
Adapting and Developing
Linguistic Resources for

Question Answering

John Judge

A dissertation submitted in partial fulfilment of the
requirem ents for the award of

Doctor of Philosophy

to the

Dublin City University

School of C om puting

Supervisors: P ro f Jo se f van G enab ith
Dr. Aoife C ahill

December 2006

i.

Declaration

I hereby certify th a t th is m aterial, which I now submit for assessm ent on the programme
of study leading to the award of Doctor of Philosophy is entirely my own work and has not
been taken from the work of others save and to the extent th a t such work has been cited and
acknowledged w ithin the text of my work

Signed .

(John Judge)

S tudent ID 98461796

Date 312~<L December 2006

Contents

Acknowledgements vii

List of Tables x

List of Figures xii

List of Acronyms xvi

1 Introduction 1

2 Background 6

2.1 In troduction.. 6

2.2 Question Answering .. 6

2.2.1 History of QA .. 9

2.2.2 New Directions in Q A ... 10

2.3 Shallow and Deep NLP M eth o d s .. 12

2.3.1 Context-Free Grammar (CFG) Parsing... 12

2.3.2 Lexical Functional G ram m ar... 17

2.3.3 Treebank-Based Acquisition of LFG Resources and “Deep” Parsing Us­

ing L F G .. 21

A bstract vi

i

2.4 Penn-II Treebank Annotation of Q uestions... 30

2.5 NLP in Q A ... '.................... 36

2.6 S u m m a ry ... 37

3 Domain Variance Experiments with the ATIS Corpus 39

3.1 In troduction.. 39

3.2 Previous W ork.. 40

3.3 Corpus Description and C om parison .. 41

3.3.1 The Penn-II Treebank ... 41

3.3.2 ATIS .. 42

3.3.3 Penn-II WSJ vs. A T I S ... 43

3.4 Baseline Experiments ... 46

3.4.1 Evaluation Tools and Metrics ... 46

3.4.2 Experiments ... 50

3.4.3 Punctuation .. 51

3.5 Retraining Experim ents.. 52

3.6 Conclusion .. 59

4 Domain Variance and Treebank-Based LFG Resources 62

4.1 In troduction.. 62

4.2 B ackground .. 63

4.3 Baseline LFG E xperim ents.. 65

4.3.1 F-Structure Gold Standard and Evaluation Tools 65

4.3.2 Experiments ... 66

4.4 Retraining Experim ents.. 70

4.5 Further Evaluations and B ack testing .. 74

4.5.1 Upper Bound E stim ation .. 74

4.5.2 Ablation Experiments ... 76

li

4.5.3 Question vs. Non-Question Breakdown of Results 79

4.5.4 B ack testing ... 81

4.6 Conclusion ... 82

5 Creating a Question Treebank 85

5.1 In troduction... 85

5.2 Background and Motivation .. 86

5.3 Data Sources .. 87

5.3.1 TREC Q u e s tio n s ... 88

5.3.2 CCG Group Q u estio n s... 89

5.4 Creating Q uestionB ank.. 90

5.4.1 Bootstrapping a Question T re e b a n k .. 90

5.4.2 Corpus Development S tatistics.. 91

5.4.3 Corpus Development Error A nalysis .. 91

5.5 S u m m a ry ... 95

6 Experiments with QuestionBank 96

6.1 In troduction... 96

6.2 Outline of E xperim ents.. 97

6.3 Experimental Data .. 98

6.3.1 Establishing the B aseline .. 98

6.3.2 Cross-Validation E x p erim en ts .. 99

6.3.3 Ablation Runs ... 102

6.4 S u m m a ry ... 110

7 Adding Long Distance Dependency Information to QuestionBank 113

7.1 In troduction .. 113

7.2 Long Distance D ependencies.. 114

iii

7.3 Related W o r k .. 116

7.4 Recovering Long Distance Dependencies in CFG Parser Output Using F-Structure

Reentrancies... 118

7.4.1 Motivation ... 118

7.4.2 Method 118

7.5 Experiments and Evaluation ... 123

7.5.1 Comparison with Other M ethods... 125

7.6 Improving LDD Recovery A ccu racy .. 127

7.6.1 Relaxing the Matching C riteria.. 128

7.6.2 Tuning the APCFG to Q uestions... 129

7.6.3 Evaluating the Improved S ystem ... 131

7.6.4 ATIS E v a lu a tio n ... 135

7.7 Conclusion .. 138

8 Conclusion and Future W ork 141

8.1 Future W o rk ... 146

Bibliography 149

Appendices 158

A Penn-II Treebank Tags and Functional Labels 158

A.l Bracket Labels 158

A. 1.1 Clause L e v e l .. 158

A. 1.2 Phrase L e v e l .. 159

A. 1.3 Word level ... 160

A.2 Function t a g s ... 162

A.2.1 Form/function d iscrepancies.. 162

A.2.2 Grammatical r o l e ... 162

iv

A.2.3 Adverbials .. 163

A.3 M iscellaneous.. 164

B Additional Figures and Tables 166

v

Abstract

As information retrieval becomes more focussed, so too must the techniques involved in the
retrieval process. More precise responses to queries require more precise linguistic analysis of
both the queries and the factual documents from which the information is being retrieved.

In this thesis, I present research into using existing linguistic tools to analyse questions.
These tools, as supplied, often underperform on question analysis. I present my work on adapt­
ing these tools, and creating new resources for use in developing new tools tailored to question
analysis.

My work has shown that in order to adapt the treebank- and f-structure annotation algorithm-
based wide coverage LFG parsing resources of Cahill et al. (2004) to analyse questions from the
ATIS corpus, only the c-structure parser needs to be retrained, the annotation algorithm remains
unchanged. The retrained c-structure parser needs only a small amount of appropriate training
data added to its training corpus to gain a significant improvement in both c-structure parsing
and f-structure annotation.

Given the improvements made with a relatively small amount of question data, I devel­
oped QuestionBank, a question treebank, to determine what further gains can be made using
a larger amount of question data. My question treebank is a corpus of 4000 parse annotated
questions. The questions were taken from a number of sources and the question treebank was
“bootstrapped” in an incremental parsing, hand correction and retraining approach from raw
data using existing probabilistic parsing resources.

Experiments with QuestionBank show that it is an effective resource for training parsers to
analyse questions with an improvement of over 10% on the baseline parsing results. In further
experiments I show that a parser retrained with QuestionBank can also parse newspaper text
(Penn-II Treebank Section 23) with state-of-the-art accuracy.

Long distance dependencies (LDDs) are a vital part of question analysis in determining
semantic roles and question focus. I have designed and implemented a novel method to recover
WH-traces and coindexed antecedents in c-structure trees from parser output which uses the
f-structure LDD resolution method of Cahill et al (2004) to resolve the dependencies and then
“reverse engineers” the corresponding syntactic components in the c-structure tree.

vi

Acknowledgements

I wish to acknowledge everyone who has helped me with my research and this thesis. I would

like to thank the Irish Research Council for Science Engineering and Technology and the Em-
i

bark Initiative for supporting me through their Ph.D. Research Grant scheme. I also thank my

examiners for their useful comments, suggestions and feedback on this thesis. I would like to

express my deepest gratitude to my supervisors, Josef van Genabith and Aoife Cahill, without

whom I would never have come this far.

Josef has always encouraged of me and my work, and even when I had given up hope on an

idea he was always there with new insight, advice and a new perspective. I’d especially like to

thank Josef for his understanding when I walked into his office asking to take an extended leave

of absence to sail the tall ship Jeanie Johnston (http://www.jeaniejohnston.ie) on her maiden

voyage to America. The positive reaction towards and enthusiasm for the idea, while typically

Josef, was not what I expected and I am eternally grateful to him for helping me take such a

once in a lifetime opportunity and still have my research to come back to. The advice, guidance,

and all important reality checking Aoife gave me was invaluable. I have learned so much from

Aoife and her door was always open to me, even “electronically” when she was away on a 6

month research visit at PARC in California. Her ability to explain a complex topic in simple

terms saved me on many an occasion and inspired me to think differently about my own work.

I would also like to thank all of the members of the National Centre for Language Technol­

ogy and the School of Computing postgrads for providing such a relaxed an enjoyable atmo­

sphere to work in and for listening to presentations about my work and always having helpful

feedback. In this regard particular mention must go to Cara Greene and Katrina Keogh for

always being there for me.

My time sailing on board the Jeanie Johnston was unforgettable, not only for the experience

itself, but also because of the friends I made. These friends have always shown an interest in

my academic pursuits and encouraged me in every regard. I’d like to thank all of the crew of

http://www.jeaniejohnston.ie

the Jeanie especially Lou, Boyce, Keelin, Tom H and Adrian, and of course Captains Me Carthy

and Coleman for making it all possible.

I would also like to thank all of my friends, their names are too numerous to mention here

but they have been my support and my distraction from work when I needed it most. I’d like

to especially thank Dan and Stuart for proving that out of sight doesn’t mean out of mind when

it comes to friendship. They have both been there any time day or night no matter where they

were to talk to or to drag me from work for my sanity’s sake. Stuart has promised never to read

my thesis so that he won’t have to tell lies about what he thought of its content. Dan I know will

read some if not all of this. I hope it gives you an idea of what I have been talking about all this

time.

I can never thank Una enough for her words of encouragement, unquestioning belief in

me and for being my rock through the toughest times. I know she knows this, however I feel

her contribution to this thesis deserves acknowledgement here. Her skills as a proof reader

were also invaluable; I don’t think she ever would have imagined becoming such an expert in

computational linguistics.

My parents, Mary and Marin, and my extended family have been the greatest source of

support and inspiration I could have asked for. While I’m sure they never fully understood what I

was doing, or even why, they were always encouraging and excited about any new developments

and would listen when I needed to vent steam. All this despite only getting to see me once in

a blue moon. Going home was a luxury I rarely afforded myself for fear I’d get used too to it,

instead it was my retreat, and my safe haven. My Grandparents have, I think, been the most

vocal in their support for my through my (many) years at DCU and while my Nana Pauline is

breathing a sigh of relief that I’m finally finished college, I know my Nana Kay is thrilled that

her grandson who wanted to be a binman is a doctor just like she said he should be.

“Anything in this life that is worth having is hard to get,” is a statement I’ve heard many times

throughout my life when confronted with a difficult task. While I’m not sure which of these said

it first (or if it was borrowed from someone else) I must thank my father, and both grandfathers

for instilling this idea in me. It has motivated me to keep going. Greater role models than these

three men I could never ask for.

List of Tables

2.1 Parsing results for Collins’ parser on Section 23 of the Penn-II Treebank 15

2.2 Parsing results for Chamiak’s parser on Section 23 of the Penn-II Treebank . . 16

2.3 Parsing results for Collins’ Model 2 parser and Bikel’s emulation on Section 00

of the Penn T re eb a n k .. 16

2.4 LFG parsing results against the DCU 105 for the 2 LFG parsing models using

different p a rse rs .. 30

3.1 Corpus statistics c o m p a red ... 43

3.2 Baseline Parsing Results on the ATIS co rpus.. 50

3.3 Parsing results for punctuated ATIS sen ten ces ... 51

3.4 Comparison of baseline parsing on all of ATIS and the 10% ATIS test set . . . 53

3.5 ATIS test set parsing results for Bikel’s and Chamiak’s parsers retrained using

Penn-II Treebank and ATIS d a t a ... 54

3.6 Difference between Chamiak’s and Bikel’s parsers’ f-scores in retraining exper­

iments and statistical significance testing .. 56

3.7 Comparison of parsing results for Bikel’s and Chamiak’s parsers on the ATIS

corpus excluding sentences containing FRAG/X con stitu en ts 59

4.1 Results for baseline experim en ts ... 67

4.2 Dependency annotation results for selected features in the 100 sentence evaluation 69

4.3 Results for experiments with retrained grammar for the 100 sentence hand­

crafted gold standard (a) and for CCG-style automatically generated gold-standard

with a 10-fold cross validation (b).. ;. . 71

4.4 Dependency annotation results for selected features in the 100 sentence evaluation 73

4.5 Upper bound for gold standard t r e e s ... 75

4.6 Question and non-question f-score upper bounds ... 79

4.7 Question and non-question scores for the annotation a lg o r ith m 80

4.8 Results for backtesting retrained grammar and baseline grammar on DCU 105 . 81

5.1 Breakdown of the 4000 Questions in QuestionBank by W H-word........................ 87

5.2 Breakdown of 2000 CCG questions by question c l a s s .. 89

6.1 Baseline parsing re su lts ... 98

6.2 Experiment Cross-Validation 1. Cross-validation experiment using the 4000

question tre e b a n k ... 100

6.3 Experiment Cross-Validation 2. Cross-validation experiment using Penn-II

Treebank Sections 02-21 and 4000 questions... 101

6.4 Statistical significance comparison between cross-validation r u n s 102

6.5 Results table for experiment Ablation 1 ... 103

6.6 Results for experiment Ablation 2 ... 105

6.7 Results for experiment Ablation 3 ... 106

6.8 Ablation 4: Results for ablation experiment using 3600 questions and PTB Sec­

tions 02-21, reducing the amount of material from both sources in steps of 10% 108

6.9 Results for experiment Ablation 5 109

7.1 Scores for LDD recovery (empty nodes and an teced en ts) 125

7.2 LDD recovery (empty nodes and antecedents) c o m p a re d 126

7.3 LDD resolution results for each stage of inducing LDDs in QuestionBank with

relaxed matching constraint (Section 7.6.1) ... 132

xi

7.4 Breakdown of LDD recovery results on 100 QuestionBank questions by CFG type 133

7.5 Breakdown of LDD recovery results on 100 QuestionBank questions by func­

tional role of the empty e le m e n t ... 134

7.6 Upper bound results for f-structure reentrancy-based LDD resolution on 100

QuestionBank questions .. 135

7.7 LDD recovery results for the improved LDD recovery algorithm on 142 ATIS

question test s e t .. 136

7.8 Comparison of 3 LDD recovery methods on 100 QuestionBank t r e e s 137

7.9 Comparison of results for LDD resolution on 100 QuestionBank questions for

my system and Higgins’ system with the CFG category constraint relaxed for

both system s... 138

B.l Comparison of parsing results for Collins’ Model 2 parser and Bikel’s emulation

of Collins’ Model 2. (Results are taken from Collins (1999) and Bikel (2004)) . 166

List of Figures

2.1 The Chomsky hierarchy of languages, grammars and a u to m a ta 13

2.2 C- and f-structures for the sentence “John saw Mary” ... 17

2.3 C- and f-structures for an English and corresponding Irish sentence.................... 20

2.4 Automatic F-Structure annotation Algorithm of Cahill et al. (2 0 0 4).................. 22

2.5 Example input and output from the annotation algorithm of Cahill et al. (2004). 23

2.6 PROLOG format input to the constraint solver (a) and the human readable f-

structure output (b)... 24

2.7 Parser output tree, and annotated parser output for “Who did Mary see?” 25

2.8 F-structure for “Who did Mary see?” before (a) and after long distance depen­

dency resolution on the f-structure (b) ... 25

2.9 Two parsing architectures for parsing text into f-structures 27

2.10 POS annotation of “John saw Mary.” ... 30

2.11 Parse annotation of “John saw Mary.” ... 31

2.12 Functional tags and trace information in Penn-II Treebank annotation 32

2.13 Penn-II Treebank constituent labels for q u e s tio n s .. 33

2.14 Parse annotated trees for a question and corresponding declarative statement . . 34

2.15 Long distance dependency in a q u e s tio n .. 35

2.16 Penn-II analysis for a copular question and corresponding declarative sentence . 36

3.1 Example ATIS utterances ... 42

xiii

3.2 Sentence length distributions ATIS vs WSJ Section 23 (Bezier interpolated) . . 44

3.3 Example Penn-II Treebank WSJ sentences.. 45

3.4 Example Penn-II Treebank WSJ questions.. 46

3.5 Parse tree and corresponding e v a l b bracketing representation............................ 47

3.6 Sample e v a l b output .. 48

3.7 F-Score by sentence length comparison for Bikel’s parser on WSJ Section 23

and ATIS .. 57

3.8 F-Score by sentence length comparison for Chamiak’s parser on WSJ Section

23 and A T IS ... 58

4.1 Pipeline Parsing Architecture of Cahill et al. (2 0 0 4) ... 64

4.2 Reducing Penn-II Treebank content (90%-10% of sections 02-21 WSJ, 10-fold

cross validation with 90%: 10% ATIS splits, CCG-style experiment).................... 77

4.3 Reducing Penn-II Treebank content (9%-l% of sections 02-21 WSJ, 10-fold

cross validation with 90%: 10% ATIS splits, CCG-style experiment).................... 78

5.1 Relative clause in an NP from the Penn-II T reebank ... 92

5.2 Example tree before (a) and after correction (b) .. 93

5.3 WH-XP assignment before (a) and after correction(b).. 94

5.4 VP missing inside SQ with a single object NP (a) and correction (b) 94

5.5 Erroneous VP in copular construction (a) and correction (b) 95

6.1 Ablation 1: Results for ablation experiment reducing 3600 training questions in

steps of 10% ... 104

6.2 Ablation 2: Results for ablation experiment using PTB Sections 02-21 (fixed)

and reducing 3600 questions in steps of 10% ... 105

6.3 Ablation 3: Results for ablation experiment using 3600 questions (fixed) and

reducing PTB Sections 02-21 in steps of 1 0 % .. 107

xiv

6.4 Ablation 4: results for ablation experiment using 3600 questions and PTB Sec­

tions 02-21 reducing each in steps of 1 0 % .. 108

6.5 Ablation 5: Results for ablation experiment reducing the amount of training

data from Sections 02-21 of the Penn-II Treebank by 10% 110

7.1 LDD resolved Penn-II/ATIS treebank style t re e s .. 115

7.2 Parser output tree s ... 115

7.3 Annotated tree and f-structure 120

7.4 Resolved t r e e ... 122

7.5 Another annotated tree and f-s tru c tu re ... 123

7.6 A Fragmented Q uestion.. 124

B.l Penn-II Punctuation attachment compared with parser o u tp u t 167

xv

List of Acronyms

AI Artificial Intelligence

APCFG Annotated Probabilistic Context-Free Grammar

ATIS Air Travel Information System

AVM Attribute-Value Matrix

CALL Computer Aided Language Learning

CCG Combinatory Categorial Grammar

CCG Cognitive Computation Group

CF-PSG Context-Free Phrase Structure Grammar

CFG Context-Free Grammar

CLIR Cross Language Information Retrieval

CLQA Cross Language Question Answering

GF Grammatical Function

IR Information Retrieval

LDD Long-Distance Dependency

LFG Lexical-Functional Grammar

LHS Left Hand Side

MMIR Multimedia Information Retrieval

NCLT National Centre for Language Technology

NLP Natural Language Processing

PCFG Probabilistic Context-Free Grammar

POS Part Of Speech

QA Question Answering

RHS Right Hand Side

SVO Subject-Verb-Object

TREC Text Retrieval Conference

xvi

VSO Verb-Subject-Object

WSJ Wall Street Journal

WWW Worldwide Web

xvii

Chapter 1

Introduction

Question Answering (QA), the process of retrieving precise information that satisfies a user

query in the form of a question, is an inherently more linguistically involved task than document-

based Information Retrieval (IR). Linguistic analysis of the structure and functional roles of a

question can identify important information such as the question focus and how it relates to the

main predicate of the question. Linguistic analysis is useful for disambiguating strings which

are similar on a surface level but have quite different meaning. Such distinctions can be lost by

systems that only look at the surface string and perform little or no deeper linguistic analysis.

To date, linguistic analysis has been employed to different degrees in QA. The current trend

in state-of-the-art QA systems is to use deeper semantic, logical form or predicate-argument

structures derived from the natural language strings for both documents and queries. These

structures are then used for a range of tasks from answer verification to inference. The ways

and means by which these representations of linguistic data are employed and derived depends

on the system, but one thing that is common among the NLP-rich systems is that they parse

the input questions to determine the syntactic structure of the query before deriving a deeper

meaning representation or using the syntactic analysis for another subprocess.

Despite this heavy dependence on parser-based shallow and deep linguistic analysis of ques­

tions for QA, surprisingly little research has been carried out on how well state-of-the-art shallow

1

and deep parsing systems cope with question analysis. To the best of my knowledge, no research

has been carried out to establish whether high performing Penn-II Treebank trained (Marcus

et al., 1993, 1994) modern parsers like Collins (1999), Chamiak (2000) and Bikel (2002) or

deeper linguistic analysis tools, for example the automatic f-structure annotation algorithm of

Cahill et al. (2004), are able to maintain their high accuracy when tested on questions, instead

of on Wall Street Journal text from the Penn-II Treebank (Marcus et al., 1994).

This thesis presents research on examining how state-of-the-art parsing and f-structure an­

notation systems cope with question material, the adaption of such resources to optimally cope

with questions, and the creation of resources to support research and development in parser-

based analysis of questions.

Probabilistic parsing resources reflect the characteristics of their training material and gener­

ally underperform on material which differs from the training material. This mismatch between

training and test/evaluation material is referred to as domain variation.

The research I present investigates strong domain variation, and its effects on parser perfor­

mance. Parsing questions is an instance of domain variation, but, as I will show, it constitutes an

instance of more severe domain variation than was observed in previous studies (Gildea, 2001),

and as a result the effects are much more pronounced. I show that the ATIS corpus (Hemphill

et al., 1990) is substantially different from the Penn-II Treebank and that it contains a high pro­

portion of questions. This makes it useful for an initial investigation into domain variance in a

question-rich domain.

I test the Penn-II trained parsers of Collins (1999), Chamiak (2000) and Bikel (2002) on

ATIS data and show that each of the parsers suffers a drop in performance in the new domain with

an average drop in labelled precision and recall f-score of 19.99% when compared to the results

for parsing Section 23 of the Penn-II Treebank. Following Gildea (2001) I add appropriate data

to the parsers’ training corpus to allow them to cope with the new domain. This boosts the

parsers’ performance on the ATIS data significantly. Bikel’s result on a held out test set of 10%

of the ATIS corpus increases from an f-score of 64.84% to 85.20% and Chamiak’s increases

2

from 63.64% to 81.59%.'

Following from this, I present the first domain variance research which investigates the ef­

fects of domain variance on the Penn-II Treebank- and f-structure annotation algorithm-based

LFG parsing resources of Cahill et al. (2004). I show that the preds-only dependency f-score

in a test on a 100 hand-crafted f-structure gold standard for ATIS sentences drops to 62.95%,

compared to 74.10% for the Penn-II based DCU 105 gold standard. Due to the modular, pipeline

design of the LFG parsing architecture of Cahill et al. (2004), the observed underperformance

could be the result of one or several stages in the parsing architecture being sub-optimal for

question analysis. I show that the underperformance stems from the c-structure parser and that

retraining the parser significantly improves the quality of both c- and f-structure analysis in­

creasing the preds-only f-score by 13.82% to 76.77% in an evaluation on the held out 100 ATIS

sentence gold standard.

The work shows that the automatic f-structure annotation algorithm of Cahill et al. (2004)

is complete with respect to the domain variance observed in this thesis, as it did not need to be

modified to cope with the new domain. It also supports the observation that f-structures are a

more abstract representation of linguistic information, less affected by domain variation.

The retraining work presented in the first two chapters of the dissertation highlights the

benefit that retraining a parser on a small amount of domain appropriate data can have in both

c- and f-structure analysis of out-of-domain data. The ATIS corpus, however, is quite small,

not representative of a large amount of question types and contains extraneous non-question

data. So, while it is useful for initial investigations, these properties make the ATIS resource

unsuitable for larger evaluations and for use as a fully fledged question corpus. To address this,

I have semi-automatically created a new training and development resource for parser-based

linguistic analysis of questions. QuestionBank is a parse-annotated corpus of 4000 questions

following Penn-II guidelines (Bies et al., 1995), intended for use as a training and evaluation

corpus for parsing-based technology used in question answering. I have used QuestionBank

‘Collins’ parser does not come with the functionality to retrain it on new training data, so I am unable to give
results for this parser in the retraining experiments.

3

to retrain Bikel’s parser to be able to parse questions with a high degree of accuracy (88.82%

labelled precision and recall f-score) and, when trained in conjunction with Sections 02-21 of

the Penn-II Treebank, the parser can not only parse questions but also informative text in Section

23 of the Penn-II Treebank with state-of-the-art accuracy.

Long Distance Dependencies (LDDs) are important in the analysis of English wh-questions,

as the wh-phrase of the question generally refers to a dislocated element corresponding to the

answer to the question. Because of this, correctly identifying LDDs in input questions signif­

icantly improves the quality of question analysis. However, most state-of-the-art probabilistic

parsers do not include this kind of information in their output.2 I have developed a novel method

for recovering traces in parser output which uses reentrancies in automatically generated long

distance dependency resolved f-structures to “reverse engineer” the corresponding c-structure

trace and coindexation. This method proved quite successful in evaluations on questions from

QuestionBank with an f-score of 80.78% on gold standard trees stripped of traces and functional

information, and 68.99% on parser output. When compared with other systems available for the

task, the results show that this method for recovering LDD information outperforms the others.

This thesis is structured as follows:

Chapter 2 introduces Question Answering, parsing, Lexical Functional Grammar, shows how

linguistic analysis is useful to QA, sets the context and gives some background for the

research presented in this thesis

Chapter 3 contrasts the ATIS corpus and Penn-II Treebank and presents preliminary research

on parsing ATIS data with state-of-the-art parsers and shows how the parsers can be

adapted to better cope with ATIS data.
I

Chapter 4 examines domain variance in automatic f-structure annotation and shows that the

observed performance drop is due to the c-structure parser underperformance on the out-

of-domain data, which results in poor quality f-structure annotation.

2Collins’ Model 3 parser is a notable exception which outputs traces for wh-reiative clauses.

Chapter 5 describes the bootstrapping of QuestionBank, a parse annotated corpus of 4000

questions, intended to function as a development resource for parser-based linguistic tools

for use in QA. QuestionBank was created semi-automatically from raw data taken from

state-of-the-art development and test sets for QA. This chapter describes the raw data, and

the semi-automatic “bootstrapping” method used to create QuestionBank.

Chapter 6 presents a series of experiments with QuestionBank to determine its effectiveness as

a training resource for question parsing and to investigate the effect that adapting a parser

to accurately analyse questions (out-of-domain data) has on its ability to parse informative

text (in-domain data).

Chapter 7 describes a novel method to recover trace information in parser output using auto­

matically generated, long distance dependency resolved f-structures to recreate the corre­

sponding trace and coindexation information in the tree. This method is used to induce

trace information in QuestionBank and compared with the approaches of Johnson (2002)

and Higgins (2003).

Chapter 8 concludes and outlines some areas of future work.

Much of the experimental work in this thesis addresses a space of possibilities that arise

from training and testing parsers on question-rich versus statement-rich corpora. The general
i

space of possibilities can be represented by the following table:

Test
C/F-structure Evaluation on PTB C/F-structure Evaluation on Question-rich Data

Training i

PTB I
Question-rich I

Question-rich + PTB
i

A number of chapters address areas within this space of possibilities. I will revisit this table

(extending it where necessary) to illustrate the area(s) applicable to particular chapters.

5

I

Chapter 2

Background

2.1 Introduction

This chapter sets the context and background relevant to the research presented in this disser­

tation. I introduce Question Answering (QA), an area within Information Retrieval (IR), and

discuss newly emerging directions in QA. I provide an overview of shallow and deep natu­

ral language parsing methods (based on Context Free Phrase-Structure Grammars and Lexical

Functional Grammar) and present treebank-based automatic deep grammar acquisition based on

the automatic f-structure annotation algorithm of Cahill et al. (2004). I present a short overview

of the Penn-II Treebank data structures and encoding of syntactic information relevant to this

dissertation. I review research on combining NLP methods with Question Answering, and de­

scribe how improving and adapting NLP tools for questions can benefit the Question Answering

process.

2.2 Question Answering

Information Retrieval (IR) is the process of finding information in a data repository in response

to a user query.1 The information repository can consist of structured data, like a database,

1 In this thesis I restrict myself to text-based IR.

or unstructured data, like a collection of documents or the worldwide web (WWW). The most

prevalent information retrieval systems are search engines for the worldwide web. Search en­

gines index very large amounts of data from webpages and in the simplest case use keyword

matching techniques to retrieve documents relevant to a query. In recent years internet search

engines have started to employ more sophisticated techniques which take advantage of the na­

ture of hypertext in the WWW, including for example linkage analysis (Brin and Page, 1998),

as well as shallow linguistic techniques, including, for example, query expansion via synonyms,

to improve document retrieval and ranking. Despite these advances, it is often the case that the

highest ranked documents do not contain the information the user needs (Silverstein et al., 1998),

leaving the user to search a (quite large) collection of potentially relevant documents for the in­

formation queried, or abandon his/her search if this proves too time consuming. As the amount

of information available on-line grows, this problem becomes further compounded and the need

for systems which can deliver precise information in response to a precise query becomes more

urgent.

Question Answering (QA) addresses this need by combining linguistic processing with

“standard” IR technology in a way that allows the user to state his/her information need as

s/he would naturally, i.e. in the form of a question, and to receive a concise response, rather than

complete documents, containing the information (or a ranked list of candidate responses) which

satisfies the information need, i.e. answers the question.

The QA paradigm is regarded as a refinement of standard document retrieval-based IR in

that it is narrowing the scope of both the query and the response to a specific information need, a

question, and, for simple fact seeking (factoid) questions, a specific response to that information

need, a fact. With this in mind it is clear that QA is an augmentation to, but not a replacement

for, IR.

Information Retrieval has been actively researched since as far back as the mid-1950’s. Its

relationship to Question Answering is that users form queries because they require information

to find the answers to questions. Beyond this, the similarities largely end. IR systems return

7

documents instead of answers, from which users must extract the information themselves. The

documents are generally ranked on the basis of keyword matching heuristics and linkage analysis

and do not include other specific constraints set out in the query. Queries put to IR systems

are often treated as a collection of keywords and a query is not required to be well formed

syntactically.

This “bag of words” approach can be a drawback as subtle but important differences between

queries can be lost. Consider, for example, the following two queries

1. “Who killed Harvey Oswald?”

2. “Who did Harvey Oswald kill?”

In the first case, the query is for the agent/subject of the observed eventuality (i.e. Jack

Ruby); in the second, it is for the patient/object of the (different) described eventuality (i.e.

JFK). This important difference is, however, lost on standard IR systems, which reduce both

inputs to the same set of stemmed open class query terms. After stopword removal the queries

yield:

{killed,Harvey,Oswald}{Harvey,Oswald,kill}

After stemming this is reduced to equivalent sets of query terms, generating identical re­

sponses from the IR system:

{kill,Harvey,Oswald}(Harvey,Oswald,kill}

In order to capture important differences such as these, a QA system must perform deeper

linguistic analysis than stemming and stopword removal. In the case at hand, the QA system

must determine the syntactic/semantic roles of the participants in the described eventuality. This

involves resolving the wh-pronoun in the first query as subject/agent and as object/patient in

the second. Notice that in general this may involve long distance dependency resolution and

effectively amounts to the construction of predicate-argument representations.

8

Although information systems and IR as we know it today did not really take off until the 1990’s

with the advent of the PC, earlier forms of IR and QA have been around for quite some time.

One of the earliest surveys on QA is a paper published in 1965 (Simmons, 1965) which reviews

fifteen QA systems that had been developed over the previous 5 years. Simmons categorises

these systems into 5 types: list-structured, data-based, graphic data-based, text-based and infer­

ential. The first three correspond to systems which rely on a structured database of one form or

other. The text-based systems represent the beginnings of modem IR systems, using collections

of documents instead of structured databases to answer questions. The inferential systems de­

scribed in Simmons’ paper translate questions into a quasi-logical form and infer answers to the

questions based on a database of logical facts, an approach that is still used (at least in part) by

some modern QA systems (Waldinger et al., 2004).

Given the state-of-the-art in document collection and processing at the time, it is no surprise

that the more successful of the early QA systems were those designed as a front-end to a struc­

tured database. One of the most successful systems in this category (developed after Simmons’

article) accessed a database of geological information on rock samples brought back from the

moon during the Apollo missions. The system, LUNAR (Woods, 1973), was capable of an­

swering 90% of the in-domain questions posed to it. This encouraging early result spawned a

plethora of important research in the database front-end approach, including the BASEBALL

and PLANES systems (Green et al., 1961; Grosz et al., 1986) through the ’70s and ’80s.

The early database front-end approach, though successful, is limited in that it is restricted to

a closed information domain and relies on having the information repository stored as a struc­

tured database. Recent advances in IR have produced very good results in searching over large

document collections like WT10G,2 .GOV3 and the WWW, containing unstructured and diverse

information in text documents. QA research has followed suit, moving from closed to open

2http://es.csiro.au/TRECWeb/wt10ginfo.ps.gz
3 http: //ir. dc s. gl a. ac. uk/test_co 1 lecti ons/govi nfo. html

2.2.1 H is to ry o f Q A

9

http://es.csiro.au/TRECWeb/wt10ginfo.ps.gz

domain questions and unstructured, text-based datasets. Expanding from a small closed do­

main into open domain free text QA is not as simple as just expanding the dataset and test set.

The QA system itself has to change and “grow” to accommodate the expanded requirements

(Hirschman and Gaizauskas, 2001). Input to an open-domain QA system can come from any

subject area. The system needs to expand its language coverage to be able to handle unrestricted

natural language queries, and to be able to process unrestricted texts to find answers.

Information Extraction (IE) research has in many ways fed into current QA research. IE has

been described as using natural language texts to fill data templates which represent stereotypical

events (Hirschman and Gaizauskas, 2001). For example, an IE system may involve templates to

extract information about people’s births and deaths from newspaper obituaries. An IE template

can be loosely compared to a question and a filled template can be regarded as containing an an­

swer. The IE community’s competitive evaluations at the Message Understanding Conferences

(MUCs) ran from 1987 to 1998. In most current research, IE has become an integral part of

modem IR and QA systems.

In 1999 the Text Retrieval Conferences (TREC) organised by the U.S. National Institute for

Science and Technology (NIST) introduced a QA track (Voorhees, 2001).4 The purpose of this

track is to promote research in language understanding technologies through QA and to provide

an evaluation forum for such research. The TREC evaluations have now become a benchmark

for English QA evaluations. The questions used in the evaluations of open domain QA systems

tend to be short fact seeking (factoid) questions, which usually require a named entity, or an

amount, location etc., to respond to the query.

2.2.2 New Directions in QA

After over 40 years of R&D in QA, research is now beginning to fully explore the area and realise

its potential in terms of prototype systems and products. Even the limited solutions offered by

current systems provide added value over course-grained document-based IR. The range and

4 http ://trec .ni st. gov/data/qa. htm 1

10

scale of systems employed in the TREC evaluations indicate that QA is an area of growth and

diversity drawing on recent advances in both IR and NLP research.

In recent years, cross-language retrieval tasks have emerged, with several conferences and

workshops (CLEF, NTCIR) dedicated to the area. Cross-Language Information Retrieval (CLIR)

and Cross-Language Question Answering (CLQA) are similar to their monolingual counterparts

except that the queries are in one language and the document collection in another. The ability to

utilise documents from other languages is useful to QA because it enables a system to draw on

information in a language different to the query. By allowing a system to search a (much) larger

document collection, the chances of finding a correct answer are increased. There are, however,

drawbacks to increasing the size of the document collection with similar documents from other

languages. There is an added cost in terms of processing and managing the document collection,

and there are also problems associated with noise introduced by similar but irrelevant texts in

the document collection.

Given that CLQA/IR systems have already started to bridge the language gap to retrieve

appropriate documents and answers from different languages, and given the recent advances in

Multimedia IR (MMIR) research (Smeaton et al., 2002), another logical progression for QA

research is Multimedia QA (MMQA). A MMQA system draws on more than text documents

to derive the answers it returns, looking also at the information contained in images, video, and

potentially speech. This is an exciting new area in QA research, offering the potential to not

only answer a user’s question but also to return appropriate images, video clips and sound bytes

to back up the answer or to provide more relevant information to the user.

The technique of asking questions about a text to test whether a person has understood it

correctly has been successfully employed in teaching both children and second language learn­

ers. Hirschman et al. (1999) describe a system which takes a children’s story as input and can

answer questions on the text. This type of QA system presents new and interesting uses in the

field of Computer-Aided Language Learning (CALL) and, more generally, E-Learning. Such a

QA system could conceivably be used to grade students’ answers to questions about unseen text.

11

Alternatively, in a wider learning context a QA system could be part of an automated companion

learning program which “learns” at the same time as the student.

2.3 Shallow and Deep NLP Methods

In order to effectively return answers to questions, a QA system needs to perform some level

of linguistic analysis on the input questions. This allows the QA system to capture important

differences between queries, e.g. the agent/patient (subject/object) difference between “Who

killed Harvey Oswald?” and “Who did Harvey Oswald kill?” discussed in examples (1) and

(2). The level and nature of linguistic processing employed by a QA system varies depending

on the architecture of the system. In this section, I will outline a shallow analysis method,

Context Free Grammar-Based Parsing, which has been applied in query/document analysis for

high performance QA (Pasca and Harabagiu, 2001). I will then outline a deep analysis method,

Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982), which analyses sentences into

basic predicate-argument structures with long distance dependency relations resolved, and give

a brief overview of some work which has been done on parsing raw text into LFG f-structures.

2.3.1 Context-Free Grammar (CFG) Parsing
\

Parsing is the process of analysing (natural or formal) language strings into their component

parts and describing how they relate to each other syntactically. For natural language input,

CFG parsing usually produces an output showing the lexical category of each of the words (its

part-of-speech, POS) and the internal structure of the sentence (a parse tree). CFG parsing is

a useful step in processing natural language text as a syntactic analysis guides the semantic

interpretation of an input string in the form of dependencies, predicate-argument structures, or

logical forms.

CFG parsing assigns syntactic structure to a string according to the rules provided by a gram­

mar for the language. A grammar is a set of rules which describe what is a valid construction

12

for the language (fragment) described by the grammar. A Context Free Grammar (CFG) is a

grammar in which every production rule is of the form

A —> a

where A is a non-terminal and a is a set of terminals and/or non-terminals. Context free

grammars are called “context free” because A can always be replaced by a regardless of the

context in which it occurs. Context free grammars define a class 2 language according to the

Chomsky hierarchy (Figure 2.1)

Language class Grammar Automaton

3 Regular NFA or DFA

2 Context-Free Push-Down Automaton

1 Context-Sensitive Linear-Bounded Automaton

0 Free (Unrestricted) Turing Machine

Figure 2.1: The Chomsky hierarchy of languages, grammars and automata

Formally, a CFG G can be described as a 4-tuple G = (Vi, Vn , P, S), such that

• Vi is a finite, non-empty set of terminals

• Vn is a finite, non-empty set of non-terminals

• P is a finite, non-empty set of production rules of the form Vn —► (Vi U Vn)*

• 5 e Vn is the distinguished start symbol

Modem CFG parsers for NLP applications generally do not use simple CFG grammars to

parse strings. This is because in cases where multiple analyses can be assigned to an input

string, a CFG cannot output a “best” parse for the input string, but can only enumerate each

13

of the possible parses. A simple CFG does not distinguish preferred (commonly used) con­

structions from rare ones. In order to do this, CFG parsers such as LoPar (Schmid, 2000) use

Probabilistic Context-Free Grammars (PCFGs), an extension of CFGs, which associate a prob­

ability with each production rule A —> a. Formally, a PCFG G can be described as a 5-tuple

G = {Vt ,Vn, P) S, R)y such that

• Vt,Vn, P and S defined as for a CFG

• R is a function which assigns a probability to each rule A —> a 6 P such that for each

LHS: ^ LffsR(RffS LHS) = 1

Using this model, a PCFG defines the probability of a parse tree T given a string S, i.e.

P(T|S), as the product of the probabilities of each of the productions in T. A PCFG parser can

then choose the most likely analysis for a string S as the parse tree T which maximises P(T|S).

The probability associated with each of the rules in a PCFG has a great effect on how that

rule influences a parse tree derivation. Often both the grammar rules and the rule probabilities

are extracted from a parse-annotated treebank and each rule’s probability is estimated in terms

of its relative frequency in the treebank.5

#{LHS -* RHSj)
(J) ¿27=1 #{LH S -+ RHSi) (}

Given a suitably large treebank, PCFG parsing can achieve very high coverage and is able to

rank output alternatives. Everything else being equal, PCFG-based parsing favours derivations

with small numbers of expansions, and hence a small number of probabilities to multiply out,

which results in a bias towards smaller, less hierarchical trees with less structure.

Other state-of-the-art approaches to probabilistic, wide coverage parsing use more sophis­

ticated mechanisms than the simple PCFG model outlined above to produce CFG parse trees.

An important family of state-of-the-art parsers producing CFG trees use richer language models

’Here # stands for counts.

14

(with fewer independence assumptions) than a PCFG. The parsers of Collins (1999), Chamiak

(2000) and Bikel (2002) employ history-based, generative, lexicalised models and achieve re­

sults of almost 90% labelled f-score when tested on the trees in Section 23 of the Penn-II Tree-

bank. These parsers are the basis of a number of my experiments described in Chapters 3, 4 and

6.

Collins (1999) introduces three parsing models (1 ,2 and 3) for a history-based parser (Black

et al., 1993). Collins’ history-based parsing model is defined in terms of a top-down leftmost

derivation where (in principle) anything previously generated by the derivation process can ap­

pear in the conditioning context for the expansion of the next non-terminal. Model 1 is a basic

history-based model which tries to overcome the sparse data problem of lexicalised parsing by

first generating the head of a constituent, followed by its left and right contexts. Model 2 dis­

tinguishes complements and adjuncts and Model 3 can produce traces for wh-relative clause

movement. Training on Sections 02-21 and evaluating on Section 23 of the Penn-II Treebank

(Collins, 1999) shows that Collins’ Model 3 achieves the highest results with precision of 88.7%

and recall of 88.6% on sentences of length < 40 and Model 2 outperforms Model 1 with preci­

sion of 88.7% and recall of 88.5% on sentences of length < 40. For each model, the results are

slightly worse for sentences of length < 100. Table 2.1 summarises the results.

Moc

LP

lei 1

LR

Moc

LP

lei 2

LR

Moc

LP

lei 3

LR

< 40 words 88.2 87.9 88.7 88.5 88.7 88.6

< 100 words 87.7 87.5 88.3 88.1 88.3 88.0

Table 2.1: Parsing results for Collins’ parser on Section 23 of the Penn-II Treebank

The parser described in Charniak (2000) is based on a probabilistic generative model (Char-

niak, 1997), which for a sentence S and parse tree T assigns the probability P(S,T) = P(T). The

parser returns the tree which maximises this probability. A probability is assigned to a tree T by

a top-down process considering each constituent in the tree and assigning a probability based on

the constituent’s label, lexical head and generative history. Training this parser on Sections 02-

21 of the Penn-II Treebank and testing on Section 23, Chamiak’s parser outperforms Collins’,

achieving labelled precision and recall of 90.1 on sentences of length < 40 with only a slight

performance drop for sentences of length < 100. Table 2.2 (Chamiak, 2000) summarises these

results.

Labelled Precision Labelled Recall

< 40 words 90.1 90.1

< 100 words 89.6 89.5

Table 2.2: Parsing results for Chamiak’s parser on Section 23 of the Penn-II Treebank

Bikel (2002) provides a Java implementation of a retrainable and extensible multilingual

parser which emulates Collins (1999) Model 2. The parsing engine provides a number of lan­

guage packages and an extensive API to develop packages for new languages. Table 2.3 shows

parsing results for Collins’ original Model 2 and Bikel’s emulation on Section 00 of the Penn-II

Treebank.

Collins Model 2 Bikel

LP LR LP LR

< 40 words 89.75 90.19 89.89 90.14

< 100 words 88.47 89.30 88.72 89.03

Table 2.3: Parsing results for Collins’ Model 2 parser and Bikel’s emulation on Section 00 of

the Penn Treebank

16

Lexica] Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple,

2001) is a constraint-based grammar formalism. LFG (minimally) involves two levels of rep­

resentation, c(onstituent)-structure and functional) -structure. C-structure takes the form of

CFG trees which capture language specific issues like constituent grouping and word order.

F-structure represents a deeper, more abstract level of linguistic information such as subject,

object, complement etc., in the form of Attribute Value Matrices (AVMs) which approximate to

basic predicate-argument structures or deep dependency relations.

C-structures are related to f-structures through ^-projections which map c-structure nodes

to their corresponding f-structures. Functional annotations on the c-structure nodes representing

constraints which describe the f-structure. Figure 2.26 shows an example c- and f-structure for

the sentence “John saw Mary” where the ^-correspondence between the c-structure tree and the

f-structure is indicated in terms of arrows from c-structure nodes to f-structure nodes.

NP
(T S U B J) = I

I
John

2.3.2 L ex ical F u n c tio n a l G ra m m a r

Figure 2.2: C- and f-structures for the sentence “John saw Mary”

The up- and down-arrows in the functional annotation (| |) refer to the f-structure associated

with the mother node (T) and the local node Q). These are instantiated to unique tree node

identifiers and, if all the constraints are satisfiable, an f-structure is generated from the annotated

tree.

6Lexical annotations have been suppressed to aid readablity

PRED * S E E < (T S U B J) (T 0 B J)) ’

p r e d ‘J o h n ’
NUM SG
PERS 3
p r e d ‘M a r y ’
NUM SG
PERS 3

TENSE PAST
saw Mary

17

Wellformedness Conditions

F-structures are required to meet three wellformedness conditions: Completeness, Coherence

and Uniqueness (Kaplan and Bresnan, 1982). These conditions ensure that a predicate has all

of the arguments which it requires, that there are no additional arguments and that each attribute

has a single value.

The completeness condition states that an f-structure is locally complete if and only if it

contains all of the governable grammatical functions that its predicate governs, and an f-structure

is complete if and only if all of its sub-f-structures are locally complete (Kaplan and Bresnan,

1982). This condition ensures that the f-structure for a sentence like

*John threw.
SUBJ ‘John’

PRED “THROW (SUBJ,0BJ):

is incomplete because some required material is missing. The main verb of the sentence is

transitive and requires both a subject and an object. Its semantic form subcategorises for subject

and object arguments:

PRED “THROW (SUBJ,OBJ>”

In the f-structure above only the SUBJ role governed by the local PRED is present, therefore

the f-structure for the whole sentence is incomplete.

The coherence condition disallows f-structures which contain extra governable grammatical

functions which are not governed by the local predicate. Formally, an f-structure is locally

coherent if and only if all of the governable grammatical functions it contains are governed by

a local predicate. An f-structure is coherent if and only if all of its sub-f-structures are coherent

(Kaplan and Bresnan, 1982). This ensures that a sentence like:

*John slept the ball.

SUBJ ‘John’

PRED “SLEEP(SUBJ)”

OBJ ‘the ball’

18

is incoherent because the object is not governed by the local intransitive verb “sleep” which

only subcategorises for a SUBJ as in the semantic form below.

PRED “SLEEP (SUB j)”

The uniqueness condition requires that each attribute of an f-structure has at most one value.

This prevents f-structures from having incompatible constraints, for example:

*The boys sleeps.

PRED “SLEEP(SUBJ)”

PRED ‘BOYS’

NUM SG/PL
SUBJ

The subject noun phrase “the boys” is plural, but the verb “ sleeps” requires a singular subject.

Since the NUM value cannot be both singular and plural there is a feature clash violating the

uniqueness condition so the f-structure is not well formed.

L F G is an interesting framework because f-structure abstracts away from some language

specific issues like word order, associated with the surface string, approximating to predicate-

argument structure, deep dependencies or a simple logical form. Figure 2.3 shows an example

English sentence and its corresponding translation in Irish. Note that despite the different word

order (English is an S V O language, Irish is a V S O language) the f-structures are isomorphic

(up to leaf node relabelling). L F G is an attractive formalism for question analysis because long­

distance dependencies are resolved in f-structures providing important information about both

informative text and questions (this is the topic o f Chapter 7 of this thesis).

19

NP
(î SUBI) = i

John
ÎPRED=’John’

|N U M = S G

|PERS=3

V

î = l
I

saw
ÎPRED=‘SEE<(ÎSUBj)(tOBJ))

|TENSE=PAST

NP
(î OBJ) = i

I
Mary

|PRED=tMary’
| num =sg

| pers=3

PRED ‘SEE((ÎSUBJ)(Î0BJ))’

SUBJ

OBJ

PRED ‘Jo h n ’
NUM SG
PERS 3
pred! ‘Mary’
NUM SG
PERS 3

TENSE PAST

Chonaic
ÎPRED=‘FEIC

<(ÎSUBJ)(Î0BJ))’
| tense=past

NP
(î SUBJ) = i

I
Seán

TPRED=’Seán,
ÎNUM=SG
ÎPERS=3

NP
(T OBJ) = 1

I
Màire

|pRED=’Màire’
|NUM=SG
Îpers=3

PRED ‘FEIC((tSUBj)(îOBj))
pred Seán

SUBJ NUM SG
PERS 3
pred Maire

OBJ NUM SG
PERS 3

TENSE PAST

Figure 2.3: C- and f-structures for an English and corresponding Irish sentence.

2 0

2.3.3 Treebank-Based Acquisition of LFG Resources and “Deep” Parsing Using

LFG

L F G (and similar constraint-based grammar formalisms like HPSG, C C G and T A G) represents

“ deep” linguistic information in terms of grammatical function and dependencies. However,

hand-crafting deep constraint grammar resources and scaling them to unrestricted text is pro­

hibitively time consuming and expensive. Because of this, a number of researchers have de­

veloped automatic treebank-based acquisition methods for constraint-based grammars (Cahill

et al. (2002a, 2004), M iyao et al. (2003), Hockenmaier (2003a)). In this section, I give an out­

line o f the Automatic L F G F-structure Annotation Algorithm of Cahill et al. (2002a, 2004) and

briefly describe the two parsing architectures presented in Cahill et al. (2002b): the pipeline

model, which takes C F G parse trees and adds L F G annotations to generate f-structures, and

the integrated model, which uses an f-structure Annotated P C FG (A P C F G). I use the automatic

f-structure annotation algorithm in experiments on the A TIS corpus (Hemphill et al., 1990) in

Chapter 4 and I use A P C FG s in the reconstruction of LD D s in a bootstrapped question treebank

in Chapter 7.

Automatic f-structure annotation has previously been explored on a much smaller scale by

Lappin et al. (1989), Sadler et al. (2000) and Frank (2000). The first large-scale automatic

f-structure annotation project was Cahill et al. (2002a) which uses an annotation algorithm to

automatically annotate Penn-II Treebank-style C F G trees with functional equations.

The annotation algorithm is used to annotate treebank trees and parser output trees. Penn-II

treebank trees encode long-distance dependencies (LD D s) in terms of empty productions (traces)

and coindexation in trees. A module (traces) in the annotation annotation algorithm (Figure 2.4)

translates these into corresponding reentrancies to represent the L D D at f-structure. Probabilistic

parser output trees do not generally represent LD D s (they do not produce traces and coindexa­

tions). A separate LDD-resolution module (Cahill et al., 2004) resolves LD D s at f-structure for

parser output (Figure 2.9). Below, I w ill first present the f-structure annotation algorithm as it

applies to treebank trees and then describe how the annotation algorithm is integrated into the

21

The annotation algorithm is embedded in a 2 stage process (Figure 2.4): the treebank trees

are annotated with functional equations by the annotation algorithm and then passed to a con­

straint solver to generate f-structures.

parsing architectures of Cahill et al. (2004).

Treebank Trees with —
Traces and Coindexation

A nnotation A lgorithm

Head-Leiicalisarion

Left-Right Context Annotation Principles

Coordination Annotation

Caich-All and Clean Up

Annotated
Trees

C onstrain t Sotvev ■F-Structures

Figure 2.4: Automatic F-Structure annotation Algorithm of Cahill et al. (2004)

The annotation algorithm consists o f 5 sub-modules:

Head Lexicalisation The algorithm looks at each local subtree of depth 1 and uses a modified

version of Magerman’s (1994) head-finding rules to partition the daughters of the subtree

into a head (/i), left context daughters (¿i • ■ * ln) and right context daughters (r i ■ ■ ■ r m):

MOTHER -* ¿i * * • ln h 7*i ■ ■ • rm.

Left-Right Context Annotation Based on the partition derived in the Head Lexicalisation mod­

ule, the algorithm uses categorial and configurational information to annotate each of the

daughters. For example a determiner to the left of the head of an NP gets the annotation

t SPEC:DET = | .

Coordination Coordinate structures in the Penn-II Treebank are flat and can be difficult to

analyse. Because of this, coordinations are treated separately in order to keep the left-right

context annotation principles simple and perspicuous. For like- and unlike- constituent

22

coordinations the algorithm uses coordination sets. Using these sets the algorithm decides

which daughters form part o f a (local) coordination and to annotate them accordingly and

which remaining daughters are annotated by the regular left-right annotation principles.

Catch-All and Clean Up This module is responsible for correcting over-generalisations that

arise from the previous annotation modules. Default annotations on some nodes are over­

written using rules and information from the Penn-II functional tags (-C L R , - d t v , etc.) to

catch specific overgeneralisations.

Traces Long Distance Dependencies are encoded in the Penn-II Treebank by means of empty

nodes and trace coindexation between the empty node and the dislocated element. The

trace module links the trace nodes with their associated antecedent in terms of a corre­

sponding reentrancy in the f-structure. Annotating passive constructions is also carried

out by this module.

The automatic L F G annotation algorithm takes Penn-II Treebank trees as input and outputs f-

structures for the trees. Figure 2.5 shows example input to and output produced by the annotation

algorithm (Figure 2.4) for the sentence “Who did Mary see?” .

Before annotation:
(S B A R Q (W H N P - 1 (WP W h o)) (S Q (AUX d i d) (N P (N N P M a r y)) (V P (V B s e e) (N P

(- N O N E - * T * - 1)))) (. ?))

After annotation:
(S B A R Q (W H N P - 1 [u p - f o c u s = d o w n] (W P [u p = d o w n] W h o [u p - p r e d = p r o , u p - p r o n _ f o r i n = ' w h o ']))

(S Q [u p = d o w n] (A U X [u p = d o w n] d i d [u p - p r e d = ' d i d ']) (N P [u p - s u b j = d o w n]

(N N P [u p = d o w n] M a r y [u p - p r e d = ' m a r y ' , u p - n u m = s g , u p - p e r s = 3])) (V P [u p - x c o m p = d o w n ,

u p - s u b j = d o w n : s u b j] (V B [u p = d o w n] s e e [u p - p r e d = ' s e e ']) (N P [u p - o b j = d o w n ,
F l : f o c u s = = = F d o w n , u p - r e s o l v e d = f o c u s] (- N O N E - * T * - 1)))) (. ?))

Figure 2.5: Example input and output from the annotation algorithm o f Cahill et al. (2004).

The annotations are then converted to a P R O LO G representation similar to Figure 2.6 (a) and

passed to the constraint solver, which creates f-structures for the input sentences if the equations

are satisfiable (Figure 2.6).

23

(a) (b)

f s t r u c t (b n c _ l , F l) : -
FOCUS

PRED

PRON- FORM

PRO

‘W H O ’] m

F 1 : f o c u s = = = F 2 , PRED D O ’
F 2 = = = F 3 , PRED ‘M a r y ’

a
F 3 : p r e d = = = p r o , SUBJ NUM SG
F 3 : p r o n _ f o r m = = = ' w h o ' , PERS 3
F 1 = = = F 5 7 S PRED ‘m a r y ’

0

"

F 5 = = = F 6 , SUBJ NUM SG
F 6 : p r e d = = = ' d o ' , PERS 3
F 5 : s u b j = = = F 8 , XCOMP PRED ‘S E E ’
F 8 = = = F 9 ,

F 9 : p r e d = = = ' m a r y ' , OBJ
PRED PRO

P R O N . FOR M ‘W H O ’]B
F 9 : n u m - = = s g , _ RESOLVED FOCUS
F 9 : p e r s = = = 3 ,

F 5 : x c o m p = = = F l l ,

F 5 : s u b j = = = F l l : s u b j ,

F 1 1 = “ F 1 2 ,

F I 2 : p r e d = = = ' s e e ' ,

F l l : o b j = = = F 1 4 ,

F I : f o c u s = = = F 1 4 ,

F l l : r e s o l v e d = = = f o c u s .

Figure 2.6: P R O LO G format input to the constraint solver (a) and the human readable f-structure

output (b).

Note that the L D D in the input tree is represented by a reentrancy between the FOCUS and

OBJ functions in the f-structure in Figure 2.6 (b) which is indicated by the indices.

If the treebank trees input to the annotation algorithm indicate long distance dependencies in

terms of traces and coindexation (Figure 2.7) then the f-structures generated by the annotation

algorithm and the constraint solver indicates LD D s in terms of corresponding reentrancies at

f-structure. This is because the Trace module o f the annotation algorithm (Figure 2.4) generates

annotations from empty nodes and their antecedents which define corresponding reentrancies in

the f-structures.

24

Parser Output
(S B A R Q {WHNP (WP W h o)) (S Q (AUX d i d) (N P (N N P M a r y)) {VP (VB s e e))) (. ?))

Annotated Tree

(S B A R Q (W H N P [u p - f o c u s = d o w n] (W P [u p = d o w n] W h o [u p - p r e d = p r o , u p - p r o n _ f o r m = ' w h o 7]))

(S Q [u p = d o w n] (A U X [u p = d o w n] d i d [u p - p r e d = ' d i d ']) (N P [u p - s u b j = d o w n] (N N P [u p = d o w n]

M a r y [u p - p r e d = ' m a r y ' , u p - n u m = s g , u p - p e r s = 3])) (V P [u p - x c o m p = d o w n , u p - s u b j = d o w n : s u b j]

(V B [u p = d o w n] s e e [u p - p r e d = ' s e e ']))) (. ?))

Figure 2.7: Parser output tree, and annotated parser output for “Who did Mary see?”

However, if the input trees do not have long distance dependencies resolved, for example

in parser output (Figure 2.7), then the f-structures output by the constraint solver w ill not be

L D D resolved. In this case a further processing step is necessary. The unresolved (proto) f-

structures output by the constraint solver are then passed to the f-structure L D D resolution mod­

ule described in Cahill et al. (2004) which resolves long distance dependencies at f-structure

level. This L D D resolution module uses reentrancy paths (finite approximations of functional

uncertainty equations) and verb subcategorisation frame information learned from f-structures

automatically generated from the Penn-II Treebank to L D D resolve the unresolved f-structures.

Figure 2.8 shows the f-structure generated from the parser output (unresolved) tree for “Who

saw Mary?” before and after the f-structure L D D resolution module is applied.

(a) (b)

FOCUS

SUBJ

XCOMP

PRED
[PRON-FORM
‘D O 1

PRED
NUM
PERS

PRO
‘W h o ’

SUBJ

PRED

‘ M a r y ’
s g

3
PRED
NUM
PERS

S E E ’

‘M a r y ’
SG
3

FOCUS

PRED

SUBJ

XCOMP

PRED
PRON.FORM

‘D O 1

PRED ‘M a r y
NUM SG

PERS 3

PRO
‘W H O ’ P

SUBJ

PRED

OBJ

RESOLVED

PRED
NUM
PERS

‘S E E ’
PRED
PRON-FORM

FOCUS

‘M a r y ’
SG
3

]m
PRO
‘W h o . p

Figure 2.8: F-structure for “Who did Mary see?” before (a) and after long distance dependency

resolution on the f-structure (b)

25

The resolved f-structure in Figure 2.8 (b) has the reentrancy between the FOCUS and OBJ

functions and also the SUB j function of the main p r e d and the x c o m p indicated by their shared

values.

A full description of the annotation algorithm, its components and its operation on treebank

trees and parser output trees can be found in McCarthy (2003), Cahill (2004) and Burke (2006).

Below, I briefly describe the two parsing architectures presented in Cahill et al. (2002b) and

Cahill et al. (2004).

Parsing Architectures Using the F-structure Annotation Algorithm

Cahill et al. (2002b, 2004) present two architectures for parsing raw text into f-structures using

the automatic f-structure annotation algorithm: the pipeline and integrated models as shown in

Figure 2.9.

26

Pipeline: Integrated:

Figure 2.9: Two parsing architectures for parsing text into f-structures

In the pipeline model a P C FG or a history-based parser is extracted from (trained on) the

Penn-II Treebank which is then used to parse raw text. The parser output is then passed to the

automatic f-structure annotation algorithm which annotates the trees with functional equations.

These are then passed to a constraint solver and the LDD-resolution module which produce

f-structures.

In the integrated parsing model the training corpus is automatically f-structure annotated in

a pre-processing step. After this pre-processing, each node in the c-structure trees has associated

functional annotations like those in Figures 2.2 and 2.3 An annotated P C FG (A P C F G) with rules

27

of the form

S [t= i] -> N P [! s u B J = i] V P [t= i]

NP[T SUBJ = 1] -> DT[T SPEC:D ET = |] N N [|= j]

v p [T=JJ - v [T = |] n p [To b j = |]

is extracted from the functionally annotated training corpus. The parser parses raw text using the

A P C F G to produce f-structure annotated trees. The annotations are then sent to the constraint

solver and L D D resolution module which produce f-structures.

Evaluation of LFG Parsing Architectures

The output generated by the L F G Parsing Architectures is evaluated in a number of ways. The

c-structure trees are evaluated to assess the quality of the syntactic analysis. The f-structure de­

pendencies are evaluated to assess the quality of the functional analysis. Dependency evaluations

against gold standard references are usually conducted in two forms: all grammatical functions,

and predicates only evaluations. A ll grammatical functions evaluations calculate precision, re­

call and f-score on all of the attribute:value pairs in the f-structures. Predicates only (preds-only)

f-structure evaluations consider a subset o f the grammatical functions in the f-structures by strip­

ping out grammatical attributes, e.g. tense, case and number, that are not directly relevant to the

basic predicate-argument structure of the f-structure. Preds-only evaluations ignore all paths

through the f-structure that do not end in a PRED attribute:value pair. W hile this is a less com­

prehensive evaluation metric, it focuses on the core predicate-argument-adjunct structure and

ignores “ easier” attribute-.value pairs, given a structurally flawed f-structure, which may result

in an artificially high evaluation score.

Where a hand-crafted gold standard test set is lacking, or only a small hand-crafted gold

standard exists, many researchers (Hockenmaier and Steedman, 2002; Miyao et al., 2003; Cahill,

2004; Judge et al., 2005) use automatically generated gold standards to test against. While these

28

gold standards are not as good a resource as a hand-crafted gold standard, they have the advan­

tage that they can be very easily created automatically. Following Hockenmaier and Steedman

(2 0 0 2), experiments with these kind of evaluations are referred to as C C G -style evaluations,

where the original Penn-II Treebank Section 23 trees are automatically converted into Combina­

tory Categorial Grammar (C C G) derivations, which are then used to evaluate C C G parser output

for the same strings.

Comparison of Pipeline and Integrated LFG Parsing Models

Table 2.4 shows dependency-based evaluation results for testing these two parsing models against

the D C U 105, and in a CCG -style experiment similar to that o f Hockenmaier and Steedman

(2002) against 2416 automatically generated f-structures for Section 23 of the Penn-II Tree­

bank. The D C U 105 (Cahill et al., 2002b) dependency gold standard is a subset of 105 sentences

taken randomly from Section 23 of the Penn-II Treebank, for which gold standard f-structures

were generated by hand. In each case, the grammars are extracted/trained on Sections 02-21

of the Penn-II Treebank. The results show that both P C FG models perform similarly, with the

integrated model scoring better on the preds-only evaluations for both test sets with f-scores of

74.80% and 75.33% respectively, and the pipeline model scoring better in the all grammatical

functions evaluations with f-scores of 84.02% and 84.00% respectively. Table 2.4 also shows re­

sults for Collins’ , Chamiak’s and Bikers parsers in the pipeline model (Figure 2.9). The results

show that the more sophisticated parsing models yield higher results than the simpler P CFG

models.

29

Preds O nly A ll GFs Preds O nly A ll GFs

Model/Parser F-Score F-Score F-Score F-Score

DCU 105 WSJ 2416

Integrated PCFG 74.80 81.20 75.33 82.72

Pipeline P C FG 74.00 84.02 73.78 84.00

Pipeline Collins 77.86 85.66 80.10 86.82

Pipeline Chamiak 80.50 86.75 82.63 88.08

Pipeline Bikel 79.73 86.80 82.35 88.23

Table 2.4: L F G parsing results against the D C U 105 for the 2 L F G parsing models using differ­

ent parsers

2.4 Penn-II Treebank Annotation of Questions

The Penn-II Treebank (Marcus et al., 1993) is a part-of-speech (POS) tagged and parse-annotated

treebank of sentences. The POS tagging and parse annotation of the text is indicated by nested

labelled bracketing to show which POS tag is associated with each word and the structure of

phrases, subsentential clauses and the sentence itself. Figure 2.10 shows the POS annotation for

the sentence “John saw Mary.”

(NNP J o h n) . (VBD saw) (NNP M a ry) { . .)

Figure 2.10: POS annotation of “John saw Mary.”

Note that both punctuation and lexical items are associated with a POS tag. Sentences are

annotated with phrasal and clausal structure (Bies et ah, 1995). Figure 2.11 shows the full POS-

tag and parse-annotations for the sentence “John saw Mary.”

Similar to the POS annotation, phrase level annotations like noun phrases (NP) and verb

30

(S (NP (NNP John)) (VP (VBD saw) (NP (NNP Mary))) (. .))

Figure 2. 1 1 : Parse annotation of “John saw Mary.”

phrases (V P) as well as clause level annotations (S) are indicated through labelled bracketing

of constituents or groups of constituents. In addition to labelling the constituents, Penn-II style

annotation also includes some functional information like identifying the subject or topic. These

are indicated by functional tags appended to the label o f the governing node e.g. NP-SBJ.

Movement phenomena and long distance dependencies (LD D s) are encoded by means of empty

nodes in the tree (traces) where the dislocated element should be interpreted which are coindexed

with their antecedent. Figure 2.12 shows the annotation of the sentence “John saw the film

that Mary likes” with functional annotation and trace information and the corresponding tree

structure.

31

s

I
NNP

I
John

VBD

saw

NP

NP-1

DT NN

i i
the film

SBAR

WHNP

I
WDT

I
that

NP-SBJ

I
NNP

I
Mary

VP

VBZ NP

I I
likes -NONE- *T*-1

(S (N P - S B J (N N P J o h n)) (V P (VBD s a w) (N P - 1 (N P (DT t h e) (NN f i l m)) (S B A R

(WHNP (WDT t h a t)) (S (N P - S B J (N N P M a r y)) (V P (V B Z l i k e s) (N P (- N O N E -

* T * - 1))))))) (. .))

Figure 2.12: Functional tags and trace information in Penn-II Treebank annotation

Note that in Figure 2.12 there are two functional tags (- S B J) identifying the subject of the

main and embedded clause. The constituent “ the film” is interpreted as the object o f the verb

“ likes” in the embedded clause. This is indicated by the empty production -N O N E - and the

trace * T * - 1 coindexed with the N P - 1 antecedent (“ the film”) in the main clause.

The Penn-II Treebank annotation scheme (Bies et al., 1995) provides a number of special

syntactic labels for dealing with question constructions. They are:

32

S B A R Q Direct question introduced by a wh-word or a wh-phrase. Indirect questions and

relative clauses should be bracketed as SBAR , not SBA R Q .

S Q Inverted yes/no question, or main clause of a wh-question, following the wh-phrase in

S B A R Q .

W H A D JP Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how hot.

W H A V P Wh-adverb Phrase. Introduces a clause with an NP gap. May be null (containing

the 0 complementizer) or lexical, containing a wh-adverb such as how or why.

W H N P Wh-noun Phrase. Introduces a clause with an NP gap. M ay be null (containing

the 0 complementizer) or lexical, containing some wh-word, e.g. who, which book,

whose daughter, none of which, or how many leopards.

W H P P Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase (such

as of which or by whose authority) that either introduces a PP gap or is contained by

a W HNP.

W D T Wh-determiner

W P Wh-pronoun

W P$ Possessive wh-pronoun (prolog version W P-S)

W R B Wh-adverb

Figure 2.13: Penn-II Treebank constituent labels for questions

I w ill give examples of some of these labels and their usage in bracketed question struc­

tures below. A full list of Penn-II Treebank bracket labels and functional tags can be found in

33

Appendix A .

The annotation of empty elements is particularly important when analysing questions into c-

structure trees. In Penn-II style annotation wh-questions are generally analysed as involving an

empty element which corresponds to the focus (the wh-element) . 7 Figure 2.14 shows the trees

for the question “ Who saw the film?” and the corresponding statement “ John saw the film.”

Note the similarity between the subtree rooted at SQ in the question tree and the tree for the

statement.

SBARQ

WHNP-1

WP

1
NP

1
Who

1
-NONE-

i
1

Figure 2.14: Parse annotated trees for a question and corresponding declarative statement

Note that while the structure of the tree for the declarative sentence is almost identical to that

of the subtree rooted at SQ in the question, there is a crucial difference indicated between the

two by labelling one as an S node and the other as SQ. The sentence expressing the statement

consists o f a simple declarative clause, i.e. one that is not introduced by a (possible empty)

subordinating conjunction or a wh-word and that does not exhibit subject-verb inversion. By

contrast, in the question, the corresponding SQ subtree is the main clause of a wh-question,

following the wh-phrase in SBAR Q .

7In some syntactic theories (Chomsky, 1973), interrogative sentences are derived from corresponding declarative
sentences.

34

The original position of the dislocated element of the wh-movement in Figure 2.14 is adja­

cent to its antecedent in the tree. An example of a “ rear’ long distance dependency in a question

is shown in Figure 2.15.

SBARQ

| AUX NP VP

What I I
did John VB NP

I I
see -NONE-

I
*TM

Figure 2.15: Long distance dependency in a question

An interesting (and quite) common question structure involving L D D s is one involving cop-

ular constructions with the verb “be.” In contrast to other constructions where the NP following

the verb is the object o f the verb, in copular question constructions the NP following the copular

verb (be) is the subject o f the sentence. The overt NP inside the SQ in Figure 2.15 is in fact the

subject o f the sentence (despite being to the right o f the main verb) and the dislocated element

appears at the end of the clause. According to the Penn-II Treebank bracketing guidelines (Bies

et al., 1995) there is no V P node inside an SQ in copular questions. Figure 2.16 shows the tree

for the question “What is John?”

35

SBARQ

What

VBZ NP NP

I I I
is NNP -NONE-

I I
John *T*-1

NNP VBZ NP

I I
John is DT NN

I I
a man

Figure 2.16: Penn-II analysis for a copular question and corresponding declarative sentence

2.5 NLP in QA

The level of usage of N LP techniques in Q A varies from system to system with some more de­

pendent on N LP than others. Also the depth of N LP techniques used varies, with some systems

using only shallow lexical processing or chunking with others opting to use full syntactic parsing

or to derive deeper dependency structures.

Harabagiu et al. (2000a,b) describe an N LP -rich Q A system which combines both shallow

and deep processing. In this system questions and answers are subject to syntactic and semantic

analysis, while the documents retrieved for answer extraction receive only shallow linguistic

processing. Using this method, their system achieves a very high score on the T R E C - 8 test set,

achieving best results (89.5% precision and 84.75% N IS T) when run in its most N LP intensive

configuration which performs semantic transformations on both question and answers for an

inference-based answer justification routine.

At the core of the N LP-rich question and answer processing of Harabagiu et al. (2000a,b)

is a C F G parser (Collins, 1996). The parser output is used to generate logical form semantic

representations, to determine the question class (what type of named entity it queries for), and

also for expanding and reformulating the question to increase the coverage of the document

36

retrieval process.

Similarly Katz et al. (2005) describe a number of linguistically motivated techniques for

question answering using syntax, semantics, and predicate logic representations. Their archi­

tecture uses syntactic analysis to decompose complex or ambiguous segments of questions. For

example the question “When was the 20th President of the U .S . bom?” is decomposed into

identifying the 20th President of the U .S. and then when he was born. This allows their system

to narrow the search space by only considering documents relevant to the president in question

as opposed to all presidents.

N LP methods like C F G parsing can also be used in answer selection and ranking. Tree

distance, which assigns an associated cost to transforming one C F G tree to another, is one metric

which can be used to select and rank answer candidates which have a tree distance less than a

threshold value when compared with the question. This is a method which has been used for

answer retrieval and proposed as a means to evaluate parsers by Emms (2005a,b). There is also

scope for taking this method further using deeper linguistic representations such as f-structure (or

similar dependency graphs or logical forms). F-structures are graphs and a graph edit distance

metric can be used to compare similarity between answer candidates and questions.

2.6 Summary

In this chapter I have introduced Question Answering as a distinct but related field to Information

Retrieval. Q A has been researched since at least the early 1960s, with early successes as database

frontend and closed-domain text-based systems. As a research area, Q A is growing, expanding

into cross language and multilingual domains and also into retrieving information from different

media types (M M Q A).

I gave a brief overview of context-free grammars, probabilistic context-free grammars and

parsing and three state-of-the-art history-based, lexicalised, generative probabilistic parsers (Collins,

1999; Charniak, 2000; Bikel, 2002). I introduced Lexical Functional Grammar (Kaplan and

37

Bresnan, 1982), outlined recent work on automatic f-structure annotation (Cahill et al., 2002a,

2004) and automatic f-structure annotation-based parsing models (Cahill et a l, 2002b).

I introduced the Penn-II Treebank data-structures and encoding of linguistic information

relevant to question material.

I briefly discussed how deep N LP methods are used in state-of-the-art Q A systems. I also

outlined current research in answer detection and ranking using deeper linguistic analysis of

question and answer strings.

38

Chapter 3

Domain Variance Experiments with the

ATIS Corpus

3.1 Introduction

This chapter presents work on using syntactic parsers in the domain of question analysis. I show

that the A TIS corpus data (Hemphill et al., 1990) is substantially different from the financial

newspaper-style text found in the Wall Street Journal sections of the Penn-II Treebank, and that

the relatively high proportion of questions in A TIS makes it suitable for initial tests o f parser

performance in the question domain. Statistical treebank-based parsing resources reflect the

properties o f their training data and generally underperform on data significantly different from

that upon which they were trained. I present baseline experiments to show that this is the case

for three state-of-the-art history-based parsers trained on Penn-II Treebank data and tested on

the A TIS corpus. I show how retraining the parsers on a training set which includes some ATIS

material boosts the performance significantly on the “out-of-domain” A TIS data.

Section 3.2 presents previous work on statistical parsing and domain variance. In Section

3 .3 .1 compare and contrast the A TIS corpus with the Penn-II Treebank and give a selection of

typical example sentences from each. I describe my baseline parsing experiments and results

39

in Section 3.4. Section 3.5 describes experiments with retraining the parsers on a training cor­

pus which includes A TIS data. These experiments produce significantly better results than the

baseline in tests on a test set taken from the A TIS corpus. Section 3.6 summarises and concludes.

There are a number of options for examining parser performance given the training and

evaluation corpora available (Penn-II Treebank and A TIS). The space of possibilities explored

in the experiments in this chapter is indicated below, with asterisks (*) indicating areas of the

experimental space examined in this chapter.

In the training column, Penn refers to training on Sections 2-21 of the Penn-II Treebank,

A TIS to training on 90% of the A TIS corpus (only) and A TIS + Penn to training on 90% of A TIS

and Penn-II Treebank data. The tests are Section 23 of the Penn-II Treebank, the entire A TIS

corpus, and a 10% sample of A TIS withheld as a test set.

Earlier versions of the results presented here have been published in Judge et al. (2005). To

the best of my knowledge this is the first research to study the effect of domain variation that

establishes the statistical significance of the results.

3.2 Previous Work

Gildea (2001) studied the effects o f corpus variation on parser performance by testing a parser

trained on the Penn-II Treebank on the Brown corpus. He observed that the parser performance

dropped by 5.7% labelled bracketing f-score when the domain was varied in this way. This shows

that the effects o f domain variance are evident even if the out-of-domain corpus is not drastically

different from the original training corpus (both the Penn-II and Brown corpora consist primarily

40

of written texts of American English, the main difference is the more varied nature of the text

in the Brown corpus). The performance drop due to domain variance was remedied by adding

appropriate data to the parser’s training corpus, but Gildea notes that a large amount of additional

training data has little effect on the results if it is not matched to the test data.

In the question domain, Clark et al. (2004) have worked with parsing questions using Com­

binatory Categorial Grammars (C C G s). Their experiments focused on “What . . . ? ” questions

from the T R E C Q A testsets. They retrain the C C G lexical supertagger to cope with the new do­

main instead of retraining their whole parser. This is because previous work (Clark and Curran,

2004) has shown that a high lexical tagging accuracy is sufficient to produce good C C G parsing

results. Their work improves the supertagger accuracy on their “ What” question corpus by over

13%.

3.3 Corpus Description and Comparison

This section briefly describes and compares the Penn-II Treebank (Marcus et al., 1993) and the

A TIS corpus (Hemphill et al., 1990).

3.3.1 The Penn-II Treebank

The Wall Street Journal (W SJ) sections of the Penn-II Treebank (Marcus et al., 1993) consist

of approximately 1 million words (50,000 sentences) o f American English taken from Wall

Street Journal articles in 1989. The sentences are POS tagged and parse-annotated according

to guidelines set out in Santorini (1990) and Bies et al. (1995). An important distinction of

the Penn-II Treebank from the first release (Penn-I Treebank Marcus et al. (1993)) is that the

trees have been annotated with some non-context free information in the form of functional

tags (-SBJ (subject), -L O C (locative), etc.) which indicate semantic roles, and empty nodes and

coindexation to indicate long distance dependencies (Marcus et al., 1994).

41

The A ir Travel Information System (A T IS) corpus (Hemphill et al., 1990) is a transcription of

spoken dialog with an automated air travel information system. The A TIS corpus used in the

research presented here is that distributed with the Penn Treebank release 2 (Penn-II Treebank).

The A TIS corpus consists of 578 sentences which are POS tagged and annotated according to

Penn-II Treebank guidelines. A TIS data represents a different style o f language from the Wall

Street Journal texts of the Penn-II Treebank: a significant proportion of the sentences in A TIS

are questions, there are imperatives and non-sentential utterances, which are generally shorter

than those in the W SJ sections of the Penn-II Treebank and the transcription does not contain

punctuation marks.

1. A re t h e r e any f l i g h t s a r r i v i n g a f t e r e le v e n a.m

2. Show me t h e T W A f l i g h t

3. I need a f l i g h t f ro m Los A n g e le s t o C h a r l o t t e to d a y

4. F l i g h t s f ro m Los A n g e le s t o P i t t s b u r g h

5. On T u e s d a y a r r i v i n g b e f o r e f i v e p.m

6. What f l i g h t s f ro m P h i l a d e l p h i a t o A t l a n t a

Figure 3.1: Example A TIS utterances

Figure 3.1 illustrates typical A TIS corpus data including both question (1) and non-question

sentences (2,3), as well as sub-sentential (4,5) and incomplete utterances (6). Note also that

punctuation is not included in the A TIS strings.

3.3.2 ATIS

42

Both Penn-II W SJ and A TIS are POS- and parse-annotated following the same general annota­

tion guidelines (Bies et al., 1995). Despite these similarities, the two treebanks exhibit strong

differences as regards size, domain, phrase type distribution and punctuation.

3.3.3 Penn-II WSJ vs. ATIS

ATIS Penn-II W SJ

Words 4000 words 1 ,0 0 0 , 0 0 0 words

Sentences 578 sentences 50,000 sentences

Average sentence length 7 words 2 1 words

Source Transcription of spoken dialog W SJ Newspaper text

#Questions 213 Direct questions 233 Direct questions

Sentence type Interrogatives, imperatives, and fragments Declarative sentences

Inter-Word Punctuation None Punctuated

Table 3.1: Corpus statistics compared

Table 3.1 shows a comparison of the Penn-II W SJ sections and the A TIS corpus. The most

striking difference between the Penn-II Treebank W SJ sections and the A TIS is the difference in

size between the two corpora: the W SJ sections of the Penn-II Treebank with 50,000 sentences

are over eighty times the size of A TIS with only 578 sentences. Another important difference

between the two is the average sentence length: the sentences in A TIS tend to be much shorter

than the W SJ Sections of the Penn-II Treebank, with an average length of 7 words, compared

to 21 words in the W SJ Sections. Figure 3.2 plots the number of sentences against the sentence

length for the A TIS corpus and Section 23 of the W SJ section of the Penn-II Treebank illustrating

the difference in sentence length distribution between the two corpora.

43

Sorrtonco Loogtti

Figure 3.2: Sentence length distributions A TIS vs WSJ Section 23 (Bezier interpolated)

The graph shows how significantly larger a single section of the Penn-11 Trcebank WSJ

sections is than ATIS . It also show s the broader distribution of data over the sentence lengths in

the section of the Penn-II Trcebank, which has a much wider spread over the sentence lengths.

Section 23 has a mean sentence length of 21 words with a standard deviation of 8 .6 , while ATIS

has a mean sentence length of 7 words with a standard deviation of 2.9.

The source of the text for the two corpora also highlights some important differences. The

source for the A TIS corpus is spoken dialogue which tends to be more casual and brief (Figure

3.1) than the longer, more complex sentential structures found in the Penn-II Treebank (Figure

3.3). Also, the nature of the air travel information system results in the ATIS corpus containing

sentences of a largely information seeking and interrogative nature. O f the 578 sentences in the

ATIS corpus, 213 are questions or interrogatives, accounting for over 36% of the entire corpus.

Comparatively, the Penn-11 WSJ sections have very few interrogative sentences or questions,

only 233 over the entire WSJ sections (accounting for less than 0.5% of the entire corpus). In

addition, many of the Penn-II questions are embedded or rhetorical questions (Figure 3.4 (3)),

4 4

which unlike those in the A TIS do not seek information. Interestingly, none of the 233 direct

questions in the W SJ sections are to be found in Section 23 of the treebank, which is the standard

testing section for parser evaluation. Therefore, none of the previous evaluations in the literature

carried out on this section reflect the quality of parsing question data.

1. S h a re s o f UAL, th e p a r e n t o f U n i t e d A i r l i n e s , w ere

e x t r e m e ly a c t i v e a l l d ay F r i d a y , r e a c t i n g t o news and

rum o rs a b o u t t h e p ro p o s e d $6.79 b i l l i o n b u y - o u t o f th e

a i r l i n e b y an em ployee-m anagem ent g r o u p .

2. P o r t s o f C a l l I n c . re a c h e d a g re e m e n ts t o s e l l i t s re m a in in g

s e v e n a i r c r a f t t o b u y e r s t h a t w e r e n ' t d i s c l o s e d .

3. As a g r o u p , s t o c k fu n d s h e ld 10.2% o f a s s e t s i n ca sh as o f

A u g u s t , t h e l a t e s t f i g u r e s a v a i l a b l e fro m t h e In v e s t m e n t

Company I n s t i t u t e .

Figure 3.3: Example Penn-II Treebank W SJ sentences

1. F o r e xa m p le , what e x a c t l y d i d th e C IA t e l l M a jo r G i r o l d i

and h i s f e l l o w coup p l o t t e r s a b o u t U . S . la w s and e x e c u t i v e

o r d e r s on a s s a s s i n a t i o n s ?

2. W ho 'd ha ve t h o u g h t t h a t th e n e x t g ro u p o f to u g h g u ys

c a r r y i n g a ro u n d r e p u t a t i o n s l i k e t h i s w o u ld be s c h o o l

s u p e r in t e n d e n t s ?

3. What i s t h e way fo r w a r d ?

4. B u t i f r a t i o n a l s c ie n c e and e co n o m ics ha ve n o t h i n g t o do

w i t h th e new e n v i ro n m e n t i n i t i a t i v e , w hat i s g o in g on?

Figure 3.4: Example Penn-II Treebank W SJ questions

3.4 Baseline Experiments

In my baseline experiments I use three state-of-the-art Penn-II Treebank trained parsers (Collins,

1999; Chamiak, 2000; Bikel, 2002) to parse the A TIS corpus. The parsers are not modified or

retrained in any way for this task, in order to determine how well these parsers can or cannot

cope with data from the question-rich A TIS corpus.

3.4.1 Evaluation Tools and Metrics

I evaluate the parsing experiments in this section using standard PARSE V A L precision and recall

metrics (Black et al., 1991) and, where it is less than 100% of the test set, parser coverage, which

is the percentage of the test set for which the parser successfully produces a complète spanning

parse. Precision and Recall are calculated as follows: given P , the proposed analysis from the

system and T , the gold standard analysis,

46

_ , number of correct constituents %n PPrecision = ------------------ ;---------- :-----------------------------:— ---------
number o f constituents in P

(3.1)

^ „ number of correct constituents in PRecall = ------------------ ------------ ------------- :---------------- (3.2)
number of constituents m T

The f-score (harmonic mean) of precision and recall is calculated by

_ 2 x Precision x Recall
F - Score = — - ------— ----------------=--------r;— (3-3)

Precision + Recall

I use the e v a l b 1 scoring program designed by Sekine and Collins to calculate these scores,

e v a lb takes a bracketed representation of gold standard and test trees (Figure 3.5) and outputs

precision, recall, f-score, bracket crossing, and tagging accuracy information (Figure 3.6). U n ­

less otherwise stated, all results reported in this thesis are labelled precision, recall and f-scores.

NP

N N P

V P

NP

Homer strangled N N P

Bart

(S (NP (NNP Homer))
(VP (V strangled) (NP (NNP Bart))))

Figure 3.5: Parse tree and corresponding e v a lb bracketing representation

1 Available at http://nlp.cs.nyu.edu/evalb/

47

http://nlp.cs.nyu.edu/evalb/

S e n t . M a t c h e d B r a c k e t C r o s s C o r r e c t T a g

I D L e n . S t a t . R e c a i P r e c . B r a c k e t g o l d t e s t B r a c k e t W o r d s T a g s A c c r a c y

1 6 0 5 5 . 5 6 7 1 . 4 3 5 9 7 1 6 6 1 0 0 . 0 0

2 6 0 8 7 . 5 0 1 0 0 . 0 0 7 8 7 0 6 6 1 0 0 . 0 0

3 4 0 8 0 . 0 0 1 0 0 . 0 0 4 5 4 0 4 4 1 0 0 . 0 0
4 5 0 7 5 . 0 0 8 5 . 7 1 6 8 7 0 5 5 1 0 0 . 0 0
5 6 0 8 3 . 3 3 1 0 0 . 0 0 5 6 5 0 6 4 6 6 . 6 7

6 8 0 3 6 . 3 6 4 0 . 0 0 4 1 1 1 0 1 8 6 7 5 . 0 0
7 6 0 4 4 . 4 4 5 7 . 1 4 4 9 7 1 6 4 6 6 . 6 7

8 4 0 5 0 . 0 0 6 0 . 0 0 3 6 5 1 4 4 1 0 0 . 0 0

9 7 0 7 5 . 0 0 1 0 0 . 0 0 6 8 6 0 7 6 8 5 . 7 1

6 1 . 1 1 6 9 . 0 6 3 0 8 5 0 4 4 4 6 3 5 4 4 1 4 0 1 9 0 . 9 3

===== S u m m a r y = = =

- - A l l —

N u m b e r o f s e n t e n c e

N u m b e r o f E r r o r s e n t e n c e

N u m b e r o f S k i p s e n t e n c e

N u m b e r o f V a l i d s e n t e n c e

B r a c k e t i n g R e c a l l

B r a c k e t i n g P r e c i s i o n

F - S c o r e

C o m p l e t e m a t c h

A v e r a g e c r o s s i n g

N o c r o s s i n g

2 o r l e s s c r o s s i n g

T a g g i n g a c c u r a c y

— l e n < = 4 0 —

N u m b e r o f s e n t e n c e

N u m b e r o f E r r o r s e n t e n c e

N u m b e r o f S k i p s e n t e n c e

N u m b e r o f V a l i d s e n t e n c e

B r a c k e t i n g R e c a l l

B r a c k e t i n g P r e c i s i o n

F - S c o r e

C o m p l e t e m a t c h

A v e r a g e c r o s s i n g

N o c r o s s i n g

2 o r . l e s s c r o s s i n g

T a g g i n g a c c u r a c y

Figure 3.6: Sample e v a lb output

5 8

0

0

5 8

6 1 . 1 1

6 9 . 0 6

6 4 . 8 4

0 . 0 0
0 . 7 2

6 0 . 3 4

9 4 . 8 3

9 0 . 9 3

5 8

0

0

5 8

6 1 . 1 1

6 9 . 0 6

6 4 . 8 4

0.00
0 . 7 2

6 0 . 3 4

9 4 . 8 3

9 0 . 9 3

48

When comparing experimental results it is useful to be able to say if differences between two

sets o f results are statistically significant, that is to say that the difference has not occurred

by chance. I use approximate randomisation to test for statistical significance between sets of

results. Approximate randomisation is a computationally-intensive randomisation test (Noreen,

1989) which can be applied to non-linear functions of variables such as precision and f-score.

An approximate randomisation test tests the null hypothesis that the difference between two

data samples occurred by chance. This is done by calculating the difference between their mean

values: if the null hypothesis holds, then randomly shuffling values between the two samples

should make little difference between their mean values. An exact randomisation test does

this for all possible permutations, an approximate randomisation test (like the one used here)

estimates this by performing n randomisations on the data samples. The accuracy of the approx­

imate randomisation test depends on the value of n. The test calculates a p-value, which is the

probability that the null hypothesis is true. A low p-value indicates that the null hypothesis is

likely to be false, therefore the difference between the two results is likely not to be by chance

and therefore statistically significant.

I perform approximate randomisation testing using a peri script by Bikel2 which uses the

output of e v a lb to evaluate the significance of new results for parse trees. In Chapter 4 I

perform similar testing on f-structures. The software to perform this test was provided by Stefan

Riezler (through personal communication) and performs the approximate randomisation testing

on sets o f triple encoded f-structures (Crouch et al., 2002).

Unless otherwise stated, for the experiments in this thesis I take n = 10000 (the default

value for Bikel’s script) and a p-value of less than 0.05 as indication that the null hypothesis is

false and an observed difference in scores is significant at the 95% level.

2Available at http://www.cis.upenn.edu/~dbikel/software.html

Statistical Significance Testing

49

http://www.cis.upenn.edu/~dbikel/software.html

In order to establish a baseline for parsing A TIS question data, I parsed all 578 A TIS sentences

with 3 Penn-II trained, off-the-shelf, state-of-the-art history-based parsers (Collins, 1999; Char-

niak, 2000; Bikel, 2002) using the resources supplied in the distributions (trained on Penn-II

Treebank Sections 02-21) and evaluate against the original A TIS treebank trees. The baseline

results are shown in Table 3.2 along with the published results for the parsers tested on Section

23 of the Penn-II Treebank.

3.4.2 Experiments

ATIS Section 23

Precision Recall F-Score Precision Recall F-Score

Collins Model 2 76.43 68.87 72.45 88.3 8 8 . 1 8 8 . 2

Chamiak 62.19 65.16 63.64 89.5 89.6 89.55

Bikel’s Emulation of Collins M2 74.79 65.68 69.94 8 8 . 2 88.3 88.25

Table 3.2: Baseline Parsing Results on the A TIS corpus

The results show that each of the parsers tested performs considerably worse on the ATIS

corpus than in tests on Section 23 of the Penn-II Treebank. The average difference between the

f-scores on the two test sets is 19.99% with Chamiak’s parser suffering the worst drop at 25.91%

and Collins’ suffering the smallest (though still considerable) drop at 15.75%.

The observed drops are considerably worse than those observed in previous domain vari­

ation experiments by Gildea (2001). The results confirm that the A TIS experiments presented

here constitute a much stronger instance of domain variation than the Penn-II/Brown corpus

experiments reported by Gildea (2001).

50

The Penn-II Treebank Wall Street Journal sections used for training the parsers contain properly

punctuated text. On the other hand, the A TIS strings are unpunctuated. This is a factor that

could possibly explain the underperfomnance of the parsers in the A TIS experiments, as we

would expect grammars trained on Penn-II Treebank sections to perform better on punctuated

text. 3

To test the influence of punctuation on the A TIS parsing results, I manually added basic

punctuation to each of the A TIS sentences (parser input and gold standard trees). Each of the

213 questions had a question mark added, the remaining sentences had a fullstop added, and the

sub-sentential fragments were left unpunctuated. I then reran the baseline parsing experiments

with each of the parsers. Table 3.3 shows the results for testing the parsers on a minimally

punctuated version of A TIS along with the p-values for significance testing for each individual

parser comparing its performance on the punctuated A TIS with that of the unpunctuated ATIS .

3.4.3 Punctuation

ATIS ATIS Punctuated

Precision Recall F-Score Precision Recall F-Score p-Value

Collins 76.43 68.87 72.45 76.35 68.87 72.42 0.3413

Chamiak 62 .19 65.16 63.64 66.71 69.60 68.12 9.99 x 10“ 5

Bikel’s Emulation of Collins M2 74 .79 65.68 69 .9 4 74.61 65.58 69.80 0.0025

Table 3.3: Parsing results for punctuated A TIS sentences

The results show a slight drop in performance for Collins’ and Bikel’s parsers, and an im­

provement of 4.48% f-score for Charniak’s parser when tested on punctuated A TIS sentences.

The increase in performance for Chamiak’s parser is statistically significant (p-value < 0.05).

The drop in performance for Bikel’s parser is also statistically significant, however the smaller

0.03% drop in f-score for Collins’ parser is not. It is interesting, though not entirely unexpected,

3This was pointed out by Tracy King (personal communication).

51

that Chamiak’s parser gains most from having punctuation added, as his parser treats punctuation

less trivially than Collins’ or Bikel’s. The parsing model of Collins and Bikel treats punctuation

differently to other surface elements of the sentence, and tries to attach it as high in the tree as

possible so that it is positioned between two non-terminals.

It is evident that a lack of punctuation is responsible for some of the drop in performance

on parsing A TIS data, but that the choice of parser can significantly influence the degree to

which parsing is effected. Nevertheless, punctuation (or lack thereof) is not responsible for the

performance drop being as severe as shown in Table 3.2. This suggests that the parsers are having

difficulty coping with the A TIS question material given the training information extracted from

the Penn-II Treebank.

3.5 Retraining Experiments

With the poor performance of Penn-II Treebank-trained state-of-the-art history-based parsers on

A TIS data, clearly a parser fine-tuned for use on questions is needed if parsing questions is to be

incorporated successfully as a stage in a Q A system. Given that the parser is dependent on the

type of data in the training corpus, the logical way to accomplish this is to retrain the parser on a

question corpus. B y retraining the parsers on a treebank which is more representative of the text

to be parsed (in this case questions) we expect the parser w ill yield better results on the question

corpus.

A number of corpora were available for use. The Penn-II Treebank, though not a question

corpus, is a very large corpus of parsed English sentences, giving broad language coverage. The

A TIS corpus as described above, is a small corpus of Penn-II-style parsed English questions

as well as imperatives and some fragment data. Also available are the T R E C Q A track test

questions and the Cognitive Computation Group at the University of Illinois4 (C C G 5) question

4http://12r.cs.uiuc.edu/ cogcomp
5Note that the acronym CCG here refers to Cognitive Computation Group, rather than Combinatory Categorial

Grammar mentioned in Section 3.2

52

http://12r.cs.uiuc.edu/

classifier training set text corpora. These corpora amount to 2753 and 5452 raw unannotated

questions, respectively. The history-based parsers require parse-annotated corpora as training

resources. This makes the T R E C Q A and C C G question classifier corpora unsuitable as train­

ing data for these experiments, but nonetheless useful for further work (Chapter 5). For the

experiments reported below, I therefore decided to use the parse-annotated A TIS resources.

Since the retraining experiments involve including A TIS data in the parser’s training corpus,

a dedicated test set o f sentences needed to be held out of the A TIS material used for training

the parsers. I randomly extracted a sample of 10% of the A TIS treebank trees to be held out as

the gold standard test set against which to evaluate the retrained parsers. The results in Table

3.4 show the results from parsing the 10% of A TIS testset with the standard Penn-II trained

resources for each of the parsers, compared with the results for parsing the whole of A TIS with

the same parser. The results indicate that the randomly selected 10% test set is slightly more

difficult to parse than the complete A TIS data.

A TIS (A ll) A TIS 10% Test Set

Precision Recall F-Score Precision Recall F-Score

Collins Model 2 76.43 68.87 72.45 73.17 65.48 69.11

Chamiak 62.19 65.16 63.64 60.53 63.89 62.16

Bikel’s Emulation of Collins M2 74.79 65.68 69.94 69.06 61.11 64.84

Table 3.4: Comparison of baseline parsing on all of A TIS and the 10% A TIS test set

I carried out four retraining experiments with slightly different parser training data on each

run, testing on the same set o f questions (a 10% subset taken at random from the A TIS corpus)

withheld from the training data. The four training sets were constructed as follows:

• A TIS corpus (90%)

• A TIS corpus (90%) and Sections 02-21 of the Penn-II Treebank

53

I

• A TIS corpus (90%) and questions extracted from the whole Penn-II treebank

• Direct questions extracted from A TIS (90%) and questions extracted from the whole Penn-

II treebank

Collins* parser does not come with functionality to retrain on a new corpus therefore no

results are provided for Collins’ parser in these experiments. Bikel’s parser, however, emulates

Collins’ Model 2 parser and achieves similar results on W SJ text from the Penn-II Treebank

(Table B. 1).'Therefore, Bikel’s results can be interpreted as indicative of how Collins’ Model 2

parser would perform in the retraining experiments.

Charniak Bikel

Trained On Coverage F-score p-Value Coverage F-Score p-Value

Penn 1 0 0 62.16 - 1 0 0 64.84 -

A TIS 1 0 0 81.59 9.99 x IO " 5 1 0 0 85.20 9.99 x i0 ~ 5

A TIS + Penn 1 0 0 78.73 9.99 x 10“ 5 1 0 0 85.65 9.99 x 10~ 5

A TIS + PennQs 1 0 0 84.69 9.99 x 1 0 “ 5 1 0 0 85.20 9.99 x 10~ 5

ATISQs + PennQs 98.28 70.91 0.0055 1 0 0 73.06 0.0144

Table 3.5: A TIS test set parsing results for Bikel’s and Chamiak’s parsers retrained using Penn-II

Treebank and A TIS data

Table 3.5 compares the results for the parsers in retraining experiments using various combi­

nations of A TIS and Penn-II Treebank data, testing on a random sample of 10% of A TIS which

was held out o f the A TIS section of the training data. The 10% sample used for testing was

constant for all runs. The p-values shown are calculated by comparing the retrained parser’s re­

sults with that of the same parser in the baseline experiment in Table 3.4. The results show that

in each of the retraining runs, both parsers have gained a statistically significant improvement

over the baseline results. B ikel’s parser scores highest across all of the experiments, gaining

54

over 2 0 % f-score in all but the fourth run where only the questions from each data source are

included in the parser’s training set. In the fourth run the result for Bikel’s parser is improved by

8.22%. Charniak’s parser improves to a similar degree as Bikel’s, achieving the biggest single

gain in all of the runs at 22.53%, but does not better Bikel’s results in any of the experiments.

It is interesting to note the difference between the two parsers in the A TIS and Penn trained

run when compared with the A TIS trained run. For the A TIS + Penn trained run Charniak’s

parser’s result has decreased by 2.86% compared to training on A TIS only, whereas Bikel’s has

increased by 0.45%. Despite the slight drop in performance when compared with training only

on A TIS , Chamiak’s score of 78.73% in this run is still a dramatic increase over the baseline

result (training on Penn only) o f 62.16%. The test set here is quite small, and without further

research it is difficult to say with any certainty what could be causing the different behaviour of

the two parsers. However, one might speculate that the finding indicates that Chamiak’s parser

is more sensitive to the larger amount o f Penn-II Treebank data than A TIS , and that the positive

impact of A TIS data in the training set is being “diluted” somewhat by the amount of extra

Penn-II Treebank data.

These results show that both parsers’ performance on A TIS material can be significantly

improved by training exclusively on A TIS material or in combination with Penn-II Treebank

data. Comparing Bikel’s parser with Charniak’s parser, Table 3.6 shows that Bikel’s parser

statistically significantly outperforms Chamiak’s in each of the experiments conducted. This is

possibly an indication that, compared to Charniak’s, B ikel’s parsing model is easier retrained to

be adapted for use in domains other than the Penn-II Treebank. This view is supported by the

somewhat brittle nature of retraining Charniak’s parser on new data which I experienced, and *

which has also been noted by other researchers. 6 It is interesting to note that the best result in

these experiments, for both parsers, is achieved when the parser is trained on a combination of

A TIS and some amount o f Penn-II Treebank data. Also noteworthy is that the lowest result for

both parsers is on the run where the least amount o f A TIS material is included in the parser’s

Conversations with Aoife Cahill, Joachim Wagner and others at the NCLT revealed that we have each, indepen­
dently, experienced similar difficulties when retraining Chamiak’s parser.

55

training set.

F-score Difference p-Value

A TIS 3.61 0 . 0 0 0 2

A TIS + Penn 6.92 0 . 0 0 0 2

A TIS + PennQs 0.51 0.0033

ATISQ s +PennQs 2.15 0 . 0 0 0 2

Table 3.6: Difference between Charniak’s and Bikel’s parsers’ f-scores in retraining experiments

and statistical significance testing

The improvement over the baseline reported in Table 3.5 is quite significant. As noted in

Section 3.4.3, a small part of the reason for the low baseline score in the first place is the lack

of punctuation in A TIS . Domain variance has been claimed to be responsible for the rest of

the drop in performance. However, two important further characteristics o f the A TIS corpus

could also be affecting the scores and have yet to be discounted. Being a question-rich corpus,

the A TIS data contains sentences of a much shorter length than those in the Penn-II Treebank.

A lso since A TIS is a transcription of spoken language, the sentences contain discontinuities

and ungrammatical data, and these appear as constituents labelled FR A G and X in the parse-

annotated corpus. Both of these factors, sentence length, and FR AG /X constituents, need to

be considered as possible causes for the low baseline score before the results in Table 3.5 can

properly support the conclusion that the low baseline is mainly caused by the domain variance

in the question-rich corpus.

Figure 3.7 shows an analysis o f Bikel’s parser on both W SJ Section 23 of the Penn-II tree­

bank and A TIS which plots f-score against sentence length. Figure 3.8 shows the same analysis

for Chamiak’s parser. In both graphs the regions of statistical significance for each corpus are

marked with vertical lines from the x-axis. These correspond to 2 standard deviations from the

mean sentence length for each corpus, which, assuming roughly normal distribution of the data,

56

should correspond to approximately 95 % o f the data. For the ATIS corpus this is the region

between sentence lengths 2 and 13 words, and for WSJ Section 23 this corresponds to the region

between sentence lengths 5 and 40 words.

Santanca longtn

Figure 3.7: F-Score by sentence length comparison for Bikel's parser on WSJ Section 23 and

ATIS

57

Sontenco Long»1

Figure 3.8: F-Score by sentence length comparison for Chamiak’s parser on WSJ Section 23

and ATIS

The area of overlap for the areas of significance for both corpora is the region between

sentence lengths 5 and 13 words. There is a large gap between the two plots for both parsers.

In both Figure 3.7 and 3.8 both parsers can clearly perform well on sentence lengths within this

window, as indicated by the plot of WSJ Section 23 results. However the plot for ATIS results

within this window shows considerably lower scores. This shows that the parsers can perform

well on short sentences, but that they have difficulty with short sentences from a new domain, in

this case ATIS.

In order to examine the effects o f FR AG and X constituents on the results. I revisited the

baseline results for Bikel’s and Chamiak's parsers and eliminated sentences which contain such

constituents. In the Penn-U Treebank bracketing guidelines these are constituents which are in­

complete (FR A G) or which are unknown, uncertain or unbracketable (X) and problematic for

human annotators, so they are certainly likely to cause difficulties for the parsers. Table 3.7

shows the results for Bikel's and Chamiak’s parsers tested on the whole A TIS corpus, ignor­

ing sentences containing FRAG/X constituents and comparing with the original A TIS baseline

58

results in Table 3.2.

A TIS (A ll) A TIS (No FR AG /X)

Precision Recall F-Score Precision Recall F-Score

Bikel 74.79 65.68 69.94 76.24 67.86 71.81

Charniak 62.19 65.16 63.64 68.35 65.88 67.09

Table 3.7: Comparison of parsing results for Bikel’s and Chamiak’s parsers on the A TIS corpus

excluding sentences containing FR AG /X constituents

The results in Table 3.7 shows that removing the sentences which contain FR AG /X con­

stituents from the evaluations increases the results by a small amount, 3.45% for Charniak’s

parser, 1.87% for Bikel’s. This shows that that the presence of FR A G and X constituents in the

data is having a negative effect on the baseline results and so is contributing to the low baseline

score. However, the increase in the results when these constituents are removed is small com­

pared to the drop in performance caused by testing on A TIS data. Again, this shows that the low

baseline results are mainly caused by domain variance. In Section 5.4.3 I provide examples of

frequent analysis errors made by Bikel’s parser on question data, which have a large effect on

the evaluation results.

3.6 Conclusion

This chapter has shown that the Penn-II treebank, due to its very low question content, is un­

suitable as an exclusive training resource for modem probabilistic parsers if they are to be used

in analysis for Q A . The A TIS corpus (Hemphill et al., 1990), while not a dedicated question

corpus, contains a significant proportion of questions and constitutes quite a different domain to

the Penn-II Treebank. The domain variance exhibited by the Penn-II/ATIS experiments is much

stronger than that observed by Gildea (2001) in his Penn-II/Brown experiments, as is shown by

59

the large drop in parser performance in the baseline experiments (Section 3.4). M y experiments

show that some of this drop in performance can be attributed to the absence of punctuation in the

A TIS data, but this is only a small portion of the drop in performance, and only holds for one of

the parsers tested. Similar to Gildea (2001), the results in Table 3.5 show that parsing results are

not greatly improved when a large amount of data (Sections 02-21 of the Penn-II Treebank) not

matched to the test set is added to the training set. Chamiak’s parser performs worse on the test

set when trained on A TIS plus Sections 2-21 of the Penn-II Treebank than when trained only on

A TIS data. Bikel’s parser on the other hand performs slightly better, but the f-score gain is quite

small (0.45%) when compared to the gain from retraining on A TIS data.

The retraining experiments show that, despite its relatively small size, sections of the A TIS

corpus can be used effectively to retrain state-of-the-art parsers to cope with A TIS data. Quite

large, statistically significant gains of over 2 0 % labelled precision and recall f-score can be

achieved by adding appropriate (here A TIS) training material to the parser’s training corpus in

order to allow it to cope with the new domain (A T IS), though a similar (and for Chamiak’s parser,

greater) gain can be achieved by training on A TIS data alone. This is quite surprising given the

size difference between the two corpora used (the Penn-II Treebank is over eighty times the size

of the A TIS corpus) but also encouraging. The baseline result, though poor, shows that some of

the information relevant to analysing questions correctly can be found in informative text like

the W SJ. The significant gains in performance achieved through adding only a small amount of

A TIS data indicate that a question corpus of similar size to the Penn-II Treebank is probably not

needed in order to retrain a high-accuracy parser to perform optimally on question data.

The parsing experiments presented here use a rather small test set from the A TIS corpus.

I have shown that while the A TIS corpus contains a relatively high proportion of questions, it

is not a true question corpus. For example it does not contain any “ W h o ...? ” questions and

contains a lot of fragment data. In order to properly evaluate performance on a wide variety of

question types, a larger more representative test set is necessary. Chapters 5 and 6 present work

on providing this.

60

The experiments carried out so far have only looked at the effect of porting Penn-II Treebank-

based syntactic C F G parsing resources to the question domain. Given the experiments presented

here and previous work in the area (Gildea, 2001; Clark et al., 2004) the question whether the

same effects would be observed with deeper linguistic analysis such as L F G f-structures from

Penn-II Treebank-based resources remains. Chapter 4 examines this.

61

Chapter 4

Domain Variance and Treebank-Based

LFG Resources

4.1 Introduction

This chapter builds on the domain variance and retraining work presented in Chapter 3 .1 investi­

gate the effect domain variance has on deeper analysis in the form of L F G f-structures produced

automatically by the Penn-II Treebank-based f-structure annotation algorithm of Cahill et al.

(2004). The expectation is that a drop in performance for c-structure (C F G) parsers using gram­

matical resources induced from the Penn-II Treebank, w ill cause a similar performance drop

for the automatic f-structure annotation algorithm taking C F G trees produced by the parsers as

input.

I show that the negative effects o f domain variance on c-structure parsing observed in Chap­

ter 3 are also observed in automatic f-structure annotation. However, the drop in performance

is less pronounced for f-structure annotation than for c-structure parsing and can be remedied

by simply retraining the c-structure parser as before. One perhaps surprising result is that the

automatic f-structure annotation algorithm of Cahill et al. (2004) does not need any modification.

Section 4.2 provides some relevant background information. I describe the gold standards

62

against which I evaluate, and my baseline experiments in Section 4.3. Section 4.4 describes

retraining experiments to improve f-structure analysis. In Section 4.5 I present experiments to

investigate further research questions about upper bounds, back-testing and parameterisation

raised by the retraining work. Section 4.6 summarises and concludes.

As in Chapter 3 there are a number of options regarding training and testing sets, this time

for both c-structure and f-structure evaluations. The table below shows what is covered in the

experiments in this chapter.

Here Penn refers to training on all o f Sections 2-21 of the Penn-II Treebank, A TIS to training

on all of the A TIS corpus, A TIS + Penn to training on Sections 2-21 of the Penn-II Treebank

and the A TIS corpus less 100 sentences which were held out as a test set (A TIS 100) and A TIS

Cross Validation refers to training and testing on the whole A TIS corpus with 10-fold cross

validation. The tests sets used are: the D C U 105, a gold standard test set o f 105 sentences from

PTB Section 23 which have been manually f-structure annotated and A TIS 100, a 100 ATIS

sentence gold standard which has been manually f-structure annotated.

Some of the results published in this chapter have been published in Judge et al. (2005)

4.2 Background

The parser domain variance research of Gildea (2001) and the question retraining work of Clark

et al. (2004) has shown that porting linguistic resources to a new domain is possible for both

6 3

probabilistic C F G - and CCG-based parsers. In the previous chapter I have shown that parsing

the A TIS corpus with state-of-the-art Penn-II Treebank-based probabilistic parsers represents an

instance of stronger domain variance than that observed by Gildea (2001).

Burke et al. (2004), Cahill et al. (2004), and O ’Donovan et al. (2004) present research on

automatically producing L F G resources from treebanks. However, to date no research has been

carried out to test the effect o f domain variance on the treebank-induced L F G parsing resources

of Cahill et al. (2004). Given that these resources are induced from the Penn-II Treebank and that

the pipeline parsing architecture of Cahill et al. (2004) uses Penn-II Treebank trained c-structure

parsers, the expectation is that performance w ill suffer in a similar way as was observed for the

history-based C F G parsers in the previous chapter.

Figure 4.1: Pipeline Parsing Architecture of Cahill et al. (2004)

The automatic f-structure annotation algorithm of Cahill et al. (2004) described in Sec­

tion 2.3.3 takes either parser output or treebank (c-structure) trees and annotates the trees with

functional information based on a set of annotation rules originally designed for the Penn-II

Treebank. The f-structure annotated trees are then passed to a constraint solver to produce f-

structures (Figure 4.1). The pipeline parsing model entails that errors in early stages can be

propagated to (and potentially be amplified by) modules further along the line. Because of this

it is possible that the automatic f-structure annotation algorithm w ill suffer worse degradation of

results than the c-structure parser because it is dependent on the parser output.

64

4.3 Baseline LFG Experiments

This section describes the baseline experiments to determine the portability o f the resources of

Cahill et al. (2004) to a new domain, the A TIS corpus. For these experiments I have chosen

to use Bikel’s parser because it is easily retrainable1 and consistently outperforms Charniak’s

parser in the retraining experiments in Section 3.5.

4.3.1 F-Structure Gold Standard and Evaluation Tools

Before conducting experiments with the automatic f-structure annotation algorithm, a gold stan­

dard set of f-structures against which to evaluate the automatically generated f-structures is nec­

essary. As in Chapter 3 ,1 use a randomly extracted sample of the A TIS corpus. However, unlike

the previous evaluations I carried out on A TIS data, additional annotation work needed to be

done to generate an f-structure gold standard. 1 0 0 sentences were chosen at random from the

A TIS corpus, and their corresponding treebank c-structure analysis was used as the gold stan­

dard against which to evaluate the c-structures in the experiments described in this chapter. The

1 0 0 gold standard c-structure trees were then passed to the automatic f-structure annotation algo­

rithm to generate f-structures which were then manually corrected and compared by three human

annotators.2 These gold standard f-structures were then used in the f-structure evaluations in this

chapter.

I use the pipeline parsing architecture shown in Figure 4.1 to generate c- and f-structures

from raw strings taken from the A TIS corpus. I evaluate the c-structure trees output by the

parser using P A R S E V A L (Black et al., 1991) precision, recall and f-score metrics (calculated

using e v a lb) . The LDD-resolved f-structures output by the annotation algorithm in the pipeline

parsing architecture are evaluated using the triple encoding and evaluation software of Crouch

et al. (2002). Each f-structure is represented as a set o f predicate-argument terms of the form

11 encountered some unresolvable robustness issues with retraining Chamiak’s parser on certain datasets. This
has also been the experience of other researchers with whom I have discussed the issue.

21 am grateful to Aoife Cahill and Michael Burke for the help they gave me with this task.

65

p r e d (a r g l , a r g 2) and precision and recall are calculated on these sets. The f-structure and

corresponding triples for the sentence “ Homer strangled Bart.” are given below.

PRED ‘S T R A N G L E ((T S U B J)(T 0 B J))’

p r e d ‘H o m e r ’

SUBJ NUM SG

s t r u c t u r e (
p e r s (b a r t ~ 3 , 3)
o b j (s t r a n g l e ~ 0 , b a r t ~ 3)

PERS 3
’ p r ed ‘B a r t ’

n u m (b a r t ~ 3 , sg)
p e r s (h o m e r ~ 2 ,3)

OBJ NUM SG
PERS 3

s u b j (s t r a n g l e d , hom er~2)
t e n s e (s t r a n g l e ~ 0 , p a s t)
n u m (h o m e r~ 2 ,s g)

TENSE PAST

The C F G c-structure parser output is evaluated against the original 100 gold standard ATIS

trees, and the f-structures are evaluated against the hand-crafted gold standard of f-structures for

the 100 sentences from the A TIS corpus described above. I also carry out a CCG -style (Hocken-

maier, 2003b) evaluation where I automatically generate f-structures for the entire A TIS corpus

from the original A TIS treebank trees and evaluate f-structures generated from the parser output

against these 578 “pseudo” gold standard f-structures in a 10-fold cross validation experiment.

Approximate randomisation statistical significance tests for the c-structures are performed

using Bikel’s script, 3 and for the f-structures the tests are performed using an approximate ran­

domisation test program developed by Stefan Riezler (p.c.) which uses the output of the triple

encoding and evaluation software of Crouch et al. (2002).

4.3.2 Experiments

I carried out two baseline evaluations. In the first evaluation (Table 4.1 (a)), I parse the raw

strings for the 100 A TIS sentence gold standard with Bikel’s parser (trained on Penn-II Treebank

Sections 02-21) and pass the parser output to the automatic f-structure annotation algorithm of

Cahill et al. (2004) to generate f-structures. I then evaluate the c-structure parse trees against

the original treebank trees, and the automatically generated f-structures against the hand-crafted

3http://www.cis.upenn.edu/~dbikel/software.html

66

http://www.cis.upenn.edu/~dbikel/software.html

gold standard f-structures. In the second evaluation (Table 4.1 (b)), I parse the raw strings for the

entire A TIS corpus (again with Bikel’s parser trained on Penn-II Treebank Sections 02-21), and

pass the parser output to the automatic f-structure annotation algorithm to generate f-structures.

The parse trees are evaluated against the original A TIS treebank trees, and the f-structures are

evaluated (C C G -style) against automatically generated f-structures for the 578 gold standard

A TIS trees.

(a)

100 Gold Standard Precision Recall F-Score

Trees (labelled bracketing) 73,77 67.05 70.25

F-Structures A ll GFs 82.17 67.41 74.06

Preds-only 70.33 56.97 62.95

(b)

578 A TIS Precision Recall F-Score

Trees (labelled bracketing) 75.49 67.77 71.424

F-Structures A ll GFs 81.23 80.29 80.76

Preds-only 69.27 67.02 68.13

(c)

D C U 105 Precision Recall F-Score

Trees (labelled bracketing) 86.56 85.59 86.07

F-Structures A ll GFs 83.45 78.95 81.14

Preds-Only 76.32 72.0 74.10

Table 4.1: Results for baseline experiments

4Note that the parsing result here for Bikel’s parser using a grammar trained on WSJ Sections 02-21 of the Penn-II
Treebank is slightly higher than that shown in Table 3.2 (f-score 69.94). This is because here Bikel’s parser is used
using slightly different settings which do not emulate Collins’ Model 2 as closely as in the previous evaluation. The

67

Table 4.1 gives the results for the two experiments described above. Table 4.1 (a) shows the

evaluation against the 100 sentence A TIS hand-crafted f-structure gold standard. Compared to

the results for the Penn-II W SJ Section 23-based D C U 1055 evaluation in Table 4.1 (c), the Penn-

II Treebank-based L F G parsing resources of Cahill et al. (2004) show a significant drop in both

the tree- and f-structure-based analysis scores for the A TIS material. The c-structures output by

the parser show an f-score around 16% less than in the in-domain (Section 23-based) evaluation

for the same parser (Bikel trained on Sections 02-21 of the Penn-II Treebank). Likewise the f-

structure evaluation has suffered, with the preds-only f-score over 1 1 % lower than on in-domain

data. The C C G style evaluation in Table 4.1 (b), shows an all grammatical functions f-score of

80.76%, but a preds-only f-score of 68.13%.6

settings file b i k e l . p r o p e r t i e s distributed with Bikel’s parser contains some extra settings for pruning, which
do not appear in the settings file c o l l i n s . p r o p e r t i e s which is used to make the parser emulate Collins’ parser.

5http://nclt.dcu.ie/gold 105.txt
6The CCG-style evaluation scores against the automatically generated f-structures for “perfect” treebank trees are

difficult to compare with the hand-crafted DCU 105 gold-standard scores. The important comparison here is with the
retraining results in Table 4.3

68

http://nclt.dcu.ie/gold

Dependency Precision Recall F-Score

A DJU NCT 159/258=62 159/353=49 55

COM P 0/5=0 0/3=0 0

COORD 15/23=65 15/24=62 64

DET 56/64=88 56/70=80 84

FO CU S 9/9=100 9/33=27 43

OBJ 172/206=83 172/216=80 82

O b j 2 17/18=94 17/18=94 94

OBL 1/2=50 1 /1 2 = 8 14

OBL2 0 /0 = 0 0/5=0 0

POSS 1 /1 = 1 0 0 1/1 = 1 0 0 1 0 0

QUANT 2/16=12 2/6=33 18

RELM OD 9/13=69 9/16=56 62

SUBJ 10/27=37 10/17=59 54

T O PIC R E L 10/27=37 10/17=59 45

XCOM P 23/33=70 23/46=50 58

Table 4.2: Dependency annotation results for selected features in the 100 sentence evaluation

Table 4.2 shows a more detailed analysis of the f-structure evaluation in Table 4.1 (a) for

selected features. The table shows that in particular for features such as FO CU S, which indi­

cates the role corresponding to the answer of the question, and TO PICR EL, which indicates the

relativised constituent in a relative clause, the performance is quite low. The FOCUS relation in

particular is important to analyse correctly in questions (Harabagiu et al., 2000b).

W hile the precision for FOCUS relations is very high (100%), the recall is very low. Both

precision and recall for TOPICREL relations are quite low. This indicates that, as it stands,

69

the Penn-II Treebank-based L F G parsing system is not well suited to analysing questions and

performance has suffered substantially as a result of the change in domain.

The drop in performance can be attributed to the domain variance, but the question re­

mains as to which module in the pipeline parsing architecture in Figure 4.1 (c-structure parser,

f-structure annotation algorithm or L D D resolution) is underperforming due to the change in

domain. It may even be a combination of components? We can narrow the possibilities down to

two of the three modules shown in Figure 4.1. 7 Either the c-structure parser is underperforming

and consequently the annotation algorithm is unable to generate sufficiently good f-structures

from the bad c-structures, or the annotation algorithm is incomplete with respect to the domain

variance.

The results in Table 4.1 have shown that the c-structure parser performance has dropped

by almost 16% as a result of the domain variance. Previous work (Gildea, 2001; Clark et al.,

2004) and my experiments in Chapter 3 have shown that parser performance can be boosted

through retraining with appropriate in-domain data. In order to to determine the influence of the

c-structure parser as a contributing factor to the drop in performance for the automatic f-structure

annotation algorithm, I carry out experiments using a c-structure parser retrained on Penn-II and

A TIS material.

4.4 Retraining Experiments

In order to improve the performance of the c-structure parser on A TIS sentences I created an

extended training set for the parser. This new, larger, training set consisted of Sections 02-21 of

the Penn-II Treebank W SJ (the original training data) and the A TIS corpus less the 100 randomly

selected sentences in the gold standard. I then retrained the parser on this new training set, and

repeated the parsing and annotation experiments in Section 4.3.

7Testing on the long distance dependency resolution module showed that problems with LDD resolution were
directly related to bad c-structure parsing. Manual inspection revealed that sentences with bad LDD resolution also
had a bad c-structure tree, and that fixing the c-structure tree resulted in correct LDD resolution.

70

In the second (C C G -style) evaluation I generate c-structures for each of the 578 A TIS sen­

tences by retraining the parser and parsing using a 1 0 -fold cross-validation experiment with

90%: 10% training:test splits over the A TIS corpus, and adding the 90% A TIS training set to

Sections 02-21 of the Penn-II Treebank W SJ for training. Parser output for unseen data is gen­

erated for all 578 sentences in this way. The parser output c-structures are then passed to the

f-structure annotation algorithm and LDD-resolution and the f-structures are evaluated against

automatically generated f-structures from the original A TIS trees.

(a)

100 Gold Standard Precision Recall F-Score D iff

Trees (labelled bracketing) 88.03 78.78 83.14 +12.89

F-Structures A ll GFs 88.04 79.10 83.33 +9.27

Preds-only 80.17 73.66 76.77 +13.82

(b)

578 A TIS (Cross-validation) Precision Recall F-Score D iff

Trees (labelled bracketing) 80.66 92.26 86.07 +14.65

F-Structures A ll GFs 87.27 88.97 8 8 . 1 1 +7.35

Preds-only 80.21 80.81 80.51 +12.38

Table 4.3: Results for experiments with retrained grammar for the 100 sentence hand-crafted

gold standard (a) and for C C G -style automatically generated gold-standard with a

1 0 -fold cross validation (b).

Tables 4.3 (a) and (b) give the results of evaluating c-structures and f-structures generated

with Bikel’s parser retrained as described above. Evaluating against the 100-sentence A TIS gold

standard, the c-structure f-score has increased by almost 13% to 83.14. The quality o f the f-

structures has also increased with an improvement of almost 14% in the preds-only f-score, to

76.77%. The performance over the whole corpus, in the CCG -style experiment against automat­

ically generated f-structures for the original 578 treebank trees, has increased correspondingly,

with the c-structure f-score increasing by over 14% to 86.07, and a preds-only evaluation of the

f-structures gaining over 1 2 % to achieve an f-score of 80.51.

The results in both evaluations show a considerable increase over the corresponding baseline

scores in Table 4.1. This increase in performance of the c-structure parser and the automatic f-

structure annotation algorithm is statistically significant for both evaluations with p-values of

9.999 x 10~ 5 for both c- and f-structures in the evaluation on the 100 sentence A TIS gold

standard evaluation, and also on the CCG -style evaluation.

When compared with the baseline results for the Penn-II treebank-based D C U 105 in Table

4.1 (c), the improved results on the A TIS data (after retraining) are slightly better than the scores

for the D C U 105. Both f-structure evaluations with both preds-only and all grammatical func­

tions are higher for the 100 A TIS sentence gold standard after parser retraining than the D C U

105 result in Table 4.1. The cross-validation results for the whole A TIS corpus are higher again;

though since the “ gold-standard” for the evaluation was automatically generated (C C G -Style)

for this test, it is not directly comparable with the D C U 105 result.

72

s

Dependency Precision Recall F-Score D iff

ADJUNCT 229/292=78 229/324=71 74 +19

COMP 0/4=0 0/3=0 0 -

COORD 16/24=67 16/24=67 67 +3

DET 67/66=92 61/70=87 90 +6

FOCUS 23/23=100 23/33=70 82 +39

OBJ 193/223=87 193/216=89 88 +6

OBJ2 17/17=100 17/18=94 97 +3

OBL 1/1=100 1/12=8 15 +1

OBL2 0/0=0 0/5=0 0 -

POSS 1/1=100 1/1=100 100 -

QUANT 2/16=12 2/6=33 18 -

RELMOD 14/19=74 14/16=88 80 +18

SUBJ 75/89=84 75/133=56 68 +14

TOPICREL 14/19=74 14/17=82 78 +33

XCOMP 25/30=83 25/46=54 66 +12

Table 4.4: Dependency annotation results for selected features in the 100 sentence evaluation

Table 4.4 shows a more detailed analysis o f the evaluations in Table 4.3 (a) for a number of

features. Compared to Table 4.2 the table shows that the retraining has had no negative effect

on any of the features. The majority of features have improved in terms of both precision and

recall.

The largest increase from the previous figures is for the features FOCUS and TO PICREL.

These are important features necessary for analysing questions correctly. Note that recall for

FOCUS has increased dramatically to 70% while precision has stayed the same at 100%. The

73

TOPICREL relation on the other hand gained substantially in terms of both precision and recall.

4.5 Further Evaluations and Backtesting

The experiments presented in this chapter and in Chapter 3 have shown that domain varia­

tion causes state-of-the-art treebank-based probabilistic resources such as the parsers o f Collins

(1999), Chamiak (2000) and Bikel (2002) and the pipeline f-structure parsing architecture of

Cahill et al. (2004) to under-perform resulting in poor quality c- and f-structure analyses. How­

ever, we have also seen that this underperformance can be remedied relatively easily through

retraining on appropriate data from the new domain. In fact, only the c-structure parser needs to

be retrained to improve the quality o f analysis at both c- and f-structure level.

These findings raise a number of important research questions:

• What is the limit to which retraining can improve the results?

• How much training data is really needed?

• The A TIS corpus is a mixed corpus of question and non-question data, does this break­

down skew the results?

• What effect does retraining have on performance in the original domain (Penn-II Tree-

bank)?

I address these questions in the sections below.

4.5.1 Upper Bound Estimation

The experiments so far indicate that the annotation algorithm of Cahill et al. (2004) is complete

with respect to the strong domain variation encountered in the experiments on A TIS data. But

this raises the question of what the upper bound for the automatic f-structure annotation of A TIS

trees is.

74

In order to estimate an upper bound for the automatic f-structure annotation algorithm, I took

the original A TIS treebank trees for the 100 sentences in the gold standard and automatically

annotated them to produce f-structures (thereby removing the c-structure parser and f-structure-

based L D D resolution margins of error). These f-structures were then evaluated against the

hand-corrected f-structures in the gold standard. In this evaluation the all grammatical func­

tions f-score is 92.80 and the preds-only f-score is 89.88 (Table 4.5). These results are roughly

comparable to a similar estimation experiment on the Penn-II Treebank Section 23-based D C U

105.

100 ATIS

F-Score

D C U 105

F-Score

A ll GFs 92.80 96.93

Preds Only 89.88 94.28

Table 4.5: Upper bound for gold standard trees

The A TIS upper bound result reemphasises the earlier finding that improving the c-structure

parsing is sufficient to improve the overall performance of the f-structure annotation algorithm

significantly, and can be used to adapt the overall text-to-f-structure parsing system to data from

outside of the domain on which it was originally developed. This is quite a surprising result, as

the annotation algorithm of Cahill et al. (2004) was not modified in any way. The annotation

principles used by the annotation algorithm were developed based on Penn-II Treebank data so

the expectation was that the upper bound on out-of-domain data would be drastically lower than

that from Penn-II Treebank data. One possible explanation for the surprising robustness of the

f-structure annotation algorithm (given out-of-domain data but good c-structure analysis) may

be that compared to c-structure, f-structure is a deeper, more abstract and “ normalised” level of

representation of linguistic information, less affected by domain variation. Even though there are

very few direct questions in the original Penn-II data, the left-right context annotation matrices of

75

the f-structure annotation algorithm (c.f. Section 2.3.3) contain sufficient information to annotate

S B A R Q and SQ constituents appropriately in question trees.

The upper bound results for the 100 A TIS sentence f-structure gold standard when compared

with the results on the same test set with the retrained parser in Table 4.3 show that there is a

further 9.47% f-score that can be gained in the all grammatical functions evaluation through

improving parser output and another 13.11% f-score to be gained in the preds-only evaluation.

Speculating somewhat and taking the D C U 105 results as a yard stick, the results indicate

that “perfect” c-structure parsing improves all grammatical functions f-score by approximately

9.5% and preds-only by approximately 13%. Part of the remaining 4% (approx.) difference

between the A TIS and D C U 105 scores can potentially be bridged by improvements in the f-

structure annotation algorithm to tune the algorithm to A TIS data. The upper bound tests indicate

that the f-structure annotation algorithm is, in fact, less complete for A TIS data than for Penn-II

material. One major factor is the high proportion of FR A G and X constituents in A TIS data for

which the annotation algorithm currently does not provide annotations.

4.5.2 Ablation Experiments

We have seen above that adding a (relatively) small amount of domain appropriate material to the

training set for the c-structure parser has resulted in quite significant gains for both c-structure

and f-structure analyses of A TIS sentences. Previous work by Gildea (2001) has shown that a

large amount o f additional data makes little impact if it is not matched to the test material. With

this in mind one can wonder if, due to its relative size, the Penn-II Treebank W SJ material in the

training set for the parser might constitute such a large amount of redundant additional data.

In order to test this, I carried out a number of ablation experiments using the automatically f-

structure annotated 578 A TIS trees as gold standard in a CCG -style experiment, where I evaluate

c-structures and f-structures, while reducing the amount of Penn-II Treebank material in the

parser's training set. The graphs in Figures 4.2 and 4.3 show the effect forevaluations against the

entire A TIS corpus in a series of 10-fold cross validation experiments, in which the training set

76

for the parser consists o f 90% of the ATIS corpus and a varying (randomly selected) percentage

of the Penn-11 Treebank.

100.

05

70

^

« n

X"

- a

*

90 80

+ + +

X------ x -------X- - x ---X — -x—
- o ------- G --------B ------B ----G □ — H P

* **** *

Cov*fag* - f ■
F S co ro A IQ f* - X " -

FSccto Prods orty ^
iSeo«« Tr*o* - 0 -

70 «0 50 40
P*rc*«tt0* 0« P « w l l WSJ addod

» 10

Figure 4.2: Reducing Penn-II Treebank content (90%-10% of sections 02-21 WSJ, 10-fold cross

validation with 90%: 10% ATIS splits, CCCi-style experiment).

77

too

95

■ H

¿ y

80

75

70

X -

Q -

X

- X

B -
X

X *

■Q— B -

X X

H----- -

X ~

B -

- * ---------
— B — — Q -

X X X

C ovaraga ■ j
FScwoAIGF*

FSoy» ProO» orty X
FScor* Tre*j Q -

6 5 «
Percentage 0I Pom ll WSJ *M<xJ

Figure 4.3: Reducing Penn-II Treebank content (9 % - l % of sections 02-21 W SJ, 10-fold cross

validation with 90%: 10% AT1S splits, CCG-style experiment).

The graphs show that reducing the amount of Penn-II Treebank WSJ material in the train­

ing set adversely affects the overall performance. Grammar coverage, c-structure parsing and

f-structure annotation all suffer to varying degrees. Both c-stmcture and f-structure evaluations

start to decline when less than 70% of Sections 02-21 of the Penn-II Treebank is included in the

training set. Grammar coverage proves to be less affected in this case: it does not decline until

the amount of WSJ training material falls below 20%. Nevertheless, the system is capable of

achieving coverage in the region of 99%, a c-structure f-score of over 85%, and f-structure f-

scores of over 8 8 % (all grammatical functions) and over 82% (preds-only), when the c-structure

parser is trained on 90% of the ATIS corpus and only 10% of the Penn-11 Treebank. It is in­

teresting to note that the small variations seen in Figures 4.2 and 4.3 are for the mast part only

statistically significant for the c-structure parser. While the differences between adjacent runs

start to become statistically significant for the c-structure parsing when the Penn-II Treebank

material is below 70% of the whole, it is only when the Penn-II Treebank material is reduced

below 1 0 % that the differences in the f-structure evaluations are statistically significant.

78

These results show that while the additional Penn-II Treebank material is contributing only

a small amount to the performance on A TIS material, the full set o f Penn-II Treebank training

material (Sections 02-21) is strictly speaking unnecessary and not making any significant con­

tribution to the results. This is similar to what was observed in Chapter 3, where by and large

c-structure parsing results did not change dramatically when Penn-II Treebank data was added

to the A TIS training set. It also suggests that f-structure representations are less affected by the

change in the training data than the c-structures, despite the fact that they are derived from them,

implying that the automatic f-structure annotation algorithm is more robust and domain neutral

than the c-structure parser.

4.5.3 Question vs. Non-Question Breakdown of Results

The A TIS corpus contains both question and non-question data. The 100-sentence gold standard

is taken randomly from the A TIS corpus and comprises both question and non-question sen­

tences. Table 4.6 shows the breakdown of the upper bound (established following the procedure

detailed in Section 4.5) for both question and non-question sentences in the gold standard.

Non-question Question

A ll GFs 94.82 90.77

Preds-only 92.94 86.81

Table 4.6: Question and non-question f-score upper bounds

The upper bound breakdown shows a slight leaning towards a higher upper bound for non­

question sentences, but the upper bound for questions is still quite high. To establish if there is

a bias towards non-question data, I evaluated the question vs. non-question breakdown of the

evaluations for parsing the 100 sentence gold standard before and after retraining on A TIS data.

Table 4.7 gives the breakdown of the scores for question and non-question sentences in the

1 0 0 sentence gold standard parsing evaluations.

79

W SJ Trained W SJ + A TIS Trained

Non-Question Question Non-Question Question

J F-Score F-Score F-Score D iff F-score D iff

Trees 74.75 61.92 80.55 +5.8 88.35 +26.43

A ll GFs 77.40 70.52 82.62 +5.22 84.38 +13.86

Preds-only 68.96 54.12 76.28 +7.32 77.56 +23.44

Table 4.7: Question and non-question scores for the annotation algorithm

The breakdown in Table 4.7 clearly shows the effect o f both the domain variance and the

retraining in the earlier experiments. The left side of the table shows the breakdown for the

baseline experiments before the parser was retrained. In this experiment it is clear that both the c-

structure parser and the f-structure annotation algorithm are underperforming more on questions

compared to non-question sentences. The right side of the table shows the same breakdown, but

for the experiments with the parser retrained on both Penn-II Treebank W SJ and A TIS sentences.

It is clear that this retraining has been of benefit to both the c-structure and f-structure evaluations

for the questions in particular. The c-structure tree evaluation has improved significantly by over

26% with an f-score of 88.35, likewise the f-structure evaluations have improved for evaluations

of all grammatical functions and preds-only, improving by 13.86% and 23.44% respectively.

Significance testing on these results gives a p-value in the region of 9.999 x 10“ 5 for each

evaluation. It is also interesting to note that none of the scores have decreased as a result of this

retraining; the results for the non-question sentences have also improved significantly, albeit to

a lesser extent (p-values in the region of 0.001).

The breakdown of results in Tables 4.6 and 4.7 shows that while the upper bound estimates

in Table 4.6 show a higher result for non-question data in the test set, when the parser is retrained

with a combination of Penn-II Treebank data and A TIS data the scores are higher for the question

data than the non-question data. This is interesting as the upper bound estimates (Table 4.6)

80

show the opposite result to what the retraining experiment shows. A possible explanation is that

retraining with the ATIS data in the training set (while improving A TIS non-question scores) has

a far greater beneficial effect on the question data than on the non-question data in the test set.

4.5.4 Backtesting

The experiments above show that retraining the c-structure parser for the new domain has al­

lowed the treebank-based L F G resources of Cahill et al. (2004) to be adapted to a new domain

and achieve similar f-scores in c - and f-structure evaluations on data from a new domain com­

pared to in-domain results. In order to ensure that this retraining process has not adversely

affected the overall system performance, I back-tested the retrained parser with the annotation

algorithm on sentences from the original W SJ domain, the D C U 105 gold standard. I parsed the

105 sentences with each of the 10 retrained grammars from the 10-fold cross validation experi­

ment in Section 4.4, then evaluated both c- and f-structures against the D C U 105 gold standard.

The averaged results are shown in Table 4.8 (b), along with the results for the grammar trained

only on sections 02-21 of the Penn-II Treebank in the same evaluation (a).

W SJ 02-21 trained Precision Recall F-Score

Trees 86.56 85.59 86.07

F-Structures A ll GFs 83.45 78.95 81.14

Preds-Only 76.32 72.0 74.10

a)

W SJ 02-21 + 90% A TIS trained Precision Recall F-Score

Trees 87.05 86.10 86.57

F-Structures A ll GFs 83.92 79.34 81.56

Preds-Only 77.32 72.85 75.02

(b)

Table 4.8: Results for backtesting retrained grammar and baseline grammar on D C U 105

81

The results show that the retraining process has resulted in no loss of accuracy at either c-

or f-structure level. The scores on the D C U 105 have in fact improved slightly as a result of

the retraining; however the improvements, when tested, were not statistically significant. This

indicates that there has been no significant negative effect on the L F G parsing resources of Cahill

et al. (2004) on Penn-II W SJ material as a result of retraining the c-structure grammar to adapt

the treebank-based L F G resources to a new domain.

Comparing the results in Tables 4.8 (b) and 4.3 (a) shows that although the retrained parser

has a lower c-structure f-score for the 100 A TIS sentence test set than for the D C U 105 evalua­

tion, the f-structure evaluation results are higher. This somewhat unusual result can perhaps be

explained by the presence of relatively small errors in the c-structure trees, e.g. labelling S B A R Q

and SQ nodes incorrectly in questions, which do not affect the overall structure of the tree but

which, because of the short sentence length in the A TIS data, can have a large impact on the

labelled bracketing c-structure evaluation. These types of errors may sometimes be masked in

f-structure, resulting in a better result in the f-structure evaluations. Further research is required

to investigate this question.

4.6 Conclusion

This chapter has shown that similar to c-structure analysis, automatic f-structure annotation is

adversely affected by domain variance. The pipeline model of Cahill et al. (2004) suffers a

performance drop when tested on the A TIS corpus. Analysis o f the results shows that features

such as F O C U S , which Harabagiu et al. (2000b) identify as being very important to question

analysis, and T O P IC R E L are not annotated very well by the baseline system.

Domain variance effects like this have been studied before by Gildea (2001) and Clark et al.

(2004). This chapter presents work on deeper linguistic representations, f-structures, and how

domain variance affects f-structure analysis as well as c-structure analysis. The experiments in

Sections 4.3 and 4.4 show that both are adversely affected by domain variance, but that only the

82

c-structure parser needs to be retrained to statistically significantly improve the performance of

the overall system on A TIS data. This suggests that the more abstract f-structure representations

are less subject to domain variation since the Penn-II Treebank-based automatic f-structure an­

notation algorithm needed no modification to cope with the new domain, once the c-structure

parser had been retrained.

The experiments show that the Penn-II Treebank-based automatic f-structure annotation al­

gorithm of Cahill et al. (2004) is general enough to cope with the domain variation observed here

without modification: given high-quality c-structure trees, it can achieve a high upper bound for

ATIS of 92.8% all grammatical functions and 89.88% preds-only for A TIS data, comparable

to the upper bound for the automatic f-structure annotation algorithm on the Penn-II Treebank

W SJ Section 23-based D C U 105. There is a provisio, however: given that the A TIS data con­

tains many FR A G and X constituents, for which the f-structure annotation algorithm currently

does not generate f-structures, there is more work to be done in order to properly handle this

kind of data. The presence of FR A G and X constituents in the A TIS data may also explains the

higher f-score result o f 86.57% for c-structure trees for the retrained parser when tested on the

D C U 105 versus 83.14% when tested on the A TIS 100 sentence gold standard.

Ablation experiments on the Penn-II Treebank W SJ component o f the parser’s training set

show that, for tests on A TIS data, a large proportion of the Penn-II data is unnecessary and

redundant in the parser’s training corpus.

Investigating the question and non-question breakdown of the experimental results in this

chapter shows that in the baseline evaluation the system suffers a worse drop in performance

on question data than non-question data in both c-and f-structure evaluations. Retraining the c-

structure parser with A TIS data to improve performance boosts the performance on both question

and non-question data, giving a statistically significantly better result in both c-and f-structure

evaluations of the whole system.

Importantly, experiments with the retrained (Penn-II + A T IS) grammar show that the re­

trained grammar, which gives high results for c- and f-structures for A TIS data, also produces

83

good results when back-tested in the original domain. An evaluation of the retrained system

against the Penn-II Treebank Section 23-based D C U 105 shows no negative effects on the c-

structure parsing or f-structure annotations as a result o f the retraining. The results are in fact

higher than the original, though not statistically significantly so.

In summary, this chapter has built upon the domain variation experiments of Chapter 3,

looking at the effects of domain variation on deeper linguistic representation in the form of

L F G f-structures. The domain variation is evident at both c- and f-structure level particularly

affecting the analysis o f question specific dependencies such as F O C U S . To counter the drop

in performance due to the domain variation only the c-structure parser needs retraining. This

indicates that the automatic f-structure annotation algorithm of Cahill et al. (2004) is complete

with respect to the domain variation observed here, and suggests that f-structures are a more ab­

stract linguistic representation better able to cope with domain variance issues than c-structures.

Adapting the f-structure pipeline parsing architecture of Cahill et al. (2004) in this way to cope

with the new domain (A T IS) has no negative effects in the original domain.

84

Chapter 5

Creating a Question Treebank

5.1 Introduction

In Chapters 3 and 4 ,1 have shown that retraining on a small amount o f question data improves

question analysis of both c- and f-structures. The upper bound estimations in Chapter 4 show

that the existing retraining resources (the A TIS corpus) are insufficient in terms of both its size

and content to achieve optimal results in question parsing. Parse-annotated corpora (treebanks)

are crucial for developing machine learning- and statistics-based parsing resources for a given

language or task. Large treebanks are available for major languages, however these are often

based on a specific text type or genre, e.g. financial newspaper text (the Penn-II Treebank

(Marcus et al., 1994)). This can limit the applicability o f grammatical resources induced from

treebanks since such resources often underperform when used on a different type of text or for a

specific task.

This chapter presents work on creating QuestionBank, a treebank of 4000 parse-annotated

questions following Penn-II Treebank Annotation guidelines (Bies et al., 1995), which can be

used as a supplementary training resource allowing parsers to accurately parse questions (as well

as other text). Alternatively, the resource can be used as a stand-alone training corpus to train

a parser specifically for questions. In either case, the resource w ill be useful in training parsers

85

for use in question answering (Q A) tasks, and also provide a means for evaluating the accuracy

o f these parsers on questions.

Section 5.2 provides the background and motivation for this work. The raw data sources for

QuestionBank are described in Section 5.3. In Section 5.4, I describe the process of creating

the question treebank and provide some statistics on the development o f the corpus. Section 5.5

summarises and concludes.

Part of this work has been published in Judge et al. (2006).

5.2 Background and Motivation

High quality probabilistic, treebank-based parsing resources can be rapidly induced from appro­

priate training material. However, treebank- and machine learning-based grammatical resources

reflect the characteristics o f the training data. They generally underperform on test data substan­

tially different from the training data.

Work on retraining parsers to cope with domain variance was first studied by Gildea (2001)

who retrained his parser with appropriate material to improve performance in the new domain.

M y experiments in Chapter 3 have shown that an even greater performance drop than that ob­

served by Gildea occurs in instances of more extreme domain variance (Penn-II to A TIS). Clark

et al. (2004) created a “ W hat...? ” question corpus for retraining a C C G supertagger which im­

proves C C G parsing considerably. However, as it stands, the work is limited to one particular

type of questions.

The question treebank described here is considerably larger than the “ what” question corpus

of Clark et al. (2004). It is intended to be used as a general training and evaluation resource for

parsers used in the analysis o f questions. In order to make it a representative question corpus,

it contains a variety of question types (who, what, where, when, how, etc.) and is comprised of

data from more than one source.

86

5.3 Data Sources

The raw question data for QuestionBank comes from two sources, the National Institute of

Standards and Technology (N IS T) Text Retrieval Conference (T R E C) 8-11 Q A track test sets,1

and a question classifier training set2 produced by the Cognitive Computation Group (C C G) at

the University of Illinois at Urbana-Champaign. I used equal amounts of data (2000 questions)

from each source so as not to bias the corpus to one or the other data source.

The questions in QuestionBank range between 2 and 32 words in length (ignoring punc­

tuation) with an average length of around 8.5 words and a standard deviation of almost 3. A

breakdown of the 4000 questions in QuestionBank by W H-w ord type is shown in Table 5.1.

Question Word Frequency Percentage of the whole

What 2294 57.35

How 480 12.00

Who 455 11.38

Where 243 6.08

When 200 5.00

Which 77 1.93

(Name) 62 1.55

W hy 48 1.20

(Define) 3 0.08

(List) 2 0.05

Other 136 3.40

Table 5.1: Breakdown of the 4000 Questions in QuestionBank by W H-w ord

The 136 questions in the “ Other” category in Table 5.1 fall into three general categories,

' http://trec.nist.gov/data/qa.html
2http://12r.cs. uiuc.edu/ cogcomp/tools .php

87

http://trec.nist.gov/data/qa.html
http://12r.cs

examples are listed below. They are either inverted questions (1), W HPP fronted questions (2),

NP topicalised questions (3), or other imperatives (4) and (5) not listed in Table 5.1.

1. Logan International serves what city?

2. On which Hawaiian island is Pearl Harbour?

3. The sun’s core, what is the temperature?

4. Describe the Finnish music personality Salonen’s appearance.

5. Tell me what city the Kentucky Horse Park is near?

5.3.1 TREC Questions

The T R E C competitions (Voorhees, 2001) have become the standard evaluation for Q A systems.

T R E C Q A test sets consist primarily o f fact seeking questions with some imperatives which

request information, e.g. “List the names of cell phone manufacturers.” In the corpus I have

included 2000 T R E C questions, the test questions for the 1999, 2000, 2001 and 2002 T R E C Q A

track (totaling 1893 questions) and 107 questions from the 2003 T R E C Q A track test set.

The first T R E C Q A test questions (1999) came from a four sources, T R E C Q A participants,

the N IS T T R E C team, the N IS T assessors and question logs from the FA Q Finder system (Burke

et al., 1997). The different sources provided different kinds of questions as each source had their

own motivation for the questions asked. The T R E C Q A participants and N IS T staff (experts

on Q A) were able to select “ interesting” and challenging questions, the assessors represent a

general user’s point of view and the FA Q Finder logs represent real questions posed to a Q A

system. Subsequent test sets for T R E C Q A tasks have been created in a similar manner, sourcing

questions from domain experts and real life query logs.

The C C G provide a number of resources for developing Q A systems. One of these resources

is a set o f 5500 questions and their answer types for use in training question classifiers (L i and

Roth, 2002). The 5500 questions were stripped of answer type annotation, duplicate questions

(both within the 5500 and duplicates of T R E C questions) were removed and 2000 questions

were included in the question treebank.

The C C G questions are classified according to a two-tier classification, a coarse grained

classification (e.g. L O C A T IO N) is assigned, as well as a fine grained classification (e.g. C IT Y),

resulting in a total of 50 classes. A breakdown of the C C G question data by coarse classes is

given in Table 5.2.

5.3.2 CCG Group Questions

Class Frequency Percentage of the whole

Abbreviation 36 1.8

Entity 376 18.8

Description 552 27.6

Human 260 13

Location 324 16.2

Numeric 452 22.6

Table 5.2: Breakdown of 2000 C C G questions by question class

Similar to the T R E C questions, the 5500 C C G questions come from a number of sources

and some of these questions contain minor grammatical mistakes so that, in essence, this corpus

is more representative of genuine questions that would be put to a working Q A system. A

number of changes in tokenisation were carried out (e.g. separating contractions), but the minor

grammatical errors were left unchanged because I believe that it is necessary for a parser for

question analysis to be able to cope with this sort o f data if it is to be used in a working Q A

89

system.

5.4 Creating QuestionBank

I used a bootstrapping method to create the question treebank. As the treebank grows, the parser

trained on the growing treebank becomes more accurate and the human annotator(s) should need

to do progressively less manual correction work and the whole process speeds up.

5.4.1 Bootstrapping a Question Treebank

The algorithm used to generate the question treebank is an iterative process of parsing, manual

correction, retraining, and parsing.

Algorithm 1 Induce a parse-annotated treebank from raw data

repeat
Parse a new section of raw data
Manually correct errors in the parser output
Add the corrected data to the training set
Extract a new grammar for the parser

until A ll the data has been processed

Algorithm 1 summarises the bootstrapping algorithm. A section of raw data is parsed. The

parser output is then manually corrected, and added to the parser’s training corpus. A new gram­

mar is then extracted, and the next section of raw data is parsed. This process continues until all

of the data has been parsed and hand corrected. The parser used to process the raw questions

prior to manual correction was that of Bikel (2002)3, a retrainable emulation of Collins (1999)

Model 2 parser. B ikel’s parser is a history-based parser which uses a lexicalised generative

model to parse sentences. I used W SJ Sections 02-21 of the Penn-II Treebank to train the parser

for the first iteration of the algorithm. The training corpus for subsequent iterations consisted of

the W SJ material and increasing amounts of processed questions.

downloaded from Daniel Bikel’s website at the University of Pennsylvania,
http://www.cis.upenn.edU/~dbikel/software.html#stat-parser

90

http://www.cis.upenn.edU/~dbikel/software.html%23stat-parser

In the first iteration of the bootstrapping algorithm 200 questions were parsed. This increased

over the course of the development of the treebank; the final iteration ran with 500 questions

being parsed.

5.4.2 Corpus Development Statistics

QuestionBank was created over a period of three months at an average annotation speed of

about 60 questions per day. This is quite rapid for treebank development, e.g. a corpus of a

similar number of Spanish sentences (C iv it and Marti, 2004) took approximately 15 months

to create. The speed of the process was helped by three main factors: unlike the Cast3LB

Spanish treebank, I used existing annotation guidelines (Bies et al., 1995) instead of developing

my own treebank annotation; the questions are generally quite short (typically about 10 words

long) compared to sentences in general newspaper text (Table 3.1) and, due to retraining on

the continually increasing training set, the quality o f the parses output by the parser improved

dramatically during the development of the treebank, with the effect that corrections during the

later stages were generally quite small and not as time consuming as during the initial phases of

the bootstrapping process.

For example, in the first week of the project the trees from the parser were of relatively poor

quality and over 78% of the trees needed to be corrected manually. This slowed the annotation

process considerably and parse-annotated questions were being produced at an average rate of

40 trees per day. During the later stages of the project this had changed dramatically. The quality

of trees from the parser was much improved with less than 20% of the trees requiring manual

correction. A t this stage parse-annotated questions were being produced at an average rate of 90

trees per day.

5.4.3 Corpus Development Error Analysis

Some of the more frequent errors in the parser output pertain to the syntactic analysis of W H -

phrases (W HNP, WHPP, etc). In Sections 02-21 of the Penn-II Treebank these are used more

91

often in relative clause constructions than in questions (Figure 5.1).

NP

strategic partnership

W HPP-4

IN W HNP

I I
in W DT

I
which

each com pany rem ains independent while

working together to m arket and sell their products

Figure 5.1 : Relative clause in an NP from the Penn-II Treebank

As a result, many of the corpus questions were given syntactic analyses corresponding to

relative clauses (SB A R with an embedded S) instead of as questions (S B A R Q with an embedded

SQ) as in Figure 5.2.

92

(a) SBAR (b) SBA RQ

W HNP

created DT NN

I I
the M uppets

W HNP

created DT NNPS

I I
the M uppets

Figure 5.2: Example tree before (a) and after correction (b)

Because the questions are typically short, an error like this has quite a large effect on the

P A R S E V A L (Black et al., 1991) score for the overall tree in terms of labelled precision, recall

and f-score as explained in Chapter 3, Section 3.4.1. In Figure 5.2, the f-score for the parser

output (a) would only be 60% if it was evaluated against the tree in (b). Errors of this nature

were quite frequent in the first section of questions analysed by the parser, but with increased

training material becoming available during successive iterations this error became less frequent.

Towards the end of the project it was only seen in rare cases.

W H -X P marking was the source of a number of consistent (though infrequent) errors during

annotation. This occurred mostly in PP constructions containing W HNPs. The parser would

output a structure like Figure 5.3(a), where the PP mother of the W H N P is not correctly labelled

as a W HPP as in Figure 5.3(b)

93

(a) PP (b) W H P P

IN W H N P IN W H N P

by WP$ N N by WP$ N N

whose authority whose authority

Figure 5.3: W H -X P assignment before (a) and after correction(b)

The parser output often had to be rearranged structurally to varying degrees. This was com­

mon in longer questions. A recurring error in the parser output was failing to identify VPs in

SQs with a single object N P In these cases the verb and the object NP were left as daughters of

the SQ node. Figure 5.4(a) illustrates this, and Figure 5.4(b) shows the corrected tree with the

V P node inserted.

(a) S B A R Q (b) S B A R Q

W H N P SQ W H N P SQ
i i

W P V P

Who V B eT ^ N P

I I
killed Ghandi

Figure 5.4: V P missing inside SQ with a single object N P (a) and correction (b)

W P V B D NP

I I I
Who killed Ghandi

On inspection, I found that the problem was caused by copular interrogative constructions,

which, according to the Penn-II annotation guidelines, do not feature V P constituents. Since

almost half of the question data contain copular constructions, the parser trained on this data

would sometimes misanalyse non-copular constructions or, conversely, incorrectly bracket cop­

ular constructions using a V P constituent (Figure 5.5(a)).

94

(a)

What .
,s a fear o f shadows

IS a fear of shadows

Figure 5.5: Erroneous V P in copular construction (a) and correction (b)

The predictable nature of these errors meant that they were simple to correct. This is due to

the particular context in which they occur and the finite number of forms of the copular verb.

5.5 Summary

In this chapter I have presented work on the creation of a corpus of 4000 parse annotated ques­

tions, QuestionBank. QuestionBank was created as a training and evaluation resource for proba­

bilistic and machine learning treebank-based parsers. The raw data used to create QuestionBank

came from Q A test sets (T R E C) as well as more varied sources (C C G question classifier corpus)

to give a representative question corpus.

In Chapter 6, I present a series of experiments to test the effectiveness of QuestionBank

for the task of training a parser to analyse question data and also test retrained parsers on non­

question data in W SJ Section 23 of the Penn-II Treebank. Chapter 7 presents work on complet­

ing QuestionBank by adding WH-traces to the trees.

95

Chapter 6

Experiments with QuestionBank

6.1 Introduction

In this chapter I present a number of experiments to test the effects o f training a parser on

QuestionBank versus the Penn-II Treebank, and on a combination of the two. The aim of the

experiments is (i) to test whether training on QuestionBank can lead to an improvement in ques­

tion parsing; (ii) to test if training on QuestionBank has negative effects on the parser’s ability to

parse non-question data (W SJ Section 23 of the Penn-II Treebank); (iii) to investigate if Ques­

tionBank is sufficiently large to be an effective training/evaluation resource for questions.

Section 6.2 briefly outlines the experiments. Section 6.3 describes the data used for the

experiments, the experiments themselves and the results and Section 6.4 summarises and con­

cludes.

T h e space o f p o ssib ilities fo r co m p arin g tra in in g and te st se ts eva lua ted in the b ase lin e and

cross validation experiments explored in this chapter is shown in the table below.

96

Test

Training
Penn Sect 23 QuestionBank (all) QB Cross Validation

Penn * *

QB Cross Validation * *

Penn + QB * *

Here training on Penn refers to training on Sections 2-21 of the Penn-II Treebank, Q B Cross

Validation to a 10-fold cross-validation training and testing on all of QuestionBank and Penn +

Q B to a 10-fold cross validation testing on QuestionBank and training on QuestionBank plus all

of Sections 2-21 of the Penn-II Treebank.

Part o f this work has been published in Judge et al. (2006).

6.2 Outline of Experiments

I carried out seven experiments in total, a baseline experiment, two cross-validation experiments

and five ablation experiments. In the cross-validation experiments I use all 4000 trees in the

completed QuestionBank as the test set. Ten-fold cross validation on the 4000 questions was

carried out using 90%/10% splits o f the data, with 90% training material and 10% test set. In

this way parser output for unseen data was generated for all 4000 questions in QuestionBank. In

the first cross-validation experiment, Cross-Validation 1 ,1 use only QuestionBank as a training

resource, in the second, Cross-Validation 2, I use QuestionBank and Sections 02-21 of the

Penn-II Treebank.

I performed ablation experiments to investigate the effect o f varying the amount o f ques­

tion and non-question training data on the parser’s performance. For these experiments I used

QuestionBank and Penn-II Treebank training material for the parser. The first ablation experi­

ment, Ablation 1, uses only QuestionBank, the second, third and fourth ablation experiments,

Ablation 2, Ablation 3 and Ablation 4, use QuestionBank and Sections 02-21 of the Penn-II

Treebank, Ablation 5 uses only Sections 02-21 of the Penn-II Treebank.

97

In all of the experiments I backtest the retrained parser on Section 23 of the Penn-II Treebank

to compare the performance on questions as well as on informative text.

6.3 Experimental Data

For the cross-validation experiments it was possible to use all 4000 questions in QuestionBank

as a gold standard against which to evaluate parser output. However, for the ablation experiments

this is not possible because a consistent test set is needed if the results from the different runs are

to be comparable. For the ablation experiments the 4000 questions were divided into two sets.

400 randomly selected trees were held out as a gold standard test set against which to evaluate,

the remaining 3600 trees were used as a training corpus.

The Penn-II Treebank material used for both the cross-validation and ablation experiments

was the standard training/test sets: W SJ Sections 02-21 were used as the training set and W SJ

Section 23 was used as the test set.

6.3.1 Establishing the Baseline

The baseline for my experiments is provided by Bikel’s parser trained on W SJ Sections 02-21

of the Penn-II Treebank. I test on all 4000 questions in QuestionBank, and also Section 23 of

the Penn-II Treebank.

QuestionBank W SJ Section 23

Coverage (%) 100 100

F-Score (%) 78.77 82.97

Table 6.1: Baseline parsing results

Table 6.1 shows the results for the baseline evaluations on both the question and non-question

test sets. W hile the coverage for both tests is high (100%), the parser underperforms consider­

98

ably on the question test set with a labelled bracketing f-score of 78.77% compared to 82.97% on

Section 23 of the Penn-II Treebank. This is a higher baseline result than in the A TIS evaluations

(Table 3.2), and is most likely because of the higher proportion of grammatically complete sen­

tences in QuestionBank, with only 10 sentences containing FR A G constituents in QuestionBank

compared to 230 in A TIS . It is doubtful that sentence length plays any part in the difference

in baseline scores between the two test sets as the average sentence length for QuestionBank

is 8.5 words, and 7 words for A TIS . Note that in my evaluations I include punctuation, which

is not included in the published results for Bikel’s parser.1 I include punctuation in my evalu­

ations as punctuation, e.g. commas, helps determine the structure of a sentence. The parsing

model of Collins (1999) places very little importance on punctuation, attaching it at a point in

the tree that places it between two non-terminals; Bikel (2002) similarly places little importance

on punctuation, attaching it as high in the tree as is possible (Figure B .l in Appendix B).

6.3.2 Cross-Validation Experiments

I carried out two cross-validation experiments to investigate the accuracy of a parser trained on

QuestionBank, and on QuestionBank plus Sections 02-21 of the Penn-II Treebank, when parsing

question data.

Cross-Validation 1: In the first experiment I perform a 10-fold cross-validation experiment

using the 4000 question treebank. In each case a randomly selected set o f 10% of the questions

in QuestionBank was held out during training and used as a test set and the parser was trained on

the remaining 90% of QuestionBank (only). In this way parses for unseen data were generated

for all 4000 questions and evaluated against the QuestionBank trees. Each of the ten grammars

is also back-tested on Section 23 of the Penn-II Treebank and the average scores are reported.

'Results for Bikel’s parser in the literature are often those for the parser when emulating Collins’ Model 2 . This
mode of operation includes specific optimisations for the Penn Treebank and pruning, which I do not use here. Also
when evaluating parser output, Bikel, following Collins ignores punctuation. In my evaluations I do not ignore
puntuation. The same evaluation carried out using the Collins Model 2 emulation settings file supplied with Bikel’s
parser gives f-scores of 81.77% for the 4000 QuestionBank questions and 86.23% for Section 23.

99

QuestionBank W SJ Section 23

Coverage (%) 100 98.79

F-Score (%) 88.82 59.79

p Value (Baseline) 9.999 x lC T 5 9.999 x 10"5

Table 6.2: Experiment Cross-Validation 1. Cross-validation experiment using the 4000 ques­

tion treebank

Table 6.2 shows the results for the first cross-validation experiment (Cross-Validation 1),

using only the 4000 sentence QuestionBank. Compared to Table 6.1 the results show a statis­

tically significant (p-value of 9.999 x 10_5) improvement of over 10% on the baseline f-score

for questions. However, the tests on the Section 23 data show not only a statistically significant

(p-value of 9.999 x 10-5) drop in f-score from 82.97% to 59.79% but also a drop in coverage

from 100% to 98.79%. So while the parser can achieve high accuracy and coverage on question

data, its ability to parse Section 23 data has suffered significantly.

Cross-Validation 2: The second cross-validation experiment was similar to the first, but in

each of the 10 folds I train the parser on 90% of the 4000 questions in QuestionBank and on

all of Sections 02-21 of the Penn-II Treebank. Again each of the extracted grammars is tested

against the 10% of QuestionBank held out, and against Section 23 of the Penn-II Treebank, and

average scores are reported.

100

Questions Backtest on Sect 23

Coverage (%) 100 Coverage (%) 100

F-Score (%) 89.75 F-Score (%) 82.39

p Value (Baseline) 9.999 x 10“ 5 p Value (Baseline) 0.0002

Table 6.3: Experiment Cross-Validation 2. Cross-validation experiment using Penn-II Tree-

bank Sections 02-21 and 4000 questions

Table 6.3 shows the results for the second cross-validation experiment (Cross-Validation

2) using Sections 02-21 of the Penn-II Treebank and the 4000 questions in QuestionBank. The

results show an even greater increase on the baseline f-score than the experiments using only the

question training set (Table 6.2). The non-question results are also better and are comparable to

the baseline (Table 6.1), though there is a 0.58% drop in f-score, which is statistically significant.

Including the Penn-II Treebank data with QuestionBank gives better scores for both question and

non-question data than training on QuestionBank alone.

If we compare these results to those in Chapter 3 (where the finding was that for Bikel’s

parser when testing on an A TIS test set, adding Penn-II Treebank data had a very small effect on

the performance on A TIS data), we find that for the QuestionBank tests combining the training

sets (QuestionBank + P TB) has resulted in a higher score than training on either resource alone.

However, for tests on Penn-II Treebank Section 23, combining the training sets results in a higher

score than when trained on QuestionBank alone, but a slightly lower result than when trained on

Penn-II Treebank data alone.

The higher f-score (89.75%) on the QuestionBank data than on Section 23 suggests that with

sufficient appropriate retraining data, the parser can achieve higher results on the question data

than on informative text. This is not entirely unsurprising since the questions are generally much

shorter than informative sentences, and as the graphs in Figures 3.7 and 3.8 show, state-of-the-

art parsers are capable of very high f-scores on sentences of short lengths. This suggests that

101

the low baseline score on the question data is not due to the sentence length, but rather to poor

performance on question specific constructions, which can be remedied through retraining.

Questions

Baseline Cross-Validation 1 Cross-Validation 2

Baseline - - -

Cross-Validation 1 9.999 x 10-5 - -

Cross-Validation 2 9.999 x 10"5 0.0002 -

Section 23

Baseline Cross-Validation 1 Cross-Validation 2

Baseline - - -

Cross-Validation 1 9.999 x 10-5 - -

Cross-Validation 2 0.0002 9.999 x 10~5 -

Table 6.4: Statistical significance comparison between cross-validation runs

Table 6.4 shows the statistical significance between the baseline evaluation and each of the

cross-validation runs and also between the cross-validation runs. The results show that the dif­

ferences between each of the evaluations are all statistically significant. The improvement in

question parsing in experiment Cross-Validation 1 over the baseline is significant, as is the im­

provement in question parsing from Cross-Validation 1 to Cross-Validation 2. The drop in

performance on Section 23 from the baseline to both Cross-Validation 1 and Cross-Validation

2 is also significant.

6.3.3 Ablation Runs

In a further set o f experiments I investigated the effect of varying the amount of data in the

parser’s training corpus. I experimented with varying both the amount of QuestionBank and

102

Penn-II Treebank data that the parser is trained on. In each experiment, I test on both the 400

question test set and Section 23 of the Penn-II Treebank.

Ablation 1: In the first experiment, I train the parser using only the 3600 question training

set. I performed ten training and parsing runs in this experiment, incrementally reducing the

size of the QuestionBank training corpus by 10% of the whole on each run. Table 6.5 gives the

results for this experiment.

% Question Material 100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 98.55 99.13 99.17 97.89 99.34 99.17 99.59 99.05 97.97 98.84

F-Score Questions 89.242 89.13 88.9 88.36 87.87 88.56 87.52 87.41 87.08 85.59

Section 23 59.612 58.82 58.44 58.26 56.87 55.87 55.06 53.4 52.8 51.85

Table 6.5: Results table for experiment Ablation 1

2The f-score results in this column differ from the results in Table 6.2 because the ablation experiments are tested
on a single 400 question test set, while Table 6.2 gives 90%/10% split-based cross validation results on the whole of
the 4000 questions in QuestionBank.

103

Percentage ol 3600 questions in tho training corpus

F-Score Questions - -K Coverage Questions
F Score Section 23 " X " Coverage Section 23 Q

Figure 6.1: Ablation I : Results for ablation experiment reducing 3600 training questions in

steps of 10%

Figure 6 .1 graphs the coverage and f-score for the parser for tests on the 400 question test set,

and Section 23 of the Penn-II Treebank in ten parsing runs with the amount o f data in the 3600

question training corpus reducing incrementally on each run. The results show that training on

only a small amount o f questions, the parser can parse questions wiih a high degree of accuracy.

For example when trained on only 10% of the 3600 questions used in this experiment, the parser

successfully parses all o f the 400 question test set and achieves a labelled precision and recall

f-score of 85.59. However the results for the tests on WSJ Section 23 are considerably worse.

The parser never manages to parse the full test set, the most it accomplishes is 99.59% of the

test set, and the best precision and recall f-score at 59.61% is very low.

Ablation 2: 1116 second experiment is similar to the first, but in each nin I add Sections

02-21 of the Penn-II Treebank to the (shrinking) training set o f questions. Table 6.6 gives the

104

results for this experiment.

.XO
'

*

>n Material 100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

F-Score Questions 91.06’ 91.39 91.29 91.29 91.01 90.93 90.9 90.63 89.97 88.91

Section 23 82.38’ 82.36 82.38 82.42 82.41 82.41 82.43 82.39 82.42 82.46

100

90

70

60

50
100 90 80 70 60 50 40 30 20 10

Percentage of 3600 questions m the training corpus

F -Score Questions —H— Coverage Questions -
F -Score Section 23 ~ X " Coverage Soction 23 0

Figure 6.2: Ablation 2: Results for ablation experiment using P TB Sections 02-21 (fixed) and

reducing 3600 questions in steps of 10%

Figure 6.2 graphs the results for the second ablation experiment as described above. The

’The f-score results in this column differ from the results in Table 6.3 bccause the ablation experiments are tested
on a single 400 question test set. while Table 6.3 gives 90'*/l0% split-based cross validation results on the whole of
the 4000 questions in QuestionBank.

Table 6.6: Results for experiment Ablation 2

H--------------- h

E X- -X X- X X- “ X- -X X

- I ---------------------------1_________________ L .

105

training set for the parser consists of a fixed amount of Penn-II Treebank data (Sections 02-21)

and a reducing amount of question data from the 3600 question training set. Each parser is

tested on both the 400 question test set, and Penn-II Treebank Section 23. The results here are

significantly better than in the previous experiment. In all of the runs the coverage for both test

sets is 100%, f-scores for the question test set decrease as the amount of question data in the

training set is reduced (though they are still quite high.) There is little change in the f-scores for

the tests on Section 23, the results all fall in the range 82.36 to 82.46, which is comparable to

the baseline score of 82.97.

Ablation 3: The third experiment is the converse of the second, the amount of questions

in the training set remains fixed (all 3600) and the amount of Penn-II Treebank material is

incrementally reduced by 10% on each run. Table 6.7 gives the results for this experiment

% Penn-II Material 100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

FScore Questions 91.06 91.03 91.44 91.31 91.26 91.29 91.08 91.15 90.71 90.3

Section 23 82.38 82.31 82.24 82.01 82.07 81.5 81.32 80.8 80.48 79.69

Table 6.7: Results for experiment Ablation 3

106

60 •

50 ---------- 1---------- 1---------- 1---------- 1---------- 1---------- 1_______i_______i______
100 90 80 70 60 50 40 30 20 10

Percentage of PTB Stetcions 2-21 in the training corpus

F Score Questions — I— Coverage Questions
F-Score Section 23 —X — Coverago Section 23 _

Figure 6.3: Ablation 3: Results for ablation experiment using 3600 questions (fixed) and reduc­

ing F I B Sections 02-21 in steps of 10%

Figure 6.3 graphs the results for the third ablation experiment. In this case the training set is

a fixed amount o f the question training set described above (all 3600 questions) and a reducing

amount of data from Sections 02-21 of the Penn-11 Treebank. The graph shows that the parser

performs consistently well on the question test set in terms of both coverage and accuracy. The

tests on Section 23 however show that as the amount of Penn-II Treebank material in the training

set decreases, the f-score also decreases.

Ablation 4: In the fourth ablation experiment I reduce both the amount o f Penn-11 Treebank

and QuestionBank material in the parser’s training corpus. The amount of data from each source

in the training corpus is reduced by 10% each time. For the first run, the training set consists of

100% of Sections 02-21 of the Penn-II Treebank and 100% of the 3600 QuestionBank training

corpus. For the second run the training set consists o f 90% of Sections 02-21 of the Penn-II

107

Treebank and 90% of the 3600 QuestionBank training corpus, and so on. Again I test on the 400

question test set and on Section 23 of the Penn-II Treebank. Table 6.8 gives the results for this

experiment.

100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

FScorc Section 23 91.06 91.37 91.49 91.15 90.66 90.97 90.51 89.90 88 99 88.84

Questions 82.38 82.32 82.30 82.00 82.02 81.57 81.41 80.84 80.58 79.68

Table 6.8: Ablation 4: Results for ablation experiment using 3600 questions and PTB Sections

02-21, reducing the amount of material from both sources in steps of 10%

60 ■

50 ---------------1---------------1--------------->---------------1---------------1---------------1__________I__________«_________
100 90 80 70 60 50 40 30 20 10

Percentage ot PTB Stetcions 2-21 and 3600 questions in iho training corpus

F -Score Questions — I— Coverage Questions •••*•■
F-Score Soction 23 - - X " Coverage Section 23

Figure 6.4: Ablation 4: results for ablation experiment using 3600 questions and PTB Sections

02-21 reducing each in steps of 10%

108

Figure 6.4 shows the results for the fourth ablation experiment. Here the amount of material

from both corpora (QuestionBank and Penn-II Treebank) is reduced. The parser’s performance

on both test sets is affected in a similar way as the amount o f data in the training corpus is

reduced. The (red) graph line representing f-score for the question test set in Figure 6.4 is

similar in shape to the corresponding line in Figure 6.2 for experiment Ablation 2 where the

parser is trained on a reducing amount of question material added to a fixed amount o f Penn-II

Treebank material (Sections 02-21). The results in Table 6.6 and 6.8 show that there is little

difference in the question f-scores for both runs, the variation between the corresponding runs

is not statistically significant with an average p-value of 0.306. Similarly, the (green) graph line

representing f-score on Section 23 of the Penn-II Treebank in Figures 6.3 and 6.4 follow the

same trend, and the data in Tables 6.7 and 6.8 show there is little difference between the figures.

Again, the variation is not statistically significant with an average p-value of 0.276.

Ablation 5: In the final ablation experiment I carried out, the parser’s training corpus con­

sists o f reducing amounts of data from Sections 02-21 of the Penn-II Treebank. No question

data was included in the training corpus. The results for this experiment are in Table 6.9

100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

FScore Questions 78.42 79.00 79.31 78.97 75.87 74.98 73.42 73.63 68.62 72.55

Section 23 82.97 82.45 82.26 82.01 82.06 81.58 81.43 80.96 80.56 79.57

Table 6.9: Results for experiment Ablation 5

109

Percentage ot PTB Stetcions 2-21 in the training corpus

F-Score Questions — 1— Coverage Questions
F-Score Section 23 —X — Covorage Section 23 0

Figure 6.5: Ablation 5: Results for ablation experiment reducing the amount of training data

from Sections 02-21 of the Penn-II Treebank by 10%

Figure 6.5 shows the results for the fifth ablation experiment. Ablation 5. the graph shows

that as the amount of Penn-II Treebank material in the parser’s training set is reduced the per­

formance on both Section 23 and the question test set steadily declines. The performance on

questions declines to a greater degree than the performance on Section 23.

6.4 Summary

The experiments reported in this chapter have shown that a parser trained exclusively on Ques-

tionBank is capable of parsing questions more accurately than if trained on the Penn-II Treebank

alone. However, the accuracy on a non-question test set (Section 23 o f the Penn-II Treebank) is

poor. Interestingly, when we train the parser on a combination of Penn-II Treebank and Ques-

110

tionBank data, the parse accuracy on questions increases and the parser is still able to parse a

non-question test set with state-of-the-art accuracy.

The research shows that QuestionBank, if used exclusively, can be used to extract a parser

which is significantly smaller and faster4 than one extracted from general training corpora, like

the Penn-II Treebank, and which can analyse questions with a high degree of accuracy. Such

capabilities are desirable if the parser is to be used in a Q A system exclusively for query analysis.

QuestionBank can also be used in conjunction with the Penn-II Treebank, to train a parser which

can analyse questions with a high degree of accuracy (89.75% labelled precision and recall f-

score), and do the same for non-question, informative text like that found in the W SJ data in

the Penn-II Treebank (82.39% labelled precision and recall f-score). These are qualities that are

required of a parser if it is to be used in a Q A system where it w ill be expected to analyse both

queries and potential answers.

Having noted the significant improvement in question parsing accomplished with.a relatively

small question corpus (4000 questions in QuestionBank vs. 40,000 sentences in the Penn-II

Treebank training sections), an interesting question is whether more can be gained by increasing

the size of the question corpus, or whether the amount of training material in QuestionBank

constitutes an upper bound. Analysing the graph in Figure 6.1 which displays the effect of

reducing the amount of questions in the training set, shows that the leftmost portion of the curve

for f-score for the question test set is relatively flat in the region corresponding to 50-100% of

the question training data. Relative to the amount of additional question training data there is

little change in the f-score in this region: the f-score at 50% of the question training data is 88.56

and at 100% of the question data it is 89.24, an increase of less than 0.7 of a percent which is not

statistically significant (p-value of 0.14). It is interesting to note that in this region the f-score

for the non-question parsing increases by a much greater degree (3.74%) and that this increase

is statistically significant (p-value of 9.999 x 10~5). This implies that while I have not found

4Basic benchmarking tests performed on Section 23 of the Penn-II Treebank, and the 400 question test set de­
scribed in Section 6.3 show that on average for Bikel’s parser trained on the 3600 question training set parses Section
23 approximately 3 times faster and the 400 questions approximately 8 times faster than a grammar trained on Sec­
tions 02-21 of the Penn-II Treebank.

I l l

an absolute upper bound, the question corpus is sufficiently large that the gain in accuracy from

adding more question data is so small that it does not justify the effort.

QuestionBank is sufficiently large to fulfill the task for which it was intended, to provide

a training and evaluation resource for question parsing, and to establish an upper bound on the

amount o f additional data required in the training corpus to have a worthwhile gain in parser

accuracy.

Extrapolating the findings in Chapter 4 that improved c-structure analysis results in improved

f-structure output from the automatic f-structure annotation algorithm of Cahill et al. (2004), the

results of experiments in this chapter would suggest that the improvements in c-structure analysis

of questions from a parser trained using QuestionBank would carry through into f-structure

analysis. I hope to be able to pursue this in future work.

112

Chapter 7

Adding Long Distance Dependency

Information to QuestionBank

7.1 Introduction

This chapter presents work on adding long distance dependencies (LD D s) to QuestionBank.

After “bootstrapping” the treebank from raw data, the trees did not contain information on long

distance dependencies (WH-traces and coindexation etc.) because the parser does not output this

information. A number of methods exist for recovering this information from parser output. I

present a new high-precision method to recover LD D s in parser output using reentrancies in au­

tomatically generated L D D resolved f-structures to “ reverse engineer” the syntactic components

(i.e. the trace and its coindexed antecedent) in the tree. I evaluate this method of recovering

LD D s against questions and their gold standard syntax trees (with LD D s indicated in terms

of empty productions and coindexed antecedents) from the A TIS corpus and, where possible,

compare the approach with the other methods discussed in Section 7.3.

Long distance dependencies and their importance in relation to question analysis are dis­

cussed in Section 7.2. In Section 7.3 I describe related work on recovering' long distance de­

pendencies from parser output. Section 7.4 presents a new method for recovering LD D s in

113

parser output trees using reentrancies calculated on automatically generated and LDD-resolved

f-structures. Section 7.5 describes the evaluation of this method and gives a comparison with

some of the previous work. Section 7.6 describes some measures taken to improve the scores in

the evaluation. Section 7.7 summarises and concludes.

Part o f this work has been published in Judge et al. (2006).

7.2 Long Distance Dependencies

Long distance dependencies are crucial in the proper analysis o f question material. In English

wh-questions, the fronted wh-constituent refers to an argument (who, whom, etc.) or modi­

fier (when, where, etc.) position of a verb inside the interrogative construction. Compare the

superficially similar

1. W hoi \ti] killed Harvey Oswald?

2. W hoi did Harvey Oswald kill [£i]?

(1) queries the agent (syntactic subject) o f the described eventuality, while (2) queries the patient

(syntactic object). In the Penn-II and A TIS treebanks, dependencies such as these are represented

in terms o f empty productions, traces and coindexation in C F G tree representations (Figure 7.1).

114

(a) SBARQ

WHNP-1 SQ

SBARQ

Harvey Oswald

Figure 7.1: L D D resolved Penn-II/ATIS treebank style trees

With few exceptions1 the trees produced by current treebank-based probabilistic parsers do

not represent long distance dependencies but produce output without empty productions and

coindexation such as in Figure 7.2.

(a) SBARQ (b) SBARQ

W HNP

W P VP

W ho VBD

I
killed

NP

Harvey Oswald

W HNP

W P

W ho

^ Harvey Oswald ^
I

kill

Figure 7.2: Parser output trees

'Collin’s Model 3 computes a limited number of wh-dependencies in relative clause constructions.

115

For question analysis, long distance dependency information can be crucial in differentiating

superficially similar questions. In order to provide a full analysis o f questions, QuestionBank

should also contain empty nodes and traces to represent LD D s. Adding this information in the

form of traces and coindexed antecedents w ill also bring QuestionBank into line with established

treebanks like the Penn-II Treebank and enable other Penn-II labelled data-based statistical and

machine learning-based N LP approaches to use QuestionBank as a training and evaluation re­

source.

7.3 Related Work

Johnson (2002) presents a tree-based method for reconstructing long distance dependencies in

Penn-II Treebank style parser output trees. His method uses tree patterns learned from the Penn-

II Treebank to identify empty node insertion sites in the parser output. A tree pattern is the

minimal tree fragment which connects a given empty node to its antecedent, and matching can

only occur if a given tree is an extension of the pattern ignoring empty nodes. In evaluations on

Section 23 of the Penn-II Treebank, Johnson’s method resolves LD D s in parser output with a

labelled bracketing precision and recall f-score of 68%.

Dienes and Dubey (2003) use a pre-processing method to identify where in the surface string

an empty element is likely to occur. The input string is tagged using a “ trace tagger” which adds

gap information to the sentence. The sentence is then parsed with a modified parser which can

thread this gap information through the parse tree to link the empty element and its antecedent. In

experiments on Section 23 of the Penn-II Treebank this method resolves LD D s in parser output

with a labelled bracketing precision and recall f-score of 74.6%. Dienes and Dubey (2003) also

experiment with in-processing of empty nodes where the empty nodes are detected by the parser

(which is an extension of Collins (1999) Model 3), however this method fails to surpass the

accuracy of their pre-processing method.

116

Levy and Manning (2004) present a method to recover long distance dependencies from

parser output. Their method uses feature classifiers in three phases to identify dislocated tree

nodes and their origin site. This contrasts with Johnson’s (2002) approach where empty node and

antecedent recovery is treated as a single pattern matching task, and also with Dienes and Dubey

(2003) who identify empty elements first, and the antecedents later in the parser. Evaluation on

Section 23 of the Penn-II Treebank shows that the method is comparable to both Johnson (2002)

and Dienes and Dubey (2003). Levy and Manning also assess cross-linguistic effectiveness

of their approach, comparing English with a freer word order language, German. The results

indicate that recovering LD D s is more difficult in German due to the freer word order.

A machine-learning approach to recover long distance dependencies arising out of W H -

gaps is presented by Higgins (2003). This approach uses a subset o f sentences extracted from

the Penn-II Treebank which contain WH-gaps. From this data, for each sentence, subtree paths

(similar to those used by Johnson (2002)) representing the path from the WH-phrase to the gap

(empty element) were extracted. These paths were then used to train a H M M classifier which

was applied to the test set. Higgins reports accuracy of 92% in experiments with his classifier on

1663 of the W H-gap sentences extracted from the Penn-II Treebank which were held out from

the training data.

Campbell (2004) approaches L D D resolution using a rule-based method to reconstruct

LD D s. His approach is based on the premise that the existence and location of empty cate­

gories is not determined by data observable in a corpus, but rather by linguistic principles. This

is because empty categories (and their relation to possible antecedents) do not correspond to

actual strings in the data, but rather they are part of the annotation put there by a linguist fol­

lowing linguistic annotation guidelines. This method, when tested on Section 23 of the Penn-II

Treebank, resolves LD D s in parser output with a labelled precision and recall f-score of 76.7%.

Jijkoun and de Rijke (2004) present a dependency graph-based alternative to recovering

long distance dependencies from parser output. In their method, the Penn-II Treebank trees

are transformed into dependency graphs and a machine learning algorithm, T iM B L (Daelemans

117

i

et al., 2003) is trained on the L D D resolved dependency graphs from the treebank trees. Parser

output is then converted to dependency graphs and T iM B L adds the L D D information to the

graphs generated from parser output. In tests on dependency graphs for Section 23 of the Penn-

I I Treebank this method has slightly higher precision than that of Dienes and Dubey (2003) but

lower recall, resulting in an f-score of 74.6%.

(\

7.4 Recovering Long Distance Dependencies in CFG Parser Output

Using F-Structure Reentrancies

7.4.1 Motivation

QuestionBank was created with a view to offering it for use as a training and evaluation corpus

for parser-based technology for question analysis. Experiments in Chapter 6 have shown that it is

suitable for this purpose. However, in order to conform to the annotation guidelines (Bies et al.,

1995) it needs to have trace information added to the trees so either an (semi-) automatic method

o f doing this, or manual annotation is necessary. The f-structure-based L D D resolution method

of Cahill et al. (2004) can resolve LD D s in f-structures generated automatically from parser

output very accurately, once the c-structure tree is o f good quality. So in order to complete

QuestionBank, and make it useful to other researchers in the area, I have developed a method to

resolve LD D s in the hand-corrected QuestionBank trees which uses the f-structure based L D D

resolution method of Cahill et al. (2004) to resolve the dependency, and then “ reverse engineers”

the syntactic component, based on information in the c-structure tree and the corresponding f-

structure(s).

7.4.2 Method

Cahill et al. (2004) present a method for resolving LD D s at the level o f Lexical-Functional

Grammar f-structure without the need for empty productions and coindexation in parser output

trees. Their method is based on learning finite approximations of functional uncertainty equa-

118

tions (regular expressions over paths in f-structure) and subcategorisation frames from an auto­

matically f-structure annotated version of the Penn-II treebank and resolves LD D s at f-structure.

The L D D resolution works on automatically generated f-structures output from an automatic

f-structure annotation algorithm which is applied to LDD-unresolved c-structure parser output

trees. The L D D module produces L D D resolved f-structures, with LD D s encoded by means of

reentrancies in the f-structures.

In my work on restoring L D D information in the QuestionBank trees I use the f-structure
i

based method of Cahill et al. (2004) to generate L D D resolved f-structures for (unresolved)

QuestionBank trees then my system “ reverse engineers” empty productions, traces and coindex­

ation in the c-structure trees. I explain the process by way of a worked example.

I use the parser output trees in Figure 7.2 (without empty productions and coindexation),

automatically annotate the trees with f-structure information and compute LDD-resolution at

the level of f-structure using the resources of Cahill et al. (2004). This generates the f-structure

annotated trees2 and the L D D resolved f-structures in Figure 7.3.

2Lexical annotations are suppressed to aid readability.

119

(a) SBARQ (b) SBARQ

(c)

WHNP SQ

[t FOCUS =
I

î] [T=l]
11

WP
1

VP

[T = i]
1

[t = u
f

Who VBD NP

[T = U [T OBJ =

FOCUS

PRED

OBJ

SUBJ

killed
Harvey Oswald

p r e d who J IT)

’kil l(SUBJ O B J)’

[PRED ’Harvey Oswald’

0
(d)

Harvey Oswald

VP

[T XCOMP = | ,

T SUBJ ~ i SUBÌ]

I
VB

[T = l]
I

kill

FOCUS

PRED

SUBJ -

XCOMP

PRED Who]0
do(SUBJ XCOMP)’

PRED ’Harvey Oswald’] [2]

SUBJ [T |

PRED ’kill(SUBJ O BJ)’

OBJ [7]

Figure 7.3: Annotated tree and f-structure

Note that the L D D is indicated in terms of a reentrancy ([T]) between the question FOCUS and

the SUBJ function in the resolved f-structure in Figure 7.3(c) and the FOCUS and OBJ function in

7.3(d). Given the correspondence between the f-structure and f-structure annotated nodes in the

parse tree, we compute that the SUBJ function newly introduced and reentrant with the FOCUS

function in 7.3(c) is an argument of the PRED ‘k ill’ and the verb form ‘killed’ in the tree. In

order to reconstruct the corresponding empty subject X P node in the parser output tree 7.3(a),

we need to determine candidate anchor sites for the empty node. These anchor sites can only

120

be realised along the path up to the maximal projection of the C F G constituent corresponding

to the governing PRED in the f-structure, in this case VP, indicated by |=| annotations in L FG .

This establishes three anchor sites: VP, SQ and the top level S B A R Q in 7.3(a).

The next step is guided by the annotated c-structure tree and uses an automatically f-structure

annotated corpus as the basis for an A P C F G (Section 2.3.3). From the automatically f-structure

annotated Penn-II treebank (Sections 02-21), I extracted f-structure annotated P C FG rules ex­

panding the three anchor sites whose RHSs contain exactly the information (daughter categories

plus L F G annotations) already present in the tree in Figure 7.3(a) (in the same order) but which

introduce an additional node (of any C F G category X P) annotated | SUBJ = | , located anywhere

within the RHSs. Annotated A P C F G rules are of the form

SB A R Q [T= | j - W HNP[T FOCUS =1] SQ[T=|] . 43

S B A R Q [T= |] — y W HNP[T FOCUS = i] S IN V [T = i] . 3

S Q [î= i] — ► NP[T SUBJ =1] vp [T = i] 40

SQ[T=i] V B D [T = i] NP[T OBJ =|] A D VP [| ELEM = t ADJUNCT] 1

v p [T=1] -H- V B D [T = JJ NP[T OBJ = i] 3903

V P [Î= |] — > V B D [T = JJ N P [t OBJ ~ l] A D VP [| ELEM = t a d j u n c t] 56

each with their associated frequencies (rightmost column in the above example). The LHSs of

these rules correspond to the node(s) identified as potential anchor sites.

Among the appropriate rules,3 1 select the rule with the overall highest frequency and cut the

rule into the tree in Figure 7.3 (a) at the appropriate anchor site (as determined by the rule LH S).

In our case this selects S Q [| = j] —> NP[| SUBJ = j] VP [|= JJ and the resulting tree is given in

3Not all of the rules shown are appropriate for the example used here. Only rules which introduce Î SUBJ = [
annotations are appropriate for the example, the other rules are given purely for illustrative purposes.

121

Figure 7.4. From this tree, it is now easy to compute that the tree node coindexed with the trace

in Figure 7.4 is the W H N P annotated | FOCUS =1 following the reentrancy in the f-structure in

Figure 7.3 (c).

S B A R Q

W H N P -1 SQ

[T FOCUS = i;1 [T=l]

W P

[T=i]

NP V P

[T SUBJ = 1] [t = |]

Who *T-1* V B D NP

[T= ll [T o b i =1]

killed
Harvey Oswald

Figure 7.4: Resolved tree

Likewise the parser output in Figure 7.2(b) is annotated to give the tree and corresponding

f-structure shown in Figure 7.5(a) and (b). The reentrancy between the FOCUS and OBJ of ‘k ill’

results in an annotated C F G rule of the form

VP[T=i] - VB[T=i] NP[T OBJ =1]

to be selected to insert an empty node labelled NP as the rightmost daughter of the VP.

Using the reentrancy information in the f-structure, the empty node is coindexed with the W H N P

producing the L D D resolved tree in Figure 7.5(c).

122

SBARQ (a) SBARQ (c)

(b)

[T=i]
I

did

[T SUBJ = i)

Harvey Oswald

[t XCOMP = | ,
ì SUBJ =1 SUBJ]

I
VB

[Î-1]

kill

FOCUS
PRED

SUBJ

XCOMP

[PRED w ho j | 1 I
’do{SUBJ XCOMP^

p r e d 'Harvey Oswald’] [2]

s u b j [2]
PRED ’kill{SUBJ OBJ)’

OBJ [7]

WHNP-1

Harvey Oswald VB NP
t I

kill *T*-1

Figure 7.5: Another annotated tree and f-structure

7.5 Experiments and Evaluation

In order to evaluate this method of restoring traces, and to assess its suitability as a means

to introduce trace information into QuestionBank, I carried out experiments using questions

extracted from the A TIS corpus. There are a total of 213 questions in the A TIS corpus; however

not all 213 questions are suitable for this evaluation. Many of the questions are syntactically

analysed using X and FR A G constituents4 and the automatic f-structure annotation algorithm of

Cahill et al. (2004) w ill not be able to generate a proper f-structure for them. The A TIS tree in

Figure 7.6 (a) and the corresponding parser output for the same string in Figure 7.6(b) illustrate

this.

4The Penn-II Treebank guidelines give the following definitions for the X and FRAG labels: FRAG - Frag­
ment. X - Unknown, uncertain, or unbracketable. X is often used for bracketing typos and in bracketing the...the-
constructions.

123

(a) FRAG (b) FRAG

PP-TM P W HNP PP

W P IN

I

IN

I

NP

W hat about after CD RB

seven p.m

W P

I
W hat

IN

about

PP

IN NP RB

I I I
after CD p.m

seven

Figure 7.6: A Fragmented Question

Excluding trees containing X and FR A G constituents, I extracted 142 questions from the

A TIS gold standard trees which encode a long distance dependency in the A TIS tree and sub­

mitted them to the automatic f-structure annotation algorithm of Cahill et al. (2004) to generate

L D D resolved f-structures to be used as a gold standard against which to evaluate the L D D

resolution algorithm described in Section 7.4.

In the first experiment, I delete empty nodes and coindexation from the A TIS gold standard

trees and reconstruct them using my f-structure-based method on the preprocessed “perfect”

A TIS treebank trees. In the second experiment, I parse the strings corresponding to the ATIS

trees with Bikel’s parser (trained on Sections 02-21 of the Penn-II Treebank and QuestionBank)

and reconstruct the empty productions and coindexation on the parser output trees. In both cases

I evaluate against the original (unreduced) A TIS trees (with empty productions and coindexation)

and score if and only if all o f insertion site, inserted C F G category and coindexation match. This

is a stricter evaluation than in some of the previous work, and follows the evaluation method

proposed in Campbell (2004).

This evaluation method has advantages over the string position-based method used by John­

son (2002) where the location of an inserted empty node is considered correct if the empty

124

string which it governs occurs in the correct position in the surface string. Consider the sentence

“When do you expect to finish?” with the bracketing shown below, and where 1 and 2 indicate

possible locations for the trace of the W H A D V P

[w h a d v p When] do you [y p expect [y p to finish 1] 2]

1 structurally relates the queried temporal location to the finishing eventuality (“When do

you finish”), whereas 2 relates it to the expecting eventuality (“ When do you expect. . . ? ”).

In a string position-based evaluation, if position 1 is the correct position for the trace accord­

ing to the gold-standard, then, because both position 1 and 2 occupy the same string position,

a system which inserts the trace in position 2 w ill not be penalised. The evaluation method I

use considers both the label and parent category of inserted empty nodes and overcomes this

shortcoming of string position-based evaluations.

Gold Standard Trees Parser Output

Precision 96.82 96.77

Recall 39.38 38.75

F-Score 55.99 55.34

Table 7.1: Scores for L D D recovery (empty nodes and antecedents)

Table 7.1 shows that the recall o f the method is quite low at 39.38% while the accuracy is

very high with precision at 96.82% on the original preprocessed A TIS trees. Encouragingly,

evaluating parser output for the same sentences shows little change in the scores with recall at

38.75% and precision at 96.77%.

7.5.1 Comparison with Other Methods

The high precision of the method for recovering long distance dependencies in parser output

using f-structure reentrancies is encouraging. The low recall, however, means that there is still

125

room for much improvement. As I have noted before, questions are a very different text type

compared to informative newspaper text like that found in the Penn-II Treebank. Part o f the

basis for my L D D recovery method is an A P C F G extracted from an automatically f-structure

annotated version of Sections 02-21 of the Penn-II Treebank, and it is possible that the recall

underperformance on questions from the A TIS corpus is due to the difference in text type when

dealing with questions.

To test this hypothesis I compared Johnson’s (2002) and Higgins’ (2003) systems with

my own. I used the same 142 A TIS question test set and evaluate the two systems’ per­

formance on gold standard trees stripped of coindexation and functional tags and on parser

output from Bikel’s parser retrained on Penn-II Treebank W SJ Sections 02-21 and Question-

Bank. Higgins’ software used for these evaluations is a slightly improved version of the one

used to generate the results published in the literature,5 which I acquired through personal

communication with the author. Johnson’s software for the evaluations was downloaded from

http://www.cog.brown.edu/~mj/Software.htm. The results are summarised in Table 7.2.

Johnson 02 Higgins 036 Judge 06

P R F P R F P R F

Stripped Gold Standard Trees 97.14 49.3 65.41 91.59 69.01 78.71 96.82 39.38 55.99

Parser Output 96.97 45.21 61.67 94.11 67.61 78.69 96.77 38.75 55.34

Table 7.2: L D D recovery (empty nodes and antecedents) compared

The results in Table 7.2 show that on the A TIS 142 question test set Johnson’s method gives

the highest precision and Higgins’ method gives the highest recall. The f-structure reentrancy-

based method used here performs almost as well as Johnson’s (Penn-II Treebank-based) method

5Features related to the head of a constituent have been added. These allow the model to determine that something
really is an extracted object if the VP it sees consists of a transitive verb with no overt object, rather than an intransitive
verb with no object.

6Higgins’ system does not output a syntactic category for empty nodes it produces. In these evaluations I assume
that the inserted node is always of the right category. This is perhaps being overly generous to Higgins’ system,
however if I was to evaluate on the output from his system without this assumption the scores would all be zero,
which I feel is unduly unfair towards the system.

126

http://www.cog.brown.edu/~mj/Software.htm

in terms of precision, but is outperformed by both the other systems in terms of recall and f-score.

It is interesting to note here that Higgins’ system, which focuses specifically on W H con­

structions, scores lower in precision on the question test set than the other L D D recovery systems

which are designed for generic LD D s (including topicalisation phenomena etc.). However recall

for Higgins’ system is considerably higher than both of the others. Also interesting (and some­

what surprising) about the performance of Higgins’ system is that there is a marked increase in

precision, but a drop in recall when it is tested using parser output.

7.6 Improving LDD Recovery Accuracy

While the proposed method to recover long distance dependencies in parser output using f-

structure reentrancies gives high precision on the A TIS question test set, the experiments in

Section 7.5.1 show that the high precision and low recall performance is in fact common to

both of the Penn-II Treebank based general L D D resolution methods (Johnson’s and my own).

Higgins’ WH specific method outperforms the other methods in terms of recall, making up for

the slightly lower precision scores and making it the best-performing system overall in terms of

f-score.

In order to maximally exploit the use of a system to add the necessary long distance de­

pendency information to QuestionBank (i.e. to minimise the need for manual correction and

addition of LD D s), it would be preferable to have both high precision and recall scores. In order

to achieve this, I used two complementary approaches to improve the L D D recovery system: I

relaxed the constraints on the rule matching criteria slightly, and I added L D D resolved questions

(these include L D D resolved trees correctly generated by the method described above, (a small

number of) trees which were resolved incorrectly but manually corrected and trees which were

not L D D resolved at all by the automatic method and hence were L D D resolved fu lly manually)

in a bootstrapping approach to the corpus from which the A P C F G rules are extracted. These

approaches are described below.

127

The L D D recovery method described above uses very strict matching criteria for selecting rules

from the A P C F G to consider as candidates to use to insert an empty node. For example, say the

algorithm is trying to restore a trace in a tree fragment (for a copular construction) like the one

below

7.6.1 Relaxing the Matching Criteria

where the f-structure reentrancy indicates that the functional annotation T XCOMP ~ l is

necessary and the A P C F G contains the rule

SQ [T=JJ -»• V B Z [T = |] NP[T s u b j =|] NP[T x c o m p | s u b j = j s u b j]

In this case the algorithm w ill not consider the rule above as a candidate to allow the insertion

of an empty node labelled NP because the annotation on the second NP in the annotated rule

(t XCOMP = J,, | SUBJ = | SUBJ) is not exactly the same as the annotation which the reentrancy

is looking for (| XCOMP = |). This is perhaps too strict in certain cases, so I modified the

rule matching routine to allow a match when the annotation on candidate nodes subsumes the

annotation sought. That is to say if the annotation required on a candidate empty node is x and

a rule matching the subtree where an empty node is proposed introduces a node N with a set of

annotations S , then N can be considered a candidate empty node for insertion if x € S.

With the matching constraint relaxed in this way, the coverage of the algorithm increased

considerably. However, the extra freedom in the matching criteria meant that a lot of extra

candidates were being considered for insertion and very few of the nodes which were inserted

SQ

T=1

V B Z NP

T = i t SUBJ =1

128

were actually correct.

Instead of using the relaxed matching criteria for the annotation on nodes proposed for in­

sertion, I chose to make the matching routine less strict than it was originally, but not as indis­

criminate as in the previous attempt. I changed the matching routine to allow a node to match if

its annotation is exactly the annotation sought, or, if there is a set o f annotations on the node, the

first annotation listed in the set of annotations matches the annotation needed. This rather crude

heuristic had a surprisingly good effect on recall, which increased considerably, but also had a

negative effect on precision, though not to as great an extent as the more relaxed criteria in the

previous attempt. While this is not entirely satisfactory, further improvements can be made by

adding question data to the A P C FG , which I deal with next.

7.6.2 lining the APCFG to Questions

The L D D recovery method described in Section 7.4 is initially biased towards Penn-II Treebank

style material as it relies on an annotated P C FG (A P C F G) extracted from an f-structure annotated

version of the Penn-II Treebank to determine what nodes to consider for insertion and where.

I have shown in Chapter 4 that c-structure is more susceptible to domain/corpus dependence

than f-structures, so it is not unexpected that a set o f C F G rules (even though they may contain

functional annotation) extracted from the Penn-II Treebank w ill underperform on questions.

. I f the annotated grammar contained more question specific constructions, then the question

specific constructions would have higher frequencies and hence be chosen over other possible

constructions by the node insertion routine. QuestionBank, as described in Chapter 5, contains a

large quantity o f question specific constructions, however, the trees do not contain any traces or

long distance dependencies so initially they cannot be used to help improve precision and recall

in the L D D recovery algorithm.

To resolve this issue, I used a process similar to that used in the creation of QuestionBank

in the first place. I iteratively processed sections of QuestionBank with the L D D recovery algo­

rithm, hand corrected and completed the output and after each iteration I annotated the corrected

129

L D D resolved trees with the automatic f-structure annotation algorithm of Cahill et al. (2004),

added these annotated trees to the corpus from which the A P C F G was extracted, and extracted a

new A P C F G for use in the next stage. In this way I was able to inductively add trace information

to QuestionBank, and also increase the precision of the L D D recovery algorithm.

A lgorithm 2 Adapt an Annotated P C FG for Resolving LD D s in Questions

repeat

Resolve LD D s in a section of QuestionBank

Manually correct and complete the automatically L D D resolved trees

Automatically f-structure annotate manually corrected L D D resolved QuestionBank trees

Add the annotated L D D resolved question trees to the corpus

Extract a new A P C F G

until A ll the data has been processed

Algorithm 2 shows the “bootstrapping” procedure used to induce trace information in Ques­

tionBank. This was done in five stages and at each stage I evaluated the trace recovery program

against a set of 100 randomly extracted hand corrected L D D resolved QuestionBank questions.

The stages are outlined below

Baseline (0 QuestionBank Trees) Initially I took the trace restoration program described

above and processed 400 QuestionBank trees. I hand corrected the 400 trees and ran­

domly selected 100 of these 400 trees to use as an evaluation set.

Iteration 1 (300 QuestionBank Trees) I took the remaining 300 hand corrected L D D resolved

trees, automatically annotated them with f-structure information using the automatic an­

notation algorithm of Cahill et al. (2004) and added the annotated trees to the corpus from

which the A P C F G used in trace recovery is extracted. I then extracted a new A P C F G and

processed the next 600 trees.

Iteration 2 (900 QuestionBank Trees) I corrected the 600 trees output by the system, anno­

130

tated them, extracted a new A P C F G and processed the next 1000 trees.

Iteration 3 (1900 QuestionBank Trees) I corrected the 1000 trees output by the system, anno­

tated them, extracted a new A P C F G and processed the next 1000 trees.

Iteration 4 (2900 QuestionBank Trees) I corrected the 1000 trees output by the system, anno­

tated them, extracted a new A P C F G and processed the next 1000 trees.

Iteration 5 (3900 QuestionBank Trees) I corrected the 1000 trees output by the system, anno­

tated them, extracted a new A P C FG .

7.6.3 Evaluating the Improved System

100 QuestionBank trees were randomly selected and held out as an L D D resolved question test-

set to evaluate against during the L D D bootstrapping process. A t each stage in the bootstrapping

process I evaluated the L D D resolution given gold standard trees and parser output7 against these

hand corrected trees. The results for each stage are given in Table 7.3.

7Produced using the same parser/grammar combination as was used in Section 7.5 to generate parser output.

131

Precision Recall F-Score

Baseline8 Gold Standard 45.07 71.00 55.13

Parser Output 25.45 55.00 34.80

Iteration 1 Gold Standard 86.30 73.00 79.09

Parser Output 82.46 57.00 67.41

Iteration 2 Gold Standard 86.30 73.00 79.09

Parser Output 84.48 58.00 68.78

Iteration 3 Gold Standard 90.41 73.00 80.78

Parser Output 83.05 59.00 68.99

Iteration 4 Gold Standard 90.41 73.00 80.78

Parser Output 83.05 59.00 68.99

Iteration 5 Gold Standard 90.41 73.00 80.78

Parser Output 83.05 59.00 68.99

Table 7.3: L D D resolution results for each stage of inducing LD D s in QuesdonBank with re­

laxed matching constraint (Section 7.6.1)

The evaluations show that before any L D D resolved QuestionBank trees were added to the

corpus from which the A P C F G is extracted, the quality of L D D resolution in the questions

is quite poor. The recall is greatly improved compared to the A TIS result in Table 7.1, but

the precision is quite poor, and the f-score for the baseline evaluation is only 55.13% for gold

standard QuestionBank trees stripped of traces and coindexation, and 34.80% for parser output.

The evaluation after the first iteration of hand correction and reextraction of an extended A P C F G

shows a dramatic improvement on the baseline. In this case, 300 hand corrected L D D resolved

QuestionBank trees have been added to the corpus from which the A P C F G is extracted, and

8Note that the situation with respect to precision and recall of the system (high precision with low recall) has
been reversed here in the baseline evaluation. This reflects the effect of relaxing the matching constraint (Section
7.6.1), the evaluations during subsequent iterations of the process reflect the result given both measures to improve
performance (relaxing the matching constraint and including QuestionBank data).

132

already the results have improved considerably. Precision and recall are up in both evaluations.

Recall, however, has improved to a much lesser extent than precision. The stripped gold standard

QuestionBank tree input f-score increases to 79.09% and for the parser output it increases to

67.41%, an improvement of 23.96% over the initial stripped gold standard trees evaluation and

32.61% for the parser output evaluation.

The evaluations on the subsequent iterations show much less dramatic increases for both

the stripped gold standard QuestionBank trees and parser output evaluations. The stripped gold

standard trees evaluations hold steady at an f-score of 79.09% until the third iteration where

it increases to 80.78% and stays constant throughout the remaining runs. The parser output

evaluation increases in terms of recall until the third iteration where it remains constant at 59%,

while precision spikes at 84.48% on the second iteration but then drops back and stabilises at

83.05% on the third and subsequent runs. The overall f-score for the parser output evaluations

increases gradually until the third iteration (despite the precision spike and drop off) where it

stabilises at 68.99%.

The dependencies in the 100 QuestionBank questions are all wh-movement dependencies.

A breakdown of the results by the C F G category of the empty elements associated with the

dependencies is shown in Table 7.4.

Stripped Gold Standard

Precision Recall F-Score

NP 95.23 80.00 86.95 84.62 61.33 71.11

A D V P 0.00 0.00 0.00 0.00 0.00 0.00

AD JP 0.00 0.00 0.00 0.00 0.00 0.00

Parser Output

Precision Recall F-score

Table 7.4: Breakdown of L D D recovery results on 100 QuestionBank questions by C F G type

These results show that the L D D recovery performs best on recovering dependencies which

introduce an empty element corresponding to an NP, achieving an f-score of 86.95%, and that

133

Stripped Gold Standard
Precision Recall F-Score

Parser Output
Precision Recall F-score

Subj
Obj
Mod

96.43
84.62
0.00

87.09
76.74
0.00

91.52
80.49
0.00

100 35.48
81.58 72.09
0.00 0.00

52.38
76.54
0.00

Table 7.5: Breakdown of L D D recovery results on 100 QuestionBank questions by functional
role o f the empty element

while dependencies are recovered for other categories, those recovered in this evaluation are

always incorrect. Manual inspection of these errors shows that while the position and coindex­

ation of the inserted empty elements is correct, the wrong C F G category is assigned. Further

investigation revealed that the cause of the empty element being assigned the wrong C F G cate­

gory was, in fact, an incorrect f-structure analysis given by the automatic f-structure annotation

algorithm of Cahill et al. (2004).

The recovered empty NP elements in Table 7.4 fulfill the role of subject or object in the

questions. An alternative breakdown of the results by functional role is given in Table 7.5.

The results in Table 7.5 show that the precision for recovering subjects is considerably higher

than for objects given both stripped gold standard input and parser output trees. However, re­

call is higher for objects than subjects given parser output trees. Interestingly, the f-score for

recovering objects suffers less degradation from using parser output trees (f-score 76.54%) than

recovering subjects (f-score 52.38%). The scores for modifiers are quite poor. These correspond

to the A D V P and A D JP categories in Table 7.4 and so the low result can be explained by the in­

serted empty element being labelled with the wrong C F G category as a result of a bad f-structure

analysis.

Upper Bound Estimation

The results for the updated system show a marked improvement on the earlier version of the sys­

tem described in Section 7.4. To establish an upper bound and to answer the question whether

the mistakes made by the system are caused by the L D D recovery algorithm or the automatic

134

f-structure annotation which resolves the long distance dependencies in the first place I discount

any o f the questions in the gold standard where a manual inspection of the f-structures gener­

ated reveals that the automatic f-structure annotation algorithm has made a mistake, either in the

f-structure or in the long distance dependency resolution (these amount to discounting a total

18 out o f the 100 sentences). To eliminate the effect of parser error, I use stripped gold stan­

dard QuestionBank trees and automatically add empty nodes and their antecedents and evaluate

against the gold standard. The results are shown in Table 7.6.

Precision Recall F-Score

98.57 85.70 91.69

Table 7.6: Upper bound results for f-structure reentrancy-based L D D resolution on 100 Ques­

tionBank questions

In this evaluation precision increases to 98.57%, recall also increases (though to a lesser

extent) to 85.70% giving an overall f-score of 91.69% for the L D D evaluation system using only

those sentences where a properly resolved f-structure is generated by the automatic f-structure

annotation algorithm of Cahill et al. (2004).

7.6.4 ATIS Evaluation

The more relaxed matching constraint and the added question data in the A P C F G have greatly

improved the overall performance of the L D D recovery algorithm. To find out how much these

measures have contributed to improving the result, I revisited the earlier evaluations against the

142 A TIS sentence gold standard. Again I test the performance on both gold standard A TIS trees

stripped of empty nodes and coindexation and parser output. The results of these evaluations,

along with the scores for the original system, as well as Johnson’s and Higgins’ systems are

given in Table 7.7.

135

Stripped Gold Standard

Precision Recall F-Score

Parser Output

Precision Recall F-Score

Johnson (2002) 97.14 49.30 65.41 96.97 45.21 61.67

Higgins (2003) 91.59 69.01 78.71 94.11 67.61 78.69

Judge (2006) basic 96.82 39.38 55.99 96.77 38.75 55.34

Judge (2006) best 89.29 79.43 84.07 89.29 79.43 84.07

Table 7.7: L D D recovery results for the improved L D D recovery algorithm on 142 ATIS ques­

tion test set

Table 7.7 compares the performance of the improved L D D resolution system on the 142

A TIS question test set with the results in Table 7.2. The results show not only a substantial im­

provement for my system, but also that the improved system using QuestionBank material is the

best performing of the four L D D recovery systems on the A TIS question test set. Interestingly,

the results for the improved system on both stripped gold standard trees and parser output are

the same. This is surprising. It is possibly due to similarities between some of the questions in

A TIS , which differ only in terms of a place name or day, e.g. “ What flights are there from X to

Y ? ’\ “ What flights leave X on D A Y Y ? ’\ Closer examination of the parser output reveals that

the parser output in this case is o f very high quality and is structurally very similar to the gold

standard trees. The differences between the parser output and gold standard trees are in con­

stituents which do not affect my c-structure L D D insertion method and the correct functional

analysis is still assigned and correct f-structure reentrancies representing LD D s are produced for

the f-structure derived from the parser output.

The A TIS evaluation is possibly easier than the evaluation against the 100 QuestionBank

questions as is indicated by the higher score achieved by each system given both gold standard

input and parser output for the A TIS evaluation when compared with the results for testing

against the 100 QuestionBank questions (Table 7.8). The precision for the improved system

136

has dropped by around 7.5% on both evaluations, however the substantial gains in recall (just

over 40% in each evaluation) make it the best performing system overall in terms of f-score.

Johnson’s system, however, still has the highest precision of all four systems.

For a final comparative evaluation of the systems, I tested Johnson’s and Higgins’ systems

on the QuestionBank 100 question test set I used to monitor progress while bootstrapping trace

information in QuestionBank. Table 7.8 compares these two systems with my improved system

on these 100 questions.

Stripped Gold Standard

Precision Recall F-Score

Johnson (2002) 76.19

Higgins (2003) 94.52

Judge (2006) best 90.41

42.00 54.15

73.00 82.38

73.00 80.78

Parser Output9

Precision Recall F-Score

6.00 16.00 8.73

79.03 62.00 69.49

83.05 59.00 68.99

Table 7.8: Comparison of 3 L D D recovery methods on 100 QuestionBank trees

The results in this evaluation clearly show that the systems with question specific tuning, my

improved system and Higgins’ wh-specific system, are performing better on the question data

than Johnson’s Penn-II Treebank-based system.10 Johnson’s system performs particularly badly

on parser output in this evaluation with both precision and recall very low. Higgins’ system has

the best overall performance in both evaluations, with my system scoring similarly.

The results in Table 7.8 show that, on the 100 question testset taken from QuestionBank,

Higgins’ system performs better than my f-structure reentrancy-based method of recovering

Johnson’s system did not output any coindexation on the traces that were inserted so the precision and f-score
for his system here on parser output should be zero. However since I have been lenient towards Higgins’ system with
regards to labelling traces, I have included results for Johnson’s system assuming that coindexation is correct when
traces are inserted in the correct position in the tree.

10Johnson’s software is retrainable. However, the code to extract new trace patterns for his software would not
compile on a number of systems I attempted to do so on. Attempts to contact the author to resolve this issue received
no response, so unfortunately I am unable to provide results for Johnson’s software retrained using LDD resolved
questions.

137

LD D s on both gold standard tree input stripped of traces and coindexation and parser output

trees. These scores are, however, calculated giving the benefit of the doubt to Higgins’ system,

because it does not assign a C F G category to the empty nodes it inserts, and for the purposes of

the evaluation I have assumed that the correct category is always assigned. This biases the eval­

uation towards Higgins’ system, so I performed a further evaluation on the 100 QuestionBank

questions with my own system where I do not penalise where the C F G category assigned to an

empty node is incorrect. The results are given in Table 7.9.

Stripped Gold Standard

Precision Recall F-Score

Parser Output

Precision Recall]F-score

Higgins (2003)

Judge (2006) best

94.52

100

73.00 82.38

73.00 84.39

79.03 62.00

100 59.00

69.49

74.21

Table 7.9: Comparison of results for L D D resolution on 100 QuestionBank questions for my

system and Higgins’ system with the C F G category constraint relaxed for both sys­

tems

The results in Table 7.9 show that if I relax the evaluation constraints for my own system as

well as Higgins’ , the the precision for my system in this evaluation increases to 100% resulting

in f-scores greater than those of Higgins’ .

7.7 Conclusion

In this chapter I have introduced a new method for recovering long distance dependency infor­

mation (traces and coindexation) in parser output. This method uses the automatic f-structure

annotation algorithm of Cahill et al. (2004) to generate an L D D resolved f-structure for the

parser output c-structure tree, and, using an f-structure annotated P C FG (A P C F G) to guide the

process, “reverse engineers” the corresponding empty node and coindexation on the antecedent

138

in the c-structure tree. This method proved to be highly accurate (96.77% precision), but to have

low recall (38.75%) in initial tests on questions extracted from the A TIS corpus.

A comparison of my method with others showed that this high precision low recall result was

typical o f Penn-II Treebank-based systems in this evaluation. M y system and Johnson (2002)

performed similarly (though Johnson’s results were better) with Higgins (2003), which focuses

on wh- constructions in the Penn-II Treebank, outperforming both other systems with f-scores

of 78.71% on gold standard A TIS trees stripped of empty nodes and coindexation, and 78.69%

on parser output for the same sentences.

To improve the performance of my L D D recovery system I experimented with relaxing the

constraints on considering nodes for insertion. This improved recall, but had a negative effect on

precision. To remedy this, I added question data to the corpus from which the A P C F G is derived.

This question data was created inductively using QuestionBank as a source of unresolved ques­

tions which were processed using the L D D recovery system and a similar process-correct-retrain

bootstrapping procedure used to create QuestionBank from raw data. This had two positive out­

comes: first, it added traces and coindexation to the QuestionBank question trees, and second,

it tuned the A P C F G used in my L D D recovery system to questions. A series of evaluations car­

ried out during the induction process show that the largest increase in accuracy occurred when

the first section of hand-corrected L D D resolved questions was added to the A P C FG training

corpus. Subsequent additional data had a positive impact, but not to the same degree.

The combination of the change in matching criteria and the A P C F G containing question

data dramatically improved performance of my L D D recovery system. The precision and recall

in evaluations on the A TIS test set that the earlier version was evaluated on increased giving an

f-score on both stripped gold standard trees and parser output of 84.07%. This improved result

means that my system outperforms Higgins’ system in this evaluation by 5.36% on stripped gold

standard trees and 5.38% on parser output.

An evaluation of all three L D D recovery systems on a QuestionBank-based test set shows

that my (improved) system and Higgins’ system perform very well on the question data, with

139

high precision and recall for both stripped gold standard trees and parser output input, but John­

son’s system performs particularly poorly with an f-score of 54.15% given stripped gold stan­

dard trees and 8.73% given parser output. Higgins’ system scores highest in this evaluation,

this is, however, under the assumption that Higgins’ system always labels the inserted trace cor­

rectly. When I make the same assumption with respect to my own system and reevaluate, the

results show that, my system outperforms Higgins’ with an f-score of 84.39% on stripped gold

standard input and 74.21% on parser output. These results, and those for the ATIS-based evalua­

tions in Table 7.7 suggest that for the question-based evaluations conducted here, my f-structure

reentrancy-based method of L D D recovery performs better.

The comparison of my improved system with Johnson’s and Higgins’ systems is biased, as

I was unable to retrain neither Johnson’s nor Higgins’ system with QuestionBank data. This

means that unlike my system they were unable to benefit from the QuestionBank data. The

expectation would be that their results would improve and indeed QuestionBank is designed to

provide a resource for retraining systems such as Johnson’s and Higgins’ . I hope to be able to

explore this in future work.

140

Chapter 8

Conclusion and Future Work

Modem information retrieval systems are starting to employ linguistic analysis to a greater de­

gree. Quëstion answering systems, as a refinement of standard document IR, use more in-depth

representations and sophisticated linguistic analysis techniques to retrieve precise answers to a

direct question. Linguistic analysis captures information contained in natural language strings

that allows these systems to pinpoint precise information in a text. Linguistic analysis can dif­

ferentiate subtle (but important) differences between sentences, for example the subject/object

(agent/patient) distinction in the focus of the questions “Who killed Harvey Oswald?” and “Who

did Harvey Oswald kill?” and in declarative sentences containing appropriate answers to the

questions “Jack Ruby killed Harvey Oswald.” and “Harvey Oswald killed JFK.” 1 However, a

lack of linguistic resources for research focusing on questions and a lack of questions in stan­

dard training corpora and test sets means that some state-of-the-art analysis tools such as parsers

underperform considerably on question material.

In this thesis I have presented work to assess and improve the state-of-the-art regarding the

accurate analysis of questions into two levels of linguistic representation, CFG parse trees and

LFG f-structures, as well as working towards addressing the lack of resources for question-

focused analysis through the creation of QuestionBank, a parse-annotated corpus of questions

'The truth of this statement is the subject of much debate. I use the example for illustrative purposes only.

141

for use in the development of parser-based linguistic tools for question analysis. The research in

this thesis has:

• shown that for current state-of-the-art Penn-II trained probabilistic parsers analysing ques­

tions is an instance of domain variation. This domain variation is more extreme than that

observed in previous work on parser domain variance, however it can be treated in the

same way.

• shown that the domain variance observed affects both c- and f-structure analyses but not

to the same degree.

• established that the automatic f-structure annotation algorithm of Cahill et al. (2004) is

complete with respect to domain variation experiments on data from the ATIS corpus.

• developed a training and evaluation corpus for developing question-focused parser-based

linguistic resources, QuestionBank.

• compared the baseline parsing performance of a state-of-the-art parser trained on Sections

02-21 of the Penn-II Treebank tested on both Section 23 of the Penn-II Treebank and a

question test set from QuestionBank with that of the same parser trained on the original

training set plus QuestionBank.

• investigated the effects of varying the amount of Penn-II Treebank and QuestionBank data

in the parser’s training set when testing on both QuestionBank and Penn-II Treebank-

based test sets.

• developed a method for restoring Long Distance Dependency trace and coindexation in­

formation in parser output c-structure trees using LFG f-structure reentrancies.

• compared this method of restoring LDD trace information in questions from Question­

Bank with two existing methods (Johnson, 2002; Higgins, 2003).

142

\)

• successfully used the LDD restoration method developed to inductively restore LDD trace

information in the hand corrected parser output trees in QuestionBank.

The main resource established in this thesis is QuestionBank and the main result is that

QuestionBank can be used in conjunction with the Penn-II Treebank to train a parser that can

parse both questions and informative text with state-of-the-art accuracy. Below I summarise the

findings and results of this research.

The Penn-II Treebank (Marcus et al., 1994), due to its low proportion of questions, is unsuit­

able for training a parser to analyse questions. The ATIS corpus (Hemphill et al., 1990) contains

a much higher proportion of questions and is suitable for use in domain variation experiments

testing the parser’s performance on questions. In experiments with three state-of-the-art parsers

(Collins, 1999; Charniak, 2000; Bikel, 2002) trained on Sections 02-21 of the Penn-II treebank, I

have shown that the domain variance presented by the ATIS corpus is more severe than the vari­

ance that was observed in previous work by Gildea (2001) on parsing Brown Corpus (Kucera

and Nelson, 1967) data, with parser performance for parsing the whole ATIS corpus dropping

to a labelled precision and recall f-score of 72.45% for Collins’ Model 2, 63.64% for Charniak

and 69.94% for Bikel, an average drop of almost 20% when compared to the same parsers tested

on Section 23 of the Penn-II Treebank. A small portion of this drop in performance for Char-

niak’s parser (4.48%) can be attributed to the lack of punctuation in the ATIS corpus, however

this is not true for Collins’ and Bikel’s parsers. As was observed in Gildea’s work, the parsers’

performance can be boosted on the out of domain test material by adding domain appropriate

material to the parsers’ training set. Retraining experiments on Chamiak’s and Bikel’s parsers

show significant gains on the baseline evaluations, giving best run labeled precision and recall

f-score results on an ATIS-based test set of 84.69% for Charniak and 85.65% for Bikel. This is

surprising given the relative difference in size between the ATIS corpus and the Penn-II Tree­

bank, and it suggests that a question training corpus of similar size to the Penn-II Treebank may

not be needed to produce good parsing results for questions.

I have examined the effect of domain variance on automatic c- and LFG f-structure anal­

143

yses. Parsing and automatically annotating ATIS sentences with f-structures using the Penn-II

trained “off the shelf’ version of Bikel’s parser and the automatic f-structure annotation algo­

rithm of Cahill et al. (2004) results in a labelled bracketing c-structure f-score of 70.25% when

the c-structure trees are evaluated against 100 ATIS gold standard trees and a preds-only de­

pendency f-score of 62.95% when evaluated against hand-crafted f-structures for the 100 ATIS

sentences. In this instance of domain variation the annotation of question specific relations like

FOCUS and TOPICREL is particularly poor. In order to resolve the underperformance issue of

the pipeline parsing and f-structure annotation algorithm architecture only the parser needed to

be retrained. Retraining the parser on appropriate data from the ATIS corpus improves the c-

structure f-score by 12.89% and the preds-only dependency f-score by 13.82%, and improves

the quality of FOCUS and TOPICREL annotations dramatically. Interestingly, the retrained sys­

tem, when back-tested on data in the original domain (DCU 105) shows no negative effects in

both c- and f-structure evaluations as a result of the retraining. This suggests that the automatic

f-structure annotation algorithm of Cahill et al. (2004) is complete with respect to the domain

variation observed here and supports the view that f-structures are a more abstract representation

of the information contained in a sentence, which is less affected by domain variation.

The significant improvements on out of domain c- and f-structure analysis as a result of

parser retraining are encouraging given the size of the ATIS “question” corpus used in the exper­

iments. Due to its size, and composition, however, the ATIS corpus is not entirely representative

of questions. To address this I have created a corpus of parse-annotated questions, Question-

Bank, from the TREC QA evaluation test sets and a question classifier training set provided

by the Cognitive Computation Group at the University of Illinois Urbana-Champaign. Ques-

tionBank was rapidly induced from raw data using a parse-correct-retrain bootstrapping method

to simultaneously induce both a question treebank and a better question parser. This process

generated 4000 Penn-II Treebank style trees in 3 months.

Experiments with QuestionBank show that a parser trained only on QuestionBank can parse

questions accurately, with an f-score of 88.82% in a 10-fold cross-validation on QuestionBank,

144

but performs badly on informative text in Section 23 of the Penn-II Treebank, with an f-score of

only 59.79%. If QuestionBank is used in conjunction with the Penn-II Treebank as a training

resource, the parser performance on Section 23 is comparable to when trained only on the Penn-

II Treebank data (82.39%) and gives a 0.93% improvement on the grammar trained only on

QuestionBank when parsing questions. This slight improvement shows that question parsing

can gain something (however small) from extracting information from a corpus of informative

text like the Penn-II Treebank. Using ablation experiments I have shown that the amount of data

in QuestionBank does not constitute an absolute upper bound for question parsing, but that it

is sufficiently large a resource that the potential gain from enlarging the question corpus does

not justify the effort involved. From this I conclude that QuestionBank is sufficiently large for

the task which it was intended for: to provide a training and evaluation corpus for parser-based

linguistic analysis of questions.

I have developed a new method to restore Long Distance Dependency information in parser

output c-structure trees using f-structure reentrancies assigned automatically to the parser output

by the automatic f-structure annotation algorithm of Cahill et al. (2004). This process outper­

forms two existing systems for the same task, one syntax-based, and one using machine learning,

in evaluations on sample questions extracted from the ATIS corpus, with an f-score of 84.07%

on both parser output or gold standard trees stripped of trace information and also on Question­

Bank questions, with an f-score of 80.78% on stripped gold standard trees and 68.99% given

parser output.

The process of developing the LDD restoration algorithm to perform so well on the ques­

tions also helped the development of QuestionBank. The hand-corrected parser output trees in

QuestionBank contained no long distance dependency information as the parser (Bikel, 2002)

does not output this information in the trees. I used process-correct-retrain bootstrapping passes

over sections of QuestionBank to restore trace information in the QuestionBank trees, and also

improve the quality of the trace restoration algorithm.

145

8.1 Future Work

The main goal of this research has been to improve the quality of automatic linguistic analysis

of questions and to provide the resources for other researchers to easily do so as well. In a

larger context this work fits into ongoing work at the NCLT on acquiring wide-coverage, deep,

constraint-based LFG grammars from treebanks, showing that the systems developed for English

are robust and easily adaptable to a new domain.

The research in this thesis has looked at the underperformance of automatic linguistic analy­

sis tools on questions as an instance of domain variation. Domain variation presents a wide range

of possibilities for further work. The automatic f-structure annotation algorithm of Cahill et al.

(2004) is complete with respect to the domain variation studied in Chapter 4. However, since

the work presented here is the first research on domain variance for the automatic f-structure

annotation algorithm, it is not necessarily the case that this will hold true for other domains of

application.

Nothing in the methods used here precludes the possibility of application to another lan­

guage, or to the adaption of a resource for one language to that of another linguistically similar

language. For example one might consider a parser for Spanish parsing Portuguese as an in­

stance of (truly “extreme”) domain variation. It is possible that, using the bootstrapping and

retraining method used in this research, a training corpus for Portuguese could be induced from

raw text using a parser for Spanish.

To date, I have not been able to integrate the improvements in c- and f-structure analysis

shown here with a working QA system to evaluate the effects on a working system. There are

many ways in which this could be done depending on the system and how exactly it uses lin­

guistic analysis. In a less involved system the improvements to c-and f-structure analysis could

be used for tasks like disambiguation and query reformulation. In a more linguistically involved

QA system, the improved parser performance can help the extraction of logical representations

(possibly in the form of f-structures) for answer identification and justification.

146

Exploring this avenue is something I would like to pursue in the future, perhaps through

the development of a linguistically motivated QA system, which relies on linguistic information

to retrieve documents and answers instead of the current favoured strategy which relies on a

boolean keyword matching retrieval engine for document retrieval. Developing such a system

opens up a number of new avenues for exploration, for example:

• Tree or f-structure-based indexing and retrieval of documents,

• Tree or f-structure-based answer identification and ranking,

• Question reformulation based on syntactic/functional information as a fallback measure.

all of which rely heavily on accurate linguistic analysis of both questions and informative text

into linguistic representations such as CFG trees or f-structures.

In its current form QuestionBank only provides a syntactic analysis for questions. Previous

work (Burke, 2006) and experiments in Chapter 4 have shown that the automatic f-structure

annotation algorithm of Cahill et al. (2004) has a high upper bound when given LDD resolved

treebank trees as input. Based on this premise, an f-structure version of QuestionBank could

be generated automatically from the parse-annotated version currently available. This would

provide an automatically generated training/evaluation resource for question focused LFG-based

resources.

Hockenmaier (2003a) presents an algorithm to transform phrase structure trees from the

Penn Treebank to CCG derivations, creating a CCG version of the Penn Treebank, CCGBANK.

Since QuestionBank follows the same annotation principles as the Penn-II Treebank (Bies et al.,

1995) it should be possible to create a version of QuestionBank consisting of CCG derivation

trees instead of phrase structure trees. Such a resource could supplement the CCG “What.:.?”

question corpus already developed (Clark et al., 2004), making it more representative of different

types of questions.

Before either the f-structure or CCG derivation tree versions of QuestionBank could be con­

sidered, the current version needs to be checked for errors. While every effort was made to

147

ensure the accuracy and consistency of the annotation of the questions in QuestionBank the time

constraints on the project did not allow for the corpus to be checked and validated by additional

annotators. As such QuestionBank is currently only in a beta release stage. Before a final ver­

sion can be made available both the trees and the long distance dependencies need to be verified

by at least one additional annotator.

148

Bibliography

Bies, A., Ferguson, M., Katz, K., and MacIntyre, R. (1995). Bracketing Guidelines forTreebank

II Style Penn Treebank Project. Technical Report, University of Pennsylvania, Philadelphia,

PA.

Bikel, D. M. (2002). Design of a Multi-Lingual, Parallel-Processing Statistical Parsing Engine.

In Proceedings of Human Language Technology (HLT) 2002, pages 24-27, San Diego, CA.

Bikel, D. M. (2004). On the Parameter Space of Generative Lexicalized Statistical Parsing

Models. PhD thesis, University of Pennsylvania, Philadelphia, PA.

Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman, R., Harrison, P., Hindle, D., In-

gira, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorinim, B.,

and Strzalkowski, T. (1991). A Procedure for Quantatively Comparing the Coverage of En­

glish Grammars. In Proceedings o f the February 1991 DARPA Speech and Natural Language

Workshop, pages 306-311, Pacific Grove, CA.

Black, E., Jelinek, F., Lafferty, J. D., Magerman, D. M., Mercer, R. L., and Roukos, S. (1993).

Towards History-Based Grammars: Using Richer Models for Probabilistic Parsing. In Meet­

ing of the Association for Computational Linguistics, pages 31-37, Columbus, OH.

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell, Oxford.

Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual (Web) Search Engine.

Computer Networks and ISDN Systems, 30(1-7): 107-117.

149

Burke, M. (2006). Automatic Annotation of the Penn-II Treebank with F-Structure Information.

PhD thesis, School of Computing, Dublin City University, Dublin, Ireland.

Burke, M., Cahill, A., O’Donovan, R., van Genabith, J., and Way, A. (2004). The Evaluation

of an Automatic Annotation Algorithm against the PARC 700 Dependency Bank , In Pro­

ceedings of the Ninth International Conference on LFG, pages 101-121, Christchurch, New

Zealand.

Burke, R. D., Hammond, K. J., Kulyukin, V. A., Lytinen, S. L., Tomuro, N., and Schoenberg,

S. (1997). Question Answering from Frequently Asked Question Files: Experiences with the

FAQ Finder System. AI Magazine, 18(2):57-66.

Cahill, A. (2004). Parsing with Automatically Acquired, Wide-Coverage, Robust, Probabilistic

LFG Approximations. PhD thesis, School of Computing, Dublin City University, Dublin,

Ireland.

Cahill, A., Burke, M., O’Donovan, R., van Genabith, J„ and Way, A. (2004). Long-Distance De­

pendency Resolution in Automatically Acquired Wide-Coverage PCFG-Based LFG Approx­

imations. In Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL-04j, pages 320-327, Barcelona, Spain.

Cahill, A., McCarthy, M., van Genabith, J., and Way, A. (2002a). Automatic Annotation of

the Penn-Treebank with LFG F-Structure Information. In Proceedings of the Third Interna­

tional Conference on Language Resources and Evaluation (LREC02) workshop on Linguistic

Knowledge Acquisition and Representation: Bootstrapping Annotated Language Data, pages

8-15, Las Palmas, Canary Islands, Spain.

Cahill, A., McCarthy, M., van Genabith, J., and Way, A. (2002b). Parsing with PCFGs and

Automatic F-Structure Annotation. In Butt, M. and King, T. H., editors, Proceedings of the

Seventh International Conference on LFG, pages 76-95, Stanford, CA. CSLI Publications.

150

Campbell, R. (2004). Using Linguistic Principles to Recover Empty Categories. In Proceedings

of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL04), pages

645-652, Barcelona, Spain.

Chamiak, E. (1997). Statistical Parsing with a Context-Free Grammar and Word Statistics. In

AAAl/IAAl, pages 598-603, Providence, RI.

Chamiak, E. (2000). A Maximum Entropy Inspired Parser. In Proceedings of the First Annual

Meeting of the North American Chapter of the Association for Computational Linguistics

(NAACL2000), pages 132-139, Seattle, WA.

Chomsky, N. (1973). Conditions on transformations. In Anderson, S. R. and Kiparsky, R,

editors, A festschrift for Morris Halle, New York. Holt, Rinehart & Winston.

Civit, M. and Marti, M. A. (2004). Building Cast3LB: A Spanish treebank. Research on Lan­

guage and Computation, 2(4):549-574.

Clark, S. and Curran, J. R. (2004). Parsing the WSJ Using CCG and Log-Linear Models. In

Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL04),

pages 103-110, Barcelona, Spain.

Clark, S., Steedman, M., and Curran, J. R. (2004). Object-Extraction and Question-Parsing

using CCG . In Lin, D. and Wu, D., editors, Proceedings o f the 2004 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 111-118, Barcelona, Spain.

Collins, M. (1996). A New Statistical Parser Based on Bigram Lexical Dependencies. In Pro­

ceedings of the 34th Annual Meeting of the Association for Computational Linguistics (ACL),

pages 184-191, Santa Cruz, CA.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,

University of Pennsylvania, Philadelphia, PA.

151

Crouch, R., Kaplan, R. T., King, T., and Riezler, S. (2002). A comparison of evaluation metrics

for a broad coverage parser . In Beyond PARSEVAL Workshop, Language Resources and

Evaluation (LREC), pages 67-74, Las Palmas, Canary Islands, Spain.

Daelemans, W., Zavrel, J., van der Sloot, K., and van den Bosch, A. (2003). TiMBL: Tilburg

Memory Based Learner, version 5.0, Reference guide. Technical Report 03-10, ILK, Tilburg

University, The Netherlands.

Dalrymple, M. (2001). Lexical-Functional Grammar. San Diego, CA; London. Academic Press.

Dienes, P. and Dubey, A. (2003). Antecedent Recovery: Experiments with Trace Tagger. In

Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing

(EMNLP03)> pages 33-40, Sapporo, Japan.

Emms, M. (2005a). Adapting Tree Distance to Answer Retrieval and Parser Evaluation. In

Proceedings of the Workshop on Intelligent Linguistic Technologies (ILINTEC) at the 2005

International MultiConference in Computer Science and Computer Engineering (IMCSE 05),

pages 53-59, Las Vegas, NV.

Emms, M. (2005b). Tree Distance in Answer Retrieval and Parser Evaluation. In Sharp, B., edi­

tor, Proceedings of The Second International Workshop on Natural Language Understanding

and Cognitive Science (NLUCS 05J, pages 155-160, Miami, FL.

Frank, A. (2000). Automatic F-Structure Annotation of Treebank Trees. In Butt, M. and King,

T. H., editors, Proceedings of the Fifth International Conference on LFG, pages 140-160,

Stanford, CA. CSLI Publications.

Gildea, D. (2001). Corpus Variation and Parser Performance. In Lee, L. and Harman, D., editors,

Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 167-202, Pittsburgh, PA.

152

Green, B. F., Wolf, A. K., Chomsky, C., and Laughery, K. (1961). BASEBALL: An Automatic

Question Answerer. In Proceedings of the Western Joint Computer Conference, pages 219-

224. Reprinted in Grosz et al. (1986) pages 545-549, Los Angeles, CA.

Grosz, B., Jones, K, S., and Webber, B., editors (1986). Readings in Natural Language Process­

ing. Morgan Kaufmann, California.

Harabagiu, S. M., Moldovan, D. I., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R. C.,

Giiju, R., Rus, V., and Morarescu, P. (2000a). FALCON: Boosting Knowledge for Answer

Engines. In Proceedings of the Ninth Text Retrieval Conference (TREC-9), pages 479-489,

Gaithersburg, MD.

Harabagiu, S. M., Pasca, M., and Maiorano, S. J. (2000b). Experiments with Open-Domain

Textual Question Answering. In Proceedings of the 18th International Conference on Com­

putational Linguistics (COLING), pages 292-298, Saarbrücken, Germany.

Hemphill, C. T., Godfrey, J. J., and Doddington, G. R. (1990). The ATIS Spoken Language

Systems pilot corpus. In Proceedings of DARPA Speech and Natural Language Workshop,

pages 96-101, Hidden Valley, PA.

Higgins, D. (2003). A Machine Learning Approach to the Identification of WH Gaps. In

11th Conference of the European Chapter of the Association for Computational Linguistics

(EACL03), pages 99-102, Budapest,Hungary.

Hirschman, L. and Gaizauskas, R. (2001). Natural Language Question Answering: The View

From Here. Natural Language Engineering, 7(4):275-300.

Hirschman, L., Light, M., Breck, E., and Burger, J. D. (1999). Deep Read: A Reading Compre­

hension System. In Proceedings of the 37th Annual Meeting of the Association for Computa­

tional Linguistics (ACL), pages 325-332, College Park, MD.

153

Hockenmaier, J. (2003a). Data and Models for Statistical Parsing with Combinatory Categorial

Grammar. PhD thesis, University of Edinburgh.

Hockenmaier, J. (2003b). Parsing with generative models of predicate-argument structure. In

Proceedings of 2003 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 359-366, Sapporo, Japan.

Hockenmaier, J. and Steedman, M. (2002). Generative models for statistical parsing with com­

binatory categorial grammar. In Proceedings of the 40th Annual Meeting of the Association

for Computational Linguistics (ACL), pages 335-342, Philadelphia, PA.

Jijkoun, V. and de Rijke, M. (2004). Enriching the Output of a Parser Using Memory-based

Learning. In Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACLQ4), pages 311-318, Barcelona, Spain.

Johnson, M. (2002). A Simple Pattern-Matching Algorithm for Recovering Empty Nodes and

Their Antecedents. In Proceedings of the 40th Meeting of the ACL, pages 136-143, Philadel­

phia, PA.

Judge, J., Cahill, A., Burke, M., O’Donovan, R., van Genabith, J., and Way, A. (2005). Strong

Domain Variation and Treebank-Induced LFG Resources. In Proceedings of the Tenth Inter­

national Conference on LFG (LFG05), pages 186-204, Bergen, Norway.

Judge, J., Cahill, A., and van Genabith, J. (2006). Questionbank: Creating a corpus of parse-

annotated questions. In Proceedings of the 21st International Conference on Computational

Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages

497-504, Sydney, Australia. Association for Computational Linguistics.

Kaplan, R. and Bresnan, J. (1982). Lexical Functional Grammar, a Formal System for Gram­

matical Representation. In Bresnan, J., editor, The Mental Representation of Grammatical

Relations, pages 173-281. MIT Press, Cambridge, MA.

154

Katz, B., Borchardt, G., and Felshin, S. (2005). Syntactic and Semantic Decomposition Strate­

gies for Question Answering from Multiple Resources. In Proceedings of the AAAI 2005

Workshop on Inference for Textual Question Answering, pages 35-41, Pittsburgh, PA.

Kucera, H. and Nelson, F. W. (1967). Computational Analysis of Present-Day American English.

Brown University Press, Providence, RI.

Lappin, S., Golan, I., and Rimon, M. (1989). Computing Grammatical Functions from Config­

urational Parse Trees. Technical Report 88.268, IBM Israel, Haifa, Israel.

Levy, R. and Manning, C. (2004). Deep Dependencies from Context-Free Statistical Parsers:

Correcting the Surface Dependency Approximation. In Proceedings of the 42nd Annual Meet­

ing of the Association for Computational Linguistics (ACL04), pages 327-324, Barcelona,

Spain.

Li, X. and Roth, D. (2002). Learning Question Classifiers. In Proceedings of the International

Conference on Computational Linguistics (COLING), pages 556-562, Taipei, Taiwan.

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies, A., Ferguson, M., Katz, K.,

and Schasberger, B. (1994). The Penn Treebank: Annotating Predicate Argument Structure.

In Proceedings of the ARPA Workshop on Human Language Technology, pages 110-115,

Princton, NJ.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a Large Annotated

Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313-330.

McCarthy, M. (2003). Design and Evaluation of the Linguistic Basis of an Automatic F-

Structure Annotation Algorithm for the Penn-II Treebank. Master’s thesis, School of Com­

puting, Dublin City University, Dublin, Ireland.

155

Miyao, Y., Ninomiya, T., and Tsujii, J. (2003). Probabilistic modeling of argument structures

including non-local dependencies. In Proceedings of the Conference on Recent Advances in

Natural Language Processing (RANLP), pages 285-291, Borovets, Bulgaria.

Noreen, E. W. (1989). Computer Intensive Methods for Testing Hypotheses: An Introduction.

John Wiley & Sons, New York, NY.

O’Donovan, R., Burke, M., Cahill, A., van Genabith, J., and Way, A. (2004). Large-Scale

Induction and Evaluation of Lexical Resources from the Penn-II Treebank . In Proceedings of

the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), pages

368-375, Barcelona, Spain.

Pasca, M. and Harabagiu, S. M. (2001). High Performance Question/Answering. In Research

and Development in Information Retrieval, pages 366-374, New Orleans, LA.

Sadler, L., van Genabith, J., and Way, A. (2000). Automatic F-Structure Annotation from the

AP Treebank. In Butt, M. and King, T. H., editors, Proceedings of the Fifth International

Conference on LFG, pages 226-243, Stanford, CA. CSLI Publications.

Santorini, B. (1990). Part-of-Speech guidelines for the Penn Treebank Project. Technical report,

University of Pennsylvania, Philadelphia, PA.

Schmid, H. (2000). LoPar: Design and Implementation. Arbeitspapiere des Sonderforschungs­

bereiches 340, No. 149, IMS Stuttgart.

Silverstein, C., Henzinger, M., Marais, H., and Moricz, M. (1998). Analysis of

a Very Large AltaVista Query Log. Technical Report 1998-014, Digital SRC.

http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1998-014.html.

Simmons, R. F. (1965). Answering English Questions by Computer: A Survey. Communications

of the ACM, 8(l):53-70.

156

http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1998-014.html

Smeaton, A. F., Over, P., Costello, C. J., de Vries, A. P., Doermann, D., Hauptmann, A., Rorvig,

M. E., Smith, J. R., and Wu, L. (2002). Research and Advances Technology for Digital

Technology. In M. Agosti, C. T., editor, Proceedings of the European Conference on Research

and Advanced Technology for Digital Libraries, pages 266-275, Rome, Italy.

Voorhees, E. M. (2001). The TREC Question Answering Track. Natural Language Engineering,

7(04):361-378.

Waldinger, R. J., Appelt, D, E., Fry, J. S., Israel, D. J., Jarvis, P. A., Martin, D. L., Riehemann,

S. Z., Stickel, M. E., Tyson, M., Hobbs, J. R., and Dungan, J. L. (2004). Deductive Question

Answering from Multiple Resources. In New Directions in Question Answering, Mark T

Maybury (ed), pages 253-262, Menlo Park, CA. AÀAI.

Woods, W. (1973). Progress in Natural Language Understanding - An Application to Lunar

Geology. In AFIPS Conference Proceedings, pages 441-450, New York, NY.

157

Appendix A

Penn-II Treebank Tags and Functional

Labels

These tagging and functional annotation labels are taken from “Bracketing Guidelines

for Treebank II Style Penn Treebank Project” Bies et al. (1995). Reproduced from

http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

A.l Bracket Labels

A . l . l C lau se Level

S simple declarative clause, i.e. one that is not introduced by a (possible empty) subordinating

conjunction or a wh-word and that does not exhibit subject-verb inversion.

SBAR Clause introduced by a (possibly empty) subordinating conjunction.

SBARQ Direct question introduced by a wh-word or a wh-phrase. Indirect questions and rela­

tive clauses should be bracketed as SBAR, not SBARQ.

SINV Inverted declarative sentence, i.e. one in which the subject follows the tensed verb or

modal.

158

http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

SQ Inverted yes/no question, or main clause of a wh-question, following the wh-phrase in

SBARQ.

A .1.2 P h ra se Level

ADJP Adjective Phrase.

ADVP Adverb Phrase.

CO N JP Conjunction Phrase.

FRAG Fragment.

IN TJ Inteijection. Corresponds approximately to the part-of-speech tag UH.

LST List marker. Includes surrounding punctuation.

NAC Not a Constituent; used to show the scope of certain prenominal modifiers within an NP.

NP Noun Phrase.

NX Used within certain complex NPs to mark the head of the NP. Corresponds very roughly to

N-bar level but used quite differently,

PP Prepositional Phrase.

PRN Parenthetical.

PRT Particle. Category for words that should be tagged RP.

QP Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.

RRC Reduced Relative Clause.

UCP Unlike Coordinated Phrase.

VP Vereb Phrase.

159

WHADJP Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how hot.

WHAVP Wh-adverb Phrase. Introduces a clause with an NP gap. May be null (containing the

0 complementizer) or lexical, containing a wh-adverb such as how or why.

WHNP Wh-noun Phrase. Introduces a clause with an NP gap. May be null (containing the

0 complementizer) or lexical, containing some wh-word, e.g. who, which book, whose

daughter, none of which, or how many leopards.

WHPP Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase (such as of

which or by whose authority) that either introduces a PP gap or is contained by a WHNP.

X Unknown, uncertain, or unbracketable. X is often used for bracketing typos and in bracketing

the.. .the-constructions.

A .1.3 W o rd level

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

160

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PR P Personal pronoun

PRP$ Possessive pronoun (prolog version PRP-S)

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

M D Modal

161

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun (prolog version WP-S)

WRB Wh-adverb

A.2 Function tags

A.2.1 F o rm /fu n c tio n d isc repanc ies

ADV (adverbial) marks a constituent other than ADVP or PP when it is used adverbially (e.g.

NPs or free (’’headless” relatives). However, constituents that themselves are modifying

an ADVP generally do not get -ADV If a more specific tag is available (for example,

-TMP) then it is used alone and - ADV is implied. See the Adverbials section.

NOM (nominal) marks free (’’headless”) relatives and gerunds when they act nominally.

A .2.2 G ra m m a tic a l ro le

DTV (dative) marks the dative object in the unshifted form of the double object construction. If

the preposition introducing the ’’dative” object is for, it is considered benefactive (-BNF).

-DTV (and -BNF) is only used after verbs that can undergo dative shift.

LGS (logical subject) is used to mark the logical subject in passives. It attaches to the NP

object of by and not to the PP node itself.

PRD (predicate) marks any predicate that is not VP. In the do so construction, the so is anno­

tated as a predicate.

162

SBJ (surface subject) marks the structural surface subject of both matrix and embedded

clauses, including those with null subjects.

TPC (“topicalized”) marks elements that appear before the subject in a declarative sentence,

but in two cases only:

1. if the front element is associated with a *T* in the position of the gap.

2. if the fronted element is left-dislocated (i.e. it is associated with a resumptive pro­

noun in the position of the gap).

VOC (vocative) marks nouns of address, regardless of their position in the sentence. It is not

coindexed to the subject and not get -TPC when it is sentence-initial.

A .2.3 A d v erb ia ls

BNF (benefactive) marks the beneficiary of an action (attaches to NP or PP). This tag is used

only when (1) the verb can undergo dative shift and (2) the prepositional variant (with

the same meaning) uses for. The prepositional objects of dative-shifting verbs with other

prepositions than for (such as to or of) are annotated -DTV.

DIR (direction) marks adverbials that answer the questions “from where?” and “to where?” It

implies motion, which can be metaphorical as in “...rose 5 pts. to 57-1/2” or “increased

70

EXT (extent) marks adverbial phrases that describe the spatial extent of an activity. -EXT

was incorporated primarily for cases of movement in financial space, but is also used in

analogous situations elsewhere. Obligatory complements do not receive -EXT. Words

such as fully and completely are absolutes and do not receive -EXT.

PUT marks the locative complement of put.

163

LOC (locative) marks adverbials that indicate place/setting of the event. -LOC may also indi­

cate metaphorical location. There is likely to be some varation in the use of -LOC due

to differing annotator interpretations. In cases where the annotator is faced with a choice

between -LOC or -TMP, the default is -LOC. In cases involving SBAR, SBAR should not

receive -LOC. -LOC has some uses that are not adverbial, such as with place names that

are adjoined to other NPs and NAC-LOC premodifiers of NPs. The special tag -PUT is

used for the locative argument of put.

MNR (m anner) marks adverbials that indicate manner, including instrument phrases.

PRP (purpose or reason) marks purpose or reason clauses and PPs.

TM P (tem poral) marks temporal or aspectual adverbials that answer the questions when, how

often, or how long. It has some uses that are not strictly adverbial, auch as with dates that

modify other NPs at S- or VP-level. In cases of apposition involving SBAR, the SBAR

should not be labeled -TMP. Only in “financialspeak and only when the dominating PP

is a PP-DIR, may temporal modifiers be put at PP object.level. Note that -TMP is not used

in possessive phrases.

A.3 Miscellaneous

CLR (closely related) marks constituents that occupy some middle ground between arguments

and adjunct of the verb phrase. These roughly correspond to “predication adjuncts”,

prepositional ditransitives, and some “phrasal verbs”. Although constituents marked with

-CLR are not strictly speaking complements, they are treated as complements whenever

it makes a bracketing difference. The precise meaning of -CLR depends somewhat on the

category of the phrase.

• on S or SBAR - These categories are usually arguments, so the -CLR tag indicates

that the clause is more adverbial than normal clausal arguments. The most common

164

case is the infinitival semi-complement of use, but there are a variety of other cases.

• on PP, ADVP, SBAR-PRP, etc - On categories that are ordinarily interpreted as (ad­

junct) adverbials, -CLR indicates a somewhat closer relationship to the verb. For

example:

Prepositional Ditransitives In order to ensure consistency, the Treebank recog­

nizes only a limited class of verbs that take more than one complement (-DTV

and -PUT and Small Clauses) Verbs that fall outside these classes (including

most of the prepositional ditransitive verbs in class

D2

) are often associated with -CLR.

Phrasal verbs Phrasal verbs are also annotated with -CLR or a combination of -

PRT and PP-CLR. Words that are considered borderline between particle and

adverb are often bracketed with ADVP-CLR.

Predication Adjuncts Many of Quirk’s predication adjuncts are annotated with -

CLR.

• on NP - To the extent that -CLR is used on NPs, it indicates that the NP is part of

some kind of “fixed phrase” or expression, such as take care of. Variation is more

likely for NPs than for other uses of -CLR.

-CLF (cleft) marks it-clefts (“true clefts”) and may be added to the labels S, SINV, or SQ.

HLN (headline) marks headlines and datelines. Note that headlines and datelines always con­

stitute a unit of text that is structurally independent from the following sentence.

TTL (title) is attached to the top node of a title when this title appears inside running text. -TTL

implies -NOM. The internal structure of the title is bracketed as usual.

165

Appendix B

Additional Figures and Tables

<40 words
Sect 00 Sect 23

Model LR LP LR LP
Collins Model 2 n/a n/a 88.5 88.7

Bikel’s Model 2 emulation 90.0 90.2 88.7 88.9
All Sentences

Model Sect 00 Sect 23
Collins Model 2 n/a n/a 88.1 88.3

Bikel’s Model 2 emulation 88.8 89.0 88.2 88.3

Table B.l: Comparison of parsing results for Collins’ Model 2 parser and Bikel’s emulation of
Collins’ Model 2. (Results are taken from Collins (1999) and Bikel (2004))

166

s

Penn-IT analysis
dinner

I
home

Bikel’s analysis
Marge the family

I
had

I
NN

dinner

I
came

Collins’ analysis

Figure B .l: Penn-II Punctuation attachment compared with parser output

167

