow on the etching rate and selectivity o f the LTM 

photopatternable sol-gel is presented in Figure 8-12 and Figure 8-13.
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Figure 8-12. Etch rate versus oxygen flow

2.200 -  

2.000 

1.800 \ 
g  1.600
■è 1.400 I
I  1.200 
$  1.000 • 

0.800 • 
0.600 - 
0.400 • 

0

Selectivity vs O2 Flow

- f —  *  ir

10 20 30 40 50

O2 flow [seem]

60 70

Figure 8-13. Selectivity versus oxygen flow
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I t  can be seen from the graphs that oxygen addition has a small effect on the etching 

rate and a relatively higher effect on the selectivity o f the process The reason for the 

stable etching rate is probably due to the fact that there is enough oxygen present in 

the sol-gel itself to sustain a high concentration of the fluorine atoms I t  is estimated 

that the photopatternable sol-gel contains approximately 21% oxygen atoms, 43% 

hydrogen, 31% carbon, 3 8% silicon and a small amount o f zirconium A very similar 

set of atoms could be found in the photoresist with the exception of silicon and 

zirconium

The high saturation of the fluorine atoms caused by high SF6 flow (80 seem) can offer 

an additional explanation for the flat etching rate curve The presence of the fluorine 

atoms is so high that the etch rate of the material has reached a maximum and further 

improvement is not possible The drop in selectivity for higher oxygen flow is caused 

by the higher etch rate of the photoresist in the high presence o f 0 2 Oxygen does not 

have any positive impact on the etch rate o f sol-gel and increases the etch rate o f the 

photoresist, which is evident in the drop in selectivity This should be avoided in 

etching photopatternable sol-gels

8 2 4 Influence o f Argon Flow

In order to measure the influence of ambient gas pressure on the etching rate and 

selectivity, the samples were prepared using standard process and etching conditions

Argon is another gas widely used in combination with fluorine chemistry [107,108] In 

a typical plasma etch, argon influences the residence time of the gas in the chamber 

and reduces redeposition of the etchant such as SiF4 This effect together with the 

physical sputtering of the material typically improves etching rates and to a lesser 

extent selectivity

The influence o f the argon flow on the etching rate and selectivity o f the LTM sol-gel 

process is presented in Figure 8-14 and Figure 8-15 As mentioned earlier, higher 

argon flow in the plasma should reduce the residence time of the gas in the chamber, 

thus reducing fluorine species available for etching and lowering the SiF redeposition
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The low response of the etch rate to  the argon flow confirms that the plasma 

environment created is rich with fluorines and additional fluorine atoms do not make a 

significant contribution to the etching o f the sol-gel. The effect o f etchant redeposition 

with the addition of argon is observed on the selectivity graph. The overall good 

selectivity o f the process can be explained by the passivation of the photoresist surface 

by the fluorines, thus the reduction in redeposition of etchant has a negative affect on 

the selectivity.
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Figure 8-14. Process etch rate versus argon flow
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Figure 8-15. Process selectivity versus argon flow
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In addition, the increase in argon flow rate increases the number o f argon ions further 

decreasing selectivity due to the sputtering o f photoresist. The OES scans revealed that 

the dominant ions are argon ions, which are responsible for sputtering o f the sol-gel, 

causing a small increase in the etch rate. Taking these effects into consideration it can 

be argued against using argon as an addition to pure SF6 for highly selective etching of 

sol-gels.

Lower pressure indicates that both photoresist and sol-gel film are equally exposed to 

impacting free ions and other high-energy species. The degree of pressure influence 

on selectivity is however low and supports the selection o f the photoresist material as 

fairly resistive to purely chemical damage. This does not change the fact that the value 

o f selectivity for this combination o f materials is low, as it is for most of the silicate 

materials. As a result the thickness o f the photoresist layer has to be comparable to 

the etching depth.

8.2.5. Influence of SF6 Flow

The most important effect of etching sol-gel with SF6 can be observed in Figure 8-16. 

This shows the existence o f a threshold for SF6 flow, below which we can see a 

significant drop in the selectivity. This shows the importance o f the passivation process 

in achieving good selectivity in the process where deep etching is required.

Figure 8-16 Process selectivity versus SF6 flow
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Figure 8-17 Process etch rate versus SF6 flow

An overall stability o f the etch rate with SF6 again confirms the high Fluorine content in 

the plasma environment (Figure 8-17).

Ul

8.2.6. Influence o f RF Power

Scans in RF power show little effect on etch rate (Figure 8-18). The strong increase in 

the selectivity o f RF power (Figure 8-19) implies a significant photoresist etch rate 

decrease with power.

Etch Rate vs RF Power

RF Power [W]
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Figure 8-18 Process etch rate versus RF power
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Figure 8-19 Process selectivity versus RF power

An explanation consistent with this result is that the surface passivation o f the 

photoresist by a fluorine exchange reaction with hydrogen exceeds the destruction o f 

the carbon-chain o f the photoresist caused by the expected oxygen density increase at 

higher power.

In a typical OES spectrum, 0 2i O il, S2, S i02, CO, OH, C2, ZrO, SII, OV, F ill,  Zrl, S ill, 

SiF, Arl emission lines were observed (Figure 8-20) and confirm increased emission 

line intensities of argon, SiF and sputtered sol-gel molecular emission in higher RF 

power. The Roman numbers denote the level o f ionisation o f the particular atom.
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Wavelength (nm)

Figure 8-20 Typical optical emission spectra for Power=300 W, Pressure=60 mTorr, 

0 2 flow=20 seem, SF6=80 seem, Ar flow=70 seem

Visual observation o f the etched samples influenced the use of plasma pressures below 

30 mTorr, which aided the reduction of surface residues on the sol-gel leaving the 

surface clean and free o f impurities, which may benefit the functionality o f the LTM 

devices Residues at high pressure are thought to  be micro-masking by the low 

volatility zirconium compounds, higher ion bombardment at low pressures alleviated 

this problem

8 2 7 RIE Process Parameters Selection

The optimisation o f the etching condition was based on achieving the highest possible 

selectivity with reasonably fast etching rate The final etching set-up does not vary 

much from the original starting point The only changes introduced were the 

elimination o f oxygen addition to the plasma and a small decrease in Argon flow 

Hence the final values o f the etching process parameters for LTM fabrication were kept 

as follows Power = 300 W, 02 flow = 0 seem, Ar flow = 60 seem, Pressure = 60 

mTor, bottom electrode temperature =15 °C, SF6 = 80 seem, Time = 60 min
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This optimised RIE process etched the features as presented in Figure 8-21.

Figure 8-21 LTM device profile after etching with the optimised RIE process

A relatively high etch bias of the final etched structures as compared to the initial 

dimensions on the mask was observed. The average enlargement o f the horizontal 

dimensions of the etched structures was 20 pm. This etch bias is probably a result of 

the inaccurate transfer o f the dimensions from the mask to the photoresist, which 

would suggest that further improvement in the photopatterning procedure o f the 

photoresist is required. However, no additional measurements were carried out to 

confirm this theory. The higher etch bias had no influence on the testing phase of the 

LTM development as this possibility was addressed in the design phase by 

incorporating a variety o f chamber widths into the photolithographic mask.

In addition, as presented in Figure 8-22, the optimised RIE process achieved 

favourable roughness parameters, which were measured from the bottom of the 

etched chambers.

Y Profile
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Figure 8-22 Roughness of the trap housing floor

The average roughness ( Ra ) of the chamber floor was found to be in each case below 

70 nm These values of the roughness parameters were thought to be sufficiently low 

to prevent any influence on the trapping beams or trapped object

8.3. Conclusion

All the results from the conducted experiments appear to be consistent with the 

general theoretical approach of plasma etch processing taken Since our primarily goal 

was to optimise this particular process, the results are considered to be specifically 

adjusted for the plasma chamber available, sol-gel recipes, and photoresist layer etc

The presented optimisation process has explored Reactive Ion Etching as a means of 

LTM trap housing microfabrication Good etching rates and selectivity were obtained 

for a generally available thick photoresist material using SF6 chemistry and provided a 

novel study o f the influence of oxygen and argon addition

It  has been shown that with the high flow of SF6 gas there is enough chemistry 

available to achieve selectivity that allows 15 pm deep good quality etching, which is a 

requirement for the LTM device Thus the SF6-based plasma chemistry and photoresist 

material can be recommended as a method of microfabrication for the LTM trap 

housing as well as for other photopatternable inorganic-organic composites 

synthesised by the sol-gel technique
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9. Estimation of the LTM Trapping Forces

9.1. Introduction

Assuming that all previously obtained numerical estimations and assumptions are 

correct it can be shown that the LTM is capable of establishing a stable equilibrium 

point with sufficient optical forces to compensate for the major external forces acting 

on the trapped microsphere These however required two more physical measures to 

be taken, namely characterization o f the light intensity distribution inside the LTM 

waveguide, and measurement of the power losses incurred by this light as it 

propagates between the fibre output and the trapping chamber

The requirement for the characterization of the light intensity distribution inside the 

waveguides was a direct result of the assumption that the waveguides are capable of 

guiding only the fundamental mode, with a Gaussian intensity distribution As 

discussed earlier, this condition was crucial for calculating the trapping efficiencies that 

allows the most efficient utilisation of the available optical power Thus once the LTM 

device was fabricated the waveguides had to be tested to confirm that they match the 

system specification

Subsequently, the optical losses had to be measured to provide information about the 

ultimate power o f the light available from the output o f the waveguides This optical 

power value was used to calculate the final LTM trapping forces as given by the 

Equations 2-24 and 2-25, assuming the initial power o f the laser diode was 

15 mW

The numerical estimation of the trapping forces was then compared to the calculated 

values o f the external forces acting on the microspheres immersed in water solution 

and confined within the chamber walls This assessment was designed to provide 

assurance that the device would function properly, and it was completed prior to 

demonstration taking place
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9.2. Optical Beam Intensity Profile

The waveguide dimensions and refractive index difference &n =0.003 between the 

guiding and both the buffer and protective layers were designed to produce a single 

mode intensity profile at the waveguide output.

In order to confirm that this was really the case an intensity profile was obtained by 

launching the light from the pigtailed laser diode into the waveguide (Figure 9-1).

Figure 9-1. Optical setup for measuring waveguides intensity profile

The light coming out of the waveguide endface was collected using a series of lenses 

and focused on a highly sensitive Hamamatsu Photonics infrared camera (model: 

C2741). The result is presented in Figure 9-2 and it may be seen that the intensity 

profile is very close to the purely Gaussian profile.

Figure 9-2. Single mode intensity profile o f a 4 pm square waveguide
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The experiments conducted on the waveguides in the range between 2 and 10 |jm 

confirm that fabricated waveguides met the design specifications and allowed only the 

fundamental mode to be guided Similar but more rectangular intensity profiles of 

these waveguides were observed as a result o f high dimension ratio between widths 

and heights o f these waveguides

9.3. Optical Losses Measurement

As can be seen from Equations 2-24 and 2-25, the reduction in optical forces that can 

be induced on the dielectric object is directly proportional to the loss of laser power 

within the waveguide For this reason it was important to measure the losses of the 

optical power available on the waveguide output

The optical losses can be subdivided into three major groups propagation losses 

(incurred by the light propagating through the waveguide), coupling losses (those 

related to the transfer o f the light between the optical fibre and the waveguide input) 

and finally output losses at the interface between the waveguide and the output 

medium [62,109-111]

Propagation losses usually occur as a result of the imperfections in the waveguide 

geometry and the type and quality o f the material used to form a waveguide Three 

types o f propagation losses that can be identified based on their source o f origin 

scattering losses, absorption losses and radiation losses

Scattering losses can be subdivided into volume scattering and surface scattering 

Volume scattering is directly related to the imperfections in the material such as 

contaminants and crystal defects and nonuniformity o f the refractive index Surface 

scattering losses occur because of waveguide sidewall roughness at the interface 

between the core and the cladding o f a waveguide (in our case between the 

waveguiding layer and the protective or buffer layer)

The origin of radiation losses is the emission of photons into the media surrounding a 

waveguide, which cease to be guided These types of losses are o f particular concern
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when the waveguide is curved In that case the evanescent field on one side of the 

waveguide extends further into the surrounding material increasing the probability of 

the photons being radiated away from the propagating mode Since lower order modes 

have much less energy confined in the evanescent field than higher order modes, 

these lower order modes experience much lower radiation losses

The final contribution to the propagation losses is made by absorption losses, which 

are directly related to the material composition and thus its intrinsic ability of 

transforming the light power into heat power

The overall propagation loss in buried waveguides is usually measured in decibels per 

centimeter (10 dB/cm represents a decrease o f power by an order o f magnitude per 1 

cm of waveguide length) I t  can be determined by measuring the ratio between input 

and output optical power through straight waveguides o f different lengths

The second type o f loss (coupling losses) is related to the light intensity loss that 

occurs in the connection between the waveguide and the optical fibre I t  is affected by 

intrinsic and extrinsic factors Intrinsic coupling losses are caused by inherent fibre 

(waveguide) characteristics such as core and cladding diameter mismatch, numerical 

aperture (NA) mismatch, and refractive index profile difference between a fibre and a 

waveguide Extrinsic coupling losses are caused by fibre-waveguide jointing techniques 

such as lateral misalignment, angular misalignment, fibre-waveguide separation, and 

poor fibre or waveguide endface preparation The coupling loss is measured in decibels 

as the loss o f optical power between the fibre and the waveguide

The third type of loss (output losses) is in principle similar in the origin to the coupling 

loss and is a result of the backreflection o f the light caused by the mismatch o f the 

refractive indices o f the waveguide and the output medium

For the purpose o f estimating optical forces, the power loss o f the light travelling 

through the ridge waveguides made from the developed sol-gel material was measured 

using the cut-back technique utilising the optical setup presented in Figure 9-3
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Figure 9-3 Cut-back method optical setup

The cut-back technique allows the measurement o f both the coupling and propagation 

losses by comparing changes in the optical power at the waveguide output with the 

same initial coupled power for different waveguide lengths

The initial measurement involved launching laser diode light into the waveguide 

through the pigtailed optical fibre The initial wafer sample was 35 mm long and 

covered with several nominally identical channel waveguides The test waveguides 

used in the measurements were straight ridges They were also part of the same 

wafers from which the final devices were extracted, which means that they were 

exposed to the plasma environment in an identical fashion to the final devices
V.

The coupling surfaces were cleaved along the wafer crystallographic planes and the 

optical power at the waveguide output was measured using a Thorl Labs DET410 

photodectector The change in the intensity after each reduction in length was 

transformed into the decibel form using the equation

Equation 9-1
„  10 log {PJP ,)
Lt

*1 *0

where

P0 - optical intensity output before waveguide length reduction 

Pj - optical intensity output after waveguide length reduction 

x0 - initial length o f the sample
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xx - length of the sample after reduction

By averaging each value over more than six measurements per waveguide length, the 

propagation losses were extrapolated by determining the slope of the input-to-output 

power ratio vs waveguide length plot (Figure 9-4) The results were also adjusted to 

provide the information about the average coupling losses inherent in the system The 

adjustment was performed by measuring the direct output intensity of the laser diode 

and adding this value to the results, which produced the shifting factor in the best fit 

line equation

Waveguide Propagation and Coupling Losses 
(Width 4 |im x Hight 4 pm)

y = -0 1736x 0 059 6

V ______________________________________________________________________ .

Figure 9-4 Waveguide propagation and coupling losses

The best-fit line slope indicates losses of 1 736 dB/cm and coupling losses of 0 06 dB 

The origin o f the losses is probably due to imperfections in waveguide shape and low 

confinement o f the fundamental mode due to the low refractive index difference 

between the waveguiding layer and the buffer, protective layers I t  is thought that the 

absorption losses for the optical wavelength (662 nm) used are negligible This was 

confirmed by obtaining UV-visible absorption spectra as shown in Figure 9-5
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UV-Visfcle Absorption Spectra of the Sol-Gel
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Figure 9-5 UV-visible absorption spectra o f the LTM sol-gel material

The coupling losses for the 4 pm waveguide presented are considered marginal and 

this is probably due to the precise alignment and accurate match between sizes o f the 

fibre core and the waveguide.

The overall experimental results gave an indication of the expected value o f the optical 

power o f the light ultimately available at the waveguide output and thus allowed the 

calculation of the real forces that could be produced by the LTM.

9.4. Result of Force Calculations

The section presents predictions o f the optical forces acting on the microsphere 

obtained using Equations 2-24 and 2-25 for different trapping configurations. These 

estimations combine previously calculated trapping efficiencies for selected waveguide 

sizes, experimentally obtained waveguide losses and available laser diode power. In 

addition an attempt has been made to calculate the external forces that might act on 

the microsphere inside the trap chamber.

The overall external force acting on the microsphere inside the water solution near the 

chamber sidewalls comprises: combined buoyancy and gravity forces ( Fgh), van der

Waals forces ( F ^ , ) and electrostatic forces related to the charge ( F  , ) (Equation 9-2) 

[112].
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The combines buoyancy and gravity force is given by the Archimedes law

Fgb g (p l P2)V Equation 9-3

where px and p 2 are densities o f the microsphere and the solution respectively

Another component o f the total external force is a van der Waals force, which is 

related to the intermolecular forces arising due to the probabilistic fluctuation of 

electron density around a molecule The van der Waals forces can be quantitatively 

estimated using Equation 9-4 [113]

*  S *2 2 Hr0
vdwr y S  0 / 2 *  35 2(S 2r0)2 Equation 9-4

where

cr surface roughness

S distance between microsphere boundary and the surface 

H  Hamaker constant 

r0 microsphere radius

The Hamaker constant was estimated to form the Hamaker constant of individual 

materials (polystyrene, water and silicon), which were engaged in the interaction 

[114,115,116] A value o f 1 3e-20 J was obtained following the procedure described by 

Bergendahl and Grasso [114]

The electrostatic force, which arises between static (non-moving) charges is given by 

[117]

êxt ^gb v̂dwr Fei Equation 9-2

Fel 2 7T££0r02V2 Equation 9-5
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where

e relative permittivity of water 

£0 permittivity o f free space

r0 microsphere radius

8 distance between microsphere boundary and the surface

V electrostatic potential given by

V — - —
4«EBorO

and Q is the overall additional charge stored by the microsphere

A unique property o f the electrostatic force is that it can be either attractive or 

repulsive, which depends on the type of the interacting charges being accumulated in 

the material The ability o f the material to accumulate certain types o f charges is called 

the material triboelectricity and it is related to the material affinity for giving up 

negatively charged electrons In our case the interaction occurs between polystyrene 

and silicon, which both have negative triboelectricity [118,119,120], which means that 

the overall accumulated charge should be negative and induces a repulsive 

electrostatic force (for this reason a minus sign for the electrostatic force was assigned 

in the scalar Equation 9-2)

I t  is not certain how the fabrication process and the presence o f the electromagnetic 

field, when the sphere interacts with the laser beam, influence the direction and the 

quantity of charge accumulated in both materials However, based on the work of 

Gady at ai [117] the charge accumulated in the microsphere in the presence o f a 

water solution was estimated as 700e This value was used to calculate the 

electrostatic force between the microsphere and the silicon wafer

The numerical value of the external forces ( F ^ )  was based on the set o f constant 

parameters resented in Table 9-1
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Parameter Value Unit

g earth gravitational constant 9 81 m/s2

yp density of polystyrene 1050 kg/m3
Yw density of water 1000 kg/m3

Ç LTM surface roughness 7 00E-08 m
H Hamaker constant 1 13E-20 J
H relative permittivity of water 80 3
e electron charge 1 60E-19 J
H permittivity of free space 8 85E-12 r 2 ,  i 1C J m

Q number of negative charges 7 00E+02

r distance between centre of the
7 00E-06 m1

sphere and the LTM floor

Table 9-1 Constant parameters used in external forces calculations

Thus following Equations 9-2 to 9-6, the value o f the external forces was calculated 

and summarized in Table 9-2

Calculated external forces (Fext)

Fbg
combined buoyancy and gravity 
force

-7 3304E-16 -6 368E-15 -2 4512E-14 N

Fvdwr
Fd

van der Waals forces 

electrostatic force

-6 70E-18 

7 18E-15

-3 34E-17 

7 18E-15

-7 98E-17 

7 18E-15

N

N

Total external forces 6 44E-15 7 80E-16 -1 74E-14 N

Table 9-2 Calculated external forces acting on the polystyrene microsphere

By putting optimised trapping efficiencies (Table 9-3) into Equations 2-24 and 2-25 and 

using measured values o f waveguide losses, the numerical values o f total optical forces 

were calculated Also, the initial optical power o f the available laser diode o f 1 5e-02 W 

and water refractive index o f 1 33 were fitted in the calculations (Table 9-3)
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Variable Values Units

ro particle radius 1 4185E-06 0 000002916 4 57E-06 m
w waveguide size 2 4 8 |jm

s
trap housing size (separation 
distance)

40 80 160 pm

Lp
waveguide propagation losses 
(excl coupling)

-18 -18 -18 dB/cm

Lc coupling losses -0 1 -0 1 -0 1 dB

lw single waveguide length 3 3 3 cm

Peff
effective power on the 
waveguide output

4 23E-03 4 23E-03 4 23E-03 W

Qzt axial trapping efficiency 0 002 0 01 0 0025

Qxt transverse trapping efficiency 0 25 0 14 0 19

pc
relative power difference 
between and P2 50 0% 50 0% 50 0%

Calcu ated optical forces

F* effective axial trapping force 1 88E-14 9 38E-14 2 34E-14 N

Fxt
effective transverse trapping 
force

9 38E-12 5 25E-12 7 13E-12 N

Table 9-3 Calculated optical forces and a typical set of variables used in calculations

The comparison o f the external forces with optical forces revealed that the optical 

forces are much bigger than any component o f the total external force The effective 

transverse trapping force, which prevents a sphere from falling down and holds it at a 

set distance from the LTM floor was in the worst-case two orders of magnitude higher 

than the total external force

In fact, both the van der Waals force and the electrostatic force decrease sharply with 

distance between the interacting mediums and they are in general negligibly small 

compared to the combined buoyancy and gravity forces At this distance the only force 

that could have any impact on the trapped object is the combined buoyancy and 

gravity force, which rise quickly as the radius of the microsphere increases

107



9.5. Conclusion

The obtained experimental results proved that the fabricated waveguides had single 

mode properties and confirmed that this important condition for creating a stable trap 

was met

I t  was also shown that the optical forces produced by the LTM would be large enough 

to match all the external forces acting on polystyrene beads of various sizes This 

should allow the device to achieve full functionality within specified trapping 

parameters and external conditions

For LTM prototype testing, the power o f the laser diodes was chosen to maximise the 

available forces and increase the probability o f trapping occurring However, it has to 

be noted that in a real application, higher power lasers typically result in a higher 

possibility of inducing damage to living objects and this is not always desirable

Finally, this chapter outlined experiments and calculations that concluded the last step 

o f the LTM development before the fabricated device was put into the test as 

presented in the following chapter
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10. Laser Trapping Observation

10.1. Introduction (Experimental Setup)

Following the procedure described in Chapter 5 the LTM prototype was fabricated and 

prepared for testing as presented in Figure 10-1

LTM device

Trap chamber 

Support structure

Figure 10-1 The LTM testing pad

The LTM testing was carried out using a custom designed Elliot Scientific optical setup 

(Figure 10-2)

CCD camera

Optical microscope

Pigtailed laser diode

Rotational table

Microscope rail

xyz-stage

Optical bench

Figure 10-2 Experimental optical setup
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This state-of-the-art system consisted o f a floating optical table, two xyz-stages, 

rotational table, a movable optical microscope with CCD camera, two pigtailed laser- 

diodes and multiple controllers for operating various parts of the setup The xyz-stages 

allowed precise positioning o f the pigtailed optical fibres using either classical 

micrometer gauges or electronically controlled piezoelectric actuators for more 

accurate alignment of the fibres

The optical microscope was mounted over the top o f the round table using a specially 

designed hook The hook was situated on the xy-stage, which allowed accurate 

positioning o f the microscope over a short distance Finally the xy-stage rested on a 

rail, which was used for rough manipulation of the microscope position over a longer 

distance

10.2. Testing Procedure

The laser diodes were mounted on top of the xyz-stages with their output ends facing 

each other (Figure 10-3) The LTM testing pad was placed on top o f the rotational 

table and clamped

Microscope objective 

Fibre from diode

LTM device

Figure 10-3 Laser diodes alignment

The identical power output was established from both laser diodes and their outputs 

were precisely aligned with the LTM waveguides, coupling the light into waveguides
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from both sides of the device The long-travel feature of the microscope facilitated this 

task Once the alignment was finished the distinctive scattering from the waveguide 

core and the waveguide output inside the trap chamber was observed (Figure 10-4)

LTM waveguide outputs

Trap chamber

Figure 10-4 LTM device

The microscope was then removed and a small quantity o f the water solution 

containing the microspheres was dispensed into the particle chamber using a 

micropipette Then the microscope was then moved back to the original position and 

the trapping was observed The scattering pattern of the trapped particle can be seen 

I t  is indicated by the distinctive scattered light, which can be observed on the CCD 

camera installed on the microscope as presented in Figure 10-5

Figure 10-5 Trapped microsphere using LTM

In order to test the working principle of the device the optical power o f one of the 

beams was reduced and a change in the microsphere position could be observed 

(Figure 10-6 a-l)

Scatter from the 
trapped microsphere
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Figure 10-6 Optical manipulation using LTM device (beam waist separation s=70 pm, 

waveguide width=4 pm, microsphere radius r0=2 916 pm)

Figure 10-6a shows a trapped microsphere in the neutral position in the middle of the 

trap chamber and represents the state when two counter-propagating beams carry 

identical optical power Then power o f the left beam was reduced and the expected 

movement o f the microsphere towards the weaker output beam occurred (Figure 

10-6b)

Then the equality o f beam powers was restored and the sphere returned to the centre 

position inside the trap chamber (Figure 10-6c-d) Once the sphere returned to the 

original position power o f the right beam was reduced and the sphere moved towards 

the right side o f the chamber (Figure 10-6c-d) The same procedure was repeated 

again as presented in (Figure 10-6f-l)
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The trapping was observed for various waveguides size between 2 pm and 10 pm and 

for multiple chamber diameters between 70 pm and 210 pm Figure 10-7 shows the 

optical trapping in different trapping conditions

Figure 10-7 Optical trapping (beam waist separation s=160 pm, waveguide width= 

10 pm, microsphere radius r0=4 57 pm)

Experiments also provided a rare opportunity to confirm the validity of the ray optics 

model Following Flynn at all [17], Figure 10-8 a presents a ray optics model for rays' 

reflection and refraction inside the spherical dielectric object for a lightly focused laser 

beam

Figure 10-8 Rays refraction and reflection on the spherical dielectric object a 

theoretical model, b experimental result

Similar ray paths of rays were observed during experimentation as presented in Figure 

10-6b and 10-8b Since in this case the higher intensity light propagates from the right 

towards the left side o f the trap chamber it becomes simultaneously focused and 

reflected by the microsphere creating one bright spot on the left wall of the chamber 

and two bright spots on the right wall

113



11. Conclusions and Suggestions for Further Work

Adding to the recent trend towards miniaturisation and integration o f optical devices, a 

working prototype of a unique dual-beam optical trapping platform was presented. The 

optical trapping capability o f the device was successfully demonstrated using 

polystyrene microspheres, complementing previously published work on optical 

trapping and its biological applications.

The achieved success resulted from conceptual and experimental work conducted on 

the various techniques and technologies implemented in the device. The 

multidisciplinary research required a high level o f expertise in optical trapping and a 

specialised knowledge of material and plasma science, photolithography, material 

deposition techniques and waveguiding theory. In addition the use o f many highly 

sophisticated scientific tools, such as an optical interferometer and prism couplers for 

refractive index and thickness measurements, had to be mastered.

The project initiated new research fields that will present numerous opportunities and 

challenges for possible further investigations. These include:

□ Utilisation o f higher order optical modes for creating several equilibrium points 

between two waveguides

The characteristics o f optical waveguides can be redesigned to allow propagation of 

higher order optical modes. This should produce multiple stable trapping 

equilibriums making multiple trapping possible. A similar effect can be achieved by 

taking advantage o f the interference phenomena which occurs between two 

coherent beams between two samples

□ Implementation o f the multi-beam trap allowing 2D manipulation

A complementary set o f the counter-propagating beams perpendicular to the 

existing ones can be created to improve trap stability and allow 2D spatial 

manipulation o f the object. In  addition the integration o f optical switches within the 

platform will allow reduction o f the required laser diode inputs.
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□ Examination o f biological species such as proteins, antigens, hemoglobin etc using 

the trapping technique and studies of the influence o f laser power on their 

molecular structures

□ Substitution o f the silicon substrate with a transparent one will allow observation of 

the trapped object from beneath without restricting user access to  the trapping 

chamber

The major consideration for the selection o f a viable transparent substrate will be 

high surface uniformity comparable to that achieved by using silicon wafers 

Transparency to LTM operational wavelengths is another key consideration

□ Implementation o f the scattering detection system

Wide multimode waveguides can be utilised as scattering detection systems, 

collecting and transmitting information about the intensity and directionality o f the 

scattered light from the object These data can be further interpreted to obtain 

information about object properties such as shape dimensions, and refractive 

index

□ Implementation of microfluidic channels

A microfluidic channel can be incorporated into the device and the optical forces 

can be utilised for sorting particles travelling through the channel Particles of 

certain size, dimension, and refractive index can be separated from the others by 

designing optical traps that respond to particular physical parameters of the object

□ The process engineering of the LTM, including photolithography, RIE etching and 

materials, can be further optimised, which will result in improved quality o f the LTM 

components such as waveguides, trap housing and material layers

□ Detailed investigation o f the polarisation rotation effect

Further examination o f the theoretical model used in this work could present another 

major challenge in the future The development o f a numerical approximation that
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could calculate the dual-beam trapping forces when multimode waveguides are 

considered, or when the spherical objects are replaced with objects o f other shapes, is 

an example o f one such challenge

□ The compatibility with optical tweezer systems might be investigated by 

redesigning the chamber illumination system and tweezer optics to utilise both 

system advantages for specific biotechnological applications

This list, although extensive, does not exhaust all possible modifications that might be 

incorporated into the LTM system Many other system improvements can be 

developed, limited only by personal imagination This feature has vast range of LTM 

applications in the biology and biotechnology sectors and it may soon make the device 

an indispensable tool in many biological applications

A further consideration to be addressed is the possible tailoring of the device functional 

parameters to various specific applications This will require establishing close 

cooperation with those directly engaged in using the device on a daily basis Their 

opinions and suggestions should be taken into consideration before any device 

modification will take place This practice is desirable both from a scientific and a 

commercial point o f view, as it will permit a clearer understanding of which system 

parameters can be successfully modified and which are the most crucial for the 

particular application

Finally the commercial potential should be explored by developing potential markets, 

the needs and wants of which can be satisfied by the qualities offered by the LTM The 

ultimate success o f the lab-on-a-chip LTM device will be achieved, once its various 

practical applications are transformed into a prosperous and successful enterprise
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13. Appendix

The appendix section includes details o f LTM fabrication process as presented in Tables 

13-1 to 13-4

Buffer and Protective Layers

Material type
Name BL Standard
Zr02 Content 2 %
Photoinitiator type and content (Irgacure 819) 1.8 %
Aging time 48 h
Wafer pretreatment
Drying wafer to promote adhesion in (T=150°C) 30 min
Wafer cooling to ambient temperature (T=24°C) 1 min
Ispincortlng___________________ |
Filtration of sol-gel (filter pore size 0.2um)
Stabilization of IPA environment in the spincoater 3 min
Dispension of 2.1 ml of sol-gel using pipette (center of the wafer)
TIME1 7 s
ACCELERATION 1 220 RPM/s
SPEED1 500 RPM
TIME2 _______________________ 35 s
ACCELERATION 110 RPM/s
SPEED2 1200 RPM
Prebaking I
Hot plate (T=120°C) 15 min
Wafer cooling to ambient temperature (T=24°C) 1 min* ■■ ■ —  H
UV exposure
Mask alligner type Carl Suss MA56
Wavelength Spectra ( Mine) 365 nm
Optical power 10 mW/cm2
Contact mode separation 92/08
Time 210 s
|PO<tbaking______________________________
(Hot Plate (T=120°C) 2 h

Table 13-1 Buffer and protective layers deposition process parameters
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Waveguiding Layer

Material type
Name GL Standard
Zr02 Content 4 %
Photoinitiator type and content (Irgacure 819) 1.8 %
Aging time____________________________ 48 h
Wafer pretreatment
Drying wafer to promote adhesion in (T=150°C) 30 min
Wafer cooling to ambient temperature (T=24°C) 1 min
Spincoitlng_________________________  1 1 1
Filtration of sol-gel (filter pore size 0.2um)
Stabilization of IPA environment in the spincoater 3 min
Dispension of 2.1 ml of sol-gel using pipette (center of the wafer)
TIME1 7 s
ACCELERATION 1 220 RPM/s
SPEED 1 500 RPM
rriME2 35 s
ACCELERATION 110 RPM/s
ISPËED2 1300 RPM
Prebaking ____________________  | | |
Hot plate (T=120°C) 15 min
Wafer cooling to ambient temperature (T=24°C) 1 min
UV exposure
Mask alligner type Carl Suss MA56
Wavelength Spectra ( Mine) 365 nm
Optical power___________________________________ 10 mW/cm2
Contact mode separation 92/08
Time 210 s
Developing
Rinse with IPA (spincoater at 500 RPM) ~3 min
Rinse with DI water injhe final stage
Postbaking ________________________________________
Hot Plate (T=120°C) 2 h

Table 13-2 Waveguiding layer deposition process parameters

131



Photoresist Layer

Material type
Name SPR220-7
Wafer pretreatment ____________________ ________  |
Drying wafer to promote adhesion in (T=150°C) 30 min
Wafer cooling to ambient temperature (T=24°C) 1 min
Spincoating 1
No IPA environment
Dispension of 4.5 ml of the material using pipette (center of the wafer)
TIME1 120 s
ACCELERATION 1 110 RPM/s
SPEED1 350 RPM
TIME2 25 s
ACCELERATION 2 110 RPM/s
SPEED2 1 1000 RPM
Prebaking __________________________ ____________________
Hot plate (T=90°C)_______________________ 100 s
Hot plate (T=115°C) 100 s
Exposure delay 24 h
UV exposure
Mask alligner type Carl Suss MA56
Wavelength Spectra ( I-line) 365 nm
Optical power____________________________ 10 mW/cm2
Contact mode separation 92/08
Time 90 s
Developing________ 1
Rinse with MF-26A (spincoater at 500 RPM) ~4 min
Rinse with DI water in the final stage
Postbaking______  ______
Oven (T=90°C)__________________________ 30 min

Table 13-3 Photoresist layer deposition process parameters

Reactive Ion Etching Process

Plasma etcher type Oxford Instr. RIE 80Plus
Siw pit prapiriUon________________________________________________
Application of the buffering paste to the botom of the wafer
RIE Plasma Conditions 132
SF* flow 80 seem
0 2 flow 0 I seem



Table 13-4 Reactive Ion Etching process parameters
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