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Abstract

As information retrieval becomes more focussed, so too must the techniques involved in the 
retrieval process. More precise responses to queries require more precise linguistic analysis of 
both the queries and the factual documents from which the information is being retrieved.

In this thesis, I present research into using existing linguistic tools to analyse questions. 
These tools, as supplied, often underperform on question analysis. I present my work on adapt­
ing these tools, and creating new resources for use in developing new tools tailored to question 
analysis.

My work has shown that in order to adapt the treebank- and f-structure annotation algorithm- 
based wide coverage LFG parsing resources of Cahill et al. (2004) to analyse questions from the 
ATIS corpus, only the c-structure parser needs to be retrained, the annotation algorithm remains 
unchanged. The retrained c-structure parser needs only a small amount of appropriate training 
data added to its training corpus to gain a significant improvement in both c-structure parsing 
and f-structure annotation.

Given the improvements made with a relatively small amount of question data, I devel­
oped QuestionBank, a question treebank, to determine what further gains can be made using 
a larger amount of question data. My question treebank is a corpus of 4000 parse annotated 
questions. The questions were taken from a number of sources and the question treebank was 
“bootstrapped” in an incremental parsing, hand correction and retraining approach from raw 
data using existing probabilistic parsing resources.

Experiments with QuestionBank show that it is an effective resource for training parsers to 
analyse questions with an improvement of over 10% on the baseline parsing results. In further 
experiments I show that a parser retrained with QuestionBank can also parse newspaper text 
(Penn-II Treebank Section 23) with state-of-the-art accuracy.

Long distance dependencies (LDDs) are a vital part of question analysis in determining 
semantic roles and question focus. I have designed and implemented a novel method to recover 
WH-traces and coindexed antecedents in c-structure trees from parser output which uses the 
f-structure LDD resolution method of Cahill et al (2004) to resolve the dependencies and then 
“reverse engineers” the corresponding syntactic components in the c-structure tree.
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Chapter 1

Introduction

Question Answering (QA), the process of retrieving precise information that satisfies a user 

query in the form of a question, is an inherently more linguistically involved task than document- 

based Information Retrieval (IR). Linguistic analysis of the structure and functional roles of a 

question can identify important information such as the question focus and how it relates to the 

main predicate of the question. Linguistic analysis is useful for disambiguating strings which 

are similar on a surface level but have quite different meaning. Such distinctions can be lost by 

systems that only look at the surface string and perform little or no deeper linguistic analysis.

To date, linguistic analysis has been employed to different degrees in QA. The current trend 

in state-of-the-art QA systems is to use deeper semantic, logical form or predicate-argument 

structures derived from the natural language strings for both documents and queries. These 

structures are then used for a range of tasks from answer verification to inference. The ways 

and means by which these representations of linguistic data are employed and derived depends 

on the system, but one thing that is common among the NLP-rich systems is that they parse 

the input questions to determine the syntactic structure of the query before deriving a deeper 

meaning representation or using the syntactic analysis for another subprocess.

Despite this heavy dependence on parser-based shallow and deep linguistic analysis of ques­

tions for QA, surprisingly little research has been carried out on how well state-of-the-art shallow
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and deep parsing systems cope with question analysis. To the best of my knowledge, no research 

has been carried out to establish whether high performing Penn-II Treebank trained (Marcus 

et al., 1993, 1994) modern parsers like Collins (1999), Chamiak (2000) and Bikel (2002) or 

deeper linguistic analysis tools, for example the automatic f-structure annotation algorithm of 

Cahill et al. (2004), are able to maintain their high accuracy when tested on questions, instead 

of on Wall Street Journal text from the Penn-II Treebank (Marcus et al., 1994).

This thesis presents research on examining how state-of-the-art parsing and f-structure an­

notation systems cope with question material, the adaption of such resources to optimally cope 

with questions, and the creation of resources to support research and development in parser- 

based analysis of questions.

Probabilistic parsing resources reflect the characteristics of their training material and gener­

ally underperform on material which differs from the training material. This mismatch between 

training and test/evaluation material is referred to as domain variation.

The research I present investigates strong domain variation, and its effects on parser perfor­

mance. Parsing questions is an instance of domain variation, but, as I will show, it constitutes an 

instance of more severe domain variation than was observed in previous studies (Gildea, 2001), 

and as a result the effects are much more pronounced. I show that the ATIS corpus (Hemphill 

et al., 1990) is substantially different from the Penn-II Treebank and that it contains a high pro­

portion of questions. This makes it useful for an initial investigation into domain variance in a 

question-rich domain.

I test the Penn-II trained parsers of Collins (1999), Chamiak (2000) and Bikel (2002) on 

ATIS data and show that each of the parsers suffers a drop in performance in the new domain with 

an average drop in labelled precision and recall f-score of 19.99% when compared to the results 

for parsing Section 23 of the Penn-II Treebank. Following Gildea (2001) I add appropriate data 

to the parsers’ training corpus to allow them to cope with the new domain. This boosts the 

parsers’ performance on the ATIS data significantly. Bikel’s result on a held out test set of 10% 

of the ATIS corpus increases from an f-score of 64.84% to 85.20% and Chamiak’s increases

2



from 63.64% to 81.59%.'

Following from this, I present the first domain variance research which investigates the ef­

fects of domain variance on the Penn-II Treebank- and f-structure annotation algorithm-based 

LFG parsing resources of Cahill et al. (2004). I show that the preds-only dependency f-score 

in a test on a 100 hand-crafted f-structure gold standard for ATIS sentences drops to 62.95%, 

compared to 74.10% for the Penn-II based DCU 105 gold standard. Due to the modular, pipeline 

design of the LFG parsing architecture of Cahill et al. (2004), the observed underperformance 

could be the result of one or several stages in the parsing architecture being sub-optimal for 

question analysis. I show that the underperformance stems from the c-structure parser and that 

retraining the parser significantly improves the quality of both c- and f-structure analysis in­

creasing the preds-only f-score by 13.82% to 76.77% in an evaluation on the held out 100 ATIS 

sentence gold standard.

The work shows that the automatic f-structure annotation algorithm of Cahill et al. (2004) 

is complete with respect to the domain variance observed in this thesis, as it did not need to be 

modified to cope with the new domain. It also supports the observation that f-structures are a 

more abstract representation of linguistic information, less affected by domain variation.

The retraining work presented in the first two chapters of the dissertation highlights the 

benefit that retraining a parser on a small amount of domain appropriate data can have in both 

c- and f-structure analysis of out-of-domain data. The ATIS corpus, however, is quite small, 

not representative of a large amount of question types and contains extraneous non-question 

data. So, while it is useful for initial investigations, these properties make the ATIS resource 

unsuitable for larger evaluations and for use as a fully fledged question corpus. To address this, 

I have semi-automatically created a new training and development resource for parser-based 

linguistic analysis of questions. QuestionBank is a parse-annotated corpus of 4000 questions 

following Penn-II guidelines (Bies et al., 1995), intended for use as a training and evaluation 

corpus for parsing-based technology used in question answering. I have used QuestionBank

‘Collins’ parser does not come with the functionality to retrain it on new training data, so I am unable to give 
results for this parser in the retraining experiments.
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to retrain Bikel’s parser to be able to parse questions with a high degree of accuracy (88.82% 

labelled precision and recall f-score) and, when trained in conjunction with Sections 02-21 of 

the Penn-II Treebank, the parser can not only parse questions but also informative text in Section 

23 of the Penn-II Treebank with state-of-the-art accuracy.

Long Distance Dependencies (LDDs) are important in the analysis of English wh-questions, 

as the wh-phrase of the question generally refers to a dislocated element corresponding to the 

answer to the question. Because of this, correctly identifying LDDs in input questions signif­

icantly improves the quality of question analysis. However, most state-of-the-art probabilistic 

parsers do not include this kind of information in their output.2 I have developed a novel method 

for recovering traces in parser output which uses reentrancies in automatically generated long 

distance dependency resolved f-structures to “reverse engineer” the corresponding c-structure 

trace and coindexation. This method proved quite successful in evaluations on questions from 

QuestionBank with an f-score of 80.78% on gold standard trees stripped of traces and functional 

information, and 68.99% on parser output. When compared with other systems available for the 

task, the results show that this method for recovering LDD information outperforms the others.

This thesis is structured as follows:

Chapter 2 introduces Question Answering, parsing, Lexical Functional Grammar, shows how 

linguistic analysis is useful to QA, sets the context and gives some background for the 

research presented in this thesis

Chapter 3 contrasts the ATIS corpus and Penn-II Treebank and presents preliminary research 

on parsing ATIS data with state-of-the-art parsers and shows how the parsers can be 

adapted to better cope with ATIS data.
I

Chapter 4 examines domain variance in automatic f-structure annotation and shows that the 

observed performance drop is due to the c-structure parser underperformance on the out- 

of-domain data, which results in poor quality f-structure annotation.

2Collins’ Model 3 parser is a notable exception which outputs traces for wh-reiative clauses.



Chapter 5 describes the bootstrapping of QuestionBank, a parse annotated corpus of 4000 

questions, intended to function as a development resource for parser-based linguistic tools 

for use in QA. QuestionBank was created semi-automatically from raw data taken from 

state-of-the-art development and test sets for QA. This chapter describes the raw data, and 

the semi-automatic “bootstrapping” method used to create QuestionBank.

Chapter 6 presents a series of experiments with QuestionBank to determine its effectiveness as 

a training resource for question parsing and to investigate the effect that adapting a parser 

to accurately analyse questions (out-of-domain data) has on its ability to parse informative 

text (in-domain data).

Chapter 7 describes a novel method to recover trace information in parser output using auto­

matically generated, long distance dependency resolved f-structures to recreate the corre­

sponding trace and coindexation information in the tree. This method is used to induce 

trace information in QuestionBank and compared with the approaches of Johnson (2002) 

and Higgins (2003).

Chapter 8 concludes and outlines some areas of future work.

Much of the experimental work in this thesis addresses a space of possibilities that arise 

from training and testing parsers on question-rich versus statement-rich corpora. The general
i

space of possibilities can be represented by the following table:

Test
C/F-structure Evaluation on PTB C/F-structure Evaluation on Question-rich Data

Training i

PTB I
Question-rich I

Question-rich + PTB
i

A number of chapters address areas within this space of possibilities. I will revisit this table 

(extending it where necessary) to illustrate the area(s) applicable to particular chapters.

5
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Chapter 2

Background

2.1 Introduction

This chapter sets the context and background relevant to the research presented in this disser­

tation. I introduce Question Answering (QA), an area within Information Retrieval (IR), and 

discuss newly emerging directions in QA. I provide an overview of shallow and deep natu­

ral language parsing methods (based on Context Free Phrase-Structure Grammars and Lexical 

Functional Grammar) and present treebank-based automatic deep grammar acquisition based on 

the automatic f-structure annotation algorithm of Cahill et al. (2004). I present a short overview 

of the Penn-II Treebank data structures and encoding of syntactic information relevant to this 

dissertation. I review research on combining NLP methods with Question Answering, and de­

scribe how improving and adapting NLP tools for questions can benefit the Question Answering 

process.

2.2 Question Answering

Information Retrieval (IR) is the process of finding information in a data repository in response 

to a user query.1 The information repository can consist of structured data, like a database,

1 In this thesis I restrict myself to text-based IR.



or unstructured data, like a collection of documents or the worldwide web (WWW). The most 

prevalent information retrieval systems are search engines for the worldwide web. Search en­

gines index very large amounts of data from webpages and in the simplest case use keyword 

matching techniques to retrieve documents relevant to a query. In recent years internet search 

engines have started to employ more sophisticated techniques which take advantage of the na­

ture of hypertext in the WWW, including for example linkage analysis (Brin and Page, 1998), 

as well as shallow linguistic techniques, including, for example, query expansion via synonyms, 

to improve document retrieval and ranking. Despite these advances, it is often the case that the 

highest ranked documents do not contain the information the user needs (Silverstein et al., 1998), 

leaving the user to search a (quite large) collection of potentially relevant documents for the in­

formation queried, or abandon his/her search if this proves too time consuming. As the amount 

of information available on-line grows, this problem becomes further compounded and the need 

for systems which can deliver precise information in response to a precise query becomes more 

urgent.

Question Answering (QA) addresses this need by combining linguistic processing with 

“standard” IR technology in a way that allows the user to state his/her information need as 

s/he would naturally, i.e. in the form of a question, and to receive a concise response, rather than 

complete documents, containing the information (or a ranked list of candidate responses) which 

satisfies the information need, i.e. answers the question.

The QA paradigm is regarded as a refinement of standard document retrieval-based IR in 

that it is narrowing the scope of both the query and the response to a specific information need, a 

question, and, for simple fact seeking (factoid) questions, a specific response to that information 

need, a fact. With this in mind it is clear that QA is an augmentation to, but not a replacement 

for, IR.

Information Retrieval has been actively researched since as far back as the mid-1950’s. Its 

relationship to Question Answering is that users form queries because they require information 

to find the answers to questions. Beyond this, the similarities largely end. IR systems return
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documents instead of answers, from which users must extract the information themselves. The 

documents are generally ranked on the basis of keyword matching heuristics and linkage analysis 

and do not include other specific constraints set out in the query. Queries put to IR systems 

are often treated as a collection of keywords and a query is not required to be well formed 

syntactically.

This “bag of words” approach can be a drawback as subtle but important differences between 

queries can be lost. Consider, for example, the following two queries

1. “Who killed Harvey Oswald?”

2. “Who did Harvey Oswald kill?”

In the first case, the query is for the agent/subject of the observed eventuality (i.e. Jack 

Ruby); in the second, it is for the patient/object of the (different) described eventuality (i.e. 

JFK). This important difference is, however, lost on standard IR systems, which reduce both 

inputs to the same set of stemmed open class query terms. After stopword removal the queries 

yield:

{killed,Harvey,Oswald}{Harvey,Oswald,kill}

After stemming this is reduced to equivalent sets of query terms, generating identical re­

sponses from the IR system:

{kill,Harvey,Oswald}(Harvey,Oswald,kill}

In order to capture important differences such as these, a QA system must perform deeper 

linguistic analysis than stemming and stopword removal. In the case at hand, the QA system 

must determine the syntactic/semantic roles of the participants in the described eventuality. This 

involves resolving the wh-pronoun in the first query as subject/agent and as object/patient in 

the second. Notice that in general this may involve long distance dependency resolution and 

effectively amounts to the construction of predicate-argument representations.
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Although information systems and IR as we know it today did not really take off until the 1990’s 

with the advent of the PC, earlier forms of IR and QA have been around for quite some time. 

One of the earliest surveys on QA is a paper published in 1965 (Simmons, 1965) which reviews 

fifteen QA systems that had been developed over the previous 5 years. Simmons categorises 

these systems into 5 types: list-structured, data-based, graphic data-based, text-based and infer­

ential. The first three correspond to systems which rely on a structured database of one form or 

other. The text-based systems represent the beginnings of modem IR systems, using collections 

of documents instead of structured databases to answer questions. The inferential systems de­

scribed in Simmons’ paper translate questions into a quasi-logical form and infer answers to the 

questions based on a database of logical facts, an approach that is still used (at least in part) by 

some modern QA systems (Waldinger et al., 2004).

Given the state-of-the-art in document collection and processing at the time, it is no surprise 

that the more successful of the early QA systems were those designed as a front-end to a struc­

tured database. One of the most successful systems in this category (developed after Simmons’ 

article) accessed a database of geological information on rock samples brought back from the 

moon during the Apollo missions. The system, LUNAR (Woods, 1973), was capable of an­

swering 90% of the in-domain questions posed to it. This encouraging early result spawned a 

plethora of important research in the database front-end approach, including the BASEBALL 

and PLANES systems (Green et al., 1961; Grosz et al., 1986) through the ’70s and ’80s.

The early database front-end approach, though successful, is limited in that it is restricted to 

a closed information domain and relies on having the information repository stored as a struc­

tured database. Recent advances in IR have produced very good results in searching over large 

document collections like WT10G,2 .GOV3 and the WWW, containing unstructured and diverse 

information in text documents. QA research has followed suit, moving from closed to open

2http://es.csiro.au/TRECWeb/wt10ginfo.ps.gz
3 http: //ir. dc s. gl a. ac. uk/test_co 1 lecti ons/govi nfo. html

2.2.1 H is to ry  o f Q A
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domain questions and unstructured, text-based datasets. Expanding from a small closed do­

main into open domain free text QA is not as simple as just expanding the dataset and test set. 

The QA system itself has to change and “grow” to accommodate the expanded requirements 

(Hirschman and Gaizauskas, 2001). Input to an open-domain QA system can come from any 

subject area. The system needs to expand its language coverage to be able to handle unrestricted 

natural language queries, and to be able to process unrestricted texts to find answers.

Information Extraction (IE) research has in many ways fed into current QA research. IE has 

been described as using natural language texts to fill data templates which represent stereotypical 

events (Hirschman and Gaizauskas, 2001). For example, an IE system may involve templates to 

extract information about people’s births and deaths from newspaper obituaries. An IE template 

can be loosely compared to a question and a filled template can be regarded as containing an an­

swer. The IE community’s competitive evaluations at the Message Understanding Conferences 

(MUCs) ran from 1987 to 1998. In most current research, IE has become an integral part of 

modem IR and QA systems.

In 1999 the Text Retrieval Conferences (TREC) organised by the U.S. National Institute for 

Science and Technology (NIST) introduced a QA track (Voorhees, 2001).4 The purpose of this 

track is to promote research in language understanding technologies through QA and to provide 

an evaluation forum for such research. The TREC evaluations have now become a benchmark 

for English QA evaluations. The questions used in the evaluations of open domain QA systems 

tend to be short fact seeking (factoid) questions, which usually require a named entity, or an 

amount, location etc., to respond to the query.

2.2.2 New Directions in QA

After over 40 years of R&D in QA, research is now beginning to fully explore the area and realise 

its potential in terms of prototype systems and products. Even the limited solutions offered by 

current systems provide added value over course-grained document-based IR. The range and

4 http ://trec .ni st. gov/data/qa. htm 1
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scale of systems employed in the TREC evaluations indicate that QA is an area of growth and 

diversity drawing on recent advances in both IR and NLP research.

In recent years, cross-language retrieval tasks have emerged, with several conferences and 

workshops (CLEF, NTCIR) dedicated to the area. Cross-Language Information Retrieval (CLIR) 

and Cross-Language Question Answering (CLQA) are similar to their monolingual counterparts 

except that the queries are in one language and the document collection in another. The ability to 

utilise documents from other languages is useful to QA because it enables a system to draw on 

information in a language different to the query. By allowing a system to search a (much) larger 

document collection, the chances of finding a correct answer are increased. There are, however, 

drawbacks to increasing the size of the document collection with similar documents from other 

languages. There is an added cost in terms of processing and managing the document collection, 

and there are also problems associated with noise introduced by similar but irrelevant texts in 

the document collection.

Given that CLQA/IR systems have already started to bridge the language gap to retrieve 

appropriate documents and answers from different languages, and given the recent advances in 

Multimedia IR (MMIR) research (Smeaton et al., 2002), another logical progression for QA 

research is Multimedia QA (MMQA). A MMQA system draws on more than text documents 

to derive the answers it returns, looking also at the information contained in images, video, and 

potentially speech. This is an exciting new area in QA research, offering the potential to not 

only answer a user’s question but also to return appropriate images, video clips and sound bytes 

to back up the answer or to provide more relevant information to the user.

The technique of asking questions about a text to test whether a person has understood it 

correctly has been successfully employed in teaching both children and second language learn­

ers. Hirschman et al. (1999) describe a system which takes a children’s story as input and can 

answer questions on the text. This type of QA system presents new and interesting uses in the 

field of Computer-Aided Language Learning (CALL) and, more generally, E-Learning. Such a 

QA system could conceivably be used to grade students’ answers to questions about unseen text.
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Alternatively, in a wider learning context a QA system could be part of an automated companion 

learning program which “learns” at the same time as the student.

2.3 Shallow and Deep NLP Methods

In order to effectively return answers to questions, a QA system needs to perform some level 

of linguistic analysis on the input questions. This allows the QA system to capture important 

differences between queries, e.g. the agent/patient (subject/object) difference between “Who 

killed Harvey Oswald?” and “Who did Harvey Oswald kill?” discussed in examples (1) and 

(2). The level and nature of linguistic processing employed by a QA system varies depending 

on the architecture of the system. In this section, I will outline a shallow analysis method, 

Context Free Grammar-Based Parsing, which has been applied in query/document analysis for 

high performance QA (Pasca and Harabagiu, 2001). I will then outline a deep analysis method, 

Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982), which analyses sentences into 

basic predicate-argument structures with long distance dependency relations resolved, and give 

a brief overview of some work which has been done on parsing raw text into LFG f-structures.

2.3.1 Context-Free Grammar (CFG) Parsing
\

Parsing is the process of analysing (natural or formal) language strings into their component 

parts and describing how they relate to each other syntactically. For natural language input, 

CFG parsing usually produces an output showing the lexical category of each of the words (its 

part-of-speech, POS) and the internal structure of the sentence (a parse tree). CFG parsing is 

a useful step in processing natural language text as a syntactic analysis guides the semantic 

interpretation of an input string in the form of dependencies, predicate-argument structures, or 

logical forms.

CFG parsing assigns syntactic structure to a string according to the rules provided by a gram­

mar for the language. A grammar is a set of rules which describe what is a valid construction
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for the language (fragment) described by the grammar. A Context Free Grammar (CFG) is a 

grammar in which every production rule is of the form

A —> a

where A is a non-terminal and a  is a set of terminals and/or non-terminals. Context free 

grammars are called “context free” because A can always be replaced by a  regardless of the 

context in which it occurs. Context free grammars define a class 2 language according to the 

Chomsky hierarchy (Figure 2.1)

Language class Grammar Automaton

3 Regular NFA or DFA

2 Context-Free Push-Down Automaton

1 Context-Sensitive Linear-Bounded Automaton

0 Free (Unrestricted) Turing Machine

Figure 2.1: The Chomsky hierarchy of languages, grammars and automata

Formally, a CFG G can be described as a 4-tuple G =  (Vi, Vn , P, S ), such that

• Vi is a finite, non-empty set of terminals

• Vn is a finite, non-empty set of non-terminals

• P  is a finite, non-empty set of production rules of the form Vn —► (Vi U  Vn)*

• 5  e  Vn is the distinguished start symbol

Modem CFG parsers for NLP applications generally do not use simple CFG grammars to 

parse strings. This is because in cases where multiple analyses can be assigned to an input

string, a CFG cannot output a “best” parse for the input string, but can only enumerate each
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of the possible parses. A simple CFG does not distinguish preferred (commonly used) con­

structions from rare ones. In order to do this, CFG parsers such as LoPar (Schmid, 2000) use 

Probabilistic Context-Free Grammars (PCFGs), an extension of CFGs, which associate a prob­

ability with each production rule A —> a. Formally, a PCFG G can be described as a 5-tuple

G = {Vt ,Vn, P) S, R)y such that

• Vt,Vn, P  and S defined as for a CFG

•  R is a function which assigns a probability to each rule A —> a  6 P  such that for each 

LHS: ^ LffsR(RffS LHS)  = 1

Using this model, a PCFG defines the probability of a parse tree T given a string S, i.e. 

P(T|S), as the product of the probabilities of each of the productions in T. A PCFG parser can 

then choose the most likely analysis for a string S as the parse tree T which maximises P(T|S).

The probability associated with each of the rules in a PCFG has a great effect on how that 

rule influences a parse tree derivation. Often both the grammar rules and the rule probabilities 

are extracted from a parse-annotated treebank and each rule’s probability is estimated in terms 

of its relative frequency in the treebank.5

#{LHS -* RHSj)
( J) ¿27=1 #{LH S -+ RHSi)  ( }

Given a suitably large treebank, PCFG parsing can achieve very high coverage and is able to 

rank output alternatives. Everything else being equal, PCFG-based parsing favours derivations 

with small numbers of expansions, and hence a small number of probabilities to multiply out, 

which results in a bias towards smaller, less hierarchical trees with less structure.

Other state-of-the-art approaches to probabilistic, wide coverage parsing use more sophis­

ticated mechanisms than the simple PCFG model outlined above to produce CFG parse trees. 

An important family of state-of-the-art parsers producing CFG trees use richer language models

’Here # stands for counts.
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(with fewer independence assumptions) than a PCFG. The parsers of Collins (1999), Chamiak 

(2000) and Bikel (2002) employ history-based, generative, lexicalised models and achieve re­

sults of almost 90% labelled f-score when tested on the trees in Section 23 of the Penn-II Tree- 

bank. These parsers are the basis of a number of my experiments described in Chapters 3, 4 and 

6.

Collins (1999) introduces three parsing models (1 ,2  and 3) for a history-based parser (Black 

et al., 1993). Collins’ history-based parsing model is defined in terms of a top-down leftmost 

derivation where (in principle) anything previously generated by the derivation process can ap­

pear in the conditioning context for the expansion of the next non-terminal. Model 1 is a basic 

history-based model which tries to overcome the sparse data problem of lexicalised parsing by 

first generating the head of a constituent, followed by its left and right contexts. Model 2 dis­

tinguishes complements and adjuncts and Model 3 can produce traces for wh-relative clause 

movement. Training on Sections 02-21 and evaluating on Section 23 of the Penn-II Treebank 

(Collins, 1999) shows that Collins’ Model 3 achieves the highest results with precision of 88.7% 

and recall of 88.6% on sentences of length <  40 and Model 2 outperforms Model 1 with preci­

sion of 88.7% and recall of 88.5% on sentences of length <  40. For each model, the results are 

slightly worse for sentences of length <  100. Table 2.1 summarises the results.

Moc

LP

lei 1 

LR

Moc

LP

lei 2 

LR

Moc

LP

lei 3 

LR

< 40 words 88.2 87.9 88.7 88.5 88.7 88.6

<  100 words 87.7 87.5 88.3 88.1 88.3 88.0

Table 2.1: Parsing results for Collins’ parser on Section 23 of the Penn-II Treebank

The parser described in Charniak (2000) is based on a probabilistic generative model (Char- 

niak, 1997), which for a sentence S and parse tree T assigns the probability P(S,T) = P(T). The 

parser returns the tree which maximises this probability. A probability is assigned to a tree T by



a top-down process considering each constituent in the tree and assigning a probability based on 

the constituent’s label, lexical head and generative history. Training this parser on Sections 02- 

21 of the Penn-II Treebank and testing on Section 23, Chamiak’s parser outperforms Collins’, 

achieving labelled precision and recall of 90.1 on sentences of length <  40 with only a slight 

performance drop for sentences of length <  100. Table 2.2 (Chamiak, 2000) summarises these 

results.

Labelled Precision Labelled Recall

<  40 words 90.1 90.1

<  100 words 89.6 89.5

Table 2.2: Parsing results for Chamiak’s parser on Section 23 of the Penn-II Treebank

Bikel (2002) provides a Java implementation of a retrainable and extensible multilingual 

parser which emulates Collins (1999) Model 2. The parsing engine provides a number of lan­

guage packages and an extensive API to develop packages for new languages. Table 2.3 shows 

parsing results for Collins’ original Model 2 and Bikel’s emulation on Section 00 of the Penn-II 

Treebank.

Collins Model 2 Bikel

LP LR LP LR

<  40 words 89.75 90.19 89.89 90.14

<  100 words 88.47 89.30 88.72 89.03

Table 2.3: Parsing results for Collins’ Model 2 parser and Bikel’s emulation on Section 00 of 

the Penn Treebank
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Lexica] Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 

2001) is a constraint-based grammar formalism. LFG (minimally) involves two levels of rep­

resentation, c(onstituent)-structure and functional) -structure. C-structure takes the form of 

CFG trees which capture language specific issues like constituent grouping and word order. 

F-structure represents a deeper, more abstract level of linguistic information such as subject, 

object, complement etc., in the form of Attribute Value Matrices (AVMs) which approximate to 

basic predicate-argument structures or deep dependency relations.

C-structures are related to f-structures through ^-projections which map c-structure nodes 

to their corresponding f-structures. Functional annotations on the c-structure nodes representing 

constraints which describe the f-structure. Figure 2.26 shows an example c- and f-structure for 

the sentence “John saw Mary” where the ^-correspondence between the c-structure tree and the 

f-structure is indicated in terms of arrows from c-structure nodes to f-structure nodes.

NP 
(T S U B J ) =  I

I
John

2.3.2 L ex ical F u n c tio n a l G ra m m a r

Figure 2.2: C- and f-structures for the sentence “John saw Mary”

The up- and down-arrows in the functional annotation ( | | )  refer to the f-structure associated 

with the mother node (T) and the local node Q). These are instantiated to unique tree node 

identifiers and, if all the constraints are satisfiable, an f-structure is generated from the annotated 

tree.

6Lexical annotations have been suppressed to aid readablity

PRED * S E E < ( T S U B J ) ( T 0 B J ) ) ’

p r e d  ‘J o h n ’
NUM SG 
PERS 3 
p r e d  ‘M a r y ’
NUM SG 
PERS 3 

TENSE PAST
saw Mary
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Wellformedness Conditions

F-structures are required to meet three wellformedness conditions: Completeness, Coherence 

and Uniqueness (Kaplan and Bresnan, 1982). These conditions ensure that a predicate has all 

of the arguments which it requires, that there are no additional arguments and that each attribute 

has a single value.

The completeness condition states that an f-structure is locally complete if and only if it 

contains all of the governable grammatical functions that its predicate governs, and an f-structure 

is complete if and only if all of its sub-f-structures are locally complete (Kaplan and Bresnan, 

1982). This condition ensures that the f-structure for a sentence like

*John threw.
SUBJ ‘John’

PRED “THROW (SUBJ,0BJ):

is incomplete because some required material is missing. The main verb of the sentence is 

transitive and requires both a subject and an object. Its semantic form subcategorises for subject 

and object arguments:

PRED “THROW (SUBJ,OBJ>”

In the f-structure above only the SUBJ role governed by the local PRED is present, therefore 

the f-structure for the whole sentence is incomplete.

The coherence condition disallows f-structures which contain extra governable grammatical 

functions which are not governed by the local predicate. Formally, an f-structure is locally 

coherent if and only if all of the governable grammatical functions it contains are governed by 

a local predicate. An f-structure is coherent if and only if all of its sub-f-structures are coherent 

(Kaplan and Bresnan, 1982). This ensures that a sentence like:

*John slept the ball.

SUBJ ‘John’

PRED “SLEEP(SUBJ)” 

OBJ ‘the ball’
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is incoherent because the object is not governed by the local intransitive verb “sleep” which 

only subcategorises for a SUBJ as in the semantic form below.

PRED “SLEEP (SUB j)”

The uniqueness condition requires that each attribute of an f-structure has at most one value. 

This prevents f-structures from having incompatible constraints, for example:

*The boys sleeps.

PRED “SLEEP(SUBJ)”

PRED ‘BOYS’ 

NUM SG/PL
SUBJ

The subject noun phrase “the boys”  is plural, but the verb “ sleeps” requires a singular subject. 

Since the NUM value cannot be both singular and plural there is a feature clash violating the 

uniqueness condition so the f-structure is not well formed.

L F G  is an interesting framework because f-structure abstracts away from some language 

specific issues like word order, associated with the surface string, approximating to predicate- 

argument structure, deep dependencies or a simple logical form. Figure 2.3 shows an example 

English sentence and its corresponding translation in Irish. Note that despite the different word 

order (English is an S V O  language, Irish is a V S O  language) the f-structures are isomorphic 

(up to leaf node relabelling). L F G  is an attractive formalism for question analysis because long­

distance dependencies are resolved in f-structures providing important information about both 

informative text and questions (this is the topic o f Chapter 7 of this thesis).
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NP 
( î SUBI) = i

John
ÎPRED=’John’

|N U M = S G

|PERS=3

V

î = l
I

saw
ÎPRED=‘SEE<(ÎSUBj)(tOBJ))

|TENSE=PAST

NP
( î OBJ) = i

I
Mary

|PRED=tMary’
| num =sg

| pers=3

PRED ‘SEE((ÎSUBJ)(Î0BJ))’

SUBJ

OBJ

PRED ‘Jo h n ’
NUM SG
PERS 3
pred! ‘Mary’
NUM SG
PERS 3

TENSE PAST

Chonaic
ÎPRED=‘FEIC

<(ÎSUBJ)(Î0BJ))’
| tense=past

NP
( î  SUBJ) = i

I
Seán

TPRED=’Seán,
ÎNUM=SG
ÎPERS=3

NP 
(T OBJ) = 1

I
Màire

|pRED=’Màire’
|NUM=SG
Îpers=3

PRED ‘FEIC((tSUBj)(îOBj))
pred Seán

SUBJ NUM SG
PERS 3 
pred Maire

OBJ NUM SG
PERS 3 

TENSE PAST

Figure 2.3: C- and f-structures for an English and corresponding Irish sentence.
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2.3.3 Treebank-Based Acquisition of LFG Resources and “Deep” Parsing Using 

LFG

L F G  (and similar constraint-based grammar formalisms like HPSG, C C G  and T A G ) represents 

“ deep”  linguistic information in terms of grammatical function and dependencies. However, 

hand-crafting deep constraint grammar resources and scaling them to unrestricted text is pro­

hibitively time consuming and expensive. Because of this, a number of researchers have de­

veloped automatic treebank-based acquisition methods for constraint-based grammars (Cahill 

et al. (2002a, 2004), M iyao et al. (2003), Hockenmaier (2003a)). In this section, I give an out­

line o f the Automatic L F G  F-structure Annotation Algorithm of Cahill et al. (2002a, 2004) and 

briefly describe the two parsing architectures presented in Cahill et al. (2002b): the pipeline 

model, which takes C F G  parse trees and adds L F G  annotations to generate f-structures, and 

the integrated model, which uses an f-structure Annotated P C FG  (A P C F G ). I use the automatic 

f-structure annotation algorithm in experiments on the A TIS  corpus (Hemphill et al., 1990) in 

Chapter 4 and I use A P C FG s in the reconstruction of LD D s in a bootstrapped question treebank 

in Chapter 7.

Automatic f-structure annotation has previously been explored on a much smaller scale by 

Lappin et al. (1989), Sadler et al. (2000) and Frank (2000). The first large-scale automatic 

f-structure annotation project was Cahill et al. (2002a) which uses an annotation algorithm to 

automatically annotate Penn-II Treebank-style C F G  trees with functional equations.

The annotation algorithm is used to annotate treebank trees and parser output trees. Penn-II 

treebank trees encode long-distance dependencies (LD D s) in terms of empty productions (traces) 

and coindexation in trees. A  module (traces) in the annotation annotation algorithm (Figure 2.4) 

translates these into corresponding reentrancies to represent the L D D  at f-structure. Probabilistic 

parser output trees do not generally represent LD D s (they do not produce traces and coindexa­

tions). A  separate LDD-resolution module (Cahill et al., 2004) resolves LD D s at f-structure for 

parser output (Figure 2.9). Below, I w ill first present the f-structure annotation algorithm as it 

applies to treebank trees and then describe how the annotation algorithm is integrated into the
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The annotation algorithm is embedded in a 2 stage process (Figure 2.4): the treebank trees 

are annotated with functional equations by the annotation algorithm and then passed to a con­

straint solver to generate f-structures.

parsing architectures of Cahill et al. (2004).

Treebank Trees with — 
Traces and Coindexation

A nnotation A lgorithm

Head-Leiicalisarion

Left-Right Context Annotation Principles

Coordination Annotation

Caich-All and Clean Up

Annotated
Trees

C onstrain t Sotvev ■F-Structures

Figure 2.4: Automatic F-Structure annotation Algorithm of Cahill et al. (2004)

The annotation algorithm consists o f 5 sub-modules:

Head Lexicalisation The algorithm looks at each local subtree of depth 1 and uses a modified 

version of Magerman’s (1994) head-finding rules to partition the daughters of the subtree 

into a head (/i), left context daughters (¿i • ■ * ln) and right context daughters ( r i  ■ ■ ■ r m): 

MOTHER -* ¿i * * • ln h 7*i ■ ■ • rm.

Left-Right Context Annotation Based on the partition derived in the Head Lexicalisation mod­

ule, the algorithm uses categorial and configurational information to annotate each of the 

daughters. For example a determiner to the left of the head of an NP gets the annotation 

t SPEC:DET = | .

Coordination Coordinate structures in the Penn-II Treebank are flat and can be difficult to 

analyse. Because of this, coordinations are treated separately in order to keep the left-right 

context annotation principles simple and perspicuous. For like- and unlike- constituent
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coordinations the algorithm uses coordination sets. Using these sets the algorithm decides 

which daughters form part o f a (local) coordination and to annotate them accordingly and 

which remaining daughters are annotated by the regular left-right annotation principles.

Catch-All and Clean Up This module is responsible for correcting over-generalisations that 

arise from the previous annotation modules. Default annotations on some nodes are over­

written using rules and information from the Penn-II functional tags (-C L R , - d t v ,  etc.) to 

catch specific overgeneralisations.

Traces Long Distance Dependencies are encoded in the Penn-II Treebank by means of empty 

nodes and trace coindexation between the empty node and the dislocated element. The 

trace module links the trace nodes with their associated antecedent in terms of a corre­

sponding reentrancy in the f-structure. Annotating passive constructions is also carried 

out by this module.

The automatic L F G  annotation algorithm takes Penn-II Treebank trees as input and outputs f- 

structures for the trees. Figure 2.5 shows example input to and output produced by the annotation 

algorithm (Figure 2.4) for the sentence “Who did Mary see?” .

Before annotation:
( S B A R Q  ( W H N P - 1  (WP W h o ) )  ( S Q  ( AUX d i d )  ( N P  ( N N P  M a r y ) )  ( V P  ( V B  s e e )  ( N P  

( - N O N E -  * T * - 1 ) )  ) )  ( .  ? ) )

After annotation:
( S B A R Q  ( W H N P - 1  [ u p - f o c u s = d o w n ]  ( W P [ u p = d o w n ]  W h o  [ u p - p r e d = p r o , u p - p r o n _ f  o r i n = '  w h o '  ] ) ) 

( S Q [ u p = d o w n ]  ( A U X [ u p = d o w n ]  d i d [ u p - p r e d = ' d i d ' ] ) ( N P [ u p - s u b j = d o w n ]

( N N P [ u p = d o w n ]  M a r y [ u p - p r e d = ' m a r y ' , u p - n u m = s g , u p - p e r s = 3 ] ) )  ( V P  [ u p - x c o m p = d o w n ,  

u p - s u b j = d o w n : s u b j ] ( V B [ u p = d o w n ]  s e e [ u p - p r e d = ' s e e ' ] ) ( N P [ u p - o b j = d o w n ,
F l : f o c u s = = = F d o w n ,  u p - r e s o l v e d = f o c u s ] ( - N O N E -  * T * - 1 ) ) ) ) ( .  ? ) )

Figure 2.5: Example input and output from the annotation algorithm o f Cahill et al. (2004).

The annotations are then converted to a P R O LO G  representation similar to Figure 2.6 (a) and 

passed to the constraint solver, which creates f-structures for the input sentences if the equations 

are satisfiable (Figure 2.6).
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(a) (b)

f s t r u c t ( b n c _ l ,  F l ) : -
FOCUS

PRED

PRON- FORM

PRO

‘W H O ’ ] m

F 1 : f o c u s = = = F 2 , PRED D O ’
F 2 = = = F 3 , PRED ‘M a r y ’

a
F 3 : p r e d = = = p r o , SUBJ NUM SG
F 3 : p r o n _ f o r m = = = ' w h o ' , PERS 3
F 1 = = = F 5 7 S PRED ‘m a r y ’

0

"

F 5 = = = F 6 , SUBJ NUM SG
F 6 : p r e d = = = ' d o ' , PERS 3
F 5 : s u b j = = = F 8 , XCOMP PRED ‘S E E ’
F 8 = = = F 9 ,

F 9 : p r e d = = = ' m a r y ' , OBJ
PRED PRO 

P R O N . FOR M  ‘W H O ’ ]B
F 9 : n u m - = = s g , _ RESOLVED FOCUS
F 9 : p e r s = = = 3 ,

F 5 : x c o m p = = = F l l ,

F 5 : s u b j = = = F l l : s u b j , 

F 1 1 = “ F 1 2 ,

F I 2 : p r e d = = = ' s e e ' ,

F l l : o b j = = = F 1 4 ,

F I  : f o c u s = = = F 1 4 ,

F l l : r e s o l v e d = = = f o c u s .

Figure 2.6: P R O LO G  format input to the constraint solver (a) and the human readable f-structure 

output (b).

Note that the L D D  in the input tree is represented by a reentrancy between the FOCUS and 

OBJ functions in the f-structure in Figure 2.6 (b) which is indicated by the indices.

If  the treebank trees input to the annotation algorithm indicate long distance dependencies in 

terms of traces and coindexation (Figure 2.7) then the f-structures generated by the annotation 

algorithm and the constraint solver indicates LD D s in terms of corresponding reentrancies at 

f-structure. This is because the Trace module o f the annotation algorithm (Figure 2.4) generates 

annotations from empty nodes and their antecedents which define corresponding reentrancies in 

the f-structures.
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Parser Output
( S B A R Q  {WHNP (WP W h o ) )  ( S Q  ( AUX d i d )  ( N P  ( N N P  M a r y ) )  {VP ( VB  s e e ) ) )  ( .  ? ) )

Annotated Tree

( S B A R Q  ( W H N P [ u p - f o c u s = d o w n ]  ( W P [ u p = d o w n ]  W h o [ u p - p r e d = p r o , u p - p r o n _ f  o r m =  ' w h o 7 ] ) ) 

( S Q [ u p = d o w n ]  ( A U X [ u p = d o w n ]  d i d [ u p - p r e d = ' d i d ' ] ) ( N P [ u p - s u b j = d o w n ]  ( N N P [ u p = d o w n ]  

M a r y [ u p - p r e d = ' m a r y ' , u p - n u m = s g , u p - p e r s = 3 ] ) ) ( V P [ u p - x c o m p = d o w n , u p - s u b j = d o w n : s u b j ] 

( V B [ u p = d o w n ] s e e [ u p - p r e d = ' s e e ' ] ) ) ) ( .  ? ) )

Figure 2.7: Parser output tree, and annotated parser output for “Who did Mary see?”

However, if  the input trees do not have long distance dependencies resolved, for example 

in parser output (Figure 2.7), then the f-structures output by the constraint solver w ill not be 

L D D  resolved. In this case a further processing step is necessary. The unresolved (proto) f- 

structures output by the constraint solver are then passed to the f-structure L D D  resolution mod­

ule described in Cahill et al. (2004) which resolves long distance dependencies at f-structure 

level. This L D D  resolution module uses reentrancy paths (finite approximations of functional 

uncertainty equations) and verb subcategorisation frame information learned from f-structures 

automatically generated from the Penn-II Treebank to L D D  resolve the unresolved f-structures. 

Figure 2.8 shows the f-structure generated from the parser output (unresolved) tree for “Who 

saw Mary?” before and after the f-structure L D D  resolution module is applied.

(a) (b)

FOCUS

SUBJ

XCOMP

PRED 
[  PRON-FORM 
‘D O 1 

PRED 
NUM 
PERS

PRO
‘W h o ’

SUBJ

PRED

‘ M a r y ’
s g

3
PRED
NUM
PERS

S E E ’

‘M a r y ’
SG
3

FOCUS

PRED

SUBJ

XCOMP

PRED
PRON.FORM 

‘D O 1

PRED ‘M a r y  
NUM SG 

PERS 3

PRO
‘W H O ’ P

SUBJ

PRED

OBJ

RESOLVED

PRED 
NUM 
PERS 

‘S E E ’
PRED
PRON-FORM 

FOCUS

‘M a r y ’
SG
3

]m
PRO
‘W h o . p

Figure 2.8: F-structure for “Who did Mary see?” before (a) and after long distance dependency 

resolution on the f-structure (b)
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The resolved f-structure in Figure 2.8 (b) has the reentrancy between the FOCUS and OBJ 

functions and also the SUB j  function of the main p r e d  and the x c o m p  indicated by their shared 

values.

A  full description of the annotation algorithm, its components and its operation on treebank 

trees and parser output trees can be found in McCarthy (2003), Cahill (2004) and Burke (2006). 

Below, I briefly describe the two parsing architectures presented in Cahill et al. (2002b) and 

Cahill et al. (2004).

Parsing Architectures Using the F-structure Annotation Algorithm

Cahill et al. (2002b, 2004) present two architectures for parsing raw text into f-structures using 

the automatic f-structure annotation algorithm: the pipeline and integrated models as shown in 

Figure 2.9.
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Pipeline: Integrated:

Figure 2.9: Two parsing architectures for parsing text into f-structures

In the pipeline model a P C FG  or a history-based parser is extracted from (trained on) the 

Penn-II Treebank which is then used to parse raw text. The parser output is then passed to the 

automatic f-structure annotation algorithm which annotates the trees with functional equations. 

These are then passed to a constraint solver and the LDD-resolution module which produce 

f-structures.

In the integrated parsing model the training corpus is automatically f-structure annotated in 

a pre-processing step. After this pre-processing, each node in the c-structure trees has associated 

functional annotations like those in Figures 2.2 and 2.3 An annotated P C FG  (A P C F G ) with rules
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of the form

S [t= i ]  -> N P [ ! s u B J = i ]  V P [t= i]

NP[T SUBJ = 1] -> DT[T SPEC:D ET = | ]  N N [ |= j ]

v p [T=JJ -  v [T = |]  n p [To b j = | ]

is extracted from the functionally annotated training corpus. The parser parses raw text using the 

A P C F G  to produce f-structure annotated trees. The annotations are then sent to the constraint 

solver and L D D  resolution module which produce f-structures.

Evaluation of LFG Parsing Architectures

The output generated by the L F G  Parsing Architectures is evaluated in a number of ways. The 

c-structure trees are evaluated to assess the quality of the syntactic analysis. The f-structure de­

pendencies are evaluated to assess the quality of the functional analysis. Dependency evaluations 

against gold standard references are usually conducted in two forms: all grammatical functions, 

and predicates only evaluations. A ll grammatical functions evaluations calculate precision, re­

call and f-score on all of the attribute:value pairs in the f-structures. Predicates only (preds-only) 

f-structure evaluations consider a subset o f the grammatical functions in the f-structures by strip­

ping out grammatical attributes, e.g. tense, case and number, that are not directly relevant to the 

basic predicate-argument structure of the f-structure. Preds-only evaluations ignore all paths 

through the f-structure that do not end in a PRED attribute:value pair. W hile this is a less com­

prehensive evaluation metric, it focuses on the core predicate-argument-adjunct structure and 

ignores “ easier”  attribute-.value pairs, given a structurally flawed f-structure, which may result 

in an artificially high evaluation score.

Where a hand-crafted gold standard test set is lacking, or only a small hand-crafted gold 

standard exists, many researchers (Hockenmaier and Steedman, 2002; Miyao et al., 2003; Cahill, 

2004; Judge et al., 2005) use automatically generated gold standards to test against. While these
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gold standards are not as good a resource as a hand-crafted gold standard, they have the advan­

tage that they can be very easily created automatically. Following Hockenmaier and Steedman 

(2 0 0 2 ), experiments with these kind of evaluations are referred to as C C G -style  evaluations, 

where the original Penn-II Treebank Section 23 trees are automatically converted into Combina­

tory Categorial Grammar (C C G ) derivations, which are then used to evaluate C C G  parser output 

for the same strings.

Comparison of Pipeline and Integrated LFG Parsing Models

Table 2.4 shows dependency-based evaluation results for testing these two parsing models against 

the D C U  105, and in a CCG -style  experiment similar to that o f Hockenmaier and Steedman 

(2002) against 2416 automatically generated f-structures for Section 23 of the Penn-II Tree­

bank. The D C U  105 (Cahill et al., 2002b) dependency gold standard is a subset of 105 sentences 

taken randomly from Section 23 of the Penn-II Treebank, for which gold standard f-structures 

were generated by hand. In each case, the grammars are extracted/trained on Sections 02-21 

of the Penn-II Treebank. The results show that both P C FG  models perform similarly, with the 

integrated model scoring better on the preds-only evaluations for both test sets with f-scores of 

74.80% and 75.33% respectively, and the pipeline model scoring better in the all grammatical 

functions evaluations with f-scores of 84.02% and 84.00% respectively. Table 2.4 also shows re­

sults for Collins’ , Chamiak’s and Bikers parsers in the pipeline model (Figure 2.9). The results 

show that the more sophisticated parsing models yield higher results than the simpler P CFG  

models.
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Preds O nly A ll GFs Preds O nly A ll GFs 

Model/Parser F-Score F-Score F-Score F-Score

DCU 105 WSJ 2416

Integrated PCFG 74.80 81.20 75.33 82.72

Pipeline P C FG 74.00 84.02 73.78 84.00

Pipeline Collins 77.86 85.66 80.10 86.82

Pipeline Chamiak 80.50 86.75 82.63 88.08

Pipeline Bikel 79.73 86.80 82.35 88.23

Table 2.4: L F G  parsing results against the D C U  105 for the 2 L F G  parsing models using differ­

ent parsers

2.4 Penn-II Treebank Annotation of Questions

The Penn-II Treebank (Marcus et al., 1993) is a part-of-speech (POS) tagged and parse-annotated 

treebank of sentences. The POS tagging and parse annotation of the text is indicated by nested 

labelled bracketing to show which POS tag is associated with each word and the structure of 

phrases, subsentential clauses and the sentence itself. Figure 2.10 shows the POS annotation for 

the sentence “John saw Mary.”

(NNP J o h n )  . (VBD saw) (NNP M a ry )  { .  . )

Figure 2.10: POS annotation of “John saw Mary.”

Note that both punctuation and lexical items are associated with a POS tag. Sentences are 

annotated with phrasal and clausal structure (Bies et ah, 1995). Figure 2.11 shows the full POS- 

tag and parse-annotations for the sentence “John saw Mary.”

Similar to the POS annotation, phrase level annotations like noun phrases (NP) and verb
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(S (NP (NNP John)) (VP (VBD saw) (NP (NNP Mary))) (. .))

Figure 2. 1 1  : Parse annotation of “John saw Mary.”

phrases (V P ) as well as clause level annotations (S) are indicated through labelled bracketing 

of constituents or groups of constituents. In addition to labelling the constituents, Penn-II style 

annotation also includes some functional information like identifying the subject or topic. These 

are indicated by functional tags appended to the label o f the governing node e.g. NP-SBJ. 

Movement phenomena and long distance dependencies (LD D s) are encoded by means of empty 

nodes in the tree (traces) where the dislocated element should be interpreted which are coindexed 

with their antecedent. Figure 2.12 shows the annotation of the sentence “John saw the film 

that Mary likes” with functional annotation and trace information and the corresponding tree 

structure.
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s

I
NNP

I
John

VBD

saw

NP

NP-1

DT NN

i i
the film

SBAR

WHNP

I
WDT

I
that

NP-SBJ

I
NNP

I
Mary

VP

VBZ NP

I I
likes -NONE- *T*-1

( S  ( N P - S B J  ( N N P  J o h n ) )  ( V P  ( VBD s a w )  ( N P - 1  ( N P  ( DT  t h e )  (NN f i l m ) )  ( S B A R  

(WHNP (WDT t h a t ) )  ( S  ( N P - S B J  ( N N P  M a r y ) )  ( V P  ( V B Z  l i k e s )  ( N P  ( - N O N E -  

* T * - 1 ) ) ) ) ) ) )  ( .  . ) )

Figure 2.12: Functional tags and trace information in Penn-II Treebank annotation

Note that in Figure 2.12 there are two functional tags ( - S B J )  identifying the subject of the 

main and embedded clause. The constituent “ the film” is interpreted as the object o f the verb 

“ likes” in the embedded clause. This is indicated by the empty production -N O N E -  and the 

trace * T * - 1  coindexed with the N P - 1  antecedent (“ the film” ) in the main clause.

The Penn-II Treebank annotation scheme (Bies et al., 1995) provides a number of special 

syntactic labels for dealing with question constructions. They are:

32



S B A R Q  Direct question introduced by a wh-word or a wh-phrase. Indirect questions and 

relative clauses should be bracketed as SBAR , not SBA R Q .

S Q  Inverted yes/no question, or main clause of a wh-question, following the wh-phrase in 

S B A R Q .

W H A D JP  Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how hot.

W H A V P  Wh-adverb Phrase. Introduces a clause with an NP gap. May be null (containing 

the 0  complementizer) or lexical, containing a wh-adverb such as how or why.

W H N P  Wh-noun Phrase. Introduces a clause with an NP gap. M ay be null (containing 

the 0  complementizer) or lexical, containing some wh-word, e.g. who, which book, 

whose daughter, none of which, or how many leopards.

W H P P  Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase (such 

as of which or by whose authority) that either introduces a PP gap or is contained by 

a W HNP.

W D T  Wh-determiner

W P  Wh-pronoun

W P$ Possessive wh-pronoun (prolog version W P-S)

W R B  Wh-adverb

Figure 2.13: Penn-II Treebank constituent labels for questions

I w ill give examples of some of these labels and their usage in bracketed question struc­

tures below. A  full list of Penn-II Treebank bracket labels and functional tags can be found in
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Appendix A .

The annotation of empty elements is particularly important when analysing questions into c- 

structure trees. In Penn-II style annotation wh-questions are generally analysed as involving an 

empty element which corresponds to the focus (the wh-element) . 7  Figure 2.14 shows the trees 

for the question “ Who saw the film?” and the corresponding statement “ John saw the film.”  

Note the similarity between the subtree rooted at SQ in the question tree and the tree for the 

statement.

SBARQ

WHNP-1

WP

1
NP

1
Who

1
-NONE-

i
1

Figure 2.14: Parse annotated trees for a question and corresponding declarative statement

Note that while the structure of the tree for the declarative sentence is almost identical to that 

of the subtree rooted at SQ in the question, there is a crucial difference indicated between the 

two by labelling one as an S node and the other as SQ. The sentence expressing the statement 

consists o f a simple declarative clause, i.e. one that is not introduced by a (possible empty) 

subordinating conjunction or a wh-word and that does not exhibit subject-verb inversion. By 

contrast, in the question, the corresponding SQ subtree is the main clause of a wh-question, 

following the wh-phrase in SBAR Q .

7In some syntactic theories (Chomsky, 1973), interrogative sentences are derived from corresponding declarative 
sentences.
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The original position of the dislocated element of the wh-movement in Figure 2.14 is adja­

cent to its antecedent in the tree. An example of a “ rear’ long distance dependency in a question 

is shown in Figure 2.15.

SBARQ

| AUX NP VP

What I I
did John VB NP

I I
see -NONE-

I
*TM

Figure 2.15: Long distance dependency in a question

An interesting (and quite) common question structure involving L D D s is one involving cop- 

ular constructions with the verb “be.”  In contrast to other constructions where the NP following 

the verb is the object o f the verb, in copular question constructions the NP following the copular 

verb (be) is the subject o f the sentence. The overt NP inside the SQ in Figure 2.15 is in fact the 

subject o f the sentence (despite being to the right o f the main verb) and the dislocated element 

appears at the end of the clause. According to the Penn-II Treebank bracketing guidelines (Bies 

et al., 1995) there is no V P  node inside an SQ in copular questions. Figure 2.16 shows the tree 

for the question “What is John?”
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SBARQ

What

VBZ NP NP

I I I
is NNP -NONE-

I I
John *T*-1

NNP VBZ NP

I I
John is DT NN

I I
a man

Figure 2.16: Penn-II analysis for a copular question and corresponding declarative sentence

2.5 NLP in QA

The level of usage of N LP  techniques in Q A  varies from system to system with some more de­

pendent on N LP  than others. Also the depth of N LP  techniques used varies, with some systems 

using only shallow lexical processing or chunking with others opting to use full syntactic parsing 

or to derive deeper dependency structures.

Harabagiu et al. (2000a,b) describe an N LP -rich  Q A  system which combines both shallow 

and deep processing. In this system questions and answers are subject to syntactic and semantic 

analysis, while the documents retrieved for answer extraction receive only shallow linguistic 

processing. Using this method, their system achieves a very high score on the T R E C - 8  test set, 

achieving best results (89.5% precision and 84.75% N IS T ) when run in its most N LP  intensive 

configuration which performs semantic transformations on both question and answers for an 

inference-based answer justification routine.

At the core of the N LP-rich question and answer processing of Harabagiu et al. (2000a,b) 

is a C F G  parser (Collins, 1996). The parser output is used to generate logical form semantic 

representations, to determine the question class (what type of named entity it queries for), and 

also for expanding and reformulating the question to increase the coverage of the document
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retrieval process.

Similarly Katz et al. (2005) describe a number of linguistically motivated techniques for 

question answering using syntax, semantics, and predicate logic representations. Their archi­

tecture uses syntactic analysis to decompose complex or ambiguous segments of questions. For 

example the question “When was the 20th President of the U .S . bom?” is decomposed into 

identifying the 20th President of the U .S. and then when he was born. This allows their system 

to narrow the search space by only considering documents relevant to the president in question 

as opposed to all presidents.

N LP  methods like C F G  parsing can also be used in answer selection and ranking. Tree 

distance, which assigns an associated cost to transforming one C F G  tree to another, is one metric 

which can be used to select and rank answer candidates which have a tree distance less than a 

threshold value when compared with the question. This is a method which has been used for 

answer retrieval and proposed as a means to evaluate parsers by Emms (2005a,b). There is also 

scope for taking this method further using deeper linguistic representations such as f-structure (or 

similar dependency graphs or logical forms). F-structures are graphs and a graph edit distance 

metric can be used to compare similarity between answer candidates and questions.

2.6 Summary

In this chapter I  have introduced Question Answering as a distinct but related field to Information 

Retrieval. Q A  has been researched since at least the early 1960s, with early successes as database 

frontend and closed-domain text-based systems. As a research area, Q A  is growing, expanding 

into cross language and multilingual domains and also into retrieving information from different 

media types (M M Q A ).

I gave a brief overview of context-free grammars, probabilistic context-free grammars and 

parsing and three state-of-the-art history-based, lexicalised, generative probabilistic parsers (Collins, 

1999; Charniak, 2000; Bikel, 2002). I introduced Lexical Functional Grammar (Kaplan and

37



Bresnan, 1982), outlined recent work on automatic f-structure annotation (Cahill et al., 2002a, 

2004) and automatic f-structure annotation-based parsing models (Cahill et a l, 2002b).

I introduced the Penn-II Treebank data-structures and encoding of linguistic information 

relevant to question material.

I briefly discussed how deep N LP  methods are used in state-of-the-art Q A  systems. I also 

outlined current research in answer detection and ranking using deeper linguistic analysis of 

question and answer strings.
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Chapter 3

Domain Variance Experiments with the 

ATIS Corpus

3.1 Introduction

This chapter presents work on using syntactic parsers in the domain of question analysis. I show 

that the A TIS  corpus data (Hemphill et al., 1990) is substantially different from the financial 

newspaper-style text found in the Wall Street Journal sections of the Penn-II Treebank, and that 

the relatively high proportion of questions in A TIS  makes it suitable for initial tests o f parser 

performance in the question domain. Statistical treebank-based parsing resources reflect the 

properties o f their training data and generally underperform on data significantly different from 

that upon which they were trained. I present baseline experiments to show that this is the case 

for three state-of-the-art history-based parsers trained on Penn-II Treebank data and tested on 

the A TIS  corpus. I show how retraining the parsers on a training set which includes some ATIS  

material boosts the performance significantly on the “out-of-domain” A TIS  data.

Section 3.2 presents previous work on statistical parsing and domain variance. In Section

3 .3 .1 compare and contrast the A TIS  corpus with the Penn-II Treebank and give a selection of 

typical example sentences from each. I describe my baseline parsing experiments and results

39



in Section 3.4. Section 3.5 describes experiments with retraining the parsers on a training cor­

pus which includes A TIS  data. These experiments produce significantly better results than the 

baseline in tests on a test set taken from the A TIS  corpus. Section 3.6 summarises and concludes.

There are a number of options for examining parser performance given the training and 

evaluation corpora available (Penn-II Treebank and A TIS ). The space of possibilities explored 

in the experiments in this chapter is indicated below, with asterisks (*) indicating areas of the 

experimental space examined in this chapter.

In the training column, Penn refers to training on Sections 2-21 of the Penn-II Treebank, 

A TIS  to training on 90% of the A TIS  corpus (only) and A TIS  + Penn to training on 90% of A TIS  

and Penn-II Treebank data. The tests are Section 23 of the Penn-II Treebank, the entire A TIS  

corpus, and a 10% sample of A TIS  withheld as a test set.

Earlier versions of the results presented here have been published in Judge et al. (2005). To 

the best of my knowledge this is the first research to study the effect of domain variation that 

establishes the statistical significance of the results.

3.2 Previous Work

Gildea (2001) studied the effects o f corpus variation on parser performance by testing a parser 

trained on the Penn-II Treebank on the Brown corpus. He observed that the parser performance 

dropped by 5.7% labelled bracketing f-score when the domain was varied in this way. This shows 

that the effects o f domain variance are evident even if  the out-of-domain corpus is not drastically 

different from the original training corpus (both the Penn-II and Brown corpora consist primarily
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of written texts of American English, the main difference is the more varied nature of the text 

in the Brown corpus). The performance drop due to domain variance was remedied by adding 

appropriate data to the parser’s training corpus, but Gildea notes that a large amount of additional 

training data has little effect on the results if  it is not matched to the test data.

In the question domain, Clark et al. (2004) have worked with parsing questions using Com­

binatory Categorial Grammars (C C G s). Their experiments focused on “What . . . ? ” questions 

from the T R E C  Q A  testsets. They retrain the C C G  lexical supertagger to cope with the new do­

main instead of retraining their whole parser. This is because previous work (Clark and Curran, 

2004) has shown that a high lexical tagging accuracy is sufficient to produce good C C G  parsing 

results. Their work improves the supertagger accuracy on their “ What” question corpus by over 

13%.

3.3 Corpus Description and Comparison

This section briefly describes and compares the Penn-II Treebank (Marcus et al., 1993) and the 

A TIS  corpus (Hemphill et al., 1990).

3.3.1 The Penn-II Treebank

The Wall Street Journal (W SJ) sections of the Penn-II Treebank (Marcus et al., 1993) consist 

of approximately 1 million words (50,000 sentences) o f American English taken from Wall 

Street Journal articles in 1989. The sentences are POS tagged and parse-annotated according 

to guidelines set out in Santorini (1990) and Bies et al. (1995). An important distinction of 

the Penn-II Treebank from the first release (Penn-I Treebank Marcus et al. (1993)) is that the 

trees have been annotated with some non-context free information in the form of functional 

tags (-SBJ (subject), -L O C  (locative), etc.) which indicate semantic roles, and empty nodes and 

coindexation to indicate long distance dependencies (Marcus et al., 1994).

41



The A ir Travel Information System (A T IS ) corpus (Hemphill et al., 1990) is a transcription of 

spoken dialog with an automated air travel information system. The A TIS  corpus used in the 

research presented here is that distributed with the Penn Treebank release 2 (Penn-II Treebank). 

The A TIS  corpus consists of 578 sentences which are POS tagged and annotated according to 

Penn-II Treebank guidelines. A TIS  data represents a different style o f language from the Wall 

Street Journal texts of the Penn-II Treebank: a significant proportion of the sentences in A TIS  

are questions, there are imperatives and non-sentential utterances, which are generally shorter 

than those in the W SJ sections of the Penn-II Treebank and the transcription does not contain 

punctuation marks.

1. A re  t h e r e  any  f l i g h t s  a r r i v i n g  a f t e r  e le v e n  a.m

2. Show me t h e  T W A  f l i g h t

3. I  need a f l i g h t  f ro m  Los A n g e le s  t o  C h a r l o t t e  to d a y

4. F l i g h t s  f ro m  Los A n g e le s  t o  P i t t s b u r g h

5. On T u e s d a y  a r r i v i n g  b e f o r e  f i v e  p.m

6. What f l i g h t s  f ro m  P h i l a d e l p h i a  t o  A t l a n t a

Figure 3.1: Example A TIS  utterances

Figure 3.1 illustrates typical A TIS  corpus data including both question (1) and non-question 

sentences (2,3), as well as sub-sentential (4,5) and incomplete utterances (6 ). Note also that 

punctuation is not included in the A TIS  strings.

3.3.2 ATIS
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Both Penn-II W SJ and A TIS  are POS- and parse-annotated following the same general annota­

tion guidelines (Bies et al., 1995). Despite these similarities, the two treebanks exhibit strong 

differences as regards size, domain, phrase type distribution and punctuation.

3.3.3 Penn-II WSJ vs. ATIS

ATIS Penn-II W SJ

Words 4000 words 1 ,0 0 0 , 0 0 0  words

Sentences 578 sentences 50,000 sentences

Average sentence length 7 words 2 1  words

Source Transcription of spoken dialog W SJ Newspaper text

#Questions 213 Direct questions 233 Direct questions

Sentence type Interrogatives, imperatives, and fragments Declarative sentences

Inter-Word Punctuation None Punctuated

Table 3.1: Corpus statistics compared

Table 3.1 shows a comparison of the Penn-II W SJ sections and the A TIS  corpus. The most 

striking difference between the Penn-II Treebank W SJ sections and the A TIS  is the difference in 

size between the two corpora: the W SJ sections of the Penn-II Treebank with 50,000 sentences 

are over eighty times the size of A TIS  with only 578 sentences. Another important difference 

between the two is the average sentence length: the sentences in A TIS  tend to be much shorter 

than the W SJ Sections of the Penn-II Treebank, with an average length of 7 words, compared 

to 21 words in the W SJ Sections. Figure 3.2 plots the number of sentences against the sentence 

length for the A TIS  corpus and Section 23 of the W SJ section of the Penn-II Treebank illustrating 

the difference in sentence length distribution between the two corpora.
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Sorrtonco Loogtti

Figure 3.2: Sentence length distributions A TIS  vs WSJ Section 23 (Bezier interpolated)

The graph shows how significantly larger a single section of the Penn-11 Trcebank WSJ 

sections is than ATIS . It also show s the broader distribution of data over the sentence lengths in 

the section of the Penn-II Trcebank, which has a much wider spread over the sentence lengths. 

Section 23 has a mean sentence length of 21 words with a standard deviation of 8 .6 , while ATIS 

has a mean sentence length of 7 words with a standard deviation of 2.9.

The source of the text for the two corpora also highlights some important differences. The 

source for the A TIS  corpus is spoken dialogue which tends to be more casual and brief (Figure 

3.1) than the longer, more complex sentential structures found in the Penn-II Treebank (Figure 

3.3). Also, the nature of the air travel information system results in the ATIS  corpus containing 

sentences of a largely information seeking and interrogative nature. O f  the 578 sentences in the 

ATIS  corpus, 213 are questions or interrogatives, accounting for over 36% of the entire corpus. 

Comparatively, the Penn-11 WSJ sections have very few interrogative sentences or questions, 

only 233 over the entire WSJ sections (accounting for less than 0.5% of the entire corpus). In 

addition, many of the Penn-II questions are embedded or rhetorical questions (Figure 3.4 (3)),
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which unlike those in the A TIS  do not seek information. Interestingly, none of the 233 direct 

questions in the W SJ sections are to be found in Section 23 of the treebank, which is the standard 

testing section for parser evaluation. Therefore, none of the previous evaluations in the literature 

carried out on this section reflect the quality of parsing question data.

1. S h a re s  o f  UAL, th e  p a r e n t  o f  U n i t e d  A i r l i n e s ,  w ere  

e x t r e m e ly  a c t i v e  a l l  d ay  F r i d a y ,  r e a c t i n g  t o  news and 

rum o rs  a b o u t  t h e  p ro p o s e d  $6.79 b i l l i o n  b u y - o u t  o f  th e  

a i r l i n e  b y  an em ployee-m anagem ent g r o u p .

2. P o r t s  o f  C a l l  I n c .  re a c h e d  a g re e m e n ts  t o  s e l l  i t s  re m a in in g  

s e v e n  a i r c r a f t  t o  b u y e r s  t h a t  w e r e n ' t  d i s c l o s e d .

3. As a g r o u p ,  s t o c k  fu n d s  h e ld  10.2% o f  a s s e t s  i n  ca sh  as o f  

A u g u s t ,  t h e  l a t e s t  f i g u r e s  a v a i l a b l e  fro m  t h e  In v e s t m e n t  

Company I n s t i t u t e .

Figure 3.3: Example Penn-II Treebank W SJ sentences



1. F o r  e xa m p le ,  what e x a c t l y  d i d  th e  C IA  t e l l  M a jo r  G i r o l d i  

and h i s  f e l l o w  coup p l o t t e r s  a b o u t  U . S .  la w s  and e x e c u t i v e  

o r d e r s  on a s s a s s i n a t i o n s  ?

2. W ho 'd  ha ve  t h o u g h t  t h a t  th e  n e x t  g ro u p  o f  to u g h  g u ys

c a r r y i n g  a ro u n d  r e p u t a t i o n s  l i k e  t h i s  w o u ld  be s c h o o l

s u p e r in t e n d e n t s ?

3. What i s  t h e  way fo r w a r d ?

4. B u t  i f  r a t i o n a l  s c ie n c e  and e co n o m ics  ha ve  n o t h i n g  t o  do

w i t h  th e  new e n v i ro n m e n t  i n i t i a t i v e ,  w hat i s  g o in g  on?

Figure 3.4: Example Penn-II Treebank W SJ questions

3.4 Baseline Experiments

In my baseline experiments I use three state-of-the-art Penn-II Treebank trained parsers (Collins, 

1999; Chamiak, 2000; Bikel, 2002) to parse the A TIS  corpus. The parsers are not modified or 

retrained in any way for this task, in order to determine how well these parsers can or cannot 

cope with data from the question-rich A TIS  corpus.

3.4.1 Evaluation Tools and Metrics

I evaluate the parsing experiments in this section using standard PARSE V A L  precision and recall 

metrics (Black et al., 1991) and, where it is less than 100% of the test set, parser coverage, which 

is the percentage of the test set for which the parser successfully produces a complète spanning 

parse. Precision and Recall are calculated as follows: given P , the proposed analysis from the 

system and T ,  the gold standard analysis,
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_ , number of correct constituents %n PPrecision = ------------------ ;---------- :-----------------------------:—  ---------
number o f constituents in P

(3.1)

^  „  number of correct constituents in PRecall = ------------------ ------------ ------------- :----------------   (3.2)
number of constituents m  T

The f-score (harmonic mean) of precision and recall is calculated by

_  2  x  Precision x  Recall
F -  Score =  — - ------— ----------------=--------r;—  (3-3)

Precision + Recall

I use the e v a l b 1 scoring program designed by Sekine and Collins to calculate these scores, 

e v a lb  takes a bracketed representation of gold standard and test trees (Figure 3.5) and outputs 

precision, recall, f-score, bracket crossing, and tagging accuracy information (Figure 3.6). U n ­

less otherwise stated, all results reported in this thesis are labelled precision, recall and f-scores.

NP

N N P

V P

NP

Homer strangled N N P

Bart

(S (NP (NNP Homer))
(VP (V strangled) (NP (NNP Bart))))

Figure 3.5: Parse tree and corresponding e v a lb  bracketing representation

1 Available at http://nlp.cs.nyu.edu/evalb/
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S e n t . M a t c h e d B r a c k e t C r o s s C o r r e c t  T a g

I D  L e n . S t a t . R e c a i P r e c . B r a c k e t g o l d t e s t B r a c k e t W o r d s T a g s A c c r a c y

1 6 0 5 5 . 5 6 7 1 . 4 3 5 9 7 1 6 6 1 0 0 . 0 0

2 6 0 8 7 . 5 0 1 0 0 . 0 0 7 8 7 0 6 6 1 0 0 . 0 0

3 4 0 8 0 . 0 0 1 0 0 . 0 0 4 5 4 0 4 4 1 0 0 . 0 0
4 5 0 7 5 . 0 0 8 5 . 7 1 6 8 7 0 5 5 1 0 0 . 0 0
5 6 0 8 3 . 3 3 1 0 0 . 0 0 5 6 5 0 6 4 6 6 . 6 7

6 8 0 3 6  . 3 6 4 0 . 0 0 4 1 1 1 0 1 8 6 7 5 . 0 0
7 6 0 4 4  . 4 4 5 7 . 1 4 4 9 7 1 6 4 6 6 . 6 7

8 4 0 5 0 . 0 0 6 0 . 0 0 3 6 5 1 4 4 1 0 0 . 0 0

9 7 0 7 5 . 0 0 1 0 0 . 0 0 6 8 6 0 7 6 8 5 . 7 1

6 1 . 1 1  6 9 . 0 6  3 0 8  5 0 4  4 4 6  3 5  4 4 1  4 0 1  9 0 . 9 3

===== S u m m a r y  = = =

- -  A l l  —

N u m b e r  o f  s e n t e n c e  

N u m b e r  o f  E r r o r  s e n t e n c e  

N u m b e r  o f  S k i p  s e n t e n c e  

N u m b e r  o f  V a l i d  s e n t e n c e  

B r a c k e t i n g  R e c a l l  

B r a c k e t i n g  P r e c i s i o n  

F - S c o r e

C o m p l e t e  m a t c h  

A v e r a g e  c r o s s i n g  

N o  c r o s s i n g  

2 o r  l e s s  c r o s s i n g  

T a g g i n g  a c c u r a c y

—  l e n < = 4 0  —

N u m b e r  o f  s e n t e n c e  

N u m b e r  o f  E r r o r  s e n t e n c e  

N u m b e r  o f  S k i p  s e n t e n c e  

N u m b e r  o f  V a l i d  s e n t e n c e  

B r a c k e t i n g  R e c a l l  

B r a c k e t i n g  P r e c i s i o n  

F - S c o r e

C o m p l e t e  m a t c h  

A v e r a g e  c r o s s i n g  

N o  c r o s s i n g  

2 o r .  l e s s  c r o s s i n g  

T a g g i n g  a c c u r a c y

Figure 3.6: Sample e v a lb  output
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When comparing experimental results it is useful to be able to say if  differences between two 

sets o f results are statistically significant, that is to say that the difference has not occurred 

by chance. I use approximate randomisation to test for statistical significance between sets of 

results. Approximate randomisation is a computationally-intensive randomisation test (Noreen, 

1989) which can be applied to non-linear functions of variables such as precision and f-score.

An approximate randomisation test tests the null hypothesis that the difference between two 

data samples occurred by chance. This is done by calculating the difference between their mean 

values: if  the null hypothesis holds, then randomly shuffling values between the two samples 

should make little difference between their mean values. An exact randomisation test does 

this for all possible permutations, an approximate randomisation test (like the one used here) 

estimates this by performing n randomisations on the data samples. The accuracy of the approx­

imate randomisation test depends on the value of n. The test calculates a p-value, which is the 

probability that the null hypothesis is true. A  low p-value indicates that the null hypothesis is 

likely to be false, therefore the difference between the two results is likely not to be by chance 

and therefore statistically significant.

I perform approximate randomisation testing using a peri script by Bikel2  which uses the 

output of e v a lb  to evaluate the significance of new results for parse trees. In Chapter 4 I 

perform similar testing on f-structures. The software to perform this test was provided by Stefan 

Riezler (through personal communication) and performs the approximate randomisation testing 

on sets o f triple encoded f-structures (Crouch et al., 2002).

Unless otherwise stated, for the experiments in this thesis I take n =  10000 (the default 

value for Bikel’s script) and a p-value of less than 0.05 as indication that the null hypothesis is 

false and an observed difference in scores is significant at the 95% level.

2Available at http://www.cis.upenn.edu/~dbikel/software.html

Statistical Significance Testing
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In order to establish a baseline for parsing A TIS  question data, I parsed all 578 A TIS  sentences 

with 3 Penn-II trained, off-the-shelf, state-of-the-art history-based parsers (Collins, 1999; Char- 

niak, 2000; Bikel, 2002) using the resources supplied in the distributions (trained on Penn-II 

Treebank Sections 02-21) and evaluate against the original A TIS  treebank trees. The baseline 

results are shown in Table 3.2 along with the published results for the parsers tested on Section 

23 of the Penn-II Treebank.

3.4.2 Experiments

ATIS Section 23

Precision Recall F-Score Precision Recall F-Score

Collins Model 2 76.43 68.87 72.45 88.3 8 8 . 1 8 8 . 2

Chamiak 62.19 65.16 63.64 89.5 89.6 89.55

Bikel’s Emulation of Collins M2 74.79 65.68 69.94 8 8 . 2 88.3 88.25

Table 3.2: Baseline Parsing Results on the A TIS  corpus

The results show that each of the parsers tested performs considerably worse on the ATIS  

corpus than in tests on Section 23 of the Penn-II Treebank. The average difference between the 

f-scores on the two test sets is 19.99% with Chamiak’s parser suffering the worst drop at 25.91% 

and Collins’ suffering the smallest (though still considerable) drop at 15.75%.

The observed drops are considerably worse than those observed in previous domain vari­

ation experiments by Gildea (2001). The results confirm that the A TIS  experiments presented 

here constitute a much stronger instance of domain variation than the Penn-II/Brown corpus 

experiments reported by Gildea (2001).
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The Penn-II Treebank Wall Street Journal sections used for training the parsers contain properly 

punctuated text. On the other hand, the A TIS  strings are unpunctuated. This is a factor that 

could possibly explain the underperfomnance of the parsers in the A TIS  experiments, as we 

would expect grammars trained on Penn-II Treebank sections to perform better on punctuated 

text. 3

To test the influence of punctuation on the A TIS  parsing results, I manually added basic 

punctuation to each of the A TIS  sentences (parser input and gold standard trees). Each of the 

213 questions had a question mark added, the remaining sentences had a fullstop added, and the 

sub-sentential fragments were left unpunctuated. I then reran the baseline parsing experiments 

with each of the parsers. Table 3.3 shows the results for testing the parsers on a minimally 

punctuated version of A TIS  along with the p-values for significance testing for each individual 

parser comparing its performance on the punctuated A TIS  with that of the unpunctuated ATIS .

3.4.3 Punctuation

ATIS ATIS Punctuated

Precision Recall F-Score Precision Recall F-Score p-Value

Collins 76.43 68.87 72.45 76.35 68.87 72.42 0.3413

Chamiak 62 .19 65.16 63.64 66.71 69.60 68.12 9.99 x 10“ 5

Bikel’s Emulation of Collins M2 74 .79 65.68 69 .9 4 74.61 65.58 69.80 0.0025

Table 3.3: Parsing results for punctuated A TIS  sentences

The results show a slight drop in performance for Collins’ and Bikel’s parsers, and an im­

provement of 4.48% f-score for Charniak’s parser when tested on punctuated A TIS  sentences. 

The increase in performance for Chamiak’s parser is statistically significant (p-value <  0.05). 

The drop in performance for Bikel’s parser is also statistically significant, however the smaller 

0.03% drop in f-score for Collins’ parser is not. It is interesting, though not entirely unexpected,

3This was pointed out by Tracy King (personal communication).
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that Chamiak’s parser gains most from having punctuation added, as his parser treats punctuation 

less trivially than Collins’ or Bikel’s. The parsing model of Collins and Bikel treats punctuation 

differently to other surface elements of the sentence, and tries to attach it as high in the tree as 

possible so that it is positioned between two non-terminals.

It is evident that a lack of punctuation is responsible for some of the drop in performance 

on parsing A TIS  data, but that the choice of parser can significantly influence the degree to 

which parsing is effected. Nevertheless, punctuation (or lack thereof) is not responsible for the 

performance drop being as severe as shown in Table 3.2. This suggests that the parsers are having 

difficulty coping with the A TIS  question material given the training information extracted from 

the Penn-II Treebank.

3.5 Retraining Experiments

With the poor performance of Penn-II Treebank-trained state-of-the-art history-based parsers on 

A TIS  data, clearly a parser fine-tuned for use on questions is needed if  parsing questions is to be 

incorporated successfully as a stage in a Q A  system. Given that the parser is dependent on the 

type of data in the training corpus, the logical way to accomplish this is to retrain the parser on a 

question corpus. B y  retraining the parsers on a treebank which is more representative of the text 

to be parsed (in this case questions) we expect the parser w ill yield better results on the question 

corpus.

A  number of corpora were available for use. The Penn-II Treebank, though not a question 

corpus, is a very large corpus of parsed English sentences, giving broad language coverage. The 

A TIS  corpus as described above, is a small corpus of Penn-II-style parsed English questions 

as well as imperatives and some fragment data. Also available are the T R E C  Q A  track test 

questions and the Cognitive Computation Group at the University of Illinois4  (C C G 5) question

4http://12r.cs.uiuc.edu/ cogcomp
5Note that the acronym CCG here refers to Cognitive Computation Group, rather than Combinatory Categorial 

Grammar mentioned in Section 3.2
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classifier training set text corpora. These corpora amount to 2753 and 5452 raw unannotated 

questions, respectively. The history-based parsers require parse-annotated corpora as training 

resources. This makes the T R E C  Q A  and C C G  question classifier corpora unsuitable as train­

ing data for these experiments, but nonetheless useful for further work (Chapter 5). For the 

experiments reported below, I therefore decided to use the parse-annotated A TIS  resources.

Since the retraining experiments involve including A TIS  data in the parser’s training corpus, 

a dedicated test set o f sentences needed to be held out of the A TIS  material used for training 

the parsers. I randomly extracted a sample of 10% of the A TIS  treebank trees to be held out as 

the gold standard test set against which to evaluate the retrained parsers. The results in Table 

3.4 show the results from parsing the 10% of A TIS  testset with the standard Penn-II trained 

resources for each of the parsers, compared with the results for parsing the whole of A TIS  with 

the same parser. The results indicate that the randomly selected 10% test set is slightly more 

difficult to parse than the complete A TIS  data.

A TIS  (A ll) A TIS  10% Test Set

Precision Recall F-Score Precision Recall F-Score

Collins Model 2 76.43 68.87 72.45 73.17 65.48 69.11

Chamiak 62.19 65.16 63.64 60.53 63.89 62.16

Bikel’s Emulation of Collins M2 74.79 65.68 69.94 69.06 61.11 64.84

Table 3.4: Comparison of baseline parsing on all of A TIS  and the 10% A TIS  test set

I carried out four retraining experiments with slightly different parser training data on each 

run, testing on the same set o f questions (a 10% subset taken at random from the A TIS  corpus) 

withheld from the training data. The four training sets were constructed as follows:

• A TIS  corpus (90%)

• A TIS  corpus (90%) and Sections 02-21 of the Penn-II Treebank
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• A TIS  corpus (90%) and questions extracted from the whole Penn-II treebank

• Direct questions extracted from A TIS  (90%) and questions extracted from the whole Penn- 

II treebank

Collins* parser does not come with functionality to retrain on a new corpus therefore no 

results are provided for Collins’ parser in these experiments. Bikel’s parser, however, emulates 

Collins’ Model 2 parser and achieves similar results on W SJ text from the Penn-II Treebank 

(Table B. 1 ).'Therefore, Bikel’s results can be interpreted as indicative of how Collins’ Model 2 

parser would perform in the retraining experiments.

Charniak Bikel

Trained On Coverage F-score p-Value Coverage F-Score p-Value

Penn 1 0 0 62.16 - 1 0 0 64.84 -

A TIS 1 0 0 81.59 9.99 x  IO " 5 1 0 0 85.20 9.99 x  i0 ~ 5

A TIS  + Penn 1 0 0 78.73 9.99 x  10“ 5 1 0 0 85.65 9.99 x  10~ 5

A TIS  + PennQs 1 0 0 84.69 9.99 x  1 0 “ 5 1 0 0 85.20 9.99 x  10~ 5

ATISQs + PennQs 98.28 70.91 0.0055 1 0 0 73.06 0.0144

Table 3.5: A TIS  test set parsing results for Bikel’s and Chamiak’s parsers retrained using Penn-II 

Treebank and A TIS  data

Table 3.5 compares the results for the parsers in retraining experiments using various combi­

nations of A TIS  and Penn-II Treebank data, testing on a random sample of 10% of A TIS  which 

was held out o f the A TIS  section of the training data. The 10% sample used for testing was 

constant for all runs. The p-values shown are calculated by comparing the retrained parser’s re­

sults with that of the same parser in the baseline experiment in Table 3.4. The results show that 

in each of the retraining runs, both parsers have gained a statistically significant improvement 

over the baseline results. B ikel’s parser scores highest across all of the experiments, gaining
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over 2 0 % f-score in all but the fourth run where only the questions from each data source are 

included in the parser’s training set. In the fourth run the result for Bikel’s parser is improved by 

8.22%. Charniak’s parser improves to a similar degree as Bikel’s, achieving the biggest single 

gain in all of the runs at 22.53%, but does not better Bikel’s results in any of the experiments.

It is interesting to note the difference between the two parsers in the A TIS  and Penn trained 

run when compared with the A TIS  trained run. For the A TIS  + Penn trained run Charniak’s 

parser’s result has decreased by 2.86% compared to training on A TIS  only, whereas Bikel’s has 

increased by 0.45%. Despite the slight drop in performance when compared with training only 

on A TIS , Chamiak’s score of 78.73% in this run is still a dramatic increase over the baseline 

result (training on Penn only) o f 62.16%. The test set here is quite small, and without further 

research it is difficult to say with any certainty what could be causing the different behaviour of 

the two parsers. However, one might speculate that the finding indicates that Chamiak’s parser 

is more sensitive to the larger amount o f Penn-II Treebank data than A TIS , and that the positive 

impact of A TIS  data in the training set is being “diluted” somewhat by the amount of extra 

Penn-II Treebank data.

These results show that both parsers’ performance on A TIS  material can be significantly 

improved by training exclusively on A TIS  material or in combination with Penn-II Treebank 

data. Comparing Bikel’s parser with Charniak’s parser, Table 3.6 shows that Bikel’s parser 

statistically significantly outperforms Chamiak’s in each of the experiments conducted. This is 

possibly an indication that, compared to Charniak’s, B ikel’s parsing model is easier retrained to 

be adapted for use in domains other than the Penn-II Treebank. This view is supported by the 

somewhat brittle nature of retraining Charniak’s parser on new data which I experienced, and * 

which has also been noted by other researchers. 6  It is interesting to note that the best result in 

these experiments, for both parsers, is achieved when the parser is trained on a combination of 

A TIS  and some amount o f Penn-II Treebank data. Also noteworthy is that the lowest result for 

both parsers is on the run where the least amount o f A TIS  material is included in the parser’s

Conversations with Aoife Cahill, Joachim Wagner and others at the NCLT revealed that we have each, indepen­
dently, experienced similar difficulties when retraining Chamiak’s parser.
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training set.

F-score Difference p-Value

A TIS 3.61 0 . 0 0 0 2

A TIS  + Penn 6.92 0 . 0 0 0 2

A TIS  + PennQs 0.51 0.0033

ATISQ s +PennQs 2.15 0 . 0 0 0 2

Table 3.6: Difference between Charniak’s and Bikel’s parsers’ f-scores in retraining experiments 

and statistical significance testing

The improvement over the baseline reported in Table 3.5 is quite significant. As noted in 

Section 3.4.3, a small part of the reason for the low baseline score in the first place is the lack 

of punctuation in A TIS . Domain variance has been claimed to be responsible for the rest of 

the drop in performance. However, two important further characteristics o f the A TIS  corpus 

could also be affecting the scores and have yet to be discounted. Being a question-rich corpus, 

the A TIS  data contains sentences of a much shorter length than those in the Penn-II Treebank. 

A lso since A TIS  is a transcription of spoken language, the sentences contain discontinuities 

and ungrammatical data, and these appear as constituents labelled FR A G  and X  in the parse- 

annotated corpus. Both of these factors, sentence length, and FR AG /X constituents, need to 

be considered as possible causes for the low baseline score before the results in Table 3.5 can 

properly support the conclusion that the low baseline is mainly caused by the domain variance 

in the question-rich corpus.

Figure 3.7 shows an analysis o f Bikel’s parser on both W SJ Section 23 of the Penn-II tree­

bank and A TIS  which plots f-score against sentence length. Figure 3.8 shows the same analysis 

for Chamiak’s parser. In both graphs the regions of statistical significance for each corpus are 

marked with vertical lines from the x-axis. These correspond to 2 standard deviations from the 

mean sentence length for each corpus, which, assuming roughly normal distribution of the data,
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should correspond to approximately 95 % o f the data. For the ATIS  corpus this is the region 

between sentence lengths 2 and 13 words, and for WSJ Section 23 this corresponds to the region 

between sentence lengths 5 and 40 words.

Santanca longtn

Figure 3.7: F-Score by sentence length comparison for Bikel's parser on WSJ Section 23 and 

ATIS
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Sontenco Long»1

Figure 3.8: F-Score by sentence length comparison for Chamiak’s parser on WSJ Section 23 

and ATIS

The area of overlap for the areas of significance for both corpora is the region between 

sentence lengths 5 and 13 words. There is a large gap between the two plots for both parsers. 

In both Figure 3.7 and 3.8 both parsers can clearly perform well on sentence lengths within this 

window, as indicated by the plot of WSJ Section 23 results. However the plot for ATIS  results 

within this window shows considerably lower scores. This shows that the parsers can perform 

well on short sentences, but that they have difficulty with short sentences from a new domain, in 

this case ATIS.

In order to examine the effects o f FR AG  and X  constituents on the results. I revisited the 

baseline results for Bikel’s and Chamiak's parsers and eliminated sentences which contain such 

constituents. In the Penn-U Treebank bracketing guidelines these are constituents which are in­

complete (FR A G ) or which are unknown, uncertain or unbracketable (X )  and problematic for 

human annotators, so they are certainly likely to cause difficulties for the parsers. Table 3.7 

shows the results for Bikel's and Chamiak’s parsers tested on the whole A TIS  corpus, ignor­

ing sentences containing FRAG/X constituents and comparing with the original A TIS  baseline
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results in Table 3.2.

A TIS  (A ll) A TIS  (No FR AG /X)

Precision Recall F-Score Precision Recall F-Score

Bikel 74.79 65.68 69.94 76.24 67.86 71.81

Charniak 62.19 65.16 63.64 68.35 65.88 67.09

Table 3.7: Comparison of parsing results for Bikel’s and Chamiak’s parsers on the A TIS  corpus 

excluding sentences containing FR AG /X constituents

The results in Table 3.7 shows that removing the sentences which contain FR AG /X con­

stituents from the evaluations increases the results by a small amount, 3.45% for Charniak’s 

parser, 1.87% for Bikel’s. This shows that that the presence of FR A G  and X  constituents in the 

data is having a negative effect on the baseline results and so is contributing to the low baseline 

score. However, the increase in the results when these constituents are removed is small com­

pared to the drop in performance caused by testing on A TIS  data. Again, this shows that the low 

baseline results are mainly caused by domain variance. In Section 5.4.3 I provide examples of 

frequent analysis errors made by Bikel’s parser on question data, which have a large effect on 

the evaluation results.

3.6 Conclusion

This chapter has shown that the Penn-II treebank, due to its very low question content, is un­

suitable as an exclusive training resource for modem probabilistic parsers if  they are to be used 

in analysis for Q A . The A TIS  corpus (Hemphill et al., 1990), while not a dedicated question 

corpus, contains a significant proportion of questions and constitutes quite a different domain to 

the Penn-II Treebank. The domain variance exhibited by the Penn-II/ATIS experiments is much 

stronger than that observed by Gildea (2001) in his Penn-II/Brown experiments, as is shown by
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the large drop in parser performance in the baseline experiments (Section 3.4). M y experiments 

show that some of this drop in performance can be attributed to the absence of punctuation in the 

A TIS  data, but this is only a small portion of the drop in performance, and only holds for one of 

the parsers tested. Similar to Gildea (2001), the results in Table 3.5 show that parsing results are 

not greatly improved when a large amount of data (Sections 02-21 of the Penn-II Treebank) not 

matched to the test set is added to the training set. Chamiak’s parser performs worse on the test 

set when trained on A TIS  plus Sections 2-21 of the Penn-II Treebank than when trained only on 

A TIS  data. Bikel’s parser on the other hand performs slightly better, but the f-score gain is quite 

small (0.45%) when compared to the gain from retraining on A TIS  data.

The retraining experiments show that, despite its relatively small size, sections of the A TIS  

corpus can be used effectively to retrain state-of-the-art parsers to cope with A TIS  data. Quite 

large, statistically significant gains of over 2 0 % labelled precision and recall f-score can be 

achieved by adding appropriate (here A TIS ) training material to the parser’s training corpus in 

order to allow it to cope with the new domain (A T IS ), though a similar (and for Chamiak’s parser, 

greater) gain can be achieved by training on A TIS  data alone. This is quite surprising given the 

size difference between the two corpora used (the Penn-II Treebank is over eighty times the size 

of the A TIS  corpus) but also encouraging. The baseline result, though poor, shows that some of 

the information relevant to analysing questions correctly can be found in informative text like 

the W SJ. The significant gains in performance achieved through adding only a small amount of 

A TIS  data indicate that a question corpus of similar size to the Penn-II Treebank is probably not 

needed in order to retrain a high-accuracy parser to perform optimally on question data.

The parsing experiments presented here use a rather small test set from the A TIS  corpus. 

I have shown that while the A TIS  corpus contains a relatively high proportion of questions, it 

is not a true question corpus. For example it does not contain any “ W h o ...? ” questions and 

contains a lot of fragment data. In order to properly evaluate performance on a wide variety of 

question types, a larger more representative test set is necessary. Chapters 5 and 6  present work 

on providing this.
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The experiments carried out so far have only looked at the effect of porting Penn-II Treebank- 

based syntactic C F G  parsing resources to the question domain. Given the experiments presented 

here and previous work in the area (Gildea, 2001; Clark et al., 2004) the question whether the 

same effects would be observed with deeper linguistic analysis such as L F G  f-structures from 

Penn-II Treebank-based resources remains. Chapter 4 examines this.
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Chapter 4

Domain Variance and Treebank-Based 

LFG Resources

4.1 Introduction

This chapter builds on the domain variance and retraining work presented in Chapter 3 .1 investi­

gate the effect domain variance has on deeper analysis in the form of L F G  f-structures produced 

automatically by the Penn-II Treebank-based f-structure annotation algorithm of Cahill et al. 

(2004). The expectation is that a drop in performance for c-structure (C F G ) parsers using gram­

matical resources induced from the Penn-II Treebank, w ill cause a similar performance drop 

for the automatic f-structure annotation algorithm taking C F G  trees produced by the parsers as 

input.

I show that the negative effects o f domain variance on c-structure parsing observed in Chap­

ter 3 are also observed in automatic f-structure annotation. However, the drop in performance 

is less pronounced for f-structure annotation than for c-structure parsing and can be remedied 

by simply retraining the c-structure parser as before. One perhaps surprising result is that the 

automatic f-structure annotation algorithm of Cahill et al. (2004) does not need any modification. 

Section 4.2 provides some relevant background information. I describe the gold standards
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against which I evaluate, and my baseline experiments in Section 4.3. Section 4.4 describes 

retraining experiments to improve f-structure analysis. In Section 4.5 I  present experiments to 

investigate further research questions about upper bounds, back-testing and parameterisation 

raised by the retraining work. Section 4.6 summarises and concludes.

As in Chapter 3 there are a number of options regarding training and testing sets, this time 

for both c-structure and f-structure evaluations. The table below shows what is covered in the 

experiments in this chapter.

Here Penn refers to training on all o f Sections 2-21 of the Penn-II Treebank, A TIS  to training 

on all of the A TIS  corpus, A TIS  + Penn to training on Sections 2-21 of the Penn-II Treebank 

and the A TIS  corpus less 100 sentences which were held out as a test set (A TIS  100) and A TIS  

Cross Validation refers to training and testing on the whole A TIS  corpus with 10-fold cross 

validation. The tests sets used are: the D C U  105, a gold standard test set o f 105 sentences from 

PTB Section 23 which have been manually f-structure annotated and A TIS  100, a 100 ATIS  

sentence gold standard which has been manually f-structure annotated.

Some of the results published in this chapter have been published in Judge et al. (2005)

4.2 Background

The parser domain variance research of Gildea (2001) and the question retraining work of Clark 

et al. (2004) has shown that porting linguistic resources to a new domain is possible for both
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probabilistic C F G - and CCG-based parsers. In the previous chapter I have shown that parsing 

the A TIS  corpus with state-of-the-art Penn-II Treebank-based probabilistic parsers represents an 

instance of stronger domain variance than that observed by Gildea (2001).

Burke et al. (2004), Cahill et al. (2004), and O ’Donovan et al. (2004) present research on 

automatically producing L F G  resources from treebanks. However, to date no research has been 

carried out to test the effect o f domain variance on the treebank-induced L F G  parsing resources 

of Cahill et al. (2004). Given that these resources are induced from the Penn-II Treebank and that 

the pipeline parsing architecture of Cahill et al. (2004) uses Penn-II Treebank trained c-structure 

parsers, the expectation is that performance w ill suffer in a similar way as was observed for the 

history-based C F G  parsers in the previous chapter.

Figure 4.1: Pipeline Parsing Architecture of Cahill et al. (2004)

The automatic f-structure annotation algorithm of Cahill et al. (2004) described in Sec­

tion 2.3.3 takes either parser output or treebank (c-structure) trees and annotates the trees with 

functional information based on a set of annotation rules originally designed for the Penn-II 

Treebank. The f-structure annotated trees are then passed to a constraint solver to produce f- 

structures (Figure 4.1). The pipeline parsing model entails that errors in early stages can be 

propagated to (and potentially be amplified by) modules further along the line. Because of this 

it is possible that the automatic f-structure annotation algorithm w ill suffer worse degradation of 

results than the c-structure parser because it is dependent on the parser output.
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4.3 Baseline LFG Experiments

This section describes the baseline experiments to determine the portability o f the resources of 

Cahill et al. (2004) to a new domain, the A TIS  corpus. For these experiments I have chosen 

to use Bikel’s parser because it is easily retrainable1 and consistently outperforms Charniak’s 

parser in the retraining experiments in Section 3.5.

4.3.1 F-Structure Gold Standard and Evaluation Tools

Before conducting experiments with the automatic f-structure annotation algorithm, a gold stan­

dard set of f-structures against which to evaluate the automatically generated f-structures is nec­

essary. As in Chapter 3 ,1 use a randomly extracted sample of the A TIS  corpus. However, unlike 

the previous evaluations I carried out on A TIS  data, additional annotation work needed to be 

done to generate an f-structure gold standard. 1 0 0  sentences were chosen at random from the 

A TIS  corpus, and their corresponding treebank c-structure analysis was used as the gold stan­

dard against which to evaluate the c-structures in the experiments described in this chapter. The 

1 0 0  gold standard c-structure trees were then passed to the automatic f-structure annotation algo­

rithm to generate f-structures which were then manually corrected and compared by three human 

annotators.2  These gold standard f-structures were then used in the f-structure evaluations in this 

chapter.

I use the pipeline parsing architecture shown in Figure 4.1 to generate c- and f-structures 

from raw strings taken from the A TIS  corpus. I evaluate the c-structure trees output by the 

parser using P A R S E V A L  (Black et al., 1991) precision, recall and f-score metrics (calculated 

using e v a lb ) .  The LDD-resolved f-structures output by the annotation algorithm in the pipeline 

parsing architecture are evaluated using the triple encoding and evaluation software of Crouch 

et al. (2002). Each f-structure is represented as a set o f predicate-argument terms of the form

11 encountered some unresolvable robustness issues with retraining Chamiak’s parser on certain datasets. This 
has also been the experience of other researchers with whom I have discussed the issue.

21 am grateful to Aoife Cahill and Michael Burke for the help they gave me with this task.
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p r e d  ( a r g l , a r g 2 ) and precision and recall are calculated on these sets. The f-structure and

corresponding triples for the sentence “ Homer strangled Bart.” are given below.

PRED ‘S T R A N G L E ((T S U B J)(T 0 B J))’

p r e d  ‘H o m e r ’

SUBJ NUM SG

s t r u c t u r e (
p e r s ( b a r t ~ 3 , 3)
o b j ( s t r a n g l e ~ 0 , b a r t ~ 3 )

PERS 3 
’ p r ed  ‘B a r t ’

n u m (b a r t ~ 3 ,  sg )  
p e r s ( h o m e r ~ 2 ,3)

OBJ NUM SG 
PERS 3

s u b j  ( s t r a n g l e d ,  hom er~2) 
t e n s e ( s t r a n g l e ~ 0 , p a s t )  
n u m (h o m e r~ 2 ,s g )

TENSE PAST

The C F G  c-structure parser output is evaluated against the original 100 gold standard ATIS  

trees, and the f-structures are evaluated against the hand-crafted gold standard of f-structures for 

the 100 sentences from the A TIS  corpus described above. I also carry out a CCG -style  (Hocken- 

maier, 2003b) evaluation where I automatically generate f-structures for the entire A TIS  corpus 

from the original A TIS  treebank trees and evaluate f-structures generated from the parser output 

against these 578 “pseudo”  gold standard f-structures in a 10-fold cross validation experiment.

Approximate randomisation statistical significance tests for the c-structures are performed 

using Bikel’s script, 3 and for the f-structures the tests are performed using an approximate ran­

domisation test program developed by Stefan Riezler (p.c.) which uses the output of the triple 

encoding and evaluation software of Crouch et al. (2002).

4.3.2 Experiments

I carried out two baseline evaluations. In the first evaluation (Table 4.1 (a)), I parse the raw 

strings for the 100 A TIS  sentence gold standard with Bikel’s parser (trained on Penn-II Treebank 

Sections 02-21) and pass the parser output to the automatic f-structure annotation algorithm of 

Cahill et al. (2004) to generate f-structures. I then evaluate the c-structure parse trees against 

the original treebank trees, and the automatically generated f-structures against the hand-crafted

3http://www.cis.upenn.edu/~dbikel/software.html

66

http://www.cis.upenn.edu/~dbikel/software.html


gold standard f-structures. In the second evaluation (Table 4.1 (b)), I parse the raw strings for the 

entire A TIS  corpus (again with Bikel’s parser trained on Penn-II Treebank Sections 02-21), and 

pass the parser output to the automatic f-structure annotation algorithm to generate f-structures. 

The parse trees are evaluated against the original A TIS  treebank trees, and the f-structures are 

evaluated (C C G -style ) against automatically generated f-structures for the 578 gold standard 

A TIS  trees.

(a)

100 Gold Standard Precision Recall F-Score

Trees (labelled bracketing) 73,77 67.05 70.25

F-Structures A ll GFs 82.17 67.41 74.06

Preds-only 70.33 56.97 62.95

(b)

578 A TIS Precision Recall F-Score

Trees (labelled bracketing) 75.49 67.77 71.424

F-Structures A ll GFs 81.23 80.29 80.76

Preds-only 69.27 67.02 68.13

(c)

D C U  105 Precision Recall F-Score

Trees (labelled bracketing) 86.56 85.59 86.07

F-Structures A ll GFs 83.45 78.95 81.14

Preds-Only 76.32 72.0 74.10

Table 4.1: Results for baseline experiments

4Note that the parsing result here for Bikel’s parser using a grammar trained on WSJ Sections 02-21 of the Penn-II 
Treebank is slightly higher than that shown in Table 3.2 (f-score 69.94). This is because here Bikel’s parser is used 
using slightly different settings which do not emulate Collins’ Model 2 as closely as in the previous evaluation. The
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Table 4.1 gives the results for the two experiments described above. Table 4.1 (a) shows the 

evaluation against the 100 sentence A TIS  hand-crafted f-structure gold standard. Compared to 

the results for the Penn-II W SJ Section 23-based D C U  1055 evaluation in Table 4.1 (c), the Penn- 

II Treebank-based L F G  parsing resources of Cahill et al. (2004) show a significant drop in both 

the tree- and f-structure-based analysis scores for the A TIS  material. The c-structures output by 

the parser show an f-score around 16% less than in the in-domain (Section 23-based) evaluation 

for the same parser (Bikel trained on Sections 02-21 of the Penn-II Treebank). Likewise the f- 

structure evaluation has suffered, with the preds-only f-score over 1 1  % lower than on in-domain 

data. The C C G  style evaluation in Table 4.1 (b), shows an all grammatical functions f-score of 

80.76%, but a preds-only f-score of 68.13%.6

settings file b i k e l . p r o p e r t i e s  distributed with Bikel’s parser contains some extra settings for pruning, which 
do not appear in the settings file c o l l  i n s  . p r o p e r t i e s  which is used to make the parser emulate Collins’ parser.

5http://nclt.dcu.ie/gold 105.txt
6The CCG-style evaluation scores against the automatically generated f-structures for “perfect” treebank trees are 

difficult to compare with the hand-crafted DCU 105 gold-standard scores. The important comparison here is with the 
retraining results in Table 4.3
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Dependency Precision Recall F-Score

A DJU NCT 159/258=62 159/353=49 55

COM P 0/5=0 0/3=0 0

COORD 15/23=65 15/24=62 64

DET 56/64=88 56/70=80 84

FO CU S 9/9=100 9/33=27 43

OBJ 172/206=83 172/216=80 82

O b j 2 17/18=94 17/18=94 94

OBL 1/2=50 1 /1 2 = 8 14

OBL2 0 /0 = 0 0/5=0 0

POSS 1 /1 = 1 0 0 1/1 = 1 0 0 1 0 0

QUANT 2/16=12 2/6=33 18

RELM OD 9/13=69 9/16=56 62

SUBJ 10/27=37 10/17=59 54

T O PIC R E L 10/27=37 10/17=59 45

XCOM P 23/33=70 23/46=50 58

Table 4.2: Dependency annotation results for selected features in the 100 sentence evaluation

Table 4.2 shows a more detailed analysis of the f-structure evaluation in Table 4.1 (a) for 

selected features. The table shows that in particular for features such as FO CU S, which indi­

cates the role corresponding to the answer of the question, and TO PICR EL, which indicates the 

relativised constituent in a relative clause, the performance is quite low. The FOCUS relation in 

particular is important to analyse correctly in questions (Harabagiu et al., 2000b).

W hile the precision for FOCUS relations is very high (100%), the recall is very low. Both 

precision and recall for TOPICREL relations are quite low. This indicates that, as it stands,
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the Penn-II Treebank-based L F G  parsing system is not well suited to analysing questions and 

performance has suffered substantially as a result of the change in domain.

The drop in performance can be attributed to the domain variance, but the question re­

mains as to which module in the pipeline parsing architecture in Figure 4.1 (c-structure parser, 

f-structure annotation algorithm or L D D  resolution) is underperforming due to the change in 

domain. It may even be a combination of components? We can narrow the possibilities down to 

two of the three modules shown in Figure 4.1. 7 Either the c-structure parser is underperforming 

and consequently the annotation algorithm is unable to generate sufficiently good f-structures 

from the bad c-structures, or the annotation algorithm is incomplete with respect to the domain 

variance.

The results in Table 4.1 have shown that the c-structure parser performance has dropped 

by almost 16% as a result of the domain variance. Previous work (Gildea, 2001; Clark et al., 

2004) and my experiments in Chapter 3 have shown that parser performance can be boosted 

through retraining with appropriate in-domain data. In order to to determine the influence of the 

c-structure parser as a contributing factor to the drop in performance for the automatic f-structure 

annotation algorithm, I carry out experiments using a c-structure parser retrained on Penn-II and 

A TIS  material.

4.4 Retraining Experiments

In order to improve the performance of the c-structure parser on A TIS  sentences I created an 

extended training set for the parser. This new, larger, training set consisted of Sections 02-21 of 

the Penn-II Treebank W SJ (the original training data) and the A TIS  corpus less the 100 randomly 

selected sentences in the gold standard. I then retrained the parser on this new training set, and 

repeated the parsing and annotation experiments in Section 4.3.

7Testing on the long distance dependency resolution module showed that problems with LDD resolution were 
directly related to bad c-structure parsing. Manual inspection revealed that sentences with bad LDD resolution also 
had a bad c-structure tree, and that fixing the c-structure tree resulted in correct LDD resolution.
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In the second (C C G -style ) evaluation I generate c-structures for each of the 578 A TIS  sen­

tences by retraining the parser and parsing using a 1 0 -fold cross-validation experiment with 

90%: 10% training:test splits over the A TIS  corpus, and adding the 90% A TIS  training set to 

Sections 02-21 of the Penn-II Treebank W SJ for training. Parser output for unseen data is gen­

erated for all 578 sentences in this way. The parser output c-structures are then passed to the 

f-structure annotation algorithm and LDD-resolution and the f-structures are evaluated against 

automatically generated f-structures from the original A TIS  trees.

(a)

100 Gold Standard Precision Recall F-Score D iff

Trees (labelled bracketing) 88.03 78.78 83.14 +12.89

F-Structures A ll GFs 88.04 79.10 83.33 +9.27

Preds-only 80.17 73.66 76.77 +13.82

(b)

578 A TIS  (Cross-validation) Precision Recall F-Score D iff

Trees (labelled bracketing) 80.66 92.26 86.07 +14.65

F-Structures A ll GFs 87.27 88.97 8 8 . 1 1 +7.35

Preds-only 80.21 80.81 80.51 +12.38

Table 4.3: Results for experiments with retrained grammar for the 100 sentence hand-crafted 

gold standard (a) and for C C G -style  automatically generated gold-standard with a 

1 0 -fold cross validation (b).

Tables 4.3 (a) and (b) give the results of evaluating c-structures and f-structures generated 

with Bikel’s parser retrained as described above. Evaluating against the 100-sentence A TIS  gold 

standard, the c-structure f-score has increased by almost 13% to 83.14. The quality o f the f- 

structures has also increased with an improvement of almost 14% in the preds-only f-score, to 

76.77%. The performance over the whole corpus, in the CCG -style  experiment against automat­



ically generated f-structures for the original 578 treebank trees, has increased correspondingly, 

with the c-structure f-score increasing by over 14% to 86.07, and a preds-only evaluation of the 

f-structures gaining over 1 2 % to achieve an f-score of 80.51.

The results in both evaluations show a considerable increase over the corresponding baseline 

scores in Table 4.1. This increase in performance of the c-structure parser and the automatic f- 

structure annotation algorithm is statistically significant for both evaluations with p-values of 

9.999 x  10~ 5 for both c- and f-structures in the evaluation on the 100 sentence A TIS  gold 

standard evaluation, and also on the CCG -style  evaluation.

When compared with the baseline results for the Penn-II treebank-based D C U  105 in Table

4.1 (c), the improved results on the A TIS  data (after retraining) are slightly better than the scores 

for the D C U  105. Both f-structure evaluations with both preds-only and all grammatical func­

tions are higher for the 100 A TIS  sentence gold standard after parser retraining than the D C U  

105 result in Table 4.1. The cross-validation results for the whole A TIS  corpus are higher again; 

though since the “ gold-standard” for the evaluation was automatically generated (C C G -Style) 

for this test, it is not directly comparable with the D C U  105 result.
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Dependency Precision Recall F-Score D iff

ADJUNCT 229/292=78 229/324=71 74 +19

COMP 0/4=0 0/3=0 0 -

COORD 16/24=67 16/24=67 67 +3

DET 67/66=92 61/70=87 90 +6

FOCUS 23/23=100 23/33=70 82 +39

OBJ 193/223=87 193/216=89 88 +6

OBJ2 17/17=100 17/18=94 97 +3

OBL 1/1=100 1/12=8 15 +1

OBL2 0/0=0 0/5=0 0 -

POSS 1/1=100 1/1=100 100 -

QUANT 2/16=12 2/6=33 18 -

RELMOD 14/19=74 14/16=88 80 +18

SUBJ 75/89=84 75/133=56 68 +14

TOPICREL 14/19=74 14/17=82 78 +33

XCOMP 25/30=83 25/46=54 66 +12

Table 4.4: Dependency annotation results for selected features in the 100 sentence evaluation

Table 4.4 shows a more detailed analysis o f the evaluations in Table 4.3 (a) for a number of 

features. Compared to Table 4.2 the table shows that the retraining has had no negative effect 

on any of the features. The majority of features have improved in terms of both precision and 

recall.

The largest increase from the previous figures is for the features FOCUS and TO PICREL. 

These are important features necessary for analysing questions correctly. Note that recall for 

FOCUS has increased dramatically to 70% while precision has stayed the same at 100%. The

73



TOPICREL relation on the other hand gained substantially in terms of both precision and recall.

4.5 Further Evaluations and Backtesting

The experiments presented in this chapter and in Chapter 3 have shown that domain varia­

tion causes state-of-the-art treebank-based probabilistic resources such as the parsers o f Collins 

(1999), Chamiak (2000) and Bikel (2002) and the pipeline f-structure parsing architecture of 

Cahill et al. (2004) to under-perform resulting in poor quality c- and f-structure analyses. How­

ever, we have also seen that this underperformance can be remedied relatively easily through 

retraining on appropriate data from the new domain. In fact, only the c-structure parser needs to 

be retrained to improve the quality o f analysis at both c- and f-structure level.

These findings raise a number of important research questions:

• What is the limit to which retraining can improve the results?

• How much training data is really needed?

• The A TIS  corpus is a mixed corpus of question and non-question data, does this break­

down skew the results?

• What effect does retraining have on performance in the original domain (Penn-II Tree- 

bank)?

I address these questions in the sections below.

4.5.1 Upper Bound Estimation

The experiments so far indicate that the annotation algorithm of Cahill et al. (2004) is complete 

with respect to the strong domain variation encountered in the experiments on A TIS  data. But 

this raises the question of what the upper bound for the automatic f-structure annotation of A TIS  

trees is.
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In order to estimate an upper bound for the automatic f-structure annotation algorithm, I took 

the original A TIS  treebank trees for the 100 sentences in the gold standard and automatically 

annotated them to produce f-structures (thereby removing the c-structure parser and f-structure- 

based L D D  resolution margins of error). These f-structures were then evaluated against the 

hand-corrected f-structures in the gold standard. In this evaluation the all grammatical func­

tions f-score is 92.80 and the preds-only f-score is 89.88 (Table 4.5). These results are roughly 

comparable to a similar estimation experiment on the Penn-II Treebank Section 23-based D C U  

105.

100 ATIS  

F-Score

D C U  105 

F-Score

A ll GFs 92.80 96.93

Preds Only 89.88 94.28

Table 4.5: Upper bound for gold standard trees

The A TIS  upper bound result reemphasises the earlier finding that improving the c-structure 

parsing is sufficient to improve the overall performance of the f-structure annotation algorithm 

significantly, and can be used to adapt the overall text-to-f-structure parsing system to data from 

outside of the domain on which it was originally developed. This is quite a surprising result, as 

the annotation algorithm of Cahill et al. (2004) was not modified in any way. The annotation 

principles used by the annotation algorithm were developed based on Penn-II Treebank data so 

the expectation was that the upper bound on out-of-domain data would be drastically lower than 

that from Penn-II Treebank data. One possible explanation for the surprising robustness of the 

f-structure annotation algorithm (given out-of-domain data but good c-structure analysis) may 

be that compared to c-structure, f-structure is a deeper, more abstract and “ normalised” level of 

representation of linguistic information, less affected by domain variation. Even though there are 

very few direct questions in the original Penn-II data, the left-right context annotation matrices of
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the f-structure annotation algorithm (c.f. Section 2.3.3) contain sufficient information to annotate 

S B A R Q  and SQ constituents appropriately in question trees.

The upper bound results for the 100 A TIS  sentence f-structure gold standard when compared 

with the results on the same test set with the retrained parser in Table 4.3 show that there is a 

further 9.47% f-score that can be gained in the all grammatical functions evaluation through 

improving parser output and another 13.11% f-score to be gained in the preds-only evaluation.

Speculating somewhat and taking the D C U  105 results as a yard stick, the results indicate 

that “perfect” c-structure parsing improves all grammatical functions f-score by approximately 

9.5% and preds-only by approximately 13%. Part of the remaining 4% (approx.) difference 

between the A TIS  and D C U  105 scores can potentially be bridged by improvements in the f- 

structure annotation algorithm to tune the algorithm to A TIS  data. The upper bound tests indicate 

that the f-structure annotation algorithm is, in fact, less complete for A TIS  data than for Penn-II 

material. One major factor is the high proportion of FR A G  and X  constituents in A TIS  data for 

which the annotation algorithm currently does not provide annotations.

4.5.2 Ablation Experiments

We have seen above that adding a (relatively) small amount of domain appropriate material to the 

training set for the c-structure parser has resulted in quite significant gains for both c-structure 

and f-structure analyses of A TIS  sentences. Previous work by Gildea (2001) has shown that a 

large amount o f additional data makes little impact if  it is not matched to the test material. With 

this in mind one can wonder if, due to its relative size, the Penn-II Treebank W SJ material in the 

training set for the parser might constitute such a large amount of redundant additional data.

In order to test this, I carried out a number of ablation experiments using the automatically f- 

structure annotated 578 A TIS  trees as gold standard in a CCG -style  experiment, where I evaluate 

c-structures and f-structures, while reducing the amount of Penn-II Treebank material in the 

parser's training set. The graphs in Figures 4.2 and 4.3 show the effect forevaluations against the 

entire A TIS  corpus in a series of 10-fold cross validation experiments, in which the training set
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for the parser consists o f 90% of the ATIS  corpus and a varying (randomly selected) percentage 

of the Penn-11 Treebank.
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Figure 4.2: Reducing Penn-II Treebank content (90%-10% of sections 02-21 WSJ, 10-fold cross 

validation with 90%: 10% ATIS  splits, CCCi-style experiment).
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Figure 4.3: Reducing Penn-II Treebank content (9 % - l %  of sections 02-21 W SJ, 10-fold cross 

validation with 90%: 10% AT1S splits, CCG-style experiment).

The graphs show that reducing the amount of Penn-II Treebank WSJ material in the train­

ing set adversely affects the overall performance. Grammar coverage, c-structure parsing and 

f-structure annotation all suffer to varying degrees. Both c-stmcture and f-structure evaluations 

start to decline when less than 70% of Sections 02-21 of the Penn-II Treebank is included in the 

training set. Grammar coverage proves to be less affected in this case: it does not decline until 

the amount of WSJ training material falls below 20%. Nevertheless, the system is capable of 

achieving coverage in the region of 99%, a c-structure f-score of over 85%, and f-structure f- 

scores of over 8 8 % (all grammatical functions) and over 82% (preds-only), when the c-structure 

parser is trained on 90% of the ATIS  corpus and only 10% of the Penn-11 Treebank. It is in­

teresting to note that the small variations seen in Figures 4.2 and 4.3 are for the mast part only 

statistically significant for the c-structure parser. While the differences between adjacent runs 

start to become statistically significant for the c-structure parsing when the Penn-II Treebank 

material is below 70% of the whole, it is only when the Penn-II Treebank material is reduced 

below 1 0 % that the differences in the f-structure evaluations are statistically significant.
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These results show that while the additional Penn-II Treebank material is contributing only 

a small amount to the performance on A TIS  material, the full set o f Penn-II Treebank training 

material (Sections 02-21) is strictly speaking unnecessary and not making any significant con­

tribution to the results. This is similar to what was observed in Chapter 3, where by and large 

c-structure parsing results did not change dramatically when Penn-II Treebank data was added 

to the A TIS  training set. It also suggests that f-structure representations are less affected by the 

change in the training data than the c-structures, despite the fact that they are derived from them, 

implying that the automatic f-structure annotation algorithm is more robust and domain neutral 

than the c-structure parser.

4.5.3 Question vs. Non-Question Breakdown of Results

The A TIS  corpus contains both question and non-question data. The 100-sentence gold standard 

is taken randomly from the A TIS  corpus and comprises both question and non-question sen­

tences. Table 4.6 shows the breakdown of the upper bound (established following the procedure 

detailed in Section 4.5) for both question and non-question sentences in the gold standard.

Non-question Question

A ll GFs 94.82 90.77

Preds-only 92.94 86.81

Table 4.6: Question and non-question f-score upper bounds

The upper bound breakdown shows a slight leaning towards a higher upper bound for non­

question sentences, but the upper bound for questions is still quite high. To establish if  there is 

a bias towards non-question data, I evaluated the question vs. non-question breakdown of the 

evaluations for parsing the 100 sentence gold standard before and after retraining on A TIS  data.

Table 4.7 gives the breakdown of the scores for question and non-question sentences in the 

1 0 0  sentence gold standard parsing evaluations.
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W SJ Trained W SJ + A TIS  Trained

Non-Question Question Non-Question Question

J F-Score F-Score F-Score D iff F-score D iff

Trees 74.75 61.92 80.55 +5.8 88.35 +26.43

A ll GFs 77.40 70.52 82.62 +5.22 84.38 +13.86

Preds-only 68.96 54.12 76.28 +7.32 77.56 +23.44

Table 4.7: Question and non-question scores for the annotation algorithm

The breakdown in Table 4.7 clearly shows the effect o f both the domain variance and the 

retraining in the earlier experiments. The left side of the table shows the breakdown for the 

baseline experiments before the parser was retrained. In this experiment it is clear that both the c- 

structure parser and the f-structure annotation algorithm are underperforming more on questions 

compared to non-question sentences. The right side of the table shows the same breakdown, but 

for the experiments with the parser retrained on both Penn-II Treebank W SJ and A TIS  sentences. 

It is clear that this retraining has been of benefit to both the c-structure and f-structure evaluations 

for the questions in particular. The c-structure tree evaluation has improved significantly by over 

26% with an f-score of 88.35, likewise the f-structure evaluations have improved for evaluations 

of all grammatical functions and preds-only, improving by 13.86% and 23.44% respectively. 

Significance testing on these results gives a p-value in the region of 9.999 x  10“ 5 for each 

evaluation. It is also interesting to note that none of the scores have decreased as a result of this 

retraining; the results for the non-question sentences have also improved significantly, albeit to 

a lesser extent (p-values in the region of 0.001).

The breakdown of results in Tables 4.6 and 4.7 shows that while the upper bound estimates 

in Table 4.6 show a higher result for non-question data in the test set, when the parser is retrained 

with a combination of Penn-II Treebank data and A TIS  data the scores are higher for the question 

data than the non-question data. This is interesting as the upper bound estimates (Table 4.6)
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show the opposite result to what the retraining experiment shows. A  possible explanation is that 

retraining with the ATIS  data in the training set (while improving A TIS  non-question scores) has 

a far greater beneficial effect on the question data than on the non-question data in the test set.

4.5.4 Backtesting

The experiments above show that retraining the c-structure parser for the new domain has al­

lowed the treebank-based L F G  resources of Cahill et al. (2004) to be adapted to a new domain 

and achieve similar f-scores in c - and f-structure evaluations on data from a new domain com­

pared to in-domain results. In order to ensure that this retraining process has not adversely 

affected the overall system performance, I back-tested the retrained parser with the annotation 

algorithm on sentences from the original W SJ domain, the D C U  105 gold standard. I parsed the 

105 sentences with each of the 10 retrained grammars from the 10-fold cross validation experi­

ment in Section 4.4, then evaluated both c- and f-structures against the D C U  105 gold standard. 

The averaged results are shown in Table 4.8 (b), along with the results for the grammar trained 

only on sections 02-21 of the Penn-II Treebank in the same evaluation (a).

W SJ 02-21 trained Precision Recall F-Score

Trees 86.56 85.59 86.07

F-Structures A ll GFs 83.45 78.95 81.14

Preds-Only 76.32 72.0 74.10

a)

W SJ 02-21 + 90% A TIS  trained Precision Recall F-Score

Trees 87.05 86.10 86.57

F-Structures A ll GFs 83.92 79.34 81.56

Preds-Only 77.32 72.85 75.02

(b)

Table 4.8: Results for backtesting retrained grammar and baseline grammar on D C U  105
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The results show that the retraining process has resulted in no loss of accuracy at either c- 

or f-structure level. The scores on the D C U  105 have in fact improved slightly as a result of 

the retraining; however the improvements, when tested, were not statistically significant. This 

indicates that there has been no significant negative effect on the L F G  parsing resources of Cahill 

et al. (2004) on Penn-II W SJ material as a result of retraining the c-structure grammar to adapt 

the treebank-based L F G  resources to a new domain.

Comparing the results in Tables 4.8 (b) and 4.3 (a) shows that although the retrained parser 

has a lower c-structure f-score for the 100 A TIS  sentence test set than for the D C U  105 evalua­

tion, the f-structure evaluation results are higher. This somewhat unusual result can perhaps be 

explained by the presence of relatively small errors in the c-structure trees, e.g. labelling S B A R Q  

and SQ nodes incorrectly in questions, which do not affect the overall structure of the tree but 

which, because of the short sentence length in the A TIS  data, can have a large impact on the 

labelled bracketing c-structure evaluation. These types of errors may sometimes be masked in 

f-structure, resulting in a better result in the f-structure evaluations. Further research is required 

to investigate this question.

4.6 Conclusion

This chapter has shown that similar to c-structure analysis, automatic f-structure annotation is 

adversely affected by domain variance. The pipeline model of Cahill et al. (2004) suffers a 

performance drop when tested on the A TIS  corpus. Analysis o f the results shows that features 

such as F O C U S , which Harabagiu et al. (2000b) identify as being very important to question 

analysis, and T O P IC R E L  are not annotated very well by the baseline system.

Domain variance effects like this have been studied before by Gildea (2001) and Clark et al. 

(2004). This chapter presents work on deeper linguistic representations, f-structures, and how 

domain variance affects f-structure analysis as well as c-structure analysis. The experiments in 

Sections 4.3 and 4.4 show that both are adversely affected by domain variance, but that only the
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c-structure parser needs to be retrained to statistically significantly improve the performance of 

the overall system on A TIS  data. This suggests that the more abstract f-structure representations 

are less subject to domain variation since the Penn-II Treebank-based automatic f-structure an­

notation algorithm needed no modification to cope with the new domain, once the c-structure 

parser had been retrained.

The experiments show that the Penn-II Treebank-based automatic f-structure annotation al­

gorithm of Cahill et al. (2004) is general enough to cope with the domain variation observed here 

without modification: given high-quality c-structure trees, it can achieve a high upper bound for 

ATIS  of 92.8% all grammatical functions and 89.88% preds-only for A TIS  data, comparable 

to the upper bound for the automatic f-structure annotation algorithm on the Penn-II Treebank 

W SJ Section 23-based D C U  105. There is a provisio, however: given that the A TIS  data con­

tains many FR A G  and X  constituents, for which the f-structure annotation algorithm currently 

does not generate f-structures, there is more work to be done in order to properly handle this 

kind of data. The presence of FR A G  and X  constituents in the A TIS  data may also explains the 

higher f-score result o f 86.57% for c-structure trees for the retrained parser when tested on the 

D C U  105 versus 83.14% when tested on the A TIS  100 sentence gold standard.

Ablation experiments on the Penn-II Treebank W SJ component o f the parser’s training set 

show that, for tests on A TIS  data, a large proportion of the Penn-II data is unnecessary and 

redundant in the parser’s training corpus.

Investigating the question and non-question breakdown of the experimental results in this 

chapter shows that in the baseline evaluation the system suffers a worse drop in performance 

on question data than non-question data in both c-and f-structure evaluations. Retraining the c- 

structure parser with A TIS  data to improve performance boosts the performance on both question 

and non-question data, giving a statistically significantly better result in both c-and f-structure 

evaluations of the whole system.

Importantly, experiments with the retrained (Penn-II + A T IS ) grammar show that the re­

trained grammar, which gives high results for c- and f-structures for A TIS  data, also produces
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good results when back-tested in the original domain. An evaluation of the retrained system 

against the Penn-II Treebank Section 23-based D C U  105 shows no negative effects on the c- 

structure parsing or f-structure annotations as a result o f the retraining. The results are in fact 

higher than the original, though not statistically significantly so.

In summary, this chapter has built upon the domain variation experiments of Chapter 3, 

looking at the effects of domain variation on deeper linguistic representation in the form of 

L F G  f-structures. The domain variation is evident at both c- and f-structure level particularly 

affecting the analysis o f question specific dependencies such as F O C U S . To counter the drop 

in performance due to the domain variation only the c-structure parser needs retraining. This 

indicates that the automatic f-structure annotation algorithm of Cahill et al. (2004) is complete 

with respect to the domain variation observed here, and suggests that f-structures are a more ab­

stract linguistic representation better able to cope with domain variance issues than c-structures. 

Adapting the f-structure pipeline parsing architecture of Cahill et al. (2004) in this way to cope 

with the new domain (A T IS ) has no negative effects in the original domain.
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Chapter 5

Creating a Question Treebank

5.1 Introduction

In Chapters 3 and 4 ,1 have shown that retraining on a small amount o f question data improves 

question analysis of both c- and f-structures. The upper bound estimations in Chapter 4 show 

that the existing retraining resources (the A TIS  corpus) are insufficient in terms of both its size 

and content to achieve optimal results in question parsing. Parse-annotated corpora (treebanks) 

are crucial for developing machine learning- and statistics-based parsing resources for a given 

language or task. Large treebanks are available for major languages, however these are often 

based on a specific text type or genre, e.g. financial newspaper text (the Penn-II Treebank 

(Marcus et al., 1994)). This can limit the applicability o f grammatical resources induced from 

treebanks since such resources often underperform when used on a different type of text or for a 

specific task.

This chapter presents work on creating QuestionBank, a treebank of 4000 parse-annotated 

questions following Penn-II Treebank Annotation guidelines (Bies et al., 1995), which can be 

used as a supplementary training resource allowing parsers to accurately parse questions (as well 

as other text). Alternatively, the resource can be used as a stand-alone training corpus to train 

a parser specifically for questions. In either case, the resource w ill be useful in training parsers
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for use in question answering (Q A ) tasks, and also provide a means for evaluating the accuracy 

o f these parsers on questions.

Section 5.2 provides the background and motivation for this work. The raw data sources for 

QuestionBank are described in Section 5.3. In Section 5.4, I describe the process of creating 

the question treebank and provide some statistics on the development o f the corpus. Section 5.5 

summarises and concludes.

Part of this work has been published in Judge et al. (2006).

5.2 Background and Motivation

High quality probabilistic, treebank-based parsing resources can be rapidly induced from appro­

priate training material. However, treebank- and machine learning-based grammatical resources 

reflect the characteristics o f the training data. They generally underperform on test data substan­

tially different from the training data.

Work on retraining parsers to cope with domain variance was first studied by Gildea (2001) 

who retrained his parser with appropriate material to improve performance in the new domain. 

M y experiments in Chapter 3 have shown that an even greater performance drop than that ob­

served by Gildea occurs in instances of more extreme domain variance (Penn-II to A TIS ). Clark 

et al. (2004) created a “ W hat...? ” question corpus for retraining a C C G  supertagger which im­

proves C C G  parsing considerably. However, as it stands, the work is limited to one particular 

type of questions.

The question treebank described here is considerably larger than the “ what” question corpus 

of Clark et al. (2004). It is intended to be used as a general training and evaluation resource for 

parsers used in the analysis o f questions. In order to make it a representative question corpus, 

it contains a variety of question types (who, what, where, when, how, etc.) and is comprised of 

data from more than one source.

86



5.3 Data Sources

The raw question data for QuestionBank comes from two sources, the National Institute of 

Standards and Technology (N IS T ) Text Retrieval Conference (T R E C ) 8-11 Q A  track test sets,1 

and a question classifier training set2 produced by the Cognitive Computation Group (C C G ) at 

the University of Illinois at Urbana-Champaign. I used equal amounts of data (2000 questions) 

from each source so as not to bias the corpus to one or the other data source.

The questions in QuestionBank range between 2 and 32 words in length (ignoring punc­

tuation) with an average length of around 8.5 words and a standard deviation of almost 3. A  

breakdown of the 4000 questions in QuestionBank by W H-w ord type is shown in Table 5.1.

Question Word Frequency Percentage of the whole

What 2294 57.35

How 480 12.00

Who 455 11.38

Where 243 6.08

When 200 5.00

Which 77 1.93

(Name) 62 1.55

W hy 48 1.20

(Define) 3 0.08

(List) 2 0.05

Other 136 3.40

Table 5.1: Breakdown of the 4000 Questions in QuestionBank by W H-w ord 

The 136 questions in the “ Other” category in Table 5.1 fall into three general categories,

' http://trec.nist.gov/data/qa.html 
2http://12r.cs. uiuc.edu/ cogcomp/tools .php
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examples are listed below. They are either inverted questions (1), W HPP fronted questions (2), 

NP topicalised questions (3), or other imperatives (4) and (5) not listed in Table 5.1.

1. Logan International serves what city?

2. On which Hawaiian island is Pearl Harbour?

3. The sun’s core, what is the temperature?

4. Describe the Finnish music personality Salonen’s appearance.

5. Tell me what city the Kentucky Horse Park is near?

5.3.1 TREC Questions

The T R E C  competitions (Voorhees, 2001) have become the standard evaluation for Q A  systems. 

T R E C  Q A  test sets consist primarily o f fact seeking questions with some imperatives which 

request information, e.g. “List the names of cell phone manufacturers.” In the corpus I have 

included 2000 T R E C  questions, the test questions for the 1999, 2000, 2001 and 2002 T R E C  Q A  

track (totaling 1893 questions) and 107 questions from the 2003 T R E C  Q A  track test set.

The first T R E C  Q A  test questions (1999) came from a four sources, T R E C  Q A  participants, 

the N IS T  T R E C  team, the N IS T  assessors and question logs from the FA Q  Finder system (Burke 

et al., 1997). The different sources provided different kinds of questions as each source had their 

own motivation for the questions asked. The T R E C  Q A  participants and N IS T  staff (experts 

on Q A ) were able to select “ interesting” and challenging questions, the assessors represent a 

general user’s point of view and the FA Q  Finder logs represent real questions posed to a Q A  

system. Subsequent test sets for T R E C  Q A  tasks have been created in a similar manner, sourcing 

questions from domain experts and real life query logs.



The C C G  provide a number of resources for developing Q A  systems. One of these resources 

is a set o f 5500 questions and their answer types for use in training question classifiers (L i and 

Roth, 2002). The 5500 questions were stripped of answer type annotation, duplicate questions 

(both within the 5500 and duplicates of T R E C  questions) were removed and 2000 questions 

were included in the question treebank.

The C C G  questions are classified according to a two-tier classification, a coarse grained 

classification (e.g. L O C A T IO N ) is assigned, as well as a fine grained classification (e.g. C IT Y ), 

resulting in a total of 50 classes. A  breakdown of the C C G  question data by coarse classes is 

given in Table 5.2.

5.3.2 CCG Group Questions

Class Frequency Percentage of the whole

Abbreviation 36 1.8

Entity 376 18.8

Description 552 27.6

Human 260 13

Location 324 16.2

Numeric 452 22.6

Table 5.2: Breakdown of 2000 C C G  questions by question class

Similar to the T R E C  questions, the 5500 C C G  questions come from a number of sources 

and some of these questions contain minor grammatical mistakes so that, in essence, this corpus 

is more representative of genuine questions that would be put to a working Q A  system. A  

number of changes in tokenisation were carried out (e.g. separating contractions), but the minor 

grammatical errors were left unchanged because I believe that it is necessary for a parser for 

question analysis to be able to cope with this sort o f data if  it is to be used in a working Q A
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system.

5.4 Creating QuestionBank

I used a bootstrapping method to create the question treebank. As the treebank grows, the parser 

trained on the growing treebank becomes more accurate and the human annotator(s) should need 

to do progressively less manual correction work and the whole process speeds up.

5.4.1 Bootstrapping a Question Treebank

The algorithm used to generate the question treebank is an iterative process of parsing, manual 

correction, retraining, and parsing.

Algorithm 1 Induce a parse-annotated treebank from raw data 

repeat
Parse a new section of raw data 
Manually correct errors in the parser output 
Add the corrected data to the training set 
Extract a new grammar for the parser 

until A ll the data has been processed

Algorithm 1 summarises the bootstrapping algorithm. A  section of raw data is parsed. The 

parser output is then manually corrected, and added to the parser’s training corpus. A  new gram­

mar is then extracted, and the next section of raw data is parsed. This process continues until all 

of the data has been parsed and hand corrected. The parser used to process the raw questions 

prior to manual correction was that of Bikel (2002)3, a retrainable emulation of Collins (1999) 

Model 2 parser. B ikel’s parser is a history-based parser which uses a lexicalised generative 

model to parse sentences. I used W SJ Sections 02-21 of the Penn-II Treebank to train the parser 

for the first iteration of the algorithm. The training corpus for subsequent iterations consisted of 

the W SJ material and increasing amounts of processed questions.

downloaded from Daniel Bikel’s website at the University of Pennsylvania, 
http://www.cis.upenn.edU/~dbikel/software.html#stat-parser
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In the first iteration of the bootstrapping algorithm 200 questions were parsed. This increased 

over the course of the development of the treebank; the final iteration ran with 500 questions 

being parsed.

5.4.2 Corpus Development Statistics

QuestionBank was created over a period of three months at an average annotation speed of 

about 60 questions per day. This is quite rapid for treebank development, e.g. a corpus of a 

similar number of Spanish sentences (C iv it and Marti, 2004) took approximately 15 months 

to create. The speed of the process was helped by three main factors: unlike the Cast3LB 

Spanish treebank, I used existing annotation guidelines (Bies et al., 1995) instead of developing 

my own treebank annotation; the questions are generally quite short (typically about 10 words 

long) compared to sentences in general newspaper text (Table 3.1) and, due to retraining on 

the continually increasing training set, the quality o f the parses output by the parser improved 

dramatically during the development of the treebank, with the effect that corrections during the 

later stages were generally quite small and not as time consuming as during the initial phases of 

the bootstrapping process.

For example, in the first week of the project the trees from the parser were of relatively poor 

quality and over 78% of the trees needed to be corrected manually. This slowed the annotation 

process considerably and parse-annotated questions were being produced at an average rate of 

40 trees per day. During the later stages of the project this had changed dramatically. The quality 

of trees from the parser was much improved with less than 20% of the trees requiring manual 

correction. A t this stage parse-annotated questions were being produced at an average rate of 90 

trees per day.

5.4.3 Corpus Development Error Analysis

Some of the more frequent errors in the parser output pertain to the syntactic analysis of W H - 

phrases (W HNP, WHPP, etc). In Sections 02-21 of the Penn-II Treebank these are used more
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often in relative clause constructions than in questions (Figure 5.1).

NP

strategic partnership

W HPP-4

IN W HNP

I I
in W DT

I
which

each com pany rem ains independent while 

working together to m arket and sell their products

Figure 5.1 : Relative clause in an NP from the Penn-II Treebank

As a result, many of the corpus questions were given syntactic analyses corresponding to 

relative clauses (SB A R  with an embedded S) instead of as questions (S B A R Q  with an embedded 

SQ) as in Figure 5.2.
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(a) SBAR (b) SBA RQ

W HNP

created DT NN

I I
the M uppets

W HNP

created DT NNPS

I I
the M uppets

Figure 5.2: Example tree before (a) and after correction (b)

Because the questions are typically short, an error like this has quite a large effect on the 

P A R S E V A L  (Black et al., 1991) score for the overall tree in terms of labelled precision, recall 

and f-score as explained in Chapter 3, Section 3.4.1. In Figure 5.2, the f-score for the parser 

output (a) would only be 60% if  it was evaluated against the tree in (b). Errors of this nature 

were quite frequent in the first section of questions analysed by the parser, but with increased 

training material becoming available during successive iterations this error became less frequent. 

Towards the end of the project it was only seen in rare cases.

W H -X P  marking was the source of a number of consistent (though infrequent) errors during 

annotation. This occurred mostly in PP constructions containing W HNPs. The parser would 

output a structure like Figure 5.3(a), where the PP mother of the W H N P  is not correctly labelled 

as a W HPP as in Figure 5.3(b)
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(a) PP (b) W H P P

IN  W H N P IN  W H N P

by WP$ N N by WP$ N N

whose authority whose authority

Figure 5.3: W H -X P  assignment before (a) and after correction(b)

The parser output often had to be rearranged structurally to varying degrees. This was com­

mon in longer questions. A  recurring error in the parser output was failing to identify VPs in 

SQs with a single object N P  In these cases the verb and the object NP were left as daughters of 

the SQ node. Figure 5.4(a) illustrates this, and Figure 5.4(b) shows the corrected tree with the 

V P  node inserted.

(a) S B A R Q  (b) S B A R Q

W H N P SQ W H N P  SQ
i i

W P V P

Who V B eT ^ N P

I I
killed Ghandi

Figure 5.4: V P  missing inside SQ  with a single object N P  (a) and correction (b)

W P V B D  NP

I I I
Who killed Ghandi

On inspection, I found that the problem was caused by copular interrogative constructions, 

which, according to the Penn-II annotation guidelines, do not feature V P  constituents. Since 

almost half of the question data contain copular constructions, the parser trained on this data 

would sometimes misanalyse non-copular constructions or, conversely, incorrectly bracket cop­

ular constructions using a V P  constituent (Figure 5.5(a)).
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(a)

What .
,s a fear o f shadows

IS a fear of shadows 

Figure 5.5: Erroneous V P  in copular construction (a) and correction (b)

The predictable nature of these errors meant that they were simple to correct. This is due to 

the particular context in which they occur and the finite number of forms of the copular verb.

5.5 Summary

In this chapter I have presented work on the creation of a corpus of 4000 parse annotated ques­

tions, QuestionBank. QuestionBank was created as a training and evaluation resource for proba­

bilistic and machine learning treebank-based parsers. The raw data used to create QuestionBank 

came from Q A  test sets (T R E C ) as well as more varied sources (C C G  question classifier corpus) 

to give a representative question corpus.

In Chapter 6, I present a series of experiments to test the effectiveness of QuestionBank 

for the task of training a parser to analyse question data and also test retrained parsers on non­

question data in W SJ Section 23 of the Penn-II Treebank. Chapter 7 presents work on complet­

ing QuestionBank by adding WH-traces to the trees.
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Chapter 6

Experiments with QuestionBank

6.1 Introduction

In this chapter I present a number of experiments to test the effects o f training a parser on 

QuestionBank versus the Penn-II Treebank, and on a combination of the two. The aim of the 

experiments is (i) to test whether training on QuestionBank can lead to an improvement in ques­

tion parsing; (ii) to test if  training on QuestionBank has negative effects on the parser’s ability to 

parse non-question data (W SJ Section 23 of the Penn-II Treebank); (iii) to investigate if  Ques­

tionBank is sufficiently large to be an effective training/evaluation resource for questions.

Section 6.2 briefly outlines the experiments. Section 6.3 describes the data used for the 

experiments, the experiments themselves and the results and Section 6.4 summarises and con­

cludes.

T h e  space  o f  p o ssib ilities  fo r co m p arin g  tra in in g  and  te st se ts  eva lua ted  in the b ase lin e  and  

cross validation experiments explored in this chapter is shown in the table below.
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Test

Training
Penn Sect 23 QuestionBank (all) QB  Cross Validation

Penn * *

QB Cross Validation * *

Penn + QB * *

Here training on Penn refers to training on Sections 2-21 of the Penn-II Treebank, Q B  Cross 

Validation to a 10-fold cross-validation training and testing on all of QuestionBank and Penn + 

Q B  to a 10-fold cross validation testing on QuestionBank and training on QuestionBank plus all 

of Sections 2-21 of the Penn-II Treebank.

Part o f this work has been published in Judge et al. (2006).

6.2 Outline of Experiments

I carried out seven experiments in total, a baseline experiment, two cross-validation experiments 

and five ablation experiments. In the cross-validation experiments I use all 4000 trees in the 

completed QuestionBank as the test set. Ten-fold cross validation on the 4000 questions was 

carried out using 90%/10% splits o f the data, with 90% training material and 10% test set. In 

this way parser output for unseen data was generated for all 4000 questions in QuestionBank. In 

the first cross-validation experiment, Cross-Validation 1 ,1 use only QuestionBank as a training 

resource, in the second, Cross-Validation 2, I use QuestionBank and Sections 02-21 of the 

Penn-II Treebank.

I performed ablation experiments to investigate the effect o f varying the amount o f ques­

tion and non-question training data on the parser’s performance. For these experiments I used 

QuestionBank and Penn-II Treebank training material for the parser. The first ablation experi­

ment, Ablation 1, uses only QuestionBank, the second, third and fourth ablation experiments, 

Ablation 2, Ablation 3 and Ablation 4, use QuestionBank and Sections 02-21 of the Penn-II 

Treebank, Ablation 5 uses only Sections 02-21 of the Penn-II Treebank.
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In all of the experiments I backtest the retrained parser on Section 23 of the Penn-II Treebank 

to compare the performance on questions as well as on informative text.

6.3 Experimental Data

For the cross-validation experiments it was possible to use all 4000 questions in QuestionBank 

as a gold standard against which to evaluate parser output. However, for the ablation experiments 

this is not possible because a consistent test set is needed if  the results from the different runs are 

to be comparable. For the ablation experiments the 4000 questions were divided into two sets. 

400 randomly selected trees were held out as a gold standard test set against which to evaluate, 

the remaining 3600 trees were used as a training corpus.

The Penn-II Treebank material used for both the cross-validation and ablation experiments 

was the standard training/test sets: W SJ Sections 02-21 were used as the training set and W SJ 

Section 23 was used as the test set.

6.3.1 Establishing the Baseline

The baseline for my experiments is provided by Bikel’s parser trained on W SJ Sections 02-21 

of the Penn-II Treebank. I test on all 4000 questions in QuestionBank, and also Section 23 of 

the Penn-II Treebank.

QuestionBank W SJ Section 23

Coverage (% ) 100 100

F-Score (% ) 78.77 82.97

Table 6.1: Baseline parsing results

Table 6.1 shows the results for the baseline evaluations on both the question and non-question 

test sets. W hile the coverage for both tests is high (100%), the parser underperforms consider­
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ably on the question test set with a labelled bracketing f-score of 78.77% compared to 82.97% on 

Section 23 of the Penn-II Treebank. This is a higher baseline result than in the A TIS  evaluations 

(Table 3.2), and is most likely because of the higher proportion of grammatically complete sen­

tences in QuestionBank, with only 10 sentences containing FR A G  constituents in QuestionBank 

compared to 230 in A TIS . It is doubtful that sentence length plays any part in the difference 

in baseline scores between the two test sets as the average sentence length for QuestionBank 

is 8.5 words, and 7 words for A TIS . Note that in my evaluations I include punctuation, which 

is not included in the published results for Bikel’s parser.1 I include punctuation in my evalu­

ations as punctuation, e.g. commas, helps determine the structure of a sentence. The parsing 

model of Collins (1999) places very little importance on punctuation, attaching it at a point in 

the tree that places it between two non-terminals; Bikel (2002) similarly places little importance 

on punctuation, attaching it as high in the tree as is possible (Figure B .l in Appendix B).

6.3.2 Cross-Validation Experiments

I carried out two cross-validation experiments to investigate the accuracy of a parser trained on 

QuestionBank, and on QuestionBank plus Sections 02-21 of the Penn-II Treebank, when parsing 

question data.

Cross-Validation 1: In the first experiment I perform a 10-fold cross-validation experiment 

using the 4000 question treebank. In each case a randomly selected set o f 10% of the questions 

in QuestionBank was held out during training and used as a test set and the parser was trained on 

the remaining 90% of QuestionBank (only). In this way parses for unseen data were generated 

for all 4000 questions and evaluated against the QuestionBank trees. Each of the ten grammars 

is also back-tested on Section 23 of the Penn-II Treebank and the average scores are reported.

'Results for Bikel’s parser in the literature are often those for the parser when emulating Collins’ Model 2 . This 
mode of operation includes specific optimisations for the Penn Treebank and pruning, which I do not use here. Also 
when evaluating parser output, Bikel, following Collins ignores punctuation. In my evaluations I do not ignore 
puntuation. The same evaluation carried out using the Collins Model 2 emulation settings file supplied with Bikel’s 
parser gives f-scores of 81.77% for the 4000 QuestionBank questions and 86.23% for Section 23.
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QuestionBank W SJ Section 23

Coverage (% ) 100 98.79

F-Score (% ) 88.82 59.79

p Value (Baseline) 9.999 x  lC T 5 9.999 x  10"5

Table 6.2: Experiment Cross-Validation 1. Cross-validation experiment using the 4000 ques­

tion treebank

Table 6.2 shows the results for the first cross-validation experiment (Cross-Validation 1), 

using only the 4000 sentence QuestionBank. Compared to Table 6.1 the results show a statis­

tically significant (p-value of 9.999 x  10_5) improvement of over 10% on the baseline f-score 

for questions. However, the tests on the Section 23 data show not only a statistically significant 

(p-value of 9.999 x  10-5 ) drop in f-score from 82.97% to 59.79% but also a drop in coverage 

from 100% to 98.79%. So while the parser can achieve high accuracy and coverage on question 

data, its ability to parse Section 23 data has suffered significantly.

Cross-Validation 2: The second cross-validation experiment was similar to the first, but in 

each of the 10 folds I train the parser on 90% of the 4000 questions in QuestionBank and on 

all of Sections 02-21 of the Penn-II Treebank. Again each of the extracted grammars is tested 

against the 10% of QuestionBank held out, and against Section 23 of the Penn-II Treebank, and 

average scores are reported.
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Questions Backtest on Sect 23

Coverage (% ) 100 Coverage (% ) 100

F-Score (% ) 89.75 F-Score (% ) 82.39

p Value (Baseline) 9.999 x  10“ 5 p Value (Baseline) 0.0002

Table 6.3: Experiment Cross-Validation 2. Cross-validation experiment using Penn-II Tree- 

bank Sections 02-21 and 4000 questions

Table 6.3 shows the results for the second cross-validation experiment (Cross-Validation 

2) using Sections 02-21 of the Penn-II Treebank and the 4000 questions in QuestionBank. The 

results show an even greater increase on the baseline f-score than the experiments using only the 

question training set (Table 6.2). The non-question results are also better and are comparable to 

the baseline (Table 6.1), though there is a 0.58% drop in f-score, which is statistically significant. 

Including the Penn-II Treebank data with QuestionBank gives better scores for both question and 

non-question data than training on QuestionBank alone.

If  we compare these results to those in Chapter 3 (where the finding was that for Bikel’s 

parser when testing on an A TIS  test set, adding Penn-II Treebank data had a very small effect on 

the performance on A TIS  data), we find that for the QuestionBank tests combining the training 

sets (QuestionBank + P TB ) has resulted in a higher score than training on either resource alone. 

However, for tests on Penn-II Treebank Section 23, combining the training sets results in a higher 

score than when trained on QuestionBank alone, but a slightly lower result than when trained on 

Penn-II Treebank data alone.

The higher f-score (89.75%) on the QuestionBank data than on Section 23 suggests that with 

sufficient appropriate retraining data, the parser can achieve higher results on the question data 

than on informative text. This is not entirely unsurprising since the questions are generally much 

shorter than informative sentences, and as the graphs in Figures 3.7 and 3.8 show, state-of-the- 

art parsers are capable of very high f-scores on sentences of short lengths. This suggests that
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the low baseline score on the question data is not due to the sentence length, but rather to poor 

performance on question specific constructions, which can be remedied through retraining.

Questions

Baseline Cross-Validation 1 Cross-Validation 2

Baseline - - -

Cross-Validation 1 9.999 x  10-5 - -

Cross-Validation 2 9.999 x  10"5 0.0002 -

Section 23

Baseline Cross-Validation 1 Cross-Validation 2

Baseline - - -

Cross-Validation 1 9.999 x  10-5 - -

Cross-Validation 2 0.0002 9.999 x  10~5 -

Table 6.4: Statistical significance comparison between cross-validation runs

Table 6.4 shows the statistical significance between the baseline evaluation and each of the 

cross-validation runs and also between the cross-validation runs. The results show that the dif­

ferences between each of the evaluations are all statistically significant. The improvement in 

question parsing in experiment Cross-Validation 1 over the baseline is significant, as is the im­

provement in question parsing from Cross-Validation 1 to Cross-Validation 2. The drop in 

performance on Section 23 from the baseline to both Cross-Validation 1 and Cross-Validation 

2 is also significant.

6.3.3 Ablation Runs

In a further set o f experiments I investigated the effect of varying the amount of data in the 

parser’s training corpus. I experimented with varying both the amount of QuestionBank and
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Penn-II Treebank data that the parser is trained on. In each experiment, I test on both the 400 

question test set and Section 23 of the Penn-II Treebank.

Ablation 1: In the first experiment, I train the parser using only the 3600 question training 

set. I performed ten training and parsing runs in this experiment, incrementally reducing the 

size of the QuestionBank training corpus by 10% of the whole on each run. Table 6.5 gives the 

results for this experiment.

%  Question Material 100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 98.55 99.13 99.17 97.89 99.34 99.17 99.59 99.05 97.97 98.84

F-Score Questions 89.242 89.13 88.9 88.36 87.87 88.56 87.52 87.41 87.08 85.59

Section 23 59.612 58.82 58.44 58.26 56.87 55.87 55.06 53.4 52.8 51.85

Table 6.5: Results table for experiment Ablation 1

2The f-score results in this column differ from the results in Table 6.2 because the ablation experiments are tested 
on a single 400 question test set, while Table 6.2 gives 90%/10% split-based cross validation results on the whole of 
the 4000 questions in QuestionBank.
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Percentage ol 3600 questions in tho training corpus

F-Score Questions - -K  Coverage Questions
F Score Section 23 " X "  Coverage Section 23 Q

Figure 6.1: Ablation I :  Results for ablation experiment reducing 3600 training questions in 

steps of 10%

Figure 6 .1 graphs the coverage and f-score for the parser for tests on the 400 question test set, 

and Section 23 of the Penn-II Treebank in ten parsing runs with the amount o f data in the 3600 

question training corpus reducing incrementally on each run. The results show that training on 

only a small amount o f questions, the parser can parse questions wiih a high degree of accuracy. 

For example when trained on only 10% of the 3600 questions used in this experiment, the parser 

successfully parses all o f the 400 question test set and achieves a labelled precision and recall 

f-score of 85.59. However the results for the tests on WSJ Section 23 are considerably worse. 

The parser never manages to parse the full test set, the most it accomplishes is 99.59% of the 

test set, and the best precision and recall f-score at 59.61% is very low.

Ablation 2: 1116 second experiment is similar to the first, but in each nin I add Sections 

02-21 of the Penn-II Treebank to the (shrinking) training set o f questions. Table 6.6 gives the
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results for this experiment.

.XO
'

*

>n Material 100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

F-Score Questions 91.06’ 91.39 91.29 91.29 91.01 90.93 90.9 90.63 89.97 88.91

Section 23 82.38’ 82.36 82.38 82.42 82.41 82.41 82.43 82.39 82.42 82.46

100

90

70

60

50
100 90 80 70 60 50 40 30 20 10

Percentage of 3600 questions m the training corpus

F -Score Questions —H—  Coverage Questions -
F -Score Section 23 ~ X "  Coverage Soction 23 0

Figure 6.2: Ablation 2: Results for ablation experiment using P TB  Sections 02-21 (fixed) and 

reducing 3600 questions in steps of 10%

Figure 6.2 graphs the results for the second ablation experiment as described above. The

’The f-score results in this column differ from the results in Table 6.3 bccause the ablation experiments are tested 
on a single 400 question test set. while Table 6.3 gives 90'*/l0%  split-based cross validation results on the whole of 
the 4000 questions in QuestionBank.

Table 6.6: Results for experiment Ablation 2

H--------------- h

E X- -X X- X  X- “ X- -X X

- I ---------------------------1_________________ L .
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training set for the parser consists of a fixed amount of Penn-II Treebank data (Sections 02-21) 

and a reducing amount of question data from the 3600 question training set. Each parser is 

tested on both the 400 question test set, and Penn-II Treebank Section 23. The results here are 

significantly better than in the previous experiment. In all of the runs the coverage for both test 

sets is 100%, f-scores for the question test set decrease as the amount of question data in the 

training set is reduced (though they are still quite high.) There is little change in the f-scores for 

the tests on Section 23, the results all fall in the range 82.36 to 82.46, which is comparable to 

the baseline score of 82.97.

Ablation 3: The third experiment is the converse of the second, the amount of questions 

in the training set remains fixed (all 3600) and the amount of Penn-II Treebank material is 

incrementally reduced by 10% on each run. Table 6.7 gives the results for this experiment

% Penn-II Material 100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

FScore Questions 91.06 91.03 91.44 91.31 91.26 91.29 91.08 91.15 90.71 90.3

Section 23 82.38 82.31 82.24 82.01 82.07 81.5 81.32 80.8 80.48 79.69

Table 6.7: Results for experiment Ablation 3
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60 •

50 ---------- 1---------- 1---------- 1---------- 1---------- 1---------- 1_______i_______i______
100 90 80 70 60 50 40 30 20 10

Percentage of PTB  Stetcions 2-21 in the training corpus

F Score Questions — I—  Coverage Questions
F-Score Section 23 —X —  Coverago Section 23 _

Figure 6.3: Ablation 3: Results for ablation experiment using 3600 questions (fixed) and reduc­

ing F I  B Sections 02-21 in steps of 10%

Figure 6.3 graphs the results for the third ablation experiment. In this case the training set is 

a fixed amount o f the question training set described above (all 3600 questions) and a reducing 

amount of data from Sections 02-21 of the Penn-11 Treebank. The graph shows that the parser 

performs consistently well on the question test set in terms of both coverage and accuracy. The 

tests on Section 23 however show that as the amount of Penn-II Treebank material in the training 

set decreases, the f-score also decreases.

Ablation 4: In the fourth ablation experiment I reduce both the amount o f Penn-11 Treebank 

and QuestionBank material in the parser’s training corpus. The amount of data from each source 

in the training corpus is reduced by 10% each time. For the first run, the training set consists of 

100% of Sections 02-21 of the Penn-II Treebank and 100% of the 3600 QuestionBank training 

corpus. For the second run the training set consists o f 90% of Sections 02-21 of the Penn-II
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Treebank and 90% of the 3600 QuestionBank training corpus, and so on. Again I test on the 400 

question test set and on Section 23 of the Penn-II Treebank. Table 6.8 gives the results for this 

experiment.

100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

FScorc Section 23 91.06 91.37 91.49 91.15 90.66 90.97 90.51 89.90 88 99 88.84

Questions 82.38 82.32 82.30 82.00 82.02 81.57 81.41 80.84 80.58 79.68

Table 6.8: Ablation 4: Results for ablation experiment using 3600 questions and PTB Sections 

02-21, reducing the amount of material from both sources in steps of 10%

60  ■

50 ---------------1---------------1--------------->---------------1---------------1---------------1__________I__________«_________
100 90 80 70 60 50 40 30 20 10

Percentage ot PTB Stetcions 2-21 and 3600 questions in iho training corpus

F -Score Questions — I—  Coverage Questions •••*•■
F-Score Soction 23 - - X "  Coverage Section 23

Figure 6.4: Ablation 4: results for ablation experiment using 3600 questions and PTB Sections 

02-21 reducing each in steps of 10%
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Figure 6.4 shows the results for the fourth ablation experiment. Here the amount of material 

from both corpora (QuestionBank and Penn-II Treebank) is reduced. The parser’s performance 

on both test sets is affected in a similar way as the amount o f data in the training corpus is 

reduced. The (red) graph line representing f-score for the question test set in Figure 6.4 is 

similar in shape to the corresponding line in Figure 6.2 for experiment Ablation 2 where the 

parser is trained on a reducing amount of question material added to a fixed amount o f Penn-II 

Treebank material (Sections 02-21). The results in Table 6.6 and 6.8 show that there is little 

difference in the question f-scores for both runs, the variation between the corresponding runs 

is not statistically significant with an average p-value of 0.306. Similarly, the (green) graph line 

representing f-score on Section 23 of the Penn-II Treebank in Figures 6.3 and 6.4 follow the 

same trend, and the data in Tables 6.7 and 6.8 show there is little difference between the figures. 

Again, the variation is not statistically significant with an average p-value of 0.276.

Ablation 5: In the final ablation experiment I carried out, the parser’s training corpus con­

sists o f reducing amounts of data from Sections 02-21 of the Penn-II Treebank. No question 

data was included in the training corpus. The results for this experiment are in Table 6.9

100 90 80 70 60 50 40 30 20 10

Coverage Questions 100 100 100 100 100 100 100 100 100 100

Section 23 100 100 100 100 100 100 100 100 100 100

FScore Questions 78.42 79.00 79.31 78.97 75.87 74.98 73.42 73.63 68.62 72.55

Section 23 82.97 82.45 82.26 82.01 82.06 81.58 81.43 80.96 80.56 79.57

Table 6.9: Results for experiment Ablation 5
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Percentage ot PTB Stetcions 2-21 in the training corpus

F-Score Questions — 1—  Coverage Questions
F-Score Section 23 —X —  Covorage Section 23 0

Figure 6.5: Ablation 5: Results for ablation experiment reducing the amount of training data

from Sections 02-21 of the Penn-II Treebank by 10%

Figure 6.5 shows the results for the fifth ablation experiment. Ablation 5. the graph shows 

that as the amount of Penn-II Treebank material in the parser’s training set is reduced the per­

formance on both Section 23 and the question test set steadily declines. The performance on 

questions declines to a greater degree than the performance on Section 23.

6.4 Summary

The experiments reported in this chapter have shown that a parser trained exclusively on Ques- 

tionBank is capable of parsing questions more accurately than if trained on the Penn-II Treebank 

alone. However, the accuracy on a non-question test set (Section 23 o f the Penn-II Treebank) is 

poor. Interestingly, when we train the parser on a combination of Penn-II Treebank and Ques-
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tionBank data, the parse accuracy on questions increases and the parser is still able to parse a 

non-question test set with state-of-the-art accuracy.

The research shows that QuestionBank, if  used exclusively, can be used to extract a parser 

which is significantly smaller and faster4 than one extracted from general training corpora, like 

the Penn-II Treebank, and which can analyse questions with a high degree of accuracy. Such 

capabilities are desirable if  the parser is to be used in a Q A  system exclusively for query analysis. 

QuestionBank can also be used in conjunction with the Penn-II Treebank, to train a parser which 

can analyse questions with a high degree of accuracy (89.75% labelled precision and recall f- 

score), and do the same for non-question, informative text like that found in the W SJ data in 

the Penn-II Treebank (82.39% labelled precision and recall f-score). These are qualities that are 

required of a parser if  it is to be used in a Q A  system where it w ill be expected to analyse both 

queries and potential answers.

Having noted the significant improvement in question parsing accomplished with.a relatively 

small question corpus (4000 questions in QuestionBank vs. 40,000 sentences in the Penn-II 

Treebank training sections), an interesting question is whether more can be gained by increasing 

the size of the question corpus, or whether the amount of training material in QuestionBank 

constitutes an upper bound. Analysing the graph in Figure 6.1 which displays the effect of 

reducing the amount of questions in the training set, shows that the leftmost portion of the curve 

for f-score for the question test set is relatively flat in the region corresponding to 50-100% of 

the question training data. Relative to the amount of additional question training data there is 

little change in the f-score in this region: the f-score at 50% of the question training data is 88.56 

and at 100% of the question data it is 89.24, an increase of less than 0.7 of a percent which is not 

statistically significant (p-value of 0.14). It is interesting to note that in this region the f-score 

for the non-question parsing increases by a much greater degree (3.74%) and that this increase 

is statistically significant (p-value of 9.999 x  10~5). This implies that while I  have not found

4Basic benchmarking tests performed on Section 23 of the Penn-II Treebank, and the 400 question test set de­
scribed in Section 6.3 show that on average for Bikel’s parser trained on the 3600 question training set parses Section 
23 approximately 3 times faster and the 400 questions approximately 8 times faster than a grammar trained on Sec­
tions 02-21 of the Penn-II Treebank.
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an absolute upper bound, the question corpus is sufficiently large that the gain in accuracy from 

adding more question data is so small that it does not justify the effort.

QuestionBank is sufficiently large to fulfill the task for which it was intended, to provide 

a training and evaluation resource for question parsing, and to establish an upper bound on the 

amount o f additional data required in the training corpus to have a worthwhile gain in parser 

accuracy.

Extrapolating the findings in Chapter 4 that improved c-structure analysis results in improved 

f-structure output from the automatic f-structure annotation algorithm of Cahill et al. (2004), the 

results of experiments in this chapter would suggest that the improvements in c-structure analysis 

of questions from a parser trained using QuestionBank would carry through into f-structure 

analysis. I hope to be able to pursue this in future work.
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Chapter 7

Adding Long Distance Dependency 

Information to QuestionBank

7.1 Introduction

This chapter presents work on adding long distance dependencies (LD D s) to QuestionBank. 

After “bootstrapping” the treebank from raw data, the trees did not contain information on long 

distance dependencies (WH-traces and coindexation etc.) because the parser does not output this 

information. A  number of methods exist for recovering this information from parser output. I 

present a new high-precision method to recover LD D s in parser output using reentrancies in au­

tomatically generated L D D  resolved f-structures to “ reverse engineer” the syntactic components 

(i.e. the trace and its coindexed antecedent) in the tree. I evaluate this method of recovering 

LD D s against questions and their gold standard syntax trees (with LD D s indicated in terms 

of empty productions and coindexed antecedents) from the A TIS  corpus and, where possible, 

compare the approach with the other methods discussed in Section 7.3.

Long distance dependencies and their importance in relation to question analysis are dis­

cussed in Section 7.2. In Section 7.3 I describe related work on recovering' long distance de­

pendencies from parser output. Section 7.4 presents a new method for recovering LD D s in
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parser output trees using reentrancies calculated on automatically generated and LDD-resolved 

f-structures. Section 7.5 describes the evaluation of this method and gives a comparison with 

some of the previous work. Section 7.6 describes some measures taken to improve the scores in 

the evaluation. Section 7.7 summarises and concludes.

Part o f this work has been published in Judge et al. (2006).

7.2 Long Distance Dependencies

Long distance dependencies are crucial in the proper analysis o f question material. In English 

wh-questions, the fronted wh-constituent refers to an argument (who, whom, etc.) or modi­

fier (when, where, etc.) position of a verb inside the interrogative construction. Compare the 

superficially similar

1. W hoi \ti] killed Harvey Oswald?

2. W hoi did Harvey Oswald kill [£i]?

(1) queries the agent (syntactic subject) o f the described eventuality, while (2) queries the patient 

(syntactic object). In the Penn-II and A TIS  treebanks, dependencies such as these are represented 

in terms o f empty productions, traces and coindexation in C F G  tree representations (Figure 7.1).
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(a) SBARQ

WHNP-1 SQ

SBARQ

Harvey Oswald

Figure 7.1: L D D  resolved Penn-II/ATIS treebank style trees

With few exceptions1 the trees produced by current treebank-based probabilistic parsers do 

not represent long distance dependencies but produce output without empty productions and 

coindexation such as in Figure 7.2.

(a) SBARQ (b) SBARQ

W HNP

W P VP

W ho VBD

I
killed

NP

Harvey Oswald

W HNP

W P

W ho

^  Harvey Oswald ^
I

kill

Figure 7.2: Parser output trees

'Collin’s Model 3 computes a limited number of wh-dependencies in relative clause constructions.
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For question analysis, long distance dependency information can be crucial in differentiating 

superficially similar questions. In order to provide a full analysis o f questions, QuestionBank 

should also contain empty nodes and traces to represent LD D s. Adding this information in the 

form of traces and coindexed antecedents w ill also bring QuestionBank into line with established 

treebanks like the Penn-II Treebank and enable other Penn-II labelled data-based statistical and 

machine learning-based N LP  approaches to use QuestionBank as a training and evaluation re­

source.

7.3 Related Work

Johnson (2002) presents a tree-based method for reconstructing long distance dependencies in 

Penn-II Treebank style parser output trees. His method uses tree patterns learned from the Penn- 

II  Treebank to identify empty node insertion sites in the parser output. A  tree pattern is the 

minimal tree fragment which connects a given empty node to its antecedent, and matching can 

only occur if  a given tree is an extension of the pattern ignoring empty nodes. In evaluations on 

Section 23 of the Penn-II Treebank, Johnson’s method resolves LD D s in parser output with a 

labelled bracketing precision and recall f-score of 68%.

Dienes and Dubey (2003) use a pre-processing method to identify where in the surface string 

an empty element is likely to occur. The input string is tagged using a “ trace tagger” which adds 

gap information to the sentence. The sentence is then parsed with a modified parser which can 

thread this gap information through the parse tree to link the empty element and its antecedent. In 

experiments on Section 23 of the Penn-II Treebank this method resolves LD D s in parser output 

with a labelled bracketing precision and recall f-score of 74.6%. Dienes and Dubey (2003) also 

experiment with in-processing of empty nodes where the empty nodes are detected by the parser 

(which is an extension of Collins (1999) Model 3), however this method fails to surpass the 

accuracy of their pre-processing method.
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Levy and Manning (2004) present a method to recover long distance dependencies from 

parser output. Their method uses feature classifiers in three phases to identify dislocated tree 

nodes and their origin site. This contrasts with Johnson’s (2002) approach where empty node and 

antecedent recovery is treated as a single pattern matching task, and also with Dienes and Dubey 

(2003) who identify empty elements first, and the antecedents later in the parser. Evaluation on 

Section 23 of the Penn-II Treebank shows that the method is comparable to both Johnson (2002) 

and Dienes and Dubey (2003). Levy and Manning also assess cross-linguistic effectiveness 

of their approach, comparing English with a freer word order language, German. The results 

indicate that recovering LD D s is more difficult in German due to the freer word order.

A  machine-learning approach to recover long distance dependencies arising out of W H - 

gaps is presented by Higgins (2003). This approach uses a subset o f sentences extracted from 

the Penn-II Treebank which contain WH-gaps. From this data, for each sentence, subtree paths 

(similar to those used by Johnson (2002)) representing the path from the WH-phrase to the gap 

(empty element) were extracted. These paths were then used to train a H M M  classifier which 

was applied to the test set. Higgins reports accuracy of 92% in experiments with his classifier on 

1663 of the W H-gap sentences extracted from the Penn-II Treebank which were held out from 

the training data.

Campbell (2004) approaches L D D  resolution using a rule-based method to reconstruct 

LD D s. His approach is based on the premise that the existence and location of empty cate­

gories is not determined by data observable in a corpus, but rather by linguistic principles. This 

is because empty categories (and their relation to possible antecedents) do not correspond to 

actual strings in the data, but rather they are part of the annotation put there by a linguist fol­

lowing linguistic annotation guidelines. This method, when tested on Section 23 of the Penn-II 

Treebank, resolves LD D s in parser output with a labelled precision and recall f-score of 76.7%.

Jijkoun and de Rijke (2004) present a dependency graph-based alternative to recovering 

long distance dependencies from parser output. In their method, the Penn-II Treebank trees 

are transformed into dependency graphs and a machine learning algorithm, T iM B L  (Daelemans
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et al., 2003) is trained on the L D D  resolved dependency graphs from the treebank trees. Parser 

output is then converted to dependency graphs and T iM B L  adds the L D D  information to the 

graphs generated from parser output. In tests on dependency graphs for Section 23 of the Penn- 

I I  Treebank this method has slightly higher precision than that of Dienes and Dubey (2003) but 

lower recall, resulting in an f-score of 74.6%.

(\

7.4 Recovering Long Distance Dependencies in CFG Parser Output 

Using F-Structure Reentrancies

7.4.1 Motivation

QuestionBank was created with a view to offering it for use as a training and evaluation corpus 

for parser-based technology for question analysis. Experiments in Chapter 6 have shown that it is 

suitable for this purpose. However, in order to conform to the annotation guidelines (Bies et al., 

1995) it needs to have trace information added to the trees so either an (semi-) automatic method 

o f doing this, or manual annotation is necessary. The f-structure-based L D D  resolution method 

of Cahill et al. (2004) can resolve LD D s in f-structures generated automatically from parser 

output very accurately, once the c-structure tree is o f good quality. So in order to complete 

QuestionBank, and make it useful to other researchers in the area, I have developed a method to 

resolve LD D s in the hand-corrected QuestionBank trees which uses the f-structure based L D D  

resolution method of Cahill et al. (2004) to resolve the dependency, and then “ reverse engineers” 

the syntactic component, based on information in the c-structure tree and the corresponding f- 

structure(s).

7.4.2 Method

Cahill et al. (2004) present a method for resolving LD D s at the level o f Lexical-Functional 

Grammar f-structure without the need for empty productions and coindexation in parser output 

trees. Their method is based on learning finite approximations of functional uncertainty equa-
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tions (regular expressions over paths in f-structure) and subcategorisation frames from an auto­

matically f-structure annotated version of the Penn-II treebank and resolves LD D s at f-structure. 

The L D D  resolution works on automatically generated f-structures output from an automatic 

f-structure annotation algorithm which is applied to LDD-unresolved c-structure parser output 

trees. The L D D  module produces L D D  resolved f-structures, with LD D s encoded by means of 

reentrancies in the f-structures.

In my work on restoring L D D  information in the QuestionBank trees I use the f-structure
i

based method of Cahill et al. (2004) to generate L D D  resolved f-structures for (unresolved) 

QuestionBank trees then my system “ reverse engineers”  empty productions, traces and coindex­

ation in the c-structure trees. I explain the process by way of a worked example.

I use the parser output trees in Figure 7.2 (without empty productions and coindexation), 

automatically annotate the trees with f-structure information and compute LDD-resolution at 

the level of f-structure using the resources of Cahill et al. (2004). This generates the f-structure 

annotated trees2 and the L D D  resolved f-structures in Figure 7.3.

2Lexical annotations are suppressed to aid readability.
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(a) SBARQ (b) SBARQ

(c)

WHNP SQ

[t FOCUS = 
I

î] [T=l]
11

WP
1

VP

[ T = i ]
1

[ t = u
f

Who VBD NP

[ T = U [T OBJ =

FOCUS

PRED

OBJ

SUBJ

killed
Harvey Oswald

p r e d  who J IT)

’kil l(SUBJ O B J)’

[ PRED ’Harvey Oswald’ 

0
(d)

Harvey Oswald

VP

[T XCOMP = | ,

T SUBJ ~ i  SUBÌ]

I
VB

[ T = l ]
I

kill

FOCUS 

PRED 

SUBJ -

XCOMP

PRED Who ]0
do(SUBJ XCOMP)’

PRED ’Harvey Oswald’ ] [ 2 ] 

SUBJ [ T |

PRED ’kill(SUBJ O BJ)’

OBJ [7]

Figure 7.3: Annotated tree and f-structure

Note that the L D D  is indicated in terms of a reentrancy ( [ T ] )  between the question FOCUS and 

the SUBJ function in the resolved f-structure in Figure 7.3(c) and the FOCUS and OBJ function in 

7.3(d). Given the correspondence between the f-structure and f-structure annotated nodes in the 

parse tree, we compute that the SUBJ function newly introduced and reentrant with the FOCUS 

function in 7.3(c) is an argument of the PRED ‘k ill’ and the verb form ‘killed’ in the tree. In 

order to reconstruct the corresponding empty subject X P  node in the parser output tree 7.3(a), 

we need to determine candidate anchor sites for the empty node. These anchor sites can only
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be realised along the path up to the maximal projection of the C F G  constituent corresponding 

to the governing PRED in the f-structure, in this case VP, indicated by |=| annotations in L FG . 

This establishes three anchor sites: VP, SQ and the top level S B A R Q  in 7.3(a).

The next step is guided by the annotated c-structure tree and uses an automatically f-structure 

annotated corpus as the basis for an A P C F G  (Section 2.3.3). From the automatically f-structure 

annotated Penn-II treebank (Sections 02-21), I extracted f-structure annotated P C FG  rules ex­

panding the three anchor sites whose RHSs contain exactly the information (daughter categories 

plus L F G  annotations) already present in the tree in Figure 7.3(a) (in the same order) but which 

introduce an additional node (of any C F G  category X P ) annotated | SUBJ = | ,  located anywhere 

within the RHSs. Annotated A P C F G  rules are of the form

SB A R Q [T= | j - W HNP[T FOCUS =1] SQ[T=|] . 43

S B A R Q [T= |] — y W HNP[T FOCUS = i] S IN V [T = i]  . 3

S Q [î= i] — ► NP[T SUBJ =1] vp [T = i] 40

SQ[T=i] V B D [T = i]  NP[T OBJ =|] A D VP [|  ELEM = t  ADJUNCT] 1

v p [T=1] -H- V B D [T = JJ  NP[T OBJ = i] 3903

V P [Î= | ] — > V B D [T = JJ  N P [t OBJ ~ l ]  A D VP [|  ELEM = t  a d j u n c t ] 56

each with their associated frequencies (rightmost column in the above example). The LHSs of 

these rules correspond to the node(s) identified as potential anchor sites.

Among the appropriate rules,3 1 select the rule with the overall highest frequency and cut the 

rule into the tree in Figure 7.3 (a) at the appropriate anchor site (as determined by the rule LH S). 

In our case this selects S Q [| = j] —> NP[| SUBJ = j ]  VP [|= JJ and the resulting tree is given in

3Not all of the rules shown are appropriate for the example used here. Only rules which introduce Î  SUBJ = [ 
annotations are appropriate for the example, the other rules are given purely for illustrative purposes.
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Figure 7.4. From this tree, it is now easy to compute that the tree node coindexed with the trace 

in Figure 7.4 is the W H N P  annotated | FOCUS =1 following the reentrancy in the f-structure in 

Figure 7.3 (c).

S B A R Q

W H N P -1  SQ

[T FOCUS = i;1 [T=l]

W P

[T=i]

NP V P

[T SUBJ = 1 ]  [ t = | ]

Who *T-1* V B D  NP

[T= ll [T o b i =1]

killed
Harvey Oswald

Figure 7.4: Resolved tree

Likewise the parser output in Figure 7.2(b) is annotated to give the tree and corresponding 

f-structure shown in Figure 7.5(a) and (b). The reentrancy between the FOCUS and OBJ of ‘k ill’ 

results in an annotated C F G  rule of the form

VP[T=i] -  VB[T=i] NP[T OBJ =1]

to be selected to insert an empty node labelled NP as the rightmost daughter of the VP. 

Using the reentrancy information in the f-structure, the empty node is coindexed with the W H N P  

producing the L D D  resolved tree in Figure 7.5(c).
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SBARQ (a) SBARQ ( c )

(b)

[T=i]
I

did

[T SUBJ = i )

Harvey Oswald

[ t  XCOMP = | ,  
ì  SUBJ =1 SUBJ]

I
VB

[Î-1]

kill

FOCUS
PRED

SUBJ

XCOMP

[ PRED w ho  j | 1 I 
’do{SUBJ XCOMP^

p r e d  'Harvey Oswald’ ] [ 2]

s u b j  [ 2]
PRED ’kill{SUBJ OBJ)’

OBJ [7]

WHNP-1

Harvey Oswald VB NP
t I

kill *T*-1

Figure 7.5: Another annotated tree and f-structure

7.5 Experiments and Evaluation

In order to evaluate this method of restoring traces, and to assess its suitability as a means 

to introduce trace information into QuestionBank, I carried out experiments using questions 

extracted from the A TIS  corpus. There are a total of 213 questions in the A TIS  corpus; however 

not all 213 questions are suitable for this evaluation. Many of the questions are syntactically 

analysed using X  and FR A G  constituents4 and the automatic f-structure annotation algorithm of 

Cahill et al. (2004) w ill not be able to generate a proper f-structure for them. The A TIS  tree in 

Figure 7.6 (a) and the corresponding parser output for the same string in Figure 7.6(b) illustrate 

this.

4The Penn-II Treebank guidelines give the following definitions for the X and FRAG labels: FRAG - Frag­
ment. X - Unknown, uncertain, or unbracketable. X is often used for bracketing typos and in bracketing the...the- 
constructions.
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(a) FRAG (b) FRAG

PP-TM P W HNP PP

W P IN

I

IN

I

NP

W hat about after CD RB

seven p.m

W P

I
W hat

IN

about

PP

IN NP RB

I I I
after CD p.m

seven

Figure 7.6: A  Fragmented Question

Excluding trees containing X  and FR A G  constituents, I extracted 142 questions from the 

A TIS  gold standard trees which encode a long distance dependency in the A TIS  tree and sub­

mitted them to the automatic f-structure annotation algorithm of Cahill et al. (2004) to generate 

L D D  resolved f-structures to be used as a gold standard against which to evaluate the L D D  

resolution algorithm described in Section 7.4.

In the first experiment, I delete empty nodes and coindexation from the A TIS  gold standard 

trees and reconstruct them using my f-structure-based method on the preprocessed “perfect” 

A TIS  treebank trees. In the second experiment, I parse the strings corresponding to the ATIS  

trees with Bikel’s parser (trained on Sections 02-21 of the Penn-II Treebank and QuestionBank) 

and reconstruct the empty productions and coindexation on the parser output trees. In both cases 

I evaluate against the original (unreduced) A TIS  trees (with empty productions and coindexation) 

and score if  and only if  all o f insertion site, inserted C F G  category and coindexation match. This 

is a stricter evaluation than in some of the previous work, and follows the evaluation method 

proposed in Campbell (2004).

This evaluation method has advantages over the string position-based method used by John­

son (2002) where the location of an inserted empty node is considered correct if  the empty
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string which it governs occurs in the correct position in the surface string. Consider the sentence 

“When do you expect to finish?” with the bracketing shown below, and where 1 and 2 indicate 

possible locations for the trace of the W H A D V P

[w h a d v p  When ] do you [ y p  expect [ y p  to finish 1 ] 2 ]

1 structurally relates the queried temporal location to the finishing eventuality (“When do 

you finish” ), whereas 2 relates it to the expecting eventuality (“ When do you expect. . . ? ” ).

In a string position-based evaluation, if  position 1 is the correct position for the trace accord­

ing to the gold-standard, then, because both position 1 and 2 occupy the same string position, 

a system which inserts the trace in position 2 w ill not be penalised. The evaluation method I 

use considers both the label and parent category of inserted empty nodes and overcomes this 

shortcoming of string position-based evaluations.

Gold Standard Trees Parser Output

Precision 96.82 96.77

Recall 39.38 38.75

F-Score 55.99 55.34

Table 7.1: Scores for L D D  recovery (empty nodes and antecedents)

Table 7.1 shows that the recall o f the method is quite low at 39.38% while the accuracy is 

very high with precision at 96.82% on the original preprocessed A TIS  trees. Encouragingly, 

evaluating parser output for the same sentences shows little change in the scores with recall at 

38.75% and precision at 96.77%.

7.5.1 Comparison with Other Methods

The high precision of the method for recovering long distance dependencies in parser output 

using f-structure reentrancies is encouraging. The low recall, however, means that there is still
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room for much improvement. As I have noted before, questions are a very different text type 

compared to informative newspaper text like that found in the Penn-II Treebank. Part o f the 

basis for my L D D  recovery method is an A P C F G  extracted from an automatically f-structure 

annotated version of Sections 02-21 of the Penn-II Treebank, and it is possible that the recall 

underperformance on questions from the A TIS  corpus is due to the difference in text type when 

dealing with questions.

To test this hypothesis I compared Johnson’s (2002) and Higgins’ (2003) systems with 

my own. I used the same 142 A TIS  question test set and evaluate the two systems’ per­

formance on gold standard trees stripped of coindexation and functional tags and on parser 

output from Bikel’s parser retrained on Penn-II Treebank W SJ Sections 02-21 and Question- 

Bank. Higgins’ software used for these evaluations is a slightly improved version of the one 

used to generate the results published in the literature,5 which I acquired through personal 

communication with the author. Johnson’s software for the evaluations was downloaded from 

http://www.cog.brown.edu/~mj/Software.htm. The results are summarised in Table 7.2.

Johnson 02 Higgins 036 Judge 06

P R F P R F P R F

Stripped Gold Standard Trees 97.14 49.3 65.41 91.59 69.01 78.71 96.82 39.38 55.99

Parser Output 96.97 45.21 61.67 94.11 67.61 78.69 96.77 38.75 55.34

Table 7.2: L D D  recovery (empty nodes and antecedents) compared

The results in Table 7.2 show that on the A TIS  142 question test set Johnson’s method gives 

the highest precision and Higgins’ method gives the highest recall. The f-structure reentrancy-

based method used here performs almost as well as Johnson’s (Penn-II Treebank-based) method

5Features related to the head of a constituent have been added. These allow the model to determine that something 
really is an extracted object if the VP it sees consists of a transitive verb with no overt object, rather than an intransitive 
verb with no object.

6Higgins’ system does not output a syntactic category for empty nodes it produces. In these evaluations I assume 
that the inserted node is always of the right category. This is perhaps being overly generous to Higgins’ system, 
however if I was to evaluate on the output from his system without this assumption the scores would all be zero, 
which I feel is unduly unfair towards the system.
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in terms of precision, but is outperformed by both the other systems in terms of recall and f-score.

It is interesting to note here that Higgins’ system, which focuses specifically on W H  con­

structions, scores lower in precision on the question test set than the other L D D  recovery systems 

which are designed for generic LD D s (including topicalisation phenomena etc.). However recall 

for Higgins’ system is considerably higher than both of the others. Also interesting (and some­

what surprising) about the performance of Higgins’ system is that there is a marked increase in 

precision, but a drop in recall when it is tested using parser output.

7.6 Improving LDD Recovery Accuracy

While the proposed method to recover long distance dependencies in parser output using f- 

structure reentrancies gives high precision on the A TIS  question test set, the experiments in 

Section 7.5.1 show that the high precision and low recall performance is in fact common to 

both of the Penn-II Treebank based general L D D  resolution methods (Johnson’s and my own). 

Higgins’ WH specific method outperforms the other methods in terms of recall, making up for 

the slightly lower precision scores and making it the best-performing system overall in terms of 

f-score.

In order to maximally exploit the use of a system to add the necessary long distance de­

pendency information to QuestionBank (i.e. to minimise the need for manual correction and 

addition of LD D s), it would be preferable to have both high precision and recall scores. In order 

to achieve this, I used two complementary approaches to improve the L D D  recovery system: I 

relaxed the constraints on the rule matching criteria slightly, and I added L D D  resolved questions 

(these include L D D  resolved trees correctly generated by the method described above, (a small 

number of) trees which were resolved incorrectly but manually corrected and trees which were 

not L D D  resolved at all by the automatic method and hence were L D D  resolved fu lly manually) 

in a bootstrapping approach to the corpus from which the A P C F G  rules are extracted. These 

approaches are described below.

127



The L D D  recovery method described above uses very strict matching criteria for selecting rules 

from the A P C F G  to consider as candidates to use to insert an empty node. For example, say the 

algorithm is trying to restore a trace in a tree fragment (for a copular construction) like the one 

below

7.6.1 Relaxing the Matching Criteria

where the f-structure reentrancy indicates that the functional annotation T XCOMP ~ l  is 

necessary and the A P C F G  contains the rule

SQ [T=JJ -»• V B Z [T = | ] NP[T s u b j  =|] NP[T x c o m p  |  s u b j  = j  s u b j ]

In this case the algorithm w ill not consider the rule above as a candidate to allow the insertion 

of an empty node labelled NP because the annotation on the second NP in the annotated rule 

( t  XCOMP = J,, | SUBJ = |  SUBJ) is not exactly the same as the annotation which the reentrancy 

is looking for (| XCOMP = |). This is perhaps too strict in certain cases, so I modified the 

rule matching routine to allow a match when the annotation on candidate nodes subsumes the 

annotation sought. That is to say if  the annotation required on a candidate empty node is x and 

a rule matching the subtree where an empty node is proposed introduces a node N  with a set of 

annotations S , then N  can be considered a candidate empty node for insertion if  x € S.

With the matching constraint relaxed in this way, the coverage of the algorithm increased 

considerably. However, the extra freedom in the matching criteria meant that a lot of extra 

candidates were being considered for insertion and very few of the nodes which were inserted

SQ

T=1

V B Z  NP

T = i t SUBJ =1
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were actually correct.

Instead of using the relaxed matching criteria for the annotation on nodes proposed for in­

sertion, I chose to make the matching routine less strict than it was originally, but not as indis­

criminate as in the previous attempt. I changed the matching routine to allow a node to match if 

its annotation is exactly the annotation sought, or, if  there is a set o f annotations on the node, the 

first annotation listed in the set of annotations matches the annotation needed. This rather crude 

heuristic had a surprisingly good effect on recall, which increased considerably, but also had a 

negative effect on precision, though not to as great an extent as the more relaxed criteria in the 

previous attempt. While this is not entirely satisfactory, further improvements can be made by 

adding question data to the A P C FG , which I deal with next.

7.6.2 lining the APCFG to Questions

The L D D  recovery method described in Section 7.4 is initially biased towards Penn-II Treebank 

style material as it relies on an annotated P C FG  (A P C F G ) extracted from an f-structure annotated 

version of the Penn-II Treebank to determine what nodes to consider for insertion and where. 

I have shown in Chapter 4 that c-structure is more susceptible to domain/corpus dependence 

than f-structures, so it is not unexpected that a set o f C F G  rules (even though they may contain 

functional annotation) extracted from the Penn-II Treebank w ill underperform on questions.

. I f  the annotated grammar contained more question specific constructions, then the question 

specific constructions would have higher frequencies and hence be chosen over other possible 

constructions by the node insertion routine. QuestionBank, as described in Chapter 5, contains a 

large quantity o f question specific constructions, however, the trees do not contain any traces or 

long distance dependencies so initially they cannot be used to help improve precision and recall 

in the L D D  recovery algorithm.

To resolve this issue, I used a process similar to that used in the creation of QuestionBank 

in the first place. I iteratively processed sections of QuestionBank with the L D D  recovery algo­

rithm, hand corrected and completed the output and after each iteration I annotated the corrected
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L D D  resolved trees with the automatic f-structure annotation algorithm of Cahill et al. (2004), 

added these annotated trees to the corpus from which the A P C F G  was extracted, and extracted a 

new A P C F G  for use in the next stage. In this way I was able to inductively add trace information 

to QuestionBank, and also increase the precision of the L D D  recovery algorithm.

A lgorithm  2 Adapt an Annotated P C FG  for Resolving LD D s in Questions 

repeat

Resolve LD D s in a section of QuestionBank

Manually correct and complete the automatically L D D  resolved trees 

Automatically f-structure annotate manually corrected L D D  resolved QuestionBank trees 

Add the annotated L D D  resolved question trees to the corpus 

Extract a new A P C F G  

until A ll the data has been processed

Algorithm 2 shows the “bootstrapping” procedure used to induce trace information in Ques­

tionBank. This was done in five stages and at each stage I evaluated the trace recovery program 

against a set of 100 randomly extracted hand corrected L D D  resolved QuestionBank questions. 

The stages are outlined below

Baseline (0 QuestionBank Trees) Initially I took the trace restoration program described 

above and processed 400 QuestionBank trees. I hand corrected the 400 trees and ran­

domly selected 100 of these 400 trees to use as an evaluation set.

Iteration 1 (300 QuestionBank Trees) I took the remaining 300 hand corrected L D D  resolved 

trees, automatically annotated them with f-structure information using the automatic an­

notation algorithm of Cahill et al. (2004) and added the annotated trees to the corpus from 

which the A P C F G  used in trace recovery is extracted. I then extracted a new A P C F G  and 

processed the next 600 trees.

Iteration 2 (900 QuestionBank Trees) I corrected the 600 trees output by the system, anno­
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tated them, extracted a new A P C F G  and processed the next 1000 trees.

Iteration 3 (1900 QuestionBank Trees) I corrected the 1000 trees output by the system, anno­

tated them, extracted a new A P C F G  and processed the next 1000 trees.

Iteration 4 (2900 QuestionBank Trees) I corrected the 1000 trees output by the system, anno­

tated them, extracted a new A P C F G  and processed the next 1000 trees.

Iteration 5 (3900 QuestionBank Trees) I corrected the 1000 trees output by the system, anno­

tated them, extracted a new A P C FG .

7.6.3 Evaluating the Improved System

100 QuestionBank trees were randomly selected and held out as an L D D  resolved question test- 

set to evaluate against during the L D D  bootstrapping process. A t each stage in the bootstrapping 

process I evaluated the L D D  resolution given gold standard trees and parser output7 against these 

hand corrected trees. The results for each stage are given in Table 7.3.

7Produced using the same parser/grammar combination as was used in Section 7.5 to generate parser output.
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Precision Recall F-Score

Baseline8 Gold Standard 45.07 71.00 55.13

Parser Output 25.45 55.00 34.80

Iteration 1 Gold Standard 86.30 73.00 79.09

Parser Output 82.46 57.00 67.41

Iteration 2 Gold Standard 86.30 73.00 79.09

Parser Output 84.48 58.00 68.78

Iteration 3 Gold Standard 90.41 73.00 80.78

Parser Output 83.05 59.00 68.99

Iteration 4 Gold Standard 90.41 73.00 80.78

Parser Output 83.05 59.00 68.99

Iteration 5 Gold Standard 90.41 73.00 80.78

Parser Output 83.05 59.00 68.99

Table 7.3: L D D  resolution results for each stage of inducing LD D s in QuesdonBank with re­

laxed matching constraint (Section 7.6.1)

The evaluations show that before any L D D  resolved QuestionBank trees were added to the 

corpus from which the A P C F G  is extracted, the quality of L D D  resolution in the questions 

is quite poor. The recall is greatly improved compared to the A TIS  result in Table 7.1, but 

the precision is quite poor, and the f-score for the baseline evaluation is only 55.13% for gold 

standard QuestionBank trees stripped of traces and coindexation, and 34.80% for parser output. 

The evaluation after the first iteration of hand correction and reextraction of an extended A P C F G  

shows a dramatic improvement on the baseline. In this case, 300 hand corrected L D D  resolved 

QuestionBank trees have been added to the corpus from which the A P C F G  is extracted, and

8Note that the situation with respect to precision and recall of the system (high precision with low recall) has 
been reversed here in the baseline evaluation. This reflects the effect of relaxing the matching constraint (Section 
7.6.1), the evaluations during subsequent iterations of the process reflect the result given both measures to improve 
performance (relaxing the matching constraint and including QuestionBank data).
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already the results have improved considerably. Precision and recall are up in both evaluations. 

Recall, however, has improved to a much lesser extent than precision. The stripped gold standard 

QuestionBank tree input f-score increases to 79.09% and for the parser output it increases to 

67.41%, an improvement of 23.96% over the initial stripped gold standard trees evaluation and 

32.61% for the parser output evaluation.

The evaluations on the subsequent iterations show much less dramatic increases for both 

the stripped gold standard QuestionBank trees and parser output evaluations. The stripped gold 

standard trees evaluations hold steady at an f-score of 79.09% until the third iteration where 

it increases to 80.78% and stays constant throughout the remaining runs. The parser output 

evaluation increases in terms of recall until the third iteration where it remains constant at 59%, 

while precision spikes at 84.48% on the second iteration but then drops back and stabilises at 

83.05% on the third and subsequent runs. The overall f-score for the parser output evaluations 

increases gradually until the third iteration (despite the precision spike and drop off) where it 

stabilises at 68.99%.

The dependencies in the 100 QuestionBank questions are all wh-movement dependencies. 

A  breakdown of the results by the C F G  category of the empty elements associated with the 

dependencies is shown in Table 7.4.

Stripped Gold Standard 

Precision Recall F-Score

NP 95.23 80.00 86.95 84.62 61.33 71.11

A D  V P 0.00 0.00 0.00 0.00 0.00 0.00

AD JP 0.00 0.00 0.00 0.00 0.00 0.00

Parser Output 

Precision Recall F-score

Table 7.4: Breakdown of L D D  recovery results on 100 QuestionBank questions by C F G  type

These results show that the L D D  recovery performs best on recovering dependencies which 

introduce an empty element corresponding to an NP, achieving an f-score of 86.95%, and that
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Stripped Gold Standard 
Precision Recall F-Score

Parser Output 
Precision Recall F-score

Subj
Obj
Mod

96.43
84.62
0.00

87.09
76.74
0.00

91.52
80.49
0.00

100 35.48 
81.58 72.09 
0.00 0.00

52.38
76.54
0.00

Table 7.5: Breakdown of L D D  recovery results on 100 QuestionBank questions by functional 
role o f the empty element

while dependencies are recovered for other categories, those recovered in this evaluation are 

always incorrect. Manual inspection of these errors shows that while the position and coindex­

ation of the inserted empty elements is correct, the wrong C F G  category is assigned. Further 

investigation revealed that the cause of the empty element being assigned the wrong C F G  cate­

gory was, in fact, an incorrect f-structure analysis given by the automatic f-structure annotation 

algorithm of Cahill et al. (2004).

The recovered empty NP elements in Table 7.4 fulfill the role of subject or object in the 

questions. An alternative breakdown of the results by functional role is given in Table 7.5.

The results in Table 7.5 show that the precision for recovering subjects is considerably higher 

than for objects given both stripped gold standard input and parser output trees. However, re­

call is higher for objects than subjects given parser output trees. Interestingly, the f-score for 

recovering objects suffers less degradation from using parser output trees (f-score 76.54%) than 

recovering subjects (f-score 52.38%). The scores for modifiers are quite poor. These correspond 

to the A D V P  and A D JP  categories in Table 7.4 and so the low result can be explained by the in­

serted empty element being labelled with the wrong C F G  category as a result of a bad f-structure 

analysis.

Upper Bound Estimation

The results for the updated system show a marked improvement on the earlier version of the sys­

tem described in Section 7.4. To establish an upper bound and to answer the question whether 

the mistakes made by the system are caused by the L D D  recovery algorithm or the automatic
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f-structure annotation which resolves the long distance dependencies in the first place I discount 

any o f the questions in the gold standard where a manual inspection of the f-structures gener­

ated reveals that the automatic f-structure annotation algorithm has made a mistake, either in the 

f-structure or in the long distance dependency resolution (these amount to discounting a total 

18 out o f the 100 sentences). To eliminate the effect of parser error, I use stripped gold stan­

dard QuestionBank trees and automatically add empty nodes and their antecedents and evaluate 

against the gold standard. The results are shown in Table 7.6.

Precision Recall F-Score

98.57 85.70 91.69

Table 7.6: Upper bound results for f-structure reentrancy-based L D D  resolution on 100 Ques­

tionBank questions

In this evaluation precision increases to 98.57%, recall also increases (though to a lesser 

extent) to 85.70% giving an overall f-score of 91.69% for the L D D  evaluation system using only 

those sentences where a properly resolved f-structure is generated by the automatic f-structure 

annotation algorithm of Cahill et al. (2004).

7.6.4 ATIS Evaluation

The more relaxed matching constraint and the added question data in the A P C F G  have greatly 

improved the overall performance of the L D D  recovery algorithm. To find out how much these 

measures have contributed to improving the result, I revisited the earlier evaluations against the 

142 A TIS  sentence gold standard. Again I test the performance on both gold standard A TIS  trees 

stripped of empty nodes and coindexation and parser output. The results of these evaluations, 

along with the scores for the original system, as well as Johnson’s and Higgins’ systems are 

given in Table 7.7.
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Stripped Gold Standard 

Precision Recall F-Score

Parser Output 

Precision Recall F-Score

Johnson (2002) 97.14 49.30 65.41 96.97 45.21 61.67

Higgins (2003) 91.59 69.01 78.71 94.11 67.61 78.69

Judge (2006) basic 96.82 39.38 55.99 96.77 38.75 55.34

Judge (2006) best 89.29 79.43 84.07 89.29 79.43 84.07

Table 7.7: L D D  recovery results for the improved L D D  recovery algorithm on 142 ATIS  ques­

tion test set

Table 7.7 compares the performance of the improved L D D  resolution system on the 142 

A TIS  question test set with the results in Table 7.2. The results show not only a substantial im­

provement for my system, but also that the improved system using QuestionBank material is the 

best performing of the four L D D  recovery systems on the A TIS  question test set. Interestingly, 

the results for the improved system on both stripped gold standard trees and parser output are 

the same. This is surprising. It is possibly due to similarities between some of the questions in 

A TIS , which differ only in terms of a place name or day, e.g. “ What flights are there from X  to 

Y ? ’\ “ What flights leave X  on D A Y  Y ? ’\ Closer examination of the parser output reveals that 

the parser output in this case is o f very high quality and is structurally very similar to the gold 

standard trees. The differences between the parser output and gold standard trees are in con­

stituents which do not affect my c-structure L D D  insertion method and the correct functional 

analysis is still assigned and correct f-structure reentrancies representing LD D s are produced for 

the f-structure derived from the parser output.

The A TIS  evaluation is possibly easier than the evaluation against the 100 QuestionBank 

questions as is indicated by the higher score achieved by each system given both gold standard 

input and parser output for the A TIS  evaluation when compared with the results for testing 

against the 100 QuestionBank questions (Table 7.8). The precision for the improved system
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has dropped by around 7.5% on both evaluations, however the substantial gains in recall (just 

over 40% in each evaluation) make it the best performing system overall in terms of f-score. 

Johnson’s system, however, still has the highest precision of all four systems.

For a final comparative evaluation of the systems, I tested Johnson’s and Higgins’ systems 

on the QuestionBank 100 question test set I  used to monitor progress while bootstrapping trace 

information in QuestionBank. Table 7.8 compares these two systems with my improved system 

on these 100 questions.

Stripped Gold Standard 

Precision Recall F-Score

Johnson (2002) 76.19

Higgins (2003) 94.52

Judge (2006) best 90.41

42.00 54.15

73.00 82.38

73.00 80.78

Parser Output9 

Precision Recall F-Score

6.00 16.00 8.73

79.03 62.00 69.49

83.05 59.00 68.99

Table 7.8: Comparison of 3 L D D  recovery methods on 100 QuestionBank trees

The results in this evaluation clearly show that the systems with question specific tuning, my 

improved system and Higgins’ wh-specific system, are performing better on the question data 

than Johnson’s Penn-II Treebank-based system.10 Johnson’s system performs particularly badly 

on parser output in this evaluation with both precision and recall very low. Higgins’ system has 

the best overall performance in both evaluations, with my system scoring similarly.

The results in Table 7.8 show that, on the 100 question testset taken from QuestionBank, 

Higgins’ system performs better than my f-structure reentrancy-based method of recovering

Johnson’s system did not output any coindexation on the traces that were inserted so the precision and f-score 
for his system here on parser output should be zero. However since I have been lenient towards Higgins’ system with 
regards to labelling traces, I have included results for Johnson’s system assuming that coindexation is correct when 
traces are inserted in the correct position in the tree.

10Johnson’s software is retrainable. However, the code to extract new trace patterns for his software would not 
compile on a number of systems I attempted to do so on. Attempts to contact the author to resolve this issue received 
no response, so unfortunately I am unable to provide results for Johnson’s software retrained using LDD resolved 
questions.
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LD D s on both gold standard tree input stripped of traces and coindexation and parser output 

trees. These scores are, however, calculated giving the benefit of the doubt to Higgins’ system, 

because it does not assign a C F G  category to the empty nodes it inserts, and for the purposes of 

the evaluation I  have assumed that the correct category is always assigned. This biases the eval­

uation towards Higgins’ system, so I performed a further evaluation on the 100 QuestionBank 

questions with my own system where I do not penalise where the C F G  category assigned to an 

empty node is incorrect. The results are given in Table 7.9.

Stripped Gold Standard 

Precision Recall F-Score

Parser Output 

Precision Recall ]F-score

Higgins (2003) 

Judge (2006) best

94.52

100

73.00 82.38

73.00 84.39

79.03 62.00 

100 59.00

69.49

74.21

Table 7.9: Comparison of results for L D D  resolution on 100 QuestionBank questions for my 

system and Higgins’ system with the C F G  category constraint relaxed for both sys­

tems

The results in Table 7.9 show that if  I relax the evaluation constraints for my own system as 

well as Higgins’ , the the precision for my system in this evaluation increases to 100% resulting 

in f-scores greater than those of Higgins’ .

7.7 Conclusion

In this chapter I have introduced a new method for recovering long distance dependency infor­

mation (traces and coindexation) in parser output. This method uses the automatic f-structure 

annotation algorithm of Cahill et al. (2004) to generate an L D D  resolved f-structure for the 

parser output c-structure tree, and, using an f-structure annotated P C FG  (A P C F G ) to guide the 

process, “reverse engineers” the corresponding empty node and coindexation on the antecedent
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in the c-structure tree. This method proved to be highly accurate (96.77% precision), but to have 

low recall (38.75%) in initial tests on questions extracted from the A TIS  corpus.

A  comparison of my method with others showed that this high precision low recall result was 

typical o f Penn-II Treebank-based systems in this evaluation. M y  system and Johnson (2002) 

performed similarly (though Johnson’s results were better) with Higgins (2003), which focuses 

on wh- constructions in the Penn-II Treebank, outperforming both other systems with f-scores 

of 78.71% on gold standard A TIS  trees stripped of empty nodes and coindexation, and 78.69% 

on parser output for the same sentences.

To improve the performance of my L D D  recovery system I experimented with relaxing the 

constraints on considering nodes for insertion. This improved recall, but had a negative effect on 

precision. To remedy this, I added question data to the corpus from which the A P C F G  is derived. 

This question data was created inductively using QuestionBank as a source of unresolved ques­

tions which were processed using the L D D  recovery system and a similar process-correct-retrain 

bootstrapping procedure used to create QuestionBank from raw data. This had two positive out­

comes: first, it added traces and coindexation to the QuestionBank question trees, and second, 

it tuned the A P C F G  used in my L D D  recovery system to questions. A  series of evaluations car­

ried out during the induction process show that the largest increase in accuracy occurred when 

the first section of hand-corrected L D D  resolved questions was added to the A P C FG  training 

corpus. Subsequent additional data had a positive impact, but not to the same degree.

The combination of the change in matching criteria and the A P C F G  containing question 

data dramatically improved performance of my L D D  recovery system. The precision and recall 

in evaluations on the A TIS  test set that the earlier version was evaluated on increased giving an 

f-score on both stripped gold standard trees and parser output of 84.07%. This improved result 

means that my system outperforms Higgins’ system in this evaluation by 5.36% on stripped gold 

standard trees and 5.38% on parser output.

An evaluation of all three L D D  recovery systems on a QuestionBank-based test set shows 

that my (improved) system and Higgins’ system perform very well on the question data, with
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high precision and recall for both stripped gold standard trees and parser output input, but John­

son’s system performs particularly poorly with an f-score of 54.15% given stripped gold stan­

dard trees and 8.73% given parser output. Higgins’ system scores highest in this evaluation, 

this is, however, under the assumption that Higgins’ system always labels the inserted trace cor­

rectly. When I make the same assumption with respect to my own system and reevaluate, the 

results show that, my system outperforms Higgins’ with an f-score of 84.39% on stripped gold 

standard input and 74.21% on parser output. These results, and those for the ATIS-based evalua­

tions in Table 7.7 suggest that for the question-based evaluations conducted here, my f-structure 

reentrancy-based method of L D D  recovery performs better.

The comparison of my improved system with Johnson’s and Higgins’ systems is biased, as 

I was unable to retrain neither Johnson’s nor Higgins’ system with QuestionBank data. This 

means that unlike my system they were unable to benefit from the QuestionBank data. The 

expectation would be that their results would improve and indeed QuestionBank is designed to 

provide a resource for retraining systems such as Johnson’s and Higgins’ . I hope to be able to 

explore this in future work.

140



Chapter 8

Conclusion and Future Work

Modem information retrieval systems are starting to employ linguistic analysis to a greater de­

gree. Quëstion answering systems, as a refinement of standard document IR, use more in-depth 

representations and sophisticated linguistic analysis techniques to retrieve precise answers to a 

direct question. Linguistic analysis captures information contained in natural language strings 

that allows these systems to pinpoint precise information in a text. Linguistic analysis can dif­

ferentiate subtle (but important) differences between sentences, for example the subject/object 

(agent/patient) distinction in the focus of the questions “Who killed Harvey Oswald?” and “Who 

did Harvey Oswald kill?” and in declarative sentences containing appropriate answers to the 

questions “Jack Ruby killed Harvey Oswald.” and “Harvey Oswald killed JFK.” 1 However, a 

lack of linguistic resources for research focusing on questions and a lack of questions in stan­

dard training corpora and test sets means that some state-of-the-art analysis tools such as parsers 

underperform considerably on question material.

In this thesis I have presented work to assess and improve the state-of-the-art regarding the 

accurate analysis of questions into two levels of linguistic representation, CFG parse trees and 

LFG f-structures, as well as working towards addressing the lack of resources for question- 

focused analysis through the creation of QuestionBank, a parse-annotated corpus of questions 

'The truth of this statement is the subject of much debate. I use the example for illustrative purposes only.
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for use in the development of parser-based linguistic tools for question analysis. The research in 

this thesis has:

• shown that for current state-of-the-art Penn-II trained probabilistic parsers analysing ques­

tions is an instance of domain variation. This domain variation is more extreme than that 

observed in previous work on parser domain variance, however it can be treated in the 

same way.

• shown that the domain variance observed affects both c- and f-structure analyses but not 

to the same degree.

• established that the automatic f-structure annotation algorithm of Cahill et al. (2004) is 

complete with respect to domain variation experiments on data from the ATIS corpus.

• developed a training and evaluation corpus for developing question-focused parser-based 

linguistic resources, QuestionBank.

• compared the baseline parsing performance of a state-of-the-art parser trained on Sections 

02-21 of the Penn-II Treebank tested on both Section 23 of the Penn-II Treebank and a 

question test set from QuestionBank with that of the same parser trained on the original 

training set plus QuestionBank.

• investigated the effects of varying the amount of Penn-II Treebank and QuestionBank data 

in the parser’s training set when testing on both QuestionBank and Penn-II Treebank- 

based test sets.

• developed a method for restoring Long Distance Dependency trace and coindexation in­

formation in parser output c-structure trees using LFG f-structure reentrancies.

• compared this method of restoring LDD trace information in questions from Question­

Bank with two existing methods (Johnson, 2002; Higgins, 2003).
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• successfully used the LDD restoration method developed to inductively restore LDD trace 

information in the hand corrected parser output trees in QuestionBank.

The main resource established in this thesis is QuestionBank and the main result is that 

QuestionBank can be used in conjunction with the Penn-II Treebank to train a parser that can 

parse both questions and informative text with state-of-the-art accuracy. Below I summarise the 

findings and results of this research.

The Penn-II Treebank (Marcus et al., 1994), due to its low proportion of questions, is unsuit­

able for training a parser to analyse questions. The ATIS corpus (Hemphill et al., 1990) contains 

a much higher proportion of questions and is suitable for use in domain variation experiments 

testing the parser’s performance on questions. In experiments with three state-of-the-art parsers 

(Collins, 1999; Charniak, 2000; Bikel, 2002) trained on Sections 02-21 of the Penn-II treebank, I 

have shown that the domain variance presented by the ATIS corpus is more severe than the vari­

ance that was observed in previous work by Gildea (2001) on parsing Brown Corpus (Kucera 

and Nelson, 1967) data, with parser performance for parsing the whole ATIS corpus dropping 

to a labelled precision and recall f-score of 72.45% for Collins’ Model 2, 63.64% for Charniak 

and 69.94% for Bikel, an average drop of almost 20% when compared to the same parsers tested 

on Section 23 of the Penn-II Treebank. A small portion of this drop in performance for Char- 

niak’s parser (4.48%) can be attributed to the lack of punctuation in the ATIS corpus, however 

this is not true for Collins’ and Bikel’s parsers. As was observed in Gildea’s work, the parsers’ 

performance can be boosted on the out of domain test material by adding domain appropriate 

material to the parsers’ training set. Retraining experiments on Chamiak’s and Bikel’s parsers 

show significant gains on the baseline evaluations, giving best run labeled precision and recall 

f-score results on an ATIS-based test set of 84.69% for Charniak and 85.65% for Bikel. This is 

surprising given the relative difference in size between the ATIS corpus and the Penn-II Tree­

bank, and it suggests that a question training corpus of similar size to the Penn-II Treebank may 

not be needed to produce good parsing results for questions.

I have examined the effect of domain variance on automatic c- and LFG f-structure anal­
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yses. Parsing and automatically annotating ATIS sentences with f-structures using the Penn-II 

trained “off the shelf’ version of Bikel’s parser and the automatic f-structure annotation algo­

rithm of Cahill et al. (2004) results in a labelled bracketing c-structure f-score of 70.25% when 

the c-structure trees are evaluated against 100 ATIS gold standard trees and a preds-only de­

pendency f-score of 62.95% when evaluated against hand-crafted f-structures for the 100 ATIS 

sentences. In this instance of domain variation the annotation of question specific relations like 

FOCUS and TOPICREL is particularly poor. In order to resolve the underperformance issue of 

the pipeline parsing and f-structure annotation algorithm architecture only the parser needed to 

be retrained. Retraining the parser on appropriate data from the ATIS corpus improves the c- 

structure f-score by 12.89% and the preds-only dependency f-score by 13.82%, and improves 

the quality of FOCUS and TOPICREL annotations dramatically. Interestingly, the retrained sys­

tem, when back-tested on data in the original domain (DCU 105) shows no negative effects in 

both c- and f-structure evaluations as a result of the retraining. This suggests that the automatic 

f-structure annotation algorithm of Cahill et al. (2004) is complete with respect to the domain 

variation observed here and supports the view that f-structures are a more abstract representation 

of the information contained in a sentence, which is less affected by domain variation.

The significant improvements on out of domain c- and f-structure analysis as a result of 

parser retraining are encouraging given the size of the ATIS “question” corpus used in the exper­

iments. Due to its size, and composition, however, the ATIS corpus is not entirely representative 

of questions. To address this I have created a corpus of parse-annotated questions, Question- 

Bank, from the TREC QA evaluation test sets and a question classifier training set provided 

by the Cognitive Computation Group at the University of Illinois Urbana-Champaign. Ques- 

tionBank was rapidly induced from raw data using a parse-correct-retrain bootstrapping method 

to simultaneously induce both a question treebank and a better question parser. This process 

generated 4000 Penn-II Treebank style trees in 3 months.

Experiments with QuestionBank show that a parser trained only on QuestionBank can parse 

questions accurately, with an f-score of 88.82% in a 10-fold cross-validation on QuestionBank,
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but performs badly on informative text in Section 23 of the Penn-II Treebank, with an f-score of 

only 59.79%. If QuestionBank is used in conjunction with the Penn-II Treebank as a training 

resource, the parser performance on Section 23 is comparable to when trained only on the Penn- 

II Treebank data (82.39%) and gives a 0.93% improvement on the grammar trained only on 

QuestionBank when parsing questions. This slight improvement shows that question parsing 

can gain something (however small) from extracting information from a corpus of informative 

text like the Penn-II Treebank. Using ablation experiments I have shown that the amount of data 

in QuestionBank does not constitute an absolute upper bound for question parsing, but that it 

is sufficiently large a resource that the potential gain from enlarging the question corpus does 

not justify the effort involved. From this I conclude that QuestionBank is sufficiently large for 

the task which it was intended for: to provide a training and evaluation corpus for parser-based 

linguistic analysis of questions.

I have developed a new method to restore Long Distance Dependency information in parser 

output c-structure trees using f-structure reentrancies assigned automatically to the parser output 

by the automatic f-structure annotation algorithm of Cahill et al. (2004). This process outper­

forms two existing systems for the same task, one syntax-based, and one using machine learning, 

in evaluations on sample questions extracted from the ATIS corpus, with an f-score of 84.07% 

on both parser output or gold standard trees stripped of trace information and also on Question­

Bank questions, with an f-score of 80.78% on stripped gold standard trees and 68.99% given 

parser output.

The process of developing the LDD restoration algorithm to perform so well on the ques­

tions also helped the development of QuestionBank. The hand-corrected parser output trees in 

QuestionBank contained no long distance dependency information as the parser (Bikel, 2002) 

does not output this information in the trees. I used process-correct-retrain bootstrapping passes 

over sections of QuestionBank to restore trace information in the QuestionBank trees, and also 

improve the quality of the trace restoration algorithm.

145



8.1 Future Work

The main goal of this research has been to improve the quality of automatic linguistic analysis 

of questions and to provide the resources for other researchers to easily do so as well. In a 

larger context this work fits into ongoing work at the NCLT on acquiring wide-coverage, deep, 

constraint-based LFG grammars from treebanks, showing that the systems developed for English 

are robust and easily adaptable to a new domain.

The research in this thesis has looked at the underperformance of automatic linguistic analy­

sis tools on questions as an instance of domain variation. Domain variation presents a wide range 

of possibilities for further work. The automatic f-structure annotation algorithm of Cahill et al. 

(2004) is complete with respect to the domain variation studied in Chapter 4. However, since 

the work presented here is the first research on domain variance for the automatic f-structure 

annotation algorithm, it is not necessarily the case that this will hold true for other domains of 

application.

Nothing in the methods used here precludes the possibility of application to another lan­

guage, or to the adaption of a resource for one language to that of another linguistically similar 

language. For example one might consider a parser for Spanish parsing Portuguese as an in­

stance of (truly “extreme”) domain variation. It is possible that, using the bootstrapping and 

retraining method used in this research, a training corpus for Portuguese could be induced from 

raw text using a parser for Spanish.

To date, I have not been able to integrate the improvements in c- and f-structure analysis 

shown here with a working QA system to evaluate the effects on a working system. There are 

many ways in which this could be done depending on the system and how exactly it uses lin­

guistic analysis. In a less involved system the improvements to c-and f-structure analysis could 

be used for tasks like disambiguation and query reformulation. In a more linguistically involved 

QA system, the improved parser performance can help the extraction of logical representations 

(possibly in the form of f-structures) for answer identification and justification.
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Exploring this avenue is something I would like to pursue in the future, perhaps through 

the development of a linguistically motivated QA system, which relies on linguistic information 

to retrieve documents and answers instead of the current favoured strategy which relies on a 

boolean keyword matching retrieval engine for document retrieval. Developing such a system 

opens up a number of new avenues for exploration, for example:

• Tree or f-structure-based indexing and retrieval of documents,

• Tree or f-structure-based answer identification and ranking,

• Question reformulation based on syntactic/functional information as a fallback measure.

all of which rely heavily on accurate linguistic analysis of both questions and informative text 

into linguistic representations such as CFG trees or f-structures.

In its current form QuestionBank only provides a syntactic analysis for questions. Previous 

work (Burke, 2006) and experiments in Chapter 4 have shown that the automatic f-structure 

annotation algorithm of Cahill et al. (2004) has a high upper bound when given LDD resolved 

treebank trees as input. Based on this premise, an f-structure version of QuestionBank could 

be generated automatically from the parse-annotated version currently available. This would 

provide an automatically generated training/evaluation resource for question focused LFG-based 

resources.

Hockenmaier (2003a) presents an algorithm to transform phrase structure trees from the 

Penn Treebank to CCG derivations, creating a CCG version of the Penn Treebank, CCGBANK. 

Since QuestionBank follows the same annotation principles as the Penn-II Treebank (Bies et al., 

1995) it should be possible to create a version of QuestionBank consisting of CCG derivation 

trees instead of phrase structure trees. Such a resource could supplement the CCG “What.:.?” 

question corpus already developed (Clark et al., 2004), making it more representative of different 

types of questions.

Before either the f-structure or CCG derivation tree versions of QuestionBank could be con­

sidered, the current version needs to be checked for errors. While every effort was made to
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ensure the accuracy and consistency of the annotation of the questions in QuestionBank the time 

constraints on the project did not allow for the corpus to be checked and validated by additional 

annotators. As such QuestionBank is currently only in a beta release stage. Before a final ver­

sion can be made available both the trees and the long distance dependencies need to be verified 

by at least one additional annotator.
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Appendix A

Penn-II Treebank Tags and Functional 

Labels

These tagging and functional annotation labels are taken from “Bracketing Guidelines 

for Treebank II Style Penn Treebank Project” Bies et al. (1995). Reproduced from 

http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

A.l Bracket Labels 

A . l . l  C lau se  Level

S simple declarative clause, i.e. one that is not introduced by a (possible empty) subordinating 

conjunction or a wh-word and that does not exhibit subject-verb inversion.

SBAR Clause introduced by a (possibly empty) subordinating conjunction.

SBARQ Direct question introduced by a wh-word or a wh-phrase. Indirect questions and rela­

tive clauses should be bracketed as SBAR, not SBARQ.

SINV Inverted declarative sentence, i.e. one in which the subject follows the tensed verb or 

modal.
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SQ Inverted yes/no question, or main clause of a wh-question, following the wh-phrase in 

SBARQ.

A .1.2 P h ra se  Level 

ADJP Adjective Phrase.

ADVP Adverb Phrase.

CO N JP Conjunction Phrase.

FRAG Fragment.

IN TJ Inteijection. Corresponds approximately to the part-of-speech tag UH.

LST List marker. Includes surrounding punctuation.

NAC Not a Constituent; used to show the scope of certain prenominal modifiers within an NP. 

NP Noun Phrase.

NX Used within certain complex NPs to mark the head of the NP. Corresponds very roughly to 

N-bar level but used quite differently,

PP Prepositional Phrase.

PRN Parenthetical.

PRT Particle. Category for words that should be tagged RP.

QP Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.

RRC Reduced Relative Clause.

UCP Unlike Coordinated Phrase.

VP Vereb Phrase.
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WHADJP Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how hot.

WHAVP Wh-adverb Phrase. Introduces a clause with an NP gap. May be null (containing the 

0 complementizer) or lexical, containing a wh-adverb such as how or why.

WHNP Wh-noun Phrase. Introduces a clause with an NP gap. May be null (containing the 

0 complementizer) or lexical, containing some wh-word, e.g. who, which book, whose 

daughter, none of which, or how many leopards.

WHPP Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase (such as of 

which or by whose authority) that either introduces a PP gap or is contained by a WHNP.

X Unknown, uncertain, or unbracketable. X is often used for bracketing typos and in bracketing 

the.. .the-constructions.

A .1.3 W o rd  level

CC Coordinating conjunction 

CD Cardinal number 

DT Determiner 

EX Existential there 

FW Foreign word

IN Preposition or subordinating conjunction 

JJ  Adjective

JJR  Adjective, comparative 

JJS Adjective, superlative 

LS List item marker
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NN Noun, singular or mass 

NNS Noun, plural 

NNP Proper noun, singular 

NNPS Proper noun, plural 

PDT Predeterminer 

POS Possessive ending 

PR P Personal pronoun

PRP$ Possessive pronoun (prolog version PRP-S) 

RB Adverb

RBR Adverb, comparative 

RBS Adverb, superlative 

RP Particle 

SYM Symbol 

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

M D  Modal
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VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun (prolog version WP-S)

WRB Wh-adverb

A.2 Function tags

A.2.1 F o rm /fu n c tio n  d isc repanc ies

ADV (adverbial) marks a constituent other than ADVP or PP when it is used adverbially (e.g. 

NPs or free (’’headless” relatives). However, constituents that themselves are modifying 

an ADVP generally do not get -ADV If a more specific tag is available (for example, 

-TMP) then it is used alone and - ADV is implied. See the Adverbials section.

NOM (nominal) marks free (’’headless”) relatives and gerunds when they act nominally.

A .2.2 G ra m m a tic a l ro le

DTV (dative) marks the dative object in the unshifted form of the double object construction. If 

the preposition introducing the ’’dative” object is for, it is considered benefactive (-BNF). 

-DTV (and -BNF) is only used after verbs that can undergo dative shift.

LGS (logical subject) is used to mark the logical subject in passives. It attaches to the NP 

object of by and not to the PP node itself.

PRD (predicate) marks any predicate that is not VP. In the do so construction, the so is anno­

tated as a predicate.
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SBJ (surface subject) marks the structural surface subject of both matrix and embedded 

clauses, including those with null subjects.

TPC (“topicalized”) marks elements that appear before the subject in a declarative sentence, 

but in two cases only:

1. if the front element is associated with a *T* in the position of the gap.

2. if the fronted element is left-dislocated (i.e. it is associated with a resumptive pro­

noun in the position of the gap).

VOC (vocative) marks nouns of address, regardless of their position in the sentence. It is not 

coindexed to the subject and not get -TPC when it is sentence-initial.

A .2.3 A d v erb ia ls

BNF (benefactive) marks the beneficiary of an action (attaches to NP or PP). This tag is used 

only when (1) the verb can undergo dative shift and (2) the prepositional variant (with 

the same meaning) uses for. The prepositional objects of dative-shifting verbs with other 

prepositions than for (such as to or of) are annotated -DTV.

DIR (direction) marks adverbials that answer the questions “from where?” and “to where?” It 

implies motion, which can be metaphorical as in “...rose 5 pts. to 57-1/2” or “increased 

70

EXT (extent) marks adverbial phrases that describe the spatial extent of an activity. -EXT 

was incorporated primarily for cases of movement in financial space, but is also used in 

analogous situations elsewhere. Obligatory complements do not receive -EXT. Words 

such as fully and completely are absolutes and do not receive -EXT.

PUT marks the locative complement of put.
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LOC (locative) marks adverbials that indicate place/setting of the event. -LOC may also indi­

cate metaphorical location. There is likely to be some varation in the use of -LOC due 

to differing annotator interpretations. In cases where the annotator is faced with a choice 

between -LOC or -TMP, the default is -LOC. In cases involving SBAR, SBAR should not 

receive -LOC. -LOC has some uses that are not adverbial, such as with place names that 

are adjoined to other NPs and NAC-LOC premodifiers of NPs. The special tag -PUT is 

used for the locative argument of put.

MNR (m anner) marks adverbials that indicate manner, including instrument phrases.

PRP (purpose or reason) marks purpose or reason clauses and PPs.

TM P (tem poral) marks temporal or aspectual adverbials that answer the questions when, how 

often, or how long. It has some uses that are not strictly adverbial, auch as with dates that 

modify other NPs at S- or VP-level. In cases of apposition involving SBAR, the SBAR 

should not be labeled -TMP. Only in “financialspeak and only when the dominating PP 

is a PP-DIR, may temporal modifiers be put at PP object.level. Note that -TMP is not used 

in possessive phrases.

A.3 Miscellaneous

CLR (closely related) marks constituents that occupy some middle ground between arguments 

and adjunct of the verb phrase. These roughly correspond to “predication adjuncts”, 

prepositional ditransitives, and some “phrasal verbs”. Although constituents marked with 

-CLR are not strictly speaking complements, they are treated as complements whenever 

it makes a bracketing difference. The precise meaning of -CLR depends somewhat on the 

category of the phrase.

• on S or SBAR - These categories are usually arguments, so the -CLR tag indicates 

that the clause is more adverbial than normal clausal arguments. The most common
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case is the infinitival semi-complement of use, but there are a variety of other cases.

• on PP, ADVP, SBAR-PRP, etc - On categories that are ordinarily interpreted as (ad­

junct) adverbials, -CLR indicates a somewhat closer relationship to the verb. For 

example:

Prepositional Ditransitives In order to ensure consistency, the Treebank recog­

nizes only a limited class of verbs that take more than one complement (-DTV 

and -PUT and Small Clauses) Verbs that fall outside these classes (including 

most of the prepositional ditransitive verbs in class

D2

) are often associated with -CLR.

Phrasal verbs Phrasal verbs are also annotated with -CLR or a combination of - 

PRT and PP-CLR. Words that are considered borderline between particle and 

adverb are often bracketed with ADVP-CLR.

Predication Adjuncts Many of Quirk’s predication adjuncts are annotated with - 

CLR.

• on NP - To the extent that -CLR is used on NPs, it indicates that the NP is part of 

some kind of “fixed phrase” or expression, such as take care of. Variation is more 

likely for NPs than for other uses of -CLR.

-CLF (cleft) marks it-clefts (“true clefts”) and may be added to the labels S, SINV, or SQ.

HLN (headline) marks headlines and datelines. Note that headlines and datelines always con­

stitute a unit of text that is structurally independent from the following sentence.

TTL (title) is attached to the top node of a title when this title appears inside running text. -TTL 

implies -NOM. The internal structure of the title is bracketed as usual.
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Appendix B

Additional Figures and Tables

<40 words
Sect 00 Sect 23

Model LR LP LR LP
Collins Model 2 n/a n/a 88.5 88.7

Bikel’s Model 2 emulation 90.0 90.2 88.7 88.9
All Sentences

Model Sect 00 Sect 23
Collins Model 2 n/a n/a 88.1 88.3

Bikel’s Model 2 emulation 88.8 89.0 88.2 88.3

Table B.l: Comparison of parsing results for Collins’ Model 2 parser and Bikel’s emulation of 
Collins’ Model 2. (Results are taken from Collins (1999) and Bikel (2004))
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Figure B .l: Penn-II Punctuation attachment compared with parser output
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